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To humanity and human welfare



God understands the way to wisdom and
He alone knows where it dwells.

— Job 28:23
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Preface

Failures of major engineering systems always raise public concern on the safety
and reliability of engineering infrastructure. Decades ago quantitative evalua-
tions of the reliability of complex infrastructure systems were not practical, if
not impossible. Engineers had to resort to the use of a safety factor mainly de-
termined through experience and judgment. The contribution of human factors
to structural safety still remains elusive for analytical treatment. The main
areas of concern and application in this book are hydrosystems and related
environmental engineering.

Without exception, failures of hydrosystem infrastructure (e.g., dams, levees,
and storm sewers) could potentially pose significant threats to public safety
and inflict enormous damage on properties and the environment. The tra-
ditional approach of considering occurrence frequency of heavy rainfalls or
floods, along with an arbitrarily chosen safety factor, has been found inadequate
for assessing the reliability of hydrosystem infrastructure and for risk-based
cost analysis and decision making. In the past two decades or so, there has been
a steady growth in the development and application of reliability analysis in
hydrosystems engineering and other disciplines. The main objective of the book
is to bring together some of these developments and applications in one volume
and to present them in a systematic and understandable manner to the water
resource related engineering profession. Through this book it is hoped to demon-
strate how to integrate involved physical processes, along with some knowledge
in mathematics, probability, and statistics, to perform reliability assessment
and risk analysis of hydrosystem engineering problems. An accompanying book,
Hydrosystems Engineering Uncertainty Analysis, provides treatments and
quantifications of various types of uncertainty, which serve as essential infor-
mation needed for the reliability assessment and risk analysis of hydrosystems.

Hydrosystems is the term used to describe collectively the technical areas
of hydrology, hydraulics, and water resources. The term has now been widely
used to encompass various water resource systems including surface water
storage, groundwater, water distribution, flood control, drainage, and others.
In many hydrosystem infrastructural engineering and management problems,
both quantity as well as quality aspects of water and other environmental

xi
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xii Preface

issues have to be addressed simultaneously. Due to the presence of numerous
uncertainties, the ability of the system to achieve the goals of design and man-
agement decisions cannot be assessed definitely. It is almost mandatory for an
engineer involved in major hydrosystem infrastructural design or hazardous
waste management to quantify the potential risk of failure and the associated
consequences.

Application of reliability analysis to hydrosystems engineering covers a wide
scope of subfields, ranging from data collection and gauging network design to
turbulence loading on structures; and from inland surface water to groundwa-
ter to coastal water. In terms of the system scale, it could involve entire river
basins containing many components, or a large dam and reservoir, or a single
culvert or pipe. Depending on the objective, the application could be for design-
ing the geometry and dimension of hydraulic facilities, for planning of a hy-
draulic project, for determining operation procedure or management strategy,
for risk-cost analysis, or for risk-based decision making.

The book is not intended to be a review of literature, but is an introduction
for upper level undergraduate and graduate students to methods applicable for
reliability analysis of hydrosystem infrastructure. Most of the principles and
methodologies presented in the book can equally be applied to other civil engi-
neering disciplines. The book presents relevant theories of reliability analysis in
a systematic fashion and illustrates applications to various hydrosystem engi-
neering problems. Although more advanced statistical and mathematical skills
are occasionally required, the great majority of the problems can be solved with
basic knowledge of probability and statistics. Illustrations in the book bring to-
gether the use of probability and statistics, along with knowledge of hydrology,
hydraulics, water resources, and operations research for the reliability analysis
and optimal reliability-based design of various hydrosystem engineering prob-
lems. The book provides added dimensions to water resource engineers beyond
conventional frequency analysis.

The book consists of eight chapters. In each chapter of the book, ample exam-
ples are given to illustrate the methodology for enhancing the understanding
of the materials. The book can serve as an excellent reference book not only for
engineers, planners, system analysts, and managers in area of hydrosystems,
but also other civil engineering disciplines. In addition, end-of-chapter problems
are provided for practice and homework assignments for classroom teaching.

The book focuses on integration of reliability analysis with knowledge in
hydrosystems engineering with applications made to hydraulics, hydrology,
water resources, and occasionally, to environmental and water quality manage-
ment related problems. Since many good books on basic probability, statistics,
and hydrologic frequency analysis have been written, background in proba-
bility, statistics, and frequency analysis that are relevant to reliability anal-
ysis are summarized in Chapters 2 and 3, respectively. The book, instead of
dwelling on the subject of data analysis, focuses on how to perform relia-
bility analysis of hydrosystem engineering problems once relevant statistical
data analysis has been conducted. As real-life hydrosystems generally involve
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various uncertainties other than just inherent natural randomness of hydro-
logic events, the book goes beyond conventional frequency analysis by consider-
ing reliability issues in a more general context of hydrosystems engineering and
management. Chapter 4 elaborates the reliability analysis methods consider-
ing load-resistance interaction under the static and time-dependent conditions.
First-order and second-order reliability methods, with the emphasis given to
the former, are derived. For many hydrosystem infrastructures, it is sometimes
practical to treat the system as a whole and analyze its performance over time
without considering detailed load-resistance interaction. Chapter 5 is devoted
to time-to-failure analysis that is particularly useful for dealing with systems
that are repairable. Chapter 6 provides a detailed treatment of using Monte
Carlo simulation and its variations applicable to reliability analysis. The sub-
ject, in most books, is covered in the context of univariate problems in which
stochastic variables are treated as independent and uncorrelated. In reality,
the great majority of the hydrosystem infrastructural engineering problems
involve multiple stochastic variables, which are correlated. Treatment of such
problems is emphasized. Chapter 7 focuses on the evaluation of system reliabil-
ity by integrating load-resistance reliability analysis methods or time-to-failure
analysis, along with system configuration, for assessing system reliability.
Different methods for system reliability analysis are presented and demon-
strated through examples. Chapter 8 presents the framework that integrates
uncertainties, risk, reliability, and economics for an optimal design of hydrosys-
tem infrastructure. A brief description of system optimization is also given.

The intended uses and audiences for the book are: (1) as a textbook for an
intermediate course at the undergraduate senior level or graduate level in wa-
ter resources engineering on the risk and reliability related subjects; (2) as a
textbook for an advanced course in risk and reliability analysis of hydrosystem
engineering; and (3) as a reference book for researchers and practicing engi-
neers dealing risk and reliability issues in hydrosystems engineering, planning,
management, and decision making.

The expected background for the readers of this book is a minimum of 12
credits of mathematics including calculus, matrix algebra, probability, and
statistics; a one-semester course in elementary fluid mechanics; and a one-
semester course in elementary water resources covering basic principles in
hydrology and hydraulics. Additional knowledge on engineering economics,
water-quality models, and optimization would be desirable.

Two possible one-semester courses could be taught from this book depend-
ing on the background of the students and the type of course designed by the
instructor. Instructors can also refer to the accompanying book Hydrosystems
Engineering Uncertainty Analysis for other relevant materials to compliment
this book. The possible course outlines are presented below.

Outline 1. (For students who have taken a one-semester probability and statis-
tics course). The objective of this outline aims at achieving higher level of
capability to perform reliability analysis. The optimal risk-based design
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concept can be introduced without having to formally cover subjects on opti-
mization techniques. The subject materials could include Chapter 1, Chapter 2
(2.7), Chapter 3, Chapter 4 (4.1–4.4), Chapter 5 (5.1–5.3), Chapter 6 (6.1–6.4,
6.6), Chapter 7 (7.1–7.3), and Chapter 8 (8.1–8.4).

Outline 2. (For water resource engineers or students who have a good under-
standing in basic statistics, probability, and operations research.) The aim of
this outline is for readers to achieve higher level and deeper appreciation of the
applications of reliability assessment techniques in hydrosystems engineering.
The topics might include Chapters 1, 4, 5, 6, 7, and 8.

The uncertainty and reliability issues in hydrosystem engineering problems
have been attracting a lot of attention of engineers and researchers. A tremen-
dous amount of progress has been made in the area. This book, and the accompa-
nying book Hydrosystems Engineering Uncertainty Analysis, merely represent
our humble offer to the hydrosystem engineering community. We hope that
readers will find this book useful and enjoyable. Due to our limited knowledge
and exposure in the exciting area of stochastic hydraulics, we are unable to
incorporate many brilliant works in this book. It is our sincere wish that this
effort will bring out much greater works from others to improve and enhance
our contribution to society and mankind.
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Chapter

1
Reliability in Hydrosystems

Engineering

1.1 Reliability Engineering

Occasionally, failures of engineering systems catch public attention and raise
concern over the safety and performance of the systems. The cause of the mal-
function and failure could be natural phenomena, human error, or deficiency in
design and manufacture. Reliability engineering is a field developed in recent
decades to deal with such safety and performance issues.

Based on their setup, engineering systems can be classified loosely into two
types, namely, manufactured systems and infrastructural systems. Manufac-
tured systems are those equipment and assemblies, such as pumping stations,
cars, computers, airplanes, bulldozers, and tractors, that are designed, fabri-
cated, operated, and moved around totally by humans. Infrastructural systems
are the structures or facilities, such as bridges, buildings, dams, roads, levees,
sewers, pipelines, power plants, and coastal and offshore structures, that are
built on, attached to, or associated with the ground or earth. Most civil, en-
vironmental, and agricultural engineering systems belong to infrastructural
systems, whereas the great majority of electronic, mechanical, industrial, and
aeronautical/aerospace engineering systems are manufactured systems.

The major causes of failure for these two types of systems are different. Fail-
ure of infrastructures usually is caused by natural processes, such as geophys-
ical extremes of earthquakes, tornadoes, hurricanes or typhoons, heavy rain or
snow, and floods, that are beyond human control. Failure of such infrastruc-
tural systems seldom happens, but if a failure occurs, the consequences often
are disastrous. Replacement after failure, if feasible, usually involves so many
changes and improvements that it is essentially a different, new system.

On the other hand, the major causes of failure for manufactured systems
are wear and tear, deterioration, and improper operation, which could be dealt
with by human abilities but may not be economically desirable. Their failures

1
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2 Chapter One

usually do not result in extended major calamity. If failed, they can be repaired
or replaced without affecting their service environment. Their reliability anal-
yses are usually for production, quality control, or for maintenance service and
warranty planning. Thus failures of manufactured systems often are classified
into repairable and nonrepairable types. Conversely, failures of infrastructural
systems can be classified as structural failures and functional failures, as will
be explained in Sec. 1.5.

The approaches and purposes of reliability analysis for these two types of
systems are related but different. As described in Sec. 1.3, reliability analysis
for manufactured systems has a history of more than 70 years and is relatively
more developed than reliability analysis for civil engineering infrastructural
systems. Many books and papers have been published on reliability engineer-
ing for manufactured systems. One can refer to Ireson and Coombs (1988),
Kececioglu (1991), Ushakov (1994), Pecht (1995), Birolini (1999), and Modarres
et al. (1999) for extensive lists of the literature. Conversely, this book deals
mainly with reliability issues for hydrosystem engineering infrastructures.
Nonetheless, it should be noted that many of the basic theories and methods
are applicable to both systems.

1.2 Reliability of Hydrosystem Engineering
Infrastructure

The performance of a hydrosystem engineering infrastructure, function of an
engineering project, or completion of an operation all involve a number of con-
tributing components, and most of them, if not all, are subject to various types
of uncertainty (Fig. 1.1). Detailed elaboration of uncertainties in hydrosystem
engineering and their analysis are given in Tung and Yen (2005). Reliability
and risk, on the other hand, generally are associated with the system as a whole.
Thus methods to account for the component uncertainties and to combine them
are required to yield the system reliability. Such methods usually involve the
use of a logic tree, which is discussed in Chap. 5. A typical logic tree for culvert
design is shown in Fig. 1.2 as an example.

The reliability of an engineering system may be considered casually, such
as through the use of a subjectively decided factor of safety (see Sec. 1.6).
Today, reliability also may be handled in a more comprehensive and system-
atic manner through the aid of probability theory. Factors that contribute to
the slow development and application of analyses of uncertainty and reliabil-
ity in hydrosystem engineering infrastructure design and analysis include the
following:

1. Those who understand the engineering processes well often are not trained
adequately and are uncomfortable with probability. Contrarily, those who are
good in probability theory and statistics seldom have sufficient knowledge
of the details of the engineering process involved.
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4 Chapter One
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Figure 1.2 Fault tree for culvert design.

2. Many factors contribute to the reliability of an engineering system. Only
recently have advances in techniques and computers rendered the combina-
tion and integration of these contributions feasible to evaluate the system
reliability. Nevertheless, some of the factors are still beyond the firm grasp of
engineers and statisticians. Furthermore, these factors usually require the
work of experts in different disciplines, whereas interdisciplinary communi-
cation and cooperation often are a problem.

3. Engineers have a tendency to focus on components affecting their problem
most while ignoring other contributing elements. For instance, hydrologists
as a group perhaps have contributed more than any other discipline to fre-
quency analysis and also have made major contributions to related proba-
bility distributions. Yet their devotion and accomplishment are a blessing as
well as a curse, in that they hinder the vision to see beyond to a broader view
of uncertainty and reliability analyses. As noted by Cornell (1972):

It is important to engineering applications that we avoid the tendency to model
only those probabilistic aspects that we think we know how to analyze. It is far
better to have an approximate model of the whole problem than an exact model
of only a portion of it.

Only more recently, uncertainties other than natural randomness of floods/
rainfalls are considered in reliability-based design of flood mitigation
schemes (U.S. National Research Council, 2000).
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4. Inconsistent definitions of risk and risk analysis cause considerable con-
fusion and doubt about the subject. For example, in flood protection engi-
neering, hydraulic engineers tend to accept the definition used by struc-
tural, aerospace, and electronic engineers that risk analysis is the analysis
of the probability of failure to achieve the intended objectives. Hydrologists
often consider risk in terms of the return period, which is considered as the
reciprocal of the annual exceedance probability of the hydrologic events (i.e.,
flood, storm, or drought). Water resources planners and decision makers
mostly adopt the definition used in economics and the health science fields,
regarding risk analysis as the analysis of risk costs, assessment of the eco-
nomic and social consequence of a failure, and risk management. For exam-
ple, the United Nations Department of Humanitarian Affairs (1992) defines
risk as

The expected losses (of lives, persons injured, property damaged and economic
activity disrupted) due to a particular hazard for a given area and reference
period. Based on mathematical calculations, risk is the product of hazard and
vulnerability.

Further, hazard is defined as “a threatening event or the probability of
occurrence of a potentially damaging phenomenon within a given time period
and area.” Hence, in the United Nations terminology, hazard is what engi-
neers define as risk. The problem of confusion probably would be minimized
if the experts in these subdisciplines worked separately, each responsible for
his or her own specialty. However, the trend of the past decades, expecting
jack-of-all-trades water resources engineers to be experts in all these sub-
disciplines, bears significant undesirable consequences, a small one of which
is the confusion concerning the definition of risk.

Practically all hydrosystem engineering infrastructures placed in a natu-
ral environment are subject to various external stresses and loads. The resis-
tance, strength, capacity, or supply of the system is its ability to accomplish
the intended mission satisfactorily without failure when subjected to demands
or external stresses. Loads, stresses, and demands tend to cause failure of
the system. Failure occurs when the demand exceeds the supply or the load
exceeds the resistance. Owing to the existence of uncertainties, the capacity
of an infrastructural system and the imposed loads more often than not are
random and subject to some degrees of uncertainty. Hence the design and oper-
ation of engineering systems are always subject to uncertainties and potential
failures.

Nevertheless, engineers always face the dilemma of decision making or design
with imperfect information. It is the engineer’s responsibility to obtain a solu-
tion with limited information, guided by experience and judgment, considering
the uncertainties and probable ranges of variability of the pertinent factors,
as well as economic, social, and environmental implications, and assessing a
reasonable level of safety.
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1.3 Brief History of Engineering Reliability Analysis

Development of engineering reliability analysis started with the desire for prod-
uct quality control in manufacturing engineering three-quarters of a century
ago (Shewart, 1931). World War II considerably accelerated its advancement.
During the war, over 60 percent of airborne equipment shipped to the Far East
arrived damaged. About half the spares and equipment in storage became un-
serviceable before use. Mean service time before requiring repair or replace-
ment for bomber electronics was less than 20 hours. The cost of repair and
maintenance exceeded 10 times the original cost of procurement. About two-
thirds of radio vacuum tubes in communications devices failed. In response to
the high failure rates and damage to military airborne and electronic equip-
ment, the U.S. Joint Army-Navy Committees on Parts Standards and on Vac-
uum Tube Development were established in June 1943 to improve military
equipment reliability. However, when the Korean War began, about 70 percent
of Navy electronic equipment did not function properly. In 1950, the U.S.
Department of Defense (DOD) established an Ad Hoc Group on Reliability that
was upgraded in November 1952 as the Advisory Group on the Reliability of
Electronic Equipment (AGREE) to monitor and promote military-related reli-
ability evaluation and analysis.

Meanwhile, the civilian-side activities on reliability engineering also became
active in aeronautical engineering (Tye, 1944) and in communications. In
1949–1953, Bell Laboratories and Vitro Laboratories investigated the relia-
bility of communications electronic parts. Carhart (1953) conducted an early
state-of-the-art study of reliability engineering. He divided the reliability prob-
lems into five groups, namely, electronics, vacuum tubes, other components,
system personnel, and organization. He listed seven factors that determined
the worth of manufactured systems: (1) performance capacity, (2) reliability,
(3) accuracy, (4) vulnerability, (5) operability, (6) maintainability, and (7) procur-
ability. In 1953, RCA established the first civilian-organized industrial reliabil-
ity program.

Contributions to reliability engineering through development of missiles be-
gan with a DOD project to General Dynamics in 1954. Bell Aircraft Corporation
issued the first industrial reliability handbook (LeVan, 1957). In the following
decades, reliability engineering played important roles in aerospace and air-
craft engineering.

Henney (1956) edited the first commercial reliability book. Chorafas (1960)
published a textbook combining statistics with reliability engineering. More
comprehensive textbooks on reliability related to manufacturing engineering
started to appear in the early 1960s (Bazovsky, 1961; Calabro, 1962). The first
reliability engineering course was offered in 1963 by Kececioglu at the Uni-
versity of Arizona. In 1955, the Institute of Radio Engineers [IRE, now the
Institute of Electrical and Electronic Engineers (IEEE)] initiated the Reliabil-
ity and Quality Control Society, and in 1978, IEEE established its Reliability
Society.
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The American Institute of Aeronautics and Astronautics (AIAA), the Soci-
ety of Automotive Engineers (SAE), and the American Society of Mechanical
Engineers (ASME) initiated the Annual Reliability and Maintainability Con-
ferences in 1962. It became the Annual Symposium on Reliability in 1966 and
Annual Reliability and Maintainability Symposium in 1972, the year that the
Society of Reliability Engineers was founded at Buffalo, New York.

Beyond manufacture-related reliability engineering, on the infrastructural
side, Freudenthal (1947, 1956) was among the first to develop reliability anal-
ysis for structural engineering. Public attention on the safety of nuclear power
plants and earthquake hazards has provoked significant development on re-
liability engineering for infrastructures, leading to publication of a series of
comprehensive textbooks on the subject (Benjamin and Cornell, 1970; Ang and
Tang, 1975, 1984; Yao, 1985; Madsen et al., 1986; Marek et al., 1995; Harr,
1996; Ayyub and McCuen, 1997; Kottagoda and Rosso, 1997; Melchers, 1999;
Haldar and Mahadevan, 2000).

1.4 Concept of Reliability Engineering

The basic idea of reliability engineering is to determine the failure probability
of an engineering system, from which the safety of the system can be assessed
or a rational decision can be made on the design, operation, or forecasting of
the system, as depicted in Fig. 1.3. For example, Fig. 1.4 schematically illus-
trates using reliability analysis for risk-based least-cost design of engineering
infrastructures.

An infrastructure is a functioning system formed from a combination of a
number of components. From the perspective of reliability analysis, infras-
tructure systems can be classified in several ways. First, they can be grouped
according to the sequential layout of the components (Fig. 1.5). A series sys-
tem is a system of components connected in sequence along a single path, i.e.,
in series. Failure of any one of the components leads to failure of the entire
system. A parallel system is one with its components connected side by side,
i.e., in parallel paths. Many engineering systems have built-in redundancy such
that they function as a parallel system. Failure occurs when none of the parallel
alternative paths function. Second, from the view point of the time consistency
of the statistical characteristics of the systems, they can be classified as a time-
invariant statistically stationary system (or static system) and a time-varying
statistically nonstationary system (or dynamic system).

Infrastructures may follow different paths to failure. The ideal and simplest
type is the case that the resistance and loading of the system are statistically
independent of time, or a stationary system. Most of the existing reliability
analysis methods have been developed for such a case.

A more complicated but realistic case is that for which the statistical char-
acteristics of the loading or resistance or both are changing with time, e.g.,
floods from a watershed under urbanization, rainfall under the effect of global
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Figure 1.4 Risk-based least-cost
design of infrastructural sys-
tems. (After Yen and Tung, 1993.)

warming, sewer or water supply pipes with deposition, and fatigue or elastic
behavior of steel structure members. This case can further be subdivided into
the subcases of (1) the changing process is irreversible and accumulative and
(2) the changing process is reversible, e.g., repairable. For some infrastructures,
the statistical characteristics of the system change with space or in time (or
both), e.g., a reach of highway or levee along different terrains. There are other
subsets of these time-varying or space-varying dynamic failure cases. One is the
subcase that a component of the system already has malfunctioned, but failure
has not occurred because the loading has not yet reached the level of such
failure, or there is a redundant component to take the load, but the strength of
the system is weakened. Another subcase is changing the tolerance of failure,
such as changing acceptable standards by regulations.
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(a)

(b)

n–1

  1

n

  2

  1   2 nn–1

Figure 1.5 Typical configura-
tions of infrastructural systems:
(a) series system; (b) parallel
system.

1.5 Definitions of Reliability and Risk

In view of the lack of generally accepted rigorous definitions for risk and
reliability, it will be helpful to define these two terms in a manner amenable
to mathematical formulation for their quantitative evaluation for engineering
systems. The unabridged Webster’s Third New World International Dictionary
gives the following four definitions of risk:

1. “the possibility of loss, injury, disadvantage, or destruction, . . . ;

2. someone or something that creates or suggests a hazard or adverse chance:
a dangerous element or factor;

3. a: (i) the chance of loss or the perils to the subject matter of insurance
covered by a contract, (ii) the degree of probability of such loss;

b: amount at risk;
c: a person or thing judged as a (specified) hazard to an insurer;
d: . . . (insure . . .);

4. the product of the amount that may be lost and the probability of losing it
[United Nations definitition]”

The unabridged Random House Dictionary lists the following definitions of
risk:

1. “exposure to the chance of injury or loss;

2. insurance: a) the hazard or chance of loss; b) the degree of probability of
such loss; c) the amount that the insurance company may lose; d) a person or
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thing with reference to the hazard involved in insuring him, her, or it; e) the
type of loss, such as life, fire, marine disaster, or earthquake, against which
an insurance policy is drawn,

3. at risk . . . ;

4. take or run a risk . . . .”

The Oxford English Dictionary defines risk as

1. “a) hazard, danger; exposure to mischance or peril; b) to run a or the risk; c)
a venturous course; d) at risk or high risk: in danger, subject to hazard; e) a
person who is considered a liability or danger; one who is exposed to hazard;

2. the chance or hazard of commercial loss . . . . Also, . . . the chance that is
accepted in economic enterprise and considered the source of
(an entrepreneur’s) profit.”

With reference to the first definition of the first two (American) dictionaries,
risk is defined herein as the probability of failure to achieve the intended goal.
Reliability is defined mathematically as the complement of the risk. In some
disciplines, often the nonengineering ones, the word risk refers not just to the
probability of failure but also to the consequence of that failure, such as the cost
associated with the failure (United Nations definition). Nevertheless, to avoid
possible confusion, the mathematical analysis of risk and reliability is termed
herein reliability analysis.

Failure of an engineering system can be defined as a situation in which the
load L (external forces or demands) on the system exceeds the resistance R
(strength, capacity, or supply) of the system. The reliability ps of an engineering
system is defined as the probability of nonfailure in which the resistance of the
system exceeds the load; that is,

ps = P (L ≤ R) (1.1)

in which P (·) denotes probability. Conversely, the risk is the probability of
failure when the load exceeds the resistance. Thus the failure probability (risk)
pf can be expressed mathematically as

pf = P (L > R) = 1 − ps (1.2)

Failure of infrastructures can be classified broadly into two types (Yen and
Ang, 1971; Yen et al., 1986): structural failure and functional (performance) fail-
ure. Structural failure involves damage or change of the structure or facility,
therefore hindering its ability to function as desired. On the other hand, per-
formance failure does not necessarily involve structural damage. However, the
performance limit of the structure is exceeded, and undesirable consequences
occur. Generally, the two types of failure are related. Some structures, such as
dams, levees, and pavement to support loads, are designed on the concept of
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structural failure, whereas others, such as sewers, water supply systems, and
traffic networks, are designed on the basis of performance failure.

In conventional infrastructural engineering reliability analysis, the only
uncertainty considered is that owing to the inherent randomness of geophysi-
cal events, such floods, rainstorms, earthquakes, etc. For instance, in hydrosys-
tem engineering designs, uncertainties associated with the resistance of the
hydraulic flow-carrying capacity are largely ignored. Under such circum-
stances, the preceding mathematical definitions of reliability and failure prob-
ability then are reduced to

ps = P (L ≤ r∗) and pf = P (L > r∗) (1.3)

in which the resistance R = r∗ is the designated value of resistance, a
deterministic quantity. By considering inherent randomness of annual maxi-
mum floods, the annual failure probability pf for a hydraulic structure designed
with a capacity to accommodate a T-year flood, i.e., r∗ = lT , is 1/T .

Figure 1.6 shows the effect of hydraulic uncertainty on the overall failure
probability under the assumption that both random load and resistance are
independent log-normal random variables. The figure can be produced eas-
ily from the basic properties of log-normal random variables (see Sec. 2.6.2).
Figure 1.6 clearly shows that by considering only inherent randomness of
hydrologic load [the bottom curve corresponding to the coefficient of variation
(COV), COV(R) = 0], the annual failure probability is significantly underesti-
mated as the uncertainty of resistance COV(R) increases. As shown in Fig. 1.1,
the inherent natural randomness of hydrologic processes is only one of the
many uncertainties in hydrosystems engineering design. This figure clearly
demonstrates the deficiency of the conventional frequency-analysis approach
in reliability assessment of hydrosystems.
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1.6 Measures of Reliability

In engineering design and analysis, loads usually arise from natural events,
such as floods, storms, or earthquakes, that occur randomly in time and in
space. The conventional practice for measuring the reliability of a hydrosystems
engineering infrastructure is the return period or recurrence interval. The
return period is defined as the long-term average (or expected) time between
two successive failure-causing events. In time-to-failure analysis (Chap. 5), an
equivalent term is the mean time to failure. Simplistically, the return
period is equal to the reciprocal of the probability of the occurrence of the event
in any one time interval. For many hydrosystems engineering applications,
the time interval chosen is 1 year so that the probability associated with the
return period is the average annual failure probability. Frequency analysis
using the annual maximum flood or rainfall series is a typical example of this
kind. Hence the determination of return period depends on the time period
chosen (Borgman, 1963). The main theoretical disadvantage of using return
period is that reliability is measured only in terms of expected time of occurrence
of loads without considering their interactions with the resistance (Melchers,
1999).

In fact, the conventional interpretation of return period can be general-
ized as the average time period or mean time of the system failure when all
uncertainties affecting load and resistance are considered. In other words,
the return period can be calculated as the reciprocal of the failure probabil-
ity computed by Eq. (1.2). Based on this generalized notion of return period,
the equivalent return period corresponding to the conventional return period
under different levels of resistance uncertainty is shown in Fig. 1.7. As can
be seen, the equivalent return period becomes shorter than the conventional
return period, as anticipated, when resistance uncertainty increases. For exam-
ple, with COV(R) = 5 percent, a hydrosystem designed with a 100-year return
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TABLE 1.1 Different Types of Safety Factors

Type of safety
factor Definition

Preassigned Assigned number
Central µR/µL, where µR and µL are the true mean values of resistance and load
Mean R̄/L̄, where R̄ and L̄ are the mean values of resistance and load estimated

from the available data
Characteristic Ro/Lo, where Ro and Lo are the specified resistance and load
Partial 1/γ = NL/NR , where pf = P (L > γ R) = P (NLL > NR R)

SOURCE: After Yen, 1979.

period under the conventional approach actually has about a 50-year return
period.

Two other types of reliability measures that consider the relative magnitudes
of resistance and anticipated load (called design load) are used frequently in
engineering practice. One is the safety margin (SM), defined as the difference
between the resistance and the anticipated load, that is,

SM = R − L (1.4)

The other is called the safety factor (SF), a ratio of resistance to load defined as

SF = R/L (1.5)

Several types of safety factors are summarized in Table 1.1, and their applica-
tions to engineering systems are discussed by Yen (1979).

Preassigned safety factor. This is an arbitrarily chosen safety factor that is used
conventionally without probabilistic consideration. The value chosen largely
depends on the designer’s subjective judgment with regard to the amount of
uncertainty involved in his or her determination of design load and the level of
safety desired.

Central safety factor. Owing to the fact that both resistance and load could be
subject to uncertainty, the safety factor defined by Eq. (1.5), in fact, is a quantity
subject to uncertainty as well. The central safety factor µSF is defined as

µSF = µR/µL (1.6)

in which µR and µL are the true mean values of resistance and load, respectively.
In practice, values of µR and µL cannot be obtained precisely from the limited
data. Therefore, µSF is only of theoretical interest.

Mean safety factor. If the estimated means of R and L on the basis of data are
R̄ and L̄, respectively, the mean safety factor ( �SF ) is defined as

�SF = R̄/L̄ (1.7)
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Characteristic safety factor. Often in a project the significant design values of the
parameters are not the mean values but specified values (or range of values).
For example, the load used in a spillway design is not the mean value of all the
floods nor the mean value of the selected floods of an annual maximum series.
It may be simply a specified flood of a given magnitude (e.g., a flood with a
100-year return period). Therefore, the characteristic safety factor (SFc) can be
defined as

SFc = Ro/Lo (1.8)

in which Ro and Lo are the specified resistance and load, respectively. If Ro and
Lo both are assigned without a probabilistic analysis, Eq. (1.8) is identical to
Eq. (1.5). If Ro and Lo are taken to be the mean values of resistance and load,
Eq. (1.8) would become like Eq. (1.6) or Eq. (1.7). In general, Ro and Lo can be
determined through a probabilistic analysis. For example, Tang and Yen (1972)
use the estimated mean of resistance and the specified load, that is,

SFc = R̄/Lo (1.9)

to develop a risk–safety factor relationship in storm sewer design. Tung and
Mays (1981) used the 100-year flood from the frequency analysis for Lo in
developing risk–safety factor curves for a levee system.

Partial safety factor. The preceding safety factors apply to the total load and
resistance of the system. It is possible, however, that different components in
the system may be subject to different degrees of uncertainty. A smaller value
of the safety factor can be assigned to those elements or components associated
with less uncertainty than those with more uncertainty. In Table 1.1, NR and NL
are the separate safety factors assigned to the resistance and load, respectively.

Theoretically, any one of the safety factors can be applied for its quantitative
evaluation. However, the central safety factor is only of theoretical importance
because in practice the exact distributions and values of the coefficient of vari-
ation are not known but estimated. Among the other four definitions, which
one is preferred would depend on the nature of the problem. Clearly, these
safety factors can be modified and refined. They are not mutually exclusive and
can be made complementary. An in-depth comparative investigation of these
factors in view of infrastructural system engineering applications would be de-
sirable.

1.7 Overall View of Reliability Analysis Methods

There are two basic probabilistic approaches to evaluate the reliability of an in-
frastructural system. The most direct approach is a statistical analysis of data
of past failure records for similar systems. The other approach is through relia-
bility analysis, which considers and combines the contribution of each factor po-
tentially influencing failure. The former is a lumped-system approach requiring
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no knowledge about the internal physical behavior of the facility or structure
and its load and resistance. For example, dam failure data show that the overall
average failure probability for dams of all types over 15 m in height is around
10−3 per dam per year (U.S. National Research Council, 1983; Cheng, 1993).
This statistical approach may fit well with manufactured systems for which
planned repeated tests can be made and the performance of many identical
prototypes can be observed. For infrastructural systems in most cases, this di-
rect approach is impractical because (1) infrastructures are usually unique and
site-specific, (2) the sample size is too small to be statistically reliable, especially
for low-probability/high-consequence events, (3) the sample may not be repre-
sentative of the structure or of the population, and (4) the physical conditions
of a dam may be nonstationary, i.e., varying with respect to time. The average
risk of dam failure mentioned earlier does not differentiate concrete dams from
earth-fill dams, arch dams from gravity dams, large dams from small dams,
and old dams from new dams. If one wished to know the likelihood of failure of
a particular 10-year-old double-curvature-arch concrete high dam, most likely
one will find only very few failure data of similar dams, insufficient for any
meaningful statistical analysis. Since no dams are identical and conditions of
dams change with time, in many circumstances it may be more desirable to use
the second approach by conducting a reliability analysis.

There are two major steps in reliability analysis: (1) to identify and an-
alyze the uncertainties of each contributing factor and (2) to combine the
uncertainties of the stochastic factors to determine the overall reliability of
the structure. The second step, in turn, also may proceed in two different ways:
(1) directly combining the uncertainties of all factors and (2) separately combin-
ing the uncertainties of the factors belonging to different components or subsys-
tems to evaluate first the respective subsystem reliability and then combining
the reliabilities of the different components or subsystems to yield the over-
all reliability of the structure. The first way applies to very simple structures,
whereas the second way is more suitable to complicated systems. For exam-
ple, to evaluate the reliability of a dam, the hydrologic, hydraulic, geotechnical,
structural, and other disciplinary reliabilities could be evaluated separately
first and then combined to yield the overall dam reliability. Or the component
reliabilities could be evaluated first according to the different failure modes
and then combined. Analysis tools described in Chap. 5, such as fault tree
and event tree, are useful to divide the system into component evaluation and
combination.
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Chapter

2
Fundamentals of Probability
and Statistics for Reliability

Analysis∗

Assessment of the reliability of a hydrosystems infrastructural system or its
components involves the use of probability and statistics. This chapter reviews
and summarizes some fundamental principles and theories essential to relia-
bility analysis.

2.1 Terminology

In probability theory, an experiment represents the process of making obser-
vations of random phenomena. The outcome of an observation from a random
phenomenon cannot be predicted with absolute accuracy. The entirety of all
possible outcomes of an experiment constitutes the sample space. An event is
any subset of outcomes contained in the sample space, and hence an event
could be an empty (or null) set, a subset of the sample space, or the sample
space itself. Appropriate operators for events are union, intersection, and com-
plement. The occurrence of events A and B is denoted as A∪ B (the union of A
and B ), whereas the joint occurrence of events A and B is denoted as A∩ B or
simply (A, B ) (the intersection of A and B ). Throughout the book, the comple-
ment of event A is denoted as A′. When two events A and B contain no common
elements, then the two events are mutually exclusive or disjoint events, which is
expressed as (A, B ) = ∅, where ∅ denotes the null set. Venn diagrams illustrat-
ing the union and intersection of two events are shown in Fig. 2.1. When the oc-
currence of event Adepends on that of event B , then they are conditional events,

∗Most of this chapter, except Secs. 2.5 and 2.7, is adopted from Tung and Yen (2005).
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Figure 2.1 Venn diagrams for basic set operations.

which is denoted by A | B . Some useful set operation rules are

1. Commutative rule: A∪ B = B ∪ A; A∩ B = B ∩ A.

2. Associative rule: ( A∪ B ) ∪ C = A∪ (B ∪ C); ( A∩ B ) ∩ C = A∩ (B ∩ C).

3. Distributive rule: A∩ (B ∪ C) = ( A∩ B ) ∪ ( A∩ C); A∪ (B ∩ C) = ( A∪ B ) ∩
(A∪ C).

4. de Morgan’s rule: ( A∪ B )′ = A′ ∩ B ′; ( A∩ B )′ = A′ ∪ B ′.

Probability is a numeric measure of the likelihood of the occurrence of an
event. Therefore, probability is a real-valued number that can be manipulated
by ordinary algebraic operators, such as +, −, ×, and /. The probability of the
occurrence of an event A can be assessed in two ways. In the case where an
experiment can be repeated, the probability of having event A occurring can be
estimated as the ratio of the number of replications in which event A occurs
nA versus the total number of replications n, that is, nA/n. This ratio is called
the relative frequency of occurrence of event A in the sequence of n replications.
In principle, as the number of replications gets larger, the value of the relative
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frequency becomes more stable, and the true probability of event A occurring
could be obtained as

P (A) = limn→∞
nA

n
(2.1)

The probabilities so obtained are called objective or posterior probabilities be-
cause they depend completely on observations of the occurrence of the event.

In some situations, the physical performance of an experiment is prohibited or
impractical. The probability of the occurrence of an event can only be estimated
subjectively on the basis of experience and judgment. Such probabilities are
called subjective or prior probabilities.

2.2 Fundamental Rules of Probability Computations

2.2.1 Basic axioms of probability

The three basic axioms of probability computation are (1) nonnegativity: P ( A) ≥
0, (2) totality: P (S) = 1, with S being the sample space, and (3) additivity: For
two mutually exclusive events A and B , P ( A∪ B ) = P ( A) + P (B ).

As indicated from axioms (1) and (2), the value of probability of an event
occurring must lie between 0 and 1. Axiom (3) can be generalized to consider
K mutually exclusive events as

P (A1 ∪ A2 ∪ · · · ∪ AK ) = P
(

K∪
k=1

Ak

)
=

K∑
k=1

P ( Ak) (2.2)

An impossible event is an empty set, and the corresponding probability is zero,
that is, P (∅) = 0. Therefore, two mutually exclusive events A and B have zero
probability of joint occurrence, that is, P ( A, B ) = P (∅) = 0. Although the prob-
ability of an impossible event is zero, the reverse may not necessarily be true.
For example, the probability of observing a flow rate of exactly 2000 m3/s is
zero, yet having a discharge of 2000 m3/s is not an impossible event.

Relaxing the requirement of mutual exclusiveness in axiom (3), the probabil-
ity of the union of two events can be evaluated as

P (A∪ B ) = P ( A) + P (B ) − P ( A, B ) (2.3)

which can be further generalized as

P
(

K∪
k=1

Ak

)
=

K∑
k=1

P (Ak) −
∑

i <

∑
j

P ( Ai, Aj )

+
∑

i <

∑
j

∑
< k

P (Ai, Aj , Ak) − · · · + (−1)K P ( A1, A2, . . . , AK )

(2.4)
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If all are mutually exclusive, all but the first summation term on the right-hand
side of Eq. (2.3) vanish, and it reduces to Eq. (2.2).

Example 2.1 There are two tributaries in a watershed. From past experience, the
probability that water in tributary 1 will overflow during a major storm event is
0.5, whereas the probability that tributary 2 will overflow is 0.4. Furthermore, the
probability that both tributaries will overflow is 0.3. What is the probability that at
least one tributary will overflow during a major storm event?

Solution Define Ei = event that tributary i overflows for i = 1, 2. From the prob-
lem statements, the following probabilities are known: P (E1) = 0.5, P (E2) = 0.4, and
P (E1, E2) = 0.3.

The probability having at least one tributary overflowing is the probability of event
E1 or E2 occurring, that is, P (E1 ∪ E2). Since the overflow of one tributary does not
preclude the overflow of the other tributary, E1 and E2 are not mutually exclusive.
Therefore, the probability that at least one tributary will overflow during a major
storm event can be computed, according to Eq. (2.3), as

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1, E2) = 0.5 + 0.4 − 0.3 = 0.6

2.2.2 Statistical independence

If two events are statistically independent of each other, the occurrence of one
event has no influence on the occurrence of the other. Therefore, events Aand B
are independent if and only if P (A, B ) = P ( A)P (B ). The probability of joint
occurrence of K independent events can be generalized as

P
(

K∩
k=1

Ak

)
= P (A1) × P ( A2) × · · · × P ( AK ) =

K∏
k=1

P ( Ak) (2.5)

It should be noted that the mutual exclusiveness of two events does not, in
general, imply independence, and vice versa, unless one of the events is an
impossible event. If the two events A and B are independent, then A, A′, B ,
and B ′ all are independent, but not necessarily mutually exclusive, events.

Example 2.2 Referring to Example 2.1, the probabilities that tributaries 1 and 2
overflow during a major storm event are 0.5 and 0.4, respectively. For simplicity,
assume that the occurrences of overflowing in the two tributaries are independent of
each other. Determine the probability of at least one tributary overflowing in a major
storm event.

Solution Use the same definitions for events E1 and E2. The problem is to determine
P (E1 ∪ E2) by

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1, E2)

Note that in this example the probability of joint occurrences of both tributaries over-
flowing, that is, P (E1, E2), is not given directly by the problem statement, as in
Example 2.1. However, it can be determined from knowing that the occurrences of
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overflows in the tributaries are independent events, according to Eq. (2.5), as

P (E1, E2) = P (E1)P (E2) = (0.5)(0.4) = 0.2

Then the probability that at least one tributary would overflow during a major storm
event is

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1, E2) = 0.5 + 0.4 − 0.2 = 0.7

2.2.3 Conditional probability

The conditional probability is the probability that a conditional event would
occur. The conditional probability P ( A | B ) can be computed as

P (A | B ) = P ( A, B )
P (B )

(2.6)

in which P (A | B ) is the occurrence probability of event A given that event B
has occurred. It represents a reevaluation of the occurrence probability of event
A in the light of the information that event B has occurred. Intuitively, A and
B are two independent events if and only if P ( A | B ) = P ( A). In many cases it
is convenient to compute the joint probability P ( A, B ) by

P (A, B ) = P (B )P (A | B ) or P ( A, B ) = P ( A)P (B | A)

The probability of the joint occurrence of K dependent events can be general-
ized as

P
(

K∩
k=1

Ak

)
= P (A1)×P (A2 | A1)×P ( A3 | A2, A1)×· · ·×P ( AK | AK−1, . . . , A2, A1)

(2.7)

Example 2.3 Referring to Example 2.2, the probabilities that tributaries 1 and 2
would overflow during a major storm event are 0.5 and 0.4, respectively. After exam-
ining closely the assumption about the independence of overflow events in the two
tributaries, its validity is questionable. Through an analysis of historical overflow
events, it is found that the probability of tributary 2 overflowing is 0.6 if tributary 1
overflows. Determine the probability that at least one tributary would overflow in a
major storm event.

Solution Let E1 and E2 be the events that tributary 1 and 2 overflow, respectively.
From the problem statement, the following probabilities can be identified:

P (E1) = 0.5 P (E2) = 0.4 P (E2 | E1) = 0.6

in which P (E2 | E1) is the conditional probability representing the likelihood that
tributary 2 would overflow given that tributary 1 has overflowed. The probability of
at least one tributary overflowing during a major storm event can be computed by

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1, E2)
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in which the probability of joint occurrence of both tributaries overflowing, that
is, P (E1, E2), can be obtained from the given conditional probability, according to
Eq. (2.7), as

P (E1, E2) = P (E2 | E1)P (E1) = (0.6)(0.5) = 0.3

The probability that at least one tributary would overflow during a major storm event
can be obtained as

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1, E2) = 0.5 + 0.4 − 0.3 = 0.6

2.2.4 Total probability theorem and Bayes’ theorem

The probability of the occurrence of an event E, in general, cannot be deter-
mined directly or easily. However, the event E may occur along with other
attribute events Ak . Referring to Fig. 2.2, event E could occur jointly with K
mutually exclusive ( Aj ∩ Ak = ∅ for j �= k) and collectively exhaustive ( A1 ∪ A2
∪ · · · ∪ AK ) = S attributes Ak , k = 1, 2, . . . , K . Then the probability of the occur-
rence of an event E, regardless of the attributes, can be computed as

P (E) =
K∑

k=1

P (E, Ak) =
K∑

k=1

P (E | Ak)P ( Ak) (2.8)

Equation (2.8) is called the total probability theorem.

Example 2.4 Referring to Fig. 2.3, two upstream storm sewer branches (I1 and I2)
merge to a sewer main (I3). Assume that the flow-carrying capacities of the two up-
stream sewer branches I1 and I2 are equal. However, hydrologic characteristics of
the contributing drainage basins corresponding to I1 and I2 are somewhat differ-
ent. Therefore, during a major storm event, the probabilities that sewers I1 and I2
will exceed their capacities (surcharge) are 0.5 and 0.4, respectively. For simplicity,
assume that the occurrences of surcharge events in the two upstream sewer branches
are independent of each other. If the flow capacity of the downstream sewer main I3 is

A1

S

A2 A3 A4

E

Figure 2.2 Schematic diagram of
total probability theorem.
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1
2

3
Figure 2.3 A system with three
sewer sections.

the same as its two upstream branches, what is the probability that the flow capacity
of the sewer main I3 will be exceeded? Assume that when both upstream sewers are
carrying less than their full capacities, the probability of downstream sewer main I3
exceeding its capacity is 0.2.

Solution Let E1, E2, and E3, respectively, be events that sewer I1, I2, and I3 exceed
their respective flow capacity. From the problem statements, the following probabili-
ties can be identified: P (E1) = 0.50, P (E2) = 0.40, and P (E3 | E ′

1, E ′
2) = 0.2.

To determine P (E3), one first considers the basic events occurring in the two up-
stream sewer branches that would result in surcharge in the downstream sewer main
E3. There are four possible attribute events that can be defined from the flow con-
ditions of the two upstream sewers leading to surcharge in the downstream sewer
main. They are A1 = (E1, E2), A2 = (E ′

1, E2), A3 = (E1, E ′
2), and A4 = (E ′

1, E ′
2). Fur-

thermore, the four events A1, A2, A3, and A4 are mutually exclusive.
Since the four attribute events A1, A2, A3, and A4 contribute to the occurrence

of event E3, the probability of the occurrence of E3 can be calculated, according to
Eq. (2.8), as

P (E3) = P (E3, A1) + P (E3, A2) + P (E3, A3) + P (E3, A4)

= P (E3 | A1)P ( A1) + P (E3 | A2)P (A2) + P (E3 | A3)P (A3) + P (E3 | A4)P (A4)

To solve this equation, each of the probability terms on the right-hand side must
be identified. First, the probability of the occurrence of A1, A2, A3, and A4 can be
determined as the following:

P ( A1) = P (E1, E2) = P (E1) × P (E2) = (0.5)(0.4) = 0.2

The reason that P (E1, E2) = P (E1) × P (E2) is due to the independence of events E1
and E2. Since E1 and E2 are independent events, then E1, E ′

1, E2, and E ′
2 are also
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independent events. Therefore,

P ( A2) = P (E ′
1, E2) = P (E ′

1) × P (E2) = (1 − 0.5)(0.4) = 0.2

P ( A3) = P (E1, E ′
2) = P (E1) × P (E ′

2) = (0.5)(1 − 0.4) = 0.3

P ( A4) = P (E ′
1, E ′

2) = P (E ′
1) × P (E ′

2) = (1 − 0.5)(1 − 0.4) = 0.3

The next step is to determine the values of the conditional probabilities, that is,
P (E3 | A1), P (E3 | A2), P (E3 | A3), and P (E3 | A4). The value of P (E3 | A4) = P (E3 | E ′

1,
E ′

2) = 0.2 is given by the problem statement. On the other hand, the values of the
remaining three conditional probabilities can be determined from an understanding
of the physical process. Note that from the problem statement the downstream sewer
main has the same conveyance capacity as the two upstream sewers. Hence any up-
stream sewer exceeding its flow-carrying capacity would result in surcharge in the
downstream sewer main. Thus the remaining three conditional probabilities can be
easily determined as

P (E3 | A1) = P (E3 | E1, E2) = 1.0

P (E3 | A2) = P (E3 | E ′
1, E2) = 1.0

P (E3 | A3) = P (E3 | E1, E ′
2) = 1.0

Putting all relevant information into the total probability formula given earlier, the
probability that the downstream sewer main I3 would be surcharged in a major
storm is

P (E3) = P (E3 | A1)P ( A1) + P (E3 | A2)P (A2) + P (E3 | A3)P (A3) + P (E3 | A4)P (A4)

= (1.0)(0.2) + (1.0)(0.2) + (1.0)(0.3) + (0.2)(0.3)

= 0.76

The total probability theorem describes the occurrence of an event E that
may be affected by a number of attribute events Ak , k = 1, 2, . . . , K . In some
situations, one knows P (E | Ak) and would like to determine the probability
that a particular event Ak contributes to the occurrence of event E. In other
words, one likes to find P (Ak | E). Based on the definition of the conditional
probability (Eq. 2.6) and the total probability theorem (Eq. 2.8), P ( Ak | E) can
be computed as

P (Ak | E) = P (Ak , E)
P (E)

= P (E | Ak)P ( Ak)∑K
k′=1 P (E | Ak′ )P ( Ak′ )

for k = 1, 2, . . . , K (2.9)

Equation (2.9) is called Bayes’ theorem, and P ( Ak) is the prior probability, rep-
resenting the initial belief of the likelihood of occurrence of attribute event Ak .
P (E | Ak) is the likelihood function, and P ( Ak | E) is the posterior probability,
representing the new evaluation of Ak being responsible in the light of the oc-
currence of event E. Hence Bayes’ theorem can be used to update and revise
the calculated probability as more information becomes available.
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Example 2.5 Referring to Example 2.4, if surcharge is observed in the downstream
storm sewer main I3, what is the probability that the incident is caused by simulta-
neous surcharge of both upstream sewer branches?

Solution From Example 2.4, A1 represents the event that both upstream storm sewer
branches exceed their flow-carrying capacities. The problem is to find the conditional
probability of A1, given that event E3 has occurred, that is, P (A1 | E3). This condi-
tional probability can be expressed as

P ( A1 | E3) = P (A1, E3)
P (E3)

= P (E3 | A1)P (A1)
P (E3)

From Example 2.4, the numerator and denominator of the preceding conditional prob-
ability can be computed as

P ( A1 | E3) = P (E3 | A1)P (A1)
P (E3)

= (1.0)(0.2)
0.76

= 0.263

The original assessment of the probability is 20 percent that both upstream sewer
branches would exceed their flow-carrying capacities. After an observation of down-
stream surcharge from a new storm event, the probability of surcharge occurring in
both upstream sewers is revised to 26.3 percent.

2.3 Random Variables and their Distributions

In analyzing the statistical features of infrastructural system responses, many
events of interest can be defined by the related random variables. A random
variable is a real-value function defined on the sample space. In other words,
a random variable can be viewed as a mapping from the sample space to the
real line, as shown in Fig. 2.4. The standard convention is to denote a random
variable by an upper-case letter, whereas a lower-case letter is used to repre-
sent the realization of the corresponding random variable. For example, one
may use Q to represent flow magnitude, a random variable, whereas q is used
to represent the values that Q takes. A random variable can be discrete or con-
tinuous. Examples of discrete random variables encountered in hydrosystems
infrastructural designs are the number of storm events occurring in a specified
time period, the number of overtopping events per year for a levee system, and
so on. On the other hand, examples of continuous random variables are flow
rate, rainfall intensity, water-surface elevation, roughness factor, and pollution
concentration, among others.

2.3.1 Cumulative distribution function
and probability density function

The cumulative distribution function (CDF), or simply distribution function
(DF), of a random variable X is defined as

Fx(x) = P (X ≤ x) (2.10)
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Figure 2.4 A random variable X (w) as mapped from the sample space to
the real line.

The CDF Fx(x) is the nonexceedance probability, which is a nondecreasing
function of the argument x, that is, Fx(a) ≤ Fx(b), for a < b. As the argument
x approaches the lower bounds of the random variable X , the value of Fx(x)
approaches zero, that is, limx→−∞ Fx(x) = 0; on the other hand, the value of
Fx(x) approaches unity as its argument approaches the upper bound of X , that
is, limx→∞ Fx(x) = 1. With a < b, P (a < X ≤ b) = Fx(b) − Fx(a).

For a discrete random variable X , the probability mass function (PMF), is
defined as

px(x) = P (X = x) (2.11)

The PMF of any discrete random variable, according to axioms (1) and (2)
in Sec. 2.1, must satisfy two conditions: (1) px(xk) ≥ 0, for all xk ’s, and (2)
�all k px(xk) = 1. The PMF of a discrete random variable and its associated
CDF are sketched schematically in Fig. 2.5. As can be seen, the CDF of a dis-
crete random variable is a staircase function.

For a continuous random variable, the probability density function (PDF)
f x(x) is defined as

f x(x) = dFx(x)
dx

(2.12)
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Figure 2.5 (a) Probability mass function (PMF) and (b) cumulative
distribution function (CDF) of a discrete random variable.

The PDF of a continuous random variable f x(x) is the slope of its corresponding
CDF. Graphic representations of a PDF and a CDF are shown in Fig. 2.6. Similar
to the discrete case, any PDF of a continuous random variable must satisfy two
conditions: (1) f x(x) ≥ 0 and (2)

∫
f x(x) dx = 1. Given the PDF of a random

variable X , its CDF can be obtained as

Fx(x) =
∫ x

−∞
f x(u) du (2.13)

in which u is the dummy variable. It should be noted that f x(·) is not a prob-
ability; it only has meaning when it is integrated between two points. The
probability of a continuous random variable taking on a particular value is
zero, whereas this may not be the case for discrete random variables.
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Figure 2.6 (a) Probability density function (PDF) and (b) cu-
mulative distribution function (CDF) of a continuous random
variable.

Example 2.6 The time to failure T of a pump in a water distribution system is a
continuous random variable having the PDF of

f t (t) = exp(−t/1250)/β for t ≥ 0, β > 0

in which t is the elapsed time (in hours) before the pump fails, and β is the parameter
of the distribution function. Determine the constant β and the probability that the
operating life of the pump is longer than 200 h.

Solution The shape of the PDF is shown in Fig. 2.7. If the function f t (t) is to serve as
a PDF, it has to satisfy two conditions: (1) f t (t) ≥ 0, for all t, and (2) the area under
f t (t) must equal unity. The compliance of the condition (1) can be proved easily. The
value of the constant β can be determined through condition (2) as

1 =
∫ ∞

0
f t (t) dt =

∫ ∞

0

e−t/1250

β
dt =

[−1250e−t/1250

β

]∞

0
= 1250

β
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Figure 2.7 Exponential failure density curve.

Therefore, the constant β = 1250 h/failure. This particular PDF is called the exponen-
tial distribution (see Sec. 2.6.3). To determine the probability that the operational life
of the pump would exceed 200 h, one calculates P (T ≥ 200):

P (T ≥ 200) =
∫ ∞

200

e−t/1250

1250
dt = [− e−t/1250]∞

200 = e−200/1250 = 0.852

2.3.2 Joint, conditional, and marginal distributions

The joint distribution and conditional distribution, analogous to the concepts
of joint probability and conditional probability, are used for problems involving
multiple random variables. For example, flood peak and flood volume often
are considered simultaneously in the design and operation of a flood-control
reservoir. In such cases, one would need to develop a joint PDF of flood peak and
flood volume. For illustration purposes, the discussions are limited to problems
involving two random variables.

The joint PMF and joint CDF of two discrete random variables X and Y are
defined, respectively, as

px,y(x, y) = P (X = x, Y = y) (2.14a)

Fx,y(u, v) = P (X ≤ u, Y ≤ v) =
∑
x≤u

∑
y≤v

px,y(x, y) (2.14b)

Schematic diagrams of the joint PMF and joint CDF of two discrete random
variables are shown in Fig. 2.8.
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Figure 2.8 (a) Joint probability mass function (PMF) and (b) cumula-
tive distribution function (CDF) of two discrete random variables.

The joint PDF of two continuous random variables X and Y, denoted as
f x,y(x, y), is related to its corresponding joint CDF as

f x,y(x, y) = ∂2[Fx,y(x, y)]
∂x ∂y

(2.15a)

Fx,y(x, y) =
∫ x

−∞

∫ y

−∞
f x,y(u, v) du d v (2.15b)

Similar to the univariate case, Fx,y(−∞, −∞) = 0 and Fx,y(∞, ∞) = 1. Two ran-
dom variables X and Y are statistically independent if and only if f x,y(x, y) =
f x(x) × f y(y) and Fx,y(x, y) = Fx(x) × Fy(y). Hence a problem involving multi-
ple independent random variables is, in effect, a univariate problem in which
each individual random variable can be treated separately.
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If one is interested in the distribution of one random variable regardless of all
others, the marginal distribution can be used. Given the joint PDF f x,y(x, y),
the marginal PDF of a random variable X can be obtained as

f x(x) =
∫ ∞

−∞
f x,y(x, y) dy (2.16)

For continuous random variables, the conditional PDF for X | Y , similar to the
conditional probability shown in Eq. (2.6), can be defined as

f x(x | y) = f x,y(x, y)
f y(y)

(2.17)

in which f y(y) is the marginal PDF of random variable Y . The conditional PMF
for two discrete random variables similarly can be defined as

px(x | y) = px,y(x, y)
py(y)

(2.18)

Figure 2.9 shows the joint and marginal PDFs of two continuous random vari-
ables X and Y . It can be shown easily that when the two random variables are
statistically independent, f x(x | y) = f x(x).

Equation (2.17) alternatively can be written as

f x,y(x, y) = f x(x | y) × f y(y) (2.19)

which indicates that a joint PDF between two correlated random variables can
be formulated by multiplying a conditional PDF and a suitable marginal PDF.

Figure 2.9 Joint and marginal probability density function (PDFs) of two
continuous random variables. (After Ang and Tang, 1975.)
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Note that the marginal distributions can be obtained from the joint distribution
function, but not vice versa.

Example 2.7 Suppose that X and Y are two random variables that can only take
values in the intervals 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2. Suppose that the joint CDF of X
and Y for these intervals has the form of Fx,y(x, y) = cxy(x2 + y2). Find (a) the joint
PDF of X and Y , (b) the marginal PDF of X , (c) the conditional PDF f y(y | x = 1), and
(d) P (Y ≤ 1 | x = 1).

Solution First, one has to find the constant c so that the function Fx,y(x, y) is a legit-
imate CDF. It requires that the value of Fx,y(x, y) = 1 when both arguments are at
their respective upper bounds. That is,

Fx,y(x = 2, y = 2) = 1 = c(2)(2)(22 + 22)

Therefore, c = 1/32. The resulting joint CDF is shown in Fig. 2.10a.
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Figure 2.10 (a) Joint cumulative distribution function (CDF) and
(b) probability density function (PDF) for Example 2.7.
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(a) To derive the joint PDF, Eq. (2.15a) is applied, that is,

f x,y(x, y) = ∂

∂x

{
∂

∂y

[
xy(x2 + y2)

32

]}
= ∂

∂x

(
x3 + 3xy2

32

)
= 3(x2 + y2)

32
for 0 ≤ x, y ≤ 2

A plot of joint PDF is shown in Fig. 2.10b.
(b) To find the marginal distribution of X , Eq. (2.16) can be used:

f x(x) =
∫ 2

0

3(x2 + y2)
32

dx = 4 + 3x2

16
for 0 ≤ x ≤ 2

(c) The conditional distribution f y(y | x) can be obtained by following Eq. (2.17) as

f y(y | x = 1) = f x,y(x = 1, y)
f x(x = 1)

=
3[(1)2 + y2]

32
4 + 3(1)2

16

= 3(1 + y2)
14

for 0 ≤ y ≤ 2

(d) The conditional probability P (Y ≤ 1 | X = 1) can be computed as

P (Y ≤ 1 | X = 1) =
∫ 1

0
f y(y | x = 1) dy =

∫ 1

0

3(1 + y2)
14

dy = 2
7

2.4 Statistical Properties of Random Variables

In statistics, the term population is synonymous with the sample space, which
describes the complete assemblage of all the values representative of a partic-
ular random process. A sample is any subset of the population. Furthermore,
parameters in a statistical model are quantities that are descriptive of the pop-
ulation. In this book, Greek letters are used to denote statistical parameters.
Sample statistics, or simply statistics, are quantities calculated on the basis of
sample observations.

2.4.1 Statistical moments of random variables

In practical statistical applications, descriptors commonly used to show the sta-
tistical properties of a random variable are those indicative of (1) the central
tendency, (2) the dispersion, and (3) the asymmetry of a distribution. The fre-
quently used descriptors in these three categories are related to the statistical
moments of a random variable. Currently, two types of statistical moments are
used in hydrosystems engineering applications: product-moments and
L-moments. The former is a conventional one with a long history of practice,
whereas the latter has been receiving great attention recently from water re-
sources engineers in analyzing hydrologic data (Stedinger et al., 1993; Rao and
Hamed 2000). To be consistent with the current general practice and usage, the
terms moments and statistical moments in this book refer to the conventional
product-moments unless otherwise specified.
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Product-moments. The r th-order product-moment of a random variable X about
any reference point X = xo is defined, for the continuous case, as

E[(X − xo)r ] =
∫ ∞

−∞
(x − xo)r f x(x) dx =

∫ ∞

−∞
(x − xo)r dF x(x) (2.20a)

whereas for the discrete case,

E[(X − xo)r ] =
K∑

k = 1

(xk − xo)r px(xk) (2.20b)

where E[·] is a statistical expectation operator. In practice, the first three mo-
ments (r = 1, 2, 3) are used to describe the central tendency, variability, and
asymmetry of the distribution of a random variable. Without losing generality,
the following discussions consider continuous random variables. For discrete
random variables, the integral sign is replaced by the summation sign. Here
it is convenient to point out that when the PDF in Eq. (2.20a) is replaced by a
conditional PDF, as described in Sec. 2.3, the moments obtained are called the
conditional moments.

Since the expectation operator E[·] is for determining the average value of the
random terms in the brackets, the sample estimator for the product-moments
for µ′

r = E(Xr ), based on n available data (x1, x2, . . . , xn), can be written as

µ̂′
r =

n∑
i = 1

wi(n) xr
i (2.21)

where wi(n) is a weighting factor for sample observation xi, which depends on
sample size n. Most commonly, wi(n) = 1/n, for all i = 1, 2, . . . , n. The last column
of Table 2.1 lists the formulas applied in practice for computing some commonly
used statistical moments.

Two types of product-moments are used commonly: moments about the ori-
gin, where xo = 0, and central moments, where xo = µx, with µx = E[X ]. The
r th-order central moment is denoted as µr = E[(X − µx)r ], whereas the r th-
order moment about the origin is denoted as µ′

r = E(Xr ). It can be shown easily,
through the binomial expansion, that the central moments µr = E[(X − µx)r ]
can be obtained from the moments about the origin as

µr =
r∑

i = 0

(−1)iCr, i µi
x µ′

r −i (2.22)

where Cr,i = (r
i

)= r !
i!(r −i)! is a binomial coefficient, with ! representing factorial,

that is, r ! = r × (r − 1) × (r − 2) × · · · × 2 × 1. Conversely, the moments about
the origin can be obtained from the central moments in a similar fashion as

µ′
r =

r∑
i = 0

Cr,i µi
x µr −i (2.23)



TABLE 2.1 Product-Moments of Random Variables

Moment Measure of Definition Continuous variable Discrete variable Sample estimator

First Central Mean, expected value µx =
∫ ∞

−∞ x f x(x) dx µx =
∑

all x′s xk p(xk) x̄ =
∑

xi/n
location E(X ) = µx

Second Dispersion Variance, Var(X ) = µ2 = σ 2
x σ 2

x =
∫ ∞

−∞ (x − µx)2 f x(x) dx σ 2
x =

∑
all x′s(xk − µx)2 Px(xk) s2 = 1

n−1

∑
(xi − x̄)2

Standard deviation, σx σx =
√

Var(X ) σx =
√

Var(X ) s =
√

1
n−1

∑
(xi − x̄)2

Coefficient of variation, �x �x = σx/µx �x = σx/µx Cv = s/x̄

Third Asymmetry Skewness µ3 =
∫ ∞

−∞ (x − µx)3 f x(x) dx µ3 =
∑

all x′s (xk − µx)3 px(xk) m3 = n
(n−1)(n−2)

∑
(xi − x̄)3

Skewness coefficient, γx γx = µ3/σ 3
x γx = µ3/σ 3

x g = m3/s3

Fourth Peakedness Kurtosis, κx µ4 =
∫ ∞

−∞ (x − µx)4 f x(x) dx µ4 =
∑

all x′s (xk − µx)4 px(xk) m4 = n(n+1)
(n−1)(n−2)(n−3)

∑
(xi − x̄)4

Excess coefficient, εx κx = µ4/σ 4
x κx = µ4/σ 4

x k = m4/s4

εx = κx − 3 εx = κx − 3

37
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Equation (2.22) enables one to compute central moments from moments about
the origin, whereas Eq. (2.23) does the opposite. Derivations for the expressions
of the first four central moments and the moments about the origin are left as
exercises (Problems 2.10 and 2.11).

The main disadvantages of the product-moments are (1) that estimation from
sample observations is sensitive to the presence of extraordinary values (called
outliers) and (2) that the accuracy of sample product-moments deteriorates
rapidly with an increase in the order of the moments. An alternative type of
moments, called L-moments, can be used to circumvent these disadvantages.

Example 2.8 (after Tung and Yen, 2005) Referring to Example 2.6, determine the
first two moments about the origin for the time to failure of the pump. Then calculate
the first two central moments.

Solution From Example 2.6, the random variable T is the time to failure having an
exponential PDF as

f t (t) =
(

1
β

)
exp(−t/1250) for t ≥ 0, β > 0

in which t is the elapsed time (in hours) before the pump fails, and β = 1250 h/failure.
The moments about the origin, according to Eq. (2.20a), are

E(T r ) = µ′
r =

∫ ∞

0
tr
(

e−t/β

β

)
dt

Using integration by parts, the results of this integration are

for r = 1, µ′
1 = E(T ) = µt = β = 1250 h

for r = 2, µ′
2 = E(T 2) = 2β2 = 3,125,000 h2

Based on the moments about the origin, the central moments can be determined,
according to Eq. (2.22) or Problem (2.10), as

for r = 1, µ1 = E(T − µt ) = 0

for r = 2, µ2 = E[(T − µt )2] = µ′
2 − µ2 = 2β2 − β2 = β2 = 1, 562, 500 h2

L-moments. The r th-order L-moments are defined as (Hosking, 1986, 1990)

λr = 1
r

r −1∑
j = 0

(−1) j
(

r − 1
j

)
E(Xr − j :r ) r = 1, 2, . . . (2.24)

in which X j :n is the j th-order statistic of a random sample of size n from the
distribution Fx(x), namely, X (1) ≤ X (2) ≤ · · · ≤ X ( j ) ≤ · · · · ≤ X (n) . The “L” in
L-moments emphasizes that λr is a linear function of the expected order statis-
tics. Therefore, sample L-moments can be made a linear combination of the
ordered data values. The definition of the L-moments given in Eq. (2.24) may
appear to be mathematically perplexing; the computations, however, can be sim-
plified greatly through their relations with the probability-weighted moments,



Fundamentals of Probability and Statistics for Reliability Analysis 39

which are defined as (Greenwood et al., 1979)

Mr, p,q = E{Xr [Fx(X )]p[1 − Fx(X )]q} =
∫ ∞

−∞
xr [Fx(x)]p[1 − Fx(x)]q dF x(x)

(2.25)
Compared with Eq. (2.20a), one observes that the conventional product-
moments are a special case of the probability-weighted moments with p =
q = 0, that is, Mr,0,0 = µ′

r . The probability-weighted moments are particularly
attractive when the closed-form expression for the CDF of the random variable
is available.

To work with the random variable linearly, M1, p,q can be used. In particu-
lar, two types of probability-weighted moments are used commonly in practice,
that is,

αr = M1,0,r = E{X [1 − Fx(X )]r } r = 0, 1, 2, . . . (2.26a)

βr = M1,r,0 = E{X [Fx(X )]r } r = 0, 1, 2, . . . (2.26b)

In terms of αr or βr , the r th-order L-moment λr can be obtained as (Hosking,
1986)

λr +1 = (−1)r
r∑

j = 0

p∗
r, j α j =

r∑
j = 0

p∗
r, j β j r = 0, 1, . . . (2.27)

in which

p∗
r, j = (−1)r − j

(
r
j

)(
r + i

j

)
= (−1)r − j (r + j )!

( j !)2(r − j )!

For example, the first four L-moments of random variable X are

λ1 = β0 = µ′
1 = µx (2.28a)

λ2 = 2β1 − β0 (2.28b)

λ3 = 6β2 − 6β1 + β0 (2.28c)

λ4 = 20β3 − 30β2 + 12β1 − β0 (2.28d)

To estimate sample α- and β-moments, random samples are arranged in as-
cending or descending order. For example, arranging n random observations in
ascending order, that is, X (1) ≤ X (2) ≤ · · · ≤ X ( j ) ≤ · · · ≤ X (n) , the r th-order
β-moment βr can be estimated as

β̂r = 1
n

n∑
i = 1

X (i) F̂ (X (i))r (2.29)

where F̂ (X (i)) is an estimator for F (X (i)) = P (X ≤ X (i)), for which many
plotting-position formulas have been used in practice (Stedinger et al., 1993).
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The one that is used often is the Weibull plotting-position formula, that is,
F̂ (X (i)) = i/(n + 1).

L-moments possess several advantages over conventional product-moments.
Estimators of L-moments are more robust against outliers and are less biased.
They approximate asymptotic normal distributions more rapidly and closely.
Although they have not been used widely in reliability applications as com-
pared with the conventional product-moments, L-moments could have a great
potential to improve reliability estimation. However, before more evidence be-
comes available, this book will limit its discussions to the uses of conventional
product-moments.

Example 2.9 (after Tung and Yen, 2005) Referring to Example 2.8, determine the
first two L-moments, that is, λ1 and λ2, of random time to failure T .

Solution To determine λ1 and λ2, one first calculates β0 and β1, according to
Eq. (2.26b), as

β0 = E{T [Ft (T )]0} = E(T ) = µt = β

β1 = E{T [Ft (T )]1} =
∫ ∞

0
[t Ft (t)] f t (t) dt =

∫ ∞

0
[t(1 − e−t/β )](e−t/β/β) dt = 3

4β

From Eq. (2.28), the first two L-moments can be computed as

λ1 = β0 = µt = β λ2 = 2β1 − β0 = 6β

4
− β = β

2

2.4.2 Mean, mode, median, and quantiles

The central tendency of a continuous random variable X is commonly repre-
sented by its expectation, which is the first-order moment about the origin:

E(X ) = µx =
∫ ∞

−∞
x f x(x) dx =

∫ ∞

−∞
x dF x(x) =

∫ ∞

−∞
[1 − Fx(x)] dx (2.30)

This expectation is also known as the mean of a random variable. It can be
seen easily that the mean of a random variable is the first-order L-moment λ1.
Geometrically, the mean or expectation of a random variable is the location of
the centroid of the PDF or PMF. The second and third integrations in Eq. (2.30)
indicate that the mean of a random variable is the shaded area shown in
Fig. 2.11.

The following two operational properties of the expectation are useful:

1. The expectation of the sum of several random variables (regardless of their
dependence) equals the sum of the expectation of the individual random
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Figure 2.11 Geometric interpretation of the mean.

variable, that is,

E

(
K∑

k = 1

ak Xk

)
=

K∑
k = 1

akµk (2.31)

in which µk = E(Xk), for k = 1, 2, . . . , K .

2. The expectation of multiplication of several independent random variables
equals the product of the expectation of the individual random variables,
that is,

E

(
K∏

k = 1

Xk

)
=

K∏
k = 1

µk (2.32)

Two other types of measures of central tendency of a random variable, namely,
the median and mode, are sometimes used in practice. The median of a ran-
dom variable is the value that splits the distribution into two equal halves.
Mathematically, the median xmd of a continuous random variable satisfies

Fx(xmd) =
∫ xmd

−∞
f x(x) dx = 0.5 (2.33)

The median, therefore, is the 50th quantile (or percentile) of random variable
X . In general, the 100pth quantile of a random variable X is a quantity xp that
satisfies

P (X ≤ xp) = Fx(xp) = p (2.34)

The mode is the value of a random variable at which the value of a PDF is
peaked. The mode xmo of a random variable X can be obtained by solving the
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following equation: [
∂ f x(x)

∂x

]
x = xmo

= 0 (2.35)

Referring to Fig. 2.12, a PDF could be unimodal with a single peak, bimodal with
two peaks, or multimodal with multiple peaks. Generally, the mean, median,
and mode of a random variable are different unless the PDF is symmetric
and unimodal. Descriptors for the central tendency of a random variable are
summarized in Table 2.1.

Example 2.10 (after Tung and Yen, 2005) Refer to Example 2.8, the pump reliability
problem. Find the mean, mode, median, and 10 percent quantile for the random time
to failure T .

Solution The mean of the time to failure, called the mean time to failure (MTTF), is
the first-order moment about the origin, which is µt = 1250 h as calculated previ-
ously in Example 2.8. From the shape of the PDF for the exponential distribution
as shown in Fig. 2.7, one can immediately identify that the mode, representing the
most likely time of pump failure, is at the beginning of pump operation, that is,
tmo = 0 h.

x

fx(x)

x

(a)

(b)

fx(x)

Figure 2.12 Unimodal (a) and bimodal (b) distributions.
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To determine the median time to failure of the pump, one can first derive the
expression for the CDF from the given exponential PDF as

Ft (t) = P (T ≤ t) =
∫ t

0

e−u/1250

1250
du = 1 − e−t/1250 for t ≥ 0

in which u is a dummy variable. Then the median time to failure tmd can be obtained,
according to Eq. (2.33), by solving

Ft (tmd) = 1 − exp(−tmd/1250) = 0.5

which yields tmd = 866.43 h.
Similarly, the 10 percent quantile t0.1, namely, the elapsed time over which the

pump would fail with a probability of 0.1, can be found in the same way as the median
except that the value of the CDF is 0.1, that is,

Ft (t0.1) = 1 − exp(−t0.1/1250) = 0.1

which yields t0.1 = 131.7 h.

2.4.3 Variance, standard deviation, and coefficient
of variation

The spreading of a random variable over its range is measured by the variance,
which is defined for the continuous case as

Var (X ) = µ2 = σ 2
x = E

[
(X − µx)2]=

∫ ∞

−∞
(x − µx)2 f x(x) dx (2.36)

The variance is the second-order central moment. The positive square root of the
variance is called the standard deviation σx, which is often used as a measure
of the degree of uncertainty associated with a random variable.

The standard deviation has the same units as the random variable. To com-
pare the degree of uncertainty of two random variables with different units, a
dimensionless measure �x = σx/µx, called the coefficient of variation, is useful.
By its definition, the coefficient of variation indicates the variation of a random
variable relative to its mean. Similar to the standard deviation, the second-
order L-moment λ2 is a measure of dispersion of a random variable. The ratio
of λ2 to λ1, that is, τ2 = λ2/λ1, is called the L-coefficient of variation.

Three important properties of the variance are

1. Var(a) = 0 when a is a constant. (2.37)

2. Var(X ) = E(X 2) − E2(X ) = µ′
2 − µ2

x (2.38)

3. The variance of the sum of several independent random variables equal the
sum of variance of the individual random variables, that is,

Var

(
K∑

k = 1

ak Xk

)
=

K∑
k = 1

a2
k σ 2

k (2.39)
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where ak is a constant, and σk is the standard deviation of random variable
Xk , k = 1, 2, . . . , K .

Example 2.11 (modified from Mays and Tung, 1992) Consider the mass balance
of a surface reservoir over a 1-month period. The end-of-month storage S can be
computed as

Sm+1 = Sm + Pm + Im − Em − rm

in which the subscript m is an indicator for month, Sm is the initial storage volume
in the reservoir, Pm is the precipitation amount on the reservoir surface, Im is the
surface-runoff inflow, Em is the total monthly evaporation amount from the reservoir
surface, and rm is the controlled monthly release volume from the reservoir.

It is assumed that at the beginning of the month, the initial storage volume and total
monthly release are known. The monthly total precipitation amount, surface-runoff
inflow, and evaporation are uncertain and are assumed to be independent random
variables. The means and standard deviations of Pm, Im, and Em from historical
data for month m are estimated as

E(Pm) = 1000 m3, E(Im) = 8000 m3, E(Em) = 3000 m3

σ (Pm) = 500 m3, σ (Im) = 2000 m3, σ (Em) = 1000 m3

Determine the mean and standard deviation of the storage volume in the reservoir
by the end of the month if the initial storage volume is 20,000 m3 and the designated
release for the month is 10,000 m3.

Solution From Eq. (2.31), the mean of the end-of-month storage volume in the reservoir
can be determined as

E(Sm+1) = Sm + E(Pm) + E(Im) − E(Em) − rm

= 20, 000 + 1000 + 8000 − 3000 − 10, 000 = 16, 000 m3

Since the random hydrologic variables are statistically independent, the variance of
the end-of-month storage volume in the reservoir can be obtained, from Eq. (2.39), as

Var(Sm+1) = Var(Pm) + Var(Im) + Var(Em)

= [(0.5)2 + (2)2 + (1)2] × (1000 m3)2 = 5.25 × (1000 m3)2

The standard deviation and coefficient of variation of Sm+1 then are

σ (Sm+1) =
√

5.25 × 1000 = 2290 m3 and �(Sm+1) = 2290/16,000 = 0.143

2.4.4 Skewness coefficient and kurtosis

The asymmetry of the PDF of a random variable is measured by the skewness
coefficient γx, defined as

γx = µ3

µ1.5
2

= E
[
(X − µx)3

]
σ 3

x
(2.40)



Fundamentals of Probability and Statistics for Reliability Analysis 45

The skewness coefficient is dimensionless and is related to the third-order
central moment. The sign of the skewness coefficient indicates the degree of
symmetry of the probability distribution function. If γx = 0, the distribution
is symmetric about its mean. When γx > 0, the distribution has a long tail to
the right, whereas γx < 0 indicates that the distribution has a long tail to the
left. Shapes of distribution functions with different values of skewness coeffi-
cients and the relative positions of the mean, median, and mode are shown in
Fig. 2.13.
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(a)
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x

Figure 2.13 Relative locations of mean, median, and
mode for (a) positively skewed, (b) symmetric and (c)
negatively skewed distributions.
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Similarly, the degree of asymmetry can be measured by the L-skewness
coefficient τ3, defined as

τ3 = λ3/λ2 (2.41)

The value of the L-skewness coefficient for all feasible distribution functions
must lie within the interval of [−1, 1] (Hosking, 1986).

Another indicator of the asymmetry is the Pearson skewness coefficient,
defined as

γ1 = µx − xmo

σx
(2.42)

As can be seen, the Pearson skewness coefficient does not require computing the
third-order moment. In practice, product-moments higher than the third order
are used less because they are unreliable and inaccurate when estimated from
a small number of samples. Equations used to compute the sample product-
moments are listed in the last column of Table 2.1.

Kurtosis κx is a measure of the peakedness of a distribution. It is related to
the fourth-order central moment of a random variable as

κx = µ4

µ2
2

= E
[
(X − µx)4

]
σ 4

x
(2.43)

with κx > 0. For a random variable having a normal distribution (Sec. 2.6.1), its
kurtosis is equal to 3. Sometimes the coefficient of excess, defined as εx = κx − 3,
is used. For all feasible distribution functions, the skewness coefficient and
kurtosis must satisfy the following inequality relationship (Stuart and Ord,
1987)

γ 2
x + 1 ≤ κx (2.44)

By the definition of L-moments, the L-kurtosis is defined as

τ4 = λ4/λ2 (2.45)

Similarly, the relationship between the L-skewness and L-kurtosis for all fea-
sible probability distribution functions must satisfy (Hosking, 1986)

5τ 2
3 − 1
4

≤ τ4 < 1 (2.46)

Royston (1992) conducted an analysis comparing the performance of sample
skewness and kurtosis defined by the product-moments and L-moments.
Results indicated that the L-skewness and L-kurtosis have clear advantages
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over the conventional product-moments in terms of being easy to interpret,
fairly robust to outliers, and less unbiased in small samples.

2.4.5 Covariance and correlation coefficient

When a problem involves two dependent random variables, the degree of linear
dependence between the two can be measured by the correlation coefficient ρx,y,
which is defined as

Corr(X , Y ) = ρx,y = Cov(X , Y )/σxσy (2.47)

where Cov(X , Y ) is the covariance between random variables X and Y ,
defined as

Cov(X , Y ) = E[(X − µx)(Y − µy)] = E(XY ) − µxµy (2.48)

Various types of correlation coefficients have been developed in statistics for
measuring the degree of association between random variables. The one defined
by Eq. (2.47) is called the Pearson product-moment correlation coefficient, or
correlation coefficient for short in this and general use.

It can be shown easily that Cov(X ′
1, X ′

2) = Corr(X1, X2), with X ′
1 and X ′

2 being
the standardized random variables. In probability and statistics, a random
variable can be standardized as

X ′ = (X − µx)/σx (2.49)

Hence a standardized random variable has zero mean and unit variance. Stan-
dardization will not affect the skewness coefficient and kurtosis of a random
variable because they are dimensionless.

Figure 2.14 graphically illustrates several cases of the correlation coeffi-
cient. If the two random variables X and Y are statistically independent, then
Corr(X , Y ) = Cov(X , Y ) = 0 (Fig. 2.14c). However, the reverse statement is not
necessarily true, as shown in Fig. 2.14d . If the random variables involved are
not statistically independent, Eq. (2.70) for computing the variance of the sum
of several random variables can be generalized as

Var

(
K∑

k = 1

ak Xk

)
=

K∑
k = 1

a2
kσ 2

k + 2
K−1∑
k = 1

K∑
k′ = k+1

akak′ Cov(Xk , Xk′ ) (2.50)

Example 2.12 (after Tung and Yen, 2005) Perhaps the assumption of independence
of Pm, Im, and Em in Example 2.11 may not be reasonable in reality. One examines
the historical data closely and finds that correlations exist among the three hydrologic
random variables. Analysis of data reveals that Corr(Pm, Im) = 0.8, Corr(Pm, Em) =
−0.4, and Corr(Im, Em) = − 0.3. Recalculate the standard deviation associated with
the end-of-month storage volume.
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Figure 2.14 Different cases of correlation between two random variables:
(a) perfectly linearly correlated in opposite directions; (b) strongly linearly
correlated in a positive direction; (c) uncorrelated in linear fashion; (d ) per-
fectly correlated in nonlinear fashion but uncorrelated linearly.

Solution By Eq. (2.50), the variance of the reservoir storage volume at the end of the
month can be calculated as

Var(Sm+1) = ar (Pm) + Var(Im) + Var(Em) + 2 Cov(Pm, Im)

− 2 Cov(Pm, Em) − 2 Cov(Im, Em)

= Var(Pm) + Var(Im) + Var(Em) + 2 Corr(Pm, Im)σ (Pm)σ (Im)

− 2Corr(Pm, Em)σ (Pm)σ (Em) − 2 Corr(Im, Em)σ (Im)σ (Em)

= (500)2 + (2000)2 + (1000)2 + 2(0.8)(500)(2000)

− 2(−0.4)(500)(1000) − 2(−0.3)(2000)(1000)

= 8.45(1000 m3)2
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The corresponding standard deviation of the end-of-month storage volume is

σ (Sm+1) =
√

8.45 × 1000 = 2910 m3

In this case, consideration of correlation increases the standard deviation by
27 percent compared with the uncorrelated case in Example 2.11.

Example 2.13 Referring to Example 2.7, compute correlation coefficient between X
and Y .

Solution Referring to Eqs. (2.47) and (2.48), computation of the correlation coefficient
requires the determination of µx, µy, σx, and σy from the marginal PDFs of X and Y :

f x(x) = 4 + 3x2

16
for 0 ≤ x ≤ 2 f y(y) = 4 + 3y2

16
for 0 ≤ y ≤ 2

as well as E(XY ) from their joint PDF obtained earlier:

f x,y(x, y) = 3(x2 + y2)
32

for 0 ≤ x, y ≤ 2

From the marginal PDFs, the first two moments of X and Y about the origin can be
obtained easily as

µx = E(X ) =
∫ 2

0
x f x(x) dx = 5

4 = E(Y ) = µy E(X2) =
∫ 2

0
x2 f x(x) dx = 28

15 = E(Y 2)

Hence the variances of X and Y can be calculated as

Var(X ) = E(X2) − (µx)2 = 73/240 = Var(Y )

To calculate Cov(X , Y ), one could first compute E(XY ) from the joint PDF as

E(XY ) =
∫ 2

0

∫ 2

0
xy f x,y(x, y) dx dy = 3

2

Then the covariance of X and Y , according to Eq. (2.48), is

Cov(X , Y ) = E(XY ) − µxµy = −1/16

The correlation between X and Y can be obtained as

Corr(X , Y ) = ρx,y = −1/16
73/240

= −0.205

2.5 Discrete Univariate Probability Distributions

In the reliability analysis of hydrosystems engineering problems, several proba-
bility distributions are used frequently. Based on the nature of the random vari-
able, probability distributions are classified into discrete and continuous types.
In this section, two discrete distributions, namely, the binomial distribution and
the Poisson distribution, that are used commonly in hydrosystems reliability
analysis, are described. Section 2.6 describes several frequently used univari-
ate continuous distributions. For the distributions discussed in this chapter
and others not included herein, their relationships are shown in Fig. 2.15.
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Figure 2.15 Relationships among univariate distributions. (After Leemis, 1986.)
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Computations of probability and quantiles for the great majority of the dis-
tribution functions described in Secs. 2.5 and 2.6 are available in Microsoft
Excel.

2.5.1 Binomial distribution

The binomial distribution is applicable to random processes with only two types
of outcomes. The state of components or subsystems in many hydrosystems can
be classified as either functioning or failed, which is a typical example of a
binary outcome. Consider an experiment involving a total of n independent
trials with each trial having two possible outcomes, say, success or failure. In
each trial, if the probability of having a successful outcome is p, the probability
of having x successes in n trials can be computed as

px(x) = Cn,x pxqn−x for x = 0, 1, 2, . . . , n (2.51)

where Cn,x is the binomial coefficient, and q = 1 − p, the probability of having
a failure in each trial. Computationally, it is convenient to use the following
recursive formula for evaluating the binomial PMF (Drane et al., 1993):

px(x | n, p) =
(

n + 1 − x
x

)(
p
q

)
px(x − 1 | n, p) = RB (x) px(x − 1 | n, p) (2.52)

for x = 0, 1, 2, . . . , n, with the initial probability px(x = 0|n, p) = qn. A simple
recursive scheme for computing the binomial cumulative probability is given
by Tietjen (1994).

A random variable X having a binomial distribution with parameters n and
p has the expectation E(X ) = np and variance Var(X ) = npq. Shape of the PMF
of a binomial random variable depends on the values of p and q. The skewness
coefficient of a binomial random variable is (q − p)/

√
npq. Hence the PMF is

positively skewed if p <q, symmetric if p = q = 0.5, and negatively skewed if
p > q. Plots of binomial PMFs for different values of p with a fixed n are shown
in Fig. 2.16. Referring to Fig. 2.15, the sum of several independent binomial
random variables, each with a common parameter p and different nks, is still
a binomial random variable with parameters p and �knk .

Example 2.14 A roadway-crossing structure, such as a bridge or a box or pipe cul-
vert, is designed to pass a flood with a return period of 50 years. In other words,
the annual probability that the roadway-crossing structure would be overtopped is
a 1-in-50 chance or 1/50 = 0.02. What is the probability that the structure would be
overtopped over an expected service life of 100 years?

Solution In this example, the random variable X is the number of times the roadway-
crossing structure will be overtopped over a 100-year period. One can treat each year
as an independent trial from which the roadway structure could be overtopped or not
overtopped. Since the outcome of each “trial” is binary, the binomial distribution is
applicable.
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Figure 2.16 Probability mass functions of binomial random
variables with different values of p.

The event of interest is the overtopping of the roadway structure. The probability of
such an event occurring in each trial (namely, each year), is 0.02. A period of 100 years
represents 100 trials. Hence, in the binomial distribution model, the parameters are
p = 0.02 and n= 100. The probability that overtopping occurs in a period of 100 years
can be calculated, according to Eq. (2.51), as

P (overtopping occurs in an 100-year period)

= P (overtopping occurs at least once in an 100-year period)

= P (X ≥ 1 | n= 100, p = 0.02)

=
100∑
x = 1

px(x) =
100∑
x = 1

C100,x(0.02)x(0.98)100−x
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This equation for computing the overtopping probability requires evaluations of 100
binomial terms, which could be very cumbersome. In this case, one could solve the
problem by looking at the other side of the coin, i.e., the nonoccurrence of overtopping
events. In other words,

P (overtopping occurs in a 100-year period)

= P (overtopping occurs at least once in a 100-year period)

= 1 − P (no overtopping occurs in a 100-year period)

= 1 − p(X = 0) = 1 − (0.98)100

= 1 − 0.1326 = 0.8674

Calculation of the overtopping risk, as illustrated in this example, is made under
an implicit assumption that the occurrence of floods is a stationary process. In other
words, the flood-producing random mechanism for the watershed under considera-
tion does not change with time. For a watershed undergoing changes in hydrologic
characteristics, one should be cautious about the estimated risk.

The preceding example illustrates the basic application of the binomial dis-
tribution to reliability analysis. A commonly used alternative is the Poisson
distribution described in the next section. More detailed descriptions of these
two distributions in time-dependent reliability analysis of hydrosystems infras-
tructural engineering are given in Sec. 4.7.

2.5.2 Poisson distribution

The Poisson distribution has the PMF as

px(x | ν) = e−ννx

x!
for x = 0, 1, 2, . . . (2.53)

where the parameter ν > 0 represents the mean of a Poisson random variable.
Unlike the binomial random variables, Poisson random variables have no upper
bound. A recursive formula for calculating the Poisson PMF is (Drane et al.,
1993)

px(x | ν) =
(ν

x

)
px(x − 1 | ν) = Rp(x) px(x − 1 | ν) for x = 1, 2, . . . (2.54)

with px(x = 0 | ν) = e−ν and RP (x) = ν/x. When ν →∞ and p → 0 while np = ν =
constant, the term RB (x) in Eq. (2.52) for the binomial distribution becomes
RP (x) for the Poisson distribution. Tietjen (1994) presents a simple recursive
scheme for computing the Poisson cumulative probability.

For a Poisson random variable, the mean and the variance are identical to ν.
Plots of Poisson PMFs corresponding to different values of ν are shown in Fig.
2.17. As shown in Fig. 2.15, Poisson random variables also have the same re-
productive property as binomial random variables. That is, the sum of several
independent Poisson random variables, each with a parameter νk , is still a
Poisson random variable with a parameter ν1 + ν2 + · · · + νK . The skewness
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Figure 2.17 Probability mass functions of Poisson random variables
with different parameter values.

coefficient of a Poisson random variable is 1/
√

ν, indicating that the shape of
the distribution approaches symmetry as ν gets large.

The Poisson distribution has been applied widely in modeling the number
of occurrences of a random event within a specified time or space interval.
Equation (2.2) can be modified as

Px(x | λ, t) = e−λt(λt)x

x!
for x = 0, 1, 2, . . . (2.55)

in which the parameter λ can be interpreted as the average rate of occurrence
of the random event in a time interval (0, t).
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Example 2.15 Referring to Example 2.14, the use of binomial distribution assumes,
implicitly, that the overtopping occurs, at most, once each year. The probability is
zero for having more than two overtopping events annually. Relax this assumption
and use the Poisson distribution to reevaluate the probability of overtopping during
a 100-year period.

Solution Using the Poisson distribution, one has to determine the average number of
overtopping events in a period of 100 years. For a 50-year event, the average rate of
overtopping is λ = 0.02/year. Therefore, the average number of overtopping events in a
period of 100 years can be obtained as ν = (0.02)(100) = 2 overtoppings. The probability
of overtopping in an 100-year period, using a Poisson distribution, is

P (overtopping occurs in a 100-year period)

= P (overtopping occurs at least once in a 100-year period)

= 1 − P (no overtopping occurs in a 100-year period)

= 1 − p(X = 0 | ν = 2) = 1 − e−2

= 1 − 0.1353 = 0.8647

Comparing with the result from Example 2.14, use of the Poisson distribution results
in a slightly smaller risk of overtopping.

To relax the restriction of equality of the mean and variance for the Pois-
son distribution, Consul and Jain (1973) introduced the generalized Poisson
distribution (GPD) having two parameters θ and λ with the probability mass
function as

px(x | θ , λ) = θ (θ + xλ)n−1e−(θ+xλ)

x!
for x = 0, 1, 2, . . . ; λ ≥ 0 (2.56)

The parameters (θ , λ) can be determined by the first two moments (Consul,
1989) as

E(X ) = θ

1 − λ
Var(X ) = θ

(1 − λ)3 (2.57)

The variance of the GPD model can be greater than, equal to, or less than
the mean depending on whether the second parameter λ is positive, zero, or
negative. The values of the mean and variance of a GPD random variable tend
to increase as θ increases. The GPD model has greater flexibility to fit various
types of random counting processes, such as binomial, negative binomial, or
Poisson, and many other observed data.

2.6 Some Continuous Univariate Probability
Distributions

Several continuous PDFs are used frequently in reliability analysis. They in-
clude normal, lognormal, gamma, Weibull, and exponential distributions. Other
distributions, such as beta and extremal distributions, also are used sometimes.
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The relations among the various continuous distributions considered in this
chapter and others are shown in Fig. 2.15.

2.6.1 Normal (Gaussian) distribution

The normal distribution is a well-known probability distribution involving two
parameters: the mean and variance. A normal random variable having the
mean µx and variance σ 2

x is denoted herein as X ∼ N (µx, σx) with the PDF

f N
(
x | µx, σ 2

x

)= 1√
2π σx

exp

[
−1

2

(
x − µx

σx

)2
]

for −∞ < x < ∞ (2.58)

The relationship between µx and σx and the L-moments are µx = λ1 and
σx = √

πλ2.
The normal distribution is bell-shaped and symmetric with respect to the

mean µx. Therefore, the skewness coefficient of a normal random variable is
zero. Owing to the symmetry of the PDF, all odd-order central moments are zero.
The kurtosis of a normal random variable is κx = 3.0. Referring to Fig. 2.15, a lin-
ear function of several normal random variables also is normal. That is, the lin-
ear combination of K normal random variables W = a1 X1 + a2 X2 + · · · + aK X K ,
with Xk ∼ N (µk , σk), for k = 1, 2, . . . , K , is also a normal random variable with
the mean µw and variance σ 2

w, respectively, as

µw =
K∑

k = 1

akµk σ 2
w =

K∑
k = 1

a2
kσ 2

k + 2
K−1∑
k = 1

K∑
k′ = k+1

akak′Cov(Xk , Xk′ )

The normal distribution sometimes provides a viable alternative to approx-
imate the probability of a nonnormal random variable. Of course, the accu-
racy of such an approximation depends on how closely the distribution of the
nonnormal random variable resembles the normal distribution. An important
theorem relating to the sum of independent random variables is the central
limit theorem, which loosely states that the distribution of the sum of a number
of independent random variables, regardless of their individual distributions,
can be approximated by a normal distribution, as long as none of the vari-
ables has a dominant effect on the sum. The larger the number of random
variables involved in the summation, the better is the approximation. Because
many natural processes can be thought of as the summation of a large number
of independent component processes, none dominating the others, the normal
distribution is a reasonable approximation for these overall processes. Finally,
Dowson and Wragg (1973) have shown that when only the mean and variance
are specified, the maximum entropy distribution on the interval (−∞, +∞) is
the normal distribution. That is, when only the first two moments are specified,
the use of the normal distribution implies more information about the nature
of the underlying process specified than any other distributions.

Probability computations for normal random variables are made by first
transforming the original variable to a standardized normal variable Z by
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Eq. (2.49), that is,

Z = (X − µx)/σx

in which Z has a mean of zero and a variance of one. Since Z is a linear function
of the normal random variable X , Z is therefore normally distributed, that is,
Z ∼ N (µz = 0, σz = 1). The PDF of Z, called the standard normal distribution,
can be obtained easily as

φ(z) = 1√
2π

exp
(

−z2

2

)
for −∞ < z < ∞ (2.59)

The general expressions for the product-moments of the standard normal ran-
dom variable are

E(Z 2r ) = (2r )!
2r × r !

and E(Z2r +1) = 0 for r ≥ 1 (2.60)

Computations of probability for X ∼ N (µx, σx) can be made as

P (X ≤ x) = P
[

X − µx

σx
≤ x − µx

σx

]
= P (Z ≤ z) = �(z) (2.61)

where z= (x − µx)/σx, and �(z) is the standard normal CDF defined as

�(z) =
∫ z

−∞
φ(z) dz (2.62)

Figure 2.18 shows the shape of the PDF of the standard normal random
variable.

The integral result of Eq. (2.62) is not analytically available. A table of the
standard normal CDF, such as Table 2.2 or similar, can be found in many
statistics textbooks (Abramowitz and Stegun, 1972; Haan, 1977; Blank, 1980;
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Figure 2.18 Probability density of the standard normal variable.
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TABLE 2.2 Table of Standard Normal Probability, Φ(z ) = P ( Z ≤ z )

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

NOTE: �(−z) = 1 − �(z), z ≥ 0.

Devore, 1987). For numerical computation purposes, several highly accurate
approximations are available for determining �(z). One such approximation is
the polynomial approximation (Abramowitz and Stegun, 1972)

�(z) = 1 − φ(z)(b1t + b2t2 + b3t3 + b4t4 + b5t5) for z ≥ 0 (2.63)

in which t = 1/(1 + 0.2316419z), b1 = 0.31938153, b2 = −0.356563782, b3 =
1.781477937, b4 = −1.821255978, and b5 = 1.33027443. The maximum absolute
error of the approximation is 7.5 × 10−8, which is sufficiently accurate for most
practical applications. Note that Eq. (2.63) is applicable to the non-negative-
valued z. For z < 0, the value of standard normal CDF can be computed as
�(z) = 1 − �(|z|) by the symmetry of φ(z). Approximation equations, such as
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Eq. (2.63), can be programmed easily for probability computations without
needing the table of the standard normal CDF.

Equally practical is the inverse operation of finding the standard normal
quantile zp with the specified probability level p. The standard normal CDF
table can be used, along with some mechanism of interpolation, to determine zp.
However, for practical algebraic computations with a computer, the following
rational approximation can be used (Abramowitz and Stegun, 1972):

zp = t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3 for 0.5 < p ≤ 1 (2.64)

in which p = �(zp), t =√−2 ln(1 − p), c0 = 2.515517, c1 = 0.802853, c2 =
0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. The correspond-
ing maximum absolute error by this rational approximation is 4.5 × 10−4. Note
that Eq. (2.64) is valid for the value of �(z) that lies between [0.5, 1]. When
p < 0.5, one can still use Eq. (2.64) by letting t =√−2 × ln( p) and attaching
a negative sign to the computed quantile value. Vedder (1995) proposed a sim-
ple approximation for computing the standard normal cumulative probabilities
and standard normal quantiles.

Example 2.16 Referring to Example 2.14, determine the probability of more than
five overtopping events over a 100-year period using a normal approximation.

Solution In this problem, the random variable X of interest is the number of over-
topping events in a 100-year period. The exact distribution of X is binomial with
parameters n= 100 and p = 0.02 or the Poisson distribution with a parameter ν = 2.
The exact probability of having more than five occurrences of overtopping in 100 years
can be computed as

P (X > 5) = P (X ≥ 6) =
100∑
x = 6

(
100

x

)
(0.02)x(0.98)100−x

= 1 − P (X ≤ 5) = 1 −
5∑

x = 6

(
100

x

)
(0.02)x(0.98)100−x

= 1 − 0.9845 = 0.0155

As can be seen, there are a total of six terms to be summed up on the right-hand side.
Although the computation of probability by hand is within the realm of a reasonable
task, the following approximation is viable. Using a normal probability approxima-
tion, the mean and variance of X are

µx = np = (100)(0.02) = 2.0 σ2
x = npq = (100)(0.02)(0.98) = 1.96

The preceding binomial probability can be approximated as

P (X ≥ 6) ≈ P (X ≥ 5.5) = 1 − P (X < 5.5) = 1 − P [Z < (5.5 − 2.0)/
√

1.96]

= 1 − �(2.5) = 1 − 0.9938 = 0.062
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DeGroot (1975) showed that when np1.5 > 1.07, the error of using the normal dis-
tribution to approximate the binomial probability did not exceed 0.05. The error in
the approximation gets smaller as the value of np1.5 becomes larger. For this exam-
ple, np1.5 = 0.283 ≤ 1.07, and the accuracy of approximation was not satisfactory as
shown.

Example 2.17 (adopted from Mays and Tung, 1992) The annual maximum flood
magnitude in a river has a normal distribution with a mean of 6000 ft3/s and standard
deviation of 4000 ft3/s. (a) What is the annual probability that the flood magnitude
would exceed 10,000 ft3/s? (b) Determine the flood magnitude with a return period of
100 years.

Solution (a) Let Q be the random annual maximum flood magnitude. Since Q has a nor-
mal distribution with a mean µQ = 6000 ft3/s and standard deviation σQ = 4000 ft3/s,
the probability of the annual maximum flood magnitude exceeding 10,000 ft3/s is

P (Q > 10, 000) = 1 − P [Z ≤ (10, 000 − 6000)/4000]

= 1 − �(1.00) = 1 − 0.8413

= 0.1587

(b) A flood event with a 100-year return period represents the event the magnitude of
which has, on average, an annual probability of 0.01 being exceeded. That is, P (Q ≥
q100) = 0.01, in which q100 is the magnitude of the 100-year flood. This part of the
problem is to determine q100 from

P (Q ≤ q100) = 1 − P (Q ≥ q100) = 0.99

because P (Q ≤ q100) = P {Z ≤ [(q100 − µQ)/σQ]}
= P [Z ≤ (q100 − 6000)/4000]

= �[q100 − 6000)/4000] = 0.99

From Table 2.2 or Eq. (2.64), one can find that �(2.33) = 0.99. Therefore,

(q100 − 6000)/4000 = 2.33

which gives that the magnitude of the 100-year flood event as q100 = 15, 320 ft3/s.

2.6.2 Lognormal distribution

The lognormal distribution is a commonly used continuous distribution for posi-
tively valued random variables. Lognormal random variables are closely related
to normal random variables, by which a random variable X has a lognormal
distribution if its logarithmic transform Y = ln(X ) has a normal distribution
with mean µln x and variance σ 2

ln x. From the central limit theorem, if a natural
process can be thought of as a multiplicative product of a large number of an
independent component processes, none dominating the others, the lognormal
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distribution is a reasonable approximation for these natural processes. The
PDF of a lognormal random variable is

f LN
(
x | µln x, σ 2

ln x

)= 1√
2πσln xx

exp

{
−1

2

[
ln(x) − µln x

σln x

]2
}

for x > 0 (2.65)

which can be derived from the normal PDF. Statistical properties of a lognor-
mal random variable in the original scale can be computed from those of log-
transformed variables as

µx = λ1 = exp

(
µln x + σ 2

ln x

2

)
(2.66a)

σ 2
x = µ2

x

[
exp

(
σ 2

ln x

)− 1
]

(2.66b)

�2
x = exp

(
σ 2

ln x

)− 1 (2.66c)

γx = �3
x + 3�x (2.66d)

From Eq. (2.66d), one realizes that the shape of a lognormal PDF is always
positively skewed (Fig. 2.19). Equations (2.66a) and (2.66b) can be derived easily
by the moment-generating function (Tung and Yen, 2005, Sec. 4.2). Conversely,
the statistical moments of ln(X ) can be computed from those of X by

µln x = 1
2

ln
[

µ2
x

1 + �2
x

]
= ln(µx) − 1

2
σ 2

ln x (2.67a)

σ 2
ln x = ln

(
1 + �2

x

)
(2.67b)

It is interesting to note from Eq. (2.67b) that the variance of a log-transformed
variable is dimensionless.

In terms of the L-moments, the second-order L-moment for a two- and three-
parameter lognormal distribution is (Stedinger et al., 1993)

λ2 = exp

(
µln x + σ 2

ln x

2

)
erf

(σln x

2

)
= exp

(
µln x + σ 2

ln x

2

)[
2�

(
σln x√

2

)
− 1

]
(2.68)

in which erf (·) is an error function the definitional relationship of which, with
�(z) is

erf (x) = 2√
π

∫ x

0
e−u2

du = 2√
π

∫ x

0
e−z2/2 dz= 2�(

√
2x) − 1 (2.69)

Hence the L-coefficient of variation is τ2 = 2�(σln x/
√

2) − 1. The relationship
between the third- and fourth-order L-moment ratios can be approximated by
the following polynomial function with accuracy within 5 × 10−4 for | τ2 | < 0.9
(Hosking, 1991):

τ4 = 0.12282 + 0.77518τ 2
3 + 0.12279τ 4

3 − 0.13638τ 6
3 + 0.11386τ 8

3 (2.70)
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Figure 2.19 Shapes of lognormal probability density functions: (a) µx = 1.0;
(b) �x = 1.30.

Since the sum of normal random variables is normally distributed, the prod-
uct of lognormal random variables also is lognormally distributed (see Fig. 2.15).
This useful reproductive property of lognormal random variables can be stated
as if X1, X2, . . . , X K are independent lognormal random variables, then
W = b0�

K
k = 1 X bk

k has a lognormal distribution with mean and variance as

µln w = ln(b0) +
K∑

k = 1

bkµln xk σ 2
ln w =

K∑
k = 1

b2
kσ 2

ln xk

In the case that two lognormal random variables are correlated with a corre-
lation coefficient ρx,y in the original scale, then the covariance terms in the
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log-transformed space must be included in calculating σ 2
ln w. Given ρx,y, the cor-

relation coefficient in the log-transformed space can be computed as

Corr(ln X , ln Y ) = ρln x,ln y = ln(1 + ρx,y�x�y)√
ln
(
1 + �2

x

)× ln
(
1 + �2

y

) (2.71)

Derivation of Eq. (2.71) can be found in Tung and Yen (2005).

Example 2.18 Re-solve Example 2.17 by assuming that the annual maximum flood
magnitude in the river follows a lognormal distribution.

Solution (a) Since Q has a lognormal distribution, ln(Q) is normally distributed with a
mean and variance that can be computed from Eqs. (2.67a) and (2.67b), respectively, as

�Q = 4000/6000 = 0.667

σ2
ln Q = ln(1 + 0.6672) = 0.368

µln Q = ln(6000) − 0.368/2 = 8.515

The probability of the annual maximum flood magnitude exceeding 10,000 ft3/s is

P (Q > 10, 000) = P [ln Q > ln(10, 000)]

= 1 − P [Z ≤ (9.210 − 8.515)/
√

0.368]

= 1 − �(1.146) = 1 − 0.8741 = 0.1259

(b) A 100-year flood q100 represents the event the magnitude of which corresponds to
P (Q ≥ q100) = 0.01, which can be determined from

P (Q ≤ q100) = 1 − P (Q ≥ q100) = 0.99

because P (Q ≤ q100) = P [ln Q ≤ ln(q100)]

= P {Z ≤ [ln(q100) − µln Q]/σln Q}
= P {Z ≤ [ln(q100) − 8.515]/

√
0.368}

= �{[ln(q100) − 8.515]/
√

0.368} = 0.99

From Table 2.2 or Eq. (2.64), one can find that �(2.33) = 0.99. Therefore,

[ln(q100) − 8.515]/
√

0.368 = 2.33

which yields ln(q100) = 9.9284. The magnitude of the 100-year flood event then is
q100 = exp(9.9284) = 20, 500 ft3/s.

2.6.3 Gamma distribution and variations

The gamma distribution is a versatile continuous distribution associated with
a positive-valued random variable. The two-parameter gamma distribution has
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a PDF defined as

f G(x | α, β) = 1
β�(α)

(x/β)α−1ex/β for x > 0 (2.72)

in which β > 0 and α > 0 are the parameters and �(●) is a gamma function
defined as

�(α) =
∫ ∞

0
tα−1e−t dt (2.73)

The mean, variance, and skewness coefficient of a gamma random variable
having a PDF as Eq. (2.72) are

µx = λ1 = αβ σ 2
x = αβ2 γx = 2/

√
α (2.74)

In terms of L-moments, the second-order L-moment is

λ2 = β�(α + 0.5)√
π�(α)

(2.75)

and the relationship between the third- and fourth-order L-moment ratios can
be approximated as (Hosking, 1991)

τ4 = 0.1224 + 0.30115τ 2
3 + 0.95812τ 4

3 − 0.57488τ 6
3 + 0.19383τ 8

3 (2.76)

In the case that the lower bound of a gamma random variable is a positive
quantity, the preceding two-parameter gamma PDF can be modified to a three-
parameter gamma PDF as

f G(x | ξ, α, β) = 1
β�(α)

[
x − ξ

β

]α−1

e−(x−ξ )/β for x > ξ (2.77)

where ξ is the lower bound. The two-parameter gamma distribution can be
reduced to a simpler form by letting Y = X/β, and the resulting one-parameter
gamma PDF (called the standard gamma distribution) is

f G(y | α) = 1
�(α)

yα−1ey for y > 0 (2.78)

Tables of the cumulative probability of the standard gamma distribution can
be found in Dudewicz (1976). Shapes of some gamma distributions are shown
in Fig. 2.20 to illustrate its versatility. If α is a positive integer in Eq. (2.78),
the distribution is called an Erlang distribution.

When α = 1, the two-parameter gamma distribution reduces to an exponential
distribution with the PDF

f EXP(x | β) = e−x/β/β for x > 0 (2.79)

An exponential random variable with a PDF as Eq. (2.79) has the mean and
standard deviation equal to β (see Example 2.8). Therefore, the coefficient of
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Figure 2.20 Shapes of gamma probability density functions.

variation of an exponential random variable is equal to unity. The exponential
distribution is used commonly for describing the life span of various electronic
and mechanical components. It plays an important role in reliability mathe-
matics using time-to-failure analysis (see Chap. 5).

Two variations of the gamma distribution are used frequently in hydrologic
frequency analysis, namely, the Pearson and log-Pearson type 3 distributions.
In particular, the log-Pearson type 3 distribution is recommended for use by
the U.S. Water Resources Council (1982) as the standard distribution for flood
frequency analysis. A Pearson type 3 random variable has the PDF

f P3(x | ξ, α, β) = 1
|β|�(α)

(
x − ξ

β

)α−1

e−(x−ξ )/β (2.80)

with α > 0, x ≥ ξ when β > 0 and with α > 0, x ≤ ξ when β < 0. When β > 0,
the Pearson type 3 distribution is identical to the three-parameter gamma
distribution. However, the Pearson type 3 distribution has the flexibility to
model negatively skewed random variables corresponding to β < 0. Therefore,
the skewness coefficient of the Pearson type 3 distribution can be computed,
from modifying Eq. (2.74), as sign(β)2/

√
α.

Similar to the normal and lognormal relationships, the PDF of a log-Pearson
type 3 random variable is

f LP3(x | ξ, α, β) = 1
x|β|�(α)

[
ln(x) − ξ

β

]α−1

e−[ln(x)−ξ ]/β (2.81)

with α > 0, x ≥ eξ when β > 0 and with α > 0, x ≤ eξ when β < 0. Numerous
studies can be found in the literature about Pearson type 3 and log-Pearson
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type 3 distributions. Kite (1977), Stedinger et al. (1993), and Rao and Hamed
(2000) provide good summaries of these two distributions.

Evaluation of the probability of gamma random variables involves computa-
tions of the gamma function, which can be made by using the following recursive
formula:

�(α) = (α − 1)�(α − 1) (2.82)

When the argument α is an integer number, then �(α) = (α − 1)! = (α − 1)(α −
2) · · · 1. However, when α is a real number, the recursive relation would lead to
�(α′) as the smallest term, with 1 < α′ < 2. The value of �(α′) can be determined
by a table of the gamma function or by numerical integration on Eq. (2.73). Al-
ternatively, the following approximation could be applied to accurately estimate
the value of �(α′) (Abramowitz and Stegun, 1972):

�(α′) =�(x + 1) = 1 +
5∑

i = 1

aixi for 0 < x < 1 (2.83)

in which a1 = −0.577191652, a2 = 0.988205891, a3 = −0.897056937, a4 =
0.4245549, and a5 = −0.1010678. The maximum absolute error associated with
Eq. (2.83) is 5 × 10−5.

