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Preface

In the past two decades, industry—particularly the process industry—has witnessed
the development of several large ‘super-projects’, most in excess of a billion dol-
lars. These large super-projects include the exploitation of mineral resources such
as alumina, copper, iron, nickel, uranium and zinc, through the construction of huge
complex industrial process plants. Although these super-projects create many thou-
sands of jobs resulting in a significant decrease in unemployment, especially during
construction, as well as projected increases in the wealth and growth of the econ-
omy, they bear a high risk in achieving their forecast profitability through maintain-
ing budgeted costs. Most of the super-projects have either exceeded their budgeted
establishment costs or have experienced operational costs far in excess of what was
originally estimated in their feasibility prospectus scope. This has been the case not
only with projects in the process industry but also with the development of infras-
tructure and high-technology projects in the petroleum and defence industries. The
more significant contributors to the cost ‘blow-outs’ experienced by these projects
can be attributed to the complexity of their engineering design, both in technology
and in the complex integration of systems. These systems on their own are usually
adequately designed and constructed, often on the basis of previous similar, though
smaller designs.

It is the critical combination and complex integration of many such systems that
give rise to design complexity and consequent frequent failure, where high risks
of the integrity of engineering design are encountered. Research into this problem
has indicated that large, expensive engineering projects may have quite superficial
design reviews. As an essential control activity of engineering design, design re-
view practices can take many forms. At the lowest level, they consist merely of
an examination of engineering drawings and specifications before construction be-
gins. At the highest level, they consist of comprehensive evaluations to ensure due
diligence. Design reviews are included at different phases of the engineering design
process, such as conceptual design, preliminary or schematic design, and final detail
design. In most cases, though, a structured basis of measure is rarely used against
which designs, or design alternatives, should be reviewed. It is obvious from many
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vi Preface

examples of engineered installations that most of the problems stem from a lack of
proper evaluation of their engineering integrity.

In determining the complexity and consequent frequent failure of the critical
combination and complex integration of large engineering processes and systems,
both in their level of technology as well as in their integration, the integrity of
their design needs to be determined. This includes reliability, availability, main-
tainability and safety of the inherent process and system functions and their re-
lated equipment. Determining engineering design integrity implies determining re-
liability, availability, maintainability and safety design criteria of the design’s in-
herent systems and related equipment. The tools that most design engineers re-
sort to in determining integrity of design are techniques such as hazardous oper-
ations (HazOp) studies, and simulation. Less frequently used techniques include
hazards analysis (HazAn), fault-tree analysis, failure modes and effects analysis
(FMEA) and failure modes effects and criticality analysis (FMECA). Despite the
vast amount of research already conducted, many of these techniques are either
misunderstood or conducted incorrectly, or not even conducted at all, with the result
that many high-cost super-projects eventually reach the construction phase without
having been subjected to a rigorous and correct evaluation of the integrity of their
designs.

Much consideration is being given to general engineering design, based on the
theoretical expertise and practical experience of chemical, civil, electrical, elec-
tronic, industrial, mechanical and process engineers, from the point of view of ‘what
should be achieved’ to meet the design criteria. Unfortunately, it is apparent that not
enough consideration is being given to ‘what should be assured’ in the event the
design criteria are not met. It is thus on this basis that many high-cost super-projects
eventually reach the construction phase without having been subjected to a proper
rigorous evaluation of the integrity of their designs. Consequently, research into
a methodology for determining the integrity of engineering design has been initi-
ated by the contention that not enough consideration is being given, in engineering
design and design reviews, to what should be assured in the event of design cri-
teria not being met. Many of the methods covered in this handbook have already
been thoroughly explored by other researchers in the fields of reliability, avail-
ability, maintainability and safety analyses. What makes this compilation unique,
though, is the combination of these methods and techniques in probability and pos-
sibility modelling, mathematical algorithmic modelling, evolutionary algorithmic
modelling, symbolic logic modelling, artificial intelligence modelling, and object
oriented computer modelling, in a logically structured approach to determining the
integrity of engineering design.

This endeavour has encompassed not only a depth of research into the various
methods and techniques—ranging from quantitative probability theory and expert
judgement in Bayesian analysis, to qualitative possibility theory, fuzzy logic and un-
certainty in Markov analysis, and from reliability block diagrams, fault trees, event
trees and cause-consequence diagrams, to Petri nets, genetic algorithms and artifi-
cial neural networks—but also a breadth of research into the concept of integrity
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in engineering design. Such breadth is represented by the topics of reliability and
performance, availability and maintainability, and safety and risk, in an overall con-
cept of designing for integrity during the engineering design process. These topics
cover the integrity of engineering design not only for complex industrial processes
and engineered installations but also for a wide range of engineering systems, from
mobile to installed equipment.

This handbook is therefore written in the best way possible to appeal to:

1. Engineering design lecturers, for a comprehensive coverage of the subject the-
ory and application examples, sufficient for addition to university graduate and
postgraduate award courses.

2. Design engineering students, for sufficient theoretical coverage of the different
topics with insightful examples and exercises.

3. Postgraduate research candidates, for use of the handbook as overall guidance
and reference to other material.

4. Practicing engineers who want an easy readable reference to both theoretical
and practical applications of the various topics.

5. Corporate organisations and companies (manufacturing, mining, engineering
and process industries) requiring standard approaches to be understood and
adopted throughout by their technical staff.

6. Design engineers, design organisations and consultant groups who require a ‘best
practice’ handbook on the integrity of engineering design practice.

The topics covered in this handbook have proven to be much more of a research
challenge than initially expected. The concept of design is both complex and
complicated—even more so with engineering design, especially the design of en-
gineering systems and processes that encompass all of the engineering disciplines.
The challenge has been further compounded by focusing on applied and current
methodology for determining the integrity of engineering design. Acknowledge-
ment is thus gratefully given to those numerous authors whose techniques are pre-
sented in this handbook and also to those academics whose theoretical insight and
critique made this handbook possible. The proof of the challenge, however, was
not only to find solutions to the integrity problem in engineering design but also
to be able to deliver some means of implementing these solutions in a practical
computational format. This demanded an in-depth application of very many sub-
jects ranging from mathematical and statistical modelling to symbolic and compu-
tational modelling, resulting in the need for research beyond the basic engineering
sciences. Additionally, the solution models had to be tested in those very same en-
gineering environments in which design integrity problems were highlighted. No
one looks kindly upon criticism, especially with regard to allegations of shortcom-
ings in their profession, where a high level of resistance to change is inevitable
in respect of implementing new design tools such as AI-based blackboard mod-
els incorporating collaborative expert systems. Acknowledgement is therefore also
gratefully given to those captains of industry who allowed this research to be
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conducted in their companies, including all those design engineers who offered so
much of their valuable time. Last but by no means least was the support and encour-
agement from my wife and family over the many years during which the topics in
this handbook were researched and accumulated from a lifetime career in consulting
engineering.

Rudolph Frederick Stapelberg
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Chapter 1
Design Integrity Methodology

Abstract In the design of critical combinations and complex integrations of large
engineering systems, their engineering integrity needs to be determined. Engineer-
ing integrity includes reliability, availability, maintainability and safety of inherent
systems functions and their related equipment. The integrity of engineering design
therefore includes the design criteria of reliability, availability, maintainability and
safety of systems and equipment. The overall combination of these four topics con-
stitutes a methodology that ensures good engineering design with the desired en-
gineering integrity. This methodology provides the means by which complex en-
gineering designs can be properly analysed and reviewed, and is termed a RAMS
analysis. The concept of RAMS analysis is not new and has been progressively
developed, predominantly in the field of product assurance. Much consideration is
being given to engineering design based on the theoretical expertise and practical
experiences of chemical, civil, electrical, electronic, industrial, mechanical and pro-
cess engineers, particularly from the point of view of ‘what should be achieved’
to meet design criteria. Unfortunately, not enough consideration is being given to
‘what should be assured’ in the event design criteria are not met. Most of the prob-
lems encountered in engineered installations stem from the lack of a proper eval-
uation of their design integrity. This chapter gives an overview of methodology
for determining the integrity of engineering design to ensure that consideration is
given to ‘what should be assured’ through appropriate design review techniques.
Such design review techniques have been developed into automated continual de-
sign reviews through intelligent computer automated methodology for determining
the integrity of engineering design. This chapter thus also introduces the application
of artificial intelligence (AI) in engineering design and gives an overview of arti-
ficial intelligence-based (AIB) modelling in designing for reliability, availability,
maintainability and safety to provide a means for continual design reviews through-
out the engineering design process. These models include a RAM analysis model,
a dynamic systems simulation blackboard model, and an artificial intelligence-based
(AIB) blackboard model.

R.F. Stapelberg, Handbook of Reliability, Availability, 3
Maintainability and Safety in Engineering Design, c© Springer 2009
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1.1 Designing for Integrity

In the past two decades, industry, and particularly the process industry, has wit-
nessed the development of large super-projects, most in excess of a billion dollars.
Although these super-projects create many thousands of jobs resulting in significant
decreases in unemployment, especially during construction, as well as projected
increases in the wealth and growth of the economy, they bear a high risk in achiev-
ing their forecast profitability through maintaining budgeted costs. Because of the
complexity of design of these projects, and the fact that most of the problems en-
countered in the projects stem from a lack of proper evaluation of their integrity
of design, it is expected that research in this field should arouse significant interest
within most engineering-based industries in general. Most of the super-projects re-
searched by the author have either exceeded their budgeted establishment costs or
have experienced operational costs far in excess of what was originally estimated in
their feasibility prospectus scope. The poor performances of these projects are given
in the following points that summarise the findings of this research:

• In all of the projects studied, additional funding had to be obtained for cost over-
runs and to cover shortfalls in working capital due to extended construction
and commissioning periods. Final capital costs far exceeded initial feasibil-
ity estimates. Additional costs were incurred mainly for rectification of insuf-
ficiently designed system circuits and equipment, and increased engineering
and maintenance costs. Actual construction completion schedule overruns av-
eraged 6 months, and commissioning completion schedule overruns averaged
11 months. Actual start-up commenced +1 year after forecast with all the
projects.

• Estimated cash operating costs were over-optimistic and, in some cases, no fur-
ther cash operating costs were estimated due to project schedule overruns as well
as over-extended ramp-up periods in attempts to obtain design forecast output.

• Technology and engineering problems were numerous in all the projects studied,
especially in the various process areas, which indicated insufficient design and/or
specifications to meet the inherent process problems of corrosion, scaling and
erosion.

• Procurement and construction problems were experienced by all the projects
studied, especially relating to the lack of design data sheets, incomplete equip-
ment lists, inadequate process control and instrumentation, incorrect spare parts
lists, lack of proper identification of spares and facilities equipment such as man-
ual valves and piping both on design drawings and on site, and basic quality
‘corner cutting’ resulting from cost and project overruns. Actual project sched-
ule overruns averaged +1 year after forecast.

• Pre-commissioning as well as commissioning schedules were over-optimistic in
most cases where actual commissioning completion schedule overruns averaged
11 months. Inadequate references to equipment data sheets and design specifica-
tions resulted in it later becoming an exercise of identifying as-built equipment,
rather than of confirming equipment installation with design specifications.
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• The need to rectify processes and controls occurred in all the projects because
of detrimental erosion and corrosion effects on all the equipment with design
and specification inadequacies, resulting in cost and time overruns. Difficulties
with start-ups after resulting forced stoppages, and poor systems performance
with regard to availability and utilisation resulted in longer ramp-up periods and
shortfalls of operating capital to ensure proper project handover.

• In all the projects studied, schedules were over-optimistic with less than optimum
performance being able to be reached only much later than forecast. Production
was much lower than envisaged, ranging from 10 to 60% of design capacity
12 months after the forecast date that design capacity would be reached. Prob-
lems with regard to achieving design throughput occurred in all the projects. This
was due mainly to low plant utilisation because of poor process and equipment
design reliability, and short operating periods.

• Project management and control problems relating to construction, commission-
ing, start-up and ramp-up were proliferate as a result of an inadequate assessment
of design complexity and project volume with regard to the many integrated sys-
tems and equipment.

It is obvious from the previous points, made available in the public domain through
published annual reports of real-world examples of recently constructed engineering
projects, that most of the problems stem from a lack of proper evaluation of their
engineering integrity. The important question to be considered therefore is:

What does integrity of engineering design actually imply?

Engineering Integrity

In determining the complexity and consequent frequent failure of the critical com-
bination and complex integration of large engineering processes, both in technology
as well as in the integration of systems, their engineering integrity needs to be deter-
mined. This engineering integrity includes reliability, availability, maintainability
and safety of the inherent process systems functions and their related equipment.
Integrity of engineering design therefore includes the design criteria of reliability,
availability, maintainability and safety of these systems and equipment.

Reliability can be regarded as the probability of successful operation or perfor-
mance of systems and their related equipment, with minimum risk of loss or disaster
or of system failure. Designing for reliability requires an evaluation of the effects of
failure of the inherent systems and equipment.

Availability is that aspect of system reliability that takes equipment maintainability
into account. Designing for availability requires an evaluation of the consequences
of unsuccessful operation or performance of the integrated systems, and the critical
requirements necessary to restore operation or performance to design expectations.

Maintainability is that aspect of maintenance that takes downtime of the systems
into account. Designing for maintainability requires an evaluation of the accessi-
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bility and ‘repairability’ of the inherent systems and their related equipment in the
event of failure, as well as of integrated systems shutdown during planned mainte-
nance.

Safety can be classified into three categories, one relating to personal protection,
another relating to equipment protection, and yet another relating to environmen-
tal protection. Safety in this context may be defined as “not involving risk”, where
risk is defined as “the chance of loss or disaster”. Designing for safety is inherent
in the development of designing for reliability and maintainability of systems and
their related equipment. Environmental protection in engineering design, particu-
larly in industrial process design, relates to the prevention of failure of the inherent
process systems resulting in environmental problems associated predominantly with
the treatment of wastes and emissions from chemical processing operations, high-
temperature processes, hydrometallurgical and mineral processes, and processing
operations from which by-products are treated.

The overall combination of these four topics constitutes a methodology that en-
sures good engineering design with the desired engineering integrity. This method-
ology provides the means by which complex engineering designs can be properly
analysed and reviewed. Such an analysis and review is conducted not only with
a focus upon individual inherent systems but also with a perspective of the critical
combination and complex integration of all the systems and related equipment, in
order to achieve the required reliability, availability, maintainability and safety (i.e.
integrity).

This analysis is often termed a RAMS analysis. The concept of RAMS analysis is
not new and has been progressively developed over the past two decades, predom-
inantly in the field of product assurance. Those industries applying product assur-
ance methods have unquestionably witnessed astounding revolutions of knowledge
and techniques to match the equally astounding progress in technology, particularly
in the electronic, micro-electronic and computer industries. Many technologies have
already originated, attained peak development, and even become obsolete within the
past two decades. In fact, most systems of products built today will be long since ob-
solete by the time they wear out. So, too, must the development of ideas, knowledge
and techniques to adequately manage the application and maintenance of newly de-
veloped systems be compatible and adaptable, or similarly become obsolete and fall
into disuse. This applies to the concept of engineering integrity, particularly to the
integrity of engineering design.

Engineering knowledge and techniques in the design and development of com-
plex systems either must become part of a new information revolution in which
compatible and, in many cases, more stringent methods of design reviews and eval-
uations are adopted, especially in the application of intelligent computer automated
methodology, or must be relegated to the archives of obsolete practices.

However, the phenomenal progress in technology over the past few decades has
also confused the language of the engineering profession and, between engineer-
ing disciplines, engineers still have trouble speaking the same language, especially
with regard to understanding the intricacies of concepts such as integrity, reliability,
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availability, maintainability and safety not only of components, assemblies, sub-
systems or systems but also of their integration into larger complex installations.

Some of the more significant contributors to cost ‘blow-outs’ experienced by
most engineering projects can be attributed to the complexity of their engineering
design, both in technology and in the complex integration of their systems, as well as
a lack of meticulous engineering design project management. The individual process
systems on their own are adequately designed and constructed, often on the basis of
previous similar, although smaller designs.

It is the critical combination and complex integration of many such process systems that
gives rise to design complexity and consequent frequent failure, where high risks of the
integrity of engineering design are encountered.

Research by the author into this problem has indicated that large, expensive engi-
neering projects may often have superficial design reviews. As an essential control
activity of engineering design, design review practices can take many forms. At the
lowest level, they consist of an examination of engineering drawings and specifica-
tions before construction begins. At the highest level, they consist of comprehensive
due diligence evaluations. Comprehensive design reviews are included at different
phases of the engineering design process, such as conceptual design, preliminary or
schematic design, and final detail design.

In most cases, a predefined and structured basis of measure is rarely used against which the
design, or design alternatives, should be reviewed.

This situation inevitably prompts the question how can the integrity of design be
determined prior to any data being accumulated on the results of the operation and
performance of the design? In fact, how can the reliability of engineering plant and
equipment be determined prior to the accumulation of any statistically meaningful
failure data of the plant and its equipment? To further complicate matters, how will
plant and equipment perform in large integrated systems, even if nominal reliability
values of individual items of equipment are known? This is the dilemma that most
design engineers are confronted with. The tools that most design engineers resort
to in determining integrity of design are techniques such as hazardous operations
(HazOp) studies, and simulation. Less frequently used techniques include hazards
analysis (HazAn), fault-tree analysis, failure modes and effects analysis (FMEA),
and failure modes effects and criticality analysis (FMECA).

This is evident by scrutiny of a typical Design Engineer’s Definitive Scope of
Work given in Appendix A. Despite the vast amount of research already conducted
in the field of reliability analysis, many of these techniques seem to be either mis-
understood or conducted incorrectly, or not even conducted at all, with the result
that many high-cost super-projects eventually reach the construction phase with-
out having been subjected to a rigorous and correct evaluation of the integrity
of their designs. Verification of this statement is given in the extract below in
which comment is delivered in part on an evaluation of the intended application of
HazOp studies in conducting a preliminary design review for a recent laterite–nickel
process design.
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The engineer’s definitive scope of work for a project includes the need for con-
ducting preliminary design HazOp reviews as part of design verification. Reference
to determining equipment criticality for mechanical engineering as well as for elec-
trical engineering input can be achieved only through the establishment of failure
modes and effects analysis (FMEA). There are, however, some concerns with the
approach, as indicated in the following points.

Comment on intended HazOp studies for use in preliminary design reviews of
a new engineering project:

• In HazOp studies, the differentiation between analyses at higher and at lower
systems levels in assessing either hazardous operational failure consequences or
system failure effects is extremely important from the point of view of determin-
ing process criticality, or of determining equipment criticality.

• The determination of process criticality can be seen as a preliminary HazOp,
or a higher systems-level determination of process failure consequences, based
upon process function definition in relation to the classical HazOp ‘guide words’,
and obtained off the schematic design process flow diagrams (PFDs).

• The determination of equipment criticality can be seen as a detailed HazOp (or
HazAn), or determination of system failure effects, which is based upon equip-
ment function definition.

• The extent of analysis is very different between a preliminary HazOp and a de-
tailed HazOp (or HazAn). Both are, however, essential for the determination of
integrity of design, the one at a higher process level, and the other at a lower
equipment level.

• A preliminary HazOp study is essential for the determination of integrity of de-
sign at process level, and should include process reliability that can be quantified
from process design criteria.

• The engineer’s definitive scope of work for the project does not include a de-
termination of process reliability, although process reliability can be quantified
from process design criteria.

• A detailed HazOp (or HazAn) is essential for the determination of integrity of de-
sign at a lower equipment level, and should include estimations of critical equip-
ment reliability that can be quantified from equipment design criteria.

• The engineer’s definitive scope of work does not include a determination of
equipment reliability, although equipment reliability is quantified from detail
equipment design criteria.

• Failure modes and effects analysis (FMEA) is dependent upon equipment func-
tion definition at assembly and component level in the systems breakdown struc-
ture (SBS), which is considered in equipment specification development dur-
ing schematic and detail design. Furthermore, FMEA is strictly dependent upon
a correctly structured SBS at the lower systems levels, usually obtained off the
detail design pipe and instrument drawings (P&IDs).

It is obvious from the above comments that a severe lack of insight exists in the
essential activities required to establish a proper evaluation of the integrity of engi-
neering design, with the consequence that many ‘good intentions’ inevitably result
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in superficial design reviews, especially with large, complex and expensive process
designs.

Based on hands-on experience, as well as in-depth analysis of the potential causes
of the cost ‘blow-outs’ of several super-projects, an inevitable conclusion can be de-
rived that insufficient research has been conducted in determining the integrity of
process engineering design, as well as in design review techniques. Much consid-
eration is being given to engineering design based on the theoretical expertise and
practical experience of process, chemical, civil, mechanical, electrical, electronic
and industrial engineers, particularly from the point of view of ‘what should be
achieved’ to meet the design criteria. Unfortunately, it is apparent that not enough
consideration is being given to ‘what should be assured’ in the event the design cri-
teria are not met. Thus, many high-cost super-projects eventually reach the construc-
tion phase without having been subjected to a rigorous evaluation of the integrity of
their designs.

The contention that not enough consideration is being given in engineering de-
sign, as well as in design review techniques, to ‘what should be assured’ in the
event of design criteria not being met has therefore initiated the research presented
in this handbook into a methodology for determining the integrity of engineering
design. This is especially of concern with respect to the critical combinations and
complex integrations of large engineering systems and their related equipment. Fur-
thermore, an essential need has been identified in most engineering-based industries
for a practical intelligent computer automated methodology to be applied in engi-
neering design reviews as a structured basis of measure in determining the integrity
of engineering design to achieve the required reliability, availability, maintainability
and safety.

The objectives of this handbook are thus to:

1. Present concise theoretical formulation of conceptual and mathematical mod-
els of engineering design integrity in design synthesis, which includes design
for reliability, availability, maintainability and safety during the conceptual,
schematic or preliminary, and detail design phases.

2. Consider critical development criteria for intelligent computer automated meth-
odology whereby the conceptual and mathematical models can be used prac-
tically in the mining, process and construction industries, as well as in most
other engineering-based industries, to establish a structured basis of measure in
determining the integrity of engineering design.

Several target platforms for evaluating and optimising the practical contribution of
research in the field of engineering design integrity that is addressed in this hand-
book are focused on the design of large industrial processes that consist of many
systems that give rise to design complexity and consequent high risk of design in-
tegrity. These industrial process engineering design ‘super-projects’ are insightful
in that they incorporate almost all the different basic engineering disciplines, from
chemical, civil, electrical, industrial, instrumentation and mechanical to process en-
gineering. Furthermore, the increasing worldwide activity in the mining, process
and construction industries makes such research and development very timely. The
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following models have been developed, each for a specific purpose and with spe-
cific expected results, either to validate the developed theory on engineering design
integrity or to evaluate and verify the design integrity of critical combinations and
complex integrations of systems and equipment.

RAMS analysis modelling This was applied to validate the developed theory on
the determination of the integrity of engineering design. This computer model was
applied to a recently constructed engineering design of an environmental plant for
the recovery of sulphur dioxide emissions from a nickel smelter to produce sulphuric
acid.

Eighteen months after the plant was commissioned and placed into operation,
failure data were obtained from the plant’s distributed control system (DCS), and
analysed with a view to matching the developed theory with real operational data
after plant start-up. The comparative analysis included determination of systems and
equipment criticality and reliability.

Dynamic systems simulation modelling This was applied with individually de-
veloped process equipment models (PEMs) based on Petri net constructs, to ini-
tially determine mass-flow balances for preliminary engineering designs of large
integrated process systems. The models were used to evaluate and verify the pro-
cess design integrity of critical combinations and complex integrations of systems
and related equipment, for schematic and detail engineering designs. The process
equipment models have been verified for correctness, and the relevant results vali-
dated, by applying the PEMs in a large dynamic simulation of a complex integration
of systems.

Simulation modelling for design verification is common to most engineering de-
signs, particularly in the application of simulating outcomes during the preliminary
design phase. Dynamic simulation models are also used for design verification dur-
ing the detail design phase but not to the extent of determining outcomes, as the level
of complexity of the simulation models (and, therefore, the extent of data analysis
of the simulation results) varies in accordance with the level of detail of the design.

At the higher systems level, typical of preliminary designs, dynamic simulation
of the behaviour of exogenous, endogenous and status variables is both feasible and
applicable. However, at the lower, more detailed equipment level, typical of detail
designs, dynamic continuous and/or discrete event simulation is applicable, together
with the appropriate verification and validation analysis of results, their sensitivity to
changes in primary or base variables, and the essential need for adequate simulation
run periods determined from statistical experimental design. Simulation analysis
should not be based on model development time.

Mathematical modelling Modelling in the form of developed optimisation algo-
rithms (OAs) of process design integrity was applied in predicting, assessing and
evaluating reliability, availability, maintainability and safety requirements for the
complex integration of process systems. These models were programmed into the
PEM’s script so that each individual process equipment model inherently has the fa-
cility for simplified data input, and the ability to determine its design integrity with
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relevant output validation that includes the ability to determine the accumulative
effect of all the PEMs’ reliabilities in a PFD configuration.

Artificial intelligence-based (AIB) modelling This includes new artificial intel-
ligence (AI) modelling techniques, such as knowledge-based expert systems within
a blackboard model, which have been applied in the development of intelligent com-
puter automated methodology for determining the integrity of engineering design.
The AIB model provides a novel concept of automated continual design reviews
throughout the engineering design process on the basis of concurrent design in
an integrated collaborative engineering design environment. This is implemented
through remotely located multidisciplinary groups of design engineers communi-
cating via the Internet, who input specific design data and schematics into rele-
vant knowledge-based expert systems, whereby each designed system or related
equipment is automatically evaluated for integrity by the design group’s expert sys-
tem. The measures of integrity are based on the developed theory for predicting,
assessing and evaluating reliability, availability, maintainability and safety require-
ments for complex integrations of engineering process systems. The relevant de-
sign criteria pertaining to each level of a systems hierarchy of the engineering de-
signs are incorporated in an all-encompassing blackboard model. The blackboard
model incorporates multiple, diverse program modules, called knowledge sources
(in knowledge-based expert systems), which cooperate in solving design problems
such as determining the integrity of the designs. The blackboard is an OOP appli-
cation containing several databases that hold shared information among knowledge
sources. Such information includes the RAMS analysis data, results from the op-
timisation algorithms, and compliance to specific design criteria, relevant to each
level of systems hierarchy of the designs. In this manner, integrated systems and
related equipment are continually evaluated for design compatibility and integrity
throughout the engineering design process, particularly where designs of large sys-
tems give rise to design complexity and consequent high risk of design integrity.

Contribution of research in integrity of engineering design Many of the meth-
ods covered in this handbook have already been thoroughly explored by other
researchers in the various fields of reliability, availability, maintainability and safe-
ty, though more in the field of engineering processes than of engineering de-
sign. What makes this handbook unique is the combination of practical methods
with techniques in probability and possibility modelling, mathematical algorithmic
modelling, evolutionary algorithmic modelling, symbolic logic modelling, artificial
intelligence modelling, and object oriented computer modelling, in a structured ap-
proach to determining the integrity of engineering design. This endeavour has en-
compassed not only a depth of research into these various methods and techniques
but also a breadth of research into the concept of integrity in engineering design.
Such breadth is represented by the combined topics of reliability and performance,
availability and maintainability, and safety and risk, in an overall concept of the
integrity of engineering design—which has been practically segmented into three
progressive phases, i.e. a conceptual design phase, a preliminary or schematic de-
sign phase, and a detail design phase.
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Thus, a matrix combination of the topics has been considered in each of the three
phases—a total of 18 design methodology aspects for consideration—hence, the
voluminous content of this handbook. Such a comprehensive combination of depth
and breadth of research resulted in the conclusion that certain methods and tech-
niques are more applicable to specific phases of the engineering design process, as
indicated in the theoretical overview and analytic development of each of the topics.
The research has not remained on a theoretical basis, however, but includes the ap-
plication of various computer models in specific target industry projects, resulting in
a wide range of design deliverables related to the theoretical topics. Taking all these
design methodology aspects into consideration, the research presented in this hand-
book can rightfully claim uniqueness in both integrative modelling and practical
application in determining the integrity of process engineering design. A practical
industry-based outcome is given in the establishment of an intelligent computer au-
tomated methodology for determining integrity of engineering design, particularly
for design reviews at the various progressive phases of the design process, namely
conceptual, preliminary and detail engineering design. The overall value of such
methodology is in the enhancement of design review methods for future engineer-
ing projects.

1.1.1 Development and Scope of Design Integrity Theory

The scope of research for this handbook necessitated an in-depth coverage of the
relevant theory underlying the approach to determining the integrity of engineer-
ing design, as well as an overall combination of the topics that would constitute
such a methodology. The scope of theory covered in a comprehensive selection of
available literature included the following subjects:

• Failure analysis: the basics of failure, failure criticality, failure models, risk and
safety.

• Reliability analysis: reliability theory, methods and models, reliability and sys-
tems engineering, control and prediction.

• Availability analysis: availability theory, methods and models, availability engi-
neering, control and prediction.

• Maintainability analysis: maintainability theory, methods and models, maintain-
ability engineering, control and testing.

• Quantitative analysis: programming, statistical distributions, quantitative uncer-
tainty, Markov analysis and probability theory.

• Qualitative analysis: descriptive statistics, complexity, qualitative uncertainty,
fuzzy logic and possibility theory.

• Systems analysis: large systems integration, optimisation, dynamic optimisation,
systems modelling, decomposition and control.

• Simulation analysis: planning, formulation, specification, evaluation, verifica-
tion, validation, computation, modelling and programming.
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• Process analysis: general process reactions, mass transfer, and material and en-
ergy balance, and process engineering.

• Artificial intelligence modelling: knowledge-based expert systems and black-
board models ranging from domain expert systems (DES), artificial neural sys-
tems (ANS) and procedural diagnostic systems (PDS) to blackboard manage-
ment systems (BBMS), and the application of expert system shells such as
CLIPS, fuzzy CLIPS, EXSYS and CORVID.

Essential preliminaries The very many methods and techniques presented in this
handbook, and developed by as many authors, are referenced at the end of each
following chapter. Additionally, a listing of books on the scope of the theory covered
is given in Appendix B. However, besides these methods and techniques and theory,
certain essential preliminaries used by design engineers in determining the integrity
of engineering design include activities such as:

• Systems breakdown structures (SBSs) development
• Process function definition
• Quantification of engineering design criteria
• Determination of failure consequences
• Determination of preliminary design reliability
• Determination of systems interdependencies
• Determination of process criticality
• Equipment function definition
• Quantification of detail design criteria
• Determination of failure effects
• Failure modes and effects analysis (FMEA)
• Determination of detail design reliability
• Failure modes effects and criticality analysis (FMECA)
• Determination of equipment criticality.

However, very few engineering designs actually incorporate all of these activities
(except for the typical quantification of process design criteria and detail equipment
design criteria) and, unfortunately, very few design engineers apply or even under-
stand the theoretical implications and practical application of such activities. The
methodology researched in this handbook, in which engineering design problems
are formulated to achieve optimal integrity, has been extended to accommodate its
use in conceptual and preliminary or schematic design in which most of the design’s
components have not yet been precisely defined in terms of their final configuration
and functional performance.

The approach, then, is to determine methodology, particularly intelligent computer auto-
mated methodology, in which design for reliability, availability, maintainability and safety
is applied to systems the components of which have not been precisely defined.
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1.1.2 Designing for Reliability, Availability, Maintainability
and Safety

The fundamental understanding of the concepts of reliability, availability and main-
tainability (and, to a large extent, an empirical understanding of safety) has in the
main dealt with statistical techniques for the measure and/or estimation of various
parameters related to each of these concepts, based on obtained data. Such data may
be obtained from current observations or past experience, and may be complete, in-
complete or censored. Censored data arise from the cessation of experimental ob-
servations prior to a final conclusion of the results. These statistical techniques are
predominantly couched in probability theory.

The usual meaning of the term reliability is understood to be ‘the probability of
performing successfully’. In order to assess reliability, the approach is based upon
available test data of successes or failures, or on field observations relative to perfor-
mance under either actual or simulated conditions. Since such results can vary, the
estimated reliability can be different from one set of data to another, even if there
are no substantial changes in the physical characteristics of the item being assessed.
Thus, associated with the reliability estimate, there is also a measure of the sig-
nificance or accuracy of the estimate, termed the ‘confidence level’. This measure
depends upon the amount of data available and/or the results observed. The data are
normally governed by some parametric probability distribution. This means that the
data can be interpreted by one or other mathematical formula representing a specific
statistical probability distribution that belongs to a family of distributions differing
from one another only in the values of their parameters.

Such a family of distributions may be grouped accordingly:

• Beta distribution
• Binomial distribution
• Lognormal distribution
• Exponential (Poisson) distribution
• Weibull distribution.

Estimation techniques for determining the level of confidence related to an assess-
ment of reliability based on these probability distributions are the methods of maxi-
mum likelihood, and Bayesian estimation.

In contrast to reliability, which is typically assessed for non-repairable systems,
i.e. without regard to whether or not a system is repaired and restored to service af-
ter a failure, availability and maintainability are principally assessed for repairable
systems. Both availability and maintainability have the dimensions of a probability
distribution in the range zero to one, and are based upon time-dependent phenom-
ena. The difference between the two is that availability is a measure of total per-
formance effectiveness, usually of systems, whereas maintainability is a measure of
effectiveness of performance during the period of restoration to service, usually of
equipment.
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Reliability assessment based upon the family of statistical probability distributions
considered previously is, however, subject to a somewhat narrow point of view—
success or failure in the function of an item. They do not consider situations in
which there are some means of backup for a failed item, either in the form of re-
placement, or in the form of restoration, or which include multiple failures with
standby reliability, i.e. the concept of redundancy, where a redundant item is placed
into service after a failure. Such situations are represented by additional probability
distributions, namely:

• Gamma distribution
• Chi-square distribution.

Availability, on the other hand, has to do with two separate events—failure and
repair. Therefore, assigning confidence levels to values of availability cannot be
done parametrically, and a technique such as Monte Carlo simulation is employed,
based upon the estimated values of the parameters of time-to-failure and time-to-
repair distributions. When such distributions are exponential, they can be reviewed
in a Bayesian framework so that not only the time period to specific events is sim-
ulated but also the values of the parameters. Availability is usually assessed with
Poisson or Weibull time-to-failure and exponential or lognormal time-to-repair.

Maintainability is concerned with only one random variable—the repair time for
a failed system. Thus, assessing maintainability implies the same level of difficulty
as does assessing reliability that is concerned with only one event, namely the fail-
ure of a system in its operating condition. In both cases, if the time to an event of
failure is governed by either a parametric, Poisson or Weibull distribution, then the
confidence levels of the estimates can also be assigned parametrically.

However, in designing for reliability, availability and maintainability, it is more
often the case that the measure and/or estimation of various parameters related to
each of these concepts is not based on obtained data. This is simply due to the
fact that available data do not exist. This poses a severe problem for engineering de-
sign analysis in determining the integrity of the design, in that the analysis cannot be
quantitative. Furthermore, the complexity arising from an integration of engineering
systems and their interactions makes it somewhat impossible to gather meaningful
statistical data that could allow for the use of objective probabilities in the analysis.
Other acceptable methods must be sought to determine the integrity of engineer-
ing design in the situation where data are not available or not meaningful. These
methods are to be found in a qualitative approach to engineering design analysis.
A qualitative analysis of the integrity of engineering design would need to incorpo-
rate qualitative concepts such as uncertainty and incompleteness. Uncertainty and
incompleteness are inherent to engineering design analysis, whereby uncertainty,
arising from a complex integration of systems, can best be expressed in qualitative
terms, necessitating the results to be presented in the same qualitative measures. In-
completeness considers results that are more or less sure, in contrast to those that
are only possible. The methodology for determining the integrity of engineering de-
sign is thus not solely a consideration of the fundamental quantitative measures of
engineering design analysis based on probability theory but also consideration of
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a qualitative analysis approach to selected conventional techniques. Such a qualita-
tive analysis approach is based upon conceptual methodologies ranging from inter-
vals and labelled intervals; uncertainty and incompleteness; fuzzy logic and fuzzy
reasoning; through to approximate reasoning and possibility theory.

a) Designing for Reliability

In an elementary process, performance may be measured in terms of input, through-
put and output quantities, whereas reliability is generally described in terms of the
probability of failure or a mean time to failure of equipment (i.e. assemblies and
components). This distinction is, however, not very useful in engineering design
because it omits the assessment of system reliability from preliminary design con-
siderations, leaving the task of evaluating equipment reliability during detail design,
when most equipment items have already been specified. A closer scrutiny of relia-
bility is thus required, particularly the broader concept of system reliability.

System reliability can be defined as “the probability that a system will perform a speci-
fied function within prescribed limits, under given environmental conditions, for a specified
time”.

An important part of the definition of system reliability is the ability to perform
within prescribed limits. The boundaries of these limits can be quantified by defin-
ing constraints on acceptable performance. The constraints are identified by consid-
ering the effects of failure of each identified performance variable. If a particular
performance variable (designating a specific required duty) lies within the space
bounded by these constraints, then it is a feasible design solution, i.e. the design
solution for a chosen performance variable does not violate its constraints and result
in unacceptable performance. The best performance variable would have the great-
est variance or safety margin from its relative constraints. Thus, a design that has
the highest safety margin with respect to all constraints will inevitably be the most
reliable design.

Designing for reliability at the systems level includes all aspects of the ability
of a system to perform. When assemblies are configured together in a system, the
system gains a collective identity with multiple functions, each function identified
by the collective result of the duties of each assembly. Preliminary design consid-
erations describe these functions at the system level and, as the design process pro-
gresses, the required duties at the assembly level are identified, in effect constituting
the collective performance of components that are defined at the detail design stage.
In process systems, no difference is made between performance and reliability at
the component level. When components are configured together in an assembly, the
assembly gains a collective identity with designated duties.

Performance is the ability of such an assembly of components to carry out its
duties, while reliability at the component level is determined by the ability of each
of the components to resist failure. Unacceptable performance is considered from
the point of view of the assembly not being able to meet a specific performance
variable or designated duty, by an evaluation of the effects of failure of the inherent
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components on the duties of the assembly. Designing for reliability at the prelim-
inary design stage would be to maximise the reliability of a system by ensuring
that there are no ‘weak links’ (i.e. assemblies) resulting in failure of the system to
perform its required functions.

Similarly, designing for reliability at the detail design stage would be to max-
imise the reliability of an assembly by ensuring that there are no ‘weak links’ (i.e.
components) resulting in failure of the assembly to perform its required duties.

For example, in a mechanical system, a pump is an assembly of components that
performs specific duties that can be measured in terms of performance variables
such as pressure, flow rate, efficiency and power consumption. However, if a pump
continues to operate but does not deliver the correct flow rate at the right pressure,
then it should be regarded as having failed because it does not fulfil its prescribed
duty. It is incorrect to describe a pump as ‘reliable’ if the rates of failure of its
components are low, yet it does not perform a specific duty required of it.

Similarly, in a hydraulic system, a particular assembly may appear to be ‘reli-
able’ if the rates of failure of its components are low, yet it may fail to perform
a specific duty required of it. Numerous examples can be listed in systems pertain-
ing to the various engineering disciplines (i.e. chemical, civil, electrical, electronic,
industrial, mechanical, process, etc.), many of which become critical when multiple
assemblies are configured together in single systems and, in turn, multiple systems
are integrated into large, complex engineering installations.

The intention of designing for reliability is thus to design integrated systems with assemblies
that effectively fulfil all their required duties.

The design for reliability method thus integrates functional failure as well as func-
tional performance criteria so that a maximum safety margin is achieved with respect
to acceptable limits of performance. The objective is to produce a design that has
the highest possible safety margin with respect to all constraints. However, because
many different constraints defined in different units may apply to the overall per-
formance of the system, a method of data point generation based on the limits of
non-dimensional performance measures allows design for reliability to be quanti-
fied.

The choice of limits of performance for such an approach is generally made
with respect to the consequences of failure and reliability expectations. If the conse-
quences of failure are high, then limits of acceptable performance with high safety
margins that are well clear of failure criteria are chosen. Similarly, if failure criteria
are imprecise, then high safety margins are adopted.

This approach has been further expanded, applying the method of labelled in-
terval calculus to represent sets of systems functioning under sets of failures and
performance intervals. The most significant advantage of this method is that, be-
sides not having to rely on the propagation of single estimated values of failure
data, it does not have to rely on the determination of single values of maximum and
minimum acceptable limits of performance for each criterion. Instead, constraint
propagation of intervals about sets of performance values is applied. As these inter-
vals are defined, a multi-objective optimisation of availability and maintainability
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performance values is computed, and optimal solution sets to different sets of per-
formance intervals are determined.

In addition, the concept of uncertainty in design integrity, both in technology
as well as in the complex integration of multiple systems of large engineering pro-
cesses, is considered through the application of uncertainty calculus utilising fuzzy
sets and possibility theory. Furthermore, the application of uncertainty in failure
mode effects and criticality analyses (FMECAs) describes the impact of possible
faults that could arise from the complexity of process engineering systems, and
forms an essential portion of knowledge gathered during the schematic design phase
of the engineering design process.

The knowledge gathered during the schematic design phase is incorporated in
a knowledge base that is utilised in an artificial intelligence-based blackboard sys-
tem for detail design. In the case where data are sparse or non-existent for evaluat-
ing the performance and reliability of engineering designs, information integration
technology (IIT) is applied. This multidisciplinary methodology is particularly con-
sidered where complex integrations of engineering systems and their interactions
make it difficult and even impossible to gather meaningful statistical data.

b) Designing for Availability

Designing for availability, as it is applied to an item of equipment, includes the
aspects of utility and time. Designing for availability is concerned with equipment
usage or application over a period of time. This relates directly to the equipment (i.e.
assembly or component) being able to perform a specific function or duty within
a given time frame, as indicated by the following definition:

Availability can be simply defined as “the item’s capability of being used over
a period of time”, and the measure of an item’s availability can be defined as “that
period in which the item is in a usable state”. Performance variables relating avail-
ability to reliability and maintainability are concerned with the measures of time
that are subject to equipment failure. These measures are mean time between fail-
ures (MTBF), and mean downtime (MDT) or mean time to repair (MTTR). As with
designing for reliability, which includes all aspects of the ability of a system to
perform, designing for availability includes reliability and maintainability consid-
erations that are integrated with the performance variables related to the measures
of time that are subject to equipment failure. Designing for availability thus incor-
porates an assessment of expected performance with respect to the performance
measures of MTBF, MDT or MTTR, in relation to the performance capabilities of
the equipment. In the case of MTBF and MTTR, there are no limits of capability.
Instead, prediction of the performance of equipment considers the effects of failure
for each of the measures of MTBF and MTTR.

System availability implies the ability to perform within prescribed limits quan-
tified by defining constraints on acceptable performance that is identified by consid-
ering the consequences of failure of each identified performance variable. Designing
for availability during the preliminary or schematic design phase of the engineering



1.1 Designing for Integrity 19

design process includes intelligent computer automated methodology based on Petri
nets (PN). Petri nets are useful for modelling complex systems in the context of sys-
tems performance, in designing for availability subject to preventive maintenance
strategies that include complex interactions such as component renewal. Such inter-
actions are time related and dependent upon component age and estimated residual
life of the components.

c) Designing for Maintainability

Maintainability is that aspect of maintenance that takes downtime into account, and
can be defined as “the probability that a failed item can be restored to an operational
effective condition within a given period of time”. This restoration of a failed item to
an operational effective condition is usually when repair action, or corrective main-
tenance action, is performed in accordance with prescribed standard procedures.
The item’s operational effective condition in this context is also considered to be the
item’s repairable condition.

Corrective maintenance action is the action to rectify or set right defects in the
item’s operational and physical conditions, on which its functions depend, in ac-
cordance with a standard. Maintainability is thus the probability that an item can
be restored to a repairable condition through corrective action, in accordance with
prescribed standard procedures within a given period of time. It is significant to note
that maintainability is achieved not only through restorative corrective maintenance
action, or repair action, in accordance with prescribed standard procedures, but also
within a given period of time. This repair action is in fact determined by the mean
time to repair (MTTR), which is a measure of the performance of maintainability.
A fundamental principle is thus identified:

Maintainability is a measure of the repairable condition of an item that is deter-
mined by the mean time to repair (MTTR), established through corrective main-
tenance action.

Designing for maintainability fundamentally makes use of maintainability predic-
tion techniques as well as specific quantitative maintainability analysis models re-
lating to the operational requirements of the design. Maintainability predictions of
the operational requirements of a design during the conceptual design phase can aid
in design decisions where several design options need to be considered. Quantitative
maintainability analysis during the schematic and detail design phases considers the
assessment and evaluation of maintainability from the point of view of maintenance
and logistics support concepts. Designing for maintainability basically entails a con-
sideration of design criteria such as visibility, accessibility, testability, repairability
and inter-changeability. These criteria need to be verified through maintainability
design reviews, conducted during the various design phases.

Designing for maintainability at the systems level requires an evaluation of the
visibility, accessibility and repairability of the system’s equipment in the event of
failure. This includes integrated systems shutdown during planned maintenance.
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Designing for maintainability, as it is applied to an item of equipment, includes the
aspects of testability, repairability and inter-changeability of an assembly’s inherent
components. In general, the concept of designing for maintainability is concerned
with the restoration of equipment that has failed to perform over a period of time.
The performance variable used in the determination of maintainability that is con-
cerned with the measure of time subject to equipment failure is the mean time to
repair (MTTR).

Thus, besides providing for visibility, accessibility, testability, repairability and
inter-changeability, designing for maintainability also incorporates an assessment
of expected performance in terms of the measure of MTTR in relation to the per-
formance capabilities of the equipment. Designing for maintainability during the
preliminary design phase would be to minimise the MTTR of a system by ensuring
that failure of an inherent assembly to perform a specific duty can be restored to its
expected performance over a period of time. Similarly, designing for maintainability
during the detail design phase would be to minimise the MTTR of an assembly by
ensuring that failure of an inherent component to perform a specific function can be
restored to its expected initial state over a period of time.

d) Designing for Safety

Traditionally, assessments of the risk of failure are made on the basis of allow-
able factors of safety obtained from previous failure experiences, or from empirical
knowledge of similar systems operating in similar anticipated environments. Con-
ventionally, the factor of safety has been calculated as the ratio of what are assumed
to be nominal values of demand and capacity. In this context, demand is the resul-
tant of many uncertain variables of the system under consideration, such as loading
stress, pressures and temperatures. Similarly, capacity depends on the properties of
materials strength, physical dimensions, constructability, etc. The nominal values of
both demand and capacity cannot be determined with certainty and, hence, their ra-
tio, giving the conventional factor of safety, is a random variable. Representation of
the values of demand and capacity would thus be in the form of probability distribu-
tions whereby, if maximum demand exceeded minimum capacity, the distributions
would overlap with a non-zero probability of failure.

A convenient way of assessing this probability of failure is to consider the differ-
ence between the demand and capacity functions, termed the safety margin, a ran-
dom variable with its own probability distribution. Designing for safety, or the mea-
sure of adequacy of a design, where inadequacy is indicated by the measure of the
probability of failure, is associated with the determination of a reliability index for
items at the equipment and component levels. The reliability index is defined as the
number of standard deviations between the mean value of the probability distribu-
tion of the safety margin, where the safety margin is zero. It is the reciprocal of the
coefficient of variation of the safety margin.

Designing for safety furthermore includes analytic techniques such as genetic al-
gorithms and/or artificial neural networks (ANN) to perform multi-objective optimi-
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sations of engineering design problems. The use of genetic algorithms in designing
for safety is a new approach in determining solutions to the redundancy allocation
problem for series-parallel systems design comprising multiple components. Artifi-
cial neural networks in designing for safety offer feasible solutions to many design
problems because of their capability to simultaneously relate multiple quantitative
and qualitative variables, as well as to form models based solely on minimal data.

1.2 Artificial Intelligence in Design

Analysis of Target Engineering Design Projects

A stringent approach of objectivity is essential in implementing the theory of design
integrity in any target engineering design project, particularly with regard to the
numerous applications of mathematical models in intelligent computer automated
methodology. Selection of target engineering projects was therefore based upon il-
lustrating the development of mathematical and simulation models of process and
equipment functionality, and development of an artificial intelligence-based (AIB)
blackboard model to determine the integrity of process engineering design.

As a result, three different target engineering design projects are selected that
relate directly to the progressive stages in the development of the theory, and to the
levels of modelling sophistication in the practical application of the theory:

• RAMS analysis model (product assurance) for an engineering design project
of an environmental plant for the recovery of sulphur dioxide emissions from
a metal smelter to produce sulphuric acid as a by-product. The purpose of im-
plementing the RAMS analysis model in this target engineering design project
is to validate the developed theory of design integrity in designing for reliabil-
ity, availability, maintainability and safety, for eventual inclusion in intelligent
computer automated methodology using artificial intelligence-based (AIB) mod-
elling.

• OOP simulation model (process analysis) for an engineering design super-project
of an alumina plant with establishment costs in excess of a billion dollars. The
purpose of implementing the object oriented programming (OOP) simulation
model in this target engineering design project was to evaluate the mathemati-
cal algorithms developed for assessing the reliability, availability, maintainability
and safety requirements of complex process systems, as well as for the complex
integration of process systems, for eventual inclusion in intelligent computer au-
tomated methodology using AIB modelling.

• AIB blackboard model (design review) for an engineering design super-project of
a nickel-from-laterite processing plant with establishment costs in excess of two
billion dollars. The AIB blackboard model includes intelligent computer auto-
mated methodology for application of the developed theory and the mathematical
algorithms.
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1.2.1 Development of Models and AIB Methodology

Applied computer modelling includes up-to-date object oriented software program-
ming applications incorporating integrated systems simulation modelling, and AIB
modelling including knowledge-based expert systems as well as blackboard mod-
elling. The AIB modelling provides for automated continual design reviews through-
out the engineering design process on the basis of concurrent design in an integrated
collaborative engineering design environment. Engineering designs are composed
of highly integrated, tightly coupled components where interactions are essential to
the economic execution of the design.

Thus, concurrent, rather than sequential consideration of requirements such as
structural, thermal, hydraulic, manufacture, construction, operational and mainte-
nance constraints will inevitably result in superior designs. Creating concurrent de-
sign systems for engineering designers requires knowledge of downstream activi-
ties to be infused into the design process so that designs can be generated rapidly
and correctly. The design space can be viewed as a multi-dimensional space, in
which each dimension has a different life-cycle objective such as serviceability or
integrity.

An intelligent design system should aid the designer in understanding the in-
teractions and trade-offs among different and even conflicting requirements. The
intention of the AIB blackboard is to surround the designer with expert systems that
provide feedback on continual design reviews of the design as it evolves throughout
the engineering design process. These experts systems, termed perspectives, must
be able to generate information that becomes part of the design (e.g. mass-flow bal-
ances and flow stresses), and portions of the geometry (e.g. the shapes and dimen-
sions). The perspectives are not just a sophisticated toolbox for the designer; rather,
they are a group of advisors that interact with one another and with the designer, as
well as identify conflicting inputs in a collaborative design environment. Implemen-
tation by multidisciplinary remotely located groups of designers inputs design data
and schematics into the relevant perspectives or knowledge-based expert systems,
whereby each design solution is collaboratively evaluated for integrity. Engineering
design includes important characteristics that have to be considered when develop-
ing design models, such as:

• Design is an optimised search of a number of design alternatives.
• Previous designs are frequently used during the design process.
• Design is an increasingly distributed and collaborative activity.

Engineering design is a complex process that is often characterised as a top-down
search of the space of possible solutions, considered to be the general norm of
how the design process should proceed. This process ensures an optimal solution
and is usually the construct of the initial design specification. It therefore involves
maintaining numerous candidate solutions to specific design problems in parallel,
whereby designers need to be adept at generating and evaluating a range of candi-
date solutions.
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The term satisficing is used to describe how designers sometimes limit their
search of the design solution space, possibly in response to technology limitations,
or to reduce the time taken to reach a solution because of schedule or cost con-
straints. Designers may opportunistically deviate from an optimal strategy, espe-
cially in engineering design where, in many cases, the design may involve early
commitment to and refining of a sub-optimal solution. In such cases, it is clear that
satisficing is often advantageous due to potentially reduced costs or where a satis-
factory, rather than an optimal design is required. However, solving complex design
problems relies heavily on the designer’s knowledge, gained through experience, or
making use of previous design solutions.

The concept of reuse in design was traditionally limited to utilising personal ex-
perience, with reluctance to copy solutions of other designers. The modern trend in
engineering design is, however, towards more extensive design reuse in a collabo-
rative environment. New computing technology provides greater opportunities for
design reuse and satisficing to be applied, at least in part, as a collaborative, dis-
tributed activity. A large amount of current research is concerned with developing
tools and methodologies to support design teams separated by space and time to
work effectively in a collaborative design environment.

a) The RAMS Analysis Model

The RAMS analysis model incorporates all the essential preliminaries of systems
analysis to validate the developed theory for the determination of the integrity of
engineering design. A layout of part of the RAMS analysis model of an environ-
mental plant is given in Fig. 1.1.

The RAMS analysis model includes systems breakdown structures, process func-
tion definition, determination of failure consequences on system performance, de-
termination of process criticality, equipment functions definition, determination of
failure effects on equipment functionality, failure modes effects and criticality anal-
ysis (FMECA), and determination of equipment criticality.

b) The OOP Simulation Model

The OOP simulation model incorporates all the essential preliminaries of process
analysis to initially determine process characteristics such as process throughput,
output, input and capacity. The application of the model is primarily to determine its
capability of accurately assessing the effect of complex integrations of systems, and
process output mass-flow balancing in preliminary engineering design of large inte-
grated processes. A layout of part of the OOP simulation model is given in Fig. 1.2.
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Fig. 1.1 Layout of the RAM analysis model

c) The AIB Blackboard Model

The AIB blackboard model consists of three fundamental stages of analysis for de-
termining the integrity of engineering design, specifically preliminary design pro-
cess analysis, detail design plant analysis and commissioning operations analysis.
The preliminary design process analysis incorporates the essential preliminaries of
design review, such as process definition, performance assessment, process design
evaluation, systems definition, functions analysis, risk assessment and criticality
analysis, linked to an inter-disciplinary collaborative knowledge-based expert sys-
tem. Similarly, the detail design plant analysis incorporates the essential prelimi-
naries of design integrity such as FMEA and plant criticality analysis. The applica-
tion of the model is fundamentally to establish automated continual design reviews
whereby the integrity of engineering design is determined concurrently throughout
the engineering design process. Figure 1.3 shows the selection screen of a multi-user
interface ‘blackboard’ in collaborative engineering design.
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Fig. 1.2 Layout of part of the OOP simulation model

1.2.2 Artificial Intelligence in Engineering Design

Implementation of the various models covered in this handbook predominantly fo-
cuses on determining the applicability and benefit of automated continual design
reviews throughout the engineering design process. This hinges, however, upon
a broader understanding of the principles and philosophy of the use of artificial
intelligence (AI) in engineering design, particularly in which new AI modelling
techniques are applied, such as the inclusion of knowledge-based expert systems
in blackboard models. Although these modelling techniques are described in detail
later in the handbook, it is essential at this stage to give a brief account of artificial
intelligence in engineering design.

The application of artificial intelligence (AI) in engineering design, through ar-
tificial intelligence-based (AIB) computer modelling, enables decisions to be made
about acceptable design performance by considering the essential systems design
criteria, the functionality of each particular system, the effects and consequences of
potential and functional failure, as well as the complex integration of the systems as
a whole. It is unfortunate that the growing number of unfulfilled promises and ex-
pectations about the capabilities of artificial intelligence seems to have damaged the
credibility of AI and eroded its true contributions and benefits. The early advances
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Fig. 1.3 Layout of the AIB blackboard model

of expert systems, which were based on more than 20 years of research, were over-
extrapolated by many researchers looking for a feasible solution to the complexity
of integrated systems design. Notwithstanding the problems of AI, recent artificial
intelligence research has produced a set of new techniques that can usefully be em-
ployed in determining the integrity of engineering design. This does not mean that
AI in itself is sufficient, or that AI is mutually exclusive of traditional engineering
design. In order to develop a proper perspective on the relationship between AI tech-
nology and engineering design, it is necessary to establish a framework that provides
the means by which AI techniques can be applied with conventional engineering de-
sign. Knowledge-based systems provide such a framework.

a) Knowledge-Based Systems

Knowledge engineering is a problem-solving strategy and an approach to program-
ming that characterises a problem principally by the type of knowledge involved.

At one end of the spectrum lies conventional engineering design technology
based on well-defined, algorithmic knowledge. At the other end of the spectrum lies
AI-related engineering design technology based on ill-defined heuristic knowledge.
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Among the problems that are well suited for knowledge-based systems are design
problems, in particular engineering design. As engineering knowledge is heteroge-
neous in terms of the kinds of problems that it encompasses and the methods used
to solve these, the use of heterogeneous representations is necessary. Attempts to
characterise engineering knowledge have resulted in the following classification of
the properties that are essential in constructing a knowledge-based expert system:

• Knowledge representation,
• Problem-solving strategy, and
• Knowledge abstractions.

b) Engineering Design Expert Systems

The term ‘expert system’ refers to a computer program that is largely a collection of
heuristic rules (rules of thumb) and detailed domain facts that have proven useful in
solving the special problems of some or other technical field. Expert systems to date
are basically an outgrowth of artificial intelligence, a field that has for many years
been devoted to the study of problem-solving using heuristics, to the construction of
symbolic representations of knowledge, to the process of communicating in natural
language and to learning from experience.

Expertise is often defined to be that body of knowledge that is acquired over
many years of experience with a certain class of problem. One of the hallmarks
of an expert system is that it is constructed from the interaction of two types of
disciplines: domain experts, or practicing experts in some technical domain, and
knowledge engineers, or AI specialists skilled in analysing processes and problem-
solving approaches, and encoding these in a computer system.

The best domain expert is one with years, even decades, of practical experience,
and the best expert system is one that has been created through a close scrutiny of the
expert’s domain by a ‘knowledgeable’ knowledge engineer. However, the question
often asked is which kinds of problems are most amenable to this type of approach?

Inevitably, problems requiring knowledge-intensive problem solving, where years
of accumulated experience produce good performance results, must be the most
suited to such an approach. Such domains have complex fact structures, with large
volumes of specific items of information, organised in particular ways. The domain
of engineering design is an excellent example of knowledge-intensive problem solv-
ing for which the application of expert systems in the design process is ideally
suited, even more so for determining the integrity of engineering design. Often,
though, there are no known algorithms for approaching these problems, and the do-
main may be poorly formalised. Strategies for approaching design problems may
be diverse and depend on particular details of a problem situation. Many aspects of
the situation need to be determined during problem solving, usually selected from
a much larger set of possible needs of which some may be expensive to determine—
thus, the significance of a particular need must also be considered.
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c) Expert Systems in Engineering Design Project Management

The advantages of an expert system are significant enough to justify a major effort
to develop these. Decisions can be obtained more reliably and consistently, where an
explanation of the final answers becomes an important benefit. An expert system is
thus especially useful in a consultation mode of complex engineering designs where
obscure factors may be overlooked, and is therefore an ideal tool in engineering
design project management in which the following important areas of engineering
design may be impacted:

• Rapid checking of preliminary design concepts, allowing more alternatives to be
considered;

• Iteration over the design process to improve on previous attempts;
• Assistance with and automation of complex tasks and activities of the design

process where expertise is specialised and technical;
• Strategies for searching in the space of alternative designs, and monitoring of

progress towards the targets of the design process;
• Integration of a diverse set of tools, with expertise applied to the problem of

engineering design project planning and control;
• Integration of the various stages of an engineering design project, inclusive of

procurement/installation, construction/fabrication, and commissioning/warranty
by having knowledge bases that can be distributed for wide access in a collabo-
rative design environment.

d) Research in Expert Systems for Engineering Design

Within the past several years, a number of tools have been developed that allow
a higher-level approach to building expert systems in general, although most still re-
quire some programming skill. A few provide an integrated knowledge engineering
environment combining features of all of the available AI languages.

These languages (CLIPS, JESS, etc.) are suitable and efficient for use by AI pro-
fessionals. A number of others are very specialised to specific problem types, and
can be used without programming to build up a knowledge base, including a number
of small tools that run on personal computers (EXSYS, CORVID, etc.). A common
term for the more powerful tools is shell, referring to their origins as specialised
expert systems of which the knowledge base has been removed, leaving only a shell
that can perform the essential functions of an expert system, such as

• an inference engine,
• a user interface, and
• a knowledge storage medium.

For engineering design applications, however, good expert system development
tools are still being conceptualised and experimented with. Some of the most recent
techniques in AI may become the basis for powerful design tools. Also, a number
of the elements of the design process fall into the diagnostic–selection category, and
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these can be tackled with existing expert system shells. Many expert systems are
now being developed along these limited lines. The development of a shell that has
the basic ingredients for assisting or actually doing design is still an open research
topic.

e) Blackboard Models

Early expert systems used rules as the basic data structure to address heuristic
knowledge. From the rule-based expert system, there has been a shift to a more
powerful architecture based on the notion of cooperating experts (termed black-
board models) that allows for the integration of algorithmic design approaches with
AI techniques. Blackboard models provide the means by which AI techniques can
be applied in determining the integrity of engineering designs.

Currently, one of the main areas of development is to provide integrative means to
allow various design systems to communicate with each other both dynamically and
cooperatively while working on the same design problem from different viewpoints
(i.e. concurrent design). What this amounts to is having a diverse team of experts or
multidisciplinary groups of design engineers, available at all stages of a design, rep-
resented by their expert systems. This leads to a design process in which technical
expertise can be shared freely in the form of each group’s expert system (i.e. col-
laborative design). Such a design process allows various groups of design engineers
to work on parts of a design problem independently, using their own expert sys-
tems, and accessing the expert systems of other disciplinary groups at those stages
when group cooperation is required. This would allow one disciplinary group (i.e.
process/chemical engineering) to produce a design and obtain an evaluation of the
design from other disciplinary groups (i.e. mechanical/electrical engineering), with-
out involving the people concerned. Such a design process results in a much more
rapid consideration of major design alternatives, and thus improves the quality of
the result, the effectiveness of the design review process, and the integrity of the
final design.

A class of AI tools constructed along these lines is the blackboard model, which
provides for integrated design data management, and for allowing various knowl-
edge sources to cooperate in data development, verification and validation, as well
as in information sharing (i.e. concurrent and collaborative design). The blackboard
model is a paradigm that allows for the flexible integration of modular portions of
design code into a single problem-solving environment. It is a general and simple
model that enables the representation of a variety of design disciplines. Given its
nature, it is prescribed for problem solving in knowledge-intensive domains that
use large amounts of diverse, error-full and incomplete knowledge, therefore requir-
ing multiple cooperation between knowledge sources in searching a large problem
space—which is typical of engineering designs. In terms of the type of problems that
it can solve, there is only one major assumption—that the problem-solving activity
generates a set of intermediate results that contribute to the final solution.
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The blackboard model consists of a data structure (the blackboard) containing
information that permits a set of modules or knowledge sources to interact. The
blackboard can be seen as a global database, or working memory in which distinct
representations of knowledge and intermediate results are integrated uniformly.

The blackboard model can also be seen as a means of communication among
knowledge sources, mediating all of their interactions. Finally, it can be seen as
a common display, review, and performance evaluation area. It may be structured
so as to represent different levels of abstraction and also distinct and/or overlapping
phases in the design process. The division of the blackboard into levels parallels
the process of hierarchical structuring and of abstraction of knowledge, allowing
elements at each level to be described approximately as abstractions of elements at
the next lower level. The partition of knowledge into hierarchical levels is useful,
in that a partial solution (i.e. group of hypotheses) at one hierarchical level can be
used to constrain the search at lower levels—typical of systems hierarchical struc-
turing in engineering design. The blackboard thus provides a shared representation
of a design and is composed of a hierarchy of three panels:

• A geometry panel, which is the lowest-level representation of the design in the
form of geometric models.

• A feature panel, which is a symbolic-level representation of the design. It pro-
vides symbolic representations of features, constraints, specifications, and the
design record.

• The control panel, which contains the information necessary to manage the op-
eration of the blackboard model.

f) Implementation and Analysis

When dealing with the automated generation of solutions to design problems in
a target engineering design project, it is necessary to distinguish between design and
performance. The former denotes the geometric and physical properties of a solution
that design engineers determine directly through their decisions to meet specific de-
sign criteria. The latter denotes those properties that are derived from combinations
of design variables. In general, the relationships between design and performance
variables are complex. A single design variable is likely to influence several perfor-
mance variables and, conversely, a single performance variable normally depends
on several design variables. For example, a system’s load and strength distributions
are indicative of the level of stress that the system’s primary function may be subject
to, as performed by the system’s equipment (i.e. assemblies or components). This
stress design variable is likely to influence several performance variables, such as
expected failure rate or the mean time between failures.

Conversely, a single performance variable such as system availability, which re-
lates to the performance variables of reliability and maintainability, all of which
are concerned with the period of time that the system’s equipment may be subject
to failure, as measured by the variables of the mean time between failures and the
mean time to repair, depends upon several design variables.
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These design variables are concerned with equipment usage or application over
a period of time, the accessibility and repairability of the system’s related equip-
ment in the event of failure, and the system’s load and strength distributions. As
a consequence, neither design nor performance variables should be considered in
isolation. Whenever a design is evaluated, it should be reasonably complete (relative
to the particular level of abstraction—i.e. design stage—at which it is conceived),
and it should be evaluated over the entire spectrum of performance variables that
are relevant for that level. Thus, for conventional engineering designs, the tendency
is to separate the generation of a design from its subsequent evaluation (as opposed
to optimisation, where the two processes are linked), whereas the use of an AIB
blackboard model looks at preliminary design analysis and process definition con-
currently with design constraints and process performance assessment.

On this basis, particularly with respect to the design constraints and performance
assessment, the results of trial tests of the implementation of the AIB blackboard
model in a target engineering design project are analysed to determine the appli-
cability of automated continual design reviews throughout the engineering design
process. This is achieved by defining a set of performance measures for each sys-
tem, such as temperature range, pressure rating, output, and flow rate, according to
the required design specifications identified in the process definition.

It is not particularly meaningful, however, to use an actual performance measure;
rather, it is the proximity of the actual performance to the limits of capability (design
constraints) of the system (i.e. the safety margin) that is more useful. In preliminary
design reviews, the proximity of performance to a limit closely relates to a mea-
sure of its safety margin. This is determined by formulating a set of performance
constraints for which a design solution is found that maximises the safety margins
with respect to these performance constraints, so that a maximum safety margin is
achieved with respect to all performance criteria.



Chapter 2
Design Integrity and Automation

Abstract The overall combination of the topics of reliability and performance, avail-
ability and maintainability, and safety and risk in engineering design constitutes
a methodology that provides the means by which complex engineering designs can
be properly analysed and reviewed. Such an analysis and review is conducted not
only with a focus on individual inherent systems but also with a perspective of the
critical combination and complex integration of all of the design’s systems and re-
lated equipment, in order to achieve the required design integrity. A basic and funda-
mental understanding of the concepts of reliability, availability and maintainability
and, to a large extent, an empirical understanding of safety have in the main dealt
with statistical techniques for the measure and/or estimation of various parameters
related to each of these concepts that are based on obtained data. However, in de-
signing for reliability, availability, maintainability and safety, it is more often the
case that the measures and/or estimations of various parameters related to each of
these concepts are not based on obtained data. Furthermore, the complexity arising
from an integration of engineering systems and their interactions makes it somewhat
impossible to gather meaningful statistical data that could allow for the use of ob-
jective probabilities in the analysis of the integrity of engineering design. Other ac-
ceptable methods must therefore be sought to determine the integrity of engineering
design in the situation where data are not available or not meaningful. Methodology
in which the technical uncertainty of inadequately defined design problems may be
formulated in order to achieve maximum design integrity has thus been developed
to accommodate its use in conceptual and preliminary engineering design in which
most of the design’s systems and components have not yet been precisely defined.
This chapter gives an overview of design automation methodology in which the
technical uncertainty of inadequately defined design problems may be formulated
through the application of intelligent design systems that can be used in creating or
altering conceptual and preliminary engineering designs in which most of the de-
sign’s systems and components still need to be defined, as well as evaluate a design
through the use of evaluation design automation (EDA) tools.

R.F. Stapelberg, Handbook of Reliability, Availability, 33
Maintainability and Safety in Engineering Design, c© Springer 2009
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2.1 Industry Perception and Related Research

It is obvious that most of the problems of recently constructed super-projects stem
from the lack of a proper evaluation of the integrity of their design. Furthermore, it
is obvious that a severe lack of insight exists in the essential activities required to
establish a proper evaluation of the integrity of engineering design—with the con-
sequence that many engineering design projects are subject to relatively superficial
design reviews, especially with large, complex and expensive process plants.

Based on the results of cost ‘blow-outs’ of these super-projects, the conclusion
reached is that insufficient research has been conducted in the determination of the
integrity of engineering design, its application in design procedure, as well as in the
severe shortcomings of current design review techniques.

2.1.1 Industry Perception

It remains a fact that, in most engineering design organisations, the designs of large
engineering projects are based upon the theoretical expertise and practical experi-
ences pertaining to chemical, civil, electrical, industrial, mechanical and process en-
gineering, from the point of view of ‘what should be achieved’ to meet the demands
of various design criteria. It is apparent, though, that not enough consideration is
being given to the point of view of ‘what should be assured’ in the event that the
demands of design criteria are not met.

As previously indicated, the tools that most design engineers resort to in deter-
mining integrity of design are techniques such as hazardous operations (HazOp)
and simulation, whereas less frequently used techniques include hazards analysis
(HazAn), fault-tree analysis (FTA), failure modes and effects analysis (FMEA) and
failure modes effects and criticality analysis (FMECA).

It unfortunately also remains a fact that most of these techniques are either mis-
understood or conducted incorrectly, or not even conducted at all, with the result
that many high-cost engineering ‘super-projects’ eventually reach the construction
phase without having been subjected to a rigorous evaluation of the integrity of their
designs. One of the outcomes of the research presented in this handbook has been
the development of an artificial intelligence-based (AIB) model in which AI mod-
elling techniques, such as the inclusion of knowledge-based expert systems within
a blackboard model, have been applied in the development of intelligent computer
automated methodology for determining the integrity of engineering design. The
model fundamentally provides a capability for automated continual design reviews
throughout the engineering design process, whereby groups of design engineers col-
laboratively input specific design data and schematics into their relevant knowledge-
based expert systems, which are then concurrently evaluated for integrity of the de-
sign. The overall perception in industry of the benefits of such a methodology is
still in its infant stages, particularly the concept of having a diverse team of experts
or multidisciplinary groups of design engineers available at all stages of a design,
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as represented by their knowledge-based expert systems. The potential savings in
avoiding cost ‘blow-outs’ during engineering project construction are still not prop-
erly appreciated, and the practical implementation of a collaborative AIB blackboard
model from conceptual design through to construction still needs further evaluation.

2.1.2 Related Research

As indicated previously, many of the methods and techniques applied in the fields of
reliability, availability, maintainability and safety have been thoroughly explored by
many other researchers. Some of the more significant findings of these researchers
are grouped into the various topics of ‘reliability and performance’, ‘availability and
maintainability’, and ‘safety and risk’ that are included in the theoretical overview
and analytic development chapters in this handbook. Further research in the applica-
tion of artificial intelligence in engineering design can be found in the comprehen-
sive three-volume set of multidisciplinary research papers on ‘Design representation
and models of routine design’; ‘Models of innovative design, reasoning about phys-
ical systems, and reasoning about geometry’; and ‘Knowledge acquisition, commer-
cial systems, and integrated environments’ (Tong and Sriram 1992).

Research in the application of artificial intelligence in engineering design has
also been conducted by authorities such as the US Department of Defence (DoD),
the US National Aeronautics and Space Administration (NASA) and the US Nuclear
Regulatory Commission (NUREG).

Under the topics of reliability and performance, some of the more recent re-
searchers whose works are closely related to the integrity of engineering design,
particularly designing for reliability, covered in this handbook are S.M. Batill,
J.E. Renaud and Xiaoyu Gu in their simulation modelling of uncertainty in mul-
tidisciplinary design optimisation (Batill et al. 2000); B.S. Dhillon in his funda-
mental research into reliability engineering in systems design and design reliability
(Dhillon 1999a); G. Thompson, J.S. Liu et al. in their practical methodology to de-
signing for reliability (Thompson et al. 1999); W. Kerscher, J. Booker et al. in their
use of fuzzy control methods in information integration technology (IIT) for process
design (Kerscher et al. 1998); J.S. Liu and G. Thompson again, in their approach to
multi-factor design evaluation through parameter profile analysis (Liu and Thomp-
son 1996); D.D. Boettner and A.C. Ward in their use of artificial intelligence (AI) in
engineering design and the application of labelled interval calculus in multi-factor
design evaluation (Boettner and Ward 1992); and N.R. Ortiz, T.A. Wheeler et al.
in their use of expert judgment in nuclear engineering process design (Ortiz et al.
1991). Note that all these data sources are included in the References list of Chap-
ter 3.

Under the topics of availability and maintainability, some of the researchers
whose works are related to the integrity of engineering design, particularly design-
ing for availability and designing for maintainability, covered in this handbook are
V. Tang and V. Salminen in their unique theory of complicatedness as a framework
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for complex systems analysis and engineering design (Tang and Salminen 2001);
X. Du and W. Chen in their extensive modelling of robustness in engineering de-
sign (Du and Chen 1999a); X. Du and W. Chen also consider a methodology for
managing the effect of uncertainty in simulation-based design and simulation-based
collaborative systems design (Du and Chen 1999b,c); N.P. Suh in his research into
the theory of complexity and periodicity in design (Suh 1999); G. Thompson, J. Ge-
ominne and J.R. Williams in their method of plant design evaluation featuring main-
tainability and reliability (Thompson et al. 1998); A. Parkinson, C. Sorensen and
N. Pourhassan in their approach to determining robust optimal engineering design
(Parkinson et al. 1993); and J.L. Peterson in his research into Petri net (PN) theory
and its specific application in the design of engineering systems (Peterson 1981).
Note that all these data sources are included in the References list of Chapter 4.

Similarly, under the topics of safety and risk, some of the researchers whose
works are also related to the integrity of engineering design and covered in this
handbook are A. Blandford, B. Butterworth et al. in their modelling applications
incorporating human safety factors into the design of complex engineering systems
(Blandford et al. 1999); R.L. Pattison and J.D. Andrews in their use of genetic al-
gorithms in safety systems design (Pattison and Andrews 1999); D. Cvetkovic and
I.C. Parmee in their multi-objective optimisation of preliminary and evolutionary
design (Cvetkovic and Parmee 1998); M. Tang in his knowledge-based architecture
for intelligent design support (Tang 1997); J.D. Andrews in his determination of
optimal safety system design using fault-tree analysis (Andrews 1994); D.W. Coit
and A.E. Smith for their research into the use of genetic algorithms for optimising
combinatorial design problems (Coit and Smith 1994); H. Zarefar and J.R. Goulding
in their research into neural networks for intelligent design (Zarefar and Goulding
1992); S. Ben Brahim and A. Smith in their estimation of engineering design perfor-
mance using neural networks (Ben Brahim and Smith 1992), as well as G. Chrys-
solouris and M. Lee in their use of neural networks for systems design (Chrys-
solouris and Lee 1989), and J.W. McManus of NASA Langley Research Center in
his pioneering work on the analysis of concurrent blackboard systems (McManus
1991). Note that all these data sources are included in the References list of Chap-
ter 5.

Recently published material incorporating integrity in engineering design are few
and either focus on a single topic, predominantly reliability, safety and risk, or are
intended for specific engineering disciplines, especially electrical and/or electronic
engineering. Some of the more recent publications on the application of reliabil-
ity, maintainability, safety and risk in industry, rather than in engineering design
include N.W. Sachs’ ‘Practical plant failure analysis: a guide to understanding ma-
chinery deterioration and improving equipment reliability’ (Sachs 2006), which
explains how and why machinery fails and how basic failure mechanisms occur;
D.J. Smith’s ‘Reliability, maintainability and risk: practical methods for engineers’
(Smith 2005), which considers the integrity of safety-related systems as well as
the latest approaches to reliability modelling; and P.D.T. O’Connor’s ‘Practical re-
liability engineering’ (O’Connor 2002), which gives a comprehensive, up-to-date
description of all the important methods for the design, development, manufacture
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and maintenance of engineering products and systems. Recent publications relating
specifically to design integrity include E. Nikolaidis’ ‘Engineering design reliabil-
ity handbook’ (Nikolaidis et al. 2005), which considers reliability-based design and
modelling of uncertainty when data are limited.

2.2 Intelligent Design Systems

Methodology in which the technical uncertainty of inadequately defined design
problems may be formulated in order to achieve maximum design integrity has been
developed in this research to accommodate its use in conceptual and preliminary en-
gineering design in which most of the design’s systems and components have not yet
been precisely defined. Furthermore, intelligent computer automated methodology
has been developed through artificial intelligence-based (AIB) modelling to provide
a means for continual design reviews throughout the engineering design process.
This is progressively becoming acknowledged as a necessity, not only for use in
future large process super-projects but for engineering design projects in general,
particularly construction projects that incorporate various engineering disciplines
dealing with, e.g. high-rise buildings and complex infrastructure projects.

2.2.1 The Future of Intelligent Design Systems

Starting from current methods in the engineering design process, and projecting our
vision further to new methodologies such as AIB modelling to provide a means for
continual design reviews throughout the engineering design process, it becomes ap-
parent that there can and should be a rapid evolution of the application of intelligent
computer automated methodology to future engineering designs. Currently, three
generations of design tools and approaches can be enumerated: The first generation
is what we currently have—a variety of tools for representing designs and design
information, in many cases not integrated nor well catalogued, with the following
features:

• Information flows consume much time of personnel involved.
• Engineers spend much of their time on managerial, rather than technical tasks.
• Constraints from downstream are rarely considered.

Widespread use of knowledge-based systems will rapidly be adopted, marking a sec-
ond generation in which techniques become available that allow first-generation
tools to be integrated, networked and coordinated.

Most companies are already fully networked and integrated. The following pro-
jections can be made for this second generation of knowledge-based systems and
tools:
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• Knowledge-based tools are developed to complement and replace first-generation
shells. These are targeted for design assistance, rather than for general design ap-
plications, especially tools for design evaluation, selection and review problems
that can be enhanced and expanded for a wide range of different engineering
applications.

• Various design strategies are built into expert system shells, so that knowledge
from new areas of engineering design can be utilised appropriately.

Projecting even further, the third generation will arise as there is widespread au-
tomation of the application of knowledge-based tools such as design automation,
which will require advances in the application of machine learning and knowledge
acquisition techniques, and the automation of new innovations in design verification
and validation such as evaluation design automation.

The third generation will also have automated the process of applying these tools
in design organisations. With each generation, the key aspects of the previous gen-
erations become ever more widespread as technology moves out of the research and
development phase and into commercial products and tools.

The above projections and trends are expected in the following areas:

• Degree of integration and networking of intelligent design tools;
• Degree of automation of the application of design tool technology;
• Sophistication of general-purpose tools (shells);
• Degree of usage in engineering design organisations;
• Degree of understanding of the design process of complex systems.

2.2.2 Design Automation and Evaluation Design Automation

Research work on design automation (DA) has concentrated on programs that play
an active role in the design process, in that they actually create or alter the design.
A design automation environment typically contains a design representation or de-
sign database through which the design is controlled. Such a design automation
environment usually interacts with a predetermined set of resident computer-aided
design (CAD) tools, and will attempt to act as a manager of the CAD tools by han-
dling input/output requirements and possibly automatically sequencing these CAD
tools. Furthermore, it provides a design platform acting as a framework that, in ef-
fect, shields the designer from cumbersome details and allows for design work at
a high level of abstraction during the earlier phases of the engineering design pro-
cess (Schwarz et al. 2001).

Evaluation design automation (EDA) tools, on the other hand, are passive in
that they evaluate a design in order to determine how well it performs. Evaluation
design automation uses a ‘frame-based’ knowledge representation to store and pro-
cess expert knowledge. Frames provide a means of grouping packages of knowledge
that are related to each other in some manner, where each knowledge package may
have widely differing representations. The packages of knowledge are referred to
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as ‘slots’ in the frame. The various slots could contain knowledge such as symbolic
data indicating performance values, heuristic rules indicating likely failure modes,
or procedures for design review routines. The knowledge contained in these slots
can be grouped according to a systems hierarchy, and the frames as such can be
grouped to form a hierarchy of contexts.

Another important aspect to EDA is constraint propagation, for it is through
constraint propagation that design criteria are aligned with implementation con-
straints. Usually, constraint propagation is achievable through data-directed invo-
cation. Data-directed invocation is the mechanism that allows the design to incre-
mentally progress as the objectives and needs of the design become apparent. In this
fashion, the design constraints will change and propagate with each modification to
the partial design. This is important, since the design requirements typically cannot
be determined a priori (Lee et al. 1993).

The construct of Chapters 3, 4 and 5 in Part II is based upon the prediction,
assessment and evaluation of reliability, availability, maintainability and safety, ac-
cording to the particular engineering design phases of conceptual design, prelimi-
nary design and detail design respectively. Besides an initial introduction into en-
gineering design integrity, the chapters are further subdivided into the related top-
ics of theory, analysis and practical application of each of these concepts. Thus,
Chapters 3, 4 and 5 include a theoretical overview, which gives a certain breadth
of research into the theory covering each concept in engineering design; an insight
into analytic development, which gives a certain depth of research into up-to-date
analytical techniques and methods that have been developed and are currently being
developed for analysis of each concept in engineering design; and an exposition of
application modelling, whereby specific computational models have been developed
and applied to the different concepts, particularly AIB modelling in which expert
systems within a networked blackboard model are applied to determine engineering
design integrity.
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Chapter 3
Reliability and Performance
in Engineering Design

Abstract This chapter considers in detail the concepts of reliability and performance
in engineering design, as well as the various criteria essential to designing for re-
liability. Reliability in engineering design may be considered from the points of
view of whether a design has inherently obtained certain attributes of functionality,
brought about by the properties of the components of the design, or whether the
design has been configured at systems level to meet certain operational constraints
based on specific design criteria. Designing for reliability includes all aspects of the
ability of a system to perform. Designing for reliability becomes essential to ensure
that engineering systems are capable of functioning at the required and specified lev-
els of performance, and to ensure that less costs are expended to achieve these levels
of performance. Several techniques for determining reliability are categorised under
three distinct definitions, namely reliability prediction, reliability assessment and
reliability evaluation, according to their applicability in determining the integrity of
engineering design at the conceptual, preliminary or schematic, and detail design
stages respectfully. Techniques for reliability prediction are more appropriate dur-
ing conceptual design, techniques for reliability assessment are more appropriate
during preliminary or schematic design, and techniques for reliability evaluation are
more appropriate during detail design. This chapter considers various techniques in
determining reliability in engineering design at the various design stages, through
the formulation of conceptual and mathematical models of engineering design in-
tegrity in designing for reliability, and the development of computer methodology
whereby the models can be used for engineering design review procedures.

3.1 Introduction

From an understanding of the concept of integrity in engineering design—particu-
larly of industrial systems and processes—which includes the criteria of reliability,
availability, maintainability and safety of the inherent systems and processes and
their related equipment, the need arises to examine in detail what each of these

R.F. Stapelberg, Handbook of Reliability, Availability, 43
Maintainability and Safety in Engineering Design, c© Springer 2009
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criteria implies from a theoretical perspective, and how they can be practically and
successfully applied. This includes the formulation of conceptual and mathematical
models of engineering design integrity in design synthesis, particularly designing
for reliability, availability, maintainability and safety, as well as the development
of intelligent computer automated methodology whereby the conceptual and math-
ematical models can be practically used for engineering design review procedures.

The criterion of reliability in engineering design may be considered from two
points of view: first, whether a particular design has inherently obtained certain
attributes of reliability, brought about by the properties of the components of the
design or, second, whether the design has been configured at systems level to meet
certain reliability constraints based on specific design criteria. The former point of
view may be considered as a ‘bottom-up’ assessment in which reliability in engi-
neering design is approached from the design’s lowest level (i.e. component level)
up the systems hierarchy to the design’s higher levels (i.e. assembly, system and
process levels), whereby the collective effect of all the components’ reliabilities on
their assemblies and systems in the hierarchy is determined.

Clearly, this approach is feasible only once all the design’s components have
been identified, which is well into the detail design stage. The latter viewpoint may
be considered as a ‘top-down’ development in which designing for reliability is
considered from the design’s highest level (i.e. process level) down the systems
hierarchy to the design’s lowest level (i.e. component level), whereby reliability
constraints placed upon systems performance are determined, which will eventually
effect the system’s assemblies and components in the hierarchy.

This approach does not depend on having to initially identify all the design’s
components, which is particular to the conceptual and preliminary design phases
of the engineering design process. Thus, in order to develop the most applicable
and practical methodology for determining the integrity of engineering design at
different stages of the design process, particularly relating to the assessment of re-
liability in engineering design, or to the development of designing for reliability
(i.e. ‘bottom-up’ or ‘top-down’ approaches in the systems hierarchy), some of the
basic techniques applicable to either of these approaches need to be identified and
categorised by definition, and considered for suitability in achieving the goal of re-
liability in engineering design.

Several techniques for determining reliability are categorised under three dis-
tinct definitions, namely reliability prediction, reliability assessment and reliability
evaluation, according to their applicability in determining the integrity of engineer-
ing design at the conceptual, preliminary/schematic or detail design stages. It must
be noted, however, that these techniques do not represent the total spectrum of re-
liability analysis, and their use in determining the integrity of engineering design
is considered from the point of view of their practical application, as determined in
the theoretical overview. The definitions are fundamentally qualitative in distinction,
and indicate significant differences in the approaches to determining the reliability
of systems, compared to that of assemblies or of components. They start from a pre-
diction of reliability of systems based on a prognosis of systems performance under
conditions subject to various failure modes (reliability prediction), then progress to
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an estimation of reliability based on inferences of failure of equipment according
to their statistical failure distributions (reliability assessment) and, finally, to a de-
termination of reliability based on known values of failure rates for components
(reliability evaluation).

Reliability prediction in this context can be defined in its simplest form as “estimation of
the probability of successful system performance or operation”.

Reliability assessment can be defined as “estimation of the probability that an item of equip-
ment will perform its intended function for a specified interval under stated conditions”.

Reliability evaluation can be defined as “determination of the frequency with which com-
ponent failures occur over a specified period of time”.

By grouping selected reliability techniques into these three different qualitative def-
initions, it can be readily discerned which specific techniques, relating to each of
the three terms, can practically and logically be applied to the different phases of
engineering design, such as conceptual design, preliminary or schematic design,
and detail design. The techniques for reliability prediction would be more appro-
priate during conceptual design, when alternative systems in their general context
are being identified in preliminary block diagrams, such as first-run process flow
diagrams (PFDs), and estimates of the probability of successful performance or op-
eration of alternative designs are necessary. Techniques for reliability assessment
would be more appropriate during preliminary or schematic design, when the PFDs
are frozen, process functions defined with relevant specifications relating to specific
process design criteria, and process reliability and criticality are assessed according
to estimations of probability that items of equipment will perform their intended
function for specified intervals under stated conditions. Techniques for reliability
evaluation are more appropriate during detail design, when components of equip-
ment are detailed, such as in pipe and instrument drawings (P&IDs), and are speci-
fied according to equipment design criteria. Equipment reliability and criticality are
evaluated from a determination of the frequencies with which failures occur over
a specified period of time, based on known component failure rates. It is important
to note that the distinction of these three terms are not absolutely clear-cut, espe-
cially reliability assessment and reliability evaluation, and that overlap of similar
concepts and techniques will occur on the boundaries between these. In general,
specific reliability techniques can be logically grouped under each definition and
tested for contribution to each phase of the design process.

3.2 Theoretical Overview of Reliability and Performance
in Engineering Design

In general, the measure of an item’s reliability is defined as “the frequency with
which failures occur over a specified period of time”. In the past several years, the
concept of reliability has become increasingly important, and a primary concern
with engineered installations of technically sophisticated equipment. Systems reli-
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ability and the study of reliability engineering particularly advanced in the military
and space exploration arenas in the past two decades, especially in the develop-
ment of large complex systems. Reliability engineering, as it is being applied in
systems and process engineering industries, originated from a military application.
Increased emphasis is being placed on the reliability of systems in the current tech-
nological revolution. This revolution has been accelerated by the threat of armed
conflict as well as the stress on military preparedness, and an ever-increasing de-
velopment in computerisation, micro-computerisation and its application in space
programs, all of which have had a major impact on the need to include reliability in
the engineering design process. This accelerated technological development dramat-
ically emphasised the consequences of unreliability of systems. The consequences
of systems unreliability ranged from operator safety to economic consequences of
systems failure and, on a broader scale, to consequences that could affect national
security and human lives. A somewhat disturbing fact is that the problem of avoiding
these consequences becomes more severe as equipment and systems become more
technologically advanced. Reduced operating budgets, especially during global eco-
nomic cut-backs, further compound the problem of systems failure by limiting the
use of back-up systems and and units that could take over when needed, requiring
primary units to function with minimum possible occurrence of failure. The prob-
lem of reliability thus becomes twofold—first, the use of increasingly sophisticated
equipment in complex integrated systems and second, a limit on funding for capital
investments and operating and maintenance budgets, reducing the convenience of
reliance on back-up or redundant equipment. As a result, the development of sound
design for reliability practices become essential, to ensure that engineering systems
are capable of functioning at the required and specified levels of performance, and
to ensure that less costs are expended to achieve the required and specified levels of
performance. A significant development in the application of the concept of relia-
bility, not only in the context of existing systems and equipment but specifically in
engineering design, is reliability analysis.

Reliability analysis in engineering design can be applied to determine whether it
would be more effective to rely on redundant systems, or to upgrade the reliability
of a primary unit in order to achieve the required level of operational capability.
Reliability analysis can also show which problem design areas are the ones in real
need of attention from an operational capability viewpoint, and which ones are less
critical. The effect of applying adequate reliability analysis in engineering design
would be to reduce the overall procurement and operational costs, and to increase
the operational availability and physical reliability of most engineering systems and
processes.

Reliability analysis in engineering design incorporates various techniques that
are applied for different purposes. These techniques include the following:

• Failure definition and quantification (FDQ), which defines equipment condi-
tions, analyses existing failure data history of similar systems and equipment,
and develops failure frequency matrices, failure distributions, hazard rates, com-
ponent safe-life limits, and establishes component age-reliability characteristics.
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• Failure modes effects and criticality analysis (FMECA), which determines the re-
liability criticality of components through the identification of the component’s
functions, identification of different failure modes affecting each function, iden-
tification of the consequences and effects of each failure mode on the system’s
function, and possible causes for each of the failure modes.

• Fault-tree or root cause analysis (RCA), which determines the combinations of
events that will lead to the root causes of component failure. It indicates failure
modes (in branch-tree structures) and probabilities of failure occurrence.

• Risk analysis (RA), which combines root cause analysis with the effects of the
occurrence of catastrophic failures.

• Failure elimination analysis (FEA), which determines expected repetitive fail-
ures, analyses the primary causes of these failures, and develops improvements
to eliminate or to reduce the possible occurrence of these failures.

Relationship of components to systems The relationship of a component to an
overall system is determined by a technique called systems breakdown structuring
in systems engineering analysis, which will be considered in greater detail in a later
chapter.

As an initial overview to the development of reliability in engineering design,
consideration of only the definitions for a system and a component would suffice at
this stage.

A system is defined as “a complex whole of a set of connected parts or components with
functionally related properties that links them together in a systems process”.

A component is defined as “a constituent part or element contributing to the composition
of the whole”.

Reliability of a component Reliability can be defined in its simplest form as “the
probability of successful operation”. This probability, in its simplest form, is the
ratio of the number of components surviving a failure test to the number of compo-
nents present at the beginning of the test. A more complete definition of reliability
that is somewhat more complex is given in the USA Military Standard (M1L-STD-
721B). This definition states: “Reliability is the probability that an item will perform
its intended function for a specified interval under stated conditions”. The definition
indicates that reliability may not be quite as simple as previously defined. For exam-
ple, the reliability of a mechanical component may be subject to added stress from
vibrations. Testing for reliability would have to account for this condition as well,
otherwise the calculation has no real meaning.

Reliability of a system Further complications in the determination of reliability
are introduced when system reliability is being considered, rather than component
reliability. A system consists of several components of which one or more must be
working in order for the system to function. Components of a system may be con-
nected in series, as illustrated below in Fig. 3.1, which implies that if one component
fails, then the entire system fails.

In this case, reliability of the entire system is considered, and not necessarily
the reliability of an individual component. If, in the example of the control-panel
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Component 1
Warning light
Reliability 0.90

Component 2
Warning light
Reliability 0.90

Fig. 3.1 Reliability block diagram of two components in series

warning lights, two warning lights were actually used in series for a total warning
system, where each warning light had a reliability of 0.90, then the reliability of the
warning system would be

RSystem = RComponent 1 ×RComponent2

RSystem = 0.90×0.90 = 0.81 .

The system reliability in a series configuration is less than the reliabilities of each
component. This systems reliability makes use of a probability law called the law of
multiplication.

This law states:

“If two or more events are independent, the probability that all events will occur is given by
the product of their respective probabilities of individual occurrences”.

Thus, series reliability can be expressed in the following relationship

RSeries =
n

∏
i=1

RComponenti ∀i = 1, . . . ,n . (3.1)

A realistic example is now described.
A typical high-speed reducer is illustrated below in Fig. 3.2, together with Ta-

ble 3.1 listing its critical components in sequence according to configuration, and
test values for the failure rates as well as the reliability values for each component.
What is the overall reliability of the system, considering each component to function
in a series configuration?

The consideration of a system’s components to function in a series configura-
tion, particularly with simple system configurations where inherent components are
usually not redundant or where systems are single, stand-alone units with a lim-
ited number of assemblies (usually one to a maximum of three assembly sets), is
preferred because systems reliability closely resembles practical usage.

A different type of system arrangement utilising two components in parallel is
illustrated below in Fig. 3.3.

This system has two components that represent a parallel or redundant system
where one component can serve as a back-up unit for the other in case of one or
the other component failing. The system thus requires that only one component be
working in order for the system to be functional. To calculate the system reliabil-
ity, the individual reliabilities of each component are added together and then the
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Fig. 3.2 Reliability of a high-speed self-lubricated reducer

Table 3.1 Reliability of a high-speed self-lubricated reducer

Component Failure rate Reliability

Gear shaft 0.01 0.99
Helical gear 0.01 0.99
Pinion 0.02 0.98
Pinion shaft 0.01 0.99
Gear bearing 0.02 0.98
Pinion bearing 0.02 0.98
Oil pump 0.08 0.92
Oil filter 0.01 0.99
Oil cooler 0.02 0.98
Housing 0.01 0.99

System 0.21a 0.79b

a System failure rate = Σ (component failure rates)
b System reliability = Π (component reliabilities)

product of the reliabilities in the system are subtracted. Thus, for the two compo-
nents in Fig. 3.3, each with reliabilities of 0.90

RSystem = (0.90+0.90)− (0.90×0.90)= 0.99 .

The system reliability of a parallel configuration is greater than the reliabilities of
each individual component. This system’s reliability makes use of a probability law
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Fig. 3.3 Reliability block
diagram of two components
in parallel Component 1

Reliability 0.90

Component 2
Reliability 0.90

called the general law of addition. This law states:

“If two events can occur simultaneously (i.e. in parallel), the probability that either one or
both will occur is given by the sum of the individual probabilities of occurrence less the
product of the individual probabilities”.

Thus, parallel reliability can be expressed in the following relationship

RParallel =
n

∑
i=1

Ri −
n

∏
i=1

Ri ∀i = 1, . . . ,n . (3.2)

The event in this case is whether a single component is working. The system is
functional as long as either one or both components are working. An important
point illustrated is the fact that system configuration can have a major impact on
overall systems reliability. Thus, in engineered installations with complex integra-
tions of system configurations, the overall impact on reliability is of critical concern
in engineering design.

Parallel (or redundant) system configurations are often used where high relia-
bility is required, as the overall result of reliability is greater than each individual
component’s reliability.

One of the basic concepts of reliability analysis is the fact that all systems,
no matter how complex, can be reduced to a simple series system. For example,
the two-component series configuration and two-component parallel configuration
can be integrated to yield a relatively more complex system as illustrated below in
Fig. 3.4.

Using the results of the previous calculations, and the probability laws of mul-
tiplication and addition, the combined system can now be reduced to a two-
component system configuration, shown in Fig. 3.5.

The reliability of the series portion of the combined system was previously cal-
culated to be 0.81. The reliability of the parallel portion of the combined system
was previously calculated to be 0.99. These reliabilities are now used to represent
an equivalent two-component configuration system, as illustrated in Fig. 3.5. The
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Component 1
Reliability = 0.90

Component 2
Reliability = 0.90

Component 4
Reliability = 0.90

Component 3
Reliability = 0.90

Fig. 3.4 Combination of series and parallel configuration

Components 1&2
in series 
Reliability 0.81

Components 3&4
in parallel 
Reliability 0.99

Fig. 3.5 Reduction of combination system configuration

combined systems reliability can be calculated as

RCombined = 0.81×0.99 = 0.80 .

This combined systems configuration (consisting of a two-component series con-
figuration system plus a two-component parallel configuration system), where each
component has an individual reliability of 0.90, has an overall reliability that is
less than each individual component, as well as less than each of its inherent two-
component configuration systems. It is evident that as systems become more com-
plex in configuration of individual components, so the reliability of the system de-
creases.

Furthermore, the more complex an engineered installation becomes with respect
to complex integration of systems, the greater the probability of unreliability. There-
fore, a greater emphasis must be placed upon the consequences of the unreliability
of systems, especially complex systems, in designing for reliability. An even greater
compounding effect on the essential need for a comprehensive approach to design-
ing for reliability is the fact that these consequences become more severe as equip-
ment and systems become more technologically advanced, in addition to a funding
constraint placed on the number of back-up systems and units that could take over
when needed.

Difference between single component and system reliabilities The reliability of
the total system is of prime importance in reliability analysis for engineering design.
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A system usually consists of many different components. As previously observed,
these components can be structured in one of two ways, either in series or in parallel.

If components are in series, then all of the components must operate successfully
for the system to function. On the other hand, if components are in parallel, only
one of the components must operate for the system to be able to function either
fully or partially. This is referred to as the system’s level of redundancy. Both of
these configurations need to be considered in determining how each configuration’s
component reliabilities will affect system reliability. System reliabilities are calcu-
lated by means of the laws of probability. To apply these laws to systems, some
knowledge of the reliabilities of the inherent components is necessary, since they
affect the reliability of the system. Component reliabilities are derived from tests
or from actual failure history of similar components, which yield information about
component failure rates. When a new component is designed, no quantitative mea-
sures of electrical, mechanical, chemical or structural properties reveal the reliability
of the component. Reliability can be measured only through testing the component
in a realistic simulated environment, or from actual failure history of the component
while it is in use. Thus, without a quantitative probability distribution of failure data
to statistically determine the measure of uncertainty (or certainty) of a component’s
reliability, the component’s reliability remains undeterminable. This has been the
opinion amongst engineers and researchers until relatively recently (Dubois et al.
1990; Bement et al. 2000b; Booker et al. 2000). With the modern application of
a concept that has been postulated since the second half of the twentieth century
(Zadeh 1965, 1978), the feasibility of modelling uncertainty with insufficient data,
and even without any data, became a reality. This concept expounded upon mod-
elling uncertain and vague knowledge using fuzzy sets as a basis for the theory of
possibility. This qualitative concept is considered later, in detail.

The first system configuration to consider in quantitatively determining system
reliability, then, is a series configuration of its components. The problem that is
of interest in this case is the manner in which system reliability decreases as the
number of its components configured in series increases.

Thus, the reliabilities of the components grouped together in a series configura-
tion must first be calculated. Quantitative reliability calculations for such a group of
components are based on two important considerations:

• Measurement of the reliability of the components must be as precise as possible.
• The way in which the reliability of the series system is calculated.

The probability law that is used for a group of series components is the product of
the reliabilities of the individual components.

As an example, consider the power train system of a haul truck, illustrated in
Figs. 3.6 and 3.7. The front propeller shaft is one of the components of the output
shaft assembly. The output shaft assembly is adjacent to the torque converter and
transmission assemblies, and these are all assemblies of the power train system.
The power train system is only one of the many systems that make up the total
haul truck configuration. For illustrative purposes, and simplicity of calculation, all
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Fig. 3.6 Power train system reliability of a haul truck (Komatsu Corp., Japan)

Fig. 3.7 Power train system diagram of a haul truck
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Table 3.2 Power train system reliability of a haul truck

Output shaft assembly Transmission sub-system Power train system

No. of components 5 50 100
Group reliability 0.99995 0.99950 0.99900
Output shaft assembly reliability = (0.99999)5 = 0.99995
Transmission sub-system reliability = (0.99999)50 = 0.99950
Power train system reliability = (0.99999)100 = 0.99900

components are considered to have the same reliability of 0.99999. The reliability
calculations are given in Table 3.2.

The series formula of reliability implies that the reliability of a group of series
components is the product of the reliabilities of the individual components. If the
output shaft assembly had five components in series, then the output shaft assem-
bly reliability would be five times the product of 0.99999 = 0.99995. If the torque
converter and transmission assemblies had a total of 50 different components, be-
longing to both assemblies all in series, then this sub-system reliability would be
50 times the product of 0.99999 = 0.99950. If the power train system had a total of
100 different components, belonging to different assemblies, some of which belong
to different sub-systems all in series, then the power train system’s reliability would
be a 100 times the product of 0.99999 = 0.99900.

The value of a component reliability of 0.99999 implies that out of 100,000
events, 99,999 successes can be expected. This is somewhat cumbersome to en-
visage and, therefore, it is actually more convenient to illustrate reliability through
its converse, unreliability. This unreliability is basically defined as

Unreliability = 1−Reliability .

Thus, if component reliability is 0.99999, the unreliability is 0.00001. This implies
that only one failure out of a total of 100,000 events can be expected. In the case of
the haul truck, an event is when the component is used under gearshift load stress
every haul cycle. If a haul cycle was an average of 15 min, then this would imply
that a power train component would fail about every 25,000 operational hours. The
output shaft assembly reliability of 0.99995 implies that only five failures out of
a total of 100,000 events can be expected, or one failure every 20,000 events (i.e.
haul cycles). (This means one assembly failure every 20,000 haul cycles, or every
5,000 operational hours.) A sub-system (power converter and transmission) relia-
bility of 0.99950 implies that 50 failures can be expected out of a total of 100,000
events (i.e. haul cycles). (This means one sub-system failure every 2,000 haul cy-
cles, or every 500 operational hours.) Finally, the power train system reliability of
0.99900 implies that 100 failures can be expected out of a total of 100,000 events
(i.e. haul shifts). (This means one system failure every 1,000 haul cycles, or every
250 operational hours!) Note how the reliability decreases from a component reli-
ability of only one failure in 100,000 events, or every 25,000 operational hours, to
the eventual system reliability, which has 100 components in series, with 100 fail-
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Fig. 3.8 Reliability of groups of series components

ures occurring in a total of 100,000 events, or an average of one failure every 1,000
events, or every 250 operational hours.

This decrease in system reliability is even more pronounced for lower component
reliabilities. For example, with identical component reliabilities of 0.90 (in other
words, one expected failure out of ten events), the reliability of the power train
system with 100 components in series would be practically zero!

RSystem = (0.90)100 ≈ 0 .

The following Fig. 3.8 is a graphical portrayal of how the reliability of groups of
series components changes for different values of individual component reliabilities,
where the reliability of each component is identical. This graph illustrates how close
to the reliability value of 1 (almost 0 failures) a component’s reliability would have
to be in order to achieve high group reliability, when there are increasingly more
components in the group.

The effect of redundancy in system reliability When very high system reliabili-
ties are required, the designer or manufacturer must often duplicate components or
assemblies, and sometimes even whole sub-systems, to meet the overall system or
equipment reliability goals. In systems or equipment such as these, the components
are said to be redundant, or in parallel.

Just as the reliability of a group of series components decreases as the number of
components increases, so the opposite is true for redundant or parallel components.
Redundant components can dramatically increase the reliability of a system. How-
ever, this increase in reliability is at the expense of factors such as weight, space,
and manufacturing and maintenance costs. When redundant components are being
analysed, the term unreliability is preferably used. This is because the calculations



56 3 Reliability and Performance in Engineering Design

Component No.1
Reliability R1 = 0.90

Component No.2
Reliability R2 = 0.85

Fig. 3.9 Example of two parallel components

are easier to perform using the unreliability of a component. As a specific example,
consider the two parallel components illustrated below in Fig. 3.9, with reliabilities
of 0.9 and 0.85 respectively

Unreliability: U = (1−R1)× (1−R2)
= (0.1)× (0.15)
= 0.015

Reliability of group: R = 1−Unreliability

= 1−0.015

= 0.985 .

With the individual component reliabilities of only 0.9 (i.e. ten failures out of
100 events), and of 0.85 (i.e. 15 failures out of 100 events), the overall system re-
liability of these two components in parallel is increased to 0.985 (or 15 failures
in 1,000 events). The improvement in reliability achieved by components in paral-
lel can be further illustrated by referring to the graphic portrayal below (Fig. 3.10).
These curves show how the reliability of groups of parallel components changes for
different values of individual component reliabilities.

From these graphs it is obvious that a significant increase in system reliability is
obtained from redundancy.

To cite a few examples from these graphs, if the reliability of one component
is 0.9, then the reliability of two such components in parallel is 0.99. The reliability
of three such components in parallel is 0.999. This means that, on average, only one
system failure can be expected to occur out of a total of 1,000 events. Put in more
correct terms, only one time out of a thousand will all three components fail in their
function, and thus result in system functional failure.

Consider now an example of series and parallel assemblies in an engineered in-
stallation, such as the slurry mill illustrated below in Fig. 3.11. The system is shown
with some major sub-systems. Table 3.3 gives reliability values for some of the
critical assemblies and components. Consider the overall reliability of these sub-
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Fig. 3.10 Reliability of groups of parallel components

Fig. 3.11 Slurry mill engineered installation
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Table 3.3 Component and assembly reliabilities and system reliability
of slurry mill engineered installation

Components Reliability

Mill trunnion
Slurrying mill trunnion shell 0.980
Trunnion drive gears 0.975
Trunnion drive gears lube (×2 units) 0.975

Mill drive
Drive motor 0.980
Drive gearbox 0.980
Drive gearbox lube 0.975
Drive gearbox heat exchanger (×2 units) 0.980

Slurry feed and screen
Classification feed hopper 0.975
Feed hopper feeder 0.980
Feed hopper feeder motor 0.980
Classification screen 0.950

Distribution pumps
Classification underflow pumps (×2 units) 0.980
Underflow pumps motors 0.980

Rejects handling
Rejects conveyor feed chute 0.975
Rejects conveyor 0.950
Rejects conveyor drive 0.980

Sub-systems/assemblies
Slurry mill trunnion 0.955
Slurry mill drive 0.935
Classification 0.890
Slurry distribution 0.979
Rejects handling 0.908

Slurry mill system
Slurry mill 0.706

systems once all of the parallel assemblies and components have been reduced to
a series configuration, similar to Figs. 3.4 and 3.5.

Some of the major sub-systems, together with their major components, are the
slurry mill trunnion, the slurry mill drive, classification, slurry distribution, and re-
jects handling.

The systems hierarchy of the slurry mill first needs to be identified in a top-level
systems–assembly configuration, and accordingly is simply structured for illustra-
tion purposes:
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Systems Assemblies
Milling Slurry mill trunnion

Slurry mill drive
Classification Slurry feed

Slurry screen
Distribution Slurry distribution pumps

Rejects handling

Slurry mill trunnion:

Trunnion shell×Trunnion drive gears×Gears lube (2 units)

= (0.980×0.975)× [(0.975+0.975)− (0.975×0.975)]
= (0.980×0.975×0.999)
= 0.955 ,

Slurry mill drive:

Motor×Gearbox×Gearbox lube×Heat exchangers (2 units)

= (0.980×0.980×0.975)× [(0.980+0.980)− (0.980×0.980)]
= (0.980×0.980×0.975×0.999)
= 0.935 ,

Classification:

Feed hopper×Feeder×Feeder motor×Classification screen

= (0.975×0.980×0.980×0.950)
= 0.890 ,

Slurry distribution:

Underflow pumps (2 units)×Underflow pumps motors

= [(0.980+0.980)− (0.980×0.980)]×0.980

= (0.999×0.980)
= 0.979 ,

Rejects handling:

Feed chute×Rejects conveyor×Rejects conveyor drive

= (0.975×0.950×0.980)
= 0.908 ,

Slurry mill system:

= (0.955×0.935×0.890×0.979×0.908)
= 0.706 .
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The slurry mill system reliability of 0.706 implies that 294 failures out of a total
of 1,000 events (i.e. mill charges) can be expected. If a mill charge is estimated to
last for 3.5 h, this would mean one system failure every 3.4 charges, or about every
12 operational hours!

The staggering frequency of one expected failure every operational shift of 12 h,
irrespective of the relatively high reliabilities of the system’s components, has a sig-
nificant impact on the approach to systems design for integrity (reliability, availabil-
ity and maintainability), as well as on a proposed maintenance strategy.

3.2.1 Theoretical Overview of Reliability and Performance
Prediction in Conceptual Design

Reliability and performance prediction attempts to estimate the probability of suc-
cessful performance of systems. Reliability and performance prediction in this con-
text is considered in the conceptual design phase of the engineering design process.
The most applicable methodology for reliability and performance prediction in the
conceptual design phase includes basic concepts of mathematical modelling such
as:

• Total cost models for design reliability.
• Interference theory and reliability modelling.
• System reliability modelling based on system performance.

3.2.1.1 Total Cost Models for Design Reliability

In a paper titled ‘Safety and risk’ (Wolfram 1993), reliability and risk prediction is
considered in determining the total potential cost of an engineering project. With in-
creased design reliability (including strength and safety), project costs can increase
exponentially to some cut-off point. The tendency would thus be to achieve an ‘ac-
ceptable’ design at the least cost possible.

a) Risk Cost Estimation

The total potential cost of an engineering project compared to its design reliability,
whereby a minimum cost point designated the economic optimum reliability is deter-
mined, is illustrated in Fig. 3.12. Curve ACB is the normal ‘first cost curve’, which
includes capital costs plus operating and maintenance costs. With the inclusion of
the ‘risk cost curve’ (CD), the effect on total project cost is reflected as a concave or
parabolic curve. Thus, designs of low reliability are not worth consideration because
the risk cost is too high.
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Fig. 3.12 Total cost versus design reliability

The difference between the ‘risk cost curve’ and the ‘first cost curve’ in Fig. 3.12
designates this risk cost, which is a function of the probability and consequences of
systems failure on the project.

Thus, the risk cost can be formulated as

Risk cost = Probability of failure×Consequence of failure .

This probability and consequence of systems failure is related to process reliability
and criticality at the higher systems levels (i.e. process and system level) that is
established in the design’s systems hierarchy, or systems breakdown structure (SBS).

According to Wolfram, there would thus appear to be an economically optimum
level of process reliability (and safety). However, this is misleading, as the predic-
tion of process reliability and the inherent probability of failure do not reflect reality
precisely, and the extent of the error involved is uncertain. In the face of this un-
certainty, there is the tendency either to be conservative and move towards higher
predicted levels of design reliability, or to rely on previous designs where the in-
dividual process systems on their own were adequately designed and constructed.
In the first case, this is the same as selecting larger safety factors when there is
ignorance about how a system or structure will behave. In the latter case, the combi-
nation and integration of many previously designed systems inevitably give rise to
design complexity and consequent frequent failure, where high risks of the integrity
of the design are encountered.

Consequently, there is a need to develop good design models that can reflect re-
ality as closely as possible. Furthermore, Prof. Wolfram contends that these design
models need not attempt to explain wide-ranging phenomena, just the criteria rele-
vant to the design. However, the fact that engineering design should be more precise
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close to those areas where failure is more likely to occur is overlooked by most de-
sign engineers in the early stages of the design process. The questions to be asked
then are: which areas are more likely to incur failure, and what would the probabil-
ity of that likelihood be? The penalty for this uncertainty is a substantial increase in
first costs if the project economics are feasible, or a high risk in the consequential
risk costs.

b) Project Cost Estimation

Nearly every engineering design project will include some form of first cost estimat-
ing. This initial cost estimating may be performed by specific engineering personnel
or by separate cost estimators. Occasionally, other resources, such as vendors, will
be required to assist in first cost estimating. The engineering design project manager
determines the need for cost estimating services and making arrangements for the
appropriate services at the appropriate times. Ordinarily, cost estimating services
should be obtained from cost estimators employed by the design engineer. First cost
estimating is normally done as early as possible, when planning and scheduling the
project, as well as finalising the estimating approach and nature of engineering input
to be used as the basis for the cost estimate.

Types of first cost estimates First cost estimates consist basically of investment or
capital costs, operating costs, and maintenance costs. These types of estimates can
be evaluated in a number of ways to suit the needs of the project:

• Discounted cash flow (DCF)
• Return on investment (ROI)
• Internal rate of return (IRR)
• Sensitivity evaluations

Levels of cost estimates The most important consideration in planning cost esti-
mating tasks is the establishment of a clear understanding as to the required level or
accuracy of the cost estimate.

Basically, each level of the engineering design process has a corresponding level
of cost estimating, whereby first cost estimations are usually performed during the
conceptual and preliminary design phases. The following cost estimate accuracies
for each engineering design phase are considered typical:

• Conceptual design phase: plus or minus 30%
• Preliminary design phase: plus or minus 20%
• Final detail design phase: plus or minus 10%

The percentages imply that the estimate will be above or below the final construc-
tion costs of the engineered installation, by that amount. Conceptual or first cost
estimates are generally used for project feasibility, initial cash flow, and funding
purposes by the client. Preliminary estimates that include risk costs are used for
‘go-no-go’ decisions by the client. Final estimates are used for control purposes
during procurement and construction of the final design.
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Cost estimating concepts The two basic categories of costs that must be consid-
ered in engineered installations are recurring costs and non-recurring costs. An ex-
ample of a non-recurring cost would be the engineering design of a system from its
conceptual design through preliminary design to detail design. A typical recurring
cost would be the construction, fabrication or installation costs for the system during
its construction/installation phase.

Estimating non-recurring costs In making cost estimates for non-recurring costs
such as the engineering design of a system from its conceptual design through to
final detail design, inclusive of first costs and risk costs, the project manager may
assign the task of analysing the scope of engineering effort to the cognisant en-
gineering design task force group leaders. This engineering effort would then be
divided into two definable categories, namely a conceptual effort, and a design ef-
fort.

Conceptual effort The characteristic of conceptual effort during the conceptual
design phase is that it requires creative engineering to apply new areas of technol-
ogy that are probed in feasibility studies, in an attempt to solve a particular design
problem. However, creative engineering contains more risk to complete as far as
time and cost are concerned, and the estimates must therefore be modified by the
proper risk factor.

Design effort The design effort involves straightforward engineering work in which
established procedures are used to achieve the design objective. The estimate of cost
and time to complete the engineering work during the preliminary design and final
detail design phases can be readily derived from past experience of the design en-
gineers, or from the history of similar projects. These estimates should eventually
be accurate within 10% of completed construction costs, requiring estimates to be
modified by a smaller but still significant risk factor.

Classification of engineering effort In a classification of the type of engineering
effort that is required, the intended engineered installation would be subdivided into
groups of discrete elements, and analysed according to block diagrams of these basic
groups of elements that comprise the proposed design. The elements identified in
each block would serve as a logical starting point for the work breakdown structure
(WBS), which would then be used for deriving the cost estimate. These elements can
be grouped into:

• Type A: engineered elements:
Elements requiring cost estimates for engineering design, as well as for construc-
tion/fabrication and installation (i.e. contractor items).

• Type B: fabricated elements:
Elements requiring cost estimates for fabrication and installation only (i.e. ven-
dor items or packages).

• Type C: procured elements:
Elements requiring cost estimates for procurement and drafting to convey sys-
tems interface only (i.e. off-the-shelf items).
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Each of the elements would then be classified as to the degree of design detail re-
quired. (That is to achieve the requirements stipulated by the design baseline iden-
tified in a design configuration management plan.) The classification is based on
the degree of engineering effort required by the design engineer, and will vary in
accordance with the knowledge in a particular field of technology. Those elements
that require a significant amount of engineering and drafting effort are the systems
and sub-systems that will be designed, built and tested, requiring detailed drawings
and specifications. In most engineered installations, type A elements represent about
30% of all the items but account for about 70% of the total effort required.

Management review of engineering effort When the estimates for the various
elements are submitted by the different engineers, a cost estimate review by task
force senior engineers, the team leader, and project manager includes:

• A review of all systems to identify similar or identical elements for which redun-
dant engineering charges are estimated.

• A review of all systems to identify elements for which a design may have been
accomplished on other projects, thereby making available an off-the-shelf design
instead of expending a duplicating engineering effort on the current project.

• A review of all systems to identify elements that, although different, may be
sufficiently similar to warrant adopting one standard element for a maximum
number of systems without compromising the performance characteristics of the
system.

• A review of all systems to identify elements that may be similar to off-the-shelf
designs to warrant adoption of such off-the-shelf designs without compromising
the performance characteristics in any significant way.

Estimating recurring costs Some of the factors that comprise recurring cost esti-
mates for the construction/installation phase of a system are the following:

• Construction costs, including costs of site establishment, site works, general con-
struction, system support structures, on-site fabrication, inspection, system and
facilities construction, water supply, and construction support services.

• Fabrication costs, including costs of fabricating specific systems and assemblies,
setting up specialised manufacturing facilities, manufacturing costs, quality in-
spections, and fabrication support services.

• Procurement costs, including costs of acquiring material/components, warehous-
ing, demurrage, site storage, handling, transport and inspection.

• Installation costs, including costs of auxiliary equipment and facilities, cabling,
site inspections, installation instructions, and installation drawings.

The techniques and thinking process required to estimate the cost of engineered in-
stallations differ greatly from normal construction cost estimations. Before project
engineers can begin to converge on a cost estimate for a system or facility of an en-
gineered installation, it must be properly defined, requiring answers to the following
types of questions:

What is the description and specification of each system?
What is the description and specification of each sub-system?
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Pitfalls of cost estimating The major pitfalls of estimating costs for engineered
installations are errors in applying the mechanics of estimating, as well as judgement
errors. In deriving the cost estimate, project engineers should review the work to
ensure that none of the following errors has been made:

• Omissions and incorrect work breakdown:
Was any cost element forgotten in addition to the engineering, material or other
costs estimated for the engineering effort? Does the work breakdown structure
adequately account for all the systems/sub-systems and engineering effort re-
quired?

• Misinterpretation of data:
Is the interpretation of the complexity of the engineered installation accurate?
Interpretations leading to under-estimations of simplicity or over-estimations of
complexity will result in estimates of costs that are either too low or too high.

• Wrong estimating techniques:
The correct estimating techniques must be applied to the project. For example,
the use of cost statistics derived from the construction of a similar system, and
using such figures for a system that requires engineering will invariably lead to
low cost estimates.

• Failure to identify major cost elements:
It has been statistically established that for any system, 20% of its sub-systems
will account for 80% of its total cost. Concentration on these identified sub-
systems will ensure a reasonable cost estimate.

• Failure to assess and provide for risks:
Engineered installations involving engineering and design effort must be tested
for verification. Such tests usually involve a high expenditure to attain the final
detail design specification.

3.2.1.2 Interference Theory and Reliability Modelling

Although, at the conceptual and preliminary design phases, the intention is to con-
sider systems that fulfil their required performance criteria within specified limits of
performance according to the functional characteristics of their constituent assem-
blies, further design considerations of process systems may include the component
level. This is done by referring to the collective reliabilities and physical configu-
rations of components in assemblies, depending on what level of process definition
has been attained, and whether component failure rates are known. However, some
component failures are not necessarily dependent upon usage over time, especially
in specific cases of electrical components. In such cases, generally a failure occurs
when the stress exceeds the strength. Therefore, to predict reliability of such items,
the nature of the stress and strength random variables must be known. This method
assumes that the probability density functions of stress and strength are known, and
the variables are statistically independent.
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Fig. 3.13 Stress/strength diagram

A stress/strength interference diagram is shown in Fig. 3.13. The darkened area
in the diagram represents the interference area. Besides such graphical presentation,
it is also necessary to define the differences between stress and strength.

Stress is defined as “the load which will produce a failure of a component or de-
vice”. The term load may be identified as mechanical, electrical, thermal or en-
vironmental effects.

Strength is defined as “the ability of a component or device to accomplish its re-
quired function satisfactorily without a failure when subject to external load”.

Stress–strength interference reliability is defined as “the probability that the failure
governing stress will not exceed the failure governing strength”.

In mathematical form, this can be stated as

RC = P(s < S) = P(S > s) , (3.3)

where:

RC = the reliability of a component or a device,
P = the probability,
S = the strength,
s = the stress.

Equation (3.3) can be rewritten in the following form

RC =
+∞∫

−∞

f2(s)

⎡
⎣

∞∫
S

f1(S)dS

⎤
⎦ ds , (3.4)
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where:

f2(s) is the probability density function of the stress, s
f1(S) is the probability density function of the strength, S.

Models employed to predict failure in predominantly mechanical systems are quite
elementary. They are based largely on techniques developed many years ago for
electronic systems and components. These models can be employed effectively for
analysis of mechanical systems but they must be used with caution, since they as-
sume that extrinsic factors such as the frequency of random shocks to the system
(for example, power surges) will determine the probability of failure—hence, the
assumption of Poisson distribution processes and constant hazard rates.

In research conducted into mechanical reliability (Carter 1986), it is shown that
intrinsic degradation mechanisms such as fatigue, creep and stress corrosion can
have a strong influence on system lifetime and the probability of failure. In highly
stressed equipment, cumulative damage to specific components will be the most
likely cause of failure. Hence, a review of the factors that influence degradation
mechanisms such as maintenance practice and operating environment becomes a vi-
tal element in the evaluation of likely reliability performance.

To predict the probability of system failure, it becomes necessary to identify the
various degradation mechanisms, and to determine the impact of different mainte-
nance and operating strategies on the expected lifetimes, and level of maintainabil-
ity, of the different assemblies and components in the system. The load spectrum
generated by different operating and maintenance scenarios can have a significant
effect on system failure probability.

When these distributions are well separated with small variances (low-stress con-
ditions), the safety margin will be large and the failure distribution will tend towards
the constant hazard rate (random-failure) model. In this case, the system failure
probability can be computed as a function of the hazard rates for all the components
in the system. For highly stressed equipment operating in hostile environments, the
load and strength distributions may have a significant overlap because of the greater
variance of the load distribution and the deterioration in component strength with
time. Carter shows that the safety margin will then be smaller, and the tendency
will be towards a weakest-link model. The probability of failure in this case can
then depend on the resistance of one specific component (the weakest link) in the
system.

Carter’s research has been published in a number of papers and is summarised in
his book Mechanical reliability (Carter 1986). Essentially, this work relates failure
probability to the effect of the interaction between the system’s load and strength
distributions, as indicated in Fig. 3.14. Carter’s research work also relates reliability
to design (Carter 1997).
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Fig. 3.14 Interaction of load
and strength distributions
(Carter 1986)

3.2.1.3 System Reliability Modelling Based on System Performance

The techniques for reliability prediction have been selected to be appropriate during
conceptual design. However, at both the conceptual and preliminary design stages,
it is often necessary to consider only systems, and not components, as most of the
system’s components have not yet been defined. Although reliability is generally
described in terms of probability of failure or a mean time to failure of items of
equipment (i.e. assemblies or components), a distinction is sometimes made be-
tween the performance of a process or system and its reliability. For example, pro-
cess performance may be measured in terms of output quantities and product quality.
However, this distinction is not helpful in process design because it allows for omis-
sion of reliability prediction from conceptual design considerations, leaving the task
of evaluating reliability until detail design, when most of the equipment has been
specified.



3.2 Theoretical Overview of Reliability and Performance in Engineering Design 69

In a paper ‘An approach to design for reliability’ (Thompson et al. 1999), it is
stated that designing for reliability includes all aspects of the ability of a system to
perform, according to the following definition:

Reliability is defined as “the probability that a device, machine or system will per-
form a specified function within prescribed limits, under given environmental
conditions, for a specified time”.

It is apparent that a clearer distinction between systems, equipment, assemblies and
components (not to mention devices and machines) needs to be made, in order to
properly accommodate reliability predictions in engineering design reviews. Such
a distinction is based upon the essential study and application of systems engineering
analysis.

Systems engineering analysis is the study of total systems performance, rather
than the study of the parts. It is the study of the complex whole of a set of connected
assemblies or components and their related properties. This is feasible only through
the establishment of a systems breakdown structure (SBS).

The most important step in reliability prediction at the conceptual design stage is
to consider the first item given in the list of essential preliminaries to the techniques
that should be used by design engineers in determining the integrity of engineering
design, namely a systems breakdown structure (SBS; refer to Section 1.1.1; Essen-
tial preliminaries, page 13).

a) System Breakdown Structure (SBS)

A systems breakdown structure (SBS) is a systematic hierarchical representation of
equipment, grouped into its logical systems, sub-systems, assemblies, sub-assemb-
lies and component levels. It provides visibility of process systems and their con-
stituent assemblies and components, and allows for the whole range of reliability
analysis, from reliability prediction through reliability assessment to reliability eval-
uation, to be summarised from process or system level, down to sub-system, assem-
bly, sub-assembly and component levels.

The various levels of a systems breakdown structure are normally determined
by a framework of criteria established to logically group similar components into
sub-assemblies or assemblies, which are logically grouped into sub-systems or sys-
tems. This logical grouping of the constituent parts of each level of an SBS is done
by identifying the actual physical design configuration of the various items of one
level of the SBS into items of a higher level of systems hierarchy, and by defining
common operational and physical functions of the items at each level.

Thus, from a process design integrity viewpoint, the various levels of an SBS can
be defined:

• A process consists of one or more systems for which overall availability can
be determined, and is dependent upon the interaction of the performance of its
constituent systems.
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• A system is a collection of sub-systems and assemblies for which system perfor-
mance can be determined, and is dependent upon the interaction of the functions
of its constituent assemblies.

• An assembly or equipment is a collection of sub-assemblies or components for
which the values of reliability and maintainability relating to their functions can
be determined, and is dependent upon the interaction of the reliabilities and phys-
ical configuration of its constituent components.

• A component is a collection of parts that constitutes a functional unit for which
the physical condition can be measured and reliability can be determined.

Several different terms can be used to describe an SBS in a systems engineering
context, specifically a systems hierarchical structure, or a systems hierarchy. From
an engineering design perspective, however, the term SBS is usually preferred.

b) Functional Failure and Reliability

At the component level, physical condition and reliability are in most cases identical.
Consider the case of a coupling. Its physical condition may be measured by its
ultimate shear strength. However, the reliability of the coupling is also determined
by its ability to sustain a given torque. Similar arguments may be put for other
cases, such as a bolt—its measure of tensile strength and reliability in sustaining
a given load, in which very little difference will be found between reliability and
physical condition at the component level. When components are combined to form
an assembly, they gain a collective identity and are able to perform in a manner that
is usually more than the sum of their parts.

For example, a positive displacement pump is an assembly of components, and
performs duties that can be measured in terms such as flow rate, pressure, tempera-
ture and power consumption. It is the ability of the assembly to carry out all these
collective functions that tends to be described as the performance, while the reli-
ability is determined by the ability of its components to resist failure. However, if
the pump continues to operate but does not deliver the correct flow rate at the right
pressure, then it should be regarded as having failed, because it does not fulfil its
prescribed duty. It is thus incorrect to describe a pump as reliable if it does not per-
form the function required of it, according to its design. This principle is based upon
a concise approach to the concept of functional failure whereby reliability, failure
and function need to be defined.

According to the US Military Standard MIL-STD-721B, reliability is defined as
“the probability that an item will perform its intended function [without failure] for
a specified interval under stated conditions”. From the same US Military Standard
MIL-STD-721B, failure is defined as “the inability of an item to function within its
specified limits of performance”.

This means that functional performance limits must be clearly defined before fail-
ures can be identified. However, the task of defining functional performance limits
is not exactly straightforward, especially at systems level. A complete analysis of
complex systems normally requires that the functions of the various assemblies and
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components of the system be identified, and that limits of performance be related to
these functions.

The definition of function is given as “the work that an item is designed to per-
form”. Failure of the item’s function by definition means failure of the work or duty
that the item is designed to perform.

Functional failure can thus be defined as “the inability of an item to carry-out the
work that it is designed to perform within specified limits of performance”.

From the definition, two degrees of severity for functional failure can be discerned:

• A complete loss of function, where the item cannot carry out any of the work that
it was designed to perform.

• A partial loss of function, where the item is unable to function within specified
limits of performance.

From the definitions, a concise definition of reliability can be considered:

Reliability may be defined as “the probability that an item is able to carry-out the
work that it is designed to perform within specified limits of performance for
a specified interval under stated conditions”.

An important part of this definition of reliability is the ability to perform within
specified limits. Thus, from the point of view of the degrees of severity of functional
failure, no distinction is made between performance and reliability of assemblies
where functional characteristics and functional performance limits can be clearly
defined. Design considerations of process systems may refer to the component level
and/or to the collective reliabilities and physical configurations of components in as-
semblies, depending on what level of process definition has been attained. However,
at the conceptual or preliminary design stages, the intention is to consider systems
that fulfil their required performance criteria within specified limits of performance
according to the functional characteristics of their constituent assemblies.

c) Functional Failure and Functional Performance

A method in which design problems may be formulated in order to achieve maxi-
mum reliability (Thompson et al. 1999) has been adapted and expanded to accom-
modate its use in preliminary design, in which most of the system’s components
have not yet been defined. The method integrates functional failure and functional
performance considerations so that a maximum safety margin is achieved with re-
spect to all performance criteria. The most significant advantage of this method is
that it does not rely on failure data. Also, provided that all the functional perfor-
mance limits can be defined, it is possible to compute a multi-objective optimisation
to determine an optimal solution.

The conventional reliability method would be to specify a minimum failure rate
and to select appropriate components with individual failure rates that, when com-
bined, achieve the required reliability. This method is, of course, reasonable pro-
vided that dependable failure rates are available. In many cases, however, none are
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known with confidence, and a quantified approach to designing for reliability that
does not require failure rate data is proposed. The approach taken is to define perfor-
mance objectives that, when met, achieve an optimum design with regard to overall
reliability by ensuring that the system has no ‘weak links’, whether the weaknesses
are defined functional failures, or a failure of the system to meet the required per-
formance criteria. The choice of functional performance limits is made with respect
to the knowledge of loading conditions, the consequences of failure, as well as re-
liability expectations. If the knowledge of loading conditions is incomplete, which
would generally be the case for conceptual or preliminary design, the approach to
designing for reliability would be to use high safety margins, and to adopt limits of
acceptable performance that are well clear of any failure criteria. Where precise data
may not be available, it is clear from the previous consideration of strength and load
distributions under interference theory and reliability modelling that the strength
should be separated from the load by as much as possible, in order to maximise the
safety margin in relation to certain performance criteria.

However, in cases where confidence can be placed on accurate loading calcula-
tions, as with the modelling situations considered in interference theory or in relia-
bility modelling, then acceptable performance levels can be selected at high stress
levels so that all the components function near their limits, resulting in a high per-
formance system. If, on the other hand, it is required to reduce a safety margin with
respect to a particular failure criterion in order to introduce a ‘weak link’, then the
limits of acceptable performance can be modified accordingly. By the use of sets
of constraints that describe the boundaries of the limits of acceptable performance,
a feasible design solution will lie within the space bounded by these constraints. The
most reliable design solution would be the solution that is the furthest away from
the constraints, and a design that has the highest safety margin with respect to all
constraints is the most reliable. The objective, then, is to produce a design that has
the highest possible safety margin with respect to all constraints. However, since
these constraints will be defined in different units, and because many different con-
straints may apply, consideration of a method of measurement is required that will
yield common, non-dimensional performance measures that can be meaningfully
combined. A method of data point generation based on limits of performance has
been developed for general design analysis to determine various design alternatives
(Liu et al. 1996).

3.2.2 Theoretical Overview of Reliability Assessment
in Preliminary Design

Reliability assessment attempts to estimate the expected reliability and criticality
values for each individual system or assembly at the upper systems levels of the sys-
tems breakdown structure (SBS). This is done without any difficulty, not only for
relatively simple initial system configurations but for progressively more complex
integrations of systems as well. Reliability assessment ranges from estimations of
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the reliability of relatively simple systems with series and parallel assemblies, to
estimations of the reliability of multi-state systems with random failure occurrences
and repair times (i.e. constant failure and repair rates) of inherent independent as-
semblies.

Reliability assessment in this context is considered during the preliminary or
schematic design phase of the engineering design process, with an estimation of the
probability that items of equipment will perform their intended function for specified
intervals under stated conditions.

The most applicable methods for reliability assessment in the preliminary design
phase include concepts of mathematical modelling such as:

• Markov modelling:
To estimate the reliability of multi-state systems with constant failure and repair
rates of inherent independent assemblies.

• The binomial method:
To assess the reliability of simple systems of series and parallel assemblies.

• Equipment aging models:
To assess the aging of equipment at varying rates of degradation in engineered
installations.

• Failure modes and effects analysis/criticality analysis:
A step-by-step procedure for the assessment of failure effects and criticality in
equipment design.

• Fault-tree analysis:
To analyse the causal relationships between equipment failures and system fail-
ure, leading to the identification of specific critical system failure modes.

3.2.2.1 Markov Modelling (Continuous Time and Discrete States)

This method can be used in more cases than any other technique (Dhillon 1999a).
Markov modelling is applicable when modelling assemblies with dependent failure
and repair modes, and can be used for modelling multi-state systems and common-
cause failures without any conceptual difficulty.

The method is more appropriate when system failure and repair rates are con-
stant, as problems may arise when solving a set of linear algebraic equations for
large systems where system failure and repair rates are variable. The method breaks
down for a system that has non-constant failure and repair rates, except in the case
of a few special situations that are not relevant to applications in engineering de-
sign. In order to formulate a set of Markov state equations, the rules associated with
transition probabilities are:

a) The probability of more than one transition in time interval Δt from one state to
the next state is negligible.
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b) The transitional probability from one state to the next state in the time interval Δt
is given by λ Δt, where λ is the constant failure rate associated with the Markov
states.

c) The occurrences are independent.

A system state space diagram for system reliability is shown in Fig. 3.15. The state
space diagram represents the transient state of a system, with system transition from
state 0 to state 1. A state is transient if there is a positive probability that a system
will not return to that state.

As an example, an expression for system reliability of the system state space
shown in Fig. 3.15 is developed with the following Eqs. (3.5) and (3.6)

P0(t + Δt) = P0(t)[1−λ Δt] , (3.5)

where:

P0(t) is the probability that the system is in operating state 0 at time t.
λ is the constant failure rate of the system.
[1−λ Δt] is the probability of no failure in time interval Δt when the system is in

state t.
P0(t + Δt) is the probability of the system being in operating state 0 at time t +Δt.

Similarly,
P1(t + Δt) = P0(t)[λ Δt]+P1(t) , (3.6)

where:

P0(t) denotes the probability that the system is in failed state 0 in time Δt.

In the limiting case, Eqs. (3.5) and (3.6) become

lim
Δt→0

P0(t + Δt)−P0(t)
Δt

=
dP0(t)

dt
= λP0(t) . (3.7)

The initial condition is that when

lim
Δt→0

P1(t + Δt)−P1(t)
Δt

=
dP1(t)

dt
= λP0(t) , (3.8)

where: t = 0, P0(0) = 1, and P1(0) = 0.

Up
State 0

System operating

Down
State 1

System failed

λ

Fig. 3.15 System transition diagram
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Solving Eqs. (3.7) and (3.8) by using Laplace transforms

P0(s) =
1

s+ λ
(3.9)

and

P1(s) =
λ

s+ λ
. (3.10)

By using the inverse transforms, Eqs. (3.9) and (3.10) become

P0(t) = e−λt , (3.11)

P1(t) = 1− e−λt . (3.12)

Markov modelling is a widely used method to assess the reliability of systems
in general, when the system’s failure rates are constant. For many systems, the as-
sumption of constant failure rate may be acceptable. However, the assumption of
a constant repair rate may not be valid in just as many cases.

This situation is considered later in Chapter 4, Availability and Maintainability
in Engineering Design.

3.2.2.2 The Binomial Method

This technique is used to assess the reliability of relatively simple systems with
series and parallel assemblies. For reliability assessment of such equipment, the
binomial method is one of the simplest techniques.

However, in the case of complex systems with many configurations of assem-
blies, the method becomes a trying task. The technique can be applied to systems
with independent identical or non-identical assemblies.

Various types of quantitative probability distributions are applied in reliability
analysis. The binomial distribution specifically has application in combinatorial re-
liability problems, and is sometimes referred to as a Bernoulli distribution. The bino-
mial or Bernoulli probability distribution is very useful in assessing the probabilities
of outcomes, such as the total number of failures that can be expected in a sequence
of trials, or in a number of equipment items.

The mathematical basis for the technique is the following

k

∏
i=1

(Ri +Fi) , (3.13)

where:

k is the number of non-identical assemblies
Ri is the ith assembly reliability
Fi is the ith assembly unreliability.
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This technique is better understood with the following examples:
Develop reliability expressions for (a) a series system network and (b) a parallel

system network with two non-identical and independent assemblies each.
Since k = 2, from Eq. (3.13) one obtains

(R1 +F1)(R2 +F2) = R1R2 +R1F2 +R2F1 +F1F2 . (3.14)

a) Series Network

For a series network with two assemblies, the reliability RS is

RS = R1R2 . (3.15)

Equation (3.15) simply represents the first right-hand term of Eq. (3.14).

b) Parallel Network

Similarly, for a parallel network with two assemblies, the reliability RP is

RP = R1R2 +R1F2 +R2F1 . (3.16)

Since (R1 +F1) = 1 and (R2 +F2) = 1, the above equation becomes

RP = R1R2 +R1(1−R2)+R2(1−R1) . (3.17)

By rearranging Eq. (3.17), we get

RP = R1R2 +R1−R1R2 +R2−R1R2

RP = R1 +R2−R1R2

RP = 1− (1−R1)(1−R2) . (3.18)

This progression series can be similarly extended to a k assembly system.
The binomial method is fundamentally a statistical technique for establishing

estimated reliability values for series or parallel network systems. The confidence
level of uncertainty of the estimate is assessed through the maximum-likelihood
technique. This technique finds good estimates of the parameters of a probability
distribution obtained from available data.

Properties of maximum-likelihood estimates include the concept of efficiency
in its comparability to a ‘best’ estimate with minimum variance, and sufficiency
in that the summary statistics upon which the estimate is based essentially contains
sufficient available data. This is a problem with many preliminary designs where the
estimates are not always unbiased, in that the sum of the squares of the deviations
from the mean is, in fact, a biased estimate.
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3.2.2.3 Equipment Aging Models

A critical need for high reliability has particularly existed in the design of weapons
and space systems, where the lifetime requirement (5 to 10 years) has been relatively
short compared to the desired lifetime for systems in process designs such as nuclear
power plant (up to 30 years). In-service aging due to stringent operational conditions
can lead to simultaneous failure of redundant systems, particularly safety systems,
with an essential need for functional operability in high-risk processes and systems,
such as in nuclear power plants (IEEE Standard 323-1974). Because it is the most
prevalent source of potential common failure mechanisms, equipment aging merits
attention in reviewing reliability models for use in designing for reliability and in
qualifying equipment for use in safety systems.

Although it is acknowledged that random failures are not likely to cause simulta-
neous failure of redundant safety systems, and this type of failure does not automat-
ically lead to rejection of the equipment being tested, great care needs to be taken
in understanding random failure in order to provide assurance that it is, in fact, not
related to a deficiency of design or manufacture. Aging occurs at varying rates in
engineering systems, from the time of manufacture to the end of useful life and,
under some circumstances, it is important to assess the aging processes.

Accelerated aging is the general term used to describe the simulation of aging
processes in the short time. At present, no well-defined accelerated aging method-
ology exists that may be applied generally to all process equipment. The specific
problem is determining the possibility of a link between aging or deterioration of
a component, such as a safety-related device, and operational or environmental
stress. If such a link is present in the redundant configuration of a safety system,
then this can result in a common failure mode, where the common factor is aging.
Figure 3.16 below illustrates how the risk of common failure mode is influenced by
stress and time (EPRI 1974). The risk function is displayed by the surface, 0tPS. As
both stress and time-at-stress increase, the risk increases. P is the point of maximum

Fig. 3.16 Risk as a function of time and stress
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common failure mode risk, which occurs when both stress and time are at a max-
imum. However, the risk occurring in and around point P cannot be evaluated by
either reliability analysis or high-stress exposure tests alone. In this region, it may
be necessary to resort to accelerated aging followed by design criteria conditions to
evaluate the risk. This requires an understanding of the basic aging process of the
equipment’s material.

Generally, aging information is found for relatively few materials. Practical
methods for the simulation of accelerated aging are limited to a narrow range of
applications and, despite research in the field, would not be practically suited for
use in designing for reliability (EPRI 1974).

3.2.2.4 Failure Modes and Effects Analysis (FMEA)

Failure modes and effect analysis (FMEA) is a powerful reliability assessment tech-
nique developed by the USA defence industry in the 1960s to address the problems
experienced with complex weapon-control systems. Subsequently, it was extended
for use with other electronic, electrical and mechanical equipment. It is a step-by-
step procedure for the assessment of failure effects of potential failure modes in
equipment design. FMEA is a powerful design tool to analyse engineering systems,
and it may simply be described as an analysis of each failure mode in the system and
an examination of the results or effects of such failure modes on the system (Dhillon
1999a). When FMEA is extended to classify each potential failure effect according
to its severity (this incorporates documenting catastrophic and critical failures), so
that the criticality of the consequence or the severity of failure is determined, the
method is termed a failure mode effects and criticality analysis (FMECA).

The strength of FMEA is that it can be applied at different systems hierarchy
levels. For example, it can be applied to determine the performance characteristics
of a gas turbine power-generating process or the functional failure probability of its
fire protection system, or the failure-on-demand probability of the duty of a single
pump assembly, down to an evaluation of the failure mechanisms associated with
a pressure switch component. By the analysis of individual failure modes, the effect
of each failure can be determined on the operational functionality of the relevant
systems hierarchy level. FMEAs can be performed in a variety of different ways
depending on the objective of the assessment, the extent of systems definition and
development, and the information available on a system’s assemblies and compo-
nents at the time of the analysis. A different FMEA focus may dictate a different
worksheet format in each case; nevertheless, there are two basic approaches for the
application of FMEAs in engineering design (Moss et al. 1996):

• The functional FMEA, which recognises that each system is designed to perform
a number of functions classified as outputs. These outputs are identified, and the
losses of essential inputs to the item, or of internal failures, are then evaluated
with respect to their effects on system performance.
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• The equipment FMEA, which sequentially lists individual equipment items and
analyses the effect of each equipment failure mode on the performance of the
system.

In many cases, a combination of these two approaches is employed. For example,
a functional analysis at a major systems level is employed in the initial functional,
‘broad-brush’ analysis during the preliminary design phase, which is then followed
by more detailed analysis of the equipment identified as being more sensitive to
the range of uncertainties in meeting certain design criteria during the detail design
phase.

a) Types of FMEA and Their Associated Benefits

FMEA may be grouped under three distinct classifications according to application
(Grant Ireson et al. 1996):

• Design-level FMEA
• System-level FMEA
• Process-level FMEA.

Design-level FMEA The intention of this type of FMEA is to validate the design
parameters chosen for a specified functional performance requirement. The advan-
tages of performing design-level FMEA include identification of potential design-
related failure modes at system/sub-system/component level; identification of im-
portant characteristics of a given design; documentation of the rationale for design
changes to guide the development of future designs; help in the design requirement
objective evaluation; and assessment of design alternatives during the preliminary
and detail phases of the engineering design process. FMEA is a systematic approach
to reduce criticality and risk, and a useful tool to establish priority for design im-
provement in designing for reliability during the preliminary design phase.

System-level FMEA This is the highest-level FMEA that is performed in a systems
hierarchy, and its purpose is to identify and prevent failures related specifically to
systems/sub-systems during the early preliminary design phase of the engineering
design process. Furthermore, this type of FMEA is carried out to validate that the
system design specifications will, in fact, reduce the risk of functional failure to the
lowest systems hierarchy level during the detail design phase. A primary benefit of
the system-level FMEA is the identification of potential systemic failure modes due
to system interaction with other systems in complex integrated designs.

Process-level FMEA This identifies and prevents failures related to the manufac-
turing/assembly process for certain equipment during the construction/installation
stage of an engineering design project. The benefits of this detail design phase
FMEA include identification of potential failure modes at equipment level, and the
development of priorities and documentation of rationale for any essential design
changes, to help guide the manufacturing and assembly process.
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b) Steps for Performing FMEA

FMEA can be performed in six steps based on the key concepts of systems hierarchy,
operations, functions, failure mode, effects, potential failure and prevention. These
steps are given in the following logical sequence (Bowles et al. 1994):

FMEA sequential steps

• Identify the relevant hierarchical levels, and define systems and equipment.
• Establish ground rules and assumptions, i.e. operational phases.
• Describe systems and equipment functions and associated functional blocks.
• Identify possible failure modes and their associated effects.
• Determine the effect of each item’s failure for every failure mode.
• Identify methods for detecting potential failures and avoiding functional failures.
• Determine provision for design changes that would prevent functional failures.

c) Advantages and Disadvantages of FMEA

There are many benefits of performing FMEA, particularly in the effective analy-
sis of complex systems design, in comparing similar designs and providing a safe-
guard against repeating the same mistakes in future designs, and especially to im-
prove communication among design interface personnel (Dhillon 1999a). However,
an analysis of several industry-conducted FMEAs (Bull et al. 1995) showed that
the timescale involved in properly developing FMEA often exceeds the prelimi-
nary/detail design phases. It is common that the results from an FMEA can be de-
livered to the client only with or, possibly, even after the development of the system
itself. An automated approach is therefore essential.

3.2.2.5 Failure Modes and Effects Criticality Analysis (FMECA)

The objective of criticality assessment is to prioritise the failure modes discovered
during the FMEA on the basis of their effects and consequences, and likelihood of
occurrence. Thus, for making an assessment of equipment criticality during prelim-
inary design, two commonly used methods are the:

• Risk priority number (RPN) technique used in general industry,
• Military standard technique used in defence, nuclear and aerospace industries.

Both approaches are briefly described below (Bowles et al. 1994).

a) The RPN Technique

This method calculates the risk priority number for a component failure mode using
three factors:
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• Failure effect severity.
• Failure mode occurrence probability.
• Failure detection probability.

More specifically, the risk priority number is computed by multiplying the rankings
(i.e. 1–10) assigned to each of these three factors. Thus, mathematically the risk
priority number is expressed by the relationship

RPN = (OR)(SR)(DR) , (3.19)

where:

RPN = the risk priority number.
OR = the occurrence ranking.
SR = the severity ranking.
DR = the detection ranking.

Since the three factors are assigned rankings from 1 to 10, the RPN will vary from 1
to 1,000. Failure modes with a high RPN are considered to be more critical; thus,
they are given a higher priority in comparison to the ones with lower RPN. Specific
ranking values used for the RPN technique are indicated in Tables 3.4, 3.5 and 3.6
for failure detection, failure mode occurrence probability, and failure effect severity
respectively (AMCP 706-196 1976).

Table 3.4 Failure detection ranking

Item Likelihood of detection and meaning Rank

1 Very high—potential design weakness will be detected 1, 2
2 High—good chance of detecting potential design weakness 3, 4
3 Moderate—possible detection of potential design weakness 5, 6
4 Low—potential design weakness is unlikely to be detected 7, 8
5 Very low—potential design weakness probably not detected 9
6 Uncertain—potential design weakness cannot be detected 10

Table 3.5 Failure mode occurrence probability

Item Ranking Ranking meaning Occurrence Rank
term probability value

1 Remote Occurrence of failure is quite unlikely <1 in 106 1
2 Low Relatively few failures are expected 1 in 20,000 2

1 in 4,000 3
3 Moderate Occasional failures are expected 1 in 1,000 4

1 in 400 5
1 in 80 6

4 High Repeated failures will occur 1 in 40 7
1 in 20 8

5 Very high Occurrence of failure inevitable 1 in 8 9
1 in 2 10
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Table 3.6 Severity of the failure mode effect

Item Failure effect Severity category description Rank
severity value

1 Minor No effect on system performance, and the failure
may not even be noticed

1

2 Low The occurrence of failure will cause only a slight
dissatisfaction if observed (i.e. potential loss)

2, 3

3 Moderate Some dissatisfaction will be caused by failure 4–6
4 High High degree of dissatisfaction will be caused by failure

but the failure itself does not involve safety or even
a non-compliance to safety regulations

7, 8

5 Very high The failure affects safe item operation, and involves
significant non-compliance with safety regulations

9, 10

b) The Military Standard Technique

This technique is used in military defence, aerospace and nuclear industries, to pri-
oritise the failure modes of the item under consideration so that appropriate cor-
rective measures can be undertaken (MIL-STD-1629). The technique requires the
categorisation of the failure mode effect severity and then the development of a crit-
ical ranking. Table 3.7 presents classifications of failure mode effect severity. In
order to assess the likelihood of a failure mode occurrence, either a qualitative or
a quantitative approach can be used. The qualitative method is used when there are
no specific failure rate data. In this approach, the individual occurrence probabilities
are grouped into distinct, logically defined levels that establish the qualitative failure
probabilities. Table 3.8 presents occurrence probability levels (MIL-STD-1629).

A criticality matrix is developed as shown in Fig. 3.17, for identifying and com-
paring each failure mode to all other failure modes with respect to severity. The
criticality matrix is developed by inserting values in matrix locations denoting the
severity classification, and either the criticality number Ki for the failure modes of
an item, or the occurrence level probability. The distribution of criticality of item
failure modes is depicted by the resulting matrix, and serves as a useful tool for
assigning design review priorities.

The direction of the arrow originating from the origin, shown in Fig. 3.17, in-
dicates the increasing criticality of the item failure, and the hatching in the figure
shows the approximate desirable design region. For severity classifications A and B,
the desirable design region has low occurrence probability or criticality number. On
the other hand, for severity classifications C and D failures, higher probabilities
of occurrence can be tolerated. Nonetheless, failure modes belonging to classifi-
cations A and B should be eliminated altogether or at least their probabilities of
occurrence be reduced to an acceptable level through design changes. The quanti-
tative approach is used when failure mode and probability of occurrence data are
available. Thus, the failure mode critical number is calculated using

Kfm = FθλT , (3.20)
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Table 3.7 Failure mode effect severity classifications

Item Classification Description No.

1 Catastrophic The occurrence of failure may result in death
or equipment loss

A

2 Critical The occurrence of failure may result in severe injury
or major system damage leading to loss

B

3 Marginal The occurrence of failure may result in minor injury
or minor system damage leading to loss

C

4 Minor The failure is not serious enough to lead to injury
or system damage, but it will result in repair or in
unscheduled maintenance

D

Table 3.8 Qualitative failure probability levels

Item Probability Term Description
level

1 I Frequent High probability of occurrence during
the item operational period

2 II Reasonably
probable

Moderate probability of occurrence during
the item operational period

3 III Occasional Occasion probability of occurrence during
the item operational period

4 IV Remote Unlikely probability of occurrence during
the item operational period

5 V Extremely
unlikely

Zero chance of occurrence during
the item operational period

Fig. 3.17 Criticality matrix (Dhillon 1999)
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Table 3.9 Failure effect probability guideline values

Item no. Failure effect description Probability value of F

1 No effect 0
2 Actual loss 1.0
3 Probable loss 0.10 < F < 1.00
4 Possible loss 0 < F < 0.10

where:

Kfm is the failure mode criticality number.
θ = the failure mode ratio or the probability that a component will fail in the

particular failure mode of interest. More specifically, it is the fraction of the
component failure rate that can be allocated to the failure mode under con-
sideration. When all failure modes of a component are specified, the sum of
the allocations equals unity.

F = the conditional probability that the failure effect results in the indicated
severity classification or category, given that the failure mode occurs. The
values of F are based on an analyst’s judgment, and these values are quanti-
fied according to Table 3.9.

T = is the operational time expressed in hours or cycles.
λ = is the component failure rate.

The item criticality number Ki is calculated separately for each severity class. Thus,
the total of the criticality numbers of all the failure modes of a component in the
severity class of interest is given by the summation of the variables of Eq. (3.20), as
indicated in

Ki =
n

∑
j=1

(kfm) j =
n

∑
j=1

(FθλT ) j , (3.21)

where n is the item failure modes that fall under the severity classification under
consideration.

When a component’s failure mode results in multiple severity class effects, each
with its own occurrence probability, then only the most important is used in the
calculation of the criticality number Ki (Agarwala 1990).

This can lead to erroneously low Ki values for the less critical severity categories.
In order to rectify this error, it is recommended to compute F values for all severity
categories associated with a failure mode, and ultimately include only contributions
of Ki for category B, C and D failures (Bowles et al. 1994).

c) FMECA Data Sources and Users

Design-related information required for the FMECA includes system schematics,
functional block diagrams, equipment detail drawings, pipe and instrument dia-
grams (P&IDs), design descriptions, relevant specifications, reliability data, avail-
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able field service data, effects of operational and environmental stress, configuration
management data, operating specifications and limits, and interface specifications.
Usually, an FMECA satisfies the needs of many groups during the engineering de-
sign process, including not only the different engineering disciplines but quality
assurance, reliability and maintainability specialists, systems engineering, logistics
support, system safety, various regulatory agencies, and manufacturing contractors
as well. Some specific FMECA-related factors and their corresponding data retrieval
sources are given as follows (Bowles et al. 1994).

FMECA-related factors and their corresponding data sources:

• Failure modes, causes and rates (manufacturer’s database, field experience).
• Failure effects (design engineer, reliability engineer, safety engineer).
• Item identification numbers (parts list).
• Failure detection method (design engineer, maintenance engineer).
• Function (client requirements, design engineer).
• Failure probability/severity classification (safety engineer).
• Item nomenclature/functional specifications (parts list, design engineer).
• Mission phase/operational mode (design engineer).

The FMEA worksheet (Moss et al. 1996) is tabular in format to provide a system-
atic approach to the analysis. The column headings of a standard FMEA worksheet
generally are:

• Item identity/description: a unique identification code and description of each
item.

• Function: a brief description of the function performed by the item.
• Failure mode: each item failure mode is listed separately, as there may be several

for an item.
• Possible causes: the likely causes of each postulated failure mode.
• Failure detection method: features of the design through which failure can be

recognised.
• Failure effect—local level: the effect of the failure on the item’s function.
• Compensating provisions: which could mitigate the effect of the failure.
• Remarks: comments on the effect of failure, including any potential design

changes.

FMEA extension into FMECA worksheet If the analysis is extended to quantify
the severity and probability of failure (or failure rate) of the equipment as defined in
a failure modes and effects criticality analysis (FMECA), further columns are added
to the FMEA worksheet, such as:

Failure consequence—system level: the consequences of the failure mode on sys-
tem operation.

Severity: the level of severity of the consequence of each failure mode, classified
as:
Level 1—minor, with no consequence on functional performance
Level 2—major, with degradation of system functional performance
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Level 3—critical, with a severe reduction in the performance of system function
resulting in a change in the system operational state
Level 4—catastrophic, with complete loss of system function.

Loss frequency: the expected frequency of loss resulting from each failure mode,
either as a failure rate or as failure probability. The latter is usually estimated for
the operating time interval as a proportion of the overall system failure rate or
failure probability (FP). The levels generally employed for processes are:

i) Very low probability <0.01 FP
ii) Low probability 0.01–0.lFP
iii) Medium probability 0.1–0.2FP
iv) High probability >0.2 FP

Component failure rate λp: the overall failure rate of the component in its opera-
tional mode and environment. Where appropriate, application and environmental
factors may be applied to adjust for the difference between the conditions asso-
ciated with the generic failure rate data and operating stresses under which the
item is to be used.

Failure mode proportion α: the fraction of the overall failure rate related to the fail-
ure mode under consideration.

Probability of failure consequence β : conditional probability that a failure conse-
quence occurs.

Operational failure rate λo: the product of λp, α and β .
Data source: the source of the failure rate (or failure probability) data.

For FMECAs, a criticality matrix is constructed that relates loss frequency to sever-
ity for each failure mode. Failure mode identification numbers are entered in the
appropriate cell of the matrix according to their loss frequency and severity to iden-
tify each critical item failure mode.

Thus: Criticality = Severity × Loss frequency,
or: Criticality = Severity × Operational failure rate.

3.2.2.6 Fault-Tree Analysis in Reliability Assessment

There are two approaches that can be used to analyse the causal relationships be-
tween equipment and system failures (Moss et al. 1996). These are inductive or
forward analysis, and deductive or backward analysis. FMEA is an example of in-
ductive analysis. As previously considered, it starts with a set of equipment failure
conditions and proceeds forwards, identifying the possible consequences; this is a
‘what happens if ’ approach.

Fault-tree analysis is a deductive ‘what can cause this’ approach, and is used
to identify the causal relationships leading to a specific system failure mode—the
‘top event’. The fault tree is developed from this top, undesired event, in branches
showing the different event paths. Equipment failure events represented in the tree
are progressively redefined in terms of lower resolution events until the basic events
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are encountered on which substantial failure data must be available. The events are
combined logically by use of gate symbols as shown in Fig. 3.18, which illustrates
the structure of a typical fault tree.

In this case, the basic event combinations are developed that could result in total
loss of output from a simple cooling water system. Using this failure logic diagram,
the probability of the top event or the top event frequency can then be calculated
by providing information on the basic event probabilities. The top event and the
system boundary must be chosen with care so that the analysis is not too broad or
too narrow to produce the results required. The specification of the system boundary
is particularly important to the success of the analysis.

Many cooling water systems have external power supplies and other services
such as a water supply. It would not be practical to trace all possible causes of
failure of these services back through the distribution and generation systems, nor
would this extra detail provide any useful information concerning the system being

Total loss of 
output

Filter
failure

Failure of
power supply

Supp

Failure of
both pumps

Failure of
pump A

Pump A Pump B

Failure of
pump B

Filter ValveOR

Pump
failure

Valve
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Fig. 3.18 Simple fault tree of cooling water system
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assessed. The location of the external boundary will be partially decided by the as-
pect of system performance that is of interest; however, it is also important to define
the external boundary in the time domain. Process start-up or shutdown conditions
can generate different hazards from steady-state operation, and it may be necessary
to trace any possible faults that could occur.

In Fig. 3.18, basic event combinations are developed of the failures of both
pump A and pump B or failure of the power supply that results in overall pump
failure and/or failures of the filter or valve that could result in total loss of output
of the cooling water system. This approach is clearly depicted in the structure of
the fault tree of Fig. 3.18, in that the basic events are combined in an event hierar-
chy, from the lower component/sub-assembly levels to the higher assembly/systems
levels of the cooling water system systems breakdown structure (SBS).

a) Fault-Tree Analysis Steps

The detailed steps required to perform a fault-tree analysis within the reliability
assessment procedure for equipment design can be summarised in the following
(Andrews et al. 1993):

• Step 1: System configuration understanding.
• Step 2: Identification of system failure states.
• Step 3: Logic model generation.
• Step 4: Qualitative evaluation of the logic model.
• Step 5: Equipment failure analysis.
• Step 6: Quantitative evaluation of the logic model.
• Step 7: Uncertainty analysis.
• Step 8: Sensitivity/importance analysis.

Many of these steps are the same, whatever system and/or equipment is being ana-
lysed, though there are some aspects that require special attention, particularly to
systems interface when mechanical and electrical equipment is involved. Once the
first four steps have been conducted, a qualitative evaluation of the fault-tree logi-
cal model is necessary to review whether system configuration and system failure
states are correctly understood. The minimal cut sets (combinations of equipment
failures that provide the necessary and sufficient conditions for system failure) are
then produced.

To progress even further with reliability assessment using fault-tree analysis, the
probability of equipment failure, q(t), may be determined together with equipment
maintainability in the form of a repair rate

q(t) =
λ

λ + ν
(1− e−(λ+ν)t) . (3.22)

Equation (3.22) is for revealed failures where λ is the failure rate and ν the repair
rate. Equation (3.23) is for unrevealed failures, where qAV is the average unavail-
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ability, τ is the mean time to repair, and θ is the test interval

qAV = λ (τ + θ/2) . (3.23)

For safety systems that are normally inactive, failures are revealed only during test
or actual use, which means that the unrevealed failure model is appropriate for these
systems. However, the underlying assumption in both of these models is that the
failure and repair rates are constant, giving a negative exponential distribution for
the probability of failure (repair) prior to time t. Constant failure rates are associated
with random failure events, as indicated by the useful life period of the hazard rate
curve, considered in detail in Section 3.2.3.

However, mechanical equipment subject to wear, corrosion, fatigue, etc. may in
many cases not conform to this assumption (Andrews et al. 1993). When either the
failure or repair rates are not constant, and the probability density functions for the
times to failure f (t) and repair g(t) are available, then they can be combined to give
the unconditional failure intensity w(t) and unconditional repair intensity ν(t) by
solving the following simultaneous integral

w(t) = f (t)+
t∫

0

f (t −u)ν(u)du , (3.24)

ν(t) =
t∫

0

g(t −u)w(u)du . (3.25)

Having solved these equations, the equipment failure probability is then given by

q(t) =
t∫

0

[w(u)−ν(u)]du . (3.26)

For the case of constant failure rates, the probability density functions for the times
to failure and repair are given as

f (t) = λe
−λt , (3.27)

g(t) = νe
−νt . (3.28)

Equations (3.24) and (3.25) can be solved by Laplace transforms. Substituting the
solution obtained into Eq. (3.26) yields Eq. (3.27). For more complex distributions
of failure and repair times, numerical solutions may be required. With the equipment
failure data produced at Step 5, fault-tree quantification gives the system failure
probability, the system failure rate, and the expected number of system failures.

Where failure and repair distributions have been specified for the analysis, con-
fidence intervals can be determined at Step 7. Step 8 produces the importance rank-
ings for the basic event identifying the equipment that provides the most significant
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contribution to system failure. Fault trees in reliability assessments of integrated en-
gineering systems are significantly more complex than that illustrated in Fig. 3.18.

With complex engineering designs, fault-tree methodology includes the concepts
of availability and maintainability. This is considered in greater detail in Chapter 4,
Availability and Maintainability in Engineering Design.

b) Fault-Tree Analysis and Safety and Risk Assessment

The main use of fault trees in designing for reliability is in safety and risk studies.
Fault trees provide a useful representation of the different failure paths, and this can
lead to safety and risk assessments of systems and processes even without consider-
ing failure and repair data—which does cause some difficulties (Moss et al. 1996).

In many cases, fault trees and failure mode and effect analysis (FMEA) are em-
ployed in combination—the FMEA to define the effects and consequences of spe-
cific equipment failures, and the fault tree (or several fault trees) to identify and
quantify the paths that lead to equipment failure probability, and high risks of safety.

3.2.3 Theoretical Overview of Reliability Evaluation
in Detail Design

Reliability evaluation determines the reliability and criticality values for each in-
dividual item of equipment at the lower systems levels of the systems breakdown
structure. Reliability evaluation determines the failure rates and failure rate patterns
of components, not only for functional failures that occur at random intervals but
for wear-out failures as well.

Reliability evaluation is considered in the detail design phase of the engineering
design process, to the extent of determination of the frequencies with which failures
occur over a specified period of time based on component failure rates.

The most applicable methodology for reliability evaluation in the detail design
phase includes basic concepts of mathematical modelling such as:

• The hazard rate function.
(To represent the failure rate pattern of a component by evaluating the ratio be-
tween its probability of failure and its reliability function.)

• The exponential failure distribution.
(To define the probability of failure and the reliability function of a component
when it is subject only to functional failures that occur at random intervals.)

• The Weibull failure distribution.
(To determine component criticality for wear-out failures, rather than random
failures.)

• Two-state device reliability networks.
(A component is said to have two states if it either operates or fails.)
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• Three-state device reliability networks.
(A three-state component derates with one operational and two failure states.)

3.2.3.1 The Hazard Rate Function

The hazard rate function is a representation of the failure rate pattern of the ratio
between a particular probability density function (p.d.f.), and its cumulative distri-
bution function (c.d.f.) or its reliability function.

For continuous random variables, the cumulative distribution function is defined
by

F(t) =
t∫

−∞

f (x)dx , (3.29)

where:

f (x) = probability density function of the distribution of value x over the interval
−∞ to t.

In the case where t→∞, the cumulative distribution function is unity

F(∞) =
∞∫

−∞

f (x)dx . (3.30)

The probability density function is derived from the derivative of the cumulative
distribution function, as follows

dF(t)
dt

=
d
dt

⎡
⎣

t∫
−∞

f (x)dx

⎤
⎦ . (3.31)

The reliability function over a period of time t is the difference between the cumu-
lative distribution function where t → ∞ and the cumulative distribution function in
the period of time t or, alternately, it is the subtraction of the cumulative distribution
function of failure over a period of time t from unity

R(t) = 1−F(t) . (3.32)

The hazard rate function is then defined as

λ (t) =
f (t)
R(t)

(3.33)

or

λ (t) =
f (t)

1−F(t)
.



92 3 Reliability and Performance in Engineering Design

Thus, the hazard rate function can be used to represent the hazard rate curve of sev-
eral different probability density functions, particularly the exponential or Poisson
function in which λ (t) is a constant, and the Weibull function in which λ (t) is either
decreasing or increasing.

a) Review of the Hazard Rate Curve

A hazard rate curve is shown in Fig. 3.19. This curve is used to represent the failure
rate pattern of equipment (i.e. assemblies and predominantly components; EPRI
1974). Failure rate representation of electronic components is a prime example, in
which case only the middle portion (useful life period), or the constant failure rate
region of the curve is considered.

As can be seen in Fig. 3.19, the hazard rate curve may be divided into three
distinct regions or parts (i.e. decreasing, constant, and increasing hazard rate). The
decreasing hazard rate region of the curve is designated the ‘burn-in period’, or ‘in-
fant mortality period’. The ‘burn-in period’ failures, known as ‘early failures’, are
the result of design, manufacturing or construction defects in new equipment. As
the ‘burn-in period’ increases, equipment failures decrease, until the beginning of
the constant failure rate region, which is the middle portion of the curve and des-
ignated the ‘useful life period’ of equipment. Failures occurring during the ‘useful
life period’ are known as ‘random failures’ because they occur unpredictably. This
period starts from the end of the ‘burn-in period’ and finishes at the beginning of the
‘wear-out phase’.

Fig. 3.19 Failure hazard curve (life characteristic curve or risk profile)
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The last part of the curve, the increasing hazard rate region, is designated the
‘wear-out phase’ of the equipment. It starts when the equipment has passed its use-
ful life and begins to wear out. During this phase, the number of failures begin to
increase exponentially, and are known as ‘wear-out failures’.

b) Component Reliability and Failure Distributions

In the calculations for reliability, it is important to note that reliability is an indirect
function of the probability of the occurrence of failure.

The probability of the occurrence of failure is given by the failure distribution, or
failure probability (FP) statistic. Thus, the probability of no failures occurring over
a specific period of time is a measure of the component’s or equipment’s reliability
and is given by the reliability probability (RP) statistic.

Furthermore, if FP is the probability of failure occurring, and RP is the probabil-
ity of no failure occurring, then

FP = 1−RP

or
RP = 1−FP . (3.34)

Reliability of components can thus be determined through the establishment of var-
ious failure distributions, originating from their failure density functions.

Reliability evaluation in designing for reliability assumes that component reli-
ability is known, and we are only interested in using this component reliability to
compute system reliability.

However, it is essential to understand how component reliability is determined,
specifically from two important failure distributions, namely:

• Exponential failure distribution.
• Weibull failure distribution.

3.2.3.2 The Exponential Failure Distribution

When a component is subject only to functional failures that occur at random in-
tervals, and the expected number of failures is the same for equally long periods of
time, its probability density function and its reliability can be defined by the expo-
nential equation:

Probability density function:

f (t,θ ) =
1
θ

e−t/θ . (3.35)

Reliability:
R(t,θ ) = e−t/θ (3.36)
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or, if it is expressed in terms of the failure rate, λ

f (t,λ ) = λ e−λ t , (3.37)

and the reliability function is

R(t,λ ) = e−λ t , (3.38)

where:

f (t,λ ) = probability density function of the Poisson process in terms of time t
and failure rate λ .

R(t,λ ) = reliability of the Poisson process.
t = operating time in the ‘useful life period’.
θ = mean time between failures (MTBF).
λ = 1/θ , the failure rate for the component.

This equation is applicable for determining component reliability, as long as the
component is in its ‘useful life period’. This is the period during which the failure
rate is constant, and failure occurrences are predominantly chance or random fail-
ures. The ‘useful life period’ is considered to be the time after which ‘early failures’
no longer exist and ‘wear-out’ failures have not begun.

Note that λ is the distribution scale parameter because it scales the exponential
function. In reliability terms, λ is the failure rate, which is the reciprocal of the
mean time between failure. Because λ is constant for a Poisson process (exponential
distribution function), the probability of failure at any time t depends only upon the
elapsed time in the component’s ‘useful life period’.

In complex electro-mechanical systems, the system failure rate is effectively con-
stant over the ‘useful life period’, regardless of the failure patterns of individual
components. An important point to note about Eqs. (3.37) and (3.38), with respect
to designing for reliability, is that reliability in this case is a function of operat-
ing time (t) for the component, as well as the measure of mean time to failure
(MTTF).

a) Statistical Properties of the Exponential Failure Distribution

The mean or MTTF The mean, or mean time to fail (MTTF) of the one-parameter
exponential distribution is given by the following expression, where Ū is the MTTF

Ū =
∞∫

0

t f (t)dt . (3.39)
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Relating f (t) to the exponential function gives the relationship

Ū =
∞∫

0

tλ e−λ t dt

Ū =
1
λ

. (3.40)

The median The median, ū, of the one-parameter exponential distribution is the
value

ū =
1
λ

0.693

ū = 0.693Ū .

The mode The mode, ů, of the one-parameter exponential distribution is given by

ů = 0 . (3.41)

For a continuous distribution, the mode is the value of the variate that corresponds to
the maximum probability density function (p.d.f.). The modal life, ů, is the maximum
value of t that satisfies the expression

d[ f (t)]
dt

= 0 .

The standard deviation The standard deviation σT of the one-parameter exponen-
tial distribution is given by

σT =
1
λ

= m . (3.42)

The reliability function The one-parameter exponential reliability function is
given by

R(T ) = e−λ T

R(T ) = e−T/m .

This is the complement of the exponential cumulative distribution function where

R(T ) = 1−
T∫

0

f (T )dT

R(T ) = 1−
T∫

0

λ e−λ T dT

R(T ) = e−λ T . (3.43)
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Conditional reliability Conditional reliability calculates the probability of further
successful functional duration, given that an item has already successfully func-
tioned for a certain time. In this respect, conditional reliability could be considered
to be the reliability of ‘used items or components’. This implies that the reliability
for an added duration (mission) of t undertaken after the equipment or component
has already accumulated T hours of operation from age zero is a function only of the
added time duration, and not a function of the age at the beginning of the mission.

The conditional reliability function for the one-parameter exponential distribu-
tion is given by the following expression

R(T,t) =
R(T + t)

R(T )

R(T,t) =
e−λ (T+t)

e−λ T

R(T,t) = e−λ t . (3.44)

Reliable life The reliable life, or the mission duration for a desired reliability goal
for the one-parameter exponential distribution is given by

R(tR) = e−λ tR

ln{R(tR)} = −λ tR

tR =
− ln{R(tR)}

λ
. (3.45)

Residual life Let T denote the time to failure for an item. The conditional survival
function can then be expressed as

R(t) = P(T > t) .

The conditional survival function is the probability that the item will survive for
period t given that it has survived without failure for period T . The residual life is
thus the extended duration or operational life t where the component has already
accumulated T hours of operation from age zero, subject to the conditional survival
function.

The conditional survival function of an item that has survived (without failure)
up to time x is

R(t|x) = P(t > t + x|T > x)

=
P(T > t + x)

P(T > t)

=
R(t + x)

R(x)
. (3.46)

R(t|x) denotes the probability that a used item of age x will survive an extra time t.
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The mean residual life (MRL) of a used item of age x can thus be expressed as

MRL(x) =
∞∫

0

R(t|x)dt . (3.47)

When x = 0, the initial age is zero, implying a new item and, consequently

MRL(0) = MTTF .

In considering the reliable life for the one-parameter exponential distribution com-
pared to the residual life, it is of interest to study the function

h(x) =
MRL(x)
MTTF

. (3.48)

There are certain characteristics of comparison, when the initial age is zero (i.e.
x = 0), between the mean residual life MRL (x) and the mean or the mean time to
fail (MTTF).

Characteristics of comparison between the mean residual life MRL (x) and the
mean, or mean time to fail (MTTF), are the following:

• When the time to failure for an item, T , has an exponential distribution, then
h(x) = 1 for all x.

• When T has a Weibull distribution with shape parameter β < 1 (i.e. decreasing
failure rate), then h(x) is an increasing function.

• When T has a Weibull distribution with shape parameter β > 1 (i.e. increasing
failure rate), then h(x) is a decreasing function.

Failure rate function The exponential failure rate function is given by

λ t =
f (T )
R(T )

=
λ e−λ T

e−λ T
= λ (3.49)

f (T )
R(T )

= hazard rate h(t), and λ (t) is constant λ .

The hazard rate is a constant with respect to time for the exponential failure dis-
tribution function. For other distributions, such as the Weibull distribution or the
log-normal distribution, the hazard rate is not constant with respect to time.

3.2.3.3 The Weibull Failure Distribution

Although the determination of equipment reliability and corresponding system
reliability during the period of the equipment’s useful life period is based on the
exponential failure distribution, the failure rate of the equipment may not be con-
stant throughout the period of its use or operation. In most engineering installations,
particularly with the integration of complex systems, the purpose of determining
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equipment criticality, or combinations of critical equipment, is predominantly to
assess the times to wear-out failures, rather than to assess the times to chance or
random failures.

In such cases, the exponential failure distribution does not apply, and it becomes
necessary to substitute a general failure distribution, such as the Weibull distribution.
The Weibull distribution is particularly useful because it can be applied to all three
of the phases of the hazard rate curve, which is also called the equipment ‘life
characteristic curve’.

The equation for the two-parameter Weibull cumulative distribution function
(c.d.f.) is given by

F(t) =
1∫

0

f (t|β μ)dt . (3.50)

The equation for the two-parameter Weibull probability density function (p.d.f.) is
given by

f (t) =
β t(β−1) e−t/μβ

μβ , (3.51)

where:

t = the operating time for which the reliability R(t) of the component must be
determined.

β = parameter of the Weibull distribution referred to as the shape parameter.
μ = parameter of the Weibull distribution referred to as the scale parameter.

a) Statistical Properties of the Weibull Distribution

The mean or MTTF The mean, Ū , of the two-parameter Weibull probability den-
sity function (p.d.f.) is given by

Ū = μΓ (1/β +1) , (3.52)

where Γ (1/β +1) is the gamma function, evaluated at (1/β +1).

The median The median, ū, of the two-parameter Weibull distribution is given by

ū = μ(ln2)1/β . (3.53)

The mode The mode or value with maximum probability, ů, of the two-parameter
Weibull distribution is given by

ů = μ
(

1− 1
β

)1/β
. (3.54)
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The standard deviation The standard deviation, σT , of the two-parameter Weibull
is given by

σT = μ

√
Γ
(

2
β

+1

)
−Γ
(

1
β

+
)2

. (3.55)

The cumulative distribution function (c.d.f.) The c.d.f. of the two-parameter
Weibull distribution is given by

F(T ) = 1− e−(T/μ)β
. (3.56)

Reliability function The Weibull reliability function is given by

R(T ) = 1−F(t) = e−(T/μ)β
. (3.57)

The conditional reliability function Equation (3.58) gives the reliability for an
extended operational period, or mission duration of t, having already accumulated
T hours of operation up to the start of this mission duration, and estimates whether
the component will begin the next mission successfully.

It is termed conditional because the reliability of the following operational period
or new mission can be estimated, based on the fact that the component has already
successfully accumulated T hours of operation.

The Weibull conditional reliability function is given by

R(T,t) =
R(T + t)

R(T )

=
e−(T+t/μ)β

e−(T/μ)β

= e−[(T+t/μ)β−(T/μ)β ] , (3.58)

The reliable life For the two-parameter Weibull distribution, the reliable life, TR,
of a component for a specified reliability, starting at age zero, is given by

TR = μ {− ln [R(TR]}1/β (3.59)

b) The Weibull Shape Parameter

The range of shapes that the Weibull density function can take is very broad, de-
pending on the value of the shape parameter β . This value is usually indicated as
β < 1, β = 1 and β > 1. Figure 3.20 illustrates the shape of the Weibull c.d.f. F(t)
for different values of β . The amount the curve is spread out along the abscissa or
x-axis depends on the parameter μ , thus being called the Weibull scale parameter.
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Fig. 3.20 Shape of the Weibull density function, F(t), for different values of β

For β < 1, the Weibull curve is asymptotic to both the x-axis and the y-axis, and is
skewed.

For β = 1, the Weibull curve is identical to the exponential density function.
For β > 1, the Weibull curve is ‘bell shaped’ but skewed.

c) The Weibull Distribution Function, Reliability and Hazard

Integrating out the Weibull cumulative distribution function (c.d.f.) given in Eq. (3.50)
gives the following

F(t) =
1∫

0

f (t|β μ)dt

F(t) = 1− e−t/μβ
. (3.60)

The mathematical model of reliability for the Weibull density function is

R(t) = 1−F(t)

R = e−t/μβ
, (3.61)

where:

R is the ‘probability of success’ or reliability.
t is the equipment age.
μ is the characteristic life or scale parameter.
β is the slope or shape parameter.
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The Weibull hazard rate function, λ (t), is derived from a ratio between the Weibull
probability density function (p.d.f.) and the Weibull reliability function

λ (t) =
f (t)
R(t)

λ (t) =
β (t)β−1

μβ , (3.62)

where:

μ = the scale parameter,
β = the shape parameter.

To use this model, one must estimate the values of μ and β . Estimates of these pa-
rameters from the Weibull probability density function are computationally difficult
to obtain. There are analytical methods for estimating these parameters but they in-
volve the solution of a system of transcendental equations. An easier and commonly
used method is based on a graphical technique that makes use of the Weibull graph
chart.

d) The Weibull Graph Chart

The values of the failure distribution, expressed as percentage values of failure oc-
currences, are plotted against the y-axis of the chart displayed in Fig. 3.21, and the
corresponding time between failures plotted against the x-axis. If the plot is a straight

Fig. 3.21 The Weibull graph chart for different percentage values of the failure distribution
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line, then the Weibull distribution is applicable and the relevant parameters are deter-
mined. If the plot is not a straight line, then the two-parameter Weibull distribution
is not applicable and more detailed analysis is required. Such detailed analysis is
presented in Section 3.3.3. To explain the format of the chart in Fig. 3.21, each axis
of the chart is considered.

• The scale of the x-axis is given as a log scale.
• The description given along the y-axis is:
• ‘cumulative percent’ for ‘cumulative distribution function (%)’
• The scale of the y-axis is given as a log–log scale.

3.2.3.4 Reliability Evaluation of Two-State Device Networks

The following models present reliability evaluation of series and parallel two-state
device networks (Dhillon 1983):

a) Series Network

This network denotes an assembly of which the components are connected in series.
If any one of the components malfunctions, it will cause the assembly to fail. For
the k non-identical and independent component series, which are time t-dependent,
the formula for RS(t), the network reliability, is given in

RS(t) = {1−F1(t)} · {1−F2(t)} · {1−F3(t)} · . . . · {1−Fk(t)}
And: {1−Fi(t)} ≈ Ri(t) . (3.63)

The ith component cumulative distribution function (failure probability) is defined
by

Fi(t) =
t∫

0

fi(t)dt , (3.64)

where:

Fi(t) is the ith component failure probability for i = 1,2,3, . . . ,k.
Ri(t) is the ith component reliability, for i = 1,2,3, . . . ,k.

By definition:

fi(t) = lim
Δt→0

αS(t)−αS(t + Δt)
α0Δt

fi(t) =
dFi(t)

dt
,

where:

Δt = the time interval,
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α0 = the total number of items put on test at time t = 0,
αS = the number of items surviving at time t or at t + Δt.

Substituting Eq. (3.64) into Eq. (3.63) leads to

Ri(t) = 1−
t∫

0

fi(t)dt . (3.65)

A more common notation for the ith component reliability is expressed in terms of
the mathematical constant e. The mathematical constant e is the unique real number,
such that the value of the derivative of f (x) = ex at the point x = 0 is exactly 1.
The function so defined is called the exponential function. Thus, the alternative,
commonly used expression for Ri(t) is

Ri(t) = e−
∫ t
0 λi(t)dt , (3.66)

where λi(t) is the ith component hazard rate or instantaneous failure rate.
In this case, component failure time can follow any statistical distribution func-

tion of which the hazard rate is known. The expression Ri(t) is reduced to

Ri(t) = 1−Fi(t)

Ri(t) = e−λit . (3.67)

A redundant configuration or single component MTBF is defined by

MTBF =
∞∫

0

R(t)dt . (3.68)

Thus, substituting Eq. (3.67) into Eq. (3.66), and integrating the results in the series
gives the model for MTBF, which in effect is the sum of the inverse values of the
component hazard rates, or instantaneous failure rates of all the components in the
series

MTBF =

[
n

∑
i=1

λi

]−1

(3.69)

MTBF = sum of inverse values of component hazard rates

= instantaneous failure rates of all the components.

b) Parallel Network

This type of redundancy can be used to improve system and equipment reliabil-
ity. The redundant system or equipment will fail only if all of its components fail.
To develop this mathematical model for application in reliability evaluation, it is
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assumed that all units of the system are active and load sharing, and units are sta-
tistically independent. The unreliability, FP(t), at time t of a parallel structure with
non-identical components is

FP(t) =
k

∏
i=1

Fi(t) (3.70)

Fi(t) = ith component unreliability (failure probability).

Since RP(t)+FP(t) = 1, utilising Eq. (3.70) the parallel structure reliability, RP(t),
becomes

RP(t) = 1−
k

∏
i=1

Fi(t) . (3.71)

Similarly, as was done for the series network components with constant failure rates,
substituting for Fi(t) in Eq. (3.71) we get

RP(t) = 1−
k

∏
i=1

(
1− e−λit

)
. (3.72)

In order to obtain the series MTBF, substitute Eq. (3.69) for identical components
and integrate as follows

MTBF =
∞∫

0

[
1−

k

∑
j=0

(n j)(−1) j e−λ jt

]
dt

MTBF =
1
λ

+
1

2λ
+

1
3λ

+ . . .+
1

kλ
(3.73)

λ = the component hazard or instantaneous failure rate.

c) A k-out-of-m Unit Network

This type of redundancy is used when a certain number k of components in an ac-
tive parallel redundant system or assembly must work for the system’s or assembly’s
success. The binomial distribution, system or assembly reliability of the indepen-
dent and identical components at time t is Rk/m(t), where R(t) is the component
reliability

Rk/m(t) =
m

∑
i=kt

(m)[R(t)]i[1−R(t)]k−i (3.74)

m = the total number of system/assembly components

k = the number of components required for system/assembly success
at time t.
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Special cases of the k-out-of-m unit system are:

k = 1: = parallel network
k = m: = series network.

For exponentially distributed failure times (constant failure rate) of a component,
substituting in Eq. (3.74) for k = 2 and m = 4, the equation becomes

R2/4(t) = 3e−4λ t −8e−3λ t +6e−2λ t . (3.75)

d) Standby Redundant Systems

RS(t) =
K

∑
i=0

⎡
⎣

t∫
0

λ (t)dt

⎤
⎦

i

e−
∫ t
0 λ (t)dt(i!)−1 . (3.76)

In this case (Eq. 3.76), one component is functioning, and K components are on
standby, or are not active. To develop a system/assembly reliability model, the com-
ponents must be identical and independent, and the standby components as new.
The general components hazard rate, λ , is assumed.

3.2.3.5 Reliability Evaluation of Three-State Device Networks

A three-state device (component) has one operational and two failure states. De-
vices such as a fluid flow valve and an electronic diode are examples of a three-
state device. These devices have failure modes that can be described as failure in
the closed or open states. Such a device can have the following functional states
(Dhillon 1983):

State 1 = Operational
State 2 = Failed in the closed state
State 3 = Failed in the open state

a) Parallel Networks

A parallel network composed of active independent three-state components will fail
only if all the components fail in the open mode, or at least one of the devices must
fail in the closed mode. The network (with non-identical devices) time-dependent
reliability, RP(t), is

RP(t) =
k

∏
i=1

[1−FCi(t)]−
k

∏
i=1

FOi(t) , (3.77)
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where:

t = time
k = the number of three-state devices in parallel
FCi(t) = the closed mode probability of device i at time t
FOi(t) = the open mode probability of device i at time t

b) Series Networks

A series network is the reverse of the parallel network. A series system will fail only
if all of its independent elements fail in a closed mode or any one of the components
fails in open mode. Thus, because of duality, the time-dependent reliability of the
series network with non-identical and independent devices is the difference of the
summations of the respective values for the open mode probability, [1−FOi(t)], and
the closed mode probability, [FCi(t)], of device i at time t.

The series network with non-identical and independent devices time-dependent
reliability, RS(t), is

RS(t) =
k

∏
i=1

[1−FOi(t)]−
k

∏
i=1

FCi(t) , (3.78)

where:

t = time
k = the number of devices in the series configuration
FCi(t) = the closed mode probability of device i at time t
FOi(t) = the open mode probability of device i at time t

Closing comments to theoretical overview

It was stated earlier, and must be iterated here, that these techniques do not represent
the total spectrum of reliability calculations, and have been considered as the most
applicable for their application in determining the integrity of engineering design
during the conceptual, preliminary and detail design phases of the engineering de-
sign process, based on an extensive study of the available literature. Furthermore, the
techniques have been grouped according to significant differences in the approaches
to the determination of reliability of systems, compared to that of assemblies or of
components. This supports the premise that:

• predictions of the reliability of systems are based on prognosis of systems perfor-
mance under conditions subject to failure modes (reliability prediction);

• assessments of the reliability of equipment are based upon inferences of failure
according to various statistical failure distributions (reliability assessment); and

• evaluations of the reliability of components are based upon known values of fail-
ure rates (reliability evaluation).
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3.3 Analytic Development of Reliability and Performance
in Engineering Design

Some of the techniques identified for reliability prediction, assessment and evalua-
tion, in the conceptual, preliminary and detail design phases respectively, have been
considered for further analytic development. This has been done on the basis of their
transformational capabilities in developing intelligent computer automated method-
ology. The techniques should be suitable for application in artificial intelligence-
based modelling, i.e. AIB modelling in which knowledge-based expert systems
within a blackboard model can be applied in determining the integrity of engineering
design. The AIB model should be suited to applied concurrent engineering design in
an online and integrated collaborative engineering design environment in which au-
tomated continual design reviews are conducted throughout the engineering design
process by remotely located design groups communicating via the internet.

Engineering designs are usually composed of highly integrated, tightly coupled
systems with complex interactions, essential to the functional performance of the
design. Therefore, concurrent, rather than sequential considerations of specific re-
quirements are essential, such as meeting the design criteria together with design
integrity constraints. The traditional approach in industry for designing engineered
installations has been the implementation of a sequential consideration of require-
ments for process, thermal, power, manufacturing, installation and/or structural con-
straints. In recent years, concurrent engineering design has become a widely ac-
cepted concept, particularly as a preferred alternative to the sequential engineering
design process. Concurrent engineering design in the context of design integrity is
a systematic approach to integrating the various continual design reviews within the
engineering design process, such as reliability prediction, assessment, and evalua-
tion throughout the preliminary, schematic, and detail design phases respectively.
The objective of concurrent engineering design with respect to design integrity is
to assure a reliable design throughout the engineering design process. Parallelism
is the prime concept in concurrent engineering design, and design integrity (i.e. de-
signing for reliability) becomes the central issue. Integrated collaborative engineer-
ing design implies information sharing and decision coordination for conducting the
continual design reviews.

3.3.1 Analytic Development of Reliability and Performance
Prediction in Conceptual Design

Techniques for reliability and performance prediction in determining the integrity
of engineering design during the conceptual design phase include system reliability
modelling based on:

i. System performance measures
ii. Determination of the most reliable design
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iii. Conceptual design optimisation and
iv. Comparison of conceptual designs
v. Labelled interval calculus and

vi. Labelled interval calculus in designing for reliability

3.3.1.1 System Performance Measures

For each process system, there is a set of performance measures that require particu-
lar attention in design—for example, temperature range, pressure rating, output and
flow rate. Some measures such as pressure and temperature rating may be common
for different items of equipment inherent to each process system. Some measures
may apply only to one system. The performance measures of each system can be
described in matrix form in a parameter profile matrix (Thompson et al. 1998), as
shown in Fig. 3.22 where:

i = number of performance measure parameters
j = number of process systems
x = a data point that measures the performance of a system with respect to

a particular parameter.

It is not meaningful to use actual performance—for example, an operating
temperature—as the value of xi j. Rather, it is the proximity of the actual perfor-
mance to the limit of process capability of the system that is useful.

In engineering design review, the proximity of performance to a limit closely
relates to a measure of the safety margin. In the case of process enhancement, the
proximity to a limit may even indicate an inhibitor to proposed changes. For a pro-
cess system, a non-dimensional numerical value of xi j may be obtained by determin-
ing the limits of capability, such as Cmax and Cmin, with respect to each performance
parameter, and specifying the nominal point or range at which the system’s perfor-
mance parameter is required to operate.

The limits may be represented diagrammatically as shown in Figs. 3.23, 3.24
and 3.25, where an example of two performance limits, of one upper performance
limit, and of one lower performance limit is given respectively (Thompson et al.
1998).

The data point xi j that is entered into the performance of systems with two per-
formance limits is the lower value of A and B (0 < score < 10), which is the closest

Process systems

Performance x11 x12 x13 x14 . . . x1i

parameters x21 x22 x23 x24 . . . x2i

x31 x32 x33 x34 . . . x3i

x j1 x j2 x j3 x j4 . . . x ji

Fig. 3.22 Parameter profile matrix
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Fig. 3.23 Determination of a data point: two limits

Fig. 3.24 Determination of a data point: one upper limit

the nominal design condition does approach a limit. The value of xi j always lies in
the range 0–10. Ideally, when design condition is a single point at the mid-range,
then the data point is 10.
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Fig. 3.25 Determination of a data point: one lower limit

It is obvious that this process of data point determination can be generated
quickly by computer modelling with inputs from process system performance mea-
sures and ranges of capability. If there is one operating limit only, then the data
point is obtained as shown in Figs. 3.24 and 3.25, where the upper or lower limits
respectively are known.

Therefore, a set of data points can be obtained for each system with respect to
the performance parameters that are relevant to that system. Furthermore, a method
can be adopted to allow designing for reliability to be quantified, which can lead to
optimisation of design reliability.

Figures 3.23, 3.24 and 3.25 illustrate how a data point can be generated to mea-
sure performance with respect to the best and the worst limits of performance.

3.3.1.2 Determination of the Most Reliable Design
in the Conceptual Design Phase

Reliability prediction through system reliability modelling based on system perfor-
mance may be carried out by the following method (Thompson et al. 1999):

a) Identify the criteria against which the process design is measured.
b) Determine the maximum and minimum acceptable limits of performance for

each criterion.
c) Calculate a set of measurement data points of xi j for each criterion according to

the algorithms indicated in Figs. 3.23, 3.24 and 3.25.
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d) A design proposal that has good reliability will exhibit uniformly high scores
of the data points xi j. Any low data point represents system performance that is
close to an unacceptable limit, indicating a low safety margin.

e) The conceptual design may then be reviewed and revised in an iterative manner
to improve low xi j scores.

When a uniformly high set of scores has been obtained, then the design, or alter-
native design that is most reliable, will conform to the equal strength principle, also
referred to as unity, in which there are no ‘weak links’ (Pahl et al. 1996).

3.3.1.3 Comparison of Conceptual Designs

If it is required to compare two or more conceptual designs, then an overall rating
of reliability may be obtained to compare these designs. An overall reliability may
be determined by calculating a systems performance index (SP) as follows

SP = N

(
N

∑
i=1

1
/

di

)−1

(3.79)

where

N = the sum of the performances considered
di = the scores of the performances considered.

The overall SP score lies in the range from 0 to 10. The inverse method of combina-
tion of scores readily identifies low safety margins, unlike normal averaging through
addition where almost no safety margin with respect to one criterion may be com-
pensated for by high safety margins elsewhere—which is unacceptable. Alternative
designs can therefore be compared with respect to reliability, by comparing their
SP scores; the highest score is the most reliable. In a proposed method for using
this overall rating approach (Liu et al. 1996), caution is required because simply
choosing the highest score may not be the best solution. This requires that each de-
sign should always be reviewed to see whether weaknesses can be improved upon,
which tends to defeat the purpose of the method. Although other factors such as
costs may be the final selection criterion for conceptual or preliminary design pro-
posals with similar overall scores (which oft is the case), the objective is to achieve
a design solution that is the most reliable from the viewpoint of meeting the re-
quired performance criteria. This shortcoming in the overall rating approach may
be avoided by supplementing performance measures obtained from mathematical
models in the form of mathematical algorithms of process design integrity for the
values of xi j, rather than the ‘direct’ performance parameters such as temperature
range, pressure rating, output or flow rate.

The performance measures obtained from these mathematical models consider
the prediction, assessment or evaluation of parameters particular to each specific
stage of the design process, whether it is conceptual design, preliminary design or
detail design respectively.
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The approach defines performance measures that, when met, achieve an optimum
design with regard to overall integrity. It seeks to maximise the integrity of design
by ensuring that the criteria of reliability, availability, maintainability and safety are
concurrently being met. The choice of limits of performance for such an approach is
generally made with respect to the consequences and effects of failure, and reliabil-
ity expectations based on the propagation of single maximum and minimum values
of acceptable performance for each criterion. If the consequences and/or effects of
failure are high, then limits of acceptable performance with high safety margins that
are well clear of failure criteria are chosen. Similarly, if failure criteria are imprecise,
then high safety margins are adopted.

These considerations have been further expanded to represent sets of systems that
function under sets of failures and performance intervals, applying labelled interval
calculus (Boettner et al. 1992).

The most significant advantage of this expanded method is that, besides not hav-
ing to rely on the propagation of single estimated values of failure data, it also does
not have to rely on the determination of single values of maximum and minimum
acceptable limits of performance for each criterion. Instead, constraint propaga-
tion of intervals about sets of performance values is applied. As these intervals are
defined, it is possible to compute a multi-objective optimisation of performance val-
ues, in order to determine optimal solution sets for different sets of performance
intervals.

3.3.1.4 Conceptual Design Optimisation

The process described attempts to improve reliability continually towards an optimal
result (Thompson et al. 1999). If the design problem can be modelled so that it is
possible to compute all the xi j scores, then it is possible to optimise mathematically
in order to maximise the SP function, as a result of which the xi j scores will achieve
a uniformly high score. Typically in engineering design, several conceptual design
alternatives need to be optimised for different design criteria or constraints.

To deal with multiple design alternatives, the parameter profile matrix, in which
the scores for each system’s performance measure of xi j is calculated, needs to be
modified. Instead of a one-variable matrix, in which the scores xi j are listed, the
analysis is completed for each specific criterion y j. Thus, a two-variable matrix of
ci j is constructed, as shown in Fig. 3.26 (Liu et al. 1996).

Design alternatives y1 y2 y3 y4 yn

Performance x1 c11 c12 c13 c14 c1n

parameters x2 c21 c22 c23 c24 c2n

x3 c31 c32 c33 c34 c3n

xm cm1 cm2 cm3 cm4 cmn

Fig. 3.26 Two-variable parameter profile matrix
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Determination of an optimum conceptual design is carried out as follows:

a) A performance parameter profile index (PPI) is calculated for each performance
parameter xi. This constitutes an analysis of the rows of the matrix, in which

PPI = n

(
n

∑
j=1

1
/

ci j

)−1

(3.80)

where n is the number of design alternatives.
b) Similarly, a design alternative performance index (API) is calculated for each

design alternative y j. This constitutes an analysis of the columns of the matrix,
in which

API = m

(
m

∑
i=1

1
/

ci j

)−1

(3.81)

where m is the number of performance parameters.
c) An overall performance index (OPI) is then calculated as

OPI =
100
mn

[
m

∑
i=1

n

∑
j=1

(PPI)(API)

]
(3.82)

where m is the number of performance parameters, n is the number of design
alternatives, and OPI lies in the range 0–100 and can thus be indicated as a per-
centage value.

d) Optimisation is then carried out iteratively to maximise the overall performance
index.

3.3.1.5 Labelled Interval Calculus

Interval calculus is a method for constraint propagation whereby, instead of des-
ignating single values, information about sets of values is propagated. Constraint
propagation of intervals is comprehensively dealt with by Moore (1979) and Davis
(1987). However, this standard notion of interval constraint propagation is not suf-
ficient for even simple design problems, which require expanding the interval con-
straint propagation concept into a new formalism termed “labelled interval calculus”
(Boettner et al. 1992).

Descriptions of conceptual as well as preliminary design represent sets of systems
or assemblies interacting under sets of operating conditions. Descriptions of detail
designs represent sets of components functioning under sets of operating conditions.

The labelled interval calculus (LIC) formalises a system for reasoning about sets.
LIC defines a number of operatives on intervals and equations, some of which can
be thought of as inverses to the usual notion of interval propagation by the question
‘what do the intervals mean?’ or, more precisely, ‘what kinds of relationships are
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possible between a set of values, a variable, and a set of systems or components, each
subject to a set of operating conditions?’. The usual notion of an interval constraint is
supplemented by the use of labels to indicate relationships between the interval and
a set of inferences in the design context. LIC is a fundamental step to understanding
fuzzy sets and possibility theory, which will be considered later in detail.

a) Constraint Labels

A constraint label describes how a variable is constrained with respect to a given
interval of values. The constraint label describes what is known about the values
that a variable of a system, assembly, or its components can have under a single set
of operating conditions.

There are four constraint labels: only, every, some and none. The best approach
to understanding the application of these four constraint labels is to give sample de-
scriptions of the values that a particular operating variable would have under a par-
ticular set of operating conditions, such as a simple example of a pump assembly
that operates under normal operating conditions at pressures ranging from 1,000 to
10,000 kPa.

Only:
< only p 1000, 10000 > means that the pressure, under the specified operating
conditions, takes values only in the interval between 1,000 and 10,000 kPa. Pressure
does not take any values outside this interval.

Every:
< every p 1000, 10000 > means that the pressure, under the specified operating
conditions, takes every value in the interval 1,000 to 10,000kPa. Pressure may or
may not take values outside the given interval.

Some:
< some p 1000, 10000 > means that the pressure, under the specified operating con-
ditions, takes at least one of the values in the interval 1,000 to 10,000 kPa. Pressure
may or may not take values outside the given interval.

None:
< none p 1000, 10000 > means that the pressure, under the specified operating
conditions, never takes any of the values in the interval 1,000 to 10,000kPa.

b) Set Labels

A set label consolidates information about the variable values for the entire set of
systems or components under consideration. There are two set labels, all-parts and
some-part.
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All-parts:
All-parts means the constraint interval is true for every system or component in each
selectable subset of the set of systems under consideration. For example, in the case
of a series of pumps,

< All-parts only pressure 0, 10000 >
Every pump in the selected subset of the set of systems under consideration oper-
ates only under pressures between 0 and 10,000kPa under the specified operating
conditions.

Some-part:
Some-part means the constraint interval is true for at least some system, assembly
or component in each selectable subset of the set of systems under consideration.

< Some-part every pressure 0, 10000 >
At least one pump in the selected subset of the set of systems under consideration
operates only under pressures between 0 and 10,000kPa under the specified operat-
ing conditions.

c) Labelled Interval Inferences

A method (labelled intervals) is defined for describing sets of systems or equipment
being considered for a design, as well as the operatives that can be applied to these
intervals. These labelled intervals and operatives can now be used to create inference
rules that draw conclusions about the sets of systems under consideration. There are
five types of inferences in the labelled interval calculus (Moore 1979):

• Abstraction rules
• Elimination conditions
• Redundancy conditions
• Translation rule
• Propagation rules

Based on the specifications and connections defined in the conceptual and pre-
liminary design phases, these five labelled interval inferences can be used to reach
certain conclusions about the integrity of engineering design.