2.6.4 Extreme-value distributions

Hydrosystems engineering reliability analysis often focuses on the statisti-
cal characteristics of extreme events. For example, the design of flood-control
structures may be concerned with the distribution of the largest events over
the recorded period. On the other hand, the establishment of a drought-
management plan or water-quality management scheme might be interested in
the statistical properties of minimum flow over a specified period. Statistics of
extremes are concerned with the statistical characteristics of Xmax,n = max{X1,
X2, . . . , Xn} and/or Xmin,n = min{X1, X2, . . . , Xn} in which X1, X2, . . . , Xn are
observations of random processes. In fact, the exact distributions of extremes
are functions of the underlying (or parent) distribution that generates the ran-
dom observations X1, X2, . . . , Xn and the number of observations. Of practi-
cal interest are the asymptotic distributions of extremes. Asymptotic distribu-
tion means that the resulting distribution is the limiting form of Fmax,n(y) or
Fmin,n(y) as the number of observations n approaches infinity. The asymptotic
distributions of extremes turn out to be independent of the sample size n and
the underlying distribution for random observations. That is,

limn→∞Fmax,n(y) = Fmax(y) limn→∞Fmin,n(y) = Fmin(y)

Furthermore, these asymptotic distributions of the extremes largely depend
on the tail behavior of the parent distribution in either direction toward the
extremes. The center portion of the parent distribution has little significance
for defining the asymptotic distributions of extremes. The work on statistics of
extremes was pioneered by Fisher and Tippett (1928) and later was extended



Fundamentals of Probability and Statistics for Reliability Analysis 67

by Gnedenko (1943). Gumbel (1958), who dealt with various useful applications
of Xmax,n and Xmin,n and other related issues.

Three types of asymptotic distributions of extremes are derived based on the
different characteristics of the underlying distribution (Haan, 1977):

Type I. Parent distributions are unbounded in the direction of extremes, and
all statistical moments exist. Examples of this type of parent distribution
are normal (for both largest and smallest extremes), lognormal, and gamma
distributions (for the largest extreme).

Type II. Parent distributions are unbounded in the direction of extremes, but
all moments do not exist. One such distribution is the Cauchy distribution
(Sec. 2.6.5). Thus the type II extremal distribution has few applications in
practical engineering analysis.

Type III. Parent distributions are bounded in the direction of the desired
extreme. Examples of this type of underlying distribution are the beta dis-
tribution (for both largest and smallest extremes) and the lognormal and
gamma distributions (for the smallest extreme).

Owing to the fact that Xmin,n = − max{−X1, −X2, . . . , −Xn}, the asymptotic
distribution functions of Xmax,n and Xmin,n satisfy the following relation
(Leadbetter et al., 1983):

Fmin(y) = 1 − Fmax(−y) (2.84)

Consequently, the asymptotic distribution of Xmin can be obtained directly from
that of Xmax. Three types of asymptotic distributions of the extremes are listed
in Table 2.3.

Extreme-value type I distribution. This is sometimes referred to as the Gumbel
distribution, Fisher-Tippett distribution, and double exponential distribution.
The CDF and PDF of the extreme-value type I (EV1) distribution have, respec-
tively, the following forms:

FEV1(x | ξ, β) = exp
{

− exp
[
−
(

x − ξ

β

)]}
for maxima

(2.85a)

= 1 − exp
{

− exp
[
+
(

x − ξ

β

)]}
for minima

TABLE 2.3 Three Types of Asymptotic Cumulative Distribution Functions (CDFs) of
Extremes

Type Maxima Range Minima Range

I exp(−e−y) −∞ < y < ∞ 1 − exp(−ey) −∞ < y < ∞
II exp(−yα) α < 0, y > 0 1 − exp[−(−y)α] α < 0, y < 0
III exp[−(−y)α] α > 0, y < 0 1 − exp(−yα) α > 0, y > 0

NOTE : y = (x − ξ )/β.
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Figure 2.21 Probability density function of extreme-value
type I random variables.

f EV1(x | ξ, β) = 1
β

exp
{

−
(

x − ξ

β

)
− exp

[
−
(

x − ξ

β

)]}
for maxima

(2.85b)

= 1
β

exp
{

+
(

x − ξ

β

)
− exp

[
+
(

x − ξ

β

)]}
for minima

for −∞ < x, ξ < ∞, and β ≥ 0. The shapes of the EV1 distribution are shown in
Fig. 2.21, in which transformed random variable Y = (X − ξ )/β is used. As can
be seen, the PDF associated with the largest extreme is a mirror image of the
smallest extreme with respect to the vertical line passing through the common
mode, which happens to be the parameter ξ . The first three product-moments
of an EV1 random variable are

µx = λ1 = ξ + 0.5772β for the largest extreme

= ξ − 0.5772β for the smallest extreme (2.86a)

σ 2
x = 1.645β2 for both types (2.86b)

γx = 1.13955 for the largest extreme

= −1.13955 for the smallest extreme (2.86c)

The second- to fourth-order L-moments of the EV1 distribution for maxima are

λ2 = β ln(2) τ3 = 0.1699 τ4 = 0.1504 (2.87)

Using the transformed variable Y = (X − ξ )/β, the CDFs of the EV1 for the
maxima and minima are shown in Table 2.3. Shen and Bryson (1979) showed
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that if a random variable had an EV1 distribution, the following relationship
is satisfied when ξ is small:

xT 1 ≈
[

ln(T 1)
ln(T 2)

]
xT 2 (2.88)

where xT is the quantile corresponding to the exceedance probability of 1/T .

Example 2.19 Repeat Example 2.17 by assuming that the annual maximum flood
follows the EV1 distribution.

Solution Based on the values of a mean of 6000 ft3/s and standard deviation of
4000 ft3/s, the values of distributional parameters ξ and β can be determined as
follows. For maxima, β is computed from Eq. (2.86b) as

β = σQ√
1.645

= 4000
1.2826

= 3118.72 ft3/s

and from Eq. (2.86a), one has

ξ = µQ − 0.577β = 6000 − 0.577(3118.72) = 4200.50 ft3/s

(a) The probability of exceeding 10,000 ft3/s, according to Eq. (2.85a), is

P (Q > 10, 000) = 1 − FEV1(10, 000)

= 1 − exp

[
− exp

(
−10, 000 − 4200.50

3118.72

)]
= 1 − exp[− exp(−1.860)]

= 1 − 0.8558 = 0.1442

(b) On the other hand, the magnitude of the 100-year flood event can be calculated as

y100 = q100 − ξ

β
= − ln[− ln(1 − 0.01)] = 4.60

Hence q100 = 4200.50 + 4.60(3118.7) = 18,550 ft3/s.

Extreme-value type III distribution. For the extreme-value type III (EV3) distri-
bution, the corresponding parent distributions are bounded in the direction of
the desired extreme (see Table 2.3). For many hydrologic and hydraulic ran-
dom variables, the lower bound is zero, and the upper bound is infinity. For this
reason, the EV3 distribution for the maxima has limited applications. On the
other hand, the EV3 distribution of the minima is used widely for modeling
the smallest extremes, such as drought or low-flow condition. The EV3 distri-
bution for the minima is also known as the Weibull distribution, having a PDF
defined as

f W(x | ξ, α, β) = α

β

(
x − ξ

β

)α−1

exp
[
−
(

x − ξ

β

)α]
for x ≥ ξ and α, β > 0

(2.89)
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When ξ = 0 and α = 1, the Weibull distribution reduces to the exponential dis-
tribution. Figure 2.22 shows that the versatility of the Weibull distribution
function depends on the parameter values. The CDF of Weibull random vari-
ables can be derived as

FW(x | ξ, α, β) = 1 − exp
[
−
(

x − ξ

β

)α]
(2.90)

The mean and variance of a Weibull random variable can be derived as

µx = λ1 = ξ + β�

(
1 + 1

β

)
(2.91a)

σ 2
x = β2

[
�

(
1 + 2

α

)
− �2

(
1 + 1

α

)]
(2.91b)

and the second-order L-moment is

λ2 = β(1 − 2−1/α) �

(
1 + 1

α

)
(2.92)

Generalized extreme-value distribution. The generalized extreme-value (GEV)
distribution provides an expression that encompasses all three types of extreme-
value distributions. The CDF of a random variable corresponding to the maxi-
mum with a GEV distribution is

FGEV(x | ξ, α, β) = exp

{
−
[
1 − α(x − ξ )

β

]1/α
}

for α �= 0 (2.93)
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Figure 2.22 Probability density functions of a Weibull random variable.
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When α = 0, Eq. (2.93) reduces to Eq. (2.85a) for the Gumbel distribution. For
α < 0, it corresponds to the EV2 distribution having a lower bound x > ξ +β/α,
whereas, on the other hand, for α > 0, it corresponds to the EV3 distribution
having an upper bound x < ξ + β/α. For |α| < 0.3, the shape of the GEV
distribution is similar to the Gumbel distribution, except that the right-hand
tail is thicker for α < 0 and thinner for α > 0 (Stedinger et al., 1993).

The first three moments of the GEV distribution, respectively, are

µx = λ1 = ξ +
(

β

α

)
[1 − �(1 + α)] (2.94a)

σ 2
x =

(
β

α

)2

[�(1 + 2α) − �2(1 + α)] (2.94b)

γx = sign(α)
−�(1 + 3α) + 3�(1 + 2α)�(1 + α) − 2�3(1 + α)

[�(1 + 2α) − �2(1 + α)]1.5 (2.94c)

where sign(α) is +1 or −1 depending on the sign of α. From Eqs. (2.94b) and
(2.94c) one realizes that the variance of the GEV distribution exists when
α > −0.5, and the skewness coefficient exists when α > −0.33. The GEV distri-
bution recently has been used frequently in modeling the random mechanism
of hydrologic extremes, such as precipitation and floods.

The relationships between the L-moments and GEV model parameters are

λ2 = β

α
(1 − 2−α)�(1 + α) (2.95a)

τ3 = 2(1 − 3−α)
(1 − 2−α)

− 3 (2.95b)

τ4 = 1 − 5(4−α) + 10(3−α) − 6(2−α)
1 − 2−α

(2.95c)

2.6.5 Beta distributions

The beta distribution is used for describing random variables having both lower
and upper bounds. Random variables in hydrosystems that are bounded on both
limits include reservoir storage and groundwater table for unconfined aquifers.
The nonstandard beta PDF is

f NB(x | a, b, α, β) = 1
B(α, β)(b − a)α+β−1 (x − a)α−1(b − x)β−1 for a ≤ x ≤ b

(2.96)
in which a and b are the lower and upper bounds of the beta random variable,
respectively; α > 0, β > 0; and B(α, β) is a beta function defined as

B(α, β) = �(α)�(β)
�(α + β)

(2.97)
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Using the new variable Y = (X − a)/(b − a), the nonstandard beta PDF can be
reduced to the standard beta PDF as

f B(y | α, β) = 1
B(α, β)

yα−1(1 − y)β−1 for 0 < y < 1 (2.98)

The beta distribution is also a very versatile distribution that can have many
shapes, as shown in Fig. 2.23. The mean and variance of the standard beta
random variable Y , respectively, are

µy = α

α + β
σ 2

y = αβ

(α + β + 1)(α + β)2 (2.99)

When α = β = 1, the beta distribution reduces to a uniform distribution as

f U(x) = 1
b − a

for a ≤ x ≤ b (2.100)

2.6.6 Distributions related to normal random
variables

The normal distribution has been playing an important role in the development
of statistical theories. This subsection briefly describes two distributions related
to the functions of normal random variables.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.2 0.4 0.6 0.8 1

x

f B
(x

 | 
a
,
b

)

a  = 1, b  = 1 

a  = 6, b  = 6a  = 2, b  = 6 a  = 6, b  = 2

a  = 0.5 
b  = 0.5 

Figure 2.23 Shapes of standard beta probability density functions. (After Johnson
and Kotz, 1972.)
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χ2 (chi-square) distribution. The sum of the squares of K independent standard
normal random variables results in a χ2 (chi-square) random variable with K
degrees of freedom, denoted as χ2

K . In other words,

K∑
k = 1

Z2
k ∼ χ2

K (2.101)

in which the Zks are independent standard normal random variables. The PDF
of a χ2 random variable with K degrees of freedom is

f χ2 (x | K ) = 1
2K/2�(K/2)

x(K/2−1)e−x/2 for x > 0 (2.102)

Comparing Eq. (2.102) with Eq. (2.72), one realizes that the χ2 distribution
is a special case of the two-parameter gamma distribution with α = K/2 and
β = 2. The mean, variance, and skewness coefficient of a χ2

K random variable,
respectively, are

µx = K σ 2
x = 2K γx = 2/

√
K/2

Thus, as the value of K increases, the χ2 distribution approaches a symmetric
distribution. Figure 2.24 shows a few χ2 distributions with various degrees of
freedom. If X1, X2, . . . , X K are independent normal random variables with the
common mean µx and variance σ 2

x , the χ2 distribution is related to the sample
of normal random variables as follows:

1. The sum of K squared standardized normal variables Zk = (Xk − X )/σx,
k = 1, 2, . . . , K , has a χ2 distribution with (K − 1) degrees of freedom.

2. The quantity (K − 1)S2/σ 2
x has a χ2 distribution with (K − 1) degrees of

freedom in which S2 is the unbiased sample variance computed according
to Table 2.1.
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Figure 2.24 Shapes of chi-square probability density functions where
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t-distribution. A random variable having a t-distribution results from the ratio
of the standard normal random variable to the square root of the χ2 random
variable divided by its degrees of freedom, that is,

TK = Z√
χ2

K/K
(2.103)

in which TK is a t-distributed random variable with K degrees of freedom. The
PDF of TK can be expressed as

f T(x | K ) = �[(K + 1)/2]√
π K�(K/2)

(
1 + x2

K

)−(K+1)/2

for −∞ < x < ∞ (2.104)

A t-distribution is symmetric with respect to the mean µx = 0 when K ≥ 1. Its
shape is similar to the standard normal distribution, except that the tails of the
PDF are thicker than φ(z). However, as K → ∞, the PDF of a t-distributed ran-
dom variable approaches the standard normal distribution. Figure 2.25 shows
some PDFs for t-random variables of different degrees of freedom. It should
be noted that when K = 1, the t-distribution reduces to the Cauchy distribu-
tion, for which all product-moments do not exist. The mean and variance of a
t-distributed random variable with K degrees of freedom are

µx = 0 σ 2
x = K/(K − 2) for K ≥ 3

When the population variance of normal random variables is known, the sample
mean X of K normal random samples from N (µx, σ 2

x ) has a normal distribu-
tion with mean µx and variance σ 2

x /K . However, when the population variance
is unknown but is estimated by S2 according to Table 2.1, then the quantity√

K (X −µx)/S , which is the standardized sample mean using the sample vari-
ance, has a t-distribution with (K − 1) degrees of freedom.
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Figure 2.25 Shapes of t-distributions where d.f. refers to degrees of freedom.
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2.7 Multivariate Probability Distributions

Multivariate probability distributions are extensions of univariate probability
distributions that jointly account for more than one random variable. Bivari-
ate and trivariate distributions are special cases where two and three random
variables, respectively, are involved. The fundamental basis of multivariate
probability distributions is described in Sec. 2.3.2. In general, the availability
of multivariate distribution models is significantly less than that for univari-
ate cases. Owing to their frequent use in multivariate modeling and reliabil-
ity analysis, two multivariate distributions, namely, multivariate normal and
multivariate lognormal, are presented in this section. Treatments of some mul-
tivariate nonnormal random variables are described in Secs. 4.5 and 7.5. For
other types of multivariate distributions, readers are referred to Johnson and
Kotz (1976) and Johnson (1987).

Several ways can be used to construct a multivariate distribution (Johnson
and Kotz, 1976; Hutchinson and Lai, 1990). Based on the joint distribution dis-
cussed in Sec. 2.2.2, the straightforward way of deriving a joint PDF involving
K multivariate random variables is to extend Eq. (2.19) as

f x(x) = f 1(x1) × f 2(x2 | x1) × · · · × f K (x1, x2, . . . , xK−1) (2.105)

in which x= (x1, x2, . . . , xK )t is a vector containing variates of K random vari-
ables with the superscript t indicating the transpose of a matrix or vector. Ap-
plying Eq. (2.105) requires knowledge of the conditional PDFs of the random
variables, which may not be easily obtainable.

One simple way of constructing a joint PDF of two random variables is by mix-
ing. Morgenstern (1956) suggested that the joint CDF of two random variables
could be formulated, according to their respective marginal CDFs, as

F1,2(x1, x2) = F1(x1)F2(x2){1 + θ [1 − F1(x1)][1 − F2(x2)]} for −1 ≤ θ ≤ 1

(2.106)
in which Fk(xk) is the marginal CDF of the random variable Xk , and θ is
a weighting constant. When the two random variables are independent, the
weighting constant θ = 0. Furthermore, the sign of θ indicates the positive-
ness or negativeness of the correlation between the two random variables. This
equation was later extended by Farlie (1960) to

F1,2(x1, x2) = F1(x1)F2(x2)[1 + θ f 1(x1) f 2(x2)] for −1 ≤ θ ≤ 1 (2.107)

in which f k(xk) is the marginal PDF of the random variable Xk . Once the joint
CDF is obtained, the joint PDF can be derived according to Eq. (2.15a).

Constructing a bivariate PDF by the mixing technique is simple because
it only requires knowledge about the marginal distributions of the involved
random variables. However, it should be pointed out that the joint distribu-
tion obtained from Eq. (2.106) or Eq. (2.107) does not necessarily cover the
entire range of the correlation coefficient [−1, 1] for the two random variables
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under consideration. This is illustrated in Example 2.20. Liu and Der
Kiureghian (1986) derived the range of the valid correlation coefficient value
for the bivariate distribution by mixing, according to Eq. (2.106), from various
combinations of marginal PDFs, and the results are shown in Table 2.4.

Nataf (1962), Mardia (1970a, 1970b), and Vale and Maurelli (1983) proposed
other ways to construct a bivariate distribution for any pair of random variables.
This was done by finding the transforms Zk = t(Xk), for k = 1, 2, such that Z1
and Z2 are standard normal random variables. Then a bivariate normal distri-
bution is ascribed to Z1 and Z2. One such transformation is zk = �−1[Fk(xk)],
for k = 1, 2. A detailed description of such a normal transformation is given in
Sec. 4.5.3.

Example 2.20 Consider two correlated random variables X and Y , each of which has
a marginal PDF of an exponential distribution type as

f x(x) = e−x for x ≥ 0 f y(y) = e−y for y ≥ 0

To derive a joint distribution for X and Y , one could apply the Morgenstern formula.
The marginal CDFs of Xand Y can be obtained easily as

Fx(x) = 1 − e−x for x ≥ 0 Fy(y) = 1 − e−y for y ≥ 0

According to Eq. (2.106), the joint CDF of X and Y can be expressed as

Fx,y(x, y) = (1 − e−x)(1 − e−y)(1 + θe−x−y) for x, y ≥ 0

Then the joint PDF of X and Y can be obtained, according to Eq. (2.7a), as

f x,y(x, y) = e−x−y[1 + θ (2e−x − 1)(2e−y − 1)] for x, y ≥ 0

TABLE 2.4 Valid Range of Correlation Coefficients for the Bivariate Distribution Using the Morgenstern
Formula

Marginal
distribution N U SE SR T1L T1S LN GM T2L T3S

N 0.318
U 0.326 0.333
SE 0.282 0.289 0.25
SR 0.316 0.324 0.28 0.314
T1L 0.305 0.312 0.27 0.303 0.292
T1S 0.305 0.312 0.27 0.303 0.292 0.292
LN <0.318 <0.326 <0.282 <0.316 <0.305 <0.305 <0.318
GM <0.318 <0.326 <0.282 <0.316 <0.305 <0.305 <0.318 <0.381
T2L <0.305 <0.312 <0.270 <0.303 <0.292 <0.292 <0.305 <0.305 <0.292
T3S <0.305 <0.312 <0.270 <0.303 <0.292 <0.292 <0.305 <0.305 <0.292 <0.292

NOTE : N = normal; U = uniform; SE = shifted exponential; SR = shifted Rayleigh; T1L = type I largest value; T1S =
type I smallest value; LN = lognormal; GM = gamma; T2L = type II largest value; T3S = type III smallest value.

SOURCE : After Lin and Der Kiureghian (1986).
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To compute the correlation coefficient between X and Y , one first computes the covari-
ance of X and Y as Cov(X , Y ) = E(XY ) − E(X )E(Y ), in which E(XY ) is computed by

E(XY ) =
∫ ∞

0

∫ ∞

0
xyf x,y(x, y) dx dy = 1 + θ

4

Referring to Eq. (2.79), since the exponential random variables X and Y currently
considered are the special cases of β = 1, therefore, µx = µy = 1 and σx = σy = 1. Conse-
quently, the covariance of X and Y is θ/4, and the corresponding correlation coefficient
is θ/4. Note that the weighing constant θ lies between [−1, 1]. The preceding bivariate
exponential distribution obtained from the Morgenstern formula could only be valid
for X and Y having a correlation coefficient in the range [−1/4, 1/4].

2.7.1 Multivariate normal distributions

A bivariate normal distribution has a PDF defined as

f x1,x2 (x1, x2) = 1

2πσ1σ2

√
1 − ρ2

12

exp

[
−Q

2
(
1 − ρ2

12

)] (2.108)

for −∞ < x1, x2 < ∞, in which

Q =
(

x1 − µ1

σ1

)2

+
(

x2 − µ2

σ2

)2

− 2ρ12

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
where µ and σ are, respectively, the mean and standard deviation, the sub-
scripts 1 and 2 indicate the random variables X1 and X2, respectively, and
ρ12 is the correlation coefficient of the two random variables. Plots of the bi-
variate normal PDF in a three-dimensional form are shown in Fig. 2.26. The
contour curves of the bivariate normal PDF of different correlation coefficients
are shown in Fig. 2.27.

The marginal PDF of Xk can be derived, according to Eq. (2.8), as

f k(xk) = 1

σk
√

2π
exp

[
−1

2

(
xk − µk

σk

)2
]

for −∞ < xk < ∞

for k = 1 and 2. As can be seen, the two random variables having a bivariate
normal PDF are, individually, normal random variables. It should be pointed
out that given two normal marginal PDFs, one can construct a bivariate PDF
that is not in the form of a bivariate normal as defined by Eq. (2.108).

According to Eq. (2.17), the conditional normal PDF of X1 | x2 can be ob-
tained as

f x1 | x2 (x1 | x2) = 1

σ1

√
2π
(
1 − ρ2

12

) exp

−1
2

 (x1 − µ1) − ρ12(σ1/σ2)(x2 − µ2)

σ1

√
1 − ρ2

12

2


(2.109)
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Figure 2.26 Three-dimensional plots of bivariate standard normal probability density functions. (After Johnson
and Kotz, 1976.)
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Figure 2.27 Contour of equal density of bivariate standard normal probability density func-
tions. (After Johnson and Kotz, 1976.)

for −∞ < x1 < ∞. Based on Eq. (2.109), the conditional expectation and
variance of the normal random variable X1 | x2 can be obtained as

E(X1 | x2) = µ1 + ρ12(σ1/σ2)(x2 − µ2) (2.110)

Var(X1 | x2) = σ 2
1

(
1 − ρ2

12

)
(2.111)

Expressions of the conditional PDF, expectation, and variance for X2 | x1 can
be obtained immediately by exchanging the subscripts in Eqs. (2.109) through
(2.111).
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For the general case involving K correlated normal random variables, the
multivariate normal PDF is

f x(x) = |C −1
x |1/2

(2π )K/2 exp
[
−1

2
(x − µx)tC −1

x (x − µx)
]

for −∞ < x < ∞ (2.112)

in which µx = (µ1, µ2, . . . , µK )t, a K ×1 column vector of the mean values of the
variables, with the superscript t indicating the transpose of a matrix or vector,
and Cx is a K × K covariance matrix:

Cov(X ) = Cx =


σ11 σ12 · · · σ1K
σ21 σ22 · · · σ2K
· · · · · ·
· · · · · ·
· · · · · ·

σK1 σK2 · · · σK K


This covariance matrix is symmetric, that is, σ j k = σkj , for j �= k, where σ j k =
Cov(X j , Xk). In matrix notation, the covariance matrix for a vector of random
variables can be expressed as

Cx = E
[
(X − µx)(X − µx)t] (2.113)

In terms of standard normal random variables, Zk = (Xk − µk)/σk , the stan-
dardized multivariate normal PDF, can be expressed as

φ(z) = |R−1
x |1/2

(2π )K/2 exp
(

−1
2

zt R−1
x z

)
for −∞ < z < ∞ (2.114)

in which Rx = Cz = E(ZZ t) is a K × K correlation matrix:

Corr(X ) = Cov(Z ) = Rx =


1 ρ12 · · · ρ1K

ρ21 1 · · · ρ2K
· · · · · ·
· · · · · ·
· · · · · ·

ρK1 ρK2 · · · 1


with ρ j k = Cov(Zj , Zk) being the correlation coefficient between each pair of
normal random variables X j and Xk . For bivariate standard normal variables,
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the following relationships of cross-product moments are useful (Hutchinson
and Lai, 1990):

E
[
Z2m

1 Z2n
2

] = (2m)!(2n)!
2m+n

min(m,n)∑
j = 0

(2ρ12)2 j

(m − j )!(n − j )! (2 j )!

E
[
Z2m+1

1 Z2n+1
2

] = (2m + 1)!(2n + 1)!
2m+n ρ12

min(m,n)∑
j = 0

(2ρ12)2 j

(m − j )!(n − j )!(2 j + 1)!

E
[
Z2m+1

1 Z2n
2

] = E
[
Z2m

1 Z2n+1
2

]= 0 (2.115)

for m and n being positive integer numbers.

2.7.2 Computation of multivariate normal probability

Evaluation of the probability of multivariate normal random variables involves
multidimensional integration as

�(z|Rx) = P (Z1 ≤ z1, Z2 ≤ z2, . . . , ZK ≤ zK |Rx) =
∫ z1

−∞

∫ z2

−∞
· · ·

∫ zK

−∞
φ(z|Rx) dz

(2.116)

Accurate evaluation for �(z|Rx) is generally difficult and often is resolved by
approximations.

Bivariate normal probability. For a bivariate case, Fortran computer programs for
computing the lower left volume under the density surface, that is,
�(a, b | ρ) = P (Z1 ≤ a, Z2 ≤ b | ρ), have been developed by Donnelly (1973)
and Baughman (1988). The double integral for evaluating the bivariate normal
probability can be reduced to a single integral as shown in Eq. (2.111). Sev-
eral approximations have been derived (Johnson and Kotz, 1976). Derivation
of bounds for the bivariate normal probability is presented in Sec. 2.7.3. For a
bivariate normal probability, exact solutions have been obtained in the form of
figures such as Fig. 2.28 for computing the upper-right volume under the bivari-
ate standard normal density surface, that is, L(a, b | ρ) = P (Z1 ≥ a, Z2 ≥ b | ρ),
in which L(a, b | ρ) can be expressed in terms of L(a, 0 | ρ) as

L(a, b | ρ) = L

(
a, 0

∣∣∣∣ (ρa − b)(sign a)√
a2 − 2ρab + b2

)
+ L

(
b, 0

∣∣∣∣ (ρb − a)(sign b)√
a2 − 2ρab + b2

)


0, if (ab > 0 or ab= 0) and a + b ≥ 0
1
2

, otherwise
(2.117)
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L(a, 0|r) for 0 ≤ a ≤ 1 and –1 ≤ r ≤ 0.

Values for a < 0 can be obtained using L(a, 0|–r) = 0.5 – L(–a, 0|r)

a

r

0

–.1

–.2

–.3

–.4

–.5

–.6

–.7

–.8

–.9

–1.0
0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 .100

.01

.02

.03

.04

.05

.06

.07

.08.09.10.12.14.16.18.20.22.24

Figure 2.28 Bivariate normal cumulative distribution function. (After Abramowitz and Stegun,
1972.)

The relationship between �(a, b | ρ) and L(a, b | ρ) is

�(a, b | ρ) = −1 + �(a) + �(b) + L(a, b | ρ) (2.118)

From the definitions of �(a, b | ρ) and L(a, b | ρ) and the symmetry of the bivari-
ate normal PDF, the following relations are in order:

�(a, ∞ | ρ) = �(a) �(∞, b | ρ) = �(b) (2.119a)

L(a, −∞ | ρ) = 1 − �(a) L(−∞, b | ρ) = 1 − �(b) (2.119b)
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L(a, 0|r) for 0 ≤ a ≤ 1 and 0 ≤ r ≤ 1.

Values for a < 0 can be obtained using L(a, 0|–r) = 0.5 – L(–a, 0|r)

a

r

1.0

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 .100

.08

.10

.12

.14

.16.18.20.22.24.26.28.30.32.34.36.38.40.42.44.46.48

Figure 2.28 (Continued)

L(a, b | ρ) = L(b, a | ρ) (2.119c)

L(−a, b | ρ) + L(a, b | −ρ) = 1 − �(b) (2.119d)

L(−h, −k | ρ) − L(k, h | ρ) = 1 − �(h) − �(k) (2.119e)

Example 2.21 Consider two correlated normal random variables X1 and X2 with
their statistical properties being

E(X1) = 10 Var(X1) = 9 E(X2) = 5 Var(X2) = 4 Cov(X1, X2) = 3.6

Compute P (X1 ≤ 13, X2 ≤ 3).
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.01.02.03.04.05.06.07.08.09.10.12.14
1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

–.1

–.2

–.3

–.4

–.5

–.6

–.7

–.8

–.9

–1.0 h
2.502.452.402.352.302.252.202.152.102.052.001.951.901.851.801.751.701.651.601.551.501.451.401.351.301.251.201.151.101.051.00

0

L(a, 0|r) for a ≥ 1 and –1 ≤ r ≤ 1.

Values for a < 0 can be obtained using L(a, 0|–r) = 0.5 – L(–a, 0|r)

r

Figure 2.28 (Continued)
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Solution Based on the given information, the correlation coefficient between X1 and
X2 is

ρ1,2 = Cov(X1, X2)
σx1σx2

= 3.6√
9
√

4
= 0.6

Then

P (X1 ≤ 13, X2 ≤ 3) = P

(
Z1 ≤ 13 − 10

3
, Z2 ≤ 3 − 5

2

∣∣∣∣ρ1,2 = 0.6

)
= P (Z1 ≤ 1, Z2 ≤ −1 | ρ1,2 = 0.6)

= �(a= 1, b= −1 | ρ1,2 = 0.6)

By Eq. (2.118),

�(1, −1|0.6) = −1+�(1) +�(−1) + L(1, −1|0.6) (a)

Since ab= −1 < 0, according to Eq. (2.117),

L(1, −1 | 0.6) = L

(
1, 0

∣∣∣∣ 1.6√
3.2

)
+ L

(
−1, 0

∣∣∣∣ 1.6√
3.2

)
− 1

2

= L(1, 0 | 0.894) + L(−1, 0 | 0.894) − 0.5

From Fig. 2.28b, L(1, 0 | 0.894) = 0.159. Since L(−1, 0 | 0.894) = 0.5 − L(1, 0 | −0.894),
and according to Fig. 2.28a, by extrapolation, L(1, 0 | −0.894) = 0.004,

L(−1, 0 | 0.894) = 0.5 − 0.004 = 0.496

Consequently, L(1, −1 | 0.6) = 0.159 + 0.496 − 0.5 = 0.155.
According to (a), the bivariate normal probability is �(1, −1 | 0.6) = L(1, −1 | 0.6) =

0.155. Alternatively, the bivariate normal probability can be computed by Eq. (2.121),
and the result of the numerical integration for this example is 0.1569.

Multivariate normal probability. Johnson and Kotz (1976) show that if the correla-
tion coefficient ρi j can be expressed as ρi j = λiλ j for all i and j and |λ j | ≤ 1, then
each correlated standard normal random variable Zk can be represented by

Zk = λk Z′
0 +

√
1 − λ2

k Z′
k for k = 1, 2, . . . , K

where Z′
0, Z′

1, Z′
2, . . . , Z′

K are independent standard normal variables. The in-
equality Zk ≤ zk can be expressed as

Z′
k ≤ zk − λkz′

0√
1 − λ2

k
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Then the multivariate normal probability can be calculated as

�(z|Rx) =
∫ ∞

−∞
φ(u)

 K∏
k = 1

�

zk − λku√
1 − λ2

k

du (2.120)

As can be seen from Eq. (2.120), the computation of the multivariate normal
probability is reduced from multiple integrals to a single integral for which the
result can be obtained accurately by various numerical integration techniques.
(see Appendix 4A) Under the special case of equicorrelation, that is, ρi j = ρ, for
all i and j , the multivariate normal probability can be computed as

�(z|Rx) =
∫ ∞

−∞
φ(u)

[
K∏

k = 1

�

(
zk − √

ρu√
1 − ρ

)]
du (2.121)

This equation, in particular, can be applied to evaluate the bivariate normal
probability.

Under the general unequal correlation case, evaluation of multivariate nor-
mal probability by Eq. (2.120) requires solving for K λ’s based on K (K − 1)/2
different values of ρ in the correlation matrix Rx. This may not necessarily be
a trivial task. Ditlevsen (1984) proposed an accurate algorithm by expanding
�(z|Rx) in a Taylor series about an equal correlation ρi j = ρ > 0, for i �= j . The
equicorrelation ρ is determined in such a way that the first-order expansion
term d�(z | ρ) vanishes. The term d�(z | ρ) can be expressed as

d�(z | ρ) = 1
1 − ρ

∫ ∞

−∞
φ(u)

[
K∏

k = 1

�

(
zk − √

ρu√
1 − ρ

)]K = 1∑
k = 1

K∑
j = k+1

ak(u)aj (u)�ρkj

 du

(2.122)

where ak(u) = φ

(
zk − √

ρu√
1 − ρ

)/
�

(
zk − √

ρu√
1 − ρ

)
(2.123)

and �ρi j = ρi j − ρ. In computing the value of d�(z | ρ), numerical integration
generally is required. However, one should be careful about the possible nu-
merical overflow associated with the computation of ak(u) as the value of u
gets large. It can be shown that by the L’Hospital rule, limu→∞ ak(u) = 0 and
limu→−∞ ak(u) = −u.

Determination of the equicorrelation ρ for the expansion point can be made
through the iterative procedure, as outlined in Fig. 2.29. A sensible starting
value for ρ is the average of ρi j :

ρ = 2
K (K − 1)

∑
i< j

ρi j (2.124)
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Given ρkj, z = (z1, z2, ..., zK)t

Estimate ρold = (∑k<j ρkj )/[K(K – 1)] 

Compute d Φ(z)

Is dΦ(z) = 0?

Compute  Φ (z | ρold)

No

Yes 

Compute d2Φ
Adjust ρnew = ρold (1 + dΦ/Φ)

Φ (z | Rx) = Φ(z | ρold) + d2Φ

Stop 

Let ρold = ρnew

Figure 2.29 Flowchart for determining the equicorrelation in a Taylor
series expansion.

Once such ρ is found, Ditlevsen (1984) suggests that the value of �(z|Rx) can
be estimated accurately by a second-order approximation as

�(z|Rx) ≈ �(z| ρ) + 1
2

d 2�(z| ρ) (2.125)

in which �(z| ρ) is computed by Eq. (2.121), and the second-order error term is
computed as

d 2�(z| ρ) = 1
4(1 − ρ)2

∫ ∞

−∞
φ(u)

[
K∏

k = 1

�

(
zk − √

ρu√
1 − ρ

)]
 K∑

i = 1

K∑
j = 1

K∑
r = 1

K∑
s = 1

ai(u)aj (u)ar (u)as(u)(−br )δir (−bs)δ j s�ρi j �ρr s

du

(2.126)
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where δir is the Kronecker’s delta, having a value of 1 if i = r and otherwise 0,
and

bk(u) = zk
√

ρu

ak(u)
√

1 − ρ
(2.127)

As can be seen, the evaluation of �(z|Rx) is reduced from a multiple integral
to a single integral, which can be executed efficiently and accurately by many
numerical integration algorithms.

For the univariate normal distribution, an asymptotic expansion of �(z) is
(Abramowitz and Stegun, 1972) for z → ∞

�(−z) ≈ φ(z)
z

[
1 − 1

z2 + 1 × 3
z4 − 1 × 3 × 5

z6 + · · · + (−1)n 1 × 3 × · · · × (2n − 1)
z2n

]
(2.128)

This expansion for �(z) is smaller than every summand with an odd number
of terms and is larger than every summand with an even number of terms.
The truncation error decreases as the number of terms increases. Note that
Eq. (2.128) is particularly appropriate for evaluating the normal tail probabil-
ity. The expansion has been generalized by Ruben (1964) for the multivariate
normal distribution as

�(−z|Rx) ≈
exp

(
− 1

2 zt R−1
x z

)
√

2π
√|Rx|

∏K
k = 1 ak

for |z| → ∞ (2.129)

in which the coefficients ak are elements in a vector a obtained from

a= R−1
x z (2.130)

It should be noted that Eq. (2.130) is valid only when all coefficients ak are
positive. The right-hand-side of Eq. (2.129) provides an upper bound for the
multivariate normal probability.

2.7.3 Determination of bounds on multivariate
normal probability

Instead of computing the exact value of �(z|Rx), several methods have been
proposed to determine the bounds on the exact value of �(z|Rx). This section
describes three such bounds.

Bounds of Rackwitz. The scheme of Rackwitz (1978) is based on the decompo-
sition of a positive correlation coefficient ρi j = λiλ j , for i, j = 1, 2, . . . , K . The
multivariate normal probability �(z|Rx) is obtained according to Eq. (2.120).
Instead of solving for the exact values for all K (K − 1)/2λs, Rackwitz selects
the smallest three values of z= (z1, z2, . . . , zK )t in �(z|Rx) and solves for the
corresponding λs that satisfy ρi j = λiλ j , for i, j = [1], [2], [3] with subscript [i]
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representing the rank of zs in ascending order, that is, z[1] ≤ z[2] ≤ z[3] ≤ · · · ≤
z[K−1] ≤ z[K ]. For example, assume that all ρi j s are positive. Based on the three
smallest zs, one can solve for λ[i] for i = 1, 2, 3 in terms of ρ[i][ j ] as

λ[1] =
(

ρ[1][2] ρ[1][3]

ρ[2][3]

)1/2

λ[2] =
(

ρ[1][2] ρ[2][3]

ρ[1][3]

)1/2

λ[3] =
(

ρ[1][3] ρ[2][3]

ρ[1][2]

)1/2

(2.131)

For the remaining λs, their values can be computed as

λiU = max
j <i

∣∣∣∣ ρi j

λ j U

∣∣∣∣ i = [4], [5], . . . , [K ] (2.132a)

λiL = min
j <i

∣∣∣∣ ρi j

λ j L

∣∣∣∣ i = [4], [5], . . . , [K ] (2.132b)

The upper bound and lower bound of �(z|Rx) can be obtained by Eq. (2.120)
along with λs computed by Eqs. (2.132a) and (2.132b), respectively.

Bounds of Ditlevsen. Ditlevsen (1979) proposed an approach for the bounds of
the multivariate normal probability as follows:

�U (z|Rx) = �(z1) −
K∑

k = 2

max

0,

�(−zk) −
k−1∑
j = 1

�(−zk , −zj | ρkj )

 (2.133a)

�L(z|Rx) = �(z1) −
K∑

k = 2

max
{

�(−zk) − max
j <k

[
�(−zk , −zj | ρkj )

] }
(2.133b)

in which �U (z|Rx) and �L(z|Rx) are the upper and lower bounds of the multi-
variate normal probability, respectively, and �(zk , zj | ρkj ) is the bivariate nor-
mal probability. Ditlevsen (1979) further simplified these bounds to involve the
evaluation of only the univariate normal probability at the expense of having a
more complicated algebraic expression where a narrow bound can be obtained
under |ρ| < 0.6. For a larger correlation coefficient, Ditlevsen (1982) proposed
a procedure using conditioning to obtain a narrow bound. The derivations of
various probability bounds for system reliability are presented in Sec. 7.2.5

Example 2.22 Z1, Z2, Z3, Z4, and Z5 are correlated standard normal variables with
the following correlation matrix:

Rx =


1.00 0.80 0.64 0.51 0.41
0.80 1.00 0.80 0.64 0.51
0.64 0.80 1.00 0.80 0.64
0.51 0.64 0.80 1.00 0.80
0.41 0.51 0.64 0.80 1.00
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Determine the multivariate probability P (Z1 ≤ −1, Z2 ≤ −2, Z3 ≤ 0, Z4 ≤ 2, Z5 ≤ 1)
by Ditlevsen’s approach using the Taylor series expansion. Also compute the bounds
for the preceding multivariate normal probability using Rackwitz’s and Ditlevsen’s
approaches.

Solution Using Ditlevsen’s Taylor series expansion approach, the initial equicorrela-
tion value can be used according to Eq. (2.124) as ρ = 0.655. The corresponding mul-
tivariate normal probability, based on Eq. (2.121), is �(z | ρ = 0.655) = 0.01707. From
Eq. (2.122), the first-order error, d�(z | ρ = 0.655), is 0.003958. Results of iterations
according to the procedure outlined in Fig. 2.29 are shown below:

i ρ �(z| ρ) d�(z| ρ)

1 0.6550 0.01707 0.3958 ×10−2

2 0.8069 0.02100 −0.1660 ×10−3

3 0.8005 0.02086 −0.3200 ×10−4

4 0.7993 0.02083 −0.5426 ×10−5

At ρ = 0.7993, the corresponding second-order error term in the Taylor series ex-
pansion, according to Eq. (2.126), is

d 2�(z| ρ) = 0.01411

Based on Eq. (2.125), the multivariate normal probability can be estimated as

�(z| Rx) = �(z| ρ = 0.7993) + 0.5d 2�(z| ρ = 0.7993)

= 0.02083 + 0.5(0.01411)

= 0.02789

Using the Rackwitz approach for computing the bounds of the multivariate normal
probability, the values of zs are arranged in ascending order as (z[1], z[2], z[3], z[4], z[5]) =
(−2, −1, 0, 1, 2) = (z2, z1, z3, z5, z4) with the corresponding correlation matrix as

R[kj ] =


1.00 0.80 0.80 0.51 0.41
0.80 1.00 0.64 0.41 0.51
0.80 0.64 1.00 0.64 0.80
0.51 0.41 0.80 1.00 0.80
0.64 0.51 0.80 0.80 1.00


The values of λs corresponding to the three smallest zs, that is, −2, −1, and 0, are
computed according to Eq. (2.131), and the results are

λ[1] = 1.00 λ[2] = 0.80 λ[3] = 0.80

Using Eq. (2.132a), the values of the remaining λs for computing the upper bound are
obtained as

λ[4],U = max

∣∣∣∣ρ[41]

λ[1]
,
ρ[42]

λ[2]
,
ρ[43]

λ[3]

∣∣∣∣= max

∣∣∣∣0.51
1.00

,
0.41
0.80

,
0.64
0.80

∣∣∣∣= 0.80

λ[5],U = max

∣∣∣∣ρ[51]

λ[1]
,
ρ[52]

λ[2]
,
ρ[53]

λ[3]
,
ρ[54]

λ[4]

∣∣∣∣= max

∣∣∣∣0.64
1.00

,
0.51
0.80

,
0.80
0.80

,
0.80
0.80

∣∣∣∣= 1.00
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and, by the same token, for the lower bound are

λ[4],L = 0.51 λ[5],L = 0.6375

Applying Eq. (2.120), along with λU = (1.0, 0.8, 0.8, 0.8, 1.0), one obtains the upper
bound for the multivariate normal probability �U (z|Rx) = 0.01699. Similarly, using
λL = (1.0, 0.8, 0.8, 0.51, 0.6375), the lower bound is obtained as �L(z|Rx) = 0.01697.

To use Eqs. (2.133a) and (2.133b) for computing the upper and lower bounds for the
multivariate normal probability, the marginal probabilities and each pair of bivariate
normal probabilities are computed first, according to Eq. (2.3). The results are

�(z1) = 0.1587 �(z2) = 0.02275 �(z3) = 0.5000 �(z4) = 0.9772 �(z5) = 0.8413

�(−z1, −z2) = 0.8395 �(−z1, −z3) = 0.4816

�(−z1, −z4) = 0.0226 �(−z1, −z5) = 0.1523

�(−z2, − z3) = 0.5000 �(−z2, −z4) = 0.0228 �(−z2, −z5) = 0.1585

�(−z3, −z4) = 0.0227 �(−z3, −z5) = 0.1403 �(−z4, −z5) = 0.0209

The lower and upper bounds of the multivariate probability can be obtained as 0.02070
and 0.02086, respectively.

2.7.4 Multivariate lognormal distributions

Similar to the univariate case, bivariate lognormal random variables have a
PDF

f x1,x2 (x1, x2) = 1

2πx1x2σln x1σln x2

√
1 − ρ ′2

12

exp

[
−Q′

2
(
1 − ρ ′2

12

)] (2.134)

for x1, x2 > 0, in which

Q′ = [ln(x1) − µln x1 ]
2

σ 2
ln x1

+ [ln(x2) − µln x2 ]
2

σ 2
ln x2

− 2ρ ′
12

[ln(x1) − µln x1 ][ln(x2)µln x2 ]
σln x1σln x2

where µln x and σln x are the mean and standard deviation of log-transformed
random variables, subscripts 1 and 2 indicate the random variables X1 and
X2, respectively, and ρ ′

12 = Corr(ln X1, ln X2) is the correlation coefficient of the
two log-transformed random variables. After log-transformation is made, prop-
erties of multivariate lognormal random variables follow exactly as for the
multivariate normal case. The relationship between the correlation coefficients
in the original and log-transformed spaces can be derived using the moment-
generating function (Tung and Yen, 2005, Sec. 4.2) as

Corr(X1, X2) = ρ12 = exp
(
ρ ′

12σln x1σln x2

)− 1√
exp

(
σ 2

ln x1

)− 1
√

exp
(
σ 2

ln x2

)− 1
(2.135)



92 Chapter Two

Example 2.23 Resolve Example 2.21 by assuming that both X1 and X2 are bivariate
lognormal random variables.

Solution Since X1 and X2 are lognormal variables,

P (X1 ≤ 13, X2 ≤ 3) = P [ln(X1) ≤ ln(13), ln(X2) ≤ ln(3)]

= P

(
Z1 ≤ ln(13) − µ′

1

σ ′
1

, Z2 ≤ ln(3) − µ′
2

σ ′
2

∣∣∣∣ρ′
)

in which µ′
1, µ′

2, σ ′
1, and σ ′

2 are the means and standard deviations of ln(X1) and
ln(X2), respectively; ρ′ is the correlation coefficient between ln(X1) and ln(X2). The
values of µ1, µ2, σ1, and σ2 can be computed, according to Eqs. (2.67a) and (2.67b), as

σ ′
1 =

√
ln(1 + 0.32) = 0.294 σ ′

2 =
√

ln(1 + 0.42) = 0.385

µ′
1 = ln(10) − 1

2
(0.294)2 = 2.259 µ′

2 = ln(5) − 1
2

(0.385)2 = 1.535

Based on Eq. (2.71), the correlation coefficient between ln(X1) and ln(X2) is

ρ′ = ln[1 + (0.6)(0.3)(0.4)]
(0.294)(0.385)

= 0.623

Then

P (X1 ≤ 13, X2 ≤ 3 | ρ = 0.6) = P (Z1 ≤ 1.04, Z2 ≤ −1.13 | ρ′ = 0.623)

= �(a= 1.04, b= −1.13 | ρ′ = 0.623)

From this point forward, the procedure for determining �(a= 1.04, b= −1.13 | ρ′ =
0.623) is exactly identical to that of Example 2.21. The result from using Eq. (2.121)
is 0.1285.

Problems

2.1 Referring to Example 2.4, solve the following problems:
(a) Assume that P (E1|E2) = 1.0 and P (E2|E1) = 0.8. What is the probability

that the flow-carrying capacity of the sewer main is exceeded?
(b) If the flow capacity of the downstream sewer main is twice that of its two

upstream branches, what is the probability that the flow capacity of the
downstream sewer main is exceeded? Assume that if only branch 1 or branch
2 exceeds its corresponding capacity, the probability of flow in the sewer
main exceeding its capacity is 0.15.

(c) Under the condition of (b), it is observed that surcharge occurred in the
downstream sewer main. Determine the probabilities that (i) only branch
1 exceeds its capacity, (ii) only branch 2 is surcharged, and (iii) none of the
sewer branches exceed their capacities.

2.2 Referring to Example 2.5, it is observed that surcharge occurred in the down-
stream sewer main. Determine the probabilities that (a) only branch 1 exceeds
its flow-carrying capacity, (b) only branch 2 is surcharged, and (c) none of the
sewer branches exceed their capacities.
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2.3 A detention basin is designed to accommodate excessive surface runoff temporar-
ily during storm events. The detention basin should not overflow, if possible, to
prevent potential pollution of streams or other receiving water bodies.

For simplicity, the amount of daily rainfall is categorized as heavy, moderate,
and light (including none). With the present storage capacity, the detention basin
is capable of accommodating runoff generated by two consecutive days of heavy
rainfall or three consecutive days of moderate rainfall. The daily rainfall amounts
around the detention basin site are not entirely independent. In other words, the
amount of rainfall on a given day would affect the rainfall amount on the next
day.

Let random variable Xt represent the amount of rainfall in any day t. The
transition probability matrix indicating the conditional probability of the rainfall
amount in a given day t, conditioned on the rainfall amount of the previous day,
is shown in the following table.

Xt+1 =
H M L

H 0.3 0.5 0.2

Xt = M 0.3 0.4 0.3

L 0.1 0.3 0.6

(a) For a given day, the amount of rainfall is light. What is the probability that
the detention basin will overflow in the next three days? (After Mays and
Tung, 1992.)

(b) Compute the probability that the detention basin will overflow in the next
three days. Assume that at any given day of the month the probabilities
for having the various rainfall amounts are P (H ) = 0.1, P (M) = 0.3,
P (L) = 0.6.

2.4 Before a section of concrete pipe of a special order can be accepted for installation
in a culvert project, the thickness of the pipe needs to be inspected by state high-
way department personnel for specification compliance using ultrasonic reading.
For this project, the required thickness of the concrete pipe wall must be at least
3 in. The inspection is done by arbitrarily selecting a point on the pipe surface
and measuring the thickness at that point. The pipe is accepted if the thickness
from the ultrasonic reading exceeds 3 in; otherwise, the entire section of the pipe
is rejected. Suppose, from past experience, that 90 percent of all pipe sections
manufactured by the factory were found to be in compliance with specifications.
However, the ultrasonic thickness determination is only 80 percent reliable.
(a) What is the probability that a particular pipe section is well manufactured

and will be accepted by the highway department?
(b) What is the probability that a pipe section is poorly constructed but will be

accepted on the basis of ultrasonic test?

2.5 A quality-control inspector is testing the sample output from a manufacturing pro-
cess for concrete pipes for a storm sewer project, wherein 95 percent of the items
are satisfactory. Three pipes are chosen randomly for inspection. The successive
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quality evaluations may be considered as independent. What is the probability
that (a) none of the three pipes inspected are satisfactory and (b) exactly two are
satisfactory?

2.6 Derive the PDF for a random variable having a triangular distribution with the
lower bound a, mode m, and the upper bound b, as shown in Fig. 2P.1.

2.7 Show that F1(x1) + F2(x2) − 1 ≤ F1,2(x1, x2) ≤ min[F1(x1), F2(x2)]

2.8 The Farlie-Gumbel-Morgenstern bivariate uniform distribution has the following
joint CDF (Hutchinson and Lai, 1990):

Fx,y(x, y) = xy[1 + θ (1 − x)(1 − y)] for 0 ≤ x, y ≤ 1

with −1 ≤ θ ≤ 1. Do the following exercises: (a) derive the joint PDF, (b) obtain
the marginal CDF and PDF of X and Y , and (c) derive the conditional PDFs
f x(x|y) and f y(y|x).

2.9 Refer to Problem 2.8. Compute (a) P (X ≤ 0.5, Y ≤ 0.5), (b) P (X ≥ 0.5, Y ≥ 0.5),
and (c) P (X ≥ 0.5 | Y = 0.5).

2.10 Apply Eq. (2.22) to show that the first four central moments in terms of moments
about the origin are

µ1 = 0

µ2 = µ′
2 − µ2

x

µ3 = µ′
3 − 3µxµ

′
2 + 2µ3

x

µ4 = µ′
4 − 4µxµ

′
3 + 6µ2

xµ
′
2 − 3µ4

x

fx(x)

a m b
x

Figure 2P.1 Triangular distribution.
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2.11 Apply Eq. (2.23) to show that the first four moments about the origin could be
expressed in terms of the first four central moments as

µ′
1 = µx

µ′
2 = µ2 + µ2

x

µ′
3 = µ3 + 3µxµ2 + µ3

x

µ′
4 = µ4 + 4µxµ3 + 6µ2

xµ2 + µ4
x

2.12 Based on definitions of α- and β-moments, i.e., Eqs. (2.26a) and (2.26b), (a) derive
the general expressions between the two moments, and (b) write out explicitly
their relations for r = 0, 1, 2, and 3.

2.13 Refer to Example 2.9. Continue to derive the expressions for the third and fourth
L-moments of the exponential distribution.

2.14 A company plans to build a production factory by a river. You are hired by
the company as a consultant to analyze the flood risk of the factory site. It is
known that the magnitude of an annual flood has a lognormal distribution with
a mean of 30,000 ft3/s and standard deviation 25,000 ft3/s. It is also known from
a field investigation that the stage-discharge relationship for the channel reach
is Q = 1500H1.4, where Q is flow rate (in ft3/s) and H is water surface elevation
(in feet) above a given datum. The elevation of a tentative location for the factory
is 15 ft above the datum (after Mays and Tung, 1992). (a) What is the annual risk
that the factory site will be flooded? (b) At this plant site, it is also known that
the flood-damage function can be approximated as

Damage (in $1000) =
{

0 if H ≤ 15 ft
40(ln H + 8)(ln H − 2.7) if H > 15 ft

What is the annual expected flood damage? (Use the appropriate numerical ap-
proximation technique for calculations.)

2.15 Referring to Problem 2.6, assume that Manning’s roughness coefficient has a
triangular distribution as shown in Fig. 2P.1. (a) Derive the expression for the
mean and variance of Manning’s roughness. (b) Show that (i) for a symmetric
triangular distribution, σ = (b − m)/

√
6 and (ii) when the mode is at the lower or

upper bound, σ = (b − a)/3
√

2.

2.16 Suppose that a random variable X has a uniform distribution (Fig. 2P.2), with a
and b being its lower and upper bounds, respectively. Show that (a) E(X ) = µx =
(b + a)/2, (b) Var(X ) = (b − a)2/12, and (c) �x = (1 − a/µx)/

√
3.

2.17 Referring to the uniform distribution as shown in Fig. 2P.2, (a) derive the expres-
sion for the first two probability-weighted moments, and (b) derive the expressions
for the L-coefficient of variation.

2.18 Refer to Example 2.8. Based on the conditional PDF obtained in part (c), de-
rive the conditional expectation E(Y | x), and the conditional variance Var(Y |x).
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fx(x)

x
a b

1/(b − a)

Figure 2P.2 Uniform distribution.

Furthermore, plot the conditional expectation and conditional standard deviation
of Y on x with respect to x.

2.19 Consider two random variables X and Y having the joint PDF of the following
form:

f x,y(x, y) = c
(

5 − y
2

+ x2
)

for 0 ≤ x, y ≤ 2

(a) Determine the coefficient c. (b) Derive the joint CDF. (c) Find f x(x) and f y(y).
(d) Determine the mean and variance of X and Y . (e) Compute the correlation
coefficient between X and Y .

2.20 Consider the following hydrologic model in which the runoff Q is related to the
rainfall R by

Q = a + bR

if a > 0 and b > 0 are model coefficients. Ignoring uncertainties of model coeffi-
cients, show that Corr(Q, R) = 1.0.

2.21 Suppose that the rainfall-runoff model in Problem 2.4.11 has a model error, and
it can expressed as

Q = a + bR + ε

in which ε is the model error term, which has a zero mean and standard deviation
of σε. Furthermore, the model error ε is independent of the random rainfall R.
Derive the expression for Corr(Q, R).

2.22 Let X = X1 + X3 and Y = X2 + X3. Find Corr(X , Y ), assuming that X1, X2, and
X3 are statistically independent.

2.23 Consider two random variables Y1 and Y2 that each, individually, is a linear
function of two other random variables X1 and X2 as follows:

Y1 = a11 X1 + a12 X2 Y2 = a21 X1 + a22 X2

It is known that the mean and standard deviations of random variable Xk are
µk and σk , respectively, for k = 1, 2. (a) Derive the expression for the correlation
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coefficient between Y1 and Y2 under the condition that X1 and X2 are statistically
independent. (b) Derive the expression for the correlation coefficient between Y1
and Y2 under the condition that X1 and X2 are correlated with a correlation
coefficient ρ.

2.24 As a generalization to Problem 2.23, consider M random variables Y1, Y2, . . . , YM
that are linear functions of K other random variables X1, X2, . . . , X K in a vector
form as follows:

Ym = at
m X for m = 1, 2, . . . , M

in which X= (X1, X2, . . . , X K )t, a column vector of K random variables Xs and
at

m = (am1, am2, . . . , amK ), a row vector of coefficients for the random variable
Ym. In matrix form, the preceding system of linear equations can be written
as Y = At X. Given that the mean and standard deviations of the random variable
Xk are µk and σk , respectively, for k = 1, 2, . . . , K , (a) derive the expression for the
correlation matrix between Ys assuming that the random variable Xs are statis-
tically independent, and (b) derive the expression for the correlation coefficient
between Y s under the condition that the random variable Xs are correlated with
a correlation matrix Rx.

2.25 A coffer dam is to be built for the construction of bridge piers in a river. In an
economic analysis of the situation, it is decided to have the dam height designed
to withstand floods up to 5000 ft3/s. From flood frequency analysis it is estimated
that the annual maximum flood discharge has a Gumbel distribution with the
mean of 2500 ft3/s and coefficient of variation of 0.25. (a) Determine the risk
of flood water overtopping the coffer dam during a 3-year construction period.
(b) If the risk is considered too high and is to be reduced by half, what should be
the design flood magnitude?

2.26 Recompute the probability of Problem 2.25 by using the Poisson distribution.

2.27 There are five identical pumps at a pumping station. The PDFs of the time to fail-
ure of each pump are the same with an exponential distribution as Example 2.6,
that is,

f (t) = 0.0008 exp(−0.0008t) for t ≥ 0

The operation of each individual pump is assumed to be independent. The system
requires at least two pumps to be in operation so as to deliver the required amount
of water. Assuming that all five pumps are functioning, determine the reliability
of the pump station being able to deliver the required amount of water over a
200-h period.

2.28 Referring to Example 2.14, determine the probability, by both binomial and Pois-
son distributions, that there would be more than five overtopping events over a
period of 100 years. Compare the results with that using the normal approxima-
tion.

2.29 From a long experience of observing precipitation at a gauging station, it is found
that the probability of a rainy day is 0.30. What is the probability that the next
year would have at least 150 rainy days by looking up the normal probability
table?
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2.30 The well-known Thiem equation can be used to compute the drawdown in a con-
fined and homogeneous aquifer as

sik = ln(rok/rik)
2πT

Qk = ξik Qk

in which sik is drawdown at the ith observation location resulting from a pumpage
of Qk at the kth production well, rok is the radius of influence of the kth production
well, rik is the distance between the ith observation point and the kth production
well, and T is the transmissivity of the aquifer. The overall effect of the aquifer
drawdown at the ith observation point, when more than one production well is in
operation, can be obtained, by the principle of linear superposition, as the sum of
the responses caused by all production wells in the field, that is,

si =
K∑

k = 1

sik =
K∑

k = 1

ξik Qk

where K is the total number of production wells in operation. Consider a sys-
tem consisting of two production wells and one observation well. The locations of
the three wells, the pumping rates of the two production wells, and their zones
of influence are shown in Fig. 2P.3. It is assumed that the transmissivity of the
aquifer has a lognormal distribution with the mean µT = 4000 gallons per day
per foot (gpd/ft) and standard deviation σT = 2000 gpd/ft (after Mays and Tung,
1992). (a) Prove that the total drawdown in the aquifer field also is lognormally
distributed. (b) Compute the exact values of the mean and variance of the total
drawdown at the observation point when Q1 = 10, 000 gpd and Q2 = 15, 000 gpd.
(c) Compute the probability that the resulting drawdown at the observation point
does not exceed 2 ft. (d) If the maximum allowable probability of the total draw-
down exceeding 2 ft is 0.10, find out the maximum allowable total pumpage from
the two production wells.

2.31 A frequently used surface pollutant washoff model is based on a first-order decay
function (Sartor and Boyd, 1972):

Mt = M0e−cRt

where M0 is the initial pollutant mass at time t = 0, R is runoff intensity (mm/h),
c is the washoff coefficient (mm−1), Mt is the mass of the pollutant remaining

Production
well 1

Production
well 2

r02 = 800'r01 = 800'
Observation

well

200' 200'

Figure 2P.3 Locations of production and observation
wells.
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on the street surface (kg), and t is time elapsed (in hours) since the beginning
of the storm. This model does not consider pollutant buildup and is generally
appropriate for the within-storm event analysis. Suppose that M0 = 10, 000 kg
and c = 1.84/cm. The runoff intensity R is a normal random variable with the
mean of 10 cm/h and a coefficient of variation of 0.3. Determine the time t such
that P (Mt/M0 < 0.05) = 0.90.

2.32 Consider n independent random samples X1, X2, . . . , Xn from an identical dis-
tribution with the mean µx and variance σ 2

x . Show that the sample mean Xn =∑n
i = 1 Xi/n has the following properties:

E(Xn) = µx and Var(Xn) = σ 2
x
n

What would be the sampling distribution of Xn if random samples are normally
distributed?

2.33 Consider that measured hydrologic quantity Y and its indicator for accuracy
S are related to the unknown true quantity X as Y = S X . Assume that X ∼
LN (µx, σx), S ∼ LN (µs = 1, σs), and X is independent of S . (a) What is the
distribution function for Y ? Derive the expressions for the mean and coefficient
of variation of Y , that is, µy and �y, in terms of those of X and S . (b) Derive the
expression for r p = yp/xp with P (Y ≤ yp) = P (X ≤ xp) = p and plot r p versus p.
(c) Define measurement error as ε = Y − X . Determine the minimum reliability
of the measurement so that the corresponding relative absolute error |ε/X | does
not exceed the require precision of 5 percent.

2.34 Consider that measured discharge Q′ is subject to measurement error ε and that
both are related to the true but unknown discharge Q as (Cong and Xu, 1987)

Q′ = Q + ε

It is common to assume that (i) E(ε | q) = 0, (ii) Var(ε | q) = [α(q)q]2, and (iii) ran-
dom error ε is normally distributed, that is, ε | q ∼ N (µε | q = 0, σε | q).
(a) Show that E(Q′ | q) = q, E[(Q′/Q) −1 | q] = 0, and Var[(Q′/Q −1)2 | q] = α2(q).
(b) Under α(q) = α, show that E(Q′) = E(Q), Var(ε) = α2 E(Q2), and Var(Q′) = (1+
α2)Var(Q) + α2 E2(Q). (c) Suppose that it is required that 75 percent of measure-
ments have relative errors in the range of ±5 percent (precision level). Determine
the corresponding value of α(q) assuming that the measurement error is normally
distributed.

2.35 Show that the valid range of the correlation coefficient obtained in Example 2.20 is
correct also for the general case of exponential random variables with parameters
β1 and β2 of the form of Eq. (2.79).

2.36 Referring to Example 2.20, derive the range of the correlation coefficient for a
bivariate exponential distribution using Farlie’s formula (Eq. 2.107).

2.37 The Pareto distribution is used frequently in economic analysis to describe the
randomness of benefit, cost, and income. Consider two correlated Pareto random
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variables, each of which has the following marginal PDFs:

f k(xk) = aθa
k

xa+1
k

xk > θk > 0 a > 0, for k = 1, 2

Derive the joint PDF and joint CDF by Morgenstern’s formula. Furthermore,
derive the expression for E(X1|x2) and the correlation coefficient between X1
and X2.

2.38 Repeat Problem 2.37 using Farlie’s formula.

2.39 Analyzing the stream flow data from several flood events, it is found that the flood
peak discharge Q and the corresponding volume V have the following relation-
ship:

ln(V ) = a + b × ln(Q) + ε

in which a and b are constants, and ε is the model error term. Suppose that the
model error term ε has a normal distribution with mean 0 and standard deviation
σε. Then show that the conditional PDF of V |Q, h(v|q), is a lognormal distribution.
Furthermore, suppose that the peak discharge is a lognormal random variable.
Show that the joint PDF of V and Q is bivariate lognormal.

2.40 Analyzing the stream flow data from 105 flood events at different locations in
Wyoming, Wahl and Rankl (1993) found that the flood peak discharge Q (in ft3/s)
and the corresponding volume V (in acre-feet, AF) have the following relation-
ship:

ln(V ) = ln(0.0655) + 1.011 × ln(Q) + ε

in which ε is the model error term with the assumed σε = 0.3. A flood frequency
analysis of the North Platte River near Walden, Colorado, indicated that the
annual maximum flood has a lognormal distribution with mean µQ = 1380 ft3/s
and σQ = 440 ft3/s. (a) Derive the joint PDF of V and Q for the annual maximum
flood. (b) Determine the correlation coefficient between V and Q. (c) Compute
P (Q ≥ 2000 ft3/s, V ≥ 180 AF).

2.41 Let X2 = a0 + a1 Z1 + a2 Z2
1 and X2 = b0 + b1 Z2 + b2 Z2

2 in which Z1 and Z2 are
bivariate standard normal random variables with a correlation coefficient ρ, that
is, Corr(Z1, Z2) = ρ. Derive the expression for Corr(X1, X2) in terms of polynomial
coefficients and ρ.

2.42 Let X1 and X2 be bivariate lognormal random variables. Show that

exp
(−σln x1σln x2

)− 1√
exp

(
σ 2

ln x1

)
− 1

√
exp

(
σ 2

ln x2

)
− 1

≤ Corr(X1, X2)

≤ exp
(
σln x1σln x2

)− 1√
exp

(
σ 2

ln x1

)
− 1

√
exp

(
σ 2

ln x2

)
− 1

What does this inequality indicate?
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2.43 Derive Eq. (2.71) from Eq. (2.135):

Corr(ln X1, ln X2) = ρ′
12 = ln(1 + ρ12�1�2)√

ln
(
1 + �2

1

)√
ln
(
1 + �2

2

)
where ρ12 = Corr(X1, X2) and �k = coefficient of variation of Xk , k = 1, 2.

2.44 Develop a computer program using Ditlevsen’s expansion for estimating the mul-
tivariate normal probability.

2.45 Develop computer programs for multivariate normal probability bounds by Rack-
witz’s procedure and Ditlevsen’s procedure, respectively.
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Chapter

3
Hydrologic Frequency Analysis

One of the basic questions in many hydrosystems infrastructural designs that
an engineer must answer is, “What should be the capacity or size of a system?”
The planning goal is not to eliminate all hydro-hazards but to reduce the fre-
quency of their occurrences and thus the resulting damage. If such planning is
to be correct, the probabilities of flooding must be evaluated correctly. The prob-
lem is made more complex because in many cases the “input” is controlled by
nature rather than by humans. For example, variations in the amount, timing,
and spatial distribution of precipitation are the underlying reasons for the
need for probabilistic approaches for many civil and environmental engineer-
ing projects. Our understanding and ability to predict precipitation and its
resulting effects such as runoff are far from perfect. How, then, can an engineer
approach the problem of design when he or she cannot be certain of the hydro-
logic load that will be placed on the infrastructure under consideration?

An approach that is used often is a statistical or probabilistic one. Such an
approach does not require a complete understanding of the hydrologic phe-
nomenon involved but examines the relationship between magnitude and fre-
quency of occurrence in the hope of finding some statistical regularity between
these variables. In effect, the past is extrapolated into the future. This as-
sumes that whatever complex physical interactions control nature, the process
does not change with time, and so the historical record can be used as a basis
for estimating future events. In other words, the data are assumed to satisfy
statistical stationarity by which the underlying distributional properties do not
change with time, and the historical data series is representative of the storms
and watershed conditions to be experienced in the future. An example that
violates this statistical stationarity is the progressive urbanization within a
watershed that could result in a tendency of increasing peak flow over time.

The hydrologic data most commonly analyzed in this way are rainfall and
stream flow records. Frequency analysis was first used for the study of stream
flow records by Herschel and Freeman during the period from 1880 to 1890
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(Foster, 1935). The first comprehensive study was performed by Fuller (1914).
Gumbel (1941, 1942) first applied a particular extreme-value probability distri-
bution to flood flows, whereas Chow (1954) extended the work using this distri-
bution. A significant contribution to the study of rainfall frequencies was made
by Yarnell (1936). The study analyzed rainfall durations lasting from 5 minutes
to 24 hours and determined their frequency of occurrence at different locations
within the continental United States. A similar study was performed by the
Miami Conservancy District of Ohio for durations extending from 1 to 6 days
(Engineering Staff of Miami Conservancy District, 1937). An extremal probabil-
ity distribution was applied to rainfall data at Chicago, Illinois, by Chow (1953),
and more recent frequency analysis of rainfall data was performed by the U.S.
National Weather Service (Hershfield, 1964; U.S. Weather Bureau, 1964; Miller
et al., 1973; Frederick et al., 1977, Huff and Angel, 1989, 1992). Low stream
flows and droughts also were studied statistically by Gumbel (1954, 1963), who
applied an extremal distribution to model the occurrences of drought frequen-
cies. In the United Kingdom, hydrologic frequency analysis usually follows the
procedures described in the Flood Studies Report of 1975 (National Environ-
ment Research Council, 1975). In general, frequency analysis is a useful ana-
lytical tool for studying randomly occurring events and need not be limited to
hydrologic studies. Frequency analysis also has been applied to water quality
studies and to ocean wave studies.

Basic probability concepts and theories useful for frequency analysis are de-
scribed in Chap. 2. In general, there is no physical rule that requires the use of a
particular distribution in the frequency analysis of geophysical data. However,
since the maximum or minimum values of geophysical events are usually of in-
terest, extreme-value-related distributions have been found to be most useful.

3.1 Types of Geophysical Data Series

The first step in the frequency-analysis process is to identify the set of data or
sample to be studied. The sample is called a data series because many events
of interest occur in a time sequence, and time is a useful frame of reference.
The events are continuous, and thus their complete description as a function of
time would constitute an infinite number of data points. To overcome this, it is
customary to divide the events into a series of finite time increments and con-
sider the average magnitude or instantaneous values of the largest or smallest
within each interval. In frequency analysis, geophysical events that make up
the data series generally are assumed to be statistically independent in time.
In the United States, the water year concept was developed to facilitate the
independence of hydrologic flood series. Throughout the eastern, southern, and
Pacific western areas of the United States, the season of lowest stream flow
is late summer and fall (August–October) (U.S. Department of Agriculture,
1955). Thus, by establishing the water year as October 1 to September 30, the
chance of having related floods in each year is minimized, and the assumption of
independence in the flood data is supported. In case time dependence is present
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in the data series and should be accounted for, procedures developed in time
series analysis (Salas et al., 1980; Salas, 1993) should be applied. This means
that the events themselves first must be identified in terms of a beginning and
an end and then sampled using some criterion. Usually only one value from
each event is included in the data series. There are three basic types of data
series extractable from geophysical events:

1. A complete series, which includes all the available data on the magnitude
of a phenomenon. A complete data series is used most frequently for flow-
duration studies to determine the amount of firm power available in a pro-
posed hydropower project or to study the low-flow behavior in water quality
management. Such a data series is usually very large, and since in some in-
stances engineers are only interested in the extremes of the distribution (e.g.,
floods, droughts, wind speeds, and wave heights), other data series often are
more practical. For geophysical events, data in a complete series often exhibit
significant time dependence, which makes the frequency-analysis procedure
described herein inappropriate.

2. An extreme-value series is one that contains the largest (or smallest) data
value for each of a number of equal time intervals. If, for example, the largest
data value in each year of record is used, the extreme-value series is called
an annual maximum series. If the smallest value is used, the series is called
an annual minimum series.

3. A partial-duration series consists of all data above or below a base value.
For example, one might consider only floods in a river with a magnitude
greater than 1,000 m3/s. When the base value is selected so that the number
of events included in the data series equals the number of years of record, the
resulting series is called an annual exceedance series. This series contains
the n largest or n smallest values in n years of record.

The selection of geophysical data series is illustrated in Fig. 3.1. Figure 3.1a
represents the original data; the length of each line indicates the magnitude
of the event. Figure 3.1b shows an annual maximum series with the largest
data value in each year being retained for analysis. Figure 3.1c shows the data
values that would be included in an annual exceedance series. Since there are
15 years of record, the 15 largest data values are retained. Figure 3.1d and e
illustrate for comparison the rank in descending order of the magnitude of
the events in each of the two series. As shown in Fig. 3.1d and e the annual
maximum series and the annual exceedance series form different probability
distributions, but when used to estimate extreme floods with return periods of
10 years or more, the differences between the results from the two series are
minimal, and the annual maximum series is the one used most commonly. Thus
this chapter focuses on the annual maximum series in the following discussion
and examples.

Another issue related to the selection of the data series for frequency anal-
ysis is the adequacy of the record length. Benson (1952) generated randomly
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selected values from known probability distributions and determined the record
length necessary to estimate various probability events with acceptable error
levels of 10 and 25 percent. Benson’s results are listed in Table 3.1. Linsley
et al. (1982, p. 358) reported that similar simulation-based studies at Stanford
University found that 80 percent of the estimates of the 100-year flood based
on 20 years of record were too high and that 45 percent of the overestimates

TABLE 3.1 Number of Years of Record Needed to Obtain Estimates of Specified
Design Probability Events with Acceptable Errors of 10 and 25 Percent

Design probability Return period (years) 10% error (years) 25% error (years)

0.1 10 90 18
0.02 50 110 39
0.01 100 115 48

SOURCE: After Benson (1952).
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exceeded 30 percent. The U.S. Water Resources Council (1967) recommended
that at least 10 years of data should be available before a frequency analysis
can be done. However, the results described in this section indicate that if a
frequency analysis is done using 10 years of record, a high degree of uncertainty
can be expected in the estimate of high-return-period events.

The final issue with respect to the data series used for frequency analysis
is related to the problem of data homogeneity. For low-magnitude floods, peak
stage is recorded at the gauge, and the discharge is determined from a rating
curve established by current meter measurements of flows including similar-
magnitude floods. In this case, the standard error of the measurement usually is
less than 10 percent of the estimated discharge. For high-magnitude floods, peak
stage often is inferred from high-water marks, and the discharge is computed
by indirect means. For indirectly determined discharges, the standard error
probably is several times larger, on the order of 16 to 30 percent (Potter and
Walker, 1981). This is known as the discontinuous measurement error (DME)
problem. Potter and Walker (1981) demonstrated that, as a result of DME, the
probability distribution of measured floods can be greatly distorted with respect
to the parent population. This further contributes to the uncertainty in flood
frequency analysis.

3.2 Return Period

Hydrosystems engineers have been using the concept of the return period
(or sometimes called recurrence interval) as a substitute for probability because
it gives some physical interpretation to the probability. The return period for
a given event is defined as the period of time on the long-term average at
which a given event is equaled or exceeded. Hence, on average, an event with a
2-year return period will be equaled or exceeded once in 2 years. The relation-
ship between the probability and return period is given by

T = 1
P (X ≥ xT )

= 1
1 − P (X < xT )

(3.1)

in which xT is the value of the variate corresponding to a T-year return period.
For example, if the probability that a flood will be equaled or exceeded in a
single year is 0.1, that is, P (X ≥ xT ) = 0.1, the corresponding return period is
1/P (X ≥ xT ) = 1/0.1 = 10 years. Note that P (X ≥ xT ) must be the probabil-
ity that the event is equaled or exceeded in any one year and is the same for
each year regardless of the magnitudes that occurred in prior years. This is so
because the events are independent, and the long-term probabilities are used
without regard to the order in which they may occur. A common error or mis-
conception is to assume, for example, that if the 100-year event occurs this year,
it will not occur again for the next 100 years. In fact, it could occur again next
year and then not be repeated for several hundred years. This misconception
resulted in considerable public complaints when the Phoenix area experienced
two 50-year and one 100-year floods in a span of 18 months in 1978–1979 and
the Milwaukee area experienced 100-year floods in June 1997 and June 1998.
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Hence it is more appropriate and less confusing to use the odds ratio; e.g.,
the 100-year event can be described as the value having 1-in-100 chance being
exceeded in any one year (Stedinger et al., 1993). In the United States in recent
years it has become common practice to refer to the 100-year flood as the 1 per-
cent chance exceedance flood, and similar percent chance exceedance descrip-
tions are used for other flood magnitudes (U.S. Army Corps of Engineers, 1996).

The most common time unit for return period is the year, although semi-
annual, monthly, or any other time period may be used. The time unit used
to form the time series will be the unit assigned to the return period. Thus
an annual series will have a return-period unit of years, and a monthly series
will have return-period unit of months. However, one should be careful about
compliance with the statistical independence assumption for the data series.
Many geophysical data series exhibit serial correlation when the time interval is
short, which can be dealt with properly only by time-series analysis procedures
(Salas, 1993).

3.3 Probability Estimates for Data Series: Plotting
Positions (Rank-order Probability)

As stated previously, the objective of frequency analysis is to fit geophysical data
to a probability distribution so that a relationship between the event magnitude
and its exceedance probability can be established. The first step in the procedure
is to determine the type of data series (i.e., event magnitude) to be used. In order
to fit a probability distribution to the data series, estimates of probability (or
equivalent return period) must be assigned to each magnitude in the data series.

Consider a data series consisting of the entire population of N values for a
particular variable. If this series were ranked according to decreasing magni-
tude, it could be stated that the probability of the largest variate being equaled
or exceeded is 1/N, where N is the total number of variates. Similarly, the
exceedance probability of the second largest variate is 2/N, and so forth. In
general,

P
(
X ≥ x(m)

) = 1
T m

= m
N

(3.2)

in which m is the rank of the data in descending order, x(m) is the mth largest
variate in a data series of size N, and T m is the return period associated with
x(m) . In practice, the entire population is not used or available. However, the
reasoning leading to Eq. (3.2) is still valid, except that the result is now only
an estimate of the exceedance probability based on a sample. Equation (3.2),
which shows the ranked-order probability, is called a plotting position formula
because it provides an estimate of probability so that the data series can be
plotted (magnitudes versus probability).

Equation (3.2) is appropriate for data series from the population. Some mod-
ifications are made to avoid theoretical inconsistency when it is applied to sam-
ple data series. For example, Eq. (3.2) yields an exceedance probability of 1.0 for
the smallest variate, implying that all values must be equal or larger. Since only
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a sample is used, there is a likelihood that at some future time an event with a
lower value could occur. In application, if the lower values in the series are not
of great interest, this weakness can be overlooked, and in fact, Eq. (3.2) is used
in the analysis of the annual exceedance series. A number of plotting-position
formulas have been introduced that can be expressed in a general form as

P
(
X ≥ x(m)

) = um = 1
T m

= m − a
n + 1 − b

(3.3)

in which a ≥ 0 and b ≥ 0 are constants, and n is the number of observations in
the sample data series. Table 3.2 lists several plotting-position formulas that
have been developed and used in frequency analysis. Perhaps the most popular
plotting-position formula is the Weibull formula (with a = 0 and b = 0):

P
(
X ≥ x(m)

) = um = 1
T m

= m
n + 1

(3.4)

As shown in Table 3.2, it is noted that although these formulas give different
results for the highest values in the series, they yield very similar results for
the middle to lowest values, as seen in the last two columns.

Plotting-position formulas in the form of Eq. (3.3) can be categorized into
being probability-unbiased and quantile-unbiased. The probability-unbiased

TABLE 3.2 Plotting-Position Formulas

T m = 1
P (X ≥ x(m) )

, for n = 20

Name Formula P (X ≥ x(m) ) m = 1 m = 10

California (1923)
m
n

20.0 2.00

Hazen (1930)
m − 0.5

n
40.0 2.11

Weibull (1939)
m

n + 1
41.0 2.10

Leivikov (1955)
m − 0.3
n + 0.4

29.1 2.10

Blom (1958)
m − 0.375
n + 0.25

24.5 2.10

Tukey (1962)
m − 0.333
n + 0.333

30.5 2.10

Gringorten (1963)
m − 0.44
n + 0.12

35.9 2.10

Cunnane (1978)
m − 0.4
n + 0.2

33.7 2.10

Hosking et al. (1985)
m − 0.35

n
30.7 2.07
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plotting-position formula is concerned with finding a probability estimate u(m)
for the exceedance probability of the mth largest observation such that
E[G(X (m))] = u(m) , in which G(X (m)) = P (X ≥ X (m)). In other words, the
probability-unbiased plotting position yields the average exceedance probabil-
ity for the mth largest observation in a sample of size n. If the data are indepen-
dent random samples regardless of the underlying distribution, the estimator
U(m) = G(X (m)) will have a beta distribution with the mean E(U(m)) = m/(n+1).
Hence the Weibull plotting-position formula is probability-unbiased. On the
other hand, Cunnane (1978) proposed quantile-unbiased plotting positions such
that average value of the mth largest observation should be equal to G−1(u(m)),
that is, E(X (m)) = G−1(u(m)). The quantile-unbiased plotting-position formula,
however, depends on the assumed distribution G(·). For example, referring to
Table 3.2, the Blom plotting-position formula gives nearly unbiased quantiles
for the normal distribution, and the Gringorton formula gives nearly unbiased
quantiles for the Gumbel distribution. Cunnane’s formula, however, produces
nearly quantile-unbiased plotting positions for a range of distributions.

3.4 Graphic Approach

Once the data series is identified and ranked and the plotting position is calcu-
lated, a graph of magnitude x versus probability [P (X ≥ x), P (X < x), or T ]
can be plotted and a distribution fitted graphically. To facilitate this procedure,
it is common to use some specially designed probability graph paper rather than
linear graph paper. The probability scale in those special papers is chosen such
that the resulting probability plot is a straight line. By plotting the data using
a particular probability scale and constructing a best-fit straight line through
the data, a graphic fit is made to the distribution used in constructing the prob-
ability scale. This is a graphic approach to estimate the statistical parameters
of the distribution.

Example 3.1 illustrates the graphic approach to the analysis of flood data.
The general procedure is as follows:

1. Identify the sample data series to be used. If high-return-period values are
of interest, either the annual maximum or exceedance series can be used. If
low-return-period values are of interest, use an annual exceedance series.

2. Rank the data series in decreasing order, and compute exceedance probabil-
ity or return period using the appropriate plotting-position formula.

3. Obtain the probability paper corresponding to the distribution one wishes to
fit to the data series.

4. Plot the series, and draw a best-fit straight line through the data. An eye-
ball fit or a mathematical procedure, such as the least-squares method, can
be used. Before doing the fit, make a judgment regarding whether or not
to include the unusual observations that do not lie near the line (termed
outliers).
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5. Extend the line to the highest return-period value needed, and read all re-
quired return-period values off the line.

Example 3.1 The Boneyard Creek stream gauging station was located near the fire
station on the campus of the University of Illinois at Urbana–Champaign. From the
USGS Water Supply Papers, the partial duration data of peak discharges above 400
ft3/s between the water years 1961 and 1975 were obtained and listed below. In addi-
tion, for the years when there was no flow in a year exceeding 400 ft3/s, the peak flow
for that year is given in parenthesis (e.g., 1961).

Year Discharge, ft3/s Year Discharge, ft3/s

1961 (390) 1969 549, 454
1962 (374) 1970 414, 410
1963 (342) 1971 434, 524
1964 507 1972 505, 415, 406
1965 579, 406, 596 1973 428, 447, 407
1966 416 1974 468, 543, 441
1967 533 1975 591, 497
1968 505

(a) List the ranked annual maximum series. Also compute and list the corresponding
plotting positions (return period) and exceedance probability P (X ≥ x).

(b) Plot the annual maximum series on (i) Gumbel paper and (ii) lognormal paper.

(c) Construct a best-fit line through the nonlinear plots, and estimate the flows for
return periods of 2, 10, 25, and 50 years.

Solution n = 15

(a)

Annual Maximum Rank T m = n+1
m P (X ≥ x(m) ) P (X < x(m) )

Discharge (ft3/s) (m) (years) = 1/T m = 1 − 1/T m

596 1 16.00 0.0625 0.9375
591 2 8.00 0.1250 0.8750
549 3 5.33 0.1875 0.8125
543 4 4.00 0.2500 0.7500
533 5 3.20 0.3125 0.6875
524 6 2.67 0.3750 0.6250
507 7 2.29 0.4375 0.5625
505 8 2.00 0.5000 0.5000
505 9 1.78 0.5625 0.4375
447 10 1.60 0.6250 0.3750
416 11 1.46 0.6875 0.3125
414 12 1.33 0.7500 0.2500
390 13 1.23 0.8125 0.1875
374 14 1.14 0.8750 0.1250
342 15 1.06 0.9375 0.0625

(b) Plots of the annual maximum flow series on the Gumbel and lognormal probability
papers are shown in Fig. 3.2.
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Figure 3.2 Probability plot for the annual maximum series for 1961–1975 on
the Boneyard Creek at Urbana, IL: (a) Gumbel probability plot; (b) lognormal
probability plot.

(c) The following table summarizes the results read from the plots:

Return Period (years)

Distribution 2 10 25 50

Gumbel 470 610 680 730
Lognormal 475 590 650 700
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3.5 Analytical Approaches

An alternative to the graphic technique is to estimate the statistical parameters
of a distribution from the sample data (refer to Sec. 3.6). Then the distribution
model can be used to solve for the variate value corresponding to any desired
return period or probability as

xT = F −1
x

(
1 − 1

T

∣∣∣∣θ) (3.5)

in which F −1
x (θ) is the inverse cumulative distribution function with the model

parameter vector θ. Equation (3.5) can be applied when the inverse distribu-
tion function forms are analytically amenable, such as for the Gumbel, gener-
alized extreme value, generalized logistic, and generalized Pareto distributions
(see Sec. 2.6.6).

Example 3.2 Consider that the annual maximum floods follow a lognormal distribu-
tion with a mean of 490 ft3/s and a standard deviation of 80 ft3/s. Determine the flood
magnitude with a 1-in-100 chance of being exceeded in any given year.

Solution From Eqs. (2.67a) and (2.67b), the parameters of a lognormal distribution,
for annual maximum flood Q, can be obtained as

σln Q =
√

ln
(
�2

Q + 1
) =

√√√√ln

[(
80

490

)2

+ 1

]
= 0.1622

µln Q = ln(µQ) − 1
2

σ 2
ln Q = ln(490) − 1

2
(0.1622)2 = 6.1812

Since ln(Q) follows a normal distribution with a mean of µln Q = 6.1812 and a stan-
dard deviation of σln Q = 0.1622 as previously computed, the magnitude of the log-
transformed 100-year flood can be calculated by

ln(q100) − µln Q

σln Q
= �−1

(
1 − 1

100

)
= �−1(0.99) = 2.34

Hence ln(q100) = µln Q + 2.34 × σln Q = 6.5607, and the corresponding 100-year flood
magnitude can be calculated as q100 = exp[ln(q100)] = 706.8 ft3/s.

For some distributions, such as Pearson type 3 or log-Pearson type 3, the
appropriate probability paper or CDF inverse form is unavailable. In such a
case, an analytical approach using the frequency factor KT is applied:

xT = µx + KT × σx (3.6)

in which xT is the variate corresponding to a return period of T, µx and σx are
the mean and standard deviation of the random variable, respectively, and KT
is the frequency factor, which is a function of the return period T or P (X ≥ xT )
and higher moments, if required. It is clear that a plot of Eq. (3.6) (xT versus KT )
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on linear graph paper will yield a straight line with slope of σx and intercept
µx at KT = 0.

In order for Eq. (3.6) to be useful, the functional relationship between KT and
exceedance probability or return period must be determined for the distribution
to be used. In fact, the frequency factor KT = (xT − µx)/σx is identical to a
standardized variate corresponding to the exceedance probability of 1/T for a
particular distribution model under consideration. For example, if the normal
distribution is considered, then KT = zT = �−1(1 − T −1). The same applies
to the lognormal distribution when the mean and standard deviation of log-
transformed random variables are used. Hence the standard normal probability
table (Table 2.2) provides values of the frequency factor for sample data from
normal and log normal distributions. Once this relation is known, a nonlinear
probability or return-period scale can be constructed to replace the linear KT
scale, and thus special graph paper can be constructed for any distribution so
that plot of xT versus P or T will be linear.

Gumbel probability paper has been printed, although it is not readily avail-
able from commercial sources. Referring to Eq. (2.85a), the relationship between
KT and T for this distribution can be derived as

KT = −
√

6
π

[
0.5772 + ln

(
T

T − 1

)]
(3.7)

For Pearson and log-Pearson type 3 distributions, linearization can be ac-
complished according to Eq. (3.6). However, for this distribution, the frequency
factor is a function of both P or T and the skewness coefficient γx. This means
that a different nonlinear P or T scale is required for each skewness coeffi-
cient, and therefore, it is impractical to construct a probability paper for this
distribution. However, it should be pointed out that if γx = 0 in log-space, the
log-Pearson type 3 reduces to the lognormal distribution, and thus commercial
lognormal probability paper can be used. The relationship between frequency
factor KT , T, and γx cannot be developed in a closed form, as was done for the
Gumbel distribution in Eq. (3.7). However, the relationship can be computed
numerically, and the results are given in Table 3.3. For 0.99−1 ≤ T ≤ 100
and |γx| < 2, the frequency-factor values are well approximated by the Wilson-
Hilferty transformation (Stedinger et al., 1993):

KT (γx) = 2
γx


[

1 + zT

(
γx

6

)
−
(

γx

6

)2
]3

− 1

 (3.8)

in which zT is the standard normal quantile with exceedance probability of
1/T .

The procedure for using the frequency-factor method is outlined as follows:

1. Compute the sample mean x̄, standard deviation σx, and skewness coefficient
γx (if needed) for the sample.
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TABLE 3.3 Frequency Factor (KT ) for Pearson Type 3 Distribution

Return period in years

2 5 10 25 50 100 200

Skewness
Exceedence probability

coefficient γx 0.50 0.20 0.10 0.04 0.02 0.01 0.005

3.0 −0.396 0.420 1.180 2.278 3.152 4.051 4.970
2.9 −0.390 0.440 1.195 2.277 3.134 4.013 4.909
2.8 −0.384 0.460 1.210 2.275 3.114 3.973 4.847
2.7 −0.376 0.479 1.224 2.272 3.093 3.932 4.783
2.6 −0.368 0.499 1.238 2.267 3.071 3.889 4.718
2.5 −0.360 0.518 1.250 2.262 3.048 3.845 4.652
2.4 −0.351 0.537 1.262 2.256 3.023 3.800 4.584
2.3 −0.341 0.555 1.274 2.248 2.997 3.753 4.515
2.2 −0.330 0.574 1.284 2.240 2.970 3.705 4.444
2.1 −0.319 0.592 1.294 2.230 2.942 3.656 4.372
2.0 −0.307 0.609 1.302 2.219 2.912 3.605 4.298
1.9 −0.294 0.627 1.310 2.207 2.881 3.553 4.223
1.8 −0.282 0.643 1.318 2.193 2.848 3.499 4.147
1.7 −0.268 0.660 1.324 2.179 2.815 3.444 4.069
1.6 −0.254 0.675 1.329 2.163 2.780 3.388 3.990
1.5 −0.240 0.690 1.333 2.146 2.743 3.330 3.910
1.4 −0.225 0.705 1.337 2.128 2.706 3.271 3.828
1.3 −0.210 0.719 1.339 2.108 2.666 3.211 3.745
1.2 −0.195 0.732 1.340 2.087 2.626 3.149 3.661
1.1 −0.180 0.745 1.341 2.066 2.585 3.087 3.575
1.0 −0.164 0.758 1.340 2.043 2.542 3.022 3.489
0.9 −0.148 0.769 1.339 2.018 2.498 2.957 3.401
0.8 −0.132 0.780 1.336 1.993 2.453 2.891 3.312
0.7 −0.116 0.790 1.333 1.967 2.407 2.824 3.223
0.6 −0.099 0.800 1.328 1.939 2.359 2.755 3.132
0.5 −0.083 0.808 1.323 1.910 2.311 2.686 3.041
0.4 −0.066 0.816 1.317 1.880 2.261 2.615 2.949
0.3 −0.050 0.824 1.309 1.849 2.211 2.544 2.856
0.2 −0.033 0.830 1.301 1.818 2.159 2.472 2.763
0.1 −0.017 0.836 1.292 1.785 2.107 2.400 2.670
0.0 0 0.842 1.282 1.751 2.054 2.326 2.576

−0.1 0.017 0.846 1.270 1.716 2.000 2.252 2.482
−0.2 0.033 0.850 1.258 1.680 1.945 2.178 2.388
−0.3 0.050 0.853 1.245 1.643 1.890 2.104 2.294
−0.4 0.066 0.855 1.231 1.606 1.834 2.029 2.201
−0.5 0.083 0.856 1.216 1.567 1.777 1.955 2.108
−0.6 0.099 0.857 1.200 1.528 1.720 1.880 2.016
−0.7 0.116 0.857 1.183 1.488 1.663 1.806 1.926
−0.8 0.132 0.856 1.166 1.448 1.606 1.733 1.837
−0.9 0.148 0.854 1.147 1.407 1.549 1.660 1.749
−1.0 0.164 0.852 1.128 1.366 1.492 1.588 1.664
−1.1 0.180 0.848 1.107 1.324 1.435 1.518 1.581
−1.2 0.195 0.844 1.086 1.282 1.379 1.449 1.501
−1.3 0.210 0.838 1.064 1.240 1.324 1.383 1.424
−1.4 0.225 0.832 1.041 1.198 1.270 1.318 1.351
−1.5 0.240 0.825 1.018 1.157 1.217 1.256 1.282
−1.6 0.254 0.817 0.994 1.116 1.166 1.197 1.216

(Continued )



Hydrologic Frequency Analysis 117

TABLE 3.3 Frequency Factor (KT ) for Pearson Type 3 Distribution (Continued )

Return period in years

2 5 10 25 50 100 200

Skewness
Exceedence probability

coefficient γx 0.50 0.20 0.10 0.04 0.02 0.01 0.005

−1.7 0.268 0.808 0.970 1.075 1.116 1.140 1.155
−1.8 0.282 0.799 0.945 1.035 1.069 1.087 1.097
−1.9 0.294 0.788 0.920 0.996 1.023 1.037 1.044
−2.0 0.307 0.777 0.895 0.959 0.980 0.990 0.995
−2.1 0.319 0.765 0.869 0.923 0.939 0.946 0.949
−2.2 0.330 0.752 0.844 0.888 0.900 0.905 0.907
−2.3 0.341 0.739 0.819 0.855 0.864 0.867 0.869
−2.4 0.351 0.725 0.795 0.823 0.830 0.832 0.833
−2.5 0.360 0.711 0.771 0.793 0.798 0.799 0.800
−2.6 0.368 0.696 0.747 0.764 0.768 0.769 0.769
−2.7 0.376 0.681 0.724 0.738 0.740 0.740 0.741
−2.8 0.384 0.666 0.702 0.712 0.714 0.714 0.714
−2.9 0.390 0.651 0.681 0.683 0.689 0.690 0.690
−3.0 0.396 0.636 0.666 0.666 0.666 0.667 0.667

SOURCE: U.S. Water Resources Council (1981).

2. For the desired return period, determine the associated value of KT for the
distribution.

3. Compute the desired quantile value using Eq. (3.6) with x̄ replacing µx and
sx replacing σx, that is,

x̂T = x̄ + KT × sx (3.9)

It should be recognized that the basic difference between the graphic and
analytical approaches is that each represents a different method of estimating
the statistical parameters of the distribution being used. By the analytical ap-
proach, a best-fit line is constructed that then sets the statistical parameters. In
the mathematical approach, the statistical parameters are first computed from
the sample, and effectively, the line thus determined is used. The line deter-
mined using the mathematical approach is in general a poorer fit to the observed
data than that obtained using the graphic approach, especially if curve-fitting
procedures are applied. However, the U.S. Water Resources Council (1967) rec-
ommended use of the mathematical approach because

1. Graphic least-squares methods are avoided to reduce the incorporation of
the random characteristics of the particular data set (especially in the light
of the difficulty in selecting the proper plotting-position formula).

2. The generally larger variance of the mathematical approach is believed to
help compensate for the typically small data sets.
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Example 3.3 Using the frequency-factor method, estimate the flows with return pe-
riods of 2, 10, 25, 50, and 100 years for the Boneyard Creek using the Gumbel and
log-Pearson type 3 distributions. Use the historical data in Example 3.1 as a basis for
the calculations.

Solution Based on the samples, the method requires determination of the frequency
factor KT in

x̂T = x̄ + KT × sx

For the Gumbel distribution, values of KT can be calculated by Eq. (3.7). For the
log-Pearson type 3 distribution, Table 3.3 or Eq. (3.8) can be used, which requires
computation of the skewness coefficient. The calculations of relevant sample moments
are shown in the following table:

Original scale Log -Transformed scale

Year qi(ft3/s) q2
i q3

i yi = ln(qi) y2
i y3

i

1961 390 1.52e + 05 5.93e + 07 5.97 35.59 212.36
1962 374 1.40e + 05 5.23e + 07 5.92 35.10 207.92
1963 342 1.17e + 05 4.00e + 07 5.83 34.05 198.65
1964 507 2.57e + 05 1.30e + 08 6.23 38.79 241.63
1965 596 3.55e + 05 2.12e + 08 6.39 40.84 260.95
1966 416 1.73e + 05 7.20e + 07 6.03 36.37 219.33
1967 533 2.84e + 05 1.51e + 08 6.28 39.42 247.50
1968 505 2.55e + 05 1.29e + 08 6.22 38.75 241.17
1969 549 3.01e + 05 1.65e + 08 6.31 39.79 251.01
1970 414 1.71e + 05 7.10e + 07 6.03 36.31 218.81
1971 524 2.75e + 05 1.44e + 08 6.26 39.21 245.49
1972 505 2.55e + 05 1.29e + 08 6.22 38.75 241.17
1973 447 2.00e + 05 8.93e + 07 6.10 37.24 227.27
1974 543 2.95e + 05 1.60e + 08 6.30 39.65 249.70
1975 591 3.49e + 05 2.06e + 08 6.38 40.73 259.92

Sum = 7236 3.58e + 06 1.81e + 09 92.48 570.58 3522.88

For the Gumbel distribution,

q̄ = 7236
15

= 482.4ft3/s

s =
(∑

q2
i − 15q̄2

15 − 1

)1/2

= (6361.8)1/2 = 79.8ft3/s

For the log-Pearson type 3 distribution,

ȳ =
∑

ln(qi)
n

= 92.48
15

= 6.165

sy =
(∑

y2
i − 15ȳ2

15 − 1

)1/2

= (0.417/14)1/2 = 0.173

gy = n
(n − 1)(n − 2)

m3

s3
y

= 15(−0.00336)
(14)(13)(0.173)3

= −0.540
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in which m3 = ∑
y3
i − 3ȳ

∑
y2
i + 2nȳ3. The determination of the values of frequency

factor corresponding to different return periods is shown in the following table:

Frequency factor by distribution

Return period Exceedance Nonexceedance Gumbel LP3
(years) probability probability Eq. (3.7) Eq. (3.8)

2 0.50 0.50 −0.1643 0.0892
10 0.10 0.90 1.3046 1.2093
25 0.04 0.96 2.0438 1.5526
50 0.02 0.98 2.5923 1.7570

100 0.01 0.99 3.1367 1.9292

Based on the preceding frequency-factor values, the flood magnitude of the various
return periods can be determined as

Frequency curves by distribution (ft3/s)

Return period Gumbel LP3
(years) qT = 482.4 + 79.8KT , EV1 qT = exp(6.165 + 0.173KT , LP3)

2 469.3 483.3
10 586.5 586.4
25 645.4 622.2
50 689.2 644.5

100 732.6 663.9

One could compare these results for the Gumbel distribution with those obtained from
the graphic approach of Example 3.1.

3.6 Estimation of Distributional Parameters

For a chosen distributional model, its shape and position are completely defined
by the associated parameters. By referring to Eq. (3.5), determination of the
quantile also requires knowing the values of the parameters θ.

There are several methods for estimating the parameters of a distribution
model on the basis of available data. In frequency analysis, the commonly used
parameter-estimation procedures are the method of maximum likelihood and
the methods of moments (Kite, 1988; Haan, 1977). Other methods, such as
method of maximum entropy (Li et al., 1986), have been applied.

3.6.1 Maximum-likelihood (ML) method

This method determines the values of parameters of a distribution model that
maximizes the likelihood of the sample data at hand. For a sample of n indepen-
dent random observations, x = (x1, x2, . . . , xn)t , from an identical distribution,
that is,

xi
iid∼ f x(x |θ) for i = 1, 2, . . . , n
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in which θ = (θ1, θ2, . . . , θm)t, a vector of m distribution model parameters,
the likelihood of occurrence of the samples is equal to the joint probability
of {xi}i=1,2,...,n calculable by

L(x |θ) =
n∏

i=1

f x(xi |θ) (3.10)

in which L(x |θ) is called the likelihood function. The ML method determines
the distribution parameters by solving

Max
θ

L(x |θ) = max
θ

ln[L(x |θ)]

or more specifically

Max
θ

n∏
i=1

f x(xi |θ) = max
θ

n∑
i=1

ln[ f x(xi |θ)] (3.11)

As can be seen, solving for distribution-model parameters by the ML principle
is an unconstrained optimization problem. The unknown model parameters can
be obtained by solving the following necessary conditions for the maximum:

∂
{∑n

i=1 ln[ f x(xi |θ)]
}

∂θ j
= 0 for j = 1, 2, . . . , m (3.12)

In general, depending on the form of the distribution model under considera-
tion, Eq. (3.12) could be a system of nonlinear equations requiring numerical
solution. Alternatively, Eq. (3.11) can be solved by a proper direct optimum
search scheme, such as the conjugate gradient method or quasi-Newton method
(McCormick, 1983 or see Section 8.13.2).

Example 3.4 Referring to Eq. (2.79) for the exponential distribution as

f x(x | β) = exp(−x/β)/β for x > 0, β > 0

determine the maximum likelihood estimate for β based on n independent random
samples {xi}i=1,2,..., n.

Solution The log-likelihood function for the exponential distribution is

ln[L(x | β)] =
n∑

i=1

ln

(
1
β

e−xi/β

)
= −n ln(β) − 1

β

n∑
i=1

xi

The parameter β that maximizes the preceding log-likelihood function, according to
the necessary condition, i.e., Eq. (3.12), is

∂

∂β
{ln[L(x | β)]} = − n

β
+ 1

β2

n∑
i=1

xi = 0
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Hence the ML estimator of β for the exponential distribution is

β̂ML = 1
n

n∑
i=1

xi

which is the sample mean.

Example 3.5 Consider a set of n independent samples, x = (x1, x2, . . . , xn)t , from a
normal distribution with the following PDF:

f x(x | α, β) = 1

β
√

2π
e− 1

2

(
x−α
β

)2

for − ∞ < x < ∞

Determine the ML estimators for the parameters α and β.

Solution The likelihood function for the n independent normal samples is

L(x | α, β) =
(

1

β
√

2π

)n

exp

[
−
∑n

i=1(xi − α)2

2β2

]
The corresponding log-likelihood function can be written as

ln[L(x | α, β)] = −n
2

ln(2π ) − n
2

ln(β2) −
∑n

i=1(xi − α)2

2β2

Taking the partial derivatives of the preceding log-likelihood function with respect to
α and β2 and setting them equal to zero results in

∂{ln[L(x | α, β)]}
∂α

=
∑n

i=1(xi − α)

β2
= 0

∂{ln[L(x | α, β)]}
∂β2

= − n
2β2

+
∑n

i=1(xi − α)2

2β4
= 0

After some algebraic manipulations, one can easily obtain the ML estimates of normal
distribution parameters α and β as

α̂ML =
∑n

i=1 xi

n
β̂2

ML =
∑n

i=1(xi − α)2

n

As can be seen, the ML estimation of the normal parameters for α is the sample mean
and for β2 is a biased variance.

3.6.2 Product-moments-based method

By the moment-based parameter-estimation methods, parameters of a distribu-
tion are related to the statistical moments of the random variable. The conven-
tional method of moments uses the product moments of the random variable.
Example 3.3 for frequency analysis is typical of this approach. When sample
data are available, sample product moments are used to solve for the model
parameters. The main concern with the use of product moments is that their
reliabilities owing to sampling errors deteriorate rapidly as the order of moment
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increases, especially when sample size is small (see Sec. 3.1), which is often
the case in many geophysical applications. Hence, in practice only, the first few
statistical moments are used. Relationships between product-moments and pa-
rameters of distribution models commonly used in frequency analysis are listed
in Table 3.4.

3.6.3 L-moments-based method

As described in Sec. 2.4.1, the L-moments are linear combinations of order
statistics (Hosking, 1986). In theory, the estimators of L-moments are less sen-
sitive to the presence of outliers in the sample and hence are more robust than
the conventional product moments. Furthermore, estimators of L-moments are
less biased and approach the asymptotic normal distributions more rapidly and
closely. Hosking (1986) shows that parameter estimates from the L-moments
are sometimes more accurate in small samples than are the maximum-
likelihood estimates.

To calculate sample L-moments, one can refer to the probability-weighted
moments as

β r = M1,r,0 = E{X [Fx(X )]r } for r = 0, 1, . . . (3.13)

which is defined on the basis of nonexceedance probability or CDF. The esti-
mation of βr then is hinged on how Fx(X ) is estimated on the basis of sample
data.

Consider n independent samples arranged in ascending order as
X (n) ≤ X (n−1) ≤ · · · ≤ X (2) ≤ X (1). The estimator for Fx(X (m)) for the mth-
order statistic can use an appropriate plotting-position formula as shown in
Table 3.2, that is,

F̂ (X (m)) = 1 − m − a
n + 1 − b

for m = 1, 2, . . . , n

with a ≥ 0 and b ≥ 0. The Weibull plotting-position formula (a = 0, b = 0) is a
probability-unbiased estimator of Fx(X (m)). Hosking et al. (1985a, 1985b) show
that a smaller mean square error in the quantile estimate can be achieved by
using a biased plotting-position formula with a = 0.35 and b = 1. According to
the definition of the β-moment βr in Eq. (3.13), its sample estimate br can be
obtained easily as

br = 1
n

n∑
i=1

x(m)[F̂ (x(m))]r for r = 0, 1, . . . (3.14)

Stedinger et al. (1993) recommend the use of the quantile-unbiased estimator of
Fx(X (m)) for calculating the L-moment ratios in at-site and regional frequency
analyses.



TABLE 3.4 Relations between Moments and Parameters of Selected Distribution Models

Distribution PDF or CDF Range Product moments L-Moments

Normal f x(x) = 1√
2πσ

exp
[
− 1

2

(
x−µ
σ

)2
]

−∞ < x < ∞ λ1 = µ; λ2 = σ̃ /
√

π ;
τ3 = 0;τ4 = 0.1226

Lognormal f x(x) = 1√
2πσln x x

exp
[
− 1

2

( ln(x)−µln x
σln x

)2
]

x > 0
µln x = ln(µx) − σ 2

ln x/2;
σ 2

ln x = ln(�2
x + 1);

γx = 3�x + �3
x

Eq. (2.68); Eq. (2.70)

Rayleigh f x(x) = (x−ξ )
α2 exp

[
− 1

2

(
x−ξ
α

)2
]

ξ ≤ x < ∞ µ = ξ + √
π/2α;

σ =
√

2 − π
2 α

λ1 = ξ + α
√

π/2;
λ2 = 1

2 α
√

π (
√

2 − 1)
τ3 = 0.1140; τ4 = 0.1054

Pearson 3 f x(x) = 1
|β|�(α)

(
x−ξ
β

)α−1
e−(x−ξ )/β

α > 0
for β > 0: x > ξ ;
for β < 0: x < ξ

µ = ξ + αβ; σ 2 = αβ2;
γ = sign(β) 2√

α

Exponential f x(x) = e−x/β/β x > 0 µ = β
λ1 = β; λ2 = β/2;
τ3 = 1/3; τ4 = 1/6

Gumbel (EV1
for maxima)

f x(x) = 1
β

exp
{

−
(

x−ξ
β

)
− exp

[
−
(

x−ξ
β

)]}
−∞ < x < ∞ µ = ξ + 0.5772β;

σ 2 = π2β2

6 ; γ = 1.1396
λ1 = ξ + 0.5772β; λ2 = β ln(2);
τ3 = 0.1699; τ4 = 0.1504

Weibull f x(x) = α
β

(
x−ξ
β

)α−1
exp
[
−
(

x−ξ
β

)α]
α, β > 0; x > 0

µ = β�
(

1 + 1
β

)
;

σ 2 = β2
[
�
(

1 + 2
β

)
− �2

(
1 + 1

β

)] λ1 = ξ + β �
(

1 + 1
α

)
;

λ2 = β
(

1 − 2−1/α
)

�
(

1 + 1
α

)

Generalized
extreme-value
(GEV)

Fx(x) = exp
{

−
[
1 − α(x−ξ )

β

]1/α
}

α > 0: x <
(
ξ + β

α

)
;

α < 0: x >
(
ξ + β

α

) µ = ξ + β
α

[1 − �(1 + α)];

σ 2 =
(

β
α

)2
[�(1 + 2α) − �2(1 + α)]

λ1 = ξ +
(

β
α

)
[1 − �(1 + α)];

λ2 = β
α

(1 − 2−α)�(1 + α);

τ3 = 2(1−3−α )
(1−2−α ) − 3;

τ4 = 1−5(4−α )+10(3−α )−6(2−α )
1−2−α

Generalized
Pareto (GPA)

Fx(x) = 1 −
[
1 − α

(x−ξ )
β

]1/α
α > 0:
ζ ≤ x ≤

(
ξ + β

α

)
;

α < 0: ζ ≤ x < ∞;

µ = ξ + β

1+α
;

σ 2 = β2

(1+α)2+(1+2α)
;

γ = 2(1−α)(1+2α)1/2

(1+3α)

λ1 = ξ + β

1+α
;

λ2 = β

(1+α)(2+α) ;

τ3 = 1−α
3+α

;

τ4 = (1−α)(2−α)
(3+α)(4+α)
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For any distribution, the L-moments can be expressed in terms of the
probability-weighted moments as shown in Eq. (2.28). To compute the sample
L-moments, the sample probability-weighted moments can be obtained as

l1 = b0

l2 = 2b1 − b0

l3 = 6b2 − 6b1 + b0 (3.15)

l4 = 20b3 − 30b2 + 12b1 − b0

where the lr s are sample estimates of the corresponding L-moments, the λr s,
respectively. Accordingly, the sample L-moment ratios can be computed as

t2 = l2
l1

t3 = l3
l2

t4 = l4
l2

(3.16)

where t2, t3, and t4 are the sample L-coefficient of variation, L-skewness co-
efficient, and L-kurtosis, respectively. Relationships between L-moments and
parameters of distribution models commonly used in frequency analysis are
shown in the last column of Table 3.4.

Example 3.6 Referring to Example 3.3, estimate the parameters of a generalized
Pareto (GPA) distribution by the L-moment method.