Abstraction Rules

Abstraction rules are applied to labelled intervals to create subset labelled intervals
for selectable items. These subset descriptions can then be used to reason about the
design.
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There are three abstraction rules:

Abstraction rule 1:

(only Xi)(As,i,Si) → (only x min
i

xl,i max
i

xh,i)(A∩i Si)

Abstraction rule 2:

(every Xi)(As,i,Si) → (every x max
i

xl,i min
i

xh,i)(A∩i Si)

Abstraction rule 3:

(some Xi)(As,i,Si) → (some x min
i

xl,i max
i

xh,i)(A∩i Si)

where

X = variable or operative interval
i = index over the subset
A = set of selectable items
As,i = ith selectable subset within set of selectable items
Si = set of states under which the ith subset operates
x = variable or operative
xl,i = lowest x in interval X of the ith selectable subset
mini xl,i = the minimum lowest value of x over all subsets i
maxi xl,i = the maximum lowest value of x over all subsets i
xh,i = highest x in interval X of the ith selectable subset
mini xh,i = the minimum highest value of x over all subsets i
maxi xh,i = the maximum highest value of x over all subsets i
∩iSi = intersection over all i subsets of the set of states.

Again, the best approach to understanding the application of labelled interval infer-
ences for describing sets of systems, assemblies or components being considered
for engineering design is to give sample descriptions of the labelled intervals and
their computations.

Description of Example

In the conceptual design of a typical engineering process, most sets of systems in-
clude a single process vessel that is served by a subset of three centrifugal pumps in
parallel. Any two of the pumps are continually operational while the third functions
as a standby unit. A basic design problem is the sizing and utilisation of the pumps
in order to determine an optimal solution set with respect to various different sets
of performance intervals for the pumps. The system therefore includes a subset of
three centrifugal pumps in parallel, any two of which are continually operational
while one is in reserve, with each pump having the following required pressure rat-
ings:
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Pressure ratings:
Pump Min. pressure Max. pressure
1 1,000kPa 10,000kPa
2 1,000kPa 10,000kPa
3 2,000kPa 15,000kPa

Labelled intervals:
X1 = < all-parts every kPa 1000 10000 > (normal)
X2 = < all-parts every kPa 1000 10000 > (normal)
X3 = < all-parts every kPa 2000 15000 > (normal)

where
xl,1 = 1,000
xl,2 = 1,000
xl,3 = 2,000
xh,1 = 10,000
xh,2 = 10,000
xh,3 = 15,000

Computation: abstraction rule 2:
(every Xi)(As,i, Si) → (every x maxi xl,i mini xh,i)(A∩i Si)
maxi xl,i = 2,000
mini xh,i = 10,000

Subset interval:
< all-parts every kPa 2000 10000 > (normal)

Description:
Under normal conditions, all the pumps in the subset must be able to operate un-
der every value of the interval between 2,000 and 10,000 kPa. The subset interval
value must be contained within all of the selectable items’ interval values.

Elimination Conditions

Elimination conditions determine those items that do not meet given specifications.
In order for these conditions to apply, at least one interval must have an all-parts la-
bel, and the state sets must intersect. Each specification is formatted such that there
are two labelled intervals and a condition. One labelled interval describes a vari-
able for system requirements, while the other labelled interval describes the same
variable of a selectable subset or individual item in the subset.

There are three elimination conditions:

Elimination condition 1:

(only X1) and (only X2) and Not (X1 ∩X2)
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Elimination condition 2:

(only X1) and (every X2) and Not (X2 ⊆ X1)

Elimination condition 3:

(only X1) and (some X2) and Not (X1 ∩X2)

Consider the example The system includes a subset of three centrifugal pumps in
parallel, any two of which are continually operational, with the following specifica-
tions requirement and subset interval:

Specifications:
System requirement: < all-parts only kPa 5000 10000 >

Labelled intervals:
Subset interval: < all-parts every kPa 2000 10000 >

where:
Pump 1 interval: < all-parts every kPa 1000 10000 >
Pump 2 interval: < all-parts every kPa 1000 10000 >
Pump 3 interval: < all-parts every kPa 2000 15000 >

Computation: elimination condition 2:
(only X1) and (every X2) and Not (X2 ⊆ X1)

Subset interval:
System requirement: X1 =< kPa 5000 10000 >
Subset interval: X2 =< kPa 2000 10000 >

Elimination result:
Condition: Not (X2 ⊆ X1) ⇒true

Description:
The elimination condition result is true in that the pressure interval of the subset
of pumps does not meet the system requirement, where
X1 =< kPa 5000 10000 >
and the subset interval
X2 =< kPa 2000 10000 >
A minimum pressure of the subset of pumps (kPa 2,000) cannot be less than the
minimum system requirement (kPa 5,000), prompting a review of the conceptual
design.

Redundancy Conditions

Redundancy conditions determine if a subset’s labelled interval (X1) is not signifi-
cant because another subset’s labelled interval (X2) is dominant.
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In order for the redundancy conditions to apply, the items set and the state set
of the labelled interval (X1) must be a subset of the items set and state set of the
labelled interval (X2). X1 must have either an all-parts label or a some-parts label
that can be redundant with respect to X2, which in turn has an all-parts label.

Redundancy conditions do not apply to X1 having an all-parts label while X2 has
a some-parts label. Each redundancy condition is formatted so that there are two
subset labelled intervals and a condition.

There are five redundancy conditions:

Redundancy condition 1:

(every X1) and (every X2) and (X1 ⊆ X2)

Redundancy condition 2:

(some X1) and (every X2) and (X1 ∩X2)

Redundancy condition 3:

(only X1) and (only X2) and (X2 ⊆ X1)

Redundancy condition 4:

(some X1) and (only X2) and (X2 ⊆ X1)

Redundancy condition 5:

(some X1) and (some X2) and (X2 ⊆ X1)

Consider the example The system includes a subset of three centrifugal pumps in
parallel, any two of which are continually operational, with the following specifica-
tions requirement and different subset configurations for the two operational units,
while the third functions as a standby unit:

Specifications:
System requirement: < all-parts only kPa 1000 10000 >
Pump 1 interval: < all-parts every kPa 1000 10000 >
Pump 2 interval: < all-parts every kPa 1000 10000 >
Pump 3 interval: < all-parts every kPa 2000 15000 >

Labelled intervals:
Subset configuration 1:
Subset1 interval: < all-parts every kPa 1000 10000 >
where:
Pump 1 interval: < all-parts every kPa 1000 10000 >
Pump 2 interval: < all-parts every kPa 1000 10000 >
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Subset configuration 2:
Subset2 interval: < all-parts every kPa 2000 10000 >
where:
Pump 1 interval: < all-parts every kPa 1000 10000 >
Pump 3 interval: < all-parts every kPa 2000 15000 >

Subset configuration 3:
Subset3 interval: < all-parts every kPa 2000 10000 >
where:
Pump 2 interval: < all-parts every kPa 1000 10000 >
Pump 3 interval: < all-parts every kPa 2000 15000 >

Computation:
(every Xi)(As,i, Si) → (every x maxi xl,i mini xh,i)(A∩i Si)
(every X1) and (every X2) and (X1 ⊆ X2)

For the three subset intervals:
1) Subset intervals:
Subset1 interval: X1 =< kPa 1000 10000 >
Subset2 interval: X2 =< kPa 2000 10000 >

Redundancy result:
Condition: (X1 ⊆ X2) ⇒false

Description:
The redundancy condition result is false in that the pressure interval of the pump
subset’s labelled interval (X1) is not a subset of the pump subset’s labelled inter-
val (X2).

2) Subset intervals:
Subset1 interval: X1 =< kPa 1000 10000 >
Subset3 interval: X2 =< kPa 2000 10000 >

Redundancy result:
Condition: (X1 ⊆ X2) ⇒false

Description:
The redundancy condition result is false in that the pressure interval of the pump
subset’s labelled interval (X1) is not a subset of the pump subset’s labelled inter-
val (X2).

3) Subset intervals:
Subset2 interval: X1 =< kPa 2000 10000 >
Subset3 interval: X2 =< kPa 2000 10000 >

Redundancy result: Condition: (X1 ⊆ X2) ⇒true

Description:
The redundancy condition result is true in that the pressure interval of the pump
subset’s labelled interval (X1) is a subset of the pump subset’s labelled inter-
val (X2).
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Conclusion
Subset2 and/or subset3 combinations of pump 1 with pump 3 as well as pump 2
with pump 3 respectively are redundant in that pump 3 is redundant in the con-
figuration of the three centrifugal pumps in parallel.

Translation Rule

The translation rule generates new labelled intervals based on various interrelation-
ships among systems or subsets of systems (equipment). Some components have
variables that are directional. (Typically in the case of RPM, a motor produces
RPM-out while a pump accepts RPM-in.) When a component such as a motor has
a labelled interval that is being considered, the translation rule determines whether
it should be translated to a connected component such as a pump if the connected
components form a set with matching variables, and the labelled interval for the
motor is not redundant in the labelled interval for the pump.

Consider the example A system includes a subset with a motor, transmission and
pump where the motor and transmission have the following RPM ratings:

Component Min. RPM Max. RPM
Motor 750 1,500
Transmission 75 150

Labelled intervals:
Motor = < all-parts every rpm 750 1500 > (normal)
Transmission = < all-parts every rpm 75 150 > (normal)

Translation rule:
Pump = < all-parts every rpm 75 150 > (normal)

Propagation Rules

Propagation rules generate new labelled intervals based on previously processed
labelled intervals and a given relationship G, which is implicit among a minimum
of three variables. Each rule is formatted so that there are two antecedent subset
labelled intervals, a given relationship G, and a resultant subset labelled interval.
The resultant labelled interval contains a constraint label and a labelled interval
calculus operative. The resultant labelled interval is determined by applying the
operative to the variables. If the application of the operative on the variables can
produce a labelled interval, a new labelled interval is propagated. If the application
of the operative on the variables cannot produce a labelled interval, the propagation
rule is not valid.

An item’s set and state set of the new labelled interval are the intersection of
the item’s set and state set of the two antecedent labelled intervals. If both of the
antecedent labelled intervals have an all-parts set label, the new labelled interval
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will have an all-parts set label. If the two antecedent labelled intervals have any
other combination of set labels (such as one with a some-part set label, and the
other with an all-parts set label; or both with a some-part set label), then the new
labelled interval will have a some-part set label (Davis 1987).

There are five propagation rules:

Propagation rule 1:

(only X ) and (only Y ) and G ⇒ (only Range (G, X , Y ))

Propagation rule 2:

(every X ) and (every Y ) and G ⇒ (every Range (G, X , Y ))

Propagation rule 3:

(every X ) and (only Y ) and state variable (z) or parameter (x)

and G ⇒ (every domain (G, X , Y ))

Propagation rule 4:

(every X ) and (only Y ) and parameter (x) and G ⇒(only SuffPt (G, X , Y ))

Propagation rule 5:

(every X ) and (only Y ) and G ⇒ (some SuffPt (G, X , Y ))

Consider the example Determine whether the labelled interval of flow for dy-
namic hydraulic displacement pumps meets the system specifications requirement
where the pumps run at revolutions in the interval of 75 to 150 RPM, and the pumps
have a displacement capability in the interval 0.5×10−3 to 6×10−3 cubic metre
per revolution. Displacement is the volume of fluid that moves through a hydraulic
line per revolution of the pump impellor, and RPM is the revolution speed of the
pump. The flow is the rate at which fluid moves through the lines in cubic metres
per minute or per hour.

Specifications:
System requirement: < all-parts only flow 1.50 60 > m3/h

Given relationship:
Flow (m3/h) = (Displacement × RPM) ×C
where C is the pump constant based on specific pump characteristics.

Labelled intervals:
Displacement (η) = < all-parts only η 0.5×10−3 6×10−3 >
RPM (ω) = < all-parts only ω 75 150 >
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Computation:
(only X ) and (only Y ) and G ⇒ (only Range (G, X , Y ))
Flow [corners (Q, η , ω)] = (0.0375, 0.075, 0.45, 0.9) m3/min
Flow [range (Q, η , ω)] = < flow 2.25 54 > m3/h

Propagation result: Flow (Q) = < all-parts only flow 2.25 54 >

Elimination condition:
(only X1) and (only X2) and Not (X1 ∩X2)

Subset interval:
System requirement: X1 = < flow 1.50 60 > m3/h
Subset interval: X2 = < flow 2.25 54 > m3/h

Computation:
(X1 ∩X2) = < flow 2.25 54 > m3/h

Elimination result:
Condition: Not (X1 ∩X2) ⇒true

Description:
With the labelled interval of displacement between 0.5×10−3 and 6×10−3 cu-
bic metre per revolution and the labelled interval of RPM in the interval of 75
to 150 RPM, the pumps can produce flows only in the interval of 2.25 to 54 m3/h.
The elimination condition is true in that the labelled interval of flow does not
meet the system requirement of:
System requirement: X1 = < flow 1.50 60 > m3/h
Subset interval: X2 = < flow 2.25 54 > m3/h

3.3.1.6 Labelled Interval Calculus in Designing for Reliability

An approach to designing for reliability that integrates functional failure as well as
functional performance considerations so that a maximum safety margin is achieved
with respect to all performance criteria is considered (Thompson et al. 1999). This
approach has been expanded to represent sets of systems functioning under sets of
failure and performance intervals. The labelled interval calculus (LIC) formalises
an approach for reasoning about these sets. The application of LIC in designing
for reliability produces a design that has the highest possible safety margin with
respect to intervals of performance values relating to specific system datasets. The
most significant advantage of this expanded method is that, besides not having to
rely on the propagation of single estimated values of failure data, it also does not
have to rely on the determination of single values of maximum and minimum ac-
ceptable limits of performance for each criterion. Instead, constraint propagation of
intervals about sets of performance values is applied, making it possible to compute
a multi-objective optimisation of conceptual design solution sets to different sets of
performance intervals.
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Multi-objective optimisation of conceptual design problems can be computed by
applying LIC inference rules, which draw conclusions about the sets of systems
under consideration to determine optimal solution sets to different intervals of per-
formance values. Considering the performance limits represented diagrammatically
in Figs. 3.23, 3.24 and 3.25, where an example of two performance limits, one upper
performance limit, and one lower performance limit is given, the determination of
datasets using LIC would include the following.

a) Determination of a Data Point: Two Sets of Limit Intervals

The proximity of actual performance to the minimum, nominal or maximum sets of
limit intervals of performance for each performance criterion relates to a measure
of the safety margin range.

The data point xi j is the value closest to the nominal design condition that ap-
proaches either minimum or maximum limit interval. The value of xi j always lies
in the range 0–10. Ideally, when the design condition is at the mid-range, then the
data point is 10. A set of data points can thus be obtained for each system with re-
spect to the performance parameters that are relevant to that system. In this case, the
data point xi j approaching the maximum limit interval is the performance variable
of temperature

xi j =
Max. Temp. T1 −Nom. T High (×20)

Max. Temp. T1 −Min. Temp. T2
(3.83)

Given relationship: dataset:
(Max. Temp. T1 −Nom. T High)/(Max. Temp. T1 −Min. Temp. T2)×20

where
Max. Temp. T1 = maximum performance interval
Min. Temp. T2 = minimum performance interval
Nom. T High = nominal performance interval high

Labelled intervals:
Max. Temp. T1 = < all-parts only T1t1lt1h >
Min. Temp. T2 = < all-parts only T2t2lt2h >
Nom.T High = < all-parts only THtHltHh >

where
t1l = lowest temperature value in interval of

maximum performance interval.
t1h = highest temperature value in interval of

maximum performance interval.
t2l = lowest temperature value in interval of

minimum performance interval.
t2h = highest temperature value in interval of

minimum performance interval.
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tHl = lowest temperature value in interval of
nominal performance interval high.

tHh = highest temperature value in interval of
nominal performance interval high.

Computation: propagation rule 1:
(only X ) and (only Y ) and G ⇒ (only Range (G, X , Y ))

xi j [corners (Max. Temp. T1, Nom. T High, Min. Temp. T2)]

= (t1h − tHl/t1l − t2h)×20 , (t1h − tHl/t1l − t2l)×20 ,

(t1h − tHl/t1h − t2h)×20 , (t1h − tHl/t1h − t2l)×20 ,

(t1l − tHl/t1l − t2h)×20 , (t1l − tHl/t1l − t2l)×20 ,

(t1l − tHl/t1h− t2h)×20 , (t1l − tHl/t1h− t2l)×20 ,

(t1h − tHh/t1l − t2h)×20 , (t1h − tHh/t1l − t2l)×20 ,

(t1h − tHh/t1h − t2h)×20 , (t1h − tHh/t1h − t2l)×20 ,

(t1l − tHh/t1l − t2h)×20 , (t1l − tHh/t1l − t2l)×20 ,

(t1l − tHh/t1h − t2h)×20 , (t1l − tHh/t1h − t2l)×20 ,

xi j [range (Max. Temp. T1, Nom. T High, Min. Temp. T2)]

= (t1l − tHh/t1h − t2l)×20 , (t1h − tHl/t1l − t2h)×20

Propagation result:
xi j = < all-parts only
xi j (t1l − tHh/t1h − t2l)×20 , (t1h − tHl/t1l − t2h) ×20 >
where xi j is dimensionless.

Description:
The generation of data points with respect to performance limits using the la-
belled interval calculus, approaching the maximum limit interval.
This is where the data point xi j approaching the maximum limit interval, with xi j

in the range (Max. Temp. T1, Nom. T High, Min. Temp. T2), and the data point xi j

being dimensionless, has a propagation result equivalent to the following labelled
interval:
< all-parts only xi j (t1l− tHh/t1h− t2l)×20 , (t1h− tHl/t1l− t2h)×20 > , which
represents the relationship:

xi j =
Max. Temp. T1 −Nom. T High (×20)

Max. Temp. T1 −Min. Temp. T2

In the case of the data point xi j approaching the minimum limit interval, where
the performance variable is temperature

xi j =
Nom. T Low−Min. Temp. T2 (×20)

Max. Temp. T1 −Min. Temp. T2
(3.84)
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Given relationship: dataset:
(Max. Temp. T1 −Nom. T High)/(Max. Temp. T1 −Min. Temp. T2)×20

where
Max. Temp. T1 = maximum performance interval
Min. Temp. T2 = minimum performance interval
Nom. T Low = nominal performance interval low

Labelled intervals:
Max. Temp. T1 = < all-parts only T1t1lt1h >
Min. Temp. T2 = < all-parts only T2t2lt2h >
Nom. T Low = < all-parts only TLtLltLh >

where
t1i = lowest temperature value in interval of

maximum performance interval
t1h = highest temperature value in interval of

maximum performance interval
t2l = lowest temperature value in interval of

minimum performance interval
t2h = highest temperature value in interval of

minimum performance interval
tLl = lowest temperature value in interval of

nominal performance interval low
tLh = highest temperature value in interval of

nominal performance interval low

Computation: propagation rule 1:
(only X ) and (only Y ) and G ⇒ (only Range (G, X , Y ))

xi j [corners (Max. Temp. T1, Nom. T High, Min. Temp. T2)]

= (tLh − t2l/t1l − t2h)×20 , (tLh − t2l/t1l − t2l)×20 ,

(tLh − t2l/t1h− t2h)×20 , (tLh − t2l/t1h− t2l)×20 ,

(tLl − t2l/t1l − t2h)×20 , (tLl − t2l/t1l − t2l)×20 ,

(tLl − t2l/t1h − t2h)×20 , (tLl − t2l/t1h − t2l)×20 ,

(tLh − t2h/t1l − t2h)×20 , (tLh − t2h/t1l − t2l)×20 ,

(tLh − t2h/t1h − t2h)×20 , (tLh − t2h/t1h − t2l)×20 ,

(tLl − t2h/t1l − t2h)×20 , (tLl − t2h/t1l − t2l)×20 ,

(tLl − t2h/t1h− t2h)×20 , (tLl − t2h/t1h− t2l)×20 ,

xi j [range (Max. Temp. T1, Nom.T High, Min. Temp. T2)]

= (tLl − t2h/t1h− t2l)×20 , (tLh − t2l/t1l − t2h)×20
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Propagation result:
xi j = < all-parts only
xi j(tLl − t2h/t1h − t2l)×20 , (tLh − t2l/t1l − t2h)×20 >
where xi j is dimensionless.

Description:
The generation of data points with respect to performance limits using the la-
belled interval calculus, in the case of the data point xi j approaching the minimum
limit interval, with xi j in the range (Max. Temp. T1, Nom. T High, Min. Temp.
T2), and xi j dimensionless, has a propagation result equivalent to the following
labelled interval:
< all-parts only xi j(tLl − t2h/t1h − t2l)×20 , (tLh − t2l/t1l − t2h)×20 >
which represents the relationship:

xi j =
Nom. T Low−Min. Temp. T2 (×20)

Max. Temp. T1 −Min. Temp. T2

b) Determination of a Data Point: One Upper Limit Interval

If there is one operating limit set only, then the data point is obtained as shown in
Figs. 3.24 and 3.25, where the upper or lower limit is known. A set of data points
can be obtained for each system with respect to the performance parameters that are
relevant to that system. In the case of the data point xi j approaching the upper limit
interval

xi j =
Highest Stress Level−Nominal Stress Level (×10)

Highest Stress Level−Lowest Stress Est.
(3.85)

Given relationship: dataset:
(HSL−NSL)/(HSL−LSL)×10

Labelled intervals:
HSI = highest stress interval < all-parts only HSI s1ls1h >
LSI = lowest stress interval < all-parts only LSI s2ls2h >
NSI = nominal stress interval < all-parts only NSI sHlsHh >

where:
s1l = lowest stress value in interval of highest stress interval
s1h = highest stress value in interval of highest stress interval
s2l = lowest stress value in interval of lowest stress interval
s2h = highest stress value in interval of lowest stress interval
sHl = lowest stress value in interval of nominal stress interval
sHh = highest stress value in interval of nominal stress interval
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Computation: propagation rule 1:
(only X ) and (only Y ) and G ⇒(only Range (G, X , Y ))

xi j [corners (HSL, NSL, LSL)]

= (s1h − sHl/s1l − s2h)×10 , (s1h − sHl/s1l − s2l)×10 ,

(s1h − sHl/s1h − s2h)×10 , (s1h − sHl/s1h − s2l)×10 ,

(s1l − sHl/s1l − s2h)×10 , (s1l − sHl/s1l − s2l)×10 ,

(s1l − sHl/s1h − s2h)×10 , (s1l − sHl/s1h − s2l)×10 ,

(s1h − sHh/s1l − s2h)×10 , (s1h − sHh/s1l − s2l)×10 ,

(s1h − sHh/s1h − s2h)×10 , (s1h − sHh/s1h − s2l)×10 ,

(s1l − sHh/s1l − s2h)×10 , (s1l − sHh/s1l − s2l)×10 ,

(s1l − sHh/s1h − s2h)×10 , (s1l − sHh/s1h − s2l)×10 ,

xi j [range (HSL, NSL, LSL)]

= (s1l − sHh/s1h − s2l)×10 , (s1h − sHl/s1l − s2h)×10

Propagation result:
xi j = < all-parts only
xi j(s1l − sHh/s1h− s2l)×10 , (s1h − sHl/s1l − s2h)×10 >
where xi j is dimensionless.

Description:
The data point xi j approaching the upper limit interval, with xi j in the range (High
Stress Level, Nominal Stress Level, Lowest Stress Level), and xi j dimensionless,
has a propagation result equivalent to the following labelled interval:
< all-parts only xi j(sLl − s2h/s1h − s2l)×20 , (sLh − s2l/s1l − s2h)×20 > ,
which represents the relationship:

xi j =
Highest Stress Level−Nominal Stress Level (×10)

Highest Stress Level−Lowest Stress Est.

c) Determination of a Data Point: One Lower Limit Interval

In the case of the data point xi j approaching the lower limit interval

xi j =
Nominal Capacity−Min. Capacity Level (×10)

Max. Capacity Est.−Min. Capacity Level
(3.86)

Given relationship: dataset:
(Nom. Cap. L−Min. Cap. L)/(Max. Cap. L−Min. Cap. L)×10

where
Max. Cap. C1 = maximum capacity interval
Min. Cap. C2 = minimum capacity interval
Nom. Cap. CL = nominal capacity interval low
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Labelled intervals:
Max. Cap. C1 = < all-parts only C1c1lc1h >
Min. Cap. C2 = < all-parts only C2c2lc2h >
Nom. Cap. CL = < all-parts only CLcLlcLh >

where
c1l = lowest capacity value in interval of maximum

capacity interval
c1h = highest capacity value in interval of maximum

capacity interval
c2l = lowest capacity value in interval of minimum

capacity interval
c2h = highest capacity value in interval of minimum

capacity interval
cLl = lowest capacity value in interval of nominal capacity

interval low
cLh = highest capacity value in interval of nominal

capacity interval low

Computation: propagation rule 1:
(only X ) and (only Y ) and G ⇒ (only Range (G, X , Y ))

xi j [corners (Max. Cap. Min. Cap. C2, Nom. Cap. CL)]

= (cLh − c2l/c1l − c2h)×10 , (cLh − c2l/c1l − c2l)×10 ,

(cLh − c2l/c1h − c2h)×10 , (cLh − c2l/c1h − c2l)×10 ,

(cLl − c2l/c1l − c2h)×10 , (cLl − c2l/c1l − c2l)×10 ,

(cLl − c2l/c1h − c2h)×10 , (cLl − c2l/c1h − c2l)×10 ,

(cLh − c2h/c1l − c2h)×10 , (cLh − c2h/c1l − c2l)×10 ,

(cLh − c2h/c1h− c2h)×10 , (cLh − c2h/c1h− c2l)×10 ,

(cLl − c2h/c1l − c2h)×10 , (cLl − c2h/c1l − c2l)×10 ,

(cLl − c2h/c1h − c2h)×10 , (cLl − c2h/c1h − c2l)×10 ,

xi j [range (Max. Cap. Min. Cap. C2, Nom. Cap. CL)]

= (cLl − c2h/c1h − c2l)×10 , (cLh − c2l/c1l − c2h)×10

Propagation result:
xi j = < all-parts only
xi j(cLl − c2h/c1h− c2l)×10 , (cLh − c2l/c1l − c2h)×10 >
where xi j is dimensionless.

Description:
The generation of data points with respect to performance limits using the la-
belled interval calculus for the lower limit interval is the following:
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The data point xi j approaching the lower limit interval, with xi j in the range (Max.
Capacity Level, Min. Capacity Level, Nom. Capacity Level), and xi j dimension-
less, has a propagation result equivalent to the following labelled interval:
< all-parts only xi j(cLl − c2h/c1h − c2l)×10 , (cLh − c2l/c1l − c2h)×10 >
with xi j in the range (Max. Cap. Min. Cap. C2, Nom. Cap. CL), representing the
relationship:

xi j =
Nominal Capacity−Min. Capacity Level(×10)

Max. Capacity Est.−Min. Capacity Level

d) Analysis of the Interval Matrix

In Fig. 3.26, the performance measures of each system of a process are described
in matrix form containing data points relating to process systems and single pa-
rameters that describe their performance. The matrix can be analysed by rows and
columns in order to evaluate the performance characteristics of the process. Each
data point of xi j refers to a single parameter. Similarly, in the expanded method
using labelled interval calculus (LIC), the performance measures of each system of
a process are described in an interval matrix form, containing datasets relating to
systems and labelled intervals that describe their performance. Each row of the in-
terval matrix reveals whether the process has a consistent safety margin with respect
to a specific set of performance values.

A parameter performance index, PPI, can be calculated for each row

PPI = n

(
n

∑
j=1

1
/

xi j

)−1

(3.87)

where n is the number of systems in row i.
The calculation of PPI is accomplished using LIC inference rules that draw con-

clusions about the system datasets of each matrix row under consideration. The
numerical value of PPI lies in the range 0–10, irrespective of the number of datasets
in each row (i.e. the number of process systems). A comparison of PPIs can be made
to judge whether specific performance criteria, such as reliability, are acceptable.

Similarly, a system performance index, SPI, can be calculated for each column as

SPI = m

(
m

∑
i=1

1
/

xi j

)−1

(3.88)

where m is the number of parameters in column i.
The calculation of SPI is accomplished using LIC inference rules that draw con-

clusions about performance labelled intervals of each matrix column under con-
sideration. The numerical value of SPI also lies in the range 0–10, irrespective of
the number of labelled intervals in each column (i.e. the number of performance
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parameters). A comparison of SPIs can be made to assess whether there is accept-
able performance with respect to any performance criteria of a specific system.

Finally, an overall performance index, OPI, can be calculated (Eq. 3.89). The
numerical value of OPI lies in the range 0–100 and can be indicated as a percentage
value.

OPI =
1

mn

(
m

∑
i=1

n

∑
j=1

(PPI)(SPI)

)
(3.89)

where m is the number of performance parameters, and n is the number of systems.

Description of Example

Acidic gases, such as sulphur dioxide, are removed from the combustion gas emis-
sions of a non-ferrous metal smelter by passing these through a reverse jet scrub-
ber. A reverse jet scrubber consists of a scrubber vessel containing jet-spray nozzles
adapted to spray, under high pressure, a caustic scrubbing liquid counter to the high-
velocity combustion gas stream emitted by the smelter, whereby the combustion gas
stream is scrubbed and a clear gas stream is recovered downstream. The reverse jet
scrubber consists of a scrubber vessel and a subset of three centrifugal pumps in
parallel, any two of which are continually operational, with the following labelled
intervals for the specific performance parameters (Tables 3.10 and 3.11):

Propagation result:
xi j = < all-parts only
xi j(x1l − xHh/x1h − x2l)×10 , (x1h − xHl/x1l − x2h)×10 >

Table 3.10 Labelled intervals for specific performance parameters

Parameters Vessel Pump 1 Pump 2 Pump 3

Max. flow < 65 75 > < 55 60 > < 55 60 > < 65 70 >
Min. flow < 30 35 > < 20 25 > < 20 25 > < 30 35 >
Nom. flow < 50 60 > < 40 50 > < 40 50 > < 50 60 >
Max. pressure < 10000 12500 > < 8500 10000 > < 8500 10000 > < 12500 15000 >
Min. pressure < 1000 1500 > < 1000 1250 > < 1000 1250 > < 2000 2500 >
Nom. pressure < 5000 7500 > < 5000 6500 > < 5000 6500 > < 7500 10000 >
Max. temp. < 80 85 > < 85 90 > < 85 90 > < 80 85 >
Min. temp. < 60 65 > < 60 65 > < 60 65 > < 55 60 >
Nom. temp. < 70 75 > < 75 80 > < 75 80 > < 70 75 >

Table 3.11 Parameter interval matrix

Parameters Vessel Pump 1 Pump 2 Pump 3

Flow (m3/h) < 1.1 8.3 > < 1.3 6.7 > < 1.3 6.7 > < 1.1 8.3 >
Pressure (kPa) < 2.2 8.8 > < 2.2 6.9 > < 2.2 6.9 > < 1.9 7.5 >
Temp. (◦C) < 2.0 10.0 > < 1.7 7.5 > < 1.7 7.5 > < 1.7 5.0 >
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Labelled intervals—flow:
Vessel interval: = < all-parts only xi j 1.1 8.3 >
Pump 1 interval: = < all-parts only xi j 1.3 6.7 >
Pump 2 interval: = < all-parts only xi j 1.3 6.7 >
Pump 3 interval: = < all-parts only xi j 1.1 8.3 >

Labelled intervals—pressure:
Vessel interval: = < all-parts only xi j 2.2 8.8 >
Pump 1 interval: = < all-parts only xi j 2.2 6.9 >
Pump 2 interval: = < all-parts only xi j 2.2 6.9 >
Pump 3 interval: = < all-parts only xi j 1.9 7.5 >

Labelled intervals—temperature:
Vessel interval: = < all-parts only xi j 2.0 10.0 >
Pump 1 interval: = < all-parts only xi j 1.7 7.5 >
Pump 2 interval: = < all-parts only xi j 1.7 7.5 >
Pump 3 interval: = < all-parts only xi j 1.7 5.0 >

The parameter performance index, PPI, can be calculated for each row

PPI = n

(
n

∑
j=1

1
/

xi j

)−1

(3.90)

where n is the number of systems in row i.

Labelled intervals:
Flow (m3/h) PPI = < all-parts only PPI 1.2 7.4 >
Pressure (kPa) PPI = < all-parts only PPI 2.1 7.5 >
Temp. (◦C) PPI = < all-parts only PPI 1.8 7.1 >

The system performance index, SPI, can be calculated for each column

SPI = m

(
m

∑
i=1

1
/

xi j

)−1

(3.91)

where m is the number of parameters in column i.

Labelled intervals:
Vessel SPI = < all-parts only 1.6 9.0 >
Pump 1 SPI = < all-parts only 1.7 7.0 >
Pump 2 SPI = < all-parts only 1.7 7.0 >
Pump 3 SPI = < all-parts only 1.5 6.6 >

Description:
The parameter performance index, PPI, and the system performance index, SPI,
indicate whether there is acceptable overall performance of the operational pa-
rameters (PPI), and what contribution an item makes to the overall effectiveness
of the system (SPI).
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The overall performance index, OPI, can be calculated as

OPI =
1

mn

(
m

∑
i=1

n

∑
j=1

(PPI)(SPI)

)
(3.92)

where m is the number of performance parameters, and n is the number of systems.

Computation: propagation rule 1:
(only X ) and (only Y ) and G ⇒ (only Range (G, X , Y ))

OPI [corners (PPI, SPI)]

= [1/12× ((1.2×1.6)+(1.2×1.7)+(1.2×1.7)+(1.2×1.5)
+ (2.1×1.6)+ (2.1×1.7)+(2.1×1.7)+(2.1×1.5)
+ (1.8×1.6)+ (1.8×1.7)+(1.8×1.7)+(1.8×1.5))] ,
[1/12× ((7.4×9.0)+(7.4×7.0)+(7.4×7.0)+(7.4×6.6)
+ (7.5×9.0)+ (7.5×7.0)+(7.5×7.0)+(7.5×6.6)
+ (7.1×9.0)+ (7.1×7.0)+(7.1×7.0)+(7.1×6.6))]

OPI [range (PPI, SPI)]

= < [1/12×33.2] , [1/12×651.2]>
and:

OPI = < all-parts only %2.8 54.3 >

Description:
The overall performance index, OPI, is a combination of the parameter perfor-
mance index, PPI, and the system performance index, SPI, and indicates the over-
all performance of the operational parameters (PPI), and the overall contribution
of the system’s items on the system (SPI) itself.
The numerical value of OPI lies in the range 0–100 and can thus be indicated as
a percentage value, which is a useful measure for conceptual design optimisation.
The reverse jet scrubber system has an overall performance in the range of 2.8
to 54%, which is not optimal.
The critical minimum performance level of 2.8% as well as the upper perfor-
mance level of 54% indicate design review.

3.3.2 Analytic Development of Reliability Assessment
in Preliminary Design

The most applicable techniques selected as tools for reliability assessment in intelli-
gent computer automated methodology for determining the integrity of engineering
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design during the preliminary or schematic design phase are failure modes and ef-
fects analysis (FMEA), failure modes and effects criticality analysis (FMECA), and
fault-tree analysis. However, as the main use of fault-tree analysis is perceived to
be in designing for safety, whereby fault trees provide a useful representation of the
different failure paths that can lead to safety and risk assessments of systems and
processes, this technique will be considered in greater detail in Chap. 5, Safety and
Risk in Engineering Design. Thus, only FMEA and FMECA are further developed
at this stage with respect to the following:

i. FMEA and FMECA in engineering design analysis
ii. Algorithmic modelling in failure modes and effects analysis
iii. Qualitative reasoning in failure modes and effects analysis
iv. Overview of fuzziness in engineering design analysis
v. Fuzzy logic and fuzzy reasoning

vi. Theory of approximate reasoning
vii. Overview of possibility theory

viii. Uncertainty and incompleteness in design analysis
ix. Modelling uncertainty in FMEA and FMECA
x. Development of a qualitative FMECA.

3.3.2.1 FMEA and FMECA in Engineering Design Analysis

Systems can be described in terms of hierarchical system breakdown structures
(SBS). These system structures are comprised of many sub-systems, assemblies and
components (and parts), which can fail at one time or another. The effect of func-
tional failure of the system structures on the system as a whole can vary, and can
have a direct, indirect or no adverse effect on the performance of the system. In
a systems context, any direct or indirect effect of equipment functional failures will
result in a change to the reliability of the system or equipment, but may not neces-
sarily result in a change to the performance of the system.

Equipment (i.e. assemblies and components) showing functional failures that
degrade system performance, or render the system inoperative, is termed system-
critical. Equipment functional failures that degrade the reliability of the system are
classified as reliability-critical (Aslaksen et al. 1992).

a) Reliability-Critical Items

Reliability-critical items are those items that can have a quantifiable impact on
system performance but predominantly on system reliability. These items are usu-
ally identified by appropriate reliability analysis techniques. The identification of
reliability-critical items is an essential portion of engineering design analysis, es-
pecially since the general trend in the design of process engineering installa-
tions is towards increasing system complexity. It is thus imperative that a sys-
tematic method for identifying reliability-critical items is implemented during the



3.3 Analytic Development of Reliability and Performance in Engineering Design 135

engineering design process, particularly during preliminary design. Such a system-
atic method is failure modes and effects criticality analysis (FMECA). In practice,
however, development of FMECA procedures have often been considered to be ar-
duous and time consuming. As a result, the benefits that can be derived have often
been misunderstood and not fully appreciated. The FMECA procedure consists of
three inherent sub-methods:

• Failure modes and effects analysis (FMEA).
• Failure hazard analysis.
• Criticality analysis.

The methods of failure modes and effects analysis, failure hazard analysis and
criticality analysis are interrelated. Failure hazard analysis and criticality analysis
cannot be effectively implemented without the prior preparations for failure modes
and effects analysis. Once certain groundwork has been completed, all of these anal-
ysis methods should be applied. This groundwork includes a detailed understanding
of the functions of the system under consideration, and the functional relationships
of its constituent components. Therefore, two necessary additional techniques are
imperative prior to developing FMEA procedures, namely:

• Systems breakdown structuring.
• Functional block diagramming.

As previously indicated, a systems breakdown structure (SBS) can be defined
as “a systematic hierarchical representation of equipment, grouped into its logical
systems, sub-systems, assemblies, sub-assemblies, and component levels”.

A functional block diagram (FBD) can be defined as “an orderly and structured
means for describing component functional relationships for the purpose of systems
analysis”.

An FBD is a combination of an SBS and concise descriptions of the operational
and physical functions and functional relationships at component level. Thus, the
FBD need only be done at the lowest level of the SBS, which in most cases is at
component level. It is from this relation between the FBD and the SBS that the
combined result is termed a functional systems breakdown structure (FSBS).

Some further concepts essential to a proper basic understanding of FSBS are
considered in the following definitions:

A system is defined as “a complete whole of a set of connected parts or com-
ponents with functionally related properties that links them together in a system
process”.

A function is defined as “the work that an item is designed to perform”.
This definition indicates, through the terms work and design, that any item con-

tains both operational and physical functions. Operational functions are related to
the item’s working performance, and physical functions are related to the item’s
design.

Functional relationships, on the other hand, describe the actions or changes in
a system that are derived from the various ways in which the system’s components
and their properties are linked together within the system. Functional relationships
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thus describe the complexity of a system at the component level. Component func-
tional relationships describe the actions internal in a system, and can be regarded as
the interactive work that the system’s components are designed to perform. Com-
ponent functional relationships may therefore be considered from the point of view
of their internal interactive functions. Furthermore, component functional relation-
ships may also be considered from the point of view of their different cause and
effect changes, or change symptoms, or in other words, their internal symptomatic
functions.

In order to fully understand component functional relationships, concise descrip-
tions of the operational and physical functions of the system must first be defined,
and then the functional relationships at component level are defined. The descrip-
tions of the system’s operational and physical functions need to be quantified with
respect to their limits of performance, so that the severity of functional failures can
be defined at a later stage in the FMECA procedure. The first step, then, is to list the
components in a functional systems breakdown structure (FSBS).

b) Functional Systems Breakdown Structure (FSBS)

The identification of the constituent items of each level of a functional systems
breakdown structure (FSBS) is determined from the top down. This is done by iden-
tifying the actual physical design configuration of the system, in lower-level items of
the systems hierarchy. The various levels of an FSBS are identified from the bottom
up, by logically grouping items or components into sub-assemblies, assemblies or
sub-systems. Operational and physical functions and limits of performance are then
defined in the FSBS. Once the functions in the FSBS have been described and limits
of performance quantified, then the various functional relationships of the compo-
nents are defined, either in a functional block diagram (FBD) or through functional
modelling.

The functional block diagram (FBD) is a structured means for describing com-
ponent functional relationships for design analysis. However, in the development
of an FBD, the descriptions of these component functional relationships should be
limited to two words if possible: a verb to describe the action or change, and a noun
to describe the object of the action or change. In most cases, if the component func-
tional relationships cannot be stated using two words, then more than one functional
relationship exists.

A verb–noun combination cannot be repeated in any one branch of the FBD’s
descriptions of the component functional relationships. If, however, repetition is
apparent, then review of the component functional relationships in the functional
block diagram (FBD) becomes necessary (Blanchard et al. 1990).

As an example, some verb–noun combinations are given for describing compo-
nent functional relationships for design analysis during the preliminary design phase
in the engineering design process.



3.3 Analytic Development of Reliability and Performance in Engineering Design 137

The following semantic list represents some verb–noun combinations:

Verb Noun

Circulate Current
Close Overflow
Compress Gas
Confine Liquids
Contain Lubricant
Control Flow
Divert Fluid
Generate Power
Provide Seal
Transfer Signal
Transport Material

It is obvious that the most appropriate verb must be combined with a correspond-
ing noun. Thus, the verb ‘control’ can be used in many combinations with different
nouns. It can be readily discerned that these actions can be either operational func-
tional relationships that are related to the item’s required performance, or physical
functional relationships that are related to the item’s design. For instance, current
can be controlled operationally, through the use of a regulator, or physically through
the internal physical resistance properties of a conductor.

What becomes essential is to ask the question ‘how?’ after the verb–noun com-
bination has been established in describing functional relationships. The question is
directed towards an answer of either ‘operational’ or ‘physical’. In the case of an
uncertain decision concerning whether the verb–noun description of the functional
relationship is achieved either operationally (i.e. related to the item’s performance)
or physically (i.e. related to the item’s material design), then the basic principles
used in defining the item’s functions can be referred to.

These principles indicate that the item’s functions can be identified on the basis
of the fundamental criteria relating to operational and physical functions, which are:

• movement and work, in the case of operational functions, and
• shape and consistence, in the case of physical functions.

c) Failure Modes and Effects Analysis (FMEA)

Failure modes and effects analysis (FMEA) is one of the most commonly used tech-
niques for assessing the reliability of engineering designs. The analysis at systems
level involves identifying potential equipment failure modes and assessing the con-
sequences they might have on the system’s performance. Analysis at equipment
level involves identifying potential component failure modes and assessing the ef-
fects they might have on the functional reliability of neighbouring components, and
then propagating these up to the system level. This propagation is usually done in
a failure modes and effects criticality analysis (FMEA).

The criticality of components and component failure modes can therefore be
assessed by the extent the effects of failure might have on equipment functional
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reliability, and the appropriate steps taken to amend the design so that critical failure
modes become sufficiently improbable.

With the completion of the functional block diagram (FBD), development of the
failure modes and effects analysis (FMEA) can proceed. The initial steps of FMEA
considers criteria such as:

• System performance specifications
• Component functional relationships
• Failure modes
• Failure effects
• Failure causes.

A complex system can be analysed at different levels of resolution and the appro-
priate performance or functions defined at each level. The top levels of the system
breakdown structure are the process and system levels where performance specifica-
tions are defined, and the lower levels are the assembly, component and part levels
where not only primary equipment but also individual components have a role to
play in the overall functions of the system. An FMEA consists of a combined top-
down and bottom-up analysis. From the top, the process and system performance
specifications are decomposed into assembly and component performance require-
ments and, from the bottom, these assembly and component performance require-
ments are translated into functions and functional relationships for which system
performance specifications can be met.

After determining assembly and component functions and functional relation-
ships through application of the techniques of system breakdown structures (SBS)
and functional block diagrams (FBD), the remaining steps in developing an FMEA
consider determining failure modes, failure effects, failure causes as well as failure
detection.

Engineering systems are designed to achieve predefined performance criteria
and, although the FMEA will provide a comparison between a system’s normal and
faulty behaviour through the identification of failure modes and related descriptions
of possible failures, it is only when this behavioural change affects one of the per-
formance criteria that a failure effect is deemed to have occurred. The failure effect
is then described in terms of system performance that has been either reduced or not
achieved at all.

A survey of applied FMEA has shown that the greatest criticism is the inabil-
ity of the FMEA to sufficiently influence the engineering design process, because
the timescale of the analysis often exceeds the design process (Bull et al. 1995b).
It is therefore often the case that FMEA is seen not as a design tool but solely as
a deliverable to the client. To reduce the total time for the FMEA, an approach is re-
quired whereby the methodology is not only automated but also integrated into the
engineering design process through intelligent computer automated methodology.
Such an approach would, however, require consideration of qualitative reasoning in
engineering design analysis. In order to be able to develop the reliability technique
of FMEA (and its extension of criticality considerations into a FMECA) for ap-
plication in intelligent computer automated methodology, particularly for artificial
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intelligence-based (AIB) modelling, it is essential to carefully consider each pro-
gressive step with respect to its related definitions. It is obvious that the best point
of departure would be an appropriate definition for failure.

According to the US Military Standard (MIL-STD-721B), a failure is defined as
“the inability of an item to function within its specified limits of performance”. This
implies that system functional performance limits must be clearly defined before
any functional failures can be identified. The task of defining system functional
performance limits is not straightforward, especially with complex integration of
systems. A thorough analysis of systems integration complexity requires that the
FMEA not only considers the functions of the various systems and their equipment
but that limits of performance be related to these functions as well.

As previously indicated, the definition of a function is given as “the work that an
item is designed to perform”. Thus, failure of the item’s function means failure of
the work that the item is designed to perform.

Functional failure can thus be defined as “the inability of an item to carry-out
the work that it is designed to perform within specified limits of performance”.

It is obvious from this definition that there are two degrees of severity of func-
tional failure:

i) A complete loss of function, where the item cannot carry out any of the work
that it was designed to perform.

ii) A partial loss of function, where the item is unable to function within specified
limits of performance.

Potential failure may be defined as “the identifiable condition of an item indicat-
ing that functional failure can be expected”. In other words, potential failure is an
identifiable condition or state of an item on which its function depends, indicating
that the occurrence of functional failure can be expected.

From an essential understanding of the implications of these definitions, the var-
ious steps in the development of an FMEA can now be considered.

STEP 1: the first criterion to consider in the FMEA is failure mode.

The definition of mode is given as “method or manner”.
Failure mode can be defined as “the method or manner of failure”.
If failure is considered from the viewpoint of either functional failure or potential
failure, then failure mode can be determined as:

i) The method or manner in which an item is unable to carry out the work that it
is designed to perform within limits of performance. This would imply either
the mode of failure in which the item cannot carry out any of the work that it
is designed to perform (i.e. complete loss of function), or the mode of failure
in which the item is unable to function within specified limits of performance
(i.e. partial loss of function).

ii) The method or manner in which an item’s identifiable condition could arise,
indicating that functional failure can be expected. This would imply a failure
mode only when the item’s identifiable condition is such that a functional
failure can be expected.
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Thus, failure mode can be described from the points of view of:

• A complete functional loss.
• A partial functional loss.
• An identifiable condition.

For reliability assessment during the preliminary engineering design phase, the
first two failure modes, namely a complete functional loss, and a partial functional
loss, can be practically considered. The determination of an identifiable condition is
considered when contemplating the possible causes of a complete functional loss or
of a partial functional loss.

STEP 2: the following step in developing an FMEA is to consider the criteria of
failure effects.

The definition of effect is given as “an immediate result produced”.
Failure effects can be defined as “the immediate results produced by failure”.
Failure consequence can be defined as “the overall result or outcome of failures”.
It is clear that from these definitions that there are two levels—firstly, an imme-
diate effect and, secondly, an overall consequence of failure.

i) The effects of failure are associated with analysis at component level of the
immediate results that initially occur within the component’s or assembly’s
environment.

ii) The consequences of failure are associated with analysis at systems level of
the overall results that eventually occur in the system or process as a whole.

For the purpose of developing an FMEA at the higher systems level, some of the
basic principles of failure consequences need to be described. The consequences
of failure need not have immediate results. However, as indicated before, typical
FMEA analysis of failure effects on functional reliability at component level and
propagated up to the system level is usually done in a failure modes and effects
criticality analysis (FMEA).

Operational and physical consequences of failure can be grouped into five sig-
nificant categories:

• Safety consequences.
Safety operational and physical consequences of functional failure are alternately
termed critical functional failure consequences. These functional failures affect
either the operational or physical functions of systems, assemblies or components
that could have a direct adverse effect on safety, with respect to catastrophic
incidents or accidents.

• Economic consequences.
Economic operational and physical consequences of functional failure involve
an indirect economic loss, such as the loss in production, as well as the direct
cost of corrective action.

• Environmental consequences.
Environmental operational and physical consequences of functional failure in
engineered installations relate to environmental problems predominantly associ-
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ated with treatment of wastes from mineral processing operations, hydrometal-
lurgical processes, high-temperature processes, and processing operations from
which by-products are treated. Any functional failures in these processes would
most likely result in environmental operational and physical consequences.

• Maintenance consequences.
Maintenance operational and physical consequences of functional failure in-
volve only the direct cost of corrective maintenance action.

• Systems consequences.
Systems operational and physical consequences of functional failure involve in-
tegrated failures in the functional relationships of components in process engi-
neering systems with regard to their internal interactive functions, or internal
symptomatic functions.

STEP 3: the following step in developing an FMEA is to consider the criteria of
failure causes.

The definition of cause is “that which produces an effect”.
Failure causes can be defined as “the initiation of failures which produce an
effect”.

The definition of functional failure was given as “the inability of an item to carry-
out the work that it is designed to perform within specified limits of performance”.
Considering the causes of functional failure, it is practical to place these into hazard
categories of component functional failure incidents or events. These hazard cate-
gories are determined through the reliability evaluation technique of failure hazard
analysis (FHA), which is considered later.

The definition of potential failure was given as “the identifiable condition of an
item indicating that functional failure can be expected”. The effects of potential
failure could result in functional failure. In other words, the causes of functional
failure can be found in potential failure conditions. The most significant aspect of
potential failure is that it is a condition or state, and not an incident or event such as
with functional failure.

In being able to define potential failure in an item of equipment, the identifiable
conditions or state of the item upon which its functions depend must then also be
identified. The operational and physical conditions of the item form the basis for
defining potential failures arising in the item’s functions. This implies that an item,
which may have several functions and is meant to carry out work that it is designed
to perform, will be subject to several conditions or states on which its functions
depend, from the moment that it is working or put to use. In other words, the item is
subject to potential failure the moment it is in use.

Potential failure is related to the identifiable condition or state of the item, based
upon the work it is designed to perform, and the result of its use. The causes of
potential failure are thus related to the extent of use under which the system or
equipment is placed.

In summary, then, developing an FMEA includes considering the criteria of fail-
ure causes—the causes of functional failure can be found in potential failure condi-
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tions and, in turn, the causes of potential failure can be related to the extent of use
of the system or equipment.

Despite the fairly comprehensive and sound theoretical approach to the defini-
tions of the relevant criteria and analysis steps in developing an FMEA, it still does
not provide exhaustive lists of causes and effects for full sets of failure modes.
A complete analysis, down to the smallest detail, is generally too expensive (and
often impossible). The central objective of FMEA in engineering design therefore
is more for design verification. This would require an approach to FMEA that con-
centrates on failure modes that can be represented in terms of simple linguistic or
logic statements, or by algorithmic modelling in the case of more complicated fail-
ure modes. In the design of integrated engineering systems, however, most failure
modes are not simple but complex, requiring an analytic approach such as algorith-
mic modelling.

3.3.2.2 Algorithmic Modelling in Failure Modes and Effects Analysis

All engineering systems can be broken down into sub-systems and/or assemblies
and components, but at which level should they be modelled? At one extreme, if the
FMEA is concerned with the process as a whole, it may be sufficient to represent the
inherent equipment as single entities. Conversely, it may be necessary to consider
the effects of failure of single components of the equipment. Less detailed analysis
could be justified for a system based on previous designs, with relatively high reli-
ability and safety records. Alternatively, greater detail and a correspondingly lower
system-level analysis is required for a new design or a system with unknown relia-
bility history (Wirth et al. 1996).

The British Standard on FMEA and FMECA (BS5760, 1991) requires failure
modes to be considered at the lowest practical level. However, in considering the use
of FMEA for automated continual design reviews in the engineering design process,
it is prudent to initially concentrate on failure modes that could be represented in
terms of simple linguistic or logic statements. Once this has been accomplished,
the problem of how to address complicated failure modes can be addressed. This is
considered in the following algorithmic approaches (Bull et al. 1995b):

• Numerical analysis
• Order of magnitude
• Qualitative simulation
• Fuzzy techniques.

a) Numerical Analysis

There are several numerical and symbolic algorithms that can be used to solve dy-
namic systems. However, many of these algorithms have two major drawbacks:
firstly, they might not be able to reach a reliable steady-state solution, due to con-
volutions in the numerical solution of their differential equations, or because of the
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presence of non-linear properties (for example, in the modelling of performance
characteristics of relief valves, non-return valves, end stops, etc.).

Secondly, the solutions may be very specific. They are typically produced for
a system at a certain pressure, flow, load condition, etc. In engineering design, and
in particular in the FMEA, it is common not to know the precise values of quantities,
especially in the early design stages. It would thus be more intuitive to be able to
relate design criteria in terms of ranges of values, as considered in the labelled
interval calculus method for system performance measures.

b) Order of Magnitude

The problem of how to address complicated failure modes can be approached
through order of magnitude reasoning, developed by Raiman (1986) and extended
by Mavrovouniotis and Stephanopoulis (Mavrovouniotis et al. 1988). Order of
magnitude is primarily concerned with considering the relative sizes of quantities.
A variable in this formalism refers to a specific physical quantity with known dimen-
sions but unknown numerical values. The fundamental concept is that of a link—the
ratio of two quantities, only one of which can be a landmark. Such a landmark is
a variable with known (and constant) sign and value. There are seven possible prim-
itive relations between these two quantities:

A << B A is much smaller than B
A − < B A is moderately smaller than B
A ∼< B A is slightly smaller than B
A == B A is exactly equal to B
A >∼ B A is slightly larger than B
A > − B A is moderately larger than B
A >> B A is much larger than B.

The formalism itself involves representing these primitives as real intervals centred
around unity (which represents exact equality). They allow the data to be repre-
sented either in terms of a precise value or in terms of intervals, depending upon the
information available and the problem to be solved. Hence, the algorithmic model
will encapsulate all the known features of the system being simulated. Vagueness
is introduced only by lack of knowledge in the initial conditions. A typical analysis
will consist of asking questions of the form:

• What happens if the pressure rises significantly higher than the operating pres-
sure?

• What is the effect of the flow significantly being reduced?

c) Qualitative Simulation

Qualitative methods have been devised to simulate physical systems whereby quan-
tities are represented by their sign only, and differential equations are reinterpreted
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as logical predicates. The simulation involves finding values that satisfy these con-
straints (de Kleer et al. 1984).

This work was further developed to represent the quantities by intervals and land-
mark values (Kuipers 1986). Collectively, variables and landmarks are described as
the quantities of the system. The latter represent important values of the quantities
such as maximum pressure, temperature, flow, etc.

The major drawback with these methods is that the vagueness of the input data
leads to ambiguities in the predictions of system behaviour, whereby many new
constraints can be chosen that correspond to many physical solutions. In general,
it is not possible to deduce which of the myriad of solutions is correct. In terms of
FMEA, this would mean there could be a risk of failure effects being generated that
are a result of the inadequacy of the algorithm, and not of a particular failure mode.

d) Fuzzy Techniques

Kuiper’s work was enhanced by Shen and Leitch (Shen et al. 1993) to allow for
fuzzy intervals to be used in fuzzy simulation.

In qualitative simulation, it is possible to describe quantities (such as pressure)
as ‘low’ or ‘high’. However, typical of engineering systems, these fuzzy intervals
may be divided by a landmark representing some critical quantity, with consequent
uncertainty where the resulting point should lie, as ‘low’ and ‘high’ are not absolute
terms.

The concept of fuzzification allows the boundary to be blurred, so that for a small
range of values, the quantity could be described as both ‘low’ and ‘medium’. The
problem with this approach (and with fuzzy simulation algorithms in general) is that
it introduces further ambiguity.

For example, it has been found that in the dynamic simulation of an actuator,
there are 19 possible values for the solution after only three steps (Bull et al. 1995b).
This result is even worse than it appears, as the process of fuzzification removes the
guarantee of converging on a physical solution. Furthermore, it has been shown that
it is possible to develop fuzzy Euler integration that allows for qualitative states to be
predicted at absolute time points. This solves some of the problems but there is still
ambiguity in predicted behaviour of the system (Steele et al. 1996, 1997; Coghill
et al. 1999a,b).

3.3.2.3 Qualitative Reasoning in Failure Modes and Effects Analysis

It would initially appear that qualitative reasoning algorithms are not suitable for
FMEA or FMECA, as this formalism of analysis requires unique predictions of
system behaviour. Although some vagueness is permissible due to uncertainty, it
cannot be ambiguous, and ambiguity is an inherent feature of computational quali-
tative reasoning. In order, then, to consider the feasibility of qualitative reasoning in
FMEA and FMECA without this resulting in ambiguity, it is essential to investigate
further the concept of uncertainty in engineering design analysis.
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a) The Concept of Uncertainty in Engineering Design Analysis

Introducing the concept of uncertainty in reliability assessment by utilising the tech-
niques of FMEA and FMECA requires that some issues and concepts relating to the
physical system being designed must first be considered.

A typical engineering design can be defined using the concepts introduced by
Simon (1981), in terms of its inner and outer environment, whereby an interface
between the substance and organisation of the design itself, and the surroundings in
which it operates is defined. The design engineer’s task is to establish a complete
definition of the design and, in many cases, the manufacturing details (i.e. the inner
environment) that can cope with supply and delivery (i.e. the outer environment) in
order to satisfy a predetermined set of design criteria. Many of the issues that are
often referred to as uncertainty are related to the ability of the design to meet the
design criteria, and are due to characteristics associated with both the inner and outer
environments (Batill et al. 2000). This is especially the case when several systems
are integrated in a complex process with multiple (often conflicting) characteristics.

Engineering design is associated with decisions based upon information related
to this interface, which considers uncertainty in the complex integration of systems
in reality, compared to the concept of uncertainty in systems analysis and modelling.
From the perspective of the designer, a primary concern is the source of variations
in the inner environment, and the need to reduce these variations in system perfor-
mance through decisions made in the design process. The designer is also concerned
with how to reduce the sensitivity of the system’s performance to variations in the
outer environment (Simon 1981). Furthermore, from the designer’s perspective, the
system being designed exists only as an abstraction, and any information related to
the system’s characteristics or behaviour is approximate prior to its physical reali-
sation. Dealing with this incomplete description of the system, and the approximate
nature of the information associated with its characteristics and behaviour are key
issues in the design process (Batill et al. 2000).

The intention, however, is to focus on the integrity of engineering design using
the extensive capabilities now available with modelling and digital computing. With
the selection of a basic concept of the system at the beginning of the conceptual
phase of the engineering design process, the next step is to identify (though not
necessarily quantify) a finite set of design variables that will eventually be used to
uniquely specify the design. The identification and quantification of this set of de-
sign variables are central to, and will evolve with the design throughout the design
process. It is this quantitative description of the system, based upon information
developed, using algorithmic models or simulation, that becomes the focus of pre-
liminary or schematic design.

Though there is great benefit in providing quantitative descriptions as early in
the design process as possible, this depends upon the availability of knowledge, and
the level of analysis and modelling techniques related to the design. As the level of
abstraction of the design changes, and more and more detail is required to define it,
the number of design variables will grow considerably. Design variables typically
are associated with the type of material used and the geometric description of the
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system(s) being designed. Eventually, during the detail design phase of the engineer-
ing design process, the designer will be required to specify (i.e. quantify) the design
variables representing the system. This specification often takes the form of detailed
engineering drawings that include materials information and all the necessary geo-
metric information needed for fabrication, including manufacturing tolerances.

Decisions associated with quantifying (or selecting) the design variables are usu-
ally based upon an assessment of a set of behavioural variables, also referred to as
system states. The behavioural variables or system states are used to describe the
system’s characteristics. The list of these characteristics also increases in detail as
the level of abstraction of the system decreases.

The behavioural variables are used to assess the suitability of the design, and are
based upon information obtained from several primary sources during the design
process:

• Archived experience
• Engineering analysis (such as FMEA and FMECA)
• Modelling and simulation.

Interpolating or extrapolating from information on similar design concepts can pro-
vide the designer with sufficient confidence to make a decision based upon the suc-
cess of earlier, similar designs. Often, this type of information is incorporated into
heuristics (rules-of-thumb), design handbooks or design guidelines. Engineers com-
monly gather experiential information from empirical data or knowledge bases. The
use of empirical information requires the designer to make numerous assumptions
concerning the suitability of the available information and its applicability to the
current situation. There are also many decisions made in the design process that
are based upon individual or corporate experience that is not formally archived in
a database.

This type of information is very valuable in the design of systems that are pertur-
bations (evolutionary designs) of existing successful designs, but has severe limita-
tions when considering the design of new or revolutionary designs. Though it may
be useful information, in a way that will assist in assessing the risk associated with
the entire design—which is usually not possible, it tends to compound the problem
related to the concept of uncertainty in the engineering design process.

The second type of information available to the designer is based upon analy-
sis, mathematical modelling and simulation. As engineering systems become more
complex, and greater demands are placed upon their performance and cost, this
source of information becomes even more important in the design process. How-
ever, the information provided by analysis such as FMEA and FMECA carries with
it a significant level of uncertainty, and the use of such information introduces an
equal level of risk to the decisions made, which will affect the integrity of the de-
sign. Quantifying uncertainty, and understanding the significant impact it has in the
design process, is an important issue that requires specific consideration, especially
with respect to the increasing complexity of engineering designs.

A further extension to the reliability assessment technique of FMECA is there-
fore considered that includes the appropriate representation of uncertainty and
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incompleteness of information in available knowledge. The main consideration of
such an approach is to provide a qualitative treatment of uncertainty based on pos-
sibility theory and fuzzy sets (Zadeh 1965). This allows for the realisation of failure
effects and overall consequences (manifestations) that will be more or less certainly
present (or absent), and failure effects and consequences that could be more or less
possibly present (or absent) when a particular failure mode is identified. This is
achieved by means of qualitative uncertainty calculus in causal matrices, based on
Zadeh’s possibility measures (Zadeh 1979), and their dual measures of certainty (or
necessity).

b) Uncertainty and Incompleteness in Available Knowledge

Available knowledge in engineering design analysis (specifically in the reliability
assessment techniques of FMEA and FMECA) can be considered from the point of
view of behavioural knowledge and of functional knowledge. These two aspects are
accordingly described:

i) In behavioural knowledge: expressing the likelihood of some or other expected
consequences as a result of an identified failure mode. Information about likeli-
hood is generally qualitative, rather than quantitative. Included is the concept of
‘negative information’, stating that some consequences cannot manifest, or are
almost impossible as consequences of a hypothesised failure mode. Moreover,
due to incompleteness of the knowledge, distinction is made between conse-
quences that are more or less sure, and those that are only possible.

ii) In functional knowledge: expressing the functional activities or work that sys-
tems and equipment are designed to perform. In a similar way as in the be-
havioural knowledge, the propagation of system and equipment functions are
also incomplete and uncertain. In order to effectively capture uncertainty, a qual-
itative approach is more appropriate to the available information than a quanti-
tative one.

In the following paragraphs, an overview is given of various concepts and theory
for qualitatively modelling uncertainty in engineering design.

3.3.2.4 Overview of Fuziness in Engineering Design Analysis

In the real world there exists knowledge that is vague, uncertain, ambiguous or
probabilistic in nature, termed fuzzy knowledge. Human thinking and reasoning fre-
quently involves fuzzy knowledge originating from inexact concepts and similar,
rather than identical experiences. In complex systems, it is very difficult to answer
questions on system behaviour because they generally do not have exact answers.
Qualitative reasoning in engineering design analysis attempts not only to give such
answers but also to describe their reality level, calculated from the uncertainty and
imprecision of facts that are applicable. The analysis should also be able to cope with



148 3 Reliability and Performance in Engineering Design

unreliable and incomplete information and with different expert opinions. Many
commercial expert system tools or shells use different approaches to handle uncer-
tainty in knowledge or data, such as certainty factors (Shortliffe 1976) and Bayesian
models (Buchanan et al. 1984), but they cannot cope with fuzzy knowledge, which
constitutes a very significant part of the use of natural language in design analysis,
particularly in the early phases of the engineering design process.

Several computer automated systems support some fuzzy reasoning, such as
FAULT (Whalen et al. 1982), FLOPS (Buckley et al. 1987), FLISP (Sosnowski
1990) and CLIPS (Orchard 1998), though most of these are developed from high-
level languages intended for a specific application.

Fuzziness and Probability

Probability and fuzziness are related but different concepts. Fuzziness is a type of
deterministic uncertainty. It describes the event class ambiguity. Fuzziness measures
the degree to which an event occurs, not whether it does occur. Probability arises
from the question whether or not an event occurs, and assumes that the event class
is crisply defined and that the law of non-contradiction holds. However, it would
seem more appropriate to investigate the fuzziness of probability, rather than dismiss
probability as a special case of fuzziness. In essence, whenever the outcome of an
event is difficult to compute, a probabilistic approach may be used to estimate the
likelihood of all possible outcomes belonging to an event class. Fuzzy probability
extends the traditional notion of probability when there are outcomes that belong
to several event classes at the same time but at different degrees. Fuzziness and
probability are orthogonal concepts that characterise different aspects of the same
event (Bezdek 1993).

a) Fuzzy Set Theory

Fuzziness occurs when the boundary of an element of information is not clear-cut.
For example, concepts such as high, low, medium or even reliable are fuzzy. As
a simple example, there is no single quantitative value that defines the term young.
For some people, age 25 is young and, for others, age 35 is young. In fact, the
concept young has no precise boundary. Age 1 is definitely young and age 100 is
definitely not young; however, age 35 has some possibility of being young and usu-
ally depends on the context in which it is being considered. The representation of
this kind of inexact information is based on the concept of fuzzy set theory (Zadeh
1965). Fuzzy sets are a generalisation of conventional set theory that was introduced
as a mathematical way to represent vagueness in everyday life. Unlike classical set
theory, where one deals with objects of which the membership to a set can be clearly
described, in fuzzy set theory membership of an element to a set can be partial, i.e.
an element belongs to a set with a certain grade (possibility) of membership.
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Fuzzy interpretations of data structures, particularly during the initial stages of
engineering design, are a very natural and intuitively plausible way to formulate and
solve various design problems. Conventional (crisp) sets contain objects that satisfy
precise properties required for membership. For example, the set of numbers H
from 6 to 8 is crisp and can be defined as:

H = {r ∈ R|6 ≤ r ≤ 8}

Also, H is described by its membership (or characteristic) function (MF):
mH : R →{0,1} defined as:

mH(r) = {1 6 ≤ r ≤ 8}
= {0 otherwise}

Every real number r either is or is not in H. Since mH maps all real numbers r ∈R
onto the two points (0,1), crisp sets correspond to two-valued logic: is or is not, on
or off, black or white, 1 or 0, etc. In logic, values of mH are called truth values with
reference to the question:

‘Is r in H?’ The answer is yes if, and only if mH(r) = 1; otherwise, no.
Consider the set F of real numbers that are close to 7. Since the property ‘close

to 7’ is fuzzy, there is not a unique membership function for F . Rather, the decision
must be made, based on the potential application and properties for F , what mH

should be. Properties that might seem plausible for F include:

i) normality
(i.e. MF(7) = 1)

ii) monotonicity
(the closer r is to 7, the closer mH(r) is to 1, and conversely)

iii) symmetry
(numbers equally far left and right of 7 should have equal memberships).

Given these intuitive constraints, functions that usefully represent F are mF1, which
is discrete (represented by a staircase graph), or the function mF1, which is continu-
ous but not smooth (represented by a triangle graph).

One can easily construct a membership (or characteristic) function (MF) for F
so that every number has some positive membership in F but numbers ‘far from 7’,
such as 100, would not be expected to be included. One of the greatest differences
between crisp and fuzzy sets is that the former always have unique MFs, whereas
every fuzzy set may have an infinite number of MFs. This is both a weakness and
a strength, in that uniqueness is sacrificed but with a gain in flexibility, enabling
fuzzy models to be adjusted for maximum utility in a given situation.

In conventional set theory, sets of real objects, such as the numbers in H, are
equivalent to, and isomorphically described by, a unique membership function such
as mH . However, there is no set theory with the equivalent of ‘real objects’ corre-
sponding to mF . Fuzzy sets are always functions, from a ‘universe of objects’, say X ,
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into [0,1]. The fuzzy set is the function mF that carries X into [0,1]. Every function
m : X → [0,1] is a fuzzy set by definition. While this is true in a formal mathematical
sense, many functions that qualify on this ground cannot be suitably interpreted as
realisations of a conceptual fuzzy set. In other words, functions that map X into the
unit interval may be fuzzy sets, but become fuzzy sets when, and only when, they
match some intuitively plausible semantic description of imprecise properties of the
objects in X (Bezdek 1993).

b) Formulation of Fuzzy Set Theory

Let X be a space of objects and x be a generic element of X . A classical set A, A⊆ X ,
is defined as a collection of elements or objects x ∈ X , such that each element (x)
can either belong to the set A, or not. By defining a membership (or characteristic)
function for each element x in X , a classical set A can be represented by a set of
ordered pairs (x,0), (x,1), which indicates x /∈ A or x ∈ A respectively (Jang et al.
1997).

Unlike conventional sets, a fuzzy set expresses the degree to which an element
belongs to a set. Hence, the membership function of a fuzzy set is allowed to have
values between 0 and 1, which denote the degree of membership of an element in
the given set. Obviously, the definition of a fuzzy set is a simple extension of the
definition of a classical (crisp) set in which the characteristic function is permitted
to have any values between 0 and 1. If the value of the membership function is
restricted to either 0 or 1, then A is reduced to a classical set. For clarity, classical
sets are referred to as ordinary sets, crisp sets, non-fuzzy sets, or just sets.

Usually, X is referred to as the universe of discourse or, simply, the universe, and
it may consist of discrete (ordered or non-ordered) objects or it can be a continuous
space. The construction of a fuzzy set depends on two requirements: the identifi-
cation of a suitable universe of discourse, and the specification of an appropriate
membership function. In practice, when the universe of discourse X is a continuous
space, it is partitioned into several fuzzy sets with MFs covering X in a more or
less uniform manner. These fuzzy sets, which usually carry names that conform to
adjectives appearing in daily linguistic usage, such as ‘large’, ‘medium’ or ‘small’,
are called linguistic values or linguistic labels. Thus, the universe of discourse X is
often called the linguistic variable.

The specification of membership functions is subjective, which means that the
membership functions specified for the same concept by different persons may vary
considerably. This subjectivity comes from individual differences in perceiving or
expressing abstract concepts, and has little to do with randomness. Therefore, the
subjectivity and non-randomness of fuzzy sets is the primary difference between
the study of fuzzy sets, and probability theory that deals with an objective view of
random phenomena.
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Fuzzy Sets and Membership Functions

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is
defined as a set of ordered pairs A = {(x,μA(x))|x ∈ X}, where μA(x) is called the
membership function (or MF, for short) for the fuzzy set A. The MF maps each ele-
ment of X to a membership grade or membership value between 0 and 1 (included).

More formally, a fuzzy set A in a universe of discourse U is characterised by the
membership function

μA : U → [0,1] (3.93)

The function associates, with each element x of U , a number μA(x) in the inter-
val [0,1]. This represents the grade of membership of x in the fuzzy set A. For ex-
ample, the fuzzy term young might be defined by the fuzzy set given in Table 3.12
(Orchard 1998).

Regarding Eq. (3.93), one can write:

μyoung(25) = 1,μyoung(30) = 0.8, . . . ,μyoung(50) = 0

Grade of membership values constitute a possibility distribution of the term
young. The table can be graphically represented as in Fig. 3.27.

The possibility distribution of a fuzzy concept like somewhat young or very
young can be obtained by applying arithmetic operations to the fuzzy set of the
basic fuzzy term young, where the modifiers ‘somewhat’ and ‘very’ are associated
with specific mathematical functions.

For example, the possibility values of each age in the fuzzy set representing the
fuzzy concept somewhat young might be calculated by taking the square root of the
corresponding possibility values in the fuzzy set of young, as illustrated in Fig. 3.28.
These modifiers are commonly referred to as hedges.

A modifier may be used to further enhance the ability to describe fuzzy con-
cepts. Modifiers (very, slightly, etc.) used in phrases such as very hot or slightly cold
change (modify) the shape of a fuzzy set in a way that suits the meaning of the word
used. A typical set of predefined modifiers (Orchard 1998) that can be used to de-
scribe fuzzy concepts in fuzzy terms, fuzzy rule patterns or fuzzy facts is given in
Table 3.13.

Table 3.12 Fuzzy term young

Age Grade of membership

25 1.0
30 0.8
35 0.6
40 0.4
45 0.2
50 0.0
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Fig. 3.27 Possibility distribution of young

Possibility
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µsomewhat young
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Fig. 3.28 Possibility distribution of somewhat young

Table 3.13 Modifiers (hedges) and linguistic expressions

Modifier name Modifier description

Not 1− y
Very y∗∗2
Somewhat y∗∗0.333
More-or-less y∗∗0.5
Extremely y∗∗3
Intensify (y∗∗2) if y in [0,0.5]

1−2(1− y)∗∗2 if y in (0.5,1]
Plus y∗∗1.25
Norm Normalises the fuzzy set so that

the maximum value of the set is scaled
1.0 (y = y∗1.0/max-value)

Slightly intensify (norm (plus A AND not very A))
= norm (y∗∗1.25 AND 1− y∗∗2)
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These modifiers change the shape of a fuzzy set using mathematical operations
on each point of the set. In the above table, the variable y represents each member-
ship value in the fuzzy set, and A represents the entire fuzzy set (i.e. the term very A
applies the very modifier to the entire set where the modifier description y∗∗2 squares
each membership value). When a modifier is used in descriptive expressions, it can
be used in upper or lower case (i.e. NOT or not).

c) Uncertainty

Uncertainty occurs when one is not absolutely sure about an element of informa-
tion. The degree of uncertainty is usually represented by a crisp numerical value on
a scale from 0 to 1, where a certainty factor of 1 indicates that the assessment of
a particular fact is very certain that the fact is true, and a certainty factor of 0 indi-
cates that the assessment is very uncertain that the fact is true. A fact is composed of
two parts: the statement of the fact in non-fuzzy reasoning, and its certainty factor.
Only facts have associated certainty factors. In general, a factual statement takes the
following form:

(fact) {CF certainty factor}

The CF acts as the delimiter between the fact and the numerical certainty factor, and
the brackets { } indicate an optional part of the statement. For example, (pressure
high) {CF 0.8} is a fact that indicates a particular system attribute of pressure will be
high with a certainty of 0.8. However, if the certainty factor is omitted, as in a non-
fuzzy fact, (pressure high), then the assumption is that the pressure will be high with
a certainty of 1 (or 100%). The term high in itself is fuzzy and relates to a fuzzy set.
The fuzzy term high also has a certainty qualification through its certainty factor.
Thus, uncertainty and fuzziness can occur simultaneously.

d) Fuzzy Inference

Expression of fuzzy knowledge is primarily through the use of fuzzy rules. However,
there is no unique type of fuzzy knowledge, nor is there only one kind of fuzzy rule.
It is pointed out that the interpretation of a fuzzy rule dictates the way the fuzzy rule
should be combined in the framework of fuzzy sets and possibility theory (Dubois
et al. 1994).

The various kinds of fuzzy rules that can be considered (certainty rules, gradual
rules, possibility rules, etc.) have different fuzzy inference behaviours, and corre-
spond to various applications. Rule evaluation depends on a number of different
factors, such as whether or not fuzzy variables are found in the antecedent or conse-
quent part of a rule, whether a rule contains multiple antecedents or consequents, or
whether a fuzzy fact being asserted has the same fuzzy variable as an already exist-
ing fuzzy fact (global contribution). The representation of fuzzy knowledge through
fuzzy inference needs to be briefly investigated for inclusion in engineering design
analysis.
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e) Simple Fuzzy Rules

Algorithms for evaluating certainty factors (CF) and simple fuzzy rules are first
considered, such as the simple rule of form:

if A then C CFr

A′ CFf

C′ CFc

where
A is the antecedent of the rule
A′ is the matching fact in the fact database
C is the consequent of the rule
C′ is the actual consequent calculated
CFr is the certainty factor of the rule
CFf is the certainty factor of the fact
CFc is the certainty factor of the conclusion

Three types of simple rules are defined:
CRISP_;
FUZZY_CRISP; and
FUZZY_FUZZY.

If the antecedent of the rule does not contain a fuzzy object, then the type of
rule is CRISP_ regardless of whether or not a consequent contains a fuzzy fact.
If only the antecedent contains a fuzzy fact, then the type of rule is FUZZY_CRISP.
If both antecedent and consequent contain fuzzy facts, then the type of rule is
FUZZY_FUZZY.

CRISP_ simple rule If the type of rule is CRISP_, then A′ must be equal to A in
order for this rule to validate (or fire in computer algorithms). This is a non-fuzzy
rule (actually, A would be a pattern, and A′ would match the pattern specification
but, for simplicity, patterns are not dealt with here). In this case, the conclusion C′
is equal to C, and

CFc = CFr ∗CFf . (3.94)

FUZZY_CRISP simple rule If the type of rule is FUZZY_CRISP, then A′ must be
a fuzzy fact with the same fuzzy variable as specified in A for a match. In addition,
values of the fuzzy variables A and A′, as represented by the fuzzy sets Fα and F ′

α ,
do not have to be equal.

For a FUZZY_CRISP rule, the conclusion C′ is equal to C, and

CFc = CFr ∗CFf ∗ S . (3.95)

S is a measure of similarity between the fuzzy sets Fα (determined by the fuzzy
pattern A) and F ′

α (of the matching fact A′). The measure of similarity S is based
upon the measure of possibility P and the measure of necessity N. It is calculated
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according to the following formula

S = P
(
Fα |F ′

α
)

if N
(
Fα |F ′

α
)

> 0.5

S =
(
N
(
Fα |F ′

α
)
+0.5

)∗P
(
Fα |F ′

α
)

Otherwise where ∀ u ∈ U:

P
(
Fα |F ′

α
)

=max
(
min
(
μFα (u) , μF ′

α
(u)
))

(3.96)

[min is the minimum and max is the maximum, so that max (min(a,b)) would
represent the maximum of all the minimums between pairs a and b] (Cayrol et al.
1982), and

N (Fα |Fα ′) = 1−P
(
F ′

α |Fα ′
)

(3.97)

F ′
α is the complement of Fα described by the membership function

∀(u ∈U)μF ′
α
(u) = 1− μFα (u) . (3.98)

Therefore, if the similarity between the fuzzy sets associated with the fuzzy pat-
tern (A) and the matching fact (A′) is high, the certainty factor of the conclusion is
very close to CFr ∗CFf, since S will be close to 1. If the fuzzy sets are identical,
then S will be 1 and the certainty factor of the conclusion will equal CFr ∗CFf. If
the match is poor, then this is reflected in a lower certainty factor for the conclusion.
Note also that if the fuzzy sets do not overlap, then the similarity measure would be
zero and the certainty factor of the conclusion would be zero as well. In this case,
the conclusion would not be asserted and the match considered to have failed, with
the outcome that the rule is not to be considered (Orchard 1998).

FUZZY_FUZZY simple rule If the type of rule is FUZZY_FUZZY, and the
fuzzy fact and antecedent fuzzy pattern match in the same manner as discussed
for a FUZZY_CRISP rule, then it can be shown that the antecedent and consequent
of such a rule are connected by the fuzzy relation (Zadeh 1973):

R = Fα ∗Fc (3.99)

where:

Fα = fuzzy set denoting the value of the fuzzy antecedent pattern
Fc = fuzzy set denoting the value of the fuzzy consequent

The membership function of the relation R is calculated according to the following
formula

μR(u,v) = min(μFα (u) , μFc(v)) , (3.100)

∀(uv) ∈U ×V
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The calculation of the conclusion is based upon the compositional rule of infer-
ence, which can be described as follows (Zadeh 1975):

F ′
c = F ′

α
◦R (3.101)

F ′
c is a fuzzy set denoting the value of the fuzzy object of the consequent. The

membership function of F ′
c is calculated as follows (Chiueh 1992):

μF ′
c
(v) = max

u∈U

(
minμFα′ (u) , μR(u,v)

)

which may be simplified to

μF ′
c
(v) = min(z,μFc(v)) (3.102)

where:

z = max
(
min
(
μFα′ (u) , μFα (u)

))

The certainty factor of the conclusion is calculated according to the formula

CFc = CFr ∗CFf (3.103)

f) Complex Fuzzy Rules

Complex fuzzy rules—multiple consequents and multiple antecedents—include
multiple patterns that are treated as multiple rules with a single assertion in the
consequent.

Multiple consequents The consequent part of a fuzzy rule may contain only mul-
tiple patterns, specifically (C1, C2, . . . ,Cn), which are treated as multiple rules with
a single consequent. Thus, the following rule,

if Antecedents then C1 and C2 and . . . and Cn

is equivalent to the following rules:

if Antecedents then C1

if Antecedents then C2

. . .

if Antecedents then Cn
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Multiple Antecedents

From the above, it is clear that only the problem of multiple patterns in the an-
tecedent with a single assertion in the consequent needs to be considered. If the
consequent assertion is not a fuzzy fact, then no special treatment is needed, since
the conclusion will be the crisp (non-fuzzy) fact. However, if the consequent as-
sertion is a fuzzy fact, the fuzzy value is calculated using the following algorithm
(Whalen et al. 1983).

If the logical term, and, is used:

if A1 and A2 then C CFr

A′
1 CFf1

A′
2 CFf2

C′ CFc

A′
1 and A′

2 are facts (crisp or fuzzy), which match the antecedents A1 and A2 respec-
tively.

In this case, the fuzzy set describing the value of the fuzzy assertion in the con-
clusion is calculated according to the formula

F ′
c = F ′

c1 ∩F ′
c2 (3.104)

where ∩ denotes the intersection of two fuzzy sets in which a membership function
of a fuzzy set C, which is the intersection of fuzzy sets A and B, is defined by the
following formula

μC(x) = min(μA(x) , μB(x)) , for x ∈U (3.105)

and:

F ′
c1 is the result of fuzzy inference for the fact A′

1 and the simple rule:

if A1 then C

F ′
c2 is the result of fuzzy inference for the fact A′

2 and the simple rule:

if A2 then C

g) Global Contribution

In non-fuzzy knowledge, a fact is asserted with specific values. If the fact already
exists, then the approach would be as if the fact was not asserted (unless fact dupli-
cation is allowed). In such a crisp system, there is no need to reassess the facts in the
system—once they exist, they exist (unless certainty factors are being used, when
the certainty factors are modified to account for the new evidence). In a fuzzy sys-
tem, however, refinement of a fuzzy fact may be possible. Thus, in the case where



158 3 Reliability and Performance in Engineering Design

a fuzzy fact is asserted, this fact is treated as contributing evidence towards the con-
clusion about the fuzzy variable (it contributes globally). If information about the
fuzzy variable has already been asserted, then this new evidence (or information)
about the fuzzy variable is combined with the existing information in the fuzzy fact.
Thus, the concept of restrictions on fact duplication for fuzzy facts does not apply as
it does for non-fuzzy facts. There are many readily identifiable methods of combin-
ing evidence. In this case, the new value of the fuzzy fact is calculated accordingly

Fg = Ff∪F ′
c (3.106)

where:

Fg is the new value of the fuzzy fact
Ff is the existing value of the fuzzy fact
F ′

c is the value of the fuzzy fact to be asserted

where ∪ denotes the union of two fuzzy sets in which a membership function of
a fuzzy set C, which is the union of fuzzy sets A and B, is defined by the following
formula

μC(x) = max(μA(x) , μB(x)) for x ∈U (3.107)

The uncertainties are also aggregated to form an overall uncertainty. Basically,
two uncertainties are combined, using the following formula

CFg = maximum(CFf,CFc) (3.108)

where:

CFg is the combined uncertainty
CFf is the uncertainty of the existing fact
CFc is the uncertainty of the asserted fact

3.3.2.5 Fuzzy Logic and Fuzzy Reasoning

The use of fuzzy logic and fuzzy reasoning methods are becoming more and more
popular in intelligent information systems (Ryan et al. 1994; Yen et al. 1995), in
knowledge formation processes within knowledge-based systems (Walden et al.
1995), in hyper-knowledge support systems (Carlsson et al. 1995a,b,c), and in active
decision support systems (Brännback et al. 1997).

a) Linguistic Variables

As indicated in Sect. 3.3.2.4, the use of fuzzy sets provides a basis for the manipula-
tion of vague and imprecise concepts. Fuzzy sets were introduced by Zadeh (1975)
as a means of representing and manipulating imprecise data and, in particular, fuzzy
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sets can be used to represent linguistic variables. A linguistic variable can be re-
garded either as a variable of which the value is a fuzzy number or as a variable
of which the values are defined in linguistic terms, such as failure modes, failure
effects, failure consequences and failure causes in FMEA and FMECA.

A linguistic variable is characterised by a quintuple

(x,T (x),U,G,M) (3.109)

where:

x is the name of the linguistic variable;
T (x) is the term set of x, i.e. the set of names of linguistic values

of x with each value being a fuzzy number defined on U ;
G is a syntactic rule for generating the names of values of x;
M is a semantic rule for associating with each value its meaning.

Consider the example If pressure in a process design is interpreted as a linguistic
variable, then its term set T (pressure) could be: T = {very low, low, moderate,
high, very high, more or less high, slightly high, . . . } where each of the terms in
T (pressure) is characterised by the fuzzy set in a universe of discourse U = [0,300]
with a unit of measure that the variable pressure might have.

We might interpret:

low as ‘a pressure below about 50 psi’
moderate as ‘a pressure close to 120 psi’
high as ‘a pressure close to 190 psi’
very high as ‘a pressure above about 260 psi’

These terms can be characterised as fuzzy sets of which the membership functions
are:

low (p) =

∣∣∣∣∣∣
1 if p ≤ 50
1− (p−50)/70 if 50 ≤ p ≤ 120
0 otherwise

moderate (p) =
∣∣∣∣1−|p−120|/140 if 50 ≤ p ≤ 190
0 otherwise

high (p) =
∣∣∣∣1−|p−190|/140 if 120 ≤ p ≤ 260
0 otherwise

very high (p) =

∣∣∣∣∣∣
1 if p ≤ 260
1− (260− p)/140 if 190 ≤ p ≤ 260
0 otherwise

The term set T (pressure) given by the above linguistic variables, T (pressure) =
{low (p), moderate (p), high (p), very high (p)}, and the related fuzzy sets can be
represented by the mapping illustrated in Fig. 3.29.
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1

0 50 120 190 260 pressure

very highhighmoderatelow

Fig. 3.29 Values of linguistic variable pressure

A mapping can be formulated as:

T : [0,1]× [0,1]→ [0,1]

which is a triangular norm (t-norm for short) if it is symmetric, associative and non-
decreasing in each argument, and T (a,1) = a, for all a ∈ [0,1].

The mapping formulated by

S : [0,1]× [0,1]→ [0,1]

is a triangular co-norm (t-conorm, for short) if it is symmetric, associative and non-
decreasing in each argument, and S(a,0) = a, for all a ∈ [0,1].

b) Translation Rules

Zadeh introduced a number of translation rules that allow for the representation of
common linguistic statements in terms of propositions (or premises). These transla-
tion rules are expressed as (Zadeh 1979):

Main premise
Helping premise
Conclusion

x is A
x is B
x is A∩B

x is an element of set A
x is an element of set B
x is an element of intersection A and B

Some of the translation rules include:

Entailment rule:
x is A
A ⊂ B
x is B

pressure is very low
very low ⊂ low
pressure is low

Conjunction rule:
x is A
x is B
x is A∩B

pressure is not very high
pressure is not very low
pressure is not very high and not very low
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Disjunction rule:
x is A
or x is B
x is A∪B

pressure is not very high
or pressure is not very low
pressure is not very high or not very low

Projection rule:
(x, y) have relation R

x is ∏X(R)
(x, y) have relation R

y is ∏Y (R)

where: ∏X is a possibility measure defined on a finite propositional language
and R is a particular rule-base (defined later).

Negation rule:
not (x is A)

x is ¬A
not (x is high)
x is not high

c) Fuzzy Logic

Prior to reviewing fuzzy logic, some consideration must first be given to crisp logic,
especially on the concept of implication, in order to understand the comparable con-
cept in fuzzy logic. Rules are a form of propositions. A proposition is an ordinary
statement involving terms that have been defined, e.g. ‘the failure rate is low’. Con-
sequently, the following rule can be stated: ‘IF the failure rate is low, THEN the
equipment’s reliability can be assumed to be high’.

In traditional propositional logic, a proposition must be meaningful to call it
‘true’ or ‘false’, whether or not we know which of these terms properly applies.
Logical reasoning is the process of combining given propositions into other propo-
sitions, and repeating this step over and over again. Propositions can be com-
bined in many ways, all of which are derived from several fundamental operations
(Bezdek 1993):

• conjunction denoted p∧q where we assert the simultaneous truth of two separate
propositions p and q;

• disjunction denoted p∨q where we assert the truth of either or both of two sep-
arate propositions; and

• implication denoted p → q, which takes the form of an IF–THEN rule. The IF
part of an implication is called the antecedent, and the THEN part is called the
consequent.

• negation denoted by (∼p) where a new proposition can be obtained from a given
one by the clause ‘it is false that . . . ’.

• equivalence denoted by p ↔ q, which means that p and q are both true or false.

In traditional propositional logic, unrelated propositions are combined into an impli-
cation, and no cause or effect relation is assumed to exist. This results in fundamen-
tal problems when traditional propositional logic is applied to engineering design
analysis, such as in a diagnostic FMECA, where cause and effect are definite (i.e.
causes and effects do occur).
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In traditional propositional logic, an implication is said to be true if one of the
following holds:

1) (antecedent is true, consequent is true),
2) (antecedent is false, consequent is false),
3) (antecedent is false, consequent is true).

The implication is said to be false when:

4) (antecedent is true, consequent is false).

Situation 1 is familiar from common experience. Situation 2 is also reasonable be-
cause, if we start from a false assumption, then we expect to reach a false conclusion.
However, intuition is not always reliable. We may reason correctly from a false an-
tecedent to a true consequent. Hence, a false antecedent can lead to a consequent
that is either true or false, and thus both situations 2 and 3 are acceptable in tradi-
tional propositional logic. Finally, situation 4 is in accordance with intuition, for an
implication is clearly false if a true antecedent leads to a false consequent.

A logical structure is constructed by applying the above four operations to propo-
sitions. The objective of a logical structure is to determine the truth or falsehood
of all propositions that can be stated in the terminology of this structure. A truth
table is very convenient for showing relationships between several propositions.
The fundamental truth tables for conjunction, disjunction, implication, equivalence
and negation are collected together in Table 3.14, in which symbol T means that the
corresponding proposition is true, and symbol F means it is false. The fundamental
axioms of traditional propositional logic are:

1) Every proposition is either true or false, but not both true and false.
2) The expressions given by defined terms are propositions.
3) Conjunction, disjunction, implication, equivalence and negation.

Using truth tables, many interpretations of the preceding translation rules can be
derived.

A tautology is a proposition formed by combining other propositions, which is
true regardless of the truth or falsehood of the forming propositions. The most im-
portant tautologies are

(p → q) ↔∼[p∧ (∼q)] ↔ (∼p)∨q (3.110)

These tautologies can be verified by substituting all the possible combinations
for p and q and verifying how the equivalence always holds true. The importance of
these tautologies is that they express the membership function for p → q in terms of
membership functions of either propositions p and ∼q or ∼p and q, thus giving the
following

μp→q(x,y) = 1− μp∩q(x,y) = 1−min
{

μp(x),1− μq(y)
}

(3.111)

μp→q(x,y) = μp∪q(x,y) = 1−max
{

1− μp(x),μq(y)
}

. (3.112)
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Instead of min and max, the product and algebraic sum for intersection and union
may be respectively used. The two equations can be verified by substituting 1 for
true and 0 for false.

Table 3.14 Truth table applied to propositions

p q p∧q p∨q p → q p ↔ q ∼p

T T T T T T F
T F F T F F F
F T F T T F T
F F F F T T T

In traditional propositional logic, there are two very important inference rules as-
sociated with implication and proposition, specifically the inferences modus ponens
and modus tollens.

Modus ponens:
Premise 1: ‘x is A’;
Premise 2: ‘IF x is A THEN y is B’;
Consequence: ‘y is B’.

Modus ponens is associated with the implication ‘A implies B’. In terms of propo-
sitions p and q, modus ponens is expressed as

[p∧ (p → q)] → q (3.113)

Modus tollens:
Premise 1: ‘y is not B’;
Premise 2: ‘IF x is A THEN y is B’;
Consequence: ‘x is not A’.

In terms of propositions p and q, modus tollens is expressed as

[(∼q)∧ (p → q)] → (∼p) (3.114)

Modus ponens plays a central role in engineering applications such as control
logic, largely due to its basic consideration of cause and effect.

Modus tollens has in the past not featured in engineering applications, and has
only recently been applied to engineering analysis logic such as in engineering de-
sign analysis with the application of FMEA and FMECA.

Although traditional fuzzy logic borrows notions from crisp logic, it is not ade-
quate for engineering applications of fuzzy control logic, because cause and effect is
the cornerstone of modelling in engineering control systems, whereas in traditional
propositional logic it is not. Ultimately, this has prompted redefinition of fuzzy im-
plication operators for engineering applications of fuzzy control logic. An under-
standing of why the traditional approach fails in engineering is essential. The ex-
tension of crisp logic to fuzzy logic is made by replacing the bivalent membership
functions of crisp logic with fuzzy membership functions.
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Thus, the IF–THEN statement:
‘IF x is A, THEN y is B’ where x ∈ X and y ∈Y
has a membership function

μp→q(x,y) ∈ [0,1] (3.115)

Note that μp→q(x,y) measures the degree of truth of the implication relation be-
tween x and y. This membership function can be defined as for the crisp case. In
fuzzy logic, modus ponens is extended to a generalised modus ponens.

Generalised modus ponens:
Premise 1: ‘x is A∗’;
Premise 2: ‘IF x is A THEN y is B’;
Consequence: ‘y is B∗’.

The difference between modus ponens and generalised modus ponens is subtle,
namely the fuzzy set A∗ is not the same as rule antecedent fuzzy set A, and fuzzy
set B∗ is not necessarily the same as rule consequent B.

d) Fuzzy Implication

Classical set theory operations can be extended from ordinary set theory to fuzzy
sets. All those operations that are extensions of crisp concepts reduce to their usual
meaning when the fuzzy subsets have membership degrees that are drawn from the
set {0,1}. Therefore, extending operations to fuzzy sets, the same symbols are used
as in set theory.

For example, let A and B be fuzzy subsets of a nonempty (crisp) set X .
The intersection of A and B is defined as

(A∩B)(t) = T (A(t),B(t)) = A(t)∧B(t) (3.116)

where:

∧ denotes the Boolean conjunction operation
(i.e. A(t)∧B(t) = 1 if A(t) = B(t) = 1
and A(t)∧B(t) = 0 otherwise).

Conversely:

∨ denotes a Boolean disjunction operation
(i.e. A(t)∨B(t) = 0 if A(t) = B(t) = 0
and A(t)∨B(t) = 1 otherwise).
This will be considered more closely later.

and:

T is a t-norm. If T = min, then we get:
(A∩B)(t) = min{A(t),B(t)} for all t ∈ X .
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If a proposition is of the form ‘u is A’ where A is a fuzzy set—for example, ‘high
pressure’—and a proposition is of the form ‘v is B’ where B is a fuzzy set—for
example, ‘small volume’—, then the membership function of the fuzzy implication
A → B is defined as

(A → B)(u,v) = f (A(u),B(v)) (3.117)

where f is a specific function relating u to v. The following is used

(A → B)(u,v) = A(u) → B(v) (3.118)

A(u) is considered the truth value of the proposition ‘u is high pressure’, B(v) is
considered the truth value of the proposition ‘v is small volume’.

e) Fuzzy Reasoning

We now turn our attention to the research of Dubois and Prade about representation
of the different kinds of fuzzy rules in terms of fuzzy reasoning on certainty and
possibility qualifications, and in terms of graduality (Dubois et al. 1992a,b,c).

Certainty rules This first kind of implication-based fuzzy rule corresponds to
fuzzy reasoning statements of the form ‘the more x is A, the more certain y lies
in B’. Interpretation of this rule gives:

‘∀u, if x = u, it is at least μA(u) certain that y lies in B’

The degree 1− μA(u) is the possibility that y is outside of B when x = u, since the
more x is A, the less possible y lies outside B, and the more certain y lies in B. In
this case, the certainty of an event corresponds to the impossibility of the contrary
event.

The conditional possibility distribution of this rule is

∀u ∈U, ∀v ∈V πy|x(v,u) ≤ max(1− μA(u),μA(v)) (3.119)

where: π is the conditional possibility distribution that y relates to x.
In the particular case where A is an ordinary subset, Eq. (3.119) yields

∀u ∈ A πy|x(v,u) ≤ μB(v)

∀u /∈ A πy|x(v,u) is completely unspecified . (3.120)

This corresponds to the implication-based modelling of a fuzzy rule with a non-
fuzzy condition.

Gradual rules This second kind of implication-based fuzzy rule corresponds to
fuzzy reasoning statements of the form ‘the more x is A, the more y is B’. Statements
involving ‘the less’ in place of ‘the more’ are easily obtained by changing A (or B)
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into its complement Ā (or B̄), due to the equivalence between ‘the more x is A’ and
‘the less x is Ā’ (with μĀ = 1− μA).

More precisely, the intended meaning of a gradual rule can be understood in the
following way: ‘the greater the degree of membership of the value of x to the fuzzy
set A and the more the value of y is considered to be in relation (in the sense of the
rule) with the value of x, the greater the degree of membership the value of y should
be to B’, i.e.

∀u ∈U min
(
μA(u),πy|x(v,u)

)≤ μB(v) . (3.121)

Possibility rules This kind of conjunction-based fuzzy rule corresponds to fuzzy
reasoning statements of the form ‘the more x is A, the more possible B is a range
for y’. Interpretation of this rule gives:

‘∀u, if x = u, it is at least μA(u) possible that B is a range for y’

This yields the conditional possibility distribution πy|x(u) to represent the rule
when x = u

∀u ∈U, ∀v ∈V min(μA(u),μB(v)) ≤ πy|x(v,u) . (3.122)

The degree of possibility of the values in B is lower bounded by μA(u).

3.3.2.6 Theory of Approximate Reasoning

Zadeh introduced the theory of approximate reasoning (Zadeh 1979). This theory
provides a powerful framework for reasoning in the face of imprecise and uncer-
tain information, typically such as for engineering design. Central to this theory is
the representation of propositions as statements, assigning fuzzy sets as values to
variables.

For example, suppose we have two interactive variables x ∈ X and y ∈ Y and
the causal relationship between x and y is known. In other words, we know that y
is a function of x, or y = f (x), and then the following inferences can be made (cf.
Fig. 3.30):

“y = f (x)” & “x = x1” → “y = f (x1)”

This inference rule states that if y = f (x) for all x∈ X and we observe that x = x1,
then y takes the value f (x1). However, more often than not, we do not know the
complete causal link f between x and y, and only certain values f (x) for some
particular values of x are known, that is

Ri : If x = xi then y = yi , for i = 1, . . . ,m (3.123)

where Ri is a particular rule-base in which the values of xi (i = 1, . . . ,m) are known.
Suppose that we are given an x ∈ X and want to find a y ∈ Y that corresponds to x
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Y

Xx = x’

y = f(x)

y = f(x’)

Fig. 3.30 Simple crisp inference

under the rule-base R = {Ri, . . . ,Rm}, then this problem is commonly approached
through interpolation.

Let x and y be linguistic variables, e.g. ‘x is high’ and ‘y is small’. Then, the
basic problem of approximate reasoning is to find a membership function of the
consequence C from the stated rule-base R = {Ri, . . . ,Rn} and the fact A, where Ri

is of the form

Ri : if x is Ai then y is Ci (3.124)

In fuzzy logic and approximate reasoning, the most important fuzzy implication
inference rule is the generalised modus ponens (GMP; Fullér 1999). As previously
indicated, the classical modus ponens inference rule states:

Premise if p then q
Fact p
Consequence q

This inference rule can be interpreted as:

If p is true and p → q (p implicates q) is true, then q is true.

The fuzzy implication inference → is based on the compositional rule of inference
for approximate reasoning, which states (Zadeh 1973):

Premise if x is A then y is B
Fact x is A′

Consequence y is B′

In addition to the phrase ‘modus ponens’ (where the term modus ponens ⇒ method
of argument), there are other special terms in approximate reasoning for the various
features of these arguments. The ‘If . . . then’ premise is called a conditional, and the
two claims are similarly called the antecedent and the consequent where:

Main premise <antecedent>
Helping premise if <antecedent> then <consequent>
Conclusion <consequent>
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The valid connection between a premise and a conclusion is known as deductive
validity.

From the classical modus ponens inference rule, the consequence B′ is de-
termined as a composition of the fact and the fuzzy implication operator B′ =
A′◦(A → B). Thus

For all v ∈V :

B′(v) = sup
u∈U

min{A′(u),(A → B)(u,v)} (3.125)

where supu∈U is the fuzzy relations composition operator.
Instead of the fuzzy sup-min composition operator, the sup-T composition oper-

ator may be used, where T is a t-norm

For all v ∈V :

B′(v) = sup
u∈U

T (A′(u),(A → B)(u,v)) (3.126)

Use of the t-norm operator comes from the crisp max–min and max–prod com-
positions, where both min and prod are t-norms. This corresponds to the product of
matrices, as the t-norm is replaced by the product, and sup is replaced by the sum.
It is clear that T cannot be chosen independently of the implication operator. Sup-
pose that A, B and A′ are fuzzy numbers, then the generalised modus ponens should
satisfy some rational properties that are given as (cf. Figs. 3.31a,b, 3.32a,b, 3.33a,b):

Property 1: basic property

if x is A then y is B
x is A
y is B

if pressure is high then volume is small
pressure is high
volume is small

Property 2: total indeterminance

if x is A then y is B
x is ¬A
y is unknown

if pressure is high then volume is small
pressure is not high
volume is unknown

where x is ¬A means that x being an element of A is impossible (defined later).

a b

Fig. 3.31 a Basic property A′ = A. b Basic property B′ = B
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Fig. 3.32 a, b Total indeterminance

Fig. 3.33 a, b Subset property

The t-norms are represented as:

Property 3: subset

if x is A then y is B
x is A′ ⊂ A
y is B

if pressure is high then volume is small
pressure is very high

volume is small
where x is A′ ⊂ A means x is an element of the subset of A′ with A.

3.3.2.7 Overview of Possibility Theory

The basic concept of possibility theory, introduced by Zadeh, is to use fuzzy sets
that no longer simply represent the gradual aspect of vague concepts such as ‘high’,
but also represent incomplete knowledge subject to uncertainty (Zadeh 1979). In
such a situation, the fuzzy variable ‘high’ represents the only information available
on some parameter value (such as pressure). In possibility theory, uncertainty is
described using dual possibility and necessity measures defined as follows (Dubois
et al. 1988):

A possibility measure ∏ defined on a finite propositional language, and valued
on [0,1], satisfies the following axioms:

a) ∏(⊥) = 0 ; ∏(�) = 1
b) ∀p,∀q , ∏(p∨q) = max[∏(p),∏(q)]
c) if p is equivalent to q, then ∏(p) = ∏(q)
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where:

⊥ and � denote the ever-false proposition (contradiction) and the ever-true
proposition (tautology) respectively.

∀p denotes ‘for all p’ and ∀q denotes ‘for all q’, and ∨ denotes a Boolean dis-
junction operation (i.e. p∨q = 0 if p = q = 0 and p∨q = 1 otherwise)

and, conversely, ∧ denotes the Boolean conjunction operation (i.e. p∧ q = 1 if
p = q = 1 and p∧q = 0 otherwise)

Axiom b) means that p ∨ q is possible as soon as one of p or q is possible,
including the case when both are so.

∏(p) = 1 means that p is to be expected but not that p is sure, since ∏(p) = 1 is
compatible with ∏(¬p) = 1 as well.

On the contrary, ∏(p) = 0 implies ∏(¬p) = 1 where ¬p means that p is impos-
sible.

a) Deviation of Possibility Theory from Fuzzy Logic

It must be emphasised that only the following proposition holds in the general case,
since p∧q is rather impossible

∏(p∧q)≤ min
(
∏(p) , ∏(q)

)
(3.127)

(e.g. if q = ¬p, p∧ q is ⊥, which is impossible) while p as well as q may remain
somewhat possible under a state of incomplete information.

More generally, ∏(p∧q) is not only a function of ∏(p) and of ∏(q). This departs
completely from fully truth functional multiple-valued calculi, which is referred
to as fuzzy logic (Lee 1972), specifically where the truth of vague propositions is
a matter of degree.

In possibility theory, a necessity measure N is associated by duality with a pos-
sibility measure ∏, such that

∀p , N(p) = 1−∏(¬p) (3.128)

It means that p is all the more certain as ¬p is impossible. Axiom b) is then equiva-
lent to

∀p , ∀q , N(p∧q) = min(N(p),N(q)) (3.129)

This means that for being certain about p∧q, we should be both certain of p and
certain of q, and that the level of certainty of p∧q is the smallest level of certainty
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attached to p and to q. Note that

N(p) > 0 ⇔ ∏(¬p) < 1 ⇒ ∏(p) = 1

Since:

max
(
∏(p),∏(¬p)

)
= ∏(p∨¬p) = ∏(�) = 1

And:

N(p∨q)≥ max(N(p),N(q)) (3.130)

This means we may be somewhat certain of the imprecise statement p∨q without
being at all certain that p is true or that q is true.

The following conventions are adopted in possibility theory where the possible
values of the pair of necessity and possibility measures, (N, ∏), are represented

∏(p) = max
ω∈[p]

π(ω) (3.131)

where:

∏(p) is the possibility measure of proposition p
ω is a representation of available knowledge
[p] is the set of interpretations that make p true, i.e. the models of p
π(ω) is the possibility distribution of available knowledge.

Thus, starting with the plausibility of available knowledge represented by the distri-
bution π of possible interpretations of such available knowledge, two functions of
the possibility measure ∏ and the necessity measure N are defined that enable us to
make an assessment of the uncertainty surrounding the proposition p. Ignorance is
represented by a uniform possibility distribution equal to 1.

Conversely, given certain constraints i = 1,n

N(pi) ≥ αi > 0 for i = 1,n (3.132)

where:

N(pi) is the certainty measure of a particular proposition p in the set with con-
straints i = 1,n
αi is the possibility distribution with the least restrictive constraints.

Thus, expressing a level of certainty for a collection of propositions under certain
constraints, we can compute the largest possibility distribution αi that is the least
restricted by these constraints.

It should be noted that probabilistic reasoning does not allow for the distinction
between:

the possibility that p is true (∏(p) = 1) and
the certainty that p is true (N(p) = 1),
nor between:
the certainty that p is false (N(¬p) = 1 ⇔ ∏(p) = 0) and
the absence of certainty that p is true (N(p) = 0 ⇔ ∏(¬p) = 1).
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Possibility theory thus contrasts with probability theory in which:

P(¬p) = 1−P(p), i.e. the probability that p is impossible is 1 minus the proba-
bility that p is possible, and therefore:
P(¬p) = 1 ⇔ P(p) = 0, i.e. the probability that p is impossible is true implies
that the probability of p being possible is false, and
N(p) = 0 does not entail N(¬p) = 1.

While in possibility theory, if the certainty measure N of the possibility of the propo-
sition p is false, then this does not necessarily imply that the certainty measure N
of the impossibility of proposition p is true. In this context, the distinction between
possibility and certainty is crucial for distinguishing between contingent and sure
effects respectively in engineering design analyses such as FMEA and FMECA.

The incomplete states of knowledge captured by possibility theory cannot be
modelled by a single, well-defined probability distribution. They rather correspond
to what might be called ‘higher-order uncertainty’, which actually means ‘ill-known
probabilities’ (Cayrac et al. 1995). This type of uncertainty is modelled either by
second-order probabilities or by interval-valued probabilities, which is complex.

Possibility theory offers a very simple substitute to these higher-order uncertainty
theories, as well as a common framework for the modelling of uncertainty and im-
precision in reasoning applications such as engineering design analysis. The use of
max and min operations in this case satisfies the requirement for computational sim-
plicity, and for the qualitative nature of uncertainty that can be expressed in many
real-world applications. Thus, in possibility theory the modelling of uncertainty re-
mains qualitative (Dubois et al. 1988).

b) Rationals for the Choice of Possibility Theory in Engineering Design Analysis

The complexity arising from an integration of engineering systems and their inter-
actions makes it impossible to gather meaningful statistical data that could allow
for the use of objective probabilities in engineering design analysis. Even subjective
probabilities in design analysis (for example, where all the possible failure modes
in an FMECA may be ordered in a criticality ranking according to prior knowledge)
are fundamentally not acceptable to process or systems engineering experts.

For example, process design engineers would not be able to compare failure
modes involving different equipment, or different operational domains (thermal,
electrical, mechanical, etc.) in complex systems integration. At best, a partial prior
ordering of failure modes identified for each individual system may be made. In ad-
dition, the number of failure modes that are generally represented in an FMECA do
not encompass all the possible failures that could arise in reality as a result of a com-
plex integration of systems. This complexity makes any engineering design knowl-
edge base incomplete. The only intended purpose of the FMECA in engineering
design analysis would therefore be primarily as a support tool for the understanding
of design integrity, in which failure consequences are initially ranked by decreas-
ing compatibility with their failure modes, and then ranked according to their direct
relevance to an applicable measure of severity.
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3.3.2.8 Uncertainty and Incompleteness in Engineering Design Analysis

Uncertainty and incompleteness is inherent to engineering design analysis. Uncer-
tainty, arising from the complex integration of systems, can best be expressed in
qualitative terms, necessitating the results to be presented in the same qualitative
measures. This causes problems in analysis based upon a probabilistic framework.
The only acceptable framework for an approach to qualitative probability is that of
comparative probabilities proposed by Fishburn (1986), but its application is not
easy at the practical level because its representational requirements are exponential
(Cayrac et al. 1994).

An important question is to decide what kind of possibility theory or fuzzy logic
representation (in the form of fuzzy sets) is best suited for engineering design anal-
ysis. The use of conjunction-based representations is perceived as not suitable from
the point of view of logic that is automated, because conjunction-based fuzzy rules
do not fit well with the usual meaning of rules in artificial intelligence-based expert
systems. This is important because it is eventually within an expert system frame-
work that engineering design analysis such as FMEA and FMECA should be estab-
lished, in order to be able to develop intelligent computer automated methodology
in determining the integrity of engineering design. The concern raised earlier that
qualitative reasoning algorithms may not be suitable for FMEA or FMECA is thus
to a large extent not correct.

This consideration is based on the premise that the FMEA or FMECA formal-
ism of analysis requires unique predictions of system behaviour and, although some
vagueness is permissible due to uncertainty, it cannot be ambiguous, despite the
consideration that ambiguity is an inherent feature of computational qualitative rea-
soning (Bull et al. 1995b).

Implication-based representations of fuzzy rules may be viewed as constraints
that restrict a set of possible solutions, thus eliminating any ambiguity. A possi-
ble explanation for the concern may be that two predominate types of engineering
reasoning applied in engineering design analysis—systems engineering and knowl-
edge engineering—do not have the same background. The former is usually data-
driven, and applies analytic methods where analysis models are derived from data.
In general, fuzzy sets are also viewed as data, resulting in any form of reasoning
methodology to be based on accumulating data. Incoherency issues are not con-
sidered because incoherence is usually unavoidable in any set of data. On the con-
trary, knowledge engineering is knowledge-driven, and a fuzzy rule is an element
of knowledge that constrains a set of possible situations. The more fuzzy rules, the
more information, and the more precise one can get. Fuzzy rules clearly stand at the
crossroad of these two types of engineering applied to engineering design analysis.

In the use of FMECA for engineering design analysis, the objective is to de-
velop a flexible representation of the effects and consequences of failure modes
down to the relevant level of detail, whereby available knowledge—whether incom-
plete or uncertain—can be expressed. The objective thus follows qualitative analysis
methodology in handling uncertainty with possibility theory and fuzzy sets in fault
diagnostic applications, utilising FMECA (Cayrac et al. 1994).
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An expansion of FMEA and FMECA for engineering design analysis is devel-
oped in this handbook, particularly for the application of reliability assessment dur-
ing the preliminary and detail design phases of the engineering design process.
The expanded methodology follows the first part of the methodology proposed by
Cayrac (Cayrac et al. 1994), but not the second part proposed by Cayrac, which is
a further exposition of the application of fault diagnosis using FMECA. A detailed
description of introducing uncertainty in such a causal model is given by Dubois
and Prade (Dubois et al. 1993).

3.3.2.9 Modelling Uncertainty in FMEA and FMECA

In modelling uncertainty with regard to possible failure as described by failure
modes in FMEA and FMECA, consider the following: let D be the set of possi-
ble failure modes, or disorders {d1, . . . ,di, . . . ,dp} of a given causal FMEA and
FMECA analysis, and let M be a set of observable consequences, or manifestations
{m1, . . . ,mj, . . . ,mn} related to these failure modes. In this model, disorders and
manifestations are either present or absent. For a given disorder d, we express its
(more or less) certain manifestations, gathered in the fuzzy set M(d)+, and those
that are (more or less) impossible, gathered in the fuzzy set M(d)−.

Thus, the fuzzy set M(d)+ contains manifestations that (more or less) surely
can be caused by the presence of a given disorder d alone. In terms of membership
functions

μM(d)+(m) = 1 . (3.133)

This means that the manifestation m exists in the fuzzy set of certain manifestations
for a given disorder d. This also means that m is always present when d alone is
present.

Conversely, the set M(d)− contains manifestations that (more or less) surely
cannot be caused by d alone. Thus

μM(d)−(m) = 1 . (3.134)

This means that the manifestation m does not exist in the fuzzy set of impossible
manifestations for a given disorder d. This also means that m is never present when d
alone is present.

Complete ignorance regarding the relation between a disorder and a manifesta-
tion (we do not know whether m can be a consequence of d) is expressed by

μM(d)+(m) = μM(d)−(m) = 0 . (3.135)

Intermediate membership degrees allow a gradation of the uncertainty.
The fuzzy sets M(d)+ and M(d)− are not possibility distributions because man-

ifestations are clearly not mutually exclusive. Furthermore, the two membership
functions μM(d)+(m) and μM(d)−(m) both express certainty levels that the manifes-
tation m is present and absent respectively, when disorder d alone takes place.
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a) Logical Expression of FMECA

FMECA information (without uncertainty) can be expressed as a theory T consist-
ing of a collection of clauses:

¬di∨mj corresponds to a non-fuzzy set of certain manifestations M(di)+, which
means either that the disorders ¬di are impossible or that the manifestations mj

are possible in a non-fuzzy set of manifestations M(di)+,

¬di ∨¬mk corresponds to a non-fuzzy set of impossible manifestations M(di)−,
which means either that the disorders ¬di are impossible or that manifesta-
tions ¬mk are impossible in a non-fuzzy set of manifestations M(di)− (i.e. man-
ifestations that cannot be caused by di alone),

where ∨ denotes the Boolean disjunction operation
(¬di ∨mj = 0 if ¬di = mj = 0 , and ¬di ∨mj = 1 otherwise).

A disjunction is associated with indicative linguistic statements compounded with
either . . . or, such as (¬di ∨mj) ⇒ either the disorders are impossible or the mani-
festations are possible. However, the term disjunction is currently more often used
with reference to linguistic statements or well-formed formulae (wff ) of associated
form occurring in formal languages. Logicians distinguish between the abstracted
form of such linguistic statements and their roles in arguments and proofs, and the
meanings that must be assigned to such statements to account for those roles (Ar-
tale et al. 1998). The abstracted form represents the syntactic and proof-theoretic
concept, and the meanings the semantic or truth-theoretic concept in disjunction.
Disjunction is a binary truth-function, the output of which is true if at least one of
the input values (disjuncts) is true, and false otherwise. Disjunction together with
negation provide sufficient means to define all truth-functions—hence, the use in
a logical expression of FMECA.

If the disjunctive constant ∨ (historically suggestive of the Latin vel (or)) is
a primitive constant of the linguistic statement, there will be a clause in the inductive
definition of the set of well-formed formulae (wffs).

Using α and β as variables ranging over the set of well-formed formulae, such
a clause will be:

If α is a wff and β is a wff, then α ∨β is a wff

where α ∨β is the disjunction of the wffs α and β , and interpreted as ‘[name of first
wff] vel (‘or’) [name of second wff]’.

In presentations of classical systems in which the conditional implication → or
the subset ⊃ and the negational constant ¬ are taken as primitive, the disjunctive
constant ∨ will also feature in the abbreviation of a wff:

¬α → β (or ¬α¬β ) as α ∨β

Alternatively, if the conjunctive & has already been introduced as a defined constant,
then ∨ will also feature in the abbreviation of a wff:

¬(¬α & ¬β ) as α ∨β
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In its simplest, classical semantic analysis, a disjunction is understood by reference
to the conditions under which it is true, and under which it is false. Central to the
definition is a valuation, a function that assigns a value in the set {1,0}. In general,
the inductive truth definition for a linguistic statement corresponds to the definition
of its well-formed formulae. Thus, for a propositional linguistic statement, it will
take as its basis a clause according to which an elemental part is true or false ac-
cordingly as the valuation maps it to 1 or to 0. In systems in which ∨ is a primitive
constant, the clause corresponding to disjunction takes α ∨β to be true if at least
one of α , β is true, and takes it to be false otherwise. Where ∨ is introduced by the
definitions given earlier, the truth condition can be computed for α ∨β from those
of the conditional (→ or ⊃) or conjunction (&) and negation (¬).

In slightly more general perspective, then, if the disorders interact in the mani-
festations they cause, di can be replaced by a conjunction of dk.

This general perspective is justification of the form (Cayrac et al. 1994):

¬di1 ∧·· ·∧¬di(k)∨mj (3.136)

where the conjunctive∧ is used in place of &. Thus, ‘intermediary entities’ between
disorders and manifestations are allowed. In other words, in failure analysis, inter-
mediary ‘effects’ feature between failure modes and their consequences, which is
appropriate to the theory on which the FMECA is based. This logical modelling of
FMECA is, however, not completely satisfactory, as ¬di∨¬mk means either that the
disorder ¬di is impossible or that the manifestations¬mk are impossible. This could
mean that di disallows mk, which is different to the fuzzy set μM(d)−(m) > 0, since
the disorder ¬di being impossible only means that di alone is not capable of produc-
ing mk. This does not present a problem under a single failure mode assumption but
it does complicate the issue if simultaneous failure modes or disorders are allowed.

In Sect. 3.3.2.1, failure mode was described from three points of view:

• A complete functional loss.
• A partial functional loss.
• An identifiable condition.

For reliability assessment during the engineering design process, the first two fail-
ure modes—specifically, a complete functional loss, and a partial functional loss—
can be practically considered. The determination of an identifiable condition would
be considered when contemplating the possible causes of a complete functional
loss or of a partial functional loss. Thus, simultaneous failure modes or disorders
in FMECA would imply both a complete functional loss and a partial functional
loss—which is contradictory. The application of the fuzzy set μM(d)−(m) > 0 is
thus valid in FMECA, since the implication is valid that di alone is not capable of
producing mk.

However, in the logical expressions of FMECA, two difficulties arise

¬di ∨mk and ¬d j ∨mk imply ¬(di ∧d j)∨mk (3.137)
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Equation (3.137) implies that those clauses where either disorder ¬di is im-
possible or manifestations mk are possible in a non-fuzzy set of certain man-
ifestations M(di)+, and where either disorder ¬d j is impossible or manifesta-
tions mk are possible in a non-fuzzy set of certain manifestations M(d j)+ imply that
either disorder ¬di and disorder ¬d j are impossible or manifestations mk are pos-
sible in non-fuzzy sets of certain manifestations M(di)+ and M(d j)+. This logi-
cal approach implicitly involves the assumption of disorder independence (i.e. in-
dependent failure modes), leading to manifestations of simultaneous disorders. In
other words, it assumes failure modes are independent but may occur simultane-
ously.

This approach may be in contradiction with knowledge about joint failure modes
expressing ¬(di ∧d j)∨¬mk where either disorder ¬di and disorder ¬d j are impos-
sible or where the relating manifestations mk are impossible in the non-fuzzy sets
of manifestations M(di)− and M(d j)−.

The second difficulty that arises in the logical expressions of FMECA is

¬di ∨¬mk and ¬d j ∨¬mk imply ¬(di ∧d j)∨¬mk (3.138)

Equation (3.138) implies that those clauses where either disorder ¬di is im-
possible or manifestations ¬mk are impossible in the non-fuzzy set of M(di)−
that contains manifestations that cannot be caused by di alone, and where either
disorder ¬d j is impossible or manifestations ¬mk are impossible in a non-fuzzy
set M(d j)− that contains manifestations that cannot be caused by d j alone imply
that either disorder ¬di and disorder ¬d j are impossible or manifestations ¬mk

are impossible in the non-fuzzy sets M(di)− and M(d j)−, which together contain
manifestations that cannot be caused by di and d j alone. This is, however, in dis-
agreement with the assumption

M− ({di,d j
})

= M− ({di})∩M− ({d j
})

(3.139)

Equation (3.139) implies that the fuzzy set of accumulated manifestations that
cannot be caused by the simultaneous disorders {di,d j} is equivalent to the intersect
of the fuzzy set of manifestations that cannot be caused by the disorder di alone,
and the fuzzy set of manifestations that cannot be caused by the disorder d j alone
(it enforces a union for M +({di,d j}).

In the logical approach, if ¬di ∨¬mk and ¬d j ∨¬mk hold, this disallows the
simultaneous assumption that di and d j are present, which is then not a problem
under the single failure mode assumption, as indicated in Sect. 3.3.2.1.

On the contrary, mk ∈ M + (d j)∩M − (di) does not forbid {di,d j} from being
a potential explanation of mk even if the presence (or absence) of mk eliminates di

(or d j) alone.
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b) Expression of Uncertainty in FMECA

In the following logical expressions of FMECA, the single failure mode assumption
is made (i.e. either a complete functional loss or a partial functional loss). Uncer-
tainty in FMECA can be expressed using possibilistic logic in terms of a necessity
measure N. For example

N (¬di ∨mj) ≥ αi j (3.140)

where:

N(¬di ∨mj) is the certainty measure of a particular proposition that either
disorder ¬di is impossible or manifestations mj are possible
in a non-fuzzy set of certain manifestations M(di)+, and

αi j is the possibility distribution relating to constraint i of the
disorder di and constraint j of manifestation mj.

The generalised modus ponens of possibilistic logic (Dubois et al. 1994) is

N(di) ≥ γi and N(¬di ∨mj) ≥ αi j

⇒ N(mj) ≥ min(γi,αi j) (3.141)

where:

N(di) is the certainty measure of the proposition that the disorder di is certain,
γi is the possibility distribution relating to constraint i of disorder di and

N(mj) is the certainty measure of the proposition that the manifestation mj is
certain, and bound by the minimum cut set of the possibility distribu-
tions γi and αi j . In other words, the presence of the manifestation mj is
all the more certain, as the disorder di is certainly present, and that mj

is a certain consequence of di.

3.3.2.10 Development of the Qualitative FMECA

A further extension of the FMECA is considered, in which representation of indirect
links between disorders and manifestations are also made. In addition to disorders
and manifestations, intermediate entities called events are considered (Cayrac et al.
1994).

Referring to Sect. 3.3.2.1, these events may be viewed as effects, where the ef-
fects of failure are associated with the immediate results within the component’s or
assembly’s environment.

Disorders (failure modes) can cause events (effects) and/or manifestations (con-
sequences), where events themselves can cause other events and/or manifestations
(i.e. failure modes can cause effects and/or consequences, where effects themselves
can cause other effects and/or consequences). Events may not be directly observ-
able.
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An FMECA can therefore be defined by a theory consisting of a collection of
clauses of the form

¬di ∨mj , ¬dk ∨ e1 , ¬em ∨ en , ¬ep ∨mq

and, to express negative information,

¬di′ ∨¬mj′ , ¬dk′ ∨¬e1′ , ¬em′ ∨¬e′n , ¬ep′ ∨mq′

where d represents disorders (failure modes), m represents manifestations (con-
sequences), and e represents events (effects). All these one-condition clauses are
weighted by a lower bound equal to 1 if the implication is certain. The positive
and negative observations (m or ¬m) can also be weighted by a lower bound of
a necessity degree. From the definitions above, it is possible to derive the direct
relation between disorders and manifestations (failure modes and consequences),
characterised by the fuzzy sets μM(d)+(m) and μM(d)−(m) as shown in the following
relations (Dubois et al. 1994):

μM(di)+(mj) = αi j

μM(di)−(mj) = γi j (3.142)

The extended FMECA allows for an expression of uncertainty in engineering
design analysis that evaluates the extent to which the identified fault modes can
be discriminated during the detail design phase of the engineering design process.
The various failure modes are expressed with their (more or less) certain effects
and consequences. The categories of more or less impossible consequences are also
expressed if necessary. After this refinement stage, if a set of failure modes cannot
be discriminated in a satisfying way, the inclusion of the failure mode in the analysis
is questioned.

The discriminability of two failure modes di and d j is maximum when a sure
consequence of one is an impossible consequence of the other. This can be extended
to the fuzzy sets previously defined. The discriminability of a set of disorders D can
be defined by

Discrimin(D) = min
di,d j∈D,i�= j

max(F)

Where: F = cons(M(di)+,M(d j)−) ,

cons(M(di)−,M(d j)+) (3.143)

and cons(M(di)+, M(d j)−) is the consistency of disorders di and d j in the non-
fuzzy set of certain manifestations M(di)+, as well as in the non-fuzzy set of
impossible manifestations M(d j)−:

and cons(M(di)−, M(d j)+) is the consistency of disorders di and d j in the non-
fuzzy set of impossible manifestations M(di)−, as well as in the non-fuzzy set of
certain manifestations M(d j)+.
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For example, referring to the three types of failure modes:

The discriminability of the failure mode total loss of function (TLF) represented
by the disorder d1 and failure mode partial loss of function (PLF) represented by
disorder d2 is: Discrimin ({d1,d2}) = 0.

The discriminability of the failure mode total loss of function (TLF) represented
by disorder d1 and failure mode potential failure condition (PFC) represented by
disorder d3 is: Discrimin ({d1,d3}) = 0.5.

The discriminability of the failure mode partial loss of function (PLF) repre-
sented by disorder d2 and failure mode potential failure condition (PFC) repre-
sented by disorder d3 is: Discrimin ({d2,d3}) = 0.5.

a) Example of Uncertainty in the Extended FMECA

Tables 3.15 to 3.19 are extracts from an FMECA worksheet of a RAM analysis
field study conducted on an environmental plant for the recovery of sulphur dioxide
emissions from a non-ferrous metals smelter to produce sulphuric acid. The FMECA
covers the pump assembly, pump motor, MCC and control valve components, as
well as the pressure instrument loops of the reverse jet scrubber pump no. 1.

Three failure modes are normally defined in the FMECA as:

• TLF ⇒ ‘total loss of function’,
• PLF ⇒ ‘partial loss of function’,
• PFC ⇒ ‘potential failure condition’.

Five consequences are normally defined in the FMECA as:

• Safety (by risk description)
• Environmental
• Production
• Process
• Maintenance.

The ‘critical analysis’ column of the FMECA worksheet includes items num-
bered 1 to 5 that indicate the following:

(1) Probability of occurrence (given as a percentage value)
(2) Estimated failure rate (the number of failures per year)
(3) Severity (expressed as a number from 0 to 10)
(4) Risk (product of 1 and 3)
(5) Criticality value (product of 2 and 4).

The semi-qualitative criticality values are ranked accordingly:

(1) High criticality ⇒ +6 onwards
(2) Medium criticality ⇒ +3 to 6 (i.e. 3.1 to 6.0)
(3) Low criticality ⇒ +0 to 3 (i.e. 0.1 to 3.0)
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Table 3.15 Extract from FMECA worksheet of quantitative RAM analysis field study: RJS pump no. 1 assembly

System Assembly Failure Failure Failure effect Failure Cause of failure Critical analysis
description mode consequence

Reverse
jet
scrubber

RJS pump
no. 1

Shaft
leakage

TLF Unsafe operating
conditions for
personnel

Injury risk Seal elements broken
or pump shaft
damaged due to loss of
alignment or seals not
correctly fitted

(1) 50%
(2) 2.50
(3) 11
(4) 5.5
(5) 13.75
High criticality

Reverse
jet
scrubber

RJS pump
no. 1

Shaft
leakage

TLF Unsafe operating
conditions for
personnel

Injury risk Seal elements broken
or pump shaft
damaged due to the
seal bellow cracking
because the rubber
hardens in service

(1) 50%
(2) 2.50
(3) 11
(4) 5.5
(5) 13.75
High criticality

Reverse
jet
scrubber

RJS pump
no. 1

Restricted or
no
circulation

TLF Prevents quenching of
the gas and protection
of the RJS structure
due to reduced flow.
Standby pump should
start up and emergency
water system may start
up and supply water to
weir bowl. Gas supply
may be cut to plant.
RJS damage unlikely

Maintenance Loss of drive due to
coupling connection
failure caused by loss
of alignment or loose
studs

(1) 100%
(2) 3.00
(3) 2
(4) 2.00
(5) 6.00
Medium/high
criticality
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Table 3.15 (continued)

System Assembly Failure Failure Failure effect Failure Cause of failure Critical analysis
description mode consequence

Reverse
jet
scrubber

RJS pump
no. 1

Restricted
or no
circulation

TLF Prevents quenching of
the gas and protection
of the RJS structure
due to reduced flow.
Standby pump should
start up and emergency
water system may start
up and supply water to
weir bowl. Gas supply
may be cut to plant.
RJS damage unlikely

Maintenance Air intake at shaft seal
area due to worn or
damaged seal faces
caused by solids
ingress or loss of seal
flushing

(1) 100%
(2) 2.50
(3) 2
(4) 2.00
(5) 5.00
Medium criticality

Reverse
jet
scrubber

RJS pump
no. 1

Excessive
vibration

PFC No immediate effect
other than potential
equipment damage

Maintenance Bearing deterioration
due to worn coupling
out of alignment

(1) 100%
(2) 2.00
(3) 1
(4) 1.0
(5) 2.00
Low criticality

Reverse
jet
scrubber

RJS pump
no. 1

Excessive
vibration

PFC No immediate effect
other than potential
equipment damage

Maintenance Bearing deterioration
due to low barrel oil
level or leaking seals

(1) 100%
(2) 1.00
(3) 1
(4) 1.0
(5) 1.00
Low criticality

Reverse
jet
scrubber

RJS pump
no. 1

Excessive
vibration

PFC No immediate effect
other than potential
equipment damage

Maintenance Cavitations due to
excessive flow or
restricted suction
condition

(1) 100%
(2) 1.50
(3) 1
(4) 1.0
(5) 1.50
Low criticality
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Table 3.16 Extract from FMECA worksheet of quantitative RAM analysis field study: motor RJS pump no. 1 component

Assembly Component Failure
description

Failure
mode

Failure effect Failure consequence Cause of failure Critical analysis

RJS
pump
no. 1

Motor
RJS pump
no. 1

Motor fails
to start or
drive pump

TLF Motor failure prevents
quenching of the gas and
the protection of the RJS
structure due to reduced
flow. Standby pump
should start up
automatically

Maintenance Loose or corroded
connections or motor
terminals

(1) 100%
(2) 0.50
(3) 2
(4) 2.0
(5) 1.00
Low criticality

RJS
pump
no. 1

Motor
RJS pump
no. 1

Motor fails
to start or
drive pump

TLF Motor failure prevents
quenching of the gas and
the protection of the RJS
structure due to reduced
flow. Standby pump
should start up
automatically

Maintenance Motor winding short or
insulation fails

(1) 100%
(2) 0.25
(3) 2
(4) 2.0
(5) 0.50
Low criticality

RJS
pump
no. 1

Motor
RJS pump
no. 1

Motor
cannot be
stopped or
started
locally

TLF If required to respond in
an emergency failure of
motor, this could result in
injury risk

Injury risk Local stop/start switch
fails

(1) 50%
(2) 0.25
(3) 11
(4) 5.5
(5) 1.38
Low criticality

RJS
pump
no. 1

Motor
RJS pump
no. 1

Motor
overheats
and trips

PFC Motor failure prevents
quenching of the gas and
the protection of the RJS
structure due to reduced
flow. Standby pump
should start up
automatically

Maintenance Motor winding short or
insulation fails

(1) 100%
(2) 0.25
(3) 1
(4) 1.0
(5) 0.25
Low criticality
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Table 3.16 (continued)

Assembly Component Failure
description

Failure
mode

Failure effect Failure consequence Cause of failure Critical analysis

RJS
pump
no. 1

Motor
RJS pump
no. 1

Motor
overheats
and trips

PFC Motor failure prevents
quenching of the gas and
the protection of the RJS
structure due to reduced
flow. Standby pump
should start up
automatically

Maintenance Bearings fail due to lack
of or to excessive
lubrication

(1) 100%
(2) 0.50
(3) 1
(4) 1.0
(5) 0.50
Low criticality

RJS
pump
no. 1

Motor
RJS pump
no. 1

Motor
vibrates
excessively

PFC Motor failure prevents
quenching of the gas and
the protection of the RJS
structure due to reduced
flow. Standby pump
should start up
automatically

Maintenance Bearings worn or
damaged

(1) 100%
(2) 0.50
(3) 1
(4) 1.0
(5) 0.50
Low criticality
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Table 3.17 Extract from FMECA worksheet of quantitative RAM analysis field study: MCC RJS pump no. 1 component

Assembly Component Failure
description

Failure
mode

Failure effect Failure consequence Cause of failure Critical analysis

RJS
pump
no. 1

MCC RJS
pump
no. 1

Motor fails
to start upon
command

TLF Motor failure starting
upon command prevents
the standby pump to start
up automatically

Maintenance Electrical supply or
starter failure

(1) 100%
(2) 0.25
(3) 2
(4) 2.0
(5) 0.50
Low criticality

RJS
pump
no. 1

MCC RJS
pump
no. 1

Motor fails
to start upon
command

TLF Motor failure starting
upon command prevents
the standby pump to start
up automatically

Maintenance High/low voltage
defective fuses or circuit
breakers

(1) 100%
(2) 0.25
(3) 2
(4) 2.0
(5) 0.50
Low criticality

RJS
pump
no. 1

MCC RJS
pump
no. 1

Motor fails
to start upon
command

TLF Motor failure starting
upon command prevents
the standby pump to start
up automatically

Maintenance Control system wiring
malfunction due to hot
spots

(1) 100%
(2) 0.25
(3) 2
(4) 2.0
(5) 0.50
Low criticality
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Table 3.18 Extract from FMECA worksheet of quantitative RAM analysis field study: RJS pump no. 1 control valve component

Assembly Component Failure
description

Failure
mode

Failure effect Failure consequence Cause of failure Critical analysis

RJS
pump
no. 1

Control
valve

Fails to open TLF Prevents discharge of
acid from the pump that
cleans and cools gas and
protects the RJS. Flow
and pressure protections
would prevent damage.
May result in downtime
if it occurs on standby
pump when needed

Production No PLC output due to
modules electronic fault
or cabling

(1) 100%
(2) 0.50
(3) 6
(4) 6.0
(5) 3.00
Low/medium criticality

RJS
pump
no. 1

Control
valve

Fails to open TLF Prevents discharge of
acid from the pump that
cleans and cools gas and
protects the RJS. Flow
and pressure protections
would prevent damage.
May result in downtime
if it occurs on standby
pump when needed

Production Solenoid valve fails,
failed cylinder actuator or
air receiver failure

(1) 100%
(2) 0.50
(3) 6
(4) 6.0
(5) 3.00
Low/medium criticality
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Table 3.19 Extract from FMECA worksheet of quantitative RAM analysis field study: RJS pump no. 1 instrument loop (pressure) assembly

Assembly Component Failure
descrip-
tion

Failure
mode

Failure effect Failure
conse-
quence

Cause of failure Critical analysis

RJS
pump
no. 1 in-
strument
loop
(pressure)

Instrument
(pressure. 1)

Fails to
provide
accurate
pressure
indication

TLF Fails to permit pressure
monitoring

Maintenance Restricted sensing port due to
blockage by chemical or
physical action

(1) 100%
(2) 3.00
(3) 2
(4) 2.0
(5) 6.00
Medium/high criticality

RJS
pump
no. 1 in-
strument
loop
(pressure)

Instrument
(pressure. 2)

Fails to
detect
low-
pressure
condition

TLF Does not permit essential
pressure monitoring and can
cause damage to the pump
due to lack of mechanical
seal flushing

Maintenance Pressure switch fails due to
corrosion or relay or cable
failure

(1) 100%
(2) 0.50
(3) 2
(4) 2.0
(5) 1.00
Low criticality

RJS
pump
no. 1 in-
strument
loop
(pressure)

Instrument
(pressure. 2)

Fails to
provide
output
signal for
alarm
condition

TLF Does not permit essential
pressure monitoring and can
cause damage to the pump
due to lack of mechanical
seal flushing

Maintenance PLC alarm function or
indicator fails

(1) 100%
(2) 0.30
(3) 2
(4) 2.0
(5) 0.60
Low criticality
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To introduce uncertainty in this analysis, according to the theory developed for
the extended FMECA, the following approach is considered:

• Express the various failure modes, including their (more or less) certain conse-
quences (i.e. the more or less certainty that the consequence can or cannot occur)

• Present the number of uncertainty levels in linguistic terms
• For a given failure mode, sort the occurrence of the consequences into a specific

range of (6+1) categories:

– Three levels of more or less certain consequences (‘completely certain’, ‘al-
most certain’, ‘likely’)

– Three levels of more or less impossible consequences (‘completely impossi-
ble’, ‘almost impossible’, ‘unlikely’)

– One level for ignorance.

The approach is thus initiated by expressing the various failure modes, along with
their (more or less) certain consequences. The discriminability of the failure modes

Table 3.20 Uncertainty in the FMECA of a critical control valve

Compo- Failure Failure Failure Failure (1) (1) Critical
nent description mode consequence cause μM(d)+ μM(d)− analysis

Control
valve

Fails to open TLF Production No PLC output
due to modules
electronic fault
or cabling

0.6 0.4 (2) 0.5
(3) 6
(4) 3.6 (or
not—2.4)
(5) 1.8 (or
not—1.2)
Low criticality

Control
valve

Fails to open TLF Production Solenoid valve
fails, due to
failed cylinder
actuator or air
receiver failure

0.6 0.4 (2) 0.5
(3) 6
(4) 3.6 (or
not—2.4)
(5) 1.8 (or
not—1.2)
Low criticality

Control
valve

Fails to
seal/close

TLF Production Valve disk
damaged due
to corrosion or
wear

0.8 0.2 (2) 0.5
(3) 6
(4) 4.8 (or
not—1.2)
(5) 2.4 (or
not—0.6)
Low criticality

Control
valve

Fails to
seal/close

TLF Production Valve stem
cylinders
seized due to
chemical
deposition or
corrosion

0.8 0.2 (2) 0.5
(3) 6
(4) 4.8 (or
not—1.2)
(5) 2.4 (or
not—0.6)
Low criticality
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with their (more or less) certain consequences is checked. If this is not sufficient,
then the question is explored whether some of the (more or less) certain conse-
quences of one failure mode could not be expressed as more or less impossible
for some other fault modes. The three categories of more or less impossible con-
sequences are thus indicated whenever necessary, to allow a better discrimination.
After this refinement stage, if a set of failure modes still cannot be discriminated in
a satisfying way, then the observability of the consequence should be questioned.

b) Results of the Qualitative FMECA

As an example, the critical control valve considered in the FMECA chart of Ta-
ble 3.18 has been itemised for inclusion in an extended FMECA chart relating to
the discriminated failure mode, TLF, along with its (more or less) certain conse-

Table 3.21 Uncertainty in the FMECA of critical pressure instruments

Compo- Failure Failure Failure Failure (1) (1) Critical
nent description mode consequence cause μM(d)+ μM(d)− analysis

Instru-
ment
(pres-
sure. 1)

Fails to detect
low-pressure
condition

TLF Maintenance Pressure
switch fails
due to
corrosion or
relay or cable
failure

0.6 0.4 (2) 0.50
(3) 2
(4) 1.2 (or
not—0.8)
(5) 0.6 (or
not—0.4)
Low criticality

Instru-
ment
(pres-
sure. 1)

Fails to
provide
accurate
pressure
indication

TLF Maintenance Restricted
sensing port
due to
blockage by
chemical or
physical action

0.8 0.2 (2) 3.00
(3) 2
(4) 1.6 (or
not—0.4)
(5) 4.8 (or
not—1.2)
Medium
criticality

Instru-
ment
(pres-
sure. 2)

Fails to detect
low-pressure
condition

TLF Maintenance Pressure
switch fails
due to
corrosion or
relay or cable
failure

0.6 0.4 (2) 0.50
(3) 2
(4) 1.2 (or
not—0.8)
(5) 0.6 (or
not—0.4)
Low criticality

Instru-
ment
(pres-
sure. 2)

Fails to
provide output
signal for
alarm
condition

TLF Maintenance PLC alarm
function or
indicator fails

0.8 0.2 (2) 3.00
(3) 2
(4) 1.6 (or
not—0.4)
(5) 4.8 (or
not—1.2)
Medium
criticality
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quences, given in Tables 3.20 and 3.21. To simplify, it is assumed that all the events
are directly observable—that is, each effect is non-ambiguously associated to a con-
sequence, although the same consequence can be associated to other effects (i.e. the
effects, or events, are equated to their associated consequences, or manifestations).
The knowledge expressed in Tables 3.20 and 3.21 describes the fuzzy relation be-
tween failure modes, effects and consequences, in terms of the fuzzy sets for the
expanded FMECA, M(d)+ (mi) and M(d)− (mi).

The linguistic qualitative-numeric mapping used for uncertainty representation
is tabulated below (Cayrac et al. 1994).

Qualifier Ref. code μM(d)+ μM(d)−

Certain 1 1.0 0.0
Almost certain 2 0.8 0.2
Likely 3 0.6 0.4
Unlikely 4 0.4 0.6
Almost unlikely 5 0.2 0.8
Impossible 6 0.0 1.0
Unknown 7 0.0 0.0

The ‘critical analysis’ column of the extended FMECA chart relating to the dis-
criminated failure mode, along with its (more or less) certain consequences, in-
cludes items numbered 1 to 5 that indicate the following:

(1) Possibility of occurrence of a consequence (μM(d)+) or impossibility of occur-
rence of a consequence (μM(d)−)

(2) Estimated failure rate (the number of failures per year)
(3) Severity (expressed as a number from 0 to 10)
(4) Risk (product of 1 and 3)
(5) Criticality value (product of 2 and 4).

3.3.3 Analytic Development of Reliability Evaluation
in Detail Design

The most applicable methods selected for further development as tools for reliability
evaluation in determining the integrity of engineering design in the detail design
phase are:

i. The proportional hazards model (or instantaneous failure rate, indicating the
probability of survival of a component);

ii. Expansion of the exponential failure distribution (considering component
functional failures that occur at random intervals);

iii. Expansion of the Weibull failure distribution (to determine component criti-
cality for wear-out failures, not random failures);

iv. Qualitative analysis of the Weibull distribution model (when the Weibull pa-
rameters cannot be based on obtained data).
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3.3.3.1 The Proportional Hazards Model

The proportional hazards (PH) model was developed in order to estimate the effects
of different covariates influencing the times to failure of a system (Cox 1972). In its
original form, the model is non-parametric, i.e. no assumptions are made about the
nature or shape of the underlying failure distribution. The original non-parametric
formulation as well as a parametric form of the model are considered, utilising the
Weibull life distribution. Special developments of the proportional hazards model
are:

General log-linear, GLL—exponential

General log-linear, GLL—Weibull models.

a) Non-Parametric Model Formulation

From the PH model, the failure rate of a system is affected not only by its oper-
ating time but also by the covariates under which it operates. For example, a unit
of equipment may have been tested under a combination of different accelerated
stresses such as humidity, temperature, voltage, etc. These factors can affect the
failure rate of the unit, and typically represent the type of stresses that the unit will
be subject to, once installed.

The instantaneous failure rate (or hazard rate) of a unit is given by the following
relationship

λ (t) =
f (t)
R(t)

, (3.144)

where:
f (t) = the probability density function,
R(t) = the reliability function.

For the specific case where the failure rate of a particular unit is dependent not only
on time but also on other covariates, Eq. (3.144) must be modified in order to be
a function of time and of the covariates. The proportional hazards model assumes
that the failure rate (hazard rate) of a unit is the product of the following factors:

• An unspecified baseline failure rate, λo(t), which is a function of time only,
• A positive function g(x,A) that is independent of time, and that incorporates

the effects of a number of covariates such as humidity, temperature, pressure,
voltage, etc.

The failure rate of the unit is then given by

λ (t,X) = λo(t) ·g(X,A) , (3.145)

where:
X = a row vector consisting of the covariates,
X = (x1,x2,x3, . . .,xm)



192 3 Reliability and Performance in Engineering Design

A = a column vector consisting of the unknown model parameters
(regression parameters),

A = (a1,a2,a3, . . .,am)T

m = number of stress-related variates (time-independent).

It can be assumed that the form of g(X,A) is known and λo(t) is unspecified. Dif-
ferent forms of g(X,A) can be used but the exponential form is mostly used, due to
its simplicity.

The exponential form of g(X,A) is given by the following expression

g(X,A) = eATXT
= exp

[
m

∑
j=1

a jx j

]
, (3.146)

where:
a j = model parameters (regression parameters),
x j = covariates.

The failure rate can then be written as

λ (t,X) = λo · exp

[
m

∑
j=1

a jx j

]
. (3.147)

b) Parametric Model Formulation

A parametric form of the proportional hazards model can be obtained by assuming
an underlying distribution. In general, the exponential and the Weibull distributions
are the easiest to use. The lognormal distribution can be utilised as well but it is
not considered here. In this case, the Weibull distribution will be used to formulate
the parametric proportional hazards model. The exponential distribution case can
be easily obtained from the Weibull equations, by simply setting the Weibull shape
parameter β = 1. In other words, it is assumed that the baseline failure rate is para-
metric and given by the Weibull distribution. The baseline failure rate is given by
the following expression taken from Eq. (3.37):

λo =
β (t)β−1

μβ ,

where:
μ = the scale parameter,
β = the shape parameter.

Note that μ is the baseline Weibull scale parameter but not the PH scale parameter.
The PH failure rate then becomes

λ (t,X) =
β (t)β−1

μβ exp

[
m

∑
j=1

a jx j

]
, (3.148)
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where:

a j and x j = regression parameters and covariates,
β and μ = the shape and scale parameters.

It is often more convenient to define an additional covariate, xo = 1, in order to allow
the Weibull scale parameter to be included in the vector of regression coefficients,
and the proportional hazards model expressed solely by the beta (shape parameter),
together with the regression parameters and covariates. The PH failure rate can then
be written as

λ (t,X) = β (t)β−1 exp

[
m

∑
j=0

a jx j

]
. (3.149)

The PH reliability function is thus given by the expression

R(t,X) = exp

⎡
⎣−

t∫
0

λ (u)du

⎤
⎦

R(t,X) = exp

⎡
⎣−

t∫
0

λ (u,X)du

⎤
⎦

R(t,X) = exp

[
−tβ · exp

[
m

∑
j=0

a jx j

]]
(3.150)

The probability density function (p.d.f.) can be obtained by taking the partial deriva-
tive with respect to time of the reliability function given by Eq. (3.150). The PH
probability density function is given by the expression f (t,X) = λ (t,X)R(t,X). The
total number of unknowns to solve in this model is m+2 (i.e. β ,μ ,a1,a2,a3, . . .,am).

The maximum likelihood estimation method can be used to determine these pa-
rameters. Solving for the parameters that maximise the maximum likelihood esti-
mation will yield the parameters for the PH Weibull model. For β = 1, the equation
then becomes the likelihood function for the PH exponential model, which is similar
to the original form of the proportional hazards model proposed by Cox (1972).

c) Maximum Likelihood Estimation (MLE) Parameter Estimation

The idea behind maximum likelihood parameter estimation is to determine the pa-
rameters that maximise the probability (likelihood) of the sample data. From a sta-
tistical point of view, the method of maximum likelihood is considered to be more
robust (with some exceptions) and yields estimators with good statistical proper-
ties. In other words, MLE methods are versatile and apply to most models and to
different types of data. In addition, they provide efficient methods for quantifying
uncertainty through confidence bounds. Although the methodology for maximum
likelihood estimation is simple, the implementation is mathematically complex. By
utilising computerised models, however, the mathematical complexity of MLE is
not an obstacle.
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Asymptotic behaviour In many cases, estimation is performed using a set of in-
dependent, identically distributed measurements. In such cases, it is of interest to
determine the behaviour of a given estimator as the set of measurements increases
to infinity, referred to as asymptotic behaviour. Under certain conditions, the MLE
exhibits several characteristics that can be interpreted to mean it is ‘asymptotically
optimal’. While these asymptotic properties become strictly true only in the limit
of infinite sample size, in practice they are often assumed to be approximately true,
especially with a large sample size. In particular, inference about the estimated pa-
rameters is often based on the asymptotic Gaussian distribution of the MLE.

As MLE can generally be applied to failure-related sample data that are available
for critical components during the detail design phase of the engineering design
process, it is necessary to examine more closely the theory that underlies maximum
likelihood estimation for the quantification of complete data. Alternately, when no
data are available, the method of qualitative parameter estimation becomes essen-
tial, as considered in detail later in Section 3.3.3.3.

Background theory If x is a continuous random variable with probability density
function:

f (x;θ1,θ2,θ3, . . .,θk) ,

where:

θ1,θ2,θ3, . . .,θk are k unknown and constant parameters that need to be estimated
through n independent observations, x1,x2,x3, . . .,xn.

Then, the likelihood function is given by the following expression

L(x1,x2,x3, . . . ,xn) =
n

∏
i=1

f (xi;θ1,θ2,θ3, . . . ,θk) i = 1,2,3, . . . ,n . (3.151)

The logarithmic likelihood function is given by

Λ = lnL =
n

∑
i=1

ln f (xi;θ1,θ2,θ3, . . . ,θk) . (3.152)

The maximum likelihood estimators (MLE) of θ1,θ2,θ3, . . .,θk are obtained by
maximising Λ . By maximising Λ , which is much easier to work with than L, the
maximum likelihood estimators (MLE) of the range θ1,θ2,θ3, . . .,θk are the simul-
taneous solutions of k equations where the partial derivatives of Λ are equal to zero:

∂ (Λ)
∂θ j

= 0 j = 1,2,3, . . . ,k .

Even though it is common practice to plot the MLE solutions using median ranks
(points are plotted according to median ranks and the line according to the MLE so-
lutions), this method is not completely accurate. As can be seen from the equations
above, the MLE method is independent of any kind of ranks or plotting methods. For
this reason, the MLE solution appears many times not to track the data on a prob-
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ability plot. This is perfectly acceptable, since the two methods are independent of
each other.

Illustrating the MLE Method Using the Exponential Distribution:

To estimate λ , for a sample of n units (all tested to failure), the likelihood function
is obtained

L(λ |t1,t2,t3, . . . ,tn) =
n

∏
i=1

f (ti)

=
n

∏
i=1

λ e−λ ti

= λ n e−λ ∑ ti (3.153)

Taking the natural log of both sides

Λ = ln(L) = n ln(λ )−λ
n

∑
i=1

ti

∂ (Λ)
∂λ

=
n
λ
−

n

∑
i=1

ti = 0

Solving for λ gives:

λ = n/
n

∑
i=1

ti . (3.154)

Notes on Lambda

The value of λ is an estimate because, if another sample from the same popula-
tion is obtained and λ re-estimated, then the new value would differ from the one
previously calculated.

How close is the value of the estimate to the true value? To answer this ques-
tion, one must first determine the distribution of the parameter λ . This methodology
introduces another term, the confidence level, which allows for the specification of
a range for the estimate with a certain confidence level. The treatment of confidence
intervals is integral to reliability engineering, and to statistics in general.

Illustrating the MLE Method Using the Normal Distribution

To obtain the MLE estimates for the mean, T, and standard deviation, σT , for the
normal distribution, the probability density function of the normal distribution is
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given by

F(T ) =
1

σT
√

2π
exp

[
−

1
2 (T −T)2

σT

]
, (3.155)

where:

T = mean of the normal distribution,
σT = standard deviation of the normal distribution.

If T1,T2,T3, . . .,Tn are known times to failure (and with no suspensions), then the
likelihood function is given by

L(T1,T2,T3, . . . ,Tn|T,σT ) :

L =
n

∏
i=1

{
1

σT
√

2π
exp

[
−

1
2 (T −T)2

σT

]}

L =
1(

σT
√

2π
)n exp

[
−1

2

n

∑
i=1

(Ti −T)2

σT

]
(3.156)

Λ = ln(L):

ln(L) = −n
2

ln(2π)−n lnσT − 1
2

n

∑
i=1

(Ti −T)2

σT

Then, taking the partial derivatives of Λ with respect to each one of the parameters,
and setting these equal to zero yields:

∂ (Λ)
∂T

=
1

σ2
T

−
n

∑
i=1

(Ti −T) = 0

and:

∂ (Λ)
∂σT

=
n

σT
+

1

σ3
T

n

∑
i=1

(Ti −T)2 = 0 .

Solving these equations simultaneously yields

T =
1
n

n

∑
i=1

Ti (3.157)

σ2
T =

1
n

n

∑
i=1

(Ti −T)2 (3.158)

These solutions are valid only for data with no suspensions, i.e. all units are tested
to failure. In cases in which suspensions are present, the methodology changes and
the problem becomes much more complicated.

Estimator As indicated, the parameters obtained from maximising the likelihood
function are estimators of the true value. It is clear that the sample size determines
the accuracy of an estimator. If the sample size equals the whole population, then the
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estimator is the true value. Estimators have properties such as non-bias and consis-
tency (as well as properties of sufficiency and efficiency, which are not considered
here).

Unbiased estimator An estimator given by the relationship θ = d(x1,x2,x3, . . .,xn)
is considered to be unbiased if and only if the estimator satisfies the condition
E(θ ) = θ for all θ . In this case, E(x) denotes the expected value of x and is de-
fined by the following expression for continuous distributions

E(x) =

ψ∫
x f (x)dx x ∈ ψ . (3.159)

This implies that the true value is not consistently underestimated nor overestimated.

Consistent estimator An unbiased estimator that converges more closely to the
true value as the sample size increases is called a consistent estimator. The standard
deviation of the normal distribution was obtained using MLE. However, this estima-
tor of the true standard deviation is a biased one. It can be shown that the consistent
estimate of the variance and standard deviation for complete data (for the normal
distribution) is given by

σ2
T =

1
n−1

n

∑
i=1

(Ti −T)2 . (3.160)

Analysis of censored data So far, parameter estimation has been considered for
complete data only. Further expansion on the maximum likelihood parameter esti-
mation method needs to include estimating parameters with right censored data. The
method is based on the same principles covered previously, but modified to take into
account the fact that some of the data are censored.

MLE analysis of right censored data The maximum likelihood method is by far
the most appropriate analysis method for censored data. When performing maxi-
mum likelihood analysis, the likelihood function needs to be expanded to take into
account the suspended items. A great advantage of using MLE when dealing with
censored data is that each suspension term is included in the likelihood function.
Thus, the estimates of the parameters are obtained from consideration of the entire
sample population of tested components. Using MLE properties, confidence bounds
can be obtained that also account for all the suspension terms. In the case of sus-
pensions, and where x is a continuous random variable with p.d.f. and c.d.f. of the
following forms

f (x;θ1,θ2,θ3, . . .,θk)
F(x;θ1,θ2,θ3, . . .,θk)

θ1,θ2,θ3, . . .,θk are the k unknown parameters that need to be estimated from
R failures at (T1,VT1),(T2,VT2),(T3,VT3), . . .,(TR,VTR), and from M suspensions at
(S1,VS1),(S2,VS2),(S3,VS3), . . .,(SM,VSM), where VTR is the Rth stress level corre-
sponding to the Rth observed failure, and VSM the Mth stress level corresponding to
the Mth observed suspension.
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The likelihood function is then formulated, and the parameters solved by max-
imising

L((T1,VT1), . . . ,(TR,VTR),(S1,VS1), . . . ,(SM,VSM)|θ1,θ2,θ3, . . . ,θk) =
R

∏
i=1

f (Ti,VTi ;θ1,θ2,θ3, . . . ,θk)
M

∏
j=1

[
1−F(S j,VSj ;θ1,θ2,θ3, . . . ,θk)

]
. (3.161)

3.3.3.2 Expansion of the Exponential Failure Distribution

Estimating failure rate As indicated previously in Section 3.2.3.2, the exponen-
tial distribution is a very commonly used distribution in reliability engineering. Due
to its simplicity, it has been widely employed in designing for reliability. The ex-
ponential distribution describes components with a single parameter, the constant
failure rate. The single-parameter exponential probability density function is given
by

f (T ) = λ e−λ T = (1/MTBF)e−T/MTBF . (3.162)

This distribution requires the estimation of only one parameter, λ , for its application
in designing for reliability, where:

λ = constant failure rate,
λ > 0,
λ = 1/MTBF,
MTBF = mean time between failures, or to a failure,
MTBF > 0,
T = operating time, life or age, in hours, cycles, etc.
T ≥ 0.

There are several methods for estimating λ in the single-parameter exponential fail-
ure distribution. In designing for reliability, however, it is important to first under-
stand some of its statistical properties.

a) Characteristics of the One-Parameter Exponential Distribution

The statistical characteristics of the one-parameter exponential distribution are bet-
ter understood by examining its parameter, λ , and the effect that this parameter has
on the exponential probability density function as well as the reliability function.

Effects of λ on the probability density function:

• The scale parameter is 1/λ = m. The only parameter it has is the failure rate, λ .
• As λ is decreased in value, the distribution is stretched to the right.
• This distribution has no shape parameter because it has only one shape, i.e. the

exponential.
• The distribution starts at T = 0 where f (T = 0) = λ and decreases exponentially

as T increases (Fig. 3.34), and is convex as T → ∞, f (T ) → 0.
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• This probability density function (p.d.f.) can be thought of as a special case of
the Weibull probability density function with β = 1.

Fig. 3.34 Effects of λ on the probability density function

Fig. 3.35 Effects of λ on the reliability function
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Effects of λ on the reliability function:

• The failure rate of the function is represented by the parameter λ .
• The failure rate of the reliability function is constant (Fig. 3.35).
• The one-parameter exponential reliability function starts at the value of 1 at

T = 0.
• As T → ∞, R(T ) → 0.

b) Estimating the Parameter of the Exponential Distribution

The parameter of the exponential distribution can be estimated graphically by prob-
ability plotting or analytically by either least squares or maximum likelihood.

Probability plotting The graphical method of estimating the parameter of the ex-
ponential distribution is by probability plotting, illustrated in the following exam-
ple.

Estimating the parameter of the exponential distribution with probability plot-
ting Assume six identical units have pilot reliability test results at the same ap-
plication and operation stress levels. All of these units appear to have failed after
operating for the following testing periods, measured in hours: 96, 257, 498, 763,
1,051 and 1,744. Steps for estimating the parameter of the exponential probability
density function, using probability plotting, are as follows (Table 3.22).

The times to failure are sorted from small to large values, and median rank per-
centages calculated. Median rank positions are used instead of other ranking meth-
ods because median ranks are at a specific confidence level (50%). Exponential
probability plots use scalar data arranged in rank order for the x-axis of the prob-
ability plot. The y-axis plot is found from a statistical technique, Benard’s median
rank position (Abernethy 1992).

Determining the X and Y positions of the plot points The points plotted repre-
sent times-to-failure data in reliability analysis. For example, the times to failure
in Table 3.22 would be used as the x values or time values. Determining what the
appropriate y plot position, or the unreliability values should be is a little more
complex. To determine the y plot positions, a value indicating the corresponding

Table 3.22 Median rank table for failure test results

Time to failure Failure order number Median rank
(h) (%)

96 1 10.91
257 2 26.44
498 3 42.14
763 4 57.86

1,051 5 73.56
1,744 6 89.10
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unreliability for that failure must first be determined. In other words, the cumula-
tive percent failed must be obtained for each time to failure. In the example, the
cumulative percent failed by 96 h is 17%, by 257 h 34% and so forth. This is a sim-
ple method illustrating the concept. The problem with this method is that the 100%
point is not defined on most probability plots. Thus, an alternative and more robust
approach must be used, such as the method of obtaining the median rank for each
failure.

Method of median ranks Median ranks are used to obtain an estimate of the un-
reliability, U(Tj), for each failure. It is the value that the true probability of failure,
Q(Tj), should have at the jth failure out of a sample of N components, at a 50% con-
fidence level. This essentially means that this is a best estimate for the unreliability:
half of the time the true value will be greater than the 50% confidence estimate,
while the other half of the time the true value will be less than the estimate. The
estimate is then based on a solution of the binomial distribution.

The rank can be found for any percentage point, P, greater than zero and less
than one, by solving the cumulative binomial distribution for Z. This represents the
rank, or unreliability estimate, for the jth failure in the following equation for the
cumulative binomial distribution

P =
N

∑
k= j

(Nk)Zk(1−Z)N−k , (3.163)

where:

N = the sample size,
j = the order number.

The median rank is obtained by solving for Z at P = 0.50 in

0.50 =
N

∑
k= j

(Nk)Zk(1−Z)N−k . (3.164)

For example, if N = 6 and we have six failures, then the median rank equation would
be solved six times, once for each failure with j = 1,2,3,4,5 and 6, for the value
of Z. This result can then be used as the unreliability estimate for each failure, or the
y plotting position. The solution of Eq. (3.164) for Z requires the use of numerical
methods. A quick though less accurate approximation of the median ranks is given
by the following expression. This approximation of the median ranks is known as
Benard’s approximation (Abernethy 1992):

MR =
j−0.3
N +0.4

. (3.165)

For the six failures in Table 3.22, the following values are equated (Table 3.23):
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Table 3.23 Median rank table for Bernard’s approximation

Failure order number Bernard’s approximation (×10−2) Binomial equation Error margin

Failure 1 MR1 = 0.7/6.4 = 10.94 10.91 +0.275%
Failure 2 MR2 = 1.7/6.4 = 26.56 26.44 +0.454%
Failure 3 MR3 = 2.7/6.4 = 42.19 42.14 +0.120%
Failure 4 MR4 = 3.7/6.4 = 57.81 57.86 −0.086%
Failure 5 MR5 = 4.7/6.4 = 73.44 73.56 −0.163%

Kaplan–Meier estimator The Kaplan–Meier estimator is used as an alternative
to the median ranks method for calculating the estimates of the unreliability for
probability plotting purposes

F(ti) = 1−
i

∏
j=1

n j − r j

n j
, (3.166)

where:

i = 1,2,3, . . .,m,
m = total number of data points,
n = total number of units.

and:

ni =
i−1

∑
j=0

S j −
i−1

∑
j=0

Rj ,

where:

i = 1,2,3, . . .,m,
Rj = number of failures in the jth data group,
S j = number of surviving units in the jth data group.

The exponential probability graph is based on a log-linear scale, as illustrated in
Fig. 3.36. The best possible straight line is drawn that goes through the t = 0 and
R(t) = 100% point, and through the plotted points on the x-axis and their corre-
sponding rank values on the y-axis. A horizontal line is drawn at the ordinate point
Q(t) = 63.2% or at the point R(t)= 36.8%, until this line intersects the fitted straight
line. A vertical line is then drawn through this intersection until it crosses the ab-
scissa. The value at the abscissa is the estimate of the mean.

For this example, MTBF = 833 h, which means that λ = 1/MTBF = 0.0012.
This is always at 63.2%, since Q(T ) = 1− e−1 = 63.2%.

The reliability value for any mission or operational time t can be obtained. For
example, the reliability for an operational duration of 1,200 h can now be obtained.
To obtain the value from the plot, a vertical line is drawn from the abscissa, at
t = 1,200 h, to the fitted line. A horizontal line from this intersection to the ordinate
is drawn and R(t) obtained. This value can also be obtained analytically from the
exponential reliability function. In this case, R(t) = 98.15% where R(t) = 1−U and
U = 1.85% at t = 1,200.
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Fig. 3.36 Example exponential probability graph

c) Determining the Maximum Likelihood Estimation Parameter

The parameter of the exponential distribution can also be estimated using the maxi-
mum likelihood estimation (MLE) method. This function is log-likelihood and com-
posed of two summation portions

Λ = ln(L) =
F

∑
i=1

Ni ln
[
λ e−λ Ti

]
−

S

∑
i=1

Ňiλ Ťi , (3.167)

where:

F is the number of groups of times-to-failure data points.
Ni is the number of times to failure in the ith time-to-failure data group.
λ is the failure rate parameter (unknown a priori, only one to be found).
Ti is the time of the ith group of time-to-failure data.
S is the number of groups of suspension data points.
Ňi is the number of suspensions in the ith group of data points.
Ťi is the time of the ith suspension data group.

The solution will be found by solving for a parameter λ , so that

∂ (Λ)
∂λ

= 0 and
∂ (Λ)
∂λ

=
F

∑
i=1

Ni

[
1
λ
−Ti

]
−

S

∑
i=1

ŇiŤi , (3.168)
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where also:

F is the number of groups of times-to-failure data points.
Ni is the number of times to failure in the ith time-to-failure data group.
λ is the failure rate parameter (unknown a priori, only one to be found).
Ti is the time of the ith group of time-to-failure data.
S is the number of groups of suspension data points.
Ňi is the number of suspensions in the ith group of data points.
Ťi is the time of the ith suspension data group.

3.3.3.3 Expansion of the Weibull Distribution Model

a) Characteristics of the Two-Parameter Weibull Distribution

The characteristics of the two-parameter Weibull distribution can be exemplified by
examining the two parameters β and μ , and the effect they have on the Weibull
probability density function, reliability function and failure rate function. Changing
the value of β , the shape parameter or slope of the Weibull distribution changes the
shape of the probability density function (p.d.f.), as shown in Tables 3.15 to 3.19.
In addition, when the cumulative distribution function (c.d.f.) is plotted, as shown
in Tables 3.20 and 3.21, a change in β results in a change in the slope of the distri-
bution.

Effects of β on the Weibull p.d.f. The parameter β is dimensionless, with the
following effects on the Weibull p.d.f.

• For 0 < β < 1, the failure rate decreases with time and:

As T → 0 , f (T ) → ∞ .

As T → ∞ , f (T ) → 0 .

f (T ) decreases monotonically and is convex as T increases.
The mode ů is non-existent.

• For β = 1, it becomes the exponential distribution, as a special case, with:

f (T ) = 1/μ e−T/μ for μ > 0 , T ≥ 0

1/μ = λ the chance, useful life, or failure rate.

• For β > 1, f (T ) assumes wear-out type shapes, i.e. the failure rate increases with
time:

f (T ) = 0 at T = 0 .

f (T ) increases as T → ů (mode) and decreases thereafter.
• For β = 2, the Weibull p.d.f. becomes the Rayleigh distribution.
• For β < 2.6, the Weibull p.d.f. is positively skewed.
• For 2.6 < β < 3.7, its coefficient of skewness approaches zero (no tail), and

approximates the normal p.d.f.
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Fig. 3.37 Weibull p.d.f. with 0 < β < 1, β = 1, β > 1 and a fixed μ (ReliaSoft Corp.)

• For β > 3.7, the Weibull p.d.f. is negatively skewed.

From Fig. 3.37:

• For 0 < β < 1: T → 0, f (T ) → ∞. T → ∞, f (T ) → 0.
• For β = 1: f (T ) = 1/μ e−T/μ . T → ∞, f (T ) → 0.
• For β > 1: f (T ) = 0 at T = 0. T → ů, f (T ) > 0.

Effects of β on the Weibull reliability function and the c.d.f. Considering first
the Weibull unreliability function (Fig. 3.38), or cumulative distribution function,
F(t), the following effects of β are observed:

• For 0 < β < 1 and constant μ , F(T ) is linear with minimum slope and values of
F(T ) ranging from 5 to below 90.00.

• For β = 1 and constant μ , F(T ) is linear with a steeper slope and values of F(T )
ranging from less than 1 to above 90.00.

• For β > 1 and constant μ , F(T ) is linear with maximum slope and values of
F(T ) ranging from well below 1 to well above 99.90.

Considering the Weibull reliability function (Fig. 3.39), or one minus the cumu-
lative distribution function, 1−F(t), the following effects of β are observed:

• For 0 < β < 1 and constant μ , R(T ) is convex, and decreases sharply and mono-
tonically.

• For β = 1 and constant μ , R(T ) is convex, and decreases monotonically but less
sharply.
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Fig. 3.38 Weibull c.d.f. or unreliability vs. time (ReliaSoft Corp.)

Fig. 3.39 Weibull 1–c.d.f. or reliability vs. time (ReliaSoft Corp.)

• For β > 1 and constant μ , R(T ) decreases as T increases but less sharply than
before and, as wear-out sets in, it decreases sharply and goes through an inflection
point.
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Fig. 3.40 Weibull failure rate vs. time (ReliaSoft Corp.)

Effects of β on the Weibull failure rate function The Weibull failure rate for
0 < β < 1 is unbounded at T = 0. The failure rate λ (T ) decreases thereafter mono-
tonically and is convex, approaching the value of zero as T → 0 or λ (∞) = 0. This
behaviour makes it suitable for representing the failure rates of components that
exhibit early-type failures, for which the failure rate decreases with age (Fig. 3.40).

When such behaviour is encountered in pilot tests, the following conclusions may
be drawn:

• Burn-in testing and/or environmental stress screening are not well implemented.
• There are problems in the process line, affecting the expected life of the compo-

nent.
• Inadequate quality control of component manufacture is bringing about early

failure.

Effects of β on the Weibull failure rate function and derived failure charac-
teristics The effects of β on the hazard or failure rate function of the Weibull dis-
tribution result in several observations and conclusions about the characteristics of
failure:

• When β = 1, the hazard rate λ (T ) yields a constant value of 1/μ where: λ (T ) =
λ = 1/μ .
This parameter becomes suitable for representing the hazard or failure rate of
chance-type or random failures, as well as the useful life period of the compo-
nent.
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• When β > 1, the hazard rate λ (T ) increases as T increases, and becomes suitable
for representing the failure rate of components with wear-out type failures.

• For 1 < β < 2, the λ (T ) curve is concave. Consequently, the failure rate increases
at a decreasing rate as T increases.

• For β = 2, the λ (T ) curve represents the Rayleigh distribution where: λ (T ) =
2/μ(T/μ).
There emerges a straight-line relationship between λ (T ) and T , starting with
a failure rate value of λ (T ) = 0 at T = 0, and increasing thereafter with a slope
of 2/μ2. Thus, the failure rate increases at a constant rate as T increases.

• When β > 2, the λ (T ) curve is convex, with its slope increasing as T increases.
Consequently, the failure rate increases at an increasing rate as T increases,
indicating component wear-out.

The scale parameter μ A change in the Weibull scale parameter μ has the same
effect on the distribution (Fig. 3.41) as a change of the abscissa scale:

• If μ is increased while β is kept the same, the distribution gets stretched out to
the right and its height decreases, while maintaining its shape and location.

• If μ is decreased while β is kept the same, the distribution gets pushed in towards
the left (i.e. towards 0) and its height increases.

Fig. 3.41 Weibull p.d.f. with μ = 50, μ = 100, μ = 200 (ReliaSoft Corp.)
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b) The Three-Parameter Weibull Model

The mathematical model for reliability of the Weibull distribution has so far been
determined from a two-parameter Weibull distribution formula, where the two pa-
rameters are β and μ . The mathematical model for reliability of the Weibull distri-
bution can also be determined from a three-parameter Weibull distribution formula,
where the three parameters are:

β = shape parameter or failure pattern
μ = scale parameter or characteristic life
γ = location, position or minimum life parameter.

This reliability model is given as

R(t) = e−[(t−γ)/μ]β . (3.169)

The three-parameter Weibull distribution has wide applicability. The mathematical
model for the cumulative probability, or the cumulative distribution function (c.d.f.)
of the three-parameter Weibull distribution is

F(t) = 1− e−[(t−γ)/μ]β , (3.170)

where:

F(t) = cumulative probability of failure,
γ = location or position parameter,
μ = scale parameter,
β = shape parameter.

The location, position, or minimum life parameter γ This parameter can be
thought of as a guarantee period within which no failures occur, and a guaranteed
minimum life could exist. This means that no appreciable or noticeable degradation
or wear is evident before γ hours of operation. However, when a component is sub-
ject to failure immediately after being placed in service, no guarantee or failure-free
period is apparent; then, γ = 0.

The scale or characteristic life parameter μ This parameter is a constant and,
by definition, is the mean operating period or, in terms of system unreliability, the
operating period during which at least 63% of the system’s equipment is expected to
fail. This ‘unreliability’ value of 63%, which is obtained from the previous formula
Q = 1−R = 100− 37%, can readily be determined from the reliability model by
substituting specific values for γ = 0, and t = μ in the case of the Weibull graph
being a straight line, and the period t being equal to the characteristic life or scale
parameter μ respectively.

The shape or failure pattern parameter β As its name implies, β determines the
contour of the Weibull p.d.f. By finding the value of β for a given set of data, the
particular phase of an equipment’s characteristic life may be determined:
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• When β < 1, the equipment is in a wear-in or infant mortality phase of its char-
acteristic life, with a resulting decreasing rate of failure.

• When β = 1, the equipment is in the steady operational period or service life
phase of its characteristic life, with a resulting constant rate of failure.

• When β > 1, the equipment begins to fail due to aging and/or degradation
through use, and is in a wear-out phase of its characteristic life, with a result-
ing increasing rate of failure.

Since the probability of survival p(s), or the reliability for the Weibull distribution,
is the unity complement of the probability of failure p( f ), or failure distribution
F(t), the following mathematical model for reliability will plot a straight line on
logarithmic scales

R(t) = p(s) = e−[(t−γ)/μ]β . (3.171)

To facilitate calculations for the Weibull parameters, a Weibull graph has been de-
veloped. The principal advantage of this method of the Weibull analysis of failure is
that it gives a complete picture of the type of distribution that is represented by the
failure data and, furthermore, relatively few failures are needed to be able to make
a satisfactory evaluation of the characteristics of component failure.

Figure 3.42 shows the basic features of the Weibull graph.

c) Procedure to Calculate the Weibull Parameters β , μ and γ

The procedure to calculate the Weibull parameters using the Weibull graph illus-
trated in Fig. 3.42 is given as follows:

• The percentage failure is plotted on the y-axis against the age at failure on the
x-axis (q−q).

Failure age

4.0

3.0

2.0
1.0
0.0

%
Fail. 0.0 1.0

Origin

Weibull plot

Principal
ordinate

Principal
abscissa

β
μ
np

p

q

q

σ
n

Fig. 3.42 Plot of the Weibull density function, F(t), for different values of β
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• If the plot is linear, then γ = 0. If the plot is non-linear, then γ �= 0, and the proce-
dure to make it linear by calculation is to add a constant value to the parameter γ
in the event the plot is convex relative to the origin on the Weibull graph, or to
subtract a constant value from the parameter γ in the event the plot is concave.
A best fit straight line through the original plot would suffice.

• A line (pp) is drawn through the origin of the chart, parallel to the calculated
linear Weibull plot (qq), or estimated straight line fit.

• The line pp is extended until it intersects the principal ordinate, (point i in
Fig. 3.37). The value for β is then determined from the β -scale at a point hori-
zontally opposite the line pp intersection with the principal ordinate.

• The linear Weibull plot (qq), or the graphically estimated straight line fit, is ex-
tended until it intersects the principal abscissa. The value for μ is then found at
the bottom of the graph, vertically opposite the linear principal abscissa intersec-
tion.

d) Procedure to Derive the Mean Time Between Failures (MTBF)

Once the Weibull parameters have been determined, the mean time between failures
(MTBF) may be evaluated. There are two other scales parallel to the β -scale on the
Weibull graph:

μ/n and σ/n ,

where:

μ = characteristic life,
σ = standard deviation,
n = number of data points.

The value on the μ/n scale, adjacent to the previously determined value of β , is
determined. This value is, in effect, the mean time between failures (MTBF), as
a ratio to the number of data points, or the percentage failures that were plotted on
the y-axis against the age at failure.

Thus, MTBF = scale value of μ/n .

It is important to note that this mean value is referenced from the beginning of the
Weibull distribution and should therefore be added to the minimum life parameter γ
to obtain the true MTBF, as shown below in Fig. 3.43.

e) Procedure to Obtain the Standard Deviation σ

The standard deviation is the value on the σ/n scale, adjacent to the determined
value of β .

σ = n× scale value of σ/n .
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Start Commence Weibull Time

True MTBF
MTBFμγ

True MTBF = from Start to Commence Weibull to Time
True MTBF = γ + μ

Fig. 3.43 Minimum life parameter and true MTBF

The standard deviation value of the Weibull distribution is used in the conventional
manner and can be applied to obtain a general idea of the shape of the distribution.

Summary of Quantitative Analysis of the Weibull Distribution Model

In the two-parameter Weibull, the parameters β and μ , where β is the shape pa-
rameter or failure pattern, and μ is the scale parameter or characteristic life, have
an effect on the probability density function, reliability function and failure rate
function (cf. Fig. 3.44).

The effect of β on the Weibull p.d.f. is that when β > 1, the probability density
function, f (T ), assumes a wear-out type shape, i.e. the failure rate increases with
time.

The effect of β on the Weibull reliability function, or one minus the cumulative
distribution function c.d.f., 1−F(t), is that when β > 1 and μ is constant, R(T )
decreases as T increases until wear-out sets in, when it decreases sharply and goes
through an inflection point.

The effect of β on the Weibull hazard or failure rate function is that when β > 1,
the hazard rate λ (T ) increases as T increases, and becomes suitable for representing
the failure rate of components with wear-out type failures.

A change in the Weibull scale parameter μ has the effect that when μ , the char-
acteristic life, is increased while β , the failure pattern, is constant, the distribution
f (T ) is spread out with a greater variance about the mean and, when μ is decreased
while β is constant, the distribution is peaked.

With the inclusion of γ , the location or minimum life parameter in a three-
parameter Weibull distribution, no appreciable or noticeable degradation or wear
is evident before γ hours of operation.

3.3.3.4 Qualitative Analysis of the Weibull Distribution Model

It was stated earlier that the principal advantage of Weibull analysis is that it gives
a complete picture of the type of distribution that is represented by the failure data,
and that relatively few failures are needed to be able to make a satisfactory assess-
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ment of the characteristics of failure. A major problem arises, though, when the
measures and/or estimates of the Weibull parameters cannot be based on obtained
data, and engineering design analysis cannot be quantitative. Credible and statisti-
cally acceptable qualitative methodologies to determine the integrity of engineer-
ing design in the case where data are not available or not meaningful are included,
amongst others, in the concept of information integration technology (IIT).

IIT is a combination of techniques, methods and tools for collecting, organising,
analysing and utilising diverse information to guide optimal decision-making. The
method know as performance and reliability evaluation with diverse information
combination and tracking (PREDICT) is a highly successful example (Booker et al.
2000) of IIT that has been applied in automotive system design and development,
and in nuclear weapons storage. Specifically, IIT is a formal, multidisciplinary ap-
proach to evaluating the performance and reliability of engineering processes when
data are sparse or non-existent. This is particularly useful when complex integra-
tions of systems and their interactions make it difficult and even impossible to gather
meaningful statistical data that could allow for a quantitative estimation of the per-
formance parameters of probability distributions, such as the Weibull distribution.

The objective is to evaluate equipment reliability early in the detail design phase,
by making effective use of all available information: expert knowledge, historical
information, experience with similar processes, and computer models. Much of this
information, especially expert knowledge, is not formally included in performance
or reliability calculations of engineering designs, because it is often implicit, undoc-
umented or not quantitative. The intention is to provide accurate reliability estimates
for equipment while they are still in the engineering design stage. As equipment
may undergo changes during the development or construction stage, or conditions
change, or new information becomes available, these reliability estimates must be
updated accordingly, providing a lifetime record of performance of the equipment.

a) Expert Judgment as Data

Expert judgment is the expression of informed opinion, based on knowledge and
experience, made by experts in responding to technical problems (Ortiz et al. 1991).
Experts are individuals who have specialist background in the subject area and
are recognised by their peers as being qualified to address specific technical prob-
lems. Expert judgment is used in fields such as medicine, economics, engineering,
safety/risk assessment, knowledge acquisition, the decision sciences, and in envi-
ronmental studies (Booker et al. 2000).

Because expert judgment is often used implicitly, it is not always acknowledged
as expert judgment, and is thus preferably obtained explicitly through the use of for-
mal elicitation. Formal use of expert judgment is at the heart of the engineering de-
sign process, and appears in all its phases. For years, methods have been researched
on how to structure elicitations so that analysis of this information can be performed
statistically (Meyer and Booker 1991). Expertise gathered in an ad hoc manner is
not recommended (Booker et al. 2000).
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Examples of expert judgment include:

• the probability of an occurrence of an event,
• a prediction of the performance of some product or process,
• decision about what statistical methods to use,
• decision about what variables enter into statistical analysis,
• decision about which datasets are relevant for use,
• the assumptions used in selecting a model,
• decision concerning which probability distributions are appropriate,
• description of information sources for any of the above responses.

Expert judgment can be expressed quantitatively in the form of probabilities, rat-
ings, estimates, weighting factors, distribution parameters or physical quantities
(e.g. costs, length, weight). Alternatively, expert judgment can be expressed quali-
tatively in the form of textual descriptions, linguistic variables and natural language
statements of extent or quantities (e.g. minimum life or characteristic life, burn-in,
useful life or wear-out failure patterns).

Quantitative expert judgment can be considered to be data. Qualitative expert
judgment, however, must be quantified in order for it also to be considered as data.
Nevertheless, even if expert judgment is qualitative, it can be given the same con-
siderations as for data made available from tests or observations, particularly with
the following (Booker et al. 2000):

• Expert judgment is considered affected by how it is gathered. Elicitation methods
take advantage of the body of knowledge on human cognition and motivation,
and include procedures for countering effects arising from the phrasing of ques-
tions, response modes, and extraneous influences from both the elicitor and the
expert (Meyer and Booker 1991).

• The methodology of experimental design (i.e. randomised treatment) is similarly
applied in expert judgment, particularly with respect to incompleteness of infor-
mation.

• Expert judgment has uncertainty, which can be characterised and subsequently
analysed. Many experts are accustomed to giving uncertainty estimates in the
form of simple ranges of values. In eliciting uncertainties, however, the natural
tendency is to underestimate it.

• Expert judgment can be subject to several conditioning factors. These factors
include the information to be considered, the phrasing of questions (Payne 1951),
the methods of solving the problem (Booker and Meyer 1988), as well as the
experts’ assumptions (Ascher 1978). A formal structured approach to elicitation
allows a better control over conditioning factors.

• Expert judgment can be combined with other quantitative data through Bayesian
updating, whereby an expert’s estimate can be used as a prior distribution for
initial reliability calculation. The expert’s reliability estimates are updated when
test data become available, using Bayesian methods (Kerscher et al. 1998).

• Expert judgment can be accumulated in knowledge systems with respect to tech-
nical applications (e.g. problem solving). For example, the knowledge system
can address questions such as ‘what is x under circumstance y?’, ‘what is the
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failure probability?’, ‘what is the expected effect of the failure?’, ‘what is the
expected consequence?’, ‘what is the estimated risk?’ or ‘what is the criticality
of the consequence?’.

b) Uncertainty, Probability Theory and Fuzzy Logic Reviewed

A major portion of engineering design analysis focuses on propagating uncertainty
through the use of distribution functions of one type or another, particularly the
Weibull distribution in the case of reliability evaluation. Uncertainties enter into
the analysis in a number of different ways. For instance, all data and information
have uncertainties. Even when no data are available, and estimates are elicited from
experts, uncertainty values usually in the form of ranges are also elicited. In addition,
mathematical and/or simulation models have uncertainties regarding their input–
output relationships, as well as uncertainties in the choice of models and in defining
model parameters.

Different measures and units are often involved in specifying the performances of
the various systems being designed. To map these performances into common units,
conversion factors are often required. These conversions can also have uncertainties
and require representation in distribution functions (Booker et al. 2000).

Probability theory provides a coherent means for determining uncertainties.
There are other interpretations of probability besides conventional distributions,
such as the relative frequency theory and the subjective theory, as well as the Bayes
theorem. Because of the flexibility of interpretation of the subjective theory (Bement
et al. 2000a), it is perhaps the best approach to a qualitative evaluation of system
performance and reliability, through the combination of diverse information.

For example, it is usually the case that some aspect of information relating to
a specific design’s system performance and/or its design reliability is known, which
is utilised in engineering design analysis before observations can be made. Subjec-
tive interpretation of such information also allows for the consideration of one-of-
a-kind failure events, and to interpret these quantities as a minimal failure rate.

Because reliability is a common performance metric and is defined as a proba-
bility that the system performs to specifications, probability theory is necessary in
reliability evaluation. However, in using expert judgment due to data being unavail-
able, not all experts may think in terms of probability. The best approach is to use
alternatives such as possibility theory, fuzzy logic and fuzzy sets (Zadeh 1965) where
experts think in terms of rules, such as if–then rules, for characterising a certain type
of ambiguity uncertainty.

For example, experts usually have knowledge about the system, expressed in
statements such as ‘if the temperature is too hot, the component’s expected life
will rapidly diminish’. While this statement contains no numbers for analysis or
for probability distributions, it does contain valuable information, and the use of
membership functions is a convenient way to capture and quantify that information
(Laviolette 1995; Smith et al. 1998).
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From probability (crisp set) theory

Where: PDFs = Probability density functions; f(t)
CDFs = Cumulative distribution functions; F(t)

From fuzzy set and possibility theory

PDFs CDFs Likelihoods Membership
functions

Possibility
distribution

Fig. 3.45 Theories for representing uncertainty distributions (Booker et al. 2000)

However, reverting this information back into a probabilistic framework requires
a bridging mechanism for the membership functions. Such a bridging can be ac-
complished using the Bayes theorem, whereby the membership functions may be
interpreted as likelihoods (Bement et al. 2000b). This bridging is illustrated in
Fig. 3.45, which depicts various methods used for formulating uncertainty (Booker
et al. 2000).

c) Application of Fuzzy Logic and Fuzzy Sets in Reliability Evaluation

Fuzzy logic or, alternately, fuzzy set theory provides a basis for mathematical mod-
elling and language in which to express quite sophisticated algorithms in a precise
manner. For instance, fuzzy set theory is used to develop expert system models,
which are fairly complex computer systems that model decision-making processes
by a system of logical statements. Consequently, fuzzy set theory needs to be re-
viewed with respect to expert judgment in terms of possibilities, rather than proba-
bilities, with the following definition (Bezdek 1993).

Fuzzy sets and membership functions reviewed Let X be a space of objects (e.g.
estimated parameter values), and x be a generic element of X . A classical set A,
A ⊆ X is defined as a collection of elements or objects x ∈ X , such that each ele-
ment x can either belong to or not be part of the set A. By defining a characteristic
or membership function for each element x in X , a classical set A can be represented
by a set of ordered pairs (x,0) or (x,1), which indicate x /∈ A or x ∈ A respectively.
Unlike conventional sets, a fuzzy set expresses the degree to which an element be-
longs to a set. Hence, the membership function of a fuzzy set is allowed to have
values between 0 and 1, which denote the degree of membership of an element in
the given set.

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is
defined as a set of ordered pairs where

A = {(x,μA(x))|x ∈ X} (3.172)
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in which μA(x) is called the membership function (or MF, for short) for the fuzzy
set A.

The MF maps each element of X to a membership grade (or membership value)
between 0 and 1 (included). Obviously, the definition of a fuzzy set is a simple ex-
tension of the definition of a classical (crisp) set in which the characteristic function
is permitted to have any values between 0 and 1. If the value of the membership
function is restricted to either 0 or 1, then A is reduced to a classical set. For clarity,
references to classical sets consider ordinary sets, crisp sets, non-fuzzy sets, or just
sets. Usually, X is referred to as the universe of discourse or, simply, the universe,
and it may consist of discrete (ordered or non-ordered) objects or it can be a contin-
uous space. However, a crucial aspect of fuzzy set theory, especially with respect to
IIT, is understanding how membership functions are obtained.

The usefulness of fuzzy logic and mathematics based on fuzzy sets in reliability
evaluation depends critically on the capability to construct appropriate member-
ship functions for various concepts in various given contexts (Klir and Yuan 1995).
Membership functions are therefore the fundamental connection between, on the
one hand, empirical data and, on the other hand, fuzzy set models, thereby allow-
ing for a bridging mechanism for reverting expert judgment on these membership
functions back into a probabilistic framework, such as in the case of the definition
of reliability.

Formally, the membership function μx is a function over some domain, or prop-
erty space X , mapping to the unit interval [0,1]. The crucial aspect of fuzzy set
theory is taken up in the following question: what does the membership function
actually measure? It is an index of the membership of a defined set, which measures
the degree to which object A with property x is a member of that set.

The usual definition of a classical set uses properties of objects to determine
strict membership or non-membership. The main difference between classical set
theory and fuzzy set theory is that the latter accommodates partial set membership.
This makes fuzzy set theory very useful for modelling situations of vagueness, that
is, non-probabilistic uncertainty. For instance, there is a fundamental ambiguity
about the term ‘failure characteristic’ representing the parameter β of the Weibull
probability distribution. It is difficult to put many items unambiguously into or out
of the set of equipment currently in the burn-in or infant mortality phase, or in the
service life phase, or in the wear-out phase of their characteristic life. Such cases
are difficult to classify and, of course, depend heavily on the definition of ‘failure’;
in turn, this depends on the item’s functional application. It is not so much a matter
of whether the item could possibly be in a well-defined set but rather that the set
itself does not have firm boundaries.

Unfortunately, there has been substantial confusion in the literature about the
measurement level of a membership function. The general consensus is that a mem-
bership function is a ratio scale with two endpoints. However, in a continuous order-
dense domain—that is, one in which there is always a value possible between any
two given values, with no ‘gaps’ in the domain—the membership function may be
considered as being not much different from a mathematical interval (Norwich and
Turksen 1983). The membership function, unlike a probability measure, does not
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fulfil the concatenation requirement that underlies any ratio scale (Roberts 1979).
The simplest way to understand this is to consider the following concepts: it is mean-
ingful to add the probability of the union of two mutually exclusive events, A and B,
because a probability measure is a ratio scale

P(A)+P(B) = P(A and B) . (3.173)

It is not, however, meaningful to add the membership values of two objects or values
in a fuzzy set.

For instance, the sum μA + μB may be arithmetically possible but it is certainly
not interpretable in terms of fuzzy sets. There does not seem to be any other concate-
nation operator in general that would be meaningful (Norwich and Turksen 1983).
For example, if one were to add together two failure probability values in a series
configuration, it makes sense to say that the probability of failure of the combined
system is the sum of the two probabilities. However, if one were to take two failure
probability parameters that are elements of fuzzy sets (such as the failure charac-
teristic parameter β of the Weibull probability distribution), and attempt to sensibly
add these together, there is no natural way to combine the two—unlike the failure
probability.

By far the most common method for assigning membership is based on direct,
subjective judgments by one or more experts. This is the method recommended
for IIT. In this method, an expert rates values (such as the Weibull parameters) on
a membership scale, assigning membership values directly and with no intervening
transformations. For conceptually simple sets such as ‘expected life’, this method
achieves the objective quite well, and should not be neglected as a means of ob-
taining membership values. However, the method has many shortcomings. Experts
are often better with simpler estimates—e.g. paired comparisons or generating rat-
ings on several more concrete indicators—than they are at providing values for one
membership function of a relatively complex set.

Membership functions and probability measures One of the most controversial
issues in uncertainty modelling and the information sciences is the relationship be-
tween probability theory and fuzzy sets. The main points are as follows (Dubois and
Prade 1993a):

• Fuzzy set theory is a consistent body of mathematical tools.
• Although fuzzy sets and probability measures are distinct, there are several

bridges relating these, including random sets and belief functions, and likelihood
functions.

• Possibility theory stands at the crossroads between fuzzy sets and probability
theory.

• Mathematical algorithms that behave like fuzzy sets exist in probability theory,
in that they may produce random partial sets. This does not mean that fuzziness
is reducible to randomness.

• There are ways of approaching fuzzy sets and possibility theory that are not con-
ducive to probability theory.
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Some interpretations of fuzzy sets are in agreement with probability calculus, others
are not. However, despite misunderstandings between fuzzy sets and probabilities,
it is just as essential to consider probabilistic interpretations of membership func-
tions (which may help in membership function assessment) as it is to consider non-
probabilistic interpretations of fuzzy sets. Some risk for confusion may be present,
though, in the way various definitions are understood. From the original definition
(Zadeh 1965), a fuzzy set F on a universe U is defined by a membership function:

μF : U → [0,1] and μF(u) is the grade of membership of element u in F (for
simplicity, let U be restricted to a finite universe).

In contrast, a probability measure P is a mapping 2U → [0,1] that assigns a number
P(A) to each subset of U , and satisfies the axioms

P(U) = 1; P( /0) = 0 (3.174)

P(A∪B) = P(A)+P(B) if A∩B = /0 . (3.175)

P(A) is the probability that an ill-known single-valued variable x ranging on U co-
incides with the fixed well-known set A. Typical misunderstanding is to confuse the
probability P(A) with a membership grade. When μF(u) is considered, the element u
is fixed and known, and the set is ill defined whereas, with the probability P(A), the
set A is well defined while the value of the underlying variable x, to which P is at-
tached, is unknown. Such a set-theoretic calculus for probability distributions has
been developed under the name of Lebesgue logic (Bennett et al. 1992).

Possibility theory and fuzzy sets reviewed Related to fuzzy sets is the develop-
ment of the theory of possibility (Zadeh 1978), and its expansion (Dubois and Prade
1988). Possibility theory appears as a more direct contender to probability theory
than do fuzzy sets, because it also proposes a set-function that quantifies the uncer-
tainty of events (Dubois and Prade 1993a).

Consider a possibility measure on a finite set U as a mapping from 2U to [0,1]
such that

Π( /0) = 0 (3.176)

Π(A∪B) = max(Π(A),Π(B)) . (3.177)

The condition Π(U) = 1 is to be added for normal possibility measures. These
are completely characterised by the following possibility distribution π : U →
[0,1] (such that π(u) = 1 for some u ∈ U , in the normal case), since Π(A) =
max{π(u),u ∈ A}.

In the infinite case, the equivalence between π and Π requires that Eq. (3.177)
be extended to an infinite family of subsets. Zadeh (1978) views the possibility
distribution π as being determined by the membership function μF of a fuzzy set F .
This does not mean, however, that the two concepts of a fuzzy set and of a possibility
distribution are equivalent (Dubois and Prade 1993a).

Zadeh’s equation, given as πx(u) = μF(u), is similar to equating the likeli-
hood function to a conditional probability where πx(u) represents the relationship
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π(x = u|F), since it estimates the possibility that variable x is equal to the element
u, with incomplete state of knowledge ‘x is F’. Furthermore, μF(u) estimates the
degree of compatibility of the precise information x = u with the statement ‘x is F’.

Possibility theory and probability theory may be viewed as complementary the-
ories of uncertainty that model different kinds of states of knowledge. However,
possibility theory further has the ability to model ignorance in a non-biased way,
while probability theory, in its Bayesian approach, cannot account for ignorance.
This can be explained with the definition of Bayes’ theorem, which incorporates the
concept of conditional probability.

In this case, conditional probability cannot be used directly in cases where igno-
rance prevails, for example:

‘of the i components belonging to system F , j definitely have a high failure rate’.

Almost all the values for these variables are unknown. However, what might be
known, if only informally, is how many components might fail out of a set F if
a value for the characteristic life parameter μ of the system were available. As
indicated previously, this parameter is by definition the mean operating period in
which the likelihood of component failure is 63% or, conversely, it is the operating
period during which at least 63% of the system’s components are expected to fail.

Thus:
P(component failure f |μ) ≈ 63% .

In this case, the Weibull characteristic life parameter μ must not be confused with
the possibility distribution μ , and it would be safer to consider the probability in the
following format:

P(component failure f |characteristic life c) ≈ 63% .

Bayes’ theorem of probability states that if the likelihood of component failure and
the number of components in the system are known, then the conditional probabil-
ity of the characteristic life of the system (i.e. MTBF) may be evaluated, given an
estimated number of component failures. Thus

P(c| f ) =
P(c)P( f |c)

P( f )
(3.178)

or:

|c∩ f |
| f | =

|c|
F

· | f ∩ c|
|c| · F

| f | , (3.179)

where:

|c∩ f | = | f ∩ c|.
The point of Bayes’ theorem is that the probabilities on the right side of the equation
are easily available by comparison to the conditional probability on the left side.
However, if the estimated number of component failures is not known (ignorance of
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the probability of failure), then the conditional probability of the characteristic life
of the system (MTBF) cannot be evaluated. Thus, probability theory in its Bayesian
approach cannot account for ignorance.

On the contrary, possibility measures are decomposable (however, with respect
to union only), and

N(A) = 1−Π(Ã) , (3.180)

where:

The certainty of A is 1—the impossibility of A,
Ã is the complement (impossibility) of A, and N(A) is a degree of certainty.

This is compositional with respect to intersection only, for example

N(A∩B) = min(N(A),N(B)) . (3.181)

When one is totally ignorant about event A, we have

Π(A) = Π(Ã) = 1 and N(A) = N(Ã) = 0 , (3.182)

while
Π(A∩ Ã) = 0 and N(A∪ Ã) = 1 . (3.183)

This ability to model ignorance in a non-biased way is a typical asset of possibility
theory.

The likelihood function Engineering design analysis is rarely involved with di-
rectly observable quantities. The concepts used for design analysis are, by and large,
set at a fairly high level of abstraction and related to abstract design concepts. The
observable world impinges on these concepts only indirectly. Requiring design en-
gineers to rate conceptual objects on membership in a highly abstract set may be
very difficult, and thus time and resources would be better spent using expert judg-
ment to rate conceptual objects on more concrete scales, subsequently combined
into a single index by an aggregation procedure (Klir and Yuan 1995).

Furthermore, judgment bias or inconsistency can creep in when ratings need to be
estimated for conceptually complicated sets—which abound in engineering design
analysis. It is much more difficult to defend a membership rating that comes solely
from expert judgment when there is little to support the procedure other than the
expert’s status as an expert. It is therefore better to have a formal procedure in place
that is transparent, such as IIT. In addition, it is essential that expert judgment relates
to empirical evidence (Booker et al. 2000).

It is necessary to establish a relatively strong metric basis for membership func-
tions for a number of reasons, the most important being the need to revert informa-
tion that contains no numbers for analysis or for probability distributions, and that
was captured and quantified by the use of membership functions, back into a proba-
bilistic framework for further analysis. As indicated before, such a bridging can be
accomplished using the Bayes theorem whereby the membership functions may be
interpreted as likelihoods (Bement et al. 2000b).
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The objective is to interpret the membership function of a fuzzy set as a like-
lihood function. This idea is not new in fuzzy set theory, and has been the basis
of experimental design methods for constructing membership functions (Loginov
1966).