Solution Since the GPA is a three-parameter distribution, the calculation of the first
three sample L-moments is shown in the following table:

Ordered Rank F (q(i) ) =
Year qi (ft3/s) q(i) (ft3/s) (i) (i − 0.35)/n q(i) × F (q(i) ) q(i) × F (q(i) )2 q(i) × F (q(i) )3

1961 390 342 1 0.0433 14.82 0.642 0.0278
1962 374 374 2 0.1100 41.14 4.525 0.4978
1963 342 390 3 0.1767 68.90 12.172 2.1504
1964 507 414 4 0.2433 100.74 24.513 5.9649
1965 596 416 5 0.3100 128.96 39.978 12.3931
1966 416 447 6 0.3767 168.37 63.419 23.8880
1967 533 505 7 0.4433 223.88 99.255 44.0030
1968 505 505 8 0.5100 257.55 131.351 66.9888
1969 549 507 9 0.5767 292.37 168.600 97.2260
1970 414 524 10 0.6433 337.11 216.872 139.5210
1971 524 533 11 0.7100 378.43 268.685 190.7666
1972 505 543 12 0.7767 421.73 327.544 254.3922
1973 447 549 13 0.8433 462.99 390.455 329.2836
1974 543 591 14 0.9100 537.81 489.407 445.3605
1975 591 596 15 0.9767 582.09 568.511 555.2459

Sum = 7236 4016.89 2805.930 2167.710
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Note that the plotting-position formula used in the preceding calculation is that pro-
posed by Hosking et al. (1985a) with a = 0.35 and b = 1.

Based on Eq. (3.14), the sample estimates of β j, for j = 0, 1, 2, 3, are b0 = 428.4,
b1 = 267.80, b3 = 187.06, and b4 = 144.51. Hence, by Eq. (3.15), the sample estimates
of λ j, j = 1, 2, 3, 4, are l1 = 482.40, l2 = 53.19, l3 = −1.99, and l4 = 9.53, and the
corresponding sample L-moment ratios τ j, for j = 2, 3, 4, are t2 = 0.110, t3 = −0.037,
and t4 = 0.179.

By referring to Table 3.4, the preceding sample l1 = 482.40, l2 = 53.19, and
t3 = −0.037 can be used in the corresponding L-moment and parameter relations,
that is,

l1 = 482.40 = ξ + β

1 + α

l2 = 53.19 = β

(1 + α)(2 + α)

t3 = −0.037 = 1 − α

3 + α

Solving backwards starting from t3, l2, and then l1, then, the values of sample param-
eter estimates of the GPA distribution can be obtained as

α̂ = 1.154 β̂ = 361.36 ξ̂ = 314.64

3.7 Selection of Distribution Model

Based on a given sample of finite observations, procedures are needed to help
identify the underlying distribution from which the random samples are drawn.
Several statistical goodness-of-fit procedures have been developed (D’Agostino
and Stephens, 1986). The insensitivity to the tail portion of the distribution of
the conventional chi-square test and Kolmogorov-Smirnov test has been well
known. Other more powerful goodness-of-fit criteria such as the probability plot
correlation coefficient (Filliben, 1975) have been investigated and advocated
(Vogel and McMartin, 1991). This and other criteria are described herein.

3.7.1 Probability plot correlation coefficients

The probability plot is a graphic representation of the mth-order statistic of the
sample x(m) as a function of a plotting-position F̂ (x(m)). For each order statistic
X (m) , a plotting-position formula can be applied to estimate its corresponding
nonexceedance probability F̂ (x(m)), which, in turn, is used to compute the corre-
sponding quantile Ym = G−1[F̂ (X (m))] according to the distribution model G(·)
under consideration. Based on a sample with n observations, the probability
plot correlation coefficient (PPCC ) then can be defined mathematically as

PPCC =
∑n

m=1(x(m) − x̄)(ym − ȳ)[∑n
m=1(x(m) − x̄)2

∑n
m=1(ym − ȳ)2

]0.5 (3.17)
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where ym is the quantile value corresponding to F̂ (x(m)) from a selected plotting-
position formula and an assumed distribution model G(·), that is, ym = G−1

[F̂ (x(m))]. It is intuitively understandable that if the samples to be tested are
actually generated from the hypothesized distribution model G(·), the corre-
sponding plot of x(m) versus ym would be close to linear. The values of F̂ (x(m))
for calculating ym in Eq. (3.17) can be determined by using either a probability-
or quantile-unbiased plotting-position formula. The hypothesized distribution
model G(·) that yields the highest value of the PPCC should be chosen.

Critical values of the PPCCs associated with different levels of significance for
various distributions have been developed. They include normal and lognormal
distribution (Fillben, 1975; Looney and Gulledge, 1985; Vogel, 1986), Gumbel
distribution (Vogel, 1986), uniform and Weibull distributions (Vogel and Kroll,
1989), generalized extreme-value distribution (Chowdhury et al., 1991), Pear-
son type 3 distribution (Vogel and McMartin, 1991), and other distributions
(D’Agostino and Stephens, 1986). A distribution is accepted as the underlying
random mechanism with a specified significance level if the computed PPCC is
larger than the critical value for that distribution.

3.7.2 Model reliability indices

Based on the observed {x(m)} and the computed {ym}, the degree of goodness
of fit also can be measured by two reliability indices proposed by Leggett and
Williams (1981). They are the geometric reliability index KG,

KG =
1 +

√
1
n

∑n
m=1

[
1−(ym/x(m) )
1+(ym/x(m) )

]2

1 −
√

1
n

∑n
m=1

[
1−(ym/x(m) )
1+(ym/x(m) )

]2
(3.18)

and the statistical reliability index KS ,

KS = exp


√√√√1

n

n∑
m=1

[
log

(
ym

x(m)

)]2
 (3.19)

When the computed series {ym} perfectly matches with the observed sequence
{x(m)}, the values of KG and KS reach their lower bound of 1.0. As the discrep-
ancy between {x(m)} and {ym} increases, the values of KG and KS increase. Again,
for each of KG and KS , two different values can be computed, each associated
with the use of probability-unbiased and quantile-unbiased plotting-position
formulas. The most suitable probability model is the one that is associated
with the smallest value of the reliability index.

3.7.3 Moment-ratio diagrams

Relationships between product moments and the parameters of various distri-
butions are shown in Table 3.4, which also can be found elsewhere (Patel et al.,
1976; Stedinger et al., 1993). Similarly, the product-moment ratio diagram
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based on skewness coefficient and kurtosis (Stuart and Ord, 1987, p. 211) can
be used to identify the distributions. When sample data are used, sample prod-
uct moments are used to solve for the model parameters. However, owing to the
low reliability of sample skewness coefficient and kurtosis, use of the product-
moment ratio diagram for model identification is not reliable. Alternatively,
the L-moment ratio diagram defined in the (τ3, τ4)-space (Fig. 3.3) also can be
used for model identification. Namely, one can judge the closeness of the sam-
ple L-skewness coefficient and L-kurtosis with respect to the theoretical τ3 − τ4
curve associated with different distribution models. Some types of distance mea-
sures can be computed between the sample point of (t3, t4) and each theoretical
τ3 − τ4 curve. One commonly used distance measure is to compute the shortest
distance or distance in L-kurtosis direction fixed at the sample L-skewness
coefficient (Pandey et al., 2001). Although it is computationally simple, the
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Figure 3.3 L-moment ratio diagram and shortest distance from a sample
point.
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distance measure could not account for the sampling error in the sample L-
skewness coefficient. To consider the effect of sampling errors in both the sam-
ple L-skewness coefficient and L-kurtosis, the shortest distance between the
sample point (t3, t4) and the theoretical τ3 − τ4 curve of each candidate distribu-
tion model is computed for the measure of goodness of fit. The computation of
the shortest distance requires locating a point on the theoretical τ3 − τ4 curve
that minimizes the distance as

DIS = min
τ3

√
(t3 − τ3)2 + [t4 − τ4(τ3)]2 (3.20)

Since the theoretical τ3 − τ4 curve for a specified distribution is unique,
determination of the shortest distance was accomplished by an appropriate one-
dimensional search technique such as the golden-section procedure or others.

Example 3.7 (Goodness of Fit) Referring to the flood data given in Example 3.3,
calculate the values of the probability-unbiased PPCCs and the two reliability indices
with respect to the generalized Pareto distribution (GPA).

Solution Referring to Table 3.4, the GPA quantile can be obtained easily as

x(F ) = ξ + β

α
[1 − (1 − F )α]

According to the model parameter values obtained from Example 3.6, that is, α̂ =
1.154, β̂ = 361.36, ξ̂ = 314.64, the GPA quantile can be computed as

x(F ) = 314.64 + 361.36
1.154

[
1 − (1 − F )1.154]

Using the probability-unbiased plotting position, i.e., the Weibull formula, the cor-
responding GPA quantiles are calculated and shown in column (4) of the following
table. From data in columns (2) and (4), the correlation coefficient can be obtained as
0.9843.

To calculate the two-model reliability indices, the ratios of GPA quantiles ym to the
order flow q(m) are calculated in column (5) and are used in Eqs. (3.18) and (3.19) for
KG and KS , respectively, as 1.035 and 1.015.

Rank (m) Ordered q(m) F (q(m) ) = m/(n + 1) ym ym/q(m)
(1) (2) (3) (4) (5)

1 342 0.0625 337.1 0.985714
2 374 0.1250 359.4 0.960853
3 390 0.1875 381.4 0.977846
4 414 0.2500 403.1 0.973676
5 416 0.3125 424.6 1.020591
6 447 0.3750 445.7 0.997162
7 505 0.4375 466.6 0.923907
8 505 0.5000 487.1 0.964476
9 507 0.5625 507.2 1.000308

10 524 0.6250 526.8 1.005368
11 533 0.6875 546.0 1.024334
12 543 0.7500 564.5 1.039672
13 549 0.8125 582.4 1.060849
14 591 0.8750 599.4 1.014146
15 596 0.9375 615.0 1.031891
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3.7.4 Summary

As the rule for selecting a single distribution model, the PPCC-based criterion
would choose the model with highest values, whereas the other two criteria (i.e.,
reliability index and DIS) would select a distribution model with the smallest
value. In practice, it is not uncommon to encounter a case where the values of
the adopted goodness-of-fit criterion for different distributions are compatible,
and selection of a best distribution may not necessarily be the best course of
action, especially in the presence of sampling errors. The selection of acceptable
distributions based on the their statistical plausibility through hypothesis test-
ing, at the present stage, can only be done for the PPCCs for which extensive
experiments have been done to define critical values under various significance
levels (or type I errors) and different distributions.

3.8 Uncertainty Associated
with a Frequency Relation

Consider Example 3.2 in which the annual maximum flood peak discharges
over a 15-year period on the Boneyard Creek at Urbana, Illinois, were analyzed.
Suppose that the annual maximum floods follow the Gumbel distribution. The
estimated 25-year flood peak discharge is 656 ft3/s. It is not difficult to imag-
ine that if one had a second set of 15 years of record, the estimated 25-year
flood based on the second 15-year record likely would be different from the first
15-year record. Also, combining with the second 15 years of record, the esti-
mated 25-year flood magnitude based on a total of 30 years of record again
would not have the same value as 656 ft3/s. This indicates that the estimated
25-year flood is subject to uncertainty that is due primarily to the use of lim-
ited amount of data in frequency analysis. Furthermore, it is intuitive that the
reliability of the estimated 25-year flood, based on a 30-year record, is higher
than that based on a 15-year record.

From the preceding discussions one can conclude that using a limited amount
of data in frequency analysis, the estimated value of a geophysical quantity of
a particular return period xT and the derived frequency relation are subject
to uncertainty. The degree of uncertainty of the estimated xT depends on the
sample size, the extent of data extrapolation (i.e., return period relative to
the record length), and the underlying probability distribution from which the
data are sampled (i.e., the distribution). Since the estimated design quantity is
subject to uncertainty, it is prudent for an engineer to quantify the magnitude
of such uncertainty and assess its implications on the engineering design (Tung
and Yen, 2005, Sec. 1.5). Further, Benson (1968) noted that the results of the U.S.
Water Resources Council study to determine the “best” distribution indicated
that confidence limits always should be computed for flood frequency analysis.

In practice, there are two ways to express the degree of uncertainty of a statis-
tical quantity, namely, standard error and confidence interval (confidence limit).
Because the estimated geophysical quantities of a particular return period are
subject to uncertainty, they can be treated as a random variable associated
with a distribution, as shown in Fig. 3.4. Similar to the standard deviation of a
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Probability c = 1 − 2α
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Figure 3.4 Definition of confidence limit.

random variable, the standard error of estimate se measures the standard de-
viation of an estimated statistical quantity from a sample, such as x̂T , about
the true but unknown event magnitude. On the other hand, the confidence
limit of an estimated quantity is an interval that has a specified probability (or
confidence) to include the true value.

In the context of frequency analysis, the standard error of x̂T is a function
of the distribution of the data series under consideration and the method of
determining the distribution parameters. For example, the asymptotic (that is,
as n → ∞) standard error of a T-year event se(x̂T ) from a normal distribution
can be calculated as (Kite, 1988)

se(x̂T ) =
(

2 + z2
T

2n

)1/2

sx (3.21)

in which zT is the standard normal variate corresponding to the exceedance
probability of 1/T , that is, �(zT ) = 1 − 1/T , n is the sample size, and sx is the
sample standard deviation of random variable X . From the Gumbel distribu-
tion, the standard error of x̂T is

se(x̂T ) =
[

1
n

(
1 + 1.1396 KT + 1.1 K2

T

)]1/2

sx (3.22)
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To construct the confidence interval for x̂T or for the frequency curve, a con-
fidence level c that specifies the desired probability that the specified range will
include the unknown true value is predetermined by the engineer. In practice,
a confidence level of 95 or 90 percent is used. Corresponding to the confidence
level c, the significance level α is defined as α = 1 − c; for example, if the
desired confidence level c = 90 percent, the corresponding significance level
α = 10 percent. In determining the confidence interval, the common practice
is to distribute the significance level α equally on both ends of the distribu-
tion describing the uncertainty feature of estimated x̂T (see Fig. 3.4). In doing
so, the boundaries of the confidence interval, called confidence limits, are de-
fined. Assuming normality for the asymptotic sample distribution for x̂T , the
approximated 100(1 − α) percent confidence interval for x̂T is

xL
T ,α = x̂T − z1−α/2 × se(x̂T ) xU

T ,α = x̂T + z1−α/2 × se(x̂T ) (3.23)

in which xL
T ,α and xU

T ,α are, respectively, the values defining the lower and up-
per bounds for the 100(1 − α) percent confidence interval, and z1−α/2 = �−1

(1−α/2). The confidence interval defined by Eq. (3.23) is only approximate and
the approximation accuracy increases with sample size.

Similar to the frequency-factor method, the formulas to compute the upper
and lower limits of confidence interval for x̂T has the same form as Eq. (3.6),
except that the frequency-factor term is adjusted as

xL
T ,α = x̄ + K L

T ,α × sx xU
T ,α = x̄ + KU

T ,α × sx (3.24)

in which K L
T ,α and KU

T ,α are the confidence-limit factors for the lower and upper
limits of the 100(1 − α) percent confidence interval, respectively. For random
samples from a normal distribution, the exact confidence-limit factors can be
determined using the noncentral-t variates ζ (Table 3.5). An approximation for
K L

T ,α with reasonable accuracy for n ≥ 15 and α = 1−c ≥ 5 percent (Chowdhury
et al., 1991) is

K L
T ,α = ζT ,α/2 ≈

zT + zα/2

√
1
n + z2

T
2(n−1) − z2

α/2

2n(n−1)

1 − z2
α/2

2(n−1)

(3.25)

To compute KU
T ,α, by symmetry, one only has to change zα/2 by z1−α/2 in Eq. (3.25).

As was the case for Eq. (3.20), the confidence intervals defined by Eqs. (3.24)
and (3.25) are most appropriate for samples from populations following a nor-
mal distribution, and for nonnormal populations, these confidence limits are
only approximate, with the approximation accuracy increasing with sample
size.

For Pearson type 3 distributions, the values of confidence-limit factors for
different return periods and confidence levels given in Eq. (3.24) can be mod-
ified by introducing the scaling factor obtained from a first-order asymptotic



TABLE 3.5 95 Percent Confidence-Limit Factors for Normal Distribution

Return period (years)

n 2 5 10 25 50 100

K L
T ,α KU

T ,α K L
T ,α KU

T ,α K L
T ,α KU

T ,α K L
T ,α KU

T ,α K L
T ,α KU

T ,α K L
T ,α KU

T ,α

15 −0.4468 0.4468 0.3992 1.4641 0.7908 2.0464 1.1879 2.6880 1.4373 3.1095 1.6584 3.4919
20 −0.3816 0.3816 0.4544 1.3579 0.8495 1.9101 1.2535 2.5162 1.5085 2.9139 1.7351 3.2743
25 −0.3387 0.3387 0.4925 1.2913 0.8905 1.8257 1.2997 2.4109 1.5586 2.7942 1.7891 3.1415
30 −0.3076 0.3076 0.5209 1.2447 0.9213 1.7672 1.3345 2.3382 1.5965 2.7120 1.8300 3.0504
40 −0.2647 0.2647 0.5613 1.1824 0.9654 1.6898 1.3845 2.2427 1.6510 2.6041 1.8889 2.9310
50 −0.2359 0.2359 0.5892 1.1418 0.9961 1.6398 1.4194 2.1814 1.6892 2.5349 1.9302 2.8546
60 −0.2148 0.2148 0.6100 1.1127 1.0191 1.6042 1.4457 2.1378 1.7179 2.4859 1.9613 2.8006
70 −0.1986 0.1986 0.6263 1.0906 1.0371 1.5772 1.4664 2.1050 1.7406 2.4490 1.9858 2.7599
80 −0.1855 0.1855 0.6396 1.0730 1.0518 1.5559 1.4833 2.0791 1.7591 2.4199 2.0059 2.7279
90 −0.1747 0.1747 0.6506 1.0586 1.0641 1.5385 1.4974 2.0580 1.7746 2.3963 2.0226 2.7019

100 0.1656 0.1656 0.6599 1.0466 1.0746 1.5240 1.5095 2.0404 1.7878 2.3766 2.0370 2.6802

132
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approximation of the Pearson type 3 to normal quantile variance ratio η as
(Stedinger et al., 1983)

K L
T ,α = KT + η(ζT , 1−α/2 − zT ) and KU

T ,α = KT + η(ζT ,α/2 − zT ) (3.26)

where

η =
√

1 + γ̂x KT + 1/2(1 + 3/4γx)K2
T + n var(γ̂x)(∂KT /∂γx)2

1 + (1/2)z2
T

(3.27)

in which γ̂x is the estimated skewness coefficient, and

∂KT

∂γx
≈ 1

6

(
z2

T − 1
) [

1 − 3
(γx

6

)2
]

+ (
z3

T − 6zT
) γx

54
+ 2

3
zT

(γx

6

)3
(3.28)

A simulation study by Whitley and Hromadka (1997) showed that the approx-
imated formula for the Pearson type 3 distribution is relatively crude and that
a better expression could be derived for more accurate confidence-interval de-
termination.

Example 3.8 Referring to Example 3.3, determine the 95 percent confidence interval
of the 100-year flood assuming that the sample data are from a lognormal distribution.

Solution In this case, with the 95 percent confidence interval c = 0.95, the corre-
sponding significance level α = 0.05. Hence z0.025 = �−1(0.025) = −1.960 and
z0.975 = �−1(0.975) = +1.960. Computation of the 95 percent confidence interval
associated with the selected return periods are shown in the table below. Column (4)
lists the values of the upper tail of the standard normal quantiles associated with each
return period, that is, KT = zT = �−1(1 − 1/T ). Since random floods are assumed
to be lognormally distributed, columns (7) and (8) are factors computed by Eq. (3.25)
for defining the lower and upper bounds of the 95 percent confidence interval of dif-
ferent quantiles in log-space, according to Eq. (3.24), as

yL
T ,0.95 = ȳ + ζT ,0.025 × sy yU

T ,0.95 = ȳ + ζT ,0.975 × sy

In the original space, the 95 percent confidence interval can be obtained simply by
taking exponentiation as

qL
T ,0.95 = exp

(
yL

T ,0.95

)
and qU

T ,0.95 = exp
(

yU
T ,0.95

)
as shown in columns (11) and (12), respectively. The curves defining the 95 percent
confidence interval, along with the estimated frequency curve, for a lognormal distri-
bution are shown in Fig. 3.5.
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Figure 3.5 95 percent confidence limits for a lognormal distri-
bution applied to the annual maximum discharge for 1961–
1975 on the Boneyard Creek at Urbana, IL.

Exceedance Nonexceedance
Return period probability probability

T (years) 1 − p = 1/T p = 1 − 1/T KT = zT yT qT
(1) (2) (3) (4) (5) (6)

2 0.5 0.5 0.0000 6.165 475.9
5 0.2 0.8 0.8416 6.311 550.3

10 0.1 0.9 1.2816 6.386 593.7
25 0.04 0.96 1.7505 6.467 643.8
50 0.02 0.98 2.0537 6.520 678.3

100 0.01 0.99 2.3263 6.567 711.0

Return period ζT ,0.025 ζT ,0.975 yL
T ,0.95 yU

T ,0.95 qL
T ,0.95 qU

T ,0.95
T (years) (7) (8) (9) (10) (11) (12)

2 −0.54 0.54 6.071 6.259 433.2 522.8
5 0.32 1.63 6.221 6.446 503.1 630.4

10 0.71 2.26 6.288 6.555 538.1 702.9
25 1.10 2.96 6.355 6.676 575.5 792.8
50 1.34 3.42 6.397 6.755 600.1 858.2

100 1.56 3.83 6.434 6.827 622.8 922.2

In order to define confidence limits properly for the Pearson type 3 distri-
bution, the skewness coefficient must be estimated accurately, thus allowing
the frequency factor KT to be considered a constant and not a statistic. Un-
fortunately, with the Pearson type 3 distribution, no simple, explicit formula
is available for the confidence limits. The Interagency Advisory Committee on
Water Data (1982) (hereafter referred to as “the Committee”) proposed that
the confidence limits for the log-Pearson type 3 distribution could be approxi-
mated using a noncentral t-distribution. The committee’s procedure is similar
to that of Eqs. (3.24) and (3.25), except that K L

T ,α and KU
T ,α, the confidence-limit

factors for the lower and upper limits, are computed with the frequency factor
KT replacing ZT in Eq. (3.25).
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Example 3.9 Referring to Example 3.3, determine the 95 percent confidence intervals
for the 2-, 10-, 25-, 50-, and 100-year floods assuming that the sample data are from
a log-Pearson type 3 distribution.

Solution From Example 3.3, the mean and standard deviation of the logarithms of the
peak flows were 6.17 and 0.173, and the number of data n is 15. For the 100-year flood,
KT is 1.8164, and for the 95 percent confidence limits, a is 0.05; thus Za/2 is −1.96.
Thus K L

T ,α is −0.651, and the lower 95 percent confidence bound is 427.2 ft3/s. The
upper and lower confidence bounds for all the desired flows are listed in the following
table:

Return Period KT ,0.025 KT ,0.975 qL
T ,0.95 qU

T ,0.95
T (years) KT Eq. (3.8) Eq. (3.26) Eq. (3.26) (ft3/s) (ft3/s)

2 −0.0907 −0.6513 0.4411 427.2 516.1
10 1.0683 0.5260 1.9503 523.7 670.1
25 1.4248 0.8322 2.4705 552.2 733.2
50 1.6371 1.0082 2.7867 569.3 774.4

100 1.8164 1.1540 3.0565 583.8 811.4

3.9 Limitations of Hydrologic Frequency Analysis

3.9.1 Distribution Selection: Practical
Considerations

Many different probability distributions have been proposed for application to
hydrologic data. Some of them were proposed because the underlying concept
of the distribution matched the goal of hydrologic frequency analysis. For ex-
ample, the extremal distributions discussed in Sec. 2.6.4 have very favorable
properties for hydrologic frequency analysis. Ang and Tang (1984, p. 206) noted
that the asymptotic distributions of extremes in several cases tend to converge
on certain limiting forms for large sample sizes n, specifically to the double-
exponential form or to two single-exponential forms. The extreme value from
an initial distribution with an exponentially decaying tail (in the direction of
the extreme) will converge asymptotically to the extreme-value type I (Gumbel)
distribution form. Distributions with such exponentially decaying tails include
the normal distribution and many others listed in Sec. 2.6. This is why Gumbel
(1941) first proposed this distribution for floods, and it has gained consider-
able popularity since then. Also, the properties of the central limit theorem
discussed in Sec. 2.6.2 have made the lognormal distribution a popular choice
for hydrologic frequency analysis.

In the 1960s, as the number of different approaches to flood frequency analy-
sis were growing, a working group of U.S. government agency hydrologic experts
was formed by the U.S. Water Resources Council to evaluate the best/preferred
approach to flood frequency analysis. Benson (1968) reviewed the results of this
working group and listed the following key results of their study:

1. There is no physical rule that requires the use of any specific distribution in
the analysis of hydrologic data.
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2. Intuitively, there is no reason to expect that a single distribution will apply
to all streams worldwide.

3. No single method of testing the computed results against the original data
was acceptable to all those on the working group, and the statistical consul-
tants could not offer a mathematically rigorous method.

Subsequent to this study, the U.S. Water Resources Council (1967) recom-
mended use of the log-Pearson type 3 distribution for all flood frequency anal-
yses in the United States, and this has become the official distribution for all
flood frequency studies in the United States. There are no physical arguments
for the application of this distribution to hydrologic data. It has added flexi-
bility over two-parameter distributions (e.g., Gumbel, lognormal) because the
skewness coefficient is a third independent parameter, and the use of three
parameters generally results in a better fit of the data. However, a number
of researchers have suggested that the use of data for a single site may be
insufficient to estimate the skewness coefficient properly.

Beard (1962) recommended that only average regional skewness coefficients
should be applied in flood frequency analysis for a single station unless that
record exceeds 100 years. This led the U.S. Water Resources Council (1967) to
develop maps of regional skewness coefficient values that are averaged with the
at-a-site skewness coefficient as a function of the number of years of record. For
details on the procedure, see Interagency Advisory Committee on Water Data
(1982). Linsley et al. (1982) noted that although regional skewness coefficients
may not make for more reliable analysis, their use does lead to more consistency
between values for various streams in the region.

3.9.2 Extrapolation problems

Most often frequency analysis is applied for the purpose of estimating the mag-
nitude of truly rare events, e.g., a 100-year flood, on the basis of short data
series. Viessman et al. (1977, pp. 175–176) note that “as a general rule, fre-
quency analysis should be avoided . . . in estimating frequencies of expected
hydrologic events greater than twice the record length.” This general rule is
followed rarely because of the regulatory need to estimate the 100-year flood;
e.g., the U.S. Water Resources Council (1967) gave its blessing to frequency
analyses using as few as 10 years of peak flow data. In order to estimate the
100-year flood on the basis of a short record, the analyst must rely on extrap-
olation, wherein a law valid inside a range of p is assumed to be valid outside
of p. The dangers of extrapolation can be subtle because the results may look
plausible in the light of the analyst’s expectations.

The problem with extrapolation in frequency analysis can be referred to as
“the tail wagging the dog.” In this case, the “tail” is the annual floods of rela-
tively high frequency (1- to 10-year events), and the “dog” is the estimation of
extreme floods needed for design (e.g., the floods of 50-, 100-, or even higher-year
return periods). When trying to force data to fit a mathematical distribution,
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equal weight is given to the low end and high end of the data series when trying
to determine high-return-period events. Figure 3.6 shows that small changes in
the three smallest annual peaks can lead to significant changes in the 100-year
peak owing to “fitting properties” of the assumed flood frequency distribution.
The analysis shown in Fig. 3.6 is similar to the one presented by Klemes (1986);
in this case, a 26-year flood series for Gilmore Creek at Winona, Minnesota,
was analyzed using the log-Pearson type 3 distribution employing the skew-
ness coefficient estimated from the data. The three lowest values in the annual
maximum series (22, 53, and 73 ft3/s) then were changed to values of 100 ft3/s
(as if a crest-stage gauge existed at the site with a minimum flow value of
100 ft3/s), and the log-Pearson type 3 analysis was repeated. The relatively
small absolute change in these three events changed the skewness coefficient
from 0.039 to 0.648 and the 100-year flood from 7,030 to 8,530 ft3/s. As discussed
by Klemes (1986), it is illogical that the 1- to 2-year frequency events should
have such a strong effect on the rare events.

Under the worst case of hydrologic frequency analysis, the frequent events
can be caused by a completely different process than the extreme events. This
situation violates the initial premise of hydrologic frequency analysis, i.e., to
find some statistical relation between the magnitude of an event and its like-
lihood of occurrence (probability) without regard for the physical process of
flood formation. For example, in arid and semiarid regions of Arizona, frequent
events (1- to 5-year events) are caused by convective storms of limited spa-
tial extent, whereas the major floods (>10-year events) are caused by frontal
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Figure 3.6 Flood frequency analysis for Gilmore Creek at Winona, Minnesota,
for 1940–1965 computed with the log-Pearson type 3 distribution fitted to (1)
the original annual maximum series and (2) to the original annual maximum
series with the three smallest annual peaks set to 100 ft3/s.
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monsoon-type storms that distribute large amounts of rainfall over large areas
for several days. Figure 3.7 shows the daily maximum discharge series for the
Agua Fria River at Lake Pleasant, Arizona, for 1939–1979 and clearly indi-
cates a difference in magnitude and mechanism between frequent and infre-
quent floods. In this case estimating the 100-year flood giving equal weight in
the statistical calculations to the 100 ft3/s and the 26,000 ft3/s flows seems in-
appropriate, and an analyst should be prepared to use a large safety factor if
standard frequency analysis methods were applied.

Another problem with “the tail wagging the dog” results when the watershed
experiences substantial changes. For example, in 1954 the Vermilion River,
Illinois, Outlet Drainage District initiated a major channelization project in-
volving the Vermilion River, its North Fork, and North Fork tributaries. The
project was completed in the summer of 1955 and resulted in changing the nat-
ural 35-ft-wide North Fork channel to a trapezoidal channel 100 ft in width
and the natural 75-ft-wide Vermilion channel to a trapezoidal channel 166
ft in width. Each channel also was deepened 1 to 6 ft (U.S. Army Corps of
Engineers, 1986). Discharges less than about 8,500 ft3/s at the outlet remain in
the modified channel, whereas those greater than 8,500 ft3/s go overbank. At
some higher discharge, the overbank hydraulics dominate the flow, just as they
did before the channelization. Thus the more frequent flows are increased by the
improved hydraulic efficiency of the channel, whereas the infrequent events are
still subject to substantial attenuation by overbank flows. Thus the frequency
curve is flattened relative to the pre-channelization condition, where the more
frequent events are also subject to overbank attenuation. The pre- and post-
channelization flood frequency curves cross in the 25- to 50-year return period
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Figure 3.7 Return periods for the annual maximum daily flow of the Agua Fria
River at Lake Pleasant, Arizona, for 1939–1979.
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Figure 3.8 Peak discharge frequency for the Vermilion River at Pontiac, Illinois, for
pre-channelized (1943–1954) and post-channelized (1955–1991) conditions.

range (Fig. 3.8), resulting in the illogical result that the pre-channelization
condition results in a higher 100-year flood than the post-channelization con-
dition. Similar results have been seen for flood flows obtained from continuous
simulation applied to urbanizing watersheds (Bradley and Potter, 1991).

3.9.3 The stationarity assumption

Viessman et al. (1977, p. 158) noted that “usually, the length of record as well as
the design life for an engineering project are relatively short compared with ge-
ologic history and tend to temper, if not justify, the assumption of stationarity.”
On the other hand, Klemes (1986) noted that there are many known causes
for nonstationarity ranging from the dynamics of the earth’s motion to human-
caused changes in land use. In this context, Klemes (1986) reasons that the
notion of a 100-year flood has no meaning in terms of average return period,
and thus the 100-year flood is really a reference for design rather than a true
reflection of the frequency of an event.

3.9.4 Summary comments

The original premise for the use of hydrologic frequency analysis was to find the
optimal project size to provide a certain protection level economically, and the
quality of the optimization is a function of the accuracy of the estimated flood
level. The preceding discussions in this section have indicated that the accuracy
of hydrologic frequency estimates may not be high. For example, Beard (1987)
reported that the net result of studies of uncertainties of flood frequency analy-
sis is that standard errors of estimated flood magnitudes are very high—on the
order of 10 to 50 percent depending on the stream characteristics and amount
of data available.

Even worse, the assumptions of hydrologic frequency analysis, namely,
stationarity and homogeneous, representative data, and good statistical
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modeling—not extrapolating too far beyond the range of the data—may be
violated or stretched in common practice. This can lead to illogical results such
as the crossing of pre- and post-change frequency curves illustrated in Fig. 3.8,
and the use of such illogical results is based on “a subconscious hope that
nature can be cheated and the simple logic of mathematical manipulations
can be substituted for the hidden logic of the external world” (Klemes, 1986).

Given the many potential problems with hydrologic frequency analysis, what
should be done? Klemes (1986) suggested that if hydrologic frequency theorists
were good engineers, they would adopt the simplest procedures and try to stan-
dardize them in view of the following facts:

1. The differences in things such as plotting positions, parameter-estimation
methods, and even the distribution types, may not matter much in design
optimization (Slack et al., 1975). Beard (1987) noted that no matter how reli-
able flood frequency estimates are, the actual risk cannot be changed. Thus
the benefits from protection essentially are a function of investment and
are independent of uncertainties in estimating flood frequencies. Moderate
changes in protection or zoning do not change net benefits greatly; i.e., the
benefit function has a broad, flat peak (Beard, 1987).

2. There are scores of other uncertain factors in the design that must be settled,
but in a rather arbitrary manner, so the whole concept of optimization must
be taken as merely an expedient design procedure. The material covered
in Chaps. 4, 6, 7, and 8 of this book provide methods to consider the other
uncertain factors and improve the optimization procedure.

3. Flood frequency analysis is just one convenient way of rationalizing the old
engineering concept of a safety factor rather than a statement of hydrologic
truth.

Essentially, the U.S. Water Resources Council (1967) was acting in a manner
similar to Klemes’ approach in that a standardized procedure was developed
and later improved (Interagency Advisory Committee on Water Data, 1982).
However, rather than selecting and standardizing a simple procedure, the rel-
atively more complex log-Pearson type 3 procedure was selected. Beard (1987)
suggested that the U.S. Water Resources Council methods are the best currently
available but leave much to be desired.

Problems

Given are the significant independent peak discharges measured on the Saddle River at
Lodi, NJ, for two 18-year periods 1948–1965 and 1970–1987. The Saddle River at Lodi
has a drainage area of 54.6 mi2 primarily in Bergen County. The total data record for
peak discharge at this gauge is as follows: 1924–1937 annual peak only, 1938–1987 all
peaks above a specified base value, 1988–1989 annual peak only (data are missing for
1966, 1968, and 1969, hence the odd data periods).
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Water Water Water
year Date Qp (ft3/s) year Date Qp (ft3/s) year Date Qp (ft3/s)

1948 11/09/47 830 1965 2/08/65 1490 1980 3/22/80 1840

1949 12/31/48 1030
8/10/65 1020 4/10/80 2470

1950 3/24/50 452

4/29/80 2370

1951 3/31/51 2530 1970 2/11/70 1770 1981 2/20/81 1540

1952 12/21/51 1090
4/03/70 2130 5/12/81 1900

3/12/52 1100 1971 8/28/71 3530 1982 1/04/82 1980
4/06/52 1470

9/12/71 3770 1983 3/28/83 18006/02/52 1740

1972 6/19/72 2240
4/16/83 2550

1953 3/14/53 1860 1973 11/09/72 2450 1984 10/24/83 1510
3/25/53 993 2/03/73 3210 12/13/83 2610
4/08/53 1090 6/30/73 1570 4/05/84 3350

1954 9/12/54 1270 1974 12/21/73 2940
5/30/84 2840

1955 8/19/55 2200 1975 5/15/75 2640

7/07/84 2990

1956 10/16/55 1530
7/14/75 2720

1985 4/26/85 1590

1957 11/02/56 795

9/27/75 2350
9/27/85 2120

4/06/57 795
1976 4/01/76 1590 1986 1/26/86 1850

1958 1/22/58 964

7/01/76 2440 8/17/86 1660

2/28/58 1760

1977 2/25/77 3130 1987 12/03/86 2310

4/07/58 1100

3/23/77 2380 4/04/87 2320

1959 3/07/59 795 1978 11/09/77 4500

1960 9/13/60 1190
1/26/78 1980

1961 2/26/61 952

3/27/78 1610

1962 3/13/62 1670 1979 1/21/79 2890

1963 3/07/63 824
2/26/79 1570

1964 1/10/64 702

5/25/79 1760

3.1 Determine the annual maximum series.

3.2 Plot the annual maximum series on normal, lognormal, and Gumbel probability
papers.

3.3 Calculate the first four product moments and L-moments based on the given peak-
flow data in both the original and logarithmic scales.

3.4 Use the frequency-factor approach to the Gumbel, lognormal, and log-Pearson type
3 distributions to determine the 5-, 25-, 50-, and 100-year flood peaks.



142 Chapter Three

3.5 Based on the L-moments obtained in Problem 3.3, determine the 5-, 25-, 50-, and
100-year flood peaks using Gumbel, generalized extreme value (GEV), and lognor-
mal distributions.

3.6 Determine the best-fit distribution for the annual maximum peak discharge
series based on the probability-plot correlation coefficient, the two model relia-
bility indices, and L-moment ratio diagram.

3.7 Establish the 95 percent confidence interval for the frequency curve derived based
on lognormal and log-Pearson type 3 distribution models.
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Chapter

4
Reliability Analysis

Considering Load-Resistance
Interference

4.1 Basic Concept

The design of a hydrosystem involves analyses of flow processes in hydrology
and hydraulics. In a multitude of hydrosystems engineering problems, uncer-
tainties in data and in theory, including design and analysis procedures, war-
rant a probabilistic treatment of the problems. The risk associated with the
potential failure of a hydrosystem is the result of the combined effects of in-
herent randomness of external loads and various uncertainties involved in the
analysis, design, construction, and operational procedures. Hence, to evaluate
the probability that a hydrosystem will function as designed requires uncer-
tainty and reliability analyses.

As discussed in Sec. 1.5, failure of an engineering system can be defined as the
load L (external forces or demands) on the system exceeding the resistance R
(strength, capacity, or supply) of the system. The reliability ps is defined as
the probability of safe (or nonfailure) operation, in which the resistance of the
structure exceeds or equals to the load, that is,

ps = P (L ≤ R) (4.1)

in which P (·) denotes the probability. Conversely, failure probability pf can be
computed as

pf = P (L > R) = 1 − ps (4.2)

The definitions of reliability and failure probability, Eqs. (4.1) and (4.2),
are equally applicable to component reliability, as well as total system
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reliability. In hydrosystems engineering analyses, the resistance and load
frequently are functions of several stochastic basic variables, that is,
L = g(XL) = g(X1, X2, . . . , Xm) and R = h(XR) = h(Xm+1, Xm+2, . . . , X K ),
where X1, X2, . . . , X K are stochastic basic variables defining the load function
g(XL) and the resistance function h(XR). Accordingly, the failure probability
and reliability are functions of stochastic basic variables, that is,

ps = P [ g(XL) ≤ h(XR)] (4.3)

Note that the foregoing presentation of load and resistance in reliability anal-
ysis should be interpreted in a very general context. For example, in the design
and analysis hydrosystems infrastructures, such as urban drainage systems,
the load could be the inflow to the sewer system, whereas the resistance is the
sewer conveyance capacity; in water quality assessment, the load may be the
concentration or mass of pollutant entering the environmental system, whereas
the resistance is the permissible pollutant concentration set by water quality
regulations; in the economic analysis of a hydrosystem, the load could be the
total cost, whereas the resistance is the total benefit.

Evaluation of reliability or failure probability by Eqs. (4.1) through (4.3) does
not consider the time-dependent nature of the load and resistance if statistical
properties of the elements in XL and XR do not change with time. This procedure
generally is applied when the performance of the system subject to a single
worst-load event is considered. From the reliability computation viewpoint,
this is referred to as static reliability analysis.

In general, a hydrosystem infrastructure is expected to serve its designated
function over an expected period of time. Engineers frequently are interested
in knowing the reliability of the structure over its intended service life. In such
circumstances, elements of service period, randomness of load occurrences,
and possible change in resistance characteristics over time must be consid-
ered. Reliability models incorporating these elements are called time-dependent
reliability models (Kapur and Lamberson, 1977; Tung and Mays, 1980; Wen,
1987). Computations of the time-dependent reliability of a hydrosystem infras-
tructure initially require the evaluation of static reliability. Sections 4.3 through
4.6 describe methods for static reliability analysis, and Sec. 4.7 briefly describes
some basic methods for dealing with the time-dependent nature of reliability
analysis.

As discussed in the preceding chapters, the natural randomness of hydro-
logic and geophysical variables, such as flood and precipitation, is an important
part of the uncertainty in the design of hydrosystems infrastructures. However,
other uncertainties also may be significant and should not be ignored. Failure
to account for the other uncertainties in the reliability analysis in the past (as
discussed in Sec. 1.3) hindered progress in evaluation of failure probability as-
sociated with hydrosystems infrastructures. As noted by Cornell (1969) with
respect to traditional frequency-based analyses of system safety:
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It is important in engineering applications that we avoid the tendency to model
only those probabilistic aspects that we think we know how to analyze. It is far
better to have an approximated model of the whole problem than an exact model
of only a portion of it.

4.2 Performance Functions and Reliability Index

In reliability analysis, Eq. (4.3) alternatively can be written in terms of a per-
formance function W (X ) = W (XL, XR) as

ps = P [W (XL, XR) ≥ 0] = P [W (X ) ≥ 0] (4.4)

in which X is the vector of basic stochastic variables in the load and resistance
functions. In reliability analysis, the system state is divided into the safe (sat-
isfactory) set defined by W (X ) > 0 and the failure (unsatisfactory) set defined
by W (X ) < 0 (Fig. 4.1). The boundary that separates the safe set and failure
set is a surface, called the failure surface, defined by the function W (X ) = 0,
called the limit-state function. Since the performance function W (X ) defines
the condition of the system, it is sometimes called system-state function.

W(x) < 0 
Failure region 

W(x) > 0
Safe region 

0
xj

xk

Limit-state function
W(x) = 0 

Figure 4.1 System states defined by performance (limit-state)
function.
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The performance function W (X ) can be expressed differently as

W1(X ) = R − L = h(XR) − g(XL) (4.5)

W2(X ) = (R/L) − 1 = [h(XR)/g(XL)] − 1 (4.6)

W3(X ) = ln(R/L) = ln[h(XR)] − ln[g(XL)] (4.7)

Referring to Sec. 1.6, Eq. (4.5) is identical to the notion of a safety margin,
whereas Eqs. (4.6) and (4.7) are based on safety factor representations.

Example 4.1 Consider the design of a storm sewer system. The sewer flow-carrying
capacity QC (ft3/s) is determined by Manning’s formula:

QC = 0.463
n

λc D8/3 S1/2

where n is Manning’s roughness coefficient, λc is the model correction factor to
account for the model uncertainty, D is the actual pipe diameter (ft), and S is the
pipe slope (ft/ft). The inflow QL (ft3/s) to the sewer is the surface runoff whose peak
discharge can be estimated by the rational formula

QL = λLCi A

in which λL is the correction factor for model uncertainty, C is the runoff coefficient,
i is the rainfall intensity (in/h), and A is the runoff contributing area (acres). In the
reliability analysis, the sewer flow-carrying capacity QC is the resistance, and the
peak discharge of the surface runoff QL is the load. The performance functions can
be expressed as one of the following three forms:

W1 = QC − QL = 0.463
n

λc D8/3S1/2 − λLCi A

W2 = QC

QL
− 1 = 0.463

n
λc D8/3S1/2λ−1

L C−1i−1 A−1 − 1

W3 = ln

(
QC

QL

)
= ln(0.463) − ln(n) + ln(λc) + 8

3
ln(D) + 1

2
ln(S) − ln(λL)

− ln(C) − ln(i) − ln(A)

Also in the reliability analysis, a frequently used reliability indicator β is
called the reliability index. The reliability index was first introduced by Cornell
(1969) and later formalized by Ang and Cornell (1974). It is defined as the
ratio of the mean to the standard deviation of the performance function W (X ),
which is the inverse of the coefficient of variation of the performance function
W (X ),

β = µw

σw
(4.8)

in which µw and σw are the mean and standard deviation of the performance
function, respectively. From Eq. (4.8), assuming an appropriate probability
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density function for the random performance function W (X ), the reliability
then can be computed as

ps = 1 − Fw(0) = 1 − Fw′ (−β) (4.9)

in which Fw(·) is the cumulative distribution function of the performance func-
tion W , and W ′ is the standardized performance function defined as
W ′ = (W − µw)/σw. The expressions of reliability ps for some distributions
of W (X ) are given in Table 4.1. For distributions not listed, expressions can be
found in Sec. 2.6. For practically all probability distributions used in the relia-
bility analysis, the value of the reliability ps is a strictly increasing function of
the reliability index β. In practice, the normal distribution is used commonly
for W (X ), in which case the reliability can be computed simply as

ps = 1 − �(−β) = �(β) (4.10)

where �(·) is the standard normal CDF the table for which is given in Table 2.2.
Without using the normal probability table, the value of �(·) can be computed
by various algebraic formulas described in Sec. 2.6.1.

4.3 Direct Integration Method

From Eqs. (4.1) and (4.4) one realizes that the computation of reliability requires
knowledge of the probability distributions of the load and resistance or of the
performance function W . In terms of the joint PDF of the load and resistance,
Eq. (4.1) can be expressed as

ps =
∫ r2

r1

[∫ r

�1

f R,L(r, �) d�

]
dr (4.11a)

=
∫ �2

�1

[∫ r2

�

f R,L(r, �) dr
]

d� (4.11b)

in which f R,L(r, �) is the joint PDF of random load L and resistance R, r and �

are dummy arguments for the resistance and load, respectively, and (r1, r2) and
(�1, �2) are the lower and upper bounds for the resistance and load, respectively.
The failure probability can be computed as

pf = 1 − ps =
∫ r2

r1

[∫ �2

r
f R,L(r, �) d�

]
dr (4.12a)

=
∫ �2

�1

[∫ �

r1

f R,L(r, �) dr
]

d� (4.12b)

This computation of reliability is commonly referred to as load-resistance
interference.



TABLE 4.1 Reliability Formulas for Selected Distributions

Distribution Coefficient of
of W Probability density function f w(w) Mean µw variation �w Reliability ps = P (W ≥ 0)

Normal

1

σw
√

2π
exp

[
−1

2

(
w − µw

σw

)2
]

for −∞ < w < ∞
µw σw/µw �

(
µw

σw

)

Lognormal

1√
2πwσln w

exp

[
−1

2

(
ln(w) − µln w

σln w

)2
]

for w > 0

µw = exp

[
µln w + σ 2

ln w

2

] √
eσ2

ln w − 1 �

(
µln w

σln w

)

Exponential βe−β(w−wo) for w ≥ wo
1
β

+ wo
1

1 + β wo
e−β(w−wo)

Gamma
βα(w − ξ )α−1e−β(w−ξ )

�(α)
for w ≥ ξ

α

β
+ ξ

√
α

α + βξ
1 − IG[α, β(w − ξ )]/�(α)∗

Beta

1
B (α, β)

(w − a)α−1(b − w)β−1

(b − a)α+β+1

for a ≤ w ≤ b

a + α

α + β
(b − a)

√
αβ

α + β + 1
(b − a)

(α + β)µw
1 − Bu (α, β)†

B(α, β)
u = w − a

b − a

Triangular
2

b − a

(
w − a
m − a

)
for a ≤ w ≤ m

2
b − a

(
b − w
b − m

)
for m ≤ w ≤ b

a + m + b
3

(
1
2

− ab + am + bm
6µ2

w

)1/2

= 1 − (w − a)2

(b − a)(m − a)

for a ≤ w ≤ m

= (b − w)2

(b − a)(b − m)

for m ≤ w ≤ b

Uniform
1

b − a
for a ≤ w ≤ b

a + b
2

1√
3

b − a
b + a

b − w
b − a

∗IG(·) = incomplete gamma function.
†Bu(·) = incomplete beta function.
SOURCE: After Yen et al. (1986).
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Example 4.2 Consider the following joint PDF for the load and resistance:

f R,L(r, �) = (r + � + r �)e−(r +�+r �) for r > 0, � > 0

Compute the reliability ps.

Solution According to Eq. (4.11), the reliability can be computed as

ps =
∫ ∞

0

[∫ r

0
(r + � + r �)e−(r +�+r �)d�

]
dr

=
∫ ∞

0

[−(1 + �)e−(r +�+r �)]r
0 dr

=
∫ ∞

0

[
e−r − (1 + r )e−(2r +r 2)

]
dr =

[
1
2

e−(2r +r 2) − e−r
]∞

0
= 0.5

When the load and resistance are statistically independent, Eq. (4.11) can be
reduced to

ps =
∫ r2

r1

FL(r ) f R(r ) dr = ER[FL(R)] (4.13a)

or ps =
∫ �2

�1

[1 − FR(�)] f L(�) d� = 1 − EL[FR(L)] (4.13b)

in which FL(·) and FR(·) are the marginal CDFs of random load L and resistance
R, respectively, ER[FL(R)] is the expected value of the CDF of random load
over the possible range of the resistance, and EL[FR(L)] is the expected value
of the CDF of random resistance over the possible range of the load. Similarly,
the failure probability, when the load and resistance are independent, can be
expressed as

pf = 1 − ps = ER[1 − FL(R)] = EL[FR(L)] (4.14)

A schematic diagram illustrating load-resistance interference in the reliability
computation, when the load and resistance are independent random variables,
is shown in Fig. 4.2.

Example 4.3 Consider that the load and resistance are uncorrelated random vari-
ables, each of which has the following PDF:
Load (exponential distribution):

f L(�) = 2e−2� for � > 0

Resistance (Erlang distribution):

f R(r ) = 4r e−2r for r > 0

Compute the reliability ps.



152 Chapter Four

fw(w)

w0 µw

βσw

Safe region 
Failure
region

f L
( �

)
×

F R
(r

)

�

fL(�) FR(r)

f L
( �

) a
nd

F R
(r

)

� , r

fL(�)

fR(r)
f L

( �
) a

nd
f R

(r
)

� , r

Failure probability

pf

(a)

(b)

(c)

(d)

Figure 4.2 Schematic diagram of load-resistance interference for
computing failure probability: (a) marginal densities of load and
resistance; (b) PDF of load and CDF of resistance; (c) compute
f L(�) × FR(r ) over valid range of load; the area underneath
the curve is the failure probability; (d) PDF of the performance
function; the area left of w = 0 is the failure probability.
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Solution Since the load and resistance are uncorrelated random variables, the relia-
bility ps can be computed according to Eq. (4.13a) as

ps =
∫ ∞

0
(4r e−2r )

[∫ r

0
(2e−2�) d�

]
dr

=
∫ ∞

0
(4r e−2r )(1 − e−2r ) dr

=
[(

1
4

+ r

)
e−4r − (1 + 2r )e−2r

]∞

0

= 0.75

In the case that the PDF of the performance function W is known or derived,
the reliability can be computed according to Eq. (4.4) as

ps =
∫ ∞

0
f w(w) d w (4.15)

in which f w(w) is the PDF of the performance function.

Example 4.4 Define the performance function W = R − L, in which R and L are
independent random variables with their PDFs given in Example 4.2. Determine the
reliability ps using Eq. (4.15).

Solution To use Eq. (4.15) for the reliability computation, it is necessary to first obtain
the PDF of the performance function W . Derivation of the PDF of W can be made
based on the derived distribution method described in Tung and Yen (2005, Sec. 3.1)
as follows: Define W = R − L and U = L from which the original random variables
R and L can be expressed in terms of new random variables W and U as L = U and
R = W + U . By the transformation of variables, the joint PDF of W and U can be
expressed as

f w,u(w, u) = f R,L(r, �)|J |
in which the Jacobian matrix J is

J =


∂L
∂W

∂L
∂U

∂ R
∂W

∂ R
∂U

 =
[

0 1

1 1

]

The absolute value of the determinant of the Jacobian matrix |J | is equal to one.
Hence the joint PDF of W and U is

f w,u(w, u) = f R(r ) f L(�)|J | = f R(w + u) f L(u)(1) = 8(w + u)e−2(w+2u)

for −∞ < w < ∞ and u ≥ 0. Because the marginal PDF associated with the perfor-
mance function W is needed, it can be obtained from the preceding joint PDF as

f w(w) =
∫ ∞

0
f w,u(w, u) du = 1

2
1 + 4w

e2w
for w ≥ 0
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From the derived PDF for W , the reliability can be computed as

ps =
∫ ∞

0

1
2

(
1 + 4w

e2w

)
d w =

[
−
(

w + 3
4

)
e−2w

]∞

0
= 0.75

In the conventional reliability analysis of hydraulic engineering design, un-
certainty from the hydraulic aspect often is ignored. Treating the resistance or
capacity of the hydraulic structure as a constant reduces Eq. (4.11) to

ps =
∫ ro

0
f L(�) d� (4.16)

in which ro is the resistance of the hydraulic structure, a deterministic quan-
tity. If the PDF of the hydrologic load is the annual event, such as the annual
maximum flood, the resulting annual reliability can be used to calculate the
corresponding return period.

To express the reliability in terms of stochastic variables in load and resis-
tance functions, Eq. (4.11) can be written as

ps =
∫ h(xR )=r2

h(xR )=r1

[∫ g(xL)=r

0
f (xR , xL) d xL

]
d xR (4.17)

in which f (xL, xR) is the joint PDF of model stochastic basic variables X. For
independent stochastic basic variables X , Eq. (4.17) can be written as

ps =
∫ h(xR )=r2

h(xR )=r1

∫ g(xL)=r

0

m∏
j =1

f j (xj ) d xL

 K∏
k=m+1

f k(xk) d xR (4.18)

in which f k(·) is the marginal PDF of the stochastic basic variable Xk .
The method of direct integration requires the PDFs of the load and resistance

or the performance function to be known or derived. This is seldom the case in
practice, especially for the joint PDF, because of the complexity of hydrologic
and hydraulic models used in design. Explicit solution of direct integration can
be obtained for only a few PDFs, as given in Table 4.1 for the reliability ps.
For most other PDFs, numerical integration may be necessary. Computation-
ally, the direct integration method is analytically tractable for only very few
special combinations of probability distributions and functional relationships.
For example, the distribution of the safety margin W expressed by Eq. (4.5)
has a normal distribution if both load and resistance functions are linear and
all stochastic variables are normally distributed. In terms of the safety factor
expressed as Eqs. (4.6) and (4.7), the distribution of W (X ) is lognormal if both
load and resistance functions have multiplicative forms involving lognormal
stochastic variables. Most of the time, numerical integrations are performed for
reliability determination. When using numerical integration (including Monte
Carlo simulation described in Chap. 6), difficulty may be encountered when
one deals with a multivariate problem. Appendix 4A summarizes a few one-
dimensional numerical integration schemes.



Reliability Analysis Considering Load-Resistance Interference 155

Example 4.5 Referring to Example 4.1, the stochastic basic variables n, D, and S in
Manning’s formula to compute the sewer capacity are independent lognormal random
variables with the following statistical properties:

Parameter Mean Coefficient of variation

n (ft1/6) 0.015 0.05
D (ft) 3.0 0.02
S (ft/ft) 0.005 0.05

Compute the reliability that the sewer can convey the inflow discharge of 35 ft3/s.

Solution In this example, the resistance function is R(n, D, S) = 0.463 n−1 D2.67S0.5,
and the load is L = 35 ft3/s. Since all three stochastic parameters are lognormal
random variables, the performance function appropriate for use is

W (n, D, S) = ln(R) − ln(L)

= [ln(0.463) − ln(n) + 2.67 ln(D) + 0.5 ln(S)] − ln(35)

= − ln(n) + 2.67 ln(D) + 0.5 ln(S) − 4.3319

The reliability ps = P [W (n, D, S) > 0] then can be computed as follows:
Since n, D, and S are independent lognormal random variables, ln(n), ln(D), and

ln(S) are independent normal random variables. Note that the performance function
W (n, D, S) is a linear function of normal random variables. Then, by the reproductive
property of normal random variables as described in Sec. 2.6.1, W (n, D, S) also is a
normal random variable with the mean

µw = −µln(n) + 2.67µln(D) + 0.5µln(S) − 4.3319

and the variance

Var(W ) = Var[ln(n)] + 2.672Var[ln(D)] + 0.52Var[ln(S)]

From Eq. (2.67), the means and variances of log-transformed variables can be obtained
as

Var[ln(n)] = ln(1 + 0.052) = 0.0025 µln(n) = ln(µn) − 0.5 Var[ln(n)] = −4.201

Var[ln(D)] = ln(1 + 0.022) = 0.0004 µln(D) = ln(µD) − 0.5 Var[ln(D)] = 1.0984

Var[ln(S)] = ln(1 + 0.052) = 0.0025 µln(S) = ln(µS ) − 0.5 Var[ln(S)] = −5.2996

Then the mean and variance of the performance function W (n, D, S) can be computed
as

µw = 0.1517 Var(W ) = 0.005977

The reliability can be obtained as

ps = P (W > 0) = �

(
µw

σw

)
= �

(
0.1517√
0.005977

)
= �(1.958) = 0.975
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4.4 Mean-Value First-Order Second-Moment
(MFOSM) Method

In the first-order methods, the performance function W (X ), defined on the
basis of the loading and resistance functions g(XL) and h(XR), are expanded in
a Taylor series at a reference point. The second- and higher-order terms in the
series expansion are truncated, resulting in an approximation involving only
the first two statistical moments of the variables. This simplification greatly en-
hances the practicality of the first-order methods because, in many problems,
it is rather difficult, if not impossible, to find the PDF of the variables, whereas
it is relatively simple to estimate the first two statistical moments. The pro-
cedure is based on the first-order variance estimation (FOVE) method, which
is summarized below. For a detailed description of the method in uncertainty
analysis, readers are referred to Tung and Yen (2005, Sec. 5.1).

The first-order variance estimation (FOVE) method, also called the vari-
ance propagation method (Berthouex, 1975), estimates uncertainty features
of a model output based on the statistical properties of the model’s stochas-
tic basic variables. The basic idea of the method is to approximate a model
involving stochastic basic variables by a Taylor series expansion. Consider
that a hydraulic or hydrologic performance function W (X ) is related to K
stochastic basic variables because W (X ) = W (X1, X2, . . . , X K ), in which X =
(X1, X2, . . . , X K )t , a K -dimensional column vector of variables in which all
Xs are subject to uncertainty, the superscript t represents the transpose of a
matrix or vector. The Taylor series expansion of the performance function W (X )
with respect to a selected point of stochastic basic variables X = xo in the
parameter space can be expressed as

W (X ) = wo +
K∑

k=1

[
∂W (X )

∂ Xk

]
xo

(Xk − xko)

+ 1
2

K∑
i=1

K∑
j =1

[
∂2W (X )
∂ Xi∂ X j

]
xo

(Xi − xio)(X j − xj o) + ε (4.19)

in which wo = W (xo), and ε represents the higher-order terms. The partial
derivative terms are called sensitivity coefficients, each representing the rate of
change in the performance function value W with respect to the unit change of
the corresponding variable at xo.

Dropping the higher-order terms represented by ε, Eq. (4.19) is a second-
order approximation of the model W (X ). Further truncating the second-order
terms from it leads to the first-order approximation of W as

W (X ) ≈ wo +
K∑

k=1

[
∂W (X )

∂ Xk

]
xo

(Xk − xko) (4.20)
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or in a matrix form as

W (X ) = wo + s t
o (X − xo) (4.21)

where so = ∇xW (xo) is the column vector of sensitivity coefficients with each
element representing ∂W/∂ Xk evaluated at X = xo. The mean and variance of
W by the first-order approximation can be expressed, respectively, as

µw = E[W (X )] ≈ wo +
K∑

k=1

[
∂W (X )

∂ Xk

]
xo

(µk − xko) (4.22)

and Var[W (X )] ≈ Var

{
wo +

K∑
k=1

[
∂W (X )

∂ Xk

]
xo

(Xk − xko)

}

=
K∑

j =1

K∑
k=1

[
∂W (X )

∂ X j

]
xo

[
∂W (X )

∂ Xk

]
xo

Cov(X j , Xk) (4.23)

In matrix forms, Eqs. (4.22) and (4.23) can be expressed as

µw ≈ wo + s t
o (µx − xo) (4.24)

and σ 2
w ≈ s t

oCxso (4.25)

in which µx and Cx are the vectors of the means and covariance matrix of the
stochastic basic variables X, respectively.

Commonly, the first-order variance estimation method consists of taking the
expansion point xo = µx at which the mean and variance of W reduce to

µw ≈ g(µx) = w (4.26)

and σ 2
w ≈ s tCxs (4.27)

in which s = ∇xW(µx) is a K -dimensional vector of sensitivity coefficients eval-
uated at xo = µx. When all stochastic basic variables are independent, the
variance of model output W could be approximated as

σ 2
w ≈

K∑
k=1

s2
kσ 2

k = s t Dxs (4.28)

in which Dx = diag(σ 2
1 , σ 2

2 , . . . , σ 2
K ) is a K×K diagonal matrix of variances of the

involved stochastic basic variables. From Eq. (4.28), the ratio s2
kσ 2

k /Var(W ) indi-
cates the proportion of the overall uncertainty in the model output contributed
by the uncertainty associated with the stochastic basic variable Xk .
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The MFOSM method for reliability analysis first applies the FOVE method
to estimate the statistical moments of the performance function W (X ). This
is done by applying the expectation and variance operators to the first-order
Taylor series approximation of the performance function W (X ) expanded at
the mean values of the stochastic basic variables. Once the mean and stan-
dard deviations of W (X ) are estimated, the reliability is computed according
to Eqs. (4.9) or (4.10), with the reliability index βMFOSM computed as

βMFOSM = W (µx)√
s tCxs

(4.29)

where µx and Cx are the vectors of means and covariance matrix of stochas-
tic basic variables X, respectively, and s = ∇xW (µx) is the column vector of
sensitivity coefficients with each element representing ∂W/∂ Xk evaluated at
X = µx.

Example 4.6 Manning’s formula for determining flow capacity of a storm sewer is

Q = 0.463n−1 D2.67S0.5

in which Q is flow rate (in ft3/s), n is the Manning roughness coefficient, D is the
sewer diameter (in ft), and S is pipe slope (in ft/ft). Because roughness coefficient n,
sewer diameter D, and sewer slope S in Manning’s formula are subject to uncertainty
owing to manufacturing imprecision and construction error, the sewer flow capacity
would be subject to uncertainty. Consider a section of circular sewer pipe with the
following features:

Model parameter Nominal value Coefficient of variation

Roughness coefficient (n) 0.015 0.05
Pipe diameter (D, ft.) 3.0 0.05
Pipe slope (S , ft/ft) 0.005 0.05

Compute the reliability that the sewer capacity could convey a discharge of 35 ft3/s.
Assume that stochastic model parameters n, D, and S are uncorrelated.

Solution The performance function for the problem is W = Q − 35 = 0.463n−1 D2.67

S0.5 − 35. The first-order Taylor series expansion of the performance function about
no = µn = 0.015, Do = µD = 3.0, and So = µS = 0.005, according to Eq. (4.20), is

W ≈ 0.463(0.015)−1(3)2.67(0.005)0.5 + (∂Q/∂n)(n − 0.015) + (∂Q/∂ D)(D − 3.0)

+ (∂Q/∂S)(S − 0.0005) − 35

= 41.01 − 2733.99(n − 0.015) + 36.50(D − 3.0) + 4100.99(S − 0.005) − 35

Based on Eq. (4.26), the approximated mean of the sewer flow capacity is

µw ≈ 41.01 − 35 = 6.01 ft3/s
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Owing to independency of n, D, and S , according to Eq. (4.28), the approximated
variance of the performance function W is

σ2
Q ≈ (2733.99)2Var(n) + (36.50)2Var(D) + (4100.99)2Var(S)

Since

Var(n) = (�nµn)2 = (0.05 × 0.015)2 = (7.5 × 10−4)2

Var(D) = (�DµD)2 = (0.05 × 3.0)2 = (1.5 × 10−1)2

Var(S) = (�SµS )2 = (0.05 × 0.005)2 = 0.000252 = 6.25 × 10−8

the variance of the performance function W can be computed as

σ 2
Q ≈ (2733.99)2(7.5 × 10−4)2 + (36.50)2(1.5 × 10−1)2 + (4100.99)2(2.5 × 10−4)2

= 2.052 + 5.472 + 1.032 = 35.23(ft3/s)2

Hence the standard deviation of the sewer flow capacity is
√

35.23 = 5.94 ft3/s.
The MFOSM reliability index is βMFOSM = 6.01/5.94 = 1.01. Assuming a normal

distribution for Q, the reliability that the sewer capacity can accommodate a discharge
of 35 ft3/s is

ps = P [Q > 35] = �(βMFOSM) = �(1.01) = 0.844

The corresponding failure probability is pf = �(−1.01) = 0.156.

Yen and Ang (1971), Ang (1973), and Cheng et al. (1986b) indicated that
provided that ps < 0.99, reliability is not greatly influenced by the choice of
distribution for W , and the assumption of a normal distribution is satisfactory.
However, for reliability higher than this value (for example, ps = 0.999), the
shape of the tail of a distribution becomes very critical. In such cases, accurate
assessment of the distribution of W (X ) should be used to evaluate the reliability
or failure probability. The MFOSM method has been used widely in various
hydrosystems infrastructural designs and analyses such as storm sewers (Tang
and Yen, 1972; Tang et al., 1975; Yen and Tang, 1976; Yen et al., 1976), culverts
(Yen et al., 1980; Tung and Mays, 1980), levees (Tung and Mays, 1981; Lee and
Mays, 1986), floodplains (McBean et al., 1984), and open-channel hydraulics
(Huang, 1986).

Example 4.7 Referring to Example 4.6, using the same values of the mean and stan-
dard deviation for sewer flow capacity, the following table lists the reliabilities and
failure probabilities determined by different distributional assumptions for the sewer
flow capacity Q to accommodate the inflow discharge of 35 ft3/s.

Distribution ps pf

Normal 0.996955 0.003045
Lognormal 0.997704 0.002296
Gumbel 0.999819 0.000191
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As can be seen, using different distributional assumptions might result in signifi-
cant differences in the estimation of failure probability. This results mainly from the
fact that the MFOSM method solely uses the first two moments without taking into
account the distributional properties of the random variables.

Assuming that stochastic parameters in the sewer capacity formula (that is, n, D,
and S) are uncorrelated lognormal random variables, the sewer capacity also is a
lognormal random variable. The following table lists the values of the exact reliabil-
ity index and failure probability and those obtained from the MFOSM by Eq. (4.29)
and (4.8). The table indicates that approximation by the MFOSM becomes less and
less accurate as the computation approaches the tail portion of the distribution.

MFOSM Exact

Inflow rate (ft3/s) β1 pf = �(−β1) β2 pf = �(−β2)

25 5.035 2.384 × 10−7 6.350 � 0
30 3.457 2.728 × 10−4 3.991 3.290 × 10−5

35 1.880 3.045 × 10−3 1.996 2.296 × 10−3

40 0.303 3.810 × 10−1 0.268 3.943 × 10−1

45 −1.274 8.988 × 10−1 −1.256 8.954 × 10−1

NOTE: β1 = µw/σw, β2 = µln w/σln w, and W = Q − inflow.

Application of the MFOSM method is simple and straightforward. However,
it possesses certain weaknesses in addition to the difficulties with accurate es-
timation of extreme failure probabilities mentioned earlier. These weaknesses
include

1. Inappropriateness of the expansion point. In reliability computation, the con-
cern often is those points in the parameter space that fall on the failure sur-
face or limiting-state surface. In the MFOSM method, the expansion point
is located at the mean of the stochastic basic variables that do not necessar-
ily define the critical state of the system. The difference in expansion points
and the resulting reliability indices between the MFOSM and its alternative,
called the advanced first-order, second-moment method (AFOSM), is shown
in Fig. 4.3.

2. Inability to handle distributions with a large skewness coefficient. Table 4.2
indicates that the discrepancy of the failure probability estimated by the
MFOSM method for a lognormally distributed performance function becomes
larger as the degree of skewness increases. This mainly due to the fact that
the MFOSM method incorporates only the first two moments of the random
parameters involved. In other words, the MFOSM method simply ignores
any moments higher than the second order. Therefore, for those random
variables having asymmetric PDFs, the MFOSM method cannot capture
such a feature in the reliability computation.

3. Generally poor estimations of the mean and variance of nonlinear functions.
This is evident in that the MFOSM method is the first-order representation
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TABLE 4.2 Effect of Skewness on the Accuracy of pf Estimated by the MFOSM Method

Exact MFOSM

µw σw �w γw βExact pf βMFOSM pf

1.0 0.3 0.3 0.927 7.70 7.036 × 10−15 3.00 1.350 × 10−3

1.0 0.5 0.5 1.625 4.64 1.759 × 10−6 1.80 3.593 × 10−2

1.0 1.0 1.0 4.000 2.35 9.402 × 10−3 0.90 1.841 × 10−1

1.0 2.0 2.0 27.00 1.18 1.190 × 10−1 0.45 3.260 × 10−1

NOTE: pf = P (W < 0.1), with W being a lognormal random variable.

of the original performance function. In case the performance function is
highly nonlinear, linear approximation of such a nonlinear function will
not be accurate. Consequently, the estimations of the mean and variance of
a nonlinear performance function will be less accurate. The accuracy asso-
ciated with the estimated mean and variance deteriorates rapidly as the
degree of nonlinearity of the performance function increases. For a linear
performance function, the FOVE method would produce the exact values for
the mean and variance.

4. Sensitivity of the computed failure probability to the formulation of the per-
formance function W. Ideally, the computed reliability or failure probabil-
ity for a system should not depend on the definition of the performance
function. However, this is not the case for the MFOSM method. This phe-
nomenon of lack of invariance to the type of performance function is shown
in Figs. 4.4 and 4.5. The main reason for this inconsistency is because the
MFOSM method would result in different first-order approximations for dif-
ferent forms of the performance function. Consequently, different values of
mean and variance will be obtained, resulting in different estimations of re-
liability and failure probability for the same problem. This behavior of the
MFOSM could create an unnecessary puzzle for engineers with regard to
which performance function should be used to obtain an accurate estimation
of reliability. This is not an easy question to answer, in general, except for a
very few simple cases. Another observation that can be made from Figs. 4.4
and 4.5 is that the discrepancies among failure probabilities computed by
the MFOSM method using different performance functions become more
pronounced as the uncertainties of the stochastic basic variables get larger.

5. Limited ability to use available probabilistic information. The reliability
index β gives only weak information on the probability of failure, and thus
the appropriate system probability distribution must be assumed. Further,
the MFOSM method provides no logical way to include available information
on basic variable probability distributions.

From these arguments, the general rule of thumb is not to rely on the result
of the MFOSM method if any of the following conditions exist: (1) high accuracy
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requirement for the estimated reliability or failure probability, (2) high non-
linearity of the performance function, and (3) many skewed random variables
involved in the performance function. However, Cornell (1969) made a strong
defense for the MFOSM method from a practical standpoint as follows:

An approach based on means and variances may be all that is justified when one
appreciates (1) that data and physical arguments are often insufficient to establish
the full probability law of a variable; (2) that most engineering analyses include
an important component of real, but difficult to measure, professional uncertainty;
and (3) that the final output, namely, the decision or design parameters, is often
not sensitive to moments higher than the mean and variance.

To reduce the effect of nonlinearity, one way is to include the second-order
terms in the Taylor series expansion. This would increase the burden of analysis
by having to compute the second-order partial derivatives. Another alternative
within the realm of first-order simplicity is given in Sec. 4.5. Section 4.6 briefly
describes the basis of the second-order reliability analysis techniques.

4.5 Advanced First-Order Second-Moment
(AFOSM) Method

The main thrust of the AFOSM method is to improve the deficiencies associated
with the MFOSM method, while keeping the simplicity of the first-order approx-
imation. Referring to Fig. 4.3, the difference in the AFOSM method is that the
expansion point x∗ = (xL∗, xR∗) for the first-order Taylor series is located on the
failure surface defined by the limit-state equation, W (x) = 0. In other words,
the failure surface is the boundary that separates the system performance from
being unsatisfactory (unsafe) or being satisfactory (safe), that is,

W (x)

> 0, system performance is satisfactory (or safe region);
= 0, limit-state surface (or failure surface);
< 0, system performance is unsatisfactory (or failure region).

The AFOSM method has been applied to various hydrosystem engineering prob-
lems, including storm sewers (Melching and Yen, 1986), dams (Cheng et al.,
1982; 1993), sea dikes and barriers (Vrijling, 1987; 1993), freeboard design
(Cheng et al., 1986a), bridge scour (Yen and Melching, 1991; Chang, 1994),
rainfall-runoff modeling (Melching et al., 1990; Melching, 1992); groundwater
pollutant transport (Sitar et al., 1987; Jang et al., 1990), open channel design
(Easa, 1992), sediment transport (Bechtler and Maurer, 1992), backwater com-
putations (Cesare, 1991; Singh and Melching, 1993), and water quality model-
ing (Tung, 1990; Melching and Anmangandla, 1992; Melching and Yoon, 1996;
Han et al., 2001; Tolson et al., 2001).

4.5.1 Definitions of stochastic parameter spaces

Before discussing the AFOSM methods, a few notations with regard to the
stochastic basic variable space are defined first. In general, the original



Reliability Analysis Considering Load-Resistance Interference 165

stochastic basic variables X could be correlated, non-normal random variables
having a vector of mean µx = (µx1 , µx2 , . . . , µxK )t and covariance matrix Cx as
shown in Sec. 2.7.2. The original random variables X can be standardized as

X ′ = D−1/2
x (X − µx) (4.30)

in which X ′ = (X ′
1, X ′

2, . . . , X ′
K )t is a vector of correlated, standardized random

variables, and D x = diag(σ 2
1 , σ 2

2 , . . . , σ 2
K ) is an K × K diagonal variance matrix.

Through the standardization procedure, each standardized variable X ′ has the
mean zero and unit standard deviation. The covariance matrix of X ′ reduces to
the correlation matrix of the original random variables X, that is, Cx′ = Rx, as
shown in Sec. 2.7.2. Note that if the original random variables X are nonnormal,
the standardized ones X ′ are nonnormal as well. Because it is generally easier to
work with the uncorrelated variables in the reliability analysis, the correlated
random variables X are often transformed into uncorrelated ones U = T (X ),
with T (·) representing transformation, in general. More specifically, orthogonal
transforms often are used to obtain uncorrelated random variables from the
correlated ones. Two frequently used orthogonal transforms, namely, Cholesky
decomposition and spectral decomposition, for dealing with correlated random
variables are described in Appendix 4B. In probability evaluation, it is generally
convenient to deal with normal random variables. For this reason, orthogonal
transformation, normal transformation, and standardization procedures are
applied to the original random variables X to obtain independent, standardized
normal random variables Z ′. Hence this chapter adopts X for stochastic basic
variables in the original scale, X ′ for the standardized correlated stochastic
basic variables, U for the uncorrelated variables, and Z and Z ′, respectively,
for correlated and independent, standardized normal stochastic basic variables.

4.5.2 Determination of design point (Most probable
failure point)

In cases for which several stochastic basic variables are involved in a perfor-
mance function, the number of possible combinations of such variables satis-
fying W (x) = 0 is infinite. From the design viewpoint, one is more concerned
with the combination of stochastic basic variables that would yield the lowest
reliability or highest failure probability. The point on the failure surface asso-
ciated with the lowest reliability is the one having the shortest distance to the
point where the means of the stochastic basic variables are located. This point
is called the design point (Hasofer and Lind, 1974) or the most probable failure
point (Shinozuka, 1983).

Consider that X = (X1, X2, . . . , X K )t are K uncorrelated stochastic basic
variables having a vector mean µx and covariance matrix Dx. The original
stochastic basic variables X can be standardized into X ′ according to Eq. (4.30).
The standardization procedure maps the failure surface in the original x-space
onto the corresponding failure surface in x ′-space, as shown in Fig. 4.6. Hence
the design point in x ′-space is the one that has the shortest distance from the
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failure surface W ′(x ′) = 0 to the origin x ′ = 0. Such a point can be found by
solving

Minimize |x ′| = (x ′t x ′)1/2 =
√√√√ K∑

k=1

x′2
k (4.31a)

subject to W ′(x ′) = 0 (4.31b)

This constrained nonlinear minimization problem can be converted into an
unconstrained minimization problem using the Lagrangian function:

Minimize L(x ′, ξ ) = (x ′t x ′)1/2 + ξW ′(x ′) (4.32)
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in which ξ is the Lagrangian multiplier, which is unrestricted in sign. The
solution to Eq. (4.32) can be obtained by solving the following two equations
simultaneously, that is,

∇x′ L(x ′
∗, ξ∗) =

[
∂L(x ′, ξ )

∂x ′

]
(x ′∗,ξ∗)

= x ′
∗

|x ′∗|
+ ξ∗∇x′ W ′(x ′

∗) = 0 (4.33a)

∇ξ L(x ′
∗, ξ∗) =

[
∂L(x ′, ξ )

∂ξ

]
(x ′∗,ξ∗)

= W ′(x ′
∗) = 0 (4.33b)

in which ∇x = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xK )t is a gradient operator. From Eq. (4.33a),
the design point x ′

∗ can be expressed as

x ′
∗ = −ξ∗|x ′

∗|∇x′ W ′(x ′
∗) (4.34)

Furthermore, from Eq. (4.34), the distance between the origin x ′ = 0 and the
design point x ′

∗ can be obtained as

|x ′
∗| = |ξ∗||x ′

∗|[∇t
x′ W ′(x ′

∗)∇x′ W ′(x ′
∗)]1/2 = |ξ∗||x ′

∗||∇x′ W ′(x ′
∗)| (4.35)

from which the value of the optimal Lagrangian multiplier x∗ can be determined
as

ξ∗ = sign[W ′(0)]|∇x′ W ′(x′
∗)|−1 (4.36)

Substituting Eq. (4.36) into Eq. (4.34) determines the location of the design
point as

x ′
∗ = −sign[W ′(0)]|x ′

∗|
∇x′ W ′(x ′

∗)
|∇x′ W ′(x ′∗)

= −sign[W ′(0)]|x ′
∗|α∗ (4.37)

in which α∗ = ∇x′ W ′(x ′
∗)/|∇x′ W ′(x ′

∗)| is a unit vector emanating from the design
point x ′

∗ and pointing toward the safe region. Referring to Fig. 4.6, where the
mean point µx is located in the safe region, hence W ′(0) > 0 [or W (µx) > 0], and
the corresponding −sign[W ′(0)]α∗ is a unit vector emanating from the origin
x ′ = 0 and pointing to the design point x∗. The elements of α∗ are called the
directional derivatives representing the value of the cosine angle between the
gradient vector ∇x′ W ′(x ′

∗) and axes of the standardized variables. Geometri-
cally, Eq. (4.37) shows that the vector, x ′

∗ is perpendicular to the tangent hyper-
plane passing through the design point. The shortest distance can be expressed
as

|x ′
∗| = −sign[W ′(0)]αt

∗x ′
∗ = −sign[W ′(0)]

∑K
k=1

[
∂W ′(x ′)

∂x′
k

]
x ′∗

x′
k∗√∑K

j =1

[
∂W ′(x ′)

∂x′
j

]2

x ′∗

(4.38)
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Recall that Xk = µk + σk X ′
k , for k = 1, 2, . . . , K . By the chain rule in calculus,

∂W ′(X ′)
∂ X ′

k
= ∂W (X )

∂ Xk

∂ Xk

∂ X ′
k

= ∂W (X )
∂ Xk

σk (4.39a)

or in matrix form as

∇x′ W ′(X ′) = D1/2
x ∇xW (X ) (4.39b)

Then Eq. (4.38) can be written, in terms of the original stochastic basic variables
X, as

|x ′
∗| = sign[W ′(0)]

∑K
k=1

[
∂W (x)

∂xk

]
x∗

(µk − xk∗)√∑K
j =1

[
∂W (x)

∂xj

]2

x∗
σ 2

j

(4.40)

in which x∗ = (x1∗, x2∗, . . . , xK∗)t is the point in the original variable x-space
that can be easily determined from the design point x ′

∗ in x′-space as x∗ = µx +
D1/2

x x ′
∗. It will be shown in the next subsection that the shortest distance from

the origin to the design point |x ′
∗|, in fact, is the absolute value of the reliabil-

ity index based on the first-order Taylor series expansion of the performance
function W (X ) with the expansion point at x∗.

Example 4.8 (Linear performance function) Consider that the failure surface is a
hyperplane given by

W (X ) = a0 +
K∑

k=1

ak Xk

or in vector form as W (X ) = a0 + at X = 0, with a’s being the coefficients and X
being the random variables. Assume that X are uncorrelated random variables with
the mean vector µx and covariance matrix Dx. It can be shown that the MFOSM
reliability index computed by Eq. (4.29) with µw = a0 + atµx and σ 2

w = at Dxa is the
AFOSM reliability index.

To show that the original random variables X are first standardized by Eq. (4.30),
therefore, in terms of the standardized random variables X ′, the preceding linear
failure surface can be expressed as

W ′(X ′) = b0 + bt X ′ = 0

in which b0 = a0 + atµx and bt = at D1/2
x . In Fig. 4.7, let the lower half space con-

taining the origin of x ′-space be designated as the safe region. This would require
b0 = a0 + atµx > 0.

Referring to Fig. 4.7, the gradient of W ′(X ′) is b, which is a vector perpendicular
to the failure hyperplane defined by W ′(X ′) = 0 pointing in the direction of the safe
set. Therefore, the vector −a = −b/

√
btb is a unit vector emanating from x ′ = 0

toward the failure region, as shown in Fig. 4.7. For any vector x ′ landing on the
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Figure 4.7 A linear performance function in the standardized space.

failure hyperplane defined by W ′(x ′) = 0, the following relationship holds:

−2bt x ′
√

btb
= b0√

btb

Note that the left-hand side is the length of the vector x ′ projected on the unit vec-
tor −b/

√
btb, which is the shortest distance from x ′ = 0 to the failure hyperplane.

Therefore, b0/
√

btb is the reliability index, that is,

β = b0√
btb

= a0 + atµx√
at Dxa

= µw

σw

As shown, when the performance function is linear involving uncorrelated stochastic
basic variables, the reliability index is the ratio of the expected value of the perfor-
mance function to its standard deviation. Furthermore, the MFOSM method would
yield the same results as the AFOSM method.

4.5.3 First-order approximation of performance
function at the design point

Referring to Eqs. (4.20) and (4.21), the first-order approximation of the perfor-
mance function W (X ), taking the expansion point xo = x∗, is

W (X ) ≈
K∑

k=1

sk∗ (Xk − xk∗ ) = s t
∗(X − x∗) (4.41)

in which s∗ = (s1∗ , s2∗ , . . . , sK ∗ )t , a vector of sensitivity coefficients of the per-
formance function W (X ) evaluated at the expansion point x∗ that lies on the
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limit-state surface, that is,

sk∗ =
[
∂W (X )

∂ Xk

]
X=x∗

for k = 1, 2, . . . , K

note that W (x∗) is not on the right-hand-side of Eq. (4.41) because W (x∗) = 0.
Hence, at the expansion point x∗, the expected value and the variance of the
performance function W (X ) can be approximated according to Eqs. (4.24) and
(4.25) as

µw ≈ s t
∗(µx − x∗) (4.42)

σ 2
w ≈ s t

∗Cxs∗ (4.43)

in which µx and Cx are the mean vector and covariance matrix of the stochastic
basic variables, respectively. If the stochastic basic variables are uncorrelated,
Eq. (4.43) reduces to

σ 2
w =

K∑
k=1

s2
k∗σ

2
k (4.44)

in which σk is the standard deviation of the kth stochastic basic variable Xk .
Since α∗ = s∗/|s∗|, when stochastic basic variables are uncorrelated, the

standard deviation of the performance function W (X ) alternatively can be ex-
pressed in terms of the directional derivatives as

σw =
K∑

k=1

αk∗sk∗σk (4.45)

where αk∗ is the directional derivative for the kth stochastic basic variable at
the expansion point x∗

αk∗ = sk∗σk√∑K
j =1 s2

j ∗σ
2
j

for k = 1, 2, . . . , K (4.46a)

or, in matrix form,

α∗ = D1/2
x ∇xW (x∗)

|D1/2
x ∇xW (x∗)| (4.46b)

which is identical to the one defined in Eq. (4.37) according to Eq. (4.39). With
the mean and standard deviation of the performance function W (X ) computed
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at x∗, the AFOSM reliability index βAFOSM given in Eq. (4.34) can be determined
as

βAFOSM = µw

σw
=
∑K

k=1 sk∗(µk − xk∗)∑K
k=1 αk∗sk∗σk

(4.47)

The reliability index βAFOSM also is called the Hasofer-Lind reliability index.
Once the value of βAFOSM is computed, the reliability can be estimated by

Eq. (4.10) as ps = �(βAFOSM). Since βAFOSM = sign[W ′(0)]|x ′
∗|, the sensitiv-

ity of βAFOSM with respect to the uncorrelated, standardized stochastic basic
variables is

∇x′βAFOSM = sign[W ′(0)]∇x′ |x′
∗| = sign[W ′(0)]

x ′
∗

|x ′∗|
= −α∗ (4.48)

Note that ∇x′β is a vector showing the direction along which the rate change
in the value of the reliability index β increases most rapidly. This direction is
indicated by −α∗ regardless whether the position of the mean of the stochastic
basic variables µx is in the safe region W ′(0) > 0 or failure zone W ′(0) < 0.
As shown in Fig. 4.8, the vector −α∗ points to the failure region, and moving
along −α∗ would result in a more negative-valued W ′(x ′). This is, geometri-
cally, equivalent to pushing the limit-state surface W ′(x ′) = 0 further away
from x ′ = 0 in Fig. 4.8a and closer to x ′ = 0 in Fig. 4.8b. Hence, moving along
the direction of −α∗ at the design point x∗ would make the value of the relia-
bility index β more positive under W ′(0) > 0, whereas the value of β would be
less negative under W ′(0) < 0.

In both cases, the value of the reliability index increases along −α∗. Alge-
braically, as one moves along −α∗, the current value of the limit-state surface
W ′(x ′) changes from 0 to a negative value, that is, W ′(x ′) = −c, for c > 0. This
implies a new limit state for the system defined by W ′(x ′) = R(x ′) − L(x ′) +
c = 0. The introduction of a positive-valued c in the performance function could
mean an increase in resistance, that is, W ′(x ′) = [R(x ′) + c] − L(x ′) = 0, or a
decrease in load, that is, W ′(x ′) = R(x ′) − [L(x ′) − c] = 0. In either case, the
reliability index and the corresponding reliability for the system would increase
along the direction of −α∗.

Equation (4.48) indicates that moving along the direction of α∗ at the design
point x∗, the values of the reliability index would decrease and that −αk∗ is the
rate of change in βAFOSM owing to a one standard deviation change in stochastic
basic variable Xk at X = x∗. Therefore, the relationship between ∇x′β and ∇xβ

can be expressed as

− αk∗ =
(

∂βAFOSM

∂ X ′
k

)
x ′∗

=
(

∂βAFOSM

∂ Xk

)
x∗

σk for k = 1, 2, . . . , K (4.49a)

or, in matrix form, as

∇xβAFOSM = D−1/2
x ∇x′βAFOSM = −D−1/2

x α∗ (4.49b)
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Figure 4.8 Sensitivity of reliability index: (a) under W ’(0) > 0 (that is,
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It also can be shown easily that the sensitivity of reliability or failure probability
with respect to each stochastic basic variable along the direction of α∗ can be
computed as

(
∂ps

∂ X ′
k

)
x ′∗

= −αk∗φ(βAFOSM)

(4.50a)(
∂ps

∂ Xk

)
x∗

= −αk∗φ(βAFOSM)
σk
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or in matrix form as

∇x′∗ ps = −φ(βAFOSM)α∗
(4.50b)

∇x∗ ps = φ(βAFOSM)∇x∗βAFOSM = −φ(βAFOSM)D−1/2
x α∗

These sensitivity coefficients would reveal the relative importance of each
stochastic basic variable for their effects on reliability or failure probability.

4.5.4 Algorithms of AFOSM for independent
normal parameters

Hasofer-Lind algorithm. In the case that X are independent normal stochastic
basic variables, standardization of X according to Eq. (4.30) reduces them to
independent standard normal random variables Z ′ with mean 0 and covariance
matrix I, with I being a K × K identity matrix. Referring to Fig. 4.8, based on
the geometric characteristics at the design point on the failure surface, Hasofer
and Lind (1974) proposed the following recursive equation for determining the
design point z ′

∗.

z ′
(r +1) = −(−αt

(r ) z ′
(r )

)
α (r ) − W ′(z ′

(r ))
|∇z ′ W ′(z ′

(r ))|
α (r ) for r = 1, 2, . . . (4.51)

in which subscripts (r ) and (r + 1) represent the iteration numbers, and −α

denotes the unit gradient vector on the failure surface pointing to the failure
region. Referring to Fig. 4.9, the first terms of Eq. (4.51), −(−αt

(r )z
′
(r ))α (r ) , is a

projection vector of the old solution vector z ′
(r ) onto the vector −α (r ) emanating

from the origin. The quantity W ′(z ′
(r ))/|∇W ′(z ′

(r ))| is the step size to move from
W ′(z ′

(r )) to W ′(z ′) = 0 along the direction defined by the vector −α (r ) . The
second term is a correction that further adjusts the revised solution closer to
the limit-state surface. It would be more convenient to rewrite the preceding
recursive equation in the original x-space as

x (r +1) = µx + D xs(r )
(x (r ) − µx)ts(r ) − W (x (r ))

st
(r ) D xs (r )

for r = 1, 2, 3, . . . (4.52)

Based on Eq. (4.52), the Hasofer-Lind AFOSM reliability analysis algorithm
for problems involving uncorrelated, normal stochastic variables the can be
outlined as follows:

Step 1: Select an initial trial solution x (r ) .

Step 2: Compute W (x (r )) and the corresponding sensitivity coefficient vector
s (r ) .

Step 3: Revise solution point x (r +1), according to Eq. (4.52).

Step 4: Check if x (r ) and x (r +1) are sufficiently close. If yes, compute the reli-
ability index βAFOSM according to Eq. (4.47) and the corresponding reliability
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Figure 4.9 Geometric interpretation of Hasofer-Lind algorithm in standard-
ized space.

ps = �(βAFOSM); then, go to step 5. Otherwise, update the solution point by
letting x (r ) = x (r +1) and return to step 2.

Step 5: Compute the sensitivity of the reliability index and reliability with
respect to changes in stochastic basic variables according to Eqs. (4.48), (4.49),
and (4.50).

It is possible that a given performance function might have several design
points. In the case that there are J such design points, the reliability can be
calculated as

ps = [�(βAFOSM)]J (4.53)

Ang-Tang algorithm. The core of the updating procedure of Ang and Tang (1984)
relies on the fact that according to Eq. (4.47), the following relationship should
be satisfied:

K∑
k=1

sk∗ (µk − xk∗ − αk∗β∗σk) = 0 (4.54)

Since the variables X are random and uncorrelated, Eq. (4.35) defines the fail-
ure point within the first-order context. Hence Eq. (4.47) can be decomposed
into

xk∗ = µk − αk∗β∗σk for k = 1, 2, . . . , K (4.55)
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Ang and Tang (1984) present the following iterative procedure to locate the de-
sign point x∗ and the corresponding reliability index βAFOSM under the condition
that stochastic basic variables are independent normal random variables. The
Ang-Tang AFOSM reliability algorithm for problems involving uncorrelated
normal stochastic variables has the following steps (Fig. 4.10):

Step 1: Select an initial point x (r ) in the parameter space. For practicality,
the point µx where the means of stochastic basic variables are located is a
viable starting point.

Input: W(x), µ σk, k, fk(xk0)

Select initial x*

Compute: s*, µw, σw and β

Are 
X normal 

?

Compute:  
zk* = Φ−1 [Fk(xk*)]
σk = φ(z k*)/ fk(xk*)
σk = xk* − z k*σk

Compute directional 
derivatives  αk

Update:  
xk* = µk − αk* k

Are new and
old solutions 

close?

Replace the old 
solution

Compute ps = Φ(β )
and stop

Yes

Yes

No

No

*

β σ

Figure 4.10 Flowchart of the Ang-Tang AFOSM reliability analysis involving uncorre-
lated variables.
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Step 2: At the selected point x (r ) , compute the mean of the performance func-
tion W (X ) by

µw = W (x (r )) + s t
(r )(µx − x (r )) (4.56)

and the variance according to Eq. (4.44).

Step 3: Compute the corresponding reliability index β(r ) according to
Eq. (4.34).

Step 4: Compute the values of directional derivative αk for all k = 1, 2, . . . , K
according to Eq. (4.46).

Step 5: Revise the location of expansion point x (r +1) according to Eq. (4.56)
using αk and β(r ) obtained from steps 3 and 4.

Step 6: Check if the revised expansion point x (r +1) differs significantly from
the previous trial expansion point x (r ) . If yes, use the revised expansion point
as the new trial point by letting x (r ) = x (r +1), and go to step 2 for an additional
iteration. Otherwise, the iteration procedure is considered complete, and the
latest reliability index is βAFOSM and is to be used in Eq. (4.10) to compute
the reliability ps.

Step 7: Compute the sensitivity of the reliability index and reliability with
respect to changes in stochastic basic variables according to Eqs. (4.48), (4.49),
and (4.50).

Referring to Eq. (4.8), the reliability is a monotonically increasing function
of the reliability index β, which, in turn, is a function of the unknown failure
point. The task to determine the critical failure point x∗ that minimizes the
reliability is equivalent to minimizing the value of the reliability index β. Low
and Tang (1997), based on Eqs. (4.31a) and (4.31b) developed an optimization
procedure in Excel by solving

Min β =
√

(x − µx)tC −1
x (x − µx)

x

subject to W (x) = 0
(4.57)

Owing to the nature of nonlinear optimization, both AFOSM-HL and AFOSM-
AT algorithms do not necessarily converge to the true design point associated
with the minimum reliability index. Madsen et al. (1986) suggested that dif-
ferent initial trial points be used and that the smallest reliability index be cho-
sen to compute the reliability. To improve the convergence of the Hasofer-Lind
algorithm, Liu and Der Kiureghian (1991) proposed a modified objective func-
tion for Eq. (4.31a) using a nonnegative merit function.

Example 4.9 (Uncorrelated, normal) Refer to Example 4.5 for a storm sewer relia-
bility analysis problem with the following data:
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Variable Mean Coefficient of variation

n (ft1/6) 0.015 0.05
D (ft) 3.0 0.02
S (ft/ft) 0.005 0.05

Assume that all three stochastic basic variables are independent normal random
variables. Compute the reliability that the sewer can convey an inflow discharge of
35 ft3/s using the AFOSM-HL algorithm.

Solution The initial solution is taken to be the means of the three stochastic basic
variables, namely, x (1) = µx = (µn, µD , µS )t = (0.015, 3.0, 0.005)t . The covariance
matrix for the three stochastic basic variables is

D x =

 σ 2
n 0 0
0 σ 2

D 0
0 0 σ 2

S

 =

0.000752 0 0
0 0.062 0
0 0 0.000252


For this example, the performance function QC − QL is

W (n, D, S) = QC − QL = 0.463n−1 D8/3S1/2 − 35

Note that because the W (µn, µD , µS ) = 6.010 > 0, the mean point µx is located in the
safe region. At x (1) = µx, the value of the performance function W (n, D, S) = 6.010,
which is not equal to zero. This implies that the solution point x (1), does not lie
on the limit-state surface. By Eq. (4.52), the new solution x (2) can be obtained as
x (2) = (0.01592, 2.921, 0.004847). Then one checks the difference between the two
consecutive solution points as

δ = |x (1) − x (2) | = [(0.01592 − 0.015)2 + (2.921 − 3.0)2 + (0.004847 − 0.005)2]0.5

= 0.07857

which is considered large, and therefore, the iteration continues. The following table
lists the solution point x (r ) , its corresponding sensitivity vector s (r ) , and the vector
of directional derivatives α (r ) in each iteration. The iteration stops when the differ-
ence between the two consecutive solutions is less than 0.001 and the value of the
performance function is less than 0.001.

Iteration Var. x (r ) s (r ) α(r ) x (r +1)

r = 1 n 0.1500 × 10−01 −0.2734 × 10+04 −0.6468 × 10+00 0.1592 × 10−01

D 0.3000 × 10−01 0.3650 × 10+02 0.6907 × 10+00 0.2921 × 10+01

S 0.5000 × 10−02 0.4101 × 10+04 0.3234 × 10+00 0.4847 × 10−02

δ = 0.7857 × 10−01 W = 0.6010 × 10+01 β = 0.0000 × 10+00

r = 2 n 0.1592 × 10−01 −0.2226 × 10+04 −0.6138 × 10+00 0.1595 × 10−01

D 0.2921 × 10+01 0.3239 × 10+02 0.7144 × 10+00 0.2912 × 10+01

S 0.4847 × 10−02 0.3656 × 10+04 0.3360 × 10+00 0.4827 × 10−02

δ = 0.9584 × 10−02 W = 0.4421 × 10+00 β = 0.1896 × 10+01

(Continued)
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Iteration Var. x (r ) s (r ) α(r ) x (r +1)

r = 3 n 0.1595 × 10−01 −0.2195 × 10+04 −0.6118 × 10+00 0.1594 × 10−01

D 0.2912 × 10−01 0.3209 × 10+02 0.7157 × 10+00 0.2912 × 10+01

S 0.4827 × 10−02 0.3625 × 10+04 0.3369 × 10+00 0.4827 × 10−02

δ = 0.1919 × 10−03 W = 0.2151 × 10−02 β = 0.2056 × 10+01

r = 4 n 0.1594 × 10−01 −0.2195 × 10+04 −0.6119 × 10+00 0.1594 × 10−01

D 0.2912 × 10+01 0.3210 × 10+02 0.7157 × 10+00 0.2912 × 10+01

S 0.4827 × 10−02 0.3626 × 10+04 0.3369 × 10+00 0.4827 × 10−02

δ = 0.3721 × 10−05 W = 0.2544 × 10−06 β = 0.2057 × 10+01

After four iterations, the solution converges to the design point x∗ = (n∗, D∗, S∗)t =
(0.01594, 2.912, 0.004827)t . At the design point x∗, the mean and standard deviation
of the performance function W can be estimated, by Eqs. (4.42) and (4.43), respectively,
as

µw∗ = 5.536 and σw∗ = 2.691

The reliability index then can be computed as β∗ = µw∗/σw∗ = 2.057, and the corre-
sponding reliability and failure probability can be computed, respectively, as

ps = �(β∗) = 0.9802 pf = 1 − ps = 0.01983

Finally, at the design point x∗, the sensitivity of the reliability index and reliabil-
ity with respect to each of the three stochastic basic variables can be computed by
Eqs. (4.49) and (4.50). The results are shown in columns (4) to (7) of the following table:

Variable x∗ α∗ ∂β/∂x′ ∂ps/∂x′ ∂β/∂x ∂ps/∂x x∂β/β∂x x∂ps/ps∂x
(1) (2) (3) (4) (5) (6) (7) (8) (9)

n 0.01594 −0.6119 0.6119 0.02942 815.8 39.22 6.323 0.638
D 2.912 0.7157 −0.7157 −0.03441 −11.9 −0.57 −16.890 −1.703
S 0.00483 0.3369 −0.3369 −0.01619 −1347.0 −64.78 −3.161 −0.319

From the preceding table, the quantities ∂β/∂x′
k and ∂ps/∂x′

k show the sensitivity
of the reliability index and reliability for one standard deviation change in the k-th
stochastic basic variable, whereas ∂β/∂xk and ∂ps/∂xk correspond to one unit change of
the k-th stochastic basic variables in the original space. As can be seen, the sensitivity
of β and ps associated with Manning’s roughness coefficient is positive, whereas those
for pipe size and slope are negative. This indicates that an increase in Manning’s
roughness coefficient would result in an increase in β and ps, whereas an increase
in slope and/or pipe size would decrease β and ps. The indication is confusing from
a physical viewpoint because an increase in Manning’s roughness coefficient would
decrease the flow-carrying capacity of the sewer, whereas, on the other hand, an
increase in pipe diameter and/or pipe slope would increase the sewer’s conveyance
capacity. The problem is that the sensitivity coefficients for β and ps are taken relative
to the design point on the failure surface; i.e., a larger Manning’s would be farther
from the system’s mean condition, thus resulting in a larger value of β. However,
larger values of pipe diameter or slope would be closer to the system’s mean condition,
thus resulting in a smaller value of β. Thus the sign of the sensitivity coefficients is
deceiving, but their magnitude is useful, as described in the following paragraphs.
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Furthermore, one can judge the relative importance of each stochastic basic vari-
able based on the absolute values of the sensitivity coefficients. It is generally difficult
to draw a meaningful conclusion based on the relative magnitude of ∂β/∂x and ∂ps/∂x
because units of different stochastic basic variables are not the same. Therefore, sensi-
tivity measures not affected by the dimension of the stochastic basic variables, such as
∂β/∂x′ and ∂ps/∂x′, generally are more useful. With regard to a one standard deviation
change, for example, pipe diameter is significantly more important than pipe slope.

An alternative sensitivity measure, called the relative sensitivity or the partial
elasticity (Breitung, 1993), is defined as

sk% = ∂y/y
∂xk/xk

=
(

∂y
∂xk

)(
xk

y

)
for k = 1, 2, . . . , K (4.58)

in which sk% is a dimensionless quantity measuring the percentage change in the
dependent variable y due to 1 percent change in the variable xk . The last two columns
of the preceding table show the percentage change in β and ps owing to 1 percent
change in Manning’s roughness, pipe diameter, and pipe slope. As can be observed, the
most important stochastic basic variable in Manning’s formula affecting the sewer’s
conveyance reliability is pipe diameter.

Figure 4.11 indicates that application of the AFOSM method removes the un-
desirable noninvariant behavior of the MFOSM method. The AFOSM method
described in this section is suitable for the case that all stochastic basic variables
in the load and resistance functions are independent normal random variables.
In reality, stochastic basic variables in a performance function may be non-
normal and correlated. In the following two subsections, procedures to treat
stochastic basic variables that are nonnormal and correlated are discussed.
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Figure 4.11 Comparison of the AFOSM reliability method with the exact solution.
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4.5.5 Treatment of nonnormal stochastic variables

When nonnormal random variables are involved, it is advisable to transform
them into equivalent normal variables. Rackwitz (1976) and Rackwitz and
Fiessler (1978) proposed an approach that transforms a nonnormal distribu-
tion into an equivalent normal distribution so that the probability content is
preserved. That is, the value of the CDF of the transformed equivalent nor-
mal distribution is the same as that of the original nonnormal distribution at
the design point x∗. Later, Ditlvesen (1981) provided the theoretical proof of
the convergence property of the normal transformation in the reliability algo-
rithms searching for the design point. Table 4.3 presents the normal equivalent
for some nonnormal distributions commonly used in reliability analysis.

By the Rackwitz (1976) approach, the normal transform at the design point
x∗ satisfies the following condition:

Fk(xk∗ ) = �

(
xk∗ − µk∗ N

σk∗ N

)
= �(z∗

k) for k = 1, 2, . . . , K (4.59)

in which Fk(xk∗ ) is the marginal CDF of the stochastic basic variable Xk having
values at xk∗ , µk∗ N and σk∗ N are the mean and standard deviationas of the
normal equivalent for the kth stochastic basic variable at Xk = xk∗ , and zk∗ =
�−1[Fk(xk∗ )] is the standard normal quantile. Equation (4.59) indicates that
the marginal probability content in both the original and normal transformed
spaces must be preserved. From Eq. (4.59), the following equation is obtained:

µk∗ N = xk∗ − zk∗σk∗ N (4.60)

Note that µk∗ N and σk∗ N are functions of the expansion point x∗. To obtain the
standard deviation in the equivalent normal space, one can take the derivative
on both sides of Eq. (4.59) with respect to xk , resulting in

f k(xk∗ ) = 1
σk∗ N

φ

(
x∗

k − µk∗ N

σk∗ N

)
= φ(z∗

k)
σk∗ N

in which f k(·) and φ(·) are the marginal PDFs of the stochastic basic variable
Xk and the standard normal variable Zk , respectively. From this equation, the
normal equivalent standard deviation σk∗ N can be computed as

σk∗ N = φ(zk∗ )
f k(xk∗ )

(4.61)

Therefore, according to Eqs. (4.60) and (4.61), the mean and standard deviation
of the normal equivalent of the stochastic basic variable Xk can be calculated.

It should be noted that the normal transformation uses only the marginal
distributions of the stochastic basic variables without regarding their correla-
tions. Therefore, it is, in theory, suitable for problems involving independent



TABLE 4.3 Normal Transformation of Selected Distributions

Distribution Equivalent standard normal variable
of X PDF, f x(x∗) zN = �−1[Fx(x∗)] σN

Lognormal
1√

2πx∗σln x
exp

{
−1

2

[
ln(x∗) − µln x

σln x

]2
}

ln(x∗) − µln x

σln x
x∗σln x

x > 0

Exponential βe−β(x∗−xo) x > xo �−1
(

1 − e−β(x∗−xo)
) 1

β
√

2π
exp

[
− z2∗

2
+ β(x∗ − xo)

]

Gamma
βα(x∗ − ξ )α−1e−β(x∗−ξ )

�(α)
x∗ > ξ �−1

(
1 − e−β(x∗−ξ )

) α−1∑
j =0

[β(x∗−ξ )] j

j !
φ (z∗)
f x(x∗)

Type 1
1
β

exp
[
−
(

x − ξ

β

)
− exp

(
x − ξ

β

)]
�−1

{
exp

[
− exp

(
− x − ξ

β

)]}
φ (z∗)
f x(x∗)

extremal −∞ < x < ∞
(max)

Triangular


2

b − a

(
x∗ − a
m − a

)
a ≤ x ≤ m

2
b − a

(
b − x∗
b − m

)
m ≤ x ≤ b


�−1

[
(x∗ − a)2

(b − a)(m − a)

]
a ≤ x ≤ m

�−1

[
1 − (b − x∗)2

(b − a)(b − m)

]
m ≤ x ≤ b

φ (z∗)
f x(x∗)

Uniform
1

b − a
a ≤ x ≤ b �−1

(
x∗ − a
b − a

)
(b − a)φ(z∗)

NOTE: In all cases, µN = x∗ − z∗σN .
SOURCE: After Yen et al. (1986).
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nonnormal random variables. When stochastic basic variables are nonnormal
but correlated, additional considerations must be given in the normal transfor-
mation (see Sec. 4.5.7).

To incorporate the normal transformation for nonnormal uncorrelated
stochastic basic variables, the Hasofer-Lind AFOSM algorithm for problems
having uncorrelated nonnormal stochastic variables involves the following
steps:

Step 1: Select an initial trial solution x (r ) .

Step 2: Compute the mean and standard deviation of the normal equivalent
using Eqs. (4.60) and (4.61) for those nonnormal stochastic basic variables.
For normal stochastic basic variables, µkN ,(r ) = µk and σkN ,(r ) = σk .

Step 3: Compute W (x (r )) and the corresponding sensitivity coefficient vector
sx,(r ).

Step 4: Revise solution point x (r +1) according to Eq. (4.52) with the mean
and standard deviations of nonnormal stochastic basic variables replaced by
their normal equivalents, that is,

x (r +1) = µN ,(r ) + D N ,(r )sx,(r )
(x (r ) − µN ,(r ))tsx,(r )−W (x (r ))

st
x,(r ) D N ,(r )sx,(r )

(4.62)

Step 5: Check if x (r ) and x (r +1) are sufficiently close. If yes, compute the reli-
ability index βAFOSM according to Eq. (4.47) and the corresponding reliability
ps = �(βAFOSM); then, go to step 5. Otherwise, update the solution point by
letting x (r ) = x (r +1) and return to step 2.

Step 6: Compute the sensitivity of the reliability index and reliability with
respect to changes in stochastic basic variables according to Eqs. (4.48), (4.49),
and (4.50) with D x replaced by D xN at the design point x∗.

As for the Ang-Tang AFOSM algorithm, the iterative algorithms described
previously can be modified as follows (also see Fig. 4.10):

Step 1: Select an initial point x (r ) in the parameter space.

Step 2: Compute the mean and standard deviation of the normal equivalent
using Eqs. (4.60) and (4.61) for those nonnormal stochastic basic variables.
For normal stochastic basic variables, µkN ,(r ) = µk and σkN ,(r ) = σk .

Step 3: At the selected point x(r ) , compute the mean and variance of the
performance function W (x (r )) according to Eqs. (4.56) and (4.44), respect-
ively.

Step 4: Compute the corresponding reliability index β(r ) according to
Eq. (4.8).

Step 5: Compute the values of the normal equivalent directional derivative
αkN ,(r ) , for all k = 1, 2, . . . , K , according to Eq. (4.46), in that the standard
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deviations of nonnormal stochastic basic variables σk ’s are replaced by the
corresponding σkN ,(r ) ’s.

Step 6: Using β(r ) and αkN ,(r ) obtained from steps 3 and 5, revise the location
of expansion point x (r +1) according to

xk,(r +1) = µkN ,(r ) − αkN ,(r )β(r )σkN ,(r ) k = 1, 2, . . . , K (4.63)

Step 7: Check if the revised expansion point x (r +1) differs significantly from
the previous trial expansion point x (r ) . If yes, use the revised expansion
point as the new trial point by letting x (r ) = x (r +1), and go to step 2 for an-
other iteration. Otherwise, the iteration is considered complete, and the latest
reliability index β(r ) is used to compute the reliability ps = �(β(r )).

Step 8: Compute the sensitivity of the reliability index and reliability with
respect to changes in stochastic basic variables according to Eqs. (4.47), (4.48),
and (4.49) with D x replaced by D xN at the design point x∗.

Example 4.10 (Independent, nonnormal) Refer to the data in Example 4.9 for the
storm sewer reliability analysis problem. Assume that all three stochastic basic vari-
ables are independent random variables having different distributions. Manning’s
roughness n has a normal distribution; pipe diameter D, lognormal; and pipe slope
S , Gumbel distribution. Compute the reliability that the sewer can convey an inflow
discharge of 35 ft3/s by the Hasofer-Lind algorithm.

Solution The initial solution is taken to be the means of the three stochastic basic vari-
ables, namely, x (1) = µx = (µn, µD , µS )t = (0.015, 3.0, 0.005)t . Since the stochastic
basic variables are not all normally distributed, the Rackwitz normal transformation
is applied. For Manning’s roughness, no transformation is required because it is a
normal stochastic basic variable. Therefore, µn,N ,(1) = µn = 0.015 and σn,N ,(1) =
σn = 0.00075.