The likelihood function is a fundamental concept in statistical inference. It indi-
cates how likely a particular set of values will contain an unknown estimated value.
For instance, suppose an unknown random variable u that has values in the set U
is to be estimated. Suppose also that the distribution of u depends on an unknown
parameter ′F′, with values in the parameter space F . Let P(u; ′F′) be the probability
distribution of the variable u, where ′F′ is the parameter vector of the distribution.

If xo is the estimate of variable u, an outcome of expert judgment, then the like-
lihood function L is given by the following relationship

L(′F′|xo) = P(xo|′F′) . (3.184)

In general, both u and xo are vector valued. In other words, the estimate xo is sub-
stituted instead of the random variable u into the expression for probability of the
random variable, and the new expression is considered to be a function of the pa-
rameter vector ′F′.

The likelihood function may vary due to various estimates from the same expert
judgment. Thus, in considering the probability density function of u at xo denoted by
f (u|′F′), the likelihood function L is obtained by reversing the roles of ′F′ and u—
that is, ′F′ is viewed as the variable and u as the estimate (which is precisely the
point of view in estimation)

L(′F′|u) = f (u|′F′) for ′F′ in F and u in U . (3.185)

The likelihood function itself is not a probability (nor density) function because its
argument is the parameter ′F′ of the distribution, not the random variable (vector) u.
For example, the sum (or integral) of the likelihood function over all possible values
of F should not be equal to 1. Even if the set of all possible values of F is discrete,
the likelihood function still may be continuous (as the set of parameters F is con-
tinuous). In the method of maximum likelihood, a value u of the parameter ′F′ is
sought that will maximise L(′F′|u) for each u in U : maxu∈F L(′F′|u). The method
determines the parameter values that would most likely produce the values estimated
by expert judgment.

In an IIT context, consider a group of experts, wherein each expert is asked to
judge whether the variable u, where u ∈U , can be part of a fuzzy concept F or not.
In this case, the likelihood function L(′F′|u) is obtained from the probability dis-
tribution P(u;′F′), and basically represents the proportion of experts that answered
yes to the question. The function ′F′ is then the corresponding non-fuzzy parameter
vector of the distribution (Dubois and Prade 1993a).

The membership function μF(u) of the fuzzy set F is the likelihood function
L(′F′|u)

μF(u) = L(′F′|u) ∀u ∈U . (3.186)
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This relationship will lead to a cross-fertilisation of fuzzy set and likelihood the-
ories, provided it does not rely on a dogmatic Bayesian approach. The premise of
Eq. (3.186) is to view the likelihood in terms of a conditional uncertainty measure—
in this case, a probability. Other uncertainty measures may also be used, for exam-
ple, the possibility measure Π , i.e.

μF(u) = Π(′F′|u) ∀u ∈U . (3.187)

This expresses the equality of the membership function describing the fuzzy class F
viewed as a likelihood function with the possibility that an element u is classified
in F . This can be justified starting with a possibilistic counterpart of the Bayes
theorem (Dubois and Prade 1990)

min
(
π(u|′F′),Π(′F′)

)
= min

(
Π(′F′|u),Π(u)

)
. (3.188)

This is assuming that no a priori (from cause to effect) information is available, i.e.
π(u) = 1 ∀u, which leads to the following relationship

π(u|′F′) = Π(′F′|u) , (3.189)

where:

π is the conditional possibility distribution that u relates to ′F′.

Fuzzy judgment in statistical inference Direct relationships between likelihood
functions and possibility distributions have been pointed out in the literature (Thomas
1979), inclusive of interpretations of the likelihood function as a possibility distri-
bution in the law of total probabilities (Natvig 1983).

The likelihood function is treated as a possibility distribution in classical statis-
tics for so-called maximum likelihood ratio tests. Thus, if some hypothesis of the
form u ∈ F is to be tested against the opposite hypothesis u /∈ F on the basis of esti-
mates of ′F′, and knowledge of the elementary likelihood function L(′F′|u), u ∈U ,
then the maximum likelihood ratio is the comparison between maxu∈F L(′F′|u)
and maxu/∈F L(′F′|u), whereby the conditional possibility distribution is π(u|′F′) =
L(′F′|u) (Barnett 1973; Dubois et al. 1993a).

If, instead of the parameter vector ′F′, empirical values for expert judgment J are
used, then

π(u|J) = L(J|u) . (3.190)

The Bayesian updating procedure in which expert judgment can be combined with
further information can be reinterpreted in terms of fuzzy judgment, whereby an
expert’s estimate can be used as a prior distribution for initial reliability until further
expert judgment is available. Then

P(u|J) =
L(J|u) ·P(u)

P(J)
. (3.191)
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As an example, the probability function can represent the probability of failure of
a component in an assembly set F , where the component under scrutiny is classed
as ‘critical’.

Thus, if p represents the base of the probability of failure of some component
in an assembly set F , and the component under scrutiny is classed ‘critical’, where
‘critical’ is defined by the membership function μcritical, then the a posteriori (from
effect to cause) probability is

p(u|critical) =
μcritical(u) · p(u)

P(critical)
, (3.192)

where μcritical(u) is interpreted as the likelihood function, and the probability of
a fuzzy event is given as (Zadeh 1968; Dubois et al. 1990)

P(critical) =
1∫

0

μcritical(u)dP(u) . (3.193)

d) Application of Fuzzy Judgment in Reliability Evaluation

The following methodology considers the combination of all available informa-
tion to produce parameter estimates for application in Weibull reliability evaluation
(Booker et al. 2000). Following the procedure flowchart in Fig. 3.46, the resulting

Fig. 3.46 Methodology of
combining available informa-
tion

Define design requirements

Define performance measures

Structure the system

Elicit expert judgment

Utilize blackboard database

Calculate initial performance
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fuzzy judgment information is in the form of an uncertainty distribution for the reli-
ability of some engineering system design. This is defined at particular time periods
for specific requirements, such as system warranty.

The random variable for the reliability is given as R(t), where t is the period in
an appropriate time measure (hours, days, months, etc.), and the uncertainty distri-
bution function is f (R;t,θ ), where θ is the set of Weibull parameters, i.e.

λ = failure rate,
β = shape parameter or failure pattern,
μ = scale parameter or characteristic life,
γ = location, or minimum life parameter.

For simplicity, consider the sources of information for estimating R(t) and f (R;t,θ )
originating from expert judgment, and from information arising from similar sys-
tems.

Structuring the system for system-level reliability Structuring the system is done
according to the methodology of systems breakdown structuring (SBS) whereby an
in-series system consisting of four levels is considered, namely:

• Level 1: process level
• Level 2: system level
• Level 3: assembly level
• Level 4: component level.

In reality, failure causes are also identified at the parts level, below the component
level, but this extension is not considered here. Reliability estimates for the higher
levels may come from two sources: information from the level itself, as well as from
integrated estimates arising from the lower levels. The reliability for each level of
the in-series system is defined as the product of the reliabilities within that level.
The system-level reliability is the product RS of all the lower-level reliabilities.

The system-level reliability, RS, is computed as

R(t,θ ) =
nS

∏
j=1

RS(t,θ j) for nS levels . (3.194)

RS(t,θ j) is a reliability model in the form of a probability distribution such as
a three-parameter Weibull reliability function with

RS(t,β j,μ j,γ j) = e−[(t−γ)/μ]β . (3.195)

This reliability model must be appropriate and mathematically correct for the system
being designed, and applicable for reliability evaluation during the detail design
phase of the engineering design process.

It should be noted that estimates for λ , the failure rate or hazard function for each
component, are also obtained from estimates of the three Weibull parameters γ , μ
and β .
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The γ location parameter, or minimum life, represents the period within which
no failures occur at the onset of a component’s life cycle. For practical reasons, it
is convenient to leave the γ location parameter out of the initial estimation. This
simplification, which amounts to an assumption that γ = 0, is frequently necessary
in order to better estimate the β and μ Weibull parameters.

The β shape parameter, or failure pattern, normally fits the early functional fail-
ure (β < 1) and useful life (β = 1) characteristics of the system, from an implicit
understanding of the design’s reliability distribution, through the corresponding haz-
ard curve’s ‘bathtub’ shape.

The μ scale parameter, or characteristic life, is an estimate of the MTBF or
the required operating period prior to failure. Usually, test data are absent for the
conceptual and schematic design phases of a system. Information sources at this
point of reliability evaluation in the system’s detail design phase still reside mainly
within the collective knowledge of the design experts. However, other information
sources might include data from previous studies, test data from similar processes
or equipment, and simulation or physical (industrial) model outputs.

The two-parameter Weibull cumulative distribution function is applied to all
three of the phases of the hazard rate curve or equipment ‘life characteristic curve’,
and the equation for the Weibull probability density function is the following (from
Eq. 3.51):

f (t) =
β · t(β−1)

μβ · e−t/μ , (3.196)

where:

t = the operating time to determine reliability R(t),
β = the Weibull distribution shape parameter,
μ = the Weibull distribution scale parameter.

As indicated previously, integrating out the Weibull probability density function
gives the Weibull cumulative distribution function F(t)

F(t) =
1∫

0

f (t|β μ)dt = 1− e−t/μβ
. (3.197)

The reliability for the Weibull probability density function is then

R(t) = 1−F(t) = e−t/μβ
, (3.198)

where the Weibull hazard rate function, λ (t) or failure rate, is derived from the
ratio between the Weibull probability density function, and the Weibull reliability
function

λ (t) =
f (t)
R(t)

=
β (t)β−1

μβ , (3.199)

where μ is the component characteristic life and β the failure pattern.
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e) Elicitation and Analysis of Expert Judgment

A formal elicitation is necessary to understand what expertise exists and how it can
be related to the reliability estimation, i.e. how to estimate the Weibull parameters
β and μ (Meyer et al. 2000). In this case, it is assumed that design experts are ac-
customed to working in project teams, and reaching a team consensus is their usual
way of working. It is not uncommon, however, that not all teams think about perfor-
mance using the same terms. Performance could be defined in terms of failures in
incidences per time period, which convert to failure rates for equipment, or it could
be defined in terms of failures in parts per time period, which translate to reliabili-
ties for systems. Best estimates of such quantities are elicited from design experts,
together with ranges of values. In this case, the most common method for assign-
ing membership is based on direct, subjective judgments by one or more experts,
as indicated above in Subsection c) Application of Fuzzy Logic and Fuzzy Sets in
Reliability Evaluation.

In this method, a design expert rates values on a membership scale, assigning
membership values with no intervening transformations. Typical fuzzy estimates for
a membership function on a membership scale are interpreted as: most likely (me-
dian), maximum (worst), and minimum (best) estimates. The fundamental task is to
convert these fuzzy estimates into the parameters of the Weibull distribution for each
item of equipment of the design. Considering the uncertainty distribution function
f (R;t,θ ) (Booker et al. 2000), where θ is the set of Weibull parameters that include
β = failure pattern, μ = characteristic life, γ = minimum life parameter and where
γ �= 0, an initial distribution for λ = failure rate can be determined.

Failure rates are often asymmetric distributions such as the lognormal or gamma.
Because of the variety of distribution shapes, the best choice for the failure rate
parameter, λ , is the gamma distribution fn(t)

fn(t) =
λ n · t(n−1)

(n−1)!
· e−λ t , (3.200)

where n is the number of components for which λ is the same.
This model is chosen because it includes cases in which more than one failure

occurs.
Where more than one failure occurs, the reliability of the system can be judged

not by the time for a single failure to occur but by the time for n failures to occur,
where n > 1. The gamma probability density function thus gives an estimate of
the time to the nth failure. This probability density function is usually termed the
gamma–n distribution because the denominator of the probability density function
is a gamma function.

Choosing the gamma distribution for the failure rate parameter λ is also appro-
priate with respect to the characteristic life parameter μ . As indicated previously,
this parameter is by definition the mean operating period in which the likelihood
of component failure is 63% or, in terms of system unreliability, it is the operating
period during which at least 63% of the system’s components are expected to fail.



3.3 Analytic Development of Reliability and Performance in Engineering Design 229

Uncertainty distributions are also developed for the design’s reliabilities,
RS(t,β j,μ j,γ j), based on estimates of the Weibull parameters β j, μ j and γ j, where
γ j = 0. The best choice for the distribution of reliabilities that are translated from
the three estimates of best, most likely, and worst case values of the two Weibull pa-
rameters β j, μ j is the beta distribution fβ (R|a,b), because of the beta’s appropriate
(0 to 1) range and its wide variety of possible shapes

fβ (R|a,b) =
(a+b+1)!Rb

a!b!
(1−R)b , (3.201)

where:

fβ (R|a,b) = continuous distribution over the range (0,1)
R = reliabilities translated from the three estimates of best, most likely,

and worst case values, and 0 < R < 1
a = the number of survivals out of n
b = the number of failures out of n (i.e. n−a).

A general consensus concerning the γ parameter is that it should correspond to
the typical minimum life of similar equipment, for which warranty is available.
Maximum likelihood estimates for γ from Weibull fits of this warranty data provide
a starting estimate that can be adjusted or confirmed for the equipment. Warranty
data are usually available only at the system or sub-system/assembly levels, making
it necessary to confirm a final decision about a γ value for all equipment at all system
levels.

The best and worst case values of the Weibull parameters β j and μ j are defined
to represent the maximum and minimum possible values. However, these values
are usually weighted to account for the tendency of experts to underestimate uncer-
tainty. Another difficulty arises when fitting three estimates, i.e. minimum (best),
most likely (median), and maximum (worst), to the two-parameter Weibull distri-
bution. One of the three estimates might not match, and the distribution may not fit
exactly through all three estimates (Meyer and Booker 1991).

As part of the elicitation, experts are also required to specify all known or po-
tential failure modes and failure causes (mechanisms) in engineering design anal-
ysis (FMECA) for reliability assessments of each item of equipment during the
schematic design phase. The contribution of each failure mode is also specified.
Although failure modes normally include failures in the components as such—e.g.
a valve wearing out—they can also include faults arising during the manufacture of
components, or the improper assembly/installation of multiple components in inte-
grated systems. These manufacturing and assembly/installation processes are com-
pilations of complex steps and issues during the construction/installation phase of
engineering design project management, which must also be considered by expert
judgment.

Figure 3.47 gives the baselines of an engineering design project, indicating the
interface between the detail design phase and the construction/installation phase.
Some of these issues relate to how quality control and inspections integrate with
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Fig. 3.47 Baselines of an engineering design project

the design process to achieve the overall integrity of engineering design. Reliability
evaluation of these processes depends upon the percent or proportion of items that
fail quality control and test procedures during the equipment commissioning phase.
This aspect of engineering design integrity is considered later.

f) Initial Reliability Calculation Using Monte Carlo Simulation

Once the parameters and uncertainty distributions are specified for the design, the
initial reliability, RS(t,β j,μ j,γ j), is calculated by using Monte Carlo simulation.
As this model is time dependent, predictions at specified times are possible. Most
of the expert estimates are thus given in terms of time t. For certain equipment,
calendar time is important for warranty reasons, although in many cases operating
hours is important as a lifetime indicator. The change from calendar time to oper-
ating time exemplifies the need for an appropriate conversion factor. Such factors
usually have uncertainties attached, so the conversion also requires an uncertainty
distribution. This distribution is developed using maximum likelihood techniques
that are applied to typical operating time–calendar time relationship data. This un-
certainty distribution also becomes part of the Monte Carlo simulation. The initial
reliability calculation is concluded with system, assembly and component distribu-
tions calculated at these various time periods. Once expert estimates are interpreted
in terms of fuzzy judgment, and prior distributions for an initial reliability are cal-
culated, Bayesian updating procedure is then applied in which expert judgment is
combined with other information, when it becomes available.

When the term simulation is used, it generally refers to any analytical method
meant to imitate a real-life system, especially when other analyses are mathemat-
ically complex or difficult to reproduce. Without the aid of simulation, a mathe-
matical model usually reveals only a single outcome, generally the most likely or
average scenario, whereas with simulation the effect of varying inputs on outputs of
the modelled system are analysed.

Monte Carlo (MC) simulations use random numbers and mathematical and sta-
tistical models to simulate real-world systems. Assumptions are made about how
the model behaves, based either on samples of available data or on expert estimates,
to gain an understanding of how the corresponding real-world system behaves.
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MC simulation calculates multiple scenarios of the model by repeatedly sampling
values from probability distributions for the uncertain variables, and using these
values for the model. MC simulations can consist of as many trials (or scenarios)
as required—hundreds or even thousands. During a single trial, a value from the
defined possibilities (the range and shape of the distribution) is randomly selected
for each uncertain variable, and the results recalculated. Most real-world systems
are too complex for analytical evaluations.

Models must be studied with many simulation runs or iterations to estimate real-
world conditions. Monte Carlo (MC) models are computer intensive and require
many iterations to obtain a central tendency, and many more iterations to get confi-
dence limit bounds. MC models help solve complicated deterministic problems (i.e.
containing no random components) as well as complex probabilistic or stochastic
problems (i.e. containing random components). Deterministic systems usually have
one answer and perform the same way each time. Probabilistic systems have a range
of answers with some central tendency.

MC models using probabilistic numbers will never give the exact same results.
When simulations are rerun, the same answers are never achieved because of the
random numbers that are used for the simulation. Rather, the central tendency of
the numbers is determined, and the scatter in the data identified. Each MC run pro-
duces only estimates of real-world results, based on the validity of the model. If the
model is not a valid description of the real-world system, then no amount of num-
bers will give the right answer. MC models must therefore have credibility checks
to verify the real-world system. If the model is not valid, no amount of simulations
will improve the expert estimates or any derived conclusions.

MC simulation randomly generates values for uncertain variables, over and over,
to simulate the model. For each uncertain variable (one that has a range of possible
values), the values are defined with a probability distribution. The type of distribu-
tion selected is based on the conditions surrounding that variable. These distribution
types may include the normal, triangular, uniform, lognormal, Bernoulli, binomial
and Poisson distributions. Bayesian inference from mixed distributions can feasibly
be performed with Monte Carlo simulation.

In most of the examples, MC simulation models use the Weibull equation (as
well as the special condition case where β = 1 for the exponential distribution).
The Weibull equation used for such MC simulations has been solved for time con-
straint t, with the following relationship between the Weibull cumulative distribution
function (c.d.f.), F(t), t and β

t = μ · ln [1/(1−F(t))]1/β . (3.202)

Random numbers between 0 and 1 are used in the MC simulation to fit the Weibull
cumulative distribution function F(t).

In complex systems, redundancy exists to prevent overall system failure, which
is usually the case with most engineering process designs. For system success, some
equipment (sub-systems, assemblies and/or components) of the system must be
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successful simultaneously. The criteria for system success is based upon the sys-
tem’s configuration and the various combinations of equipment functionality and
output, which is to be included in the simulation logic statement. The reliability of
such complex systems is not easy to determine. Consequently, a relatively convo-
luted method of calculating the system’s reliability is resorted to, through Boolian
truth tables.

The size of these tables is usually large, consisting of 2n rows of data, where n
is the number of equipment in the system configuration. The reason the Boolian
truth table is used is to calculate the theoretical reliability for the system based on
the individual reliability values that are used for each item of equipment. On the
first pass through the Boolian truth table, decisions are made in each row of the ta-
ble about the combinations of successes or failures of the equipment. The second
pass through the table calculates the contribution of each combination to the overall
system reliability. The sum of all individual probabilities of success will yield the
calculated system reliability. Boolian truth tables allow for the calculation of theo-
retical system reliabilities, which can then be used for Monte Carlo simulation. The
simulation can be tested against the theoretical value, to measure how accurately the
simulation came to reaching the correct answer.

As an example, consider the following MC simulation model of a complex sys-
tem, together with the relative Boolian truth table, and Monte Carlo simulation re-
sults (Barringer 1993, 1994, 1995):

Given: reliability values for each block
Find: system reliability
Method: Monte Carlo simulation with Boolian truth tables:

R4

R5R3

R2

R1

Change, R-values R1 R2 R3 R4 R5 System
0.1 0.3 0.1 0.2 0.2 ?

Cumulative successes 93 292 99 190 193 131
Cumulative failures 920 721 914 823 820 882
Total iterations 1013 1013 1013 1013 1013 1013
Simulated reliability 0.0918 0.2883 0.0977 0.1876 0.1905 0.1293
Theoretical reliability 0.1000 0.3000 0.1000 0.2000 0.2000 0.1357
% error −8.19% −3.92% −2.27% −6.22% −4.74% −4.72%
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Boolean truth table
Entry R1 R2 R3 R4 R5 Success or failure Prob. of success

1 0 0 0 0 0 F –
2 0 0 0 0 1 F –
3 0 0 0 1 0 F –
4 0 0 0 1 1 F –
5 0 0 1 0 0 F –
6 0 0 1 0 1 S 0.01008
7 0 0 1 1 0 F –
8 0 0 1 1 1 S 0.00252
9 0 1 0 0 0 F –
10 0 1 0 0 1 S 0.03888
11 0 1 0 1 0 S 0.03888
12 0 1 0 1 1 S 0.00972
13 0 1 1 0 0 F –
14 0 1 1 0 1 S 0.00432
15 0 1 1 1 0 S 0.00432
16 0 1 1 1 1 S 0.00108
17 1 0 0 0 0 F –
18 1 0 0 0 1 F –
19 1 0 0 1 0 S 0.01008
20 1 0 0 1 1 S 0.00252
etc.

g) Bayesian Updating Procedure in Reliability Evaluation

The elements of a Bayesian reliability evaluation are similar to those for a discrete
process, considered in Eq. (3.179) above, i.e.:

P(c| f ) =
P(c) ·P( f |c)

P( f )
.

However, the structure differs because the failure rate, λ , is well as the reliability,
RS, are continuous-valued. In this case, the Bayesian reliability evaluation is given
by the formulae

P(λi|βi,μi,γi) =
P(λi) ·P(βi,μi,γi|λi)

P(βi,μi,γi)
, (3.203)

where:

P(RS|βi,μi,γi) =
P(RS) ·P(βi,μi,γi|RS)

P(βi,μi,γi)
(3.204)
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and:

P(λi|t) =
λ j · t( j−1)

( j−1)!
· e−λ t

P(RS|a,b) =
(a+b+1)!

a!b!
Rb

S(1−RS)b

j = number of components with the same λ ,
t = operating time for determining λ and RS,
a = the number of survivals out of j,
b = the number of failures out of j (i.e. j−a).

For both the failure rate λ and reliability RS, the probability P(β j,μ j,γ j) may be
either continuous or discrete, whereas the probabilities of P(λ j) for failure and of
P(RS) for reliability are always continuous. Therefore, the prior and posterior distri-
butions are always continuous, whereas the marginal distribution, P(β j,μ j,γ j), may
be either continuous or discrete.

Thus, in the case of expert judgment, new estimate values in the form of a like-
lihood function are incorporated into a Bayesian reliability model in a conventional
way, representing updated information in the form of a posterior (a posteriori) prob-
ability distribution that depends upon a prior (a priori) probability distribution that,
in turn, is subject to the estimated values of the Weibull parameters. Because the
prior distribution and that for the new estimated values represented by a likelihood
function are conjugate to one another (refer to Eq. 3.179), the mixing of these two
distributions, by way of Bayes’ theorem, ultimately results in a posterior distribution
of the same form as the prior.

h) Updating Expert Judgment

The initial prediction of reliabilities made during the conceptual design phase may
be quite poor with large uncertainties. Upon review, experts can decide which parts
or processes to change, where to plan for tests, what prototypes to build, what ven-
dors to use, or the type of what–if questions to ask in order to improve the design’s
reliability and reduce uncertainty. Before any usually expensive actions are taken
(e.g. building prototypes), what–if cases are calculated to predict the effects on esti-
mated reliability of such proposed changes or tests. These cases can involve changes
in the structure, structural model, experts’ estimates, and the terms of the reliability
model as well as effects of proposed test data results. Further breakdown of systems
into component failure modes may be required to properly map these changes and
to modify proposed test data in the reliability model (Booker et al. 2000). Because
designs are under progressive development or undergoing configuration change dur-
ing the engineering design process, new information continually becomes available
at various stages of the process. Design changes may include adding, replacing or
eliminating processes and/or components in the light of new engineering judgment.
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Incorporating these changes and new information into the existing reliability esti-
mates is referred to as the updating process.

New information and data from different sources or of different types (e.g. tests,
engineering judgment) are merged by combining uncertainty distribution functions
of the old and new sources. This merging usually takes the form of a weighting
scheme (Booker et al. 2000), (w1 f1 + w2 f2), where w1 and w2 are weights and f1
and f2 are functions of parameters, random variables, probability distributions, or
reliabilities, etc.

Experts often provide the weights, and sensitivity analyses are performed to
demonstrate the effects of their choices. Alternatively, the Bayes theorem can be
used as a particular weighting scheme, providing weights for the prior and the
likelihood through application of the theorem. Bayesian combination is, in effect,
Bayesian updating. If the prior and likelihood distributions overlap, then Bayesian
combination will produce a posterior distribution with a smaller variance than if
the two were combined via other methods, such as a linear combination of random
variables. This is a significant advantage of using the Bayes theorem.

Because test data at the early stages of engineering design are lacking, initial
reliability estimates, R0(t,λ ,β ), are developed from expert judgment, and form the
prior distribution for the system (as indicated in Fig. 3.40 above). As the engineering
design develops, data and information may become available for certain processes
(e.g. systems, assemblies, components), and this would be used to form likelihood
distributions for Bayesian updating. All of the distribution information in the items
at the various levels must be combined upwards through the system hierarchy lev-
els, to produce final estimates of the reliability and its uncertainty at various levels
along the way, until reaching the top process or system level. As more data and
information become available and are incorporated into the reliability calculation
through Bayesian updating, they will tend to dominate the effects of the experts’ es-
timates developed through expert judgment. In other words, Ri(t,λ ,β ) formulated
from i = 1,2,3, . . .,n test results will look less and less like R0(t,λ ,β ) derived from
initial expert estimates.

Three different combination methods are used to form the following (updated)
expert reliability estimate of R1(t,λ ,β ):

• For each prior distribution that is combined with data or likelihood distribution,
the Bayes theorem is used for a posterior distribution.

• Posterior distributions within a given level are combined according to the model
configuration (e.g. multiplication of reliabilities for systems/sub-systems/equip-
ment in series) to form the prior distribution of the next higher level (Fig. 3.40).

• Prior distributions at a given level are combined within the same systems/sub-
systems/equipment to form the combined prior (for that level), which is then
merged with the data (for that system/sub-system/equipment). This approach is
continued up the levels until a process-level posterior distribution is developed.

For general updating, test data and other new information can be added to the
existing reliability calculation at any level and/or for any process, system or equip-
ment. These data/information may be applicable only to a single failure mode at
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equipment level. When new data or information become available at a higher level
(e.g. sub-system) for a reliability calculation at step i, it is necessary to back prop-
agate the effects of this new information to the lower levels (e.g. assembly or com-
ponent). The reason is that at some future step, i + j, updating may be required at
the lower level, and its effect propagated up the systems hierarchy. It is also possi-
ble to back propagate by apportioning either the reliability or its parameters to the
lower hierarchy levels according to their contributions (criticality) at the higher sys-
tems level. The statistical analysis involved with this back propagation is difficult,
requiring techniques such as fault-tree analysis (FTA) (Martz and Almond 1997).

While it can be shown that, for well-behaved functions, certain solutions are pos-
sible, they may not be unique. Therefore, constraints are placed on the types of
solutions desired by the experts. For example, it may be required that, regardless
of the apportioning used to propagate downwards, forward propagating maintain
original results at the higher systems level. General updating is an extremely use-
ful decision tool for asking what–if questions and for planning resources, such as
pilot test facilities, to determine if the reliability requirements can be met before ac-
tually manufacturing and/or constructing the engineered installation. For example,
the reliability uncertainty distributions obtained through simulation are empirical
with no particular distribution form but, due to their asymmetric nature and because
their range is from 0 to 1, they often appear to fit well to beta distributions. Thus,
consider a beta distribution of the following form, for 0 = x = 1, a > 0, b > 0

Beta(x|a,b) =
Γ (a+b)
Γ (a)Γ (b)

x(a−1)(1− x)(b−1) . (3.205)

The beta distribution has important applications in Bayesian statistics, where proba-
bilities are sometimes looked upon as random variables, and there is therefore a need
for a relatively flexible probability density (i.e. the distribution can take on a great
variety of shapes), which assumes non-zero values in the interval from 0 to 1. Beta
distributions are used in reliability evaluation as estimates of a component’s relia-
bility with a continuous distribution over the range 0 to 1.

Characteristics of the Beta Distribution

The mean or expected value The mean, E(x), of the two-parameter beta proba-
bility density function p.d.f. is given by

E(x) =
a

(a+b)
. (3.206)

The mean a/(a+b) depends on the ratio a/b. If this ratio is constant but the values
for both a and b are increased, then the variance decreases and the p.d.f. tends to the
unit normal distribution.

The median The beta distribution (as with all continuous distributions) has mea-
sures of location termed percentage points, Xp. The best known of these percentage
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points is the median, X50, the value of which there is as much chance that a random
variable will be above as below it.

For a successes in n trials, the lower confidence limit u, at confidence level s,
is expressed as a percentage point on a beta distribution. The median ū of the two-
parameter beta p.d.f. is given by

ū = 1−F(u50|a,b) . (3.207)

The mode The mode or value with maximum probability, ů, of the two-parameter
beta p.d.f. is given by

ů =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a−1
(a+b−2)

for a > 1,b > 1

0 and 1 for a < 1,b < 1

0 for a < 1,b ≥ 1 and for a = 1,b > 1

1 for a ≥ 1,b < 1 and for a > 1,b = 1

(3.208)

ů does not exist for a = b = 1.

If a < 1, b < 1, there is a minimum value or antimode.

The variance Moments about the mean describe the shape of beta p.d.f. The vari-
ance v is the second moment about the mean, and is indicative of the spread or
dispersion of the distribution. The variance v of the two-parameter beta p.d.f. is
given by

v =
ab

(a+b)2(a+b+1)
. (3.209)

The standard deviation The standard deviation σT of the two-parameter beta
p.d.f. is the positive square root of the variance, v2, which indicates the closeness
one can expect the value of a random variable to be to the mean of the distribution,
and is given by

σT =
√

ab/(a+b)2(a+b+1) . (3.210)

Three-parameter beta distribution function The probability density function,
p.d.f., of the three-parameter beta distribution function is given by

f (Y ) = 1/c ·Beta(x|a,b) · (Y/c)a−1 · (1−Y/c)b−1 , (3.211)

for 0 ≤ Y ≤ c and 0 < a, 0 < b, 0 < c.
From this general three-parameter beta p.d.f., the standard two-parameter beta

p.d.f. can be derived with the transform x = Y/c.
In the case where a beta distribution is fitted to a reliability uncertainty distribu-

tion, Ri(t,λ ,β ), resulting in certain values for parameters a and b, the experts would
want to determine what would be the result if they had the components manufac-
tured under the assumption that most would not fail. Taking advantage of the beta
distribution as a conjugate prior for the binomial data, the combined component
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reliability distribution Rj(t,λ ,β ) would also be a beta distribution. For instance, the
beta expected value (mean), variance and mode, together with the fifth percentile
for Rj can be determined from a reliability uncertainty distribution, Rj(t,λ ,β ).

As an example, a beta distribution represents a reliability uncertainty distribution,
R1(t,λ ,β ), with values for parameters a = 8 and b = 2. The beta expected value
(mean), variance and mode, together with the fifth percentile value for R1 are:

R1(t,λ ,β ) number of successes a = 8 and number of failures b = 2:
Distribution mean: 0.80
Distribution variance: 0.0145
Distribution mode: 0.875
Beta coefficient (E-value): 0.5709

Expert decision to have the components manufactured under the assumption that
most will not fail depends upon the new component reliability distribution. The new
reliability distribution would also be a beta distribution R2(t,λ ,β ) with modified
values for the parameters being the following: a = 8+ number of successful proto-
types and b = 2+ number unsuccessful. Assume that for five and ten manufactured
components, the expectation is that one and two will fail respectfully:

For five components:
R2(t,λ ,β ) a = 8+5 and b = 2+1:
Distribution mean: 0.8125
Distribution variance: 0.0089
Distribution mode: 0.8571
Beta coefficient (E-value): 0.6366

For ten components:
R3(t,λ ,β ) a = 8+10 and b = 2+2:
Distribution mean: 0.8182
Distribution variance: 0.0065
Distribution mode: 0.85
Beta coefficient (E-value): 0.6708

The expected value improves slightly (from 0.8125 to 0.8182) but, more impor-
tantly, the 5th percentile E-value improves from 0.57 to 0.67, which is an incentive
to invest in the components.

The general updating cycle can continue throughout the engineering design pro-
cess. Figure 3.48 depicts tracking of the reliability evaluation throughout a system’s
design, indicating the three percentiles (5th, median or 50th, and 95th) of the relia-
bility uncertainty distribution at various points in time (Booker et al. 2000).

The individual data points begin with the experts’ initial reliability characteri-
sation R0(t,λ ,β ) for the system and continue with the events associated with the
general updates, Ri(t,λ ,β ), as well as the what–if cases and incorporation of test
results. As previously noted, asking what–if questions and evaluating the effects on
reliability provides valuable information for engineering design integrity, and for
modifying designs based on prototype tests before costly decisions are made.
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Fig. 3.48 Tracking reliability uncertainty (Booker et al. 2000)

Graphs such as Fig. 3.48 are constructed for all the hierarchical levels of crit-
ical systems to monitor the effects of updating for individual processes. Graphs
are constructed for these levels at the desired prediction time values (i.e. monthly,
3-monthly, 6-monthly and annual) to determine if reliability requirements are met
at these time points during the engineering design process as well as the manufac-
turing/construction/ramp-up life cycle of the process systems. These graphs capture
the results of the experts’ efforts to improve reliability and to reduce uncertainty.
The power of the approach is that the roadmap developed leads to higher reliability
and reduced uncertainty, and the ability to characterise all of the efforts to achieve
improvement.

i) Example of the Application of Fuzzy Judgment in Reliability Evaluation

Consider an assembly set with series components that can influence the reliability
of the assembly. The components are subject to various failures (in this case, the po-
tential failure condition of wear), potentially degrading the assembly’s reliability.
For different component reliabilities, the assembly reliability will be variable. Fig-
ure 3.49 shows membership functions for three component condition sets, {A = no
wear, B = moderate wear, C = severe wear}, which are derived from minimum
(best), most likely (median) and maximum (worst) estimates.

Figure 3.50 shows membership functions for performance-level sets, correspond-
ing to responses {a = acceptable, b = marginal, c = poor}.

Three if–then rules define the condition/performance relationship:

• If condition is A, then performance is a.
• If condition is B, then performance is b.
• If condition is C, then performance is c.
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Fig. 3.50 Performance-level sets for membership functions

Referring to Fig. 3.49, if the component condition is x = 4.0, then x has member-
ship of 0.6 in A and 0.4 in B. Using the rules, the defined component condition
membership values are mapped to performance-level weights. Following fuzzy sys-
tem methods, the membership functions for performance-level sets a and b are com-
bined, based on the weights 0.6 and 0.4. This combined membership function can be
used to form the basis of an uncertainty distribution for characterising performance
for a given condition level. An equivalent probabilistic approach involving mixtures
of distributions can be developed with the construction of the membership func-
tions (Laviolette et al. 1995). In addition, linear combinations of random variables
provide an alternative combination method when mixtures produce multi-modality
results—which can be undesirable, from a physical interpretation standpoint (Smith
et al. 1998).

Departing from standard fuzzy systems methods, the combined performance
membership function can be normalised so that it integrates to 1.0. The resulting
function, f (y|x), is the uncertainty distribution for performance, y, corresponding
to the situation where component condition is equal to x. The cumulative distri-
bution function can now be developed, of the uncertainty distribution, F(y|x). If
performance must exceed some threshold, T , in order for the system to meet certain
design criteria, then the reliability of the system for the situation where component
condition is equal to x can be expressed as R(x) = 1−F(T |x). A specific threshold
of T corresponds to a specific reliability of R(4.0) (Booker et al. 1999).
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In the event that the uncertainty in wear, x, is characterised by some distribu-
tion, G(x), the results of repeatedly sampling x from G(x) and calculating F(y|x)
produce an ‘envelope’ of cumulative distribution functions. This ‘envelope’ repre-
sents the uncertainty in the degradation probability that is due to uncertainty in the
level of wear. The approximate distribution of R(x) can be obtained from such a nu-
merical simulation.

3.4 Application Modelling of Reliability and Performance
in Engineering Design

In Sect. 1.1, the five main objectives that need to be accomplished in pursuit of the
goal of the research in this handbook are:

• the development of appropriate theory on the integrity of engineering design for
use in mathematical and computer models;

• determination of the validity of the developed theory by evaluating several case
studies of engineering designs that have been recently constructed, that are in the
process of being constructed, or that have yet to be constructed;

• application of mathematical and computer modelling in engineering design veri-
fication;

• determination of the feasibility of a practical application of intelligent computer
automated methodology in engineering design reviews through the development
of the appropriate industrial, simulation and mathematical models.

The following models have been developed, each for a specific purpose and with
specific expected results, in part achieving these objectives:

• RAMS analysis model to validate the developed theory on the determination of
the integrity of engineering design.

• Process equipment models (PEMs), for application in dynamic systems simula-
tion modelling to initially determine mass-flow balances for preliminary engi-
neering designs of large integrated process systems, and to evaluate and verify
process design integrity of complex integrations of systems.

• Artificial intelligence-based (AIB) model, in which relatively new artificial intel-
ligence (AI) modelling techniques, such as inclusion of knowledge-based expert
systems within a blackboard model, have been applied in the development of
intelligent computer automated methodology for determining the integrity of en-
gineering design.

The first model, the RAMS analysis model, will now be looked at in detail in this
section of Chap. 3.

The RAMS analysis model was applied to an engineered installation, an environ-
mental plant, for the recovery of sulphur dioxide emissions from a metal smelter to
produce sulphuric acid. This model is considered in detail with specific reference
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to the inclusion of the theory on reliability as well as performance prediction, as-
sessment and evaluation, during the conceptual, schematic and detail design phases
respectively.

Eighteen months after the plant was commissioned and placed into operation,
failure data were obtained from the plant’s distributed control system (DCS) opera-
tion and trip logs, and analysed with a view to matching the RAMS theory, specifi-
cally of systems and equipment criticality and reliability, with real-time operational
data. The matching of theory with real-time data is studied in detail, with specific
conclusions.

The RAMS analysis computer model (ICS 2000) provides a ‘first-step’ approach
to the development of an artificial intelligence-based (AIB) model with knowledge-
based expert systems within a blackboard model, for automated continual design
reviews throughout the engineering design process. Whereas the RAMS analysis
model is basically implemented and used by a single engineer for systems analysis,
or at most a group of engineers linked via a local area network focused on gen-
eral plant analysis, the AIB blackboard model is implemented by multi-disciplinary
groups of design engineers who input specific design data and schematics into their
relevant knowledge-based expert systems. Each designed system or related equip-
ment is evaluated for integrity by remotely located design groups communicating
either via a corporate intranet or via the internet. The measures of integrity are
based on the theory for predicting, assessing and evaluating reliability, availabil-
ity, maintainability and safety requirements for complex integrations of engineering
systems.

Consequently, the feasibility of practical application of the AIB blackboard
model in the design of large engineered installations has been based on the suc-
cessful application of the RAMS analysis computer model in several engineering
design projects, specifically in large ‘super projects’ in the metals smelting and pro-
cessing industries. Furthermore, where only the conceptual and preliminary design
phases were considered with the RAMS analysis model, all the engineering design
phases are considered in the AIB blackboard model, to include a complete range of
methodologies for determining the integrity of engineering design. Implementation
of the RAMS analysis model was considered sufficient in reaching a meaningful
conclusion as to the practical application of the AIB blackboard model.

3.4.1 The RAMS Analysis Application Model

The RAMS analysis model was used not only for plant analysis to determine the
integrity of engineering design but also for design reviews as verification and evalu-
ation of the commissioning of designed systems for installation and operation. The
RAMS analysis application model was initially developed for analysis of the in-
tegrity of engineering design in an environmental plant for the recovery of sulphur
dioxide emissions from a metal smelter to produce sulphuric acid.
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In any complex process plant, there are literally thousands of different systems,
sub-systems, assemblies and components, which are all subject to failure and, there-
fore, require specific attention with respect to the integrity of their design, design
configuration as well as integration. To determine a logical starting point for any
RAMS analysis, a hierarchical approach is first adopted, followed by identification
of those items that are considered to be cost or process critical.

Cost critical items are the relatively few systems items of which the engineer-
ing costs (development, operational, maintenance and logistical support) make up
a significant portion of the total costs of the engineered installation. Process critical
items are those systems items that are the primary contributors to the continuation
of the mainstream production process.

Determination of cost and process criticality should begin at the higher hierar-
chical levels of a systems breakdown structure (SBS), such as the plant/facility level,
since the total plant is normally broken down into logical operations/areas relating
to the production process. Thus, rather than simply starting a RAMS analysis at
one end of the plant and progressing through to the other end, focus is concentrated
on specific areas based on their cost and process criticality. The Pareto principle is
followed, which implies that 20% of the plant’s areas contribute to 80% of the total
engineering cost. When determining process criticality, the fundamental mainstream
processes should first be identified based on the process flow and status changes of
the process. All operations/areas in which the process significantly changes, and
which are critical to the overall process flow, must be included. The different criti-
cal processes are then compared to those operations/areas identified as cost critical,
to identify the sections or buildings (in the case of facilities) that are process critical
but may not be considered as cost critical.

With such an approach, the RAMS analysis can proceed in a top-down progres-
sive clarification of the plant’s systems and equipment, already with an understand-
ing of which items will have the highest criticality in terms of cost and process
losses due to possible failure. As a result, the RAMS analysis deliverables can be
summarised as follows:

RAMS activities Deliverables

First-round costing Estimate initial maintenance costs
Process definition Develop operating procedures

Develop plant shutdown and start-up procedures
Pre-commission
Equipment register

Initial equipment lists
Equipment technical specifications
Manufacturer/supplier data

Plant definition Equipment systems hierarchy structures
Equipment inventory and systems coding
Consolidated equipment technical specifications
and group coding

FMEA Failure modes, causes and effects matrices
Failure diagnostics trouble-shooting charts
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RAMS activities Deliverables

Identification of certified
and critical equipment
(FMECA)

Critical equipment lists
Plant safety requirements
Process reliability evaluation
Risk management directives

Spares requirements
planning (SRP)

BOM and catalogue numbering
Spares lists and critical spares
Suppliers, supply lead times and supply costs

Maintenance standard
work instructions (SWI)

Relevant statutory requirements
Safe work practices
Required safety gear

Design updates and/or
reviews

Equipment modification review
Interdisciplinary participation

Plant procedures Statutory safety procedures
Maintenance procedures Maintenance tasks per discipline/equipment

Maintenance procedures sheets and coding
for work orders cross referencing

Plant shutdown
procedures

Plant shutdown tasks per discipline and per
equipment

Manning requirements Maintenance task times
Maintenance trade crew requirements

Maintenance budgeting Manning/spares costs against estimated maintenance
tasks

The RAMS analysis application model is object-oriented client/server database tech-
nology initially developed in Microsoft’s Visual Basic and Access. The model con-
sists of a front-end user interface structured in OOP with drill-down data input
and/or access to a normalised hierarchical database. The database consists of several
keyword-linked data tables relating to major development tasks of the RAMS anal-
ysis, such as equipment, process, systems, functions, conditions tasks, procedures,
costs, criticality, strategy, SWI (instructions) and logistics. These data tables relate
to specific analysis tasks of the RAMS model. The keywords linking each data ta-
ble reflect a structured six-tier systems breakdown structure (SBS), starting at the
highest systems level of plant/facility, down to the lowest systems level of com-
ponent/item. The SBS data table keywords are: plant, operation, section, system,
assembly, component.

Database analysis tools, and database structuring in an SBS, enables the user to
review visual data references to specific record dynasets in each of the data tables,
as illustrated in Fig. 3.51.

Database structuring in an SBS, and the normalising of each dynaset of hier-
archical structured records with a unique identifier (EQUIPID), allows for the es-
tablishment of a normalised hierarchical database. These dynasets include specific
analysis activities such as:
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Fig. 3.51 Database structuring of SBS into dynasets

• PFD (process flow diagrams),
• P&ID (pipe and instrument diagrams),
• technical specifications,
• process specifications,
• operating specifications,
• function specifications,
• failure characteristics/conditions,
• fault diagnostics,
• equipment criticality and performance measures,
• operating procedures,
• maintenance procedures,
• process cost models,
• operating/maintenance strategies,
• safety inspection strategies,
• standard work instructions,
• spares requirements.

In designing hierarchical relational database tables, database normalisation min-
imises duplication of information and, in so doing, safeguards the database against
certain types of logical or structural problems, specifically data anomalies. For
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example, when multiple instances of information pertaining to a single item of
equipment in a dynaset of hierarchical structured records occur in a data table, the
possibility exists that these instances will not be kept consistent when the data within
the table are updated, leading to a loss of data integrity. A table that is sufficiently
normalised is less vulnerable to problems of this kind, because its structure reflects
the basic assumptions for when multiple instances of the same information should be
represented by a single instance only. Higher degrees of normalisation involve more
tables and create the need for a larger number of joins or unique identifiers (such
as EQUIPID), which reduces performance. Accordingly, more highly normalised
tables are used in database applications involving many transactions (typically of
the dynasets of analysis activities listed above), while less normalised tables tend
to be used in database applications that do not need to map complex relationships
between data entities and data attributes.

The initial systems hierarchical structure, or systems breakdown structure (SBS),
illustrated in the RAMS analysis model in Fig. 3.52 is an overview location listing
of the plant into the following systems hierarchy:

Systems hierarchy Description

Plant/facility Environmental plant
Operation/area Effluent treatment
Section/building Effluent neutralisation

The initial systems structure of an engineered installation must inevitably begin at
the higher hierarchical levels of the systems breakdown structure, which constitutes
a ‘top-down’ approach. However, such an SBS will have already been developed at
the engineering design stage and, consequently, a ‘bottom-up’ approach can also be
considered, especially for plant analysis of components and their failure effects on
assemblies and systems.

The initial front-end structuring of the plant begins with the identification of
operation/area, and section/building groups in a systems breakdown structure. As
illustrated in Fig. 3.53, this structuring further provides visibility of process sys-
tems and their constituent assemblies and components in the RAMS analysis model
spreadsheets, process flows and treeviews. Relevant information can be hierarchi-
cally viewed from system level, down to sub-system, assembly, sub-assembly and
component levels. The various levels of the systems breakdown structure are nor-
mally determined by a framework of criteria that is established to logically group
similar components into sub-assemblies or assemblies, which are then logically
grouped into sub-systems or systems. This logical grouping of the constituent items
of each level of an SBS is done by identifying the actual physical design configu-
ration of the various items of one level of the SBS into items of a higher level of
systems hierarchy, and by defining common operational and physical functions of
the items at each level.

The systems hierarchical structure or systems breakdown structure (SBS) is
a complete equipment listing of the plant into the following hierarchy with related
example descriptions:
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Fig. 3.52 Initial structuring of plant/operation/section

Systems hierarchy Description

Plant/facility Environmental plant
Operation/area Effluent treatment
Section/building Effluent neutralisation
System/process Evaporator feed tank
Assembly/unit Feed pump no.1
Component/item Motor–feed pump no.1

Figure 3.54 illustrates a global grid list (or spreadsheet) of a specific system’s SBS
in establishing a complete equipment listing of that system.

The purpose for describing the systems in more detail is to ensure a common
understanding of exactly where the boundaries of the system are, and which are the
major sub-systems, assemblies and components encompassed by the system. The
boundaries to other systems and the interface components that form these bound-
aries must also be clearly specified. This is usually done according to the most ap-
propriate of the following criteria that are then described for the system:

• Systems boundary according to major function.
• Systems boundary according to material flow.
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Fig. 3.53 Front-end selection of plant/operation/section: RAMS analysis model spreadsheet, pro-
cess flow, and treeview

• Systems boundary according to process flow.
• Systems boundary according to mechanical action.
• Systems boundary according to state changes.
• Systems boundary according to input, throughput or output.

Interconnecting components such as cabling and piping between the boundaries of
two systems should be regarded as part of the system from which the process flow
emanates and enters the other system’s boundary. The interface components, which
are those components on the systems boundary, also need to be clearly specified
since it is these components that frequently experience functional failures. Also,
systems such as a hydraulic system, for instance, may not contain all the compo-
nents that operate hydraulically. For example, a hydraulic lube oil pump should
rather be placed under the lubrication sub-system. Where each assembly or a com-
ponent is placed in the SBS should be based on the criteria selected for boundary
determination. Normally for process plant, the criteria would typically be that of
inputs and outputs, so that the outputs of each assembly and component contribute
directly to the outputs of the system.
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Fig. 3.54 Global grid list (spreadsheet) of systems breakdown structuring

The selected system is then described using the following steps:

• Determine the relevant process flow and inputs and outputs, and develop a pro-
cess flow block diagram, specifically for process plant.

• List the major sub-systems and assemblies in the system, based on the appropri-
ate criteria that will also be used for boundary determination.

• Identify the boundaries to other systems and specify the boundary interface com-
ponents.

• Write an overview narrative that briefly describes the contents, criteria and
boundaries of the systems under description.

A complete equipment listing of a plant includes the following activities at each
systems hierarchical level:

Equipment listing at system level provides the ability to:

• identify groups of maintenance tasks for maintenance procedures,
• identify groups of maintenance tasks for maintenance budgets,
• identify critical systems for plant criticality,
• identify critical systems for maintenance priorities,
• identify critical systems for plant shutdown strategies.
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Equipment listing at assembly level provides the ability to:

• identify location of pipelines,
• identify location of pumps,
• give codes to pumps, lube assemblies, etc.,
• identify critical assemblies for maintenance strategies.

Equipment listing at component level provides the ability to:

• identify relevant technical data of common equipment groups,
• identify relevant technical data to establish bill of materials groups,
• identify and link bill of spares,
• identify critical components for spares purchase,
• identify location of instrumentation,
• identify location of valves,
• give codes to classified/critical manual valves,
• identify required maintenance tasks,
• establish necessary standard work instructions,
• establish necessary safe work practices,
• give codes to valves for operation safety procedures,
• give codes to MCC panels, gearboxes, etc.

A process flow diagram (PFD), as the name implies, graphically depicts the process
flow and can be used to show the conversion of inputs into outputs, which subse-
quently form inputs into the next system. A process flow diagram essentially depicts
the relationship of the different systems and sub-systems to each other, based on ma-
terial or status changes that can be determined by studying the conversion of inputs
to outputs at the different levels in each of the systems and sub-systems. One reason
for drawing process flow diagrams is to determine the nature of the process flow
in order to be able to logically determine systems relationships and the different
hierarchical levels within the systems.

Most process engineering schematic designs start off with simple process flow
diagrams, as that illustrated in Fig. 3.55, from which material flow and state changes
in the process can then be identified. This is done by studying the changes from
inputs to outputs of the different systems and determining the systems’ boundaries
as well as the interface components on these boundaries. A side benefit is a complete
description of the system.

The treeview option enables users to view selected components in their cascaded
systems hierarchical treeview structure, relating the equipment and their codes to
the following systems hierarchy structure:

• parts,
• components,
• assemblies,
• systems,
• sections,
• operations,
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Fig. 3.55 Graphics of selected section PFD

• plant,
• site.

Figure 3.56 illustrates a typical treeview in the RAMS plant analysis model with
expanded SBS (cascaded systems structure) for each system.

The RAMS analysis list is a sequential options list of the major development ac-
tivities and specifically detailed specifications of a system selected from the section
process flow diagram (PFD). By clicking on the PFD, a selection box appears for
analysis.

The options listed in the selection box in Fig. 3.57 include the following analysis
activities:

• Overview
• Analysis
• Specifications
• Diagnostics
• Modifications
• Simulation
• Decision logic
• Planning

• SWIs
• Procedures
• BOMs
• Technical data
• Grid list
• PIDs
• Reports
• Treeviews
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Fig. 3.56 Graphics of selected section treeview (cascaded systems structure)

The first category in the RAMS analysis list is an overview of specifically detailed
technical specifications relating to the equipment’s SBS, specifications, function and
requirements, including the following:

• Equipment specifications
• Systems specifications
• Process specifications
• Function specifications
• Detailed tasks
• Detailed procedures
• Logistic requirements
• Standard work instructions.

Figure 3.58 illustrates the use of the overview option and equipment specification
information displayed in the equipment tab, such as equipment description, equip-
ment number, equipment reference and the related position in the SBS data table.

The technical data worksheet illustrated in Fig. 3.59 is established for each item
of equipment that is considered during the design process to determine and/or mod-
ify specific equipment technical criteria such as:
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Fig. 3.57 Development list options for selected PFD system

• equipment physical data such as type, make, size, mass, volume, number of parts;
• equipment rating data such as performance, capacity, power (rating and factor),

efficiency and output;
• equipment measure data such as rotation, speed, acceleration, governing, fre-

quency and flow in volume and/or rate;
• equipment operating data such as pressures, temperatures, current (electrical),

potential (voltage) and torque (starting and operational);
• equipment property data such as the type of enclosure, insulation, cooling, lubri-

cation, and physical protection.

The technical specification document illustrated in Fig. 3.60 automatically formats
the technical attributes relevant to each type of equipment that is selected in the
design process. The document is structured into three sectors, namely:

• technical data obtained from the technical data worksheet, relevant to the equip-
ment’s physical and rating data, as well as performance measures and perfor-
mance operating, and property attributes that are considered during the design
process,

• technical specifications obtained from an assessment and evaluation of the re-
quired process and/or system design specifications,
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Fig. 3.58 Overview of selected equipment specifications

• acquisition data obtained from manufacturer/vendor data sheets, once the appro-
priate equipment technical specifications have been finalised during the detail
design phase of the engineering design process.

The second category in the RAMS analysis list is the analysis option that enables
selected users to access the major development tasks relative to the selected system
of the section’s PFD.

The options listed in the selection box in Fig. 3.61 appear after clicking on a se-
lected system (in this case, the reverse jet scrubber), and include an analysis based
on the following major development tasks:

Equipment (technical data sheets) Tasks (maintenance/operational)
Systems (systems structures) Procedures (reliability and safety)
Process (process characteristics) Costs (parametric cost estimate risk)
Functions (physical/operational) Strategy (operating/maintenance)
Conditions (physical/operational) Logistics (critical/contract spares)
Criticality (consequence severity) Instructions (safe work practices)

The major development tasks can be detailed into activities that constitute the over-
all RAMS analysis deliverables, not only to determine the integrity of engineering
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Fig. 3.59 Overview of the selected equipment technical data worksheet

design but also to verify and evaluate the commissioning of the plant. These tasks
can also be applied sequentially in a RAMS analysis of process plant and general
engineered installations that have been in operation for several years.

Some of these activities include the following:

• systems breakdown structure development,
• establishing equipment technical specifications,
• establishing process functional specifications,
• developing operating specifications,
• defining equipment function specifications,
• identifying failure characteristics and failure conditions,
• developing equipment fault diagnostics,
• developing equipment criticality,
• establishing equipment performance measures,
• identifying operating and maintenance tasks,
• developing operating procedures,
• developing maintenance procedures,
• establishing process cost models,
• developing operating and maintenance strategies,
• developing safe work practices,
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Fig. 3.60 Overview of the selected equipment technical specification document

• establishing standard work instructions,
• identifying critical spares,
• establishing spares requirements,
• providing for design modifications,
• simulating critical systems and processes.

The results of some of the more important activities will be considered in detail later,
especially with respect to their correlation with the RAMS theory, and failure data
that were obtained from the plant’s distributed control system (DCS) operation and
trip logs, 18 months after the plant was commissioned and placed into operation.
The objective of the comparative analysis is to match the RAMS theory, specifically
of systems and equipment criticality and reliability, with real-time operational data
after plant start-up.

Analysis of selected functions of systems/assemblies/components is mainly a cat-
egorisation of functions into operational functions that are related to the item’s
working performance, and into physical functions that are related to the item’s mate-
rial design. The definition of function is given as “the work that an item is designed
to perform”. The primary purpose of functions analysis is to be able to define the
failure of an item’s function within specified limits of performance. This failure of
an item’s function is a failure of the work that the item is designed to perform, and
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Fig. 3.61 Analysis of development tasks for the selected system

is termed a functional failure. Functional failure can thus be defined as “the inability
of an item to carry out the work that it is designed to perform within specified limits
of performance”.

The result of functional failure can be assessed as either a complete loss of the
item’s function or a partial loss of the item’s function. From these definitions it can
be seen that a number of interrelated concepts have to be considered when defining
functions in complex systems, and determining the functional relationships of the
various items of a system (cf. Fig. 3.62).

The functions of a system and its related equipment (i.e. assemblies and compo-
nents) can be grouped into two types, specifically primary functions and secondary
functions. The primary function of a system considers the operational criteria of
movement and work; thus, the primary function of the system is an operational
function. The primary function of a system is therefore a concise description of
the reason for existence of the system, based on the work it is required to perform.
Primary functions for the sub-systems or assemblies that relate to the system’s pri-
mary function must also be defined. It is at this level in the SBS where secondary
functions are defined. Once the primary functions have been identified at the sub-
system and assembly levels, the secondary functions are then defined, usually at
component level (Fig. 3.63). Secondary functions can be both operational and phys-
ical, and relate back to the primary function of the sub-system or assembly. The
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Fig. 3.62 Analysis of selected systems functions

secondary functions are related to the basic criteria of movement and work, or shape
and consistency, depending on whether they are defined as operational or physical
functions respectively.

The third category in the RAMS analysis list is the specifications option, which is
similar to the overview option but with more drill-down access to the other activities
in the program, and includes specifications as illustrated in Fig. 3.64 of selected
major development tasks such as:

• Equipment specifications
• Systems specification
• Process specifications
• Function specifications
• Detailed tasks
• Detailed procedures
• Spares requirements
• Standard work instructions.

An engineering specification is an explicit set of design requirements to be satisfied
by a material, product or service.
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Fig. 3.63 Functions analysis worksheet of selected component

Typical engineering specifications might include the following:

• Descriptive title and scope of the specification.
• Date of last effective revision and revision designation.
• Person or designation responsible for questions on the specification updates, and

deviations as well as enforcement of the specification.
• Significance or importance of the specification and its intended use.
• Terminology and definitions to clarify the specification content.
• Test methods for measuring all specified design characteristics.
• Material requirements: physical, mechanical, electrical, chemical, etc. targets and

tolerances.
• Performance requirements, targets and tolerances.
• Certifications required for reliability and maintenance.
• Safety considerations and requirements.
• Environmental considerations and requirements.
• Quality requirements, inspections, and acceptance criteria.
• Completion and delivery.
• Provisions for rejection, re-inspection, corrective measures, etc.
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Fig. 3.64 Specifications of selected major development tasks

The specifications worksheet of selected equipment for consideration during the de-
tail design phase of the engineering design process automatically integrates matched
information pertaining to the equipment type, with respect to the following;

• equipment technical data and specifications, obtained from the technical data
worksheet and technical specifications document,

• systems performance specifications relating to the specific process specifications,
• process performance specifications relating to the required design specifications,
• equipment functions specification relating to the basic functions from FMEA,
• typical required maintenance tasks and procedures specification from FMECA,
• the essential safety work instructions obtained from safety factor and risk analy-

sis,
• installation logistical specifications with regard to the required contract warranty

spares.

The specifications worksheet is a systems hierarchical layout of selected equipment,
based on the outcome of the overall analysis of specifications of selected equip-
ment for consideration during the detail design phase of the engineering design
process. The worksheet (Fig. 3.65) is automatically generated, and serves as
a systems-oriented pro-forma for electronically automated design reviews. Com-
prehensive design reviews are included at different phases of the engineering design
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Fig. 3.65 Specifications worksheet of selected equipment

process, such as conceptual design, preliminary or schematic design, and final de-
tail design. The concept of automated continual design reviews throughout the engi-
neering design process is to a certain extent considered here, whereby the system al-
lows for input of design data and schematics by remotely located multi-disciplinary
groups of design engineers. However, it does not incorporate design implementation
through knowledge-based expert systems, whereby each designed system or related
equipment is automatically evaluated for integrity by the design group’s expert sys-
tem in an integrated collaborative engineering design environment.

The fourth category in the RAMS analysis list is the diagnostics option that en-
ables the user to conduct a diagnostic review of selected major development tasks
such as illustrated in Fig. 3.66:

• Systems and equipment condition
• Equipment hazards criticality
• Failure repair/replace costing
• Safety inspection strategies
• Critical spares requirement.

Typically, systems and equipment condition and hazards criticality analysis includes
activities such as function specifications, failure characteristics and failure condi-
tions, fault diagnostics, equipment criticality, and performance measures.
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Fig. 3.66 Diagnostics of selected major development tasks

The following RAM analysis application model screens give detailed illustrations
of a diagnostic analysis of selected major development tasks.

Condition diagnostics in engineering design relates to hazards criticality in the
development of failure modes and effects analysis (FMEA), and considers criteria
such as system functions, component functional relationships, failure modes, failure
causes, failure effects, failure consequences, and failure detection methods. These
criteria are normally determined at the component level but the required operational
specifications are usually identified at the sub-system or assembly level (Fig. 3.67).

Condition diagnostics, and related FMEA, should therefore theoretically be de-
veloped at the higher sub-system or assembly level in order to identify compliance
with the operational specifications, and then to proceed with the development of
FMEA at the component level, to determine potential failure criteria. In conducting
the FMEA at the higher sub-system or assembly levels only, the possibility exists
that some functional failures will not be considered, and the failure criteria will not
be directed at some components that might be most applicable for design review.

It is necessary to conduct a condition diagnostics, and related FMEA, at the com-
ponent level of the equipment SBS, since the failure criteria can be effectively iden-
tified only at this level, whereas for compliance to the required operational spec-
ifications, the results of the FMEA can be grouped to the sub-system or assembly
levels. In practice, however, this can be substantially time consuming because a large
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Fig. 3.67 Hazards criticality analysis assembly condition

portion of the FMEA results are very similar at both levels. Thus, in a hazards criti-
cality analysis of the condition of selected components for inclusion in a design, the
following component condition data illustrated in Fig. 3.68 are defined:

• Failure description
• Failure effects
• Failure consequences
• Failure causes.

Figure 3.68 illustrates a hazards criticality analysis of a common functional failure,
“fails to open”, of a HIPS control valve.

The condition worksheet in hazards criticality analysis is similar to the specifi-
cations worksheet of selected equipment for consideration during the detail design
phase of the engineering design process, in that it automatically integrates matched
information pertaining to the equipment condition and criticality, as illustrated in
Fig. 3.69, with the necessary installation maintenance information concerning the
following:

• Information from the equipment diagnostics worksheet relating to failure de-
scription, failure effects, failure consequences and failure causes
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Fig. 3.68 Hazards criticality analysis component condition

• Information relating to equipment criticality
• Information relating to the necessary warranty maintenance strategy
• Information relating to the estimated required maintenance costs
• Information relating to the design’s installation logistical support

The hazards criticality analysis—condition spreadsheet is a layout of selected com-
ponents, based on the outcome of the condition worksheet of selected equipment for
consideration during the detail design phase of the engineering design process. The
condition spreadsheet (Fig. 3.70) is automatically generated, and serves as a FMEA
pro-forma for electronically automated design reviews. The spreadsheet is vari-
able, in that the data columns can be adjusted or hidden, but not deleted. These
data columns include design integrity specification information such as failure de-
scription, failure mode, failure effects and consequences, as well as the relevant
systems coding to identify the very many different elements of the systems break-
down structure (SBS) for equipment and spares acquisition during the manufactur-
ing/construction stages, and for operations and maintenance procedure development
during the warranty operations stages of the engineered installation. This design in-
tegrity specification information is automatically linked to the specific design pro-
cess flow diagram (PFD) and pipe and instruments diagram (P&ID).



3.4 Application Modelling of Reliability and Performance in Engineering Design 265

Fig. 3.69 Hazards criticality analysis condition diagnostic worksheet

The criticality worksheet in hazards criticality analysis automatically integrates
matched information pertaining to equipment criticality, with equipment condi-
tion information and the necessary installation maintenance information of selected
equipment for consideration during the detail design phase of the engineering design
process. The information illustrated in Fig. 3.71 relates to FMECA and includes:

• Failure description
• Failure severity
• Consequence probability
• Risk of failure
• Yearly rate of failure
• Failure criticality.

The example in Fig. 3.71 is a typical hazards criticality analysis of a HIPS control
valve showing failure severity and failure criticality.

The hazards criticality analysis—criticality spreadsheet is a layout of selected
components, based on the outcome of the criticality worksheet of selected equip-
ment for consideration during the detail design phase of the engineering design pro-
cess. The criticality spreadsheet (Fig. 3.72) is automatically generated, and serves
as a FMECA pro-forma for electronically automated design reviews. The spread-
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Fig. 3.70 Hazards criticality analysis condition spreadsheet

sheet contains FMEA design integrity specification information such as the failure
description, failure mode, failure effects and consequences, as well as the related
failure downtime (including consequential damage), total downtime (repair time and
damage), downtime costs for quality/injury losses, defects costs (material and labour
costs per failure including damage), economic or production losses per failure, the
probability of occurrence of the failure consequence (%), the failure rate or number
of failures per year, the failure consequence severity, the failure consequence risk,
the failure criticality, the total cost of failure per year and, finally, the overall failure
criticality rating and the potential failure cost criticality rating.

The hazards criticality analysis—strategy worksheet automatically integrates
matched information pertaining to the necessary warranty maintenance strategy of
selected equipment for consideration during the detail design phase of the engineer-
ing design process, with equipment condition and criticality information, warranty
maintenance costs and engineered installation logistical support information. The
strategy information relates to FMECA and includes:

• Maintenance procedure description
• Maintenance procedure control
• Scheduled maintenance description
• Schedule maintenance control
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Fig. 3.71 Hazards criticality analysis criticality worksheet

• Scheduled maintenance frequency
• Schedule maintenance criticality.

Figure 3.73 illustrates a maintenance strategy worksheet for the HIPS control valve
showing a derived preventive maintenance strategy.

The hazards criticality analysis—strategy spreadsheet is a layout of selected
components, based on the outcome of the strategy worksheet of selected equip-
ment for consideration during the detail design phase of the engineering design
process. Similar to the criticality spreadsheet, the strategy spreadsheet (Fig. 3.74)
is automatically generated, and serves as a FMECA pro-forma for electronically
automated design reviews. The spreadsheet contains FMECA design integrity spec-
ification information such as the failure description, the relevant maintenance task
description, the required maintenance craft type, the estimated frequency of the task,
the maintenance procedure description (in which all the relevant maintenance tasks
are grouped together, pertinent to the specific assembly and/or system that requires
dismantling for a single task to be accomplished), the procedure identification cod-
ing, the grouped maintenance schedule (based on grouped tasks per procedure, and
grouped procedures per system shutdown schedule), the maintenance schedule iden-
tification coding for computerised scheduling, and the overall planned downtime.
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Fig. 3.72 Hazards criticality analysis criticality spreadsheet

The hazards criticality analysis—costs worksheet automatically integrates
matched information pertaining to the necessary warranty maintenance costs of se-
lected equipment for consideration during the detail design phase of the engineering
design process, with equipment condition and criticality information, and the nec-
essary warranty maintenance strategy and engineered installation logistical support
information. The maintenance costs information relates to FMECA and includes the
following:

• Estimated total costs per failure
• Estimated yearly downtime costs
• Estimated yearly maintenance labour costs
• Estimated yearly maintenance material costs
• Estimated yearly failure costs.

Figure 3.75 illustrates a maintenance costs for the HIPS control valve showing the
derived corrective maintenance costs and losses.

The hazards criticality analysis—costs spreadsheet is a layout of selected com-
ponents, based on the outcome of the costs worksheet of selected equipment for
consideration during the detail design phase of the engineering design process.
The spreadsheet (Fig. 3.76) is automatically generated, and serves as a FMECA
pro-forma for electronically automated design reviews. The spreadsheet contains
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Fig. 3.73 Hazards criticality analysis strategy worksheet

FMECA design integrity specification information such as overall planned down-
time, maintenance labour hours per task/procedure/schedule, the type of mainte-
nance craft, the number of craft persons required, estimated maintenance mate-
rial costs per task/procedure/schedule, the total maintenance downtime costs per
task/procedure/schedule and, finally, the estimated total downtime costs per year,
the estimated total maintenance labour costs per year, and the estimated total main-
tenance material costs per year. The summation of these estimated annual costs are
then projected over a period of several years (usually 10 years) beyond the war-
ranty operations period, based on estimates of declining early failures in stabilised
operation.

The hazards criticality analysis—logistics worksheet automatically integrates
matched information pertaining to the necessary logistical support of selected equip-
ment for consideration during the detail design phase of the engineering design
process, with equipment condition and criticality information, and the necessary
warranty maintenance strategy and costs information. The logistical support infor-
mation relates to FMECA and includes the following:

• Estimated required spares description
• Estimated required spares strategy
• Estimated spares BOM description
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Fig. 3.74 Hazards criticality analysis strategy spreadsheet

• Estimated spares category
• Estimated spares costs.

Figure 3.77 illustrates spares requirements planning (SRP) for the HIPS control
valve showing the derived spares strategy, spares category for stores replenishment,
and recommended bill of spares (spares BOM).

The hazards criticality analysis—logistics spreadsheet is a layout of selected
components, based on the outcome of the logistics worksheet of selected equip-
ment for consideration during the detail design phase of the engineering design
process. The spreadsheet (Fig. 3.78) is automatically generated, and serves as an
FMECA pro-forma for electronically automated design reviews. The spreadsheet
contains FMECA design integrity specification information such as the critical item
of equipment requiring logistic support, the related spare parts by part description,
the part identification number (according to the maintenance task code), parts spec-
ifications, parts quantities, the proposed manufacturer or supplier, the relevant man-
ufacturer/supplier codes, the itemised stores description (for spare parts required for
operations), the related bill of material (BOM) description and code for required
stock items, the manufacturer’s BOM description and code for non-stock items, the
relevant manufacturer/supplier catalogue numbers and, finally, the estimated price
per unit for the required spare parts.
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Fig. 3.75 Hazards criticality analysis costs worksheet

3.4.2 Evaluation of Modelling Results

a) Failure Modes and Effects Criticality Analysis

A case study FMEA was conducted on the environmental plant several months after
completion of its design and installation where initially, prior to the design and
construction of the plant, the process of sulphur dioxide to sulphuric acid conversion
from a non-ferrous metal smelter emitted about 90 tonnes of sulphur gas into the
environment per day, resulting in acid rain over a widespread area. The objective of
the study was to determine the level of correlation between the design specifications
and the actual installation’s operational data, particularly with respect to systems
criticality. The RAMS model initially captured the environmental plant’s design
criteria during design and commissioning of the plant, and was installed on the
organisation intranet.

After a hierarchical structuring of the as-built systems into their assemblies and
components, an FMEA was conducted, consisting mainly of identifying compo-
nent failure descriptions, failure modes, failure effects, consequences and causes.
Thereafter, a FMECA was conducted, which included an assessment of: the proba-
bility of occurrence of the consequences of failure, based on the relevant theory and
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Fig. 3.76 Hazards criticality analysis costs spreadsheet

analytic techniques previously considered, relating to uncertainty and probability as-
sessment; the failure rate or number of failures per year, based on an extract of the
failure records maintained by the installation’s distributed control system (DCS; cf.
Fig. 3.79); the severity of each failure consequence, based on the expected costs/loss
of the failure consequence; the risk of the failure consequence, based on the prod-
uct of the probability of its occurrence and its severity; the criticality of the failure,
based on the failure rate and the failure’s consequence severity; and the annual aver-
age cost of failure. From these FMEA and FMECA assessment values, a failure crit-
icality ranking and potential failure cost criticality were established. The results of
the case study presented in a failure modes and effects analysis (FMEA) and failure
modes and effects criticality analysis (FMECA) are given in Tables 3.24 and 3.25.
The results using the RAMS analysis model are shown in Figs. 3.80 through to 3.83.
Only a very small portion (less than 1%) of the results of the FMEA is given in Ta-
ble 3.24, Acid plant failure modes and effects analysis (ranking on criticality) and
Table 3.25, Acid plant failure modes and effects criticality analysis, to serve as il-
lustration.

Figure 3.79 illustrates a typical data sheet (in this case, of the reverse jet scrubber
weak acid demister sprayers) in notepad format of the data accumulated by the
installation’s distributed control system (DCS).
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Fig. 3.77 Hazards criticality analysis logistics worksheet

Distributed control systems are dedicated systems used to control processes that
are continuous or batch-oriented. A DCS is normally connected to sensors and ac-
tuators, and uses set-point control to control the flow of material through the plant.
The most common example is a set-point control loop consisting of a pressure sen-
sor, controller, and control valve. Pressure or flow measurements are transmitted to
the controller, usually through the aid of a signal conditioning input/output (I/O)
device. When the measured variable reaches a certain point, the controller instructs
a valve or actuation device to open or close until the flow process reaches the desired
set point. Programmable logic controllers (PLCs) have recently replaced DCSs, es-
pecially with SCADA systems.

A programmable logic controller (PLC), or programmable controller, is a digital
computer used for automation of industrial processes. Unlike general-purpose con-
trollers, the PLC is designed for multiple inputs and output arrangements, extended
temperature ranges, immunity to electrical noise, and resistance to vibration and im-
pact. PLC applications are typically highly customised systems, compared to spe-
cific custom-built controller design such as with DCSs. However, PLCs are usually
configured with only a few analogue control loops; where processes require hun-
dreds or thousands of loops, a DCS would rather be used. Data are obtained through
a connected supervisory control and data acquisition (SCADA) system connected
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Fig. 3.78 Hazards criticality analysis logistics spreadsheet

to the DCS or PLC. The term SCADA usually refers to centralised systems that
monitor and control entire plant, or integrated complexes of systems spread over
large areas. Most site control is performed automatically by remote terminal units
(RTUs) or by programmable logic controllers (PLCs). Host control functions are
usually restricted to basic site overriding or supervisory level intervention. For ex-
ample, a PLC may control the flow of cooling water through part of a process, such
as the reverse jet scrubber, but the SCADA system allows operators to change the set
points for the flow, and enables alarm conditions, such as loss of flow and high tem-
perature, to be displayed and recorded. The feedback control loop passes through
the RTU or PLC, while the SCADA system monitors the overall performance.

Using the SCADA data, a criticality ranking of the systems and their related as-
semblies was determined, which revealed that the highest ranking systems were the
drying tower, hot gas feed, reverse jet scrubber, final absorption tower, and IPAT
SO3 cooler. More specifically, the highest ranking critical assemblies and their re-
lated components of these systems were identified as the drying tower blowers’
shafts, bearings (PLF) and scroll housings (TLF), the hot gas feed induced draft
fan (PFC), the reverse jet scrubber’s acid spray nozzles (TLF), the final absorption
tower vessel and cooling fan guide vanes (TLF), and the IPAT SO3 cooler’s cool-
ing fan control vanes (TLF). These results were surprising, and further analysis was
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Fig. 3.79 Typical data accumulated by the installation’s DCS

required to compare the results with the RAMS analysis design specifications. De-
spite an initial anticipation of non-correlation of the FMECA results with the design
specifications, due to some modifications during construction, the RAM analysis
appeared to be relatively accurate. However, further comparative analysis needed
to be considered with each specific system hierarchy relating to the highest ranked
systems, namely the drying tower, hot gas feed, reverse jet scrubber, final absorption
tower, and IPAT SO3 cooler.

According to the design integrity methodology in the RAMS analysis, the design
specification FMECA for the drying tower indicates an estimated criticality value
of 32 for the no.1 SO2 blower scroll housing (TLF), which is the highest estimated
value resulting in the topmost criticality ranking. The no.1 SO2 blower shaft seal
(PLF) has a criticality value of 24, the shaft and bearings (PLF) a criticality value of
10, and the impeller (PLF) a criticality value of 7.5. From the FMECA case study
extract given in Table 3.25, the topmost criticality ranking was determined as the
drying tower blowers’ shafts and bearings (PLF), and scroll housings (TLF) as 5th
and 6th. The drying tower blowers’ shaft seals (TLF) featured 9th and 10th, and the
impellers did not feature at all.

Although the correlation between the RAMS analysis design specifications illus-
trated in Fig. 3.80 and the results of the case study is not quantified, a qualitative
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Table 3.24 Acid plant failure modes and effects analysis (ranking on criticality)

System Assembly Component Failure
description

Failure
mode

Failure effects Failure
consequences

Failure causes

Hot gas
feed

Hot gas
(ID) fan

Excessive
vibration

PFC Hot gas ID fan would trip on high
vibration, as detected by any of four fitted
vibration switches. Results in all gas
directed to main stack

Production Dirt accumulation on impeller due to
excessive dust from ESPs

Reverse
jet
scrubber

Reverse jet
scrubber

W/acid
spray
nozzles

Fails to
deliver
spray

TLF Prevents the distribution of acid
uniformly in order to provide protection
to the RJS and cool the gases. Hot gas
temp. exiting in RJS will be detected and
shut down plant

Production Nozzle blocks due to foreign materials
in the weak acid supply or falls off due
to incorrect installation

Drying
tower

No.2 SO2
blower

Shaft &
bearings

Fails to
contain

PLF No immediate effect but can result in
equipment damage

Production Leakage through seals due to breather
blockage or seal joint deterioration

Drying
tower

No.1 SO2
blower

Shaft &
bearings

Excessive
vibration

PFC Can result in equipment damage and loss
of acid production

Production Loss of balance due to impellor
deposits or permanent loss of blade
material by corrosion/erosion

Drying
tower

Drying
tower

Restricted
gas flow

PLF Increased loading on SO2 blower Production Mist pad blockage due to ESP
dust/chemical accumulation

Drying
tower

No.1 SO2
blower

Scroll
housing

Fails to
contain

TLF No effect immediate effect other than
safety problem due to gas emission

Health hazard Cracked housing due to operation
above design temperature limits or
restricted expansion

Drying
tower

No.1 SO2
blower

Shaft seal Fails to
contain

TLF No effect immediate effect other than
safety problem due to gas emission

Health hazard Carbon ring wear-out due to rubbing
friction between shaft sleeve and
carbon surface
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Table 3.24 (continued)

System Assembly Component Failure
description

Failure
mode

Failure effects Failure
consequences

Failure causes

Final
absorb.
tower

Final
absorb.
tower

Fails to
absorb SO3
from the gas
stream

TLF Will result in poor stack appearance, loss
in acid production and plant shutdown
due to environmental reasons

Environment Loss of absorbing acid flow or non
uniform distribution of flow due to
absorbing acid trough or header
collapsing

Final
absorb.
tower

FAT cool.
fan piping

Inlet guide
vanes

Vanes fail to
rotate

TLF Loss of flow control leading to loss of
efficiency of the FAT leading to possible
SO2 emissions. This will lead to plant
shutdown if the emissions are excessive
or if temp. is >220 ◦C

Environment Seized adjustment ring due to roller
guides worn or damaged due to lack of
lubrication

Final
absorb.
tower

FAT cool.
fan piping

Inlet guide
vanes

Vanes fail to
rotate

TLF Loss of flow control leading to loss of
efficiency of the FAT leading to possible
SO2 emissions. This will lead to plant
shutdown if the emissions are excessive
or if temp. is >220 ◦C

Environment Seized vane stem sleeve due to
deteriorated shaft stem sealing ring and
ingress of chemical deposits

Final
absorb.
tower

FAT cool.
fan piping

Inlet guide
vanes

Operation
outside
limits of
control

TLF Loss of flow control leading to loss of
efficiency of the FAT leading to possible
SO2 emissions. This will lead to plant
shutdown if the emissions are excessive
or if temp. is >220 ◦C

Environment Loose or incorrectly adjusted vane link
pin due to incorrect installation process
or over-stroke condition

I/P
absorb.
tower

I/PASS
absorb.
tower

Fails to
absorb SO3
from the gas
stream

TLF Will result in additional loading of
converter 4th pass and final absorbing
tower with possible stack emissions

Environment Loss of absorbing acid flow due to
absorbing acid trough or header
collapsing
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Table 3.24 (continued)

System Assembly Component Failure
description

Failure
mode

Failure effects Failure
consequences

Failure causes

Drying
tower

Drying
tower

Fails to
remove
moisture
from the gas
stream

TLF Will result in blower vibration problems,
deterioration of catalyst and loss of acid
production

Quality Damage, blockage or dislodged mist
pad due to high temp./excessive inlet
gas flow, or gas quality

Drying
tower

Drying
tower

Fails to
remove
moisture
from the gas
stream

TLF Will result in blower vibration problems,
deterioration of catalyst and loss of acid
production

Quality Damage, blockage or dislodged mist
pad due to improper installation of
filter pad retention ring

IPAT
SO3
cooler

SO3 cool.
fan piping

Inlet guide
vanes

Vanes fail to
rotate

TLF Loss of IPAT efficiency due to poor
temperature control of the gas stream.
Temperature control loop would cut gas
supply if gas discharge temperature at
IPAT cooler too high

Quality Seized adjustment ring due to roller
guides worn or damaged due to lack of
lubrication

IPAT
SO3
cooler

SO3 cool.
fan piping

Inlet guide
vanes

Vanes fail to
rotate

TLF Loss of IPAT efficiency due to poor
temperature control of the gas stream.
Temperature control loop would cut gas
supply if gas discharge temperature at
IPAT cooler too high

Quality Seized vane stem sleeve due to worn
shaft stem sealing ring and ingress of
chemical deposits

IPAT
SO3
cooler

SO3 cool.
fan piping

Inlet control
vanes

Operation
outside
limits of
control

TLF Loss of IPAT efficiency due to poor
temperature control of the gas stream.
Temperature control loop would cut gas
supply if gas discharge temperature at
IPAT cooler too high

Quality Loose or incorrectly adjusted vane link
pin due to incorrect installation process
or over-stroke condition
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Table 3.25 Acid plant failure modes and effects criticality analysis

System Assembly Component Failure
consequences

Probability Failures/
year

Severity Risk Crit.
value

Failure
cost/year

Crit. rate Fail cost

Drying tower No.1 SO2 blower Shaft & bearings Production 100% 12 5 5.0 60.0 $287,400 High crit. High cost
Drying tower No.2 SO2 blower Shaft & bearings Production 100% 12 5 5.0 60.0 $287,400 High crit. High cost
Hot gas feed Hot gas (ID) fan Production 100% 12 4 4.0 48.0 $746,400 High crit. High cost
Reverse jet
scrubber

Reverse jet
scrubber

W/acid spray
nozzles

Production 100% 6 6 6.0 36.0 $465,000 High crit. High cost

Drying tower No.1 SO2 blower Scroll housing Health hazard 80% 4 10 8.0 32.0 $1,235,600 High crit. High cost
Drying tower No.2 SO2 blower Scroll housing Health hazard 80% 4 10 8.0 32.0 $1,235,600 High crit. High cost
Drying tower No.1 SO2 blower Shaft & bearings Production 100% 7 4 4.0 28.0 $449,400 High crit. High cost
Drying tower No.2 SO2 blower Shaft & bearings Production 100% 7 4 4.0 28.0 $449,400 High crit. High cost
Drying tower No.1 SO2 blower Shaft seal Health hazard 80% 3 10 8.0 24.0 $366,300 High crit. High cost
Drying tower No.2 SO2 blower Shaft seal Health hazard 80% 3 10 8.0 24.0 $366,300 High crit. High cost
Drying tower Drying tower Quality 80% 4 7 5.6 22.4 $620,200 High crit. High cost
IPAT SO3
cooler

SO3 cool. fan
piping

Inlet guide vanes Quality 100% 3 7 7.0 21.0 $219,600 High crit. High cost

IPAT SO3
cooler

SO3 cool. fan
piping

Inlet control
vanes

Quality 100% 3 7 7.0 21.0 $215,100 High crit. High cost

I/P absorb.
tower

I/PASS absorb.
tower

Environment 60% 4 8 4.8 19.2 $915,600 High crit. High cost

Final absorb.
tower

FAT cool. fan
piping

Environment 80% 3 8 6.4 19.2 $216,600 High crit. High cost
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Fig. 3.80 Design specification FMECA—drying tower

assessment of the design integrity methodology of the RAMS analysis can be de-
scribed as accurate.

The RAMS analysis design specification FMECA for the hot gas feed indicates
an estimated criticality value of 6 for both the SO2 gas duct pressure transmitter and
temperature transmitter. From the FMECA case study extract given in Table 3.25,
the criticality for the hot gas feed’s induced draft fan (PFC) ranked 3rd out of the
topmost 15 critical items of equipment, whereas the design specification FMECA
ranked the induced draft fan (PFC) as a mere 3, which is not illustrated in Fig. 3.81.
The hot gas feed’s SO2 gas duct pressure and temperature transmitters, illustrated
in Fig. 3.81, had a criticality rank of 6, whereas they do not feature in the FMECA
case study extract given in Table 3.25.

Although this does indicate some vulnerability of accuracy in the assessment and
evaluation of design integrity at the lower levels of the systems breakdown structure
(SBS), especially with respect to an assessment of the critical failure mode, the
identification of the hot gas feed induced draft fan as a high failure critical and high
cost critical item of equipment is valid.

The RAMS analysis design specification FMECA for the reverse jet scrubber
indicates an estimated criticality value of 6 for both the RJS pumps’ pressure indi-
cators. From the FMECA case study extract given in Table 3.25, the criticality for
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Fig. 3.81 Design specification FMECA—hot gas feed

the reverse jet scrubber’s acid spray nozzles (TLF) ranked 4th out of the topmost
15 critical items of equipment, whereas the design specification FMECA ranked
the acid spray nozzles (TLF) as 4.5, which is not illustrated in Fig. 3.82. Similar
to the hot gas feed system, this again indicates some vulnerability of accuracy in
the assessment and evaluation of design integrity at the lower levels of the systems
breakdown structure (SBS), especially with respect to an assessment of the critical
failure mode.

The identification of the reverse jet scrubber’s pumps as a high failure critical
item of equipment (with respect to pressure instrumentation), illustrated in Fig. 3.82,
is valid, as the RJS pumps have a reliable design configuration of 3-up with two
operational and one standby.

The RAMS analysis design specification FMECA for the final absorption tower
indicates an estimated criticality value of 2.475, as illustrated in Fig. 3.83, which
gives a criticality rating of medium criticality. The highest criticality for components
of the final absorption tower system is 4.8, which is for the final absorption tower
temperature instrument loop. From the FMECA case study criticality ranking given
in Table 3.25, the final absorption tower ranked 15th out of the topmost 15 critical
items of equipment, whereas the design specification FMECA does not list the final
absorption tower as having a high criticality.
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Fig. 3.82 Design specification FMECA—reverse jet scrubber

Similar to the hot gas feed system and the reverse jet scrubber system, this once
more indicates some vulnerability of accuracy in the assessment and evaluation of
design integrity at the lower levels of the systems breakdown structure (SBS). How-
ever, the identification of the final absorption tower as a critical system in the RAMS
design specification was verified by an evaluation of the plant’s failure data.

b) Failure Data Analysis

Failure data in the form of time (in days) before failure of the critical systems (dry-
ing tower, hot gas feed, reverse jet scrubber, final absorption tower, and IPAT SO3
cooler) were accumulated over a period of 2 months. These data are given in Ta-
ble 3.26, which shows acid plant failure data (repair time RT and time before failure
TBF) obtained from the plant’s distributed control system.

A Weibull distribution fit to the data produces the following results:

Acid plant failure data statistical analysis

Number of failures = 72
Number of suspensions = 0
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Fig. 3.83 Design specification FMECA—final absorption tower

Total failures + suspensions = 72
Mean time to failure (MTTF) = 2.35 (days)

The Kolmogorov–Smirnovgoodness-of-fit test The Kolmogorov–Smirnov(K–S)
test is used to decide if a sample comes from a population with a specific distribu-
tion. The K–S test is based on the empirical distribution function (e.c.d.f.) whereby,
given N ordered data points Y1,Y2, . . .YN , the e.c.d.f. is defined as:

EN = n(i)/N , (3.212)

where n(i) is the number of points less than Yi, and the Yi are ordered from smallest
to largest value. This is a step function that increases by 1/N at the value of each
ordered data point. An attractive feature of this test is that the distribution of the
K–S test statistic itself does not depend on the cumulative distribution function being
tested. Another advantage is that it is an exact test; however, the goodness-of-fit test
depends on an adequate sample size for the approximations to be valid. The K–S
test has several important limitations, specifically:

• It applies only to continuous distributions.
• It tends to be more sensitive near the centre of the distribution than at the tails.
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Table 3.26 Acid plant failure data (repair time RT and time before failure TBF)

Failure time RT
(min)

TBF
(day)

Failure time RT
(min)

TBF
(day)

Failure time RT
(min)

TBF
(day)

7/28/01 0:00 38 0 9/25/01 0:00 31 5 11/9/01 0:00 360 1
7/30/01 0:00 35 2 9/27/01 0:00 79 2 11/10/01 0:00 430 1
7/31/01 0:00 148 1 9/29/01 0:00 346 2 11/20/01 0:00 336 10
8/1/01 0:00 20 1 9/30/01 0:00 80 1 11/26/01 0:00 175 6
8/5/01 0:00 27 4 10/1/01 0:00 220 1 11/28/01 0:00 118 2
8/7/01 0:00 15 2 10/4/01 0:00 63 3 12/1/01 0:00 35 3
8/11/01 0:00 5 4 10/7/01 0:00 176 3 12/2/01 0:00 556 1
8/12/01 0:00 62 1 10/8/01 0:00 45 1 12/5/01 0:00 998 3
8/13/01 0:00 580 1 10/10/01 0:00 52 2 12/6/01 0:00 124 1
8/14/01 0:00 897 1 10/10/01 0:00 39 0 12/11/01 0:00 25 5
8/15/01 0:00 895 1 10/11/01 0:00 55 1 12/12/01 0:00 120 1
8/16/01 0:00 498 1 10/12/01 0:00 36 1 12/17/01 0:00 35 5
8/17/01 0:00 308 1 10/14/01 0:00 10 2 12/26/01 0:00 10 9
8/19/01 0:00 21 2 10/18/01 0:00 1,440 4 1/2/02 0:00 42 7
8/21/01 0:00 207 2 10/19/01 0:00 590 1 1/18/02 0:00 196 16
8/22/01 0:00 346 1 10/22/01 0:00 43 3 1/29/02 0:00 22 11
8/23/01 0:00 110 1 10/24/01 0:00 107 2 2/9/02 0:00 455 11
8/25/01 0:00 26 2 10/29/01 0:00 495 5 2/10/02 0:00 435 1
8/28/01 0:00 15 3 10/30/01 0:00 392 1 2/13/02 0:00 60 3
9/4/01 0:00 41 7 10/31/01 0:00 115 1 2/13/02 0:00 30 0
9/9/01 0:00 73 5 11/1/01 0:00 63 1 2/17/02 0:00 34 4
9/12/01 0:00 134 3 11/2/01 0:00 245 1 2/24/02 0:00 71 7
9/19/01 0:00 175 7 11/4/01 0:00 40 2 3/4/02 0:00 18 8
9/20/01 0:00 273 1 11/8/01 0:00 50 4 3/9/02 0:00 23 5

• The distribution must be fully specified—that is, if location, scale, and shape
parameters are estimated from the data, the critical region of the K–S test is no
longer valid, and must be determined by Monte Carlo (MC) simulation.

Goodness-of-fit results The K–S test result of the acid plant data given in
Table 3.26 is the following:

Kolmogorov-Smirnov (D) statistic = 347
Modified D statistic = 2.514
Critical value of modified D = 1.094
Confidence levels = 90% 95% 97.5% 99%
Tabled values of K–S statistic = 0.113 0.122 0.132 0.141
Observed K–S statistic = 325
Mean absolute prob. error = 0.1058
Model accuracy = 89.42% (poor)

The hypothesis that the data fit the two-Weibull distribution is rejected with 99%
confidence.
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Fig. 3.84 Weibull distribution chart for failure data

Three-parameter Weibull fit—ungrouped data (Fig. 3.84):

Minimum life = 0.47 (days)
Shape parameter BETA = 1.63
Scale parameter ETA = 1.74 (days)
Mean life = 2.03 (days)
Characteristic life = 2.21 (days)
Standard deviation = 0.98 (days)

Test for random failures The hypothesis that failures are random is rejected at 5%
level.

3.4.3 Application Modelling Outcome

The acid plant failure data do not suitably fit the Weibull distribution, with 89%
model accuracy. However, the failures are not random (i.e. the failure rate is not
constant), and it is essential to determine whether failures are in the early phase or
in the wear-out phase of the plant’s life cycle—especially so soon after its installa-
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tion (less than 24 months). The distribution must be fully specified—that is, the K–S
test is no longer valid, and must be determined by Monte Carlo (MC) simulation.
However, prior to simulation, a closer definition of the source of most of the failures
of the critical systems (determined through the case study FMECA) is necessary.
Table 3.27 shows the total downtime of the acid plant’s critical systems. The down-
time failure data grouping indicates that the highest downtime is due to the hot gas
feed induced draft fan, then the reverse jet scrubber, the drying tower blowers, and
final absorption.

Engineered Installation Downtime

Table 3.27 Total downtime of the environmental plant critical systems

Downtime reason description Total hours Direct hours Indirect hours

Hot gas feed, hot gas fan total 1,514 1,388 126
Gas cleaning, RJS total 680 581 99
Drying tower, SO2 blowers total 496 248 248
Gas absorption, final absorption total 195 100 95

Total 2,885 2,317 568

Monte Carlo simulation With the K–S test, the distribution of the failure data must
be fully specified—that is, if location, scale and shape parameters are estimated from
the data, the critical region of the K–S test is no longer valid, and must be determined
by Monte Carlo (MC) simulation.

MC simulation emulates the chance variations in the critical systems’ time be-
fore failure (TBF) by generating random numbers that form a uniform distribution
that is used to select values from the sample TBF data, and for which various TBF
values are established to develop a large population of representative sample data.
The model then determines if the representative sample data come from a popula-
tion with a specific distribution (i.e. exponential, Weibull or gamma distributions).
The outcome of the M C simulation gives the following distribution parameters
(Tables 3.28 and 3.29):

Time Between Failure Distribution

Table 3.28 Values of distribution models for time between failure

Distribution model Parameter Parameter value

1. Exponential model Gamma 4.409E-03
2. Weibull model Gamma 1.548E+00

Theta 3.069E+02
3. Gamma model Gamma 7.181E-01

Theta 3.276E+02
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Repair Time Distribution

Table 3.29 Values of distribution models for repair time

Distribution model Parameter Parameter value

1. Exponential model Gamma 2.583E-01
2. Weibull model Gamma 8.324E-01

Theta 3.623E+00
3. Gamma model Gamma 4.579E-01

Theta 8.720E+00

The results of the MC simulation are depicted in Fig. 3.85. The representative sam-
ple data come from a population with a gamma distribution, as illustrated. The me-
dian (MTTF) of the representative data is given as approximately 2.3, which does
not differ greatly from the MTTF for the three-parameter Weibull distribution for
ungrouped data, which equals 2.35 (days). This Weibull distribution has a shape pa-
rameter, BETA, of 1.63, which is greater than 1, indicating a wear-out condition in
the plant’s life cycle.

Fig. 3.85 Monte Carlo simulation spreadsheet results for a gamma distribution best fit of TBF data
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Conclusion From the case study data, the assumption can be made that the critical
systems’ specific high-ranking critical components are inadequately designed from
a design integrity point of view, as they indicate wear-out too early in the plant’s
life cycle. This is with reference to the items listed in Table 3.25, particularly the
drying tower blowers’ shafts, bearings (PLF) and scroll housings (TLF), the hot gas
feed induced draft fan (PFC), the reverse jet scrubber’s acid spray nozzles (TLF),
the final absorption tower vessel and cooling fan guide vanes (TLF), and the IPAT
SO3 cooler’s cooling fan control vanes (TLF).

Figure 3.85 shows a typical Monte Carlo simulation spreadsheet of the critical
systems’ time before failure and MC results for a gamma distribution best fit of TBF
data.

3.5 Review Exercises and References

Review Exercises

1. Discuss total cost models for design reliability with regard to risk cost estimation
and project cost estimation.

2. Give a brief account of interference theory and reliability modelling.
3. Discuss system reliability modelling based on system performance.
4. Compare functional failure and functional performance.
5. Consider the significance of functional failure and reliability.
6. Describe the benefits of a system breakdown structure (SBS).
7. Give reasons for the application and benefit of Markov modelling (continuous-

time and discrete states) in designing for reliability.
8. Discuss the binomial method with regard to series networks and parallel net-

works.
9. Give a brief account of the principal steps in failure modes and effects analysis

(FMEA).
10. Discuss the different types of FMEA and their associated benefits.
11. Discuss the advantages and disadvantages of FMEA.
12. Compare the significant differences between failure modes and effects analysis

(FMEA) and failure modes and effects criticality analysis (FMECA).
13. Compare the advantages and disadvantages of the RPN technique with those of

the military standard technique.
14. Discuss the relevance of FMECA data sources and users.
15. Consider the significance of fault-tree analysis (FTA) in reliability, safety and

risk assessment.
16. Describe the fundamental fault-tree analysis steps.
17. Explain the basic properties of the hazard rate function and give a brief descrip-

tion of the main elements of the hazard rate curve.
18. Discuss component reliability and failure distributions.
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19. Define the application of the exponential failure distribution in reliability anal-
ysis and discuss the distribution’s statistical properties.

20. Define the application of the Weibull failure distribution in reliability analysis
and discuss the distribution’s statistical properties.

21. Explain the Weibull shape parameter and its use.
22. Discuss the significance of the Weibull distribution function in hazards analysis.
23. Describe the principal properties and use of the Weibull graph chart.
24. Consider the application of reliability evaluation of two-state device networks.
25. Describe the fundamental differences between two-state device series networks,

parallel networks, and k-out-of-m unit networks.
26. Consider the application of reliability evaluation of three-state device networks.
27. Briefly describe three-state device parallel networks and three-state device series

networks.
28. Discuss system performance measures in designing for reliability.
29. Consider pertinent approaches to determination of the most reliable design in

conceptual design.
30. Discuss conceptual design optimisation.
31. Describe the basic comparisons of conceptual designs.
32. Define labelled interval calculus (LIC) with regard to constraint labels, set la-

bels, and labelled interval inferences.
33. Consider the application of labelled interval calculus in designing for reliability.
34. Give a brief description with supporting examples of the methods for:

a. Determination of a data point: two sets of limit intervals.
b. Determination of a data point: one upper limit interval.
c. Determination of a data point: one lower limit interval.
d. Analysis of the interval matrix.

35. Give reasons for the application of FMEA and FMECA in engineering design
analysis.

36. Define reliability-critical items.
37. Describe algorithmic modelling in failure modes and effects analysis with re-

gard to numerical analysis, order of magnitude, qualitative simulation, and fuzzy
techniques.

38. Discuss qualitative reasoning in failure modes and effects analysis.
39. Give a brief account of the concept of uncertainty in engineering design analysis.
40. Discuss uncertainty and incompleteness in knowledge.
41. Give a brief overview of fuzziness in engineering design analysis.
42. Describe fuzzy logic and fuzzy reasoning in engineering design.
43. Define the theory of approximate reasoning.
44. Consider uncertainty and incompleteness in design analysis.
45. Give a brief account of modelling uncertainty in FMEA and FMECA.
46. In the development of the qualitative FMECA, describe the concepts of logical

expression and expression of uncertainty in FMECA.
47. Give an example of uncertainty in the extended FMECA.
48. Describe the typical results expected of a qualitative FMECA.
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49. Define the proportional hazards model with regard to non-parametric model for-
mulation and parametric model formulation.