For pipe diameter, which is a lognormal random variable, the variance and the
mean of log-transformed pipe diameter can be computed, according to Eqs. (2.67a)
and (2.67b), as

σ2
ln D = ln(1 + 0.022) = 0.0003999

µln D = ln(3.0)
0.0003999

2
= 1.09841

The standard normal variate zD corresponding to D = 3.0 ft. is

zD = [ln(3) − µln D]/σln D = 0.009999

Then, according to Eqs. (4.60) and (4.61), the standard deviation and the mean of
normal equivalent at D = 3.0 ft. are, respectively,

µD,N ,(1) = 2.999 σD,N ,(1) = 0.05999
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For pipe slope, the two parameters in the Gumbel distribution, according to
Eqs. (2.86a) and (2.86b), can be computed as

β = σS√
1.645

= 0.0001949

ξ = µS − 0.577β = 0.004888

The value of reduced variate Y = (S − ξ )/β at S = 0.005 is Y = 0.577, and the
corresponding value of CDF by Eq. (2.85a) is FEV1(Y = 0.577) = 0.5703. According
to Eq. (4.59), the standard normal quantile corresponding to the CDF of 0.5703 is
Z = 0.1772. Based on the available information, the values of PDFs for the standard
normal and Gumbel variables, at S = 0.005, can be computed as φ(Z = 0.1722) =
0.3927 and f EV1(Y = 0.577) = 1643. Then, by Eqs. (4.61) and (4.60), the nor-
mal equivalent standard deviation and the mean for the pipe slope, at S = 0.005,
are

µS ,N ,(1) = 0.004958 σS ,N ,(1) = 0.000239

At x (1) = (0.015, 3.0, 0.005)t , the normal equivalent mean vector for the three stochas-
tic basic variables is

µN ,(1) = (µn,N ,(1) , µD,N ,(1) , µS ,N ,(1))
t = (0.015, 2.999, 0.004958)t

and the covariance matrix is

D N ,(1) =

 σ 2
n,N 0 0

0 σ2
D,N 0

0 0 σ 2
S ,N

 =

0.000752 0 0
0 0.05992 0
0 0 0.0002392


At x (1), the sensitivity vector sx,(1) is

sx,(1) = (∂W/∂n, ∂W/∂ D, ∂W/∂S)t = (−2734, 36.50, 4101)t

and the value of the performance function W (n, D, S) = 6.010, is not equal to zero.
This implies that the solution point x (1) does not lie on the limit-state surface. Apply-
ing Eq. (4.62) using normal equivalent means µN and variances D xN and the new
solution x (2) can be obtained as x (2) = (0.01590, 2.923, 0.004821)t . Then one checks
the difference between the two consecutive solutions as

δ = | x (1) − x (2) | = [(0.0159 − 0.015)2 + (2.923 − 3.0)2 + (0.004821 − 0.005)2]0.5

= 0.07729

which is considered large, and therefore, the iteration continues. The following table
lists the solution point x (r ) , its corresponding sensitivity vector sx,(r ) , and the vector
of directional derivatives αN ,(r ) in each iteration. The iteration stops when the dif-
ference between the two consecutive solutions is less than 0.001 and the value of the
performance function is less than 0.001.
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Iteration Var. x (r ) µN ,(r ) σN ,(r ) sx,(r ) αN ,(r ) x (r +1)

r = 1 n 0.1500 × 10−01 0.1500 × 10−01 0.7500 × 10−03 −0.2734 × 10+04 −0.6497 × 10+00 0.1590 × 10−01

D 0.3000 × 10+01 0.2999 × 10+01 0.5999 × 10−01 0.3650 × 10+02 0.6938 × 10+00 0.2923 × 10+01

S 0.5000 × 10−02 0.4958 × 10−02 0.2390 × 10−03 0.4101 × 10+04 0.3106 × 10+00 0.4821 × 10−02

δ = 0.7857 × 10−01 W = 0.6010 × 10+01 β = 0.0000 × 10+00

r = 2 n 0.1590 × 10−01 0.1500 × 10−01 0.7500 × 10−03 −0.2229e+04 −0.6410e+00 0.1598 × 10−01

D 0.2923 × 10+01 0.2998 × 10+01 0.5845 × 10−01 0.3237 × 10+02 0.7255 × 10+00 0.2912 × 10+01

S 0.4821 × 10−02 0.4944 × 10−02 0.1778 × 10−03 0.3675 × 10+04 0.2505 × 10+00 0.4853 × 10−02

δ = 0.1113 × 10−01 W = 0.4371 × 10+00 β = 0.1894 × 10+01

r = 3 n 0.1598 × 10−01 0.1500 × 10−01 0.7500 × 10−03 −0.2190 × 10+04 −0.6369 × 10+00 0.1598 × 10−01

D 0.2912e+01 0.2998e+01 0.5823 × 10−01 0.3210 × 10+02 0.7247 × 10+00 0.2912 × 10+01

S 0.4853 × 10−02 0.4950 × 10−02 0.1880 × 10−03 0.3607 × 10+04 0.2630e+00 0.4849 × 10−02

δ = 0.1942 × 10−04 W = 0.2147 × 10−02 β = 0.2049 × 10+01

r = 4 n 0.1598 × 10−01 0.1500 × 10−01 0.7500 × 10−03 −0.2190 × 10+04 −0.6373 × 10+01 0.1598 × 10−01

D 0.2912 × 10+01 0.2998 × 10+01 0.5823 × 10−01 0.3210 × 10+02 0.7249 × 10+00 0.2912 × 10+01

S 0.4849 × 10−02 0.4949 × 10−02 0.1867 × 10−03 0.3609 × 10+04 0.2614 × 10+00 0.4849 × 10−02

δ = 0.2553 × 10−04 W = 0.3894 × 10−05 β = 0.2050 × 10+01

After four iterations, the solution converges to the design point x∗ = (n∗, D∗, S∗)t =
(0.01598, 2.912, 0.004849)t . At the design point x∗, the mean and standard deviation
of the performance function W can be estimated by Eqs. (4.42) and (4.43), respectively,
as

µw∗ = 5.285 and σw∗ = 2.578

The reliability index then can be computed as β∗ = µw∗/σw∗ = 2.050, and the corre-
sponding reliability and failure probability can be computed, respectively, as

ps = �(β∗) = 0.9798 pf = 1 − ps = 0.02019

Finally, at the design point x∗, the sensitive of the reliability index and reliability with
respect to each of the three stochastic basic variables can be computed by Eqs. (4.49)
and (4.50). The results are shown in columns (4) to (7) in the following table:

Variable x αN ,∗ ∂β/∂z ∂ps/∂z ∂β/∂x ∂ps/∂x x∂β/β∂x x∂ps/ps∂x
(1) (2) (3) (4) (5) (6) (7) (8) (9)

n 0.01594 −0.6372 0.6372 0.03110 849.60 41.46 6.623 0.6762
D 2.912 0.7249 −0.7249 −0.03538 −12.45 −0.61 −17.680 −1.8060
S 0.00483 0.2617 −0.2617 −0.01277 −1400.00 −68.32 −3.312 −0.3381

The sensitivity analysis yields a similar indication about the relative importance of
the stochastic basic variables, as in Example 4.9.

4.5.6 Treatment of correlated normal
stochastic variables

When some of the stochastic basic variables involved in the performance func-
tion are correlated, transformation of correlated variables to uncorrelated ones
is made. Consider that the stochastic basic variables in the performance func-
tion are multivariate normal random variables with the mean matrix µx and
the covariance matrix Cx. Without losing generality, the original stochastic
basic variables are standardized according to Eq. (4.30) as X ′ = D−1/2

x (X−µx).



186 Chapter Four

Therefore, the standardized stochastic basic variables X ′ have the mean 0 and
covariance matrix equal to the correlation matrix Rx. That is, Cx′ = Rx = [ρ j k],
with ρ j k being the correlation coefficient between stochastic basic variables X j
and Xk .

To break the correlative relation among the stochastic basic variables, or-
thogonal transformation techniques can be applied (see Appendix 4C). As an
example, through eigenvalue-eigenvector (or spectral) decomposition, a new
vector of uncorrelated stochastic basic variables U can be obtained as

U = V t X ′ (4.64)

in which Vx is the normalized eigenvector matrix of the correlation matrix Rx
of the original random variables. The new random variables U have a mean
vector 0 and covariance matrix Lx = diag(λ1, λ2, . . . , λK ), which is a diagonal
matrix containing the eigenvalues of Rx. Hence the standard deviation of each
uncorrelated standardized stochastic basic variable Uk is the square root of the
corresponding eigenvalue, that is,

√
λk . Further standardization of U leads to

Y = Λ−1/2
x U (4.65)

in which Y are uncorrelated random variables having a mean vector 0 and
covariance matrix I being an identity matrix.

Consider that the original stochastic basic variables are multivariate nor-
mal random variables. The orthogonal transformation by Eq. (4.64) is a linear
transformation; the resulting transformed random variables U are individu-
ally normal but uncorrelated; that is, U ∼ N(0, L) and Y = Z ′ ∼ N(0, I ).
Then the relationship between the original stochastic basic variables X and
the uncorrelated standardized normal variables Z ′ can be written as

Z ′ = Λ−1/2
x V t

x D−1/2
x (X − µx) (4.66a)

X = µx + D1/2
x V xΛ1/2

x Z ′ (4.66b)

in which Λx and Vx are, respectively, the eigenvalue matrix and eigenvector
matrix corresponding to the correlation matrix Rx.

In the transformed domain as defined by Z ′, the directional derivatives of the
performance function in z ′-space αz′ can be computed, according to Eq. (4.37), as

αz′ = ∇z′ W ′(z ′)
|∇z′ W ′(z ′)| (4.67)

in which the vector of sensitivity coefficients in Z ′-space sz′ = ∇z′ W ′(z ′) can be
obtained from ∇xW (x) using the chain rule of calculus, according to Eq. (4.66b),
as

sz′ = ∇z′ W (z ′) =
(

∂ Xk

∂ Z′
j

)
∇xW (x)

=
(

D1/2
x VxΛ1/2

x

)t
∇xW (x) = Λ1/2

x D1/2
x V t

xsx (4.68)
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in which sx is the vector of sensitivity coefficients of the performance function
with respect to the original stochastic basic variables X.

After the design point is found, one also is interested in the sensitivity of the
reliability index and failure probability with respect to changes in the involved
stochastic basic variables. In the uncorrelated standardized normal Z ′-space,
the sensitivity of β and ps with respect to Z ′ can be computed by Eqs. (4.49)
and (4.50) with X ′ replaced by Z ′. The sensitivity of β with respect to X in the
original parameter space then can be obtained as

∇xβ =
[

∂ Z′
j

∂ Xk

]
∇z′β = (

Λ−1/2
x V t

x D−1/2
x

)t∇z′β = −D−1/2
x VxΛ−1/2

x αz′ (4.69)

from which the sensitivity for ps can be computed by Eq. (4.50b). A flowchart
using the Ang-Tang algorithm for problems involving correlated stochastic
basic variables is shown in Fig. 4.12. Step-by-step procedures for the corre-
lated normal case by the Hasofer-Lind and Ang-Tang algorithms are given as
follows.

The Hasofer–Lind AFOSM algorithm for problems having correlated normal
stochastic variables involves the following steps:

Step 1: Select an initial trial solution x (r ) .

Step 2: Compute W (x (r )) and the corresponding sensitivity coefficient vector
sx,(r ).

Step 3: Revise solution point x (r +1) according to

x (r +1) = µx + Cxsx,(r )
(x (r ) − µx)tsx,(r ) − W (x (r ))

st
x,(r )

Cxsx,(r )
(4.70)

Step 4: Check if x (r ) and x (r +1) are sufficiently close. If yes, compute the
reliability index β(r ) according to

βAFOSM = [(x∗ − µx)tC−1
x (x∗ − µx)]1/2 (4.71)

and the corresponding reliability ps = �(βAFOSM); then, go to step 5. Other-
wise, update the solution point by letting x (r ) = x (r +1) and return to step 2.

Step 5: Compute the sensitivity of the reliability index and reliability with
respect to changes in stochastic basic variables at the design point x∗ by
Eqs. (4.49), (4.50), (4.69), and (4.58).

On the other hand, the Ang-Tang AFOSM algorithm for problems involving
correlated, normal stochastic basic variables consists of following steps:

Step 1: Decompose the correlation matrix Rx to find its eigenvector matrix
Vx and eigenvalues λ’s, using appropriate techniques.

Step 2: Select an initial point x (r ) in the original parameter space.

Step 3: At the selected point x (r ) compute the mean and variance of the
performance function W (X ) according to Eqs. (4.56) and (4.43), respectively.
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Figure 4.12 Flowchart for the Ang-Tang AFOSM reliability analysis
involving correlated variables.

Step 4: Compute the corresponding reliability index β(r ) according to
Eq. (4.34).

Step 5: Compute sensitivity coefficients sz′ in the uncorrelated standard nor-
mal space according to Eq. (4.68) and the vector of directional derivatives
αz′,(r ) according to Eq. (4.67).

Step 6: Using β(r ) and αz′,(r ) obtained from steps 4 and 5, compute the location
of expansion point z ′

(r +1) in the uncorrelated standard normal space as

z ′
k,(r +1) = −αk,(r )β(r ) for k = 1, 2, . . . , K (4.72)
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Step 7: Convert the obtained expansion point z ′
(r +1) back to the original pa-

rameter space according to Eq. (4.66b).

Step 8: Check if the revised expansion point x (r +1) differs significantly from
the previous trial expansion point x (r ) . If yes, use the revised expansion point
as the trial point by letting x (r ) = x (r +1), and go to step 3 for another iteration.
Otherwise, the iteration procedure is considered complete, and the latest
reliability index β(r ) is used to compute the reliability ps = �(β(r )).

Step 9: Compute the sensitivity of the reliability index and reliability with
respect to changes in stochastic basic variables at the design point x∗ by
Eqs. (4.49), (4.50), (4.69), and (4.68).

Example 4.11 (Correlated, normal) Refer to the data in Example 4.9 for the storm
sewer reliability analysis problem. Assume that Manning’s roughness coefficient n
and pipe diameter D are dependent normal random variables having a correlation
coefficient of −0.75. Furthermore, the pipe slope S also is a normal random variable
but is independent of Manning’s roughness coefficient and pipe size. Compute the re-
liability that the sewer can convey an inflow discharge of 35 ft3/s by the Hasofer-Lind
algorithm.

Solution The initial solution is taken to be the means of the three stochastic basic vari-
ables, namely, x (1) = µx = (µn, µD , µS )t = (0.015, 3.0, 0.005)t . Since the stochastic
basic variables are correlated normal random variables with a correlation matrix as
follows:

Rx =
[

1.0 ρn,D ρn,S
ρn,D 1.0 ρD,S
ρn,S ρD,S 1.0

]
=
[

1.00 −0.75 0.00
−0.75 1.00 0.00

0.00 0.00 1.00

]

by the spectral decomposition, the eigenvalues matrix associated with the correlation
matrix Rx is Λx = diag(1.75, 0.25, 1.00), and the corresponding eigenvector matrix
Vx is

Vx =
[

0.7071 0.7071 0.0000
−0.7071 0.7071 0.0000

0.0000 0.0000 1.0000

]

At x (1) = (0.015, 3.0, 0.005)t , the sensitivity vector for the performance function

W (n, D, S) = (QC − QL) = 0.463n1 D8/3S1/2 − 35

is sx,(1) = (∂W/∂n, ∂W/∂ D, ∂W/∂S)t = (−2734, 36.50, 4101)t

and the value of the performance function W (x (1)) = 6.010, is not equal to zero. This
indicates that the solution point x (1) does not lie on the limit-state surface. Applying
Eq. (4.70), the new solution x (2) can be obtained as x (2) = (0.01569, 2.900, 0.004885).
The difference between the two consecutive solutions is computed as

δ = |x (1) − x (2) | = [(0.01569 − 0.015)2 + (2.9 − 3.0)2 + (0.004885 − 0.005)2]0.5

= 0.1002
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which is considered large, and therefore, the iteration continues. The following table
lists the solution point x (r ) , its corresponding sensitivity vector sx,(r ) , and the vector
of directional derivatives αz′,(r ) , in each iteration. The iteration stops when the Eu-
clidean distance between the two consecutive solution points is less than 0.001 and
the value of the performance function is less than 0.001.

Iteation Var. x (r ) s (r ) α(r ) x (r +1)

r = 1 n 0.1500 × 10−01 −0.2734 × 10+04 −0.9681 × 10+00 0.1599 × 10−01

D 0.3000 × 10+01 0.3650 × 10+02 0.2502 × 10+00 0.2920 × 10+01

S 0.5000 × 10−02 0.4101 × 10+04 0.1203 × 10−01 0.4908 × 10−02

δ = 0.8008 × 10−01 W = 0.6010 × 10+01 β = 0.000 × 10+00

r = 2 n 0.1599 × 10−01 −0.2217 × 10+04 −0.9656 × 10+00 0.1607 × 10−01

D 0.2920 × 10+01 0.3242 × 10+02 0.2583 × 10+00 0.2912 × 10+01

S 0.4908 × 10−02 0.3612 × 10+04 0.2857 × 10−01 0.4897 × 10−02

δ = 0.7453 × 10 − 02 W = 0.4565 × 10+00 β = 0.1597 × 10+01

r = 3 n 0.1607 × 10−01 −0.2178 × 10+04 −0.9654 × 10+00 0.1607 × 10−01

D 0.2912 × 10+01 0.3209 × 10+02 0.2591 × 10+00 0.2912 × 10+01

S 0.4897 × 10−02 0.3574 × 10+04 0.2991 × 10−01 0.4896 × 10−02

δ = 0.7101 × 10−04 W = 0.2992 × 10−02 β = 0.1598 × 10+01

After four iterations, the solution converges to the design point x∗ = (n∗, D∗, S∗)t =
(0.01607, 2.912, 0.004896)t . At the design point x∗, W = 0.5758×10−07, and the mean
and standard deviation of the performance function W can be estimated, by Eqs. (4.42)
and (4.43), respectively, as

µw∗ = 5.510 and σw∗ = 3.448

The reliability index then can be computed as β∗ = µw∗/σw∗ = 1.598, and the corre-
sponding reliability and failure probability can be computed, respectively, as

ps = �(β∗) = 0.9450 pf = 1 − ps = 0.055

Finally, at the design point x∗, the sensitivity of the reliability index and reliabil-
ity with respect to each of the three stochastic basic variables can be computed by
Eqs. (4.49), (4.50), (4.56), and (4.57). The results are shown in the following table:

Variable x α∗ ∂β/∂z ∂ps/∂z ∂β/∂x ∂ps/∂x x∂β/β∂x x∂ps/ps∂x
(1) (2) (3) (4) (5) (6) (7) (8) (9)

n 0.01607 −0.9654 0.9654 0.1074 690.3 76.81 11.09 1.234
D 2.912 0.2591 −0.2591 −0.02883 −119.6 −13.31 −348.28 −38.76
S 0.004896 0.02991 −0.02991 −0.003328 −1814. −201.9 −8.881 −0.9885

4.5.7 AFOSM reliability analysis for nonnormal
correlated stochastic variables

For most practical engineering problems, parameters involved in load and re-
sistance functions are correlated nonnormal random variables. Such distribu-
tional information has important implications for the results of reliability com-
putations, especially on the tail part of the distribution for the performance
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function. The procedures of the Rackwitz normal transformation and orthogo-
nal decomposition described previously can be incorporated into AFOSM
reliability analysis. The Ang-Tang algorithm, outlined below, first performs the
orthogonal decomposition, followed by the normalization, for problems involv-
ing multivariate nonnormal stochastic variables (Fig. 4.12).

The Ang-Tang AFOSM algorithm for problems involving correlated nonnor-
mal stochastic variables consists of the following steps:

Step 1: Decompose correlation matrix Rx to find its eigenvector matrix V x
and eigenvalues Λx using appropriate techniques.

Step 2: Select an initial point x (r ) in the original parameter space.

Step 3: At the selected point x (r ) , compute the mean and variance of the
performance function W (X ) according to Eqs. (4.56) and (4.43), respectively.

Step 4: Compute the corresponding reliability index β(r ) according to Eq. (4.8).

Step 5: Compute the mean µkN ,(r ) and standard deviation σkN ,(r ) of the normal
equivalent using Eqs. (4.60) and (4.61) for the nonnormal stochastic variables.

Step 6: Compute the sensitivity coefficient vector with respect to the per-
formance function sz′,(r ) in the independent, standardized normal z ′-space,
according to Eq. (4.68), with D x replaced by D xN ,(r ) .

Step 7: Compute the vector of directional derivatives αz′,(r ) according to
Eq. (4.67).

Step 8: Using β(r ) and αz′,(r ) obtained from steps 4 and 7, compute the location
of solution point z ′

(r +1) in the transformed domain according to Eq. (4.70).

Step 9: Convert the obtained expansion point z ′
(r +1) back to the original pa-

rameter space as

x (r +1) = µx,N ,(r ) + D1/2
x,N ,(r )VxΛ1/2

x z ′
(r +1) (4.73)

in which µx,N ,(r ) is the vector of means of normal equivalent at solution point
x (r ) , and D x,N ,(r ) is the diagonal matrix of normal equivalent variances.

Step 10: Check if the revised expansion point x (r +1) differs significantly from
the previous trial expansion point x (r ) . If yes, use the revised expansion point
as the trial point by letting x (r ) = x (r +1), and go to step 3 for another iteration.
Otherwise, the iteration is considered complete, and the latest reliability
index β(r ) is used in Eq. (4.10) to compute the reliability ps.

Step 11: Compute the sensitivity of the reliability index and reliability with
respect to changes in stochastic variables according to Eqs. (4.48), (4.49),
(4.51), (4.69), and (4.58), with D x replaced by D x,N at the design point x∗.

One drawback of the Ang-Tang algorithm is the potential inconsistency be-
tween the orthogonally transformed variables U and the normal-transformed
space in computing the directional derivatives in steps 6 and 7. This is so be-
cause the eigenvalues and eigenvectors associated with Rx will not be identical
to those in the normal-transformed variables. To correct this inconsistency, Der
Kiureghian and Liu (1985), and Liu and Der Kiureghian(1986) developed a
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normal transformation that preserves the marginal probability contents and
the correlation structure of the multivariate nonnormal random variables.

Suppose that the marginal PDFs of the two stochastic variables X j and Xk
are known to be f j (xj ) and f k(xk), respectively, and their correlation coefficient
is ρ j k . For each individual random variable, a standard normal random variable
that satisfies Eq. (4.59) is

�(Zj ) = F j (X j ) �(Zk) = Fk(Xk) (4.74)

By definition, the correlation coefficient between the two stochastic variables
X j and Xk satisfies

ρ j k = E
[(

X j − µ j

σ j

)(
Xk − µk

σk

)]
=
∫ ∞

−∞

∫ ∞

−∞

(
xj − µ j

σ j

)(
xk − µk

σk

)
f j ,k(xj , xk) dx j dxk

(4.75)

where µk and σk are, respectively, the mean and standard deviation of Xk . By
the transformation of variable technique, the joint PDF f j ,k(xj , xk) in Eq. (4.75)
can be expressed in terms of a bivariate standard normal PDF as

f j ,k(xj , xk) = φ
(
zj , zk|ρ∗

j k

)
∣∣∣∣∣∣∣∣∣
∂zj

∂x j

∂zj

∂xk

∂zk

∂xj

∂zk

∂xk

∣∣∣∣∣∣∣∣∣
where φ(zj , zk | ρ∗

j k) is the bivariate standard normal PDF for Zj and Zk having
zero means, unit standard deviations, and correlation coefficient ρ∗

j k , and the
elements in Jacobian matrix can be evaluated as

∂zk

∂xk
= ∂�−1[Fk(xk)]

∂xk
= f k(xk)

φ(zk)
∂zk

∂xj
= 0 for j �= k

Then the joint PDF of X j and Xk can be simplified as

f j ,k(xj , xk) = φ
(
zj , zk|ρ∗

j k

) f j (xj )
φ(zj )

f k(xk)
φ(zk)

(4.76)

Substituting Eq. (4.76) into Eq. (4.75) results in the Nataf bivariate distribution
model (Nataf, 1962):

ρ j k =
∫ ∞

−∞

∫ ∞

−∞

(
xj − µ j

σ j

)(
xk − µk

σk

)
φ j k(zj , zk|ρ∗

j k) d zj d zk (4.77)

in which xk = F −1
k [� (zk)].
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Two conditions are inherently considered in the bivariate distribution model
of Eq. (4.77):

1. According to Eq. (4.74), the normal transformation satisfies,

Zk = �−1[Fk(Xk)] for k = 1, 2, . . . , K (4.78)

This condition preserves the probability content in both the original and the
standard normal spaces.

2. The value of the correlation coefficient in the normal space lies between −1
and +1.

For a pair of nonnormal stochastic variables X j and Xk with known means µ j
and µk , standard deviations σ j and σk , and correlation coefficient ρ j k ,
Eq. (4.77) can be applied to solve for ρ∗

j k . To avoid the required computation
for solving ρ∗

j k in Eq. (4.74), Der Kiureghian and Liu (1985) developed a set of
semiempirical formulas as

ρ∗
j k = T j kρ j k (4.79)

in which T j k is a transformation factor depending on the marginal distributions
and correlation of the two random variables considered. In case both the random
variables under consideration are normal, the transformation factor T j k has
a value of 1. Given the marginal distributions and correlation for a pair of
random variables, the formulas of Der Kiureghian and Liu (1985) compute the
corresponding transformation factor T j k to obtain the equivalent correlation
ρ∗

j k as if the two random variables were bivariate normal random variables.
After all pairs of stochastic variables are treated, the correlation matrix in the
correlated normal space Rz is obtained.

Ten different marginal distributions commonly used in reliability computa-
tions were considered by Der Kiureghian and Liu (1985) and are tabulated in
Table 4.4. For each combination of two distributions, there is a corresponding
formula. Therefore, a total of 54 formulas for 10 different distributions were
developed, and they are divided into five categories, as shown in Fig. 4.13. The
complete forms of these formulas are given in Table 4.5. Owing to the semiem-
pirical nature of the equations in Table 4.5, it is a slight possibility that the
resulting ρ∗

j k may violate its valid range when ρ j k is close to −1 or +1.
Based on the normal transformation of Der Kiureghian and Liu, the AFOSM

reliability analysis for problems involving multivariate nonnormal random
variables can be conducted as follows:

Step 1: Apply Eq. (4.77) or Table 4.5 to construct the correlation matrix Rz
for the equivalent random variables Z in the standardized normal space.

Step 2: Decompose correlation matrix Rz to find its eigenvector matrix Vz
and eigenvalues λz’s using appropriate orthogonal decomposition techniques.
Therefore, Z ′ = Λ−1/2

z V t
zZ is a vector of independent standard normal ran-

dom variables.



194 Chapter Four

TABLE 4.4 Definitions of Distributions Used in Fig. 4.13 and Table 4.5

Distributions PDF Moments and parameters relations

Normal f x(x) = 1√
2πσx

e−(x−µx )2/2σ2
x for − ∞ < x < ∞ —

Uniform f x(x) = 1
b−a for a ≤ x ≤ b µx = a+b

2 σ 2
x = (b−a)2

12

Shifted Exponential f x(x) = βe−β(x−x0) for x ≥ x0 µx = 1
β

+ x0 σ 2
x = 1

β2

Shifted Rayleigh f x(x) = (x−x0)e−(x−x0)2/2α2

α2 for x ≥ x0
µx = 1.253α + x0
σx = 0.655136α

Type I, max f x(x) = 1
β

e− (x−ξ )
β

−e
− (x−ξ )

β

for − ∞ < x < ∞ µx = ξ + 0.5772β

σx = πβ√
6

γx = 1.29857

Type I, min f x(x) = 1
β

e(x−ξ )/β−e
(x−ξ )

β for − ∞ < x < ∞ µx = ξ − 0.5772ββ

σx = πβ√
6

γx = −1.29857

Lognormal f x(x) = 1√
2π xσln x

e
− 1

2

(
ln(x)−µln x

σln x

)2

for x ≥ 0
µln x = ln(µx) − 1

2 σ 2
ln x

σ 2
ln x = ln

[
1 +

(
σx
µx

)2
]

Gamma f x(x) = βα (x−ξ )α−1e−β(x−ξ )

�(α) for x ≥ ξ µx = α
β

+ ξ σ 2
x = α

β2

Type II, Largest f x(x) = α
β

(
β
x

)α+1
e
−
(

β
x

)α

for x ≥ 0
µx = β�

(
1 − 1

α

)
σ 2

x = β2
[
�
(

1 − 2
α

)
− �2

(
1 − 1

α

)]
Type III, smallest
(Weibull) f x(x) = α

β

(
x−ξ
β

)α−1
e
−
(

x−ξ
β

)α

for x ≥ ξ
µx = ξ + β�

(
1 + 1

α

)
σ 2

x = β2
[
�
(

1 + 2
α

)
− �2

(
1 + 1

α

)]

Distribution of Xk

N U E T1L T1S L G T2L T3S
N Tjk CAT-1 Tjk = Const CAT-2 Tjk = f(Ωk)
U
E  CAT-3 
T1L Tjk = f(ρjk)
T1S

CAT-4
Tjk = f(Ωk, ρjk)

L  CAT-5
G     Tjk = f(Ωj, Ωk, ρjk)
T2L

D
is

tr
ib

ut
io

n 
of

X
j

T3G

Note:
N     = Normal T1S = Type 1 smallest 
U     = Uniform L     = Lognormal 
E     = Shifted exponential G     = Gamma 
T1L = Type 1 largest T2L = Type 2 largest 
ρjk    = Correlation coefficient T3S = Type 3 smallest 

Figure 4.13 Categories of the normal transformation factor T j k . (After Der Kiureghian and
Liu, 1985).



TABLE 4.5 Semiempirical Normal Transformation Formulas

(a) Category 1 of the transformation factor Tjk in Fig. 4.13

U E R T1L T1S

T j k = constant 1.023 1.107 1.014 1.031 1.031N
Max. error 0.0% 0.0% 0.0% 0.0% 0.0%

NOTE: Distribution indices are N = normal; U = uniform; E = shifted exponential;
R = shifted Rayleigh; T1L = type 1, largest value; T1S = type 1, smallest value.

(b) Category 2 of the transformation factor Tjk in Fig. 4.13

L G T2L T3S

N
T j k = f (�k) �k√

ln
(

1+�2
k

) 1.001 − 1.007�k + 0.118�2
k 1.030 + 0.238�k + 0.364�2

k 1.031 − 0.195�k + 0.328�2
k

Max. error Exact 0.0% 0.1% 0.1%

NOTE: �k is the coefficient of variation of the j th variable; distribution indices are N = normal; L = lognormal; G = gamma; T2L = type 2, largest value; T3S =
type 3, smallest value.

SOURCE: After Der Kiureghian and Liu (1985).
(Continued )
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TABLE 4.5 Semiempirical Normal Transformation Formulas (Continued )

(c) Category 3 of the transformation factor Tjk in Fig. 4.11

U E R T1L T1S

U T j k = f (ρ j k) 1.047 − 0.047ρ2
j k 1.133 + 0.029ρ2

j k 1.038 − 0.008ρ2
j k 1.055 + 0.015ρ2

j k 1.055 + 0.015ρ2
j k

Max. error 0.0% 0.0% 0.0% 0.0% 0.0%

E T j k = f (ρ j k) 1.229 − 0.367ρ j k 1.123 − 0.100ρ j k 1.142 − 0.154ρ j k 1.142 + 0.154ρ j k
+ 0.153ρ2

j k + 0.021ρ2
j k + 0.031ρ2

j k + 0.031ρ2
j k

Max. error 1.5% 0.1% 0.2% 0.2%

R T j k = f (ρ j k) 1.028 − 0.029ρ j k 1.046 − 0.045ρ j k 1.046 + 0.045ρ j k
+ 0.006ρ2

j k + 0.006ρ2
j k

Max. error 0.0% 0.0% 0.0%

T1L T j k = f (ρ j k) 1.064 − 0.069ρ j k 1.064 + 0.069ρ j k
+ 0.005ρ2

j k + 0.005ρ2
j k

Max. error 0.0% 0.0%

T1S T j k = f (ρ j k) 1.064 − 0.069ρ j k
+ 0.005ρ2

j k
Max. error 0.0%

NOTE: ρ j k is the correlation coefficient between the j th variable and the kth variable; distribution indices are U = uniform; E = shifted exponential; R = shifted
Rayleigh; T1L = type 1, largest value; T1S = type 1, smallest value.
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(d) Category 4 of the transformation factor Tjk in Fig. 4.13

L G T2L T3S

U T j k = f (ρ j k , �k) 1.019 + 0.014�k + 0.010ρ2
j k 1.023 − 0.007�k + 0.002ρ2

j k 1.033 + 0.305�k + 0.074ρ2
j k 1.061 − 0.237�k − 0.005ρ2

j k
+ 0.249�2

k + 0.127�2
k + 0.405�2

k + 0.379�2
k

Max. error 0.7% 0.1% 2.1% 0.5%

E T j k = f (ρ j k ,�k) 1.098 + 0.003ρ j k + 0.019�k 1.104 + 0.003ρ j k − 0.008�k 1.109 − 0.152ρ j k + 0.361�k 1.147 + 0.145ρ j k − 0.271�k
+ 0.025ρ2

j k + 0.303�2
k + 0.014ρ2

j k + 0.173�2
k + 0.130ρ2

j k + 0.455�2
k + 0.010ρ2

j k + 0.459�2
k

− 0.437ρ j k�k − 0.296ρ j k�k − 0.728ρ j k�k − 0.467ρ j k�k
Max. error 1.6% 0.9% 0.9% 0.4%

R T j k = f (ρ j k , �k) 1.011 + 0.001ρ j k + 0.014�k 1.014 + 0.001ρ j k − 0.007�k 1.036 − 0.038ρ j k + 0.266�k 1.047 + 0.042ρ j k − 0.212�k
+ 0.004ρ2

j k + 0.231�2
k + 0.002ρ2

j k + 0.126�2
k + 0.028ρ2

j k + 0.383�2
k + 0.353�2

k
− 0.130ρ j k�k − 0.090ρ j k�k − 0.229ρ j k�k − 0.136ρ j k�k

Max. error 0.4% 0.9% 1.2% 0.2%

T1L T j k = f (ρ j k , �k) 1.029 + 0.001ρ j k + 0.014�k 1.031 + 0.001ρ j k − 0.007�k 1.056 − 0.060ρ j k + 0.263�k 1.064 + 0.065ρ j k − 0.210�k
+ 0.004ρ2

j k + 0.233�2
k + 0.003ρ2

j k + 0.131�2
k + 0.020ρ2

j k + 0.383�2
k + 0.003ρ2

j k + 0.356�2
k

−0.197ρ j k�k −0.132ρ j k�k −0.332ρ j k�k −0.211ρ j k�k
Max. error 0.3% 0.3% 1.0% 0.2%

T1S T j k = f (ρ j k , �k) 1.029 + 0.001ρ j k + 0.014�k 1.031 − 0.001ρ j k − 0.007�k 1.056 + 0.060ρ j k + 0.263�k 1.064 − 0.065ρ j k − 0.210�k
+ 0.004ρ2

j k + 0.233�2
k + 0.003ρ2

j k + 0.131�2
k + 0.020ρ2

j k + 0.383�2
k + 0.003ρ2

j k + 0.356�2
k

+ 0.197ρ j k�k + 0.132ρ j k�k + 0.332ρ j k�k + 0.211ρ j k�k
Max. error 0.3% 0.3% 1.0% 0.2%

NOTE: ρ j k is the correlation coefficient between the j th variable and the kth variable; �k is the coefficient of variation of the kth variable; distribution indices are
U = uniform; E = shifted exponential; R = shifted Rayleigh; T1L = type 1, largest value; T1S = type 1, smallest value; L = lognormal; G = gamma; T2L = type 2,
largest value; T3S = type 3 smallest value.

(Continued )
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TABLE 4.5 Semiempirical Normal Transformation Formulas (Continued )
(e) Category 5 of the transformation factor Tjk in Fig. 4.13

L G T2L T3S

L T j k = f (ρ j k ,�k)
ln(1+ρ j k� j �k )

ρ j k

√
ln
(

1+�2
j

)
ln
(

1+�2
k

) 1.001 + 0.033ρ j k + 0.004� j 1.026 + 0.082ρ j k − 0.019� j 1.031 + 0.052ρ j k + 0.011� j

− 0.016�k + 0.002ρ2
j k − 0.222�k + 0.018ρ2

j k + 0.288�2
j − 0.21�k + 0.002ρ2

j k + 0.22�2
j

+ 0.223�2
j + 0.130�2

k + 0.379�2
k − 0.104ρ j k� j + 0.35�2

k + 0.005ρ� j

− 0.104ρ j k� j + 0.029� j �k + 0.126� j �k − 0.277ρ j k�k + 0.009� j �k − 0.174ρ�k
− 0.119ρ j k�k

Max. error Exact 4.0% 4.3% 2.4%

G T j k = f (ρ j k ,� j ,�k) 1.002 + 0.022ρ j k 1.029 + 0.056ρ j k − 0.030� j 1.032 + 0.034ρ j k − 0.007� j
− 0.012(� j + �k) + 0.001ρ2

j k + 0.225�k + 0.012ρ2
j k − 0.202�k + 0.121�2

j
+ 0.125(�2

j + �2
k) + 0.174�2

j + 0.379�2
k + 0.339�2

k − 0.006ρ� j

− 0.077ρ j k(� j + �k) − 0.313ρ j k� j + 0.075� j �k + 0.003� j �k − 0.111ρ�k
+ 0.014� j �k − 0.182ρ j k�k

Max. error 4.0% 4.2% 4.0%

T2L T j k = f (ρ j k ,� j ,�k) 1.086 + 0.054ρ j k + 0.104(� j + �k)
+ 0.055ρ2

j k + 0.662(�2
j + �2

k) 1.065 + 0.146ρ j k + 0.241� j

− 0.570ρ j k(� j + �k) + 0.203� j �k − 0.259�k + 0.013ρ2
j k + 0.372�2

j
− 0.020ρ3

j k − 0.218(�3
j + �3

k) + 0.435�2
k + 0.005ρ� j

− 0.371ρ j k(�2
j + �2

k) + 0.034� j �k − 0.481ρ�k

+ 0.257ρ2
j k(� j + �k)

+ 0.141� j �k(� j + �k)
Max. error 4.3% 3.8%

T3S T j k = f (ρ j k ,� j ,�k) 1.063 − 0.004ρ j k − 0.200(� j + �k)
− 0.001ρ2

j k + 0.337(�2
j + �2

k)
+ 0.007ρ(� j + �k) − 0.007� j �k

Max. error 2.62%

NOTE: ρ j k is the correlation coefficient between the j th variable and the kth variable; � j is the coefficient of variation of the j th variable; �k is the coefficient of
variation of the kth variable; distribution indices are L = lognormal; G = gamma; T2L = type 2, largest value; T3S = type 3, smallest value.
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Step 3: Select an initial point x (r ) in the original parameter space X, and com-
pute the sensitivity vector for the performance function sx,(r ) = ∇xW (x (r )).

Step 4: At the selected point x (r ) , compute the means µN ,(r ) = (µ1N , µ2N , . . . ,
µK N )t and standard deviations σN ,(r ) = (σ1N , σ2N , . . . , σK N )t of the normal
equivalent using Eqs. (4.59) and (4.60) for the nonnormal stochastic variables.
Compute the corresponding point z ′

(r ) in the independent standardized nor-
mal space as

z ′
(r ) = Λ1/2

z V t
z D1/2

x,N ,(r )(x (r ) − µx,N ,(r )) (4.80)

in which D x,N ,(r ) = diag(σ 2
1N , σ 2

2N , . . . , σ 2
K N ), a diagonal matrix containing

the variance of normal equivalent at the selected point x (r ) . The correspond-
ing reliability index can be computed as β(r ) = sign[W ′(0)]|z ′

(r )|.
Step 5: Compute the vector of sensitivity coefficients for the performance
function in Z ′-space sz′,(r ) = ∇z′ W (z ′

(r )), by Eq. (4.68), with D x replaced by
D x,N ,(r ) , and Vx and Λx replaced by Vz and Λz, respectively. Then the vector
of directional derivatives in the independent standard normal space αz′,(r )
can be computed by Eq. (4.67).

Step 6: Apply Eq. (4.51) of the Hasofer-Lind algorithm or Eq. (4.70) of the
Ang-Tang algorithm to obtain a new solution z ′

(r +1).

Step 7: Convert the new solution z ′
(r +1) back to the original parameter space

by Eq. (4.66a), and check for convergence. If the new solution does not satisfy
convergence criteria, go to step 3; otherwise, go to step 8.

Step 8: Compute the reliability, failure probability, and their sensitivity vec-
tors with respect to change in stochastic variables.

Note that the previously described normal transformation of Der Kiureghian
and Liu (1985) preserves only the marginal distributions and the second-order
correlation structure of the correlated random variables, which are partial
statistical features of the complete information represented by the joint dis-
tribution function. Regardless of its approximate nature, the normal transfor-
mation of Der Kiureghian and Liu, in most practical engineering problems, rep-
resents the best approach to treat the available statistical information about
the correlated random variables. This is so because, in reality, the choices of
multivariate distribution functions for correlated random variables are few as
compared with univariate distribution functions. Furthermore, the derivation
of a reasonable joint probability distribution for a mixture of correlated non-
normal random variables is difficult, if not impossible. When the joint PDF
for the correlated nonnormal random variables is available, a practical normal
transformation proposed by Rosenblatt (1952) can be viewed as the generaliza-
tion of the normal transformation described in Sec. 4.5.5 for the case involving
independent variables. Notice that the correlations among each pair of ran-
dom variables are implicitly embedded in the joint PDF, and determination of
correlation coefficients can be made according to Eqs. (2.47) and (2.48).
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The Rosenblatt method transforms the correlated nonnormal random vari-
ables X to independent standard normal random variables Z ′ in a manner
similar to Eq. (4.78) as

z′
1 = �−1[F1(x1)]

z′
2 = �−1[F2(x2|x1)]

...

z′
k = �−1[Fk(xk|x1, x2, . . . , xk−1)]

...

z′
K = �−1[Fk(xK |x1, x2, . . . , xK−1)]

(4.81)

in which Fk(xk|x1, x2, . . . , xk−1) = P (Xk ≤ xk|x1, x2, . . . , xk−1) is the conditional
CDF for the random variable Xk conditional on X1 = x1, X2 = x2, . . . ,
Xk−1 = xk−1. Based on Eq. (2.17), the conditional PDF f k(xk|x1, x2, . . . , xk−1)
for the random variable Xk can be obtained as

f k(xk|x1, x2, . . . , xk−1) = f (x1, x2, . . . , xk−1, xk)
f (x1, x2, . . . , xk−1)

with f (x1, x2, . . . , xk−1, xk) being the marginal PDF for X1, X2, . . . , Xk−1, Xk ;
the conditional CDF Fk(xk|x1, x2, . . . , xk−1) then can be computed by

Fk(xk|x1, x2, . . . , xk−1) =
∫ xk

−∞ f (x1, x2, . . . , xk−1, t) d t
f (x1, x2, . . . , xk−1)

(4.82)

To incorporate the Rosenblatt normal transformation in the AFOSM algo-
rithms described in Sec. 4.5.5, the marginal PDFs f k(xk) and the conditional
CDFs Fk(xk|x1, x2, . . . , xk−1), for k = 1, 2, . . . , K , first must be derived. Then
Eq. (4.81) can be implemented in a straightforward manner in each itera-
tion, within which the elements of the trial solution point x (r ) are selected
successively to compute the corresponding point in the equivalent independent
standard normal space z ′

(r ) and the means and variances by Eqs. (4.80) and
(4.81), respectively. It should be pointed out that the order of selection of the
stochastic basic variables in Eq. (4.81) can be arbitrary. Madsen et al. (1986,
pp. 78–80) show that the order of selection may affect the calculated failure
probability, and their numerical example does not show a significant difference
in resulting failure probabilities.

4.5.8 Overall summary of AFOSM reliability method

Convergence criteria for locating the design point. The previously described
Hasofer-Lind and Ang-Tang iterative algorithms to determine the design point
indicate that the iterations may end when x (r ) and x (r +1) are sufficiently close.
The key question then becomes what constitutes sufficiently close. In the ex-
amples given previously in this section, the iterations were stopped when the
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difference between the current and previous design point was less than 0.001.
Whereas such a tight tolerance worked for the pipe-capacity examples in this
book, it might not be appropriate for other cases, particularly for practical prob-
lems. Thus alternative convergence criteria often have been used.

In some cases, the solution has been considered to have converged when the
values of β(r ) and β(r +1) are sufficiently close. For example, Ang and Tang (1984,
pp. 361–383) presented eight example applications of the AFOSM method to
civil engineering systems, and the convergence criteria for differences in β

ranged from 0.025 to 0.001. The Construction Industry Research and Informa-
tion Association (CIRIA, 1977) developed an iterative approach similar to that
of Ang and Tang (1984), only their convergence criterion was that the perfor-
mance function should equal zero within some tolerance. The CIRIA procedure
was applied in the uncertainty analysis of backwater computations using the
HEC-2 water surface profiles model done by Singh and Melching (1993).

In order for iterative algorithms to locate the design point to achieve conver-
gence, the performance function must be locally differentiable, and the orig-
inal density functions of Xk must be continuous and monotonic, at least for
Xk ≤ xk∗ (Yen et al., 1986). If the performance function is discontinuous, it
must be treated as a series of continuous functions.

The search for the design point may become numerically more complex if
the performance function has several local minima or if the original density
functions of the Xk are discontinuous and bounded. It has been found that some
of the following problems occasionally may result for the iteration algorithms
to locate the design point (Yen et al., 1986):

1. The iteration may diverge or it may give different β values because of local
minima in the performance function.

2. The iteration may converge very slowly when the probability of failure is
very small, for example, pf < 10−4.

3. In the case of bounded random variables, the iteration may yield some xk∗

values outside the bounded range of the original density function. However,
if the bounds are strictly enforced, the iterations may diverge.

Yen et al. (1986) recommended use of the generalized reduced gradient (GRG)
optimization method proposed by Cheng et al. (1982) to determine the design
point to reduce these numerical problems. However, the GRG-based method
may not work well when complex computer models are needed to determine
the system performance function.

Melching (1992) applied the AFOSM method using the Rackwitz iterative
algorithm (Rackwitz and Fiessler, 1978), which is similar to the Ang-Tang
algorithm, to determine the design point for estimation of the probability of
flooding for 16 storms on an example watershed using two rainfall-runoff
models. In this application, problems with performance function discontinu-
ities, slow convergence for small values of pf , and divergence in the estimated
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β values were experienced for some of the cases. In the case of discontinuity
in the performance function (resulting from the use of a simple initial loss-
continuing loss rate abstraction scheme), in some cases the iterations went
back and forth between one side of the discontinuity and the other, and conver-
gence in the values of the xks could not be achieved. Generally, in such cases,
the value of β had converged to the second decimal place, and thus a good
approximation of β∗ corresponding to the design point was obtained.

For extreme probability cases (β > 2.5), the iterations often diverged. The
difference in β values for performance function values near zero typically was
on the order of 0.2 to 0.4. The iteration of which the β value was smallest was
selected as a reasonable estimate of the true β∗ corresponding to the design
point. In Melching (1992), the pf values so approximated were on the order of
0.006 to 0.00004. Thus, from a practical viewpoint of whether or not a flood is
likely, such approximations of β∗ do not greatly change the estimated flood risk
for the event in question. However, if various flood-mitigation alternatives were
being compared in this way, one would have to be very careful that consistent
results were obtained when comparing the alternatives.

A shortcoming of the afosm reliability index. As shown previously, use of the
AFOSM reliability index removes the problem of lack of invariance associated
with the MFOSM reliability index. This allows one to place different designs
on the same common ground for comparing their relative reliabilities using
βAFOSM. A design with higher value of βAFOSM would be associated with a higher
reliability and lower failure probability. Referring to Fig. 4.14, in which failure
surfaces of four different designs are depicted in the uncorrelated standardized
parameter space, an erroneous conclusion would be made if one assesses the
relative reliability on the basis of the reliability index. Note that in Fig. 4.14
the designs A, B , and C have identical values of the reliability index, but the
size of their safe regions SA, SB , and SC are not the same, and in fact, they
satisfy SA ⊂ SB ⊂ SC . The actual reliability relationship among the three de-
signs should be ps(A) < ps(B ) < ps(C), which is not reflected by the reliability
index. One could observe that if the curvatures of different failure surfaces at
the design point are similar, such as those with designs A and B , relative relia-
bilities between different designs could be indicated accurately by the value of
reliability index. On the other hand, when the curvatures of failure surfaces are
significantly different, such as those for designs C and D, βAFOSM alone could
not be used as the basis for comparison.

For this reason, Ditlevsen (1979) proposed a generalized reliability index
βG = �(γ ), with γ being a reliability measure obtained from integrating a
weight function over the safe region S , that is,

γ =
∫

x∈s
ψ(x) d x (4.83)

in which ψ(x) is the weight function, which is rotationally symmetric and pos-
itive (Ditlevsen, 1979). One such function that is mathematically tractable is
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Figure 4.14 Nonunique reliability associated with an identical relia-
bility index.

the K -dimensional standardized independent normal PDF. Although the gen-
eralized reliability index provides a more consistent and selective measure of
reliability than βAFOSM for a nonlinear failure surface, it is, however, more
computationally difficult to obtain. From a practical viewpoint, most engineer-
ing applications result in the general reliability index whose value is close to
βAFOSM. Only in cases where the curvature of the failure surface at the design
point is large and there are several design points on the failure surface would
the two reliability indices deviate significantly.

4.6 Second-Order Reliability Methods

By the AFOSM reliability method, the design point on the failure surface is
identified. This design point has the shortest distance to the mean point of the
stochastic basic variables in the original space or to the origin of standard-
ized normal parameter space. In the AFOSM method, the failure surface is
locally approximated by a hyperplane tangent to the design point using the
first-order terms of the Taylor series expansion. As shown in Fig. 4.14, second-
order reliability methods (SORMs) can improve the accuracy of calculated re-
liability under a nonlinear limit-state function by which the failure surface
is approximated locally at the design point by a quadratic surface. Literature
on the SORMs can be found elsewhere (Fiessler et al., 1979; Shinozuka, 1983;
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Breitung, 1984; Ditlevsen, 1984; Naess, 1987; Wen, 1987; Der Kiureghian et al.,
1987; Der Kiureghian and De Stefano, 1991). Tvedt (1983) and Naess (1987)
developed techniques to compute the bounds of the failure probability. Wen
(1987), Der Kiureghian et al. (1987), and others demonstrated that the second-
order methods yield an improved estimation of failure probability at the expense
of an increased amount of computation. Applications of second-order reliability
analysis to hydrosystem engineering problems are relatively few as compared
with the first-order methods.

In the following presentations of the second-order reliability methods, it is
assumed that the original stochastic variables X in the performance function
W (X ) have been transformed to the independent standardized normal space by
Z ′ = T (X ), in which Z ′ = (Z′

1, Z′
2, . . . , Z′

K )t is a column vector of independent
standard normal random variables. Realizing that the first-order methods do
not account for the curvature of the failure surface, the first-order failure prob-
ability could over- or underestimate the true pf depending on the curvilinear
nature of W (Z ′) at z ′

∗. Referring to Fig. 4.15a, in which the failure surface is
convex toward the safe region, the first-order method would overestimate the
failure probability pf , and, in the case of Fig. 4.15b, the opposite effect would
result. When the failure region is a convex set, a bound of the failure probability
is (Lind, 1977)

�(−β∗) ≤ pf ≤ 1 − Fχ2
K
(β∗) (4.84)

in which β∗ is the reliability index corresponding to the design point z ′
∗, and

Fχ2
K
(β∗) is the value of the χ2

K CDF with K degrees of freedom. Note that the
upper bound in Eq. (4.84) is based on the use of a hypersphere to approximate
the failure surface at the design point and, consequently, is generally much
more conservative than the lower bound. To improve the accuracy of the failure-
probability estimation, a better quadratic approximation of the failure surface
is needed.

4.6.1 Quadratic approximations of the
performance function

At the design point z ′
∗ in the independent standard normal space, the perfor-

mance function can be approximated by a quadratic form as

W (Z ′) ≈ s t
z′∗ (Z ′ − z ′

∗) + 1
2

(Z ′ − z ′
∗)tGz′∗(Z ′ − z ′

∗)

=
K∑

k=1

(
∂W (Z ′)

∂ Z′
k

)
z ′∗

(Z′
k − z′

∗,k)

+ 1
2

K∑
j =1

K∑
k=1

[
∂2W (Z ′)
∂ Z′

j ∂ Z′
k

]
z ′∗

(Z′
j − z′

∗, j )(Z′
k − z′

∗,k) = 0 (4.85)
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Figure 4.15 Schematic sketch of nonlinear performance functions:
(a) convex performance function (positive curvature); (b) concave per-
formance function (negative curvature).

in which sz′∗ = ∇z′ W (z ′
∗) and Gz′∗ = ∇2

z ′ W (z ′
∗) are, respectively, the gradient

vector containing the sensitivity coefficients and the Hessian matrix of the
performance function W (Z ′) evaluated at the design point z ′

∗. The quadratic
approximation by Eq. (4.85) involves cross-product of the random variables. To
eliminate the cross-product interaction terms in the quadratic approximation,
an orthogonal transform is accomplished by utilizing the symmetric square
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nature of the Hessian matrix:

Gz′∗ = �2
z′ W (z ′

∗) =
[

∂2W (z ′)
∂z′

j ∂z′
k

]
z ′∗

By way of spectral decomposition, Gz′∗ = V t
G∗ΛG∗ VG∗ , with VG∗ and ΛG∗ being,

respectively, the eigenvector matrix and the diagonal eigenvalue matrix of the
Hessian matrix Gz′∗ . Consider the orthogonal transformation Z′′ = V t

G∗ Z ′ by
which the new random vector Z ′′ is also a normal random vector because it is a
linear combination of the independent standard normal random variables Z ′.
Furthermore, it can be shown that

E(Z ′′) = 0

Cov(Z ′′) = Cz′′ = E(Z ′′Z′′t) = V t
G∗CZ′′ VG∗ = V t

G∗ VG∗ = I

This indicates that Z ′′ is also an independent standard normal random vector.
In terms of Z ′′, Eq. (4.85) can be expressed as

W (Z ′′) ≈ s t
z′′∗ (Z ′′ − z ′′

∗) + 1
2

(Z ′′ − z ′′
∗)tΛG∗ (Z ′′ − z ′′

∗)

=
K∑

k=1

sz′′∗ ,k(Z ′′
k − z ′′

∗,k) + 1
2

K∑
k=1

λ′′
k(Z ′′

k − z ′′
∗,k)2 = 0 (4.86)

in which sz′′
∗,k

is the kth element of sensitivity vector sz′′∗ = V t
G∗sz′∗ in z ′′-space,

and λ′′
k is the kth eigenvalue of the Hessian matrix Gz′∗ .

In addition to Eqs. (4.85) and (4.86), the quadratic approximation of the per-
formance function in the second-order reliability analysis can be expressed in
a simpler form through other types of orthogonal transformation. Referring
to Eq. (4.85), consider a K × K matrix H with its last column defined by the
negativity of the unit directional derivatives vector d∗ = −α∗ = −sz′∗/|sz′∗ | eval-
uated at the design point z ′

∗, namely, H = [h1, h2, . . . , hK−1, d∗], with hk being
the kth column vector in H. The matrix H is an orthonormal matrix because
all column vectors are orthogonal to each other; that is, ht

j hk = 0, for j �= k,
ht

kd∗ = 0, and all of them have unit length H t H = HH t = I. One simple way
to find such an orthonormal matrix H is the Gram-Schmid orthogonal transfor-
mation, as described in Appendix 4D. Using the orthonormal matrix as defined
above, a new random vector U can be obtained as U = H t Z ′. As shown in
Fig. 4.16, the orthonormal matrix H geometrically rotates the coordinates in
the z ′-space to a new u-space with its last uK axis pointing in the direction of
the design point z ′

∗. It can be shown easily that the elements of the new ran-
dom vector U = (U1, U2, . . . , UK )t remain to be independent standard normal
random variables as Z ′.
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Figure 4.16 Geometric illustration of orthonormal rotation. (a) Before
rotation (b) After rotation.

Knowing z ′
∗ = β∗ d∗, the orthogonal transformation using H results in

u∗ = H tz ′
∗ = H t(β∗d∗) = β∗H td∗ = β∗(0, 0, . . . , 1)t

indicating that the coordinate of the design point in the transformed u-space
is (0, 0, . . . , 0, β∗). In terms of the new u-coordinate system, Eq. (4.2) can be
expressed as

W (U ) ≈ s t
u∗ (U − u∗)+1

2
(U − u∗)t H t Gz′∗ H(U − u∗) = 0 (4.87)
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where su∗ = H tsz′∗ , which simply is

s t
u∗ = (

s t
z′∗h1,s t

z′∗h2, . . . , s t
z′∗hK−1, s t

z′∗d∗
)

= (−|s z′∗ |d t
∗h1, −|s z′∗ |d t

∗h2, . . . , −|s z′∗ |d t
∗hK−1, −|s z′∗ |d t

∗d∗
)

= (0, 0, . . . , 0, −|s z′∗ |) (4.88)

After dividing |s z′∗ | on both sides of Eq. (4.4), it can be rewritten as

W (U ) ≈ β∗U k + 1
2

(U − u∗)t A∗(U − u∗) = 0 (4.89)

in which A∗ = H tGz′∗ H/|s z′∗ |. Equation (4.6) can further be reduced to a parabo-
lic form as

W (U ) ≈ β∗ − UK + 1
2

Ũ t Ã∗Ũ = 0 (4.90)

where Ũ = (U1, U2, . . . , UK−1)t and Ã∗ is the (K−1)th order leading principal
submatrix of A∗ obtained by deleting the last row and last column of matrix
A∗.

To further simplify the mathematical expression for Eq. (4.7), an orthogonal
transformation is once more applied to Ũ as Ũ ′ = V t

Ã∗
Ũ with V Ã∗ being the

eigenvector matrix of Ã∗ satisfying Ã∗ = V t
Ã∗

ΛÃ∗ V Ã∗ , in which ΛÃ∗ is the diag-
onal eigenvalues matrix of Ã∗. It can easily be shown that the elements of the
new random vector Ũ ′s are independent standard normal random variables.
In terms of the new random vector Ũ ′, the quadratic term in Eq. (4.7) can be
rewritten as

W (Ũ ′, UK ) ≈ β∗ − UK + 1
2

Ũ ′tΛÃ∗Ũ
′

= β∗ − UK + 1
2

K−1∑
k=1

κkŨ 2
k = 0 (4.91)

where κ ’s are the main curvatures, which are equal to the elements of the
diagonal eigenvalue matrix ΛÃ∗ of matrix Ã∗. Note that the eigenvalues of A∗
are identical to those of Gz′∗defined in Eq. (4.2). This is so because A∗ = H tGz′∗ H
is a similarity transform. Therefore, the main curvatures of the hyperparabolic
approximation of W (Z ′) = 0 are equal to the eigenvalues of Ã∗.

4.6.2 Breitung’s formula

For a problem involving K independent standard normal random variables Z ′,
the computation of failure probability involves multiple integration as

pf =
∫

W (z ′)<0
φK (z ′) d z ′ (4.92)
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where φK (z ′) is the joint PDF of K independent standard normal random vari-
ables. This type of integration is called the Laplace integral, and its asymptotic
characteristics have been investigated recently by Breitung (1993).

Once the design point z ′
∗ is found and the corresponding reliability index

β∗ = |z ′
∗| is computed, Breitung (1984) shows that the failure probability based

on a hyperparabolic approximation of W (Z ′), Eq. (4.92), can be estimated
asymptotically (that is, β∗ → ∞) as

pf ≈ �(−β∗)
K−1∏
k=1

(1 + β∗κk)−1/2 (4.93)

where κk , k = 1, 2, . . . , K −1, are the main curvatures of the performance func-
tion W (Z ′) at z ′

∗, which is equal to the eigenvalues of the (K − 1) leading
principal submatrix of Ã∗ defined in Eq. (4.90). It should be pointed out that
owing to the asymptotic nature of Eq. (4.93), the accuracy of estimating pf by
it may not be satisfactory when the value of |β∗| is not large.

Equation (4.93) reduces to pf = �(−β∗) if the curvature of the performance
function is zero. A near-zero curvature of W (Z ′) in all directions at the design
point implies that the performance function behaves like a hyperplane around
z ′

∗. In this case, W (Z ′) at z ′
∗ can be described accurately by the first-order

expansion terms, and reliability corresponds to the first-order failure probabil-
ity. Figure 4.17 shows the ratio of second-order failure probability by Eq. (4.93)
to the first-order failure probability as a function of main curvature and num-
ber of stochastic variables in the performance function. It is clearly shown in
Fig. 4.17a that when the limit-state surface is convex toward the failure re-
gion with a constant positive curvature (see Fig. 4.15a), the failure probability
estimated by the first-order method is larger than that by the second-order
methods. This magnitude of the overestimation increases with the curvature
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Figure 4.17 Comparison of the second-order and first-order failure
probabilities for performance function with different curvatures.
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and the number of stochastic basic variables involved. On the other hand, the
first-order methods yield a smaller value of failure probability than the second-
order methods when the limit-state surface is concaved toward the safe region
(see Fig. 4.15b), which corresponds to a negative curvature. Hohenbichler and
Rackwitz (1988) suggested further improvement on Breitung’s results using
the importance sampling technique (see Sec. 6.7.1).

In case there exists multiple design points yielding the same minimum dis-
tance β∗, Eq. (4.93) for estimating the failure probability pf can be extended as

pf ≈ �(−β∗)


J∑

j =1

[
K−1∏
k=1

(
1 + β∗κk, j

)−1/2

] (4.94)

in which J is the number of design points with β∗ = |z ′
∗1| = |z ′

∗2| = · · · = |z ′
∗J |,

and κk, j is the main curvature for the kth stochastic variables at the j th design
point.

The second-order reliability formulas described earlier are based on fit-
ting a paraboloid to the failure surface at the design points on the basis of
curvatures. The computation of failure probability requires knowledge of the
main curvatures at the design point, which are related to the eigenvalues of
the Hessian matrix of the performance function. Der Kiureghian et al. (1987)
pointed out several computational disadvantages of the paraboloid-fitting
procedure:

1. When the performance function is not continuous and twice differentiable
in the neighborhood of the design point, numerical differencing would have
to be used to compute the Hessian matrix. In this case, the procedure may
be computational intensive, especially when the number of stochastic vari-
ables is large and the performance function involves complicated numerical
algorithms.

2. When using numerical differencing techniques for computing the Hessian,
errors are introduced into the failure surface. This could result in error in
computing the curvatures.

3. In some cases, the curvatures do not provide a realistic representation of the
failure surface in the neighborhood of design point, as shown in Fig. 4.18.

To circumvent these disadvantages of curvature-fitting procedure, Der
Kiureghian et al. (1987) proposed an approximation using a point-fitted
paraboloid (see Fig. 4.18) by which two semiparabolas are used to fit the
failure surface in such a manner that both semiparabolas are tangent to the
failure surface at the design point. Der Kiureghian et al. (1987) showed that
one important advantage of the point-fitted paraboloid is that it requires less
computation when the number of stochastic variables is large.
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Figure 4.18 Fitting of paraboloid in rotated standard space.
(Der Kiurighian et al., 1987.)

4.7 Time-Dependent Reliability Models

The development of hydrosystems engineering projects often includes the de-
sign of various types of hydraulic structures, such as pipe networks for water
supply, storm sewer systems for runoff collection, levee and dike systems for
flood control and protection, and others. Generally, the system, once designed
and constructed, is expected to serve its intended objectives over a period of
several years, during which the system behavior and environmental factors
could change with respect to time. In such circumstances, engineers often are
interested in evaluating the reliability of the hydraulic structure with respect
to a specified time framework. For example, one might be interested in the
risk of overflow of an urban storm water detention basin in the summer when
convective thunderstorms prevail. Loads to most hydrosystems are caused by
the occurrence of hydrologic events such as floods, storms, or droughts that
are random by nature. Time-dependent reliability analysis considers repeated
applications of loads and also can consider the change of the distribution of
resistance with time.

In preceding sections, emphasis was placed on static reliability analysis,
which does not consider the time dependency of the load and resistance. This
section considers the time-dependent random variables in reliability analysis.
As a result, the reliability is a function of time, i.e., time dependent or time vari-
ant. The difference between the time-to-failure analysis described in Chap. 6
and the time-dependent reliability analysis should be pointed out. The com-
monality between the two reliability analyses is that both attempt to assess
the variation of reliability with respect to time. The difference lies in the man-
ner in which the reliability is computed. Time-to-failure analysis is concerned
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only with the time history of the performance of the system as a whole without
giving explicit consideration to the load-resistance interference as done by time-
dependent reliability analysis. The objective of time-dependent reliability mod-
els is to determine the system reliability over a specified time interval in which
the number of occurrences of loads is a random variable.

When both loading and resistance are functions of time, the performance
function W (t) = R(t) − L(t) is time-dependent. Consequently, the reliability
ps(t) = P [W (t) > 0] would vary with respect to time. Figure 4.19 shows
schematically the key feature of the time-dependent reliability problem in
which the PDFs of load and resistance change with time. In Fig. 4.19, the
mean of resistance has a downward trend with time, whereas that of the
load increases with time. As the standard deviations of both resistance and
load increase with time, the area of interference increases, and this results in
an increase in the failure probability with time. The static reliability analy-
sis described in preceding sections considers neither load nor resistance being
functions of time.

If the load is to be applied many times, it is often the largest load that is
considered in reliability analysis. Then this maximum load can be described
by an extreme-value distribution such as the Gumbel distribution described in
Sec. 2.6.4. In doing so, the effect of time is ignored in reliability analysis, which
may not be appropriate, especially when more than one load is involved or the
resistance changes with time. A comprehensive treatment of time-dependent
reliability issues can be found in Melchers (1999).
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Figure 4.19 Time-dependence of load and resistance probability
distribution functions.
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4.7.1 Time-dependent resistance

For a hydraulic structure placed in a natural environment over a period of time,
its operational characteristics could change over time owing to deterioration,
aging, fatigue, and lack of maintenance. Consequently, the structural capacity
(or resistance) would vary with respect to time. Examples of time-dependent
characteristics of resistance in hydrosystems are change in flow-carrying
capacity of storm sewers owing to sediment deposition and settlement, decrease
in flow-carrying capacity in water distribution pipe networks owing to aging,
seasonal variation in waste assimilative capacity of natural streams, etc.

Modeling time-dependent features of the resistance of a hydrosystem re-
quires descriptions of the time-varying nature of statistical properties of the
resistance. This would require monitoring resistance of the system over time,
which, in general, is not practical. Alternatively, since the resistance of a
hydrosystem may depend on several stochastic basic parameters, the time-
dependent features of resistance of hydraulic structures or hydrosystems can
be deduced, through appropriate engineering analysis, from the time-varying
behavior of the stochastic parameters affecting the resistance of the systems.
For example, the flow-carrying capacity of a storm sewer depends on pipe slope,
roughness coefficient, and pipe size. Therefore, the time-dependent behavior
of storm sewer capacity may be derived from the time-varying features of
pipe slope, roughness coefficient, and pipe size by using appropriate hydraulic
models.

Although simplistic in idea, information about the time-dependent nature of
stochastic basic parameters in the resistance function of a hydrosystem is gen-
erally lacking. Only in a few cases and systems is partial information available.
Table 4.6 shows the value of Hazen-Williams coefficient of cast iron pipe types

TABLE 4.6 Typical Hazen-Williams Pipe Roughness
Coefficients for Cast Iron Pipes

Age (years) Pipe diameter Roughness coefficient CHW
new all sizes 130

5 >380 mm (15 in) 120
>100 mm ( 4 in) 118

10 >600 mm (24 in) 113
>300 mm (12 in) 111
>100 mm (4 in) 107

20 >600 mm (24 in) 100
>300 mm (12 in) 96
>100 mm (4 in) 89

30 >760 mm (30 in) 90
>400 mm (16 in) 87
>100 mm (4 in) 75

40 >760 mm (30 in) 83
>400 mm (16 in) 80
>100 mm (4 in) 64

SOURCE: After Wood (1991).
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as affected by pipe age. Owing to a lack of sufficient information to accurately
define the time-dependent features of resistance or its stochastic basic parame-
ters, it has been the general practice to treat them as time-invariant quantities
by which statistical properties of resistance and its stochastic parameters do
not change with time.

The preceding discussions consider the relationship between resistance and
time only, namely, the aging effect. In some situations, resistance also could
be affected by the number of occurrences of loadings and/or the associated
intensity. If the resistance is affected only by the load occurrences, the effect is
called cyclic damage, whereas if both load occurrence and its intensity affect
the resistance, it is called cumulative damage (Kapur and Lamberson, 1977).

4.7.2 Time-dependent load

In time-dependent reliability analysis, one is concerned with system reliability
over a specified time period during which external loads can occur more than
once. Therefore, not only the intensity or magnitude of load is important but
also the number or frequency of load occurrences is an important parameter.

Over an anticipated service period, the characteristics of load to be imposed
on the system could change. For example, when a watershed undergoes a pro-
gressive change, it could induce time dependence in load. More specifically, the
magnitude of floods could increase as urbanization progresses, and sediment
discharge from overland erosion and non-point-source pollution could decrease
over time if the farming and irrigation practices in the watershed involve pol-
lution control measures. Again, characterization of the time-varying nature of
load intensity requires extensive monitoring, data collection, and engineering
analysis.

The occurrence of load over an anticipated service period can be classified
into two cases (Kapur and Lamberson, 1977): (1) The number and time of
occurrence are known, and (2) the number and time of occurrences are ran-
dom. Section 4.7.4 presents probabilistic models for describing the occurrence
and intensity of load.

4.7.3 Classification of time-dependent
reliability models

Repeated loadings on a hydrosystem are characterized by the time each load is
applied and the behavior of time intervals between load applications. From a
reliability theory viewpoint, the uncertainty about the loading and resistance
variables may be classified into three categories: deterministic, random fixed,
and random independent (Kapur and Lamberson, 1977). For the deterministic
category, the loadings assume values that are exactly known a priori. For the
random-fixed case, the randomness of loadings varies in time in a known man-
ner. For the random-independent case, the loading is not only random, but the
successive values assumed by the loading are statistically independent.
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Deterministic. A variable that is deterministic can be quantified as a constant
without uncertainty. A system with deterministic resistance and load implies
that the behavior of the system is completely controllable, which is an ideal-
ized case. However, in some situations, a random variable can be treated as
deterministic if its uncertainty is small and can be ignored.

Random fixed. A random-fixed variable is one whose initial condition is random
in nature, and after its realization, the variable value is a known function of
time. This can be expressed as

Xτ = X0 g(τ ) for τ > 0 (4.95)

where X0 and Xτ are, respectively, the random variable X at times t = 0 and
t = τ , and g(τ ) is a known function involving time. Although Xt is a random
variable, its PDF, however, is completely dependent on that of X0. Therefore,
once the value of the random initial condition X0 is realized or observed, the
value of subsequent time can be uniquely determined. For this case, given the
PDF of X0, the PDF and statistical moments of Xt can be obtained easily. For
instance, the mean and variance of Xt can be obtained, in terms of those of
X0, as

E(Xt) = E(X0)g(t) for t > 0 (4.96a)

Var(Xt) = Var(X0)g2(t) for t > 0 (4.96b)

in which E(X0) and E(Xt) are the means of X0 and Xt , respectively, and Var(X0)
and Var(Xt) are the variances of X0 and Xt , respectively.

Random independent. A random-independent variable, unlike the random-fixed
variable, whose values occurred at different times are not only random but also
independent each other. There is no known relationship between the values of
X0 and Xt .

4.7.4 Modeling intensity and occurrence of loads

A hydraulic structure placed in a natural environment over an expected ser-
vice period is subject to repeated application of loads of varying intensities. The
magnitude of load intensity and the number of occurrences of load are, in gen-
eral, random by nature. Therefore, probabilistic models that properly describe
the stochastic mechanisms of load intensity and load occurrence are essential
for accurate evaluation of the time-dependent reliability of hydrosystems.

Probability models for load intensity. In the great majority of situations in hy-
drosystems reliability analysis, the magnitudes of load to be imposed on the
system are continuous random variables. Therefore, univariate probability dis-
tributions described in Sec. 2.6 potentially can be used to model the intensity of
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a single random load. In a case in which more than one type of load is considered
in the analysis, multivariate distributions should be used. Some commonly used
multivariate distribution models are described in Sec. 2.7.

The selection of an appropriate probability model for load intensity depends
on the availability of information. In a case for which sample data about the
load intensity are available, formal statistical goodness-of-fit tests (see Sec. 3.7)
can be applied to identify the best-fit distribution. On the other hand, when data
on load intensity are not available, selection of the probability distribution for
modeling load intensity has to rely on the analyst’s logical judgment on the
basis of the physical processes that produce the load.

Probability models for load occurrence. In time-dependent reliability analysis,
the time domain is customarily divided into a number of intervals such as days,
months, or years, and the random nature of the load occurrence in each time
interval should be considered explicitly. The occurrences of load are discrete
by nature, which can be treated as a point random process. In Sec. 2.5, basic
features of two types of discrete distributions, namely, binomial and Poisson
distributions, for point process were described. This section briefly summarizes
two distributions in the context of modeling the load-occurrences. Other load-
occurrence models (e.g., renewal process, Polya process) can be found elsewhere
(Melchers, 1999; Wen, 1987).

Bernoulli process. A Bernoulli process is characterized by three features:
(1) binary outcomes in each trial, (2) constant probability of occurrence of out-
come in each time interval, and (3) the outcomes are independent between
trials. In the context of load-occurrence modeling, each time interval repre-
sents a trial in which the outcome is either the occurrence or nonoccurrence of
the load (with a constant probability) causing failure or nonfailure of the sys-
tem. Hence the number of occurrences of load follows a binomial distribution,
Eq. (2.51), with parameters p (the probability of occurrence of load in each time
interval) and n (the number of time intervals). It is interesting to note that the
number of intervals until the first occurrence T (the waiting time) in a Bernoulli
process follows a geometric distribution with the PMF

g(T = t) = (1 − p)t−1 p (4.97)

The expected value of waiting time T is 1/p, which is the mean occurrence
period. It should be noted that the parameter p depends on the time interval
used.

Poisson process. In the Bernoulli process, as the time interval shrinks to zero
and the number of time intervals increases to infinity, the occurrence of events
reduces to a Poisson process. The conditions under which a Poisson process
applies are (1) the occurrence of an event is equally likely at any time instant,
(2) the occurrences of events are independent, and (3) only one event occurs at
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a given time instant. The PMF describing the number of occurrences of loading
in a specified time period (0, t] is given by Eq. (2.55) and is repeated here:

Px (x|λ, t) = e−λt (λt)x

x!
for x = 0, 1, . . .

in which λ is the average time rate of occurrence of the event of interest. The
interarrival time between two successive occurrences is described by an expo-
nential distribution with the PDF

f t(t|λ) = λe−λt for t > 0 (4.98)

Although condition (1) implies that the Poisson process is stationary, it can be
generalized to a nonstationary Poisson process, in which the rate of occurrence
is a function of time λ(t). Then the Poisson PMF for a nonstationary process
can be written as

P (X = x) =
[ ∫ t

0 λ(τ ) d τ
]x exp

[−∫ t
0 λ(τ ) d τ

]
x!

(4.99)

Equation (4.99) allows one to incorporate the seasonality of many hydrologic
events.

4.7.5 Time-dependent reliability models

Reliability computations for time-dependent models can be made for determin-
istic and random cycle times. The development of a model for deterministic
cycles is given first, which naturally leads to the model for random cycle times.

Number of occurrences is deterministic. Consider a hydrosystem with a fixed
resistance (or capacity) R = r subject to n repeated loads L1, L2, . . . , Ln. When
the number of loads n and system capacity r are fixed, the reliability of the
system after n loadings ps(n, r ) can be expressed as

ps(n, r ) = P [(L1 < r ) ∩ (L2 < r ) ∩ · · · ∩ (Ln < r )] = P (Lmax < r ) (4.100)

where Lmax = max{L1, L2, . . . , Ln}, which also is a random variable. If all ran-
dom loadings L are independent with their own distributions, Eq. (4.100) can
be written as

ps(n, r ) =
n∏

i=1

[FLi (r )] (4.101)

where FLi (r ) is the CDF of the ith load. In the case that all loadings are gener-
ated by the same statistical process, that is, all L’s are identically distributed
with FLi (r ) = FL(r ), for i = 1, 2, . . . , n, Eq. (4.101) can further be reduced to

ps(n, r ) = [FL(r )] n (4.102)
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If the resistance of the system also is a random variable, the system reliability
under the fixed number of loads n can be expressed as

ps(n) =
∫ ∞

0
ps(n, r ) f R(r ) dr (4.103)

Number of occurrences is random. Since the loadings to hydrosystems are re-
lated to hydrologic events, the occurrence of the number of loads, in general, is
uncertain. The reliability of the system under random loading in the specified
time interval [0, t] can be expressed as

ps(t) =
∞∑

n=0

π (t|n) ps(n) (4.104)

in which π(t|n) is the probability of n loadings occurring in the time interval
[0, t]. A Poisson distribution can be used to describe the probability of the num-
ber of events occurring in a given time interval. In fact, the Poisson distribution
has been found to be an appropriate model for the number of occurrences of hy-
drologic events (Clark, 1998; Todorovic and Yevjevich, 1969; Zelenhasic, 1970).
Referring to Eq. (2.55), π(t|n) can be expressed as

π(t|n) = e−λt (λt)n

n!
(4.105)

where λ is the mean rate of occurrence of the loading in [0, t], which can be
estimated from historical data.

Substituting Eq. (4.105) in Eq. (4.104), the time-dependent reliability for the
random independent load and random-fixed resistance can be expressed as

ps(t) =
∞∑

n=0

[
e−λt (λt)n

n!

] [∫ ∞

0
ps(n, r ) f R(r ) dr

]
(4.106)

Under the condition that random loads are independently and identically dis-
tributed, Eq. (4.106) can be simplified as

ps(t) =
∫ ∞

0
e−λ t [1−FL(r )] f R(r ) dr (4.107)

4.7.6 Time-dependent reliability models
for hydrosystems

Considering only inherent hydrologic uncertainty. Traditionally, the risk associ-
ated with the natural hydrologic randomness of flow or rainfall is explicitly
considered in terms of a return period. By setting the resistance equal to the
load with a return period of T years (that is, r∗ = �T ), the annual reliability,
without considering the uncertainty associated with �T , is 1 − 1/T , that is,
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P (L < r∗|r∗ = �T ) = 1 − 1/T . Correspondingly, the reliability that the random
loads would not exceed r∗ = �T in a period of t years can be calculated as (Yen,
1970)

ps(t, T ) =
(

1 − 1
T

)t

(4.108)

For large T , Eq. (4.108) reduces to

ps(t, T ) = exp(−t/T ) (4.109)

If T > t, Eq. (4.108) can further be approximated simply as ps(t, T ) = 1− t/T .

Considering both inherent hydrologic uncertainty and hydraulic uncertainty. In the
case where the uncertainty of the resistance is not negligible and is to be con-
sidered, the annual reliability of a hydrosystem infrastructure then has to be
evaluated through load-resistance interference on an annual basis. That is,
the annual reliability will be calculated by evaluating P (L ≤ R) as Eq. (4.1),
with f L(�) being the probability distribution function of annual maximum load.
Hence the reliability of a hydrosystem over a service period of t years can be cal-
culated by replacing the term 1/T in Eqs. (4.108) and (4.109) by 1− P (L ≤ R).
Then the results are

ps(t, L, R) = [P (L ≤ R)]t (4.110)

ps(t, L, R) = exp{−t × [1 − P (L ≤ R)]} (4.111)

in which the evaluation of annual reliability P (L ≤ R) can be made through
the reliability methods described in preceding sections.

Incorporation of a design event. In the design of hydraulic structures, the com-
mon practice is to determine the design capacity based on a preselected design
return period �T and safety factor SF. Under such a condition, the magnitude
of the future annual maximum hydrologic load can be partitioned into two com-
plementary subsets, that is, � ≤ �T and � ≥ �T , with each representing different
recurrence intervals of the hydrologic process. The reliability of the hydrosys-
tem subject to the ith hydrologic load occurring in the future can be expressed
by using the total probability theorem (Sec. 2.2.4) as

ps,i = P (Li ≤ r )

= P (Li ≤ r |Li ≥ �T ) P (Li ≥ �T ) + P (Li ≤ r |Li ≤ �T ) P (Li ≤ �T )

= P (�T ≤ Li ≤ r ) + P (Li ≤ r, Li ≤ �T )

= P1 + P2 (4.112)
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where P1 and P2 can be written explicitly as

P1 = P (�T ≤ L ≤ R) =
∫ ∞

�T

[ ∫ r

�T

f R,L(r, �) d�

]
dr (4.113)

P2 = P (L ≤ R, L < �T )

=
∫ �T

0

[∫ r

0
f R,L(r, �) d�

]
dr +

∫ ∞

�T

[∫ �T

0
f R,L(r, �) d�

]
dr (4.114)

where �T is the magnitude of the design hydrologic event associated with a
return period of T years. Based on this partition of the load domain, Tung
(1985) presented two generalized time-dependent reliability models as follows:

ps(t, T , SF ) =
t∑

x=0

Ct,x P x
1 P t−x

2 (4.115)

and ps(t, T , SF ) =
∞∑

n=0

e−t tn

n!

(
n∑

x=0

Cn,x P x
1 P n−x

2

)
(4.116)

in which Cn,x = n!/[(n− x)!x!] is a binomial coefficient, t is the expected service
life (in years), T is the design return period (in years), SF is the safety factor,
and n is the number of occurrences of load within the service life. From the
design viewpoint, the selected design load �T and safety factor SF are reflected
in the determination of the mean resistance of the structure µr as

µr = SF �T (4.117)

Equation (4.115) is based on the binomial distribution for random occurrence
of the loads, whereas Eq. (4.116) is based on the Poisson distribution. When hy-
draulic uncertainty is negligible, Eqs. (4.115) and (4.116) reduce, respectively, to

ps(t, T , SF ) =
[
1 − 1

T (SF )

]t

(4.118)

and ps(t, T , SF ) = exp[−t/T (SF )] (4.119)

In Eqs. (4.118) and (4.119), the return period T(SF) can be determined by
1/(1 − ps), in which ps is computed by Eq. (4.35) with r = SF �T . Equations
(4.118) and (4.119) are used frequently by engineers in hydrologic designs that
correspond to Eqs. (4.108) and (4.109) under SF = 1 (Yen, 1970). On the other
hand, when both hydrologic and hydrologic-inherent uncertainties are consid-
ered, Eq. (4.117) can be explicitly incorporated in calculating the annual reli-
ability P [L ≤ R(�T , SF )] through load-resistance interference and then use
of Eqs. (4.110) or (4.111) for calculating the reliability over a specified service
period (Gui et al., 1998).

Figure 4.20 indicates that the time-dependent models using the Poisson dis-
tribution yield slightly lower failure-probability values. The values of failure
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Figure 4.20 Comparison of two generalized time-dependent reliability
models under T = 50 years, SF = 1.0, and �L = 0.1. (After Tung,
1985.)

probability computed by the two models converge as the service life increases.
Without considering hydraulic uncertainty [i.e., Cov(Qc) = 0], the failure prob-
ability is significantly underestimated. Computationally, the time-dependent
model based on the binomial distribution, i.e., Eq. (4.39a), is much simpler
than that based on the Poisson distribution.

Appendix 4A: Some One-Dimensional Numerical
Integration Formulas

This appendix summarizes some commonly used numerical formulas for eval-
uating the following integral:

I =
∫ b

a
f (x) dx (4A.1)

Detailed descriptions of these and other numerical integration procedures can
be found in any numerical analysis textbook.



222 Chapter Four

4A.1 Trapezoidal rule

For a closed integral, Eq. (4A.1) can be approximated as

I = h
2

(
f 1 + 2

n−1∑
i=1

f i + f n

)
(4A.2a)

where h is a constant space increment for discretization, n is the number of
discretization points over the interval (a, b), including the two end points, and
fi is the function values at discretized point, xi.

For open and semiopen integrals, Eq. (4A.1) can be computed numerically as

I = h
2

(
3 f 2 + 2

n−2∑
i=3

f i + 3 f n−1

)
(4A.2b)

4A.2 Simpson’s rule

For closed integrals, one has

I = h
3

[ f 1 + 4( f 2 + f 4 + f 6 + · · ·) + 2( f 3 + f 5 + f 7 + · · ·) + f n] (4A.3a)

For open and semiopen integrals, one has

I = h
12

[27f 2 + 13( f 4 + f 6 + · · ·) + 16( f 5 + f 7 + · · ·) + 27f n−1] (4A.3b)

4A.3 Gaussian quadratures

Equation (4A.1) can be expressed as

I =
n∑

i=1

wi f (xi) (4A.4)

where wi is the weight associated with the ith abscissa xi in the discretiza-
tion. The weight wi is related to orthogonal polynomials. Table 4A.1 lists some
commonly used orthogonal polynomials and their applied integral range, ab-
scissas, and weights. Definitions of those polynomials and tables of abscissas
and weights for different Gaussian quadratures are given by Abramowitz and
Stegun (1972).
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TABLE 4A.1 Some Commonly Used Gaussian Quadratures

Gauss Range (a, b) Abscissas xi Weight wi

Legendre (−1, 1) ith root of Pn(x)
2(

1 − x2
i

)
[Pn′ (xi)]2

Chebyshev (−1, 1) cos
[

(2i − 1)π
2n

]
π

n

Laguerre (0, ∞) ith root of Ln(x)
(n!)2xi

(n + 1)2[Ln+1(xi)]2

Hermite (−∞, ∞) ith root of Hn(x)
2n−1n!

√
π

n2[Hn−1(xi)]2

NOTE: Pn(x) = Legendre polynomial of order n; Ln(x) = Laguerre
polynomial of order n; Hn(x) = Hermite polynomial of order n.

Appendix 4B: Cholesky Decomposition

For any nonsingular square matrix A, it can be decomposed as

A = LU (4B.1)

where L is a lower triangular matrix as

L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
. . . . . . .

. . . . . . .

. . . . . . .

lK1 lK2 lK3 . . . lK K


and U is an upper triangular matrix. In general, the matrices L and U are not
unique. However, Young and Gregory (1973) show that if the diagonal elements
of L or U are specified, the decomposition will be unique.

When the matrix A is real, symmetric, and positive-definite, then U = Lt ,
which means that A = L L t . This is called the Cholesky decomposition. Writing
out A = L L t in components, one readily obtains the following relationships
between the elements in matrices L and A as

l2
kk +

k−1∑
j =1

l2
kj = akk for k = 1, 2, . . . , K (4B.2)

lkklj j +
j −1∑
i=1

lkil ji = akj for k = j + 1, . . . , K (4B.3)
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in which lkj and akj are elements in matrices L and A, respectively, and K is
the size of the matrices. In terms of akj ’s, lkj ’s can be expressed as

lkk =
akk −

k−1∑
j =1

l2
kj

 (4B.4)

lkj = 1
lkk

akj −
j −1∑
i=1

lki l ji

 for k = j + 1, . . . , K (4B.5)

Computationally, the values of lkj ’s can be obtained by solving Eqs. (4B.4) and
(4B.5) sequentially following the order k = 1, 2, . . . , K . Numerical examples
can be found in Wilkinson (1965, p. 71). A simple computer program for the
Cholesky decomposition is available from Press et al. (1992, p. 90). Note that
the requirement of positive definite for matrix A is to ensure that the quantity in
the square root of Eq. (4B.4) always will be positive throughout the computation.
If A is not a positive-definite matrix, the algorithm will fail.

For a real, symmetric, positive-definite matrix A, the Cholesky decomposition
is sometimes expressed as

A = L̃Λ L̃ t (4B.6)

in which L is a unit lower triangular matrix with all its diagonal elements
having values of ones, and Λ is a diagonal eigenvalue matrix. Therefore, the
eigenvalues associated with matrix A are the square roots of the diagonal el-
ements in matrix L. If a matrix is positive-definite, all its eigenvalues will be
positive, and vice versa.

In theory, the covariance and correlation matrices in any multivariate prob-
lems should be positive-definite. In practice, sample correlation and sample
covariance often are used in the analysis. Owing to the sampling errors, the
resulting sample correlation matrix may not be positive-definite, and in such
cases, the Cholesky decomposition may fail, whereas the spectral decomposition
described in Appendix 4C can be applicable.

Appendix 4C: Orthogonal Transformation
Techniques

The orthogonal transformation is an important tool for treating problems with
correlated stochastic basic variables. The main objective of the transformation
is to map correlated stochastic basic variables from their original space to a
new domain in which they become uncorrelated. Hence the analysis is greatly
simplified.
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Consider K multivariate stochastic basic variables X = (X1, X2, . . . , X K )t

having a mean vector µx = (µ1, µ2 . . . , µK )t and covariance matrix Cx as

Cx =


σ11 σ12 σ13 . . . σ1K
σ21 σ22 σ23 . . . σ2K
. . . . . . .

. . . . . . .

. . . . . . .

σK1 σK2 σK3 . . . σK K


in which σi j = Cov(Xi, X j ), the covariance between stochastic basic variables
Xi and X j . The vector of correlated standardized stochastic basic variables
X ′ = D−1/2

x (X − µx), that is, X ′ = (X ′
1, X ′

2, . . . , X ′
K )t with X ′

k = (Xk − µk)/σk ,
for k = 1, 2, . . . , K , and D x being an K × K diagonal matrix of variances of
stochastic basic variables, that is, D x = diag(σ 2

1 , σ 2
2 , . . . , σ 2

K ), would have a
mean vector of 0 and the covariance matrix equal to the correlation matrix Rx:

Cx′ = Rx =


1 ρ12 ρ13 . . . ρ1K

ρ21 1 ρ23 . . . ρ2K
. . . . . . .

. . . . . . .

. . . . . . .

ρK1 ρK2 ρK3 . . . 1


Note that from Sec. 2.4.5, the covariance matrix and correlation matrix are
symmetric matrices, that is, σi j = σ ji and ρi j = ρ ji, for i �= j . Furthermore,
both matrices theoretically should be positive-definite.

In the orthogonal transformation, a K × K square matrix T (called the trans-
formation matrix) is used to transform the standardized correlated stochastic
basic variables X ′ into a set of uncorrelated standardized stochastic basic vari-
ables Y as

Y = T −1 X ′ (4C.1)

where Y is a vector with the mean vector 0 and covariance matrix I, a K × K
identity matrix. Stochastic variables Y are uncorrelated because the off-
diagonal elements of the covariance matrix are all zeros. If the original stochas-
tic basic variables X are multivariate normal variables, then Y is a vector of
uncorrelated standardized normal variables specifically designated as Z ′ be-
cause the right-hand side of Eq. (4C.1) is a linear transformation of the normal
random vector.

It can be shown that from Eq. (4C.1), the transformation matrix T must
satisfy

Rx = T T t (4C.2)
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There are several methods that allow one to determine the transformation
matrix in Eq. (4C.2). Owing to the fact that Rx is a symmetric and positive-
definite matrix, it can be decomposed into

Rx = L Lt (4C.3)

in which L is a K × K lower triangular matrix (Young and Gregory, 1973; Golub
and Van Loan, 1989):

L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
. . . . . . .

. . . . . . .

. . . . . . .

lK1 lK2 lK3 . . . lK K


which is unique. Comparing Eqs.(4C.2) and (4C.3), the transformation
matrix T is the lower triangular matrix L. An efficient algorithm to obtain such
a lower triangular matrix for a symmetric and positive-definite matrix is the
Cholesky decomposition (or Cholesky factorization) method (see Appendix 4B).

The orthogonal transformation alternatively can be made using the
eigenvalue-eigenvector decomposition or spectral decomposition by which Rx
is decomposed as

Rx = Cx′ = VΛV t (4C.4)

where V is a K × K eigenvector matrix consisting of K eigenvectors as V =
(v 1, v 2, . . . , vK ), with vk being the kth eigenvector of the correlation matrix Rx,
and Λ = diag(λ1, λ2, . . . , λK ) being a diagonal eigenvalues matrix. Frequently,
the eigenvectors v ’s are normalized such that the norm is equal to unity, that
is, v tv = 1. Furthermore, it also should be noted that the eigenvectors are or-
thogonal, that is, v t

iv j = 0, for i �= j , and therefore, the eigenvector matrix V
obtained from Eq. (4C.4) is an orthogonal matrix satisfying V V t = V t V = I
where I is an identity matrix (Graybill, 1983). The preceding orthogonal trans-
form satisfies

V t RxV = Λ (4C.5)

To achieve the objective of breaking the correlation among the standardized
stochastic basic variables X ′, the following transformation based on the eigen-
vector matrix can be made:

U = V t X ′ (4C.6)

The resulting transformed stochastic variables U has the mean and covariance
matrix as

E(U ) = V t E(X ′) = 0 (4C.7a)

and C (U ) = V tCx′ V = V t RxV = Λ (4C.7b)
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As can be seen, the new vector of stochastic basic variables U obtained by
Eq. (4C.6) is uncorrelated because its covariance matrix Cu is a diagonal ma-
trix Λ. Hence, each new stochastic basic variable Uk has the standard deviation
equal to

√
λk , for all k = 1, 2, . . . , K .

The vector U can be standardized further as

Y = Λ−1/2U (4C.8)

Based on the definitions of the stochastic basic variable vectors X ∼ (µx, Cx),
X ′ ∼ (0, Rx), U ∼ (0, Λ), and Y ∼ (0, I ) given earlier, relationships between
them can be summarized as the following:

Y = Λ−1/2U = Λ−1/2V t X ′ (4C.9)

Comparing Eqs.(4C.1) and (4C.9), it is clear that

T −1 = Λ−1/2V t

Applying an inverse operator on both sides of the equality sign, the transfor-
mation matrix T alternatively, as opposed to Eq. (4C.3), can be obtained as

T = VΛ1/2 (4C.10)

Using the transformation matrix T as given above, Eq. (4C.1) can be expressed
as

X ′ = T Y = VΛ1/2Y (4C.11a)

and the random vector in the original parameter space is

X = µx + D1/2VΛ1/2Y = µx + D1/2LY (4C.11b)

Geometrically, the stages involved in orthogonal transformation from the orig-
inally correlated parameter space to the standardized uncorrelated parameter
space are shown in Fig. 4C.1 for a two-dimensional case.

From Eq. (4C.1), the transformed variables are linear combinations of the
standardized original stochastic basic variables. Therefore, if all the original
stochastic basic variables X are normally distributed, then the transformed
stochastic basic variables, by the reproductive property of the normal random
variable described in Sec. 2.6.1, are also independent normal variables. More
specifically,

X ∼ N(µx, Cx) X ′ ∼ N(0, Rx) U ∼ N(0, Λ) and Y = Z′ ∼ N(0, I )

The advantage of the orthogonal transformation is to transform the correlated
stochastic basic variables into uncorrelated ones so that the analysis can be
made easier.
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Figure 4C.1 Geometric diagrams of various stages of transformations in spectral
decomposition. (Tung and Yen, 2005.)

The orthogonal transformations described earlier are applied to the stan-
dardized parameter space in which the lower triangular matrix and eigenvector
matrix of the correlation matrix are computed. In fact, the orthogonal transfor-
mation can be applied directly to the variance-covariance matrix Cx. The lower
triangular matrix of Cx, L̃, can be obtained from that of the correlation matrix
L by

L̃ = D1/2
x L (4C.12)

Following a similar procedure to that described for spectral decomposition, the
uncorrelated standardized random vector Y can be obtained as

Y = Λ̃−1/2Ṽ t(X − µx) = Λ̃−1/2Ũ (4C.13)

where Ṽ and Λ̃ are the eigenvector matrix and diagonal eigenvalue matrix of
the covariance matrix Cx satisfying

Cx = ṼΛ̃Ṽ t
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and Ũ is an uncorrelated vector of the random variables in the eigenspace
having a zero mean 0 and covariance matrix Λ̃. Then the original random
vector X can be expressed in terms of Y and L̃:

X = µx + ṼΛ̃1/2Y = µx + L̃Y (4C.14)

One should be aware that the eigenvectors and eigenvalues associated with the
covariance matrix Cx will not be identical to those of the correlation matrix Rx.

Appendix 4D: Gram-Schmid Ortho-normalization

Consider a vector x 1 in an K -dimensional space to be used as one of the basis
vectors. It is desirable to find the additional vectors, along with x 1, so that they
would form K orthonormal basis vectors for the K -dimensional space. To do
that, one can arbitrarily select K − 1 vectors in the K -dimensional space as x 2,
x 3, . . . , x K .

The first basis vector can be obtained as u1 = x 1/|x1|. Referring to Fig. 4D.1,
a second basis vector (not necessarily normalized) that will be orthogonal to the
first basis vector u1 can be derived as

y 2 = x 2 − ŷ 2 = x 2 − (
x t

2u1
)
u1

Therefore, the second normalized basis vector u2, that is perpendicular to u2
can be determined as u2 = y 2/|y 2|.

Note that the third basis vector must be orthogonal to the previously deter-
mined basis vectors (u1, u2) or (y 1, y 2). Referring to Fig. 4D.2, the projection
of x 3 onto the plane defined by y1 and y 2 is

ŷ3 = (
x t

3u1
)
u1 + (

x t
3u2

)
u2

y2

x2

u2

y1 = x1

u1

2y

Plane defined by y1 and y2

^

Figure 4D.1 Determination of the second basis vector.
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Figure 4D.2 Determination of the third basis vector.

Therefore, the third basis vector y3 that is orthogonal to both y1 and y2 can be
determined as

y3 = x 3 − ŷ3 = x 3 − [(
x t

3u1
)
u1 + (

x t
3u2

)
u2
]

and the corresponding normalized basis vector u3 can be determined as u3 =
y3/|y3|.

From the preceding derivation, the kth basis vector yk can be computed as

yk = xk −
[

k∑
i=1

(
xt

kµi
)
µi

]
for k = 2, 3, . . . , k (4D.1)

In the case that x2, x3, . . . , xK are unit vectors, the basis vectors y2, y3, . . . , yK
obtained by Eq. (4D.1) are orthonormal vectors. It should be noted that the
results Gram-Schmid orthogonalization is dependent on the order of vectors
x2, x3, . . . , xK selected in the computation. Therefore, the orthonormal basis
from the Gram-Schmid method is not unique.

The preceding Gram-Schmid method has poor numerical properties in that
there is a severe loss of orthogonality among the generated yk (Golub and Van
Loan, 1989). The modified Gram-Schmid algorithm has the following steps:

1. k = 0.

2. Let k = k + 1 and yk = xk , for k = 1. Normalize vector yk as uk = yk/|yk|.
3. For k + 1 ≤ j ≤ K , compute the vector of x j projected on uk :

ỹ j = (
x t

j uk
)
uk

and the component of x j orthogonal to ui as

y j = x j − ỹ j = x j − (
xt

j uk
)
uk

4. Go to step 2 until k = K .



Reliability Analysis Considering Load-Resistance Interference 231

Problems

4.1 Refer to Sec. 1.6 for the central safety factor. Assuming that both R and L are
independent normal random variables, show that the reliability index β is related
to the central safety factor as

β = µSF − 1√
µ2

SF �2
R + �2

L

in which �x represents the coefficient of variation of random variable X .

4.2 Referring to Problem 4.1, the central safety factor can be expressed in terms of
reliability index β as

µSF =
1 + β

√
�2

R + �2
L − β2�2

R�2
L

1 − β2�2
R

4.3 Referring to Problem 4.1, how should the equation be modified if the resistance
and load are correlated?

4.4 Refer to Sec. 1.6 for the characteristic safety factor. Let Ro be defined on the lower
side of resistance distribution as Ro = r p with P (R < r p) = p (see Fig. 4P.1).
Similarly, let Lo be defined on the upper side of load distribution with Lo = �1−q.
Consider that R and L are independent normal random variables. Show that
characteristic safety factor SFc is related to the central safety factor as

SFc =
(

1 + zp�R

1 − zq�L

)
µSF

in which zp = �−1( p).

4.5 Define the characteristic safety factor as the ratio of the median resistance to the
median load as

S̃F = r0.5

�0.5
= r̃

�̃

where r̃ = r0.5 = F −1
R (0.5)and �̃ = �0.5 = F −1

L (0.5), with FR(·) and FL(·) being
the CDFs of the resistance and load, respectively. Suppose that the resistance R

f�(�)
fr (r)

1– q
p

µ� �1− q µrrp

Figure 4P.1
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and load L are independent lognormal random variables. Show that the central
safety factor µSF = µR/µL is related to S̃F as

µSF = S̃F ×
√

1 + �2
R

1 + �2
L

4.6 Referring to Problem 4.4, show that for independent lognormal resistance and
load, the following relation holds:

SFc = µSF ×
√

1 + �2
R

1 + �2
L

× exp(zp�R + zq�L)

(Note: For small �x, σln x ≈ �x.)

4.7 Let W (X ) = X1 + X2 − c, in which X1 and X2 are independent stochastic vari-
ables with PDFs, f 1(x1) and f 2(x2), respectively. Show that the reliability can be
computed as

ps =
∫ ∞

−∞
f 1(x1)[1 − F2(c − x1)]dx1

or =
∫ ∞

−∞
f 2(x2)[1 − F1(c − x2)]dx2

4.8 Suppose that the load and resistance are independent random variables and that
each has an exponential PDF as

f x(x) = λx exp(−λxx) for x > 0

in which x can be the resistance R and load L. Show that the reliability is

ps = λL

λL + λR
= µR

µR + µL

4.9 Show that the reliability for independently normally distributed resistance (with
mean µR and standard deviation σR) and exponentially distributed load (with
the mean 1/λL) is

ps = 1 − �

(
−µR

σR

)
− exp

[
−1

2
(2µRλL − λ2

Lσ 2
R)

]
×
[

1 − �

(
−µR − λLσ 2

R
σR

)]

4.10 Suppose that the annual maximum flood in a given river reach has Gumbel dis-
tribution [Eq. (2.85a)] with mean µL and coefficient of variation �L. Let the levee
system be designed to have the mean capacity of µR = SFc × �T , with SFc
being the characteristic safety factor and T-year flow, respectively. For simplic-
ity, assume that the levee conveyance capacity has a symmetric PDF, as shown
in Fig. 4P.2. Derive the expression for the levee reliability assuming that flood
magnitude and levee capacity are independent random variables.

4.11 Numerically solve Problem 4.10 using the following data:

µL = 6000 ft3/s �L = 0.5 T = 100 years α = 0.15

for SFc = 1.0 and 1.5.
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r
m

Figure 4P.2

4.12 Consider that load and resistance are independent uniform random variables
with PDFs as
Load: f L(�) = 1/(�2 − �1) �1 ≤ � ≤ �2
Resistance: f R(r ) = 1/(r2 − r1) r1 ≤ r ≤ r2

Furthermore, �1 < r1 < �2 < r2, as shown in Fig. 4P.3. Derive the expression for
the failure probability.

4.13 Consider that load and resistance are independent random variables. The load
has an extreme type I (max) distribution [Eq. (2.85a)], with the mean 1.0 and
standard deviation of 0.3, whereas the resistance has a Weibull distribution
[Eq. (2.89)], with mean 1.5 and standard deviation 0.5. Compute the failure prob-
ability using appropriate numerical integration technique.

4.14 Consider that the annual maximum flood has an extreme type I (max) distribu-
tion with the mean 1000 m3/s and coefficient of 0.3. On the other hand, the levee
capacity has a lognormal distribution with a mean of 1500 m3/s and coefficient
of variation of 0.2. Assume that flood and levee capacity are two independent
random variables. Compute the failure probability that the levee will be over-
topped using appropriate numerical integration technique.

4.15 Resolve Example 4.6 taking into account the fact that stochastic variables n and
D are correlated with a correlation coefficient −0.75.

�1 �2r1 r1
� , r

fR(r)

fL(�)

Figure 4P.3
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4.16 The annual benefit and cost of a small hydropower project are random variables,
and each has a Weibull distribution [see Eq. (2.89)] with the following distribu-
tional parameter values:

α ξ β

Benefit 4.5422 60,000 266,000
Cost 3.7138 100,000 110,000

(a) Compute the mean and standard deviation of the annual benefit and cost.

(b) Assume that the annual benefit and cost are statistically independent. Find
out the probability that the project is economically feasible, i.e., the annual
benefit exceeds the annual cost.

4.17 Suppose that at a given dam site the flood flows and the spillway capacity follow
triangular distributions, as shown in Fig. 4P.4. Use the direct integration method
to calculate the reliability of the spillway to convey the flood flow (Mays and Tung,
1992).

4.18 The Hazen-Williams equation is used commonly to compute the head losses in a
water distribution system, and it is written as

hL = 4.728
L

D4.87

(
Q

CHW

)1.852

in which hL is the head loss (in feet), L is the pipe length (in feet), D is the pipe
diameter (in feet), Q is the flow rate (in ft3/s), and CHW is the Hazen-Williams
roughness coefficient.

Consider a water distribution system (see Fig. 4P.5) consisting of a storage
tank serving as the source and a 1-ft-diameter cast iron pipe of 1 mile length
leading to a user. The head elevation at the source is maintained at a constant
level of 100 ft above the user. It is also known that at the user end the required
pressure head is fixed at 20 psi (pounds per square inch) with variable demand
on flow rate. Assume that the demand in flow rate is random, having a lognormal
distribution with a mean of 3 ft3/s and a standard deviation of 0.3 ft3/s. Because of

fL(�)

fR(r)

� , r
0 2000 2500 3500  4500 5000

Figure 4P.4



Reliability Analysis Considering Load-Resistance Interference 235

Figure 4P.5 (After Mays and Tung, 1992).

the uncertainty in pipe roughness and pipe diameter, the supply to the user is not
certain. We know that the pipe has been installed for about 3 years. Therefore,
our estimation of the pipe roughness in the Hazen-Williams equation is about 130
with some error of ±20. Furthermore, knowing the manufacturing tolerance, the
1-ft pipe has an error of ±0.05 ft. Assume that both the pipe diameter and Hazen-
Williams’ CHW coefficient have lognormal distributions with means of 1 ft and
130 and standard deviations of 0.05 ft and 20, respectively. Using the MFOSM
method, determine the reliability that the demand of the user can be satisfied
(Mays and Tung, 1992).

4.19 In the design of storm sewer systems, the rational formula

QL = Ci A

is used frequently, in which QL is the surface inflow resulting from a rainfall
event of intensity i falling on the contributing drainage area of A, and C is the
runoff coefficient. On the other hand, Manning’s formula for full pipe flow, that is,

QC = 0.463n−1S1/2 D8/3

is used commonly to compute the flow-carrying capacity of storm sewers, in which
D is the pipe diameter, n is the Manning’s roughness, and S is pipe slope.

Consider that all the parameters in the rational formula and Manning’s equa-
tion are independent random variables with their mean and standard deviation
given below. Compute the reliability of a 36-in pipe using the MFOSM method
(Mays and Tung, 1992).
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Parameter Mean Std. Dev. Distribution

C 0.825 0.057575 Uniform
i (in/h) 4.000 0.6 Gumbel
A (acres) 10.000 0.5 Normal
n 0.015 0.00083 Lognormal
D (ft) 3.000 0.03 Normal
S (ft/ft) 0.005 0.00082 Lognormal

4.20 In most locations, the point rainfall intensity can be expressed by the following
empirical rainfall intensity-duration-frequency (IDF) formula:

i = aT m

b + tc

where i is the rainfall intensity (in in/h or mm/h), t is the storm duration (in
minutes), T is the return period (in years), and a, m, b, and c are constants.

At Urbana, Illinois, the data analysis results in the following information about
the coefficients in the preceding rainfall IDF equation:

Variable Mean, µ Coef. of Var. � Distribution

a 120 0.10 Normal
b 27 0.10 Normal
c 1.00 0.05 Normal
m 0.175 0.08 Normal

Assuming independence among the IDF coefficients, analyze the uncertainty of
the rainfall intensity for a 10-year, 24-minute storm. Furthermore, incorporate
the derived information herein to Problem 4.19 to evaluate the sewer reliability.

4.21 The storm duration used in the IDF equation (see Problem 4.20) in general is
equal to the time of concentration. One of the most commonly used in the Kirpich
(Chow, 1964):

tc = c1

(
L

S0.5

)c2

where tc is the time of concentration (in minutes), L is the length of travel (in feet)
from the most remote point on the drainage basin along the drainage channel to
the basin outlet, S is the slope (in ft/ft) determined by the difference in elevation
of the most remote point and that of the outlet divided by L, and c1 and c2 are
coefficients.

Assume that c1 and c2 are the only random variables in the Kirpich formula
with the following statistical features:

Parameter Mean Coeff. of Var. Distribution

c1 0.0078 0.3 Normal
c1 0.77 0.2 Normal

(a) Determine the mean and standard deviation of tc for the basin with L = 1080
ft and S = 0.001.
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s

r

Qp

Figure 4P.6

(b) Incorporate the uncertainty feature of tc obtained in (a), and resolve the sewer
reliability as Problem 4.20.

(c) Compare the computed reliability with those from Problems 4.19 and 4.20.

4.22 Referring to Fig. 4P.6, the drawdown of a confined aquifer table owing to pumping
can be estimated by the well-known Copper-Jacob equation:

s = ξ
Qp

4πT

[
−0.5772 − ln

(
r 2S
4T t

)]
in which ξ is the model correction factor accounting for the error of approximation,
s is the drawdown (in meters), S is the storage coefficient, T is the transmissiv-
ity (in m2/day), Qp is the pumping rate (in m3/day), and t is the elapse time
(in days). Owing to the nonhomogeneity of geologic formation, the storage coef-
ficient and transmissivity are in fact random variables. Furthermore, the model
correction factor can be treated as a random variable. Given the following in-
formation about the stochastic variables in the Copper-Jacob equation, estimate
the probability that the total drawdown will exceed 1.5 m under the condition of
Qp = 1000 m3/day, r = 200 m, and t = 7 days by the MFOSM method.

Variable Mean µ Coeff. of Var. � Distribution

ξ 1.000 0.10 Normal
T (m2/day) 1000.0 0.15 Lognormal
S 0.0001 0.10 Lognormal

NOTE: ρ(T , S) = −0.70; ρ(ξ, T ) = 0.0; ρ(ξ, S) = 0.0.

4.23 Referring to Fig. 4P.7, the time required for the original phreatic surface at ho to
have a drawdown s at a distance L from the toe of a cut slope can be approximated
by (Nguyen and Chowdhury, 1985)

s
ho

= 1 − erf

(
L

2
√

Khot/S

)
where erf(x) is the error function, which is related to the standard normal CDF
as erf(x) = 2

√
2[�(x) − 0.5], K is the conductivity of the aquifer, S is the storage

coefficient, and t is the drawdown time. From the slope stability viewpoint, it is
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ho

s

L

Figure 4P.7

required that further excavation can be made safely only when the drawdowns
reach at least half the original phreatic head. Therefore, the drawdown time to
reach s/ho = 0.5 can be determined from the preceding equation as

td =
(

L
2ξ

)2 S
Kho

where ξ = erf−1(0.5) = 0.477.
Consider that K and S are random variables having the following statistical

properties:

Variable Mean µ Std. Dev. σ Distribution

K (m/day) 0.1 0.01 Lognormal
S 0.05 0.005 Lognormal

NOTE: ρ(K , S) = 0.5.

Estimate the probability by the MFOSM method that the drawdown time td will
be less than 40 days under the condition L = 50 m and ho = 30 m.

4.24 The one-dimensional convective contaminant transport in steady flow through
porous media can be expressed as (Ogata, 1970):

C(x, t)
Co

= 1
2

erfc

[
x − (q/n)t

2
√

a�(q/n)t

]
in which C(x, t) is the concentration at point x and time t, Co is the concentration
of the incoming solute, x is the location along a one-dimensional line, q is the
specific discharge, n is the porosity, a� is the longitudinal dispersivity, erfc is the
complimentary error function, erfc(x) = 1 − erf(x), and t is the time.

Assume that the specific discharge q, longitudinal dispersivity a�, and porosity
n are random variables with the following statistical properties:

Variable Mean µ Std. Dev. σ Distribution

q (m/day) 1.0 0.10 Lognormal
n 0.2 0.02 Normal
a�(m) 10.0 1.00 Lognormal

NOTE: ρ(n, a�) = 0.75; zero for other pairs.

Estimate P [C(x, t)/Co > 0.5] for x = 525 m and t = 100 days by the MFOSM
method.
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4.25 Referring to the following Streeter-Phelps equation:

Dx = Kd L0

Ka − Kd

(
e−Kd x/U − e−Kax/U )+ D0e−Kax/U

consider that the deoxygenation coefficient Kd, the reaeration coefficient Ka, the
average stream velocity U, the initial dissolved oxygen DO, deficit concentrations
D0, and the initial in-stream BOD concentration L0 are random variables. As-
suming a saturated DO concentration of 8.48 mg/L, use the MFOSM method to
estimate the probability that the in-stream DO concentration will be less than
4.0 mg/L at x = 10 miles downstream of the waste discharge point by adopting
a lognormal distribution for the DO concentration with the following statistical
properties for the involved random variables:

Variable Mean µ Std. Dev. σ Distribution

Kd 0.60 L/day 0.060 L/day Lognormal
Ka 0.76 L/day 0.076 L/day Lognormal
U 1.2 ft/sec 0.012 ft/sec Normal
D0 1.60 mg/L 0.160 mg/L Normal
L0 6.75 mg/L 0.0675 mg/L Normal

NOTE: ρ(Ka, U ) = 0.8 and zero for all other pairs.