50. Define the maximum likelihood estimation parameter.
51. Briefly describe the characteristics of the one-parameter exponential distribu-

tion.
52. Explain the process of estimating the parameter of the exponential distribution.
53. Consider the approach to determining the maximum likelihood estimation

(MLE) parameter.
54. Compare the characteristics of the two-parameter Weibull distribution with

those of the three-parameter Weibull model.
55. Give a brief account of the procedures to calculate the Weibull parameters β , μ

and γ .
56. Describe the procedure to derive the mean time between failures (MTBF) μ

from the Weibull distribution model.
57. Describe the procedure to obtain the standard deviation σ from the Weibull

distribution model.
58. Give a brief account of the method of qualitative analysis of the Weibull distri-

bution model.
59. Consider expert judgment as data.
60. Discuss uncertainty, probability theory and fuzzy logic in designing for reliabil-

ity.
61. Describe the application of fuzzy logic in reliability evaluation.
62. Describe the application of fuzzy judgment in reliability evaluation.
63. Give a brief account of elicitation and analysis of expert judgment in designing

for reliability.
64. Explain initial reliability calculation using Monte Carlo simulation.
65. Give an example of fuzzy judgment in reliability evaluation.

References

Abernethy RB (1992) New methods for Weibull and log normal analysis. ASME Pap no 92-
WA/DE-14, ASME, New York

Agarwala AS (1990) Shortcomings in MIL-STD-1629A: guidelines for criticality analysis. In: Re-
liability Maintainability Symp, pp 494–496

AMCP 706-196 (1976) Engineering design handbook: development guide for reliability. Part II.
Design for reliability. Army Material Command, Dept of the Army, Washington, DC

Andrews JD, Moss TR (1993) Reliability and risk assessment. American Society of Mechanical
Engineers

Artale A, Franconi E (1998) A temporal description logic for reasoning about actions and plans.
J Artificial Intelligence Res JAIR, pp 463–506

Ascher W (1978) Forecasting: an appraisal for policymakers and planners. John Hopkins Univer-
sity Press, Baltimore, MD

Aslaksen E, Belcher R (1992) Systems engineering. Prentice Hall of Australia
Barnett V (1973) Comparative statistical inference. Wiley, New York
Barringer PH (1993) Reliability engineering principles. Barringer, Humble, TX
Barringer PH (1994) Management overview: reliability engineering principles. Barringer, Hum-

ble, TX



3.5 Review Exercises and References 291

Barringer PH, Weber DP (1995) Data for making reliability improvements. Hydrocarbons Process-
ing Magazine, 4th Int Reliability Conf, Houston, TX

Batill SM, Renaud JE, Xiaoyu Gu (2000) Modeling and simulation uncertainty in multidisciplinary
design optimization. In: 8th AIAA/NASA/USAF/ISSMO Symp Multidisciplinary Analysis and
Optimisation, AIAA, Long Beach, CA, AIAA-200-4803, pp 5–8

Bement TR, Booker JM, Sellers KF, Singpurwalla ND (2000a) Membership functions and proba-
bility measures of fuzzy sets. Los Alamos Nat Lab Rep LA-UR-00-3660

Bement TR, Booker JM, Keller-McNulty S, Singpurwalla ND (2000b) Testing the untestable: re-
liability in the 21st century. Los Alamos Nat Lab Rep LA-UR-00-1766

Bennett BM, Hoffman DD, Murthy P (1992) Lebesgue order on probabilities and some applica-
tions to perception. J Math Psychol

Bezdek JC (1993) Fuzzy models—what are they and why? IEEE Transactions Fuzzy Systems
vol 1, no 1

Blanchard BS, Fabrycky WJ (1990) Systems engineering and analysis. Prentice Hall, Englewood
Cliffs, NJ

Boettner DD, Ward AC (1992) Design compilers and the labeled interval calculus. In: Tong C,
Sriram D (eds) Design representation and models of routine design. Artificial Intelligence in
Engineering Design vol 1. Academic Press, San Diego, CA, pp 135–192

Booker JM, Meyer MA (1988) Sources and effects of inter-expert correlation: an empirical study.
IEEE Trans Systems Man Cybernetics 8(1):135–142

Booker JM, Smith RE, Bement TR, Parkinson WJ, Meyer MA (1999) Example of using fuzzy
control system methods in statistics. Los Alamos Natl Lab Rep LA-UR-99-1712

Booker JM, Bement TR, Meyer MA, Kerscher WJ (2000) PREDICT: a new approach to product
development and lifetime assessment using information integration technology. Los Alamos
Natl Lab Rep LA-UR-00-4737

Bowles JB, Bonnell RD (1994) Failure mode effects and criticality analysis. In: Annual Reliability
and Maintainability Symp, pp 1–34

Brännback M (1997) Strategic thinking and active decision support systems. J Decision Systems
6:9–22

BS5760 (1991) Guide to failure modes, effects and criticality analysis (FMEA and FMECA).
British Standard BS5760 Part 5

Buchanan BG, Shortliffe EH (1984) Rule-based expert systems. Addison-Wesley, Reading, MA
Buckley J, Siler W (1987) Fuzzy operators for possibility interval sets. Fuzzy Sets Systems 22:215–

227
Bull DR, Burrows CR, Crowther WJ, Edge KA, Atkinson RM, Hawkins PG, Woollons DJ (1995a)

Failure modes and effects analysis. Engineering and Physical Sciences Research Council
GR/J58251 and GR/J88155

Bull DR, Burrows CR, Crowther WJ, Edge KA, Atkinson RM, Hawkins PG, Woollons DJ (1995b)
Approaches to automated FMEA of hydraulic systems. In: Proc ImechE Congr Aerotech 95
Seminar, Birmingham, Pap C505/9/099

Carlsson C, Walden P (1995a) Active DSS and hyperknowledge: creating strategic visions. In: Proc
EUFIT’95 Conf, Aachen, Germany, August, pp 1216–1222

Carlsson C, Walden P (1995b) On fuzzy hyperknowledge support systems. In: Proc 2nd Int Worksh
Next Generation Information Technologies and Systems, Naharia, Israel, June, pp 106–115

Carlsson C, Walden P (1995c) Re-engineering strategic management with a hyperknowledge sup-
port system. In: Christiansen JK, Mouritsen J, Neergaard P, Jepsen BH (eds) Proc 13th Nordic
Conf Business Studies, Denmark, vol II, pp 423–437

Carter ADS (1986) Mechanical reliability. Macmillan Press, London
Carter ADS (1997) Mechanical reliability and design. Macmillan Press, London
Cayrac D, Dubois D, Haziza M, Prade H (1994) Possibility theory in fault mode effects analyses—

a satellite fault diagnosis application. In: Proc 3rd IEEE Int Conf Fuzzy Systems FUZZ-
IEEE ’94, Orlando, FL, June, pp 1176–1181



292 3 Reliability and Performance in Engineering Design

Cayrac D, Dubois D, Prade H (1995) Practical model-based diagnosis with qualitative possibilistic
uncertainty. In: Besnard P, Hanks S (eds) Proc 11th Conf Uncertainty in Artificial Intelligence,
pp 68–76

Cayrol M, Farency H, Prade H (1982) Fuzzy pattern matching. Kybernetes, pp 103–106
Chiueh T (1992) Optimization of fuzzy logic inference architecture. Computer, May, pp 67–71
Coghill GM, Chantler MJ (1999a) Constructive and non-constructive asynchronous qualitative

simulation. In: Proc Int Worksh Qualitative Reasoning, Scotland
Coghill GM, Shen Q, Chantler MJ, Leitch RR (1999b) Towards the use of multiple models for

diagnoses of dynamic systems. In: Proc Int Worksh Principles of Diagnosis, Scotland
Conlon JC, Lilius WA (1982) Test and evaluation of system reliability, availability and maintain-

ability. Office of the Under Secretary of Defense for Research and Engineering, DoD 3235.1-H
Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc B 34:187–220
Davis E (1987) Constraint propagation with interval labels. Artificial Intelligence 32:281–331
de Kleer J, Brown JS (1984) A qualitative physics based on confluences. Artificial Intelligence

24:7–83
Dhillon BS (1983) Reliability engineering in systems design and operation. Van Nostrand Rein-

hold, Berkshire
Dhillon BS (1999a) Design reliability: fundamentals and applications. CRC Press, LLC 2000,

NW Florida
Dubois D, Prade H (1988) Possibility theory—an approach to computerized processing of uncer-

tainty. Plenum Press, New York
Dubois D, Prade H (1990) Modelling uncertain and vague knowledge in possibility and evidence

theories. Uncertainty in Artificial Intelligence vol 4. Elsevier, Amsterdam, pp 303–318
Dubois D, Prade H (1992a) Upper and lower images of a fuzzy set induced by a fuzzy relation:

applications to fuzzy inference and diagnosis. Information Sci 64:203–232
Dubois D, Prade H (1992b) Fuzzy rules in knowledge-based systems modeling gradedness, un-

certainty and preference. In: Zadeh LA (ed) An introduction to fuzzy logic applications in
intelligent systems. Kluwer, Dordrecht, pp 45–68

Dubois D, Prade H (1992c) Gradual inference rules in approximate reasoning. Information Sci
61:103–122

Dubois D, Prade H (1992d) When upper probabilities are possibility measures. Fuzzy Sets Systems
49:65–74

Dubois D, Prade H (1993a) Fuzzy sets and probability: misunderstandings, bridges and gaps. Re-
port (translated), Institut de Recherche en Informatique de Toulouse (I.R.I.T.) Université Paul
Sabatier, Toulouse

Dubois D, Prade H (1993b) A fuzzy relation-based extension of Reggia’s relational model for diag-
nosis. In: Heckerman, Mamdani (eds) Proc 9th Conf Uncertainty in Artificial Intelligence, WA,
pp 106–113

Dubois D, Prade H, Yager RR (1993) Readings in fuzzy sets and intelligent systems. Morgan
Kaufmann, San Mateo, CA

Dubois D, Lang J, Prade H (1994) Automated reasoning using possibilistic logic: semantics, belief
revision and variable certainty weights. IEEE Trans Knowledge Data Eng 6:64–69

EPRI (1974) A review of equipment aging theory and technology. Nuclear Safety & Analysis
Department, Nuclear Power Division, Electricity Power Research Institute, Palo Alto, CA

Fishburn P (1986) The axioms of subjective probability. Stat Sci 1(3):335–358
Fullér R (1999) On fuzzy reasoning schemes. In: Carlsson C (ed) The State of the Art of Infor-

mation Systems in 2007. Turku Centre for Computer Science, Abo, TUCS Gen Publ no 16,
pp 85–112

Grant Ireson W, Coombs CF, Moss RY (1996) Handbook of reliability engineering and manage-
ment. McGraw-Hill, New York

ICS (2000) The RAMS plant analysis model. ICS Industrial Consulting Services, Gold Coast City,
Queensland

IEEE Std 323-1974 (1974) IEEE Standard for Qualifying Class IE Equipment for Nuclear Power
Generating Stations. Institute of Electrical and Electronics Engineers, New York



3.5 Review Exercises and References 293

Kerscher W, Booker J, Bement T, Meyer M (1998) Characterizing reliability in a product/process
design-assurance program. In: Proc Int Symp Product Quality and Integrity, Anaheim, CA, and
Los Alamos Lab Rep LA-UR-97-36

Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic theory and application. Prentice Hall, Engle-
wood Cliffs, NJ

Kuipers B (1990) Qualitative simulation. Artificial Intelligence 29(3):289–338 (1986), reprinted in
Qualitative reasoning about physical systems, Morgan Kaufman, San Mateo, CA, pp 236–260

Laviolette M, Seaman J Jr, Barrett J, Woodall W (1995) A probabilistic and statistical view of
fuzzy methods. Technometrics 37:249–281

Lee RCT (1972) Fuzzy logic and the resolution principle. J Assoc Computing Machinery 19:109–
119

Liu JS, Thompson G (1996) The multi-factor design evaluation of antenna structures by parameter
profile analysis. Proc Inst Mech Engrs Part B, J Eng Manufacture 210:449–456

Loginov VI (1966) Probability treatment of Zadeh membership functions and their use in pattern
recognition. Eng Cybernetics 68–69

Martz HF, Almond RG (1997) Using higher-level failure data in fault tree quantification. Reliability
Eng System Safety 56(1):29–42

Mavrovouniotis M, Stephanopoulos G (1988) Formal order of magnitude reasoning in process
engineering. Computers Chem Eng 12:867–881

Meyer MA, Booker JM (1991) Eliciting and analyzing expert judgment: a practical guide. Aca-
demic Press, London

Meyer MA, Butterfield KB, Murray WS, Smith RE, Booker JM (2000) Guidelines for eliciting
expert judgement as probabilities or fuzzy logic. Los Alamos Natl Lab Rep LA-UR-00-218

MIL-STD-721B (1980) Definition of terms for reliability and maintainability. Department of De-
fense (DoD), Washington, DC

MIL-STD-1629 (1980) Procedures for performing a failure mode, effects, and criticality analysis.
DoD, Washington, DC

Moore R (1979) Methods and applications of interval analysis. SIAM, Philadelphia, PA
Moss TR, Andrews JD (1996) Reliability assessment of mechanical systems. Proc Inst Mech Engrs

vol 210
Natvig B (1983) Possibility versus probability. Fuzzy Sets Systems 10:31–36
Norwich AM, Turksen IB (1983) A model for the measurement of membership and the conse-

quences of its empirical implementation. Fuzzy Sets Systems 12:1–25
Orchard RA (1998) FuzzyCLIPS Version 6.04A. Integrated Reasoning, Institute for Information

Technology, National Research Council Canada
Ortiz NR, Wheeler TA, Breeding RJ, Hora S, Meyer MA, Keeney RL (1991) The use of expert

judgment in NUREG-1150. Nuclear Eng Design 126:313–331 (revised from Sandia Natl Lab
Rep SAND88-2253C, and Nuclear Regulatory Commission Rep NUREG/CP-0097 5, pp 1–25

Pahl G, Beitz W (1996) Engineering design. Springer, Berlin Heidelberg New York
Payne S (1951) The art of asking questions. Princeton University Press, Princeton, NJ
Raiman O (1986) Order of magnitude reasoning. In: Proc 5th National Conf Artificial Intelligence

AAAI-86, pp 100–104
ReliaSoft Corporation (1997) Life data analysis reference. ReliaSoft Publ, Tucson, AZ
Roberts FS (1979) Measurement theory. Addison-Wesley, Reading, MA
Ryan M, Power J (1994) Using fuzzy logic—towards intelligent systems. Prentice-Hall, Engle-

wood Cliffs, NJ
Shen Q, Leitch R (1993) Fuzzy qualitative simulation. IEEE Trans Systems Man Cybernetics

23(4), and J Math Anal Appl 64(2):369–380 (1993)
Shortliffe EH (1976) Computer-based medical consultation: MYCIN. Elsevier, New York
Simon HA (1981) The sciences of the artificial. MIT Press, Cambridge, MA
Smith RE, Booker JM, Bement TR, Meyer MA, Parkinson WJ, Jamshidi M (1998) The use of fuzzy

control system methods for characterizing expert judgment uncertainty distributions. In: Proc
PSAM 4 Int Conf, September, pp 497–502

Sosnowski ZA (1990) FLISP—a language for processing fuzzy data. Fuzzy Sets Systems 37:23–32



294 3 Reliability and Performance in Engineering Design

Steele AD, Leitch RR (1996) A strategy for qualitative model-based diagnosis. In: Proc IFAC-96
13th World Congr, San Francisco, CA, vol N, pp 109–114

Steele AD, Leitch RR (1997) Qualitative parameter identification. In: Proc QR-97 11th Int Worksh
Qualitative Reasoning About Physical Systems, pp 181–192

Thompson G, Geominne J, Williams JR (1998) A method of plant design evaluation featuring
maintainability and reliability. Proc Inst Mech Engrs vol 212 Part E

Thompson G, Liu JS, Hollaway L (1999) An approach to design for reliability. Proc Inst Mech
Engrs vol 213 Part E

Walden P, Carlsson C (1995) Hyperknowledge and expert systems: a case study of knowledge
formation processes. In: Nunamaker JF (ed) Information systems: decision support systems and
knowledge-based systems. Proc 28th Annu Hawaii Int Conf System Sciences, IEEE Computer
Society Press, Los Alamitos, CA, vol III, pp 73–82

Whalen T, Schott B (1983) Issues in fuzzy production systems. Int J Man-Machine Studies 19:57
Whalen T, Schott B, Ganoe F (1982) Fault diagnosis in fuzzy network. Proc 1982 Int Conf Cyber-

netics and Society, IEEE Press, New York
Wirth R, Berthold B, Krämer A, Peter G (1996) Knowledge-based support of system analysis for

failure mode and effects analysis. Eng Appl Artificial Intelligence 9(3):219–229
Wolfram J (1993) Safety and risk: models and reality. Proc Inst Mech Engrs vol 207
Yen J, Langari R, Zadeh LA (1995) Industrial applications of fuzzy logic and intelligent systems.

IEEE Press, New York
Zadeh LA (1965) Fuzzy sets. Information Control 8:338–353
Zadeh LA (1968) Probability measures of fuzzy events. J Math Anal Appl 23:421–427
Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision

processes. IEEE Trans Systems Man Cybernetics 2:28–44
Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning

I–III. Elsevier, New York, Information Sci 8:199–249, 9:43–80
Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Systems 1:3–28
Zadeh LA (1979) A theory of approximate reasoning. In: Hayes J, Michie D, Mikulich LI (eds)

Machine Intelligence, vol 9. Wiley, New York, pp 149–194



Chapter 4
Availability and Maintainability
in Engineering Design

Abstract Evaluation of operational engineering availability and maintainability is
usually considered in the detail design phase, or after installation of an engineering
design. It deals with the prediction and assessment of the design’s availability, or the
probability that a system will be in operational service during a scheduled operating
period, as well as the design’s maintainability, or the probability of system restora-
tion within a specified downtime. This chapter considers in detail the concepts of
availability and maintainability in engineering design, as well as the various criteria
essential to designing for availability and designing for maintainability. Availability
in engineering design has its roots in designing for reliability. If the design includes
a durability feature related to its availability and reliability, then it fulfils, to a large
extent, the requirements for engineering design integrity. Availability in engineering
design is thus considered from the perspective of the design’s functional and opera-
tional characteristics, and designing for availability, particularly engineering process
availability, considers measurements of process throughput, output, input and cap-
acity. Designing for availability is a ‘top-down’ approach from the design’s systems
level to its equipment or assemblies level whereby constraints on the design’s func-
tional and operational performance are determined. Maintainability in engineering
design is the relative ease and economy of time and resources with which an engi-
neered installation can be retained in, or restored to, a specified condition through
scheduled and unscheduled maintenance. In this context, maintainability is a func-
tion of engineering design. Therefore, designing for maintainability requires that the
installation is serviceable and can be easily repaired, and also supportable in that
it can be cost-effectively and practically kept in or restored to a usable condition.
Maintainability is fundamentally a design parameter, and designing for maintain-
ability defines the time an installation could be inoperable.

R.F. Stapelberg, Handbook of Reliability, Availability, 295
Maintainability and Safety in Engineering Design, c© Springer 2009
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4.1 Introduction

The foregoing chapter dealt with the analysis of engineering design with respect to
the prediction, assessment and evaluation of reliability and systems functional per-
formance, without considering repair in the event of failure. This chapter deals with
repairable systems and their equipment in engineering design, which can be restored
to operational service after failure. It covers the prediction and assessment of avail-
ability (the probability that a system will be in operational service during a sched-
uled operating period), and maintainability (the probability of system restoration
within a specified downtime). Evaluation of operational availability and maintain-
ability is normally considered in the detail design phase, or after installation of the
engineering design, such as during the design’s operational use or during process
ramp-up and production in process engineering installations.

Availability in engineering design has its roots in designing for reliability as well
as designing for maintainability, in which a ‘top-down’ approach is adopted, pre-
dominantly from the design’s systems level to its equipment level (i.e. assembly
level), and constraints on systems operational performance are determined. Avail-
ability in engineering design was initially developed in defence and aerospace de-
sign (Conlon et al. 1982), whereby availability was viewed as a measure of the
degree to which a system was in an operable state at the beginning of a mission,
whenever called for at any random point in time.

Traditional reliability engineering considered availability simply as a special
case of reliability while taking the maintainability of equipment into account. Avail-
ability was regarded as the parameter that translated system reliability and main-
tainability characteristics into an index of system effectiveness. Availability in engi-
neering design is fundamentally based on the question ‘what must be considered to
ensure that the equipment will be in a working condition when needed for a specific
period of time?’.

The ability to answer this question for a particular system and its equipment rep-
resents a powerful concept in engineering design integrity, with resulting additional
side-benefits. One important benefit is the ability to use availability analysis during
the engineering design process as a platform to support design for reliability and de-
sign for maintainability parameters, as well as trade-offs between these parameters.

Availability is intrinsically defined as “the probability that a system is operating
satisfactorily at any point in time when used under stated conditions, where the
time considered includes the operating time and the active repair time” (Nelson
et al. 1981).

While this definition is conceptually rather narrow, especially concerning the
repair time, the thrust of the approach of availability in engineering design is to
initially consider inherent availability in contrast to achieved and operational avail-
ability of processes and systems. A more comprehensive approach would need to
include a measure for the quantification of uncertainty, which involves considering
the concept of availability as a decision analysis problem. This results in identify-
ing different options for improving availability by evaluating respective outcomes
with specific criteria such as costs and benefits, and quantifying their likelihood of
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occurrence. Economic incentive is the primary basis for the growing interest in more
deliberate and systematic availability analysis in engineering design.

Ensuring a proper analysis in the determination of availability in engineering de-
sign is one of the few alternatives that design engineers may have for obtaining an
increase in process and/or systems capacity, without incurring significant increases
in capital costs. From the definition, it is evident that any form of availability anal-
ysis is time-related.

Figure 4.1 illustrates the breakdown of a total system’s equipment time into time-
based elements on which the analysis of availability is based. It must be noted that
the time designated as ‘off time’ does not apply to availability analysis because,
during this time, system operation is not required. It has been included in the il-
lustration, however, as this situation is often found in complex integrated systems,
where the reliability concept of ‘redundancy’ is related to the availability concept of
‘standby’.

The basic relationship model for availability is (Eq. 4.1):

Availability =
Up Time

Total Time
=

Up Time
Up Time+Down Time

(4.1)

Analysis of availability is accomplished by substituting the time-based elements
defined above into various forms of the basic relationship, where different combi-
nations formulate various definitions of availability.

Designing for availability predominantly considers whether a design has been
configured at systems level to meet certain availability requirements based on spe-
cific process or systems operating criteria. Designing for availability is mainly con-
sidered at the design’s systems and higher equipment level (i.e. assembly level, and
not component level), whereby availability requirements based on expected sys-
tems performance are determined, which eventually affects all of the items in the
systems hierarchy. Similar to designing for reliability, this approach does not de-
pend on having to initially identify all the design’s components, and is suitable for
the conceptual or preliminary design stage (Huzdovich 1981).

Off timeTotal time (TT)

'UP TIME' 'DOWN TIME'

TPM TCM

Operating time
(OT)

Standby time
(ST)

Active Delay
(ALDT)

Fig. 4.1 Breakdown of total system’s equipment time (DoD 3235.1-H 1982) where UP
TIME = operable time, DOWN TIME = inoperable time, OT = operating time, ST = standby
time, ALDT = administrative and logistics downtime, TPM = total preventive maintenance and
TCM = total corrective maintenance
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However, it is observed practice in most large continuous process industries that
have complex integrations of systems, particularly the power-generating industry
and the chemical process industries, that the concept of availability is closely related
to reliability, whereby many ‘availability’ measures are calculated as a ‘bottom-up’
evaluation. In such cases, availability in engineering design is approached from the
design’s lower levels (i.e. assembly and/or component levels) up the systems hi-
erarchy to the design’s higher levels (i.e. system and process levels), whereby the
collective effect of all the equipment availabilities is determined. Clearly, this ap-
proach is feasible only once all the design’s equipment have been identified, which
is well into the detail design stage.

In order to establish the most applicable methodology for determining the in-
tegrity of engineering design at different stages of the design process, particularly
with regard to the development of designing for availability, or to the assessment of
availability in engineering design (i.e. ‘top-down’ or ‘bottom-up’ approaches in the
systems hierarchy respectively), some of the basic availability analysis techniques
applicable to either of these approaches need to be identified by definition and con-
sidered for suitability in achieving the goal of this research.

Furthermore, it must also be noted that these techniques do not represent the total
spectrum of availability analysis, and selection has been based on their application
in conjunction with the selected reliability techniques, (reliability prediction, assess-
ment and evaluation), in order to determine the integrity of engineering design at the
relative design phases.

The definitions of availability are qualitative in distinction, and indicate signifi-
cant differences in approaches to the determination of designing for availability at
different levels of the systems hierarchy, such as:

• prediction of inherent availability of systems based on a prognosis of systems
operability and systems performance under conditions subject to various perfor-
mance criteria;

• assessment of achieved availability based on inferences of equipment usage with
respect to downtime and maintenance;

• evaluation of operational availability based on measures of time that are subject
to delays, particularly with respect to anticipated values of administrative and
logistics downtime.

Maintainability in engineering design is described in the USA military handbook
‘Designing and developing maintainable products and systems’ (MIL-HDBK-470A
1997) as “the relative ease and economy of time and resources with which an item
can be retained in, or restored to, a specified condition when maintenance is per-
formed by personnel having specified skill levels, using prescribed procedures and
resources, at each prescribed level of maintenance and repair. In this context, it is
a function of design”.

Maintainability refers to the measures taken during the design, development and
manufacture of an engineered installation that reduce the required maintenance, re-
pair skill levels, logistic costs and support facilities, to ensure that the installation
meets the requirements for its intended use. A key consideration in the maintain-
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ability measurement of a system is its active downtime, i.e. the time required to
bring a failed system back to its operational state or capability. This active down-
time is normally attributed to maintenance activities.

An effective way to increase a system’s availability is to improve its maintain-
ability by minimising the downtime. This minimised downtime does not happen
at random; it is designed to happen by actively ensuring that proper and progres-
sive consideration be given to maintainability requirements during the conceptual,
schematic and detail design phases. Therefore, the inherent maintainability char-
acteristics of the system and its equipment must be assured. This can be achieved
only by the implementation of specific design practices, and verified and validated
through maintainability assessment and evaluation methods respectively, utilising
both analyses and testing.

The following topics cover some of these assurance activities:

• Maintainability analysis
• Maintainability modelling
• Designing for maintainability.

Maintainability analysis includes the prediction as well as the assessment and eval-
uation of maintainability criteria throughout the engineering design process, and
would normally be implemented by a well-defined program, and captured in a main-
tainability program plan (MPP).

Maintainability analysis differs significantly from one design phase to the next,
particularly with respect to a systems-level approach during the early conceptual
and schematic design phases, in contrast to an equipment-level approach during
the later schematic and detail design phases. These differences in approach have
a significant impact on maintainability in engineering design as well as on contrac-
tor/manufacturer responsibilities. Maintainability is a design consideration, whereas
maintenance is a consequence of that design. However, at the early stages of engi-
neering design, it is important to identify the maintenance concept, and derive the
initial system maintainability requirements and related design attributes. This con-
stitutes maintainability analysis.

Maintainability, from a maintenance perspective, can be defined as “the proba-
bility that a failed item will be restored to an operational effective condition within
a given period of time”.

This restoration of a failed item to an operational effective condition is normally
when repair action, or corrective action in maintenance is performed in accordance
with prescribed standard procedures. The item’s operational effective condition in
this context is also considered to be the item’s repairable condition. Maintainability
is thus the probability that an item will be restored to a repairable condition through
corrective maintenance action, in accordance with prescribed standard procedures,
within a given period of time.

Corrective maintenance action is the action to rectify or set right defects in the
equipment’s operational and physical conditions, on which its functions depend, in
accordance with a standard. Similarly, it can also be discerned, from the description
of corrective maintenance action in maintenance, that maintainability is achieved
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through restorative corrective maintenance action through some or other repair ac-
tion. This repair action is, in fact, action to rectify or set right defects in accordance
with a standard.

The repairable condition of equipment is determined by the mean time to repair
(MTTR), which is a measure of its maintainability.

Maintainability is thus a measure of the repairable condition of an item that is
determined by MTTR, and is established through corrective maintenance action.

Maintainability modelling for a repairable system is, to a certain extent, a form
of applied probability analysis, very similar to the probability assessment of uncer-
tainty in reliability. It includes Bayesian methods applied to Poisson processes, as
well as Weibull analysis and Monte Carlo simulation, which is used extensively in
availability analysis. Maintainability modelling also relates to queuing theory. It can
be compared to the problem of determining the occupancy, arrival and service rates
in a queue, where the service performed is repair, the server is the maintenance func-
tion, and the patrons of the queue are the systems and equipment that are repaired
at random intervals, coincidental to the random occurrences of failures.

Applying maintainability models enhances the capability of designing for main-
tainability through the appropriate consideration of design criteria such as visibil-
ity, accessibility, testability and interchangeability. Using maintainability prediction
techniques, as well as specific quantitative maintainability analysis models relating
to the operational requirements of a design can greatly enhance not only the in-
tegrity of engineering design but also the confidence in the operational capabilities
of a design. Maintainability predictions of the operational requirements of a design
during its conceptual design phase can aid in design decisions where several de-
sign options need to be considered. Quantitative maintainability analysis during the
schematic and detail design phases consider the assessment and evaluation of main-
tainability from the point of view of maintenance and logistics support concepts.

Designing for maintainability requires a product that is serviceable (must be
easily repaired) and supportable (must be cost-effectively kept in, or restored to,
a usable condition). If the design includes a durability feature related to avail-
ability (degree of operability) and reliability (absence of failures), then it fulfils,
to a large extent, the requirements for engineering design integrity. Maintainability
is primarily a design parameter, and designing for maintainability defines how long
the equipment is expected to be down. Serviceability implies the speed and ease of
maintenance, whereby the amount of time expected to be spent by an appropriately
trained maintenance function working within a responsive supply system is such
that it will achieve minimum downtime in restoring failed equipment. In designing
for maintainability, the type of maintenance must be considered, and must have an
influential role in considering serviceability.

For example, the stipulation that a system should be capable of being isolated
to the component level of each circuit card in its control sub-system may not be
justified if a faulty circuit card is to be replaced, rather than repaired. Such a design
would impose added developmental cost in having to accommodate a redundant
feature in its functional control.
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Supportability has a design subset involving testability, a design characteristic
that allows verification of the operational status to be determined and faults within
the system’s equipment to be isolated in a timely and effective manner. This is
achieved through the use of built-in-test equipment, so that an installed item can
be monitored with regard to its status (operable, inoperable or degraded).

Designing for maintainability also needs to take cognisance of the item’s opera-
tional durability whereby the period (downtime) in which equipment will be down
due to unavailability and/or unreliability needs to be considered. Unavailability in
this context occurs when the equipment is down for periodic maintenance and for
repairs. Unreliability is associated with system failures where the failures can be
associated with unplanned outages (corrective action) or planned outages (preven-
tive action). Relevant criteria in designing for maintainability need to be verified
through maintainability design reviews. These design reviews are conducted dur-
ing the various design phases of the engineering design process, and are critical
components of modern design practice. The primary objective of maintainability
design reviews is to determine the relevant progress of the design effort, with par-
ticular regard to designing for maintainability, at the completion of each specific
design phase. As with design reviews in general (i.e. design reviews concerned with
designing for reliability, availability, maintainability and safety), maintainability de-
sign reviews fall into three distinct categories: initial or conceptual design reviews,
intermediate or schematic design reviews, and final or detail design reviews (Hill
1970).

Initial or conceptual design reviews need to be conducted immediately after for-
mulation of the conceptual design, from initial process flow diagrams (PFDs). The
purpose is to carefully examine the functionality of the intended design, feasibility
of the criteria that must be met, initial formulation of design specifications at process
and systems level, identification of process design constraints, existing knowledge
of similar systems and/or engineered installations, and cost-effective objectives.

Intermediate or schematic design reviews need to be conducted immediately af-
ter the schematic engineering drawings are developed from firmed-up PFDs and
initial pipe and instrument diagrams (P&IDs), and when primary specifications are
fixed. This is to compare formulation of design criteria in specification requirements
with the proposed design. These requirements involve assessments of systems per-
formance, reliability, inherent and achieved availability, maintainability, hazardous
operations (HazOps) and safety, as well as cost estimates.

Final or detail design reviews, referred to as the critical design review (Carte
1978), are conducted immediately after detailed engineering drawings are devel-
oped for review (firmed PFDs and firmed P&IDs) and most of the specifications
have been fixed. At this stage, results from preceding design reviews, and detail
costs data are available. This review considers evaluation of design integrity and
due diligence, hazards analyses (HazAns), value engineering, manufacturing meth-
ods, design producibility/constructability, quality control and detail costing.

The essential criteria that need to be considered with maintainability design re-
views at the completion of the various engineering design phases include the follow-
ing (Patton 1980):
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• Design constraints and specified systems interfaces
• Verification of maintainability prediction results
• Evaluation of maintainability trade-off studies
• Evaluation of FMEA results
• Maintainability problem areas and maintenance requirements
• Physical design configuration and layout schematics
• Design for maintainability specifications
• Verification of maintainability quantitative characteristics
• Verification of maintainability physical characteristics
• Verification of design ergonomics
• Verification of design configuration accessibility
• Verification of design equipment interchangeability
• Evaluation of physical design factors
• Evaluation of facilities design dictates
• Evaluation of maintenance design dictates
• Verification of systems testability
• Verification of health status and monitoring (HSM)
• Verification of maintainability tests
• Use of automatic test equipment
• Use of built-in-test (BIT) methods
• Use of onboard monitoring and fault isolation methods
• Use of online repair with redundancy
• Evaluation of maintenance strategies
• Selection of assemblies and parts kits
• Use of unit (assembly) replacement strategies
• Evaluation of logistic support facilities.

4.2 Theoretical Overview of Availability and Maintainability
in Engineering Design

For repairable systems, availability is generally considered to be the ratio of the
actual operating time, to the scheduled operating time, exclusive of preventive or
planned maintenance. Since availability represents the probability of a system be-
ing in an operable state when required, it fundamentally has the same connotation,
from a quantitative analysis viewpoint, as the reliability of a non-repairable system.
The difference, however, is that reliability is a measure of a system’s or equipment’s
functional performance subject to failure, whereas availability is subject to both
failure and repair (or restoration). Thus, determining the confidence level for avail-
ability prediction is more complicated than it is for reliability prediction, as an extra
probability distribution is involved. Because of this, closed formulae for determin-
ing confidence in the case of a twofold uncertainty are not easily established, even
in the simplest case when both failure and repair events are exponential. It is for this
reason that the application of Monte Carlo simulation is resorted to in the analysis
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of systems availability. Maintainability, on the other hand, is similar to reliability in
that both relate the occurrence of a single type of event over time. It is thus neces-
sary to consider in closer detail the various definitions of availability (Conlon et al.
1982).

Inherent availability can be defined as “the prediction of expected system per-
formance or system operability over a period which includes the predicted system
operating time and the predicted corrective maintenance down time”.

Achieved availability can be defined as “the assessment of system operability
or equipment usage in a simulated environment, over a period which includes its
predicted operating time and active maintenance down time”.

Operational availability can be defined as “the evaluation of potential equip-
ment usage in its intended operational environment, over a period which includes its
predicted operating time, standby time, and active and delayed maintenance down
time”.

These definitions indicate that the availability of an item of equipment is con-
cerned either with expected system performance over a period of expected opera-
tional time, or with equipment usage over a period of expected operational time,
and that the expected utilisation of the item of equipment is its expected usage over
an accountable period of total time inclusive of downtime. This aspect of usage over
an accountable period relates the concepts of availability to utilisation of an item
of equipment, where the accountable period is a measure of the ratio of the actual
input to the standard input during the operational time of successful system perfor-
mance. The process measure of operational input is thus included in the concept
of availability. By grouping selected availability techniques into these three differ-
ent qualitative definitions, it can be readily discerned which techniques, relating to
each of the three terms, can be logically applied in the different stages of the design
process, either independently or in conjunction with reliability and maintainability
analysis.

As with reliability prediction, the techniques for predicting inherent availabil-
ity would be more appropriate during conceptual or preliminary design, when al-
ternative systems in their general context are being identified in preliminary block
diagrams, such as first-run process flow diagrams (PFDs), and estimates of the prob-
ability of successful performance or operation of alternative designs are necessary.

Techniques for the assessment of achieved availability would be more appro-
priate during schematic design, when the PFDs are frozen, process functions de-
fined with relevant specifications relating to specific process performance criteria,
and process availability assessed according to expected equipment usage over an ac-
countable period of operating time, inclusive of predicted active maintenance down-
time.

Techniques for the evaluation of operational availability would be more appro-
priate during detail design, when components of equipment detailed in pipe and
instrument drawings (P&IDs) are being specified according to equipment design cri-
teria, and equipment reliability, availability and maintainability are evaluated from
a determination of the frequencies with which failures occur over a predicted period
of operating time, based on known component failure rates, and the frequencies with
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which component failures are repaired during active corrective maintenance down-
time. This must also take into account preventive maintenance downtime, as well as
delayed maintenance downtime.

Maintainability analysis is a further method of determining the integrity of engi-
neering design by considering all the relevant maintainability characteristics of the
system and its equipment. This would include an analysis of the following (MIL-
STD-470A; MIL-STD-471A):

• Quantitative characteristics
• Physical characteristics.

Quantitative characteristics considered for a system design are its specific main-
tainability performance characteristics, which include aspects such as mean time to
repair, maximum time to repair, built-in-test and health status and monitoring:

• Mean time to repair (MTTR):
This is calculated by considering the times needed to implement the corrective
maintenance and preventive maintenance tasks for each level of maintenance ap-
propriate to the respective systems hierarchical levels.

• Maximum time to repair:
This is an important part of the quantitative characteristics of maintainability
performance, in that it gives an indication of the ‘worst-case’ scenario.

• Built-in-test (BIT):
The establishment of a BIT capability is important. For example, the principal
means of fault detection and isolation at the component level requires the use of
self-diagnostics or built-in-testing. This capability, in terms of its effectiveness,
may need to be quantified.

• Health status and monitoring (HSM):
Incorporated into the design of the system could be a HSM capability. This could
be a relatively simple concept, such as monitoring the temperature of the shaft
of a turbine to safeguard against the main bearings overheating. Other HSM sys-
tems may employ a multitude of sensors, such as strain gauges, thermal sensors,
accelerometers, etc., to measure electrical and mechanical stresses on a particular
component of the assembly or system.

Physical characteristics take into consideration issues and characteristics that will
accommodate ease of maintenance, such as ergonomics and visibility, testability,
accessibility and interchangeability:

• Ergonomics:
Ergonomics addresses the physical characteristics of concern to the maintenance
function. This could range from the weight of components and required lifting
points to the clearance between electrical connectors, to the overall design config-
uration of assemblies and components for maximum visibility during inspections
and maintenance. Visibility is an element of maintainability design that allows
the maintenance function visual access to assemblies and components for ease
of maintenance action. Even short-duration tasks can increase downtime if the
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component is blocked from view. Designing for visibility greatly reduces main-
tenance times. Human engineering design criteria, as well as human engineering
requirements, are well established for military systems and equipment, as pre-
sented in the different military standards for systems, equipment and facilities
(MIL-STD-1472D; MIL-STD-46855B).

• Testability:
Testability is a measure of the ability to detect system faults and to isolate these
at the lowest replaceable component. The speed with which faults are diagnosed
can greatly influence downtime and maintenance costs. As technology advances
continue to increase the capability and complexity of systems, the use of auto-
matic diagnostics as a means of fault detection, isolation and recovery (FDIR)
substantially reduces the need for highly trained maintenance personnel and can
decrease maintenance costs by reducing the need to replace components. FDIR
systems include both internal diagnostic systems, referred to as built-in-test (BIT)
or built-in-test-equipment (BITE), and external diagnostic systems, referred to
as automatic test equipment (ATE), or offline test equipment. The equipment are
used as part of a reduced support system, all of which will minimise downtime
and cost over the operational life cycle.

• Test point:
Test points must be interfaced with the testability engineering effort. A system
may require some manual diagnostic interaction, where specific test points will
be required for fault diagnostic and isolation purposes.

• Test equipment:
Test equipment assessment is of how test instrumentation would interface with
the process system or equipment.

• Accessibility:
Accessibility is perhaps the most important attribute. With complex integration
of systems, the design of a single system must avoid the need to remove another
system’s equipment to gain access to a failed item. Furthermore, the ability to
permit the use of standard hand tools must be observed throughout. Accessi-
bility is the ease with which an item can be accessed during maintenance, and
can greatly impact maintenance times if not inherent in the design, especially on
systems where in-process maintenance is required. When accessibility is poor,
other failures are often caused by isolation/disconnection/removal and installa-
tion of other items that might hamper access, causing rework. Accessibility of all
replaceable, maintainable items will provide time and energy savings.

• Interchangeability:
Interchangeability refers to the ability and ease with which a component can be
replaced with a similar component without excessive time or undue retrofit or
recalibration. This flexibility in design reduces the number of maintenance pro-
cedures and, consequently, reduces maintenance costs. Interchangeability also
allows for system expansion with minimal associated costs, due to the use of
standard or common end-items.
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Maintainability has true design characteristics. Attempts to improve the inherent
maintainability of a product/item after the design is frozen are usually expensive, in-
efficient and ineffective, as demonstrated so often in engineering installations when
the first maintenance effort requires the use of a cutting torch to access the item
requiring replacement.

In the application of maintainability analysis, there are basically two approaches
to predicting the mean time to repair (MTTR). The first is a work study method that
analyses each repair task into definable work elements. This requires an extensive
databank of average times for a wide range of repair tasks for a particular type of
equipment. In the absence of sufficient data of average repair times, the work study
method of comparative estimation is applied, whereby repair times are simulated
from failures of similar types of equipment.

The second approach is empirical and involves rating a number of maintainability
factors against a checklist. The resulting maintainability scores are converted into
an estimated MTTR by means of a nomograph obtained by regression analysis of
many different repair times. This second approach is described in detail in the USA
military handbook titled ‘Maintainability prediction’ (MIL-HDBK-472), of which
the referenced Procedure 3 is considered to be appropriate for general engineering
application. In this procedure, the predicted repair time for each task is arrived at by
considering a checklist of maintainability criteria, and by scoring points for each
criterion. The score for each criterion increases with the degree of conformity to
an expected standard. The criteria in the checklist are grouped under three head-
ings:

• Physical design factors
• Design dictates—facilities
• Design dictates—maintenance skills.

The points scored under each heading are appropriately weighted, and relate to the
predicted repair time by means of a regression equation that is presented in the form
of a nomograph. The checklist is used for accumulating the scores of all the various
repair tasks of a particular item, and is reproduced in part below (MIL-HDBK-472).
Scoring will apply to maintainability design concepts for ease of maintenance. This
is concerned with design for maintainability criteria such as visual and manipula-
tive actions, which would normally precede maintenance actions. The regression
equation to calculate the predicted downtime is of the form:

Mct = antilog(3.54651−0.02512A−0.03055B−0.01093C)

where Mct is corrective maintenance time, and A, B and C are scores of the relevant
checklists.
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CHECKLIST—MIL 472 PROCEDURE 3

Checklist A—scoring physical design factors:

1. Access (external)
2. Latches and fasteners (external)
3. Latches and fasteners (internal)
4. Access (internal)
5. Packaging
6. Units/parts (failed)
7. Visual displays
8. Fault and operation indicators
9. Test points availability
10. Test points identification
11. Labelling
12. Adjustments
13. Testing in circuit
14. Protective devices
15. Safety personnel.

Checklist B—scoring design dictates—facilities:

1. External test equipment
2. Connectors
3. Jigs and fixtures
4. Visual contact
5. Assistance operations
6. Assistance technical
7. Assistance supervisory.

Checklist C—scoring design dictates—maintenance skills:

1. Arm-leg-back strength
2. Endurance and energy
3. Eye-hand coordination
4. Visual requirements
5. Logic application
6. Memory retention
7. Planning
8. Precision
9. Patience
10. Initiative.

The nomograph given in Fig. 4.2 includes scales against which scores for the phys-
ical design factors and the design dictates are marked.
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Fig. 4.2 Regression equation of predicted repair time in nomograph form

4.2.1 Theoretical Overview of Availability and Maintainability
Prediction in Conceptual Design

Availability and maintainability prediction attempts to quantify the measures of suc-
cessful operational performance of systems under conditions of failure and subject
to restoration criteria. Although similar but not identical to reliability prediction,
availability and maintainability predictions are predominantly considered in the pre-
liminary design phase, and usually extend through to the schematic design phase of
the engineering design process, together with estimations of expected failure rates
and expected repair rates. The most applicable methodology for availability and
maintainability prediction in the conceptual design phase includes basic concepts of
mathematical modelling such as:

i. Cost modelling for design availability and maintainability
ii. Availability modelling based on system performance

iii. Inherent availability modelling with uncertainty
iv. Preliminary maintainability modelling.

4.2.1.1 Cost Modelling for Design Availability and Maintainability

Design availability and maintainability are directly related to capital and operating
costs of the engineered installation. (In power-generating installations, the conse-
quence of low availability is directly related to the cost of replacement-power costs.
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However, replacement power costs contribute mostly to overall costs in cases of
unplanned low availabilities, whereas capital and operating costs are the dominant
contributors in designing for availability and maintainability.) The basic assumption
underlying a reliability, availability, maintainability and safety (RAMS) analysis of
engineering design is that there is an optimal availability or availability range for
which capital and operating costs are at a minimum.

Designing for availability affects the engineering design’s installation capital
costs with respect to performance relating to process capability, functional effec-
tiveness, and operational condition.

Designing for maintainability has an effect on the engineering design’s installa-
tion capital costs with respect to systems configuration, equipment selection, main-
tenance, and the initial provision of contract spares. Capital costs are influenced by
systems configuration, such as provision for equipment redundancy where standby
equipment is required to increase reliability, or provision for parallel systems where
maintainability is increased through an increase in the modes of operation whereby
selective maintenance shutdowns are accommodated without decreasing produc-
tivity. Equipment that is more reliable is generally more costly because of higher
strength and corrosion resistant materials, or because of more stringent manufactur-
ing specifications.

Equipment selection helps to differentiate between critical sub-systems where
highly reliable equipment are required, and non-critical sub-systems where the use
of less reliable equipment might reduce capital costs without appreciably sacrific-
ing system availability. Strategic application of scheduled maintenance, particularly
partial and total shutdowns and provisioning of initial contract spares in the form
of complete assemblies, improves maintenance downtime but also increases capital
costs.

Availability and maintainability prediction methodologies in designing for avail-
ability and designing for maintainability can assist in the prediction of the engineer-
ing design’s installation capital costs (with respect to systems performance, con-
figuration, equipment selection, maintenance, and the initial provision of contract
spares), to balance unavailability costs against excessive capital costs. While pro-
visions for maintenance and initial contract spares are part of an engineering de-
sign’s installation capital costs, scheduled maintenance and replenishment of con-
tract spares inventory beyond the installation’s warranty period usually becomes
part of operating costs, particularly operating and maintenance (O&M) costs.

A well-developed preventive maintenance plan, established during the engineer-
ing design stage, will reduce overall life-cycle costs by improving equipment op-
erational reliability and availability for periods of high demand, thereby reducing
operating costs. For high-demand equipment (particular to continuous processes),
the consequence of low availability is normally high replacement costs. This cost
may be minimised by strategically scheduled preventive maintenance in the form of
shutdowns during periods of low demand, if possible.
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a) Economic Loss and the Cost of Dependency

Loss in production is due to the unavailability of plant and equipment as a result
of the need for scheduled maintenance shutdowns, or for unplanned shutdowns
because of economic operational and physical consequences of functional failure.
Costs due to the unavailability of a plant as a result of unplanned shutdowns at times
of high demand generally incur higher replacement costs, as they occur when the
replacement cost is still considered to be less than the loss. Loss in production de-
pends upon the type of process, type of equipment, the design layout or equipment
configuration, the process capacity of equipment, as well as the capacity/demand
relationship. The cost of a loss in production (i.e. loss in product and in production
effort) during the period of lost production time is fundamentally the cost of waste in
dependent productive resources. The cost of waste is the cost of the loss incurred as
a result of dependency on these productive resources. The cost of the loss incurred
as a result of the dependency on productive resources constitutes an economic loss.
Economic loss can be quantified as the cost of dependency on productive resources
(Huggett and Edmundson 1986).

Systems economic loss in production can be quantified as the cost of relying upon
the system or equipment with regard to its systems configuration, the system’s pro-
cess output, the system’s capacity surplus, and the demand on the system. Systems
dependency can be formulated as

Dependency =
Output−Surplus

Demand
×100% . (4.2)

The measure of systems dependency is the system’s output minus the system’s ca-
pacity surplus as a ratio to the demand on the system, expressed as a percentage.
The system’s capacity surplus is the system’s design capacity minus the demand on
the system.

The same principle is valid at equipment level, or for the process as a whole. This
can be formulated as

Capacity Surplus = Desing Capacity−Demand . (4.3)

The measure of design capacity of a series of systems, sub-systems or equipment
in a process is the value of the smallest design capacity of the individual capacities
in the process, measured as the process output. The measure of design capacity of
parallel systems, sub-systems or equipment in a process is the sum of the individual
capacities in the process, measured as the process output. The measure of process
output can be quantified in the form of system, sub-system or equipment output
based on its production cycle time, sequencing and utilisation.

The economic loss of production can be quantified as the cost of dependency

Economic loss = Cost of dependency (4.4)

The cost of dependency is the cost of a loss in production during the period that
the system or equipment is down due to total or partial shutdowns. This cost of
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dependency is, in fact, the relative lost time cost due to total or partial shutdown of
the system or equipment at its relative value of dependency

Cost of dependency = Relative lost time cost (4.5)

The relative lost time cost is calculated as the product of the lost time multiplied
by the cost of a loss in production during the period of lost time of the system or
equipment at its relative value of dependency. The cost of a loss in production during
the period of lost time of the system or equipment at its relative value of dependency
is determined by the product of the cost of the loss in production at the dependency
of 100%, multiplied by the dependency of the system or equipment.

Thus, relative lost time cost can be formulated as

Relative lost time cost = Lost time (4.6)

×Cost of production loss at 100% dependency

×System or equipment dependency .

The cost of production loss at 100% dependency is considered to be the value of lost
time of the system or equipment at 100% dependency

Relative lost time cost = Lost time (4.7)

×Value of lost time

×System or equipment dependency .

Example problem In the illustration below (Fig. 4.3), three systems are in parallel
configuration with a total parallel system process capacity of 1,500 tons (t) of prod-
uct. System A1 has a design capacity of 600 t, system A2 has a design capacity of
500 t, and system A3 has a design capacity of 400 t. The total demand on the parallel
system process is 1,000 t. What would be the economic loss of production, or cost
of dependency, in the event of system A1 being down for 5 days as a result of shut-
down, and then systems A1 and A2 being down for 5 days as a result of shutdown?
The value of process lost time is estimated at $20,000 per day.

System A1
600 tons capacity

System A2
500 tons capacity

System A3
400 tons capacity

1000 tons
process output
demand

Fig. 4.3 Three-system parallel configuration system
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Solution In the three-system parallel configuration system:
The dependency on system A1 is:

Dep. A1 =
600− (1,500−1,000)

1,000
×100%

= 10% .

The dependency on system A2 is:

Dep. A2 =
500− (1,500−1,000)

1,000
×100%

= 0% .

The dependency on system A3 is:

Dep. A3 =
400− (1,500−1,000)

1,000
×100%

= −10% .

The negative value for the dependency on system A3 is an indication of it being
superfluous or redundant in the three-system configuration process, as there already
exists surplus capacity from system A1 and system A2.

What is the economic loss of production in the event of system A1 being down for
5 days as a result of downtime? The economic loss of production can be quantified as
the cost of dependency on the systems, where the cost of dependency is the relative
lost time cost due to downtime of the systems at their relative value of dependency:

Economic loss = Cost of dependency = Relative lost time cost .

The relative lost time cost is calculated as the product of the actual lost time mul-
tiplied by the value of the actual lost time of the systems at 100% dependency,
multiplied by the systems’ dependency:

Relative lost time cost = Lost time

×Value of lost time

×System or equipment dependency

Relative lost time cost = 5 days×$20,000/day×10%

for system A1: = $10,000 .

In the event that system A1 experiences downtime, the dependencies on systems A2
and A3 change drastically. With system A1 down, now the parallel system capacity
of systems A2 and A3 is 500 plus 400 t. The process output demand still remains at
1,000 t. What is the dependency on each of systems A2 and A3 in the two-system
parallel configuration process?
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The dependency on system A2 is:

Dep. A2 =
500− (900−1,000)

1,000
×100%

= 60% .

The dependency on system A3 is:

Dep. A3 =
400− (900−1,000)

1,000
×100%

= 50% .

What is the economic loss of production in the event of systems A1 and A2 being
down for 5 days as a result of downtime?

Relative lost time cost = 5 days×$20,000/day×10%

for system A1: = $10,000

Relative lost time cost = 5 days×$20,000/day×60%

for system A2: = $60,000

Relative lost time cost
for systems A1 and A2: = $70,000

A point of interest is that the dependencies and relative lost time costs are calculated
from the viewpoint that first system A1 goes down, then secondly system A2. Would
there be a difference in the calculations if system A2 went down first, followed by
system A1? Thus, what is the economic loss of production in the event of system A2
being down for 5 days, and then systems A2 and A1 being down for 5 days?

In the three-system parallel configuration process:
The dependency on system A2 is:

Dep. A2 =
500− (1,500−1,000)

1,000
×100%

= 0% .

The cost of dependency is the relative lost time cost due to functional failure of the
equipment at its relative value of dependency.

Relative lost time cost = 5 days×$20,000/day×0%

for system A2: = $0 .

If system A2 experiences downtime first, what is the dependency on system A1 in
the two-system parallel configuration process?
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The dependency on system A1 is:

Dep. A1 =
600− (900−1,000)

1,000
×100%

= 70% .

What is the economic loss of production in the event of systems A2 and A1 being
down for 5 days as a result of downtime?

Relative lost time cost = 5 days×$20,000/day×0%

for system A2: = $0

Relative lost time cost = 5 days×$20,000/day×70%

for system A1: = $70,000

Relative lost time cost
for systems A2 and A1: = $70,000

Thus, the relative lost time cost for systems A1 and A2 remains the same irrespective
of which system goes down first.

b) Life-Cycle Analysis and Life-Cycle Costs

Cost modelling for design availability and maintainability needs to take into con-
sideration scheduled as well as unscheduled shutdowns that involve an indirect eco-
nomic loss, such as the loss in production, as well as the direct cost of maintenance
action. This maintenance action implies a direct cost that includes the cost of main-
tenance labour and maintenance materials such as lubricants, greases, etc., and spare
parts. Traditional analysis of engineering design has focused primarily on a system’s
operational performance without much consideration of the costs of the manufac-
turing and installation stages downstream from design. In contrast, life-cycle anal-
ysis of an engineered installation, particularly during its initial development, can
play a crucial role in determining the installation’s overall life-cycle cost and useful
lifespan inclusive of the concept of residual life. The design and development of
engineered installations involve balancing a series of factors to specify, manufac-
ture and install systems that perform a specific set of operational functions. These
factors influence both the overall system definition, as well as each stage within
the system’s development life cycle. These design and development factors include
(Lee et al. 1993):

• Design requirements:

– input demand
– output volume
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– required functionality
– operating environment
– design integrity.

• Time constraints:

– design phases
– development stages
– manufacture lead time
– operational life
– maintenance downtime.

• Operational issues:

– evolutionary/revolutionary design
– new/proven technologies
– operations experience
– development/support infrastructure.

• Life-cycle costs:

– design/development
– manufacture/construction
– fabrication/installation
– operation/maintenance
– renewal/rehabilitation
– disposal/salvage.

The assessment of system performance from a total life-cycle perspective (i.e. across
all life-cycle stages) is defined as system life-cycle analysis. System life-cycle anal-
ysis is viewed as a superset of analysis methods centred about a system’s life-cycle
stages. The analysis seeks to qualitatively and quantitatively measure performance
both at the system and/or equipment life-cycle stages, as well as across the total
engineered installation life cycle, from design to possible salvage.

For system life-cycle analysis, the primary focus is on determining the opti-
mal design of a system with respect to the required design criteria, while con-
currently measuring the impact of design decisions on the other life-cycle stages,
such as manufacture/construction/fabrication/installation/operation/maintenance/re-
newal/rehabilitation. Similarly, the procedure of measuring the effects of design and
development decisions on a system’s operational performance in an overall life-
cycle context is defined as life-cycle engineering analysis (Lee et al. 1993).

This is an extension of engineering analysis methods that are applied during the
conceptual, preliminary and detail design phases, and are used to quantify system
operational performance such as static and dynamic loading behaviour, thermal op-
erational performance, system control response, etc. Life-cycle engineering analysis
extends current engineering analysis approaches by applying these to other life-
cycle stages (such as thermal behaviour analyses under manufacturing processes
and burn-in testing), and assessing life-cycle performance trade-offs, particularly at
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the renewal/rehabilitation stages. Engineering design project management includes
life-cycle engineering analysis as the measurement of system operational perfor-
mance in a life-cycle context. The issues critical to life-cycle engineering analysis
include system performance analysis and performance regimes, system life-cycle
data modelling and analysis, performance trade-off measurement, and problems of
life-cycle engineering analysis in the context of complex integrated systems.

Life-cycle costs Life-cycle costs (LCC) are total costs from inception to disposal
for both equipment and projects. The objective of LCC analysis is to choose the
most cost-effective approach from a series of alternatives so that the least long-term
cost of ownership is achieved. Analytical estimates of total costs are some of the
methods for life-cycle costs (Barringer et al. 1996).

LCC is strongly influenced by equipment design, installation/use practices, and
maintenance practices. Life-cycle costs are estimated total costs that are incurred in
the design, development, production, operation, maintenance and renewal/disposal
of a system over its anticipated useful life. LCC analysis in engineering design helps
designers justify equipment and process selection based on total costs, rather than
estimated procurement costs. The sum of operation, maintenance and disposal costs
far exceeds procurement costs. Procurement costs are widely used as the primary
(and sometimes only) criteria for equipment or system selection because they are
relatively simple criteria, though often resulting in insufficient financial data for
proper decision-making.

Life-cycle costs consist fundamentally of acquisition and sustaining costs, which
are not mutually exclusive. Acquired equipment always includes extra costs to sus-
tain the acquisition. Acquisition and sustaining costs are determined by evaluating
the life-cycle costs and conducting sensitivity analysis to identify the relative cost
drivers (Fabrycky et al. 1991).

In general, acquisition costs include the following:

• Capital investment and financial management
• Research & development, engineering design, and pilot tests
• Permits, leases and legal fees, indemnity and statutory costs
• Engineering and technical data sheets and specifications
• Manufacturing/construction, fabrication and installation
• Ramp-up and warranty, modifications and improvements
• Support facilities and utilities and support equipment
• Operations training and maintenance logistics
• Computer management and control systems.

In general, sustaining costs include the following:

• Management, consultation and supervision
• Engineering and technical documentation
• Operations and consumption materials
• Facility usage and energy consumption
• Servicing and maintenance consumables
• Equipment replacement and renewal
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• Scheduled and unscheduled maintenance
• Logistic support and spares supply
• Labour, materials and overhead
• Environmental green and clean
• Remediation and recovery
• Disposal, wrecking and salvage.

The cost of sustaining equipment can be from 2 to 20 times the equipment acqui-
sition cost over its useful lifespan. The first obvious cost of hardware acquisition
is usually the smallest amount that will be spent during the life of the acquisition,
whereas most sustaining expenses are not obvious. For sustaining costs, the cate-
gories most difficult to quantify are facility usage and energy consumption costs,
equipment replacement and renewal costs, scheduled and unscheduled maintenance
costs, and logistic support and supply costs.

Most capital equipment estimates ignore major portions of the sustaining costs,
as they lack sufficient quantification to justify their inclusion. Even when provisions
for failure costs are included, they appear as a percentage of the initial costs, and are
spread evenly as economic loss due to shutdowns throughout the typical life of the
engineered installation. However, for wear-out failure modes, the analysis is cen-
sored by not including failures in the proper time span. Most of the total estimated
costs are usually fixed when the equipment is specified during design, and any de-
cisions concerned with equipment selection are then based on acquisition costs that
constitute the smallest portion of total LCC (Barringer 1998).

c) Life-Cycle Cost Elements in Engineering Design

In order to estimate life-cycle costs during the engineering design process, all the
appropriate cost items must be identified. As indicated previously, LCC consist fun-
damentally of acquisition and sustaining costs, which are made up of a number of
cost items that can be grouped into cost categories as illustrated in Fig. 4.4. A cost
item is the smallest cost that is calculated or estimated as a separate entity. The
number of cost items used depends upon the particular phase in the engineering
design process at which the calculation is carried out. The set of cost items is devel-
oped in parallel with the development of a work breakdown structure (WBS), and
it is essential to tie a cost item to the design project scope of work and related de-
sign work packages at a certain system hierarchy level of the WBS (Aslaksen et al.
1992).

The level is chosen so that responsibility for a cost item can be individually as-
signed to a specific task. However, while a task is analysed by decomposing it into
activities chosen from a predefined set, the cost of executing a task is calculated by
decomposing it into cost types, chosen from a predefined set. This set is in itself
developed in a structured or hierarchical fashion as the engineering design process
develops. At the highest level, there are only three cost types: labour costs, material
costs, and capital costs.
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A cost item is thus identified by one element from each of two index sets—the
set of tasks and the set of cost types. In addition, there must be an indication of when
each cost item is to be incurred in the life cycle of the engineered installation. Con-
sequently, a cost item is identified by three index values: the task at a certain level of
the WBS, the cost type relating to the particular task, and the occurrence of the task
in the life-cycle span of the engineered installation. In other words, the representa-
tion of life-cycle cost items is three-dimensional. In developing the set of cost items,
the most difficult part is to develop the WBS in conjunction with the design project
scope of work, as this WBS must encompass all the work associated with designing,
manufacturing, constructing, installing, commissioning, operating and maintaining
the system over its lifetime. Thus, for LCC, it is not enough to consider only the
procurement costs of the equipment, or the costs of the engineering effort—instead,
all of the acquisition and sustaining costs relevant to the cost categories illustrated
in Fig. 4.4 must be considered.

Complementary to the acquisition and sustaining cost items listed previously,
some typical life-cycle cost items that should be identified during the engineering
design process, relevant to the defined cost categories for the engineered installation
in its total life cycle, are the following.

Fig. 4.4 Life-cycle costs structure
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Specification costs

• Research and development:
The costs of any investigations and feasibility studies carried out specifically
to support or create the technology needed for the engineered installation, an
allocated share of the costs of more general R&D programs, and license fees for
the use of technology.

• Analysis:
The costs of financial and technical due diligence evaluations, environmental im-
pact studies, market investigations, inspecting existing systems, system analysis,
and developing the system specification and initial conceptual design studies.

• Design:
The costs of all activities connected with producing the complete set of system
specifications, such as modelling, simulation, optimisation and mock-ups; de-
veloping databases; producing drawings, parts lists, engineering reports and test
requirements; and developing the specifications per se.

• Integration and tests:
The costs associated with setting up test facilities, rental of test equipment, in-
terface verification, sub-system tests, modifications resulting from unsatisfactory
test results, system acceptance tests and test documentation.

Establishment costs

• Construction:
The costs associated with site establishment, site works, general construction,
support structures, onsite fabrication, inspection, camp accommodation, wet
mess, transportation, office buildings, permanent accommodation, water supply,
workshop facilities, special fixtures, stores, and any costs resulting from setting
up auxiliary facilities for the supply and storage of support services.

• Fabrication:
The costs associated with fabricating systems and assemblies, setting up spe-
cialised manufacturing facilities, manufacturing costs, quality inspections, trans-
portation, storage and handling.

• Procurement:
The costs associated with acquiring material and system components, including
warehousing, demurrage, site storage, handling, transport and inspection.

• Installation:
The costs of auxiliary equipment and facilities (e.g. air-conditioning, power,
lighting, conduits, cabling), site inspections, development of installation instruc-
tions and drawings.

• Commissioning:
The costs associated with as-built non-service inspections, in-service inspections,
wet-run tests, and initial start-up costs (utilities, fuel).

• Quality assurance:
The costs of carrying out quality assurance, such as vendor qualification, in-
spections and verifications, test equipment calibration, and the documentation of
standards, and all types of quality assurance audits.
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Utilisation costs

• Operation:
All costs associated with the human operation of the system (e.g. wages and
salaries, social costs, amenities, transportation, transit accommodation), material
and fuel costs, as well as energy costs, taxes, licenses, rents and leasing costs, and
continual site preparation costs for later restoring the site to its original condition.

• Maintenance:
All costs resulting from carrying-out essential warranty maintenance, as well as
routine, preventive and corrective maintenance, including the costs of materials
(i.e. consumables and spare parts), labour, and monitoring and fault-reporting
systems.

• Documentation:
The costs associated with developing, producing and maintaining all documenta-
tion, such as operating and maintenance manuals, spare parts lists, cabling sched-
ules, etc.

• Training and induction:
The costs of developing training courses, writing training manuals, conducting
training, assessing training needs and providing training facilities, as well as the
costs of attending induction training.

Recovery costs

• Decommissioning and site amelioration:
The costs associated with decommissioning engineered installations including all
payments due to termination of operations, such as dismantling and disposing of
equipment, environmental protection, plus costs associated with restoring a site
to its original condition.

Life-cycle cost models LCC models may vary according to different system ap-
plications in engineered installations. There are thus various LCC models used to
estimate costs based on the specific needs of designers, manufacturers and users of
an engineered installation. In principle, the general LCC model may be formulated
as representing either acquisition and sustaining costs, or the previously defined
cost categories for the engineered installation in its total life cycle.

The LCC model representing acquisition and sustaining costs can be formulated
as

LCCαβ = α + β , (4.8)

where

α =
m

∑
i=1

CAi (4.9)

m = number of acquisition cost categories
CAi = ith acquisition cost element

and

β =
n

∑
j=1

CS j (4.10)
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LCC

Total

Recurring

Non-recurring

System/process integrity

CM

Fig. 4.5 Cost minimisation curve for non-recurring and recurring LCC

n = number of acquisition cost categories
CS j = jth sustaining cost element.

The LCC model representing acquisition and sustaining costs, where the acquisi-
tion costs can be considered to be non-recurring costs, and the sustaining costs to
be recurring costs, has an optimum when compared to overall system or process
integrity (availability and maintainability).

LCC and design integrity, as a figure-of-merit, is considered later. This may be
represented as a cost minimisation curve, which is illustrated in Fig. 4.5 (Dhillon
1983).

The LCC model representing the previously defined cost categories for the engi-
neered installation in its total life cycle can be formulated as

LCC = CS +CE +CU +CR (4.11)

where:

CS = specification costs
CE = establishment costs
CU = utilisation costs
CR = recovery costs.

d) Present Value Calculations for Life-Cycle Costs

It is not sensible or even very useful to simply add up all the estimated costs for
the life cycle of the system. Because of the cost of capital (i.e. interest) and infla-
tion, costs incurred at different times have a different relative value and, to compare
these, they must be discounted with the appropriate discount rate. To determine an
effective cost of capital, the investment capital is discounted by a commercial inter-
est rate that depends on the risk associated with the project, plus any commissions
and charges. These effective costs of capital, as well as ownership costs (i.e. the
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recurring costs of operating and maintaining the system), are not necessarily equal
amounts per unit of time. For simplicity, discounting by a series of equal payments
may be applied by introducing an effective discount rate.

For the purpose of optimising the LCC of an engineered installation, the ac-
counting approach of discounted cash flow (DCF) is adopted. There is no intrinsic
advantage in using either present value calculations or the future value. However,
expressing the cost of capital as a separate cost item does have advantages in that
the periodic value of this cost is an accounting item that will affect the cash flow in
each period, and costs associated with providing capital (e.g. fees for available, un-
used credit) may be easily and consistently accounted for and included in the LCC.

In the approach to using present value calculations for a discounted cash flow
analysis, the yearly cash flows are discounted back to the beginning of year 1 (or
end of year 0), using a present value factor that takes into consideration the infla-
tion rate, usually modified to reflect compound interest (calculated and added to, or
subtracted from the capital) every unit of time. The result is net present value (NPV)
(Bussey 1978). A major impediment is that the magnitudes and timing of all the cash
flows are not correctly taken into account. This is essentially true of all but three de-
cision criteria methods—net present value (NPV), internal rate of return (IRR), and
profitability index (or the benefit-cost ratio). Under certain conditions, these three
criteria can be properly applied to the design project acceptance problem. This is
particularly the case with estimates of NPV and IRR of estimated life-cycle costs
during the engineering design stage. These criteria are the so-called rational criteria
because they take into account the two attributes most often absent in other criteria:

• The entire cash flow for the life of the project
• The time value of money.

The net present value criterion The general expression for net present value
(NPV), P0, is the following

P0 =
N

∑
t=0

Yt

∏ j=0(1+ i j)
(4.12)

where:

Yt = the net cash flow at the end of period t
i j = the interest (discount rate) for period j
N = the life of the project
j = points in time prior to t (i.e. j = 0,1,2, . . . ,t)
t = the point in time (i.e. t = 0,1,2, . . . ,N).

Thus, in the general form, it is not necessary for the interest rates to be equal, which
permits a period-by-period evaluation in which the interest rate can take on different
values. Usually for project evaluation, however, the interest rate is assumed to be
constant throughout, whereby the general expression for NPV reduces to

P0 =
N

∑
t=0

Yt(1+ i)−t (4.13)
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where:

Yt = the net cash flow at the end of period t.

In applying NPV, the net cash flows are usually available as input data, which are
assumed to occur instantaneously at the ends of the periods t. Also usually known is
an estimate of the discounting rate, i, to be used. Under these conditions, finding the
NPV is straightforward. The result is a point estimate of a single value at a partic-
ular interest rate i. While the point estimate of NPV is informative, in that one can
determine if it is positive, negative, zero or indeterminate, the behaviour of the cri-
terion as a function is more informative. For the case of unconstrained assumptions
concerning project acceptance, the general rule is to accept the project if the NPV is
positive. This is true when the present value of the cash inflows exceeds the present
value of the cash outflows (Bussey 1978).

The NPV decreases with increasing discount rate. This is true of any project
for which the cash flow increases on average throughout the project. Secondly, if
the cash flow is negative in the first part of the project, as is true of any project
requiring an initial capital investment, there exists some discount rate for which
the NPV becomes zero. This is known as the internal rate of return (IRR). The
IRR constitutes the most useful single characterisation of the financial viability of
a project. It represents the break-even discount rate that will just allow repayment
of the initial investment. If the actual discount rate (i.e. interest rate plus any other
related financial charges) is less than the IRR, a profit will result. However, if the
discount rate is higher than the IRR, the NPV will be negative, and the project will
result in a loss, prompting the need for redesign of critical systems of the proposed
engineered installation, or outright rejection of an engineering project’s particular
technology, or even of the project itself.

In the alternative approach of using future value, rather than present value, the
estimated life-cycle costs over the project lifetime are reflected for each significant
period in the project’s life-cycle stages, calculated from the required capital and the
interest rate for that period. Subtracting these estimated life-cycle cost of capital
from each period’s expected net cash flows yields the future net value. As expected,
it also goes to zero as the discount rate reaches the IRR, which is independent of the
method of calculation. Net profit, or future net value, results from subtracting the
cost of capital from the net cash flow.

The internal rate of return criterion The net present value, described in the pre-
vious sub-section, depends upon the knowledge of an external interest rate for its
application (i.e. external to the project, such as the cost of capital). The internal
rate of return (IRR) method is closely related to NPV in that it also is a discounted
cash flow method, but it seeks to avoid the arbitrary choice of an interest rate. In-
stead, it attempts to find some interest rate, initially unknown, which is internal to
the project.

The procedure is to find an interest rate that will make the present value of the
cash flow of a project zero—that is, some interest rate that will cause the present
value of cash inflows to equal the present value of cash outflows. IRR is defined as
the interest rate i that will cause the net present value P to become zero. Thus, IRR
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is the value i such that

P(i) =
N

∑
t=0

Yt(1+ i)−t = 0 . (4.14)

The IRR must be found by trial and error or by a computer search algorithm tech-
nique, since it is an unknown root (or roots) of a polynomial in i. Thus, if we start
with known values of each cash flow, we can possibly find one or more values that
will make the above equation true. These values, if they exist as real numbers, are
known as the project’s internal rate of return, or the economic yield of the project
(in contrast to the economic loss considered previously). The selection criterion is
to accept the design project if the IRR is greater than the marginal investment rate;
otherwise, the project is rejected or, as in the case of a negative NPV, the result is
the redesign of critical systems or the rejection of the project’s specific technology,
rather than of the project itself.

Internal rate of return (IRR) has long been advocated as a project acceptance cri-
terion because, in this criterion, the interest rate is the unknown value that relates
project returns to capital investment outlays. In the sense that it is the functional
value to be established by the expected cash outlays and inflows of the project itself,
it has been called the internal rate of return. However, in many cases, the economic
meaning of IRR as a selection criterion of a design project or proposed engineered
installation is not fully understood. For example, the IRR is not only the interest rate
that causes the net present value of the cash flow of a project to be zero, but it is also
the interest rate that causes exact recovery of investment over the life of the project,
plus a return on the un-recovered investment balances during the life of the project.
A common misinterpretation of IRR is that it is an interest rate expressing a rate of
return on the initial investment. This is not so. If the IRR is applied periodically to
the initial investment only, then the cash flows fail to recover the initial investment
plus interest at the end of the project life. The fundamental economic meaning of
IRR is the rate of interest earned on the time-varying, un-recovered balances of in-
vestment, such that the final investment balance is zero at the end of the project’s
life. Since the IRR does not measure the return on initial investment, it has meaning
only when the level of investment is considered along with all the other cash flows
of the project, relative to the project’s total life-cycle costs. These are estimated total
costs incurred in the design, development, production, operation, maintenance, sup-
port and final disposition of the proposed engineered installation over its anticipated
useful life (Aslaksen et al. 1992).

Internal rate of return as a figure-of-merit Under the assumptions of certainty,
it is sometimes possible to use internal rate of return as a figure-of-merit for de-
termining whether a particular design project should be undertaken. It could thus
be viewed as an economic trade-off measure to assess the conditions under which
the IRR may be used as a selection criterion, and when it may not. One of the main
problems encountered in using IRR as such a criterion is the concept of multiple
and indeterminate rates of return. When attempting to obtain the internal rate of
return with certain forms of cash flow, it is possible to find either that a unique so-
lution does not exist for the IRR, and more than one interest rate will satisfy the
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formula, or that no solution can be found at all. When more than one solution exists
mathematically, the cash flow is said to yield multiple rates of return and, when no
solution exists, it is said to have an indeterminate rate of return.

e) Trade-Off Measurement for Life-Cycle Costs

LCC needs to be calculated early in the engineering design stage, to influence final
design outcomes of the proposed engineered installation. Making major changes
in LCC after engineering design projects reach the production stage is often not
possible. LCC helps determine optimal maintenance and repair shutdown cycles of
inadequately assessed engineering installations subject to frequent repair at great
expense. Sufficient financing is seldom available to design the project correctly but,
somehow, there is always money available to make major modifications to poorly
configured engineering design installations (Barringer 1998). Consequently, trade-
off measurement methods for LCC early in the life cycle become essential. The cost
effectiveness (CE) equation is one method for LCC trade-off calculations involv-
ing operational and failure probabilities. It offers a figure-of-merit, and measures
the chances of achieving the intended final design results against predefined life-
cycle costs. The effectiveness equation has been described in several different for-
mats (Aslaksen et al. 1992; Kececioglu 1995; Pecht 1995; Blanchard et al. 1995).
Each element is a probability. The issue, however, is finding a system effective-
ness value that gives lowest long-term cost of ownership with trade-off considera-
tions.

Cost effectiveness and life-cycle costs Cost effectiveness (CE), as viewed from
a systems engineering perspective, can be defined as the ratio of system effectiveness
(SE) to its life-cycle cost (LCC; Aslaksen et al. 1992), which is expressed in the
following relationship

CE =
SE

LCC
. (4.15)

In this context, SE is expressed in dollars; so, CE will be a dimensionless parameter.
It is apparent that the evaluation of CE could be separated into the evaluation of SE
and the evaluation of LCC. The definition therefore leads to a conceptually simple,
universal criterion governing all engineering decisions—the decision is good if it
results in an increase in cost effectiveness. This criterion is appropriate for engi-
neering decisions—however, it may not always be entirely suitable for investment
decisions, and there is a significant difference between cost effectiveness and IRR
as a figure-of-merit.

System effectiveness System effectiveness (SE) can be defined as a measure of how
well a system will perform the functions that it was designed for, or how well it will
meet the requirements of the system specification. It is often expressed as the prob-
ability that the system can successfully meet an operational demand within a given
operating time under specified conditions. This definition implies a number of im-
portant aspects:
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• Operating time may be critical, and SE is often a function of time.
• Maintenance is not excluded; and the specified conditions will in most cases

include both scheduled and unscheduled shutdowns.
• Operational demand implies that there are two separate classes of system failures:

– The system can be in an inoperable condition when needed.
– The system can fail to perform sufficiently during the required operating pe-

riod.

• The inclusion of both operational demand and specified conditions shows that
possible failure (i.e. failure to meet operational demand) and the conditions under
which the system is intended to be utilised (i.e. operational stresses) are related.

It thus follows that, while SE is obviously influenced by system design, it is equally
influenced by the way the system will be used and maintained by the logistic system
that supports its operation. The definition expressed in terms of a probability is par-
ticularly useful for systems that are required to operate for a prescribed, relatively
short period (i.e. systems fulfilling an intermittent task, as is the case for periodic
operational requirements). For most other systems, however, the period of opera-
tion is the lifetime of the system, and this is usually very long, compared with the
timescales for other events affecting the system, such as shutdowns, etc.

As a result, the system settles into a steady state that is characterised by an aver-
age performance or, more specifically, by an average deviation from design specifi-
cation performance. However, as the performance of a system is usually a complex
multi-dimensional variable, measuring it in terms of a probability is not very appro-
priate. The proper approach is to determine the decrease in the value of the system
as a function of the decrease in performance. The definition of SE can thus be for-
mulated as the value of the system over its design lifetime (Aslaksen et al. 1992).

Factors affecting the value of a system: Every system has some value—otherwise,
its development would not even be contemplated. Furthermore, this value must in
some way depend on how well the system performs; if it did not perform at all, its
value would be zero. The problem arises in trying to move from a qualitative state-
ment, such as ‘improved availability’, to a quantitative statement such as ‘increase
in availability from 0.85 to 0.90 is worth $3.285 million’. It is then found that the
value of a system, particularly its dependence on various performance parameters,
is often a highly subjective matter. Nevertheless, it is a problem that must be solved
because, without assigning some value to system performance, there is no basis for
taking rational engineering decisions with respect to its cost effectiveness.

Design effectiveness and life-cycle costs Design effectiveness (DE) for LCC trade-
off calculations involves probabilities of design integrity criteria (i.e. reliability,
availability, maintainability and safety) offering a figure-of-merit that measures the
chances of achieving the intended final design results against integrity constraints
(Blanchard et al. 1995). Such an effectiveness equation is of the following format

Design effectiveness (DE) =
System effectiveness (SE)

Life-cycle costs (LCC)
. (4.16)
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LCC in this case is a measure of resource usage that cannot include all possible cost
elements but must include critical cost items.

System effectiveness System effectiveness in this case is a measure of integrity
(although it rarely includes all integrity elements, as many are often too difficult to
quantify). Based on probability, it varies from 0 to 1. Thus:

System effectiveness = Design integrity×Capability .

Design integrity is reliability/availability/maintainability/safety, and capability is
product of efficiency multiplied by utilisation.

System effectiveness quantifies important elements of design integrity and life-
cycle costs to find areas for improvement to increase overall effectiveness and to
reduce economic loss.

For example, if availability is 98% and capability is 65%, the opportunity for im-
proving capability is usually much greater than for improving availability. System
effectiveness in this context is helpful for understanding benchmarks and future pos-
sible status for LCC trade-off information. Figure 4.6 gives a graphical presentation
of effectiveness and life-cycle costs. Although the preference is to select engineer-
ing designs, or projects that have low life-cycle costs and high effectiveness, this
may often not be accomplished in reality (Barringer 1998).

Capability deals with productive output compared to inherent productive out-
put. This index measures the systems capability to perform the intended function
on a system basis, and can be expressed as the product of efficiency multiplied
by utilisation. Efficiency measures the expected productive work output versus the
work input. Utilisation is the ratio of expected time spent on productive effort to
the total operational time. For example, suppose efficiency is estimated at 80% and
utilisation is 82.19% because the operation is conducted 300 days per year out of
365 days: the capability is 0.8×0.8219= 65.75%. Capability measures how well the

Parameter

Effectiveness

LCC

New
Plant

Last
Plant

Last
Plant

Best
Plant

Last
Plant

New
Plant

Best
Plant

A

0.95

0.3

0.7

0.7

0.14

80

0.95

0.4

0.7

0.8

0.22

100

0.98

0.6

0.7

0.6

0.25

95

B C

Availability

Reliability

Maintainability

Capability

Effectiveness

LCC

Trade-off Area

Worst

Best
A

C

?

?

B

Fig. 4.6 Design effectiveness and life-cycle costs (Barringer 1998)



328 4 Availability and Maintainability in Engineering Design

production activity is performed compared to the datum (Barringer 1998). A more
comprehensive and, in fact, mathematically correct definition of process capability
is considered in Sect. 4.2.1.2.

Availability and maintainability compared to IRR as figure-of-merit for LCC
Putting aside the elements of reliability and safety in the design integrity equation
in this chapter, the significance of availability and maintainability in design effec-
tiveness and life-cycle costs is specifically considered. Availability deals with the
duration of uptime for systems and equipment. Availability characteristics are usu-
ally determined by the expected operational conditions, which then impact upon
operational procedures and the expected durations of productive time. Availability
measures how productive time is used. Thus, as availability increases, because the
systems and equipment are functional and operational for a longer period of time,
so also does the potential for an increase in the IRR.

Maintainability deals with the duration of downtime for maintenance outages, or
how long it takes to complete maintenance actions compared to a standard. Main-
tainability characteristics are usually determined by engineering design, which then
impacts upon maintenance procedures and the expected durations of shutdowns.
A key maintainability figure-of-merit is the mean time to repair (MTTR) compared
to a limit for the maximum repair time. Qualitatively, it refers to the ease with
which systems and equipment are restored to a functioning state. Quantitatively,
it is a probability measure based on the total downtime for maintenance. Maintain-
ability measures the probability of timely repairs. Thus, as maintainability increases,
because systems and equipment are down for a shorter period of time, so also does
the potential for increase in the IRR.

4.2.1.2 Availability Modelling Based on System Performance

System performance, in the context of designing for availability, can be perceived
as the combination of a system’s process capability with regard to the process char-
acteristics of capacity, input, throughput, output and quality, a system’s functional
effectiveness with regard to the functional characteristics of efficiency and utilisa-
tion, as well as consideration of a system’s operational condition with regard to
operational measures such as temperatures, pressures, flows, etc. All these charac-
teristics may serve as useful indicators in designing for availability without having
to formulate the specific operational variables of each individual system, and to
consider instead a system’s capability, effectiveness and condition.

In order for designers to be confident about using novel manufacturing processes,
and still achieve the necessary availability constraints during the design of engi-
neered installations, a more intimate dialogue between engineering design and man-
ufacturing is necessary. Ideally, all aspects of the manufacturing process should be
accessible and understood. For example, designers should be able to run process
simulations, at either a superficial or detailed level, on partial or whole designs. De-
sign engineers should be able to obtain ‘manufacturability’ and ‘constructability’
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rules and guidelines that can be loaded directly into the relative engineering de-
signs’ computer aided design (CAD) environments. Furthermore, design engineers
should be able to load processing constraints (e.g. materials or feature dimensions)
into their CAD systems and have these checked and enforced before submitting de-
signs to manufacturers. In this way, designers can become familiar with the design’s
specific manufacturing and construction requirements. In some cases, an overview
description of the process capabilities may suffice. In other cases, when it is es-
sential to minimise manufacturing costs, or to meet stringent demands on design
specifications or material properties, the designer must have detailed information
on the specific design’s manufacturing characteristics and constraints. An important
aspect of being able to submit designs with confidence that the end result will meet
design specifications is the adoption of conservative design rules that specify design
features that are manufacturable (Mead 1994).

A variety of CAD tools can be used that provide a standard mechanism by which
designers can obtain process capability models from disparate processes, and load
these into their CAD environments. Specifically, the mechanism should enable de-
signers to acquire capability models that can be used to compute a system’s process
capability, functional effectiveness, operational condition and manufacturability of
evolving designs with accuracies necessary to meet the design requirements. (In this
context, ‘manufacturability’ includes both the ease of fabrication and the ease of
assembly/construction, as considered by Taguchi’s methodology for implementing
robust design; Taguchi 1993.)

Robust design (RD) is an important methodology for improving the design’s
manufacturability and for increasing process system stability. Since its introduction
to the US industry in 1980, Taguchi’s approach to quality engineering and robust
design has received much attention from designers, manufacturers, statisticians, and
quality professionals.

Essentially, the central idea in robust design is that variations in a process sys-
tem’s performance can inevitably result in poor quality and monetary losses during
the system’s life cycle. The sources of these variations can directly be classified into
the two categories of controllable and uncontrollable parameters. In a typical design
application, factors such as geometric dimensions (sizing) of equipment can easily
be controlled by designers. Uncontrollable factors, such as environmental variables,
component deterioration or manufacturing imperfections, are also sources of vari-
ations having effects that cannot be eliminated, and must especially be considered
in designing for availability. Therefore, RD’s main function is to reduce a design’s
potential variation by reducing the sensitivity of the design to the sources of vari-
ation, rather than by controlling these sources. In other words, RD reduces poten-
tial system response variations by designing appropriate capability model settings
for controllable parameters, in order to dampen the effects of hard-to-control vari-
ables. Taguchi’s methodology for implementing robust design is essentially a four-
step procedure that includes not only formulating the design problem but planning,
analysing and verifying the design results as well (Taguchi et al. 1989).

A communication mechanism should also allow unsolicited information, such
as updates on process capabilities, to be transmitted from manufacturing facilities
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to designers. To enable such a dialogue between designers and manufacturers, the
following issues must be addressed:

• How is process capability or functional effectiveness represented?
• How are capability models located and acquired by the designer?
• How are capability models mapped into the design space?
• How is information contained in these models applied throughout engineering

design?

These issues require some further form of methodology for information exchange,
not only between engineering design teams but also between designers and manu-
facturers. Such a methodology should include an object-oriented architecture that
expedites the task of combining CAD environments with process manufacturing
and/or construction planning, a mechanism for knowledge representation that en-
ables the exchange of design integrity information, and a communication protocol
between designers and manufacturers.

Such a methodology addresses the possible and practical application of artificial
intelligence (AI) modelling techniques, with the inclusion of knowledge-based ex-
pert systems within a blackboard model, in the development of intelligent computer
automated methodology for determining the integrity of engineering design. The
blackboard model provides for automated continual design reviews of engineering
design, including communication protocols and an object-oriented language that al-
lows segregate design groups to remotely exchange collaborative information via
the internet (McGuire et al. 1993; Olsen et al. 1995; Pancerella et al. 1995).

On this basis, different engineering design expertise groups, and manufacturing
companies specialising in specific engineering systems can concurrently participate
in collaborative design from around the world, whereby input of design parameters
and criteria into a blackboard model provides for automated continual design re-
views of the overall engineering design. Such a blackboard model, together with its
knowledge-based expert systems, must be suitable both in programming language
efficiency and in communication protocols for internet application.

a) Process Capability

In the context of industrial processes, the definition of process is “a series of op-
erations performed to produce a result or product”, and capability is defined as
“effective action”. Process capability can thus be defined as “the effective action of
a series of operations to produce a result or product”.

A process capability model is a mathematical model that compares the behaviour
of a process characteristic to engineering specifications. A process capability index
is a numerical summary of the model, also called a capability or performance in-
dex or ratio, where capability index is used as the generic term. A capability index
relates design specification limits to a particular process characteristic. The index
indicates that the process is capable of producing results that, in all likelihood, will
meet or exceed the design’s requirements. A capability index is convenient because
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it reduces complex information about the process to a single number. Capability in-
dices have several applications, though the use of the indices is driven mostly by
monitoring requirements specified by design criteria.

Many design engineers require manufacturers to record capability indices for all
the design’s process characteristics on a heuristic basis. The indices are used to in-
dicate how well the process may perform. For stable or predictable processes, it is
assumed that these indices will also indicate expected future performance. Suppli-
ers or manufacturers may use capability indices for specific system characteristics
to establish priorities for improvements after installation. Similarly, the effects of
process change can be assessed by comparing capability indices that are calculated
before and after the change. However, despite the widespread use of capability in-
dices in industry, and some good review articles (Gunter 1989a, b, c, d), there is
much confusion and misunderstanding regarding their interpretation and appropri-
ate use, particularly as a tool for comparing process characteristic to engineering
specifications in designing for availability.

Process capability in quantified terms is the ratio of the deviation of a process
characteristic from the specification limit, divided by a measure of a process char-
acteristic’s variability. Process capability can be represented in mathematical terms
as (Steiner et al. 1995):

Process Capability = min

(
USL− μ

3σ
μ −LSL

3σ

)
(4.17)

where:

USL and LSL are the upper and lower specification limits respectively,
μ and σ are the mean and standard deviation respectively for measures of the

process characteristic of interest.

Calculating the process capability requires knowledge of the process characteristic’s
mean and standard deviation, μ and σ . These values are usually estimated from
trial or test data collected from a pilot process. The two most widely used capability
indices, Ppk and Cpk, are defined as

Capability Ppk = min

(
USL− ā

3σ
ā−LSL

3σ

)
(4.18a)

where:

USL and LSL are the upper and lower specification limits respectively,
ā the overall average, is used to estimate the process mean μ and σ ,
σ is the standard deviation of the process characteristic of interest.

Capability Cpk = min

(
USL− ā

3σRd

ā−LSL
3σRd

)
(4.18b)

where:

ā the overall average, is used to estimate the process mean μ and σ ,
σRd is the estimate of the process standard deviation σ ,
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d is an adjustment factor that is needed to estimate the process standard
deviation from the average trial or test data sample range R.

The sample standard deviation is given by the formula

σ =

√
n

∑
j=1

m

∑
i=1

(Xi j − ā)2/(nm−1) (4.19)

where:

m is the total number of subgroups, and n is the subgroup sample size.

Since d is also used in the derivation of control limits for X and R control charts,
it is also tabulated in standard references on statistical process control, such as in
the QS-9000 SPC manual (Montgomery 1991). Large values of Ppk and Cpk for
several specific process characteristics should correspond to a process that is capable
of operating within the design specification limits. The commonly used index Pp

and the related index Cp in process design are similar to Ppk and Cpk. However, Pp

and Cp ignore the current estimate of the process characteristic mean, and relate
the specification range directly to the process characteristic variation. In effect, Pp

and Cp can be considered convenient conceptual design measures that suggest how
capable the process should be if the process characteristic’s mean is centred midway
between the specification limits.

The indices Pp and Cp are not recommended for process evaluation purposes dur-
ing the detail design phase, since the information they provide to supplement Ppk

and Cpk is independent of data. Histograms of trial or test data collected from a pilot
process, usually established during the detail design phase of the engineering design
process, are preferable because they also provide other useful process information.
However, various important issues relating to the calculation and interpretation of
capability indices require closer attention. The design capability of a process is even-
tually estimated from pilot trial or test data that represent a sample of the envisaged
total production.

Clearly, the capability indices Ppk and Cpk are greatly influenced by the way
in which the process data are collected, what is normally called the process view.
A process view is defined by the time frame and sampling method (sampling fre-
quency, sample size, etc.) used to obtain the pilot process data. Using an appropriate
process view is crucial, since different views can lead to very different conclusions.
For example, in one view the process may appear stable, while in another the pro-
cess could appear unstable. To define the process view, the first choice involves the
time frame over which the pilot process data will be collected. Often, the time frame
is stipulated as a typical cycle-time interval. For example, the capability of each se-
lected process characteristic may be measured as a function of the operating time in
relation to the process cycle-time.

In other situations, the time frame is restricted to a shorter interval, such as the
period needed for the pilot process to produce a specific number of production units.
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To obtain a reasonable measure of the process capability, the length of the time
frame should be chosen such that it is long enough to reflect all the substantial
sources of variation in the process. Defining the sampling method or procedure is
also important. The pilot process output should be sampled in such a way that a ‘fair’
representation is obtained of the process over the chosen time frame. For capability
calculations, it is not always necessary for the samples to be collected in subgroups.
However, sub-grouping of the pilot process data can also be used to create control
charts that may be helpful in understanding a particular process characteristic.

Altering the process view can substantially change the conclusions about the
process capability. As a result, specific guidelines regarding the time frame, and
the sampling method used to collect the pilot process data necessary for calculat-
ing capability, are essential. Another important issue related to the process view is
the number of data points used in the estimation. Ppk is an estimate of the process
capability and, thus, even if the process is unchanged, taking another sample and
recalculating the index is unlikely to yield precisely the same result. The amount of
uncertainty is based on both the properties of the process and the number of data ob-
servations used to calculate the capability index. Larger sample sizes provide more
information and, thus, tend to lead to better estimates of the process capability.

A further important aspect in considering process capability as an indicator in
designing for availability is process stability. A process is considered stable if all
the points on its X and R control charts fall within the design control limits, and
there are no apparent deviation patterns. The stability of a process is an important
property in designing for availability because, if the process design is considered
stable, it is likely to also be stable in its installation and in the future, assuming
that no major changes occur. Thus, the total output of a stable process is, in some
sense, predictable. If the output of a process is considered stable, then the process’
capability is predictable, from design to manufacture through to installation and/or
construction. On the other hand, if the process output is not deemed to be stable,
it might still be possible that over time the process capability index can appear to
be stable, depending on the complexity of the process and/or the complex integra-
tion of the relevant process systems. The predictability of process capability can be
obtained by considering the performance of the process in terms of its process ca-
pability over time. If the pilot process capability values exhibit a stable pattern, then
there would be some confidence predicting the installed process capability indices,
which affects the consequences of using the capability indices of Ppk and Cpk. If
the process is stable, then Cpk is approximately equal to Ppk, since a stable process
has little variability. Thus, if the process is stable, it does not matter much which
measure is used (although Ppk is preferred). On the other hand, if the process is
unstable, there will be substantial variability between the data subgroups, and Cpk

is thus not equal to Ppk. In the case of process instability, Cpk will overestimate the
process capability, since it does not include variability. The same principle applies if
the process is unstable and yet predictable. As a result, in all situations, Ppk provides
a better measure of the process capability than does Cpk.

Thus, in the development of intelligent computer automated methodology for
determining the integrity of engineering design, particularly through the use of



334 4 Availability and Maintainability in Engineering Design

a blackboard model to provide for automated continual design reviews with respect
to designing for availability, such reviews inevitably need to include capability mod-
els of each process system. Each capability model includes a combination of declar-
ative design rules and constraints, design criteria documentation, and process simu-
lation results. The design rules represent constraints that apply to the design’s mate-
rials and processes associated with each process capability model, such as process
and functional characteristics, geometric symmetries, and expressions constraining
the parameters of specific system features.

Process simulations take as input the geometric model of a design or partial
design, and return estimates on the process and functional characteristics, or pro-
vide a graphical display of the characteristics and their effects. For the purpose of
ensuring design for manufacturability, a set of design rules that will ensure easy
manufacturability is paramount. Representations of process-derived geometric con-
straints provide a way of assuring manufacturability while maintaining the neces-
sary distinction between the representation of the design and the description of the
processes used to manufacture it. The neutral descriptions of these constraints also
enable their use for constraint propagation in qualitative reasoning systems such as
knowledge-based expert systems.

b) Process Characteristics

Process characteristics include the following measures:

• process capacity,
• process input,
• process throughput,
• process output,
• process quality.

Process capacity: Capacity can be defined as “holding or receiving ability”.
The capacity of an engineering process normally represents a limit on the maxi-

mum holding ability of the process. In this context, process capacity can be defined
as “the ability of a series of operations to receive and/or hold the result or product
inherent to the process”.

Process capacity has thus to do with receiving an input, and a system’s ability
to hold or retain an operational throughput as a result of delivering an output, and
should not be confused with the specific measures of a system’s input, throughput or
output. Process capacity is the maximum amount of material or product in process.
Process capacity decisions are perhaps the most fundamental of all conceptual engi-
neering design considerations. One reason for the importance of capacity decisions
relates to the impact on the ability of the process to meet future demands—capacity
essentially limits the rate of possible output.

A second reason for the importance of process capacity decisions is the initial
cost involved. Capacity is usually a major determinant of a design’s manufactur-
ing and installation costs. Another reason for the importance of process capacity
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decisions stems from the long-term commitment of resources required in the oper-
ation of the installed design, and the fact that once installed, it may be difficult to
modify the process without incurring major costs.

The term process capacity generally refers to an upper limit on the rate of pro-
cess output. Even though this seems to be simple enough, there are difficulties in
actually measuring process capacity. These difficulties arise because of different in-
terpretations of the term process capacity, and problems with identifying suitable
measures. Underlying these interpretations, though, is the single fact that process
capacity reflects the availability of process resources.

There are thus three different definitions of process capacity that are applicable
to availability in engineering design:

• Design capacity (Cd): the maximum ability of a series of operations to receive
and/or hold the result or product inherent to the process.

• Effective capacity (Ce): the ability of a series of operations to receive and/or
hold the result or product inherent to the process, given a specific product mix,
production schedule, maintenance, and quality constraints.

• Rated capacity (Cr): the throughput actually achieved from operational con-
straints placed upon the ability of a series of operations to receive and/or hold the
result or product inherent to the process. Rated capacity is maximum throughput.

Measuring process capacity Process capacity can be expressed in terms of outputs
or inputs, though no single capacity measure is universally applicable. Expressing
process capacity in terms of output measures is the usual choice for line flow pro-
cesses. However, product mix becomes an issue when the output is not uniform in
work content. Expressing process capacity in terms of input measures is normally
used for flexible flow processes where process output varies in work content, and
a measure of total production or units produced becomes meaningless.

Maximum process capacity can be measured in terms of the average output rate
and the average utilisation rate expressed as a percentage

Maximum Capacity (Cmax) =
Average output rate

Average utilisation/100
. (4.20)

Process input (Ip): Process input is the quantity or volume of process material that
enters the system or equipment over a period of time in accordance with the system’s
operational time. Production input in continuous processes is the quantity or volume
of process material that can enter the system or equipment according to its process
capacity. Maximum input is the maximum ability to receive and/or hold the result
or product inherent to the process, i.e. design capacity.

Process throughput (Tp): Process throughput has to do with quantities of mate-
rial entering and leaving the system process over a period of processing time. With
continuous processes, throughput is the quantity of material entering and leaving
the process in a continuous flow. The material or product in process, at rated ca-
pacity, is the difference between the input and output at any specific point in time.
The throughput rate is equivalent to the rated capacity per unit of time. Process
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throughput rate is indicative of the capability of the process to achieve the de-
sired result or output. From Little’s law (Little 1961), the formula for the relation of
throughput, cycle time and work in progress in any production line is given as

Production throughput (Tprod) =
Work in progress

Cycle time
. (4.21)

In the context of discrete industrial processes, work in progress is synonymous to
the material or product in process. Thus

Process throughput (T D
proc) =

Material in progress
Cycle time

(4.22)

where cycle time in discrete industrial processes = processing time + added time
due to operational constraints and inspection.

Process throughput of a continuous process system can be defined as “the ratio
of a system’s material in process over a period of processing time”

Process throughput (T C
proc) =

Material in progress
Processing time

(4.23)

= Rated capacity (Cr) .

Process output (Op): Output can be defined as “the quantity produced or yielded”.
Process output can be defined as “the quantity of product, or yield of a production

process”. Process output has to do with yield quantities of product or material from
the production process. The relationship between process throughput and process
output is given by the following

Process output (Op) = Process throughput (Tp) (4.24)

×Yield percentage (Y%)

Utilising the previous formula for rated capacity as maximum throughput, the rela-
tionship between output and yield in accordance with a process plant’s rated capac-
ity gives the following

Process output (Op) = Rated capacity (Cr) (4.25)

×Yield percentage (Y%)

Process or product yield Yield can be defined as “the amount produced or the
output result”.