4.26 Referring to the Steeter-Phelps equation in Problem 4.25, determine the criti-
cal location associated with the maximum probability that the DO concentration
is less than 4.0 mg/L using the statistical properties of involved random vari-
ables given in Problem 4.25. At any trial location, use the MFOSM method, along
with the lognormal distribution for the random DO concentration, to compute the
probability.

4.27 Develop a computer program for the Hasofer-Lind algorithm that can be used for
problems involving correlated nonnormal random variables.

4.28 Develop a computer program for the Ang-Tang algorithm that can be used for
problems involving correlated nonnormal random variables.

4.29 Solve Problem 4.18 by the AFOSM method. Also compute the sensitivity of the
failure probability with respect to the stochastic variables. Compare the results
with those obtained in Problem 4.18.

4.30 Solve Problem 4.21 by the AFOSM method considering all stochastic basic vari-
ables involved, and compare the results with those obtained in Problem 4.21.

4.31 Solve Problem 4.22 by the AFOSM method considering all stochastic basic vari-
ables involved, and compare the results with those obtained in Problem 4.22.

4.32 Solve Problem 4.23 by the AFOSM method considering all stochastic basic vari-
ables involved, and compare the results with those obtained in Problem 4.23.

4.33 Solve Problem 4.24 by the AFOSM method considering all stochastic basic vari-
ables involved, and compare the results with those obtained in Problem 4.24.
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4.34 Solve Problem 4.25 by the AFOSM method considering all stochastic basic vari-
ables involved, and compare the results with those obtained in Problem 4.25.

4.35 Solve Problem 4.26 by the AFOSM method considering all stochastic basic vari-
ables involved, and compare the results with those obtained in Problem 4.26.

4.36 Prove that Eq. (4.107) is true.

4.37 Show that under the condition of independent resistance and load, P1 in
Eq. (4.113) can be written as

P1 = ps −
∫ lT

0
FL(r ) f R(r )dr −

(
1 − 1

T

)
[1 − FR(lT )]

4.38 Show that under the condition of independent resistance and load, P2 in
Eq. (4.114) can be written as

P2 =
∫ lT

0
FL(r ) f R(r )dr +

(
1 − 1

T

)
[1 − FR(lT )]

4.39 Assume that the annual maximum load and resistance are statistically indepen-
dent normal random variables with the following properties:

Variable Mean Coefficient of variation

Load 1.0 0.25
Resistance SF × �T =10−yr 0.15

Derive the reliability–safety factor–service life curves based on Eqs. (4.115) and
(4.116).

4.40 Repeat Problem 4.39 by assuming that the annual maximum load and resistance
are independent lognormal random variables.

4.41 Resolve Problem 4.39 by assuming that the resistance is a constant, that is,
r∗ = S F × �T =10−yr. Compare the reliability–safety factor–service life curves
with those obtained in Problem 4.39.
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Chapter

5
Time-to-Failure Analysis

5.1 Basic Concept

In preceding chapters, evaluations of reliability were based on analysis of the
interaction between loads on the system and the resistance of the system. A
system would perform its intended function satisfactorily within a specified
time period if its capacity exceeds the load. Instead of considering detailed in-
teractions of resistance and load over time, in a time-to-failure (TTF) analysis, a
system or its components can be treated as a black box or a lumped-parameter
system, and their performances are observed over time. This reduces the relia-
bility analysis to a one-dimensional problem involving time as the only variable
describable by the TTF of a system or a component of the system. The time-
to-failure is an important parameter in reliability analysis, representing the
length of time during which a component or system under consideration re-
mains operational. The TTF generally is affected by inherent, environmental,
and operational factors. The inherent factors involve the strength of the materi-
als, manufacturing process, and the quality control. The environmental factors
include such things as temperature, humidity, air quality, and others. The
operational factors include external load conditions, intensity and frequency
of use, and technical capability of users. In a real-life setting, the elements of
the factors affecting the TTF of a component are often subject to uncertainty.
Therefore, the TTF is a random variable.

In some situations, other physical scale measures, such as distance or length,
may be appropriate for system performance evaluation. For example, the reli-
ability of an automobile could be evaluated over its traveling distance, or the
pipe break probability owing to the internal pressure or external loads from
gravity or soil could be evaluated based on the length of the pipe. Therefore,
the notion of “time” should be regarded in a more general sense.

TTF analysis is particularly suitable for assessing the reliability of systems
and/or components that are repairable. The primary objectives of the reliability
analysis techniques described in the preceding chapters were the probability of
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the first failure of a system subject to external loads. In case the system fails,
how and when the system is repaired or restored are of little importance. Hence
such techniques are often used to evaluate the reliability of nonrepairable
systems or the failure probability when systems are subject to extraordinary
events. For a system that is repairable after its failure, the time period it would
take to have it repaired back to the operational state, called the time-to-repair
or restore (TTR), is uncertain.

Several factors affect the value of the TTR and include personal, conditional,
and environmental factors (Knezevic, 1993). Personal factors are those repre-
sented by the skill, experience, training, physical ability, responsibility, and
other similar characteristics of the personnel involved in the repair. The con-
ditional factors include the operating environment and the extent of the fail-
ure. The environmental factors are humidity, temperature, lighting, noise, time
of day, and similar factors affecting the maintenance crew during the repair.
Again, owing to the inherently uncertain nature of the many elements, the TTR
is a random variable.

For a repairable system or component, its service life can be extended indefi-
nitely if repair work can restore the system like new. Intuitively, the probability
of a repairable system available for service is greater than that of a nonre-
pairable system. Consider two identical systems: One is to be repaired after
its failure, and the other is not to be repaired. The difference in probability
that a system would be found in operating condition at a given instance would
become wider as the age of the two systems increased. This chapter focuses on
the characteristics of failure, repair, and availability of repairable systems by
TTF analysis.

5.2 Failure Characteristics

Any system will fail eventually; it is just a matter of time. Owing to the presence
of many uncertainties that affect the operation of a physical system, the time
the system fails to perform its intended function satisfactorily is random.

5.2.1 Failure density function

The probability distribution governing the time occurrence of failure is called
the failure density function. This failure density function serves as the common
thread in the reliability assessments by TTF analysis. Referring to Fig. 5.1, the
reliability of a system or a component within a specified time interval (0, t], can
be expressed, assuming that the system is operational initially at t = 0, as

ps(t) = P (TTF > t) =
∫ ∞

t
ft(τ ) dτ (5.1a)

in which the TTF is a random variable having ft(t) as the failure density func-
tion. The reliability ps(t) represents the probability that the system experiences
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0 t Time to failure

ft(t)

pf (t)

ps(t)

ps(t) - Reliability

pf (t) - Unreliability

Figure 5.1 Schematic diagram of reliability and unreliability
in the time-to-failure analysis.

no failure within (0, t]. The failure probability, or unreliability, can be ex-
pressed as

pf (t) = P (TTF ≤ t) = 1 − ps(t) =
∫ t

0
ft(τ ) dτ (5.1b)

Note that unreliability pf (t) is the probability that a component or a system
would experience its first failure within the time interval (0, t]. As can be seen
from Fig. 5.1, as the age of system t increases, the reliability ps(t) decreases,
whereas the unreliability pf (t) increases. Conversely, the failure density func-
tion can be obtained from the reliability or unreliability as

ft(t) = −d [ps (t)]
dt

= d [pf (t)]
dt

(5.2)

The TTF is a continuous, nonnegative random variable by nature. Many contin-
uous univariate distribution functions described in Sec. 2.6 are appropriate for
modeling the stochastic nature of the TTF. Among them, the exponential distri-
bution, Eq. (2.79), perhaps is the most widely used. Besides its mathematical
simplicity, the exponential distribution has been found, both phenomenolog-
ically and empirically, to describe the TTF distribution adequately for com-
ponents, equipment, and systems involving components with a mixture of life
distributions. Table 5.1 lists some frequently used failure density functions and
their distributional properties.

5.2.2 Failure rate and hazard function

The failure rate is defined as the number of failures occurring per unit time in
a time interval (t, t + �t] per unit of the remaining population in operation at
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TABLE 5.1 Selected Time-to-Failure Probability Distributions and Their Properties

Hazard Mean time
Distribution Failure density function ft (t) Reliability ps(t) function h(t) to failure

Normal
1√

2πσt
exp

[
−1

2

(
t − µt

σt

)2
] ∫ ∞

t
ft (τ ) dτ = 1 − �

(
t − µt

σt

)
ft (t)
ps(t)

µt

Lognormal
1√

2πtσt′
exp

[
−1

2

(
t ′ − µt′

σt′

)2
] ∫ ∞

t
ft (τ ) dτ = 1 − �

(
t ′ − µt′

σt′

)
ft (t)
ps(t)

exp[µt′ + 0.5σx′ ]
where t ′ = ln(t)

Exponential λe−λt e−λt λ 1/λ

Rayleigh
t

β2
exp

[
−1

2

(
t
β

)2
]

exp

[
−1

2

(
t
β

)2
]

t
β2

1.253β

Gamma (two-
β

�(α)
(βt)α−1e−βt

∫ ∞
t

ft (τ ) dτ
ft (t)
ps(t)

α/β

parameter)

Gumbel (max)
1
β

exp
{
−
(

t − to
β

)
− exp

[
−
(

t − to
β

)]}
1 − exp

{
− exp

[
−
(

t − to
β

)]}
ft (t)
ps(t)

to + 0.577β

Weibull
α

β

(
t − to

β

)α−1
exp
[
−
(

t − to
β

)α]
exp
[
−
(

t − to
β

)α] α(t − to)α−1

βα
to + β�

(
1 + 1

α

)
Uniform

1
b − a

, a ≤ t ≤ b
b − t
b − a

1
b − t

a + b
2

time t. Consider that a system consists of N identical components. The number
of failed components in (t, t + �t], N F (�t), is

N F (�t) = N × pf (t + �t) − N × pf (t) = N [pf (t + �t) − pf (t)]

and the remaining number of operational components at time t is

N (t) = N × ps(t)

Then, according to the preceding definition of the failure rate, the instantaneous
failure rate h(t) can be obtained as

h(t) = lim�t→0

[
N F (�t)/�t

N (t)

]
= lim�t→0

[
N × pf (t + �t) − N × pf (t)

N (t) × �t

]
= 1

ps(t)
lim�t→0

[
pf (t + �t) − pf (t)

�t

]
= 1

ps(t)
d [pf (t)]

dt

= ft(t)
ps(t)

(5.3)

This instantaneous failure rate is also called the hazard function or force-of-
mortality function (Pieruschka, 1963). Therefore, the hazard function indicates
the change in the failure rate over the operating life of a component. The
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Figure 5.2 Failure rate for lognormal failure density function.

hazard functions for some commonly used failure density functions are given
in Table 5.1. Figures 5.2 through 5.6 show the failure rates with respect to time
for various failure density functions.

Alternatively, the meaning of the hazard function can be seen from

h(t) = lim�t→0

[
1

�t
× pf (t + �t) − pf (t)

ps(t)

]
(5.4)

in which the term [pf (t + �t) − pf (t)]/ps(t) is the conditional failure proba-
bility in (t, t + �t], given that the system has survived up to time t. Hence the

Figure 5.3 Failure rate for Weibull failure density function with to = 0.
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Figure 5.4 Failure rate for Gumbel failure density function.

hazard function can be interpreted as the time rate of change of the condi-
tional failure probability for a system given that has survived up to time t. It
is important to differentiate the meanings of the two quantities ft(t) dt and
h(t) dt, with the former representing the probability that a component would
experience failure during the time interval (t, t + dt]—it is unconditional—
whereas the latter, h(t) dt, is the probability that a component would fail dur-
ing the time interval (t, t +�t]—conditional on the fact that the component has
been in an operational state up to time instant t.

Figure 5.5 Failure rate for two-parameter gamma failure density
function.
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Figure 5.6 Failure rate for uniform failure density function.

5.2.3 Cumulative hazard function and average
failure rate

Similar to the cumulative distribution function (CDF), the cumulative hazard
function can be obtained from integrating the instantaneous hazard function
h(t) over time as

H (t) =
∫ t

0
h(t) dt (5.5)

Referring to Eq. (5.3), the hazard function can be written as

h(t) = 1
ps(t)

d [pf (t)]
dt

= − 1
ps(t)

d [ps(t)]
dt

(5.6)

Multiplying dt on both sides of Eq. (5.6) and integrating them over time yields

H (t) =
∫ t

0
h(t) dt =

∫ t

0

−d [ps(t)]
ps(t)

= − ln[ps(t)]t
0 = − ln[ps(t)] (5.7)

under the initial condition of ps(0) = 1.

Unlike the CDF, interpretation of the cumulative hazard function is not sim-
ple and intuitive. However, Eq. (5.7) shows that the cumulative hazard function
is equal to ln[1/ps(t)]. This identity relationship is especially useful in the sta-
tistical analysis of reliability data because the plot of the sample estimation
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of 1/ps(t) versus time on semi-log paper reveals the behavior of the cumula-
tive hazard function. Then the slope of ln[1/ps(t)] yields directly the hazard
function h(t). Numerical examples showing the analysis of reliability data can
be found elsewhere (O’Connor, 1981, pp. 58–87; Tobias and Trindade, 1995,
pp. 135–160).

Since the hazard function h(t) varies over time, it is sometimes practical to
use a single average value that is representative of the failure rate over a time
interval of interest. The averaged failure rate (AFR) in the time interval [t1, t2]
can be defined as

AFR(t1, t2) =
∫ t2

t1
h(t) dt

t2 − t1
= H (t2) − H (t1)

t2 − t1
= ln[ps(t1)] − ln[ps(t2)]

t2 − t1
(5.8)

Therefore, the averaged failure rate of a component or system from the begin-
ning over a time period (0, t] can be computed as

AFR(0, t) = −ln[ps(t)]
t

(5.9)

The failure rate, in general, has the conventional unit of number of failures
per unit time. For a component with a high reliability, the failure rate will be too
small for the conventional unit to be appropriate. Therefore, the scale frequently
used for the failure rate is the percent per thousand hours (%K ) (Ramakumar,
1993; Tobias and Trindade, 1995). One percent per thousand hours means an
expected rate of one failure for each 100 units operating 1000 hours. Another
scale for even higher-reliability components is parts per million per thousand
hours (PPM/K), which means the expected number of failures out of one million
components operating for 1000 hours. The PPM/K is also called the failures in
time (FIT). If the failure rate h(t) has the scale of number of failures per hour,
it is related to the %K and PPM/K as follows:

1%K = 105 × h(t) 1 PPM/K = 1 FIT = 108 × h(t)

Example 5.1 Consider a pump unit that has an exponential failure density as

ft (t) = λe−λt for t ≥ 0, λ > 0

in which λ is the number of failures per unit time. The reliability of the pump in time
period (0, t], according to Eq. (5.1), is

ps(t) =
∫ ∞

t
λe−λt dt = e−λt

as shown in Table 5.1. The failure rate for the pump, according to Eq. (5.3), is

h(t) = ft (t)
ps(t)

= λe−λt

e−λt = λ

which is a constant. Since the instantaneous failure rate is a constant, the averaged
failure rate for any time interval of interest also is a constant.
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Example 5.2 Assume that the TTF has a normal distribution with the mean µt and
standard deviation σt . Develop curves for the failure density function, reliability, and
failure rate.

Solution For generality, it is easier to work on the standardized scale by which the
random time to failure T is transformed according to Z = (T − µt )/σt . In the stan-
dardized normal scale, the following table can be constructed easily:

(1) (2) (3) (4) (5) (6)
z φ(z) pf (z) = �(z) ps(z) h(z) h(t) = h(z)/σt

−3.5 0.0009 0.0002 0.9998 0.0009 0.0000018
−3.0 0.0044 0.0014 0.9986 0.0044 0.0000088
−2.5 0.0175 0.0062 0.9938 0.0176 0.0000352
−2.0 0.0540 0.0228 0.9772 0.0553 0.0001106
−1.5 0.1295 0.0668 0.9332 0.1388 0.0002776
−1.0 0.2420 0.1587 0.8413 0.2877 0.0005754
−0.5 0.3521 0.3085 0.6915 0.5092 0.0010184

0.0 0.3989 0.5000 0.5000 0.7978 0.0015956
0.5 0.3521 0.6915 0.3085 1.1413 0.0022826
1.0 0.2420 0.8413 0.1587 1.5249 0.0030498
1.5 0.1295 0.9332 0.0668 1.9386 0.0038772
2.0 0.0540 0.9772 0.0228 2.3684 0.0047368
2.5 0.0175 0.9938 0.0062 2.8226 0.0056452
3.0 0.0044 0.9986 0.0014 3.1429 0.0062858
3.5 0.0009 0.9998 0.0002 4.5000 0.0090000

NOTE : σt = 500 hours; h(t) has a unit of failures/h, t = µt + σt z.

Column (2) is simply the ordinate of the standard normal PDF computed by
Eq. (2.59). Column (3) for the unreliability is the standard normal CDF, which can
be obtained from Table 2.2 or computed by Eq. (2.63). Subtracting the unreliability
in column (3) from one yields the reliability in column (4). Then failure rate h(z) in
column (5) is obtained by dividing column (2) by column (4) according to Eq. (5.3).

Note that the failure rate of the normal time to failure h(t) = ft (t)/ps(t) is what
the problem is after rather than h(z). According to the transformation of variables,
the following relationship holds:

ft (t) = φ(z)|dz/dt| = φ(z)/σt

Since ps(t) = 1−�(z), the functional relationship between h(t) and h(z) can be derived
as

h(t) = h(z)/σt

Column (5) of the table for h(t) is obtained by assuming that σt = 500 hours. The
relationships between the failure density function, reliability, and failure rate for the
standardized and the original normal TTF are shown in Fig. 5.7. As can be seen,
the failure rate for a normally distributed TTF increases monotonically as the system
ages. Kapur and Lamberson (1977) showed that the failure-rate function associated
with a normal TTF is a convex function of time. Owing to the monotonically increasing
characteristics of the failure rate with time for a normally distributed TTF, it can be
used to describe the system behavior during the wear-out period.
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Figure 5.7 Reliability [ps(t)], failure rate [h(t)], failure density func-
tion [ ft (t)] for a process/component the TTF of which follows a normal
distribution as in Example 5.2.

5.2.5 Typical hazard functions

The failure rate for many systems or components has a bathtub shape, as shown
in Fig. 5.8, in that three distinct life periods can be identified (Harr, 1987). They
are the early-life (or infant mortality) period, useful-life period, and wear-out-
life period. Kapur (1989b) differentiates three types of failure that result in
the bathtub type of total failure rate, as indicated in Fig. 5.8. It is interesting
to note that the failure rate in the early-life period is higher than during the
useful-life period and has a decreasing trend with age. In this early-life period,
quality failures and stress-related failures dominate, with little contribution
from wear-out failures. During the useful-life period, all three types of failures
contribute to the potential failure of the system or component, and the overall
failure rate remains more or less constant over time. From Example 5.1, the
exponential distribution could be used as the failure density function for the
useful-life period. In the later part of life, the overall failure rate increases with
age. In this life stage, wear-out failures and stress-related failures are the main
contributors, and wear-out becomes an increasingly dominating factor for the
failure of the system with age.

Quality failures, also called break-in failures (Wunderlich, 1993, 2004), are
mainly related to the construction and production of the system, which could
be caused by poor construction and manufacturing, poor quality control and
workmanship, use of substandard materials and parts, improper installation,
and human error. Failure rate of this type generally decreases with age. Stress-
related failures generally are referred to as chance failures, which occur when
loads on the system exceed its resistance, as described in Chap. 4. Possible
causes of stress-related failures include insufficient safety factors, occurrence
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Figure 5.8 Bathtub failure rate with its three components.

of higher than expected loads or lower than expected random strength, misuse,
abuse, and/or an act of God. Wear-out failures are caused primarily by aging;
wear; deterioration and degradation in strength; fatigue, creep, and corrosion;
or poor maintenance, repair, and replacement.

The failure of the 93-m-high Teton Dam in Idaho in 1976 was a typical exam-
ple of break-in failure during the early-life period (Arthur, 1977; Jansen, 1988).
The dam failed while the reservoir was being filled for the first time. Four hours
after the first leakage was detected, the dam was fully breached. There are other
examples of hydraulic structure failures during different stages of their service
lives resulting from a variety of causes. For examples, in 1987 the foundation of
a power plant on the Mississippi River failed after a 90-year service life (Barr
and Heuer, 1989), and in the summer of 1993 an extraordinary sequence of
storms caused the breach of levees in many parts along the Mississippi River.
The failures and their impacts can be greatly reduced if proper maintenance
and monitoring are actively implemented.

5.2.6 Relationships among failure density function,
failure rate, and reliability

According to Eq. (5.3), given the failure density function ft(t) it is a straight-
forward task to derive the failure rate h(t). Furthermore, based on Eq. (5.3),
the reliability can be computed directly from the failure rate as

ps(t) = exp
[
−
∫ t

0
h(τ ) dτ

]
(5.10)
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Substituting Eq. (5.10) into Eq. (5.3), the failure density function ft(t) can be
expressed in terms of the failure rate as

ft(t) = h(t) exp
[
−
∫ t

0
h(τ ) dτ

]
(5.11)

Example 5.3 (after Mays and Tung, 1992) Empirical equations have been developed
for the break rates of water mains using data from a specific water distribution system.
As an example, Walski and Pelliccia (1982) developed break-rate equations for the
water distribution system in Binghamton, New York. These equations are

Pit cast iron: N (t) = 0.02577e0.0207t

Sandspun cast iron: N (t) = 0.0627e0.0137t

where N (t) is the break rate (in number of breaks per mile per year), and t is the age
of the pipe (in years). The break rates versus the ages of pipes for the preceding two
types of cast iron pipes are shown in Fig. 5.9. Derive the expressions for the failure
rate, reliability, and failure density function for a 5-mile water main of sandspun cast
iron pipe.

Solution The break rate per year (i.e., failure rate or hazard function for the 5-mile
water main) for sandspun cast iron pipe can be calculated as

h(t) = 5 miles × N (t) = 0.3185e0.0137t

The reliability of this 5-mile water main then can be computed using Eq. (5.10) as

ps(t) = exp

(
−
∫ t

0
0.3185e0.0137τ dτ

)
= exp[23.25(1 − e0.0137t )]

Figure 5.9 Break-rate curves for sandspun cast iron and pit cast iron
pipes.
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The failure density ft (t) can be calculated, using Eq. (5.11), as

ft (t) = 0.3185e0.0137t × exp[23.25(1 − e0.0137t )]

The curves for the failure rate, reliability, and failure density function of the 5-mile
sandspun cast iron water main are shown in Fig. 5.10.

5.2.7 Effect of age on reliability

In general, the reliability of a system or a component is strongly dependent
on its age. In other words, the probability that a system can be operational
to perform its intended function satisfactorily is conditioned by its age. This
conditional reliability can be expressed mathematically as

ps(ξ | t) = P (TTF ≥ t, TTF ≥ t + ξ )
P (TTF ≥ t)

= P (TTF ≥ t + ξ )
P (TTF ≥ t)

= ps(t + ξ )
ps(t)

(5.12)

in which t is the age of the system up to the point that the system has not failed,
and ps(ξ | t) is the reliability over a new mission period ξ , having successfully
operated over a period of (0, t]. In terms of failure rate, ps(ξ | t) can be written as

ps(ξ | t) = exp
[
−
∫ t+ξ

t
h(τ ) dτ

]
(5.13)

Figure 5.10 Curves for reliability [ps(t)], failure density [ ft (t)], and fail-
ure rate [h(t)] for the 5-mile sandspun cast iron pipe water main in
Example 5.3.
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Based on Eq. (5.2), the conditional failure density function can be obtained as

f (ξ | t) = −d [ps(ξ | t)]
d ξ

= −ps(ξ | t) × d
d ξ

[
−
∫ t+ξ

t
h(τ ) dτ

]
= ps(ξ | t)h(t + ξ )

(5.14)

For a process or component following the bathtub failure rate shown in
Fig. 5.8 during the useful-life period, the failure rate is a constant, and the
failure density function is an exponential distribution. Thus the failure rate
h(t) = λ. The conditional reliability, according to Eq. (5.13), is

ps(ξ | t) = e−λt (5.15)

which shows that the conditional reliability depends only on the new mission
period ξ regardless of the length of the previous operational period. Hence the
time to failure of a system having an exponential failure density function is
memoryless.

However, for nonconstant failure rates during the early-life and wear-out
periods, the memoryless characteristics of the exponential failure density func-
tion no longer hold. Consider the Weibull failure density with α �= 1. Referring to
Fig. 5.3, the condition α �= 1 precludes having a constant failure rate. According
to Table 5.1, the conditional reliability for the Weibull failure density function is

ps(ξ | t) =
exp

[
−
(

t + ξ − to

β

)α]
exp

[
−
(

t − to

β

)α] (5.16)

As can be seen, ps(ξ | t) will not be independent of the previous service period
t when α �= 1. Consequently, to evaluate the reliability of a system for an addi-
tional service period in the future during the early-life and wear-out stages, it
is necessary to know the length of the previous service period.

Example 5.4 Refer to Example 5.3. Derive the expression for the conditional reli-
ability and conditional failure density of the 5-mile water main with sandspun cast
iron pipe.

Solution Based on the reliability function obtained in Example 5.3, the conditional
reliability of the 5-mile sandspun cast iron pipe in the water distribution system can
be derived, according to Eq. (5.12), as

ps(ξ | t) = ps(t + ξ )
ps(t)

= exp[23.25(1 − e0.0137(t+ξ ))]
exp[23.25(1 − e0.0137t )]

= exp[23.25e0.0137t (1 − e0.0137ξ )]
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The conditional failure density, according to Eq. (5.13), can be obtained as

f t (ξ | t) = 0.3185 × e0.0137(t+ξ ) × exp[23.25e0.0137t (1 − e0.0137ξ )]

Figure 5.11 shows the conditional reliability and conditional failure density of the
pipe system for various service periods at different ages. Note that at age t = 0, the
curve simply corresponds to the reliability function.

5.2.8 Mean time to failure

A commonly used reliability measure of system performance is the mean time
to failure (MTTF), which is the expected TTF. The MTTF can be defined math-
ematically as

MTTF = E(TTF) =
∫ ∞

0
τ ft(τ ) dτ (5.17)

Referring to Eq. (2.30), the MTTF alternatively can be expressed in terms of
reliability as

MTTF =
∫ ∞

0
ps(t) dt (5.18)

By Eq. (5.18), the MTTF geometrically is the area underneath the reliability
function. The MTTF for some failure density functions are listed in the last col-
umn of Table 5.1. For illustration purposes, the MTTFs for some of the compo-
nents in water distribution systems can be determined from mean time between
failures (MTBF) and mean time to repair (MTTR) data listed in Tables 5.2
and 5.3.

Example 5.5 Refer to Example 5.3. Determine the expected elapsed time that a pipe
break would occur in the 5-mile sandspun cast iron pipe water main.

Solution The expected elapsed time over which a pipe break would occur can be com-
puted, according to Eq. (5.17), as

MTTF =
∫ ∞

0
ps(t) dt =

∫ ∞

0
exp[23.25(1 − e0.0137t )] dt = 3.015 years

The main reason for using Eq. (5.18) is purely for computational considerations
because the expression for ps(t) is much simpler than ft (t).

5.3 Repairable Systems

For repairable hydrosystems, such as pipe networks, pump stations, and storm
runoff drainage structures, failed components within the system can be re-
paired or replaced so that the system can be put back into service. The time
required to have the failed system repaired is uncertain, and consequently, the
total time required to restore the system from its failure state to an operational
state is a random variable.
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Figure 5.11 Conditional reliability and conditional failure density for the 5-mile
water main made of sandspun cast iron pipe in Example 5.4.
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TABLE 5.2 Reliability and Maintainability of Water Distribution
Subsystems by Generic Group

Subsystem MTBF∗ (×106 hours) MTTR∗ (hours)

Pumps
Centrifugal, open impeller 0.021660 7.825
Axial flow, propeller 0.074191 16.780

Power transmission
Concentric reducer 0.122640 2.000
Parallel shaft 0.710910 32.000
Right angle shaft 0.019480 1.400
Vertical shaft 0.031470 2.023
Variable speed, hydraulic 0.349500 —
Variable speed, other 0.014200 2.500
Gear box 0.045780 3.530
Chain drive 0.017850 8.000
Belt drive 0.091210 1.800

Motors
Multiphase 0.068000 6.853
Variable speed, ac 0.114820 8.000
Gas engine 0.023800 24.000

Valves
Gate 0.008930 3.636
Ball 0.011460 —
Butterfly 0.032590 1.000
Plug 0.028520 —

Controls
Electrical 0.100640 2.893
Mechanical 0.031230 8.000
Pressure (fluid) 0.035780 8.236
Pressure (air) 0.018690 3.556

∗MTBF = mean time between failure; MTTR = mean time to repair; MTBF =
MTTF + MTTR.

SOURCE : From Schultz and Parr (1981).

5.3.1 Repair density and repair probability

Like the time to failure, the random time to repair (TTR) has the repair density
function gt(t) describing the random characteristics of the time required to re-
pair a failed system when the failure occurs at time zero. The repair probability
Gt(t) is the probability that the failed system can be restored within a given
time period (0, t]:

Gt(t) = P (TTR ≤ t) =
∫ t

0
gt(τ ) dτ (5.19)

The repair probability Gt(t) is also called the maintainability function (Knezevic,
1993), which is one of the measures for maintainability (Kapur, 1988b). Main-
tainability is a design characteristic to achieve fast, easy maintenance at the
lowest life-cycle cost. In addition to the maintainability function, other types
of maintainability measures are derivable from the repair density function
(Kraus, 1988; Knezevic, 1993), and they are the mean time to repair (described
in Sec. 5.3.3), TTRp, and the restoration success.
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TABLE 5.3 Reliability and Maintainability of Water Distribution
Subsystems by Size

Subsystem MTBF∗(×106 hours) MTTR∗ (hours)

Pumps (in gpm)
1–10,000 0.039600 6.786

10,001–20,000 0.031100 7.800
20,001–100,000 0.081635 26.722
Over 100,000 0.008366 9.368

Power transmission (in horsepower)
0–1 0.025370 1.815
2–5 0.011010 2.116
6–25 1.376400 25.000

26–100 0.058620 5.000
101–500 0.078380 2.600
Over 500 0.206450 32.000

Motors (in horsepower)
0–1 0.206450 2.600
2–5 0.214700 —
6–25 0.565600 7.857

26–100 0.062100 4.967
101–500 0.046000 12.685
Over 500 0.064630 7.658

Valves (in inches)
6–12 0.054590 —

13–24 0.010810 1.000
25–48 0.019070 42.000
Over 48 0.007500 2.667

Controls (in horsepower)
0–1 2.009200 2.050
2–5 0.509500 —
6–25 4.684900 —

26–100 0.026109 2.377
101–500 0.099340 5.450
Over 500 0.037700 3.125

∗MTBF = mean time between failure; MTTR = mean time to repair; MTBF =
MTTF + MTTR.

SOURCE : From Schultz and Parr (1981).

The TTRp is the maintenance time by which 100p percent of the repair work
is completed. The value of the TTRp can be determined by solving

P (TTR ≤ TTRp) =
∫ TTRp

0
gt(τ ) dτ = Gt(TTRp) = p (5.20)

In other words, the TTRp is the pth order quantile of the repair density function.
In general, p = 0.90 is used commonly.

Note that the repair probability or maintainability function Gt(t) represents
the probability that the restoration can be completed before or at time t. Some-
times one may be interested in the probability that the system can be restored
by time t2, given that it has not been repaired at an earlier time t1. This type of
conditional repair probability, similar to the conditional reliability of Eq. (5.12),
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is called the restoration success RS(t1, t2), which is defined mathematically as

RS(t1, t2) = P [TTR ≤ t2 | TTR > t1] = Gt(t2) − Gt(t1)
1 − G(t1)

(5.21)

Kraus (1988) pointed out the difference in maintainability and maintenance;
namely, maintainability is design-related, whereas maintenance is operation-
related. Since the MTTF is a measure of maintainability, it includes those time
elements that can be controlled by design. Elements involved in the evaluation
of the time to repair are fault isolation, repair or replacement of a failed com-
ponent, and verification time. Administrative times, such as mobilization time
and time to reach and return from the maintenance site, are not included in the
evaluation of the time to repair. The administrative times are considered under
the context of supportability (see Sec. 5.3.4), which measures the ability of a
system to be supported by the required resources for execution of the specified
maintenance task (Knezevic, 1993).

5.3.2 Repair rate and its relationship with repair
density and repair probability

The repair rate r (t), similar to the failure rate, is the conditional probability
that the system is repaired per unit time given that the system failed at time
zero and is still not repaired at time t. The quantity r (t) dt is the probability
that the system is repaired during the time interval (t, t + dt] given that the
system fails at time t. Similar to Eq. (5.3), the relationship among repair density
function, repair rate, and repair probability is

r (t) = gt(t)
1 − Gt(t)

(5.22)

Given a repair rate r (t), the repair density function and the maintainability
can be determined, respectively, as

gt(t) = r (t) × exp
[
−
∫ t

0
r (τ ) dτ

]
(5.23)

Gt(t) = 1 − exp
[
−
∫ t

0
r (τ ) dτ

]
(5.24)

5.3.3 Mean time to repair, mean time between
failures, and mean time between repairs

The mean time to repair (MTTR) is the expected value of time to repair of a
failed system, which can be calculated by

MTTR =
∫ ∞

0
τgt(τ ) dτ =

∫ ∞

0
[1 − Gt(τ )] d τ (5.25)
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The MTTR measures the elapsed time required to perform the maintenance op-
eration and is used to estimate the downtime of a system. The MTTR values for
some components in a water distribution system are listed in the last columns of
Tables 5.2 and 5.3. It is also a commonly used measure for the maintainability
of a system.

The MTTF is a proper measure of the mean life span of a nonrepairable
system. However, for a repairable system, the MTTF is no longer appropriate for
representing the mean life span of the system. A more representative indicator
for the fail-repair cycle is the mean time between failures (MTBF), which is the
sum of MTTF and MTTR, that is,

MTBF = MTTF + MTTR (5.26)

The mean time between repairs (MTBR) is the expected value of the time be-
tween two consecutive repairs, and it is equal to MTBF. The MTBF for some typ-
ical components in a water distribution system are listed in Tables 5.2 and 5.3.

Example 5.6 Consider a pump having a failure density function of

ft (t) = 0.0008 exp(−0.0008t) for t ≥ 0

and a repair density function of

gt (t) = 0.02 exp(−0.02t) for t ≥ 0

in which t is in hours. Determine the MTBF for the pump.

Solution To compute the MTBF, the MTTF and MTTR of the pump should be calcu-
lated separately. Since the time to failure and time to repair are exponential random
variables, the MTTF and MTTR, respectively, are

MTTF = 1/0.0008 = 1250 hours

MTTR = 1/0.02 = 50 hours

Therefore, MTBF = MTTF + MTTR = 1250 + 50 = 1300 hours.

5.3.4 Preventive maintenance

There are two basic categories of maintenance: corrective maintenance and
preventive maintenance. Corrective maintenance is performed when the sys-
tem experiences in-service failures. Corrective maintenance often involves the
needed repair, adjustment, and replacement to restore the failed system back
to its normal operating condition. Therefore, corrective maintenance can be
regarded as repair, and its stochastic characteristics are describable by the re-
pair function, MTTR, and other measures discussed previously in Secs. 5.3.1
through 5.3.3.

On the other hand, preventive maintenance, also called scheduled mainte-
nance, is performed in a regular time interval involving periodic inspections,
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even if the system is in working condition. In general, preventive maintenance
involves not only repair but inspection and some replacements. Preventive
maintenance is aimed at postponing failure and prolonging the life of the sys-
tem to achieve a longer MTTF for the system. This section will focus on some
basic features of preventive maintenance.

From the preceding discussions of what a preventive maintenance program
wishes to achieve, it is obvious that preventive maintenance is only a waste of
resources for a system having a decreasing or constant hazard function because
such an activity cannot decrease the number of failures (see Example 5.7). If
the maintenance is neither ideal nor perfect, it may even have an adverse
impact on the functionality of the system. Therefore, preventive maintenance
is a worthwhile consideration for a system having an increasing hazard function
or an aged system (see Problems 5.18 and 5.19).

Ideal maintenance. An ideal maintenance has two features: (1) zero time to com-
plete, relatively speaking, as compared with the time interval between mainte-
nance, and (2) system is restored to the “as new” condition. The second feature
often implies a replacement.

Let tM be the fixed time interval between the scheduled maintenance, and
ps,M(t) is the reliability function with preventive maintenance. The reliability of
the system at time t, after k preventive maintenances, with ktM < t ≤ (k+1)tM ,
for k = 0, 1, 2, . . . , is

ps,M(t) = P {no failure in (0, tM], no failure in (tM , 2 tM], . . . ,
no failure in ((k − 1)tM , ktM], no failure in (ktM , t]}

= P
{

k∩
i=1

no failure in ((i − 1)tM , itM], no failure in (ktM , t]
}

= [ps(tM)]k × ps(t − ktM) (5.27)

where ps,M(t) is the unmaintained reliability function defined in Eq. (5.1a).
The failure density function with maintenance f M(t) can be obtained from

Eq. (5.27), according to Eq. (5.2), as

f M(t) = −d [ps,M(t)]
dt

= −[ps(tM)]k × d [ps(t − ktM)]
dt

= [ps(tM)]k ft(t − ktM) (5.28)

for ktM < t ≤ (k +1)tM , with k = 0, 1, 2, . . .. As can be seen from Eqs. (5.27) and
(5.28), the reliability function and failure density function with maintenance in
each time segment, defined by two consecutive preventive maintenances, are
scaled down by a factor of ps(tM) as compared with the proceeding segment.
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Figure 5.12 Reliability function with and without preventive
maintenance.

The factor ps(tM) is the fraction of the total components that will survive from
one segment of the maintenance period to the next. Geometric illustrations of
Eqs. (5.27) and (5.28) are shown in Figs. 5.12 and 5.13, respectively. The envelop
curve in Fig. 5.12 (shown by a dashed line) exhibits an exponential decay with
a factor of ps(tM).

Similar to an unmaintained system, the hazard function with maintenance
can be obtained, according Eq. (5.3), as

hM(t) = f M(t − ktM)
ps,M(t − ktM)

for ktM < t ≤ (k + 1)tM , k = 0, 1, 2, . . . (5.29)

Figure 5.13 Failure density function with ideal preven-
tive maintenance.
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The mean time-to-failure with maintenance MTTFM can be evaluated, ac-
cording to Eq. (5.18), as

MTTFM =
∫ ∞

0
ps,M(t) dt =

∞∑
k=0

∫ (k+1)tM

ktM

ps,M(t) dt

=
∞∑

k=0

[ps(tM)]k
∫ (k+1)tM

ktM

ps(t − ktM) dt (5.30)

By letting τ = t − ktM , the preceding integration for computing the MTTFM
can be rewritten as

MTTFM =
{ ∞∑

k=0

[ps(tM)]k

}[∫ tM

0
ps(τ ) dτ

]
=
∫ tM

0 ps(τ ) dτ

1 − ps(tM)
(5.31)

using 1/(1 − x) = 1 + x + x2 + x3 + x4 + . . . , for 0 < x < 1.

A preventive maintenance program is worth considering if the reliability with
maintenance is greater than the reliability without maintenance. That is,

ps,M(t)
ps(t)

= [ps(tM)]k ps(t − ktM)
ps(t)

> 1 for ktM < t ≤ (k + 1)tM , k = 0, 1, 2, . . .

(5.32)

Letting t = ktM and assuming ps(0) = 1, the preceding expression can be
simplified as

ps,M(ktM)
ps(ktM)

= [ps(tM)]k

ps(ktM)
> 1 for k = 0, 1, 2, . . . (5.33)

Similarly, the implementation of a preventive maintenance program is justifi-
able if MTTFM > MTTF or hM(t) > h(t) for all time t.

Example 5.7 Suppose that a system is implemented with preventive maintenance
at a regular time interval of tM . The failure density of the system is of an exponential
type as

ft (t) = λe−λt for t ≥ 0

Assuming that the maintenance is ideal, find the expression for the reliability function
and the mean time to failure of the system.

Solution The reliability function of the system if no maintenance is in place is (from
Table 5.1)

ps(t) = e−λt for t ≥ 0

The reliability of the system under a regular preventive maintenance of time interval
tM can be derived, according to Eq. (5.27), as

ps,M (t) = (e−λtM )
k × e−λ(t−ktM ) for ktM < t ≤ (k + 1)tM , k = 0, 1, 2, . . .
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which can be reduced to

ps,M (t) = e−λt for t ≥ 0

The mean time to failure of the system with maintenance can be calculated, according
to Eq. (5.31), as

MMTFM =
∫ tM

0 e−λτ dτ

1 − e−λtM
=

1
λ

(1 − e−λtM )

1 − e−λtM
= 1

λ

As can be seen, with preventive maintenance in place, the reliability function and
the mean time to failure of a system having an exponential failure density (constant
failure rate) are identical to those without maintenance.

Example 5.8 Consider a system having a uniform failure density bounded in
[0, 5 years]. Evaluate the reliability, hazard function, and MTTF for the system if a
preventive maintenance program with a 1-year maintenance interval is implemented.
Assume that the maintenance is ideal.

Solution The failure density function for the system is

ft (t) = 1/5 for 0 ≤ t ≤ 5

From Table 5.1, the reliability function, hazard function, and MTTF of the system
without maintenance, respectively, are

ps(t) = (5 − t)/5 for 0 ≤ t ≤ 5

h(t) = 1/(t − 5) for 0 ≤ t ≤ 5

and MTTF = 5/2 = 2.5 years

With the maintenance interval tM = 1 year, the reliability function, failure density,
hazard function, and the MTTF can be derived, respectively, as

ps,M (t) = (4/5)k[(5 − t + k)/5] for k < t ≤ k + 1, k = 0, 1, 2, . . .

f M (t) = (4/5)k(1/5) for k < t ≤ k + 1, k = 0, 1, 2, . . .

hM (t) = f M (t)
ps,M (t)

= 1/(5 − t + k) for k < t ≤ k + 1, k = 0, 1, 2, . . .

and MMTFM =
∫ 1

0
5 − τ

5
dτ

1 − 4
5

= 9/10
1/5

= 4.5 years

Referring to Fig. 5.6, the hazard function for the system associated with a uniform
failure density function is increasing with time. This example shows that the MTTFM
is larger than the MTTF, indicating that the scheduled maintenance is beneficial to
the system under consideration. Furthermore, plots of the reliability, failure density,
and hazard function for this example are shown in Fig. 5.14.

In the context of scheduled maintenance, the number of maintenance ap-
plications KM before system failure occurs is a random variable of significant
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without [h(t)] preventive maintenance for Example 5.8.
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importance. The probability that the system will undergo exactly k preventive
maintenance applications before failure is the probability that system failure
occurs before (k + 1)tM , which can be expressed as

qk = [ps(tM)]k[1 − ps(tM)] for k = 0, 1, 2, . . . (5.34)

which has the form of a geometric distribution. From Eq. (5.34), the expected
number of scheduled maintenance applications before the occurrence of system
failure is

E(KM) =
∞∑

k=0

k × qk = [1 − ps(tM)]
∞∑

k=1

k × [ps(tM)]k = ps(tM)
1 − ps(tM)

(5.35)

and the variance of KM is

Var(KM) =
∞∑

k=0

k2 × qk − E2(KM) = [1 − ps(tM)]
∞∑

k=1

k2[ps(tM)]k −
[

ps(tM)
1 − ps(tM)

]2

= ps(tM)[1 + ps(tM)]
[1 − ps(tM)]2 −

[
ps(tM)

1 − ps(tM)

]2

= ps(tM)
[1 − ps(tM)]2 (5.36)

The algebraic manipulations used in Eqs. (5.35) and (5.36) employ the following
relationships under the condition 0 < x < 1:

∞∑
i=1

ixi = x
(1 − x)2

∞∑
i=1

i2xi = x(1 + x)
(1 − x)3 (5.37)

Example 5.9 Referring to Example 5.7, having an exponential failure density func-
tion, derive the expressions for the expected value and variance of the number of
scheduled maintenance applications before the system fails.

Solution According to Eq. (5.35), the expected number of scheduled maintenance ap-
plications before failure can be derived as

E(KM ) = ps(tM )
1 − ps(tM )

= e−λtM

1 − e−λtM
= 1

eλtM − 1
= 1

etM/MTTF − 1

The variance of the number of scheduled maintenance applications before failure can
be derived, according to Eq. (5.36), as

Var(KM ) = ps(tM )

[1 − ps(tM )]2
= e−λtM

(1 − e−λtM )2
= eλtM

(eλtM − 1)2
= etM/MTTF

(etM/MTTF − 1)2

Time variations of the expected value and standard deviation of the number of sched-
uled maintenance applications before failure for a system with an exponential failure
density function are shown in Fig. 5.15. It is observed clearly that, as expected, when
the time interval for scheduled maintenance tM becomes longer relative to the MTTF,
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Figure 5.15 Time variations of the expected value and standard de-
viation of the number of scheduled maintenance applications before
failure for a system with an exponential failure density function, as
in Example 5.9.

the expected number of scheduled maintenance applications E(KM ) and its associ-
ated standard deviation σ (KM ) decrease. However, the coefficient of variation �(KM )
increases. Interestingly, when tM/MTTF = 1, E(KM ) = 1/(e − 1) = 0.58, indicat-
ing that failure could occur before maintenance if the scheduled maintenance time
interval is set to be MTTF under the exponential failure density function.

Example 5.10 Referring to Example 5.8, with a uniform failure density function,
compute the expected value and standard deviation of the number of scheduled main-
tenance applications before the system fails.

Solution According to Eq. (5.32), the expected number of scheduled maintenance ap-
plications before failure can be derived as

E(KM ) = ps(tM )
1 − ps(tM )

= 4/5
1 − (4/5)

= 4/5
1/5

= 4

The variance of the number of scheduled maintenance applications before failure can
be derived, according to Eq. (5.33), as

Var(KM ) = ps(tM )

[1 − ps(tM )]2
= 4/5

[1 − (4/5)]2
= 20

The standard deviation of the number of scheduled maintenance applications before
failure for the system is

√
20 = 4.47 scheduled maintenance applications.
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Imperfect maintenance. Owing to faulty maintenance as a result of human
error, the system under repair could fail soon after the preventive maintenance
application. If the probability of performing an imperfect maintenance is q, the
reliability of the system is to be multiplied by (1 − q) each time maintenance is
performed, that is,

ps,M(t | q) = [(1 − q) ps(tM)]k ps(t − ktM) for ktM < t ≤ (k + 1)tM, k = 0, 1, 2, . . .

(5.38)

An imperfect maintenance is justifiable only when, at t = ktM ,

ps,M(ktM | q)
ps(ktM)

= [(1 − q) ps(tM)]k

ps(ktM)
> 1 for k = 0, 1, 2, . . . (5.39)

Example 5.11 Refer to Example 5.7, with an exponential failure density function.
Show that implementing an imperfect maintenance is in fact damaging.

Solution By Eq. (5.39), the ratio of reliability functions with and without imperfect
maintenance for a system with an exponential failure density is

ps,M (ktM | q)
ps(ktM )

= (1 − q)k
(

e−kλtM

e−kλtM

)
= (1 − q)k < 1 for k ≥ 1

This indicates that performing an imperfect maintenance for a system with an expo-
nential failure density function could reduce reliability.

5.3.5 Supportability

For a repairable component, supportability is an issue concerning the ability
of the components, when they fail, to receive the required resources for car-
rying out the specified maintenance task. It is generally represented by the
time to support (TTS), which may include administrative time, logistic time,
and mobilization time. Similar to the TTF and TTR, TTS, in reality, also is
randomly associated with a probability density function. The cumulative dis-
tribution function of the random TTS is called the supportability function, rep-
resenting the probability that the resources will be available for conducting a
repair task at a specified time. Also, other measures of supportability include
the mean time to support (MTTS), TTSp, and support success, similar to those
defined for maintainability, with the repair density function replaced by the
density function of the TTS.

5.4 Determinations of Availability and Unavailability

5.4.1 Terminology

A repairable system experiences a repetition of the repair-to-failure and failure-
to-repair processes during its service life. Hence the probability that a system is
in an operating condition at any given time t for a repairable system is different
from that for a nonrepairable system. The term availability A(t) generally is
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used for repairable systems to indicate the probability that the system is in
an operating condition at any given time t. It also can be interpreted as the
percentage of time that the system is in an operating condition within a specified
time period. On the other hand, reliability ps(t) is appropriate for nonrepairable
systems, indicating the probability that the system has been continuously in
an operating state starting from time zero up to time t.

There are three types of availability (Kraus, 1988). Inherent availability is
the probability of a system, when used under stated conditions and without
consideration of any scheduled or preventive actions, in an ideal support en-
vironment, operating satisfactorily at a given time. It does not include ready
time, preventive downtime, logistic time, and administrative time. Achieved
availability considers preventive and corrective downtime and maintenance
time. However, it does not include logistic time and administrative time. Oper-
ational availability considers the actual operating environment. In general, the
inherent availability is higher than the achieved availability, followed by the
operational availability (see Example 5.13). Of interest to design is the inherent
availability; this is the type of availability discussed in this chapter.

In general, the availability and reliability of a system satisfy the following
inequality relationship:

0 ≤ ps(t) ≤ A(t) ≤ 1 (5.40)

with the equality for ps(t) and A(t) holding for nonrepairable systems. The reli-
ability of a system decreases monotonically to zero as the system ages, whereas
the availability of a repairable system decreases but converges to a positive
probability (Fig. 5.16).

Figure 5.16 Comparison of reliability and availability.



274 Chapter Five

The complement to the availability is the unavailability U (t), which is the
probability that a system is in a failed condition at time t, given that it was in an
operating condition at time zero. In other words, unavailability is the percent-
age of time the system is not available for the intended service in time period
(0, t], given that it was operational at time zero. Availability, unavailability, and
unreliability satisfy the following relationships:

A(t) + U (t) = 1 (5.41)

0 ≤ U (t) ≤ pf (t) ≤ 1 (5.42)

For a nonrepairable system, the unavailability is equal to the unreliability, that
is, U (t) = pf (t).

Recall the failure rate in Sec. 5.2.2 as being the probability that a system
experiences a failure per unit time at time t, given that the system was oper-
ational at time zero and has been in operation continuously up to time t. This
notion is appropriate for nonrepairable systems. For a repairable system, the
term conditional failure intensity µ(t) is used, which is defined as the proba-
bility that the system will fail per unit time at time t, given that the system
was operational at time zero and also was in an operational state at time t.
Therefore, the quantity µ(t) dt is the probability that the system fails during
the time interval (t, t + dt], given that the system was as good as new at time
zero and was in an operating condition at time t. Both µ(t) dt and h(t) dt are
probabilities that the system fails during the time interval (t, t + dt], being
conditional on the fact that the system was operational at time zero. The dif-
ference is that the latter, h(t) dt, requires that the system has been in a con-
tinuously operating state from time zero to time t, whereas the former allows
possible failures before time t, and the system is repaired to the operating state
at time t. Hence µ(t) �= h(t) for the general case, and they are equal for nonre-
pairable systems or when h(t) is a constant (Henley and Kumamoto, 1981).

A related term is the unconditional failure intensity w(t), which is defined as
the probability that a system will fail per unit time at time t, given that the
system is in an operating condition at time zero. Note that the unconditional
failure intensity does not require that the system is operational at time t. For
a nonrepairable system, the unconditional failure intensity is equal to the fail-
ure density ft(t). The number of failures experienced by the system within a
specified time interval [t1, t2] can be evaluated as

W (t1, t2) =
∫ t2

t1

w(τ ) dτ (5.43)

Hence, for a nonrepairable system, W (0, t) is equal to the unreliability, which
approaches unity as t increases. However, for repairable systems, W (0, t) would
diverge to infinite as t gets larger (Fig. 5.17).

On the repair aspect of the system, there are elements similar to those of the
failure aspect. The conditional repair intensity ρ(t) is defined as the probability
that a system is repaired per unit time at time t, given that the system was in
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Figure 5.17 Expected number of failures for repairable and
nonrepairable systems.

an operational state initially at time zero but in a failed condition at time t. The
unconditional repair intensity γ (t) is the probability that a failed system will
be repaired per unit time at time t, given that it was initially in an operating
condition at time zero. The number of repairs over a specified time period (t1, t2),
analogous to Eq. (5.43), can be expressed as

�(t1, t2) =
∫ t2

t1

γ (τ ) dτ (5.44)

in which �(0, t) is the expected number of repairs for a repairable system within
the time interval [t1, t2]. A repairable system has �(0, t) approaching infinity
as t increases, whereas it is equal to zero for a nonrepairable system. It will be
shown in the next subsection that the difference between W (0, t) and �(0, t) is
the unavailability U (t).

5.4.2 Determinations of availability
and unavailability

Determination of the availability or unavailability of a system requires a full
accounting of the failure and repair processes. The basic elements that describe
such processes are the failure density function ft(t) and the repair density func-
tion gt(t). In this section computation of the availability of a single component
or system is described under the condition of an ideal supportability. That is,
the availability, strictly speaking, is the inherent availability. Discussions of
the subject matter for a complex system are given in Chap. 7.
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Consider a specified time interval (0, t], and assume that the system is ini-
tially in an operating condition at time zero. Therefore, at any given time in-
stance t, the system is in an operating state if the number of failures and repairs
w(0, t) are equal, whereas the system is in a failed state if the number of failures
exceeds the number of repairs by one. Let N F (t) and N R(t) be the random vari-
ables representing the numbers of failures and repairs in time interval (0, t],
respectively. The state of the system at time instance t, failed or operating, can
be indicated by a new variable I (t) defined as

I (t) = N F (t) − N R(t) (5.45)

Note that I (t) also is a random variable. As described earlier, the indicator
variable I (t) is binary by nature, that is,

I (t) =
{

1 if system is in a failed state
0 otherwise

Recall that the unavailability is the probability that a system is in the failed
state, given that the system was initially operational at time zero. Hence the
unavailability of a system is the probability that the indicator variable I (t)
takes the value of 1, which is equal to the expected value of I (t). Accordingly,

U (t) = E[I (t)] = E[N F (t)] − E[N R(t)] = W (0, t) − �(0, t) (5.46)

indicating that the unavailability is equal to the expected number of failures
W (0, t) minus the expected number of repairs �(0, t) in time interval (0, t].
The values of W (0, t) and �(0, t) can be computed by Eqs. (5.43) and (5.44),
respectively.

To compute W (0, t) and �(0, t), knowledge of the unconditional failure in-
tensity w(t) and the unconditional repair intensity γ (t) is required. The un-
conditional failure intensity can be derived by the total probability theorem as

w(t) = ft(t) +
∫ t

0
γ (τ ) ft(t − τ ) dτ (5.47)

in which, on the right-hand side, the first term, ft(t), is for the case that the
probability of failure is at time t, given that the system has survived up to
time t; the second term accounts for the case that the system is repaired at
time τ < t and later fails at time t. This is shown in Fig. 5.18.

For the unconditional repair intensity γ (t) one would need only to consider
one possible case, as shown in Fig. 5.19. That is, the system is in an operating
state at time t given that the system is operational initially and is in a failed
state at time τ < t. The probability that this condition occurs is

γ (t) =
∫ t

0
w(τ )g(t − τ ) dτ (5.48)
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Figure 5.18 Two different cases for a system to be in a failed state
during (t, dt]: (a) the system has been operational up to time t and
failed during (t, t + dt), given that it was good at t = 0 and no
repair has been done during (0, t); (b) the system has been
operational up to time tand failed during (t, t + dt), given that
it was good at t = 0 and was repaired at t = τ . (After Henley and
Kumamoto, 1981.)

Figure 5.19 The case for a system to be repaired during (t, dt]. (After
Henley and Kumamoto, 1981.)
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Note that given the failure density ft(t) and the repair density gt(t), the un-
conditional failure intensity w(t) and the unconditional repair intensity γ (t)
are related to one another in an implicit fashion, as shown in Eqs. (5.47) and
(5.48). Hence the calculations of w(t) and γ (t) are solved by iterative numerical
integration. Analytically, the Laplace transform technique can be applied to
derive w(t) and γ (t) owing to the convolution nature of the two integrals.

Based on the unavailability and unconditional failure intensity, the condi-
tional failure intensity µ(t) can be computed as

µ(t) = w(t)
1 − U (t)

= w(t)
A(t)

(5.49)

which is analogous to Eq. (5.3). For the repair process, the conditional repair
intensity ρ(t), unconditional repair intensity γ (t), and unavailability are re-
lated as

ρ(t) = γ (t)
U (t)

(5.50)

The general relationships among the various parameters in the failure and
repair processes are summarized in Table 5.4.

TABLE 5.4 Relationship among Parameters in Time-to-Failure
Analysis

Repairable systems Nonrepairable systems

General relations
A(t) + U (t) = 1 A(t) + U (t) = 1
A(t) > ps(t) A(t) = ps(t)
U (t) < pf (t) U (t) = pf (t)

w(t) = ft (t) +
∫

ft (t − τ )γ (τ ) dτ w(t) = ft (t)

γ (t) =
∫

gt (t − τ )w(τ ) dτ γ (t) = 0

W (t1, t2) =
∫

w(τ ) dτ W (t1, t2) = ps(t2) − ps(t1)

�(t1, t2) =
∫

γ (τ ) dτ �(t1, t2) = 0

U (t) = W (0, t) − �(0, t) U (t) = pf (t)
µ(t) = w(t)/A(t) h(t) = ft (t)/ps(t)
ρ(t) = γ (t)/U (t) r (t) = 0

Stationary values
MTBF = MTBR = MTTF + MTTR MTBF = MTBR = ∞
0 < A(∞), U (∞) < 1 A(∞) = 0, U (∞) = 1
0 < w(∞), γ (∞) < ∞ w(∞) = 0, γ (∞) = 0
w(∞) = γ (∞) w(∞) = γ (∞) = 0
W (0, ∞) = �(0, ∞) = ∞ W (0, ∞) = 1, �(0, ∞) = 0

Remarks
w(t) �= µ(t), γ (t) �= ρ(t) w(t) �= µ(t), γ (t) = ρ(t) = 0
µ(t) �= h(t), ρ(t) �= r (t) µ(t) = h(t), ρ(t) = r (t) = 0
w(t) �= ft (t), γ (t) �= gt (t) w(t) = ft (t), γ (t) = gt (t) = 0

SOURCE : After Henley and Kumamoto (1981).
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Example 5.12 For a given failure density function ft (t) and repair density function
gt (t), solve for the unconditional failure intensity w(t) and the unconditional repair
intensity γ (t) by the Laplace transform technique.

Solution Note that the integrations in Eqs. (5.47) and (5.48) are in fact convolutions
of two functions. According to the properties of the Laplace transform described in
Appendix 5A, the Laplace transforms of Eqs. (5.47) and (5.48) result in the following
two equations, respectively:

L [w(t)] = L [ ft (t)] + L [γ (t)] × L [ ft (t)] (5.51a)

L [γ (t)] = L [w(t)] × L [gt (t)] (5.51b)

in which L (·) is the Laplace transform operator. Solving Eqs. (5.51a) and (5.51b)
simultaneously, one has

L [w(t)] = L [ ft (t)]
1 − L [ ft (t)] × L [gt (t)]

(5.52a)

L [γ (t)] = L [ ft (t)] × L [gt (t)]
1 − L [ ft (t)] × L [gt (t)]

(5.52b)

To derive w(t) and γ (t), the inverse transform can be applied to Eqs. (5.52a) and
(5.52b), and the results are

w(t) = L−1
{

L [ ft (t)]
1 − L [ ft (t)] × L [gt (t)]

}
(5.53a)

and γ (t) = L−1
{

L [ ft (t)] × L [gt (t)]
1 − L [ ft (t)] × L [gt (t)]

}
(5.53b)

Example 5.13 (Constant failure rate and repair rate) Consider that the failure den-
sity function ft (t) and the repair density function gt (t) are both exponential distribu-
tions given as

ft (t) = λe−λt for λ ≥ 0, t ≥ 0

gt (t) = ηe−ηt for η ≥ 0, t ≥ 0

Derive the expressions for their availability and unavailability.

Solution The Laplace transform of the exponential failure density ft (t) is

L [ ft (t)] =
∫ ∞

0
e−st ft (t) dt = λ

∫ ∞

0
e−(s+λ)t dt = λ

λ + s

Similarly, L [gt (t)] = η/(η + s). Substituting L [ ft (t)] and L [gt (t)] into Eqs. (5.52a)
and (5.52b), one has

L [w(t)] = λη

λ + η

(
1
s

)
+ λ2

λ + η

(
1

s + λ + η

)
L [γ (t)] = λη

λ + η

(
1
s

)
λη

λ + η

(
1

s + λ + η

)
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Taking the inverse transform for the preceding two equations, the results are

w(t) = λη

λ + η
L −1

(
1
s

)
+ λ2

λ + η
L −1

(
1

s + λ + η

)
γ (t) = λη

λ + η
L −1

(
1
s

)
− λη

λ + η
L −1

(
1

s + λ + η

)
which can be finalized, after some algebraic manipulations, as

w(t) = λη

λ + η
+ λ2

λ + η
e−(λ+η)t (5.54)

γ (t) = λη

λ + η
− λη

λ + η
e−(λ+η)t (5.55)

According to Eq. (5.43), the expected number of failures within time period (0, t] can
be calculated as

W (0, t) =
∫ t

0
w(τ ) dτ =

(
λη

λ + η

)
t + λ2

(λ + η)2
(1 − e−(λ+η)t ) (5.56)

Similarly, the expected number of repairs in time period (0, t) is

�(0, t) =
∫ t

0
γ (τ ) dτ =

(
λη

λ + η

)
t − λη

(λ + η)2
(1 − e−(λ+η)t ) (5.57)

Once W (0, t) and �(0, t) are computed, the unavailability U (t) can be determined,
according to Eq. (5.46), as

U (t) = W (0, t) − �(0, t) = λ

λ + η
(1 − e−(λ+η)t ) (5.58)

The availability A(t) then is

A(t) = 1 − U (t) = η

λ + η
+ λ

λ + η
e−(λ+η)t (5.59)

As the time approaches infinity (t → ∞), the system reaches its stationary condition.
Then the stationary availability A(∞) and unavailability U (∞), are

A(∞) = η

λ + η
= 1/λ

1/λ + 1/η
= MTTF

MTTF + MTTR
(5.60)

U (∞) = λ

λ + η
= 1/η

1/λ + 1/η
= MTTR

MTTF + MTTR
(5.61)

Other properties for a system with constant failure and repair rates are summarized
in Table 5.5. Results obtained in this example also can be derived based on the Markov
analysis (Henley and Kumamoto, 1981; Ang and Tang, 1984).

Strictly speaking, the preceding expressions for the availability are the inherent
availability under the condition of an ideal supportability with which the mean time
to support (MTTS) is zero. In the case that the failed system requires some time to
respond and prepare before the repair task is undertaken, the actual availability is

A(∞) = MTTF
MTTF + MTTR + MTTS

(5.62)

which, as compared with Eq. (5.60), is less than the inherent availability.
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TABLE 5.5 Summary of the Constant Rate Model

Repairable systems Nonrepairable systems

Failure process
h(t) = λ h(t) = λ

ps(t) = e−λt ps(t) = e−λt

pf (t) = 1 − e−λt pf (t) = 1 − e−λt

ft (t) = λe−λt ft (t) = λe−λt

MTTF = 1/λ MTTF = 1/λ

Repair process
r (t) = η r (t) = 0
Gt (t) = 1 − e−ηt Gt (t) = 0
gt (t) = ηe−ηt gt (t) = 0
MTTR = 1/η MTTR = ∞

Dynamic behavior of whole process
U (t) = λ/(λ + η)(1 − e−(λ+η)t ) U (t) = 1 − e−λt = pf (t)
A(t) = η/(λ + η) + λ/(λ + η)(1 − e−(λ+η)t ) A(t) = e−λt = ps(t)
ω(t) = λη/(λ + η) + λ2/(λ + η)(1 − e−(λ+η)t ) w(t) = ft (t) = λe−λt

γ (t) = λη/(λ + η)(1 − e−(λ+η)t ) γ (t) = 0
W (0, t) = ληt/(λ + η) + λ2/(λ + η)(1 − e−(λ+η)t ) W (0, t) = pf (t)
�(0, t) = ληt/(λ + η) − λη/(λ + η)2(1 − e−(λ+η)t ) �(0, t) = 0

Stationary values of whole process
U (∞) = λ/(λ + η) = MTTR/(MTTF + MTTR) U (∞) = 1
A(∞) = η/(λ + η) = MTTF/(MTTF + MTTR) A(∞) = 0
w(∞) = λη/(λ + η) = 1/(MTTF + MTTR) w(∞) = 0
γ (∞) = λη/(λ + η) = w(∞) γ (∞) = 0

SOURCE : After Henley and Kumamoto (1981).

Example 5.14 Referring to Example 5.12, with exponential failure and repair density
functions, determine the availability and unavailability of the pump.

Solution Since the failure density and repair density functions are both exponential,
the unavailability U (t) of the pump, according to Eq. (5.58), is

U (t) = λ

λ + η
(1 − e−(λ+η)t ) = 0.0008

0.0008 + 0.02
(1 − e−0.0208t)

= 0.03846(1 − e−0.0208t)

The availability A(t) then is

A(t) = 1 − U (t) = 0.9615 + 0.03846e−0.0208t

The stationary availability and unavailability are

A(∞) = MTTF
MTTF + MTTR

= 1/λ

1/λ + 1/η
= 1250

1250 + 50
= 0.96154

U (∞) = 1 − A(∞) = 1 − 0.96154 = 0.03846
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TABLE 5.6 Operation Properties of the Laplace
Transform on a Function

Property Function Variable Laplace transform

Standard f x(x) X Lx(s)
Scaling f x(ax) X a−1Lx(s/a)
Linear af x(x) X aLx(s)
Translation-1 eax f x(x) X Lx(s + a)
Translation-2 f x(x − a) X easLx(s), x > a

Appendix 5A: Laplace Transform∗

The Laplace transforms of a function f x(x) are defined, respectively, as

Lx(s) =
∫ ∞

−∞
esx f x(x) dx (5A.1)

In a case where f x(x) is the PDF of a random variable, the Laplace transform
defined in Eqs. (5A.1) can be stated as

L x(s) = E[esX ] for x ≥ 0 (5A.2)

Useful operational properties of the Laplace transform on a PDF are given in
Table 5.6. The transformed function given by Eq. (5A.1) of a PDF is called the
moment-generating function (MGF) and is shown in Table 5.7 for some com-
monly used probability distribution functions. Some useful operational rules
relevant to the Laplace transform are given in Table 5.8.

∗Extracted from Tung and Yen (2005).

TABLE 5.7 Laplace Transform (Moment-Generating
Functions) of Some Commonly Used Distribution
Functions

Distribution PDF Laplace transform

Uniform Eq. (2.100)
ebs − eas

(b − a)s
Normal Eq. (2.58) exp(µs − 0.5s2σ 2)

Gamma Eq. (2.72)
[

1/β

(1/β) − s

]α

Exponential Eq. (2.79)
1/β

(1/β) − s
Extreme value I (max) Eq. (2.85) eξs�(1 − βs)

Chi-square Eq. (2.102) (1 − 2s)−K/2
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TABLE 5.8 Operational Rules for the Laplace Transform

W = cX Lw(s) = Lx(cs), c = a constant.
W = c + X Lw(s) = ecsLx(s), c = a constant.
W = �k Xk Lw(s) = �kLk(s), when all Xk are independent.
W = �kck Xk Lw(s) = �kLk(cks), when all Xk are independent.

Problems

5.1 Consider the following hazard function:

h(t) =
(

β

α

)( t
α

)β−1
exp

[( t
α

)β
]

Derive the expressions for the corresponding failure density function and relia-
bility function.

5.2 Refer to Problem 5.1, and let τ = t/α. Obtain the expression for h(τ ), and plot
h(τ ) versus τ for β = 1.0, 0.5, 0.2.

5.3 Fifty pumps of identical models are tested. The following table contains data on
the pump failures from the test. Propose a scheme to determine the parameter
values in the failure-rate function given in Problem 5.1.

No. of failures Time to failure (h) No. of failures Time to failure (h)

1 26 16 3400
2 65 18 4000
3 300 20 4400
4 700 22 4500
5 900 24 4600
6 1100 26 4800
7 1200 28 5000
8 1500 32 5500
9 1700 36 6000

10 1900 40 6500
12 2400 44 7000
14 2800 50 7400

5.4 Consider the following hazard function:

h(t) = αt + γ

1 + βt
t ≥ 0, α, β, γ ≥ 0

Derive the expressions for the corresponding failure density function and relia-
bility function.

5.5 The failure-rate function given in Problem 5.4 is a very versatile function, capable
of modeling increasing, decreasing, or a bathtub failure-rate behavior of a system.
For example, it corresponds to the Rayleigh failure density function for γ = 0 and
to the exponential failure density for α = β = 0. Furthermore, when α = 0, h(t)
is a decreasing function; when α ≥ βγ , h(t) is an increasing failure rate; for
0 < α < βγ , h(t) is a bathtub failure rate. Plot the failure-rate function for (a)
α = 0, γ = 2, β = 3; (b) α = 1, γ = 2, β = 3; and (c) α = 6, γ = 2, β = 3.
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5.6 Given the following failure density function for a piece of equipment:

ft (t) = 0.7
850

( t
850

)−0.3
exp

[
−
( t

850

)0.7
]

derive the corresponding reliability function ps(t) and hazard function h(t). Also,
construct plots for ft (t), ps(t), and h(t).

5.7 Repeat Example 5.3 to derive the expressions for the failure rate, reliability, and
failure density for a 10-mile water main of sandspun cast iron pipe. Compare the
results with those from Example 5.3.

5.8 Refer to Example 5.3. Assume that the pipe main made of sandspun cast iron is
5 years old. Let x be the length of the pipe system. Derive the expressions for the
failure rate, failure density, and reliability for a system with the total pipe length.
Construct curves for the three quantities as a function of the pipe length.

5.9 Determine the mean length to failure based on the results from Problem 5.8.

5.10 Repeat Example 5.3 for pit cast iron pipe.

5.11 Repeat Problems 5.8 and 5.9 for pit cast iron pipe.

5.12 Consider the sandspun cast iron pipe in Example 5.3. The pipe break rate is a
function of the age and length of the pipe, which can be generalized as

N (x, t) = 0.0627xe0.0137t

Derive the expressions for the failure density, reliability, and failure rate as a
function of the age and pipe length. Furthermore, construct figures for the three
functions for different values of x and t.

5.13 Goodrich et al. (1989) presented the following break-rate equation for a cast iron
pipe at St. Louis, MO, based on the 1985 pipe break data:

h(d ) = 0.819e0.1363d

in which h(d ) is the break rate (in breaks per mile per year), and d is pipe
diameter (in inches). Assume that a brand new pipe system is to be installed that
follows the given break-rate function. Derive expressions for the failure density
function, reliability, and failure rate in terms of the size, age, and length of the
pipe for St. Louis.

5.14 Walski and Pelliccia (1982) also developed a regression equation for the average
time required to repair pipe breaks:

tr = 6.5d 0.285

where tr is the time to repair in hours per break, and d is pipe diameter in
inches. Assume that the preceding regression equation has a 25 percent error
associated with it and that the time to repair is lognormally distributed. Derive
the expressions for the repair density function, repair probability, and repair rate.

5.15 Refer to Example 5.3 and Problem 5.14. Compute the MTBF for a 5-year-old,
12-inch, 5-mile-long sandspun cast iron pipe.
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5.16 Given the following unreliability and repair probabilities:

pf (t) = 1 − 8
7

e−t + 1
7

e−8t

G(t) = 1 − e−6t

derive the failure density, failure rate, repair density, and repair rate.

5.17 Assume that a system has an ideal preventive maintenance with a regular in-
spection interval of tM . The failure density function follows a Weibull distribution
(with to = 0), as defined in Table 5.1. Derive the expressions, under the mainte-
nance condition, for the reliability function, failure density, hazard function, mean
time to failure, and mean and variance for the number of scheduled maintenances
before failure.

5.18 Based on the reliability function derived in Problem 5.17 for the system with
preventive maintenance, compare it with the reliability function without main-
tenance, and derive the condition under which the ideal maintenance is ben-
eficial. Furthermore, derive the condition under which faulty maintenance is
desirable.

5.19 Find the condition under which preventive maintenance would be beneficial for
a system having the following failure density function (after Rao, 1992):

ft (t) = α2te−αt t ≥ 0

if (a) the maintenance is ideal and (b) the maintenance is imperfect.

5.20 A turbine is known to sustain two types of failures: bearing failure and blade
failure. The bearing failure times follow an exponential distribution, with a failure
rate of 0.0005 per hour, and the blade failure times follow the following Weibull
distribution:

ft (t) = 1
100

( t
200

)
exp

[
−
( t

200

)2
]

t ≥ 0

(a) Find the reliability of the unmaintained turbine system after 10,000 hours of
operation.

(b) If the reliability of the turbine is to be increased by 20 percent at the end
of the 10,000-hour operating period by replacing the turbine blades at times
tM , 2tM , 3tM , 4tM , . . . , find the value of tM .

5.21 Suppose that there is a new water main, 2-miles long, conveying raw water from
the source to the treatment plant. Let the break rate of the pipe be defined by the
function in Problem 5.12.

(a) Derive the unmaintained reliability function and the MTTF.

(b) Derive the reliability function and the MTTF under the condition that the
pipe has a scheduled maintenance of 6 months.

(c) Determine the inspection frequency such that the reliability of the pipe is 25
percent higher than that of the unmaintained reliability at the end of the fifth
year.
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5.22 Based on the results from Problem 5.16, derive the expressions for the uncondi-
tional failure intensity w(t) and unconditional repair intensity r (t).

5.23 Based on the results from Problem 5.22, derive the availability, unavailability,
and average availability over period (0, T ].

5.24 Given the following failure density and repair density functions:

ft (t) = 1
2

(e−t + 3e−3t )

gt (t) = 1.5e−1.5t

derive the expressions for the availability, unavailability, and average availability
over period (0, T ].

5.25 Show that the average availability for a system with constant failure rate λ and
repair rate η with A(0) = 1 is

A(0, T ) = η

λ + η
+ λ

(λ + η)2T
− λ

(λ + η)2T
e−(λ+η)T
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Chapter

6
Monte Carlo Simulation

6.1 Introduction

As uncertainty and reliability related issues are becoming more critical in en-
gineering design and analysis, proper assessment of the probabilistic behavior
of an engineering system is essential. The true distribution for the system
response subject to parameter uncertainty should be derived, if possible. How-
ever, owing to the complexity of physical systems and mathematical functions,
derivation of the exact solution for the probabilistic characteristics of the system
response is difficult, if not impossible. In such cases, Monte Carlo simulation is
a viable tool to provide numerical estimations of the stochastic features of the
system response.

Simulation is a process of replicating the real world based on a set of assump-
tions and conceived models of reality (Ang and Tang, 1984, pp. 274–332). Since
the purpose of a simulation model is to duplicate reality, it is an effective tool
for evaluating the effects of different designs on a system’s performance. Monte
Carlo simulation is a numerical procedure to reproduce random variables that
preserve the specified distributional properties. In Monte Carlo simulation, the
system response of interest is repeatedly measured under various system pa-
rameter sets generated from known or assumed probabilistic laws. It offers a
practical approach to uncertainty analysis because the random behavior of the
system response can be duplicated probabilistically.

Two major concerns in practical applications of Monte Carlo simulation in
uncertainty and reliability analyses are (1) the requirement of a large number of
computations for generating random variates and (2) the presence of correlation
among stochastic basic parameters. However, as computing power increases,
the concern with the computation cost diminishes, and Monte Carlo simulations
are becoming more practical and viable for uncertainty analyses. In fact, Beck
(1985) notes that “when the computing power is available, there can, in general,
be no strong argument against the use of Monte Carlo simulation.”
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As noted previously, the accuracy of the model output statistics and probabil-
ity distribution (e.g., probability that a specified safety level will be exceeded)
obtained from Monte Carlo simulation is a function of the number of simu-
lations performed. For models or problems with a large number of uncertain
basic variables and for which low probabilities (<0.1) are of interest, tens of
thousands of simulations may be required. Rules for determining the number
of simulations required for convergence are not available, and thus replication
of the Monte Carlo simulation runs for a given number of simulations is the
only way to check convergence (Melching, 1995). Cheng et al. (1982) considered
the convergence characteristics of Monte Carlo simulation for a simple case of
Z = X3 X4 − (X1 + X2), where the distributions and statistics of the variables
are listed in Table 6.1. They found that failure probabilities (i.e., probability
of Z < 0) down to 0.0025 could be estimated reliably with 32,000 simulations,
failure probabilities down to 0.015 could be estimated reliably with 8000 sim-
ulations, and failure probabilities down to 0.2 could be estimated reliably with
1000 simulations.

Problems involving more complex system functions Z and more basic vari-
ables may require more simulations to obtain similar accuracy. For example,
Melching (1992) found that 1000 simulations were adequate to estimate the
mean, standard deviation, and quantiles above 0.2 for an application of the
HEC-1 (U.S. Army Corps of Engineers, 1990) and RORB (Laurenson and Mein,
1985) rainfall-runoff models and that 10,000 simulations were needed to ac-
curately estimate quantiles between 0.01 and 0.2. Brown and Barnwell (1987)
reported that for the QUAL2E multiple-constituent (dissolved oxygen, nitrogen
cycle, algae, etc.) steady-state surface water-quality model, 2000 simulations
were required to obtain accurate estimates of the output standard deviation.
With the computational speed of today’s computers, making even 10,000 runs
is not prohibitive for simpler models. However, increased computational speed
has made possible the use of computational fluid dynamics codes in three di-
mensions for hydrosystems design work. When such codes are applied, the
variance-reduction techniques described in Sec. 6.7 may be preferred to Monte
Carlo simulation.

This chapter focuses on the basic principles and applications of Monte Carlo
simulations in the reliability analysis of hydrosystems engineering problems.
Section 6.2 describes some basic concepts of generating random numbers, fol-
lowed by discussions on the classifications of algorithms for a generation of ran-
dom variates in Sec. 6.3. Algorithms for generating univariate random numbers

TABLE 6.1 Basic Variable Statistics and Distributions for Evaluation of Monte
Carlo Simulation of Convergence

Variable Mean value Coefficient of variation Distribution function

X1 0.5 0.2 Uniform
X2 1.5 0.4 Uniform
X3 1.0 0.005 Lognormal
X4 1.5 0.1 Lognormal

SOURCE: After Cheng et al. (1982).
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are described in Sec. 6.4 for several commonly used distribution functions.
In Sec. 6.5, attention is given to algorithms that generate multivariate ran-
dom numbers. As reliability assessment involves mathematical integration,
Sec. 6.6 describes several Monte Carlo simulation techniques for reliability
evaluation. Given that Monte Carlo simulations, in essence, are sampling tech-
niques, they provide only estimations, which inevitably are subject to certain
degrees of errors. To improve the accuracy of the Monte Carlo estimation while
reducing excessive computational time, several variance-reduction techniques
are discussed in Sec. 6.7. Finally, resampling techniques are described in Sec. 6.8,
which allow for assessment of the uncertainty of the quantity of interest based
on the available random data without having to make assumptions about the
underlying probabilistic structures.

6.2 Generation of Random Numbers

The most commonly used techniques to generate a sequence of pseudorandom
numbers are those that apply some form of recursive computation. In principle,
such recursive formulas are based on calculating the residuals modulo of some
integers of a linear transformation. The process of producing a random number
sequence is completely deterministic. However, the generated sequence would
appear to be uniformly distributed and independent.

Congruential methods for generating nrandom numbers are based on the fun-
damental congruence relationship, which can be expressed as (Lehmer, 1951)

Xi+1 = {aXi + c}(mod m) i = 1, 2, . . . , n (6.1)

in which a is the multiplier, c is the increment, and m is an integer-valued
modulus. The modulo notation (mod m) in Eq. (6.1) represents that

Xi+1 = aXi + c − mIi (6.2)

with Ii = [(aXi + c)/m] denoting the largest positive integer value in (aXi +
c)/m. In other words, Xi+1 determined by Eq. (6.1) is the residual resulting
from (aXi + c)/m. Therefore, the values of the number sequence generated by
Eq. (6.1) would satisfy Xi < m, for all i = 1, 2, . . . , n. Random number gener-
ators that produce a number sequence according to Eq. (6.1) are called mixed
congruential generators.

Applying Eq. (6.1) to generate a random number sequence requires the spec-
ification of a, c, and m, along with X0, called the seed. Once the sequence of
random number Xs are generated, the random number from the unit interval
ui ∈ [0, 1] can be obtained as

Ui = Xi

m
i = 1, 2, . . . , n (6.3)

It should be pointed out that the process of generating uniform random numbers
is the building block in Monte Carlo simulation.

Owing to the deterministic nature of the number generation, it is clear that
the number sequence produced by Eq. (6.1) is periodic, which will repeat itself
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in, at most, m steps. This implies that the sequence would contain, at most,
m distinct numbers and will have a maximum period of length m − 1 be-
yond which the sequence will get into a loop. For example, consider Xi+1 =
2Xi + 3(mod m = 5), with X0 = 3; the number sequence generated would be
4, 1, 0, 3, 4, 1, 0, . . ..

From the practical application viewpoint, it is desirable that the generated
number sequence have a very long periodicity to ensure that sufficiently large
amounts of distinct numbers are produced before the cycle occurs. Therefore,
one would choose the value of the modulus m to be as large as possible. However,
the length of the periodicity in a sequence also depends on the values of mul-
tiplier a and increment c. Knuth (1981) derived three conditions under which
a sequence from Eq. (6.1) has a full period m. Based on the three conditions
of Knuth (1981), Rubinstein (1981) showed that for a computer with a binary
digit system, using m = 2β , with β being the word length of the computer,
along with an odd number for parameter c and a = 2r + 1, r ≥ 2 would produce
a full period sequence. The literature (Hull and Dobell, 1964; MacLaren and
Marsagalia, 1965; Olmstead, 1946) indicates that good statistical results can
be achieved by using m = 235, a = 27 + 1, and c = 1. Table 6.2 lists suggested
values for the parameters in Eq. (6.1) for different computers.

TABLE 6.2 Suggested Values for Parameters in Congruential Methods

Constants for portable random number generators

Overflow at m a c Overflow at m a c

220 6075 106 1283 228 117128 1277 24749
221 7875 211 1663 312500 741 66037
222 7875 421 1663 121500 2041 25673
223 11979 430 2531 229 120050 2311 25367

6655 936 1399 214326 1807 45289
6075 1366 1283 244944 1597 51749

224 53125 171 11213 233280 1861 49297
11979 859 2531 175000 2661 36979
29282 419 6173 121500 4081 25673
14406 967 3041 145800 3661 30809

225 134456 141 28411 230 139968 3877 29573
31104 625 6571 214326 3613 45289
14000 1741 2957 714025 1366 150889
12960 1741 2731 231 134456 8121 28411
21870 1291 4621 243000 4561 51349

139968 205 29573 259200 7141 54773
226 81000 421 17117 232 233280 9301 49297

29282 1255 6173 714025 4096 150889
134456 281 27411 233 1771875 2416 374441

227 86463 1093 18257 234 510300 17221 107839
259200 421 54773 312500 36261 66037
116640 1021 24631 235 217728 84589 45989
121500 1021 25673

SOURCE: After Press et al. (1989).
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A second commonly used generator is called the multiplicative generator:

Xi+1 = {aXi}(mod m) i = 1, 2, . . . , n (6.4)

which is a special case of the mixed generator with c = 0. Knuth (1981) showed
that a maximal period can be achieved for the multiplicative generator in a
binary computer system when m = 2β and a = 8r ±3, with r being any positive
integer.

Another type of generator is called the additive congruential generator having
the recursive relationship as

Xi+1 = {Xi + Xi−t}(mod m) t = 1, 2, . . . , i − 1 (6.5)

As can be seen, the random numbers generated by the additive congruen-
tial generator depend on more than one of its preceding values. When t = 1,
Eq. (6.5) would generate a sequence of Fibonacci numbers, which are not satis-
factorily random. However, the statistical properties improve as t gets larger.

In summary, to ensure that a sequence of random numbers generated by
the congruential methods would have satisfactory statistical properties, Knuth
(1981) recommended the following principles to choose the parameters a, c, m,
and X0.

1. The seed X0 can be chosen arbitrarily. If different random number sequences
are to be generated, a practical way is to set X0 equal to the date and time
when the sequence is to be generated.

2. The modulus m must be large. It may be set conveniently to the word length
of the computer because this would enhance computational efficiency. The
computation of {aX + c}(mod m) must be done exactly without round-off
errors.

3. If modulus m is a power of 2 (for binary computers), select the multiplier
a so that a(mod 8) = 5. If m is a power of 10 (for decimal computers), pick
a such that a(mod 200) = 21. Selection of the multiplier a in this fashion,
along with the choice of increment c described below, would ensure that the
random number generator will produce all m distinct possible values in the
sequence before repeating itself.

4. The multiplier a should be larger than
√

m, preferably larger than m/100,
but smaller than m−√

m. The best policy is to take some haphazard constant
to be the multiplier satisfying both conditions 3 and 4.

5. The increment parameter c should be an odd number when the modulus
m is a power of 2 and c should not be a multiple of 5 when m is a power
of 10.
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6.3 Classifications of Random Variates
Generation Algorithms

6.3.1 CDF-inverse method

Let a random variable X have the cumulative distribution function (CDF)
Fx(x). From Sec. 2.3.1, Fx(x) is a nondecreasing function with respect to the
value of x, and 0 ≤ Fx(x) ≤ 1. Therefore, F −1

x (u) may be defined for any value
of u between 0 and 1 as F −1

x (u) is the smallest x satisfying Fx(x) ≥ u.
For the majority of continuous probability distributions applied in hydrosys-

tems engineering and analysis, Fx(x) is a strictly increasing function of x. Hence
a unique relationship exists between Fx(x) and u; that is, u = Fx(x), as shown
in Fig. 6.1. Furthermore, it can be shown that if U is a standard uniform ran-
dom variable defined over the unit interval [0, 1], denoted by U ∼ U(0, 1), the
following relationship holds:

X = F −1
x (U ) (6.6)

Note that X is a random variable because it is a function of the random
variable U. From Eq. (6.6), the one-to-one correspondence between X and U,
through the CDF, enables the generation of random numbers X ∼ Fx(x) from
the standard uniform random numbers. The algorithm using the CDF-inverse
method for generating continuous random numbers from a CDF Fx(x) can be
stated as follows:

1. Generate n uniform random numbers u1, u2, . . . , un from U(0, 1).

2. Solve for xi = F −1
x (ui), for i = 1, 2, . . . , n.

Fx(x) = u

1.0

u

x = Fx
-1(u)0

x

Figure 6.1 Schematic diagram of the inverse-CDF method for
generating random variates.
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Example 6.1 Consider that the Manning roughness coefficient X of a cast iron pipe
is uncertain, having a uniform distribution f x(x) = 1/(b − a), a ≤ x ≤ b. Develop an
algorithm using the CDF-inverse method to generate a random Manning roughness
coefficient.

Solution Using the CDF-inverse method, the expression of the CDF of the random
variable is first sought. The CDF for this example can be derived as

Fx(x) =
∫ x

a

1
b − a

dx = x − a
b − a

for a ≤ x ≤ b

From this expression for the CDF, the random variate of Manning’s roughness coeffi-
cient x is obtained, in terms of Fx(x), as

x = a + (b − a)Fx(x)

A simple algorithm for generating uniform random variates from U(a, b) is

1. Generate n standard uniform random variates u1, u2, . . . , un from U(0, 1).

2. Calculate the corresponding uniform random variates xi = a + (b − a)ui , i = 1,
2, . . . , n.

In the case that the random variables under consideration are discrete, the
value of xj corresponding to the generated standard uniform random variate u
must satisfy

Fx(xj −1) =
j −1∑
i=1

f x(xi) < u ≤ Fx(xj ) =
j∑

i=1

f x(xi) (6.7)

The CDF-inverse algorithm for generating discrete random variates can be
implemented as follows:

1. Generate the uniform random number u from U(0, 1).

2. Initialize i = 0 and set p = 0.

3. Let i = i + 1, and compute p = p + f x(xi).

4. If p < u, go to step 3; otherwise, stop, and xi is the random variate sought.

Example 6.2 Suppose that the number of snow storms X at a location in January
has a discrete uniform distribution

f x(x) = 1/5 for x = 0, 1, 2, 3, 4

Develop an algorithm to generate a sequence of random number of snow storms.

Solution The CDF for the number of snow storms can be written as

Fx(x) = (x + 1)/5 for x = 0, 1, 2, 3, 4

The algorithm for this example can be outlined as follows.

1. Generate the uniform random number u from U(0, 1).

2. Initialize x = 0 and p1 = 0, and compute Fx(0).
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3. Test if p1 < u ≤ Fx(x). If yes, x is the solution; otherwise, go to step 4.

4. Let p1 = Fx(x), x = x + 1, and compute Fx(x + 1). Go to step 3.

To apply the CDF-inverse method for generating random numbers efficiently,
an explicit expression between X and U is essential so that X can be obtained
analytically from the generated U. The distributions the inverse forms of which
are analytically expressible include exponential, uniform, Weibull, and Gumbel.
Table 6.3 lists some distributions that are used in hydrosystems the CDF in-
verses of which are analytically expressible.

When the analytical forms of the CDF inverse are not available, applying the
CDF-inverse method would require solving

u =
∫ x

−∞
f x(t) dt (6.8)

for x from the known u. For many commonly used distributions such as normal,
lognormal, and gamma, solving Eq. (6.8) is inefficient and difficult. More effi-
cient algorithms have been developed to generate random variates from those
distributions; some of these are described in Sec. 6.4.

6.3.2 Acceptance-rejection methods

Consider a problem for which random variates are to be generated from a
specified probability density function (PDF) f x(x). The basic idea of the

TABLE 6.3 List of Distributions the Cumulative Distribution Function (CDF) Inverses of which Are
Analytically Expressible

Distribution Fx(x) = x = F −1
x (u)

Exponential 1 − exp(−βx), x > 0 −β ln(1 − F )
Uniform (x − a)/(b − a) a + (b − a)F
Gumbel exp{− exp[−(x − ξ )/β)]} ξ − β ln[− ln(F )]
Weibull 1 − exp{−[(x − ξ )/β]α} ξ + β[− ln(1 − F )]1/α

Pareto 1 − x−α (1 − F )−(1/α)

Wakeby Not explicitly defined ξ + (α/β)[1 − (1 − F )β ] − (γ /δ)[1 − (1 − F )−δ]
Kappa {1 − h[1 − α(x − ξ )/β]1/α}1/h ξ + (β/α){1 − [(1 − F h)/h]α}
Burr 1 − (1 + xα)−β [(1 − F )−1/β − 1]1/α

Cauchy 0.5 + tan−1(x)/π tan[π(F − 0.5)]
Rayleigh 1 − exp[−(x − ξ )2/2β2] ξ + {−2β2 ln(1 − F )}1/2

Generalized lambda Not explicitly defined ξ + αF β − γ (1 − F )δ

Generalized extreme exp[− exp(−y)] ξ + β{1 − [− ln(F )]α}/α, α �= 0
value where y = −α−1 ln{1 − α(x − ξ )/β}, α �= 0 ξ − β ln[− ln(F )], α = 0

= (x − ξ )/β, α = 0
Generalized 1/[1 + exp(−y)] ξ + β{1 − [(1 − F )/F ]α}/α, α �= 0
logistic where y = −α−1 ln{1 − α(x − ξ )/β}, α �= 0 ξ − β ln[(1 − F )/F ], α = 0

= (x − ξ )/β, α = 0
Generalized 1 − exp(−y) ξ + β[1 − (1 − F )α]/α, α �= 0
Pareto where y = −α−1 ln{1 − α(x − ξ )/β}, κ �= 0 ξ − β ln(1 − F ), α = 0

= (x − ξ )/β, κ = 0
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acceptance-rejection (AR) method is to replace the original f x(x) by an appro-
priate PDF hx(x) from which random variates can be produced easily and ef-
ficiently. The generated random variate from hx(x), then, is subject to testing
before it is accepted as one from the original f x(x). This approach for generating
random numbers has become widely used.

In AR methods, the PDF f x(x) from which a random variate x to be generated
is represented, in terms of hx(x), by

f x(x) = εhx(x)g(x) (6.9)

in which ε ≥ 1 and 0 < g(x) ≤ 1. Figure 6.2 illustrates the AR method in that
the constant ε ≥ 1 is chosen such that ψ(x) = εhx(x) over the sample space of the
random variable X . The problem then is to find a function ψ(x) = εhx(x) such
that ψ(x) ≥ f x(x) and a function hx(x) = ψ(x)/ε, from which random variates
are generated. The constant ε that satisfies ψ(x) ≥ f x(x) can be obtained from

ε = max
x

[
f x(x)
hx(x)

]
(6.10)

The algorithm of a generic AR method is the following:

1. Generate a uniform random number u from U(0, 1).

2. Generate a random variate y from hx(x).

3. If u ≤ g(y) = f x(y)/εhx(y), accept y as the random variate from f x(x).
Otherwise, reject both u and y, and go to step 1.

The efficiency of an AR method is determined by P {U ≤ g(Y )}, which repre-
sents the probability that each individually generated Y from hx(x) will be ac-
cepted by the test. The higher the probability, the faster the task of generating a
random number can be accomplished. It can be shown that P {U ≤ g(Y )} = 1/ε

fx(x)

y (x) = ehx(x)

x

Figure 6.2 Illustration of the von Neumann acceptance-rejection
(AR) procedure.
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(see Problem 6.4). Intuitively, the maximum achievable efficiency for an AR
method occurs when ψ(x) = f x(x). In this case, ε = 1, g(x) = 1, and the corre-
sponding probability of acceptance P {U ≤ g(Y )} = 1. Therefore, consideration
must be given to two aspects when selecting hx(x) for AR methods: (1) the ef-
ficiency and exactness of generating a random number from hx(x) and (2) the
closeness of hx(x) in imitating f x(x).

Example 6.3 Consider that Manning’s roughness coefficient X of a cast iron pipe is
uncertain with a density function f x(x), a ≤ x ≤ b. Develop an AR algorithm using
ψ(x) = c and hx(x) = 1/(b − a), for a ≤ x ≤ b.

Solution Since ψ(x) = c and hx(x) = 1/(b − a), the efficiency constant ε and g(x) are

ε = ψ(x)
hx(x)

= c(b − a) g(x) = f x(x)
ψ(x)

= f x(x)
c

a ≤ x ≤ b

The AR algorithm for this example, then, can be outlined as the following:

1. Generate u1 from U(0, 1).

2. Generate u2 from U(0, 1) from which y = a + (b − a)u2.

3. Determine if

u1 ≤ g(y) = f x[a + (b − a)u2]
c

holds. If yes, accept y; otherwise, reject (u1, y), and return to step 1.

In fact, this is the von Neumann (1951) algorithm for the AR method.

AR methods are important tools for random number generation because they
can be very fast in comparison with the CDF-inverse method for distribution
models the analytical forms of CDF inverse of which are not available. This
approach has been applied to some distributions, such as gamma, resulting in
extremely simple and efficient algorithms (Dagpunar, 1988).

6.3.3 Variable transformation method

The variable transformation method generates a random variate of interest
based on its known statistical relationship with other random variables the
variates of which can be produced easily. For example, one is interested in
generating chi-square random variates with n degrees of freedom. The CDF-
inverse method is not appropriate in this case because the chi-square CDF
is not analytically expressible. However, knowing the fact that the sum of n
squared independent standard normal random variables gives a chi-square
random variable with n degrees of freedom (see Sec. 2.6.6), one could generate
chi-square random variates from first producing n standard normal random
variates, then squaring them, and finally adding them together. Therefore, the
variable transformation method is sometimes effective for generating random
variates from a complicated distribution based on variates produced from sim-
ple distributions. In fact, many algorithms described in the next section are
based on the idea of variable transformation.
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6.4 Generation of Univariate Random Numbers
for Some Distributions

This section briefly outlines efficient algorithms for generating random variates
for some probability distributions commonly used in hydrosystems engineering
and analysis.

6.4.1 Normal distribution

A normal random variable with a mean µx and standard deviation σx, denoted
as X ∼ N(µx, σx), has a PDF given in Eq. (2.58). The relationship between X
and the standardized normal variable Z is

X = µx + σx Z (6.11)

in which Z is the standard normal random variable having a mean 0 and unit
standard deviation, denoted as Z ∼ N(0, 1). Based on Eq. (6.11), normal ran-
dom variates with a specified mean and standard deviation can be generated
from standard normal variates. Herein, three simple algorithms for generating
standard normal variates are described.

Box-Muller algorithm. The algorithm (Box and Muller, 1958) produces a pair of
independent N(0, 1) variates as

z1 =
√

−2 ln(u1) cos(2πu2)
(6.12)

z2 =
√

−2 ln(u2) sin(2πu2)

in which u1 and u2 are independent uniform variates from U(0, 1). The algo-
rithm involves the following steps:

1. Generate two independent uniform random variates u1 and u2 from U(0, 1).

2. Compute z1 and z2 simultaneously using u1 and u2 according to Eq. (6.12).

Marsagalia-Bray algorithm. Marsagalia and Bray (1964) proposed an alternative
algorithm that avoids using trigonometric evaluations. In their algorithm, two
independent uniform random variates u1 and u2 are produced to evaluate the
following three expressions:

V1 = 2U1 − 1

V2 = 2U2 − 1 (6.13)

R = V 2
1 + V 2

2

If R > 1, the pair (u1, u2) is rejected from further consideration, and a new
pair (u1, u2) is generated. For the accepted pair, the corresponding standard
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normal variates are computed by

Z1 = V1

√
−2 ln(R)

R
Z2 = V2

√
−2 ln(R)

R
(6.14)

The Marsagalia-Bray algorithm involves the following steps:

1. Generate two independent uniform random variates u1 and u2 from U(0, 1).

2. Compute V1, V2, and R according to Eq. (6.13).

3. Check if R ≤ 1. If it is true, compute the two corresponding N(0, 1) variates
using Eq. (6.14). Otherwise, reject (u1, u2) and return to step 1.

Algorithm based on the central limit theorem. This algorithm is based on the cen-
tral limit theorem, which states that the sum of independent random variables
approaches a normal distribution as the number of random variables increases.
Specifically, consider the sum of J independent standard uniform random vari-
ates from U(0, 1). The following relationships are true:

E

 J∑
j =1

U j

 = J
2

(6.15)

Var

 J∑
j =1

U j

 = J
12

(6.16)

By the central limit theorem, this sum of J independent U ’s would approach a
normal distribution with the mean and variance given in Eqs. (6.15) and (6.16),
respectively. Constrained by the unit variance of the standard normal variates,
Eq. (6.16) yields J = 12. Then a standard normal variate is generated by

Z =
 12∑

j =1

U j

− 6 (6.17)

The central limit theorem–based algorithm can be implemented as

1. Generate 12 uniform random variates from U(0, 1).

2. Compute the corresponding standard normal variate by Eq. (6.17).

There are many other efficient algorithms developed for generating normal
random variates using the variable transformation method and AR method.
For these algorithms readers are referred to Rubinstein (1981).
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6.4.2 Lognormal distribution

Consider a random variable X having a lognormal distribution with a mean
µx and standard deviation σx, that is, X ∼ LN(µx, σx). For a lognormal random
variable X , its logarithmic transform Y = ln(X ) leads to a normal distribution
for Y . The PDF of X is given in Eq. (2.65). In the log-transformed space, the
mean and standard deviation of ln(X ) can be computed, in terms of µx and
σx, by Eqs. (2.67a) and (2.67b). Since Y = ln(X ) is normally distributed, the
generation of lognormal random variates from X ∼ LN(µx, σx) can be obtained
by the following steps:

1. Calculate the mean µln x and standard deviation σln x of log-transformed vari-
able ln(X ) by Eqs. (2.67a) and (2.67b), respectively.

2. Generate the standard normal variate z from N(0, 1).

3. Compute y = µln x + σln xz.

4. Compute the lognormal random variate x = ey.

6.4.3 Exponential distribution

The exponential distribution is used frequently in reliability computation in the
framework of time-to-failure analysis. It is often used to describe the stochastic
behavior of time to failure and time-to-repair of a system or component. A ran-
dom variable X having an exponential distribution with parameter β, denoted
by X ∼ EXP(β), is described by Eq. (2.79). By the CDF-inverse method,

u = Fx(x) = 1 − e−x/β (6.18)

so that

X = −β ln(1 − U ) (6.19)

Since 1 − U is distributed in the same way as U, Eq. (6.19) is reduced to

X = −β ln(U ) (6.20)

Equation (6.20) is also valid for random variables with the standard exponential
distribution, that is, V ∼ exp(β = 1). The algorithm for generating exponential
variates is

1. Generate uniform random variate u from U(0, 1).

2. Compute the standard exponential random variate v = − ln(u).

3. Calculate x = vβ.
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6.4.4 Gamma distribution

The gamma distribution is used frequently in the statistical analysis of hydro-
logic data. For example, Pearson type III and log-Pearson type III distributions
used in the flood frequency analysis are members of the gamma distribution
family. It is a very versatile distribution the PDF of which can take many forms
(see Fig. 2.20). The PDF of a two-parameter gamma random variable, denoted
by X ∼ GAM(α, β), is given by Eq. (2.72). The standard gamma PDF involving
one-parameter α can be derived using variable transformation by letting
Y = X/β. The PDF of the standard gamma random variable Y, denoted by
Y ∼ GAM(α), is shown in Eq. (2.78). The standard gamma distribution is used
in all algorithms to generate gamma random variate Y s from which random
variates from a two-parameter gamma distribution are obtained from X = βY .

The simplest case in generating gamma random variates is when the shape
parameter α is a positive integer (Erlang distribution). In such a case, the
random variable Y ∼ GAM(α) is a sum of α independent and identical standard
exponential random variables with parameter β = 1. The random variates from
Y ∼ GAM(α), then, can be obtained as

Y =
α∑

i=1

− ln(Ui) (6.21)

To avoid large numbers of logarithmic evaluations (when α is large), Eq. (6.21)
alternatively can be expressed as

Y = − ln

(
α∏

i=1

Ui

)
(6.22)

Although simplicity is the idea, this algorithm for generating gamma random
variates has three disadvantages: (1) It is only applicable to integer-valued
shape parameter α, (2) the algorithm becomes extremely slow when α is large,
and (3) for a large α, numerical underflow on a computer could occur.

Several algorithms have been developed for generating standard gamma ran-
dom variates for a real-valued α. The algorithms can be classified into those
which are applicable for the full range (α ≥ 0), 0 ≤ α ≤ 1, and α ≥ 1. Dagpunar
(1988) showed that through a numerical experiment, algorithms developed for
a full range of α are not efficient in comparison with those especially tailored for
subregions. The two efficient AR-based algorithms are presented in Dagpunar
(1988).

6.4.5 Poisson distribution

The Poisson random variable is discrete, having a PMF f x(xi) = P (X = xi)
given in Eq. (2.53). Dagpunar (1988) presented a simple algorithm and used
the CDF-inverse method based on Eq. (6.7). When generating Poisson ran-
dom variates, care should be taken so that e−ν is not smaller than the ma-
chine’s smallest positive real value. This could occur especially when the Poisson
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parameter ν is large. An algorithm for generating Poisson random variates is
as follows:

1. Generate u ∼ U(0, 1) and initialize x = 0 and y = e−ν

2. If y < u, go to step 3. Otherwise, x is the Poisson random variate sought.

3. Let u = u − y, x = x + 1, and update y = νy/x. Then go to step 2.

This algorithm is efficient when ν < 20. For a large ν, the Poisson distribution
can be approximated by a normal distribution with a mean ν−0.5 and standard
deviation of

√
ν. Then a Poisson random variate is set to the round-off normal

random variate from N(ν − 0.5,
√

ν).
Other algorithms have been developed for generating Poisson random vari-

ates. Rubinstein (1981) used the fact that the interarrival time between events
for a Poisson process has an exponential distribution with parameter 1/ν.
Atkinson (1979) applied the AR method using a logistic distribution as the
enveloping PDF.

6.4.6 Other univariate distributions
and computer programs

The algorithms described in the preceding subsections are for some probability
distributions commonly used in hydrosystems engineering and analysis. One
might encounter other types of probability distributions in an analysis that are
not described herein. There are several books that have been written for gen-
erating univariate random numbers (Rubinstein, 1981; Dagpunar, 1988; Gould
and Tobochnik, 1988; Law and Kelton, 1991). To facilitate the implementa-
tion of Monte Carlo simulation, computer subroutines in different languages
are available (Press et al., 1989, 1992, 2002; IMSL, 1980). In addition, many
other spreadsheet-based computer software, such as Microsoft Excel, @Risk,
and Crystal Ball, contain statistical functions allowing the generation of ran-
dom variates of various distributions.

6.5 Generation of Vectors of Multivariate
Random Variables

In preceding sections, discussions focused on generating univariate random
variates. It is not uncommon for hydrosystems engineering problems to involve
multiple random variables that are correlated and statistically dependent. For
example, many data show that the peak discharge and volume of a runoff hy-
drograph are positively correlated. To simulate systems involving correlated
random variables, generated random variates must preserve the probabilis-
tic characteristics of the variables and the correlation structure among them.
Although multivariate random number generation is an extension of the uni-
variate case, mathematical difficulty and complexity associated with multi-
variate problems increase rapidly as the dimension of the problem gets larger.
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Compared with generating univariate random variates, multivariate random
variate generation is much more restricted to fewer joint distributions, such as
multivariate normal, multivariate lognormal, and multivariate gamma
(Ronning, 1977; Johnson, 1987; Parrish, 1990). Nevertheless, the algorithms
for generating univariate random variates serve as the foundation for many
multivariate Monte Carlo algorithms.

6.5.1 CDF-inverse method

This method is an extension of the univariate case described in Sec. 6.3.1. Con-
sider a vector of K random variables X = (X1, X2, . . . , X K )t having a joint PDF
of

f x(x) = f 1,2,...,K (x1, x2, . . . , xK ) (6.23)

This joint PDF can be decomposed to

f x(x) = f 1(x1) × f 2(x2|x1) × · · · × f K (xK |x1, x2, . . . , xK−1) (6.24)

in which f 1(x1) and f k(xk|x1, x2, . . . , xk−1) are, respectively, the marginal PDF
and the conditional PDF of random variables X1 and Xk . In the case when all
K random variables are statistically independent, Eq. (6.23) is simplified to

f x(x) =
K∏

k=1

f k(xk) (6.25)

One observes that from Eq. (6.25) the joint PDF of several independent random
variables is simply the product of the marginal PDF of the individual random
variable. Therefore, generation of a vector of independent random variables can
be accomplished by treating each individual random variable separately, as in
the case of the univariate problem. However, treatment of random variables
cannot be made separately in the case when they are correlated. Under such
circumstances, as can be seen from Eq. (6.24), the joint PDF is the product
of conditional distributions. Referring to Eq. (6.24), generation of K random
variates following the prescribed joint PDF can proceed as follows:

1. Generate random variates for X1 from its marginal PDF f 1(x1).

2. Given X1 = x1 obtained from step 1, generate X2 from the conditional PDF
f 2(x2|x1).

3. With X1 = x1 and X2 = x2 obtained from steps 1 and 2, produce X3 based
on f 3(x3|x1, x2).

4. Repeat the procedure until all K random variables are generated.

To generate multivariate random variates by the CDF-inverse method, it
is required that the analytical relationship between the value of the variate
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and the conditional distribution function is available. Following Eq. (6.24), the
product relationship also holds in terms of CDFs as

Fx(x) = F1(x1) × F2(x2|x1) × · · · × FK (xK |x1, x2, . . . , xK−1) (6.26)

in which F1(x1) and Fk(xk|x1, x2, . . . , xk−1) are the marginal CDF and condi-
tional CDF of random variables X1 and Xk , respectively. Based on Eq. (6.26),
the algorithm using the CDF-inverse method to generate n sets of K multi-
variate random variates from a specified joint distribution is described below
(Rosenblatt, 1952):

1. Generate K standard uniform random variates u1, u2, . . . , uK from U(0, 1).

2. Compute

x1 = F −1
1 (u1)

x2 = F −1
2 (u2 |x1 )

...

xK = F −1
K (uk |x1, x2, . . . . , xK−1 )

(6.27)

3. Repeat steps 1 and 2 for n sets of random vectors.

There are K ! ways to implement this algorithm in which different orders of
random variates Xk , k = 1, 2, . . . , K , are taken to form the random vector X.
In general, the order adopted could affect the efficiency of the algorithm.

Example 6.4 This example is extracted from Nguyen and Chowdhury (1985). Con-
sider a box cut of an open strip coal mine, as shown in Fig. 6.3. The overburden has a
phreatic aquifer overlying the coal seam. In the next bench of operation, excavation
is to be made 50 m (d = 50 m) behind the box-cut high wall. It is suggested that for

Coal seam

d = 50 m

ho = 30 m

Ditch drain

s

Figure 6.3 Box cut of an open strip coal mine resulting in water drawdown.
(After Nguyen and Chowdhury, 1985.)
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safety reasons of preventing slope instability the excavation should start at the time
when the drawdown in the overburden d = 50 m away from the excavation point has
reached at least 50 percent of the total aquifer depth (ho).

Nguyen and Raudkivi (1983) gave the transient drawdown equation for this prob-
lem as

s
ho

= 1 − erf

(
d√

2Khhot/S

)
(6.28)

in which s is the drawdown (in meters) at a distance d (in meters) from the toe
of the embankment, ho is the original thickness of the water bearing aquifer, t is
the drawdown recess time (in days), Kh is the aquifer permeability, S is the aquifer
storage coefficient; and erf(x) is the error function, referring to Eq. (2.69), as

erf (x) = 2√
π

∫ x

0
e−v2

dv

with v being a dummy variable of integration.
From a field investigation through a pump test, data indicate that the aquifer

permeability has approximately a normal distribution with a mean of 0.1 m/day and
coefficient of variation of 10 percent. The storage coefficient of the aquifer has a mean
of 0.05 with a standard deviation of 0.005. Further, the correlation coefficient between
the permeability and storage coefficient is about 0.5.

Since the aquifer properties are random variables, the time required for the draw-
down to reach the safe level for excavation also is a random variable. Apply the CDF-
inverse method (using n = 400 repetitions) to estimate the statistical properties of
the time of recess, including its mean, standard deviation, and skewness coefficient.

Solution The required drawdown recess time for a safe excavation can be obtained by
solving Eq. (6.28), with s/ho = 0.5 and erf−1(0.5) = 0.477 (Abramowitz and Stegun,
1972; or by Eq. (2.69), as

t =
(

d
2 × 0.477

)2 S
Khho

(6.29)

The problem is a bivariate normal distribution (see Sec. 2.7.2) with two correlated ran-
dom variables. The permeability Kh and storage coefficient S, referring to Eq. (2.108),
have the joint PDF

f Kh,S (kh, S) = 1

2πσkhσs

√
1 − ρ2

kh,s

e−Q

with Q = 1

2
(
1 − ρ2

kh,s

) [ (kh − µkh)2

σ 2
kh

− 2ρkh,s
(kh − µkh)(s − µs)

σkhσs
+ (s − µs)2

σ 2
s

)
where ρkh,s is the correlation coefficient between Kh and S, which is 0.5; σkh is the
standard deviation of permeability, 0.1×0.1 = 0.01 m/day; σs is the standard deviation
of the storage coefficient, 0.005; µkh is the mean of permeability, 0.1 m/day; and µs is
the mean storage coefficient, 0.05.

To generate bivariate random variates according to Eq. (6.27), the marginal PDF
of permeability Kh and the conditional PDF of storage coefficient S, or vice versa, are
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required. They can be derived, respectively, according to Eq. (2.109), as

f Kh(kh) = 1√
2πσkh

exp

[
−1

2

{
kh − µkh

σkh

)2
]

(6.30)

f s|kh(s|kh) = 1
√

2πσs

√
1 − ρ2

kh,s

exp

−1
2

 (s − µs) − ρkh,s(σs/σkh)(kh − µkh)

σs

√
1 − ρ2

kh,s

2

(6.31)

From the conditional PDF given earlier, the conditional expectation and conditional
standard deviation of storage coefficient S, given a specified value of permeability
Kh = kh, can be derived, respectively, according to Eqs. (2.110) and (2.111), as

µS |kh = E(S |Kh = kh) = µs + ρkh,s
σs

σkh
(kh − µkh) (6.32)

σs|kh = σs

√
1 − ρ2

kh,s (6.33)

Therefore, the algorithm for generating bivariate normal random variates to esti-
mate the statistical properties of the drawdown recess time can be outlined as follows:

1. Generate a pair of independent standard normal variates z′
1 and z′

2.

2. Compute the corresponding value of permeability kh = µkh + σkhz′
1.

3. Based on the value of permeability obtained in step 2, compute the conditional
mean and conditional standard deviation of the storage coefficient according to
Eqs. (6.32) and (6.33), respectively. Then calculate the corresponding storage coef-
ficient as s = µs|kh + σs|khz′

2.

4. Use Kh = kh and S = s generated in steps 3 and 4 in Eq. (6.29) to compute the
corresponding drawdown recess time t.

5. Repeat steps 1 through 4 n = 400 times to obtain 400 realizations of drawdown
recess times {t1, t2, . . . , t400}.

6. Compute the sample mean, standard deviation, and skewness coefficient of the
drawdown recess time according to the last column of Table 2.1.

The histogram of the drawdown recess time resulting from 400 simulations is shown
in Fig. 6.4. The statistical properties of the drawdown recess time are estimated as

Mean µt = 45.73 days

Standard deviation σt = 4.72 days

Skewness coefficient γt = 0.487

6.5.2 Generating multivariate normal
random variates

A random vector X = (X1, X2, . . . , X K )t has a multivariate normal distribution
with a mean vector µx and covariance matrix Cx, denoted as X ∼ N(µx, Cx).
The joint PDF of K normal random variables is given in Eq. (2.112). To gener-
ate high-dimensional multivariate normal random variates with specified µx
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Figure 6.4 Histogram of simulated drawdown recess time for Exam-
ple 6.4.

and Cx, the CDF-inverse algorithm described in Sec. 6.5.1 might not be efficient.
In this section, two alternative algorithms for generating multivariate normal
random variates are described. Both algorithms are based on orthogonal trans-
formation using the covariance matrix Cx or correlation matrix Rx described
in Sec. 2.7.1. The result of the transformation is a vector of independent nor-
mal variables, which can be generated easily by the algorithms described in
Sec. 6.4.1.

Square-root method. The square-root algorithm decomposes the covariance ma-
trix Cx or correlation matrix Rx into

Rx = L L t Cx = L̃ L̃ t

as shown in Appendix 4B, in which L and L̃ are K×K lower triangular matrices
associated with the correlation and covariance matrices, respectively. Accord-
ing to Eq. (4B.12), L̃ = D1/2

x L , with D x being the K × K diagonal matrix of
variances of the K involved random variables.

In addition to being symmetric, if Rx or Cx is a positive-definite matrix, the
Cholesky decomposition (see Appendix 4B) is an efficient method for finding the
unique lower triangular matrices L or L̃ (Young and Gregory, 1973; Golub and
Van Loan, 1989). Using the matrix L or L̃ , the vector of multivariate normal
random variables can be expressed as

X = µx + L̃ Z ′ = µx + D1/2
x L Z ′ (6.34)

in which Z ′ is an K × 1 column vector of independent standard normal vari-
ables. It was shown easily in Appendix 4B that the expectation vector and the
covariance matrix of the right-hand side in Eq. (6.34), E(µx + L̃ Z ′), are equal
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to µx and Cx, respectively. Based on Eq. (6.34), the square-root algorithm for
generating multivariate normal random variates can be outlined as follows:

1. Compute the lower triangular matrix associated with the correlation or co-
variance matrix by the Cholesky decomposition method.

2. Generate K independent standard normal random variates z ′ = (z′
1, z′

2, . . . ,
z′

K )t from N(0, 1).

3. Compute the corresponding normal random variates by Eq. (6.34).

4. Repeat steps 1 through 3 to generate the desired number of sets of normal
random vectors.

Example 6.5 Refer to Example 6.4. Apply the square-root algorithm to estimate
the statistical properties of the drawdown recess time, including its mean, standard
deviation, and skewness coefficient. Compare the results with Example 6.4.

Solution By the square-root algorithm, the covariance matrix of permeability Kh and
storage coefficient S,

C (Kh, S) =
[

0.012 0.5(0.01)(0.005)

0.5(0.01)(0.005) 0.0052

]
=
[

0.0001 0.000025

0.000025 0.000025

]
is decomposed into the multiplication of the two lower triangular matrices, by the
Cholesky decomposition, as

L̃ =
[

0.01 0

0.0025 0.00443

]
The Monte Carlo simulation can be carried out by the following steps:

1. Generate a pair of standard normal variates z′
1 and z′

2.

2. Compute the permeability Kh and storage coefficient S simultaneously as[
kh

s

]
=
[

0.1

0.05

]
+
[

0.01 0

0.0025 0.00433

][
z′
1

z′
2

]
3. Use (kh, s) generated from step 2 in Eq. (6.29) to compute the corresponding draw-

down recess time t.

4. Repeat steps 1 through 3 n = 400 times to obtain 400 realizations of drawdown
recess times {t1, t2, . . . , t400}.

5. Compute the mean, standard deviation, and skewness coefficient of the drawdown
recess time.

The results from carrying out the numerical simulation are

Mean µt = 45.94 days

Standard deviation σt = 4.69 days

Skewness coefficient γt = 0.301

The histogram of 400 simulated drawdown recess times is shown in Fig. 6.5. The mean
and standard deviation are very close to those obtained in Example 6.4, whereas the
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Figure 6.5 Histogram of simulated drawdown recess time for
Example 6.5.

skewness coefficient is 62 percent of that found in Example 6.4. This indicates that 400
simulations are sufficient to estimate the mean and standard deviation accurately,
but more simulations are needed to estimate the skewness coefficient accurately.

Spectral decomposition method. The basic idea of spectral decomposition is de-
scribed in Appendix 4B. The method finds the eigenvalues and eigenvectors of
the correlation or covariance matrix of the multivariate normal random vari-
ables. Through the spectral decomposition, the original vector of multivariate
normal random variables X, then, is related to a vector of independent standard
normal random variables Z ′ ∼ N(0, I) as

X = µx + D1/2
x V Λ1/2 Z ′ = µx + Ṽ Λ̃1/2 Z ′ (6.36)

in which Ṽ and Λ̃ are the eigenvector and diagonal eigenvalue matrices of
Cx, respectively, whereas V and Λ are the eigenvector and diagonal eigen-
value matrices of Rx, respectively. Equation (6.36) clearly reveals the necessary
computations for generating multivariate normal random vectors. The spectral
decomposition algorithm for generating multivariate normal random variates
involves the following steps:

1. Obtain the eigenvector matrix and diagonal eigenvalue matrix of the corre-
lation matrix Rx or covariance matrix Cx.

2. Generate K independent standard normal random variates z ′ = (z′
1, z′

2, . . . ,
z′

K )t .

3. Compute the correlated normal random variates X by Eq. (6.36).
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Many efficient algorithms have been developed to determine the eigenvalues
and eigenvectors of a symmetric matrix. For the details of such techniques,
readers are referred to Golub and Van Loan (1989) and Press et al. (1992).

6.5.3 Generating multivariate random variates
with known marginal pdfs and correlations

In many practical hydrosystems engineering problems, random variables often
are statistically and physically dependent. Furthermore, distribution types for
the random variables involved can be a mixture of different distributions, of
which the corresponding joint PDF or CDF is difficult to establish. As a practical
alternative, to replicate such systems properly, the Monte Carlo simulation
should be able to preserve the correlation relationships among the stochastic
variables and their marginal distributions.

In a multivariate setting, the joint PDF represents the complete information
describing the probabilistic structures of the random variables involved. When
the joint PDF or CDF is known, the marginal distribution and conditional dis-
tributions can be derived, from which the generation of multivariate random
variates can be made straightforwardly in the framework of Rosenblatt (1952).
However, in most practical engineering problems involving multivariate ran-
dom variables, the derivation of the joint CDF generally is difficult, and the
availability of such information is rare. The level of difficulty, in both theory
and practice, increases with the number of random variables and perhaps even
more so by the type of corresponding distributions. Therefore, more often than
not, one has to be content with preserving incomplete information represented
by the marginal distribution of each individual random variable and the corre-
lation structure. In doing so, the difficulty of requiring a complete joint PDF in
the multivariate Monte Carlo simulation is circumvented.

To generate correlated random variables with a mixture of marginal distribu-
tions, a methodology adopting a bivariate distribution model was first suggested
by Li and Hammond (1975). The practicality of the approach was advanced by
Der Kiureghian and Liu (1985), who, based on the Nataf bivariate distribution
model (Nataf, 1962), developed a set of semiempirical formulas so that the nec-
essary calculations to preserve the original correlation structure in the normal
transformed space are reduced (see Table 4.5). Chang et al. (1994) used this
set of formulas, which transforms the correlation coefficient of a pair of nonnor-
mal random variables to its equivalent correlation coefficient in the bivariate
standard normal space, for multivariate simulation. Other practical alterna-
tives, such as the polynomial normal transformation (Vale and Maurelli, 1983;
Chen and Tung, 2003), can serve the same purpose. Through a proper normal
transformation, the multivariate Monte Carlo simulation can be performed in
a correlated standard normal space in which efficient algorithms, such as those
described in Sec. 6.5.2, can be applied.

The Monte Carlo simulation that preserves marginal PDFs and correlation
structure of the involved random variables consists of following two basic steps:
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Step 1. Transformation to a standard normal space. Through proper normal
transformation, the operational domain is transformed to a standard normal
space in which the transformed random variables are treated as if they were
multivariate standard normal with the correlation matrix Rz. As a result,
multivariate normal random variates can be generated by the techniques
described in Sec. 6.5.2.

Step 2. Inverse transformation. Once the standardized multivariate normal
random variates are generated, then one can do the inverse transformation

Xk = F −1
k [�(Zk)] for k = 1, 2, . . . , K (6.37)

to compute the values of multivariate random variates in the original space.

6.5.4 Generating multivariate random variates
subject to linear constraints

Procedures described in Sec. 6.5.2 are for generating multivariate normal
(Gaussian) random variables without imposing constraints or restriction on the
values of variates. The procedures under this category are also called uncon-
ditional (or nonconditional) simulation (Borgman and Faucette, 1993; Chilès
and Delfiner, 1999). In hydrosystems modeling, random variables often exist
for which, in addition to their statistical correlation, they are physically related
in certain functional forms. In particular, this section describes the procedures
for generating multivariate Gaussian random variates that must satisfy pre-
scribed linear relationships. An example is the use of unit hydrograph model
for estimating design runoff based on a design rainfall excess hyetograph. The
unit hydrograph is applied as follows:

Pu= q (6.38)

where P is an n× J Toeplitz matrix defining the design effective rainfall hyeto-
graph, u is a J × 1 column vector of unit hydrograph ordinates, and q is the
n × 1 column vector of direct runoff hydrograph ordinates. In the process of
deriving a unit hydrograph for a watershed, there exist various uncertainties
rendering u uncertain. Hence the design runoff hydrograph q obtained from
Eq. (6.38) is subject to uncertainty. Therefore, to generate a plausible direct
runoff hydrograph for a design rainfall excess hyetograph, one could generate
unit hydrographs that must consider the following physical constraint:

J∑
j =1

U j = c (6.39)

in which c is a constant to ensure that the volume of unit the hydrograph is one
unit of effective rainfall.

The linearly constrained Monte Carlo simulation can be conducted by using
the acceptance-rejection method first proposed by von Neumann (1951). The
AR method generally requires a large number of simulations to satisfy
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the constraint and, therefore, is not computationally efficient. Borgman and
Faucettee (1993) developed a practical method to convert a Gaussian linearly
constrained simulation into a Gaussian conditional simulation that can be im-
plemented straightforwardly. The following discussions will concentrate on the
method of Borgman and Faucette (1993).

Conditional simulation (CS) was developed in the field of geostatistics for
modeling spatial uncertainty to generate a plausible random field that honors
the actual observational values at the sample points (Chilès and Delfiner, 1999).
In other words, conditional simulation yields special subsets of realizations from
an unconditional simulation in that the generated random variates match with
the observations at the sample points. For the multivariate normal case, the
Gaussian conditional simulation is to simulate a normal random vector X2 con-
ditional on the normal random vector X1 = x1∗ . To implement the conditional
simulation, define a new random vector X encompassing of X1 and X 2 as

X =
[

X1

X2

]
∼ N(µx, Cx) = N

([
µx1

µx2

]
,

[
C x,11 C x,12

C x,21 C x,22

])
(6.40)

in which µx = (µx1 , µx2
)t , and Cx is the covariance matrix of X, which is broken

down into Cx,i j representing the covariance matrix between random vectors X i
and X j for i, j = 1, 2.

Based on the random vector x = (x1, x2)t generated from the unconditional
simulation, the values of random variates for x2∗ , conditioned on X1 = x1∗ , can
be obtained, analogous to Eq. (2.110), by

x2∗ = x2 + C t
x,12C −1

x,11(x1∗ − x1) (6.41)

Consider a problem involving K correlated random variables the values X = x
of which are subject to the following linear constraints:

Am×K xK×1 = bm×1 (6.42)

in which A is an m × K matrix of constants, and b is an m × 1 column vector
of constants. To generate K multivariate normal random variates satisfying
Eq. (6.42), one can define a new (m + K )-element random vector Y, analogous
to Eq. (6.40), as

Y =
[

Y 1

Y 2

]
=
[

AX
X

]
= T X ∼ N

([
µy1

µy2

]
,

[
C y,11 C y,12

C y,21 C y,22

])
(6.43)

where T is an (m+ K ) × K matrix. The mean and covariance matrix of random
vector Y can be obtained, respectively, as

µy =
[
µy1

µy2

]
=
[

Aµx

µx

]
C y = T CxT t (6.44)

To generate multivariate normal random vector X subject to linear constraints
(Eq. 6.42) is equivalent to a conditional simulation in that random vector y2∗ is
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generated conditioned on y1 = b. Hence, using the spectral decomposition de-
scribed in Sec. 6.5.2.2, random vector X subject to linear constraints Eq. (6.42)
can be obtained in the following two steps:

1. Calculate (m+ K )-dimensional multivariate normal random vector y by un-
conditional simulation as

y =
(

y1
y2

)
= ṼyΛ̃0.5

y Z ′ + µy (6.45)

where y1 is an m × 1 column vector, y2 is a K × 1 column vector; Ṽy is an
(m + K ) × (m + K ) eigenvector matrix of Cy, and Λ̃y is a diagonal matrix
of eigenvalues of Cy, and Z ′ is an (m + K ) column vector of independent
standard normal variates.

2. Calculate the linearly constrained K -dimensional vector of random variates
x, according to Eq. (6.41), as

x = y2∗ = y2 + C t
y,12C −1

y,11(b− y1) (6.46)

This constrained multivariate normal simulation has been applied, by con-
sidering the uncertainties in the unit hydrograph and geomorphologic instan-
taneous unit hydrograph, to reliability analysis of hydrosystems engineering
infrastructures (Zhao et al., 1997a, 1997b; Wang and Tung, 2005).

6.6 Monte Carlo Integration

In reliability analysis, computations of system and/or component reliability and
other related quantities, such as mean time to failure, essentially involve inte-
gration operations. A simple example is the time-to-failure analysis in which
the reliability of a system within a time interval (0, t) is obtained from

ps =
∫ ∞

t
f t(t) dt (6.47)

where ft(t) is the failure density function. A more complex example of the reli-
ability computation is by load-resistance interference in that the reliability is

ps = P[R(XR) ≥ L(XL)] = P [W (XR , XL) ≥ 0] = P [W (X ) ≥ 0]

=
∫

W (x)≥0
f x(x) dx (6.48)

where R(XR) and L(XL) are, respectively, resistance and load functions, which
are dependent on some basic stochastic variables XR = (X1, X2, . . . , Xm) and
XL = (Xm+1, Xm+2, . . . , X K ), and W (X ) is the performance function. As can
be seen, computation of reliability by Eq. (6.48) involves K -dimensional
integrations.
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For cases of integration in one or two dimensions, such as Eq. (6.47), where
the integrands are well behaved (e.g., no discontinuity), conventional numer-
ical integration methods, such as the trapezoidal approximation or Simpson’s
rule (see Appendix 4A), are efficient and accurate. For example, using Simp-
son’s rule, the error in a one-dimensional integration is O(n−4), with n being
the number of discretizations, and the error in a two-dimensional integration
is O(n−2). Gould and Tobochnik (1988) show that, in general, if the error for
the one-dimensional integration is O(n−a), the error with a K -dimensional in-
tegration would be O(n−a/K ). As can be seen, the accuracy of conventional nu-
merical integration schemes decreases rapidly as the dimension of integration
increases. For multiple integrals, such as Eq. (6.48), the Monte Carlo method
becomes a more suitable numerical technique for integration.

To illustrate the basic idea of the Monte Carlo integration, consider a simple
one-dimensional integration

G =
∫ b

a
g(x) dx (6.49)

which represents the area under the function g(x), as shown in Fig. 6.6. Two
simple Monte Carlo integration techniques are presented here.

g(x)

a b

c

x

Ψ

Figure 6.6 Schematic diagram of the hit-and-miss Monte Carlo
integration in a one-dimensional integration.
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6.6.1 The hit-and-miss method

Referring to Fig. 6.6, a rectangular region � = {(x, y)|a ≤ x ≤ b, 0 ≤ y ≤ c}
is superimposed to enclose the area � = {(x, y)|a ≤ x ≤ b, 0 ≤ y = g(x) ≤ c}
represented by Eq. (6.49). By the hit-and-miss method, the rectangular region
� containing the area under g(x), that is, �, is hung on the wall, and one is
to throw n darts on it. Assume that the darts fly in a random fashion and that
all n darts hit within the rectangular region. The area under g(x), then, can
be estimated as the proportion of n darts hitting the target multiplied by the
known area of rectangular region �, that is,

Ĝ = A
(nh

n

)
(6.50)

where Ĝ is the estimate of the true area G under g(x), A = c(b − a) is the area
of the rectangular region, and nh is the number of darts hitting the target out
of a total of n trials.

The hit-and-miss method can be implemented numerically on a computer.
The two coordinates (Xi, Yi) on the rectangular region �, which represents
the location where the ith dart lands, are treated as two independent random
variables that can be generated from two uniform distributions. That is, Xi is
generated from U(a, b) and Yi from U(0, c). When Yi ≤ g(Xi), the dart hits its
target; otherwise, the dart misses the target. A simple hit-and-miss algorithm
is given as follows:

1. Generate 2n uniform random variates from U(0, 1). Form them arbitrarily
into n pairs, that is, (u1, u′

1), (u2, u′
2), . . . , (un, u′

n).

2. Compute xi = a + (b − a)ui and g(xi), for i = 1, 2, . . . , n.

3. Count the number of cases nh that g(xi) ≥ cu′
i.

4. Estimate the integral G by Eq. (6.50).

Note that Ĝ is an estimator of the integral G; it is therefore also a random
variable. It can be shown that Ĝ is unbiased, namely,

E(Ĝ) = A× E
(nh

n

)
= Ap = A

(
G
A

)
= G (6.51)

where nh/n, the proportion of ndarts hitting the target, is an unbiased estimator
of the true probability of hits, and p simply is the ratio of the area under g(x) to
the area of the rectangular region. Furthermore, the standard error associated
with the estimator Ĝ is

σĜ =
√

G( A− G)
n

(6.52)

As can be seen, the precision associated with Ĝ, represented by its inverse of
standard deviation, using the hit-and-miss Monte Carlo integration method
increases with n1/2.
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A practical question is how many trials have to be carried out so that the
estimated Ĝ satisfies a specified accuracy requirement. In other words, one
would like to determine a minimum number of trials n such that the following
relationship holds:

P (|Ĝ − G| ≤ ε) ≥ α (6.53)

in which ε is the specified maximum error between G and Ĝ, and α is the mini-
mum probability that Ĝ would be within ε around the exact solution. Applying
the Chebyshev inequality, the minimum number of trials required to achieve
Eq. (6.53) can be determined as (Rubinstein, 1981)

n ≥ (1 − p) p[c(b − a)]2

(1 − α)ε2 = (1 − p) p A2

(1 − α)ε2 (6.54)

Note that the required number of trials n increases as the specified error level
ε decreases and as the confidence level α increases. In addition, for the specified
ε and α, Eq. (6.54) indicates that the required number of trials n can be reduced
by letting p approach 1. This implies that selecting an enclosed region � as
close to � as possible would reduce the required number of trials. However,
consideration must be given to the ease of generating random variates for U ′

in the algorithm.
When the number of trials n is sufficiently large, the random variable T,

T = Ĝ − G
sĜ

(6.55)

approximately, has the standard normal distribution, that is, T ∼ N(0, 1), with
sG being the sample estimator of σG, that is,

sĜ =
√

Ĝ( A− Ĝ)
n

(6.56)

Hence the (1 − 2α)-percent (α < 0.5) confidence interval for G then can be ob-
tained as

Ĝ ± sĜzα (6.57)

with zα = �−1(1 − α).

Example 6.6 Suppose that the time to failure of a pump in a water distribution
system follows an exponential distribution with the parameter β = 0.0008/h (i.e.,
7 failures per year). The PDF of the time to failure of the pump can be expressed as

ft (t) = 0.0008e−0.0008t for t ≥ 0

Determine the failure probability of the pump within its first 200 hours of operation
by the hit-and-miss algorithm with n = 2000. Also compute the standard deviation
associated with the estimated failure probability and derive the 95 percent confidence
interval containing the exact failure probability.
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Solution The probability that the pump would fail within 200 hours can be computed
as

pf =
∫ 200

0
ft (t) dt =

∫ 200

0
0.0008e−0.0008 t dt

which is the area under the PDF between 0 and 200 hours (Fig. 6.7). Using the hit-
and-miss Monte Carlo method, a rectangular area with a height of 0.0010 over the
interval [0, 200] is imposed to contain the area representing the pump failure proba-
bility.

The area of the rectangle can be easily determined as A = 0.001(200) = 0.2. The
hit-and-miss algorithm then can be outlined in the following steps:

1. Initialize i = 0 and nh = 0.

2. Let i = i + 1, and generate a pair of standard uniform random variates (ui , u′
i)

from U(0, 1).

3. Let ti = 200ui , and compute ft (ti) = 0.0008e−0.0008 ti , y = 0.001u′
i .

4. If ft (ti) ≥ y, nh = nh + 1. If i = 2000, go to step 5; otherwise, go to step 1.

5. Estimate the pump failure probability as p̂f = A(nh/n) = 0.2(nh/n).

Using the preceding algorithm, 2000 simulations were made, and the estimated
pump failure probability is p̂f = 0.2(nh/n) = 0.2(1500/2000) = 0.15. Comparing
with the exact failure probability pf = 1 − exp(−0.16) = 0.147856, the estimated

ft (t)

0.0010

0.0008

0 200 Time-to-failure t (h)

ft(t) = 0.0008 e–0.0008t

Figure 6.7 The hit-and-miss Monte Carlo integration for Example 6.6.
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failure probability by the hit-and-miss method, with n = 2000 and the rectangular
area chosen, has a 1.45 percent error relative to the exact solution.

The associated standard error can be computed according to Eq. (6.56) as

sp̂f =
√

p̂f ( A− p̂f )
n

=
√

0.15(0.2 − 0.15)
2000

= 0.00194

Assuming normality for the estimated pump failure probability, the 95 percent confi-
dence interval containing the exact failure probability pf is

p̂f ± z0.975sp̂f = (0.1462, 0.1538)

where z0.975 = 1.96.

6.6.2 The sample-mean method

The sample-mean Monte Carlo integration is based on the idea that the com-
putation of the integral by Eq. (6.49) alternatively can be carried out by

G =
∫ b

a

[
g(x)
f x(x)

]
f x(x) dx for a ≤ x ≤ b (6.58)

in which f x(x) ≥ 0 is a PDF defined over a ≤ x ≤ b. The transformed in-
tegral given by Eq. (6.49) is equivalent to the computation of expectation of
g(X )/ f x(X ), namely,

G = E
[

g(X )
f x(X )

]
(6.59)

with X being a random variable having a PDF f x(x) defined over a ≤ x ≤ b.
The estimation of E[ g(X )/ f x(X )] by the sample-mean Monte Carlo integration
method is

Ĝ = 1
n

n∑
i=1

g(xi)
f x(xi)

(6.60)

in which xi is the random variate generated according to f x(x), and n is the
number of random variates produced. The sample estimator given by Eq. (6.60)
has a variance

Var(Ĝ) =
∫ b

a

[
g(x)
f x(x)

]2

f x(x) dx − G2 (6.61)

The sample-mean Monte Carlo integration algorithm can be implemented as
follows:

1. Select f x(x) defined over the region of the integral from which n random
variates are generated.

2. Compute g(xi)/ f x(xi), for i = 1, 2, . . . , n.

3. Calculate the sample average based on Eq. (6.60) as the estimate for G.
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For simplicity, consider that X ∼ U(a, b) has a PDF

f x(x) = 1
b − a

for a ≤ x ≤ b

The unbiased estimator of G is the sample mean

Ĝ = b − a
n

n∑
i=1

g(xi) (6.62)

and the associated with a standard error is

σĜ =
√√√√b − a

n

n∑
i=1

g2(xi) − G2 (6.63)

Example 6.7 Repeat Example 6.6 using the sample-mean Monte Carlo integration
algorithm.

Solution Using the sample-mean Monte Carlo integration method, select a uniform
distribution over the interval [0, 200]. The required height for the rectangle is 0.005,
which satisfies the condition that the area of the rectangle is unity (Fig. 6.8).

ft(t)

0.0050

0.0008

0 200 Time to failure t (h)

ft(t) = 0.0008 e–0.0008t

ht(t) = 0.0050, for 0 < t < 200

Figure 6.8 The sample-mean Monte Carlo integration for Example 6.7.
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The sample-mean algorithm, then, can be outlined as the following:

1. Generate n standard uniform random variates ui from U(0, 1).

2. Let ti = 200ui , which is a uniform random variate from U(0, 200), and compute
ft (ti).

3. Estimate the pump failure probability as

p̂f = 1
n

n∑
i=1

ft (ti)
ht (ti)

= 1
n

n∑
i=1

ft (ti)
1/200

= 200
n

n∑
i=1

ft (ti)

4. To assess the error associated with the estimated pump failure probability by the
preceding equation, compute the following quantity:〈

p̂2
f
〉 = 1

n

n∑
i=1

[
ft (ti)
ht (ti)

]2

= 40,000
n

n∑
i=1

[ ft (ti)]
2

where 〈·〉 is the operator for the mean of the quantity inside.

Using this algorithm for 2000 simulations, the estimated pump failure probability
is p̂f = 0.14797. Comparing with the exact failure probability, pf = 0.147856, the
estimated failure probability by the sample-mean method, with n = 2000 and the
simple uniform distribution chosen, has an error of 0.0771 percent relative to the exact
solution.

The associated standard error can be computed according to Eq. (6.63) as

sp̂f =
√〈

p̂2
f

〉− ( p̂f )2 = 0.00015

Assuming normality for the estimated pump failure probability, the 95 percent confi-
dence interval containing the exact failure probability pf is

p̂f + 1.96 sp̂f = (0.14767, 0.14826)

Comparing the solutions with those of Example 6.6, it is observed that for the same
number of samples n, the sample-mean algorithm yields a significantly more accurate
estimation than the hit-and-miss algorithm. Furthermore, the precision, represented
by the standard error, associated with the estimated failure probability by the sample-
mean method, is smaller than that of the hit-and-miss algorithm. Consequently, the
confidence interval with the same level of significance will be tighter.

6.6.3 Directional Monte Carlo simulation algorithm

Consider the reliability computation involving a multidimensional integral as
Eq. (6.48). Without losing generality, the following discussions assume that
the stochastic variables in the original X-space have been transformed to the
independent standard normal Z ′-space (see Sec. 2.7.2). Consequently, the orig-
inal performance function W (X ) can be expressed as W (Z ′). In terms of Z ′,
Eq. (6.48) can be written as

ps =
∫

W (z ′)≥0
φ(z ′) dz ′ (6.64)
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in which φ(z ′) is the K -dimensional joint PDF of independent standard normal
random variables Z ′.

Analytical solutions to Eq. (6.64) exist for only a few special cases. For most
problems, Eq. (6.64) is solved by approximation methods, such as the first-
and second-order reliability methods described in Secs. 4.4 through 4.6. Note
that the advanced first-order second-moment methods and the second-order
reliability methods require identification of the design point (or points) on the
failure surface defined by W (z ′) = 0. For problems involving multiple design
points or a single design point with several points having almost the same
distance, they can be cast into the system reliability framework described in
Chap. 5. Nevertheless, the process of identifying designing points involves non-
linear optimization, by which the search for all design points is a difficult task
for problems having a complex failure surface defined by several performance
functions (Fig. 6.9).

By the simple Monte Carlo simulation, n sets of random vector z ′ are pro-
duced to compute the corresponding values of the performance function W (z ′).
The unbiased estimator of the reliability of a system is the ratio between the
number of outcomes in the safe region [with W (z ′) ≥ 0] and the total number
of random sets generated n (Fig. 6.10). The Monte Carlo simulation applying
simple random sampling, in general, is not efficient, especially when the failure
probability is very small. Directional simulation is a simple procedure based on
the idea of conditional probability to improve the efficiency of the Monte Carlo
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0

0
*3

z′*2

z′*1

*

b

bb

b

z′j

z′j

z′i

z′i Figure 6.9 Failure surface with
multiple design points.
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W(z′) < 0,
Failure region

W(z′) > 0,
Safe region

W(z′) = 0

z′j

z′i

Figure 6.10 Determination of the failure probability
by the Monte Carlo simulation with simple random sam-
pling.

solution in Eq. (6.64). The procedure can be applied jointly with the variance
reduction techniques described in Sec. 6.7 to further improve the computational
efficiency and numerical accuracy of the Monte Carlo simulation of reliability
problems.

In the K -dimensional Z ′-space, any Gaussian random vector Z ′ can be ex-
pressed as

Z ′ = RE (6.65)

where R ≥ 0 is chi-square random variable with K degrees of freedom, and
E = (E1, E2, . . . , EK ), an independent random unit vector of length one, that is,
|E | = 1. The random unit vector E is uniformly distributed on the K -dimensional
unit hypersphere RK . Along a specific direction E = e, the conditional reliabil-
ity ps|e is

ps|e = P [W (z ′
e) ≥ 0] = P [W (Re) ≥ 0] = P [R ≤ re] = Fχ2

K

(
r 2

e

)
(6.66)

in which z ′
e = Re is a vector having a random length R along the direction

defined by the vector e, re is the distance from the origin to the failure sur-
face along the vector e satisfying W (ree) = 0, and Fχ2

K
(·) is the χ2 CDF with

K degrees of freedom. The geometric definitions of the terms in Eq. (6.66) are
shown in Fig. 6.11. Note that the distance re has to be found by a suitable
method. For a complicated performance function, numerical root-finding tech-
niques have to be used. If the safe region is nonclosed, the root is +∞ for
some e. As can be seen, if the failure surface is a hypersphere, the reliability
can be found by a single trial in the directional simulation.
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Figure 6.11 Schematic diagram of directional simulation.

From ps|e, the reliability can be obtained using the total probability theorem
(Sec. 2.2.4) as

ps =
∫

e∈Rk

( ps|e) f e(e) de (6.67)

where f e(e) is the density function of random unit vector E on the unit hyper-
sphere, which is a constant. The realization of the random unit vector can be ob-
tained easily as e = z ′/|z ′|, with z ′ being a randomly generated vector contain-
ing K independent standard normal variates. As can be seen from Eq. (6.67),
the reliability of the conditional simulation is the expectation of the conditional
reliability, that is, Ee( ps|e). Therefore, similar to the sample-mean Monte Carlo
integration, the reliability can be estimated as

p̂s = 1
n

n∑
i=1

( ps|ei) = 1
n

n∑
i=1

ps,i = 1
n

n∑
i=1

Fχ2
K

(
r 2

i

)
(6.68)

where n is the total number of repetitions in the simulation, ps,i = ps|ei, ei is
the unit vector randomly generated in the ith repetition, and ri is the distance
from the origin in the Z ′-space to the failure surface from solving W (riei) = 0.
The directional simulation algorithm can be implemented as follows:

1. Transform stochastic variables in the original X-space to the independent
standard normal Z ′-space.

2. Generate K independent standard normal random variates z ′ = (z′
1, z′

2, . . . ,
z′

K ), and compute the corresponding directional vector e = z ′/|z ′|
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3. Determine the distance re from the origin to the failure surface by solving
W (ree) = 0.

4. Compute the conditional reliability ps,i = Fχ2
K
(re).

5. Repeat steps 2 through 4 n times, obtaining {ps,1, ps,2, . . . , ps,n}.
6. Compute the reliability by Eq. (6.68).

The standard error associated with the reliability estimated by Eq. (6.108) is

Var( p̂s) = 1
n(n − 1)

n∑
i=1

( ps,i − p̂s)2 (6.69)

If the number of samples n is large, the estimated reliability p̂s can be treated
as a normal random variable (according to the central limit theorem), with the
variance given by Eq. (6.69). Then the 95 percent confidence interval for the
true reliability ps can be obtained as

p̂s ± 1.96[Var( p̂s)]0.5 (6.70)

Since the directional simulation yields the exact solution for the reliability
integral when the failure surface is a hypersphere in the Z ′-space, Bjerager
(1988) indicated that the procedure will be particularly efficient for problems
where the failure surface is “almost spherical.” Furthermore, owing to the an-
alytical evaluation of the conditional reliability in Eq. (6.66), the directional
simulation will yield a smaller variance on the reliability estimator for a given
sample size n than that of the simple random sampling procedure. Bjerager
(1988) demonstrated the directional simulation through several examples and
showed that the coefficient of variation of estimated reliability p̂s for a given
sample size depends on the shape of the failure surface and the value of the un-
known reliability. For nonspherical failure surfaces, the coefficient of variation
increases as the dimensionality of the problem K increases.

Example 6.8 Refer to the slope stability problem in Example 6.4. Use the directional
simulation to estimate the probability that the excavation can be performed safely
within 40 days.

Solution Referring to Eq. (6.29), the problem is to find the probability that the random
drawdown recess time will be less than or equal to 40 days, that is,

P (T ≤ 40) = P

[(
d

2 × 0.477

)2 S
Khho

≤ 40

]

in which d = 50 m, ho = 30 m, and S and Kh are the random storage coefficient
and conductivity, having a bivariate normal distribution. The means and standard
deviations of S and Kh are, respectively, µs = 0.05, µkh = 0.1 m/day, σs = 0.005,
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σkh = 0.01 m/day, and their correlation coefficient is ρkh,s = 0.5. The corresponding
performance function can be expressed as

W (Kh, S) = S − cKh

where c = 0.43686.
By the directional simulation outlined earlier, the stochastic variables involved are

transformed to the independent standard normal space. For this example, the random
conductivity Kh and storage coefficient S can be written in terms of the independent
normal random variables Z′

1 and Z′
2 by spectral decomposition as

Kh = 0.1 + 0.005
(

Z′
1 +

√
3Z′

2

)
S = 0.05 − 0.0025

(
Z′

1 −
√

3Z′
2

)
For each randomly generated direction vector, defined by z ′ = (z′

1, z′
2)t , the compo-

nents of the corresponding unit vector e = (e1, e2)t can be computed by normalizing
the vector z ′. Therefore, along the directional vector z ′, the values of the conductivity
and storage coefficient can be expressed in terms of the unit vector e and the length
of the vector re from the origin to the failure surface in the independent standard
normal space as

Kh = 0.1 + 0.005re
(
e1 +

√
3e2

)
S = 0.05 − 0.0025re

(
e1 −

√
3e2

)
Substituting the preceding expression for Kh and S into the performance function,
the failure surface, defined by W (kh, s) = W (ree) = 0, can be explicitly written as

s − kh = [
0.05 − 0.0025re

(
e1 −

√
3e2

)]− c
[
0.1 + 0.005re(e1 +

√
3e2

)] = 0

Because the performance function in this example is linear, the distance re can be
solved easily as

re = 0.006314432
0.0046842784e1 − 0.0005468459e2

For a more complex, nonlinear performance function, proper numerical root-finding
procedures must be applied. Furthermore, a feasible direction e should be the one
that yields a positive-valued re.

The algorithm P (T ≤ 40) by the directional simulation for this example can be
summarized as follows:

1. Generate two independent standard normal variates z′
1 and z′

2.

2. Compute the elements of the corresponding unit vector e.

3. Compute the value of distance variable re. If re ≤ 0, reject the current infeasible
direction and go back to step 1 for a new direction. Otherwise, go to step 4.

4. Compute P (T ≤ 40|e) = 1 − Fχ2
2
(re), and store the results.

5. Repeat steps 1 throught 4 a large number of times n.

6. Compute the average conditional probability as the estimate for P (T ≤ 40)
according to Eq. (6.68). Also calculate the associated standard error of the esti-
mate by Eq. (6.69) and the confidence interval.
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Based on n = 400 repetitions, the directional simulation yields an estimation of
P (T ≤ 40) ≈ 0.026141 associated with a standard error of 0.001283. By the normality
assumption, the 95 percent confidence interval is (0.023627, 0.028655).

6.6.4 Efficiency of the Monte Carlo algorithm

Referring to Monte Carlo integration, different algorithms yield different esti-
mators for the integral. A relevant issue is which algorithm is more efficient.
The efficiency issue can be examined from the statistical properties of the esti-
mator from a given algorithm and its computational aspects. Rubinstein (1981)
showed a practical measure of the efficiency of an algorithm by t×Var(�̂), with t
being the computer time required to compute �̂, which estimates �. Algorithm
1 is more efficient than algorithm 2 if

t1 × Var(�̂1)
t2 × Var(�̂2)

< 1 (6.71)

If the computational times for the two algorithms are approximately equal,
comparison of efficiency can be made by examining the relative magnitude of
the variances. When the true variances are not known, which is generally the
case, sample variances can be used. Without considering the computational
time, it can be shown that the sample-mean algorithm using X ∼ U(a, b) is
more efficient than the hit-and-miss algorithm (see Problem 6.25).

6.7 Variance-Reduction Techniques

Since Monte Carlo simulation is a sampling procedure, results obtained from
the procedure inevitably involve sampling errors, which decrease as the sam-
ple size increases. Increasing the sample size to achieve a higher precision
generally means an increase in computer time for generating random vari-
ates and data processing. Variance-reduction techniques aim at obtaining high
accuracy for the Monte Carlo simulation results without having to substan-
tially increase the sample size. Hence variance-reduction techniques enhance
the statistical efficiency of the Monte Carlo simulation. When applied properly,
variance-reduction techniques sometimes can make the difference between an
impossible, expensive, simulation study and a feasible, useful one.

Variance-reduction techniques attempt to reduce the error associated with
the Monte Carlo simulation results by using known information about the prob-
lem at hand. Naturally, such an objective cannot be attained if the analyst is
completely ignorant about the problem. On the other extreme, the error is zero
if the analyst has complete knowledge about the problem. Rubinstein (1981)
stated that “variance reduction cannot be obtained from nothing; it is merely
a way of not wasting information.” Therefore, for a problem that is not known
at the initial stage of the study, pilot simulations can be performed for the
purpose of gaining useful insight into the problem. The insight, then, can be
incorporated later into the variance-reduction techniques for a more efficient
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simulation study. Therefore, most of the variance-reduction techniques require
additional effort on the part of analysts.

6.7.1 Importance sampling technique

The importance sampling technique concentrates the distribution of sampling
points in the part of the domain that is most “important” for the task rather than
spreading them out evenly (Marshall, 1956). Refer to the problem of evaluating
an integral in Eq. (6.49) by the sample-mean method. The importance sampling
technique attempts to generate M sampling points to reduce the variance of Ĝ
given by Eq. (6.61).

Rubinstein (1981) showed that the PDF f x(x) that minimizes Eq. (6.61) can
be obtained as

f x(x) = |g (x)|∫ |g (x)| dx
(6.72)

Although Eq. (6.72) indicates that the weighing function f x(x) is a function
of
∫ |g (x)| dx, which is practically equivalent to the integral sought, however,

it is not completely useless. Equation (6.72) implies that if is f x(x) is chosen
to have a similar shape as |g (x)|, considerable reduction in variance of the
simulation results can be achieved. However, in practical implementations of
this technique, consideration must be given to the tradeoff between the desired
error reduction and the difficulties of sampling from f x(x), especially when
|g (x)| is not well behaved.

Example 6.9 Repeat Example 6.6 using the importance sampling technique with
n = 2000. The PDF selected is a trapezoidal distribution with a PDF defined as

ht (t) = 0.006 − b × t for 0 ≤ t ≤ 200

where b is the slope of the dashed line shown in Fig. 6.12. Compare the efficiency of
the technique under this distribution with that in Examples 6.6 and 6.7.

Solution Using the importance sampling method with the trapezoidal PDF indicated
earlier, evaluation of the pump failure probability can be expressed as

pf =
∫ 200

0

[
ft (t)
ht (t)

]
ht (t) dt = ET

[
ft (T )
ht (T )

]
in which t is a dummy variable, and the random variable T has the trapezoidal dis-
tribution. Therefore, the pump failure probability pf can be estimated by computing
the expectation of ft (t)/ht (t) within 0 ≤ T ≤ 200.

In this case, it is necessary to first determine the coefficient b in ht (t) such that it is
a legitimate PDF over 0 ≤ t ≤ 200. Based on the two conditions for a PDF presented
in Sec. 2.3.1, the coefficient b should satisfy the following two conditions:

(i)
∫ 200

0
ht (t) dt =

∫ 200

0
(0.006 − bt) dt = 1.0

(ii) ht (t) ≥ 0 for 0 ≤ t ≤ 200
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ft(t)

0.0060

0.0008

0 200 Time to failure t (h)

ft(t) = 0.0008 e –0.0008 t

ht(t) = 0.0060 –  0.00001t,
for 0 < t < 200 t

Figure 6.12 Importance sampling for integration in Example 6.9.

From condition (i), the coefficient b can be obtained easily as b = 0.00001. Substituting
b = 0.00001 into ht (t), one can verify that condition (ii) is also satisfied. Therefore,
ht (t) = 0.006 − 0.00001 × t is a legitimate PDF in 0 ≤ t ≤ 200. To generate random
variates from ht (t), the CDF-inverse method can be used because the CDF of ht (t) can
be obtained easily as

Ht (T ) = U =
∫ T

0
(0.006 − 0.00001t) dt = 0.006T −

(
0.00001

2

)
T 2

Solving for T in terms of U, one obtains

T = 2a ±
√

4a2 − 8bU
2b

(6.73)

in which a = 0.006 and b = 0.00001. Based on the boundary conditions of a CDF, that
is, Ht (t = 0) = 0 and Ht (t = 200) = 1, the only valid expression for T from ht (t) is

T = 2a −
√

4a2 − 8bU
2b

Hence the preceding equation can be used to generate random variates from ht (t).
The algorithm for this example can be outlined as follows:

1. Generate n standard uniform random variates ui from U(0, 1).

2. Compute ti according to Eq. (6.73), yielding n random variates from ht (t) = 0.006−
0.00001t, 0 ≤ t ≤ 200.
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3. Estimate the pump failure probability as

p̂ f = 1
n

n∑
i=1

[
ft (ti)
ht (ti)

]
= 1

n

n∑
i=1

(
0.0008e−0.0008ti

0.006 − 0.00001ti

)
4. To assess the error associated with the estimated pump failure probability by the

preceding equation, compute the following quantity:

sp̂f =

√
Var

[
ft (T )
ht (T )

]
M

=
√

〈 p̂ f 2〉 (6.74)

in which var[ ft (T )/ht (T )] is computed as

Var

[
ft (T )
ht (T )

]
= 1

M

M∑
i=1

[
ft (ti)
ht (ti)

]2

− p̂2
f = 1

M

M∑
i=1

(
0.0008e−0.0008ti

0.006 − 0.0001ti

)2

− p̂2
f

Using this algorithm, the estimated pump failure probability is p̂f = 0.14767,
whereas the exact failure probability is 0.147856. The associated standard error can
be computed as

sp̂f =
√

〈 p̂2
f 〉 − ( p̂2

f

) = 0.00023

Assuming normality for the estimated pump failure probability, the 95 percent confi-
dence interval containing the exact risk pf is

p̂ f ± 1.96sp̂f = (0.14722, 0.14813)

Comparing the solutions with those of Examples 6.6 and 6.7, it is observed that with
the same n = 2000, the importance sampling method has a 0.126 percent error.
The magnitude of error and the accuracy level are somewhat worse than the sample-
mean procedure but are still far better than the hit-and-miss algorithm. The accuracy
of the importance sampling technique depends on how ht (t) is specified. As can be
observed from Problem 6.29, use of the exponential function for ft (t) improves the
accuracy tremendously.

6.7.2 Antithetic-variates technique

The antithetic-variates technique (Hammersley and Morton, 1956) achieves the
variance-reduction goal by attempting to generate random variates that would
induce a negative correlation for the quantity of interest between separate sim-
ulation runs. Consider that �̂1 and �̂2 are two unbiased estimators of an un-
known quantity θ to be estimated. The two estimators can be combined together
to form another estimator as

�̂a = 1
2

(�̂1 + �̂2) (6.75)

The new estimator �̂a also is unbiased and has a variance as

Var(�̂a) = 1
4

[Var(�̂1) + Var(�̂2) + 2Cov(�̂1, �̂2)] (6.76)
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If the two estimators �̂1 and �̂2 were computed by Monte Carlo simulation
through generating two independent, sets of random variates, they would be
independent, and the variance for �̂a would be

Var(�̂a) = 1
4

[Var(�̂1) + Var(�̂2)] (6.77)

From Eq. (6.76) one realizes that the variance associated with �̂a could be
reduced if the Monte Carlo simulation can generate random variates, which
result in a strong negative correlation between �̂1 and �̂2.

In a Monte Carlo simulation, the values of estimators �̂1 and �̂2 are functions
of the generated random variates, which, in turn, are related to the standard
uniform random variates. Therefore, �̂1 and �̂2 are functions of the two stan-
dard uniform random variables U1 and U2. The objective to produce negative
Cov[�̂1(U1), �̂2(U2)] can be achieved by producing U1 and U2, which are nega-
tively correlated. However, it would not be desirable to complicate the computa-
tional procedure by generating two sets of uniform random variates subject to
the constraint of being negatively correlated. One simple approach to generate
negatively correlated uniform random variates with minimal computation is to
let U1 = 1−U2. It can be shown that Cov(U , 1−U ) = −1/12 (see Problem 6.31).
Hence a simple antithetic-variates algorithm is the following:

1. Generate ui from U(0, 1), and compute 1 − ui, for i = 1, 2, . . . , n.

2. Compute θ̂1(ui), θ̂2(1 − ui), and then θ̂a according to Eq. (6.75).

Example 6.10 Develop a Monte Carlo algorithm using the antithetic-variates tech-
nique to evaluate the integral G defined by

G =
∫ b

a
g (x) dx

in which g (x) is a given function.

Solution Applying the Monte Carlo method to estimate the value of G, the preceding
integral can be rewritten as

G =
∫ b

a

[
g (x)
f x(x)

]
f x(x) dx = E

[
g (X )
f x(X )

]
where f x(x) is the adopted distribution function based on which random variates
are generated. As can be seen, the original integral becomes the calculation of the
expectation of the ratio of g (X ) and f x(X ). Hence the two estimators for G using the
antithetic-variates technique can be formulated as

Ĝ1 = 1
n

n∑
i=1

g(X1i)
f x(X1i)

(6.78a)

Ĝ2 = 1
n

n∑
i=1

g(X2i)
f x(X2i)

(6.78b)
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in which X1i = F −1
x (Ui) and X2i = F −1

x (1 − Ui), with Fx(·) being the CDF of the
random variable X . The algorithm for the Monte Carlo integral using the antithetic-
variates technique is

1. Generate n uniform random variates ui from U(0, 1), and compute the correspond-
ing 1 − ui .

2. Compute g(x1i), f x(x1i), g(x2i), and f x(x2i), with x1i = F −1
x (ui) and x2i =

F −1
x (1 − ui).

3. Calculate the values of Ĝ1 and Ĝ2 by Eqs. (6.78a) and (6.78b), respectively. Then
estimate G by Ĝa = (Ĝ1 + Ĝ2)/2.

In the case that X has a uniform distribution as f x(x) = 1/(b − a), a ≤ x ≤ b, the
estimate of G by the antithetic-variates technique can be expressed as

ĝa = b − a
2n

n∑
i=1

[g(x1i) + g(x2i)] (6.79)

Rubinstein (1981) showed that the antithetic-variates estimator, in fact, is more ef-
ficient if g (x) is a continuous monotonically increasing or decreasing function with
continuous first derivatives.

Example 6.11 Referring to pump reliability Example 6.6, estimate the pump fail-
ure probability using the antithetic-variates technique along with the sample-mean
Monte Carlo algorithm with n = 1000. The PDF selected is a uniform distribu-
tion U(0, 200). Also, compare the results with those obtained in Examples 6.6, 6.7,
and 6.8.

Solution Referring to Example 6.7, uniform distribution U(0, 200) has a height of 0.005
(see Fig. 6.8). The antithetic-variate method along with the sample-mean Monte Carlo
algorithm for evaluating the pump failure probability can be outlined as follows:

1. Generate n pairs standard uniform random variates (ui , 1 − ui) from U(0, 1).

2. Let t1i = 200 ui and t2i = 200(1 − ui). Compute ft (t1i) and ft (t2i).

3. Estimate the pump failure probability, according to Eq. (6.79), as

p̂ f ,a = 200
2n

n∑
i=1

[ ft (t1i) + ft (t2i)]

Using this algorithm, the estimated pump failure probability is p̂ f = 0.14785.

Comparing with the exact failure probability pf = 0.147856, the estimated failure
probability by the antithetic-variates algorithm with n = 1000 and the simple uniform
distribution is accurate within 0.00406 percent. The standard deviation s associated
with the 2n random samples is 0.00669. According to Eq. (6.74), the standard error
associated with p̂ f ,a can be computed as s/

√
2n = 0.00015. The skewness coefficient

from the 2n random samples is 0.077, which is close to zero. Hence, by the normal-
ity approximation, the 95 percent confidence interval containing the exact failure
probability pf is (0.14756, 0.14814).

Comparing the solutions with those of Examples 6.6, 6.7, and 6.9, it is observed
that the antithetic-variate algorithm is very accurate in estimating the probability.
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6.7.3 Correlated-sampling techniques

Correlated-sampling techniques are especially effective for variance reduction
when the primary objective of the simulation study is to evaluate small changes
in system performance or to compare the difference in system performances
between two specific designs (Rubinstein, 1981; Ang and Tang, 1984). Consider
that one wishes to estimate

�� = �1 − �2 (6.80)

in which

�1 =
∫

g1(x) f 1(x) dx = E[ g1(X )]

(6.81)
�2 =

∫
g2(y) f 2(y) dy = E[ g2(Y )]

with f 1(x) and f 2(y) being two different PDFs. By Monte Carlo simulation, ��

can be estimated as

�̂� = �̂1 − �̂2 = 1
n

[
n∑

i=1

g1(Xi) −
n∑

i=1

g2(Yi)

]
= 1

n

n∑
i=1

�̂�i (6.82)

in which Xi and Yi are random samples generated from f 1(x) and f 2(y), re-
spectively, and �̂�i = g1(Xi) − g2(Yi).

The variance associated with �̂� is

Var(�̂�) = Var(�̂1) + Var(�̂2) − 2Cov(�̂1, �̂2) (6.83)

In the case that random variates Xi and Yi are generated independently in the
Monte Carlo algorithm, �̂1 and �̂2 also would be independent random variables.
Hence Var(�̂�) = Var(�̂1) + Var(�̂2).

Note that from Eq. (6.83), Var(�̂�̂) can be reduced if positively corre-
lated random variables �̂1 and �̂2 can be produced to estimate �̂�. One easy
way to obtain positively correlated samples is to use the same sequence of
uniform random variates from U(0, 1) in both simulations. That is, the ran-
dom sequences {X1, X2, . . . , Xn} and {Y1, Y2, . . . , Yn} are generated through
Xi = F −1

1 (Ui) and Yi = F −1
2 (Ui), respectively.

The correlated-sampling techniques are especially effective in reducing vari-
ance when the performance difference between two specific designs for a system
involve the same or similar random variables. For example, consider two de-
signs A and B for the same system involving a vector of K random variables
X = (X1, X2, . . . , X K ), which could be correlated with a joint PDF f x(x) or be
independent of each other with a marginal PDF f k(xk), k = 1, 2, . . . , K . The
performance of the system under the two designs can be expressed as

�A = g(a, X ) �B = g(b, X ) (6.84)
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in which g(·) is a function defining the system performance, and a and b are
vectors of design parameters corresponding to designs A and B , respectively.
Since the two performance measures �A and �B are dependent on the same
random variables through the same performance function g(·), their estimators
will be positively correlated. In this case, independently generating two sets of
K random variates, according to their probability laws for designs Aand B , still
would result in a positive correlation between �̂A and �̂B . To further reduce
Var(�̂�), an increase in correlation between �̂A and �̂B can be achieved using
a common set of standard uniform random variates for both designs A and B
by assuming that system random variables are independent, that is,

θA,i = g
[
a, F −1

1 (u1i), F −1
2 (u2i), . . . , F −1

K (uKi)
]

i = 1, 2, . . . , n (6.85a)

θB ,i = g
[
b, F −1

1 (u1i), F −1
2 (u2i), . . . , F −1

K (uKi)
]

i = 1, 2, . . . , n (6.85b)

in which xki = F −1
k (uki) is the inverse CDF for the kth random variable Xk

operating on the kth standard uniform random variate for the ith simulation.

Example 6.12 Refer to the pump reliability problem that has been studied in previous
examples. Now consider a second pump the time-to-failure PDF of which also is an
exponential distribution but has a different parameter of β = 0.0005/h. Estimate the
difference in the failure probability between the two pumps over the time interval
[0, 200 h] using the correlated-sampling technique with n = 2000.

Solution Again, the sample-mean Monte Carlo method with a uniform distribution
U(0, 200) is applied as in Example 6.7. In this example, the same set of standard
uniform random variates {u1, u2, . . . , u2000} from U(0, 1) is used to estimate the failure
probabilities for the two pumps as

p̂ f , A = 200
n

n∑
i=1

(
0.0008e−0.0008ti

)

p̂ f ,B = 200
n

n∑
i=1

(
0.0005e−0.0005ti

)
in which ti = 200ui , for i = 1, 2, . . . , 2000. The difference in failure probabilities can
be estimated as

�̂pf = p̂ f , A − p̂ f ,B = 0.05276

which is within 0.125 percent of the exact solution e−0.0005(200) − e−0.0008(200) =
e−0.1 − e−0.16 = 0.0526936.

The standard deviation of the 2000 differences in failure probability �i =
200[ f̂ A(ti)− f̂ B (ti)], i = 1, 2, . . . , 2000, is 0.00405. Hence the standard error associated
with the estimated difference in failure probability is 0.00405/

√
2000 = 0.00009.
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For the sake of examining the effectiveness of the correlated-sampling technique,
let us separately generate a set of independent standard uniform random variates
{u′

1, u′
2, . . . , u′

2000} and use them in calculating the failure probability for pump B .
Then the estimated difference in failure probability between the two pumps is 0.05256,
which is slightly larger than that obtained by the correlated-sampling technique.
However, the standard error associated with �i = 200[ f̂ A(ti) − f̂ B (ti)] then is
0.00016, which is larger than that from the correlated-sampling technique.

6.7.4 Stratified sampling technique

The stratified sampling technique is a well-established area in statistical sam-
pling (Cochran, 1966). Variance reduction by the stratified sampling technique
is achieved by taking more samples in important subregions. Consider a prob-
lem in which the expectation of a function g (X ) is sought, where X is a random
variable with a PDF f x(x), x ∈ �. Referring to Fig. 6.13, the domain � for the
random variable X is divided into M disjoint subregions �m, m = 1, 2, . . . , M.
That is,

� = M∪
m=1

�m ∅ = �m ∩ �m′ m �= m′

g(x)

Ξ1 Ξ2 ΞM•••fx(x)

x0 x1 x2 xM−1 xM
x

Figure 6.13 Schematic diagram of stratified sampling.
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Let pm be the probability that random variable X will fall within the sub-
region �m, that is,

∫
x∈�m

f x(x) dx = pm. Therefore, it is true that �m pm = 1.

The expectation of g (X ) can be computed as

G =
∫

�

g (x) f x(x) dx =
M∑

m=1

∫
�m

g (x) f x(x) dx =
M∑

m=1

Gm (6.86)

where Gm = ∫
�m

g (x) f x(x) dx.

Note that the integral for Gm can be written as

Gm = pm

∫
�m

g (x)
[

f x(x)
pm

]
dx = pmE[ gm(X )] (6.87)

and it can be estimated by the Monte Carlo method as

Ĝm = pm

nm

nm∑
m=1

g(Xm) m = 1, 2, . . . , M (6.88)

where nm is the number of sample points in the mth subregion, and �mnm = n,
the total number of random variates to be generated. Therefore, the estimator
for G in Eq. (6.86) can be obtained as

Ĝ =
M∑

m=1

Ĝm =
M∑

m=1

pm

nm

[
nm∑
i=1

g(Xmi)

]
(6.89)

After the number of subregions M and the total number of samples n are
determined, an interesting issue for the stratified sampling is how to allo-
cate the total n sample points among the M subregions such that the variance
associated with Ĝ by Eq. (6.89) is minimized. A theorem shows that the optimal
n∗

m that minimizes Var(Ĝ) in Eq. (6.89) is (Rubinstein, 1981)

n∗
m = n

(
pmσm∑M

m′=1 pm′σm′

)
(6.90)

where σm is the standard deviation associated with the estimator Ĝm in
Eq. (6.88).

In general, information about σm is not available in advance. It is suggested
that a pilot simulation study be made to obtain a rough estimation about the
value of σm, which serves as the basis in the follow-up simulation investigation
to achieve the variance-reduction objective.

A simple plan for sample allocation is nm = npm after the subregions are
specified. It can be shown that with this sampling plan, the variance associated
with Ĝ by Eq. (6.89) is less than that from the simple random-sample technique.
One efficient stratified sampling technique is systematic sampling (McGrath,
1970), in which pm = 1/M and nm = n/M. The algorithm of the systematic
sampling can be described as follows:
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1. Divide interval [0, 1] into M equal subintervals.

2. Within each subinterval, generate n/M uniform random numbers umi ∼
U[(m − 1)/n, m/n], m = 1, 2, . . . , M; i = 1, 2, . . . , n/m.

3. Compute xmi = F −1
x (umi).

4. Calculate Ĝ according to Eq. (6.89).

Example 6.13 Referring to Example 6.7, apply the systematic sampling technique
to evaluate the pump failure probability in the time interval [0, 200 h].

Solution Again, let us adopt the uniform distribution U(0, 200) and carry out the
computation by the sample-mean Monte Carlo method. In the systematic sampling,
the interval [0, 200] is divided into 10 equal-probability subintervals, each having a
probability content of 0.1. Since h(t) = 1/200, 0 ≤ t ≤ 200, the end points of each
subinterval can be obtained easily as

t0 = 0, t1 = 20, t2 = 40, . . . , t9 = 180, t10 = 200

Furthermore, let us generate nm = 200 random variates from each subinterval so
that �mnm = 2000. This can be achieved by letting

Umi ∼ U

(
20(m − 1)

10
,

20m
10

)
for i = 1, 2, . . . , 200; m = 1, 2, . . . , 10

The algorithm for estimating the pump failure probability is the following:

1. Initialize subinterval index m = 0.

2. Let m = m + 1. Generate nm = 200 standard uniform random variates {um1,
um2, . . . , um,200}, and transform them into the random variates from the corre-
sponding subinterval by tmi = 20(m − 1) + 20umi, for i = 1, 2, . . . , 200.

3. Compute p̂ f ,m as

p̂ f ,m = 0.1
200

200∑
mi=1

ft (tmi )

and the associated variance as

Var( p̂ f ,m) = p2
ms2

m
nm

= 0.12s2
m

200

in which sm is the standard deviation of 200 ft (tmi) for the mth subinterval.

4. If m < 10, go to step 2; otherwise, compute the pump failure probability as

p̂ f = 1
10

10∑
m=1

p̂ f ,m

and the associated standard error as

sp̂f = 1
10

[
10∑

m=1

Var( p̂ f ,m)

]1/2
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The results from the numerical simulation are shown below:

m p̂f ,m sm m p̂f ,m sm

1 0.15873 0.00071102 6 0.14659 0.00066053
2 0.15626 0.00069358 7 0.14423 0.00064361
3 0.15374 0.00069298 8 0.14194 0.00064993
4 0.15121 0.00072408 9 0.13968 0.00066746
5 0.14887 0.00065434 10 0.13742 0.00067482

All 0.14787 0.15154 × 10−5

The value of pf is extremely close to the exact solution of 0.147856.

6.7.5 Latin hypercube sampling technique

The Latin hypercube sampling (LHS) technique is a special method under the
umbrella of stratified sampling that selects random samples of each random
variable over its range in a stratified manner. Consider a multiple integral
involving K random variables

G =
∫

x∈�

g (x) f x(x) d x = E[g (X )] (6.91)

where X = (X1, X2, . . . , X K )t is an K -dimensional vector of random variables,
and f x(x) is their joint PDF.

The LHS technique divides the plausible range of each random variable into
M(M ≥ K in practice) equal-probability intervals. Within each interval, a
single random variate is generated resulting in M random variates for each
random variable. The expected value of g(X ), then, is estimated as

Ĝ = 1
M

M∑
m=1

g(X1m, X2m, . . . , XKm) (6.92)

where Xkm is the variate generated for the kth random variable Xk in the mth
set.

More specifically, consider a random variable Xk over the interval of [x k , x̄k]
following a specified PDF f k(xk). The range [x k , x̄k] is partitioned into M inter-
vals, that is,

x k = xk0 < xk1 < xk2 < · · · < xk,M−1 < xkM = x̄k (6.93)

in which P (xkm ≤ Xk ≤ xk,m+1) = 1/M for all m = 0, 1, 2, . . . , M − 1. The end
points of the intervals are determined by solving

Fk(xkm) =
∫ xkm

x k

f k(xk) dxk = m
M

(6.94)

where Fk(·) is the CDF of the random variable Xk . The LHS technique, once
the end points for all intervals are determined, randomly selects a single value
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in each of the intervals to form the M samples set for Xk . The sample values
can be obtained by the CDF-inverse or other appropriate method.

To generate M values of random variable Xk from each of the intervals, a
sequence of probability values {pk1, pk2, . . . , pk,M−1, pkM} is generated as

pkm = m − 1
M

+ ζkm m = 1, 2, . . . , M (6.95)

in which {ζk1, ζk2, . . . , ζk,M−1, ζkM} are independent uniform random numbers
from ζ ∼ U(0, 1/M). After {pk1, pk2, . . . , pk,M−1, pkM} are generated, the corre-
sponding M random samples for Xk can be determined as

xkm = F −1
k ( pkm) m = 1, 2, . . . , M (6.96)

Note that pkm determined by Eq. (6.96) follows

pk1 < pk2 < · · · < pkm < · · · < pk,M−1 < pkM (6.97)

and accordingly,

xk1 ≤ xk2 ≤ · · · ≤ xkm ≤ · · · ≤ xk,M−1 ≤ xkM (6.98)

To make the generated {xk1, xk2, . . . , xk,M−1, xkM} a random sequence, random
permutation can be applied to randomize the sequence. Alternatively, Latin
hypercube samples for K random variables with size M can be generated by
(Pebesma and Heuvelink, 1999), that is,

xkm = F −1
k

(
skm − ukm

M

)
(6.99)

where skm is a random permutation of 1 to M, and ukm is a uniformly distributed
random variate in [0, 1]. Figure 6.14 shows the allocation of six samples by the
LHS technique for a problem involving two random variables. It is seen that
in each row or column of the 6 × 6 matrix only one cell contains a generated
sample. The LHS algorithm can implemented as follows:

1. Select the number of subintervals M for each random variable, and divide the
plausible range into M equal-probability intervals according to Eq. (6.94).

2. Generate M standard uniform random variates from U(0, 1/M).

3. Determine a sequence of probability values pkm, for k = 1, 2, . . . , K ; m =
1, 2, . . . , M, using Eq. (6.95).

4. Generate random variates for each of the random variables using an appro-
priate method, such as Eq. (6.96).

5. Randomly permutate generated random sequences for all random variables.

6. Estimate G by Eq. (6.92).

Using the LHS technique, the usual estimators of G and its distribution
function are unbiased (McKay, 1988). Moreover, when the function g(X ) is
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Figure 6.14 Schematic diagram of the Latin hypercube sam-
pling (LHS) technique.

monotonic in each of the Xk , the variances of the estimators are no more than
and often less than the variances when random variables are generated from
simple random sampling. McKay (1988) suggested that the use of twice the
number of involved random variables for sample size (M ≥ 2K ) would be suf-
ficient to yield accurate estimation of the statistics model output. Iman and
Helton (1985) indicated that a choice of M equal to 4/3K usually gives satisfac-
tory results. For a dynamic stream water-quality model over a 1-year simula-
tion period, Manache (2001) compared results from LHS using M = 4/3K and
M = 3K and found reasonable convergence in the identification of the most
sensitive parameters but not in calculation of the standard deviation of model
output. Thus, if it is computationally feasible, the generation of a larger num-
ber of samples would further enhance the accuracy of the estimation. Like all
other variance-reduction Monte Carlo techniques, LHS generally would require
fewer samples or model evaluations to achieve an accuracy level comparable
with that obtained from a simple random sampling scheme. In hydrosystems
engineering, the LHS technique has been applied widely to sediment transport
(Yeh and Tung, 1993; Chang et al., 1993), water-quality modeling (Jaffe and
Ferrara, 1984; Melching and Bauwens, 2001; Sohrabi et al., 2003; Manache
and Melching, 2004), and rainfall-runoff modeling (Melching, 1995; Yu et al.,
2001; Christiaens and Feyen, 2002; Lu and Tung, 2003).

Melching (1995) compared the results from LHS with M = 50 with those
from Monte Carlo simulation with 10,000 simulations and also with those from
FOVE and Rosenbleuth’s method for the case of using HEC-1 (U.S. Army Corps
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of Engineers, 1991) to estimate flood peaks for a watershed in Illinois. All meth-
ods yielded similar estimates of the mean value of the predicted peak flow. The
variation of standard deviation estimates among the methods was much greater
than that of the mean value estimates. In the estimation of the standard devia-
tion of the peak flow, LHS was found to provide the closest agreement to Monte
Carlo simulation, with an average error of 7.5 percent and 10 of 16 standard
deviations within 10 percent of the value estimated with Monte Carlo simu-
lation. This indicates that LHS can yield relatively accurate estimates of the
mean and standard deviation of model output at a far smaller computational
burden than Monte Carlo simulation. A detailed description of LHS, in con-
junction with the regression analysis for uncertainty and sensitivity analysis,
can be found elsewhere (Tung and Yen, 2005, Sec. 6.8).

Example 6.14 Referring to Example 6.7, apply the Latin hypercube sampling tech-
nique to evaluate the pump failure probability in the time interval [0, 200 h].

Solution Again, the uniform distribution U(0, 200) is selected along with the sample-
mean Monte Carlo method for carrying out the integration. In Latin hypercube sam-
pling, the interval [0, 200] is divided into 1000 equal-probability subintervals, with
each having a probability of 0.001. For U(0, 200), the end points of each subinterval
can be obtained easily as

t0 = 0, t1 = 0.2, t2 = 0.4, . . . , t999 = 199.8, t1000 = 200

By the LHS, one random variate for each subinterval is generated. In other words,
generate a single random variate from

Um ∼ U[0.2(m − 1), 0.2m] m = 1, 2, . . . , 1000

The algorithm for estimating the pump failure probability involves the following
steps:

1. Initialize the subinterval index m = 0.

2. Let m = m + 1. Generate one standard uniform random variate um, and transform
it into the random variate from the corresponding subinterval by tm = 0.2(m−1) +
um.

3. If m < 1000, go to step 2; otherwise, compute the pump failure probability as

p̂ f = 1
1000

1000∑
m=1

ft (tm)

and the associated standard deviation as

sp̂f = sm√
1000

with sm representing the standard deviation of 1000 computed function values
ft (tm).

The results from the numerical simulation are

p̂ f = 0.14786 sp̂f = 0.000216
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The 95 percent confidence interval is (0.14743, 0.14828). The value of p̂f is extremely
close to the exact solution of 0.147856, and only 1000 simulations were used.

6.7.6 Control-variate method

The basic idea behind the control-variate method for variance reduction is to
take advantage of the available information for the selected variables related
to the quantity to be estimated. Referring to Eq. (6.91), the quantity G to be
estimated is the expected value of the output of the model g(X ). The value of G
can be estimated directly by those techniques described in Sec. 6.6. However,
a reduction in estimation error can be achieved by indirectly estimating the
mean of a surrogate model ĝ(X , ζ ) as (Ang and Tang, 1984)

ĝ(X , ζ ) = g(X ) − ζ {g′(X ) − E[ g′(X )]} (6.100)

in which g ′(X ) is a control variable with the known expected value E[g ′(X )],
and ζ is a coefficient to be determined in such a way that the variance of g(X , ζ )
is minimized. The control variable g ′(X ) is also a model, which is a function
of the same stochastic variables X as in the model g(X ). It can be shown that
ĝ(X , ζ ) is an unbiased estimator of the random model output g(X ), that is,
E[ĝ(X , ζ )] = E[g(X )] = G. The variance of ĝ(X , ζ ), for any given ζ, can be
obtained as

Var(ĝ) = Var(g) + ζ 2Var(g ′) − 2ζCov(g, g ′) (6.101)

The coefficient ζ that minimizes Var(ĝ) in Eq. (6.101) is

ζ∗ = Cov(g, g ′)
Var(g ′)

(6.102)

and the corresponding variance of ĝ(X , ζ ) is

Var(ĝ) = (
1 − ρ2

g, g ′
)
Var(g) ≤ Var(g) (6.103)

in which ρg,g ′ is the correlation coefficient between the model output g(X ) and
the control variable g ′(X ). Since both model output g(X ) and the control vari-
able g ′(X ) depend on the same stochastic variables X , correlation to a certain
degree exists between g(X ) and g ′(X ). As can be seen from Eq. (6.103), using
a control variable g ′(X ) could result in a variance reduction in estimating the
expected model output. The degree of variance reduction depends on how large
the value of the correlation coefficient is. There exists a tradeoff here. To attain
a high variance reduction, a high correlation coefficient is required, which can
be achieved by making the control variable g ′(X ) a good approximation to the
model g(X ). However, this could result in a complex control variable for which
the expected value may not be derived easily. On the other hand, the use of a
simple control variable g ′(X ) that is a poor approximation of g(X ) would not
result in an effective variance reduction in estimation.
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The attainment of variance reduction, however, cannot be achieved from total
ignorance. Equation (6.103) indicates that variance reduction for estimating G
is possible only through the correlation between g(X ) and g ′(X ). However, the
correlation between g(X ) and g ′(X ) is generally not known in real-life situa-
tions. Consequently, a sequence of random variates of X must be produced to
compute the corresponding values of the model output g(X ) and the control
variable g ′(X ) to estimate the optimal value of ζ∗ by Eq. (6.102). The general
algorithm of the control-variate method can be stated as follows.

1. Select a control variable g ′(X ).

2. Generate random variates for X (i) according to their probabilistic laws.

3. Compute the corresponding values of the model g(X (i)) and the control vari-
able g ′(X (i)).

4. Repeat steps 2 and 3 n times.

5. Estimate the value ζ∗, according to Eq. (6.102), by

ζ̂∗ =
∑n

i=1(g(i) − ḡ)[g ′(i) − E(g ′)]
nVar(g ′)

(6.104)

or ζ̂∗ =
∑n

i=1[g(i) − ḡ][g
′(i) − E(g ′)]∑n

i=1[g′(i) − E(g ′)]2 (6.105)

depending on whether the variance of the control variable g ′(X ) is known or
not.

6. Estimate the value of G, according to Eq. (6.100), by

Ĝ = 1
n

n∑
i=1

(g(i) − ζ̂∗ g ′(i)) + ζ̂∗E(g ′) (6.106)

Further improvement in accuracy could be made in step 2 of this above algo-
rithm by using the antithetic-variate approach to generate random variates.

This idea of the control-variate method can be extended to consider a set of J
control variates g ′(X ) = [g ′

1(X ), g ′
2(X ), . . . , g ′

J (X )]t . Then Eq. (6.100) can be
modified as

ĝ (X ,ζ) = g (X ) −
J∑

j =1

ζ j {g ′
j (X ) − E[g ′

j (X )]} (6.107)

The vector of optimal coefficients ζ∗= (ζ∗1,ζ∗2, . . . ,ζ∗J )t that minimizes the vari-
ance of ĝ(X , ζ) is

ζ∗ = C −1c (6.108)
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in which c is a J × 1 cross-covariance vector between J control variates g ′(X )
and the model g(X ), that is, c = {Cov[ g(X ), g ′

1(X )], Cov[ g(X ), g ′
2(X )], . . . ,

Cov[ g(X ), g ′
J (X )]}, and C is the covariance matrix of the J control variates,

that is, C = [σij] = [ g ′
i(X ), g ′

j (X )], for i, j = 1, 2, . . . , J. The corresponding
minimum variance of the estimator ĝ(X , ζ) is

Var(ĝ) = Var(g) − c tC c = (
1 − ρ2

g,g ′
)

Var(g) (6.109)

in which ρg,g ′ is the multiple correlation coefficient between g(X ) and the vector
of control variates g ′(X ). The squared multiple correlation coefficient is called
the coefficient of determination and represents the percentage of variation in
the model outputs g(X ) explained by the J control variates g ′(X ).

6.8 Resampling Techniques

Note that the Monte Carlo simulation described in preceding sections is con-
ducted under the condition that the probability distribution and the associated
population parameters are known for the random variables involved in the
system. The observed data are not used directly in the simulation. In many
statistical estimation problems, the statistics of interest often are expressed as
functions of random observations, that is,

�̂ = �̂(X1, X2, . . . , Xn) (6.110)

The statistics �̂ could be estimators of unknown population parameters of in-
terest. For example, consider that random observations Xs are the annual max-
imum floods. The statistics �̂ could be the distribution of the floods; statisti-
cal properties such as mean, standard deviation, and skewness coefficient; the
magnitude of the 100-year event; a probability of exceeding the capacity of a
hydraulic structure; and so on.

Note that the statistic �̂ is a function of the random variables. It is also a
random variable, having a PDF, mean, and standard deviation like any other
random variable. After a set of n observations {X1 = x1, X2 = x2, . . . ., Xn = xn}
is available, the numerical value of the statistic �̂ can be computed. However,
along with the estimation of �̂ values, a host of relevant issues can be raised
with regard to the accuracy associated with the estimated �̂, its bias, its confi-
dence interval, and so on. These issues can be evaluated using the Monte Carlo
simulation in which many sequences of random variates of size n are generated
from each of which the value of the statistic of interest is computed �̂. Then
the statistical properties of �̂ can be summarized.

Unlike the Monte Carlo simulation approach, resampling techniques are de-
veloped that reproduce random data exclusively on the basis of observed data.
Tung and Yen (2005, Sec. 6.7) described two resampling techniques, namely, the
jackknife method and the bootstrap method. A brief description of the latter is
given below because the bootstrap method is more versatile and general than
the jackknife method.
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The bootstrap technique was first proposed by Efron (1979a, 1979b) to deal
with the variance estimation of sample statistics based on observations. The
technique intends to be a more general and versatile procedure for sampling
distribution problems without having to rely heavily on the normality condition
on which classical statistical inferences are based. In fact, it is not uncommon
to observe nonnormal data in hydrosystems engineering problems. Although
the bootstrap technique is computationally intensive—a price to pay to break
away from dependence on the normality theory—such concerns will be dimin-
ished gradually as the calculating power of the computers increases (Diaconis
and Efron, 1983). An excellent overall review and summary of bootstrap tech-
niques, variations, and other resampling procedures are given by Efron (1982)
and Efron and Tibshirani (1993). In hydrosystems engineering, bootstrap pro-
cedures have been applied to assess the uncertainty associated with the dis-
tributional parameters in flood frequency analysis (Tung and Mays, 1981), op-
timal risk-based hydraulic design of bridges (Tung and Mays, 1982), and unit
hydrograph derivation (Zhao et al., 1997).

The basic algorithm of the bootstrap technique in estimating the standard
deviation associated with any statistic of interest from a set of sample observa-
tions involves the following steps:

1. For a set of sample observations of size n, that is, x = {x1, x2, . . . , xn}, as-
sign a probability mass 1/n to each observation according to an empirical
probability distribution f̂ ,

f̂ : P (X = xi) = 1/n for i = 1, 2, . . . , n (6.111)

2. Randomly draw n observations from the original sample set using f̂ to form
a bootstrap sample x # = {x1#, x2#, . . . , xn#}. Note that the bootstrap sample x#
is a subset of the original samples x.

3. Calculate the value of the sample statistic �̂# of interest based on the boot-
strap sample x #.

4. Independently repeat steps 2 and 3 a number of times M, obtaining bootstrap
replications of θ̂# = {θ̂#1, θ̂#2, . . . , θ̂#M}, and calculate

σ̂θ̂#
=
[

1
M − 1

M∑
m=1

(θ̂#m − θ̂#·)2

]0.5

(6.112)

where θ̂#· is the average of the bootstrap replications of �̂, that is,

θ̂#· =
M∑

m=1

θ̂#m/M (6.113)

A flowchart for the basic bootstrap algorithm is shown in Fig. 6.15. The boot-
strap algorithm described provides more information than just computing the
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Given n independent observations,
x = (x1, x2, . . . , xn).

Select a distribution function for
generating bootstrap random.

m = 0

m = m +1

Draw from x = (x1, x2, . . . , xn) to form a 
bootstrap samples x# = (x1#, x2#, . . . , xn#).

Calculate the value of the sample statistic
of interest q#i based on the bootstrap. 

Calculate the properties of q, such as the mean,
standard error, sampling distribution, and

confidence intervals, based on (q#1, q#2, . . . , q#M).

^

^

^ ^ ^

Is m = M?

Figure 6.15 Flowchart of basic
bootstrap resampling algorithm.

standard deviation of a sample statistic. The histogram constructed on the basis
of M bootstrap replications θ̂# = {θ̂#1, θ̂#2, . . . , θ̂#M} gives some ideas about the
sampling distribution of the sample statistic �̂, such as the failure probability.
Furthermore, based on the bootstrap replications θ̂#, one can construct con-
fidence intervals for the sample statistic of interest. Similar to Monte Carlo
simulation, the accuracy of estimation increases as the number of bootstrap
samples gets larger. However, a tradeoff exists between computational cost and
the level of accuracy desired. Efron (1982) suggested that M = 200 is generally
sufficient for estimating the standard errors of the sample statistics. However,
to estimate the confidence interval with reasonable accuracy, one would need
at least M = 1000.

This algorithm is called nonparametric, unbalanced bootstrapping. Its para-
metric version can be made by replacing the nonparametric estimator f̂ by a
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parametric distribution in which the distribution parameters are estimated by
the maximum-likelihood method. More specifically, if one judges that on the
basis of the original data set the random observations x = {x1, x2, . . . , xn} are
from, say, a lognormal distribution, then the resampling of x′s from x using the
parametric mechanism would assume that f̂ is a lognormal distribution.

Note that the theory of the unbalanced bootstrap algorithm just described
only ensures that the expected number to be resampled for each individual ob-
servation is equal to the number of bootstrap samples M generated. To improve
the estimation accuracy associated with a statistical estimator of interest, Davi-
son et al. (1986) proposed balanced bootstrap simulation, in which the number
of appearances of each individual observation in the bootstrap data set must
be exactly equal to the total number of bootstrap replications generated. This
constrained bootstrap simulation has been found, in both theory and practical
implementations, to be more efficient than the unbalanced algorithm in that
the standard error associated with �̂ by the balanced algorithm is smaller. This
implies that fewer bootstrap replications are needed by the balanced algorithm
than the unbalanced approach to achieve the same accuracy level in estima-
tion. Gleason (1988) discussed several computer algorithms for implementing
the balanced bootstrap simulation.

Example 6.15 Based on the annual maximum flood data listed in Table 6.4 for Miller
Creek, Los Molinos, California, use the unbalanced bootstrap method to estimate the
mean, standard errors, and 95 percent confidence interval associated with the annual
probability that the flood magnitude exceeds 20,000 ft3/s.

Solution In this example, M = 2000 bootstrap replications of size n= 30 from
{yi = ln(xi)}, i = 1, 2, . . . , 30, are generated by the unbalanced nonparametric boot-
strap procedure. In each replication, the bootstrapped flows are treated as lognormal

TABLE 6.4 Annual Maximum Floods for Mill
Creek near Los Molinos, California

Year Discharge (ft3/s) Year Discharge (ft3/s)

1929 1,500 1944 3,220
1930 6,000 1945 3,230
1931 1,500 1946 6,180
1932 5,440 1947 4,070
1933 1,080 1948 7,320
1934 2,630 1949 3,870
1935 4,010 1950 4,430
1936 4,380 1951 3,870
1937 3,310 1952 5,280
1938 23,000 1953 7,710
1939 1,260 9154 4,910
1940 11,400 1955 2,480
1941 12,200 1956 9,180
1942 11,000 1957 6,140
1943 6,970 1958 6,880
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Figure 6.16 Histogram of 2000 bootstrapped replications of
P (Q > 20,000 ft3/s) for Example 6.15.

variates based on which the exceedance probability P (Q > 20,000 ft3/s) is computed.
The results of the computations are shown below:

Statistic P (Q > 20,000 ft3/s)

Mean 0.0143
Coefficient of variation 0.829
Skewness coefficient 0.900
95 percent confidence interval (0.000719, 0.03722)

The histogram of bootstrapped replications of P (Q > 20,000 ft3/s) is shown in
Fig. 6.16.

Note that the sampling distribution of the exceedance probability P (Q >

20,000 ft3/s) is highly skewed to the right. Because the exceedance probability has to
be bounded between 0 and 1, density functions such that the beta distribution may
be applicable. The 95 percent confidence interval shown in the table is obtained by
truncating 2.5 percent from both ends of the ranked 2000 bootstrapped replications.

Problems

6.1 Generate 100 random numbers from the Weibull distribution with parameters
α = 2.0, β = 1.0, and ξ = 0 by the CDF-inverse method. Check the consistency
of the sample parameters based on the generated random numbers as compared
with the population parameters used.

6.2 Generate 100 random numbers from the Gumbel (extreme type I, max) distribu-
tion with parameters β = 3.0 and ξ = 1.0 by the CDF-inverse method. Check the
consistency of the sample parameters based on the generated random numbers
as compared with the population parameters used.

6.3 Generate 100 random numbers from a triangular distribution with lower bound
a = 2, mode m = 5, and upper bound b = 10 by the CDF-inverse method.
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Check the consistency of the sample mean, mode, and standard deviation based
on the generated random numbers as compared with the population values.

6.4 Prove that P {U ≤ g(Y )} = 1/ε for the AR method.

6.5 Consider that the Hazen-William coefficient of a 5-year old, 24-inch cast iron pipe
is uncertain, having a triangular distribution with lower bound a = 115, mode
m = 120, and upper bound b = 125. Describe an algorithm to generate random
numbers by the AR method with ψ(x) = c and hx(x) = 1/(b − a).

6.6 Refer to Problem 6.5. Determine the efficient constant C and the corresponding
acceptance probability for c = 0.2, 0.3, and 0.4.

6.7 Refer to Problem 6.5. Develop computer programs to generate 100 random Hazen-
Williams coefficients using c = 0.2, 0.3, and 0.4. Verify the theoretical acceptance
probability for the different c values obtained in Problem 6.6 by your numerical
experiment. Discuss the discrepancies, if any exist.

6.8 Generate 100 random variates from

fx(x) = 3x2 for 0 ≤ x ≤ 1

by the AR algorithm delineated in Example 6.3 with c = 3, a = 0, and b = 1.

Also evaluate the theoretical acceptance probability for each random variate to
be generated (after Rubinstein, 1981).

6.9 Generate 100 random variates from

fx(x) = 2
πr 2

√
r 2 − x2 for − r ≤ x ≤ r

by the AR algorithm delineated in Example 6.3 with c = 2/πr. Also evaluate
its theoretical acceptance probability for each random variate to be generated
(adopted from Rubinstein, 1981).

6.10 Generate 100 random variates from

fx(x) = xα−1e−x

�(α)
for 0 < α < 1; x ≥ 0

by the general AR algorithm with

ψ(x) = Chx(x) = xα−1

�(α)
for 0 ≤ x ≤ 1

= e−x

�(α)
for x > 1

hx(x) = xα−1

(1/α) + (1/e)
for 0 ≤ x ≤ 1

= e−x

(1/α) + (1/e)
for x > 1

Also evaluate its theoretical acceptance probability for each random variate to be
generated (after Rubinstein, 1981).
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6.11 Develop an algorithm to generate random variable Y = max{X1, X2, . . . , Xn},
where Xi are independent and identically distributed normal random variables
with means µx and standard deviations σx.

6.12 Develop an algorithm to generate random variable Y = min{X1, X2, . . . , Xn},
where Xi are independent and identically distributed lognormal random vari-
ables with means µx and standard deviations σx.

6.13 Based on the algorithm developed in Problem 6.11, estimate the mean, standard
deviation, and the magnitude of the 100-year event for a 10-year maximum rain-
fall (n = 10) in which the population for the annual rainfall is normal with a mean
of 3 in/h and standard deviation of 0.5 in/h.

6.14 Based on the algorithm developed in Problem 6.12, estimate the mean, standard
deviation, and the magnitude of 100-year event for a 10-year minimum water
supply (n = 10) in which the population for annual water supply is lognormal
with mean of 30,000 acre-feet (AF) and standard deviation of 10,000 AF.

6.15 Refer to the strip-mining excavation problem in Example 6.4. Suppose that a
decision is made to start the excavation on the fiftieth day (t = 50 days). Using
the CDF-inverse method, determine the probability that the excavation opera-
tion poses no safety threat on the embankment stability. That is, determine the
probability that the groundwater drawdown at the excavation point reaches half
the original aquifer table depth.

6.16 Resolve Problem 6.15 using the square-root algorithm.

6.17 Resolve Problem 6.15 using the spectral decomposition algorithm.

6.18 Resolve Problem 6.15 assuming that the conductivity and storage coefficient are
correlated lognormal random variables. Compare the simulated result with the
exact solution.

6.19 Assume that all stochastic model parameters are normal random variables.
Develop a Monte Carlo simulation algorithm to solve Problem 4.24, and com-
pare the simulation results with those obtained by the MFOSM and AFOSM
reliability methods.

6.20 Assume that all stochastic model parameters are normal random variables.
Develop a Monte Carlo simulation algorithm to solve Problem 4.26, and com-
pare the simulation results with those obtained by the MFOSM and AFOSM
reliability methods.

6.21 Refer to Problem 4.24, and use the distribution functions specified. Incorporate
the normal transform given in Table 4.5 into the Monte Carlo simulation pro-
cedure developed in Problem 6.19 to estimate the probability and compare the
results with those obtained in Problems 4.24 and 4.34.

6.22 Repeat Problem 6.21 for Problem 4.26 and compare the results with those ob-
tained in Problems 4.26 and 4.36.
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6.23 Prove Eq. (6.52)

6.24 Prove Eq. (6.54)

6.25 Show that Var(Ĝ) by Eq. (6.63) is smaller than that by Eq. (6.52).

6.26 Use directional simulation to solve Problem 6.15, and compare the results with
the exact solution and those obtained in Problems 6.15 to 6.17.

6.27 Use directional simulation to solve Problem 6.19, assuming that all stochastic
variables are multivariate normal variables. Compare the results with those ob-
tained in Problem 6.19.

6.28 Use directional simulation to solve Problem 6.20, assuming that all stochastic
variables are multivariate normal variables. Compare the results with those ob-
tained in Problem 6.20.

6.29 Repeat Example 6.6 using the importance sampling technique with n = 2000.

The PDF selected has a form of the standard exponential function, that is,

fx(x) = ae−x for x ≥ 0

where a = constant. Compare the results with those obtained in Examples 6.6.,
6.7, and 6.8.

6.30 Using the concept of importance sampling, choose hx(x) = e−ax and estimate the
integral

G =
∫ π

0

dx
x2 + cos2x

Determine the value of a that minimizes the variance of the integral (after Gould
and Tobochnik, 1988).

6.31 Show that Cov(U , 1 − U ) = −1/12 in which U ∼ U(0, 1).

6.32 Referring to the pump performance in Example 7.6, estimate the failure proba-
bility using the antithetic-variates technique along with the sample-mean Monte
Carlo algorithm with n = 1000. The PDF selected is a standard exponential func-
tion, that is,

fx(x) = e−x for x ≥ 0

Also compare the results with those obtained in Examples 6.6, 6.7, 6.8, and 6.11.

6.33 Show that Var(Ĝ) associated with Ĝ by Eq. (6.89) is

Var(Ĝ) =
M∑

m=1

P 2
mσ 2

m
nm

and derive the corresponding value associated with the optimal sample size allo-
cation n∗

m.

6.34 Refer to the strip mine in Example 6.4. Use the antithetic-variate Monte Carlo
technique with n = 400 to estimate the first three product-moments of drawdown
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recess time corresponding to s/ho = 0.5. Assume that the permeability Kh is
the only random variable having a lognormal distribution with the mean µkh =
0.1 m/day and coefficient of variation �kh = 10 percent.

6.35 Refer to the strip mine in Example 6.4. Suppose that engineers are also con-
sidering the possibility of starting excavation earlier. Evaluate the difference in
expected waiting time between the two options, that is, s/ho = 0.5 and 0.6, by
correlated-sampling Monte Carlo simulation with n = 400. Assume that the only
random variable is the permeability Kh, having a lognormal distribution with the
mean 0.1 m/day and coefficient of variation of 0.1.

6.36 Repeat Problem 6.34 using the systematic sampling technique to estimate the
first three product-moments of drawdown recess time corresponding to s/ho = 0.5.

6.37 Repeat Problem 6.36 using the LHS technique.

6.38 Resolve Problem 6.15 by incorporating the antithetic-variates method.

6.39 Referring to Problem 6.15, use the correlated-sampling method to determine the
difference in probabilities of a safe excavation for t = 30 days and t = 50 days.

6.40 Resolve Problem 6.15 using the Latin hypercube sampling method.

6.41 Refer to the annual maximum flood data in Table 6.4. Assuming that the flood
data follow a lognormal distribution, use the nonparametric unbalanced boot-
strap algorithm to estimate � = P (flood peak ≥ 15,000 ft3/s) and its associated
error. Furthermore, based on the 1000 bootstrap samples generated, assess the
probability distribution and 90 percent confidence interval for � = P (flood peak
≥ 15,000 ft3/s).

6.42 Solve Problem 6.41 using the parametric unbalanced bootstrap algorithm. Com-
pare these results with those obtained from Problem 6.42.
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Chapter

7
Reliability of Systems

7.1 Introduction

Most systems involve many subsystems and components whose performances
affect the performance of the system as a whole. The reliability of the entire
system is affected not only by the reliability of individual subsystems and
components but also by the interactions and configurations of the subsystems
and components. Many engineering systems involve multiple failure paths or
modes; that is, there are several potential paths and modes of failure in which
the occurrence, either individually or in combination, would constitute system
failure. As mentioned in Sec. 1.3, engineering system failure can be structural
failure such that the system can no longer function, or it can be performance
failure, for which the objective is not achieved but the functioning of the system
is not damaged. In terms of their functioning configuration and layout pattern,
engineering systems can be classified into series systems or parallel systems,
as shown schematically in Figs. 7.1 and 7.2, respectively.

A formal quantitative reliability analysis for an engineering system involves
a number of procedures, as illustrated in Fig. 7.3. First, the system domain is
defined, the type of the system is identified, and the conditions involved in the
problem are defined. Second, the kind of failure is identified and defined. Third,
factors that contribute to the working and failure of the system are identified.
Fourth, uncertainty analysis for each of the contributing component factors or
subsystems is performed. Chapters 4 and 5 of Tung and Yen (2005) and Chap. 6
of this book describe some of the methods that can be used for this step. Fifth,
based on the characteristics of the system and the nature of the failure, a logic
tree is selected to relate the failure modes and paths involving different com-
ponents or subsystems. Fault trees, event trees, and decision trees are the logic
trees often used. Sixth, identify and select an appropriate method or meth-
ods that can combine the components or subsystems following the logic of the
tree to facilitate computation of system reliability. Some of the computational
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1 2 M

Figure 7.1 Schematic diagram of a series system.

methods are described in Chaps. 4, 5, and 6. Seventh, perform the computation
following the methods selected in the sixth step to determine the system failure
probability and reliability. Eighth, if the cost of the damage associated with the
system failure is desired and the failure damage cost function is known or can
be determined, it can be combined with the system failure probability function
determined in step 7 to yield the expected damage cost.

The different contributing factors or parameters may have different measure-
ment units. In quantitative combination for reliability analysis, these statistical
parameters or factors are normalized through their respective mean or stan-
dard deviation to become nondimensional, such as coefficients of variation, to
facilitate uncertainty combination.

Real-life hydrosystems engineering infrastructural systems often are so large
and complex that teams of experts of different disciplines are required to con-
duct the reliability analysis and computation. Logic trees are tools that permit
division of team work and subsequent integration for the system result. In-
formation on the logic trees and types of systems related to steps 5 and 6 are
discussed in this chapter.

7.2 General View of System Reliability Computation

As mentioned previously, the reliability of a system depends on the component
reliabilities and interactions and configurations of components. Consequently,
computation of system reliability requires knowing what constitutes the system
being in a failed or satisfactory state. Such knowledge is essential for system
classification and dictates the methodology to be used for system reliability
determination.

1

2

M

Figure 7.2 Schematic diagram of
a parallel system.
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(1)
Identify and define

system.

(2)
Define failure.

(5)
Establish logic tree.

(6)
Identify methods to

combine
components

following the tree.

(3)
Identify contributing

factors.

(4)
Perform uncertainty

analysis for each
component.

(8)
Identify and determine

economic damage 
function of failure and
associated uncertainty.

(7)
Combine component uncertainties
to yield system failure probability.

(9)
Expected risk-cost.

Figure 7.3 Procedure for infrastructural engineering system reliability.

7.2.1 Classification of systems

From the reliability computation viewpoint, classification of the system depends
primarily on how system performance is affected by its components or modes
of operation. A multiple-component system called a series system (see Fig. 7.1)
requires that all its components perform satisfactorily to allow satisfactory
performance of the entire system. Similarly, for a single-component system
involving several modes of operation, it is also viewed as a series system if
satisfactory performance of the system requires satisfactory performance of all
its different modes of operation.
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A second basic type of system is called a parallel system (see Fig. 7.2). A
parallel system is characterized by the property that the system would serve
its intended purpose satisfactorily as long as at least one of its components or
modes of operation performs satisfactorily.

For most real-life problems, system configurations are complex, in which the
components are arranged as a mixture of series and parallel subsystems or in
the form of a loop. In dealing with the reliability analysis of a complex system,
the general approach is to reduce the system configuration, based on the ar-
rangement of its components or modes of operation, to a simpler situation for
which the reliability analysis can be performed easily. However, this goal may
not always be achievable, in which case a special procedure would have to be
devised.

7.2.2 Basic probability rules for system reliability

The solution approaches to system reliability problems can be classified broadly
into failure-modes approach and survival-modes approach (Bennett and Ang,
1983). The failure-modes approach is based on identification of all possible fail-
ure modes for the system, whereas the survival-modes approach is based on
the all possible modes of operation under which the system will be operational.
The two approaches are complementary. Depending on the operational char-
acteristics and configuration of the system, a proper choice of one of the two
approaches often can lead to significant reduction in efforts needed for the re-
liability computation.

Consider that a system has M components or modes of operation. Let event
Fm indicate that the mth component or mode of operation is in the failure
state. If the system is a series system, the failure probability of the system is
the probability that at least one of the M components or modes of operation
fails, namely,

pf ,sys = P (F1 ∪ F2 ∪ · · · ∪ FM) = P
(

M∪
m=1

Fm

)
(7.1)

in which pf ,sys is the failure probability of the system. On the other hand, the
system reliability ps,sys is the probability that all its components or modes of
operation perform satisfactorily, that is,

ps,sys = P (F ′
1 ∩ F ′

2 ∩ · · · ∩ F ′
M) = P

(
M∩

m=1
F ′

m

)
(7.2)

in which F ′
m is the complementary event of Fm indicating that the mth compo-

nent or mode of operation does not fail.
In general, failure events associated with system components or modes of op-

eration are not mutually exclusive. Therefore, referring to Eq. (2.4), the failure
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probability for a series system can be computed as

pf ,sys = P
(

M∪
m=1

Fm

)
=

M∑
m=1

P (Fm) −
M−1∑
i=1

M∑
j =i+1

P (Fi, F j )

+
∑
i<

∑
j <

∑
k

P (Fi, F j , Fk) − · · · + (−1)M P (F1, F2, . . . , FM) (7.3)

According to Eq. (2.7), the reliability for a series system is

ps,sys = P (F ′
1) × P (F ′

2 | F ′
1) × P (F ′

3 | F ′
1, F ′

2) × · · · × P (F ′
M | F ′

1, F ′
2, . . . , F ′

M−1)

(7.4)

In the case that failure events F ′
m’s are mutually exclusive or the probability

of joint occurrence of multiple failures is negligible, the failure probability of a
series system can be easily obtained as

pf ,sys =
M∑

m=1

P (Fm) (7.5a)

with the corresponding system reliability

ps,sys = 1 − pf ,sys = 1 −
M∑

m=1

P (Fm) (7.5b)

Under the condition that all failure events are statistically independent, the
reliability of a series system can be computed easily as

ps,sys =
M∏

m=1

P (F ′
m) =

M∏
m=1

[1 − P (Fm)] (7.6a)

with the corresponding system failure probability

pf ,sys = 1 −
M∏

m=1

[1 − P (Fm)] (7.6b)

The component probability P (Fm) can be determined by methods described in
Chaps. 4, 5, and 6 of this book.

Example 7.1 Consider a series system consisting of M independent components,
each with an identical component reliability of ps. The system reliability, according
to Eq. (7.6a), is

ps,sys = pM
s

Figure 7.4 shows the relationship among the reliability of a series system, component
reliability, and the number of components. As can be seen, the reliability of a series
system decreases as the number of components increases.
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Figure 7.4 Relationship among reliability of a series system, component
reliability, and the number of components.

In the case of a parallel system, the system would fail if all its components or
modes of operation failed. Hence the failure probability for a parallel system is

pf ,sys = P (F1 ∩ F2 ∩ · · · ∩ FM) = P
(

M∩
m=1

Fm

)
(7.7)

The reliability of a parallel system, on the other hand, is the probability that
at least one of its component or modes of operation is functioning, that is,

ps,sys = P (F ′
1 ∪ F ′

2 ∪ · · · ∪ F ′
M) = P

(
M∪

m=1
F ′

m

)
(7.8)

Hence, under the condition of independence for all failure events, the failure
probability of a parallel system simply is

pf ,sys =
M∏

m=1

P (Fm) (7.9a)

with the corresponding system reliability being

ps,sys = 1 −
M∏

m=1

P (Fm) = 1 −
M∏

m=1

[1 − P (F ′
m)] (7.9b)

Example 7.2 Consider a parallel system consisting of M independent components,
each with an identical component reliability of ps. The system reliability, according
to Eq. (7.9b), is

ps,sys = 1 − (1 − ps)M

Figure 7.5 shows the relationship among reliability of a parallel system, component
reliability, and the number of components. The figure indicates that the reliability of
a parallel system increases as the number of components increases.
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Figure 7.5 Relationship among reliability of a parallel system, component
reliability, and the number of components.

For mutually exclusive failure events, reliability of a parallel system can be
computed as

ps,sys =
M∑

m=1

P (F ′
m) = M −

M∑
m=1

P (Fm) (7.10a)

with the corresponding system failure probability

pf ,sys = 1 +
M∑

m=1

P (Fm) − M (7.10b)

Unfortunately, for a real-life system involving multiple components or modes
of operation, the corresponding failure events are neither independent nor mu-
tually exclusive. Consequently, the computation of exact values of system reli-
ability and failure probability would not be a straightforward task. In practical
engineering applications, bounds on system reliability are computed based on
simpler expressions with less computational effort. As will be seen in the next
subsection, to achieve tighter bounds on system reliability or failure probability,
a more elaborate computation will be required. Of course, the required preci-
sion for the computed system reliability is largely dependent on the importance
of the satisfactory performance of the system under consideration.

7.2.3 Bounds for system reliability

Despite the system under consideration being a series or parallel system, the
evaluation of system reliability or failure probability involves probabilities of
union or intersection of multiple events. Without losing generality, the deriva-
tion of the bounds for P (A1 ∪ A2 ∪ · · · ∪ AM) and P ( A1 ∩ A2 ∩ · · · ∩ AM) are given
below.
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For example, consider P (A1 ∪ A2 ∪ · · · ∪ AM). When Am = Fm, the probability
is for the failure probability of a series system, whereas when Am = F ′

m, the
probability is for the reliability of a parallel system. The bounds of system
failure probability, that is, can be defined as follows:

p
f ,sys

≤ pf ,sys ≤ p f ,sys (7.11a)

with p
f ,sys

and p f ,sys being the lower and upper bounds of system failure prob-
ability, respectively. The corresponding bounds for system reliability can be
obtained as

1 − p f ,sys = p
s,sys

≤ ps,sys ≤ ps,sys = 1 − p
f ,sys

(7.11b)

Similarly, after the bounds on system reliability are obtained, the bounds on
system failure reliability can be computed easily.

First-order bounds. These bounds also are called unimodal bounds (Ang and
Tang, 1984, p. 450). They can be derived as follows. Referring to Eq. (2.7), the
probability of the joint occurrence of several events can be computed as

P
(

M∩
m=1

Am

)
= P (A1) × P (A2 | A1) × · · · × P ( AM | AM−1, AM−2, . . . , A2, A1)

(7.12)

Under the condition that all events Aj and Am are positively correlated, the
following inequality relationship holds:

P (Am | Aj ) ≥ P ( Am)

Hence

P (Aj , Am) = P (Am | Aj )P ( Aj ) ≥ P ( Am)P ( Aj )

This can be extended to a multiple-event case as

P
(

M∩
m=1

Am

)
≥

M∏
m=1

P ( Am) (7.13)

As can be seen, the lower bound of the probability of an intersection is when all
events are as if they are independent. Furthermore, it is also true that

M∩
m=1

Am ⊂ Aj for any j = 1, 2, . . . , M

Therefore, (
M∩

m=1
Am

)
⊂ min{A1, A2, . . . , AM}

Consequently,

P
(

M∩
m=1

Am

)
≤ min{P ( A1), P ( A2), . . . , P ( AM)} (7.14)
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Based on Eqs. (7.13) and (7.14), the bounds on probability of joint occurrence
of several positively correlated events are

M∏
m=1

P (Am) ≤ P
(

M∩
m=1

Am

)
≤ min

m=1,2,...,M
{P ( Am)} (7.15)

Example 7.3 Consider three standardized normal random variables Z1, Z2, and Z3
with the following correlation matrix:

Rz =

1.000 0.841 0.014

0.841 1.000 0.536

0.014 0.536 1.000


Compute the first-order bounds for P {(Z1 ≤ −2.71) ∪ (Z2 ≤ −2.88) ∪ (Z3 ≤ −3.44)}.
Solution The three events corresponding to the preceding trivariate normal probability
are

A1 = {Z1 ≤ −2.71} A2 = {Z2 ≤ −2.88} A3 = {Z3 ≤ −3.44}
Since,

P ( A1 ∪ A2 ∪ A3) = 1 − P (A′
1 ∩ A′

2 ∩ A′
3)

the first-order bounds for P( A1∪ A2∪ A3) can be obtained from those of P(A′
1∩ A′

2∩ A′
3).

To derive the first-order bounds for P (A′
1 ∩ A′

2 ∩ A′
3), individual probabilities are

required, which can be obtained from Table 2.2 or Eq. (2.63) as

P ( A′
1) = P (Z1 ≥ −2.71) = 0.99664

P ( A′
2) = P (Z2 ≥ −2.88) = 0.99801

P ( A′
3) = P (Z3 ≥ −3.44) = 0.99971

Furthermore, because all A′
m’s are positively correlated, all Am’s are also positively

correlated. According to Eq. (7.15), the first-order bounds for P (A′
1 ∩ A′

2 ∩ A′
3) is

(0.99664)(0.99801)(0.99971) ≤ P

(
3∩

m=1
A′

m

)
≤ min{0.99664, 0.99801, 0.99971}

which can be reduced to

0.99437 ≤ P

(
3∩

m=1
A′

m

)
≤ 0.99664

Therefore, the corresponding first-order bounds for P (A1 ∪ A2 ∪ A3) is

1 − 0.99664 ≤ P

(
3∪

m=1
Am

)
≤ 1 − 0.99437

which can be reduced to

0.00336 ≤ P

(
3∪

m=1
Am

)
≤ 0.00563
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Referring to Eq. (7.2), the first-order bounds for reliability of a series system
with positively correlated nonfailure events can be computed as

M∏
m=1

P (F ′
m) ≤ ps,sys ≤ min

m
{P (F ′

m)} (7.16a)

or in terms of failure probability as

M∏
m=1

[1 − P (Fm)] ≤ ps,sys ≤ min
m

{1 − P (Fm)} (7.16b)

Similarly, referring to Eq. (7.7), by letting Am = Fm, the first-order bounds
on the failure probability of a parallel system with positively correlated failure
events can be immediately obtained as

M∏
m=1

P (Fm) ≤ pf ,sys ≤ min
m

{P (Fm)} (7.17a)

and the corresponding bounds for the system reliability, according to Eq. (7.11b),
is

1 − min
m

[P (Fm)] ≤ ps,sys ≤ 1 −
[

M∏
m=1

P (Fm)

]
(7.17b)

Example 7.4 Consider that the M identical components in a system are positively
correlated and the component reliability is ps. Determine the reliability bounds for
the system.

Solution If the system is a series system, the bounds on system reliability, according
to Eq. (7.16a), are

pM
s ≤ ps,sys ≤ ps

When the system is in parallel, the bounds on the system reliability, according to
Eq. (7.17b), are

ps ≤ ps,sys ≤ 1 − (1 − ps)M

The bounds for system reliabilities for different M, with the component reliability of
0.95, for series and parallel systems are shown in Fig. 7.6. As can be observed, the
bounds for the system widen as the number of components increases.

In the case that all events Am’s are negatively correlated, the following rela-
tionships hold:

P (Am | Aj ) ≤ P ( Aj ) for all j , m

P (Aj , Am) ≤ P ( Aj )P ( Am)
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Figure 7.6 First-order bounds for series and parallel systems with component
reliability ps = 0.95.

Hence the first-order bounds for the probability of joint occurrence of several
negatively correlated events is

0 ≤ P
(

M∩
m=1

Am

)
≤

M∏
m=1

P ( Am)

The bounds for reliability of a series system, with Am = F ′
m, containing nega-

tively correlated events are

0 ≤ ps,sys ≤
M∏

m=1

[1 − P (Fm)]

whereas for a parallel system, with Am = Fm,

1 −
[

M∏
m=1

P (Fm)

]
≤ ps,sys ≤ 1

It should be pointed out that the first-order bounds for system reliability may
be too wide to be meaningful. Tighter bounds sometimes are required and can
be obtained at the expense of more computations.

Second-order bounds (Bimodal bounds). The second-order bounds are obtained
by retaining the terms involving the joint probability of two events. By Eq. (2.4),
the probability of the union of several events is

P
(

M∪
m=1

Am

)
=

M∑
m=1

P (Am) −
∑
i<

∑
j

P ( Ai, Aj ) +
∑
i<

∑
j <

∑
k

P ( Ai, Aj , Ak) − · · ·

+ (−1)M P (A1, A2, . . . , AM) (7.18)
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Notice the alternating signs in Eq. (7.18) as the order of the terms increases.
It is evident that the inclusion of only the first-order terms, that is, P ( Am),
produces an upper bound for P (A1 ∪ A2 ∪ · · · ∪ AM). Consideration of the only
the first two order terms yields a lower bound, the first three order terms again
an upper bound, and so on (Melchers, 1999).

Simple bounds for the probability of a union are

M∑
m=1

P (Am) −
M−1∑
i=1

M∑
j =i+1

P (Ai, Aj ) ≤ P
(

M∪
m=1

Am

)
≤ min

[
1,

M∑
m=1

P ( Am)

]
(7.19)

It should be pointed out that these bounds produce adequate results only when
the values of P (Am) and P (Am, Aj ) are small. Equation (7.18) alternatively
can be written as

P
(

M∪
m=1

Am

)
= [P (A1)] + [P (A2) − P ( A1, A2)] + [P ( A3) − P ( A1, A3)

− P (A2, A3) + P (A1, A2, A3)] + [P ( A4) − P ( A1, A4) −P ( A2, A4)

− P (A3, A4) + P (A1, A2, A4) + P ( A1, A3, A4) + P ( A2, A3, A4)

− P (A1, A2, A3, A4)] + [P ( A5) · · · (7.20)

To derive the lower bound, consider each of the terms in brackets in Eq. (7.20).
For example, consider the bracket containing the terms associated with event
A4. Note that apart from P (A4), the remaining terms in the bracket are

−P [(A1, A4) ∪ ( A2, A4) ∪ ( A3, A4)]

Furthermore, event A4 contains (A1, A4)∪( A2, A4)∪( A3, A4), which implies that
P (A4) ≥ P [(A1, A4) ∪ (A2, A4) ∪ (A3, A4)]. Consequently, each of the bracketed
terms in Eq. (7.20) has a nonnegative probability value. Also notice that

P
[

3∪
j =1

(Aj , A4)
]

≤
3∑

j =1

P ( Aj , A4)

and thus the following inequality holds:

P (A4) − P
[

3∪
j =1

(Aj , A4)
]

≥ P ( A4) −
3∑

j =1

P ( Aj , A4)

This equation can be generalized as

P (Am) − P
[

m−1∪
j =1

(Aj , Am)
]

≥ P ( Am) −
m−1∑
j =1

P ( Aj , Am) (7.21)

It should be pointed out that the terms on the right-hand-side of Eq. (7.21)
could be negative, especially when m is large. Owing to the fact that each of the
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bracketed terms should be nonnegative, a better lower bound to Eq. (7.20) can be
obtained if the right-hand-side of Eq. (7.21) makes a nonnegative contribution
to the lower bound (Ditlevsen, 1979), namely,

P
(

M∪
m=1

Am

)
≥ P (A1) +

M∑
m=2

max


P ( Am) −

m−1∑
j =1

P ( Aj , Am)

 , 0

 (7.22)

Earlier, Kounias (1968) proposed an alternative second-order lower bound by
selecting only those combinations in Eq. (7.20) which give the maximum values
of the lower bound:

P
(

M∪
m=1

Am

)
≥ P (A1) + max


M∑

m=2
j <m

[P ( Am) − P ( Aj , Am)]

 (7.23)

It should be pointed out that both lower bounds for the probability of a union
depend on the order in which the events are labeled. Algorithms have been de-
veloped for identifying the optimal ordering of events to obtain the best bounds
(Dawson and Sankoff, 1967; Hunter, 1977). A useful rule of thumb is to order
the events in the order of decreasing importance (Melchers, 1999). In other
words, events are ordered such that P ( A[1]) > P ( A[2]) > · · · > P ( A[M]), with
[m] representing the rank of the event according to its probability of occurrence.
For a given ordering, Ramachandran (1984) showed that the lower bound pro-
vided by Eq. (7.22) is better than Eq. (7.23), whereas both bounds are equal if
all possible orderings are considered.