Product yield in quality terms (without reject product) is the throughput multi-
plied by the percentage of successful output result (yield percentage)

Process yield (Yp) = Process throughput (Tp)×Yield percentage (Y%) (4.26)

= Process output (Op)
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c) Functional Effectiveness

Functional effectiveness in engineering processes indicates the results produced. It
represents functional characteristics of the process, such as process efficiency, util-
isation and productivity. Availability in engineering design, particularly in produc-
tion processes, is often looked upon as a functional characteristic synonymous to
productivity in that it relates process output to input.

Process effectiveness in itself is an indication of the design’s manufactured and/or
installed accomplishment against the design’s intended capability. Process effective-
ness is a ratio of process results (i.e. actual output) to process capability (i.e. design
output)

Process Effectiveness (Wp) =
Actual output
Design output

. (4.27)

Process efficiency is the ratio of process output achieved through the process
throughput (or, in certain cases, process input). In order to understand the concept
of efficiency correctly, and not confuse it with the concept of effectiveness, it is nec-
essary to consider these definitions with regard to related terminology.

Inasmuch as output is defined as the quantity produced or yielded, so can effi-
ciency be defined as “the capability of producing or yielding an output quantity”.
In fact, it is this capability of output quantity that forms the basis of efficiency mea-
surement.

Efficiency measurement is the measurement of productive capability. Efficiency
measurement of engineering processes is thus the measure of the capability of pro-
ducing or yielding a product. It is the measure of the capability of output quantity.
Efficiency measurement of a process, as a ratio, must therefore include output quan-
tity compared to some or other production parameter of the equipment in order to
reflect its capability of output quantity. As this productive capability logically relates
directly to the amount that can be put through a process, it is conclusive that the pro-
duction parameter must be process throughput. Efficiency measurement of an engi-
neering process is thus a comparison of the output quantity to its process throughput.

Thus

Process efficiency (Xp) =
Process output

Process throughput
(4.28)

=
Process throughput×Yield percentage

Process throughput
= Yield percentage (Y%)

The measure of efficiency must not be confused with the measure of productivity,
which is the ratio of output compared to input. Productivity is the “ratio of process
output to process input”

Productivity (Z) =
Process output
Process input

(4.29)

=
Process throughput×Yield percentage

Process input
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Process utilisation Process utilisation is the ratio of process output to the con-
strained ability to receive and/or hold the result or product inherent to the process
(i.e. rated capacity)

Process utilisation (Up) =
Process output
Rated capacity

(4.30)

Functional effectiveness in engineering processes represents the functional charac-
teristics of a process, such as efficiency, productivity and utilisation. These char-
acteristics relate process output to throughput, output to input, and output to ca-
pacity respectfully. Availability in engineering design is thus considered from the
perspective of these functional characteristics, and designing for availability, partic-
ularly engineering process availability, considers measurements of process through-
put, output, input and capacity.

d) Mathematical Modelling

For each process system, there is a set of performance measures that require partic-
ular attention in design. Mathematical models for expressing systems process char-
acteristics, and functional effectiveness for both discrete and continuous process
systems involve respectively summation and integration of their conjunct variables
over time. These models serve as useful indicators in designing for availability, and
adequately represent performance measures of each system that can be described in
matrix form in a parameter profile matrix (Thompson et al. 1998):

Discrete process throughput

(
T D

proc

)
=

P

∑
p=1

(M/t)p 1 < p < P . (4.31)

Continuous process throughput

(
T C

proc

)
=

T∫
t

(Mt/t)dt 0 < t < T (4.32)

(
T C

proc

)
max

= (Cr)

Process output

(
Op
)

=
T∫

t

(Mt/t)(Yt)dt (4.33)

(
Op
)

max = (Cr)× (Y%)
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Process effectiveness

(
Wp
)

=
T∫

t

(Mt/t)(Yt/Od) dt (4.34)

(
Wp
)

max = (Op)max/Od

Process efficiency

(Xp) =
T∫

t

(Mt/t)
(
Yt/TC

proc

)
dt (4.35)

(Xp) = (Y%)

Productivity

(Z) =
T∫

t

(Mt/t)
(
Yt/Ipt

)
dt (4.36)

(Z) =

(
Op
)

(
Ip
)

Process utilisation

(
Up
)

=
T∫

t

(Mt/t)(Yt/Cr) dt (4.37)

(
Up
)

=

(
Op
)

(Cr)

where:

Mt = material in process in time t
Mt/t = process flow rate or mass-flow rate
Ip = process input
Yt = yield
Od = design output
Cd = design capacity
Cr = rated capacity
Opt = process output in time t
(Op)max = maximum process output.

In general continuous flow processes, there are certain governing equations of flow,
where the design process flow rate or the mass-flow rate Mt/t (i.e. throughput, which
is a pivotal parameter in the performance measures for expressing systems process
characteristics) is the base measure of fundamental fluid flow. The amount of fluid
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(or material) flowing through a specified cross section is referred to as the volumetric
flow rate.

Let W = Mt/t be the total mass-flow rate of fluid flowing through a specified
cross section. Then

V = W/ρ (m3/h) (4.38)

where:

V = volumetric flow rate
ρ = fluid density.

The average linear velocity of flow is the ratio of the volumetric flow rate to the
cross-sectional flow area, as given by the following relationship

ŵ = V/F (m/h) (4.39)

where:

ŵ = average flow velocity
F = cross-sectional flow area.

Mass velocity can be expressed as the average velocity modified by the specific
weight of the fluid, which is the fluid’s specific gravity

G = ŵ · γ (4.40)

where:

G = fluid mass velocity
γ = fluid specific gravity.

For a continuous flow process under steady-state conditions, the mass-flow rate
Mt/t, or W , must be the same at any section within the process. This is the prin-
ciple of mass-flow balance

W1 = W2 = W3 = etc. (4.41)

The mass-flow balance is a statement of continuity, which can also be written as

F1G1 = F2G2 = F3G3 = etc. (4.42)

where:

F = cross-sectional flow area
G = fluid mass velocity

and:

ρ = fluid density
γ = fluid specific gravity
ρ/γ = constant.
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Without going into the depths of fluid mechanics and hydraulics, which is not rel-
evant to the objectives of this handbook, the nature of general flow regimes needs
to be considered in order to address not only the principle of mass-flow balance in
continuous flow processes but their total energy balance as well, so that these mea-
sures can be used in determining system performance characteristics that may serve
as useful indicators in designing for availability without having to formulate the
specific operational variables of each individual system. This is best done through
simulation, which is considered more closely in the next section on analytic devel-
opment.

There are fundamentally three general flow regimes in continuous flow pro-
cesses: laminar flow, transition flow and turbulent flow.

The laminar flow regime occurs at relatively low fluid velocities, providing
a smooth flow pattern with no or very little mixing of the fluid particles. Transi-
tion flow denotes the onset of turbulence. In a turbulent flow regime, fluid velocities
are higher, and an unstable pattern within the mass flow is observed in which eddy
current forces move at all angles to the axis of normal flow.

The dependency of a particular flow regime is denoted by the dimensionless
Reynolds number whereby a critical Reynolds number indicates the transition from
one flow regime to another. For instance, if the Reynolds number for flow in
a straight circular pipe is less than 2,100, the flow is laminar. When the Reynolds
number exceeds 4,000, the flow is turbulent. Flow between these two critical num-
bers is transitional.

The mathematical model for the Reynolds number is given by the following re-
lationships

Re = W ·D/ν = ŵ ·D ·ρ/μ = W ·D/μ (4.43)

where:

Re = Reynolds number
W = mass-flow rate
D = system or tube (pipe) diameter
ν = kinematic viscosity
ν = μ/ρ
ŵ = average flow velocity
ρ = fluid density
μ = dynamic viscosity.

Specific mathematical models for volumetric flow rates, V , and average flow veloc-
ities, ŵ, for laminar flows in a variety of systems are available in determining the
Reynolds number.

In considering the total energy balance, the flow energy input of a continuous
flow process is the sum of the kinetic energy, Ek, the potential energy, Ep, the vol-
umetric energy, Ev, and the internal energy, Ei. Any disruption in one or another
of these energies in the total energy balance is an indication of degradation in the
performance or operability of the process and, thus, these are important criteria in
its engineering design.
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The availability of the process or system is concerned with expected system per-
formance over a period of expected operational time. The prediction of inherent
availability of systems is based upon a prognosis of systems performance and sys-
tems operability under conditions subject to various performance criteria, such as
mass-flow balance and total energy balance.

Inclusive of any heat input from heat exchangers, or mechanical work derived
from pumping, the total energy balance of a continuous process flow consists of the
four energies Ek, Ep, Ev and Ei, whereby the total energy balance can be formulated
as follows

Ek1 +Ep1 +Ev1 +Ei1 = Ek2 +Ep2 +Ev2 +Ei2 (4.44)

The kinetic energy, Ek, is a function of the fluid mass and the fluid’s linear velocity:

Ek1 = ŵ2
1/2gα

Ek2 = ŵ2
2/2gα

where:

α = correction coefficient and, for turbulent flow, α = 1.

The potential energy, Ep, is a function of the weight, Z, of the fluid:

Ep1 = Z1

Ep2 = Z2

The volumetric energy, Ev, under pressure P, is equivalent to the energy required to
hold volume v at that pressure:

Ev1 = P1v1

Ev2 = P2v2

The internal energy, Ei, is a thermodynamic property of the flow system, with refer-
ence state energies, E1, E2, which on the input side is a function of heat input from
heat exchangers, He, and mechanical work from pumping, Me, approximated by the
enthalpies i1 and i2:

Ei1 = state E1 = He +Me

Ei2 = state E2

i1 = E1 +P1v1

i2 = E2 +P2v2

The total energy balance can now be formulated as follows (Cheremisinoff 1984):

ŵ2
1/2gα +Z1 +P1v1 +He +Me = ŵ2

2/2gα +Z2 +P2v2 +E2 (4.45)

ŵ2
1/2gα +Z1 +He +Me = ŵ2

2/2gα +Z2 +(i2− i1)
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e) Sizing Maximum or Design Capacity

The effective capacities of multiple system operations or processes within the same
engineering design installation are usually different. A bottleneck is a process that
has the lowest effective capacity of any process in the designed installation and,
thus, limits total output. Expansion of maximum or design capacity occurs only
when bottleneck capacity is increased. However, flexible flow processes may have
floating bottlenecks due to widely varying workloads on different processes at dif-
ferent times.

The theory of constraints (TOC) in designing for availability focuses on design
alternatives that impede maximum capacity (i.e. bottlenecks), with the objective
of maximising total product or materials process flow (Goldratt 1990). Also, the
focus on bottlenecks is the means to increasing throughput and, consequently, the
mass-flow rate of product and materials. The performance of the overall process
design is a function of minimum bottleneck operations or processes. TOC provides
the ability to descriptively characterise the functional relationships responsible for
a typical complex process environment. Basically, through the application of system
dynamics (SD) models, which are developed from TOC logic diagrams, insights into
the dynamics of design alternatives that impede maximum capacity are obtained.
The application of TOC in designing for availability involves the following steps:

• Identification of system bottleneck(s).
• Exploitation of the bottleneck(s)

(i.e. maximising throughput).
• Elevating the bottleneck(s)

(i.e. considering increasing capacity at the bottleneck(s)).

Criteria for sizing design capacity Besides increasing the capacity of system bot-
tlenecks in order to expand design capacity, further criteria for sizing design capacity
are concerned with predicted process utilisation rates that are close to 100%, indicat-
ing the need to increase capacity because of the probability of declining productivity
over time (i.e. diminished output against constant input). Process utilisation tends to
be higher in capital-intensive processes, where prediction of utilisation between 90
and 100% is not uncommon. In such cases, occurrences of bottlenecks in the total
process are inevitable, resulting in the essential application of TOC in designing for
availability.

A further consideration is economy of scale. In designing for availability, this im-
plies not only increasing a design’s size or capacity but at the same time attempting
to decrease the average unit cost through various options, such as:

• Spreading fixed costs:
As the system utilisation rate increases, the average unit cost is reduced.

• Reducing manufacturing/construction costs:
Doubling facility size usually does not double costs.

• Reducing material costs:
Higher volumes allow for bulk acquisition and handling.
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• Exploiting process advantages:
High volume may justify investment in more efficient technology.

• Increasing inherent availabilities:
Determining initial system operational characteristics.

In contrast to consideration of economy of scale is the need also to consider disec-
onomies of scale, whereby excessive size can bring about complexity and inefficien-
cies that, in turn, can raise the average unit cost, and result in a non-linear growth of
overhead.

4.2.1.3 Inherent Availability (Ai) Modelling with Uncertainty

Under initial conditions of uncertainty, it is feasible to define system availability
only in terms of operable time and corrective maintenance. Availability defined in
this manner is termed inherent availability (Ai). Under such idealised conditions,
standby and delay times associated with scheduled or preventive maintenance, as
well as administrative and logistics downtime are ignored. Inherent availability is
thus useful in determining initial system operational characteristics under specified
conditions, such as testing in a contractor’s facility, or any other controlled test en-
vironment. Likewise, inherent availability becomes a useful term to describe com-
bined reliability and maintainability characteristics or to define the one in terms of
the other during the early conceptual phase of the engineering design process when,
generally, these terms cannot be defined individually and are rather related to system
performance.

Since such a definition of availability is easily measured, it is frequently used as
a contract-specified requirement. Inherent availability is primarily the concern of the
design engineer during the establishment of functional interface with the contrac-
tor and manufacturers in the early phases of the engineering design process. Inher-
ent availability looks at availability from a design perspective; thus, reliability and
maintainability are considered complementary measures in the inherent availability
equation. Inherent availability is in effect a model of reliability and maintainability
measures. The inherent availability equation is given as (Eq. 4.46), (DoD 3235.1-H
1982):

Ai =
MTBF

(MTBF+MTTR)
(4.46)

where:

MTBF is the mean time between failure
MTTR is the mean time to repair.

Ai is the largest availability value that can be achieved because only the times re-
lated to operational disruptions due to breakdowns and their repair are considered,
whereas downtime associated with planned maintenance as well as administrative
and logistics downtime are ignored.

If the expected design reliability measure of mean time between failures (or,
more particularly, mean time to breakdowns) is very large compared to the related
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mean time to repair (or mean time to replace), then the inherent availability is high.
Similarly, if the design maintainability measure of mean time to repair (MTTR) is
a minimum, the inherent availability Ai will be a maximum.

It is obvious from the inherent availability equation that if design reliability de-
creases (i.e. MTBF becomes smaller), then better design maintainability (i.e. shorter
MTTR) is needed to achieve the same inherent availability. Conversely, as engineer-
ing design reliability increases, design maintainability is not so important in being
able to achieve the same inherent availability.

An important design integrity principle is thus obtained:

Trade-offs can be made between reliability and maintainability to achieve the same
availability in the engineering design process.

a) The Exponential Function for Inherent Availability

If λ is designated the failure rate (1/MTBF) and μ is designated the repair rate
(1/MTTR), and both rates are exponential, then the probability density function
(p.d.f.) of a failure at time x is

f (x) = λ e−λ x . (4.47)

The probability density function that a subsequent repair will be completed at time t,
the end of the availability cycle, t > x, is

f (t − x) = μ e−μ(t−x) . (4.48)

The availability cycle can be construed to have two consecutive periods; the first
period is when operation is terminated by a failure, and the second period is when
downtime ends with a completed repair. Inherent availability is the ratio of the aver-
age time for the first period, to the average time for the cycle, which includes oper-
ation and downtime. The probability density function of a failure before t, followed
by a repair completed at t, is the convolution (accumulated product) of Eqs. (4.47)
and (4.48)

f (t) =
t∫

0

f (x) f (t − x)dt (4.49)

f (t) =
λ μ e−μt

μ −λ

(
e−λ t − e−μt

)
with μ > λ .

The average period of an availability cycle E(t) is

E(t) =
t∫

0

t f (t)dt (4.50)

E(t) =
λ + μ

λ μ
.
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The average period of an availability cycle E(t) is expressed in terms of mean time
between failure (MTBF) and mean time to repair (MTTR):

E(t) =
1
λ

+
1
μ

E(t) = MTBF+MTTR

Thus, inherent availability Ai is the fraction of the availability cycle

Ai =
MTBF

(MTBF+MTTR)
=

1/λ
1/λ +1/μ

=
μ

λ + μ
(4.51)

b) Confidence Determination of Inherent Availability Predictions

Equation (4.51) indicates that if both the MTBF and MTTR distributions are expo-
nential, then the inherent availability Ai is a function of the failure rate λ and the
repair rate μ . Since both λ and μ can readily be used for Bayesian prior and poste-
rior analysis, random values can be generated in repeated trials in order to simulate
a value for Ai. The percentage values of the resulting distribution on Ai are the con-
fidence limits of the inherent availability prediction.

In predicting the value of Ai, the ratio of the mean operating period (MTBF) to
that of the availability cycle (MTBF + MTTR) can be established by known or es-
timated distributions for these values. However, establishing confidence levels on
different values of Ai (i.e. quantitative assessment of Ai) can be done only by using
known failure and repair data to establish distributions on MTBF and MTTR param-
eters. For example, if both the time between failures and time to repair are exponen-
tial, then the values for MTBF and MTTR can be determined from Bayesian prior
distributions, which are functions of the prior data. Beyond such relatively simple
analysis, establishing confidence levels on different values of Ai is very difficult.

Thus, predictions of Ai are feasible under initial conditions of uncertainty, as
with conceptual design, if it is possible to define system availability with respect to
estimates of operable time and downtime due to corrective maintenance. Standby
and delay times associated with scheduled or preventive maintenance, as well as
administrative and logistics downtime are ignored. A major problem arises, though,
when these estimates cannot be based on obtained data, and predicting the value of
Ai cannot be quantitative. However, as indicated in Sect. 3.3.3.3 on reliability eval-
uation, a statistically acceptable qualitative methodology to determine the integrity
of engineering design in the situation where data are not available or not mean-
ingful is included in the concept of information integration technology (IIT). The
concept of IIT includes a combination of methods and tools for collecting, organ-
ising and analysing diverse information, and for utilising that information to guide
optimal decision-making, based on Bayesian prior and posterior analysis (Booker
et al. 2000).
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4.2.1.4 Preliminary Maintainability Modelling

Probability theory and statistics have an important role in designing for main-
tainability, as much as they have in engineering design integrity methodology as
a whole. Various probability distributions may be used to quantify repair time data,
and even uncertainty of repair times. Where repair time data are not available, in-
cluding any data representing failure rates or expected time to failure, qualitative
methods involving possibility theory need to be used, similar to the prediction of
reliability considered in the previous section. However, in the case of data being
available, even censored data, repair time distributions may be identified and the
corresponding maintainability function may be obtained. The maintainability func-
tion is used to predict the probability that a repair, beginning at time t = 0, will be
accomplished in a time t. The maintainability function M(t), for any distribution, is
expressed by the following relationship (Dhillon 1999b):

M(t) =
t∫

0

fr(t)dt (4.52)

fr(t) is the probability density function of the maintenance (repair) time.

This maintainability function may be represented by various distribution functions,
depending upon the statistical characteristics of the data and the function param-
eters. The exponential distribution is particularly useful in presenting maintenance
times that are random in duration.

The exponential distribution probability density function is defined by the fol-
lowing relationship

fr(t) = (1/MTTR)e−(t/MTTR) (4.53)

where:

t is the variable repair time, and MTTR is the mean time to repair.

By substituting Eq. (4.53) into Eq. (4.52), the following relationship is obtained

M(t) =
t∫

0

(1/MTTR)e−(t/MTTR) dt (4.54)

M(t) = 1− e−(t/MTTR)

M(t) = 1− e−μt .

The fundamental parameter is the repair rate, μ , the reciprocal of MTTR, rather than
the failure rate, λ , the reciprocal of MTBF. The treatment of ‘time to an event’ is
also reversed, in that the objective should be to make μ as high as possible, so that
repairs are completed quickly, and to make λ as low as possible, so that the time
between failures as long as possible.
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In the maintainability relationship given in Eq. (4.54), let t denote a specified
or required ‘standard’ time to repair. Since t is specified, it is necessary only to
evaluate μ . Furthermore, suppose that available data consist of estimates of repair
times t1,t2, . . . ,tr. The total estimated time, T , on repair status is then

T =
r

∑
i=1

ti . (4.55)

Because the repair events are all independent, the joint probability, or likelihood L,
of the first r repair times, t1,t2, . . . ,tr is the product of their respective probabilities

L =
r

∏
i=1

fr(t) . (4.56)

From Eq. (4.53) we get

L = μ exp

[
−μ

(
r

∑
i=1

ti

)]
. (4.57)

The maximum-likelihood estimate, E , is a value μ that maximises the natural loga-
rithm of L

E = lnL (4.58)

E = r ln μ − μT
∂E
∂ μ

=
r
μ
−T .

Setting the derivative to zero, the maximum-likelihood estimate of μ is

μ ′ =
r
T

. (4.59)

The best estimate m′(t) of the maintainability function, M(t), with standard mainte-
nance time t, is then obtained where m′(t) = M, in the case of 0 ≤ M < 1, may be
viewed as having a Bayesian prior or posterior distribution with parameters that are
valid statistics for r repair actions and T total repair time (Eq. (4.60)). If these esti-
mates cannot be based on obtained data, the methodology of information integra-
tion technology (IIT) is applicable, in which Bayesian prior and posterior analysis is
utilised.

M(t) = 1− e−μt (4.60)

m′(t) = 1− e−μ ′
t = 1− e−rt/T = M .
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4.2.2 Theoretical Overview of Availability and Maintainability
Assessment in Preliminary Design

Availability and maintainability assessment attempts to estimate the expected us-
age of equipment over a period of operational time subject to both planned and
unplanned maintenance downtime or, alternatively, the expected utilisation over
a specified period of each individual item of equipment at the upper systems lev-
els of the systems breakdown structure. System availability is an important mea-
sure of repairable systems, since it considers both reliability and maintainability,
whereas availability and maintainability modelling takes into account both the fail-
ure and repair states of a system. More specifically, availability and maintainability
assessment takes into account not only the failure and repair states of a system but
downtime due to preventive maintenance as well. Availability and maintainability
assessment in this context is considered during the preliminary or schematic de-
sign phase of the engineering design process. The most applicable methodology for
availability and maintainability assessment in the preliminary design phase includes
basic concepts of mathematical modelling such as:

i. Markov modelling for design availability and maintainability
ii. Achieved availability modelling subject to maintenance
iii. Maintainability assessment with maintenance modelling
iv. Maintenance strategy and cost optimisation modelling.

4.2.2.1 Markov Modelling for Design Availability and Maintainability

Markov modelling is a powerful engineering design analysis tool, and it can be
used in most cases of designing for reliability and designing for maintainabil-
ity. The method is useful in modelling systems, especially large complex sys-
tems, with dependent failure and repair modes. Markov models are particularly
useful to model repairable systems with random failure occurrences (i.e. constant
or time-independent failure rates) and random repair times (i.e. constant or time-
independent repair rates). The method becomes unreliable for systems with time-
dependent failure and repair rates.

a) The Two-State Markov Model

Several initial assumptions are important when applying Markov modelling to en-
gineering design analysis (Dhillon 1999b):
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Up
State 0

System operating

Down
State 1

System failed

λ

μ

Fig. 4.7 Markov model state space diagram

• All events are independent of each other.
• The probability of transition from the system operating state to the system failed

state (state 0 to state 1) is given by λ Δt, where Δt is a finite time interval, and λ
is the constant failure rate, or the transition rate.

• The probability of transition from the system failed state to the system operating
state (state 1 to state 0) is given by μΔt, where Δt is a finite time interval, and μ
is the constant repair rate, or the transition rate.

• The probability of more than one transition from one state to another in Δt is very
small.

The transition states can be represented in the following diagram (Fig. 4.7).
From Fig. 4.7, the following mathematical model can be derived (Dhillon 1999b):

P0(t + Δt) = P0(t)(1−λft)+P1(t)μrt (4.61)

and

P1(t + Δt) = P1(t)(1− μrt)+P0(t)λft . (4.62)

Status variables and probabilities The various status variables and probabilities
of these two equations need to be evaluated:

λf is the system constant failure rate,
μr is the system constant repair rate,
P0(t + Δt) is the probability that the system is in an operating state 0 at the time

t + Δt,
P1(t + Δt) is the probability that the system is in a failed state 1 at the time t +Δt,
P0(t) is the probability that the system is in an operating state 0 at time t,
P1(t) is the probability that the system is in failed state 1 at time t,
(1−λft) is the probability of no failure in time interval t when the system is in

state 0,
(1− μrt) is the probability of no repair in time interval t when the system is in

state 1,
λft is the probability of system failure in time interval t,
μrt is the probability of accomplishing system repair in time interval t.
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In the limiting case, Eqs. (4.61) and (4.62) are represented by

lim
Δt→0

P0(t + Δt)−P0(t)
Δt

=
dP0(t)

dt
= P1(t)μr −P0(t)λf (4.63)

lim
Δt→0

P1(t + Δt)−P0(t)
Δt

=
dP1(t)

dt
= P0(t)λf −P1(t)μr (4.64)

In order to solve Eqs. (4.63) and (4.64) at time t = 0, the values for the following
probabilities are: P0(0) = 0, and P1(0) = 0.

Then

P0(t) =
μr

λf + μr
+

λf

λf + μr
e−(λf+μr)t (4.65)

and

P1(t) =
λf

λf + μr
+

λf

λf + μr
e−(λf+μr)t . (4.66)

Thus, at any point in time t, the system’s availability may be represented by the
following

A(t) = P0(t) (4.67)

and

P0(t) =
μr

λf + μr
+

λf

λf + μr
e−(λf+μr)t

where:

A(t) = the system’s availability at a specified time t.

For engineering design availability assessment, estimate of availability for the sys-
tem would be a steady-state availability, As, where t → ∞. Thus

As = lim
t→∞

A(t) (4.68)

and As is A(steady state).
Substituting Eq. (4.67) into Eq. (4.68) gives the steady-state availability for the

system.
Thus, As = A(steady state) is given by

As = lim
t→∞

[
μr/λf + μr + λf/λf + μr(e−(λf+μr)t)

]
(4.69)

As =
μr

λf + μr
.

b) Multi-State Markov Models—Method of Supplementary Variables

The components of most systems are assumed to fail with constant failure rates
(i.e. failure times are governed by exponential distributions). However, though re-
pair times of components are often non-exponentially distributed, they usually have
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general distributions (i.e. repair rates of the components are arbitrary functions of
time). Multi-component repairable systems with general failure and/or repair time
distributions are difficult to analyse mathematically. These systems are known as
non-Markovian systems, as the stochastic process is non-Markovian. However, with
the inclusion of the method of supplementary variables, the Markov process ap-
proach provides a sufficient level of analysis that can be used to model complex
systems with constant failure rates and non-exponential repair times. Inclusion of
sufficient supplementary variables in the specification of the state of the system can
make a process Markovian (Dhillon 1983).

To enable the system to be characterised as a Markov system, a mathematical
model is constructed with concise definitions of the various states for the system,
together with a set of supplementary variables that include the concept of efficiency
(or, rather, reduced efficiency) in the state definition of the system. Because the
state at time t is an exact description of the circumstances prevailing in the system
at that time, the behaviour of the system over the passage of time Δt may be found
by determining the state probabilities of the system. A complex system can thus
be characterised as a Markov system by employing a set of supplementary variables
with which a part of the system’s history is included in the state definition of the sys-
tem. With the inclusion of supplementary variables, the Markov model represents
a multi-state stochastic system with modes of normal operation and total failure,
as well as operation at several different levels of performance (i.e. with reduced
efficiency).

The system has thus three operation modes: ‘normal operation’, ‘operation with
reduced efficiency’ and ‘non-operation’. The supplementary variable technique en-
ables a dynamic model of the behaviour of the system to be set up in the form of
a set of differential-difference equations with variable coefficients, and respective
boundary and initial conditions (Virtanen 1977).

As an illustration of the method of supplementary variables, consider the system
transition diagram in Fig. 4.8 (Dhillon 1983).

The diagram represents a complex system that operates partially when some of
system’s components fail and, if a catastrophic failure occurs, the system in its en-
tirety fails. When the system is operating partially, a repair process is expected to
be initiated to restore the system to its fully operational state. However, the system
may have a catastrophic failure from the partially operating state. Once the system
fails completely, it is expected to be restored to its normal operating state.

System
Operating
Normally

System
Operating
Partially

System
Operating

Failed

λ

λ2

λ1

μp

μf(x)

Fig. 4.8 Multi-state system transition
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The following assumptions are associated with this multi-state model:

• System failures are statistically independent.
• A partially, or fully failed system is restored to a ‘good as new’ state.
• System failure rates are constant.
• System component failure times are random.
• The partially failed system repair rate is constant.
• Failed system repair times are arbitrarily distributed.

As with the two-state Markov model, the mathematical expressions for the multi-
state Markov model, including supplementary variables indicating partial operation
or a reduced efficiency of the system, are given in the following Markov multi-state
model equations, according to Fig. 4.8:

P0(t + Δt) = P0(t)(1−λ1Δt)(1−λ2Δt)+P1(t)μpΔt (4.70)

+

⎡
⎣

∞∫
0

P2(x,t)μf(x)dx

⎤
⎦Δt

P1(t + Δt) = P1(t)(1−λ3Δt)(1− μpΔt)+P0(t)λ1Δt (4.71)

P2(x+ Δt;t + Δt) = P2(x,t) [1− μf(x)Δt] (4.72)

λ j is the jth constant failure rate of the system with j = 1 (normal–partial
transition), j = 2 (normal to failed), j = 3 (partial to failed),

μp is the system constant repair rate from the partial operating state 1 to
the normal operating state 0,

μf(x) is the repair rate when the system is in the failed state and has the
elapsed repair time of x,

P0(t + Δt) is the probability that the system is in an operating state 0 at time t +Δt,
P1(t + Δt) is the probability that the system is in a partially failed state 1 at time

t + Δt,
P2(x+ Δt;t + Δt) is the probability that at time t, the system is in a failed state 2

and the elapsed repair time lies in the interval (x,x+ Δx),
P0(t) is the probability that the system is in an operating state 0 at time t,
P1(t) is the probability that the system is in a partially failed state 1 at time t,
P2(x,t) is the probability that the system is in a failed state 2 after an elapsed

repair time of x,
(1−λiΔt) is the probability of no failure in time interval Δt when the system is

in state i,
(1− μpΔt) is the probability of no repair in time interval Δt when the system is in

state 1,
(1− μfΔt) is the probability of no repair in time interval Δt when the system is in

state 2.

The respective boundary and initial conditions are:

P2(0,t) = λ2P0(t)+ λ3P1(t)
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and at t = 0

P0(0) = 1

P2(0) = 0

P2(x,0) = 0

The differential-difference equations with variable coefficients are

dP0(t)
dt

+(λ1 + λ2)P0(t)−P1(t)μp =
∞∫

0

P2(x,t)μf(x)dx (4.73)

dP1(t)
dt

+(λ3 + μp)P1(t)−P0(t)λ1 = 0 (4.74)

∂P2(x,t)
∂x

+
∂P2(x,t)

∂ t
+ μf(x)P2(x,t) = 0 (4.75)

So far, the supplementary variable technique has been used to obtain the model’s
partial differential-difference equations, or state equations, which describe the be-
haviour of the system. With the help of Laplace transforms, both transient and
steady-state solutions for these state equations may now be found. The Laplace
transform of a function is given by the expression

E(t) =
∞∫

0

e−St f (t)dt . (4.76)

Using Laplace transforms, and initial condition P0(0)= 1, the differential Eqs. (4.73)
to (4.75) are transformed into steady-state solutions for these state equations, with
the boundary condition of:

P2(0,s) = λ2P0(s)+ λ3P1(s)

Then

sP0(s)−1+(λ1 + λ2)P0(s)−P1(s)μp =
∞∫

0

P2(x,s)μf(x)dx (4.77)

and
sP1(s)+ (λ3 + μp)P1(s)−P0(s)λ1 = 0 (4.78)

and
∂P2(x,s)

∂x
+[s+ μf(x)]P2(x,s) = 0 . (4.79)

The steady-state values for P0(s), P1(s) and P2(s) can now be found through inte-
grating. The steady-state solutions are independent of the type of waiting time and
repair time distributions, and only the expected values of these distributions become
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apparent. Furthermore, steady state is achieved under general conditions, and the
solutions for steady state can be found without any exact knowledge about the dis-
tributions of the system (Virtanen 1975).

4.2.2.2 Achieved Availability Modelling Subject to Maintenance

Achieved availability (Aś) is frequently used during development testing and initial
production testing when a system or its equipment is not operating in its intended
support environment. Excluded are operator before-and-after maintenance checks
and standby periods. Achieved availability is much more of a system hardware-
oriented measure than is operational availability, which considers operating envi-
ronment factors.

It is, however, dependent on a preventive maintenance policy, which can be
greatly influenced by non-hardware considerations. The mathematical model for
achieved availability, according to the USA Department of Defence, is given by the
following expression (Eq. 4.80), (Conlon et al. 1982):

Aś =
OT

OT+TCM+TPM
(4.80)

where:

OT = operating time
TCM = total corrective maintenance
TPM = total preventive maintenance.

An alternative approach to modelling achieved availability is to consider the prob-
ability that a system or its equipment, when used under designed conditions in an
ideal support environment, will perform according to the specifications formulated
during the preliminary design phase. The most significant characteristic of achieved
availability for both alternatives is that it includes maintenance time (corrective and
preventive), and excludes logistic delay times. The mathematical model for achieved
availability in this context is given as (Dhillon 1999b):

Aś =
MTBM

MTBM+TCM+TPM
(4.81)

where:

MTBM is the mean time between maintenance.

This differs from inherent availability, Ai, only in its inclusion of the considera-
tion for total preventive maintenance. The measurement base for MTBM must be
consistent when calculating achieved availability Aś. MTBM is represented by the
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following expression

MTBM =
[

1
MTBF

+
1

MTBM-LD
+

1
MTBPM

]
(4.82)

where:

MTBF is the mean time between failures
MTBM-LD is the mean time between maintenance less logistic delays
MTBPM is the mean time between preventive maintenance.

The measurement base for MTBF, MTBM–LD and MTBPM must be consistent
when calculating the MTBM parameter. Consider further the values TCM and TPM

MDT = TCM+TPM (4.83)

where:

MDT = mean active maintenance downtime
TCM = total corrective maintenance
TPM = total preventive maintenance

and

MDT = ∑m
i=1 CMiCFi

∑m
i=1 CFi

+
∑n

j=1 PM jPF j

∑n
j=1 PF j

(4.84)

where:

n = total corrective tasks performed
m = total preventive tasks performed
CMi = elapsed time for corrective task i
PM j = elapsed time for preventive task j
CFi = estimated frequency for task i
PF j = estimated frequency for task j.

4.2.2.3 Maintainability Assessment with Maintenance Modelling

Maintainability and maintenance are closely interrelated, yet they are not the same.
Maintainability refers to the measures taken during the design, development and
installation of a system or its equipment that will reduce the required maintenance
effort, logistics and costs and, thus, also the operational downtime. Maintenance
refers to the measures taken to restore and keep the system or its equipment in an
operable condition. Maintenance is, in effect, the care of the physical and opera-
tional condition of the system or its equipment. Many mathematical models have
been developed for both maintainability and for maintenance.

However, maintenance models have mainly been developed to better define and
predict certain aspects of maintenance, such as scheduled downtime, scheduled
replacement, and optimal warranty periods, for installed systems and equipment.
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These models are usually based on certain probability distributions, predominantly
the exponential distribution for representing corrective maintenance times, and the
lognormal distribution for representing minimum operating times.

a) Impact of Maintenance Assessment on Systems Design

A widely used probability distribution in predicting the impact of designing for
maintainability on systems design, based upon defining constraints on the minimum
operating time below which no maintenance activity will result in downtime, is the
lognormal distribution.

The lognormal distribution probability density function is defined by the follow-
ing relationship

fr(t) =
1

(t −θ )σ
√

2π
e−{1/2[ln(t−θ)−β ]} (4.85)

where:

t = maintenance time
θ = minimum operating time
β = mean time for maintenance
σ = standard deviation of the maintenance times.

An estimate of the mean time for maintenance, β , is based on an estimate of the
number of shutdowns (i.e. planned downtimes that have an impact on production)
that are required over a specific period, such as one year. This is best approached
from a calculation of the average of the sum of the natural logarithms of the indi-
vidually estimated downtimes, where m is the number of shutdowns over a specific
period.

The relationship for the mean time for maintenance, β , considering the estimated
downtimes and the number of shutdowns, is defined as

β = (ln t1 + lnt2 + lnt3 + . . .+ lntm)/m . (4.86)

The standard deviation, σ , of the estimated mean time for maintenance, β , is given
by

σ =

[
m

∑
i=1

(ln ti −β )2/(m−1)

]1/2

. (4.87)

For the lognormal distribution, the equation for the maintainability function M(t) is
given as the following expression

M(t) =
∞∫

0

t fr(t)dt (4.88)

M(t) = 1/σ
√

2π
∞∫

0

e−1/2(lnt−β )2
dt
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This maintainability function serves primarily as a design parameter in designing for
maintainability, whereby it defines the expected downtime over a specified period.

The measures used in maintainability analysis, besides the widely used mean
time to repair (MTTR), include concepts related mainly to maintenance, such as the
expected mean preventive maintenance downtime, the median corrective mainte-
nance downtime, the expected maximum corrective maintenance downtime and the
expected mean maintenance downtime.

b) Maintainability Measures and Maintenance Assessment

The expected mean preventive maintenance downtime, Tpm, is a useful parameter in
design for maintainability, in that it gives an indication of the expected scheduled
downtime of a system over its life cycle. The objective of defining the expected
mean preventive maintenance downtime is to estimate the impact of a preventive
maintenance program on the system, whereby the system and its equipment (as-
semblies and components) are to be kept at a specified design performance level.
Such a preventive maintenance program is to affect the point in time at which the
equipment wears out or fails, resulting in system downtime.

A carefully planned preventive maintenance program can help to reduce system
downtime and improve its performance. On the other hand, a poorly established
preventive maintenance program can have a negative impact on system operations.
The expected mean preventive maintenance downtime, Tpm, is expressed by the
mathematical model (Dhillon 1999b):

Tpm =
∑k

i=1(Tp ti)(Fp ti)

∑k
i=1(Fp ti)

(4.89)

where:

Tp ti = the estimated lapse time for preventive maintenance task i for i = 1,2,3, . . . ,k
Fp ti = the estimated frequency of preventive maintenance task i for i = 1,2,3, . . . ,k
k = number of preventive maintenance tasks.

The median corrective maintenance downtime, Tcm, is a measure of the time within
which 50% of all corrective maintenance can be completed. Calculation of the me-
dian corrective maintenance downtime depends upon the distribution of the times
for corrective maintenance.

For a lognormal distribution of repair time, the median corrective maintenance
downtime, Tcm, is expressed as

Tcm = MTTR/eσ2/2 (4.90)

σ2 = the variance around the mean value of the natural logarithm of repair times.
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For an exponential distribution of corrective maintenance repair times, the median
corrective maintenance downtime, Tcm, is expressed as

Tcm = 0.69/μ (4.91)

μ = the repair rate, which is the reciprocal of MTTR.

The expected maximum corrective maintenance downtime Tcm is a measure of the
time required to complete corrective maintenance repairs at the 90th or 95th per-
centiles. This implies that, for example, in the case of the 95th percentile, the ex-
pected maximum corrective maintenance downtime is the time within which 95% of
all corrective maintenance can be completed. It indicates an estimation level of sig-
nificance where no more than 5% of the expected corrective maintenance will take
longer than the expected maximum corrective maintenance downtime. Calculation
of the expected maximum corrective maintenance downtime also depends upon the
distribution of the times for corrective maintenance.

The expected maximum corrective maintenance downtime with a lognormal dis-
tribution of corrective maintenance times is expressed as

Tcm = antilog(tm + kσ) (4.92)

where:

tm = the mean of the logarithms of repair times
k = the value 1.28 or 1.65 for the 90th or 95th percentiles
σ = the standard deviation of the logarithms of repair times.

The expected maximum corrective maintenance downtime with an exponential dis-
tribution of corrective maintenance times is expressed as

Tcm = 3× (MTTR) (4.93)

where:

MTTR = the mean time to repair, given by the following formula.

MTTR = ∑m
i=1 λiTi

∑m
i=1 λi

(4.94)

λi = the constant failure rate of item i = 1,2,3, . . . ,m
Ti = the corrective maintenance or repair time needed to restore item

i = 1,2,3, . . . ,m.

The expected mean maintenance downtime, MDT, is the total time needed to restore
the system or its equipment to a specified level of performance, and to maintain it at
that level of performance. It includes preventive and corrective maintenance times
but not administrative and logistic delay times. In this regard, it is synonymous with
achieved availability that includes maintenance time (corrective and preventive) but
excludes administrative and logistic delays. After determining Tpm and Tcm, the
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expected mean maintenance downtime, MDT, is given by the following relation-
ship

MDT = Tpm +Tcm (4.95)

Substituting Eqs. (4.89) and (4.93) with (4.94) into Eq. (4.95) gives

MDT =
∑k

i=1(Tp ti)(Fp ti)

∑k
i=1(Fp ti)

+
3∑m

i=1 λiTi

∑m
i=1 λi

(4.96)

where:

Tp ti = the estimated lapse time for preventive maintenance task i for i = 1,2,3, . . . ,k
Fp ti = the estimated frequency of preventive maintenance task i for i = 1,2,3, . . . ,k.

To determine the expected mean total downtime, DT, estimates of delays (adminis-
tration and logistic) need to be added to MDT. These delays are usually estimated
as fractions of MDT.

4.2.2.4 Maintenance Strategies and Cost Optimisation Modelling

So far, the interrelationships of maintainability and maintenance have been consid-
ered with respect to measures used in maintainability analysis that include mainte-
nance concepts, such as preventive maintenance, corrective maintenance and down-
time. In designing for maintainability, it is important to understand the concepts of
maintenance strategies.

In designing for maintainability, the up-front establishment of cost-effective
maintenance strategies has a significant impact on the final outcome of the engi-
neering design, particularly in considering built-in-testing (BIT), online fault di-
agnostics, and the application of condition monitoring. A proper understanding of
the basic principles of maintenance thus becomes extremely important (in fact, it
becomes essential) in the engineering design process, and includes not only mainte-
nance and production people but design engineers as well. Once the basic principles
of maintenance are fully understood, then the more sophisticated and complex as-
pects essential to cost-effective maintenance strategies can be considered. These
aspects include an understanding of condition monitoring, condition measurement,
fault diagnostics and predictive maintenance, and how and when they should be car-
ried out in order to effectively care for the physical and operational condition of the
system or its equipment.

Designing for maintainability is not only a consideration of the measures taken
during the design, development and installation of a system that will reduce the
required maintenance effort and, thus, also the operational downtime, as well as lo-
gistics and costs, but it is also a provision of the required maintenance strategies
that complement these measures in order to ensure the as-designed system perfor-
mance and related warranty. All these aspects thus need to be carefully considered
and placed in their correct perspective for establishing cost-effective maintenance
strategies in designing for maintainability.
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a) The Basic Principles of Maintenance

Maintenance can be defined as “the continuous action of caring for the condition
of equipment”. By definition, the concept of condition has been brought into the
understanding of maintenance. Equipment condition is the operational and physical
state of equipment on which the functions of the equipment depends.

In order to understand equipment condition, it thus becomes necessary to under-
stand the concept of equipment function. The function of equipment is the work and
properties that the equipment is designed to perform and to have. There are two
basic types of equipment functions:

• Operational function
• Physical function.

The operational functions can be grouped into primary and secondary functions.
The primary operational function of equipment is described by defining what work
the equipment primarily does. The secondary operational functions of equipment
are the other activities that the equipment also does. As an example, the primary op-
erational function of a heat exchanger would be to transmit heat through conduction
from a hot fluid to a cooler fluid, thereby decreasing the temperature of the hot fluid,
and increasing the temperature of the cooler fluid. A secondary function of a heat
exchanger is to reduce the occurrence of flash vapour in the liquid line (sometimes
called flash gas, arising from a sudden change of the fluid to a vapour).

The physical functions of equipment are described by defining the design con-
figuration and physical properties of the equipment. Referring to the previous ex-
ample, the most significant physical function of a heat exchanger is the ability to
provide efficient heat transfer at high temperature through a heat transfer surface
that is large enough to transfer the heat sufficiently, and that is also able to resist
expansion stresses that may cause cracks and dangerous leakages.

Thus, the condition of equipment as described in the definition of maintenance
can now be reviewed. It can be seen that the condition of equipment is directly re-
lated to the equipment’s functions. There are two types of equipment conditions,
related to the functions of the equipment and called the functional states of condi-
tion. The two types of equipment conditions are:

• Operational condition
• Physical condition.

The operational condition of equipment relates to its operational functions, and the
physical condition of equipment relates to its physical functions.

Maintenance can now be redefined as “the continuous action of caring for the
operational and physical conditions of equipment”.

The next concept to consider in this definition of maintenance is the “continuous
action”. There are predominantly two actions in maintenance:

• Corrective action
• Preventive action.
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Corrective action, by definition, is “that action necessary to rectify or set right de-
fects according to a standard”. Corrective action is thus that maintenance work that
fixes or repairs equipment after it has failed. Preventive action, by definition, is “that
action serving to hinder or stop defects”. Preventive action is thus that maintenance
work that prevents or stops defects from occurring in equipment before it has failed.

By progressive definition, the concept of failure has been brought into the under-
standing of maintenance action. Thus, in order to fully understand maintenance, it
is essential to understand the concept of failure. Equipment failure has already been
defined as “the inability of the equipment to function within its specified limits of
performance”. There are thus two descriptions of failure:

• Functional failure
• Potential failure.

Functional failure in equipment is “the inability of the equipment to carry out the
work that it was designed to perform within specified limits of performance”. This
inability has qualitative gradation, depending upon the severity of functional failure.
There are two degrees of severity in functional failure:

• A complete or total loss of function, where the equipment cannot carry out any
work that it was designed to perform.

• A partial loss of function, where the item is unable to function within specified
limits of performance.

Potential failure in equipment is “the identifiable condition of the equipment, indi-
cating that functional failure can be expected”. Potential failure is a condition or
state of condition of the equipment. Functional failure is an occurrence or incident.

The definition of preventive action in maintenance can now be reviewed. From
the point of view of the two descriptions of failure, preventive action in mainte-
nance is “that action serving to hinder or to stop functional or potential failures”.
Thus, preventive action in maintenance is that action serving to hinder or stop the
occurrences of defects in the function of equipment through the detection of an iden-
tifiable condition arising in the equipment, indicating that it is unable to carry out
the work that it was designed to perform within specified limits of performance.

Maintenance can thus be comprehensively defined as “the continuous correc-
tive and preventive action of caring for the operational and physical conditions of
equipment”.

The different types of maintenance In order to convert the definition of mainte-
nance into practice, it is necessary to define how corrective and preventive action in
maintenance is implemented. These actions in maintenance are practically imple-
mented through different types of maintenance.

There are three basic types of maintenance:

• Defect maintenance.
• Routine maintenance.
• Preventive maintenance.
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Defect maintenance is the corrective action in maintenance through fixing or repair-
ing equipment after it has failed.

Routine maintenance is the preventive action in maintenance that cares for
the operational condition of equipment through inspection, adjustment, recording,
monitoring, servicing and lubrication, to ensure that the equipment’s operational
functions conform to the required limits of performance.

These routine maintenance activities can be grouped into the following categories
that can be scheduled on a fixed-time interval:

• Running checks:
This includes inspections and minor adjustments.

• Monitoring checks:
This includes data log records and condition monitoring readings.

• Service checks:
This includes replacement of lubricants and consumable parts.

The concept of routine maintenance is based upon the type of preventive actions
that can be routinely carried out or, by definition, performed according to a regular
course of procedure on a fixed-time interval basis. Evidently, this type of preventive
action can only be directed towards the operational condition of equipment.

Preventive maintenance is the preventive action in maintenance that strives to
reduce the likelihood of failure through the detection of identifiable potential fail-
ures in the equipment’s physical condition, and thus attempts to avoid functional
failure occurrences. This is done through scheduled checks and inspections of phys-
ical condition, fault diagnostics, measurement, scheduled shutdowns for opening
and cleaning equipment, scheduled shutdowns for replacing worn components, and
scheduled shutdowns for overhauling plant and equipment.

These preventive maintenance activities can be grouped into the following cate-
gories that are scheduled on run-time intervals:

• Physical checks:
This includes scheduled checks of physical conditions, and fault diagnostics.

• Measurement checks:
This includes measurement of physical conditions such as stress cracks, thickness
tests, wear tolerances, etc., and scheduled shutdowns for opening and cleaning
equipment.

• Replacement shuts:
This includes scheduled shutdowns for replacement of worn components, and
scheduled shutdowns for overhauling plant and equipment.

Thus, the way in which corrective and preventive action in maintenance is practi-
cally implemented is through the different types of maintenance whereby:

• Defect maintenance is corrective action in restoring equipment to its operational
state or repairing physical defects after it has failed.

• Routine maintenance is preventive action in caring for the operational condition
of the equipment before it has failed.
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• Preventive maintenance is preventive action in caring for the physical condition
of the equipment before it has failed.

Condition monitoring and the concept of predictive maintenance One of the
routine maintenance activities included in the category of monitoring checks is con-
dition monitoring. Condition monitoring is the assessment of the condition of equip-
ment whilst it is in operation.

Consequently, condition monitoring can be regarded as a routine maintenance
task that cares for the operational condition of equipment. Thus, from an under-
standing of the condition of equipment, condition monitoring can be properly de-
fined as “the assessment of the operational condition of equipment whilst it is in
operation”.

There are two types of condition monitoring:

• Periodic monitoring
• Continuous monitoring.

Periodic monitoring is the monitoring of equipment operational condition accord-
ing to a regular course of procedure on a periodic fixed-time interval basis. The
simplest form of periodic condition monitoring is operational checks of equipment
temperatures, vibration or noise by the operator or service technician. The more
sophisticated form of periodic condition monitoring is the use of specialised instru-
mentation to monitor temperature (thermographics, infra-red scanning, etc.), vibra-
tion (accellerometers, etc.), noise (ultrasonics) and contamination (lubricant and de-
bris analysis, etc.). Continuous monitoring is monitoring of equipment operational
condition through the employment of electronic signal processing techniques to de-
termine certain equipment operational characteristics (such as vibration of rotating
machinery, pump flow, etc.), with the aid of online sensors, onboard or mounted in-
strumentation (geriometry), and computerisation (supervisory control and data ac-
quisition, SCADA, systems).

The importance of condition monitoring, compared to walk-through inspections,
is the essential trending of accumulated monitoring data. Through forecasting the
trend of an increasing divergence of the operational condition of equipment away
from its standard limits of operational performance, predictions can be made con-
cerning gradual degradation of the physical condition of the equipment. This fore-
casting of diverging trends of the operational performance of equipment and pre-
dicting failure is called predictive maintenance. The term is not quite correct, as
maintenance by definition implies action, and the forecasting of operational con-
ditions of equipment to predict failure is not a specific action or work carried out
on the equipment itself. The only action that is carried out in condition monitoring
is the taking of readings of equipment operational condition—which is a routine
maintenance activity. The result of the prediction of failure can lead to the action of
scheduled replacement or equipment overhaul—which is a preventive maintenance
activity.

Condition monitoring, including forecasting trends in the deviation of opera-
tional conditions and, thus, predicting the possibility of failure in the physical con-
dition of equipment, forms the link between routine maintenance and preventive
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maintenance. Condition monitoring is the ‘stepping stone’ from caring for equip-
ment operational condition (routine maintenance), to caring for equipment physi-
cal condition (preventive maintenance). Thus, condition monitoring is the routine
maintenance assessment of the operational condition of equipment that will give an
indication for the need for preventive maintenance action.

Condition measurement and the concept of fault diagnostics There are many
benefits that can be derived from the ability to anticipate the need for preventive
maintenance. The occurrence of failure that results from degradation of the physical
condition of equipment takes place in a sequence or cascade of events with each
event increasing the probability of a partial loss of function or total loss of function
of the equipment. If the rate of deterioration of the physical condition of equipment
can be measured before a total loss of function occurs, then preventive maintenance
can be systematically planned to avoid such an occurrence of failure. Such a mea-
surement of the rate of deterioration of the physical condition of equipment is called
condition screening, and incorporates the use of condition measurement.

It is essential, in designing for maintainability, to have an understanding of the
patterns of functional failure of equipment with a physical condition that is dete-
riorating. Only then can preventive maintenance be carried out. Most engineered
installations have scheduled shutdowns for either production or process changes,
physical condition inspections, or for general overhauls, in which the opportunity
arises for the physical condition of critical components to be examined and tested
by non-destructive test (NDT) methods of condition measurement.

Condition inspection is the most basic examination of an equipment’s physical
condition, and can be enhanced by the use of condition measurement methods for
the detection and fault diagnostics of cracks, surface wear or defects, deformation,
corrosion, thickness reduction, and stress marks due to aged equipment or excessive
use. Fault diagnostics is the analysis of the deterioration of the physical condition of
equipment to determine the causes and effects of wear, cracks, defects, deformation,
corrosion and stress in the equipment.

b) Mathematical Model of Preventive Maintenance Physical Checks

Although condition inspection is the most basic examination of physical condition,
it is often disruptive to the continued operation of equipment. However, it usually
decreases downtime due to preventive maintenance because it results in fewer break-
downs. Typical mathematical models for calculating the optimum number of phys-
ical condition inspections, with resulting minimum preventive maintenance down-
time, are of the following format (Dhillon 1999b):

Tpm = ITid +
kTbd

I
(4.97)

where:

Tpm = preventive maintenance downtime
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I = number of physical condition inspections
k = operational constant for a particular system
Tid = downtime per physical condition inspection
Tbd = downtime due to equipment breakdown.

Taking derivatives of Eq. (4.97) with respect to I gives

dTpm

dI
= Tid +

kTbd

I2 . (4.98)

Setting Eq. (4.98) to zero for optimisation, and rearranging the variables:

Ī = [kTbd/Tid]1/2

where:

Ī = optimum number of physical condition inspections.

Substituting Eq. (4.98) into Eq. (4.97) yields the optimum downtime due to physical
condition inspections that contribute to the preventive maintenance downtime

Tpm = 2[kTbdTid]1/2 (4.99)

c) Mathematical Model of Preventive Maintenance Replacement Shuts

Similar to the previous model, the objective of this model is to minimise preven-
tive maintenance downtime as a result of scheduled shutdowns for replacement
of worn components. The model represents a constant interval replacement pol-
icy. Such a constant interval replacement model implies the following (Elsayed
1996):

• Replacements are carried out at predetermined intervals, irrespective of the age
condition of the equipment’s components.

• Replacements are made of failed equipment (i.e. unit replacement and repair
cycle).

Preventive maintenance downtime, Tpm, can be expressed in the form of system
downtime (inclusive of the system’s equipment) over the length of the preventive
maintenance cycle (Jardine 1973):

Tpm =
SDT
CL

(4.100)

where:

Tpm = preventive maintenance downtime
SDT = system and system’s equipment downtime
CL = length of the preventive maintenance cycle
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and

SDT = Tpr +Tbd (4.101)

CL = Tpr +TC (4.102)

where:

Tpr = downtime due to equipment replacement
Tbd = downtime due to system equipment breakdown
TC = uptime time interval between replacements.

Preventive maintenance downtime, Tpm, over the length of the preventive mainte-
nance cycle can thus be expressed as the comparison of downtime due to equipment
replacement plus the downtime due to system equipment breakdowns, to the down-
time due to equipment replacement plus the uptime interval between replacements
(i.e. the preventive maintenance cycle).

For several replacement tasks over the length of the preventive maintenance cy-
cle, CL, the variables can be expressed as the following

Tpr =
k

∑
i=1

(Tp ti)(Fp ti) (4.103)

Tbd =
m

∑
i=1

λiTi (4.104)

where:

Tp ti = the estimated lapse time for preventive maintenance replacement task i
for i = 1,2,3, . . . ,k

Fp ti = the estimated frequency of preventive maintenance replacement task i
for i = 1,2,3, . . . ,k

λi = the constant failure rate of item i = 1,2,3, . . . ,m
Ti = the corrective maintenance time needed to replace item i = 1,2,3, . . . ,m.

Inserting Eqs. (4.101) to (4.104) into Eq. (4.100) yields an expression for Tpm that
can then be optimised in terms of the uptime interval between replacements, TC, by
taking derivatives of Eq. (4.105) with respect to TC and setting it to zero

Tpm = (Tpr +Tbd)/(Tpr +TC) (4.105)

=
∑k

i=1(Tp ti)(Fp ti)+ ∑m
i=1 λiTi

∑k
i=1(Tp ti)(Fp ti)+TC

d) Maintenance Strategy

The term strategy is defined as “an overall plan with a choice of activities to be
effectively carried-out”. Maintenance strategy is closely related to the definition of
maintenance as well as to the concept of effective maintenance.
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To be able to understand the concept of effective maintenance, it is necessary
to first examine the principles underlying the goal of maintenance. The goal of
maintenance is defined as “that maintenance action necessary to achieve the cor-
rect balance between the costs of input resources and the benefits derived from the
performance of effective maintenance action”.

Two principles can be discerned from this definition of the goal of maintenance.
The first principle is the correct balance between the costs of maintenance resources
and the benefits of maintenance. This balance can be represented in the form of
a ratio:

Balance =
Benefits of maintenance
Costs of maintenance

This ratio can also be rewritten as:

Balance =
Output of maintenance
Input of maintenance

=
Output
Input

This ratio is known as the productivity ratio, or the cost efficiency ratio. It is the ratio
of the amount of maintenance work performed (output) to the total cost expended
(input).

Maintenance action is often measured in terms of manpower utilisation and re-
source costs. This is a measure of efficient maintenance. However, the definition of
the goal of maintenance describes the correct balance of input to output, derived
from the performance of effective maintenance action.

The question to be asked then is ‘what is effective maintenance, and what is the
difference between efficient maintenance and effective maintenance?’

Efficient maintenance in simple terms can be described as ‘doing the job right’,
and effective maintenance in simple terms can be described as ‘doing the right job’.

The second principle in properly understanding the goal of maintenance is that
it is not so much a determination of the amount of work that is to be carried out
that is crucial but, rather, whether the maintenance work that needs to be done is
the right type of maintenance that will be done at the right time. This is effective
maintenance.

The definition of maintenance strategy From an understanding of the definitions
of maintenance and the goal of maintenance, equipment maintenance strategy can
be defined as “the continuous corrective or preventive action for the care of equip-
ment operational and physical condition on which the equipment’s functions depend
to achieve the necessary technical benefits through the application of defect main-
tenance, routine maintenance, and preventive maintenance, in an overall plan”. In
other words, a maintenance strategy is carrying out the right types of maintenance
(scope of work) at the right time (overall plan). A maintenance strategy implies
effective maintenance.

An overall maintenance plan, with a choice of the essential types of maintenance
activities to be carried out, takes into account the following design criteria:
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• The operation of the system and its output demand.
• The functions and criticality of the equipment.
• The required level of maintenance service.

The operation of the system and its output demand are variables that relate to pro-
cess efficiency, utilisation and productivity, all of which represent the functional
characteristics of the process. The functions and criticality of the equipment are de-
termined from FMEA and FMECA. The level of maintenance service is based on
the required operational and physical conditions of the equipment, as well as on the
amount of planning that is required for each type of maintenance to achieve these
conditions.

A maintenance strategy, not only in designing for maintainability but in the gen-
eral context of process engineering design, outlines the best way to develop the most
suitable scope of maintenance work or service to be conducted on the proposed engi-
neered installation, within an overall maintenance plan. This is established through
taking cognisance of the following:

• What type of maintenance must be done.
• Why each type of maintenance must be done.
• Where each type of maintenance must be done.
• How each type of maintenance must be done.
• When each type of maintenance must be done.
• What technical expertise is required for the work.
• How frequently each type of maintenance must be done.

This maintenance service is developed according to a strategy that includes all or
some of the following concepts that need to be adopted for each item of designed
equipment. The selection of and/or combination of these concepts will inevitably
impact upon the necessary decisions in designing for maintainability:

• Run-to-failure (defect maintenance).
• Fixed-time-interval (routine maintenance).
• Run-time-interval (preventive maintenance).

In simple terms, then, a maintenance strategy is concerned with matching the best
combination of the various types of maintenance to particular equipment according
to the following criteria:

• The operation of the plant and output demand.
• The functions and criticality of the equipment.
• The required operational and physical conditions of the equipment.
• The amount of planning required for each type of maintenance.
• The frequency of each type of maintenance.
• The necessary technical benefits to be achieved.

It is thus the balanced combination of the application of the different types of main-
tenance that constitutes a maintenance strategy. However, a question that can justifi-
ably be asked at this point is ‘why is it necessary to have a maintenance strategy?’—
it is essential to develop a maintenance strategy for process equipment, particularly
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during the engineering design stage, so that the necessary technical benefits can be
achieved according to the designed measures of performance.

Measures of performance Returning to the definition of the goal of maintenance
as the maintenance action necessary to achieve the correct balance between the costs
of input resources and the benefits derived from the performance of an effective
maintenance action, it is evident that there are specific benefits to be achieved from
effective maintenance. As indicated, these benefits are predominantly technical ben-
efits and can be achieved through developing a maintenance strategy, particularly
during the engineering design stage. However, not all technical benefits are derived
from the performance of an effective maintenance action, as the design criteria of
maintainability refers to measures taken during the design stage that strive to re-
duce the required maintenance action, repair skill levels, logistic costs or support
facilities.

The technical benefits relating to the engineering design that can be derived from
the performance of effective maintenance are the following:

• Properly maintained operational conditions.
• Properly maintained physical conditions.
• Corrective action being carried out on time.
• Preventive action being carried out on time.
• Achieving the designed equipment reliability.
• Achieving the designed equipment availability.
• Achieving the designed equipment maintainability.
• Achieving the required operational safety.

An important question at this point is ‘how would one know whether a developed
maintenance strategy for a particular engineering design will, in fact, achieve the
necessary technical benefits?’ The effectiveness of a maintenance strategy devel-
oped during the engineering design stage can be determined only through the mea-
sures of performance of the benefits that are achieved in the completed engineered
installation. These measures of performance are the measures of operational equip-
ment reliability, availability, maintainability and safety (i.e. operational integrity)
that need to be compared to the original design benchmark measures. It is evident
that the only means of determining whether a maintenance strategy is effective is
to establish measures of design integrity as a benchmark against which measures of
operational integrity can be compared. It thus becomes a comparison of engineer-
ing design intention against engineering design application during the equipment
life cycle, from design through to restoration, rather than single points of measure
in the equipment’s life.

Maintenance strategy can now be defined as “the continuous action of caring
for equipment condition through a balanced application of preventive maintenance,
routine maintenance and defect maintenance, to achieve benefits of reliability, avail-
ability, maintainability and safety”.

Up till now, the terms reliability, availability and maintainability have been used
as measures of design integrity and operational integrity. It is, however, neces-
sary to define these terms in the context of the basic principles of maintenance—
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particularly as performance measures of the results that can be achieved from the
application of the different types of maintenance in a maintenance strategy, and to
understand which results are achieved from the application of which type of main-
tenance.

e) Concept of Equipment Reliability in Maintenance Strategy

Reliability of equipment has been defined as “the probability that equipment will
perform a required function, under specific conditions, for a required period of
time”. Operational reliability is the probability that equipment will not fail in a given
period of operation.

The fundamental indicator of reliability was previously given as the probability
that the equipment has operated over a specific period of time, the average of which
is the measure of MTBF (mean time between failures). What is significant in the
concept of equipment reliability within a maintenance strategy framework is that
the physical condition of equipment is determined by the MTBF, which is a mea-
sure of its reliability. Reliability is thus the most useful performance measure for
determining the result of the physical condition of equipment. Furthermore, it was
previously stated that preventive maintenance is that type of maintenance that cares
for the physical condition of equipment.

Thus, the physical condition of equipment is maintained through preventive
maintenance, and its effect is determined by MTBF, which is the performance mea-
sure of the equipment’s reliability. The performance measure of reliability deter-
mines the physical condition of equipment and the effectiveness of the preventive
maintenance being carried out to care for its physical condition. The inherent relia-
bility of equipment is initially established by its physical design and by its quality
of manufacture. Design for reliability thus plays an important role in the initial re-
liability of equipment, the lack of which is often the cause of failures resulting in
downtime stoppages.

f) Concept of Equipment Availability in Maintenance Strategy

The availability of equipment has been defined as “that period of time in which the
equipment is in a usable condition”. Availability is the equipment’s capability of
being used. The measure of operational availability is the relationship of the equip-
ment’s potential usage over a period of time, where usage is defined as “the period
of time that equipment is being utilized”. Potential usage of equipment is the sum of
its actual utilisation and the period of time that the equipment was capable of being
used but was not.

The effect of potential usage is determined by the performance measure of the
equipment’s availability. What is significant in the concept of equipment availability
within a maintenance strategy framework is that the operational condition of equip-
ment is determined by its potential usage, which is a measure of its availability.
Availability is thus the most useful performance measure for determining the result
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of the operational condition of equipment. Furthermore, it was previously stated
that routine maintenance is that type of maintenance that cares for the operational
condition of equipment. Thus, the operational condition of equipment is maintained
through routine maintenance, and its effect is determined by the equipment’s poten-
tial usage over a period of time, which is the performance measure of the equip-
ment’s availability. The performance measure of availability determines the opera-
tional condition of equipment and the effectiveness of the routine maintenance being
carried out to care for its operational condition. In designing for availability, the in-
herent availability of equipment is its potential usage in design operational time.

g) Concept of Equipment Maintainability in Maintenance Strategy

The maintainability of equipment has been defined as “the probability that equip-
ment which has failed can be restored to its required condition within a given period
of time”. Operational maintainability is the probability that failed equipment is re-
paired within a given period of time. The fundamental indicator of maintainability
was previously given as the probability of repair within a given period of time, the
average of which is MTTR (mean time to repair). What is significant in the concept
of equipment maintainability within a maintenance strategy framework is that the
ability to repair failed equipment within a given period of time is determined by
the MTTR, which is a measure of its maintainability. Maintainability is therefore
the most useful performance measure for determining the repairable condition of
equipment. Defect maintenance is that maintenance work that fixes or repairs equip-
ment after it has failed. Thus, failed equipment is restored through defect mainte-
nance, and its effect is determined by MTTR, which is the performance measure of
the equipment’s maintainability. The performance measure of maintainability deter-
mines the repairable condition of equipment and the effectiveness of defect mainte-
nance being carried out to restore the equipment to its repaired state within a given
period of time. Maintainability is primarily a design parameter, and designing for
maintainability defines how long equipment is expected to be down after failure.

h) The Three Principles of a Maintenance Strategy

There are three fundamental principles of a maintenance strategy:

• The effectiveness of preventive maintenance is determined by the technical ben-
efit of reliability, which is the performance measure of the physical condition of
equipment.

• The effectiveness of routine maintenance is determined by the technical benefit
of availability, which is the performance measure of the operational condition of
equipment.

• The effectiveness of defect maintenance is determined by the maintainability
of equipment, which is the performance measure of the repairable condition of
equipment.
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i) Establishing Maintenance Strategies for Engineering Design

From the three fundamental principles of a maintenance strategy, it is evident that
all required maintenance work is made up of one or more types of maintenance that
accomplish specific technical benefits. As stated previously, it is the combination of
these different types of maintenance that constitutes a maintenance strategy.

From an engineering design perspective, a maintenance strategy is the establish-
ment of the most effective combination of the different types of maintenance to
be carried out on specific equipment in order to achieve the most desired technical
benefit from that equipment. This is determined through designing for reliability,
availability, maintainability and safety (i.e. designing for engineering integrity—
where in this case, the concept of safety is considered as part of designing for re-
liability). On the other hand, the most effective combination of the different types
of maintenance for completed engineered installations (i.e. a maintenance strategy
for operational systems and equipment) is established through a RAMS (reliability,
availability, maintainability and safety) program (DoD 5000.2-R. 1997). The deliv-
erable results are the establishment of operations and maintenance procedures and
work instructions in which the different types of maintenance are effectively com-
bined into maintenance strategies for specific equipment. The established mainte-
nance strategies for the effective care of the condition of engineering equipment are
taken up in a RAMS program.

The RAMS program The goal of the RAMS program is to establish policies and
strategies for effective care of the condition of engineering systems and equipment
through the implementation of various RAMS methods and techniques. The objec-
tives of the RAMS program are to:

• Ensure effective care of equipment condition.
• Optimise the technical benefits derived from equipment reliability, availability,

maintainability and safety.
• Establish priorities for achieving targeted quality and safety.
• Establish maintenance strategies for carrying out the most applicable and effec-

tive types of maintenance and use of appropriate maintenance procedures and
work instructions.

• Ensure a correct balance of costs against desired technical benefits.

The immediate benefits of the RAMS program are in the establishment of mainte-
nance policies and strategies through an analysis and understanding of the follow-
ing:

• The systems process, equipment functions, failure modes, failure effects, failure
causes and failure consequences, and the criticality of equipment failures result-
ing in safety hazards, downtime, and consequential damage,

• Identifying equipment conditions and failure characteristics and establishing ef-
fective maintenance through the correct combination of the different types of
maintenance by prioritising the related technical benefits to be achieved,
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• Avoiding consequential damage and establishing the necessary maintenance pro-
cedures, work instructions and logistic support for equipment care and product
quality,

• Comparing design integrity as a benchmark against measures of operational in-
tegrity.

The benefits achieved through the establishment of maintenance policies and strate-
gies can be summarised in three fundamental principles of a RAMS program, each
relating targeted results and design requirements (in sequential order) of safety, re-
liability, availability and maintainability to the desired technical benefits, perfor-
mance measures, consequential effects on the designed equipment, and the required
types of maintenance.

Principles of a RAMS program in maintenance strategy The first RAM princi-
ple in a maintenance strategy is the following logical sequence:

Targeted result:

SAFETY
|

Technical benefit:

RELIABILITY
|

Performance measure:

MTBF
|

Effect on equipment:

PHYSICAL CONDITION
|

Type of maintenance:

PREVENTIVE MAINTENANCE

The second RAM principle in a maintenance strategy is the following logical se-
quence:

Targeted result:

UTILISATION
|

Technical benefit:

AVAILABILITY
|

Performance measure:

POTENTIAL USAGE
|
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Effect on equipment:

OPERATIONAL CONDITION
|

Type of maintenance:

ROUTINE MAINTENANCE

The third RAM principle in a maintenance strategy is the following logical sequence:

Targeted result:

QUALITY
|

Technical benefit:

MAINTAINABILITY
|

Performance measure:

MTTR
|

Effect on equipment:

REPAIRABLE CONDITION
|

Type of maintenance:

DEFECT MAINTENANCE

j) Maintenance Cost Optimisation Modelling

Returning to the definition of the goal of maintenance as “that maintenance ac-
tion necessary to achieve the correct balance between the costs of input resources
and the benefits derived from the performance of effective maintenance action”, an
additional principle in the understanding of the goal of maintenance, and of mainte-
nance as a whole, is the concept of “the correct balance between the costs of input
resources and the benefits . . . ”.

In a developed maintenance strategy for engineering design, there are two basic
types of maintenance costs that relate to the required input resources for effective
maintenance:

• Costs arising from corrective maintenance action.
• Costs arising from preventive maintenance action.

Costs arising from corrective maintenance action are the costs of rectifying defects
and fixing or repairing equipment. They increase exponentially according to the
extent of usage that the equipment will be subject to, and according to the extent of
failures resulting in downtime.
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The manpower costs of corrective maintenance action are partly due to the time
taken to restore the equipment to its expected operational condition within a min-
imum period of time or disruption to the overall operational process through the
application of defect maintenance. Corrective maintenance costs are thus dependent
upon the extent of defect maintenance, the effect of which is determined by MTTR,
the performance measure of the equipment’s maintainability. As noted before, main-
tainability is primarily a design parameter, and designing for maintainability defines
how long equipment is expected to be down after failure, which has a direct impact
upon corrective maintenance costs.

Costs arising from preventive maintenance action are the costs of detecting po-
tential failures and avoiding functional failures. They increase linearly according to
the age of the equipment and according to the extent of the maintenance schedules
resulting in downtime.

The manpower costs of preventive maintenance action, which comprises both
scheduled routine maintenance procedures, and scheduled preventive maintenance
procedures incur a cost in direct proportion to the amount of routine maintenance
being carried out, and to the amount of preventive maintenance being scheduled.
Preventive maintenance costs are thus dependent upon the extent of routine and
preventive maintenance, the effect of which is determined by potential usage and
MTBF respectfully, which are the measures of performance of equipment avail-
ability and reliability. The inherent availability of equipment is its potential usage
with respect to the operable time established from designing for availability, and the
inherent reliability of equipment is initially established by its physical design and
quality of manufacture established from designing for reliability.

By far the largest portion of preventive maintenance costs is associated with
scheduled shutdowns and overhauls. Shutdowns and overhauls are scheduled ac-
cording to the expected life of the major critical components in process engineering
systems and equipment. In certain types of industries, particularly in refineries, sev-
eral different types of shutdowns can be scheduled. They are:

• Interim shutdowns for vessel inspections.
• Open and clean shutdowns.
• Annual shutdowns for replacement of worn components.
• General overhauls for plant and equipment refurbishment.

The scheduled frequency and duration of interim shutdowns for vessel inspections,
and of open and clean shutdowns can be determined according to a maintenance
strategy in which the most suitable scope of preventive maintenance work is already
established during the engineering design stage. The extent and duration of annual
shutdowns for replacement of worn components can also be determined during the
engineering design stage, and depends not only upon the expected useful life of the
critical components of the process engineering design (i.e. failure characteristics)
but also on the complexity of integrated systems, the level of equipment and/or
component redundancy (i.e. process characteristics), as well as their relevant extent
of usage.
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General overhauls for plant and equipment refurbishment or rebuild are predom-
inantly scheduled on the basis of results obtained, firstly, from condition monitoring
carried out either periodically or continually and, secondly, from condition mea-
surement carried out during interim shutdowns for vessel inspections and open and
clean shutdowns. In principle, however, it is obvious that the costs of corrective
maintenance action as well as the costs of preventive maintenance action can be ra-
tionalised or, in fact, reduced according to the balance of defect maintenance with
routine maintenance and scheduled preventive maintenance, based upon a particular
maintenance strategy. Such a strategy has its developed beginnings during the engi-
neering design stage, and is progressively modified and improved during the life of
the plant.

Mathematical model of preventive maintenance replacement costs The opti-
mum operational period between annual shutdowns for replacement of worn com-
ponents can be determined under a maintenance strategy of periodic replacement,
irrespective of the age condition of the equipment’s components. According to
this strategy, components are replaced at predetermined intervals, CL, typically the
length of the preventive maintenance cycle. If a component fails within this preven-
tive maintenance cycle, it is minimally repaired to last for the remaining time of the
cycle. Such a minimal repair job, with relatively negligible repair time, implies that
the component’s failure rate λ (x), corresponding to its failure probability density
function f (x) at the time of failure x (i.e. the instantaneous failure rate), remains the
same as it was before the failure (Kececioglu 1995).

The cost function for the model is expressed as

Cpm =
Cpr +CmrE[α(Tp)]

Tp
(4.106)

where:

Cpm = preventive maintenance cycle costs
Cpr = the cost of preventive replacement
Cmr = the cost of minimal repair
E[α(Tp)] = the expected number of failures in interval Tp

and

E[α(Tp)] =

Tp∫
0

λ (x)dx (4.107)

where
λ (x) = f (x)/R(x) (4.108)

and:

λ (x) = the equipment time dependent failure rate
f (x) = the equipment failure probability density function
R(x) = the equipment reliability function.
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Substituting Eq. (4.107) into Eq. (4.106) gives the following result

Cpm =
Cpr +Cmr

∫ Tp
0 λ (x)dx

Tp
(4.109)

In the case where λ (x), the equipment time-dependent failure rate, has an exponen-
tial failure probability density function, i.e.

λ (x) =
f (x)
R(x)

=
λ e−λ x

e−λ x
= λ

differentiating with respect to Tp and setting the resultant equal to zero gives the
following:

dCpm

dTp
=

−Cpr +CmrλTp

T 2
p

= 0 .

The optimum operational period between annual shutdowns for preventive replace-
ment is then

Tp = Cpr/Cmr1/λ . (4.110)

Optimal preventive replacement age of components subject to functional fail-
ure In many cases, systems and equipment are subject to functional failure, where-
by the equipment or a component of the equipment has to be replaced. Where such
functional failure is unexpected, it is not unreasonable to assume that a failure re-
placement is more costly than a preventive replacement. For example, a preventive
replacement is planned, and arrangements are made for it to be conducted with-
out unnecessary delays, or the unexpected failure may have caused consequential
damage to other components. In order to reduce the number of failures, preventive
replacements are made. However, a balance is required between the amount spent
on preventive replacements, and the resulting benefits, i.e. reduced failure replace-
ments.

Such a preventive replacement policy, or preventive maintenance strategy, is one
where preventive replacements are made according to the ‘right’ age of the compo-
nent, and failure replacements are done only when necessary, to minimise the total
expected cost of replacing the component over a period of time. In this optimisa-
tion approach, when functional failures occur in equipment, failure replacements
are made. The time at which preventive replacements are made depends upon the
age of the component. The problem is to balance the cost of preventive replacements
against their benefits of reduced failure replacements, which is done by determining
the optimal preventive replacement age for the component so that the total expected
costs are minimised over a period of time.

This is achieved with preventive replacement modelling with the following prop-
erties (Vajda 1974):

• Cp is the cost of preventive replacement.
• Cf is the cost of failure replacement.
• Cc is the total expected replacement cost per cycle.
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• Tc is the expected cycle length.
• f (t) is the probability density function of failures of the component.

The replacement policy is to perform preventive replacement once the component
has reached a specified age, plus failure replacements when necessary, where the
specified age is represented by tp. The objective is to determine the optimal replace-
ment age of the component to minimise the total expected replacement cost over
a period of time.

In this problem, there are two possible cycles of operation: one cycle is deter-
mined by the component reaching its planned replacement age, tp, and the other
cycle is determined by the component ceasing to operate due to functional failure
occurring before the planned replacement time. The total expected replacement cost,
C(tp), over a period of time tp is given by

C(tp) =
Total expected replacement cost per cycle

Expected cycle length
(4.111)

C(tp) = Cc/Tc

where the total expected replacement cost per cycle Cc is given as (the cost of a pre-
ventive replacement cycle multiplied by the probability of a preventive replace-
ment) + (the cost of a failure replacement cycle multiplied by the probability of
a failure replacement)

Cc = CpR(tp)+Cf[1−R(tp)] (4.112)

where R(tp) is the reliability of the component succeeding to last over the period of
the preventive replacement cycle tp. R(tp) is the probability of no failure occurring
in the time period tp, and the expression [1 − R(tp)] is the probability of failure
occurring in the time period tp, which is the failure density function.

Thus:
Cc = [Cp ×Reliability]+ [Cf×Failure density] .

The expected cycle length Tc is given as (the length of the preventive replacement
cycle multiplied by the probability of a preventive replacement) + (the expected
length of a failure replacement multiplied by the probability of a failure replace-
ment)

Tc = tpR(tp)+ tf[1−R(tp)] . (4.113)

In this case, tf is the mean time to fail (MTTF) of the component. Here, it is im-
portant to take note of the description of MTTF, compared to MTBF, the mean time
between failures. The difference between MTTF and MTBF is in their usage. MTTF
is applied to items that are not repaired but replaced, such as components, whereas
MTBF is applied to items that are repaired. Therefore:

Tc = [Replacement age ·Reliability]+ [MTTF ·Failure density]
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The replacement model relates replacement age tp to the total expected replacement
cost over a period of time, where

C(tp) =
CpR(tp)+Cf[1−R(tp)]
tpR(tp)+ tf[1−R(tp)]

(4.114)

C(tp) =
[Cp ·Reliability]+ [Cf ·Failure density]

[Age ·Reliability]+ [MTTF ·Failure density]
.

Thus, the essential integrity measures for determining the total expected replace-
ment cost, C(tp), over a period of time tp, in addition to the cost of preventive re-
placement Cp and the cost of failure replacement Cf are the component (or equip-
ment) reliability and failure density. Values for the specific costs of Cp and Cf as
well as component reliability and the failure density (or 1–reliability), and MTTF
must be evaluated in order to determine the minimum total expected replacement
cost C(tp) over the period of time tp. Preventive replacement age is where C(tp) is
minimum.

Cost of input resource of spares A significant portion of preventive maintenance
costs, during ramp-up and the specified warranty period, as well as the remaining
life-cycle stages of an engineered installation, is the input resource of spares. Spares
for engineered installations can be grouped according to two categories:

• Contract spares
• Maintenance spares.

Contract spares are normally part of the initial procurement of systems and equip-
ment, and are determined by available reliability data from the manufacturer or ven-
dor. The main concern with contract spares is not so much the quantity, or individual
cost, but rather their identification. Determination of maintenance spares is achieved
through the method of maintenance spares requirements planning (SRP).

SRP can be defined as “a strategy involving the purchasing, supply, identification,
storage and issue of spare parts which improves system maintenance and results in
an increase of plant availability”.

SRP is different from inventory control. SRP is better suited to maintenance
spares that have a high-risk component failure and estimated equipment failure rate.
Inventory control is better suited to maintenance spares with low-risk component
failure and estimated stock levels. With SRP, the required spares are calculated ac-
cording to the estimated failure rate of the relevant equipment, and according to the
criticality of the equipment with regard to downtime costs.

Inventory control is a resource management system that makes use of calculated
order-points, reorder quantities, and forecasts of the stock level at which stock must
be replenished as well as the quantity to be ordered. It is evident that SRP considers
single items of spare parts for equipment when they are needed, whereas inventory
control considers many items to be placed into stock until they are needed.

SRP determines the efficiency level of the availability of spares for maintenance,
and thus minimises downtime as well as avoids holding unnecessary spare parts in
stock. Inventory control determines the service level of the stores in not being out of
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stock with spare parts, and thus also optimises on spares stock levels (Orlicky et al.
1970).

Both SRP as well as inventory control are important to managing spare parts for
maintenance, but it is essential to understand that each of these methods are ap-
plied to specific types of spares. The types of maintenance spares that are managed
through SRP and inventory control are determined from the demand for these spares
by the type of maintenance action. There are two types of demand for maintenance
spares:

• Dependent demand
• Independent demand.

Dependent demand for maintenance spares relates to the need for the replacement
of other components of which the maintenance spare is a part. Dependent demand
is based on the systems hierarchy structure of the process or equipment that forms
the basis of a bill of spares for a spares requirements planning system. Independent
demand for maintenance spares relates to the demand of the maintenance spare on
its own, and is not subject to the need for other components or parts. Independent
demand is based on forecast usage of the spares that forms the basis of order-points
and reorder quantities for an inventory control system. It is evident from these de-
scriptions that different categories of spares can be grouped under the two types of
demand. There are several general categories of maintenance spares:

• Consumable materials (materials that are used up through the maintenance ac-
tion, such as oils, greases, waste cloth, etc.).

• Consumable spares (spares that are used up in the operation of the equipment or
process, such as filters, pump impellors, turbine blades, tube bundles in coolers,
etc.).

• Replacement spares (parts that become worn through excessive usage or insuf-
ficient routine maintenance, or that need to be replaced due to defects, damage
or failure. These spares are mostly the parts of components such as bearings,
sleeves, liners, etc.).

• Repairable spares (assembled units that are repaired or overhauled through the
replacement of parts and then returned to stores (RTS) for later re-issue, such as
electric motors, valves, pumps, etc.).

• Critical spares (spares that are kept in stores for insurance against hazardous fail-
ures of critical equipment, such as special high-pressure or acid resistant valves,
high-voltage electrical parts, etc.).

• Strategic spares (spares that are kept in stores for insurance against high down-
time costs due to long ordering lead times, such as special alloy parts, specialised
engineered parts, etc.).

There is a further category that is called capital spares, which are not really main-
tenance spares and consist of assembled units that are very expensive and are usu-
ally categorised by very high capital equipment industries such as power generation
plants. Most stores in industry make use of an ABC classification system to cate-
gorise the types of stock being held but, in many cases, this ABC classification has
proved to be inadequate to support effective maintenance strategies.



382 4 Availability and Maintainability in Engineering Design

Dependent demand maintenance spares usually consist of some replacement
spares, repairable spares, critical spares and strategic spares that are stocked be-
cause of the risk or frequency of failure of the relevant equipment. These spares
are controlled through a spares requirements planning (SRP) system. Preventive
maintenance makes use of dependent demand maintenance spares, and is therefore
associated with SRP.

Independent demand maintenance spares usually consist of consumable mate-
rials, consumable spares and some replacement spares that need to be stocked ir-
respective of the frequency of component replacement. These spares are controlled
through an order-point and reorder quantity inventory control system. Routine main-
tenance makes use of independent demand maintenance spares, and is thus associ-
ated with inventory control.

Because the sort of maintenance spares that are controlled through an SRP sys-
tem are typically the logistic support spares required for shutdowns and general
overhauls (i.e. some replacement spares, repairable spares, critical spares and strate-
gic spares that are stocked because of the risk or frequency of failure of the relevant
equipment), SRP is extremely important for the effective application of preventive
maintenance, and also for the effective use of contracted maintenance crews during
shutdowns and overhauls (Hillestad 1982).

Mathematical modelling of spares requirement Most spares requirements opti-
misation models assume the constant failure rate to be a good approximation for
a constant demand rate, even if components have non-constant failure rate distribu-
tions. Such a failure rate is fundamentally a measure of the intrinsic failure charac-
teristics of a component brought about by usage stress and load over time. However,
it is not quite correct to express the demand rate for a spare simply by the intrinsic
failure characteristic of a component.

In most cases, the demand for a given spare is the result of a number of fac-
tors. Firstly, there may be several different items of equipment that require the same
spare. Secondly, there could be several similar parts in each component. Thirdly,
there are usually a large number of similar components within each system. Clearly,
it is cumbersome to derive the exact spares demand based on the component fail-
ure rate. Furthermore, it is somewhat unrealistic to assume a specific failure rate
of a component within a complex integration of systems with complex failure pro-
cesses. At best, the intrinsic failure characteristics of components are determined
from quantitative probability distributions of failure data obtained in a somewhat
clinical environment under certain operating conditions. As indicated before, the
true failure process depends upon many other factors, including, for example, rou-
tine and preventive maintenance. It is generally accepted that preventive mainte-
nance affects the failure properties of components, although it is debatable whether
the end result is positive or negative from the point of view of equipment residual
life.

When modelling spares requirements, the foremost criterion to take cognisance
of is that the need for spares is determined by a spares demand. This demand is
formed by and dependent upon several factors, such as (Alfredsson et al. 1999):
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• Equipment and/or system utilisation.
• Failure occurrence in the equipment.
• Failure mode of the failed component.
• Failure consequence and severity.
• Number of similar parts or components.
• Frequency of preventive maintenance replacement.

Although seemingly problematic from the perspective of complexity, the multiplic-
ity of similar parts in each component, with usually a large number of similar com-
ponents within each system, is in fact beneficial in characterising the demand for
different kinds of spares. It validates the application of classical limit theory con-
cerning the maintenance renewal process. This is illustrated by the following theo-
rem (Drenick 1960):

given N components, indexed by i = N, K, 1, of which the failure processes are
independent renewal processes, let Fi(t) be the distribution for the time between
failures of component i. Furthermore, λi is the expected number of renewals per
time unit, so that its reciprocal, 1/λi, is the expected time between failures of
component i.

Let GN(t) be the distribution of the time between failures across all components. If:

(i) lim
N→∞

λi/
N

∑
i=1

λi = 0

(ii) Fi(t) ≤ Atσ and A > 0, σ > 0 as t → 0 ∀i

then

lim
N→∞

GN

(
t/

N

∑
i=1

λi

)
= 1− e−λ t for t > 0 . (4.115)

Consequently, Drenick’s theorem states that, under the above assumptions, the
pooled output will approach a Poisson process as the number of failures increase.
Condition (i) is non-restrictive. Condition (ii) is satisfied by all failure distributions
commonly used—for example, the Weibull distribution. Thus, when the demand for
a spare is the result of several component failure processes (which it normally is),
the demand tends to be approximated by a Poisson distribution—that is, the demand
rate is constant, irrespective of whether the individual components have arbitrary
failure characteristics.

There are only a few quantitative methods available when determining spares
requirements. These are identified as analytical methods based on constant demand
rates, analytical methods based on renewal theory, as well as simulation models.
Analytical methods based on constant demand rates tend to be the most applicable
for spares requirements modelling.

Renewal theory describes component failure by the renewal process that is char-
acterised by a distribution for the time between renewals denoted F(t). If the distri-
bution F(t) = 1− e−λ t , then the renewal process is a Poisson process with rate λ .
Hence, the renewal process is usually a generalisation of the Poisson distribution.
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However, the renewal process does not include several properties of the Poisson
distribution. Most importantly, the result of two independent renewal processes is
not a renewal process unless both processes are Poisson processes. Furthermore,
the probabilistic split of a renewal process does not yield independent renewal pro-
cesses.

As indicated previously, when modelling for spares requirements, the demand is
ultimately dependent upon several factors. Spares demand is in most circumstances
the result of the component failure characteristics. If the component failure is mod-
elled as a renewal process, the spare demand is not a renewal process. In effect,
models based on renewal theory have limited applicability in terms of spares op-
timisation. Such models are limited to a single process—that is, a single system,
single component, and single part situation, which is very rare when determining an
optimum spares requirements strategy for a real-world engineering design.

Simulation models are generally impractical for spares optimisation (or, in fact,
any kind of optimisation). Event-driven simulation can be applied to analyse basi-
cally any stochastic system or process. In terms of optimisation, however, it is not
applicable. The reason for this is the relatively extensive time required for a single
function evaluation. Any optimisation algorithm iteratively evaluates an objective
function and/or its derivatives numerous times in order to establish the optimal so-
lution. If each function evaluation takes time, the optimisation algorithm soon be-
comes impractical. Function evaluation is generally much faster, and optimisation
feasible with analytical models based on Poisson demand (constant demand rate).
An analytical method for spares requirements based on a Poisson demand, or con-
stant demand rate, which is approximated by the constant failure rate, can thus
be developed (with a sufficient degree of acceptance) as the probability of having
a spare when required. Such a probability takes into consideration the constant fail-
ure rate of an item (component or part) that is intended to have a spare, the number
of items in the equipment and/or system that are intended to have spares (critical
items), and the number of items in the system as a whole. The following model can
be used to determine the spares requirement quantity (Blanchard et al. 1995):

SP =
m

∑
i=0

[(−1) ln(e−nλt )]i e−nλt/i! (4.116)

where:

SP = the probability of having a spare when required
m = the number of items in the system as a whole
n = the number of items intended to have spares
t = period of time in which an item is likely to fail
λ = the constant failure rate of an item intended to have a spare.
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4.2.3 Theoretical Overview of Availability and Maintainability
Evaluation in Detail Design

Availability and maintainability evaluation determines the measures of time that are
subject to equipment failure, particularly known values of failure rates and repair
rates for each individual item of equipment at the lower systems levels of the sys-
tems breakdown structure. Availability and maintainability evaluation is considered
in the detail design phase of the engineering design process, with determination of
the rates and frequencies that component failures occur and are repaired over a spec-
ified period of time. The most applicable methodology for availability and maintain-
ability evaluation in the detail design phase includes basic concepts of mathematical
modelling such as:

i. Dependability modelling for availability and maintainability
ii. Operational availability modelling subject to logistic support
iii. Maintainability evaluation and built-in or non-destructive testing
iv. Specific application modelling of availability and maintainability.

Due to the increasing complexity of engineering processes, it is unrealistic to ex-
pect that standard specifications covering the operational evaluation of a system are
adequate for detail engineering designs. The problem in the specification of the op-
erational process is complexity. Potential deviations from the expected operational
behaviour can be caused by unexpected failures in a complex system environment,
or by the complex integration of several systems. To challenge the problems of
complexity, all possible operational sequences must be considered in an operational
specification, essential for modelling a complex system in its expected operational
state, or at least according to a predetermined level of abstraction of such an oper-
ational state. This form of modelling, which incorporates operational specifications
during the detail design phase of the engineering design process, is often termed
operational modelling. The aim of operational modelling is to determine the op-
erational view of an engineering design, and to integrate it with operational and
technical specifications to guarantee model consistency. Various operational models
are considered, including a graphical formalism appropriate for modelling concur-
rent processes, and thus for describing the operational view of complex integrated
systems.

4.2.3.1 Dependability Modelling for Design Availability and Maintainability

Dependability is the measure of a system’s condition during operation, provided that
it is available for operation at the beginning of its application (i.e. operational avail-
ability, which will be considered in detail in the following section). Dependability
can also be described as the probability that a system will accomplish its intended
application (or mission), provided that it was available for operation from the begin-
ning (Dhillon 1999b). Dependability models used for the evaluation of performance
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of an engineering design are considered from a twofold meaning of the concept of
dependability (Zakarian et al. 1997):

• System operational integrity
(reliability, availability and maintainability).

• System performance
(dependence on the performance of equipment).

A dependability model that considers the operational integrity of a process engi-
neering system, where the system is considered to be operational as long as its
functional requirements are satisfied, includes the measures of operational integrity
(operational reliability Ro, operational availability Ao, and operational maintainabil-
ity Mo). A dependability model that considers system performance includes mea-
sures of the process characteristics. In other words, a process system is assumed to
function properly if it is able to achieve the required level of performance where the
process capability, as given in Eq. (4.17), exceeds a given lower bound of a partic-
ular process characteristic. Careful consideration of these concepts of dependability
of a process engineering system during the engineering design stage can definitely
improve system dependability.

Dependability Ds, considering system operational integrity, is modelled as

Ds = Mo(1−Ro)+Ao(Ro) (4.117)

where:

Ro = operational reliability as fraction/percentage
Ao = operational availability as fraction/percentage
Mo = operational maintainability as fraction/percentage.

Expressing system dependability in performance measures for operational relia-
bility, availability and maintainability would include the measures of MTTR and
MTBF. In this case, system dependability is the sum of the ratios of system uptime
to total cycle time, and system repair time to total downtime.

It is therefore an indication of the fraction of time that a system is available in
a cycle of system operation and failure, plus the fraction of time that the system
is repairable when it is down (i.e. the ability of being used when it is up plus the
ability of being repaired when it is down). Thus

Ds = Ao +MTTR/MDT (4.118)

In the case where the performance measure of operational availability can be ex-
pressed as

Ao =
MTBF

MTBF+MDT
(4.119)

where:

MDT = expected mean downtime
MDT = Tp m +Tc m +Tl d
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where:

Tp m = preventive maintenance downtime
Tc m = corrective maintenance downtime
Tl d = logistics and administrative downtime

then

Ds =
MTBF

MTBF+MDT
+

MTTR
MDT

. (4.120)

In the case where the expected mean downtime includes only preventive mainte-
nance downtime, the availability performance measure becomes inherent availabil-
ity, and Ds is expressed as

Ds =
MTBF

MTBF+MTTR
+

MTTR
Tp m

. (4.121)

4.2.3.2 Operational Availability (Ao) Modelling with Logistic Support

Operational availability, unlike inherent availability or achieved availability, cov-
ers all segments of time that the system’s equipment is intended to be operational
(total time in Fig. 4.1). The same uptime and downtime relationship exists, except
that it has been expanded. Uptime now includes operating time plus non-operating
(standby) time when the equipment is assumed to be operable. Downtime has been
expanded to include preventive and corrective maintenance and the associated ad-
ministrative and logistics lead time. All are normally measured in clock time. This
relationship is intended to provide a realistic measure of equipment availability
when the equipment has been installed and is functioning in an operational envi-
ronment. Operational availability is used to support operational testing assessment
and life-cycle costing.

Operational availability is the most desirable form of availability to be used in
evaluating the operational potential of equipment, and is an important measure of
system effectiveness because it relates the system’s equipment, logistic support and
environment characteristics into one meaningful parameter—an index depicting the
state of equipment at the beginning of its operation in an engineered installation. Be-
cause it is an effectiveness-related index, operational availability is used as a starting
point for nearly all system effectiveness and sizing analyses during the later stages
of the engineering design process.

One significant problem associated with evaluating operational availability is that
it becomes costly and time-consuming to define all the various parameters, espe-
cially during the detail engineering design phase when all equipment (assemblies
and components) are being identified. For instance, defining administrative and lo-
gistics downtime per equipment per specified period, and total preventive mainte-
nance under normal operational conditions is very difficult and not feasible in many
cases. Nevertheless, evaluating operational availability does provide an accepted
methodology of relating standard reliability and maintainability characteristics into



388 4 Availability and Maintainability in Engineering Design

a single effectiveness-oriented parameter. As such, it is an essential tool for deter-
mining the integrity of engineering design. An important aspect to take note of when
evaluating operational availability is that it is affected by equipment usage or util-
isation rate. The less an item is used in a given period, the higher the operational
availability will be.

Therefore, when defining the ‘total time’ period, it is important to exclude
lengthy periods during which little or no system usage is anticipated. One other ex-
pression for operational availability is when standby time is assumed to be zero, typ-
ical of single stream processes with no equipment redundancy. While maintenance-
oriented, this form of operational availability still retains consideration of the same
basic time elements. The downtime interval includes corrective and preventive
maintenance, as well as administrative and logistics downtime. This form of op-
erational availability would generally prove more useful in support of defining pre-
ventive maintenance requirements and logistic support analysis during the detail
design phase of the engineering design process. The general mathematical model
for operational availability is (Conlon et al. 1982):

Ao =
OT+ST

OT+ST+TCM+TPM+ALDT
(4.122)

where:

OT = operating time
ST = standby time
TCM = total corrective maintenance
TPM = total preventive maintenance
ALDT = administrative and logistics downtime.

Inherent availability looks at availability from a design perspective, whereas op-
erational availability considers system effectiveness and the operational potential
of equipment, and is used for analysing the sizing of equipment during the later
stages of the engineering design process. Thus, more encompassing maintainabil-
ity measures of mean time between maintenance and mean downtime are used in
the operational availability equation. Operational availability is, in effect, a model
of maintainability measures in which downtime resulting from both corrective and
preventive maintenance is considered. Ao is thus a smaller availability value than Ai.
Operational availability can thus be mathematically expressed as

Ao =
MTBM

(MTBM+MDT)
(4.123)

where:

MTBM = mean time between maintenance
MDT = mean downtime.

The mean time between maintenance (MTBM) includes all corrective and preven-
tive actions (compared to MTBF, which accounts for failures—in contrast to the
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concept of Ao for dependability in Eq. (4.119)). The mean downtime (MDT) in-
cludes all time associated with the system being down for corrective maintenance
including delays (compared to MTTR, which addresses only repair time), including
downtime for preventive maintenance (PM), plus administrative and logistics down-
time. Although it is preferred to design equipment for which most PM actions can
be performed while the equipment is operating (such as built-in testing, BIT), PM
in this context implies a certain downtime.

The uptime and downtime concepts for constant values of availability indicate
the relative difficulty of increasing availability at higher percentages, compared to
improving availability at lower percentages. This is illustrated by the fact that in-
creasing availability from 99 to 99.9% requires an increase in MTBM by one order
of magnitude or a decrease in MDT by one order of magnitude, whereas increasing
availability from 85 to 90% requires improving MTBM by less than 1/2 order of
magnitude or decreasing MDT by 3/4 order of magnitude.

a) General Approach for Evaluating Operational Availability

The operational and maintenance concepts associated with system utilisation must
be defined in detail using terminology compatible with all involved in the design
of engineered installations. Using these definitions, a time-line availability model is
constructed that reflects the availability parameters, as illustrated in Fig. 4.9 (Conlon
et al. 1982).

Figure 4.9 displays elements of availability, particularly standby times (STW) and
(STC), which are included in quantitative operational availability.

The up or down status of a system during preventive maintenance must be closely
examined because, generally, a portion of the preventive maintenance period may
be considered as uptime. Standby time must also be examined closely before deter-
mining system up or down status during this period. With the aid of the time-line
model, all time elements that represent uptime and downtime are determined. For
example, a maintenance strategy may be defined so that the equipment is maintained
in a committable or up-state during the performance of preventive maintenance.