To derive the upper bound, attention is focused back to Eq. (7.20) and on
each of the terms in brackets. For example, consider the bracket containing the
terms associated with event A4. As discussed earlier, apart from P ( A4), the
remaining terms in the bracket are

−P [(A1, A4) ∪ ( A2, A4) ∪ ( A3, A4)]

Using the fact that P (A ∪ B ) ≥ max[P ( A), P (B )], the following inequality
holds:

P
[

∪
j <4

(Aj , A4)
]

≥ max
j <4

[P ( Aj , A4)]

Hence the probability in the fourth bracket involving event A4 satisfies

P (A4) − P
[

∪
j <4

(Aj , A4)
]

≤ P ( A4) − max
j <4

[P ( Aj , A4)] (7.24)

This inequality relation is true for all the bracketed terms of Eq. (7.22), and the
upper bound can be obtained as

P
(

M∪
m=1

Am

)
≤ min

{
1,

M∑
m=1

P ( Am) −
M∑

m=2

max
j <m

[P ( Aj , Am)]

}
(7.25)
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Again, this upper bound value also is dependent on the order of events. As can
be seen from Eqs. (7.22) and (7.25), it is realized that the computation of a
second-order bound for the probability of a union requires determination of the
joint probability for all combinations of all possible pairs of events involved.

Referring to Eq. (7.1), the second-order bounds for the failure probability of
a series system can be obtained as

P f ,sys


≤

M∑
m=1

P (Fm) −
M∑

m=2
max
j <m

[P (F j , Fm)]

≥P (F1) +
M∑

m=2
max

{[
P (Fm) −

m−1∑
j =1

P (F j , Fm)

]
, 0

} (7.26)

Similarly, the second-order bounds for the reliability of a parallel system, ac-
cording to Eq. (7.8), are

P f ,sys


≤

M∑
m=1

P (F ′
m) −

M∑
m=2

max
j <m

[P (F ′
j , F ′

m)]

≥P (F ′
1) +

M∑
m=2

max

{[
P (F ′

m) −
m−1∑
j =1

P (F ′
j , F ′

m)

]
, 0

} (7.27)

Example 7.5 Refer to Example 7.3. Compute the second-order bounds for the multi-
variate normal probability.

Solution To compute the second-order bounds, the probabilities of individual events as
well as the joint probabilities between two different event pairs must be computed.
From Table 2.2 or Eq. (2.63), the probabilities of individual events are

P ( A1) = P (Z1 ≤ −2.71) = 0.003364

P ( A2) = P (Z2 ≤ −2.88) = 0.001988

P ( A3) = P (Z3 ≤ −3.44) = 0.0002909

The joint probabilities, according to the procedures described in Sec. 2.7.2, are

P ( A1, A2) = P (Z1 ≤ −2.71, Z2 ≤ −2.88 | ρ = 0.841) = 0.0009247

P ( A1, A3) = P (Z1 ≤ −2.71, Z3 ≤ −3.44 | ρ = 0.014) = 0.000001142

P ( A2, A3) = P (Z2 ≤ −2.88, Z3 ≤ −3.44 | ρ = 0.536) = 0.00004231

The lower bound of P ( A1 ∪ A2 ∪ A3), according to Eq. (7.23), is

P (A1) +
3∑

m=2

max


P ( Am) −

m−1∑
j =1

P (Aj , Am)

 , 0


= P ( A1) + max

{
[P ( A2) − P ( A1, A2)], 0

}+ max
{
[P (A3) − P (A1, A2) − P (A2, A3)],0

}
= 0.003364 + max

{
[0.001988 − 0.0009247], 0

}+max
{
[2.909 × 10−4 − 1.142 × 10−6)

−4.231 × 10−5], 0
} = 0.003364 + 0.00106633 + 0.00024736

= 0.004675
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The upper bound of P ( A1 ∪ A2 ∪ A3), according to Eq. (7.25), can be computed as

3∑
m=1

P ( Am) −
3∑

m=2

max
j <m

[P ( Aj , Am)]

=
3∑

m=1

P ( Am) − {max[P ( A1, A2)] + max[P (A1, A3), P (A2, A3)]
}

= (0.003364 + 0.001988 + 0.002909) − {max(0.0009247)

+ max[(1.142 × 10−6, 4.231 × 10−5)]
} = 0.005641 − (0.000924 + 0.0000425)

= 0.004677

In summary, the second-order bounds for the trivariate normal probability P (A1 ∪
A2 ∪ A3) are

0.004675 ≤ P (A1 ∪ A2 ∪ A3) ≤ 0.004677

Comparing with the first-order bounds obtained in Example 7.3, the second-order
bounds are definitely tighter.

7.3 Reliability of Simple Systems

In this section the reliability of some simple systems will be discussed. In the
framework of time-to-failure analysis, availability of such systems will be pre-
sented. Information such as this is essential to serve as the building blocks for
determination of reliability or availability of more complex systems.

7.3.1 Series systems

A series system requires that all its components or modes of operation perform
satisfactorily to ensure a satisfactory operation of the entire system. In the
context of load-resistance interference, the failure event associated with a mode
of operation is

Fm = {Wm < 0} for m = 1, 2, . . . , M

in which Wm is the random performance variable associated with the mth mode
of operation. Referring to Chap. 4, the failure probability and reliability asso-
ciated with the mth mode of operation, respectively, are

P (Fm) = P (Wm < 0) = P (Zm ≤ −βm) = �(−βm) (7.28a)

P (F ′
m) = P (Wm > 0) = P (Zm > −βm) = �(βm) (7.28b)

in which Zm is the standard normal random variable associated with Wm, and
βm is the reliability index associated with the mth mode of operation.
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The failure probability of a series system involving M modes of operation,
according to Eq. (7.1), can be expressed as

pf ,sys = P
[

M∪
m=1

(Wm < 0)
]

= P
[

M∪
m=1

(Zm < −βm)
]

(7.29)

Because all the standardized normal random variables Zm’s generally are cor-
related, computation of the exact system failure probability using Eq. (7.29)
may not be practical, especially when the number of modes of operation M is
large. For this case, the second-order bounds for pf ,sys could be viable. According
to Eq. (7.26), the bounds for system failure probability are

pf ,sys


≤

M∑
m=1

�(−βm) +
M∑

m=2
max
j <m

[�(−β j , −βm | ρjm)]

≥�(−β1) +
M∑

m=2
max

{[
�(−βm) −

m−1∑
j =1

�(−β j , −βm | ρjm)

]} (7.30)

in which �(−β j , −βm | ρjm) is the bivariate normal probability, which can be
computed by procedures described in Sec. 2.7.2, with ρjm being the correlation
coefficient between the performance variables W j and Wm for the j th and mth
modes of operation. Accordingly, the bounds on reliability of a series system can
be obtained easily by using Eq. (7.11b).

Although computation of the exact bivariate normal probability can be ob-
tained through numerical integration, sometimes information about its bounds
is sufficient. Under a positively correlated case, narrow bounds of �(−β j , −βm |
ρjm > 0) that require evaluations of only univariate normal probabilities are

�(−β j , −βm | ρjm > 0)

{≤�(−βm)�(−β j | m) + �(−β j )�(−βm | j )

≥ max[�(−βm)�(−β j | m), �(−β j )�(−βm | j )]
(7.31)

where β j | m = β j − ρjmβm√
1 − ρ2

jm

(7.32a)

βm | j = βm − ρjmβ j√
1 − ρ2

jm

(7.32b)

In the case that the pair of performance functions is negatively correlated, the
bounds for joint failure probability are

0 ≤ �(−β j , −βm | ρjm < 0) ≤ min[�(−βm)�(−β j | m), �(−β j )�(−βm | j )] (7.33)

The derivations of Eqs.(7.31) and (7.33) are given in Appendix 7A. Ang and Tang
(1984) pointed out that use of an approximation of Eq. (7.31) could improve
(tighten) the second-order bound of Eq. (7.30) when the single-mode failure
probabilities are small, say, on the order of 10−4. However, if the single-mode
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failure probabilities are all large (e.g., 10−2), the bound of Eq. (7.31) will be
wide.

In fact, the reliability of a series system can be computed, according to
Eq. (7.2), as

ps,sys = P
(

M∩
m=1

F ′
m

)
= P

[
M∩

m=1
(Zm ≥ −βm)

]
(7.34)

It should be pointed out that, in general, P [∩(Zm ≥ −βm)] �= P [∩(Zm ≤ βm)]
unless for the univariate case. As can be seen, the reliability of a series system
is the multivariate normal probability whose determination can be made by
Ditlevsen’s approach, described in Sec. 2.7.2, or by various bounding approaches
discussed in Sec. 2.7.3.

Example 7.6 Consider a system consisting of three modes of operation, each of which
is specified by the following linear performance functions:

W1(X ) = X1 + 2X2

W2(X ) = X1 + X2 + X3

W3(X ) = X2 + 2X3

in which the stochastic basic variables X1, X2, and X3 are multivariate normal ran-
dom variables with the vector of means

µx = (µ1, µ2, µ3)t = (6, 6, 6)t

and covariance matrix

Cx =

9.00 0.00 0.00

0.00 9.00 0.00

0.00 0.00 9.00


The state of the system is such that if any of the three modes of operation fail, the
system would fail. Calculate the system reliability.

Solution From the preceding covariance matrix Cx, it is understood that all three
stochastic basic variables are uncorrelated, each with a variance of 9, that is, Var(X1) =
Var(X2) = Var(X3) = 9. The vector of expected values of W1, W2, and W3 is

µw = (µw1 , µw2 , µw3 )t = [6 + 2(6), 6 + 6 + 6, 6 + 2(6)]t = (18, 18, 18)t

The covariance matrix of the three performance functions W ’s can be computed as

Cw = S tCx S

in which S, the sensitivity matrix, is an K × M matrix, with M and K being the
number of performance functions and stochastic basic variables, respectively. The
sensitivity matrix Scontains, in each column, the vector of sensitivity coefficients for
each performance function with respect to individual stochastic basic variable, that is,

S = [s1, s2, . . . , sM ]
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with
s t

m =
[

∂Wm

∂X1
,
∂Wm

∂X2
, . . . ,

∂Wm

∂ X K

]t

µx

for m = 1, 2, . . . , M. In this example, since all performance functions are linear, the
sensitivity matrix consists of coefficients in the performance functions, that is,

S t =

1 2 0

1 1 1

0 1 2


Hence the covariance matrix of the three performance functions can be obtained as

Cw =

45 27 18

27 27 27

18 27 45


As can be seen, even though the three stochastic basic variables are uncorrelated,

the three performance functions are correlated because they are defined by some
stochastic basic variables common to the other performance functions. Hence the
variances of W1, W2, and W3 appear on the diagonal of Cw, namely,

Var(W1) = 45 Var(W2) = 27 and Var(W3) = 47

The corresponding correlation matrix of random W ’s can be obtained easily as

Rw =

1.000 0.7746 0.4000

0.7746 1.000 0.7746

0.4000 0.7746 1.000


The system failure probability is defined as

pf ,sys = P [(W1 < 0) ∪ (W2 < 0) ∪ (W3 < 0)]

= P [(Z1 < −2.68) ∪ (Z2 < −3.46) ∪ (Z3 < −2.68)]

The exact system failure probability can be obtained as

pf ,sys = P [(Z1 < −2.68) ∪ (Z2 < −3.46) ∪ (Z3 < −2.68)]

= [P (Z1 < −2.68) + P (Z2 < −3.46) + P (Z3 < −2.68)]

− [P (Z1 < −2.68, Z2 < −3.46) + P (Z1 < −2.68, Z3 < −2.68)

+ P (Z2 < −3.46, Z3 < −2.68)] + P (Z1 < −2.68, Z2 < −3.46, Z3 < −2.68)

= (0.003681 + 0.0002701 + 0.003681) − (0.0001659 + 0.0001987 + 0.0001659)

+ 0.0001556

= 0.0072572

Hence the system reliability ps,sys = 1 − 0.0072572 = 0.9927428. Note that the
preceding bivariate normal probabilities are calculated by Eq. (2.121), whereas the
trivariate normal probability is computed according to Ditlevsen’s algorithm using
Taylor expansion described in Sec. 2.7.2.
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Alternatively, the second-order bounds for the system failure probability can be
computed according to Eq. (7.30). The results are

0.007102 ≤ pf ,sys ≤ 0.007268

and the corresponding bounds on the system reliability ps,sys are

0.992732 ≤ ps,sys ≤ 0.992898

In the framework of time-to-failure analysis, the reliability ps,m(t) and failure
probability pf ,m(t) of the mth component over the time interval (0, t], according
to Eqs. (5.1a) and (5.1b), are

P (F ′
m) = ps,m(t) = P (T m ≥ t) =

∫ ∞

t
f m(τ ) dτ (7.35a)

and P (Fm) = pf ,m(t) =
∫ t

0
f m(τ ) dτ (7.35b)

respectively, where f m(t) is the failure density function for the mth component.
In the case that the performance of individual components is independent of

each other, the reliability of a series system is

ps,sys(t) = P
(

M∩
m=1

F ′
m

)
=

M∏
m=1

ps,m(t) (7.36)

Similarly, the availability of a series system involving M independent compo-
nents is

Asys(t) =
M∏

m=1

Am(t) (7.37)

in which Asys(t) and Am(t) are availabilities of the entire system and the mth
component, respectively, at time t.

According to Eqs. (5.2) and (5.3), the failure density function f sys(t) and the
failure rate hsys(t) for a series system involving M independent components can
be derived, respectively, as

f sys(t) = −d [ps,sys(t)]
dt

=
M∑

m=1

∏
j �=m

ps,m(t)

 f m(t) (7.38)

and hsys(t) = f sys(t)
ps,sys(t)

=
M∑

m=1

f m(t)
ps,m(t)

(7.39)

For the special case of an exponential failure density function such as

f m(t) = λme−λmt for t ≥ 0, λm > 0, m = 1, 2, . . . , M
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the reliability and unreliability of a series system with M independent compo-
nents, respectively, are

ps,sys(t) =
M∏

m=1

e−λmt = exp

[
−
(

M∑
m=1

λm

)
t

]
(7.40a)

pf ,sys(t) = 1 − exp

[
−
(

M∑
m=1

λm

)
t

]
(7.40b)

Assuming an exponential repair function for each independent component, the
availability and unavailability for a series system, according to Eqs. (7.37) and
(5.59), are

Asys(t) =
M∏

m=1

(
ηm

λm + ηm
+ λm

λm + ηm
e−(λm+ηm)t

)
(7.41a)

and Usys(t) = 1 − Asys(t) (7.41b)

in which ηm is the constant repair rate for the mth component, and Usys(t)
is the system unavailability at time t. The stationary system availability, by
Eq. (5.60), can be expressed as

Asys(∞) =
M∏

m=1

(
ηm

λm + ηm

)
=

M∏
m=1

(
MTTFm

MTTRm + MTTFm

)
(7.42)

in which MTTRm and MTTFm are, respectively, the mean time to repair and
mean time to failure of the mth component.

Example 7.7 As an example of a series system, consider a pumping station consisting
of two different pumps in series, both of which must operate to pump the required
quantity. The constant failure rates for the pumps are λ1 = 0.0003 failures/h and
λ2 = 0.0002 failures/h. For a 2000-h mission time, the system reliability, according to
Eq. (7.40a), is

ps,sys(t = 2000) = exp[−(0.0003 + 0.0002)(2000)] = 0.90484

and the MTTF of the system is

MTTF = 1
λ1 + λ2

= 1
0.0003 + 0.0002

= 2000 h

7.3.2 Parallel systems

For a parallel system, the entire system would perform satisfactorily if any one
or more of its components or modes of operation is functioning satisfactorily;
the entire system would fail only if all its components or modes of operation
fail.
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In the framework of load-resistance interference for different modes of oper-
ation, the failure probability of a parallel system, according to Eq. (7.9), is

pf ,sys = P
[

M∩
m=1

(Wm < 0)
]

= P
[

M∩
m=1

(Zm < −βm)
]

= �(−β | Rz) (7.43)

which can be computed as the multivariate normal probability discussed in
Sec. 2.7.2. The bounds for system failure probability also can be computed if the
exact value of pf ,sys is not required. In the case that all performance variables
W ’s are independent, the system failure probability reduces to

pf ,sys =
M∏

m=1

�(−βm) (7.44)

Alternatively, the reliability of a parallel system can be expressed as

ps,sys = P
[

M∪
m=1

(Wm > 0)
]

= P
[

M∪
m=1

(Zm > −βm)
]

(7.45)

The second-order bounds for this system reliability, according to Eq. (7.27), are

ps,sys


≤

M−1∑
m=1

�(βm) −
M∑

m=2
max
j <m

[L(−β j , −βm | ρjm)]

≥�(β1) +
M∑

m=2
max

{
0,

[
�(βm) −

m−1∑
j =1

L(−β j , −βm | ρjm)

]} (7.46)

in which L(−β j , −βm | ρjm) = P [Zj ≥ −β j , Zm ≥ −βm] = �(−β j , −βm | ρjm) +
�(β j ) + �(βm) − 1.

Example 7.8 Referring to Example 7.6, determine the system reliability by consid-
ering that the system would fail if all three modes of operation fail.

Solution Since the system is in parallel, the system failure probability can be calculated
as

pf ,sys = P (W1 < 0, W2 < 0, W3 < 0)

= P (Z1 < −2.68, Z2 < −3.46, Z3 < −2.68)

= 0.0001556

which is obtained in Example 7.6. Hence the reliability of the system is 0.9998444.

In the framework of time-to-failure analysis, the unreliability of a parallel
system involving M independent components can be computed as

pf ,sys(t) =
M∏

m=1

pf ,m(t) (7.47)
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in which pf ,m(t) = P (T m ≤ t), the unreliability of the mth component within
the specified time interval (0, t]. Hence the system reliability in time interval
(0, t] is

ps,sys(t) = 1 − pf ,sys(t) = 1 −
M∏

m=1

pf ,m(t) (7.48)

The failure density function f sys(t) and failure rate hsys(t) for a parallel system
consisting of M independent components are

f sys(t) = d [pf ,sys(t)]
dt

=
M∑

m=1

 M∏
j �=m

pf , j (t)

 f m(t) (7.49)

and hsys(t) = f sys(t)
ps,sys(t)

=

M∑
m=1

[
M∏

j �=m
pf , j (t)

]
f m(t)

1 −
M∏

m=1
pf ,m(t)

(7.50)

For each component having an exponential failure density function with the
parameter λm, for m = 1, 2, . . . , M, the failure probability of a parallel system
can be computed as

pf ,sys(t) =
M∏

m=1

(1 − e−λmt) (7.51)

with the corresponding system reliability

ps,sys(t) = 1 −
M∏

m=1

(1 − e−λmt) (7.52)

The system failure density function f sys(t) is

f sys(t) =
M∑

m=1

 M∏
j �=m

(1 − e−λ j t)

 λm e−λmt (7.53)

In the case that all components have an identical failure rate, that is, λ1 =
λ2 = · · · = λM = λ, the MTTF of the system is

MTTF = 1
λ

M∑
m=1

1
m

(7.54)

The unavailability of a parallel system involving M independent compo-
nents is

Usys(t) =
M∏

m=1

Um(t) (7.55a)
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and the corresponding system availability is

Asys(t) = 1 −
M∏

m=1

Um(t) (7.55b)

Under the condition of independent exponential repair functions for the M
components, the unavailability of a parallel system is

Usys(t) =
M∏

m=1

λm

λm + ηm
(1 − e−(λm+ηm)t) (7.56)

and the stationary system unavailability is

Usys(∞) =
M∏

m=1

λm

λm + ηm
=

M∏
m=1

(
MTTRm

MTTRm + MTTFm

)
(7.57)

Example 7.9 As an example of a parallel system, consider a pumping station con-
sisting of two identical pumps operating in a redundant configuration so that either
pump could fail, and the peak discharge could still be delivered. Both pumps have a
failure rate of λ = 0.0005 failures/h, and both pumps start operating at t = 0. The
system reliability for a mission time of t = 1000 h, according to Eq. (7.52), is

ps,sys(t = 1000) = 1 − (1 − e−(0.0005)(1000))(1 − e−(0.0005)(1000)) = 0.8452

The MTTF, according to Eq. (7.53), is

MTTF = 1
λ

(
1
1

+ 1
2

)
= 1.5

λ
= 1.5

(
1

0.0005

)
= 3000 h

7.3.3 K-out-of-M parallel systems

This is a parallel system of M component for which the system would function
if K (K < M) or more components function. This type of system also is called
a partially redundant system. The general reliability formula for this system
is rather cumbersome. For components having an identical reliability function,
that is, ps,m(t) = ps(t), the system reliability and unreliability, when component
performances are independent, are

ps,sys(t) =
M∑

j =K

CM, j [ps(t)] j [1 − ps(t)]M− j (7.58a)

and pf ,sys(t) =
K−1∑
j =0

CM, j [ps(t)] j [1 − ps(t)]M− j (7.58b)

in which CM, j = M !/[ j !(M − j )!] is a binomial constant. Computationally,
whether to calculate ps,sys(t) or pf ,sys(t) is dictated by the number of terms
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involved in the summation. Furthermore, if the failure density function is an
exponential distribution, the system reliability can be expressed as

ps,sys(t) =
M∑

j =K

CM, j (e−λt) j (1 − e−λt)M− j (7.59)

The failure density function for the system f sys(t) based on the system reli-
ability in Eq. (7.58a) is

f sys(t) = −d [ps,sys(t)]
dt

=
M∑

j =K

CM, j [ps(t)] j [1 − ps(t)]M− j
[

j
ps(t)

− M − j
1 − ps(t)

]
f t(t) (7.60)

The availability and unavailability of the system can be obtained from sub-
stituting component availability for component reliability in Eqs. (7.58a) and
(7.58b), respectively.

Example 7.10 As an example of a K -out-of-M system, consider a pumping system
with three pumps, one of which is on standby, all with constant failure rates of λ =
0.0005 failures/h. The system reliability for t = 1000 h, M = 3, and K = 2 is

ps,sys(t = 1000) = C3,2
(
e−(0.0005)(1000))2(

1 − e−(0.0005)(1000))+ C3,3
(
e−(0.0005)(1000))3

= 3
(
e−(0.0005)(1000))2 − 2

(
e−(0.0005)(1000))3

= 1.1036 − 0.4463

= 0.6573

7.3.4 Standby redundant systems

A standby redundant system is a parallel system in which only one compo-
nent or subsystem is in operation (Fig. 7.7). It is a special case of K -out-of-M
system with K = 1. If the operating component fails, then another component
is operated. This type of system is different than the parallel system described
in Sec. 7.3.2, where all components are concurrently operating because standby

1

2

M

Figure 7.7 Standby redundant
systems.
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units do not operate. The system reliability for a system with M components
out of which M − 1 units are on standby is the probability that at most M − 1
components fail. This probability can be expressed by

ps,sys(t) =
M−1∑
m=0

(λt)me−λt

m!
(7.61)

Note that this equation is valid under the following assumptions: The switching
arrangement is perfect, the units are identical, the component failure rates are
constant, the standby units are as good as new, and the unit failures are sta-
tistically independent. The mean time to failure of the system can be obtained,
according to Eq. (5.18), as

MTTF =
∫ ∞

0
ps,sys(t) dt =

∫ ∞

0

M−1∑
m=0

(λt)me−λt

m!
dt = M

λ
(7.62)

Equation (7.62) is intuitively obvious in that the system’s operation is the result
of a relay of a series of components. As one component fails, the second one comes
to operation until failure occurs. Therefore, the system MTTF is the sum of the
MTTFs of individual components.

Example 7.11 As an example of a standby redundant system, assume an exponential
failure distribution for two identical pumps, one operating and the second on standby,
with identical failure rates of λ = 0.0005 failures/h. The standby unit is as good as
new at time t = 0. The system reliability for t = 1000 h is

ps,sys(t = 1000) = [1 + (0.0005)(1000)]e−(0.0005)(1000) = 0.9098

7.4 Methods for Computing Reliability
of Complex Systems

Evaluation of the reliability of simple systems, as described in the preceding
section, is generally straightforward. However, many practical hydrosystems
engineering infrastructures, such as water distribution systems, have neither
series nor parallel configuration. Evaluation of the reliability for such com-
plex systems generally is difficult. For some systems, with their components
arranged in a complex configuration, it is possible to combine components into
groups in such a manner that it appears as in series or in parallel. For other
systems, special techniques have to be developed that require a certain degree
of insight and ingenuity from engineers. A great deal of work has been done on
developing techniques for evaluating the reliability of complex systems. This
section describes some of the potentially useful techniques for hydrosystems
reliability evaluation.

7.4.1 State enumeration method

The state enumeration method lists all possible mutually exclusive states of
the system components that define the state of the entire system. In general,
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for a system containing M components, each of which can be classified into K
operating states, there will be K M possible states for the entire system. For
example, if the state of each of the M components is classified into failed and
operating states, the system has 2M possible states.

Once all the possible system states are enumerated, the states that result in
successful system operation are identified, and the probability of the occurrence
of each successful state is computed. The last step is to sum all the successful
state probabilities, which yields the system reliability. This method becomes
less and less computationally attractive, as one can imagine, when the number
of system components and/or the number of states for each component gets
larger.

The tree diagram, such as that in Fig. 7.8, is called an event tree, and the
analysis involving the construction of an event tree is referred to as event-
tree analysis. As can be seen, an event tree simulates not only the topology of

Figure 7.8 An example event tree for land flooding relating to levee
performance.
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a system but, more important, the sequential or chronologic operation of the
system.

Example 7.12 Consider a simple water distribution network consisting of five pipes
and one loop, as shown in Fig. 7.9. Node 1 is the source node, and nodes 3, 4, and 5 are
demand nodes. The components of this network subject to possible failure are the five
pipe sections. Within a given time period, each pipe section has an identical failure
probability of 5 percent due to breakage or other causes that require it to be removed
from service. The system reliability is defined as the probability that water can reach
all three demand nodes from the source. Furthermore, it is assumed that the states
of serviceability of each pipe are independent.

Solution Using the state enumeration method for system reliability evaluation, the
associated event tree can be constructed to depict all possible combinations of com-
ponent states in the system, as shown in Fig. 7.10. Since each pipe has two possible
states, that is, failure F or nonfailure F ′, the tree, if fully expanded, would have
25 = 32 branches. However, knowing the role that each pipe component plays in the
network connectivity, exhaustive enumeration of all possible states is not necessary.

For example, referring to Fig. 7.10, one realizes that when pipe 1 fails, all demand
nodes cannot receive water, indicating a system failure, regardless of the state of the
remaining pipe sections. Therefore, branches in the event tree beyond this point do
not have to be constructed. Applying some judgment in event-tree construction in this
fashion generally can lead to a smaller tree. However, for a complex system, this may
not be a trivial task.

The system reliability can be obtained by summing up the probabilities associ-
ated with all of the nonfailure branches. In this example, there are five branches, as

3 2

1

45

12

34

5

1

Nodal Number

Pipe Number

1

Figure 7.9 Pipe network configuration for Example 7.12.
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Figure 7.10 Tree diagram showing failure cases for the example pipe
network.

indicated by the heavy lines in the tree, for which all users can have the water deliv-
ered by the system. Therefore, the system reliability is

ps,sys = P

(
5∪

m=1
B[m]

)
=

5∑
m=1

P (B[m])

where P (B[m]) is the probability that the branch B[m] of the event tree provides
full service to all users. The probability associated with each branch resulting in
satisfactory delivery of water to all users can be calculated as the following:

P (B[1]) = P (F ′
1)P (F ′

2)P (F ′
3)P (F ′

4)P (F ′
5)

= (0.95)(0.95)(0.95)(0.95)(0.95) = 0.77378

P (B[2]) = P (F ′
1)P (F ′

2)P (F ′
3)P (F ′

4)P (F5)

= (0.95)(0.95)(0.95)(0.95)(0.05) = 0.04073

P (B[3]) = P (F ′
1)P (F ′

2)P (F ′
3)P (F4)P (F ′

5)

= (0.95)(0.95)(0.95)(0.05)(0.95) = 0.04073
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P (B[4]) = P (F ′
1)P (F ′

2)P (F3)P (F ′
4)P (F ′

5)

= (0.95)(0.95)(0.05)(0.95)(0.95) = 0.04073

P (B[5]) = P (F ′
1)P (F2)P (F ′

3)P (F ′
4)P (F ′

5)

= (0.95)(0.05)(0.95)(0.95)(0.95) = 0.04073

Therefore, the system reliability is the sum of the preceding five probabilities associ-
ated with the operating state of the system, which is

ps,sys = 0.77378 + 4(0.04073) = 0.93668

7.4.2 Path enumeration method

This is a very powerful method for system reliability evaluation. A path is
defined as a set of components or modes of operation that leads to a certain
outcome of the system. In system reliability analysis, the system outcomes of
interest are those of failed state or operational state. A minimum path is one
in which no component is traversed more than once in going along the path.
Under this methodologic category, tie-set analysis and cut-set analysis are two
well-known techniques.

Cut-set analysis. The cut set is defined as a set of system components or modes
of operation that, when failed, cause the failure of the system. Cut-set analysis
is powerful for evaluating system reliability for two reasons: (1) It can be pro-
grammed easily on digital computers for fast and efficient solutions of any
general system configuration, especially in the form of a network, and (2) the
cut sets are directly related to the modes of system failure and therefore iden-
tify the distinct and discrete ways in which a system may fail. For example,
in a water distribution system, a cut set will be the set of system components
including pipe sections, pumps, storage facilities, etc. that, when failed jointly,
would disrupt the service to certain users.

The cut-set method uses the minimum cut sets for calculating the system
failure probability. The minimum cut set is a set of system components that,
when all failed, causes failure of the system but when any one component of the
set does not fail does not cause system failure. A minimum cut set implies that
all components of the cut set must be in the failure state to cause system failure.
Therefore, the components or modes of operation involved in the minimum cut
set are effectively connected in parallel, and each minimum cut set is connected
in series. Consequently, the failure probability of a system can be expressed as

pf ,sys = P
(

I∪
m=1

Cm

)
= P

[
I∪

m=1

(
Jm∩
j =1

Fmj

)]
(7.63)

in which Cm is the mth of the total I minimum cut sets, Jm is the total number
of components or modes of operation in the mth minimum cut set, and Fmj
represents the failure event associated with the j th components or mode of
operation in the mth minimum cut set. In the case that the number of minimum
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cut sets I is large, computing the bounds for probability of a union described in
Sec. 7.2.3 can be applied. The bounds on the failure probability of the system
should be examined for their closeness to ensure that adequate accuracy is
obtained.

Example 7.13 Refer to the simple water distribution network shown in Fig. 7.9 in
Example 7.12. Evaluate the system reliability using the minimum cut-set method.

Solution Based on the system reliability as defined, the minimum cut sets for the
example pipe network are

C1 : F1 C2 : F2 ∩ F3 C3 : F2 ∩ F4 C4 : F3 ∩ F5

C5 : F4 ∩ F5 C6 : F2 ∩ F5 C7 : F3 ∩ F4

where Cm is the mth cut set, and Fk is the failure state of pipe link k. The seven
cut sets for the example network listed above are shown in Fig. 7.11. The system
unreliability pf ,sys is the probability of occurrence of the union of the cut set, that is,

pf ,sys = P

(
7∪

m=1
Cm

)
The system reliability can be obtained by subtracting pf ,sys from 1. However, the
computation, in general, will be very cumbersome for finding the probability of the
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Nodal number

Pipe number

1

Cm = The mth cut set

C4C5

C7

C1

C2

C6

C3

Figure 7.11 Example pipe network with cut sets for
Example 7.13.
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union of large numbers of events, even if they are independent. In this circumstance,
it is computationally easier to compute the system reliability as

ps,sys = 1 − P

(
7∪

m=1
Cm

)
= P

(
7∩

m=1
C ′

m

)
Since all the cut sets behave independently, all their complements also behave in-
dependently. The probability of the intersection of a number of independent events,
according to Eq. (2.5), is

ps,sys = P

(
7∩

m=1
C ′

m

)
=

7∏
m=1

P (C ′
m)

where P (C ′
1) = 0.95 P (C ′

2) = P (C ′
3) = · · · = P (C ′

7) = 0.9975

Hence the system reliability of the example water distribution network is

ps,sys = (0.95)(0.9975)6 = 0.9360

Tie-set analysis. As the complement of a cut set, a tie set is a minimal path of
the system in which system components or modes of operation are arranged in
series. Consequently, a tie set fails if any of its components or modes of operation
fail. All tie sets are effectively connected in parallel; that is, the system will be
in the operating state if any of its tie sets are functioning. Therefore, the system
reliability can be expressed as

ps,sys = P
(

I∪
m=1

T m

)
= P

[
I∪

m=1

(
Jm∩
j =1

F ′
mj

)]
(7.64)

in which T m is the mth tie set of all I tie sets, Jm is the total number of compo-
nents or modes of operation in the mth tie set, and F ′

mj represents the nonfailure
state of the j th component in the mth tie set. Again, when the number of tie
sets is large, computation of exact system reliability by Eq. (7.64) could be cum-
bersome. In such a condition, bounds for system reliability could be computed.

The main disadvantage of the tie-set method is that failure modes are not
directly identified. Direct identification of failure modes is sometimes essential
if a limited amount of a resource is available to focus on a few dominant failure
modes.

Example 7.14 Refer to the simple water distribution network as shown in Fig. 7.9.
Use tie-set analysis to evaluate the system reliability.

Solution The minimum tie sets (or path), based on the definition of system reliability
given previously, for the example network are

T 1 : F ′
1 ∩ F ′

2 ∩ F ′
4 ∩ F ′

5

T 2 : F ′
1 ∩ F ′

3 ∩ F ′
4 ∩ F ′

5

T 3 : F ′
1 ∩ F ′

2 ∩ F ′
3 ∩ F ′

4

T 4 : F ′
1 ∩ F ′

2 ∩ F ′
3 ∩ F ′

5
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where T m is the mth minimum tie set, and F ′
j is the nonfailure of the j th pipe link in

the network. The four minimum tie sets are shown in Fig. 7.12. The system reliability,
based on Eq. (7.64), is

ps,sys = P (T 1 ∪ T 2 ∪ T 3 ∪ T 4)

= [P (T 1) + P (T 2) + P (T 3) + P (T 4)] − [P (T 1, T 2) + P (T 1, T 3)

+ P (T 1, T 4) + P (T 2, T 3) + P (T 2, T 4) + P (T 3, T 4)]

+ [P (T 1, T 2, T 3) + P (T 1, T 2, T 4) + P (T 1, T 3, T 4) + P (T 2, T 3, T 4)]

− P (T 1, T 2, T 3, T 4)

Since all pipes in the network behave independently, all minimum tie sets behave
independently. In such circumstances, the probability of the joint occurrence of multi-
ple independent events is simply equal to the multiplication of the probability of the
individual events. That is,

P (T 1) = P (F ′
1)P (F ′

2)P (F ′
4)P (F ′

5) = (0.95)4 = 0.81451

12
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Tm  = The mth tie set

F′j  = Nonfailure state of pipe section j

T1 = F ′1 ∩ F ′2 ∩ F ′4 ∩ F ′5 T2 = F ′1 ∩ F ′3 ∩ F ′4 ∩ F ′5

T3 = F ′1 ∩ F ′2 ∩ F ′3 ∩ F ′4 T4 = F ′1 ∩ F ′2 ∩ F ′3 ∩ F ′5

Figure 7.12 Example pipe network with tie sets for Example 7.14.
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Similarly,

P (T 2) = P (T 3) = P (T 4) = 0.81451

Note that in this example the unions of more than two minimum tie sets are the
intersections of the nonfailure state of all five pipe sections. For example, T 1 ∪ T 2 =
(F ′

1 ∩ F ′
2 ∩ F ′

4 ∩ F ′
5) ∪ (F ′

1 ∩ F ′
3 ∩ F ′

4 ∩ F ′
5) = (F ′

1 ∩ F ′
2 ∩ F ′

3 ∩ F ′
4 ∩ F ′

5). The system
reliability can be reduced to

ps,sys = [P (T 1) + P (T 2) + P (T 3) + P (T 4)] − 3P (F ′
1 ∩ F ′

2 ∩ F ′
3 ∩ F ′

4)

= 4(0.81451) − 3(0.95)5

= 0.9367

In summary, the path enumeration method involves the following steps
(Henley and Gandhi, 1975):

1. Find all minimum paths. In general, this has to be done with the aid of a com-
puter when the number of components is large and the system configuration
is complex.

2. Find all required unions of the paths.

3. Give each path union a reliability expression in terms of module reliability.

4. Compute the system reliability in terms of module reliabilities.

7.4.3 Conditional probability approach

This approach starts with a selection of key components and modes of opera-
tion whose states (operational or failure) would decompose the entire system
into simple series and/or parallel subsystems for which the reliability or failure
probability can be evaluated easily. Then the reliability of the entire system is
obtained by combining those of the subsystems using the conditional probability
rule as

ps,sys = ps | F ′
m

× ps,m + ps | Fm × pf ,m (7.65)

in which ps | F ′
m

and ps | Fm are the conditional system reliabilities given that the
mth component is operational F ′

m and failed Fm, respectively, and ps,m and pf ,m
are the reliability and failure probabilities of the mth component, respectively.

Except for very simple and small systems, a nested conditional probability
operation is inevitable. Efficient evaluation of system reliability of a complex
system hinges entirely on a proper selection of key components, which generally
is a difficult task when the scale of the system is large. Furthermore, the method
cannot be adapted easily to computerization for problem solving.

Example 7.15 Find the system reliability of the water distribution network in Fig. 7.9
using the conditional probability approach.

Solution Using the conditional probability approach for system reliability evaluation,
first select pipe section 1 as the key element that decomposes the system into a simpler
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configuration, as shown in Fig. 7.13. After the entire system is decomposed into a
simple system configuration, the conditional probability of the decomposed systems
can be evaluated easily. For example, the conditional system reliability, after imposing
F ′

1 and F3 for pipes 1 and 3, respectively, can be expressed as

ps,sys | F ′
1,F3

= P (F ′
2 ∩ F ′

4 ∩ F ′
5) = (0.95)3 = 0.8574

where ps | F ′
1,F3

is conditional system reliability. Conditional system reliabilities for
other imposed conditions are shown in Fig. 7.13. After the conditional system re-
liabilities for the decomposed systems are calculated, the reliability of the entire

Original system

Pipe 1 fails

All demand nodes
cannot be serviced

Pipe 1 works

Pipe 3 failsPipe 3 works

Pipe 2 failsPipe 2 works
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Figure 7.13 Example pipe network configurations under conditionings.
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system can be combined using Eq. (7.65). For this particular example, the system
reliability is

ps,sys = ps | F ′
1,F3

× P (F ′
1, F3) + ps | F ′

1,F ′
3,F ′

2
× P (F ′

1, F ′
3, F ′

2)

+ ps | F ′
1,F ′

3,F2
× P (F ′

1, F ′
3, F2)

= (0.8574)(0.95)(0.05) + (0.9975)(0.95)3 + (0.9025)(0.95)2(0.05)

= 0.9367

7.4.4 Fault-tree analysis

Conceptually, fault-tree analysis, unlike event-tree analysis, is a backward anal-
ysis that begins with a system failure and traces backward, searching for pos-
sible causes of the failure. Fault-tree analysis was initiated at Bell Telephone
Laboratories and Boeing Aircraft Company (Barlow et al., 1975). Since then,
it has been used for evaluating the reliability of many different engineering
systems. In hydrosystems engineering designs, fault-tree analysis has been ap-
plied to evaluate the risk and reliability of earth dams, as shown in Fig. 7.14
(Cheng, 1982), underground water control systems (Bogardi et al., 1987), and
water-retaining structures including dikes and sluice gates (Vrijling, 1987,
1993). Figure 7.15 shows a fault tree for the failure of a culvert as another
example.

A fault tree is a logical diagram representing the consequence of the compo-
nent failures (basic or primary failures) on the system failure (top failure or

Figure 7.14 Simple fault tree for failure of existing dams. (After Cheng, 1982.)
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Figure 7.15 A fault tree showing the event of culvert failure.

top event). A simple fault tree is given in the Fig. 7.16a as an example. Two
major types of combination nodes (or gates) are used in a fault tree. The AND
node implies that the output event occurs only if all the input events occur
simultaneously, corresponding to the intersection operation in probability the-
ory. The OR node indicates that the output event occurs if any one or more of
the input events occur, i.e., a union. The two and three other frequently used
event notations are shown in Fig. 7.17. Boolean algebra operations are used in
fault-tree analysis. Thus, for the fault tree shown in Fig. 7.16,

B1 = C1 ∩ C2 B2 = C3 ∪ C4 ∪ C1

Hence the top event is related to the component events as

T = B1 ∪ B2 = (C1 ∩ C2) ∪ (C3 ∪ C4 ∪ C1) = C1 ∪ C3 ∪ C4

Thus the probability of the top event occurring can be expressed as

P (T ) = P (C1 ∪ C3 ∪ C4)

If C1, C3, and C4 are mutually exclusive, then

P (T ) = P (C1) + P (C3) + P (C4)

Hence Fig. 7.16a can be reduced to an equivalent but simpler fault tree as
Fig. 7.16b. System reliability ps,sys(t) is the probability that the top event does
not occur over the time interval (0, t].

Dhillon and Singh (1981) pointed out the advantages and disadvantages of
the fault-tree analysis technique. Advantages include

1. It provides insight into the system behavior.

2. It requires engineers to understand the system thoroughly and deal specifi-
cally with one particular failure at a time.
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C1 C3 C4

T

OR

(a)

(b)

Figure 7.16 An example fault tree: (a) original fault tree before simplifi-
cation; (b) reduced fault tree.

3. It helps to ferret out failures deductively.

4. It provides a visible and instructive tool to designers, users, and management
to justify design changes and tradeoff studies.

5. It provides options to perform quantitative or qualitative reliability analysis.

6. The technique can handle complex systems.

7. Commercial codes are available to perform the analysis.

Disadvantages include

1. It can be costly and time-consuming.

2. Results can be difficult to check.
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Figure 7.17 Some basic node symbols used in fault-tree analysis.
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3. The technique normally considers that the system components are in either
working or failed state; therefore, the partial failure stats of components are
difficult to handle.

4. Analytical solutions for fault trees containing standbys and repairable com-
ponents are difficult to obtain for the general case.

5. To include all types of common failure causes requires considerable effort.

Fault-tree construction. Before constructing a fault tree, engineers must thor-
oughly understand the system and its intended use. One must determine the
higher-order functional events and continue the fault event analysis to deter-
mine their logical relationships with lower level events. Once this is accom-
plished, the fault-tree can be constructed. A brief description of fault-tree
construction is given in the following paragraphs. The basic concepts of fault-
ree analysis are presented in Henley and Kumamoto (1981) and Dhillon and
Singh (1981).

The major objective of fault-tree construction is to represent the system con-
dition that may cause system failure in a symbolic manner. In other words, the
fault tree consists of sequences of events that lead to system failure. There are
actually two types of building blocks: gate symbols and event symbols.

Gate symbols connect events according to their causal relation such that they
may have one or more input events but only one output event. Figure 7.17 shows
the two commonly used gate symbols and three types of commonly used event
symbols. A fault event, denoted by a rectangular box, results from a combina-
tion of more basic faults acting through logic gates. A circle denotes a basic
component failure that represents the limit of resolution of a fault tree. A dia-
mond represents a fault event whose causes have not been fully developed. For
more complete descriptions on other types of gate and event symbols, readers
are referred to Henley and Kumamoto (1981).

Henley and Kumamoto (1981) presented heuristic guidelines for constructing
fault trees, and these are summarized in Table 7.1 and Fig. 7.18 and are listed
below:

1. Replace abstract events by less abstract events.

2. Classify an event into more elementary events.

3. Identify distinct causes for an event.

4. Couple trigger events with “no-protection actions.”

5. Find cooperative causes for an event.

6. Pinpoint component failure events.

7. Develop component failure using Fig. 7.18.

Figure 7.19 shows a fault tree for the example pipe network of Fig. 7.9.



TABLE 7.1 Heuristic Guidelines for Gault-Tree Construction
Development policy

Equivalent but
less abstract
event F

Event E

E

E

E

E

E

F (Case 1) G (Case 2)

Cause GCause F

Trigger event

Cooperative
cause F

Cooperative
cause G

Event F

No protective
event

Failure
event for

component

No protective
event

Less
abstract
event F

1

Classification
of event E

2

Distinct causes
for event E

3

Trigger versus
no protective
event

4

Cooperative cause5

Pinpoint a
component
failure event

6

Corresponding part of fault tree

Source: Henley and Kumomoto (1981).
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Component failure
(state-of-component

event)

Command
fault

Secondary
failure

Primary
failure

Figure 7.18 Development of component failure. (Henley and
Kumomoto, 1981.)

Evaluation of fault trees. The basic steps used to evaluate fault trees include
(1) construction of the fault tree, (2) determination of the minimal cut sets,
(3) development of primary event information, (4) development of cut-set infor-
mation, and (5) development of top event information.

To evaluate the fault tree, one always should start from the minimal cut sets
that in essence, are critical paths. Basically, the fault-tree evaluation consists
of two distinct processes: (1) determination of the logical combination of events

Figure 7.19 Fault tree for reliability analysis of example pipe network in Fig. 7.9.
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that cause top event failure expressed in the minimal cut sets and (2) numerical
evaluation of the expression.

Cut sets, as discussed previously, are collections of basic events such that if
all these basic events occur, then the top event is guaranteed to occur. The tie
set is a dual concept to the cut set in that it is a collection of basic events of
which if none of the events in the tie set occur, then the top event is guaranteed
not to occur. As one could imagine, a large system has an enormous number of
failure modes. A minimal cut set is one that if any basic event is removed from
the set, the remaining events collectively are no longer a cut set. By the use of
minimum cut sets, the number of cut sets and basic events are reduced in order
to simplify the analysis.

The system availability Asys(t) is the probability that the top event does not
occur at time t, which is the probability of the systems operating successfully
when the top event is an OR combination of all system hazards. System unavail-
ability Usys(t), on the other hand, is the probability that the top event occurs
at time t, which is either the probability of system failure or the probability of
a particular system hazard at time t.

System reliability ps,sys(t) is the probability that the top event does not occur
over time interval (0, t). System reliability requires continuation of the nonoc-
currence of the top event, and its value is less than or equal to the availability.
On other hand, the system unreliability, pf ,sys(t) is the probability that the top
event occurs before time t and is complementary to the system reliability. Also,
system unreliability, in general, is greater than or equal to system unavail-
ability. From the system unreliability, the system failure density f sys(t) can be
obtained according to Eq. (5.2).

7.5 Summary and Conclusions

Hwang et al. (1981) presented a review of literature related to system reliability
evaluation techniques for small to large complex systems. A large system was
defined as one that has more than 10 components and a moderate system as one
which has more than 6 components and less than 10. Complex systems were
defined as ones that could not be reduced to a series-parallel system. Hwang
et al. concluded that for a large, complex system, computer programs should be
used that provide the minimum cut sets and calculate the minimal cut approx-
imation to system reliability. Minimal paths can be generated from minimum
cuts. Based on minimum cut sets, reliability approximations then can be ob-
tained for large, complex networks. Hwang et al. also noted that Monte Carlo
methods for system reliability evaluation can be used when component relia-
bilities are sampled by the Monte Carlo method. They also identified several
miscellaneous approaches for evaluating complex systems, including a moment
method, a block-diagram method, Bayesian decomposition, and decomposition
by Boolean expression.

Hwang et al. (1981) concluded that of all the evaluation techniques in the
papers surveyed, only a few had limited success in solving some large, complex
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system reliability problems, and few techniques have been completely effective
when applied to large system reliability problems. They suggested that a gen-
erally efficient graph partitioning technique for reliability evaluation of large,
highly interconnected networks should be developed.

Since the 1981 paper by Hwang et al., several other system reliability eval-
uation techniques have been reported in the literature. Aggarwal et al. (1982)
presented a method that uses decomposition of a probabilistic graph using cut
sets. The method is applied to a simplified network with five nodes and seven
links, and only limited computational results are presented.

Appendix 7A: Derivation of Bounds for Bivariate
Normal Probability

Consider two performance functions W j (Z ′) = 0 and Wm(Z ′) = 0 in a two-
dimensional standardized, uncorrelated normal space whose design points are
z ′

j ∗ and z ′
m∗, respectively. At each of the design points, the first-order failure

hyperplanes can be expressed as

W j (Z ′) = 0 ≈
2∑

k=1

(
∂W j

∂ Z′
k

)
(Z′

k − z′
k, j ∗) = a0j + a1j Z′

1 + a2j Z′
2 (7A.1)

Wm(Z ′) = 0 ≈
2∑

k=1

(
∂Wm

∂ Z′
k

)
(Z′

k − z′
k,m∗) = a0m + a1m Z′

1 + a2m Z′
2 (7A.2)

in which zk,m∗ is the coordinate of the kth stochastic basic variable at the design
point z′

m∗ of the mth performance function, and

a0m = −
2∑

k=1

(
∂Wm

∂ Z′
k

)
z ′

m∗

z′
k,m∗ akm =

2∑
k=1

(
∂Wm

∂ Z′
k

)
z ′

m∗

for k = 1, 2

The covariance between the two performance functions can be obtained as

Cov[W j (Z ′), Wm(Z ′)] = E{[(a0 j + a1j Z′
1 + a2j Z′

2) − a0 j ]

×[(a0m + a1m Z′
1 + a2m Z′

2) − a0m]}
= E[(a1j Z′

1 + a2j Z′
2)(a1m Z′

1 + a2m Z′
2)]

= a1ja1m + a2ja2m (7A.3)

Hence the correlation coefficient between the two performance functions at the
design points is

ρjm = a1ja1m + a2ja2m√
a2

1j + a2
2j

√
a2

1m + a2
2m

(7A.4)



400 Chapter Seven

This can be generalized to multidimensional problems involving M stochastic
basic variables as

ρjm =

K∑
k=1

akjakm√
K∑

k=1
a2

kj

√
K∑

k=1
a2

km

(7A.5)

Note that the preceding correlation coefficient between the two performance
functions ρjm is exactly equal to the inner product of the corresponding direc-
tional derivative vectors

ρjm =
 a1j√

a2
1j + a2

2j

,
a2j√

a2
1j + a2

2j

t  a1m√
a2

1m + a2
2m

,
a2m√

a2
1m + a2

2m


= (−αj∗)t(−αm∗) = (αj∗)t(αm∗) (7A.6)

= |αt
j∗||αm∗| cos θ

= cos θ

in which θ is the angle between the directional derivatives of the two perfor-
mance functions. Hence, if the two performance functions are positively cor-
related, the angle θ between αm∗ and α j ∗ lies in the range 0◦ ≤ θ ≤ 90◦. On
the other hand, negative correlation between W j (Z ) and Wm(Z ) corresponds
to the range 90◦ < θ ≤ 180◦. Plots for positively and negatively correlated
performance functions are show in Figs. 7A.1 and 7A.2, respectively.

When W j (Z ) and Wm(Z ) are positively correlated, that is, ρjm > 0, referring
to Fig. 7A.1, the shaded area representing the joint failure of the two perfor-
mance functions satisfies the following relationships:

(F j , Fm) ⊃ A and (F j , Fm) ⊃ B

in which (F j , Fm) represents the joint failure events of the two performance
functions, and sets A and B are defined in Fig. 7A.1.

Again, referring to Fig. 7A.1, the following relationship holds:

Max[P (A), P (B )] ≤ P (F j , Fm) ≤ P ( A) + P (B ) (7A.7)

By orthogonality, one has

P (A) = �(−βm)�(β j | m) (7A.8)

P (B ) = �(β j )�(βm | j ) (7A.9)

where β j | m = β j − ρjmβm√
1 − ρ2

jm

βm | j = βm − ρmjβ j√
1 − ρ2

mj

(7A.10)

which are defined in Fig. 7A.1.



Figure 7A.1 Two intersecting tangent planes with positively correlated failure events. (Ang and Tang,
1984.)

Figure 7A.2 Two intersecting tangent planes with negatively correlated fail-
ure events. (Ang and Tang, 1984.)
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Referring to Fig. 7A.2 for negatively correlated W j (Z ) and Wm(Z ), it can be
observed that

(F j , Fm) ⊂ A and (F j , Fm) ⊂ B

resulting in

0 ≤ P (F j , Fm) ≤ min[P ( A), P (B )] (7A.11)

with P (A) and P (B ) given in Eqs.(7A.8) and (7A.9), respectively.

Problems

7.1 Derive the expression of system reliability for the system configurations shown
in Fig. 7P.1 under the condition of (a) all units are dependent and different and
(b) all units are independent and identical.

1 2

3

1

2

3

1 2

3 4

(a)

(b)

(c)

(d)

(e)

(f) 

1

2

3

4

3

4

2

1

3 4
1

1

Figure 7P.1 Configuration of var-
ious systems for Problem 7.1.
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7.2 Consider that two independent, identical units are to be added to an existing unit
that would result in three units in the whole system.
(a) Sketch all possible system configurations according to the arrangement of

the three units.
(b) Rank your system configurations according to the system reliability.

7.3 Consider the two system configurations shown in Fig. 7P.2. Use the cut-set method
to determine the system reliability. Assume that all system components are iden-
tical and behave independently of each other.

7.4 Consider a hypothetical water distribution network consisting of two loops, as
shown in Fig. 7P.3. Let’s say that the service failure of the system is when at
least one demand node cannot receive water. (a) Construct a tree diagram indi-
cating failure cases for the water distribution network. (b) Determine the system
reliability if all pipe sections behave independently, and each has a breakage
probability of 0.03.

7.5 Resolve Problem 7.4 by cut-set analysis.

7.6 Resolve Problem 7.4 by tie-set analysis

7.7 Resolve Problem 7.4 by the conditional probability approach.

7.8 A detention basin is designed to accommodate excessive surface runoff temporar-
ily during storm events. The detention basin should not overflow, if possible, to
prevent potential pollution of the stream or other receiving water bodies. For
simplicity, the amount of daily rainfall is categorized as heavy, moderate, and
light (including none). With the present storage capacity, the detention basin is
capable of accommodating runoff generated by two consecutive days of heavy
rainfall or three consecutive days of at least moderate rainfall. The daily rainfall
amounts around the detention basin site are not entirely independent. In other

(a)

(b)

1

2

4

3 5

1 2

5 6

3 4

Figure 7P.2 System configurations for Problem 7.3.
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Figure 7.3 Hypothetical water distribution network.

words, the amount of daily rainfall on a given day would affect the daily rainfall
amount on the next day. Let random variable Xt represent the amount of rain-
fall on any day t. The transition probability matrix, indicating the conditional
probability of rainfall amount in a given day t conditioned on the rainfall amount
of the previous day t − 1, is shown in the following table (after Mays and Tung
1992).

Xt+1

Heavy (H) Moderate (M) Light (L)

Xt Heavy (H) 0.3 0.5 0.2
Moderate (M) 0.3 0.4 0.3
Light (L) 0.1 0.3 0.6

Construct a tree diagram to determine, for a given day on which the amount of
rainfall is light, the probability that the detention basin will overflow in the next
three days.
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Chapter

8
Integration of Reliability in

Optimal Hydrosystems Design

8.1 Introduction

All hydrosystems engineering problems involve many interconnected and in-
terrelated components. The analysis of any hydrosystem problem should take
those interactions into account so that the overall behavior of the system is
modeled properly. In general, problems in hydrosystems engineering can be
classified into (1) development problems, (2) design problems, and (3) opera-
tional problems (Buras, 1972). In fact, practically all hydrosystems engineering
problems encompass these problem types, which involve activities relating to
determination of (1) the optimal scale of development of the project, (2) the op-
timal dimensions of the various components of the system, and (3) the optimal
operation of the system.

Frequently, design and analysis of hydrosystems involve the use of models.
The primary objectives of modeling exercises are (1) to analyze the behavior
of existing systems so as to improve their performance and (2) to identify the
“best” structural components and configurations of a system under planning.
As discussed in Chap. 1, owing to the existence of various uncertainties in
hydrosystems modeling, one cannot be certain that the best solution obtained
is indeed truly optimal. The conventional approach when facing uncertainties in
engineering design is to conduct sensitivity analysis, by which the influences of
variation in model parameters subject to uncertainty on the system responses
are assessed quantitatively. Simple sensitivity analyses often are ineffective
in providing design, management, or operational guidance because when the
various system parameters are changed systematically in sensitivity analysis,
no consideration is given to whether the changed values are likely or realistic.
It is therefore the objective of this chapter to present some practical approaches
that integrate the uncertainties and reliability in an optimization framework
for hydrosystems design, management, and operation.

407

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



408 Chapter Eight

This chapter starts with a brief description of the concepts of some frequently
used optimization techniques in hydrosystems engineering design, manage-
ment, and operation. More detailed descriptions of the various optimization
techniques are given by Mays and Tung (1992), along with several specialized
textbooks on the different subject matters. In Sec. 8.2, focus is placed on some
typical problems in the context of resource allocation to optimize system reli-
ability. Then the concept of risk-based design is described in Sec. 8.3, followed
by an example application to hydrosystems engineering in Sec. 8.4. The last
two sections, Secs. 8.5 and 8.6, describe a simple way to solve an optimization
model in which the parameters are subject to uncertainty.

8.1.1 General framework of optimization models

Optimization models possess algorithms to compare the measures of effective-
ness of a system and attempt to yield the optimal solution having the most de-
sirable value of the adopted measures. In other words, an optimization model
applies an optimum-seeking algorithm, which enables the search of all alterna-
tive solutions to select the best one. The general class of such optimum-seeking
algorithms is called mathematical programming, which includes linear pro-
gramming, nonlinear programming, dynamic programming, etc.

The main advantage of optimization models is that the optimal solution to a
multidimensional (or multivariate) problem can be found readily by using an
efficient search algorithm. The limitation, generally dictated by the solution
technique available for model solving, is that sometimes drastic simplifications
of real-life systems are inevitable in order to make the model mathematically
tractable. Consequently, it is important to recognize that the optimal solution
so derived is for a rather restricted case; that is, the solution is optimal to the
simplified problem, and it is the optimal solution to the real-life problem of
interest only to the extent that the simplifications are not damaging.

All optimization models consist of three basic elements: (1) decision variables
and parameters, (2) constraints, and (3) objective functions. Decision variables
are those unknown variables which are to be determined from the solution of
the model, whereas parameters describe the characteristics of the system. De-
cision variables generally are controllable, whereas model parameters may or
may not be controllable in real-life problems. Constraints describe the physical,
economical, legal, and other limitations of the system expressed in mathemat-
ical form. The constraints must be included in the model, if they exist, to limit
the decision variables to their feasible values. Objective functions are measures
of the effectiveness of system performance and are also expressed as mathemat-
ical functions of decision variables. In a mathematical programming model, the
value of the objective function is to be optimized.

The general form of an optimization model can be expressed as
Optimize xo = f (x1, x2, . . . , xn) (8.1a)

Subject to
gi(x1, x2, . . . , xn) = 0 i = 1, 2, . . . , m (8.1b)

aj ≤ xj ≤ bj j = 1, 2, . . . , n (8.1c)
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where f (·) and g(·) are, respectively, the general expressions for the objective
function and constraint equations, which can be linear or nonlinear. The con-
straint set by Eq. (8.1c) is called the bounding constraint, indicating that the
decision variables xj ’s are bounded by their respective lower bound aj and upper
bound bj . The most commonly seen bounding constraint type is the nonnega-
tivity constraint, with the lower bound being 0 and upper bound being infinity.

In the preceding formulation, the decision variables xj ’s in the problem gen-
erally are controllable inputs. The solution to the problem consists a set of de-
cision variables in the system, each of which has a particular value. A solution
can be feasible or infeasible. A feasible solution to an optimization problem is
the one that satisfies all system constraints simultaneously. That is, a feasible
solution is an element in the feasible solution space defined by the constraint
equations. The solution to an optimization problem is the one in the feasible
solution space that yields the most desirable objective function value, which is
called the optimum feasible solution or simply the optimum solution.

The feasible solution space to an optimization model can be classified as ei-
ther convex or nonconvex. Schematic sketches of convex and nonconvex feasible
solution spaces are shown in Fig. 8.1. The nature of convexity of the feasible
region of an optimization problem would dictate whether the optimal solution
obtained is a global optimum or a local optimum. A global optimum is the best
solution to the problem within the entire feasible space, whereas a local opti-
mum is the best solution to the problem in the neighborhood of the solution
point.

8.1.2 Single-objective versus multiobjective
programming

The optimization model defined by Eqs. (8.1a–c) is for a single-objective problem.
On the other hand, multiobjective programming deals with problems in-
volving several noncommensurable and often conflicting objectives simultane-
ously. Among the objective functions involved, no single one has an importance
that is overwhelmingly dominant over all others. Under this circumstance,
the ideological theme of optimality in the single-objective context is no longer
appropriate.

Mathematically, a multiobjective programming problem can be expressed in
terms of vector optimization as

Maximize f (x ) = [ f 1(x ), f 2(x ), . . . , f M(x)] (8.2a)

subject to g(x) = 0 (8.2b)

in which f (x) is a vector of M objective functions, g(x) = 0 are vector of con-
straints, and x is a vector of decision variables.

The solution to a multiobjective programming problem is a best compromis-
able solution according to the decisionmaker’s preference among the objectives
and the noninferior solutions to the problem. A noninferior solution to a multi-
objective programming problem is a feasible solution to which there is no other
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(a)

(b)

Global
optimum

Local
optimum

Figure 8.1 Schematic diagrams of (a) convex and (b) non-convex spaces.

feasible solution that will yield an improvement in one objective without caus-
ing degradation to at least one other objective (Cohon, 1978). The collection of
such noninferior solutions allows the assessment of tradeoff among conflicting
objectives.

To obtain the solution to a multiobjective programming problem, the pref-
erence of the decisionmaker among the conflicting objectives must be known.
Information concerning the decisionmaker’s preference is commonly called the
utility function, which is a function of the objective function values. Geomet-
rically, the utility function can be depicted as a series of indifference curves
(Fig. 8.2). The utility of a decision maker will be the same for a combination of
solutions that fall on the same indifference curve. The best compromise solu-
tion to a multiobjective programming problem is a unique set of alternatives
that possesses the property of maximizing the decisionmaker’s utility, and the
alternatives are elements of the noninferior solution set.
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Figure 8.2 Noninferior solution and indifference curves.

Many methods have been proposed to derive the solution to a multiobjec-
tive programming problem. Basically, they can be classified into two categories
(Cohon, 1978): generating techniques and techniques incorporating knowledge
of the decisionmaker’s preference. The purpose of generating techniques is to
provide decisionmakers with information about the noninferior solution set or
feasible tradeoff to the multiobjective problem. System analysts play the role
of information providers and do not actively engage in decision making. On
the other hand, techniques in the other category explicitly incorporate the de-
cisionmaker’s preference to search for the best compromise solution. Detailed
descriptions of various techniques for solving multiobjective problems can be
found elsewhere (Cohon, 1978; Goicoechea et al., 1982; Chankong and Haimes,
1983; Steuer, 1986). Regardless of the approach to be used for solving a mul-
tiobjective programming problem, the basic solution technique is still one of
single-objective optimization algorithms.

8.1.3 Optimization techniques

Having constructed an optimization model, one must choose an optimization
technique to solve the model. The way that one solves the problem depends
largely on the form of the objective function and constraints, the nature and
number of variables, the kind of computational facility available, and personal
taste and experiences. Mays and Tung (1992) provide a rather detailed discus-
sion on linear programming, dynamic programming, and nonlinear program-
ming techniques. In this subsection, brief descriptions are given to provide
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readers with some background about these techniques. A list of applications of
various optimization techniques to hydrosystems engineering problems can be
found elsewhere (Mays and Tung, 2005).

Linear programming (LP). LP has been applied extensively to optimal resource
allocation problems. When the system under study is linear, LP models also
can be used for parameter identification and system operation. By the name of
the technique, an LP model has the basic characteristic that both the objective
function and constraints are linear functions of the decision variables. The
general form of an LP model can be expressed as

Max (or min) xo =
n∑

j =1

c j xj (8.3a)

subject to
n∑

j =1

aij xj = bi i = 1, 2, . . . , m (8.3b)

xj ≥ 0 j = 1, 2, . . . , n (8.3c)

where the cj ’s are the objective function coefficients, the aij ’s are called the
technological coefficients, and the bi ’s are the right-hand-side (RHS) coefficients.
An LP model can be expressed concisely in matrix form as

Max (or min) xo = c t x (8.4a)

subject to Ax = b (8.4b)

x ≥ 0 (8.4c)

where c is an n× 1 column vector of objective function coefficients, x is an n× 1
column vector of decision variables, A is an m×n matrix of technological coeffi-
cients, b is an m × 1 column vector of the RHS coefficients, and the superscript
t represents the transpose of a matrix or vector. Excellent books on LP include
Winston (1987), Taha (1987), and Hillier and Lieberman (1990).

The commonly used algorithm for solving an LP model is the simplex method
developed by Dantzig (1963). Since its conception, the method has been used
widely and considered as the most efficient approach for solving LP problems.
The simplex algorithm, starting at an initial feasible solution to the LP model,
searches along the boundary of a problem’s feasible space to reach the opti-
mal solution. The method has been applied to solve large problems involving
thousands of decision variables and constraints on today’s computers. Com-
puter codes based on the simplex method are widely available. Some of the
well-known LP software includes GAMS (general algebraic modeling system)
by Brooke et al. (1988) and LINDO (linear, interactive, and discrete optimizer)
by Schrage (1986), for which PC versions of the programs are available. For LP
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models, because of the convexity of the feasible region, the solution obtained is
a global optimum.

Two additional methods for solving LP problems have been developed
that apply different algorithmic strategies (Khatchian, 1979; Karmarkar, 1984).
In contrast to the simplex algorithm, Khatchian’s ellipsoid method and
Karmarkar’s projective scaling method seek the optimum solution to an LP
problem by moving through the interior of the feasible region.

Nonlinear programming (NLP). A nonlinear programming model has the general
format of Eqs. (8.1a–c) in which either the objective function f (x) or the con-
straints g(x) or both are nonlinear. In an NLP problem, the convexity of the
feasible space defined by the nonlinear constraints g(x) is generally difficult to
assess. As a result, the solution obtained by any NLP algorithm cannot guar-
antee to be globally optimal. Detailed description for solving NLP problems can
be found in Edgar and Himmelblau (1988), Fletcher (1980), McCormick (1983),
and Gill et al. (1981).

Basically, algorithms for solving NLP problems are divided into two cate-
gories: unconstrained and constrained algorithms. Unconstrained NLP algo-
rithms solve Eq. (8.1a) without considering the presence of constraints. They
provide the building blocks for the more sophisticated constrained NLP algo-
rithms. Consider an unconstrained NLP problem

Minimize f (x) x ∈ R
n (8.5)

in which R
n is an n-dimensional real space. Assume that f (x) is twice dif-

ferentiable; the necessary conditions for x ∗ to be a solution to Eq. (8.5) are
(1) ∇x f (x ∗) = 0 and (2) ∇2

x f (x ∗) = H (x ∗) is semipositive definite in which
∇x f = (∂ f /∂x1, ∂ f /∂x2, . . . , ∂ f /∂xn)t , a gradient vector of the objective function
and ∇2

x f = (∂2 f /∂xi∂xj) is an n×n Hessian matrix. The sufficient conditions for
an unconstrained minimum x ∗ are (1) ∇x f (x ∗) = 0 and (2) ∇x f (x ∗) = H (x ∗)
is strictly positive definite.

In theory, the solution to Eq. (8.5) can be obtained by solving ∇x f (x ∗) = 0,
which involves a system of n nonlinear equations with n unknowns. This ap-
proach has been regarded as indirect because it backs away from solving the
original problem of minimizing f (x). Furthermore, numerical iterative proce-
dures are required to solve the system of nonlinear equations which tend to be
computationally inefficient. Therefore, the general preference is given to those
solution procedures which directly attack the problem of optimizing the objec-
tive function. Like the LP solution procedure, direct solution methods, during
the course of iteration, generate a sequence of points in the solution space that
converge to the solution of the problem by the following recursive equation:

x (r +1) = x (r ) + β (r )d (r ) r = 1, 2, . . . (8.6)

in which the superscript (r ) represents the iteration number, x is the vector
of the solution point, d is the vector of the search direction along which the
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objective function f (x) is to be minimized, and β is a scalar, called the step
size, that minimizes f (x (r ) + β (r )d (r )). This procedure is called the line search
or one-dimensional search. Several unconstrained NLP algorithms have been
developed, and they differ by the way the search directions are determined
during the course of iteration. Mays and Tung (1992, p. 136) summarize the
search directions of various methods.

Without losing generality, consider a nonlinear constrained problem stated
by Eq. (8.1) with no bounding constraints. Note that the constraints Eq. (8.1b)
are all equality constraints. Under this condition, the Lagrangian multiplier
method can be applied, which converts a constrained NLP problem to an uncon-
strainted one by an augmented objective function called the Lagragian. That
is, Eqs. (8.1a–b) can be written as

Minimize L(x, λ) = f (x) + λtg(x) (8.7)

in which L(x, λ) is the Lagrangian function, λ is the vector of m Lagragian
multipliers, and g(x) is the vector of constraint equations. The new objective
function L(x, λ) involves n + m decision variables. The necessary condition
and sufficient conditions for x ∗ to be the solution for Eq. (8.7) are

1. f (x ∗) is convex, and g(x ∗) is convex in the vicinity of x ∗.

2. ∇x L(x ∗, λ) = 0.

3. ∇λL(x ∗, λ) = g(x ∗) = 0.

4. λ’s are unrestricted in sign.

Solving conditions 2 and 3 simultaneously yields the optimal solution to
Eq. (8.7).

The most important theoretical results for the NLP problem are the Kuhn-
Tucker conditions, which can be derived easily by using the Lagrangian method
for the general NLP problem, as stated in Eq. (8.1a–c). These conditions must be
satisfied at any constrained optimum, local or global, of any LP or NLP problem.
They form the basis for the development of many computational algorithms.

Several NLP computer codes are available commercially. They are the
GRG2 (generalized reduced gradient 2) developed by Lasdon and his colleagues
(Lasdon et al., 1978; Lasdon and Waren, 1978); (2) GINO (Liebman et al.,
1986); (3) MINOS (modular in-core nonlinear optimization system) by
Mautaugh and Saunders (1980, 1983), and (4) GAMS-MINOS, a link for GAMS
and MINOS. Microsoft Excel SOLVER implements GINO in a spreadsheet
working environment.

Dynamic programming (DP). Before performing the optimization, it is sometimes
desirable to make some changes of variables and transformations so that the
model can be solved more efficiently. However, one must keep in mind that
such transformations should completely preserve the properties of the original
problem (model) so that the transformed model will yield the optimal solution
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to the original problem. Basically, DP is such a transformation that takes a
sequential or multistage decision process containing many interrelated decision
variables and converts it into a series of single-stage problems, each containing
only one or a few variables. In other words, the DP technique decomposes an
n-decision problem into a sequence of n separate but interrelated single-decision
subproblems. Books that deal with DP are Dreyfus and Law (1977), Cooper and
Cooper (1981), and Denardo (1982).

To describe the general philosophy of the DP technique, consider the fol-
lowing resource allocation problem (Tung and Mays, 1992). Suppose that one
wishes to allocate funds to three water development projects, A, B, and C, to
maximize the total revenue. Each development project consists of several alter-
native configurations that require different funding levels and yield different
revenues. Owing to the budget limitation, the total available funds for the en-
tire development are fixed. If the number of alternatives for each project is not
too large, one probably can afford to enumerate all possible combinations of
project alternatives exhaustively to identify the optimal alternatives for the
entire project development. This brute-force exhaustive enumeration approach
possesses three main shortcomings: (1) It would become impractical if the num-
ber of alternative combinations is large, (2) the optimal course of action cannot
be verified, even it is obtained in the early computations, until all the combi-
nations are examined, and (3) infeasible combinations (or solutions) cannot be
eliminated in advance.

Using the DP technique, one considers the selection of alternatives within
each project individually without ignoring the interdependence among the
projects through the total available budget. Since the total funds are limited,
the amount available to each project depends on the allocations to the other
projects. Whatever funds are given to project A and project B, the allocation to
the remaining project C must be made to optimize its return with respect to the
remaining capital. In other words, the optimal allocation to project C is condi-
tioned only on the available funds for project C after allocations to project A and
project B are made. Since one does not know the optimal allocations to project
A and project B, the optimal allocation and the corresponding revenue from
project C must be determined for all possible remaining funds after allocations
to project A and project B have been made. Furthermore, whatever amount is
allocated to project A, the allocations to project B and project C must be made
optimal with respect to the remaining funds after the allocation is made to
project A. To find the optimal allocation to project B, one finds the allocation
maximizing the revenue from project B together with the optimal revenue from
project C as a function of remaining funds from the allocation to project B.
Finally, the optimal allocation to project A is determined, to maximize the rev-
enue from project A plus the optimal revenue from both project B and project C,
as a function of the funds remaining after the allocation to project A.

This description of the DP algorithm applied to a budget allocation example
can be depicted schematically as Fig. 8.3, from which the basic elements and
terminologies of a DP formulation are defined.
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Figure 8.3 Dynamic programming diagram for budget allocation example.

1. Stages (n) are the points in the problem where decisions are to be made.
In the funds allocation example, each different project represents different
stages in the DP model.

2. Decision variables (dn ) are courses of action to be taken for each stage. The
decision in each stage (project) is the alternative within the project to be
selected for funding. The number of decision variables dn in each stage is
not necessarily equal to one.

3. State variables (Sn ) are variables describing the state of a system at differ-
ent stages. A state variable can be discrete or continuous, finite or infinite.
Referring to Fig. 8.3, at any stage n, there are the input state Sn and the
output state Sn+1. The state variables of the system in a DP model have the
function of linking between succeeding stages so that when each stage is
optimized separately, the resulting decision is automatically feasible for the
entire problem. Furthermore, it allows one to make optimal decisions for the
remaining stages without having to check the effect of future decisions on
the decisions made previously. Given the current state, an optimal policy for
the remaining stages is independent of the policy adopted in the previous
stages. This is called Bellman’s principle of optimality, which serves as the
backbone of the optimization algorithm of the DP technique.

4. Stage return (rn ) is a scalar measure of effectiveness of the decision made
in each stage. It is a function of input state, output state, and the decision
variable of a particular stage. That is, rn = r (Sn, Sn+1, dn).

5. State transition function (tn) is a single-valued transformation that expresses
the relationships between input state, output state, and decision. In general,
through the stage transition function, the output state Sn+1 at any stage n
can be expressed as the function of input state Sn and the decision dn as

Sn+1 = tn(Sn, dn) (8.8)

The solution begins with finding the optimal decision for each possible
state in the last stage (called the backward recursive) or in the first stage
(called the forward recursive). Usually, one can exchange the sequence of the
decision-making process. Hence which end to begin will be trivial. A recursive
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relationship that identifies the optimal policy for each state at any stage n can
be developed, given the optimal policy for each state at the next stage n + 1.
This backward-recursive equation, referring to Fig. 8.4, can be written as

f ∗
n (Sn) = optdn

{rn(Sn, dn)} for n = N

= optdn
{rn(Sn, dn) ◦ f ∗

n+1[tn(Sn, dn)]} for n = 1, 2, . . . , N − 1 (8.9)

in which ◦ represents a general algebraic operator that can be +, −, ×, or others.
The efficiency of an optimization algorithm is commonly measured by the

computer time and storage required in problem solving. In the DP algorithm,
the execution time mainly arises from the evaluation of the recursive formula,
whereas the storage is primarily for storing the optimal partial return and the
decision for each feasible state in each stage. DP possesses several advantages
in solving problems involving the analysis of multiperiod processes; however,
there are two major disadvantages of applying DP to many hydrosystems prob-
lems, i.e., the computer memory and time requirements. These disadvantages
would become especially severe under two situations: (1) when the number of
state variables is beyond three or four and (2) when DP is applied in a discrete
fashion to a continuous state space. The problem associated with the second
situation is that difficulties exist in obtaining the true optimal solution without
having to considerably increase discretization of the state space.

Because of the prohibitive memory requirement of DP for multidimensional
systems, several attempts have been made to reduce this problem. One such
modification is the discrete differential DP (DDDP). The DDDP is an iterative
DP that is specially designed to overcome the shortcomings of the DP approach.
The DDDP uses the same recursive equation as the DP to search for an improved
trajectory among discrete states in the stage-state domain in the vicinity of an
initially specified or trail trajectory (Heidari et al., 1971). Instead of searching
over the entire state-stage domain for the optimal trajectory, as is the case
for DP, DDDP examines only a portion of the state-stage domain, saving a
considerable amount of computer time and memory (Chow et al., 1975). This
optimization procedure is solved through iterations of trial states and decisions
to search for optimal returns (maximum or minimum) for a system subject to the
constraints that the trial states and decisions should be within the respective
admissible domain in the state and decision spaces.
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Figure 8.4 Schematic diagram of dynamic programming representation.
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General purpose computer codes for solving DP problems are not available
commercially because most problems are very specific and cannot be cast into
a general framework such as Eqs. (8.1a–c). Therefore, analysts often have to
develop a customized compute code for a specific problem under consideration.

Global optimization techniques. To optimize a complex hydrosystem involving
a large number of interrelated decision variables, it is generally difficult to be
certain that the optimal solution can be obtained within a reasonable amount of
time. In dealing with such “hard” problems, one could opt to obtain the optimal
solution with the anticipation to consume a vary large amount of computational
time using the optimization techniques previously mentioned or to reach a quick
but good solution that is suboptimal through some approximate or heuristic al-
gorithms. Simulated annealing (SA) and genetic algorithm (GA) are two types
of high-quality general algorithms that are independent of the nature of the
problem. Both SA and GA, by nature, are randomization algorithms that apply
a local search based on stepwise improvement of the objective function through
exploring the neighboring domain of the current solution. The quality of the
local optimum can be strongly dependent on the initial solution, and in prac-
tice, it is difficult to assess the time needed to reach the global optimum. To
avoid being trapped in a local optimum, local search algorithms can (1) try a
large number of initial solutions, (2) introduce a more complex neighborhood
structure to search a larger part of the solution space, and (3) accept limited
transitions to explore the solution space in which the solution is inferior (Aarts
and Korst, 1989).

Simulated annealing algorithms. The simulated annealing (SA) algorithms solve
optimization problems by using an analogy to physical annealing process of
decreasing temperature to lower energy in a solid to a minimum level. The
annealing process involves two steps: (1) increasing the temperature of a heat
bath to a maximum value at which the solid melts, and (2) decrease carefully the
temperature of the heat bath to allow particles to arrange themselves in a more
structured lattice to achieve minimum energy level. If the temperature of the
heat bath decreases too rapidly (called quenching), the solid could be frozen into
a metastable state in which the solid would be brittle. The connection between
optimization and the annealing process was first noted by Pincus (1970) and
formalized as an optimization technique by Kirkpatrick et al. (1983).

SA algorithms employ random search, which not only accepts solutions that
improve the current solution but also accept solutions that are inferior with a
specified probability according to the Metropolis criterion, that is,

P
(
accept x (r +1)

j

) = exp

{
−
[

f
(
x (r +1)

j

)− f
(
x (r )

∗
)]

T

}
(8.10)

where x (r )
∗ is the optimal solution in the r th iteration, x (r +1)

j is the j th trial
solution of the (r + 1)th iteration, f (·) is the objective function value analogous
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to the energy level of a solid, and T is the control parameter analogous to the
temperature of the heat bath. As can be seen from Eq. (8.10), in a subsequent
iteration a new trial solution yielding an objective function value that is a worse
objective function value compared with the current optimum one will have lower
(but not zero) probability of being accepted than a solution producing a better
objective function value.

Implementation of the SA algorithm is remarkably easy, as shown in Fig. 8.5,
which involves the following steps: (1) generation of possible solutions to explore

Specify and evaluate 
initial solution 

Specify initial 
temperature (T0)

Generate new 
solution

Evaluate new 
solution

Update the solution 

Adjust temperature 
(T )

Stop the algorithm 

New solution 
acceptable?

Terminate 
search ? 

Yes

Yes

No

No

Figure 8.5 Algorithm of simulated annealing.
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the solution space, (2) evaluation of the objective function, and (3) definition of
the annealing schedule specified by the initial control parameter T0, decrement
of control parameter �T , and convergence criteria. Mechanisms for generat-
ing trial solutions in each iteration involve introducing random changes with
the intent to cover the solution domain to be searched. The domain of search
generally changes with the iteration, and there are many ways to implement
domain search (Vanderbilt and Louie, 1984; Parks, 1990).

Since SA algorithms only require objective function evaluation at each gener-
ated trial solution, computational efficiency of the entire process could become
an important issue because implementation of the algorithms anticipates a
large number of function evaluations. Many optimization problems in hydrosys-
tems engineering involve objective functions whose values depend on physical
constraints defined by complex flow simulations. In such cases, it is worthy of
the effort to search and implement more computationally efficient procedures.
To handle constraints in an SA algorithm, the simplest way is to reject the trial
solution if it leads to a constraint violation. Alternatively, penalty function can
be introduced to account for the constraint violations.

In implementation of the SA algorithm, T0 is generally set to be high enough
to allow virtually all trial solutions to be accepted. It is analogous to having the
temperature in the heat bath high enough to “melt” the solid. It is equivalent
to the acceptance probability for T0 being close to 1. As the solution improves
with the iterations, the control parameter T gradually decreases in value. The
SA iteration is terminated when the control parameter T reaches a specified
final value or the total number of trial solutions is reached. Alternatively, one
can halt the algorithm if lack of improvement in the objective a function value
is defined, which can be (1) no improvement can be found in all trial solutions
at one control parameter and (2) acceptance ratio falls below a specified value.

Genetic algorithms. Genetic algorithms (GAs) are a class of computer-based
search procedures that emulate the biologic evolution processes of natural se-
lection and genetics. Since its introduction by Goldberg in 1983, this innovative
search procedure has been applied widely for optimization in a wide variety of
areas (Goldberg, 1989). GAs have been demonstrated to be robust search proce-
dures that outperform the conventional optimization procedures, in particular
for problems with high dimensionality, discontinuities, and noise.

Using GA for optimization, analogues are made between the properties of an
optimization problem and the biologic process of gene selection and reproduc-
tion. The solution space for an optimization problem can be treated as the en-
vironment in which potential solutions can be considered as genes. The degree
of fitness of each gene can be measured by the value of the objective function of
an optimization problem. In each iteration of a GA search, several genes rep-
resenting solutions are generated from the population. These genes compete
for their survival based on their fitness: The one that is fitter is more likely to
survive and influence the next generation. Through this competition, the pop-
ulation evolves to contain high-performance individuals. In a GA, iteration is
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represented by a generation, and decision variables are analogous to biologic
genes and are represented by coded structures either in the form of a real num-
ber or binary codes. A point in the solution space is represented by a collection of
genes, and the coded genes are juxtaposed to form an individual or chromosome.

Like any optimum-seeking algorithm, a GA requires the specification of an
initial population (the first generation) of potential solutions. This can be done
by random generation of a population or by specifying an initial solution. In
the initial population, the fitness of an individual is evaluated with respect
to the objective function. Those individuals with a high level of fitness will
have higher chance being selected to produce offspring than those individuals
with a lower level of fitness. The selection can be conducted in many different
ways, such as stochastic universal sampling (Baker, 1987), which behaves like
a roulette wheel with the slot size apportioned to each individual’s relative fit-
ness in the population. The principle of the selection is to prefer better solutions
to worse ones. This very feature of the selection procedure in a GA is similar to
the Metropolis acceptance criterion of SA algorithms. The implementation of
such selection procedure will prevent the solutions from being trapped at the
local optimum.

On the completion of selection of individuals in a generation, individuals
selected will mate to produce the population of the next generation. During
the mating, biologic processes of gene crossover and mutation could take place.
Again, fitness of individuals in the population of the new generation will be
evaluated based on which selection and mating processes will be repeated.
A schematic diagram of a GA is shown in Fig. 8.6. Through this repeated
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Figure 8.6 Schematic diagram of genetic algorithm.
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fitness-selection-reproduction cycle, the population generated by the GA will
evolve toward improved solutions.

Two main mechanisms are involved for those selected individuals to generate
offspring in the next generation, i.e., crossover and mutation. Crossover allows
information exchange between two chosen individuals forming the parents. In
GA, crossover is done by randomly selecting positions in a chromosome of two
individuals to swap their coded genes to produce the offspring. The rate of
crossover has been suggested to be from 0.6 to 1.0 (Goldberg, 1989). Mutation
then is a process by which new genetic materials can be introduced into the
population. It is applied on a bit-by-bit basis, with the mutation rate specified
by the user.

8.2 Optimization of System Reliability

As described in Chap. 5, reliability of a multicomponent system depends on the
component reliability, number of redundant components, and the arrangement
of the components. With everything else remaining fixed, the system reliability
gets higher as the number of redundant components increases. However, noth-
ing is free—achieving higher system reliability has to be paid for by a higher
price for the system. In general, practically all systems exhibit a behavior of
diminishing rate of return as the number of redundant components increases
(see Example 5.2). In the context in system reliability, this behavior is describ-
able by a strictly concave function relation between the system reliability and
number of redundant components (or total system cost). A relevant issue is how
much one is willing to invest before the improvement in system reliability is
no longer economically justifiable. The problem becomes even more challenging
when there are several components with different reliability levels competing
for the limited resources, such as budget and space. How would an engineer
decide the best allocation of resources to achieve the highest system reliability
possible? This section describes several examples showing how system reliabil-
ity can be optimized by various techniques introduced in Sec. 8.1.

8.2.1 Reliability design with redundancy

Consider the design of a hydrosystem consisting of n subsystems that are ar-
ranged in series so that the failure of one subsystem will cause the failure of
the entire system. In this case, reliability of the hydrosystem can be improved
by installing standby units in each subsystem (see Fig. 8.7). Figure 8.7 consists
of a series-parallel configuration that is called unit redundancy. Suppose that
each subsystem can install up to K standby units and that the total capital
available for the hydrosystem is C. Furthermore, the cost functions are known,
with Ci(ki) being the cost associated with installing ki standby units on the ith
subsystem.

Suppose that the engineer is interested in determining the number of standby
units for each subsystem to maximize the system reliability αsys without
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Figure 8.7 Unit redundancy with series-parallel configuration.

exceeding the available capital. The optimization model for the problem can
be expressed as

Maximize αsys =
n∏

i=1

αi(ki) (8.11a)

subject to
n∑

i=1

Ci(ki) ≤ C (8.11b)

where ki is the nonnegative integer-valued decision variable, 0 ≤ ki ≤ K , and
αi(ki) is the reliability of the ith subsystem installed with ki standby units.

This optimization problem can be solved efficiently by the DP approach de-
scribed in Sec. 8.1.3. The stages are the subsystems i = 1, 2, . . . , n. The DP
backward-recursive equation can be written as

f i(bi) =
max

ki

[αi(ki)] i = n

max
ki

{αi(ki) × f i+1[bi − Ci(ki)]} i = 1, 2, . . . , n − 1 (8.12)

where bi is the state variable representing the total capital available for
subsystems i, i + 1, . . . , n.

Alternatively, the design engineer may be interested in finding the system
configuration associated with the least total capital investment while achieving
some acceptable reliability for the system αsys,min. The problem of this type can
be expressed by the following model:

Minimize
n∑

i=1

Ci(ki) (8.13a)

subject to
n∏

i=1

αi(ki) ≥ αsys,min (8.13b)

The model defined by Eqs. (8.13a–b) also can be solved by the DP approach.
To illustrate the application of other optimization procedure, let the reliability
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of each standby unit in each subsystem be equal to αi and the unit cost be
ci, i = 1, 2, . . . , n. Furthermore, the minimum acceptable system reliability is
set equal to αsys,min. Then, Eqs. (8.13a–b) can be rewritten as

Minimize
n∑

i=1

ciki (8.14a)

subject to
n∏

i=1

[
1 − (1 − αi)ki

] = αsys,min (8.14b)

The model, Eqs. (8.14a–b), involves a linear objective function and a nonlinear
equality constraint. To simplify the multiplicative relationship of Eq. (8.14b), a
new variable pi is defined to satisfy the following equation:

α
pi
sys,min = 1 − (1 − αi)ki

In terms of the new variable pi, the original decision variable ki and the con-
straint Eq. (8.14b) can be expressed, respectively, as

ki = ln
(
1 − α

pi
sys,min

)
ln(1 − αi)

i = 1, 2, . . . , n (8.15a)

n∑
i=1

pi = 1 (8.15b)

Therefore, the original model, Eqs. (8.14 a–b), can be written as

Minimize
n∑

i=1

ci × ln
(
1 − α

pi
sys,min

)
ln(1 − αi)

(8.16a)

subject to
n∑

i=1

pi = 1 (8.16b)

This constrained minimization problem, Eqs. (8.16a–b), can be solved by mini-
mizing the following Lagrangian function:

Minimize
p1, p2,..., pn,λ

L( p1, p2, . . . , pn, λ) =
n∑

i=1

ci × ln
(
1 − α

pi
sys,min

)
ln(1 − αi)

+ λ

(
n∑

i=1

pi − 1

)
(8.17)

Solving

∂L( p1, p2, . . . , pn, λ)
∂pi

= ci(
1 − α

pi
sys,min

)
(1 − αi)

∂
(
1 − α

pi
sys,min

)
∂pi

+ λ = 0 i = 1, 2, . . . , n (8.18)
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results in

λ = ciα
pi
sys,min ln

(
α

pi
sys,min

)(
1 − α

pi
sys,min

)
(1 − αi)

(8.19)

Suppose that the minimum acceptable system reliability αsys,min is chosen to
be close to 1. In such a case,

limit
αsys,min→1

ln
(
α

pi
sys,min

)(
1 − α

pi
sys,min

) = − 1
pi

(8.20)

Then Eq. (8.19) can be reduced to

λ = − ci

pi ln(1 − αi)
(8.21)

which renders

pi = − ci

λ ln(1 − αi)
i = 1, 2, . . . , n (8.22)

Substituting Eq. (8.22) into Eq. (8.16b) yields

λ = −
n∑

i=1

ci

ln(1 − αi)
(8.23)

Then, by Eqs. (8.22) and (8.23), the new variable pi can be obtained, in terms
of the unit cost ci, and reliability of standby unit αi, as

pi =
[

ci
ln(1−αi )

]
[∑n

j =1
c j

ln(1−α j )

] i = 1, 2, . . . , n (8.24)

Once the values of pi ’s are computed by Eq. (8.24), the number of standby
units for each subsystem ki can be obtained by Eq. (8.15a). Finally, one should
realize that the values of ki so obtained are not guaranteed to be integer-valued.
A round-off to the closest integer may be needed.

8.2.2 Determination of optimal
maintenance schedule

In Sec. 6.3.4 it was shown that the implementation of scheduled maintenance
can increase the mean time to failure (MTTF) of a system having an increasing
hazard function. Increasing maintenance frequency would result in a decrease
in repair frequency and vice versa. Suppose that an engineer is considering
implementing a regular scheduled maintenance for a system. The problem of
interest is to determine the optimal maintenance frequency associated with
the minimum total cost, which includes the maintenance cost and repair cost.
Of course, the issue is worth considering if the cost of maintenance is much
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lower than the cost of repair. Otherwise, there will be little economic incentive
to conduct scheduled maintenance. The following descriptions show a simple
example of determining the optimal maintenance schedule associated with the
minimum total cost of repair and maintenance. More sophisticated models for
dam safety inspection have been developed by Tang and Yen (1991, 1993).

The total cost per unit time with a maintenance cycle of time interval length
tM can be expressed as

TC(tM) = CR × f R(tM) + CM × f M(tM) (8.25)

in which CR and CM are unit cost per repair and unit cost per maintenance,
respectively, and f R and f M are the repair and maintenance frequencies,
respectively.

Assume that the repair is ideal. The repair frequency (number of repairs per
unit time) f R for a specified maintenance interval tM can be calculated by

f R(tM) = 1
tM

∫ tM

0
f t(τ )dτ (8.26)

in which f t(t) is the failure density function. On the other hand, since there will
be one maintenance within each scheduled time interval tM , the maintenance
frequency is 1/tM . Therefore, the total cost per unit time is

TC(tM) = 1
tM

[
CR ×

∫ tM

0
f t(τ ) dτ + CM

]
(8.27)

Maintenance cost/ time Repair cost/ time 

Total cost/time 

Maintenance interval tMOptimal tM

Cost per unit time

Figure 8.8 Tradeoff between repair cost and maintenance cost.
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The relationships between the three cost items and the scheduled maintenance
interval are shown in Fig. 8.8, which shows that the repair cost per unit time in-
creases with tM , whereas the maintenance cost per unit time decreases with tM .
Therefore, there is a tradeoff between the two cost components, and the objec-
tive is to determine the optimal scheduled maintenance interval tM associated
with the least total cost.

The optimal scheduled maintenance time interval can be obtained by solving
d[TC(tM)]/d (tM) = 0, that is,

CR

∫ tM

0
f t(τ )dτ + CM + tM f t(tM) = 0 (8.28)

In general, solving Eq. (8.28) requires the use of numerical root-finding
procedures.

8.3 Optimal Risk-Based Design of Hydrosystem
Infrastructures

Reliability analysis methods can be applied to design hydrosystem infrastruc-
tures with or without considering risk costs. Risk costs are those cost items
incurred owing to the unexpected failure of structures, and they can be broadly
classified into tangible and intangible costs. Tangible costs are those measurable
in terms of monetary unit, which include damage to property and structures,
loss of business, cost of repair, etc. On the other hand, intangible costs are not
measurable by monetary unit, such as psychological trauma, loss of lives, social
unrest, damage to the environment, and others. Without considering risk costs,
reliability has been explicitly accounted for in the design of storm sewer sys-
tems (Yen and Ang, 1971; Yen et al., 1976; Yen and Jun, 1984), culverts (Yen
et al., 1980; Tung and Mays, 1980), and levees (Tung and Mays, 1981a; Lee
and Mays, 1986). Cheng et al. (1986) demonstrated how to apply the AFOSM
method to calculate the risk reduction associated with freeboard in dam design.
Melching et al. (1987) suggested different flood peak-risk curves for forecasting
and for design. However, it is the risk-based least cost design of hydrosystem
infrastructure that promises to be potentially the most significant application
of reliability analysis.

The risk-based design procedure integrates the procedures of uncertainty and
reliability analyses in the design practice. The procedure considers the tradeoff
among various factors such as failure probability, economics, and other per-
formance measures in hydraulic structure design. Plate and Duckstein (1987,
1988) list a number of performance measures, called the figures of merit, in the
risk-based design of hydraulic structures and water resource systems, which
are further discussed by Plate (1992). When risk-based design is embedded
into an optimization framework, the combined procedure is called the optimal
risk-based design.
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8.3.1 Basic concept

The basic concept of risk-based design is shown schematically in Fig. 8.9. The
risk function accounting for the uncertainties of various factors can be obtained
using the reliability computation procedures described in earlier chapters. Al-
ternatively, the risk function can account for the potential undesirable conse-
quences associated with the failure of hydrosystem infrastructures. For sim-
plicity, only the tangible damage cost is presented herein.

Risk costs associated with the failure of a hydrosystem infrastructure cannot
be predicted accurately from year to year. A practical way is to quantify risk
cost using an expected value on an annual basis. The total annual expected cost
(TAEC) is the sum of the annual installation cost and annual expected damage
cost, which can be expressed mathematically as

TAEC(x) = FC(x) × CRF + E(D|x) (8.29)

where FC is the first or total installation cost, which is the function of decision
vector x defined by the size and configuration of the hydraulic structure, E(D|x)
is the annual expected damage cost associated with structural failure, and CRF
is the capital recovery factor, which brings the present worth of the installation
costs to an annual basis and can be computed as

CRF = (1 + i)T − 1
i(1 + i)T (8.30)

Annual expected 
damage costAnnual installation 

cost

Total annual 
expected cost 

Project size xOptimal project 
size

Annual cost 

LTAEC

Figure 8.9 Schematic diagram of optimal risk-based design.
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with T and i being the expected service life of the structure and the interest
rate, respectively.

In practice, the optimal risk-based design determines the optimal structural
size, configuration, and operation such that the annual total expected cost is
minimized. Referring to Fig. 8.6, as the structural size increases, the annual in-
stallation cost increases, whereas the annual expected damage cost associated
with the failure decreases. The optimal risk-based design procedure attempts
to determine the lowest point on the total annual expected cost curve. Mathe-
matically, the optimal risk-based design problem can be stated as

Minimize TAEC(x) = FC(x) × CRF + E(D|x) (8.31a)

subject to gi(x) = 0 i = 1, 2, . . . , m (8.31b)

where gi(x) = 0, i = 1, 2, . . . , m, are constraints representing the design speci-
fications that must be satisfied.

In general, the solution to Eqs. (8.31a–b) could be acquired through the use
of appropriate optimization algorithms. The selection or development of the so-
lution algorithm is largely problem-specific, depending on the characteristics of
the problem to be optimized. Section 8.4 describes an application of the optimal
risk-based design to pipe culverts for roadway drainage.

8.3.2 Historical development of hydrosystem
design methods

The evolution of hydrosystem design methods can be roughly classified into four
stages: (1) historical event–based design, (2) return-period design, (3) conven-
tional risk-based design, and (4) optimal risk-based design with consideration
given to a variety of uncertainties.

Historical event–based design. In the design of hydrosystem infrastructures and
the establishment of land-use management practices to prevent and/or reduce
damages resulting from natural disasters, the risk (damage) assessment typ-
ically has been implicit. The earliest structures and land-use management
approaches for flood protection were designed or established on the basis of
their ability to withstand previous disastrous floods. For example, Chow (1962)
noted that the Dun waterway table used to design railroad bridges in the early
1900s was primarily determined from channel areas corresponding to high-
water marks studied during and after floods. Thus previous large floods of un-
known frequency could pass through the designed bridges safely. Also, after
a devastating flood on the Mississippi River in 1790, a homeowner in Saint
Genieve, Missouri, rebuilt his house outside the boundary of that flood. Similar
rules were applied in the design of coastal-protection works in The Netherlands
at the time the Zuiderzee was closed (1927–1932) (Vrijling, 1993).

Rules based on previous experience work well in some cases. For example, the
house in Missouri was not flooded until the 1993 flood on the Mississippi River,
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and the Zuiderzee protection works survived the 1953 storm that devastated
the southwestern part of The Netherlands. However, in most cases these meth-
ods are inadequate because human experience with floods and other natural
hazards do not include a broad enough range of events. As noted by Vrijling
(1993), “One is always one step behind when a policy is only based on historical
facts.”

Return-period design. In the early part of the twentieth century, the concept
of frequency analysis began to emerge as a method to extend limited data
on extreme events to probabilistically estimate the magnitude of rarely occur-
ring events. Frequency analysis of observed events is a key aspect of meteoro-
logic, hydrologic, and seismic hazard analyses. Thus, using frequency-analysis
methods, it is possible to estimate events with magnitudes beyond those that
have been observed. This necessitates the selection of a societally acceptable
hazard frequency (see Sec. 8.3.6).

Using the return-period design approach, a hydraulic engineer first deter-
mines the design discharge from a frequency-discharge relationship by select-
ing an appropriate design frequency or return period. The design discharge
then is used to determine the size and layout of the hydrosystem that has a
satisfactory hydraulic performance. In the return-period design method, selec-
tion of the design return period is crucial to the design. Once the design return
period is determined, it remains fixed throughout the whole design process. In
the past, the design return period was selected subjectively on the basis of an in-
dividual’s experience or the societally acceptable hazard frequency (Sec. 8.3.6).
Selection of the design return period is a complex procedure that involves con-
siderations of economic, social, legal, and other factors. However, the procedure
does not account for these factors explicitly.

Conventional risk-based design. Risk-based design is a procedure that evaluates
among alternatives by considering the tradeoff between the investment cost and
the expected economic losses due to failures. Specifically, the conventional risk-
based design considers the inherent hydrologic uncertainty in calculation of the
expected economic losses. In the risk-based design procedure, the design return
period is a decision variable instead of being a preselected design parameter
value, as with the return-period design procedure.

The concept of risk-based design has been recognized for many years. As early
as 1936, Congress passed the Flood Control Act (U.S. Statutes 1570), in which
consideration of failure consequences in the design procedure was advocated.
The economic risks or the expected flood losses were not considered explicitly
until the early 1960s. Pritchett’s work (1964) was one of the early attempts to
apply the risk-based hydraulic design concept to highway culverts. At four ac-
tual locations, Pritchett calculated the investment costs and expected flood dam-
age costs on an annual basis for several design alternatives, among which the
most economical one was selected. The results indicated that a more economical
solution could be reached by selecting smaller culvert sizes compared with the
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traditional return-period method used by the California Division of Highways.
The conventional approach has been applied to the design of highway drainage
structures such as culverts (Young et al., 1974; Corry et al., 1980) and bridges
(Schneider and Wilson, 1980). Inherent randomness of hydrologic processes
is integrated with reliability analysis in seismic, structural, and geotechnical
aspects in the design of new dams (Pate-Cornell and Tagaras, 1986) and eval-
uation of alternatives for rehabilitating existing dams (McCann et al., 1984;
Bureau of Reclamation, 1986; National Research Council, 1983).

Risk-based design considering other uncertainties. In the conventional risk-based
hydraulic design procedure, economic risks are calculated considering only the
randomness of hydrologic events. In reality, there are various types of un-
certainties, as described in Sec. 1.2, in a hydrosystem infrastructure design.
Advances have been made to incorporate other aspects of uncertainty in the
design of various hydrosystem infrastructures. For example, both hydrologic
and hydraulic uncertainties were considered in the design of highway drainage
structures (Mays, 1979; Tung and Mays, 1980, 1982; Tung and Bao, 1990),
storm sewer systems (Yen and Ang, 1971; Yen and Jun, 1984; Tang and Yen,
1972; Tang et al., 1975, 1976), levee systems (Tung and Mays, 1981b), riprap
design of stable channels (Tung, 1994), and river diversion (Afshar et al., 1994).
Inherent hydrologic uncertainty, along with parameter and model uncertain-
ties, was considered in design of levee systems (Wood, 1977; Bodo and Unny,
1976). Economic uncertainty, along with hydrologic and hydraulic uncertain-
ties, has been considered in flood-damage-reduction projects (U.S. Army Corps
of Engineers, 1996).

8.3.3 Tangible costs in risk-based design

Design of a hydrosystem infrastructure, by nature, is an optimization prob-
lem consisting of an analysis of the hydraulic performance of the structure to
convey flow across or through the structure and a determination of the most
economical design alternative. The objective function is to minimize the sum
of capital investment cost, the expected flood damage costs, and operation and
maintenance costs. The relevant variables and parameters associated with the
investment cost and the expected damage costs of a hydraulic structure, i.e., a
highway drainage structure, are listed in Tables 8.1 and 8.2, respectively. The
maintenance costs over the service life of the structure generally are treated
as a yearly constants. Based on Tables 8.1 and 8.2, the information needed
for the risk-based design of hydraulic structures can be categorized into four
types:

1. Hydrologic/physiographic data include flood and precipitation data,
drainage area, channel bottom slope, and drainage basin slope. These are
needed to predict the magnitude of hydrologic events such as streamflow
and rainfall by frequency analysis and/or regional analysis.
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TABLE 8.1 Variables and Parameters Relevant in Evaluating Capital Investment
Cost of Highway Drainage Structures

Pipe culverts Box culverts Bridges

Parameters Unit cost of culvert Unit cost of concrete Unit cost of bridge
Unit cost of steel

Variables Number of pipes Number of barrels Bridge length
Pipe size Length of barrel Bridge width
Pipe length Width of barrel
Pipe material Quantity of concrete

Quantity of steel

SOURCE: After Tung et al. (1993).

2. Hydraulic data include flood-plain slopes, geometry of the channel cross sec-
tion, roughness coefficients, size of the structural opening, and height of the
embankment. These are needed to determine the flow-carrying capacities of
hydraulic structures and to perform hydraulic analysis.

TABLE 8.2 Damage Categories with Related Economic Variables and Site Characteristics in Risk-Based
Design of Highway Drainage Structures

Damage category Economic variables Site characteristics

Floodplain property damage: Types of crops Location of crop fields
Losses to crops Economic value of crops Location of buildings
Losses to buildings Types of buildings

Economic values of buildings
and contents

Physical layout of drainage
structures

Roadway geometry
Flood characteristics
Stream valley cross-section
Slope of channel profile
Channel and floodplain roughness

Damage to pavement and
embankment:

Material cost of pavement
Material cost of embankment

Flood magnitude
Flood hydrograph

Pavement damage Equipment costs Overtopping duration
Embankment damage Labor costs Depth of overtopping

Repair rate for pavement and
embankment

Total area of pavement
Total volume of embankment
Types of drainage structure
and layout

Roadway geometry

Traffic-related losses: Rate of repair Average daily traffic volume
Increased travel cost due
to detour

Lost time of vehicle occupants
Increased risk of accidents on
a flooded highway

Operational cost of vehicle
Distribution of income for vehicle
occupants

Composition of vehicle types
Length of normal detour paths
Flood hydrograph
Duration and depth of overtoppingCost of vehicle accident

Rate of accident
Duration of repair

SOURCE: After Tung and Bao (1990).
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3. Structural data include material of substructures and layout of structure.

4. Economic data include (a) type, location, distribution, and economic value of
upstream properties such as crops and buildings, (b) unit costs of structural
materials, equipment, operation of vehicles, accidents, occupancy, and labor
fee, (c) depth and duration of overtopping, rate of repair, and rate of accidents,
and (d) time of repair, and length of detour.

In the design of hydrosystem infrastructures, the installation cost often de-
pends on environmental conditions, such as the location of the structure, ge-
omorphic and geologic conditions, the soil type at the structure site, type and
price of construction material, hydraulic conditions, flow conditions, recovery
factor of the capital investment, and labor and transportation costs. In reality,
these cost-affecting factors would result in uncertainties in the cost functions
used in the analysis. However, a practical way to incorporate economic uncer-
tainties in the risk-based design of hydrosystem infrastructures remains to be
developed.

8.3.4 Evaluations of annual expected
flood damage cost

In risk-based and optimal risk-based designs of hydrosystem infrastructures,
the thrust of the exercise, after uncertainty and risk analyses are performed,
is to evaluate E(D|x) as the function of the probability density functions (PDFs)
of loading and resistance, damage function, and the types of uncertainty
considered.

Conventional approach. In conventional risk-based design, where only inher-
ent hydrologic uncertainty is considered, the structural size x and its corre-
sponding flow-carrying capacity qc, in general, have a one-to-one monotonically
increasing relationship. Consequently, the design variables x alternatively can
be expressed in terms of design discharge of the hydrosystem infrastructure.
The annual expected damage cost, in the conventional risk-based hydraulic
design, can be computed as

E1(D|x) =
∫ ∞

q∗
c

D(q|q∗
c ) f q(q) dq (8.32)

where q∗
c is the deterministic flow capacity of a hydraulic structure subject

to random floods following a PDF f q(q), and D(q|q∗
c ) is the damage function

corresponding to the flood magnitude of q and hydraulic structural capacity
q∗

c . A graphic representation of Eq. (8.32) is shown in Fig. 8.10, and E1(D|x)
corresponds to the shaded area under the damage-frequency curve. Owing to
the complexity of the damage function and the form of the PDF of floods, the
analytical integration of Eq. (8.31), in most real-life applications, is difficult,
if not impossible. Hence the evaluation of annual expected damage cost by
Eq. (8.32) is done numerically.
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Discharge (q)

Return period (T )

Damage (D)

Damage (D)

Figure 8.10 Computation of annual expected damage.

Note that Eq. (8.32) considers only the inherent hydrologic uncertainty owing
to the random occurrence of flood events, represented by the PDF f q(q). It
does not consider hydraulic and economic uncertainties. Furthermore, a perfect
knowledge about the probability distribution of flood flow is assumed. This is
generally not the case in reality.

Incorporation of hydraulic uncertainties. As described in Sec. 1.2, uncertainties
also exist in the process of hydraulic computations for determining the flow-
carrying capacity of the hydraulic structure. In other words, qc is a quantity
subject to uncertainty. From the uncertainty analysis of qc (Tung and Yen,
2005), the statistical properties of qc can be estimated. Hence, to incorporate
uncertainty feature of qc into the risk-based design, the annual expected dam-
age can be calculated as

E2(D) =
∫ ∞

0

[∫ ∞

qc

D(q|qc) f q(q)dq
]

gqc(qc)dqc =
∫ ∞

0
E1(D|qc)gqc(qc)dqc

(8.33)

in which gqc(qc) is the PDF of random flow-carrying capacity qc. Again, in prac-
tical problems, the annual expected damage estimated by Eq. (8.33) would have
to evaluated through the use of appropriate numerical integration schemes.
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Considering hydrologic inherent and parameter uncertainties. Since the occurrence
of streamflow is random by nature, the statistical properties such as the mean,
standard deviation, and skewness coefficient of the distribution calculated from
a finite sample are also subject to sampling errors. In hydrologic frequency
analysis, a commonly used frequency equation (Eq. 3.5) for determining the
magnitude of a hydrologic event, say, a flood, of a specified return period T
years is

qT = µq + KT σq (8.34)

in which qT is the magnitude of the hydrologic event of the T year, µq and σq
are the population mean and standard deviation of floods, respectively, and KT
is the frequency factor depending on the skewness coefficient and distribution
of the flood event.

Consider floods being the hydrologic event that could potentially cause the
failure of the hydraulic structure. Owing to the uncertainty associated with
the estimated values of µq, σq, and KT in Eq. (8.34), the flood magnitude of a
specified return period qT is also a random variable associated with its prob-
ability distribution (see Fig. 8.11) instead of being a single-valued quantity
presented by its “average,” as commonly done in practice. Section 3.8 describes
the sample distributions for some of the probability distributions frequently
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Figure 8.11 Schematic sketch of sampling distribution of flood magnitude
estimator.
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used in hydrologic flood frequency analysis. Hence there is an expected damage
corresponding to the T-year flood magnitude that can be expressed as

E(DT |q∗
c ) =

∫ ∞

q∗
c

D(qT |q∗
c )hqT (qT ) dqT (8.35)

where E(DT |q∗
c ) is the expected damage corresponding to a T-year flood given

a known flow capacity of the hydraulic structure q∗
c , hqT (qT ) is the sampling

PDF of the flood magnitude estimator of a T-year return period, and qT is the
dummy variable for a T-year flood. Equation (8.35) represents an integration
of flood damage over the shaded area associated with the sample distribution
of a T-year flood. To combine the inherent hydrologic uncertainty, represented
by the PDF of annual flood f q(q), and the hydrologic parameter uncertainty,
represented by the sampling PDF for a flood sample of a given return period
hqT (qT ), the annual expected damage cost can be written as

E2(D|q∗
c ) =

∫ ∞

q∗
c

[∫ ∞

q∗
c

D(qT |q∗
c )hqT (qT |q) dqT

]
f q(q) dq (8.36)

Incorporation of hydrologic inherent and parameter and hydraulic uncertainties. To
include hydrologic inherent and parameter uncertainties along with the hy-
draulic uncertainty associated with the flow-carrying capacity, the annual
expected damage cost can be written as

E4(D) =
∫ ∞

0

{∫ ∞

qc

[∫ ∞

qc

D(qT , qc)hqT (qT ) dqT

]
f q(q) dq

}
gqc (qc) dqc

=
∫ ∞

0
E2(D)gqc (qc) dqc (8.37)

Summary. Based on the preceding formulations for computing annual expected
damage in risk-based design of hydraulic structures, one realizes that the math-
ematical complexity increases as more uncertainties are considered. However,
to obtain an accurate estimation of annual expected damage associated with
the structural failure would require the consideration of all uncertainties, if
such can be practically accomplished. Otherwise, the annual expected damage
would, in most cases, be underestimated, leading to inaccurate optimal design.
In an application to flood levee design (Tung, 1987), numerical investigations
indicate that without providing a full account of uncertainties in the analysis,
the resulting annual expected damage is significantly underestimated, even
with a 75-year-long flood record.

8.3.5 Risk-based design without flood
damage information

Conventional risk-based design and analysis of hydrosystems requires informa-
tion with regard to various flood-related damages. Such information requires
an extensive survey of the type and value of various properties, economic and
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social activities, and other demographic-related information in the regions that
are affected by floods. For areas where flood-related damage data are unavail-
able, conventional risk-based analysis cannot be implemented, realizing that
in any design or analysis of a hydrosystem one normally has to conduct hy-
draulic simulation to delineate the flood-affected zone and other related flow
characteristics, such as water depth and flow velocity. The hydraulic charac-
teristics, combined with property survey data, would allow estimation of flood
damage for a specified flood event under consideration. In the situation where
flood-related damage data are unavailable, the risk-based analysis of relative
economic merit of different flood defense systems still can be made by replacing
the flood-related damage functions with relevant physical performance char-
acteristics of the hydrosystems that are either required inputs for hydraulic
modeling or can be extracted easily from model outputs. For example, use-
ful physical performance characteristics in urban drainage system design and
analysis could be pipe length (or street area) subject to surcharge, volume of
surcharged water, and maximum (or average) depth and velocity of overland
flow. Although these performance characteristics may not completely reflect
what the flood damages are, they nevertheless provide a good indication about
the potential seriousness of the flooding situation.

For a given design, the corresponding annual installation cost can be es-
timated. Also, the system responses under the different hydrologic loadings
can be obtained by a proper hydraulic simulation model. Based on the annual
project installation cost of the system and the expected hydraulic response of
the system, a tradeoff analysis can be performed by examining the marginal
improvement in hydraulic responses owing to a one-unit increase in capital
investment. Referring to Fig. 8.12 for a study to upgrade the level of protec-
tion for an urban drainage system in Hong Kong (Tung and So, 2003), it is
observed that the annual expected surcharge volume decreases as the annual
capital cost of the system increases owing to increasing level of protection.
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Figure 8.12 Annual project cost versus annual expected surcharge volume. (After
Tung and So, 2003.)
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The marginal cost MC corresponding to one reduction in surcharge volume can
be written as MC = −∂C/∂Sv, with C being the capital cost and Sv being the
surcharge volume. As can be seen, the value of MC starts very low for the ex-
isting system and increases to an annual capital cost around HK$0.6M (which
corresponding to a 10-year protection), beyond which the rate of increase in
capital investment per unit reduction in surcharge volume becomes very high.
From the trend of marginal cost, a decision maker would be able to choose a
sensible level of protection for project implementation.

8.3.6 Risk-based design considering
intangible factors

Besides the economic factors that can be quantified in monetary terms in the
design of hydrosystems, there are other intangible factors that are noncommen-
surable and cannot be quantified. Some of the intangible factors might work
against the principle of economic efficiency. Examples of intangible factors that
are considered in the design and planning of hydrosystems may be potential loss
of human lives, stability of water course, impacts on local society and environ-
ment, health hazards after floods, litigation potential, maintenance frequency
of the systems, and others. The conventional optimal risk-based design yields
the most economically efficient system, which may not be acceptable or feasible
when other intangible factors are considered.

As more intangible factors are considered in risk-based design, it becomes
a multiobjective or multicriteria decision-making (MCDM) problem in which
economic efficiency is one of many factors to be considered simultaneously. Use
of a multiple-criteria approach enhances more realistic decision making, and
the design frequency so determined will be more acceptable in practice and de-
fensible during litigation or negotiation with others. Tung et al. (1993) adopted
the MCDM framework to incorporate intangible factors in risk-based design of
highway drainage structures through which a more defensible extended risk-
based design frequency can be determined from integrated consideration of
tangible and intangible factors.

In a risk-based design, in addition to quantitative measure of failure proba-
bility and risk cost, consideration of intangible factors and societally acceptable
risk issues should be included if possible. In the United States, the societally
acceptable frequency of flood damage was formally set to once on average in
100 years (the so-called 100-year flood) in the Flood Disaster and Protection
Act of 1973; however, the 100-year flood had been used in engineering design
for many years before 1973. In this act, the U.S. Congress specified the 100-year
flood as the limit of the flood plain for insurance purposes, and this has become
widely accepted as the standard of hazard (Linsley and Franzini, 1979, p. 634).
This acceptable hazard frequency was to be applied uniformly throughout the
United States, without regard to the vulnerability of the surrounding land. The
selection was not based on a benefit-cost analysis or an evaluation of probable
loss of life. Linsley (1986) indicated that the logic for this fixed level of flood
hazard (implicit vulnerability) was that everyone should have the same level of
protection. Linsley further pointed out that many hydrologists readily accept
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the implicit vulnerability assumption because a relatively uncommon flood is
used for the hazard level, and thus

The probability that anyone will ever point a finger and say “you were wrong” is
equally remote. If the flood is exceeded, it is obvious that the new flood is larger than
the 10-year or 100-year flood, as the case may be. If the estimate is not exceeded,
there is no reason to think about it.

Mitigation of natural hazards requires a more rigorous consideration of the risk
resulting from the hazard and society’s willingness to accept that risk.

In other cases of disaster, societally acceptable hazard levels also have been
selected without formal evaluation of benefits and costs. For example, in the
United States, dam-failure hazards are mitigated by designing dams where
failure may result in the loss of life to pass the probable maximum flood. Also,
in The Netherlands, coastal-protection works normally are designed by ap-
plication of a semideterministic worst-case approach wherein the maximum
storm-surge level (10,000-year storm surge) is assumed to coincide with the
minimum interior water level.

In the design of the Eastern Schedlt Storm-Surge Barrier, the Delta Commit-
tee in The Netherlands applied a simple risk-cost (in terms of lives) evaluation
to set the design safety level. The Delta Committee set the total design load on
the storm-surge barrier at the load with an exceedance probability 2.5×10−4 per
year (i.e., the 4000-year water level) determined by integration of the joint prob-
ability distribution among storm-surge levels, basin levels, and the wave-energy
spectrum. A single-failure criterion then was developed for the functioning of
all major components of the storm-surge barrier (concrete piers, steel gates,
foundation, sill, etc.) under the selected design load. The failure criterion was
tentatively established at 10−7 per year on the basis of the following reasoning.
Fatality statistics for The Netherlands indicate that the average probability
of death resulting from an accident is 10−4 per year. Previous experience has
shown that the failure of a sea-defence system may result in 103 casualties.
Thus a normal safety level can be guaranteed only if the probability of failure
of the system is less than or equal to 10−7 per year. Comparison of the worst-case
approach with the probabilistic-load approach resulted in a 40 percent reduc-
tion in the design load when the actual, societally acceptable protection failure
hazard was considered (Vrijling, 1993). This illustrates that when a compre-
hensive risk assessment is performed, societally acceptable safety can be main-
tained (and in some cases improved) while at the same time effectively using
scarce financial resources. Some work on societally acceptable risk and intangi-
ble factors can be found elsewhere (Jonkman et al., 2003; Vrijling et al., 1995).

8.4 Applications of Risk-Based
Hydrosystem Design

In this section, two examples are described to illustrate the applications of
risk-based design of hydrosystems. One is pipe culverts for highway drain-
age, and the other is flood-damage-reduction projects implemented by the
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U.S. Army Corps of Engineers. The first example involves optimal risk-based
design considering only hydrologic inherent uncertainty, whereas the second
example considers uncertainties from hydraulic and economic aspects.

8.4.1 Optimal risk-based pipe culvert
for roadway drainage

The basic functions of highway drainage structures are (1) as hydraulic facil-
ities to safely convey floods under highways during all but the most severe
flooding conditions and (2) as portions of the highway to move highway traffic
freely over stream channels. There are three general types of drainage struc-
tures: bridges, box culverts, and pipe culverts. Conventionally, bridges refer to
structures measuring more than 20 ft along the roadway centerline (AASHTO,
1979). Box culverts are usually built of concrete with rectangular openings. Pipe
culverts can be in various geometric forms, such as circular, arch, etc., and can be
made of several different materials, such as steel, cast iron, concrete, or plastic.

The design of highway drainage structures involves both hydraulic design
and structural design. The discharge associated with the critical flood that
starts to cause hazards to life, property, and stream stability is termed as the
hydraulic design discharge. The process to select the design discharge and to
perform the necessary hydraulic computations for a proposed highway struc-
ture is called hydraulic design. In practice, the design discharge is one-to-one
related to the design frequency through frequency analysis. Therefore, the de-
sign event also can be characterized by the design frequency. In this example,
the design frequency refers to an annual exceedance probability or its reciprocal,
the design return period.

The example problem under consideration is to design a circular culvert
under a two-lane highway. The culvert is 100 ft long. The equivalent average
daily traffic is 3000 vehicles per day. The discount rate used is 7.125 percent,
and the useful service life of the culvert structure is estimated to be 35 years.
Detailed descriptions of this example are given by Tung and Bao (1990).

In this example, only the inherent hydrologic and parameter uncertainties
are considered. The primary objectives are (1) to search for the optimal de-
sign parameters associated with the minimum total annual expected cost for
the culvert and (2) to investigate the sensitivity of the optimal design parame-
ters with respect to (a) the hydrologic parameter uncertainty, (b) the length of
streamflow records, (c) the distribution model of flood flow, and (d) the maximum
flood-damage cost. More specifically, the optimal design parameters considered
in this example are the optimal design return period T and the associated least
total annual expected cost (LTAEC).

The estimated sample mean and sample standard deviation for the flood flow
are 47.9 and 71.9 ft3/s, respectively. The skewness coefficient of streamflow for
the original scale and log-transformed scale are assumed to be 0.5 and 0.2,
respectively.

In the sensitivity analysis, the optimal total annual expected cost was calcu-
lated for various record lengths n of 10, 20, 40, 60, and 100 years; for maximum
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flood damage cost Dmax of $928, $1500, $3500, and $4500; and for flood flow dis-
tribution models of normal, lognormal, Pearson type 3, and log-Pearson type 3
probability distributions.

The cost function representing the annual installation (first) cost of the cul-
vert is derived on the basis of data from Corry et al. (1980) using regression
analysis:

AFC = 1.0215 − 2.62 × 10−7q2
c (8.38)

where AFC is the annual first cost ($), and qc is the design discharge (ft3/s). The
R2 of this regression equation is 0.976.

The damage function D(q), approximating the original discrete form in Corry
et al. (1980) by a continuous function, can be expressed as

D(q|qc) =


Dmax q ≥ qmax

Dmax

(
q − qc

qmax − qc

)
qc ≤ q ≤ qmax

0 q ≤ qc

(8.39)

where Dmax is the maximum flood damage cost, qmax is the flood magnitude
corresponding to Dmax, and qc is the design discharge. It is understood that, in
general, qmax will be increased as a result of raising the design discharge qc.
The rate of increase in qmax will slow down as qc increases. The damage function
used, for illustration, is shown in Fig. 8.13, in which qmax is determined from

qmax = 210 + qc − q0.94
c (8.40)
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Figure 8.13 Flood-damage function in risk-based culvert design example.
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Because of the complexity of the functional form of the objective function,
it is difficult to solve Eqs. (8.31) and (8.33) analytically. Therefore, optimum
search techniques are useful to solve the problem. However, gradient search
techniques are inappropriate for use in this case because the gradient of the
objective function is not easily computable. Among the search techniques that
do not require knowledge of gradient of the objective function, Fibonacci search
is an efficient technique to be used for this single-decision variable-optimization
problem (Sivazlian and Stanfel, 1974).

Fibonacci search applies the sequential search strategy that successively re-
duces the feasible decision variable interval to 1/FN its original size with just
N function evaluations. The final decision-variable interval can be made as
close to the optimal solution as the desired accuracy. FN is called the N th
Fibonacci number in the Fibonacci sequence FN , for i = 0, 1, 2, 3, . . . , whose
value is given by the recurrence relation

F0 = F1 = 1
(8.41)

Fi+1 = Fi + Fi−1 i ≥ 1

The computational procedures for determination of the optimal return period
corresponding to the optimal capacity in the risk-based design of a pipe culvert
considering the hydrologic inherent and parameter uncertainties is illustrated
in Fig. 8.14.

The optimal design frequency T ∗ and the associated LTAEC under different
record lengths n and streamflow probability distributions with maximum flood
damage cost (Dmax = $928) are listed in Table 8.3. The values in the columns
for n = 10–100 are calculated by considering hydrologic parameter uncertainty,
whereas the values in the column with n = ∞ were calculated without consid-
ering hydrologic parameter uncertainty.

Comparing the two design methods, the value of the LTAEC without con-
sidering parameter uncertainty is always smaller than the value considering
parameter uncertainty regardless of the probability distributions or values of
Dmax. This observation shows that neglect of the hydrologic parameter uncer-
tainty could lead to an underestimation of the total expected cost.

The value of LTAEC decreases as the record length increases. This is expected
because the effect of hydrologic parameter uncertainty involved in estimating
the second cost diminishes as the record length for streamflow gets longer. The
difference in LTAEC values calculated by the two methods, for Dmax = $928
and n > 20, is only about 3 percent for any of the four probability distributions
considered. However, the higher the value of Dmax, the more dominant the sec-
ond cost becomes in the objective function evaluation. Therefore, the difference
in LTAEC values by the two methods at the same record length will be larger
as Dmax is increased.

Examining the T ∗ values in Table 8.3, the difference in T ∗ between the
two methods is less than 20 percent in most cases. Also, for fixed distribution
and sample size, the optimal T ∗ increases as Dmax increases (see Table 8.4).
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Input flood distribution fq(q), record 
length n, and cost functions. 

Select a design return period T o by 
Fibonacci sequence. 

Calculate design discharge qc = f (T o)
and first cost FC(T o)

Calculate average damage cost D(T ) for 
different frequencies T  by Eq. (8.35) 

Calculate annual expected damage cost 
for T o by Eq. (8.36)

Calculate total annual expected cost 
for T o TAEC(T o)

Determine optimal T associated with
the least total annual expected cost. 

Last design T ? 
No

Yes 

Figure 8.14 Flowchart of optimal risk-based design of
a pipe culvert.

This confirms the original intuition. However, there does not exist the same
consistent tendency in T ∗ as with the LTAEC shown earlier. Therefore, when
T ∗ is considered as a criterion in the comparison of the two design methods, it
is difficult to conclude which method tends to be more conservative.

Figure 8.15 shows of the total annual expected cost function, annual first-cost
function, and annual second-cost function versus the design return period T
with record length varying from 10 to 100 years at Dmax = $4500 for the log-
normal probability distribution. Similar behavior was observed for three other
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TABLE 8.3 Optimal Design Return Period T∗ and LTAEC for Different Distributions
and Record Lengths When Dmax = $928

Record length (in years)

Optimal
Flood distribution design 10 20 40 60 100 ∞
Normal T ∗ (years) 4.82 4.62 4.55 4.55 4.20 4.00

LTAEC ($) 473.5 461.7 456.2 454.7 453.5 448.1

Lognormal T ∗ (years) 5.79 6.00 6.27 6.55 6.20 6.96
LTAEC ($) 446.7 433.9 428.1 425.9 423.2 420.2

Pearson type 3 T ∗ (years) 4.52 4.62 4.55 4.55 4.55 4.00
LTAEC ($) 479.9 468.3 462.6 461.0 459.8 454.1

Log-Pearson type 3 T ∗ (years) 5.79 6.00 6.20 6.41 6.13 6.68
LTAEC ($) 450.5 438.0 432.3 430.2 427.4 424.6

SOURCE: After Tung and Bao (1990).

types of distributions. From Fig. 8.15 it is clear that the annual second cost
(ASC) and the total annual expected cost (TAEC) decrease as the record length
increases. Therefore, the LTAEC will be smaller when the record length gets
longer. However, the corresponding T ∗, as discussed earlier, may not necessarily

TABLE 8.4 List of Optimal Design Return Period (T∗) Under Different Record Lengths, Flood
Distributions, and Maximum Flood Damage

Record length (in years)

Flood
Dmax distribution 10 20 40 60 100 ∞
$928 N 4.82 4.62 4.55 4.55 4.20 4.00

LN 5.79 6.00 6.27 6.55 6.20 6.96
P3 4.62 4.62 4.55 4.55 4.55 4.00
LP3 5.79 6.00 6.20 6.41 6.13 6.68

$1500 N 6.62 6.75 6.37 7.03 6.68 6.96
LN 7.51 7.99 7.99 7.79 7.58 7.03
P3 6.41 6.62 7.03 6.75 6.48 6.96
LP3 7.37 6.68 7.86 7.51 7.03 7.03

$2500 N 10.47 8.13 9.51 8.48 8.75 9.17
LN 10.41 10.61 10.06 9.44 9.30 10.96
P3 9.17 9.72 8.89 8.13 7.79 7.03
LP3 9.85 9.92 9.51 9.44 8.75 10.34

$3500 N 13.51 12.75 12.89 13.30 12.54 11.03
LN 12.27 12.27 11.37 11.65 12.13 11.03
P3 11.71 11.65 11.16 11.44 11.37 11.03
LP3 11.51 11.58 11.30 11.44 11.65 11.03

$4500 N 17.98 17.71 16.26 14.75 15.71 12.89
LN 14.61 13.92 13.85 13.92 13.64 11.03
P3 14.26 13.78 13.92 13.85 12.68 11.03
LP3 13.57 13.09 13.37 13.02 12.61 11.03

NOTE: N = normal; LN = lognormal; P3 = Pearson type 3; LP3 = log-Pearson type 3
SOURCE: After Tung and Bao (1990).
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Figure 8.15 Total annual expected costs in optimal risk-based design of pipe culvert with
various record lengths under lognormal distribution. (After Tung and Bao, 1990.)

become smaller as the record length increases. The inconsistent behavior be-
tween T ∗ and LTAEC in comparing the two design methods is mainly attributed
to the nonlinear and nonmonotonic relationship between T ∗ and LTAEC.

It can be seen from Fig. 8.15 that the total annual expected cost (TAEC) curves
are very flat in a range of design frequencies from 5 to 20 years for this example.
Therefore, from a practical point of view, a pipe culvert could be overdesigned
about 5 to 10 years above the optimal design frequency to give more confidence
in the safety protection of the structure with only a small fraction of extra
annual capital investment.

8.4.2 Risk-based analysis for
flood-damage-reduction projects

A flood-damage-reduction plan includes measures that decrease damage by
reducing discharge, stage, and/or damage susceptibility (U.S. Army Corps of
Engineers, 1996). For federal projects in the United States, the objective of the
plan is to solve the problem under consideration in a manner that will “. . .
contribute to national economic development (NED) consistent with protecting
the Nation’s environment, pursuant to national environmental statutes, appli-
cable executive orders, and other Federal planning requirements” (U.S. Water
Resources Council, 1983). In the flood-damage-reduction planning traditionally
done by the U.S. Army Corps of Engineers (Corps), the level of protection pro-
vided by the project was the primary performance indicator (Eiker and Davis,
1996). Only projects that provided a set level of protection (typically from the
100-year flood) would be evaluated to determine their contribution to NED,
effect on the environment, and other issues. The level of protection was set
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without regard to the vulnerability level of the land to be protected. In order to
account for uncertainties in the hydrologic and hydraulic analyses applied in
the traditional method, safety factors, such as freeboard, are applied in project
design in addition to achieving the specified level of protection. These safety fac-
tors were selected from experience-based rules and not from a detailed analysis
of the uncertainties for the project under consideration.

The Corps now requires risk-based analysis in the formulation of flood-
damage-reduction projects (Eiker and Davis, 1996). In this risk-based analysis,
each of the alternative solutions for the flooding problem is evaluated to deter-
mine the expected net economic benefit (benefit minus cost), expected level of
protection on an annual basis and over the project life, and other decision cri-
teria. These expected values are computed with explicit consideration of the
uncertainties in the hydrologic, hydraulic, and economic analyses used in plan
formulation. The risk-based analysis is used to formulate the type and size of
the optimal plan that will meet the study objectives. The Corps policy requires
that this plan be identified in every flood-damage-reduction study. This plan
may or may not be the recommended plan based on “additional considerations”
(Eiker and Davis, 1996). These additional considerations include environmen-
tal impacts, potential for fatalities, and acceptability to the local population.

In the traditional approach to planning flood-damage-reduction projects, a
discharge-frequency relation for the project site is obtained through frequency
analysis at or near gauge locations or through frequency transposition, re-
gional frequency relations, rainfall-runoff models, or other methods described
by the U.S. Army Corps of Engineers (1996) at ungauged stream locations.
Hydraulic models are used to develop stage-discharge relations for the project
location. Typically, one-dimensional steady flows are analyzed with a standard
step-backwater model, but in some cases complex hydraulics are simulated
using an unsteady-flow model or a two-dimensional flow model. Stage-damage
relations are developed from detailed economic evaluations of primary land
uses in the flood plain, as described in U.S. Army Corps of Engineers (1996).
Through integration of the discharge-frequency, stage-discharge, and stage-
damage relations, a damage-frequency relation is obtained. By integration of
the damage-frequency relations for without-project and various with-project
conditions, the damages avoided by implementing the various projects on an
average annual basis can be computed. These avoided damages constitute the
primary benefit of the projects, and by subtracting the project cost (converted to
an average annual basis) from the avoided damages, the net economic benefit
of the project is obtained.

The traditional approach to planning of flood-damage-reduction projects
seeks to maximize net economic benefits subject to the constraint of achieving
a specified level of protection. That is, the flood-damage-reduction alternative
that maximizes net economic benefits and provides the specified level of protec-
tion would be the recommended plan unless it was unacceptable with respect
to the additional considerations.

Risk-based analysis offers substantial advantages over traditional methods
because it requires that the project resulting in the maximum net economic
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benefit be identified without regard to the level of protection provided. There-
fore, the vulnerability (from an economic viewpoint) of the flood-plain areas
affected by the project is considered directly in the analysis, whereas envi-
ronmental, social, and other aspects of vulnerability are considered through
the additional considerations in the decision-making process. In the example
presented in the Corps manual on risk-based analysis (U.S. Army Corps of
Engineers, 1996), the project that resulted in the maximum net economic ben-
efit provided a level of protection equivalent to once, on average, in 320 years.
However, it is possible that in areas of low vulnerability, the project resulting
in the maximum net economic benefit could provide a level of protection less
than once, on average, in 100 years. A more correct level of protection is com-
puted in the risk-based analysis by including uncertainties in the probability
model of floods and the hydraulic transformation of discharge to stage rather
than accepting the expected hydrologic frequency as the level of protection.
This more complete computation of the level of protection eliminates the need
to apply additional safety factors in the project design and results in a more
correct computation of the damages avoided by implementation of a proposed
project.

Monte Carlo simulation is applied in the risk-based analysis to integrate
the discharge-frequency, stage-discharge, and stage-damage relations and the
respective uncertainties. These relations and the respective uncertainties are
shown in Fig. 8.16. The uncertainty in the discharge-frequency relation is de-
termined by the methods used to compute confidence limits described by the
Interagency Advisory Committee on Water Data (1982), which are reviewed
in Sec. 3.8. For gauged locations, the uncertainty is determined directly from
the gauge data; for ungauged locations, the probability distribution is fit to the
estimated flood quantiles, and an estimated equivalent record length is used to
compute uncertainty through the confidence-limits approach. The uncertainty
in the stage-discharge relation is determined from gauge data, if available, cal-
ibration results if a sufficient number of high-water marks are available, or
Monte Carlo simulation considering the uncertainties in the component input
variables (Manning’s n and cross-sectional geometry) for the hydraulic model
(e.g., U.S. Army Corps of Engineers, 1986). The uncertainty in the stage-damage
relation is determined by using Monte Carlo simulation to aggregate the un-
certainties in components of the economic evaluation. At present, uncertainty
distributions for structure elevation, structure value, and contents value are
considered in the analysis.

The Monte Carlo simulation procedure for the risk-based analysis of flood-
damage-reduction alternatives includes the following steps applied to both
without-project and with-project conditions (U.S. Army Corps of Engineers,
1996):

1. A value for the expected exceedance (or nonexceedance) probability is se-
lected randomly from a uniform distribution. This value is converted into a
random value of flood discharge by inverting the expected flood-frequency
relation.
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Figure 8.16 Uncertainty in discharge, stage, and damage as considered in the U.S.
Army Corps of Engineers risk-based approach to flood-damage reduction studies. (After
Tseng et al., 1993.)

2. A value of a standard normal variate is selected randomly, and it is used to
compute a random value of error associated with the flood discharge obtained
in step 1. This random error is added to the flood discharge obtained in step 1
to yield a flood-discharge value that includes the effect of uncertainty in the
probability model of floods.

3. The flood discharge obtained in step 2 is converted to the expected flood stage
using the expected stage-discharge relation.

4. A value of a standard normal variate is selected randomly, and it is used to
compute a random value of error associated with the flood stage computed
in step 3. This random error is added to the flood stage computed in step 3
to yield a flood stage that includes the effects of uncertainty in the stage-
discharge relation and the probability model of floods. If the performance of
a proposed project is being simulated, level of protection may be determined
empirically by counting the number of flood stages that are higher than the
project capacity and dividing by the number of simulations.
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5. The flood stage obtained in step 4 is converted to the expected flood damage
using the expected flood-damage relation. If the performance of a proposed
project is simulated, the simulation procedure may end here if the simulated
flood stage does not result in flood damage.

6. A value of a standard normal variate is selected randomly, and it is used to
compute a random value of error associated with the flood damage obtained
in step 5. This random error is added to the flood damage obtained in step 5
to yield a flood-damage value that includes the effects of all the uncertain-
ties considered. If the flood-damage value is negative, it should be set equal
to zero.

Steps 1 through 6 are repeated as necessary until the values of the relevant
performance measures (average flood damage, level of protection, probability
of positive net economic benefits) stabilize to consistent values. Typically, 5000
simulations are used in Corps projects.

The risk-based approach, summarized in steps 1 through 6, has many similar-
ities with traditional methods, particularly in that the basic data and discharge-
frequency, stage-discharge, and stage-damage relations are the same. The risk-
based approach extends traditional methods to consider uncertainties in the
basic data and relations. The major new task in the risk-based approach is to
estimate the uncertainty in each of the relations. Approaches to estimate these
uncertainties are described in detail by the U.S. Army Corps of Engineers (1996)
and are not trivial. However, the information needed to estimate uncertainty
in the basic components variables is often collected in traditional methods but
not used. For example, confidence limits often are computed in flood-frequency
analysis, error information is available for calibrated hydraulic models, and
economic evaluations typically are done by studying in detail several repre-
sentative structures for each land-use category, providing a measure of the
variability in the economic evaluations. Therefore, an excessive data-analysis
burden relative to traditional methods may not be imposed on engineers and
planners in risked-based analysis.

Because steps 1 through 6 are applied to each of the alternative flood-damage-
reduction projects, decision makers will obtain a clear picture of the tradeoff
among level of protection, cost, and benefits. Further, with careful communica-
tion of the results, the public can be better informed about what to expect from
flood-damage-reduction projects and thus can make better-informed decisions
(U.S. Army Corps of Engineers, 1996).

8.5 Optimization of Hydrosystems
by Chance-Constrained Methods

In all fields of science and engineering, the decision-making process depends on
several parameters describing system behavior and characteristics. More often
than not, some of these system parameters cannot be assessed with certainty.
In a system-optimization model, if some of the coefficients in the constraints
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are uncertain, the compliance with the constraints, under a given set of solu-
tions, cannot be ensured with certainty. Owing to the random nature of the
constraint coefficients, a certain likelihood that constraints will be violated al-
ways exists. The basic idea of chance-constrained methods is to find the solution
to an optimization problem such that the constraints will be met with a speci-
fied reliability. Chance-constrained formulations have been applied to various
types of water resource problems such as groundwater quantity management
(Tung, 1986), groundwater quality management (Gorelick, 1982; Wagner and
Gorelick, 1987, 1989; Morgan et al., 1993; Ritzel et al., 1994) and monitoring
network design (Datta and Dhiman, 1996), reservoir operation (Loucks et al.,
1981; Houck, 1979; Datta and Houck, 1984), waste-load allocation (Lohani and
Thanh, 1978; Fujiwara et al., 1986, 1987; Ellis, 1987; Tung and Hathhorn,
1990), water distribution systems (Lansey et al., 1989), and freshwater inflow
for estuary salinity management (Tung et al., 1990; Mao and Mays, 1994). This
section describes the basic properties of chance-constrained models. In the next
section an application to waste-load allocation is presented for illustration.

Refer to the general nonlinear optimization problem as stated in Eqs. (8.1a–c).
Consider a constraint g(x) ≤ b, with x being a vector of decision variables. In
general, decision variables x in an optimization model are controllable without
uncertainty. Suppose that some of the parameters on the left-hand-side (LHS)
of the constraint g(x) and/or the right-hand-side (RHS) coefficient b are subject
to uncertainty. Because of the uncertainty, the compliance with the constraint
under a given solution set x cannot be ensured with absolute certainty. In other
words, there is a possibility that for any solution x, the constraint will be vio-
lated. Consequently, the chance-constrained formulation expresses the original
constraint in a probabilistic format as

P [g(x) ≤ b] ≥ α (8.42)

where P [·] is the probability and α is the specified reliability for constraint
compliance. Since this chance-constrained formulation involves probability, it
is not mathematically operational for algebraic solution. For this reason, the
deterministic equivalent must be derived. There are three cases in which the
random elements in Eq. (8.42) could occur: (1) only elements in g(x) are random,
(2) only the RHS b is random, and (3) both g(x) and b are random.

The simplest case is the case 2, where only the RHS coefficient b is random.
The derivation of deterministic equivalent of the chance-constraint for this case
can be done as follows: The constraint can be rewritten as

P [g(x) ≤ B ] ≥ α (8.43)

where B is a random RHS coefficient. Since Eq. (8.43) can be written as

P [g(x) ≥ B ] ≤ 1 − α (8.44)
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then Eq. (8.44) can be expressed as

FB [g(x)] ≤ 1 − α (8.45)

in which FB [·] is the cumulative distribution function (CDF) of random RHS B.
The deterministic equivalent of the original chance-constraint Eq. (8.43) can be
expressed as

g(x) ≤ b1−α (8.46)

where, referring to Fig. 8.17, b1−α is the (1 − α)th quantile of the random RHS
coefficient B satisfying P (B ≤ b1−α) = 1 − α. If the RHS coefficient B is a
normal random variable with mean µb and standard deviation σb, Eq. (8.46)
can be written as

g(x) ≤ µb + z1−ασb (8.47)

with z1−α being the (1 − α)th standard normal quantile.
In the case that only the elements in g(x) are random and the distribution

functions are known, the chance-constraint can be expressed as

P [G(x) ≤ b] ≥ α (8.48)

For a general nonlinear function G(x), the difficulty lies in the derivations of
exact probability distribution and statistical moments of G(x) as functions of
unknown decision variables. In this circumstance, statistical moments of G(x)
can be estimated by uncertainty-analysis methods such as those described in
Tung and Yen (2005). The assessment of the distribution for G(x) is, at best, to
be made subjectively. For the sake of discussion, assume that the distribution
function of G(x) is known. The deterministic equivalent of the chance-constraint
Eq. (8.48) can be expressed as

F −1
G(x)(α) ≥ b (8.49)

1 – α

fb(b)

b1–α b

α

Figure 8.17 Probability density function of the random
right-hand-side coefficient B.
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where F −1
G(x)(α) is the αth quantile of the random G(x), which is the function of

unknown decision variables x. In general, F −1
G(x)(α) in Eq. (8.48) is a nonlinear

equation of x even if G(x) is a linear function of x, as will be shown later.
The third case is when both G(x) and the RHS coefficient B are random. The

chance-constraint then can be expressed as

P [G(x) − B ≤ 0] ≥ α (8.50)

The deterministic equivalent of Eq. (8.49) can be derived as

F −1
G(x)−B (α) ≥ 0 (8.51)

where F −1
G(x)−B (α) is the inverse of the CDF of random G(x) − B taken on the

value of α.
As a special case, consider an LP formulation as stated in Eq. (8.3) in which

technological coefficients Aand/or RHS coefficients bare subject to uncertainty.
By imposing a reliability restriction α on the system constraints, the LP model
can be transformed into the following chance-constrained formulation:

Maximize c t x (8.52a)

subject to P (Ax ≤ b) ≥ α (8.52b)

In a chance-constrained LP model, the elements in A, b, and c can be random
variables. When the objective function coefficient cj ’s are random variables,
it is common to replace them by their expected values. Consider the follow-
ing three cases: (1) elements of the technological coefficient matrix (Aij ’s) are
random variables, (2) elements of the RHS vector Bi ’s are random variables, and
(3) elements Aij and Bi are simultaneously random variables. In the following
derivations, it is assumed that random technological coefficients and random
RHS coefficient are correlated within a constraint and that these coefficients
are uncorrelated between constraints.

Consider that the RHS of the ith constraint Bi is subject to uncertainty. Fur-
thermore, assume that its distribution and statistical moments are known. In
this case, the deterministic equivalent of the chance-constraint can be obtained
easily from Eq. (8.46) as

n∑
j =1

aij xj ≤ bi,1−αi for i = 1, 2, . . . , m (8.53)

and the constraint form remains linear.
Consider the case that the technological coefficients aij ’s of the ith constraint

are random. The deterministic equivalent of the chance-constraint

P

 n∑
j =1

Aij xj ≤ bi

 ≥ αi
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can be derived as (Kolbin, 1977; Vajda, 1972)

n∑
j =1

E(Aij)xj + F −1
Zi

(αi)
√

x tCix ≤ bi (8.54)

where E(Aij) is an expectation of the technological coefficient Aij , Ci is an n×n
covariance matrix of n random technological coefficients (Ai1, Ai2, . . . , Ain) in
the ith constraint, and F −1

Zi
(αi) is the appropriate quantile for the αi percentage

given by the CDF of standardized left-hand-side (LHS) terms. That is,

Zi = LHSi − E(LHSi)√
Var(LHSi)

=
∑n

j =1 Aij xj −∑n
j =1 E( Aij)xj√

x tCix
(8.55)

If all Aij ’s are independent random variables, that is, ρ( Aij , Aij ′ ) = 0, for
j �= j ′, matrix Ci is a diagonal matrix of variances of Aij . To quantify F −1

Zi
(αi),

the distribution of LHS must be known or assumed. Note that the LHSs in
an LP model are the sum of several random variables. By the central limit
theorem (see Sec. 2.6.1), the random LHS can be approximated as a normal
random variable. Therefore, Eq. (8.54) can be written as

n∑
j =1

E(Aij)xj + �−1(αi)
√

x tCix ≤ bi (8.56)

with �(·) being the standard normal CDF. From Eq. (8.55) one realizes that
when Aij ’s are random, the resulting deterministic equivalents of the chance
constraints are no longer linear functions of the decision variables. The chance-
constrained model has to be solved by nonlinear programming algorithms. In
the next subsection of application, a sequential LP algorithm is used to linearize
Eq. (8.56).

Finally, when both the technological coefficients and the RHS coefficient of the
ith constraint are random, the chance-constraint format, referring to Eq. (8.50),
can be written as

P

 n∑
j =1

Aij xj − Bi ≤ 0

 ≥ αi (8.57)

Following the same procedure as described earlier, the deterministic equivalent
of Eq. (8.57) can be derived, assuming normal distribution for the random terms
in Eq. (8.57), as

n∑
j =1

E(Aij)xj + �−1(αi)

√√√√x tCix + 2
n∑

j =1

xj Cov( Aij , Bi) + σ 2
Bi

≤ 0 (8.58)

in which Cov(Aij , Bi) is the covariance between the random technological coef-
ficient Aij and the random RHS coefficient Bi for the ith constraint.
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8.6 Chance-Constrained Water-Quality Management

Water-quality management is the practice of protecting the physical, chemi-
cal, and biologic characteristics of various water resources. Historically, such
efforts have been guided toward the goal of assessing and controlling the im-
pacts of human activities on the quality of water. To implement water-quality
management measures in a conscientious manner, one must acknowledge both
the activities of the society and the inherently random nature of the stream
environment itself (Ward and Loftis, 1983). In particular, the environments in
which decisions are to be made concerning in-stream water-quality manage-
ment are inherently subject to many uncertainties. The stream system itself,
through nature, is an environment abundant with ever-changing and complex
processes, both physically and biologically.

Public Law 92-500 (PL 92-500) in the United States provided impetus for
three essential tasks, one of which is to regulate waste-water discharge from
point sources from industrial plants, municipal sewage treatment facilities, and
livestock feedlots. It also requires treatment levels based on the best available
technology. However, if a stream segment is water-quality-limited, in which the
waste assimilative capacity is below the total waste discharge authorized by
PL 92-500, more stringent controls may be required.

For streams under water-quality-limited conditions or where effluent stan-
dards are not implemented, the waste-load-allocation (WLA) problem is con-
cerned with how to effectively allocate the existing assimilative capacity of
the receiving water body among several waste dischargers without detrimen-
tal effects to the aquatic environment. As an integral part of water-quality
management, WLA is an important but complex decision-making task. The
results of WLA have profound implications on regional environmental protec-
tion. A successful WLA decision requires sound understanding of the physi-
cal, biologic, and chemical processes of the aquatic environment and good ap-
preciation for legal, social, economical, and environmental impacts of such a
decision.

Much of the research in developing predictive water-quality models has been
based on a deterministic evaluation of the stream environment. Attempts to
manage such an environment deterministically imply that the compliance with
water-quality standards at all control points in the stream system can be en-
sured with absolute certainty. This, of course, is unrealistic. The existence of
the uncertainties associated with stream environments should not be ignored.
Thus it is more appropriate in such an environment to examine the performance
of the constraints of a mathematical programming model in a probabilistic con-
text. The random nature of the stream environment has been recognized in the
WLA process. Representative WLA using a chance-constrained formulation can
be found elsewhere (Lohani and Thanh, 1979; Yaron, 1979; Burn and McBean,
1985; Fujiwara et al., 1986, 1987; Ellis, 1987; Tung and Hathhorn, 1990).

In the context of stochastic management, the left-hand-side (LHS) coefficients
of the water-quality constraints in a WLA model are functions of various ran-
dom water-quality parameters. As a result, these LHS coefficients are random
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variables as well. Furthermore, correlation exists among these LHS coeffi-
cients because (1) they are functions of the same water-quality parameters and
(2) some water-quality parameters are correlated with each other. Moreover,
the water-quality parameters along a stream are spatially correlated. There-
fore, to reflect the reality of a stream system, a stochastic WLA model should
account for the randomness of the water-quality parameters, including spatial
and cross-correlations of each parameter.

The main objective of this section is to present methodologies to solve a
stochastic WLA problem in a chance-constrained framework. The randomness
of the water-quality parameters and their spatial and cross-correlations also are
taken into account. A six-reach example is used to demonstrate these method-
ologies. Factors affecting the model solution to be examined are (1) the distri-
bution of the LHS coefficients in water-quality constraints and (2) the spatial
correlation of water-quality parameters.

8.6.1 Optimal stochastic waste-load allocation

Deterministic waste-load allocation model. Although any number of pollutants
may be considered in the overall quality management of a river system, in
this example, application a biochemical oxygen demand–dissolved oxygen
(BOD-DO) water-quality model is considered.

In LP format, the deterministic WLA model considered herein can be written
as

Maximize
N∑

j =1

(Bj + Dj ) (8.59a)

subject to

1. Constraints on water quality:

a0i +
ni∑

j =1

�i j Bj +
ni∑

j =1

�i j Dj ≤ DOsat
i −DOstd

i for i = 1, 2, . . . , M (8.59b)

2. Constraints on treatment equity:∣∣∣∣Bj

Ij
− Bj ′

Ij ′

∣∣∣∣ ≤ Ea for j �= j ′ (8.59c)

3. Constraints on treatment efficiency:

e j ≤ 1 − Bj

Ij
≤ ē j for j = 1, 2, . . . , N (8.59d)

where Bj , Dj , and Ij are the effluent waste concentrations (mg/L BOD), ef-
fluent DO deficit concentration (mg/L), and raw waste influent concentration
(mg/L BOD) at discharge location j , respectively, and N is the total number
of waste dischargers. The LHS coefficients aoi, �i j , and �i j in Eq. (8.59b) are
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the technological transfer coefficients relating impact on DO concentrations at
downstream locations i resulting from the background waste and waste input at
an upstream location j . These technological transfer coefficients are functions
of water-quality parameters such as reaeration and deoxygenation rates, flow
velocity, etc. DOstd

i and DOsat
i represent the required DO standard and saturated

DO concentration at control point i, respectively. Finally, Ea is the allowable dif-
ference (i.e., equity) in treatment efficiency between two waste dischargers, and
e j and ē j are the lower and upper bounds of waste-removal efficiency for the j th
discharger, respectively. The importance of incorporating the treatment equity
in the WLA problems is discussed by many researchers (Gross, 1965; Loucks
et al., 1967; Miller and Gill, 1976; Brill et al., 1976; Chadderton et al., 1981).

The water-quality constraint relating the response of DO to the effluent
waste can be defined by water-quality models such as the Streeter-Phelps
equation (Streeter and Phelps, 1925) or its variations (Dobbins, 1964; Krenkel
and Novotny, 1980). To demonstrate the proposed methodologies, the original
Streeter-Phelps equation is used herein to derive the water-quality constraints.
Expressions for �i j and �i j , based on the Streeter-Phelps equation, are shown
in Appendix 8A. The Streeter-Phelps equation for DO deficit is given as follows:

Dx = Kd L0

Ka − Kd

(
e−Kd x/U − e−Kax/U )+ D0e−Kax/U (8.60)

where Dx is the DO deficit concentration (mg/L) at stream location x (mi), Kd
is the deoxygenation coefficient for BOD (days−1), Ka is the reaeration-rate
coefficient (days−1), L0 is the BOD concentration at the upstream end of the
reach (that is, x = 0), D0 is the DO deficit concentration at the upstream end
of the reach, and U is the average streamflow velocity in the reach (mi/day).

Chance-constrained waste-load allocation model. The deterministic WLA model
presented in Eqs. (8.59a–d) serves as the basic model for deriving the stochastic
WLA model. Considering the existence of uncertainty within the stream envi-
ronment, the water-quality constraints given by Eq. (8.59b) can be expressed
probabilistically as

P

a0i +
ni∑

j =1

�i j Bj +
ni∑

j =1

�i j Dj ≤ DOsat
i − DOstd

i

 ≥ αi for i = 1, 2, . . . , M

(8.61)

Based on Eq. (8.53), the deterministic equivalent of Eq. (8.60) can be derived
as

ni∑
j =1

E(�i j)Bj +
ni∑

j =1

E(�i j)Dj + F −1
Z (αi)

√
(B, D)tC (Θi, Ωi)(B, D) ≤ R

′
i

(8.62)
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in which R
′
i = DOsat

i − DOstd
i − E(a0i), (B, D) is the column vector of BOD and

DO deficit concentrations in waste effluent, and C (Θi, Ωi) is the covariance
matrix associated with the technological transfer coefficients in the ith water-
quality constraint, including a0i. The stochastic WLA model to be solved consists
of Eqs. (8.58a), (8.62), (8.58c), and (8.58d).

Assessments of statistical properties of random technological coefficients. To solve
the stochastic WLA model, it is necessary to assess the statistical properties
of the random LHS in the chance-constraint Eq. (8.62). As shown in
Appendix 8A, the technological transfer coefficients �i j and �i j are nonlinear
functions of the stochastic water-quality parameters that are cross-correlated
among them within each stream reach and spatially correlated between stream
reaches. Furthermore, the complexities of the functional relationships between
these transfer coefficients and the water-quality parameters increases rapidly
as the control point moves downstream. Hence the analytical derivation of the
statistical properties of �i j and �i j becomes a formidable task given even a
small number of reaches. As a practical alternative, simulation procedures may
be used to estimate the mean and covariance structure of the random techno-
logical coefficients within a given water-quality constraint.

The assumptions made in the Monte Carlo simulation to generate water-
quality parameters in all reaches of the stream system are as follows: (1) The
representative values for the reaeration coefficient, deoxygenation coefficient,
and average flow velocity in each reach are second-order stationary; i.e., the
spatial covariance functions of water quality-parameters are dependent only on
the “space lag” or separation distance; (2) correlation between the reaeration
coefficient and average flow velocity exists only within the same stream reach;
(3) background DO and BOD concentrations at the upstream end of the entire
stream system are independent of each other and of all other water-quality
parameters; and (4) all water-quality parameters follow a normal distribution.

In the simulation, variance-covariance matrices representing the spatial cor-
relation of a water-quality parameter can be derived from the variogram models
(Journel and Huijbregts, 1978) in the field of geostatistics. Three commonly used
variogram models are:

1. Transitive variogram model:

Cov(|h|) = σ 2
(

1 − |h|
ho

)
(8.63)

2. Spherical variogram model:

Cov(|h|) = σ 2

[
1 − 3

2

( |h|
ho

)
+ 1

2

( |h|
ho

)3
]

(8.64)
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3. Gaussian variogram model:

Cov(|h|) = σ 2
[
exp

(−|h|2
2h2

o

)]
(8.65)

in which Cov(|h|) represents the value of covariance between two measure-
ments of the same water-quality parameter separated by a distance |h| apart,
ho is the length of zone of influence, and σ 2 is the variance of the water-
quality parameter within a given reach. The value of correlation coefficient
ρ(|h|) can be calculated as ρ(|h|) = Cov(|h|)/σ 2. When the distance between
reaches exceeds ho, the value of the covariance function goes to zero, and the
corresponding correlation coefficient is zero as well. Graphically, the three
variogram models are shown in Fig. 8.18.

To illustrate the concept, consider the water-quality parameters’ reaeration
coefficient Ka and average flow velocity U. From the variogram models, the
correlation matrix for the two parameters can be constructed as follows:

R(K a, U ) =
[

RKa,Ka RKa,U

RU ,Ka RU ,U

]
(8.66)

in which K a = (Ka,1, Ka,2, . . . , Ka,N )t and U = (U1, U2, . . . , UN )t are vectors
of the reaeration coefficient and average velocity in each stream reach, respec-
tively (see Fig. 8.19). In Eq. (8.66), R(K a, K a), R(K a, U ), R(U, U ) are N × N
square symmetric correlation matrices, with N being the number of stream
reaches in the WLA model. Submatrices R(K a, K a) and R(U, U ) define the spa-
tial correlation of Ka and U between the reaches, whereas submatrix R(K a, U )
defines the cross-correlation between Ka and U within the same reach. Under
assumption 2 previously mentioned, the submatrix R(K a, U ) is a diagonal ma-
trix. For water-quality parameters that are not cross-correlated with other pa-
rameters but are spatially correlated, the associated correlation matrix has a
form similar to R(U, U ). For parameters that are spatially independent, their
correlation matrices are in the form of an identify matrix. Once the correlation
matrix of normal stochastic parameters within a reach and between reaches is
established according to the specified variogram model, generation of stochastic
water-quality parameters can be obtained easily by the procedures for gener-
ating multivariate random variates described in Sec. 7.5.2.

In summary, the simulation for generating spatially and cross-correlated
water-quality parameters can be outlined as the follows:

1. Select an appropriate variogram model for a given water-quality parameter,
and construct the corresponding covariance matrix C or correlation matrix R.

2. Apply procedures described in Sec. 7.5.2 to obtain the values of the water-
quality parameter for each reach in the WLA model.

3. Repeat steps 1 and 2 for all water-quality parameters.
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Figure 8.18 Variograms of different types: (a) transitive model; (b) spherical
model; (c) Gaussian model.
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Figure 8.19 Structure of covariance matrix C (K a, U ) for N -reach stream system.

For each set of the water-quality parameters generated by steps 1 through 3,
the values of the technological coefficients are computed. Based on the simu-
lated values, the mean and covariance matrices of the random technological
coefficients for each water-quality constraint are calculated and used in solving
the stochastic WLA problem. The simulation procedure described in this sub-
section to account for spatial correlation is called unconditional simulation in
the field of geostatistics (Journel and Huijbregts, 1978).

Technique for solving an optimal stochastic WLA model. The deterministic WLA
model presented previously follows an LP format and can be solved using
the simplex algorithm. However, the deterministic equivalents of the chance-
constrained water-quality constraints are nonlinear. Thus the problem is one of
nonlinear optimization, which can be solved by various nonlinear programming
techniques mentioned in Sec. 8.1.2.

In this example, linearization of the chance-constrained water-quality
constraints is done, and the linearized model is solved iteratively using the
LP simplex technique. More specifically, the algorithm selects an assumed
solution to the stochastic WLA model that is used to calculate the value of the
nonlinear terms in Eq. (8.62). The nonlinear terms then become constants and
are moved to the RHS of the constraints. The resulting linearized water-quality
constraints can be written as

ni∑
j =1

E(�i j)Bj +
ni∑

j =1

E(�i j)Dj ≤ R′
i − F −1

Z (αi)
√

( B̂, D̂)tC (Θi, Ωi)( B̂, D̂)

(8.67)

in which B̂ and D̂ are assumed solution vectors to the stochastic WLA model.
The linearized stochastic WLA model, replacing Eq. (8.62) by Eq. (8.67), can

be solved using LP techniques repeatedly, each time updating the previous
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solution values with those obtained from the current iteration, resulting in new
values for the RHS. The procedure is repeated until convergence criteria are met
between any two successive iterations. A flowchart depicting the procedures is
given in Fig. 8.20. Of course, alternative stopping rules could be incorporated
in the algorithm to prevent excessive iteration during the computation. Prior to
the application of these solution procedures, an assumption for the distribution
of the random LHS must be made to determine the appropriate value for the
term Fz(αi) in Eq. (8.67).

Owing to the nonlinear nature of the stochastic WLA model, the global op-
timum solution, in general, cannot be guaranteed. It is suggested that a few
runs of the solution procedure with different initial solutions be carried out to
ensure that the model solution converges to the overall optimum. A reasonable
initial solution is to select the waste effluent concentration for each discharger
associated with the upper bounds of their respective treatment levels. By doing
so, the initial solution corresponds to waste discharge at their respective lower

Specify initial solutions 
sands′ ′

′′

jj DB

Compute the squared 
root term in Eq. (8.67) 

using sands jj DB

Solve linearized stochastic WLA
model, using Eqs. (8.59a), 

(8.67), (8.59c), and (8.59d) by
LP algorithm

Replace old solution by 
new solution 

Optimal solution found 

Does the solution 
converge? No

Yes 

Figure 8.20 Flowchart for solving linearized chance-constrained
WLA model.
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limits. If the stochastic WLA solution is infeasible during the first iteration, it
is likely that the feasible solution to the stochastic WLA problem does not exist.
Hence time and computational effort could be saved in searching for an optimal
solution that might not exist.

Numerical example. The preceding chance-constrained WLA model is applied
to a six-reach example shown in Fig. 8.21. The means and standard deviations
for the water-quality parameters in each reach are given in Tables 8.5 and 8.6
based on the data reported in the literature (Churchill et al., 1962; Chadderton
et al., 1982; Zielinski, 1988).

To assess the mean and correlation matrix of the random technological co-
efficients in the water-quality constraints, the Monte Carlo simulation proce-
dure described in Sec. 6.5.2 is implemented to generate multivariate normal
water-quality parameters. Different numbers of simulation sets are generated
to examine the stability of the resulting means and covariance matrix of the
technological coefficients. It was found that the statistical properties of �i j
and �i j become stable using 200 sets of simulated parameters. In the exam-
ple, a positive correlation coefficient of 0.8 between the reaeration coefficient
and average flow velocity is used. Both normal and lognormal distributions are
assumed for the random LHS of the water-quality constraints

a0i +
ni∑

j =1

�i j Bj +
ni∑

j =1

�i j Dj (8.68)

in Eq. (8.67). Various reliability levels αi ranging from 0.85 to 0.99 for the
water-quality constraints are considered.

Figure 8.21 Schematic sketch of hypothetical stream in the waste-load allocation (WLA) example. (After Tung
and Hathhorn, 1989.)
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TABLE 8.5 Mean Values of Physical Stream Parameters Used in WLA Example

(a) Mean stream characteristics for each reach

Deoxygenation Reaeration Average Raw waste Effluent
coefficient coefficient stream velocity concentration flow rate

Reach Kd (L/day) Ka (L/day) (mi/day) I (mg/L BOD) (ft3/s)

1 0.6 1.84 16.4 1370 0.15
2 0.6 2.13 16.4 6.0 44.00
3 0.6 1.98 16.4 665 4.62
4 0.6 1.64 16.4 910 35.81
5 0.6 1.64 16.4 1500 3.20
6 0.6 1.48 16.4 410 0.78

(b) Background characteristics

Upstream Upstream Upstream
waste concentration flow rate DO deficit

L0 (mg/L BOD) Q0 (ft3/s) D0 (mg/L)

5.0 115.0 1.0

In the example, the length of each reach in the system is 10 mi, and the
spatial correlation of representative water-quality parameter values between
two reaches is computed based on the separation distance between the centers
of the two reaches. To examine the effect of spatial correlation structure on the
optimal waste-load allocation, two zones of influence (ho = 15 mi and ho = 30 mi)
along with the three variogram models, Eqs. (8.63) through (8.65), are used.
A value of ho = 15 mi implies that the water-quality parameters in a given
reach are spatially correlated only with the two immediate adjacent reaches.
For ho = 30 mi, the spatial correlation extends two reaches upstream and
downstream of the reach under consideration. The optimal solutions to the
stochastic WLA problem under these various conditions are presented in Tables
8.7 and 8.8.

TABLE 8.6 Standard Deviations Selected for Physical Stream Characteristics

(a) For each reach

Reach Deoxygenation coefficient Reaeration coefficient Average stream velocity
(units) Kd (L/day) Ka(L/day) U (ft3/s)

1–6 0.2 0.4 4.0

(b) Background characteristics

Upstream Upstream Upstream
waste concentration flow rate DO deficit

L0(mg/L BOD) Q0(ft3/s) D0(mg/L)

10.0 20.0 0.3
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TABLE 8.7 Maximum Total BOD Load that Can Be
Discharged for Different Reliability Levels and Spatial
Correlation Structures under Normal Distribution

ho = 15 mi ho = 30 mi

α I ∗ T S G T S G

0.85 671† 734 737 679 659 664 694
0.90 633 693 695 639 624 625 656
0.95 588 644 646 593 580 578 610
0.99 521 570 572 524 516 511 541

∗ I = independence; T = transitive model; S = spherical model;
G = Gaussian model.† Total BOD load concentration in mg/L.

Examining Tables 8.7 and 8.8, the maximum total BOD discharge, under a
given spatial correlation structure, reduces as the reliability of water-quality
constraints increases. This behavior is expected because an increase in water-
quality compliance reliability is equivalent to imposing stricter standards on
water-quality assurance. To meet this increased water-quality compliance re-
liability, the amount of waste discharge must be reduced to lower the risk of
water-quality violation at the various control points. When continuing to in-
crease the required reliability for the water-quality constraints, at some point
these restrictions could become too stringent, and feasible solutions to the prob-
lem are no longer obtainable.

From Tables 8.7 and 8.8, using a lognormal distribution for the LHS of water-
quality constraints yields a higher total BOD discharge than that under a nor-
mal distribution when the performance reliability requirement is 0.85. How-
ever, the results reverse themselves when reliability requirements are greater
than or equal to 0.90. This indicates that the optimal solution to the stochastic
WLA model depends on the distribution used for the LHS of the water-quality
constraints. From the investigation of Tung and Hathhorn (1989), a lognor-
mal distribution was found to best describe the DO deficit concentration in a
single-reach case. In other words, each term of the LHS in the water-quality

TABLE 8.8 Maximum Total BOD Load that Can Be
Discharged for Different Reliability Levels and Spatial
Correlation Structures under Lognormal Distribution

ho = 15 mi ho = 30 mi

α I ∗ T S G T S G

0.85 691‡ 753 755 699 676 686 712
0.90 633 692 694 640 623 626 655
0.95 560 614 616 565 554 551 582
0.99 424 496 498 425 420 388 471

∗ I = independence; T = transitive model; S = spherical model;
G = Gaussian model.‡ Total BOD load concentration in mg/L.
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constraints could be considered as a lognormal random variable. Therefore, the
LHS is the sum of correlated lognormal random variables. For the first two or
three reaches from the upstream end of the system, the distribution of the LHS
may close to lognormal because the number of terms in the LHS is few. How-
ever, considering the control point for farther-downstream reaches, the number
of terms in the LHS increases, and the resulting distribution may approach to
normal from the argument of the central limit theorem. Since the true distribu-
tion for the LHS of water-quality constraints is not known, it is suggested that
different distributions be used for model solutions and that the least amount
of total BOD load be applied for implementation.

Furthermore, the impacts of the extent of the spatial correlation of the water-
quality parameters (represented by the length of ho) and the structure (repre-
sented by the form of the variogram) on the results of the stochastic WLA
model also can be observed. When ho = 15 mi, where the spatial correlation of
the water-quality parameters extends only one reach, the maximum allowable
total BOD load, for all three variogram models, is higher than that of spatially
independent case. When the spatial correlation extends over two reaches (that
is, ho = 30 mi), use of transitive and spherical variogram models results in lower
maximum total BOD loads than that of the spatially independent case, whereas
use of a Gaussian variogram yields a higher total BOD load. The model results
using a transitive variogram are very similar to those of a spherical model.

As a final comment on the computational aspects of the proposed technique
for solving the stochastic nonlinear WLA model formulated in this study, it was
observed that the iterative technique proposed takes three to five iterations to
converge for all the cases investigated. Therefore, the proposed solution proce-
dure is quite efficient in solving the stochastic WLA model.

8.6.2 Multiobjective stochastic waste-load allocation

The WLA problem, by nature, is a multiobjective problem involving several
conflicting objectives. The treatment-equity constraint (Eq. 8.59c) is incorpo-
rated for the purpose of fairness. Without it, any attempt to maximize waste
discharge (or to minimize treatment cost) could result in allocating large quan-
tities of waste to the upstream users, whereas the downstream discharges could
be required to treat their effluent at levels of maximum possible efficiency. This
is especially true for slow-moving streams. Several articles have discussed the
importance of equity considerations in WLA problems (Gross, 1965; Loucks
et al., 1967; Miller and Gill, 1976; Brill et al., 1976).

In general, as the requirement for an equity measure (or fairness) is raised,
the total waste discharge to the stream system would be reduced. This will
be in direct conflict with the maximization of waste discharge associated with
the minimization of treatment cost. Furthermore, from the preserving stream
water-quality viewpoint, setting a higher water-quality standard is more desir-
able. However, such an objective cannot be achieved without increasing waste
treatment cost. Therefore, the objectives of preserving water quality and of
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enhancing economic efficiency are in conflict each other. Lastly, as the require-
ment of reliability in complying with the water-quality standard is raised, the
total waste load that can be discharged expectedly would have to be reduced.
Therefore, the task of solving WLA problems is multiobjective.

From the preceding discussions, four objective functions can be considered
in WLA modeling: (1) maximization of the total waste load, (2) minimization
of differences in treatment levels among waste dischargers, (3) maximization
of allowable in-stream DO concentration, and (4) maximization of the water-
quality standard compliance reliability. The first objective Z1 can be formulated
as Eq. (8.59a), which is repeated here as

Maximize Z1 =
N∑

j =1

(Bj + Dj)

For a stream system involving multiple waste dischargers, the difference in
required treatment levels generally would vary. To collapse different values of
equity measure into a single representative indicator, the worst case associated
with the largest differences can be used. With that, the second objective can be
expressed as

Minimize Z2 = δmax = max
j �= j ′

{∣∣∣∣Bj

Ij
− Bj ′

Ij ′

∣∣∣∣} (8.69)

where δmax is a new decision variable for the equity measure representing the
largest difference in treatment levels among waste dischargers.

The third objective considered is the maximization of the lowest allowable
DO concentration level that should be maintained in the stream environment.
This objective can be expressed as

Maximize Z3 = DOstd
min (8.70)

in which the new decision variable DOstd
min is the minimum required DO standard

in the stream.
Similar to the differences in treatment levels, the water-quality compliance

reliability at different control points will not be uniform. To use a single repre-
sentative measure of compliance reliability for the entire system, a conservative
view of looking at the lowest reliability was applied. The objective is to maximize
this lowest compliance reliability αmin as

Maximize Z4 = αmin = min[α1, α2, . . . , αM] (8.71)

By the definitions of DOstd
min and αmin, the chance constraints for water-quality

compliance (Eq. 8.59b) can be modified as

P

a0i +
ni∑

j =1

�i j Bj +
ni∑

j =1

�i j Dj + DOstd
min ≤ DOsat

i

≥ αmin for i = 1, 2, . . . , M

(8.72)
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The corresponding deterministic equivalent of Eq. (8.72) can be expressed as
ni∑

j =1

E(�i j)Bj +
ni∑

j =1

E(�i j)Dj + DOstd
min

+ F −1
z (αmin)

√
(B, D)tC (Θi, Ωi)(B, D) ≤ R

′′
i (8.73)

in which R
′′
i = DOsat

i − E(aoi).
Note that the original objective given in Eq. (8.71) is to maximize αmin. How-

ever, under the assumption that the standardized left-hand sides of the water-
quality constraints are continuous and unimodal random variables, the deci-
sion variable αmin would have a strictly increasing relationship with F −1

z (αmin).
Therefore, maximization of αmin is then equivalent to maximizing F −1

z (αmin).
By letting zmin = F −1

z (αmin), Eq. (8.71) can be written as

Maximize Z4 = zmin (8.74)

Note that the decision variable zmin is unrestricted in sign. The objective of
maximizing the lowest compliance reliability is equivalent to minimizing the
highest water-quality violation risk.

The preceding multiobjective WLA problem can be solved by various tech-
niques described in the references cited in Sec. 8.1.2. In the following, the con-
straint method is used by which the preceding multiobjective WLA problem is
expressed as

Maximize zmin (8.75a)

subject to
ni∑

j =1

E(�i j)Bj +
ni∑

j =1

E(�i j)Dj + DOstd
min

+ zmin

√
(B, D)tC (Θi, Ωi)(B, D) ≤ R

′′
i for i = 1, 2, . . . , M (8.75b)

0.35 ≤ Bj

Ij
≤ 0.90 for j = 1, 2, . . . , N (8.75c)∣∣∣∣Bj

Ij
− Bj ′

Ij ′

∣∣∣∣− δmax ≤ 0 for all j �= j ′ (8.75d)

N∑
j =1

(Bj + Dj) ≥ Zo
1 (8.75e)

δmax ≤ Zo
2 (8.75f)

DOstd
min ≥ Zo

3 (8.75g)

and nonnegativity constraints for the decision variables, except for zmin. In
Eqs. (8.75e–g), the right-hand sides Zo

1, Zo
2, and Zo

3 are the values of the objective
functions 1, 2, and 3, respectively, which are to be varied parametrically.
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Figure 8.22 Tradeoff curves of various objectives in stochastic WLA problem with 4 mg/L
minimum DO standard. (After Tung and Hathhorn, 1989.)

Using the same hypothetical stream system as shown in Fig. 8.21 and the
corresponding data, the solution to this multiobjective WLA model by the con-
straint method yields a series of tradeoff curves among the various objectives.
Figures 8.22 through 8.24 show the tradeoffs among three objectives for a given
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Figure 8.23 Tradeoff curves of various objectives in stochastic WLA problem with 5 mg/L
minimum DO standard. (After Tung and Hathhorn, 1989.)
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Figure 8.24 Tradeoff curves of various objectives in stochastic WLA problem with 6 mg/L
minimum DO standard. (After Tung and Hathhorn, 1989.)

minimum DO standard concentration. As can be seen for a specified minimum
DO standard and total waste load, the largest water-quality violation risk de-
creases as the maximum difference in treatment equity increases. An increase
in the treatment equity measure by δmax implies a larger tolerance for the
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Figure 8.25 Tradeoff curves of the various objectives in stochastic WLA problem with total
waste load fixed at 800 mg/L. (After Tung and Hathhorn, 1989.)
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Figure 8.26 Tradeoff curves of the various objectives in stochastic WLA problem with total
waste load fixed at 1000 mg/L. (After Tung and Hathhorn, 1989.)

unfairness in the treatment requirement among waste dischargers. As the level
of the minimum required DO standard is raised, the set of tradeoff curves moves
upward. To show the tradeoffs for different minimum DO standard, Figs. 8.25
and 8.26 are plotted for the risk of water-quality standard violation, treatment
equity, and water-quality standard while the total waste load to the stream
system is fixed at some specified levels.

Appendix 8A: Derivation of Water-Quality Constraints

In a WLA problem, one of the most essential requirements is the assurance of a
minimum concentration of dissolved oxygen (DO) throughout the river system
in an attempt to maintain desired levels of aquatic biota. The constraint relating
the response of DO to the additional of in-stream waste generally is defined by
the Streeter-Phelps equation (Eq. 8.60) or its variations (ReVelle et al., 1968;
Bathala et al., 1979). To incorporate water-quality constraints into the model
formulation, a number of control points are placed within each reach of the
river system under investigation. By using the Streeter-Phelps equation, each
control point and discharge location becomes a constraint in the LP model,
providing a check on water-quality at that location. In a general framework, a
typical water quality constraint would be as follows:

ni∑
j =1

θi j Lj +
ni∑

j =1

ψi j Dj ≤ Ri (8A.1)
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where
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ψi j = qi
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dni ,i = Kd
ni

Ka
ni

− Kd
ni

(
bni ,i − dni ,i

)
(8A.5)

and

bni ,ni+1 = exp
−Kd

ni
xni ,ni+1

Uni

(8A.6)

ba
ni ,ni+1 = exp

−Ka
ni

xni ,ni+1

Uni

(8A.7)

in which M is the total number of control points, ni is the number of discharg-
ers upstream of the control point i, Ka

ni
and Kd

ni
are, respectively, the reareation

and deoxygenation coefficients (days−1) in the reach, L0, Q0, and D0 are the
upstream waste concentration (mg/L BOD), flow rate (ft3/s), and DO deficit
(mg/L), respectively, Dni , Lni , and qni are the DO deficit (mg/L), waste concen-
tration (mg/L BOD), and effluent flow rate (ft3/s) from each discharge location,
respectively, xni ,i is the distance (miles) between discharge location and control
point i, and Uni is the average stream velocity (mi/day) in reach ni. Ri repre-
sents the allowable DO deficit at the control point i, available for utilization
of water discharge (mg/L). It should be noted that in addition to each control
point i, water quality is also checked at each discharge location ni.
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Problems

8.1 A city in an alluvial valley is subject to flooding. As a matter of good fortune, no
serious floods have taken place during the past 50 years, and therefore, no flood-
control measure of any significance has been taken. However, last year a serious
flood threat developed; people realized the danger they are exposed to, and a flood
investigation is under way.

From the hydrologic flood frequency analysis of past streamflow records and
hydrometric surveys, the discharge-frequency curve, rating curve, and damage
curve under nature condition are derived and shown in the table below and
Figs. 8P.1 and 8P.2, respectively. Also, it is known that the flow-carrying capacity
of existing channel is 340 m3/s.

T (years) 2 5 10 20 50 100 200 500 1000
Q (m3/s) 255 340 396 453 510 566 623 680 736

Three flood-control alternatives are considered, and they are (1) construction
of a dike system throughout the city that will contain a flood peak of 425 m3/s
but will fail completely if the river discharge is higher, (2) design of an upstream
permanent diversion that would divert up to 85 m3/s if the upstream inflow dis-
charge exceeds existing channel capacity of 340 m3/s, and (3) construction of a
detention basin upstream to provide a protection up to a flow of 425 m3/s.

The detention basin will install a conduit with a maximum flow capacity of
340 m3/s. Assume that all flow rates less than 340 m3/s will pass through the
conduit without being retarded behind the detention basin. For incoming flow
rate between 340 and 425 m3/s, runoff volume will be stored temporally in the
detention basin so that outflow discharge does not exceed existing downstream
channel capacity. In other words, inflow hydrograph with peak discharge exceed-
ing 425 m3/s could result in spillway overflow, and hence the total outflow dis-
charge would be higher than the channel capacity. The storage-elevation curve
at the detention basin site and normalized inflow hydrograph of different return
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Figure 8P.1 Stage-discharge (rating) curve.
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Figure 8P.2 Stage-damage relation.

periods are shown in Figs. 8P.3 and 8P.4, respectively. The flow capacities of the
conduit and spillway can be calculated, respectively, by

Conduit: Qc = 159h0.5

Spillway: Qs = 67.0(h − hs)1.5

where Qc and Qs are conduit and spillway capacity (in m3/s), respectively, h is
water surface elevation in detention basin (in m) above the river bed, and hs is
elevation of spillway crest (in m) above the river bed.

To simplify the algebraic manipulations in the analysis, the basic relations
between stage, discharge, storage, and damage are derived to fit the data:
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Figure 8P.3 Detention basin storage-elevation relation.
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Figure 8P.4 Normalized inflow hydrograph. (Note: Qp = peak inflow discharge.)

(i) Stage discharge: Q = 8.77 + 7.761H + 3.1267H2

(ii) Stage damage: D = Max(0, −54.443 + 2.8446H + 0.34035H2)
(iii) Storage elevation: S = 0.0992 + 0.0021h + 0.011h2

h > 0; S = 0, otherwise

in which Q is flow rate in channel (m3/s), H is channel water stage (m), D is
flood damage ($106), S is detention basin storage (106 m3), and h is water level
in detention basin above channel bed (m).

With all the information provided, answer the following questions:

(a) Develop the damage-frequency curve for the natural condition.

(b) What is the height of spillway crest of the detention basin above the river
bed?

(c) Develop the damage-frequency curves as the results of each of the three flood
control measures.

(d) Rank the alternatives based on their merits on the flood damage reduction.

8.2 Refer to Problem 8.1 and consider the alternative of building a levee system for
flood control. It is known that the capital-cost function for constructing the levee
system is

FC(Y ) = 1.0 + 0.6(Y − 7) + 0.05(Y − 7)3

in which Y is the height of levee, and FC(Y) is the capital cost (in million dollars).
Suppose that the service period of the levee system is to be 50 years and the
interest rate is 5 percent. Determine the optimal design return period such that
the annual total expected cost is the minimum.

8.3 Consider a confined aquifer with homogeneous soil medium. Use the Thiem equa-
tion and the linear superposition principle (see Problem 2.30) to formulate a
steady-state optimal groundwater management model for the aquifer system
sketched in Fig. 8P.5. The management objective is to determine the maximum
total allowable pumpage from the three production wells such that the drawdown
of piezometric head at each of the five selected control point would not exceed a
specified limit.
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Q1

Q2

Q3

S3

S1
S2

S4

S5

r31

ri k   Distance between control point i and well location k

Production well 

Control point

Distance (in ft) between Pumping Wells and Control Points 
Control points 

Pumping 
well  4 321 5 

Pumping 
capacity

(gpd)
1 160 380  160 260 430 200,000
2 520  260  300 480 160 200,000
3 450  450  200 200 200 200,000

Maximum 
allowable
drawdown

7 ft 7 ft 15 ft 7 ft 7 ft 

Figure 8P.5 Location of pumping wells and control points for a hypo-
thetical groundwater system (Problems 8.3–8.8). (After Mays and Tung,
1992.)

(a) Formulate a linear programming model for the groundwater system as shown
in Fig. 8P.5.

(b) Suppose that the radius of influence of all pump wells is 700 ft (213 m) and
that the aquifer transmissivity is 5000 gal/day/ft (0.00072 m2/s). Based on
the information given in Fig. 8P.5, solve the optimization model formulated in
part (a).

8.4 Consider that the soil medium is random and that the transmissivity has a log-
normal distribution with mean value of 5000 gal/day/ft and a coefficient of vari-
ation of 0.4. Construct a chance-constrained model based on Problem 8.3, and
solve the chance-constrained model for a 95 percent compliance reliability of all
constraints.

8.5 Modify the formulation in Problem 8.3, and solve the optimization model that
maximizes the total allowable pumpage in such a way that the largest drawdown
among the five control points does not exceed 10 ft.
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8.6 Develop a chance-constrained model based on Problem 8.5, and solve the model
for a 95 percent compliance reliability of all constraints.

8.7 Based on the chance-constrained model established in Problem 8.6, explore the
tradeoff relationship among the maximum total pumpage, compliance reliability,
and the largest drawdown.

8.8 Modify the formulation in Problem 8.6 to develop a chance-constrained manage-
ment model for the hypothetical groundwater system that maximizes the total
allowable pumpage while satisfying the desired lowest compliance reliability for
all constraints. Furthermore, solve the model for the hypothetical system shown
in Fig. 8P.5 with the lowest compliance reliability of 95 percent.

8.9 In the design of a water supply system, it is general to consider a least-cost system
configuration that satisfies the required water demand and pressure head at the
demand points. The cost of the system may include the initial investment for
the components (e.g., pipes, tanks, valves, and pumps) and the operational costs.
The optimal design problem, in general, can be cast into

Minimize Capital cost + energy cost
subject to (1) Hydraulic constraints

(2) Water demands
(3) Pressure requirements

Consider a hypothetical branched water distribution system as shown in Fig. 8P.6.
Develop a linear programming model to determine the optimal combination of cast
iron pipe length of various commercially available pipe sizes for each branch. The
objective is to minimize the total pipe cost of the system, subject to water demand
and pressure constraints at all demand points. The new cast iron pipes of all sizes
have the Hazen-Williams roughness coefficient of 130. The cost of pumping head
is $500/ft, and the pipe costs for available pipe sizes are listed below

P0
1

2

3
4

5

Source
elevation 500 

Figure 8P.6 A hypothetical water distribution system.
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Pipe diameter (inches) 8 10 12 15 18 21 24 27 30 36 42
Pipe cost ($/ft) 4 5 6 8 9 11 12 14 15 18 21

The length and the plausible pipe sizes for each pipe section are:

Pipe branches

1–2 2–3 3–4 2–5

Pipe length (feet) 6000 4000 3000 3000
Pipe sizes considered (in) 36, 30, 24 24, 21, 18 18, 15, 12 21, 18, 15

To this hypothetical system, the required flow rate and water pressure at each
demand node are

Demand node 3 4 5
Required flow rate (ft3/s) 6 6 10
Minimum pressure (ft) 550 550 550

8.10 Consider that the Hazen-Williams roughness coefficient is a uniform random
variable with a mean of 130 and a coefficient of variation of 30. Develop a chance-
constrained optimization model for the hypothetical water distribution system
shown in Fig. 8P.6. Furthermore, solve the model based on the data given in
Problem 8.9.
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for correlated normal stochastic variables,

185–190
definitions of stochastic parameter spaces,

164–165
determination of design point, 165–169
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determination of, 275–278
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operational, 273
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Bimodal distributions, 42
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Bivariate lognormal probability, 91–92
Bivariate normal:

probability, 81–85
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Bounds of Rackwitz, 88–89
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Box-Muller algorithm, 299
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Breitung’s formula, 208–211
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Capital recovery factor (CRF), 428–429
Cauchy distribution, 67, 74
CDF (see Cumulative distribution function)
CDF-inverse method:
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multivariate random variable vector

generation, 304–307
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Central moments, 36
Central safety factor, 14, 15
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Collectively exhaustive events, 24
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conditional probability approach, 389–391
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path enumeration method, 385–389
state enumeration method, 381–385

Complex systems, 360
Compliment, 19
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Conditional distribution, 31, 35
Conditional events, 19, 20, 23
Conditional expectation, 79
Conditional factors (time-to-failure analysis),
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Conditional failure density function, 258
Conditional failure intensity, 274
Conditional failure probability, 249
Conditional moments, 36
Conditional normal PDF, 77, 79
Conditional PDF, 33
Conditional probability, 23–24, 389–391
Conditional reliability, 257
Conditional repair intensity, 274–275

Conditional simulation (CS), 313–314, 324
Conditional variance, 79
Confidence interval, 129–131
Confidence limit factors, 131–135
Confidence limit (level), 131
Congruential methods, 291–293

additive, 293
mixed, 291

Constraints:
bounding, 409
defined, 408
nonnegativity, 409
water-quality, 470–471

Continuous random numbers, CDF-inverse
generation of, 294–295

Continuous random variables, 36
Continuous univariate probability

distributions, 55–74
Control-variate method, 342–344
Conventional risk-based design, 430–431
Convergence criteria, 200–202
Convex set, 409, 410
Cooper-Jacob equation, 237
Corrective maintenance, 264
Correlated sampling techniques, 333–335
Correlated stochastic basic variables, 185–190
Correlation coefficient, 47–49

Pearson, 47
probability plot, 125

Correlation matrix, 80
Costs:

intangible, 427
marginal, 438
risk, 427
tangible, 427, 431–433

Covariance, 47, 49
Covariance matrix, 80
CRF (see Capital recovery factor)
Critical paths, 397–398
Crossover, 422
Culverts:

box, 440
logic tree in design of, 2, 4
pipe, 440

Cumulative damage, 214
Cumulative distribution function (CDF),

27–32, 34
Cumulative hazard function, 251–254
Cunnane formula, 111
Curvature-fitting, 210
Cut set analysis, 385–387
Cut sets, 385, 397, 398
Cyclic damage, 214

Damage, cyclic vs. cumulative, 214
Damage function, 441
Data series, 104

annual exceedance, 105, 106
annual maximum, 105, 106
annual minimum, 105
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partial duration, 105
probability estimates for, 109–111
(See also Geophysical data series)

DDDP (discrete differential DP), 417
De Morgan’s rule, 20
Decision variables, 408, 416
Demand, 5
Design frequency:

in hydraulic design, 440
optimal, 441

Design load, 14
Design point, 165–169

convergence criteria for locating, 200–202
first-order approximation of performance

function at, 169–173
main curvatures at, 210

Determination, coefficient of, 344
Deterministic equivalent, 450
Deterministic variables, 215, 217–218
Deterministic waste-load-allocation model,

455–456
DF (see Distribution function)
Direct integration method, 149, 151–155
Direct solution methods, 413
Directional derivatives, 167
Directional Monte Carlo simulation, 321–327
Directional simulation, 321
Discharge-frequency relations, 447, 448
Discontinuous measurement error (DME), 108
Discrete differential DP (DDDP), 417
Discrete random variables, 36
Discrete random variates, CDF-inverse

generation of, 295
Discrete univariate probability distributions,

49–55
binomial, 51–53
Poisson, 53–55

Disjoint events, 19
Distribution:

asymptotic, 66–67
beta, 67, 71–72
binomial, 51–53
bivariate, 75–77
bivariate normal, 81
Cauchy, 67, 74
chi-square, 73
conditional, 31, 35
double exponential, 67
Erlang, 64
estimating parameters of, 119–125
exponential, 31, 64, 65
extreme value, 66–81

beta, 71–72
type I, 67–69
type III, 69–70

Fisher-Tippett, 67
gamma, 63–66
generalized extreme value, 70, 71

geometric, 216, 270
goodness-of-fit criteria for, 125–129
Gumbel, 67
joint, 31–35
log-Pearson type 3, 65–66, 115
marginal, 33–35
multivariate normal, 77–91
normal (Gaussian), 56–60
Poisson, 53–55
selection of, 135–136
standard normal, 57–58
standardized multivariate normal, 80
t-, 74
triangular, 95
uniform, 72, 96
Weibull, 69–70

Distribution function (DF), 27, 31
Distributive rule, 20
DME (discontinuous measurement error), 108
Double exponential distribution, 27, 67
Dynamic programming (DP), 414–418
Dynamic systems, 7

Early-life period, 254
Economic data, risk-based design, 433
Eigenvalue-eigenvector decomposition, 226

(See also Spectral decomposition)
Elasticity, partial, 179
Electronic engineering systems, 1
Ellipsoid method, 413
Engineering systems, 1–2, 11
Entire population, data series of, 109
Environmental engineering systems, 1
Environmental factors, TTF, 245, 246
Equicorrelation, multivariate normal

probability under, 86
Erlang distribution, 64
Error function, 61, 237, 306
Event symbols (fault trees), 395
Event trees, 382–383
Event-based design, 429–430
Events:

collectively exhaustive, 24
conditional, 19, 23–24
defined, 19
disjoint, 19
fault, 395
hydrologic, 435
impossible, 21
mutually exclusive, 19
ordering, for best bounds, 369
relative frequency of, 20–21
statistical independence of, 22–23

Event-tree analysis, 382
Excess coefficient, 46
Expectation, 36, 40 (See also Mean)
Expected number of scheduled maintenance

applications, 270
Experiment, 19
Exponential distribution, 31, 64, 65, 67
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Exponential random variate generation, 301
Extrapolation of data (frequency analysis),

136–139
Extreme value series, 105
Extreme-value distributions, 66–81

beta, 71–72
classification, 67
generalized, 70
type I (Gumbel), 67–69
type III (Weibull), 69–70

Failure:
causes of, 1–2
classification of, 2
defined, 11, 145
of infrastructure systems, 1, 2, 5, 11–12
of manufactured systems, 1–2
in parallel systems, 7
performance, 11, 357
quality, 254
risk as probability of, 11
in series systems, 7
stress-related, 254
structural, 11, 357
types of, 254–255
wear-out, 254

Failure density function:
conditional, 48, 258
failure rate, reliability, and, 255–257
K-out-of-M, 380
with maintenance, 265
parallel systems, 375
series systems, 375
in time-to-failure analysis, 246–247
Weibull, 258

Failure intensity:
conditional, 274
unconditional, 274

Failure probability, 145
bounds of, 364
and main curvatures at design point, 210
and performance function, 162
in time-to-failure analysis, 247

Failure rate:
averaged, 252–254
of culvert failure, 4
defined, 247, 248
failure density function, reliability, and,

255–257
gamma, 250
Gumbel, 250
instantaneous, 248
lognormal, 249
parallel systems, 378
scale of, 252
series systems, 375
in system life periods, 254
in time-to-failure analysis, 247–251
uniform, 251
Weibull, 249

Failure surface, 147
Failure-modes approach, 360
Failures in time (FIT), 252
Fault events, 395
Fault tree, 391–392

construction of, 395–397
for culvert failure, 4
evaluation of, 397–398
events, 395
gates, 395
nodes, 392

Fault-tree analysis, 391–398
construction of fault tree, 395–397
event-tree analysis vs., 391

Feasible solution space, 409
Feasible solutions, 409
Fibonacci number, 442
Fibonacci search, 442
Figures of merit, 427
First-order (unimodal) bounds, 364–367

parallel, 366, 367
series, 366, 367

First-order variance estimation (FOVE)
method, 156–158, 162

Fisher-Tippett distribution, 67
FIT (failures in time), 252
Flood Control Act of 1936, 430
Flood damage:

annual expected cost of, 433–436
risk-based design for damage-reduction

projects, 445–449
risk-based design without information on,

436–438
Flood Disaster and Protection Act of 1973, 438
Flood mitigation, uncertainties in design for, 4
Force-of-mortality function, 248 (See also

Hazard function)
Forward recursive, 416
FOVE (see First-order variance estimation

method)
Frequency analysis, 12, 103–140

analytical approaches, 114–119
estimating parameters of distributions,

119–125
geophysical data series, 104–108
graphic approach, 111–113
limitations of, 135–140
L-moments-based estimation, 122, 124–125
maximum-likelihood estimation, 119–121
model reliability indices, 126
moment-ratio diagrams, 126–128
probability estimates for data series,

109–111
probability plot correlation coefficients,

125–126
product-moments-based estimation, 121–123
return period, 108–109
selecting distributions models, 125–129
uncertainty associated with frequency

relations, 129–135
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Frequency factor, 114
Gumbel, 115
log-Pearson type 3, 115
normal, 115

Functional (performance) failure, 2, 11–12

Gamma distribution, 63–67, 302
Gamma function, 64
GAMS, 412
GAMS-MINOS, 414
GAs (see Genetic algorithms)
Gate symbols (fault trees), 395
Gaussian distribution, 56 (See also Normal

distribution)
Gaussian quadratures, 222–223
Gaussian variogram model, 458
General Dynamics, 6
Generalized extreme-value (GEV) distribution,

70, 71
Generalized Poisson distribution (GPD), 55
Generalized reduced gradient (GRG), 201
Generating techniques (multiobjective

programming), 411
Generation of random variates, 294–298

acceptance-rejection methods, 296–298
antithetic-variates technique, 330–332
CDF-inverse method, 294–296
exponential, 301
gamma, 302
lognormal, 301
multivariate, 303–304
multivariate normal, 307
normal, 299
Poisson, 302
univariate, 299–303
variable transformation method, 298

Genetic algorithms (GAs), 418, 420–422
Geometric distribution, 216, 270
Geometric reliability index, 126
Geophysical data series:

complete, 105
extreme-value, 105
homogeneity of data in, 108
partial-duration, 105
types of, 104–108

Geostatistics, 460
GEV distribution (see Generalized

extreme-value distribution)
GINO, 414
Global optimization, 418

genetic algorithm, 418, 420
simulated annealing, 418–420

Global optimum, 409
GPD (generalized Poisson distribution), 55
Gradient vector, 413
Gram-Schmid orthogonal transformation,

206
Gram-Schmid orthonormalization,

229–230
Graphic frequency analysis, 111–113, 117

GRG2, 414
GRG (generalized reduced gradient), 201
Gringorton formula, 111
Gumbel distribution, 67, 135
Gumbel probability paper, 115

Hasofer-Lind algorithm, 173–174, 176–177
for nonnormal uncorrelated stochastic basic

variables, 182
for normal correlated stochastic basic

variables, 187
Hasofer-Lind reliability index, 171
Hazard, 5
Hazard function (instantaneous failure rate),

249, 254–255
cumulative, 251–254
with maintenance, 266
in time-to-failure analysis, 248–251
types of, 254

Hazard levels, societally acceptable, 439
Hazen-Williams equation, 234
Hessian matrix, 205–206, 413
Highway drainage structures, 440–445
Hit-and-miss Monte Carlo integration,

316–319
Hydraulic data, risk-based design, 432
Hydraulic design:

defined, 440
methods for, 429

Hydraulic design discharge, 440
Hydraulic structure, 211

design capacity for, 219–221
time-dependent reliability analysis for,

211
uncertainty from, 154

Hydraulic systems:
historical development of design methods,

429–431
uncertainty in time-dependent reliability

models for, 219
Hydraulic uncertainties, 434, 436
Hydrologic data, risk-based design, 431
Hydrologic inherent uncertainties, 436
Hydrosystems, classification of, 359–360
Hydrosystems engineering:

uncertainty in, 2, 3

Ideal maintenance, 265–271
Imperfect maintenance, 272
Importance sampling, 328–330
Impossible events, 21
Independence, statistical, 22–23
Independent normal parameters, AFOSM

algorithms for, 173–179
Independent Poisson random variables, 53
Independent standard normal variables, 85
Indifference curves, 410, 411
Industrial engineering systems, 1
Industrial reliability handbook, 6
Infant mortality period, 254
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Infrastructural systems, 1
classifications of, 7
failures of, 1, 2
reliability analysis for, 2
reliability of, 2–5
risk-based least-cost design of, 9
stresses and loads on, 5
typical configurations of, 10

Infrastructure(s):
defined, 7
failures of, 11–12
paths to failure for, 7, 9

Inherent availability, 273
Inherent factors in TTF, 245
Inherent hydrologic uncertainty, 218–219
Instantaneous failure rate, 248–251 (See also

Hazard function)
Institute of Electrical and Electronic

Engineers (IEEE), 6
Intangible costs, risk-based design, 427, 438
Intangible factors, risk-based design, 438–439
Integration, Monte Carlo, 314–327

directional Monte Carlo simulation
algorithm, 321–327

hit-and-miss method, 316–319
sample-mean method, 319–321

Interest rate, 428
Interference, load-resistance, 149
Intersection, 19
Inverse cumulative distribution function, 114

Jackknife resampling method, 344
Jacobian matrix, 192
Joint CDF, 31, 32, 34
Joint distribution, 31–35
Joint PDF, 31–33, 35
Joint PMF, 31, 32
Jth-order statistic, 38

%K (percent per thousand hours), 252
Karmarkar’s projective scaling method, 413
Khatchian’s ellipsoid method, 413
K -out-of-M parallel systems, 379–380
Kuhn-Tucker conditions, 414
Kurtosis, 46–47

Lagrangian, 414
Lagrangian function, 166–167, 414
Lagrangian multiplier, 167, 414
Laplace integral, 209
Laplace transforms, 278, 282–283
Latin hypercube sampling (LHS), 338–342
L-coefficient of variation, 43
Least total annual expected cost (LTAEC), 440,

441, 443, 445
L’Hospital rule, 86
LHS (see Latin hypercube sampling)
Likelihood function, 26, 120
Limit-state function, 147
LINDO, 412

Line search, 414
Linear constraints, multivariate random

variates subject to, 312–314
Linear programming (LP), 412–413
L-kurtosis, 46
L-moment-based method, 122, 124–125
L-moments, 35, 38–40

frequency estimation based on, 122,
124–125

gamma, 64
generalized extreme value, 71
Gumbel, 68
lognormal, 61
normal, 56
Weibull, 70

Load, 5
design, 14
as function of stochastic basic variables, 146
origin of, 13
time-dependent reliability models for,

211–221
(See also Frequency analysis)

Load and resistance in reliability analysis,
145–230

AFOSM, 164–203
Cholesky decomposition, 223–224
direct integration method, 149, 151–155
Gram-Schmid ortho normalization,

229–230
MFOSM, 156–164
one-dimensional numerical integration

formulas, 221–223
orthogonal transformation techniques,

224–229
performance functions, 147–149
reliability index, 148–150
second-order reliability methods, 203–211
time-dependent nature of, 146
time-dependent reliability models, 211–221

Load intensity models, 215–216
Load occurrence models, 216
Load-resistance interference, 149
Local optimum, 409
Logic tree, 2, 4, 358
Lognormal distribution, 60–63, 67

bivariate, 91
multivariate, 91
univariate, 60

Lognormal random variate generation, 301
Log-Pearson type 3 distribution, 65–66, 115
Long-term average, 108
Lower triangular matrix, 226
LP (see Linear programming)
L-skewness coefficient, 46
LTAEC (see Least total annual expected cost)
LU decomposition, 226, 308
Lumped-system reliability approach, 15–16

Maintainability, maintenance vs., 263
Maintainability function, 261, 262
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Maintenance:
corrective, 264
ideal, 265–271
imperfect, 272
maintainability vs., 263
preventive, 264–272

Maintenance schedule, 264, 425–427
Manning’s formula, 158
Manufactured systems, 1

failures of, 1–2
reliability analysis for, 2

Marginal cost (MC), 438
Marginal distribution, 33–35, 193, 194
Marginal distribution formulas, 193, 195–198
Marginal PDF, 33, 34, 311–312
Marsagalia-Bray algorithm, 299–300
Mathematical programming, 408

dynamic programming, 414–418
linear programming, 412–413
nonlinear programming, 413–414

Maximum-likelihood (ML) estimation,
119–121

MC (marginal cost), 438
MCDM (multicriteria decision-making), 438
Mean (expectation), 40–42
Mean safety factor, 14
Mean time between failures (MTBF), 259, 264
Mean time between repairs (MTBR), 264
Mean time to failure (MTTF), 3, 13, 42, 259,

261–264
with maintenance, 267
parallel systems, 378
series systems, 375
standby systems, 381

Mean time to repair (MTTR), 259, 263–264
Mean time to support (MTTS), 272
Mean-value first-order second-moment

(MFOSM) method, 156–164
AFOSM method vs., 160, 161
distributional assumptions in, 160
FOVE method in, 156–158
weaknesses of, 160–163

Median, 41–43
Metropolic criterion, 418
MFOSM method (see Mean-value first-order

second-moment method)
MGF (see Moment-generating function)
Minimum cut set, 385, 398
Minimum path, 385
MINOS, 414
Mixed congruential generators, 291
ML estimation (see Maximum-likelihood

estimation)
Mode, 41–42
Model reliability indices, 126
Moment-generating function (MGF), 282,

283
Moment-ratio diagrams, 126–128

L-, 128
product, 126

Moments, 35–40
about the origin, 36
central, 36
conditional, 36
L-moments, 38–40
probability-weighted, 38–39
product, 36, 37
(See also Statistical moments)

Monte Carlo integration, 314–327
Monte Carlo simulation, 289–348

antithetic-variates technique, 330–332
control-variate method, 342–344
correlated-sampling techniques, 333–335
defined, 289
efficiency of, 327
for flood-damage-reduction projects, 447–449
importance sampling technique, 328–330
Latin hypercube sampling technique,

338–342
Monte Carlo integration, 314–327
multivariate random variates vector

generation, 303–314
practical applications of, 289
random number generation, 291–293
random variates generation algorithms,

294–298
resampling techniques, 344–348
stratified sampling technique, 335–338
univariate random number generation,

299–303
variance-reduction techniques, 327–344
vectors of multivariate random variables,

303–314
Most probable failure point, 165–169
MTBF (see Mean time between failures)
MTBR (mean time between repairs), 264
MTTF (see Mean time to failure)
MTTR (see Mean time to repair)
MTTS (mean time to support), 272
Multicriteria decision-making (MCDM), 438
Multiobjective programming, 409–411,

465–470
Multiple correlation coefficient, 344
Multiplicative generator, 293
Multivariate distribution, 75–92

bivariate distributions, 75–79
constructing, 75
lognormal, 91–92
normal, 77–91

Multivariate lognormal distribution, 91–92
Multivariate normal distribution, 77–91

bivariate, 77–79
bivariate normal probability, 81–85
bounds on probability, 88–91
computation of probabilities, 81–88
multivariate normal probability, 85–88

Multivariate normal generation, 307–311
spectral decomposition method, 310–311
square root method, 308–310

Multivariate normal PDF, 80



490 Index

Multivariate normal probability, 85–88
Multivariate probability bounds:

Ditlevsen, 89
Rackwitz, 88

Multivariate random variable generation,
303–304, 307–311

CDF-inverse method, 304–307
with known marginals, 311–312
with linear constraints, 312–314
normal, 307–311

Mutation, 422
Mutual exclusiveness, 19, 21, 22, 361

Nataf bivariate distribution model,
192–193

National economic development (NED),
445

NLP (see Nonlinear programming)
Nonconditional simulation, 312
Nonconvex feasible solution space, 409, 410
Noninferior solution, 409–411
Nonlinear probability (frequency analysis), 115
Nonlinear programming (NLP), 413–414
Nonnegativity, 21
Nonnegativity constraints, 409
Nonnormal stochastic basic variables, 36–41
Nonparametric, unbalanced bootstrapping,

346–347
Nonrepairable failures, 2
Nonrepairable systems, 274
Nonstandard beta PDF, 71, 72
Nonstationary Poisson process, 217
Normal (Gaussian) distribution, 56–60

bivariate, 77–79
chi-square, 73
conditional, 77
multivariate, 80, 307–311
standard, 57–58
t-distribution, 74
univariate, 56–59

Normal random variate generation,
299–300

Normal transform:
Der Kiurghian and Liu, 193
Rackwitz, 180

Number of failures, 274
Number of repairs, 275
Numerical integrations, 154, 221–223

Objective function coefficients, 412
Objective functions, 408
Objective probabilities, 21
Odds ratio (frequency analysis), 109
On average (frequency analysis), 108
One-dimensional numerical integration

formulas, 221–223
One-dimensional search, 414
One-parameter gamma PDF, 64
Operational availability, 273
Operational factors in TTF, 245

Optimal hydrosystems design, 407–471
chance-constrained methods, 449–470
derivation of water-quality constraints,

470–471
dynamic programming, 414–418
genetic algorithms, 420–422
global optimization techniques, 418
historical hydraulic design methods,

429–431
linear programming, 412–413
nonlinear programming, 413–414
optimal maintenance schedule, 425–427
optimization models, 408–409
optimization techniques, 411–422
reliability design with redundancy,

422–425
risk-based, 427–449
simulated annealing algorithms,

418–420
single-objective vs. multiobjective

programming, 409–411
Optimal risk-based design, 427–439
Optimal solution (global, local), 409
Optimization models, 408–409
Optimum feasible solution, 409
Optimum solution, 409
OR node (fault tree), 392
Order statistics, 38
Orthogonal transform, 206–208, 224–229

Cholesky, 223–224
LU, 226
spectral, 226

Orthonormal matrix, 206
Outliers, 38, 111

Paraboloid fitting, 210–211
Parallel systems, 7, 10, 360

availability, 377
K -out-of-M, 379–380
reliability of, 362–363, 376–379

Parameter uncertainties, 436
Parameters:

defined, 35, 408
estimation of, 119–122

Partial duration series, 105
Partial elasticity, 179
Partial safety factor, 15
Partially redundant systems, 379, 385 (See

also K -out-of-M parallel systems)
Parts per million per thousand hours (PPM/K),

252
Path enumeration method, 385–389
PDF (see Probability density function)
Pearson product-moment correlation

coefficient, 47
Pearson skewness coefficient, 46
Pearson type 3 distribution, 65

confidence limit factors for, 131, 133–135
in frequency analysis, 115–117

Percent per thousand hours (%K), 252



Index 491

Percentile, 41 (See also Quantile)
Performance failure, 11, 12, 357 (See also

Functional failure)
Performance function, 147–149

at design point, first-order approximation,
169–173

quadratic approximations of, 204–208
Personal factors, time-to-failure analysis, 246
Physiographic data, 431
Pipe culverts:

defined, 440
for roadway drainage, risk-based design of,

440–445
Plotting position formulas, 39–40, 109–111

probability-unbiased, 110
quantile-unbiased, 110
Weibull, 40, 109

PMF (see Probability mass function)
Point-fitted paraboloid, 210–211
Poisson distribution, 53–55
Poisson process, 216–217
Poisson random number generation, 302–303
Polynomial approximation, 58–59
Population, 35 (See also Sample space)
Posterior probabilities, 21, 26
PPCC (see Probability plot correlation

coefficient)
PPM/K (parts per million per thousand hours),

252
Preassigned safety factor, 14
Preventive maintenance, 264–272

ideal maintenance, 265–271
imperfect maintenance, 272

Prior probabilities, 21, 26
Probability, 19–92

average annual failure, 13
axioms of, 21–22
Bayes’ theorem, 26–27
beta distributions, 71–72
binomial distribution, 51–53
coefficient of variation, 43, 44
conditional, 23–24, 31, 35
continuous univariate probability

distributions, 55–74
correlation coefficient, 47–49
covariance, 47, 49
cumulative distribution function, 27–30
data series estimates of, 109–111
defined, 20
discrete univariate probability distributions,

49–55
distributions related to normal random

variables, 72–74
extreme-value distributions, 66–71
in frequency analysis, 114–119
gamma distributions, 63–66
joint distribution, 31–35
kurtosis, 44–45
lognormal distribution, 60–63
marginal distribution, 33–35

mean, 40–42
median, 41–43
mode, 41–42
multivariate lognormal distributions, 91–92
multivariate normal distributions, 77–91
multivariate probability distributions, 75–92
normal distribution, 56–60
objective, 21
Poisson distribution, 53–55
posterior, 21
prior, 21, 26
probability density function, 28–31
probability mass function, 28, 29
random variables, 27
in reliability analysis, 15, 16
skewness coefficients, 44–46
standard deviation, 43–44
statistical independence, 22–23
statistical moments of random variables,

35–40
subjective, 21
total, 24–26
total probability theorem, 24–25
types of, 20
understanding of, 2
variance, 43

Probability density function (PDF), 28–31
bimodal, 42
conditional, 33
joint, 31–33, 35
marginal, 33, 34
unimodal, 42

Probability mass function (PMF), 28, 29, 31, 32
Probability models:

for load intensity, 215–216
for load occurrence, 216

Probability plot, 125
Probability plot correlation coefficient (PPCC),

125–126
Probability rules, system reliability, 360–363
Probability theory, 2
Probability-unbiased plotting position, 110,

111
Probability-weighted moments, 38–39
Product moments, 35–37

beta, 72
binomial, 51
chi-squared, 73
frequency estimation based on, 121–123
gamma, 64
generalized extreme value, 71
generalized Poisson, 55
Gumbel, 68
lognormal, 61
moment-ratio diagrams, 126–128
Poisson, 53
standard normal, 57
t-, 74
Weibull, 70

Projective scaling method, 413
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Quality failure, 254
Quantile (percentile), 41, 43, 59
Quantile-unbiased plotting position formulas,

110, 111
Quenching, 418

Rackwitz method, 180, 201
Rainfall:

frequency analysis of, 103, 104
IDF formula, 236

Random number generation, 291–293
Random search, 418
Random technological coefficients, 457–460
Random variables, 27

binomial, 51–53
conditional distribution of, 31, 35
continuous, 36
correlation coefficient between, 47–49
covariance of, 47, 49
cumulative distribution function of, 27–30
defined, 27
designation of, 27
discrete, 36
extreme-value, 66–81
gamma, 63–66
joint distribution of, 31–35
lognormal, 60–63
marginal distribution of, 33–35
mean of, 40–42
median of, 41–43
mode of, 41–42
normal, 56–60, 72–74
Poisson, 53–55
probability density function of, 28–31
probability mass function of, 28, 29
quantile of, 41, 43
skewness coefficient of, 44–47
standard deviation of, 43–44
standardized, 47
statistical moments of, 35–40
variance of, 43
variation of, 43, 44

Random variates, generation of (see
Generation of random variates)

Random-fixed variables, 215, 218
Random-independent variables, 215, 218
Randomness of geophysical events, 12
Rational formula, 235
Recurrence interval, 108 (See also Return

period)
Recursive relationships, 416–417, 423
Redundancy:

parallel systems, 7
partially redundant systems, 379–380
reliability design with, 422–425
standby systems, 380–381
unit, 422, 423

Relative frequency, 20–21
Relative sensitivity, 179
Reliability, 1–16

analysis of risk and (see Reliability analysis)
conditional, 257
defined, 11, 145
engineering reliability analysis, 6–7
factors contributing to, 4
failure density function, failure rate, and,

255–257
of infrastructure, 2–5
measures of, 13–15
reliability engineering, 1–2, 7–10
of systems (see System reliability)

Reliability analysis, 6–7
AFOSM, 164–203
development of, 7
load-resistance interference in (see Load and

resistance in reliability analysis)
lumped-system approach, 15–16
major steps in, 16
for manufactured vs. infrastructure

systems, 2
methods of, 15–16
MFOSM, 156–164
SORM, 203–211
static, 146
time-dependent, 211–221
uncertainty in, 12
(See also Probability; System reliability)

Reliability and Quality Control Society, 6
Reliability bounds:

first-order, 364–367
second-order, 367–371

Reliability design, with redundancy,
422–425

Reliability engineering, 1–2
concept of, 7–10
historic development of, 6–7
for manufactured systems, 2
types of problems in, 8

Reliability function with preventive
maintenance, 265

Reliability index, 148–150
AFOSM vs. MFOSM, 202
generalized, 202–203
Hasofer-Lind, 171
model, 126

Repair density, time-to-failure analysis,
261–263

Repair density function, 261
Repair intensity:

conditional, 274–275
unconditional, 275

Repair probability, 261–263
Repair rate, 263
Repairable failures, 2
Repairable systems:

availability/unavailability of, 272–282
extending service life of, 246
time-to-failure analysis for, 259, 261–272
(See also Time-to-failure analysis)

Resampling techniques, 344–348
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Resistance, 5
as function of stochastic basic variables, 146
time-dependent reliability models for,

211–221
uncertainty of, 12–14

Restoration success, 263
Return period, 13

conventional interpretation of, 13
defined, 13
in frequency analysis, 108–109
risk in terms of, 5
time units for, 109

Return-period design, 430
Return-period scale, 115
Risk:

analysis of reliability and (see Reliability
analysis)

definitions of, 5, 10–11
as probability of failure, 11

Risk analysis, inconsistent definitions of, 5
Risk costs, 427
Risk-based design, 427–449

annual expected flood damage cost, 433–436
conventional, 430–431
for flood-damage-reduction projects,

445–449
intangible factors in, 438–439
optimal, 427
for roadway drainage pipe culvert, 440–445
tangible costs in, 431–433
uncertainties in, 431
without flood damage information, 436–438

Rosenblatt method, 199–200

SA (see Simulated annealing)
SAE (Society of Automotive Engineers), 7
Safety factor (SF), 14–15
Safety margin (SM), 14
Sample, 35
Sample space, 19 (See also Population)
Sample statistics, 35
Sample-mean Monte Carlo integration,

319–321
Sampling distribution, 435
Sampling errors, 327 (See also Variance

reduction techniques)
Sampling techniques:

correlated-sampling, 333–335
importance sampling, 328–330
Latin hypercube sampling, 338–342
resampling, 344–348
stratified sampling, 335–338

Scheduled maintenance, 264 (See also
Preventive maintenance)

Sea-defence system, 439
Search direction, 413–414
Second-order (bimodal) bounds, 367–371
Second-order reliability methods (SORMs),

203–211
Breitung’s formula, 208–211

quadratic approximations of performance
function, 204–208

Second-order stationary values, 457
Seed (random number generation), 291
Sensitivity:

relative, 179
of reliability, 171, 187

Sensitivity coefficients, 156, 172–173, 179
Series systems, 7, 10, 359

reliability of, 371–376
reliability probability rules for, 360–361

Sets:
collectively exhaustive, 24
operational rules of, 20

SF (see Safety factor)
Significance level, 131
Simple systems:

K -out-of-M, 379–380
parallel, 376–379
series, 371–376
standby redundant systems, 380–381

Simplex method, 412, 460
Simpson’s rule, 222, 315
Simulated annealing (SA), 418–420
Simulation, 289 (See also Monte Carlo

simulation)
Single-objective programming, 409–411
Skewness coefficient, 44–47
SM (safety margin), 14
Society of Automotive Engineers (SAE), 7
SORMs (see Second-order reliability methods)
Spectral decomposition, 165, 186, 226, 228,

310–311
Spherical variogram model, 457
Square-root algorithm (random variate

generation), 308–310
Stage return, 416
Stage-damage relations, 447, 448
Stage-discharge relations, 447, 448
Stages (in dynamic programming), 416
Standard beta PDF, 72
Standard deviation, 43–44
Standard error, 129
Standard error of estimate, 130
Standard gamma distribution, 64
Standard normal distribution, 57–58
Standard normal quantile, 59
Standardized multivariate normal

distribution, 80
Standardized random variables, 47
Standby redundant systems, 380–381
State enumeration method, 381–385
State transition function, 416
State variables, 416
Static reliability analysis, 146
Static systems, 7
Stationarity assumption, 139
Statistical expectation, 36
Statistical independence, 22–23, 361, 362
Statistical moments, 35–40
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Statistical reliability index, 126
Statistics, 35 (See also Probability)
Step size, 414
Stochastic basic variables, 164–165

correlated, 185–190
nonnormal, 180–185
nonnormal correlated, 190–200

Stratified sampling technique, 335–338
Stream flow:

frequency analysis of, 103–104
seasons of, 104

Streeter-Phelps equation, 239, 456
Strength, 5
Stresses, 5
Stress-related failures, 254, 255
Structural data, risk-based design, 433
Structural failure, 2, 11–12, 357
Subjective probabilities, 21
Supply, 5
Support success, 272
Supportability, 263, 272
Supportability function, 272
Surface, failure, 147
Survival-modes approach, 360
System reliability, 357–402

accounting for uncertainties in, 2
basic probability rules for, 360–363
bounds for, 363–371, 399–402
classification of systems, 359–360
complex systems, 381–398
computation of, 358–371
conditional probability approach, 389–391
fault-tree analysis, 391–398
K -out-of-M parallel systems, 379–380
optimization of (see Optimal hydrosystems

design)
parallel systems, 376–379
path enumeration computing method,

385–389
series systems, 371–376
simple systems, 371–381
standby redundant systems, 380–381
state enumeration computing method,

381–385
System states, 147
Systematic sampling, 336–337
Systems:

dynamic, 7
parallel, 7, 10, 360, 362–363, 376–380
partially redundant, 379, 385
series, 7, 10, 359–361, 371–376
standby redundant, 380–381
static, 7

System-state function, 147

TAEC (see Total annual expected cost)
Tangible costs (in risk-based design), 427,

431–433
T -distribution, 74
Technological coefficients, 412

Thiem equation, 98
Three-parameter gamma PDF, 64
Tie-set, 387, 397
Tie-set analysis, 387–389
Time series analysis, 105
Time to support (TTS), 272
Time-dependent reliability models, 146,

211–221
classification of, 214–215
for deterministic cycle times, 217–218
for hydrosystems, 218–221
load in, 214
modeling intensity and occurrence of loads,

215–217
for random cycle times, 218
resistance in, 213–214
time-to-failure analysis vs., 211–212

Time-invariant statistically stationary
systems, 7

Time-of-concentration, 236
Time-to-failure (TTF), 30, 245
Time-to-failure (TTF) analysis, 245–283

age and reliability, 257–260
availability and unavailability, 272–282
averaged failure rate, 252–254
cumulative hazard function, 251–254
failure density function, 246–247
failure density function–failure

rate–reliability relationships, 255–257
failure rate, 247–251
hazard function, 248–251
Laplace transform, 282–283
mean time between failures, 264
mean time between repairs, 264
mean time to failure, 259, 261, 262
mean time to repair, 263–264
preventive maintenance, 264–272
repair density, 261–263
repair probability, 261–263
repair rate, 263
for repairable systems, 259, 261–272
series system reliability, 375–376
supportability, 272
time-dependent reliability vs., 211–212
typical hazard functions, 254–255

Time-to-repair (restore) (TTR), 246, 261, 262
Time-varying statistically nonstationary

systems, 7
Total annual expected cost (TAEC), 428,

444
Total probability theorem, 24–26
Total system reliability, 145–146
Totality, 21
Transformation matrix, 225–227
Transition probability matrix, 93
Transitive variogram model, 457
Trapezoidal rule, 222
Tree diagram, 382–383
Triangular distribution, 95
Trivariate distributions, 75
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TTF (see Time-to-failure)
TTF analysis (see Time-to-failure analysis)
TTR (see Time-to-repair (restore))
TTS (time to support), 272
Two-parameter gamma distribution, 63–64

Unavailability, 274
parallel systems, 379
series systems, 376

Uncertainty, 2, 3
associated with frequency relations, 129–135
and capacity vs. imposed loads, 5
degree of, 129
hydraulic, 434, 436
in infrastructural engineering reliability

analysis, 12
in reliability analysis, 16, 146
in risk-based design, 436
slow development/application of analyses of,

2, 4–5
in stage-discharge relation, 447, 448
in time-dependent reliability models,

218–219
Uncertainty of resistance (COV (R)), 12–14
Unconditional failure intensity, 274
Unconditional repair intensity, 275
Unconditional simulation, 312, 460
Unconstrained NLP algorithms, 413
Unequal correlation, multivariate normal

probability under, 86
Uniform distribution, 72, 96
Unimodal bounds (see First-order bounds)
Unimodal distribution, 42
Union, 19, 21
Unit hydrograph, 312
Unit redundancy, 422, 423
Univariate random number generation,

299–303
for exponential distribution, 301
for gamma distribution, 302
for lognormal distribution, 301

for normal distribution, 299–300
for Poisson distribution, 302–303

Unreliability, 247 (See also Failure probability)
Useful-life period, 254
Utility function, 410

Variable transformation method, 298
Variance, 43
Variance propagation method, 156
Variance reduction techniques, 327–344

antithetic-variate, 330–332
control-variate sampling, 342–344
correlated-sampling, 333–335
importance sampling, 328–330
Latin hypercube sampling, 338–342
stratified sampling, 335–338

Variogram models, 457–458
Vector optimization, 409
Venn diagrams, 19, 20
Vitro Laboratories, 6

Waste-load-allocation (WLA), 454–470
chance-constrained model, 456–457
deterministic, 455–456
multiobjective stochastic, 465–470
numerical example of, 462–465
solving optimal stochastic WLA model,

460–462
statistical properties of random

technological coefficients, 457–460
Water year concept, 104
Water-quality constraints, 470–471
Water-quality management, 454–470
Water-quality-limited streams, 454
Wear-out failures, 255
Wear-out-life period, 254
Weibull distribution, 69–70
Weibull failure density function, 258
Weibull formula, 110, 111
Weibull plotting-position formula, 40, 109
WLA (see Waste-load-allocation)
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