Additionally, for multi-mode systems, it will be necessary to determine uptimes
and downtimes as a function of each mode. This generally will require the use of
a separate time-line model for each identifiable operational mode. Separate time-line

Total time (TT)

TCM ALDT TPM

up up down down up/down up or down

Operating time
(OT)

Standby time
(STW)

Standby (cold)
(STC)

Fig. 4.9 Operational availability time-line model—generalised format (DoD 3235.1-H 1982)
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models are generally required to support the availability analyses of systems that
experience significantly different continuous, periodic, and surge utilisation rates.
Quantitative values for the individual time-line models are determined and coordi-
nated with the engineering design project management baselines. Time elements are
computed and availability evaluated, using the definitions of operational availabil-
ity appropriate for the detail design phase. Availability model status is continually
checked and updated as required. The model is updated as the operational, mainte-
nance and logistics support concepts progressively become defined and quantifiable.

b) System Availability Evaluation Considerations

As indicated previously, the quantitative evaluation of availability must be carefully
and accurately tailored to each system. However, there are certain general concepts
that will apply to different types of process engineering systems, such as recovery
time. Normally, availability measures imply that every hour has equal value from
the viewpoint of operations and maintenance/logistics activities. The operational
concept requires the system to function only for selected periods. The remaining
time is traditionally referred to as ‘off-time’ during which no activity is conducted.
An alternative to ‘off-time’ or ‘cold standby’ is the use of the term ‘recovery time’.
Recovery time represents an interval of time during which the system may be up or
down (Fig. 4.10). Recovery time, RT, does not appear in the operational availability
calculation that is based only on the total time period TT. Significantly, corrective
maintenance time TCM is found in both TT and RT time intervals.

Corrective maintenance performed during the TT period is maintenance required
to keep the system in an operational available status. Corrective maintenance per-
formed during the RT period generally addresses malfunctions that do not result in
a downtime status.

The principal advantage of using recovery time analysis is that it can provide
a meaningful availability evaluation for systems with operational availability that
is predictable, and preventive maintenance that constitutes a significant portion of
maintenance time. The recovery time calculation technique concentrates availability
calculation during the operational time period, thereby focusing attention on critical
uptime and downtime elements.

Total time (Disregarding recovery) Recovery time
(RT)

TCM TCMALDT TPM

up up down down up/down up or down

Operating time
(OT)

Standby time
(STW)

Recovery

Fig. 4.10 Operational availability time-line model—recovery time format (DoD 3235.1-H 1982)
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4.2.3.3 Maintainability Evaluation and Built-In or Non-destructive Testing

Maintainability has been defined as a characteristic of design and installation. It is
this inherent characteristic of a completed engineering design that determines the
type and amount of maintenance required to restore or retain it in a specified con-
dition. Where maintainability is a design consideration, maintenance is the con-
sequence of the design. It is thus apparent that the ability and need to perform
maintenance actions is the underlying consideration when evaluating maintainabil-
ity. The consideration of maintenance when designing engineering systems is not
new. There have been very successful efforts in the development of design for acces-
sibility, built-in testing, etc. What is new is the emphasis on quantitative assessment
and evaluation that results in a complete change in engineering design philosophy,
methodology and management. In the past, design for maximum or optimum reli-
ability and maintainability was emphasised. However, all this resulted in was un-
known reliability and maintainability from the design stage through to installation.

New techniques and methods allow design integrity judgment to be quantitatively
measured, as in the case of maintainability evaluation. Maintainability evaluation is
the determination of design considerations and testing, intended to evaluate system
maintainability characteristics that are based on quantitative measures or indices. In
addition to evaluating these characteristics, maintainability evaluation should also
address the impact of physical design features on system maintenance and mainte-
nance action frequency.

There are various mathematical indices used to evaluate system maintainability
characteristics. These indices must be composed of measurable quantities, provide
effectiveness-oriented data, and must be readily obtainable from applicable develop-
ment testing, such as the use of non-destructive testing (NDT) internal or integrated
diagnostic systems, also referred to as built-in-test (BIT) or built-in-test-equipment
(BITE), and applied to pilot systems as well as to the engineered installation. The
use of maintainability evaluation indices enables engineering designers to evaluate
system and/or equipment characteristics as well as logistics and maintenance prac-
tices more precisely during the detail design phase.

a) Maintainability Evaluation Indices

Mean time to repair (MTTR) As noted previously, the maintainability measure of
mean time to repair (MTTR) is the total corrective maintenance downtime accumu-
lated during a specific period, divided by the total number of corrective maintenance
actions completed during the same period. MTTR is commonly used as a general
equipment maintainability measure, although it can be applied to each maintenance
level individually. MTTR considers active corrective maintenance time only. Be-
cause the frequency of corrective maintenance actions and the number of man-hours
expended are not considered, this index does not provide a good measure of the
maintenance burden.
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Maximum time to repair (MaxTTR) MaxTTR is the maximum corrective main-
tenance downtime within which either 90 or 95% (as specified) of all corrective
maintenance actions can be accomplished. A MaxTTR requirement is useful in
those special cases in which there is a tolerable downtime for the system.

An absolute maximum is ideal but impractical because there will be failures that
require exceptionally long repair times. A 95th percentile MaxTTR specification
requires that no more than 5% of all corrective maintenance actions take longer
than MaxTTR.

Maintenance ratio (MR) MR is the cumulative number of man-hours of main-
tenance to be expended in direct labour over a given period of time, divided by
the expected cumulative number of end-item operating hours. Both corrective and
preventive maintenance are included. Man-hours for off-system repair of replaced
components, and man-hours for daily operational checks are included for some sys-
tems. Particular care must be taken that the operating hour base be clearly defined,
such as in the case of power-generating systems, when either system operating hours
or power delivery hours can be used. MR is a useful measure to determine the rela-
tive maintenance burden associated with a system. It provides a means of comparing
systems and is useful in determining the compatibility of a system with the required
size of the maintenance organisation.

Mean time between maintenance actions (MTBMA) MTBMA is the mean of
the distribution of the time intervals between either corrective maintenance actions,
preventive maintenance actions or all maintenance actions. This index is frequently
used in availability calculations and in statistically oriented maintenance analyses.

Average number of maintenance man-hours required The average number of
maintenance man-hours required at each maintenance level provides a quantitative
means of expressing the personnel requirements of the overall maintenance concept.
This index also provides a conversion factor from active downtime to labour hours.

Maintainability cost indices Maintainability is a significant factor in the cost of
equipment. An increase in maintainability results in a reduction of logistic support
costs of engineered installations. A more maintainable system inevitably reduces
maintenance times and operating costs, and a more efficient maintenance turnaround
reduces downtime. There are many factors of maintainability that contribute to the
investment costs of engineered installations. These include a direct effect on sys-
tem and equipment hardware costs, support equipment, built-in testing, and contract
spares.

Off-system maintainability indices The indices MTTR, MaxTTR and MR all
specifically exclude off-system maintenance actions. Off-system measures are par-
ticularly important if a system’s maintenance strategy involves extensive use of
modular removal and replacement for workshop repair/overhaul, since this type of
concept transfers the maintenance burden to off-system maintenance. As a main-
tainability evaluation tool for engineered installations, off-system maintainability
measures are essential. Without these, it is not possible to evaluate the ability of
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off-system repair, and logistics capability, to maintain the engineered installation.
However, because of the peculiar nature of these parameters, none are considered
in this research, although it is essential to have a complete set of on-system and
off-system indices to adequately assess system maintainability and the total mainte-
nance burden.

b) Diagnostic Systems and Built-In Testing

One aspect of maintainability that has received significant attention in recent sys-
tem designs is the use of automatic diagnostic systems. These systems include both
internal or integrated diagnostic systems, referred to as built-in-test (BIT) or built-
in-test-equipment (BITE), and external diagnostic systems, referred to as automatic
test equipment (ATE), or offline test equipment. The following concepts focus on
BIT but apply equally to other diagnostic systems.

Need for automatic diagnostic systems—BIT As technology advances continue
to increase the capability and complexity of modern engineering processes, partic-
ularly in space and military systems, more reliance is being placed on the use of
automatic diagnostics as a means of attaining the required level of failure detec-
tion capability. The need for BIT is driven by operational availability requirements,
which cannot allow for lengthy MTTRs associated with detecting and isolating fail-
ure modes in engineering designs, especially in microcircuit technology equipment.
Because BIT is applied within a system’s function, and at the same functioning
speed, it affords the capability to detect and isolate failures that conventional test
equipment and techniques cannot provide. A well-designed BIT system can sub-
stantially reduce the need for trained field-level maintenance personnel by permit-
ting less skilled personnel to locate failures and channel suspect equipment to cen-
tralised workshop repair facilities that are equipped to repair defective equipment.

However, BIT is not a comprehensive solution to all system maintenance require-
ments but, rather, a necessary tool for maintaining complex integrated systems.

Specifying BIT performance One of the more difficult tasks inherent in the de-
sign and development of process engineering systems is the development of realistic
and meaningful operational requirements and their subsequent conversion into un-
derstandable and achievable contractual specifications. This is equally applicable to
BIT, particularly with respect to typical performance measures or figures-of-merit
that are used to specify BIT performance.

Typical BIT performance measures, or figures-of-merit

• Percent detection—the percent of all faults or failures that the BIT system must
detect.

• Percent isolation—the percent of detected faults or failures that the system must
isolate to a specified assembly level.

• Automatic fault isolation capability (AFIC)—the percent detection multiplied by
the percent isolation.
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• Percent of false alarms—the minimum tolerable percent of indicated faults
where, in fact, no failure is found to exist.

For each of the above parameters, there is a considerable span of interpretation.
For example, does the percent detection refer to failure modes or to the percentage
of all failures that could potentially occur? Furthermore, does the detection capa-
bility apply across the failure spectrum, i.e. mechanical systems, instrumentation,
connections and software, or is its diagnostic capability applicable only to certain
hardware such as electronic systems? Also, to what systems hierarchy level will the
BIT system isolate failures?

Early BIT systems were designed to isolate faults at component level. This re-
sulted in BIT systems being as complex as, and frequently less reliable than, the
basic system. The current trend is to isolate faults to the sub-system or assembly
level based on the BIT system’s ability to detect abnormal output signal patterns.
Large industry workshop maintenance facilities frequently apply external diagnos-
tic equipment to isolate to the component or part level.

A major engineering design issue (as well as contractual issue) relates to the
definition of failure. Should BIT performance be viewed in terms of only BIT ad-
dressable failures, which normally exclude system interface components such as
exchangers, crossover ducts, pipelines, connectors, cables, etc., and which are usu-
ally the failure critical components in complex integrated systems? An important
consideration thus relates to exactly what failures BIT can detect. Often, BIT sys-
tems operate ineffectively if 80% of detectable failures occur infrequently while the
remaining 20% occur with predictable regularity. It therefore becomes important to
specify BIT performance measures in relation to overall system availability require-
ments.

The percent of false alarms is a difficult parameter to specify or to measure ac-
curately because initial fault detection followed by analysis indicating that no fault
exists can signify different possible occurrences, such as:

• The BIT system erroneously detected a fault.
• An intermittent out-of-tolerance condition exists.
• A failure exists but cannot be readily reproduced in a maintenance environment.

From a logistic viewpoint, false alarms can often lead to false removals creating
unnecessary demands on supply and maintenance systems. A potentially greater
concern is the fact that false alarms and removals may create a lack of confidence
in the BIT system to the point where maintenance or operations personnel may
ignore certain fault detection indications. Under these conditions, the BIT system in
particular and the maintenance concept in general can neither mature nor provide
the support required to meet design requirements.

The specification of BIT performance must therefore be tailored to the type of
system being designed, as well as to the system design criteria. Designing for main-
tainability must include a comprehensive definition of BIT capability based upon
the figures-of-merit presented above.
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Characteristics external to BIT There are two important considerations, exter-
nal to BIT, which must be addressed in the concept of BIT and diagnostics in de-
signing for maintainability. Initially, reliable performance of the designed system
determines, to a large extent, the criticality of BIT performance.

If the basic system is designed to be very reliable (in the region of 0.995 and
0.999), a shortfall in the BIT performance may have limited impact on the system’s
operational utility. Moreover, it is obvious that generally all system faults that can
be corrected through maintenance action must initially be detected and isolated.
Therefore, design for maintainability requirements such as maintenance methods,
tools, manuals, test equipment and personnel required to detect and isolate non-
BIT detectable faults can be a major consideration in the detail design phase of
engineered installations. BIT is inherently an aspect of design for maintainability.

The following example illustrates the impact of BIT on the overall maintenance
effort. It further attempts to illustrate the effect of external factors on BIT perfor-
mance (DoD 3235.1-H 1982).

Description: a radar installation is composed of five line replaceable units (LRUs)
with the following BIT and system performance characteristics:

System: Five (5) LRUs
MTTR (w/BIT): 2 h (includes failures that have been both detected and isolated)
MTTR (no/BIT): 5 h (includes failures that have been detected but not isolated)
MTBF: 50 operational hours
Period of interest: 2,500 operational hours
BIT specified: percent detection = 90%

percent isolation = 90% (to the LRU level)
false alarm rate = 5% (of all BIT indications)

In this example of a sophisticated military engineered installation, a relatively high-
capability BIT system has been specified, where industrial installations with BIT
would be less rigorously specified. Upon cursory examination, this extensive BIT
coverage would appear to require minimal additional maintenance. The problem is
to determine what total corrective maintenance time would be required for 2,500
operating hours. Thus:

• How many total failures could be expected?
2,500 total hours at 50 MTBF = 50 failures

• How many of these failures (on average) will BIT detect?
50 failures × 90% = 45 BIT detected failures

• How many detected failures on average will be isolated to an LRU?
45 detected failures × 90% isolation = 40 failures

• What is the automatic fault isolation capability (AFIC)?
% detection × % isolation (LRU) = AFIC
0.9 × 0.9 = 0.81 = 81%

• How many false alarm indications are expected to occur during the 2,500 opera-
tional hours?
Total BIT indications (IBIT) = true failure detections + false alarms
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IBIT = (BIT detection rate) × (total failures) + (false alarm rate) × (total BIT
indications)
IBIT = (0.90) × (50) + (0.05) × (IBIT)
(1−0.05) IBIT = 45
IBIT = 47.36
and:
False alarms = total BIT indications − rue indications
False alarms = 47.36 − 45
= 2.36 ≈ 2

With this information, the total corrective maintenance time can now be calculated
(DoD 3235.1-H 1982):

• What is the total corrective maintenance time (on average) required to repair the
detected/isolated failures?
TC (w/BIT) = 40 failures × 2 h (MTTR w/BIT)
= 80 h

• What is the total corrective maintenance time (on average) required to repair the
remaining no/BIT detected/isolated failures?
TC (no/BIT) = 10 failures × 5 h (MTTR no/BIT)
= 50 h

• If it is assumed that no/BIT maintenance time is required to sort out false alarm
indications, what total no/BIT corrective maintenance time is required for the
2,500 flying hour period?
TC (no/BIT) = no/BIT repair time + false alarm maintenance time
= (10) × (5) + (2) × (5) = 60 h

• What is the total corrective maintenance time TC (total) anticipated during the
2,500 hours?
TC (total) = BIT maintenance + no/BIT maintenance
= 80 + 60 = 140 h

Thus, even with a relatively high AFIC of 81%, the no/BIT-oriented corrective
maintenance represents 43% of the total anticipated corrective maintenance hours.
Furthermore, the impact of scheduled/preventive maintenance has not been consid-
ered. This additional maintenance is generally not associated with BIT.

The information presented in this example is greatly simplified in that it is as-
sumed that the BIT AFIC (% detection × % isolation) will be 81%. If the AFIC
is 81%, then 57% of the maintenance effort will be oriented towards BIT de-
tected/isolated failures. If the true AFIC is found to be lower, it will be necessary to
re-evaluate the overall effectiveness of the maintenance strategy and logistics pro-
gram, as well as total system effectiveness (DoD 3235.1-H 1982).

c) Basic System and BIT Concurrent Design and Evaluation Considerations

In designing for maintainability, the difficulty involved in the design and evaluation
of BIT that must perform in accordance with specific basic system specifications
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and design criteria is a problem of concurrent design. The development and evalua-
tion of BIT and fault diagnostics has traditionally followed basic system engineering
design. The argument usually presented is that the basic system has to be designed
and evaluated before determining what the BIT is intended to test. This argument
has some basis, in fact, but there are significant drawbacks associated with lengthy
design schedule differentials between the system’s design and BIT design and test-
ing. For example, design considerations relating to a systems breakdown structuring
(SBS), such as partitioning and sub-system/assembly/component configuration, de-
termine to a large extent the required BIT design. BIT design is also driven by the
essential prediction of various system failure modes in an FMEA, which BIT is
expected to address. Consequently, the two design efforts cannot be conducted in
isolation from one another, and must therefore be concurrent.

Determination of basic system failure modes and frequency of occurrence The
design of BIT is based upon two assumptions regarding the integrity of the ba-
sic engineering design: first, accurate identification of failure modes and effects
(FMEA) and, second, correct estimation of the frequency of occurrence of the fail-
ure modes.

If either of these assumptions is proven incorrect by test or operational expe-
rience, the resultant BIT performance is likely to be inadequate or, at least, less
effective than anticipated. The following two situations, based on the previous ex-
ample, will illustrate the impact of FMEA and of the frequency of occurrence of the
failure modes on a maintenance strategy (i.e. preventive versus corrective mainte-
nance):

Situation 1:

An unforeseen failure mode is observed in the radar installation every 250 opera-
tional hours. What impact does this have on the no/BIT maintenance?

New failures = 2,500h×1 failure per 250 h

= 10 failures (new)

TC (no/BIT)new = 10×5 hours/failure

= 50 h

Thus, total maintenance hours will be:

TC (total) = 80+60+50

= 190h

Total no/BIT maintenance will be:

TC (no/BIT)total = 60+50

= 110h

TC (no/BIT)total represents 58% of total maintenance.
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For the BIT detected/isolated maintenance:

TC (w/BIT) = 80h

= 42% of total (190 h)

TC (w/BIT) represents 42% of total maintenance.
It is evident that the discovery of one unforeseen, no/BIT detectable failure has

a relatively significant impact on the comparable magnitude of the two maintenance
percentages.

Previous estimate:

TC (w/BIT) = 57%

TC (no/BIT) = 43%

Current estimate:

TC (w/BIT) = 42% = 26% decrease

TC (no/BIT) = 58% = 35% increase

Situation 2:

One of the original BIT detectable failures is predicted to have a very low frequency
of occurrence. BIT detection for this failure was considered unnecessary, and was
therefore not included in the original BIT design to detect 90% of the failures. It is
now found that the failure occurs five times as often as expected. This is a realistic
situation, and one that directly impacts upon the no/BIT maintenance hours.

d) Evaluation of BIT Systems

The test and evaluation of BIT systems and the prediction of BIT performance
present some controversy. BIT systems are hardware and software logic networks
designed to detect the presence of an unwanted signal, or the absence of a desired
signal, each representing a failure mode. Each failure mode is detected by a specific
logic-network. While the same network may be designed to detect a specific failure
in several components, there is no assurance that the logic is correct until verified
by testing. It is possible to validate BIT performance using statistical techniques,
assuming a sufficiently large, representative sample of failures is available. Unlike
typical reliability evaluation, though, which has been established over the past five
decades, BIT testing and BIT system design represent less established technolo-
gies and are only recently beginning to receive increased attention. This limited
attention has resulted in the lack of gathering an adequate representative database
needed to support accurate and defendable estimates of BIT performance. A certain
lack of confidence in BIT performance evaluation has therefore resulted because of
these circumstances. Since it is not economically feasible to wait for an engineering
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system to experience random failures, failures are induced through synthetic fault
insertion. These faults are generally selected from a list of possible faults, all of
which are presumed to be detectable. The faults are synthetically inserted, and BIT
detects and isolates, for example, 93% of these. This does not mean that the BIT
system is a 93% AFIC BIT system, because the data are not a representative ran-
dom sample of the entire failure population and, therefore, cannot be used to make
statistically valid predictions of future performance. While synthetic fault insertion
has certain recognised limitations in predicting operational BIT performance, it is
a valuable methodology in designing for maintainability during the preliminary and
detail engineering design phases. Also, fault insertion can be used to simulate ran-
dom failures that may occur but cannot be detected. These include effects of poor
operation or maintenance.

Because of the lack of adequately established BIT technologies, requiring use
of fault insertion, there are normally insufficient data available to support accurate
estimations of BIT performance. It generally requires several years of operational
exposure to develop an adequate database to support a BIT performance analysis.
Current trends support early reliability testing during design and development, to
facilitate identification of failure modes and timely incorporation of design im-
provements. These pilot tests provide a database to support preliminary estimates
of system reliability. What is most frequently overlooked is that these data, after
minimal screening, could also be used to monitor, verify and upgrade BIT perfor-
mance, to support preliminary estimates of system maintainability—assuming that
the BIT system is functional at the appropriate stage in the basic system’s design
and development. This action requires a disciplined approach towards the use of
BIT in failure detection early in the system’s life cycle that has not been prevalent
in previous engineering design projects (DoD 3235.1-H 1982).

In summary, there is an essential requirement to evaluate BIT performance during
the system design and development stages, inclusive of initial operational test and
evaluation (IOT&E). This includes combining random failure detection data with
data from pilot plant tests and fault insertion trials. Early emphasis on BIT design
will generally result in accelerated BIT system establishment and more accurate
early projections of BIT performance. BIT evaluation should be actively pursued
throughout the ramp-up/operational stages, to assure that the necessary software
and hardware changes are incorporated.

4.2.3.4 Specific Application Modelling of Availability and Maintainability

When considering a system that is not only in one of the two standard states of
operability, i.e. an up-state (the system is capable of full operational performance)
or a down-state (the system is totally inoperable and under repair); but may also
perform its function at one or more levels of reduced efficiency, the conventional
concepts of system integrity are found to be unsuitable and inadequate. The in-
tegrity of the system remains unresolved (there exist situations when the system is
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neither fully operable nor fully inoperable, so that reliability and availability cannot
be discretely determined), or it gets a value that contradicts empirical observation.

If operation with reduced efficiency is regarded as normal, too high a value for
system integrity (reliability and availability) is obtained, whereas if a reduction in
efficiency is regarded as not achieving total operability, too low a value for system
integrity is obtained.

a) Equivalent Availability (EA)

The concept of equivalent availability affords a means of determining system in-
tegrity when the system is operating with reduced efficiency and is neither fully
operable nor fully inoperable. From the definition of operational availability given
previously, the general measure of availability of a system as a ratio is a comparison
of the system’s usable time or operational time, to a total given period or cycle time

Availability =
Operational Time

Time Period
. (4.124)

To be able to relate system operation with reduced efficiency to an integrity measure
such as system availability (specifically to the concept of equivalent availability), it
is necessary to first review the relationships of the various process functional char-
acteristics with one another, such as maximum capacity, rated capacity, efficiency,
utilisation and availability.

Thus, referring back to Eq. (4.28), the efficiency measurement of an engineering
process is a comparison of the process output quantity to its process throughput

Process efficiency (Xp) =
Process output

Process throughput
. (4.125)

According to Eq. (4.30), process utilisation is the ratio of process output to the con-
strained ability to receive and/or hold the result or product inherent to the process
(i.e. rated capacity)

Process utilisation (Up) =
Process output
Rated Capacity

. (4.126)

The maximum ability to receive and/or hold the result of the process, or product in-
herent to the process, is expressed as maximum process capacity or design capacity.
According to Eq. (4.20), this is defined in terms of the average output rate and the
average utilisation rate expressed as a percentage

Max. Capacity (Cmax) =
Average Output Rate

Average Utilisation/100
. (4.127)

Furthermore, rated capacity (Cr) is maximum throughput. It is the throughput ac-
tually achieved from operational constraints placed upon the ability of a series of
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operations to receive and/or hold the result or product inherent to the process. Re-
ferring back to Eq. (4.23), we have

Rated capacity (Cr) =
Material in process

Processing time
(4.128)

= Process throughput
(
T C

proc

)
max

Maximum dependable capacity is achieved when a process system is operating at
100% utilisation or at maximum efficiency for a given operational time.

A system’s maximum dependable capacity is equivalent to process output at
100% utilisation.

Thus

Output (100% utilisation) = Max. dependable capacity (4.129)

The operational time during which a system is achieving a process output that is
equivalent to its maximum dependable capacity is termed the equivalent operational
time.

Equivalent operational time is defined as “that operational time during which
a system achieves process output which is equivalent to its maximum dependable
capacity”

Equiv. Operational time = Process Operational time× Process output
Max. Dependable Capacity

.

(4.130)
If

Process output (100% utilisation) = Max. dependable capacity

then
Equiv. operational time = Process operational time .

From Eq. (4.123), the general measure of availability of a system (or equipment)
as a ratio is a comparison of the system’s operational time to a total given period.
Similarly, the quantifiable measure of equivalent availability of a system is a com-
parison of the system’s equivalent operational time to a total given period. The
system’s process operational time is equal to the equivalent operational time when
its process output (at 100% utilisation) is equal to the maximum dependable capac-
ity or, alternatively, when its process output is equal to the rated capacity (and rated
capacity = maximum dependable capacity).

From Eqs. (4.14) and (4.15), the difference between process utilisation, Up, and
process efficiency, Xp, is the difference between a system’s rated capacity and pro-
cess throughput respectively. From Eqs. (4.126) and (4.128), rated capacity Cr is
equivalent to maximum throughput. Thus, at 100% process utilisation, a system’s
rated capacity is equal to maximum process throughput, and 100% process utilisa-
tion is equivalent to maximum efficiency.

Equivalent availability can be defined as “the comparison of the equipment’s
equivalent operational time to a total given period, during which a system achieves
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process output that is equivalent to its maximum dependable capacity” (Nelson
1981). Thus

Equivalent Availability =
Equivalent Operational Time

Time Period
(4.131)

EA = ∑(ETo)
T

Equivalent Availability =
Operational Time

Time Period
× Process output

MDC
(4.132)

EA = ∑[(To) ·n(MDC)]
T ·MDC

where:

MDC = maximum dependable capacity
n = fraction of process output.

Thus

Equivalent Availability (EA)
at 100% utilisation or max. efficiency =

Operational Time
Time Period

.

The measure of equivalent availability can be graphically illustrated in the following
example. A power generator is estimated to be in operation for 480 h at maximum
dependable capacity. Thereafter, its output is estimated to diminish (derate) with
an efficiency reduction of 50% for 120 h, after which the generator will be in full
outage for 120 h. What is the expected availability of the generating plant over the
30-day cycle?

What is the generator’s expected equivalent availability during this cycle?

Full power
at 100% Xp

Half power
at 50% Xp

MDC

MDC/2

120 hours 120 hours480 hours

Time period = 720 hours

Measure of equivalent availability of a power generator

Full
outage

Expected Availability (A) =
Operational Time

Time Period
=

(∑To)
T

= (480+120)/720

= 0.83 or 83%
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Equiv. Availability (EA) =
Operational Time

Time Period
× Process Output

MDC

=
∑[(To) ·n(MDC)]

T ·MDC

=
[480× (1)]+ [120× (0.5)]

720× (1)
= 0.75 or 75%

where:

Total time period = 720 h
Operational time = (480+120) = 600 h
MDC = maximum dependable capacity
MDC = 1× (constant representing capacity, C)
Process output = [0.75/(600/720)][(1)×C]
Process output = 0.9C
Process output = 90% of MDC.

b) Equivalent Maintainability Measures of Downtime and Outage

It is necessary to consider mean downtime (MDT) compared to the mean time to
repair (MTTR). There is frequently confusion between the two and it is important
to understand the difference.

Downtime, or outage, is the period during which equipment is in the failed state.
Downtime may commence before repair, as indicated in Fig. 4.11 (Smith 1981).
This may be due to a significant time lapse from the onset of the downtime period
up till when the actual repair, or corrective action, commences.

Repair time may often involve checks or alignments that may extend beyond the
downtime period. From the diagram, it can be seen that the combination of down-
time plus repair time includes aspects such as realisation time, access time, diag-
nosis time, spare parts procurement, replacement time, check time and alignment
time. MDT is thus the mean of all the time periods that include realisation, access,
diagnosis, spares acquisition and replacement or repair.

A comparison of downtime and repair time is given in Fig. 4.11.
According to the American Military Standard (MIL-STD-721B), a failure is de-

fined as “the inability of an item to function within its specified limits of perfor-
mance”. Furthermore, the definition of function was given as “the work that an item
is designed to perform”, and functional failure was defined as “the inability of an
item to carry-out the work that it is designed to perform within specified limits of
performance”.

From these definitions, it is evident that there are two degrees of severity of func-
tional failure:

• A complete loss of function, where the item cannot carry out any of the work that
it was designed to perform.
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Fig. 4.11 A comparison of downtime and repair time (Smith 1981)

• A partial loss of function, where the item is unable to function within specified
limits of performance.

In addition, equipment condition was defined as “the state of an item on which its
function depends” and, as described before, the state of an item on which its function
depends can be both an operational as well as a physical condition.

An important principle in determining the integrity of engineering design can
thus be discerned relating to the expected condition and the required condition as-
sessment (such as BIT) of the designed item:

An item’s operational condition is related to the state of its operational function or working
performance, and its physical condition is related to the state of its physical function or
design properties.

Equipment in a failed state is thus equipment that has an operational or physical
condition that is in such a state that it is unable to carry out the work that it is
designed to perform within specified limits of performance. Thus, two levels of
severity of a failed state are implied:

• Where the item cannot carry out any of the work that it was designed to perform,
i.e. a total loss of function.

• Where the item is unable to function within specified limits of performance, i.e.
a partial loss of function.

Downtime, or outage, which has been described as the period during which equip-
ment is in the failed state, has by implication two levels of severity, whereby the
term downtime is indicative of the period during which equipment cannot carry out
any of the work that it was designed to perform, and the term outage is indicative of
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the period during which equipment is unable either to carry out any of the work that
it was designed to perform or to function within specified limits of performance.

Downtime can be defined as “the period during which an equipment’s opera-
tional or physical condition is in such a state that it is unable to carry-out the work
that it is designed to perform”.

Outage can be defined as “the period during which an equipment’s operational
or physical condition is in such a state that it is unable to carry-out the work that it
is designed to perform within specified limits of performance”.

It is clear that the term outage encompasses both a total loss of function and
a partial loss of function, whereas the term downtime constitutes a total loss of
function. Thus, the concept of full outage is indicative of a total loss of function,
and the concept of partial outage is indicative of a partial loss of function, whereas
downtime is indicative of a total loss of function only. The concepts of full outage
and partial outage are significant in determining the equivalent mean time to outage
and the equivalent mean time to restore.

The equivalent mean time to outage (EM) Equivalent mean time to outage can
be defined as “the comparison of the equipment’s operational time, to the number
of full and partial outages over a specific period”

Equivalent Mean Time to Outage (EM) =
Operational Time

Full and Partial Outages
. (4.133)

The measure of equivalent mean time to outage can be illustrated using the previ-
ous example. As indicated, the power generator is estimated to be in operation for
480 h at maximum dependable capacity, MDC. Thereafter, its output is estimated to
derate, with a production efficiency reduction of 50% for 120 h, after which it will
be in full outage for 120 h. What is the expected equivalent mean time to outage of
the generator over a 30-day cycle?

Full power
at 100% Xp

Half power
at 50% Xp

MDC

MDC/2

120 hours 120 hours480 hours

Time period = 720 hours

Measure of equivalent mean time to outage of a power generator

Full
outage

EM = ∑(To)
N

=
480+120

2
= 300 h . (4.134)
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The significance of the concepts of full outage and partial outage, being indica-
tive of a total and a partial loss of function of individual systems, is that it enables
the determination of the equivalent mean time to outage of complex integrations
of systems, and of the effect that this complexity would have on the availability of
engineered installations as a whole.

The equivalent mean time to restore (ER) It has previously been shown that the
restoration of a failed item to an operational effective condition is normally when
repair action, or corrective action in maintenance is performed in accordance with
prescribed standard procedures. The item’s operational effective condition in this
context is also considered to be the item’s repairable condition.

Mean time to repair (MTTR) in relation to equivalent mean time to restore
(ER) The repairable condition of equipment is determined by the mean time to
repair (MTTR), which is a measure of its maintainability

MTTR = Mean Time To Repair (4.135)

= ∑(λR)
∑(λ )

where:

λ = failure rate of components
R = repair time of components (h).

In contrast to the mean time to repair (MTTR), which includes the rate of failure
at component level, the concept of equivalent mean time to restore (ER) takes into
consideration the equivalent lost time in outages at system level, measured against
the number of full and partial outages. This is best understood by defining equivalent
lost time.

Equivalent operational time was previously defined as “that operational time
during which a system achieves process output which is equivalent to its maximum
dependable capacity”.

In contrast, equivalent lost time is defined as “that outage time during which
a system loses process output, compared to the process output which is equivalent
to the maximum dependable capacity that could have been attained if no outages
had occurred”.

Furthermore, it was previously shown that the maximum dependable capacity
(MDC) is reached when the system is operating at maximum efficiency or, expressed
as a percentage, when the system is operating at 100% utilisation for a given oper-
ational time, i.e. process output at 100% utilisation is equivalent to the system’s
maximum dependable capacity

Equivalent Lost Time =
Lost Output×Operational Time

Production Output at MDC
(4.136)

ELT = ∑[n(MDC) ·To]
MDC
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where:

n = fraction of process output.

Equivalent mean time to restore (ER) can be defined as “the ratio of equivalent lost
time in outages, to the number of full and partial outages over a specific period”.

If the definition of equivalent lost time is included, then equivalent mean time
to restore can further be defined as “the ratio of that outage time during which
a system loses process output compared to the process output which is equivalent to
the maximum dependable capacity that could have been attained if no outages had
occurred, to the number of full and partial outages over a specific period”. Thus

Equivalent Mean Time to Restore =
Equivalent Lost Time

No. of Full and Partial Outages

ER =
ELT
N

(4.137)

ER = ∑[n(MDC) ·To]
MDC ·N (4.138)

where:

n = fraction of process output
N = number of full and partial outages
To = outage time equal to lost operational time.

The measure of equivalent mean time to restore can be illustrated using the previous
example. As indicated, the power generator is estimated to be in operation for 480 h
at maximum dependable capacity. Thereafter, its output is estimated to diminish
(derate), with a production efficiency reduction of 50% for 120 h, after which the
plant will be in full outage for 120 h. What is the expected equivalent mean time to
restore of the generating plant over the 30-day cycle?

Full power
at 100% Xp

Half power
at 50% Xp

MDC

MDC/2

120 hours 120 hours480 hours

Time period = 720 hours

Measure of equivalent mean time to restore of a power generator

Full
outage
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ER = ∑[n(MDC) ·To]
MDC ·N

=
[0.5(MDC)×120]+ [1(MDC)×120]

MDC×2
= 90 h .

c) Outage Measurement with the Ratio of ER Over EM

Outage measurement includes the concepts of full outage and partial outage in de-
termining the ratio of the equivalent mean time to restore (ER) and the equivalent
mean time to outage (EM). The significance of the ratio of equivalent mean time
to outage (EM) over the equivalent mean time to restore (ER) is that it gives the
measure of system unavailability, U .

In considering unavailability (U), the ratio of ER over EM is evaluated at system
level where

ER = ∑[n(MDC) ·To]
MDC ·N (4.139)

EM = ∑(To)
N

ER
EM

= ∑[n(MDC) ·To]
MDC ·N · N

∑(To)
ER
EM

= ∑[n(MDC) ·To]
MDC ·∑(To)

.

Expected availability (A), or the general measure of availability of a system as a ra-
tio, was formulated as a comparison of the system’s usable time or operational time,
to a total given period or cycle time

A =
(∑To)

T
. (4.140)

If the ratio of ER over EM is multiplied by the availability of a particular system
(A system) over a period T , the result is the sum of full and partial outages over the
period T , or system unavailability, U

(A)system · ER
EM

= ∑[n(MDC) ·To]
MDC ·∑(To)

· (∑To)
T

(4.141)

= ∑[n(MDC) ·To]
MDC ·T

= Unavailability (U) system.

Thus, equivalent availability (EA) is equal to the ratio of the equivalent mean time
to restore (ER) and the equivalent mean time to outage (EM), multiplied by the
expected availability (A) over the period T .
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Thus, the formula for equivalent availability (EA) can be given as:

EA = ∑[n(MDC) ·To]
MDC ·T

ER
EM

·A = ∑[n(MDC) ·To]
MDC ·∑(To)

· (∑To)
T

ER
EM

·A =
∑[n(MDC) ·To]

MDC ·T
= EA

So far, the equivalent mean time to outage (EM) and the equivalent mean time to
restore (ER) have been considered from the point of view of outages at system
level. However, the concepts of full outage being indicative of a total loss of system
function, and partial outage being indicative of a partial loss of system function, and
their significance in determining EM and ER make it possible to consider outages
of individual systems within a complex integration of many systems, as well as
the effect that an outage of an individual system would have on the availability
of the systems as a whole. In other words, the effect of reducing EM and ER in
a single system within a complex integration of systems can be determined from an
evaluation of the changes in the equivalent availability of the systems (engineered
installation) as a whole.

The effect of single system improvement on installation equivalent availability
The extent of the complexity of integration of individual systems in an engineered
installation relative to the installation’s hierarchical levels can be determined from
the relationship of equivalent availability (EA) and unavailability (U) for the indi-
vidual systems, and installation as a whole

EA system =
ER
EM

·A system =
ER
EM

· (∑To)
T

= U system (4.142a)

EA install. =
ER
EM

·A install. =
ER
EM

· (∑To)
T

= U install. (4.142b)

In this case, the ratio ER/EM would be the ratio of the equivalent mean time to
restore (ER) over the equivalent mean time to outage (EM) of the individual systems
that are included in the installation. If the installation (or process plant) had only one
inherent system in its hierarchical structure, then the relationship given above would
be adequate. Thus, the effect of improvement in this system’s ER/EM ratio on the
equivalent availability of the installation that consisted of only the one inherent
system in its hierarchical structure can be evaluated. Based on outage data of the
system over a period T , the baseline ER/EM ratio of the system can be determined.
Similarly, improvement in the system’s outage would give a new or future value for
the system’s ER/EM ratio, represented as:

ER
EM baseline

and
ER

EM future
.
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The change in the equivalent availability (A) of the engineered installation, which
consists of only the one inherent system in its hierarchical structure, can be formu-
lated as

ΔEA install. =
[

ER
EM baseline

−ER
EM future

]
· To install.

T
. (4.143)

If the engineered installation consists of several integrated systems, then the ratio
ER/EM would need to be modified to the following

ΔEA install. =
q

∑
j=1

[
ER j

EM j
·A install.

]
(4.144)

ΔEA install. =
q

∑
j=1

[
ER j

EM j
· To install.

T

]

where:

q = number of systems in the installation
ER j = equivalent mean time to restore of system j
EM j = equivalent mean time to outage of system j
To = operational time of the installation
T = evaluation period.

The effect of multiple system improvement on installation equivalent avail-
ability The change in the equivalent availability (A) of the engineered installation,
which consists of multiple systems in its hierarchical structure, can now be formu-
lated as

ΔEA install. =

[
q

∑
j=1

ER j

EM j baseline
−

r

∑
k=1

ERk

EMk future

]
· To install.

T
(4.145)

where:

q = number of systems in the engineered installation
ER j baseline = equivalent mean time to restore of system j
EM j baseline = equivalent mean time to outage of system j
r = number of improved systems in the installation
ERk future = equivalent mean time to restore of system k
EMk future = equivalent mean time to outage of system k
To = operational time of the engineered installation
T = evaluation period.

This change in the equivalent availability (A) of the engineered installation, as a re-
sult of an improvement in the performance of multiple systems in the installation’s
hierarchical structure, offers an analytic approach in determining which systems
are critical in complex integrations of process systems. This is done by determin-
ing the optimal change in the equivalent availability of the engineered installation
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through an iterative process of marginally improving the performance of each sys-
tem, through improvements in the equivalent mean time to restore of system k, and
the equivalent mean time to outage of system k. The method is, however, compu-
tationally cumbersome without the use of algorithmic techniques such as genetic
algorithms and/or neural networks.

Another, perhaps simpler approach to determining the effects of change in the
equivalent availability of the engineered installation, and determining which sys-
tems are critical in complex integrations of process systems, is through the method-
ology of systems engineering analysis. This approach is considered in detail in
Sect. 4.3.3.

As an example, consider a simple power-generating plant that is a multiple inte-
grated system consisting of three major systems, namely #1 turbine, #2 turbine and
a boiler, as illustrated in Fig. 4.12 below.

Statistical probabilities can easily be calculated to determine whether the plant
would be up (producing power) or down (outage). In reality, the plant could operate
at intermediate levels of rated capacity, or output, depending on the nature of the

Fig. 4.12 Example of a simple power-generating plant
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Table 4.1 Double turbine/boiler generating plant state matrix

State Boiler #1 #2 Capacity

1 Up Up Up 100%
2 Up Up Down 50%
3 Up Down Up 50%
4 Down Up Up 0%
5 Down Up Down 0%
6 Down Down Up 0%
7 Down Down Down 0%
8 Up Down Down 0%

outages of each of the three systems. This notion of plant state is indicated in Ta-
ble 4.1, in which the outages are regarded as full outages, and no partial outages are
considered.

Referring back to Eq. (4.20), maximum process capacity was measured in terms
of the average output rate and the average utilisation rate expressed as a percentage

Maximum Capacity (Cmax) =
Average Output Rate

Average Utilisation/100
(4.146)

Average Output Rate = (Cmax) ·Average Utilisation .

A system’s maximum dependable capacity (MDC) was defined in Eq. (4.129) as
being equivalent to process output at 100% utilisation. Thus

MDC = Output (100% utilisation) (4.147)

The plant’s average output rate can now be determined where individual system
outages are regarded to be full outages, and no partial outages are taken into con-
sideration. The plant is in state 1 if all the sub-systems are operating and output is
based on 100% utilisation (i.e. MDC). Seven other states are defined in Table 4.1,
which is called a state matrix.

However, to calculate the expected or average process output rate of the plant
(expressed as a percentage of maximum output at maximum design capacity), the
percentage capacity for each state (at 100% utilisation) is multiplied by the avail-
abilities of each integrated system.

Thus:

Average plant output rate with full outages only = Σ (capacity of plant state at 100%
utilisation of systems that are operational × availability of each integrated system).

As an example: what would be the expected or average output of the plant if the
estimated boiler availability is 0.95 and the estimated turbine generator availabilities
are 0.9 each?
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Average output rate = [1× (0.95×0.9×0.9)]
+ [0.5× (0.95×0.9×0.1)]
+ [0.5× (0.95×0.1×0.9)]

= 0.7695+0.04275+0.04275

= 0.855

= 85.5%

It must be noted that this average output rate is expressed as a percentage of the pos-
sible output that can be achieved at maximum design capacity and 100% utilisation.
It is thus an expression of the output capability of the plant as a whole, depending
on the percentage capacity for each state of the plant, as a result of the states of each
individual system, multiplied by its availability.

The above example of the simple three-system plant is insightful as an introduc-
tion to a plant having several states in which outages are regarded as full outages. If,
however, the system outages are such that, over a specific period of time T , the sys-
tems could experience full outages as well as partial outages that are limited to 50%
of system output, then a table similar to the previous state matrix can be developed.

To calculate the expected or average output rate of the plant over an operating
period T , the percentage capacity (% of MDC) for each state during the shift pe-
riod T is multiplied by the equivalent availability of each system. The partial state
matrix given in Table 4.2 presents the possible states of each system over a period
of time T . These states are either 100% down (full outage) or 50% down (partial
outage).

Table 4.2 Double turbine/boiler generating plant partial state matrix

Period T Period T In period T In period T % MDC

1 Up Up Up 100%
2 Up Up Down 50% 75%
3 Up Up Down 100% 50%
4 Up Down 50% Up 75%
5 Up Down 100% Up 50%
6 Down 50% Up Up 50%
7 Down 100% Up Up 0%
8 Down 50% Up Down 50% 50%
9 Down 50% Up Down 100% 50%

10 Down 50% Down 50% Up 50%
11 Down 50% Down 100% Up 50%
12 Down 50% Down 50% Down 50% 50%
13 Down 50% Down 50% Down 100% 25%
14 Down 50% Down 50% Down 50% 25%
15 Down 50% Down 100% Down 100% 0%
16 Down 100% Down 100% Down 100% 0%
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If, for simplicity, the likelihood and duration of each state in the above partial
state matrix table is considered to be equal, and each state could occur only once
in the operating period T , then according to Eq. (4.141) given above, the equivalent
availability of each system can be calculated as:

EA = ∑[(To) ·n(MDC)]
T ·MDC

.

In this case:

To = operational period for each state
T = total operating period or cycle
n(MDC) = capacity as % of MDC for each system
n = fraction of process output
MDC = maximum demand capacity.

Thus, the equivalent availability for the boiler in period T (i.e. working down the
second column of Table 4.2), and using Eq. (4.141), can be calculated as:

EABoiler =
(1.5)[5×1+0.5+0+8×0.5+0]

24×1

=
(1.5)9.5

24
= 0.59375 = 59.375% .

Similarly, the equivalent availability for #1 turbine and #2 turbine can also be cal-
culated.

The equivalent availability for the #1 turbine in period T :
(i.e. working down the third column of Table 4.2)

EA#1 Turbine =
(1.5)[7×1+4×0.5+5×0]

24×1

=
(1.5)9

24
= 0.5625 = 56.25% .

The equivalent availability for the #2 turbine in period T :
(i.e. working down the fourth column of Table 4.2)

EA#2 Turbine =
(1.5)[7×1+4×0.5+5×0]

24×1

=
(1.5)9

24
= 0.5625 = 56.25% .



4.3 Analytic Development of Availability and Maintainability in Engineering Design 415

With the system equivalent availabilities for the boiler, #1 turbine and #2 turbine
now calculated from all the possible partial states (up, 50% down, or 100% down),
what would be the expected or average plant output rate when the equivalent avail-
ability for the boiler is 59.375% and the equivalent availability for the turbine gen-
erators are 56.25% each?

Taking into consideration states with reduced utilisation as a result of partial
outages, the expected or average plant output rate is calculated as:

Average plant output rate with partial outages = Σ (capacity of plant state at full and
partial utilisation of systems that are operational × availability of each integrated system)

= [1.0 × (0.59375 × 0.5625 × 0.5625)] + [0.75 × (0.59375 × 0.5625 × 0.5625)]

+ [0.5 × (0.59375 × 0.5625 × 0.4375)] + [0.75 × (0.59375 × 0.5625 × 0.5625)]

+ [0.5 × (0.59375 × 0.4375 × 0.5625)] + [0.5 × (0.59375 × 0.5625 × 0.5625)]

+ [0.5 × (0.59375 × 0.5625 × 0.5625)] + [0.5 × (0.59375 × 0.5625 × 0.4375)]

+ [0.5 × (0.59375 × 0.5625 × 0.5625)] + [0.5 × (0.59375 × 0.4375 × 0.5625)]

+ [0.5 × (0.59375 × 0.5625 × 0.5625)] + [0.25 × (0.59375 × 0.5625 × 0.4375)]

+ [0.25 × (0.59375 × 0.4375 × 0.5625)]

= 0.18787 + (2 × 0.14090) + (4 × 0.09393) + (4 × 0.07306) + (2 × 0.04697)

= 0.18787 + 0.2818 + 0.37572 + 0.29224 + 0.09394

= 85.5%

The expected or average plant output rate, taking into consideration states with re-
duced utilisation as a result of partial outages, is 85.5%.

4.3 Analytic Development of Availability and Maintainability
in Engineering Design

Several techniques are identified for availability and maintainability prediction, as-
sessment and evaluation, in the conceptual, preliminary and detail design phases
respectively. As with the analytic development of reliability and performance of
Sect. 3.3, only certain of the availability and maintainability techniques have been
considered for further development. This approach is adopted on the basis of the
transformational capabilities of the techniques in developing intelligent computer
automated methodology using optimisation algorithms (OA). These optimisation
algorithms should ideally be suitable for application in artificial intelligence-based
(AIB) modelling, in which development of knowledge-based expert systems within
a blackboard model can be applied in determining the integrity of engineering de-
sign. Furthermore, the AIB model must be suited to applied concurrent engineering
design in an integrated collaborative design environment in which automated con-
tinual design reviews may be conducted during the engineering design process by
remotely located design groups communicating via the internet.
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4.3.1 Analytic Development of Availability and Maintainability
Prediction in Conceptual Design

A technique selected for further development as a tool for availability and main-
tainability prediction in determining the integrity of engineering design during the
conceptual design phase is modelling based on measures of system performance.
This technique has already been considered in part for reliability prediction in
Sect. 3.3.1, and needs to be expanded to include prediction of reliability as well
as inherent availability and maintainability. System performance analysis through
the technique of simulation modelling is also considered, specifically for prediction
of system characteristics that affect system availability. Furthermore, the technique
of robust design is selected for its preferred application in decision-making about
engineering design integrity, particularly in considering the various uncertainties
involved in system performance simulation modelling.

Monte Carlo simulation is used to propagate these uncertainties in the applica-
tion of simulation models in a collaborative engineering design environment. The
techniques selected for availability and maintainability prediction in the conceptual
design phase are thus considered under the following topics:

i. System performance measures and limits of capability
ii. System performance analysis and simulation modelling

iii. Uncertainty in system performance simulation modelling.

4.3.1.1 System Performance Measures and Limits of Capability

Referring back to Sect. 3.3.1, it was pointed out that, instead of using actual per-
formance values such as temperatures, pressures, etc., it is more meaningful to use
the proximity of the actual performance value to the limit of capability of the item
of equipment. In engineering design review, the proximity of performance to a limit
closely relates to a measure of the item’s safety margin, which could indicate the
need for design changes or selecting alternate systems. Non-dimensional numeri-
cal values for system performance may be obtained by determining the limits of
capability, Cmax and Cmin, with respect to the performance parameters for system in-
tegrity (i.e. reliability, availability, maintainability and safety). The nominal range of
integrity values for which the system is designed (i.e. 95 to 98% reliability at 80 to
85% availability) must also be specified. Thus, a set of data points are obtained for
each item of equipment with respect to the relevant performance parameters, to be
entered into a parameter performance matrix.

a) Performance Parameters for System Integrity

For predicting system availability, the performance measures for reliability and
maintainability are estimated, and the inherent availability determined from these
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measures. As indicated previously, system reliability can be predicted by estimating
the mean time between failures (MTBF), and maintainability performance can be
predicted by estimating the mean time to repair (MTTR).

Inherent availability, Ai, can then be predicted according to:

Ai =
MTBF

(MTBF+MTTR)
(4.148)

In the case of reliability and maintainability, there are no operating limits of capa-
bility but, instead, a prediction of engineering design performance relating to MTBF
and MTTR. Data points for the parameter performance matrix can be obtained
through expert judgement of system reliability by estimating the mean time between
failures (MTBF), and of maintainability performance by estimating the mean time
to repair (MTTR) of critical failures (Booker et al. 2000). (Refer to Sect. 3.3.3.4
dealing with expert judgement as data.)

A reliability data point xi j can be generated from the predicted MTBF(R), a max-
imum acceptable MTBF(Rmax), and a minimum acceptable MTBF(Rmin), where:

xi j =
(R−Rmin)×10

Rmax −Rmin
(4.149)

Similarly, a maintainability data point xi j can be generated from the predicted
MTTR(M), a minimum acceptable MTTR(Mmin), and a maximum acceptable
MTTR(Mmax), where:

xi j =
(Mmax −M)×10

Mmax −Mmin
(4.150)

b) Analysis of the Parameter Profile Matrix

The performance measures of a system can be described in matrix form in a pa-
rameter profile matrix (Thompson et al. 1998). The matrix is compiled containing
data points relating to all salient parameters that describe a system’s performance.
The rows and columns of the matrix can be analysed in order to predict the charac-
teristics of the designed system. Figure 3.22 is reproduced below as Fig. 4.13 with
a change to the column heading from process systems to equipment items, as a single
system is being considered.

Consider one row of the matrix. Each data point xi j refers to a single performance
parameter; looking along a row reveals whether the system design is consistently
good with respect to this parameter for all the system’s equipment items, or whether
there is a variable performance. For a system with a large number of equipment
items (in other words, a high level of complexity), a good system design should
have a high mean and a low standard deviation of xi j scores for each parameter.
These scores are calculated as indicated in Figs. 3.23, 3.24 and 3.25 of Chap. 3,
Sect. 3.3.1. Furthermore, a parameter performance index (PPI) that constitutes an
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Equipment items

x11 x12 x13 x14 . . . x1i

x21 x22 x23 x24 . . . x2i

Performance x31 x32 x33 x34 . . . x3i

parameters x41 x42 x43 x44 . . . x4i

... ... ... ... ... ...

x j1 x j2 x j3 x j4 ... x ji

Fig. 4.13 Parameter profile matrix

analysis of the rows of the parameter profile matrix can be calculated(Thompson
et al. 1998):

PPI = n

(
n

∑
j=1

1/ci j

)−1

(4.151)

where n is the number of design alternatives.
The inverse method of calculation of an overall score is advantageous when the

range of scores is 0 to 10, as it highlights low scores, whereas a straightforward
addition of scores may not reveal a low score if there are high scores in the group.
However, the inverse calculation method is less sensitive to error than a multiplica-
tion method. The numerical value of PPI lies in the range 0 to 10, no matter how
many data points are included in the calculation. Thus, a comparison can be made to
judge whether there is acceptable overall performance with respect to all the param-
eters, or whether the system design is weak in any respect—particularly concerning
the parameters of reliability, inherent availability, and maintainability.

A similar calculation to the parameter performance index can be made for each
column of the parameter profile matrix, whereby an equipment or device perfor-
mance index (DPI) is calculated as (Thompson et al. 1998):

DPI = m

(
m

∑
j=1

1/ci j

)−1

(4.152)

where m is the number of performance parameters relating to the equipment item of
column j.

A comparison of DPIs reveals those equipment items that are contributing less
to the overall performance of the system. For an individual equipment item, a good
design is a high mean value of the xi j scores with a low standard deviation. This
system performance prediction method is intended for complex systems compris-
ing many sub-systems. Overall system performance can be quite efficiently de-
termined, as a wide range of system performance parameters can be included in
the PPI and DPI indices. However, in the case of reliability, inherent availability,
and maintainability, only the two parameters MTTR and MTBF are included for
prediction, as indicated in Eq. (4.148). From an engineering design integrity point
of view, the method collates relevant design integrity data (i.e. reliability, inherent
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availability, and maintainability) obtained from expert judgement predictions, and
compares these with design performance criteria, requirements and expectations.

c) The Design Checklist

There are many qualitative factors that influence reliability, inherent availability,
and maintainability. Some are closely related to operability, and there are no clear
demarcation lines. In order to expand design integrity prediction, a study of the
many factors that influence these parameters must be carried out. An initial list is
first derived in the form of a design checklist. The results of previous research into
reliability, availability and maintainability problems are carefully considered when
devising the checklist questions (McKinney et al. 1989).

The checklist is intended for general application, and includes factors affecting
design operability. In many cases, there will be questions that do not apply to the
design being reviewed, which are then omitted.

The questions can be presented to the analyst in the form of a specific knowledge-
based expert system within an artificial intelligence-based (AIB) blackboard model
for design review during the design process. Results are presented in a format that
enables design review teams to collaboratively make reasonable design judgements.
This is important, in view of the fact that one design team may not carry out the
complete design of a particular system as a result of multidisciplinary engineering
design requirements, and the design review teams may not all be grouped at one
location, prompting the need for collaborative engineering design. This scenario is
considered later in greater detail in accounting for various uncertainties involved
in system performance simulation modelling for engineering design, utilising the
robust design technique. Furthermore, knowledge-based expert systems within AIB
blackboard models are given in Sect. 3.4, Sect. 4.4, and Sect. 5.4.

A typical example of a checklist question set, extending from conceptual to
schematic design, is the following:

Question set Is pressure release and drainage (including purging and venting) pro-
vided?

Are purge points considered? If there are no purge points, then this may mean
drainage via some or other means that could increase exposure to maintenance per-
sonnel requiring the need for protection.

i. Purge points not present, requiring some other means 0
ii. Purge points present but accessibility will be poor 1
iii. Purge points present and accessibility will be good 2.

A series of questions is posed for each design, and each answer is given a score 0,
1 or 2. The total score is obtained by the summation of the scores, calculated as
a percentage of the total of all the relevant questions. Therefore, questions that do
not apply are removed from the analysis. The objective is to obtain overall design
integrity ratings for the process and for each device, in order to highlight weak de-
sign integrity considerations. A high percentage score indicates good performance
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where the scores complement the MTTR and MTBF calculations. Where there is
a mismatch—for example, a high estimated MTBF but a low reliability score, or
a high estimated MTTR but low maintainability score—then further design investi-
gation is required.

d) Integrity Prediction of Common Items of Equipment

The prediction method is intended for those process systems that comprise many
well-known items (as the design is still in its conceptual phase). It could be expected
that certain items of equipment may exhibit common maintainability requirements.
In order to save time in data estimates, typical maintenance requirements for com-
mon devices are prepared as data sheets.

Thus, if a centrifugal pump is selected, then a common data sheet would be avail-
able for this item. The data sheet can be reviewed and accepted as it is, or it can be
edited to reflect certain particular circumstances, or the checklist can be completed
from a blank form to compile a new set of data for that item. In addition to the re-
sponses to questions for each individual item, a response to each particular question
regarding total systems integration may be considered for all relevant items. For ex-
ample, in the case of maintainability, the question might refer to the ability to detect
a critical failure condition. If the response to this question is estimated at 60%, then
it would suggest that 40% of all items for which the question is relevant would re-
main undetected. It is thus possible to review the responses to questions across all
the integrated systems, to gain an understanding of the integrity of the conceptual
design as a whole.

e) Design Reviews of Performance Parameters for System Integrity

Design review practices can take many forms. At the lowest level, they consist of
an examination of drawings before manufacture begins. More comprehensive de-
sign reviews include a review at different phases of the engineering design process:
the specification (design requirements), conceptual design, schematic or prelimi-
nary design, and detail design. There are particular techniques that the design re-
view team implement at these different phases, according to their suitability. The
method proposed here is intended for use when very little detail of the equipment
is known. In particular, it is intended for use during the conceptual design phase in
preparation for the follow-up schematic design phase when systems are synthesised
using manufactured equipment. Many engineered installations are designed in this
way. Design reviews can be quantitative or qualitative. The advantage of quantita-
tive reviews is that they present clearly a justification for a decision that a particular
design is either satisfactory or unsatisfactory with respect to essential performance
specifications.

Therefore, if it is possible, there are advantages to a quantitative review as early
as possible in the engineering design process. A design review should add value
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to each design. Design calculation checks are taken care of by all good, traditional
design practices; however, a good design review will be repaid by reduced com-
missioning and start-up problems and better ramp-up operations. The design review
method proposed here seeks to provide a quantitative evaluation that adds value
to engineering design by integrating process performance parameters such as mass
flows, pressures and temperatures with reliability, availability and maintainability.
Performance data required are the same as those used to specify the equipment.
Therefore, there is no requirement for extra data in excess of those that would be
available for process systems that comprise many well-known items. The only ad-
ditional requirement is a value judgement of acceptable and unacceptable MTBF
and MTTR. These data are then compiled into a parameter profile matrix using data
points derived from the proximity of a required operating point to the performance
limit of the equipment. As indicated previously, the use of the proximity of the nom-
inal design performance to a limit of equipment capability is similar to the concept
of a safety margin. Similarly, the estimated MTBF and MTTR data points reflect
the closeness of predicted performance to expectations. Having compiled the ma-
trix, analysis can be performed on particular variables for all items of equipment,
or on all variables for a particular item of equipment, yielding PPI and DPI indices
respectively.

On a large engineering design project, data can be generated by several design
teams, compiled and analysed using the AIB blackboard model for automated de-
sign reviews throughout the engineering design process. MTBF and MTTR expecta-
tions can be varied in a sensitivity analysis. The computer automated methodology
can highlight matrix cells with low scores and pick out performance variables and
equipment that show poor performance. Therefore, the data handling and calcula-
tion aspects of the design verification do not impose excessive requirements. The
flexibility of the approach, and the method of data point derivation are especially
useful in process engineering enhancement projects. Inevitably, there are instances
when engineered installations are subject to modifications either during construc-
tion or even after ramp-up (e.g. there may be advantages in processing at different
pressures and/or temperatures), necessitating review of the equipment performance
data after design completion. Implications of changes to temperature and pressure
requirements can be readily explored, since the parameter profile analysis method
will immediately identify when the performance of an item is in close proximity to
a limit.

Furthermore, engineered installations may be required to process materials that
are different to those that they were originally designed to process. As the equip-
ment data are already available in the AIB blackboard model, all that is needed is to
input new process data for further analysis. The time taken to set up the equipment
database during a post-design review will be justified, since the data can be used
throughout the life of the design. Reliability, inherent availability, and maintainabil-
ity are included in the parameter profile matrix evaluation by estimating MTBF and
MTTR times, and then calculating the inherent availability. In order to expand on
these important variables and to explore the various factors that influence reliability,
inherent availability, and maintainability, checklists are developed that may be used
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in different ways, either on their own or to complement the parameter profile anal-
ysis. In a design review, many of the questions may be answered to obtain a view
of a system’s integrity, or to obtain an overall view of the integrity of the integrated
systems design. Another use for the checklists would be in a process enhancement
study whereby an existing engineered installation is audited to identify precisely the
improvements required.

f) Reliability and Maintainability Checklists

The checklists are designed for use by engineering designers in the case of a design
review exercise, or by process engineers in the case of required post-design process
enhancements. Although the question sets listed in the AIB blackboard models pre-
sented in Sects. 3.4, 4.4 and 5.4 are somewhat different from the example checklists
for reliability and maintainability, the relevant principles and intended use remain
the same. A segment of an AIB blackboard model Expert System tab page is given
below, showing a particular question set.

The following question sets indicate the general content of the checklists (Thompson
et al. 1998).

Reliability checklist

Q1. Is the component a single unit, active redundant or stand-by redundant?
Q2. Are the demands on the equipment short, medium or long pulses?
Q3. Does the duty cycle involve any thermal, mechanical or pressure shocks?
Q4. Is the pH of the process fluid high or low?
Q5. Is the component used for high, medium or low flow rates?
Q6. Is the component in a physical situation where external corrosive attack can

occur from: open weather, other machinery being submerged?
Q7. Are solids present in the process fluid?
Q8. Are gases present?
Q9. Is the fluid of a viscosity that is likely to increase loads on the equipment?
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Q10. Are sharp bends, causing forceful impingement, present?
Q11. Are stagnant zones present that may hold the process fluid after flushing?
Q12. How complex is the equipment?
Q13. Are alignment/adjustment procedures needed on installation/replacement?
Q14. Is any special equipment required to make the adjustments?
Q15. Do components have many state changes (e.g. opening/closing of valves)?
Q16. Is the equipment novel in design or application?
Q17. Do components have arduous sealing duties?
Q18. Are special materials used?

Maintainability checklist

Q1. Will catastrophic failure be evident in the control room?
Q2. Will degraded failure be evident from the control room?
Q3. Time period of degraded failure detection?
Q4. Does maintenance require protective clothing due to hazardous substances

or hot equipment, or does the equipment need time to cool down?
Q5. How easy is it to isolate equipment?
Q6. What method of isolation is required?
Q7. What area of plant needs to be isolated?
Q8. Is pressure release and drainage (including purging and venting) provided?
Q9. Is electrical isolation of equipment required?
Q10. Is scaffolding required for maintenance?
Q11. Can scaffolding be erected by maintenance personnel or by contractors?
Q12. Is there adequate space to build scaffolding?
Q13. Is there adequate space to manoeuvre while maintenance is taking place?
Q14. How is the equipment lifted?
Q15. Whatever lifting equipment is used, are there any problems foreseen?
Q16. Does other equipment need to be removed before access can be gained?
Q17. Is visual access to the fault good enough to carry out maintenance?
Q18. Is the physical access good enough to carry out maintenance?

4.3.1.2 System Performance Analysis and Simulation Modelling

Section 3.3.1.2 considered system performance within the context of designing for
availability, which can be perceived as the combination of:

• a system’s process capability (with regard to the process characteristics of ca-
pacity, input, throughput, output and quality);

• a system’s functional effectiveness (with regard to the functional characteristics
of efficiency and utilisation);

• a system’s operational condition (with regard to operational measures such as
temperatures, pressures, flows, etc.).

All these characteristics may serve as useful indicators in designing for availabil-
ity whereby system performance simulation modelling is generally considered the
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most appropriate methodology for predicting their integrated–interactive values. In
this case, simulation modelling has been found to be an effective tool for analysing
a large quantity of interrelated and compound variables in predicting a complex sys-
tem design’s process capability, functional effectiveness and operational condition.
Simulation modelling has been applied in determining the performance of complex
integrated systems design in Sect. 4.4.

System performance analysis is concerned with the study of the behaviour of
a system in terms of its measurable characteristics. System performance analysis
techniques can be applied in determining the performance characteristics of pro-
posed designs, and to identify those areas of the design where performance prob-
lems may be experienced. It is focused on determining how systems behave under
certain conditions, and can be used to compare different system designs to evalu-
ate their relative merits in terms of achieving the required design criteria. However,
questions relating to assurance of the integrity of a proposed design are not always
included in the scope of system performance analysis. A design that is acceptable
from a performance-related viewpoint may be unacceptable from an integrity point
of view; similarly, a design that meets integrity requirements such as reliability and
safety may not be acceptable from a system performance standpoint. System per-
formance analysis is a multidisciplinary field, covering many areas. Among these
are parameter performance matrices, evolutionary operation, experimental design,
queuing theory, modelling techniques and dynamic simulation.

System performance analysis in engineering design is concerned with some of
these modelling techniques, in particular simulation modelling and its application
to the study of the performance of systems based on process characteristics that af-
fect system availability. In most engineering systems, there are a significant number
of performance characteristics and technical constraints involved in their design.
When the interactions between all of the characteristics and constraints are consid-
ered, it becomes clear that these interactions are usually numerous and complex. The
behaviour of the whole system cannot easily be predicted by the application of rel-
atively simple algorithms, as might be expected for less complex systems based on
a few process characteristics. In complex process engineering designs, it is often not
totally obvious where the bottlenecks may occur, and what the determining factors
behind system performance might be. Thus, the principle underlying the develop-
ment of system performance models is that by capturing the essential real-world
behaviour of a system in a mathematical or simulation model, valuable insight can
be gained into its critical behaviour. Once a model of a system has been developed,
verified and validated, it is possible to experiment with the model and to determine
what the limiting factors in system performance are. This would then lead to pos-
sible modifications of the system’s design to improve the performance measure of
concern.

Development of a model would allow performance characteristics such as sizing,
capacity, mass and energy balances, and functional response issues to be addressed
at an early stage of an engineering process system’s life cycle. In this way, potential
performance problems are already identified at the conceptual phase of engineering
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design, and designed out of the system prior to firming up design configurations and
system specifications in the preliminary or schematic design phase. Without this
approach, there is a real danger that the actual bottlenecks of the installed system
will not be identified. In the absence of the evidence that a system performance
model may provide, it is quite likely that significant amounts of resources could
be spent later in ‘improving’ inherent items of the installed system that have been
found to constrain its performance.

System performance modelling provides a relatively inexpensive way of explor-
ing the performance implications of different system design configurations. Al-
though the effort involved in a major modelling project should not be underesti-
mated, the potential savings that can be made from avoiding redesign and/or rework
when a system fails to meet its performance objectives will more than justify the
cost.

Thus, from an engineering design perspective, it becomes essential not only to
understand the dynamic behaviour of complex or integrated systems, in addition
to formulating their expected performance characteristics, but also to ensure that
the design meets both the performance objectives as well as the necessary integrity
constraints.

a) Types of System Performance Models

System performance models can be broadly classified as either analytic models or
simulation models. Analytic models rely on formulae to represent the behaviour
of system components. If such formulae exist, then their solution is likely to be
fairly concise. However, in many cases formulae do not exist or are valid only under
restrictive conditions. Historically, analytic models have yielded only average be-
haviour patterns, and have not given insight into the likely distribution of expected
values. The use of analytic techniques to find underlying distributions in the case of
uncertainty in predicting essential process characteristics has extended the range of
engineering design problems that may be solved (Law et al. 1991).

For design problems that can be solved using these techniques, analytic mod-
els are ideal. However, the integration of analytic models representing individual
systems, each with process characteristics and performance constraints, is not triv-
ial. To obtain maximum benefit, these models must link together common process
characteristics and related system performance constraints, such that they provide
an accurate representation of the design’s intended integration of systems. In many
cases, it will not be possible to solve the analytic model to find the appropriate dis-
tribution of expected values. Mean-value predictions will be limited, since a much
larger number of factors affect the behaviour of a complex integration of systems. In
such cases, system performance simulation modelling is most appropriate (Emshoff
et al. 1970).
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b) System Simulation Modelling

There are two main types of simulation modelling, specifically:

• Continuous-time simulation model
• Discrete-event simulation model.

In the first type of model, continuous-time simulation model, time-related activity
is perceived to be continuous. This type of simulation is appropriate for continuous
engineering process situations such as modelling the concentrations of chemicals in
a reactor vessel. These concentrations will vary smoothly with time (at a fine enough
timescale) and, at each instant of time, the reaction will be proceeding at a certain
rate.

In the second type of model, discrete-event simulation model, time-related events
can be distinguished as fundamental entities and, from a modelling perspective,
no points in time other than those at which events happen need to be considered.
This type of model is well suited to modelling production systems or industrial
processes where not only the events are discrete entities but they can take on discrete
probability distributions (Shannon 1975; Bulgren 1982).

Simulation models attempt to derive the overall behaviour of a system either by
representing the behaviour of each component of the system separately, and speci-
fying how the components interact with each other, or by representing the behaviour
of the system as a whole and specifying how the process characteristics interact with
each other. Thus, variables of a simulation model may change in any of four ways
(Emshoff et al. 1970):

• In a discrete manner at any point in time.
• In a continuous manner at any point in time.
• In a discrete manner only at certain points in time.
• In a continuous manner only at discrete points in time.

In engineering design, it is common albeit not correct to use the term ‘discrete’ to
describe a system with constant periodic time steps, where the term refers to the
time interval and not to discrete events during the time interval. For discrete system
simulations, input is introduced into the model as a set of discrete items arriving
either randomly or at specified intervals. The individual components then react ac-
cordingly, and the overall behaviour of the model can be measured (Bulgren 1982).
Conversely, for continuous system simulations (or process modelling), a smooth
flow of homogenous values is described, analogous to a constant stream of fluid
passing through a pipe. The volume may increase or decrease but the flow is con-
tinuous. Changes in process characteristic values (i.e. inputs, throughputs, outputs,
etc.) are based directly on changes in time, and time can change in equal incre-
ments. These values reflect the state of the performance of the modelled system at
any particular time, which advances evenly from one time step to the next (Dia-
mond 1997).
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Although simulation models are used to predict the behaviour of the system(s)
being modelled, their behaviour must be interpreted statistically. This necessitates
either many different runs or extended run periods of the model of a given system,
depending on the type of simulation modelling applied, to obtain a valid sample
of the behaviour that the system is likely to exhibit. Compared to the use of ana-
lytic models, developing and interpreting system performance simulation models is
a slow process but, nevertheless, definitely much cheaper than experimenting with
real-world systems after they have been designed and installed (Law et al. 1991).

As stated previously, in producing a simulation model of a system design, the
intent is to determine how that system will behave under various conditions. The
structure of the simulation model must therefore monitor, and be sensitive to, the
behaviour of the system arising from the interaction of a potentially large number
of system items (i.e. sub-systems and assemblies), and/or the interaction of a wide
range of variable performance characteristics (i.e. inputs, throughputs and outputs—
or, in modelling terms, exogenous, status and endogenous variables respectively). It
is thus best to adopt a holistic approach, considering all of the components and
processes involved at a high systems hierarchy level. This means that the preferred
application of system performance simulation modelling is at the conceptual engi-
neering design phase, with further modelling refinements as the design progresses
into the schematic or preliminary design phase. However, under a given set of con-
ditions, a system will most likely be constrained by one particular item or a single
performance characteristic—although this may vary depending on the set condi-
tions. It is therefore essential to represent within the model as many of the items
and/or performance characteristics in the system as possible, so that potential bot-
tleneck effects can be determined. System items that are not close to being a bottle-
neck can be represented simply, since the fine detail of their behaviour is not likely
to change much. At the conceptual design phase, all system items are represented
simply so that some information can already be gleaned as to where potential bottle-
necks might exist. The critical areas can then be refined to gain further insight into
these bottlenecks. Clearly, if a system item or performance characteristic is not rep-
resented in the model, it can never be construed to be a constraint on the behaviour
of the system. This somewhat undermines the benefit of developing a simulation
model at the conceptual design phase, and also reduces its perceived usefulness. If
the system’s item or characteristic is represented, however, the model can be used
to investigate how changes in the assumptions made about the item or characteristic
affect the overall behaviour of the model, and the system.

The balance between detail and scope of system performance simulation mod-
elling is evident—if the model has wide scope, then it can be extended only to a shal-
low depth in a given time; conversely, if the same effort is put into a narrow scope,
then a greater depth of available modelling detail can be added. The aim of a system
performance simulation modelling study should therefore be to initially identify un-
certainties surrounding broad characteristics of the system’s performance, and then
to find those items that could place constraints on system behaviour.
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4.3.1.3 Uncertainty in System Performance Simulation Modelling

In considering the various uncertainties involved in system performance simulation
modelling for engineering design, the robust design technique is a preferred appli-
cation in decision-making for design integrity. It is generally recognised that there
will always be uncertainties in the design of any engineering system. This is due
to variations in the performance characteristics not only of the individual system
but in the complex integration of multiple systems as well. Besides possible algo-
rithmic errors related to computer simulation model implementation, two general
sources contribute to uncertainty in simulation model predictions of performance
characteristics in engineering system designs (Du et al. 1999b):

• External uncertainty:
External uncertainty comes from the variability in model prediction arising from
alternative model variables (including both design parameters and design vari-
ables). It is also termed ‘input parameter uncertainty’. Examples include the vari-
ability associated with process characteristics of capacity, input, throughput and
quality, functional characteristics of efficiency and utilisation, operational condi-
tions, material properties, and physical dimensions of constituent parts.

• Internal uncertainty:
This type of uncertainty has two sources. One is due to the limited information
in estimating the characteristics of model parameters for a given, fixed model
structure, which is called ‘model parameter uncertainty’, and another type is in
the model structure itself, including uncertainty in the validity of the assumptions
underlying the model, referred to as ‘model structure uncertainty’.

A critical issue in simulation modelling of an engineering design that comprises
a complex integration of systems is that the effect of the uncertainties of one sys-
tem’s performance characteristics may propagate to another through linking model
variables, resulting in the overall systems output having an accumulated effect of the
individual uncertainties. A practical problem in large-scale systems design is that
multidisciplinary groups often use predictive tools of varying accuracy to determine
if the design options meet the design requirements, especially when performing im-
pact analyses of proposed changes from other groups (Du et al. 1999b).

The inevitable use of multidisciplinary groups in large-scale systems design ne-
cessitates the application of collaborative engineering design as well as a careful
study of the effect of various uncertainties as a part of design requirements tracking
and design coordination. Two primary issues concerning uncertainty in simulation
modelling of an engineering design that comprises a complex integration of systems,
and thus an integration of multidisciplinary design teams, are:

• How should the effect of uncertainties be propagated across the systems?
• How should the effect of uncertainties be mitigated to make sound decisions?

Techniques for uncertainty analysis include the statistical approach and the worst-
case analysis or extreme condition approach (Du et al. 1999c).
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The statistical approach relies heavily on the use of data sampling to generate
cumulative distribution functions (c.d.f.) of system outputs. Monte Carlo simula-
tion, a commonly used random simulation-based approach, becomes expensive in
simulations of complex integrations of systems (Hoover et al. 1989).

Reduced sampling techniques, such as the Latin hypercube sampling technique
(Box et al. 1978) and Taguchi’s orthogonal arrays technique (Phadke 1989), are
used to improve computational efficiency, though they are not commonly applied in
commercial simulation programs.

The extreme condition approach is to derive the range of system performance
characteristics, such as process input, throughput or output, in terms of a range of
uncertainties, by either sub-optimisations, first-order Taylor expansion or interval
analysis (Chen et al. 1995).

Use of the statistical approach as well as of the extreme condition approach has
been restricted to propagating the effect of external uncertainty only, prompting the
need to accommodate more generic representations of both external and internal
uncertainties. Furthermore, there are few examples associated with how to mitigate
the effect of both the external and internal uncertainties in system performance sim-
ulation modelling of complex engineering designs. Relatively recent developments
in design techniques have generated methods that can reduce the impact of potential
variations by manipulating controllable design variables.

Taguchi’s robust design is one such approach that emphasises reduction of per-
formance variation through reducing sensitivity to the sources of variation (Phadke
1989). Robust design has also been used at the system level to reduce the perfor-
mance variation caused by process characteristic deviations. The concept of robust
design has been used to mitigate performance variations due to various sources of
uncertainties in simulation-based design (Suri et al. 1999).

An integrated methodology for propagating and managing the effect of uncer-
tainties is proposed. Two approaches, namely the extreme condition approach and
the statistical approach, are simultaneously developed to propagate the effect of both
external uncertainty and internal uncertainty across a design system comprising in-
terrelated sub-system analyses. An uncertainty mitigation strategy based on the prin-
ciples of robust design is proposed. A simplistic simulation model is used to explain
the proposed methodology. The principles of the proposed methods can be easily
extended to more complicated, multidisciplinary design problems.

a) Propagation of the Effect of Uncertainties

A simulation-based design model is used to explain the proposed methodology. The
principles of the methodology are generic and valid for other categories of rela-
tionships between the system models. The design model consists of a chain of two
simulation programs (assuming they are from two different disciplines) that are con-
nected to each other through linking variables, as illustrated in Fig. 4.14 (Du et al.
1999c).
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Fig. 4.14 Simulation-based design model from two different disciplines (Du et al. 1999c)

The linking variables are represented by the vector y. The input to the simulation
model I is the vector of the design variable x1 with uncertainty (external uncertain-
ties describe by a range Δx1, or certain distributions).

Due to the external uncertainty and the internal uncertainty, which is modelled
as ε1(x1) in simulation model I, the output vector of model I, which is given by the
expression

y = F1(x1)+ ε1(x1)

will have deviations Δy or described by distributions.
For simulation model II, the inputs are the linking variable vector y and the design

variable vector x2. Because of the deviations existing in x2 and y, and the internal
uncertainty ε2(x2y), associated with simulation II, the final output vector, given by
the expression

z = F2(x2y)+ ε2(x2y)

will also have deviations Δz or described by distributions.
For simulation model I, the output expression for y consists of the simulation

model F1(x1) and the corresponding error model of the internal uncertainty, ε1(x1).
For simulation model II, the inputs are the linking variable y and the design vari-
able x2. The output expression for z consists of the simulation model F2(x2y) and the
corresponding error model of the internal uncertainty, ε2(x2y). The output vector z
often represents system performance parameters that are used to model the design
objectives and constraints. Because of the deviations existing in x2 and y, and the in-
ternal uncertainty ε2(x2y), the final output z will also have deviations. The question
is how to propagate the effect of various types of uncertainties across a simulation
chain with interrelated simulation programs. Two approaches are proposed, first the
extreme condition approach and, second, the statistical approach (Du et al. 1999c).

b) Extreme Condition Approach for Uncertainty Analysis

The extreme condition approach is developed to obtain the interval of extremes of
the final output from a chain of simulation models. The term extreme is defined as
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“the minimum or the maximum value of the end performance (final output) corre-
sponding to the given ranges of internal and external uncertainties”.

With this approach, the external uncertainties are characterised by the intervals
[x1 −Δx1,x1 + Δx1] and [x2 −Δx2,x2 + Δx2]. Optimisations are used to find the max-
imum and minimum (extremes) of the outputs from simulation model I, and simu-
lation model II. The flowchart of the proposed procedure is illustrated in Fig. 4.15.

The steps to obtain the output z, zmin, zmax are given as (Du et al. 1999c):

i) Given a set of nominal values x1 and range Δx1 for simulation model I, min-
imise (maximise) F1(x1) and ε1(x1) by selecting values from [x1 −Δx1,x1 +
Δx1] to obtain the values F1 min(x1), F1 max(x1), and ε1 min(x1), ε1 max(x1).

ii) The optimisation model is:
Given: the nominal value of x1 and the range Δx1

Subject to: x1 −Δx1 ≤ x1 ≤ x1 + Δx1

Optimise: minimise F1(x1) to obtain F1 min(x1)
maximise F1(x1) to obtain F1 max(x1).

iii) Obtain the extreme values of internal uncertainty ε1 min(x1) and ε1 max(x1)
over the range [x1 −Δx1,x1 + Δx1].

iv) Obtain the interval [ymin,ymax] using:
ymin = F1 min(x1)+ ε1 min(x1)
ymax = F1 max(x1)+ ε1 max(x1).

v) Given a set of nominal values x2 and range Δx2, for simulation model II, min-
imise (maximise) F2(x2) and ε2(x2) by selecting values from [x2 −Δx2,x2 +
Δx2] to obtain the values F2 min(x2), F2 max(x2), and ε2 min(x2), ε2 max(x2).

vi) The optimisation model is:
Given: the nominal value of x2 and the range Δx2

Fig. 4.15 Flowchart for the
extreme condition approach
for uncertainty analysis (Du
et al. 1999c)

Given
Range [x1min, x1max] and

[x2min, x2max]

Minimize y
over [x1min, x1max]

to obtain ymin

Maximize y
over [x1min, x1max]

to obtain ymax

Minimize z
over [x2min, x2max] 

and [ymin, ymax]
to obtain zmin

Maximize z
over [x2min, x2max] 

and [ymin, ymax]
to obtain zmax

[ymin, ymax]

[zmin, zmax]
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Subject to: x2 −Δx2 ≤ x2 ≤ x2 + Δx2

Optimise: minimise F2(x2) to obtain F2 min(x2)
maximise F2(x2) to obtain F2 max(x2).

vii) Obtain the extreme values of internal uncertainty ε2 min(x2) and ε2 max(x2)
over the range [x2 −Δx2,x2 + Δx2].

viii) Obtain the interval [ymin,ymax] using:
zmin = F2 min(x2)+ ε2 min(x2)
zmax = F2 max(x2)+ ε2 max(x2).

Based on the computed interval [zmin,zmax], the nominal value of z is calculated as:

ż =
[zmin + zmax]

2
(4.153)

The deviation of z can be calculated as:

Δz = [zmin − zmax] (4.154)

The nominal value and deviation of a system output is based on given system input
intervals.

The extreme condition approach identifies the interval of a system output based
on the given intervals of the system inputs. It is applicable to the situation in which
both the external uncertainties in x1 and x2 are expressed by ranges. Illustrated in
Fig. 4.15 is the flowchart of the proposed procedure of using optimisations to find
the maximum and minimum (extremes) of outputs from simulation model I and sim-
ulation model II, for the simulation-based design model from two different design
disciplines given in Fig. 4.14. It depicts the procedure used to obtain the range of
outputs z, zmin, zmax, as considered in steps i) to viii) above.

c) The Statistical Approach for Uncertainty Analysis

The statistical approach is developed to estimate cumulative distribution functions
(c.d.f.) and probability density functions (p.d.f.), or population parameters (for ex-
ample mean and variance) of the final outputs from a chain of simulation models.
It is assumed that x1 and x2, and the internal uncertainty, ε1(x1) and ε2(x2y), fol-
low certain probabilistic distributions that may be obtained by field or experimental
data, or information of similar existing processes, or by judgements by engineering
experience.

Since the distribution parameters (i.e. mean and variance) of the uncertainty val-
ues ε1(x1) and ε2(x2y) are functions of x1,x2 and y, the final distributions of ε1(x1)
and ε2(x2y) are the accumulated effects of both the uncertainty in the error model
and the uncertainty of the external parameters such as x1,x2 and y.

Monte Carlo simulation methods are used to propagate the effect of uncertainties
through the simulation chain. A flowchart of the Monte Carlo simulation procedure
is given in Fig. 4.16 (Law et al. 1991).
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Fig. 4.16 Flowchart of the
Monte Carlo simulation pro-
cedure (Law et al. 1991)

H times a) Generate samples of
x1 and x2

N times

M times

b) Generate samples of
ε1(x1)

d) Generate samples of
ε2(x2,y)

f) Obtain c.d.f or p.d.f
of z

c) Calculate output of
simulation model I

y=F1(x1)+ε1(x1)

c) Calculate output of
simulation model II
z=F2(x2,y)+ε2(x2,y)

The Monte Carlo simulation approach generates statistical estimates of the sys-
tem output based on the given distributions of the inputs and error models. This
gives more information than does the extreme condition approach, by which only
the best and worst performance are estimated. Because the statistical approach is
based on Monte Carlo simulation, it often requires a large number of simulations.
More effective sampling techniques such as the Latin hypercube and fractional fac-
torial design can be used to reduce the amount of simulations (Hicks 1993).

The Monte Carlo simulation procedure is as follows (Law et al. 1991):

i) Generate H samples of x1 and x2 as simulation inputs based on distribution
functions.

ii) For the given x1, calculate the distribution parameters of the internal uncer-
tainty ε1(x1) for simulation model I, and generate N samples of the internal
uncertainty ε1 for simulation model I based on the distribution function.

iii) Evaluate the corresponding output y = F1(x1)+ε1(x1) for simulation model I.
iv) For each y, calculate the distribution parameters of the internal uncertainty

ε2(x2y) of simulation model II, and generate M samples of the internal uncer-
tainty ε2 based on the distribution function.

v) Evaluate the corresponding output z = F2(x2)+ε2(x2) for simulation model II.
vi) Calculate the mean value μz, the standard deviation σz or the c.d.f. and p.d.f.

of z based on H ×M×N samples of z.
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d) Mitigating the Effect of Uncertainty

To assist designers to make reliable design decisions under uncertainties, the pro-
posed techniques of propagating the effect of uncertainties is integrated with the
multidisciplinary optimisation approach based on the principles of robust design,
i.e. by extending the quality engineering concept to the mitigation of the effects of
both external and internal uncertainties. From the viewpoint of robust design, the
goal is to make the system (or product) least sensitive to the potential variations
without eliminating the sources of uncertainty (Taguchi 1993).

The same concept is used here to reduce the impact of both external and internal
uncertainties associated with the simulation programs. The robust optimisation ob-
jectives are achieved by simultaneously optimising mean performance and reducing
performance variation, subject to the constraints brought about by their deviations.
Taguchi’s robust design has been used in the past for mitigating the effect of param-
eter uncertainty, which is similar to the external uncertainty considered here.

This concept is extended to mitigate the effect of model structure uncertainty
(internal uncertainty). For the extreme condition approach, the robust design model
can be formulated as:

Given: (4.155)
Parameter and model uncertainties (ranges)

Find:
Robust design decisions (x)

Subject to:
System constraints: gworst(x) ≤ 0

Objectives:
i) Optimise the mean of system attributes: a(x)

ii) Minimise the deviation of system attributes: Δa(x) .

In the above model, gworst(x) is the maximum constraint function estimated by the
worst case of constraint function g(x), and a is the objective vector. Both g(x)
and a(x) are the subsets of system output vector z. The mean and deviation of the
system outputs can be obtained by the extreme condition approach as introduced
earlier. This constitutes the necessary multiple objectives in robust design (i.e. both
the mean and the deviation of the system are expected to be minimised with the as-
sumption that optimising the mean of a system attribute can always be transformed
into a minimisation problem). The general form of the objective can be expressed
as:

min[ax,Δa(x)] (4.156)

Many existing approaches can be used to solve this multi-objective robust optimi-
sation problem. In the above model, the worst-case analysis is used to formulate the
constraints. The worst-case analysis assumes that all fluctuations may occur simul-
taneously in the worst possible combination (Parkinson et al. 1993). The effect of
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variations on a function is estimated using a first-order Taylor’s series as follows:

Δg(x) = ∑
f

∣∣∣∣∂g(x)Δ(x)
∂x1

∣∣∣∣ (4.157)

where Δg(x) represents the variation transmitted to constraint g(x) for a worst-case
analysis.

The design feasibility expressed in Eq. (4.155) can be formulated by increasing
the value of the mean g(x) by the functional variation Δg(x):

gworst(x) = Δg(x)+∑
f

∣∣∣∣∂g(x)Δx
∂x1

∣∣∣∣ (4.158)

For the statistical approach to estimate the performance distribution, the robust
model can be formulated as:

Given: (4.159)
Parameter and model uncertainties (distributions)

Find:
Robust design decisions x

Subject to:
System constraints: P[g(x) ≤ 0] ≥ P limit

Objectives:
i) Optimise the mean of system attributes a(x): μa(x)
ii) Minimise the standard deviation of system attributes a(x): σa(x) .

μa(x) and σa(x) are the estimates of the mean and variance of the system outputs
respectively. The constraints in the above model are expressed by the probabilistic
formulation. P[g(x) ≤ 0] is the probability of constraint satisfaction, and it should
be greater than or equal to the defined probability limit Plimit.

Because it is computationally expensive to evaluate the probability of constraint
satisfaction, alternative formulations—for example, the moment matching method—
are used in practice to evaluate the constraints. With the moment matching method,
g(x) is assumed to follow a normal distribution (Parkinson et al. 1993).

The constraint in Eq. (4.159) is (Parkinson et al. 1993):

μa(x)+ kσa(x) ≤ 0 (4.160)

where k is the constant for the probability of constraint satisfaction.
For example, k = 1 stands for the probability ≈0.8413 and k = 2 stands for prob-

ability ≈0.9772.
Based on the previous considerations, the strategy that integrates the propagation

and mitigation of the effect of uncertainties is summarised in Fig. 4.17. Module A is
the uncertainty quantification module that represents the first stage in the integrated
methodology. Module B is the propagation module. In this module, either the ex-
treme condition approach or the statistical approach is used to identify the range or
to estimate the population parameters of system performance under the influence of
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A.
Uncertainty
quantification
module

B.
Propagation
module

Range
[x1min, x1max]
[x2min, x2max]

[zmin, zmax]
or

(μz, σz)

External uncertainties
range Δx1 and Δx2
or c.d.f of x1 and x2

Internal uncertainties
ε1(x1) and ε2(x2,y)

[x1min, x1max]
[x2min, x2max]
ε1(x1), ε2(x2,y)

or c.d.f of x1 and x2
ε1(x1), ε2(x2,y)

optimization

simulation

[zmin, zmax]

(μz, σz)

Fig. 4.17 Propagation and mitigation strategy of the effect of uncertainties (Parkinson et al. 1993)

both internal and external uncertainties. The performance ranges or estimated pop-
ulation parameters are then used to mitigate the effect of uncertainties. The basis
for controlling the effect of uncertainties is the robust design approach formulated
in Eqs. (4.155) and (4.159). The process to manage the effect of uncertainty is it-
erative and involves repeated uncertainty analysis until a robust optimal solution is
obtained.

4.3.2 Analytic Development of Availability and Maintainability
Assessment in Preliminary Design

Techniques selected for further development of availability and maintainability as-
sessment to determine the integrity of engineering design in the preliminary or
schematic design phase of the engineering design process include the application of
Petri nets (PN). The techniques selected are considered under the following topics:

i. Maximising design availability using Petri net models
ii. Designing for availability using Petri net modelling.

Designing for availability with preventive maintenance Analytic assessment of
large complex process systems has increasingly become an integral part of the en-
gineering design process, particularly in designing for availability and maintain-
ability—and even more so with the inclusion of complex interactions, such as pre-
ventive maintenance on system availability. Preventive maintenance is considered as
one of the key factors to increasing system reliability, availability and productivity,
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and to reducing production costs. The importance of the inclusion of maintenance
in engineering design has led to an increased sophistication in mathematical models
required to analyse its impact on complex system behaviour (Lam et al. 1994).

A quantitative example of designing for availability with the inclusion of preven-
tive maintenance is developed. The designed system starts in a working state, but
ages with time and eventually fails if no preventive maintenance action is carried
out. Preventive maintenance is performed at fixed intervals from the start-up of the
system in the operational state. The preventive maintenance activity takes an expo-
nentially distributed amount of time and is in the form of component renewal that
is assumed will allow for full system performance. The preventive maintenance in-
terval is thus a critical design parameter. If the interval approaches zero, the system
is always under maintenance and availability drops to zero. Conversely, if the in-
terval becomes too large, the beneficial effect of the preventive maintenance action
becomes negligible. The goal of the example is to develop an analytic expression for
the steady-state behaviour of a complex system using Petri net (PN) methodology,
and to determine the optimal design maintenance interval that will maximise system
availability.

4.3.2.1 Maximising Design Availability Using Petri Net Models

Petri net models have only recently gained widespread acceptance—they provide
a graphical language ideally suited to modern CAD environments that can be con-
cise in their specification; they provide a natural way to present complex logical in-
teractions among integrated systems, or process activities within a system; and they
are closer to a designer’s intuition about what a complex systems model should look
like (Peterson 1981; Murata 1989). Many structural and stochastic extensions have
been proposed in the application of Petri nets to increase their modelling power and
their capability to represent large, complex integrated systems. The most up-to-date
and valuable source of references for the theoretical development and application of
Petri net models is the series of international workshops known as Petri Nets and
Performance Models (PNPM), initiated in Italy in 1985, and which moved to the
USA, Japan, Australia and France in the following decades.

a) Petri Net Theory

Petri nets have been used as mathematical, graphical tools for modelling and
analysing systems showing dynamic behaviours characterised by synchronous and
distributed operation, as well as non-determinism (Peterson 1981). A basic Petri net
structure consists of places and transitions interconnected by directed arcs. Places
are denoted by circles and represent conditions, while transitions are denoted by
bars and represent events. The directed arcs in a Petri net represent flow of control
where the occurrence of events is controlled by a set of conditions.
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In addition to its graphical structure, a Petri net is effectively used to simulate the
dynamic behaviour of a modelled system in terms of states, or markings, and their
changes during model execution. A marking is an assignment of tokens to the places,
where a token denotes that the corresponding condition is true. Thus, the marking
of places describes the current state of the Petri net in terms of the conditions that
are true and those that are false.

The translation of a flowchart to a Petri net is illustrated in Fig. 4.18 where the
nodes of the flowchart are replaced by transitions in the Petri net, and the arcs are
replaced by places.

The Petri net execution changes the number and location of tokens according to
a rule of transition enabling and firing (Murata 1989) where:

• a transition t is enabled if each input place p is marked with the tokens w(p,t),
where w(p,t) is the weight of the arc from p to t;

• an enabled transition may or may not fire depending on whether or not the event
actually takes place;

• an enabled transition t is fired by removing w(p,t) tokens from each input place p
and adding w(t, p) tokens to each output place p.

Petri nets represent a powerful paradigm, useful for modelling complex systems in
the context of systems performance, in designing for availability subject to preven-
tive maintenance strategies that include complex interactions such as component
renewal. Such interactions are time-related and dependent upon component age and
estimated residual life. However, original Petri nets did not carry any notion of time.
Thus, in order to make the technique useful for quantitative systems analysis in en-
gineering design, a variety of time extensions have been proposed in the literature.
The distinguishing features of these time extensions are whether the duration of the
events should be modelled by deterministic or random variables, and whether the
time is associated with process functions, or transitional events. Petri nets in which
the timing is stochastic are referred to as stochastic Petri nets (SPN), and the most
common assumption is that time is assigned to the duration of transitional events.
The time evolution of an SPN is expressed as a stochastic process, and referred to
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Fig. 4.18 Translation of a flowchart to a Petri net (Peterson 1981)
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as its marking process. SPN can be used to automatically generate the underlying
marking process, which can then be analysed to yield results in terms of the original
Petri net model.

This is a case where a user-level representation of complex systems, typically
in the form of simulation models (such as the process equipment models (PEMs)
developed in Sect. 4.4), is translated into an analytic representation that is processed
and the results referred back to the user-level representation.

The most common assumption in the literature is to assign to the PN transitions
an exponentially distributed firing time (i.e. start to completion time of an activity),
so that the resulting marking process is a continuous-time Markov chain (CTMC;
Molloy 1982). Almost all the PN-based tools are based on this assumption. In prin-
ciple, simple equations can be derived for both transient and steady-state analysis
of CTMCs. However, practical limitations arise from the fact that the state space
(i.e. the composition of different states of a system and its transition interaction of
moving from state i to state j, including the probability of such a transition) grows
much faster than the number of components in the system being modelled. The
use of an exponentially distributed firing time has been regarded as a restriction in
the application of PN models, as there are many engineering processes with times
to occurrence that are not exponentially distributed. The hypothesis of exponen-
tial distributions in these cases results in the construction of models that give only
a qualitative, rather than quantitative analysis of real systems. The existence of de-
terministic or other non-exponentially distributed events in engineering processes,
such as start-up delays and pre-planned downtimes in real-time systems, gives rise
to stochastic models that are non-Markovian in nature. In recent years, a consid-
erable effort has been devoted to improving the PN methodology in order to deal
with generally distributed events in real-time systems. However, the inclusion of
non-exponential distributions affects the associated marking process (in that some
or other retained memory of past events would then be required), and further specifi-
cation is needed at the PN level in order to uniquely define how the marking process
is conditioned on past history (Ciardo et al. 1994).

b) Definition of the Basic Petri Net Model

A marked PN is a tuple PN = (P,T, I,O,M) (Peterson 1981), where:

• P = {p1, p2, . . . , pn} is the set of places (drawn as circles);
• T = {t1,t2, . . . ,tn} is the set of transitions (drawn as bars);
• I and O are the input and the output functions respectively;
• M = {m1,m2, . . . ,mn} is the marking of the PN.

The generic entry mi is the number of tokens (drawn as black dots) in place pi, in
marking M. The initial marking is M0. The input function I provides the multiplic-
ities of the input arcs from functions to transitions; the output function O provides
the multiplicities of the output arcs from transitions to functions. Input and output
arcs have an arrowhead on their destination. A transition is enabled in a marking if
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Fig. 4.19 Typical graphical representation of a Petri net (Lindemann et al. 1999)

each of its input places contains at least as many tokens as the multiplicity of the
input function I. An enabled transition fires by removing as many tokens as the mul-
tiplicity of the input function f from each input place, and adding as many tokens
as the multiplicity of the output function O to each output place. A marking M′ is
said to be directly reachable from M when it is generated from M by firing a single
enabled transition tk. The reachability set R(M0) is the set of all the markings that
can be generated from an initial marking M0 by repeated application of the above
rule. The enabling of a transition corresponds to the starting of an activity, while
the firing corresponds to the completion of an activity. Thus, the firing of a transi-
tion causes a previously enabled transition to become disabled. PNs can be used to
capture the behaviour of many real-world situations, such as the typical PN given in
Fig. 4.19 below (Lindemann et al. 1999):

Structural extensions Various structural extensions have been proposed in the lit-
erature to increase either the class of problems that can be represented, or the ability
and the ease with which real systems can be modelled. The modelling power of a PN
is the ability of the PN formalism to represent classes of problems. Modelling con-
venience is defined as the practical ability to represent a given behaviour in a sim-
pler, more compact or more natural way. Decision power is defined to be the set
of properties that can be analysed. Increasing the modelling convenience decreases
the decision power. Thus, each possible extension to the basic formalism requires
an in-depth evaluation of its effect upon modelling convenience and decision power
(Peterson 1981).
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Some extensions have proven so effective that they are now considered part of
the standard PN definition. They are:

• Inhibitor arcs
• Transition priorities
• Marking-dependent arc multiplicity.

Inhibitor arcs connect a place to a transition and are drawn with a small circle on
their destination. An inhibitor arc from a place pi to a transition tk disables tk when
pi is not empty. It is possible to use an arc multiplicity extension together with
inhibitor arcs. In this case, a transition tk is disabled whenever place pi contains at
least as many tokens as the multiplicity of the inhibitor arc. The number of tokens
in an inhibitor input is not affected by a firing operation.

Transition priorities are integer numbers assigned to the transitions. A transition
is enabled in a marking if and only if no higher priority transitions are enabled. If
this extension is introduced, some markings of the original PN may no longer be
reachable.

Marking-dependent arc multiplicity was introduced with the intent to model sit-
uations in which the number of tokens to be transferred along the arcs (or to enable
a transition) depends upon the system state. Arcs with marking-dependent multi-
plicity are indicated by a Z on the arc, and allow simpler and more compact PNs
than would otherwise be possible. In many practical problems, their use can reduce
the complexity of the PN model (Ciardo 1994).

c) Definition of Stochastic Petri Nets

The most common way to include time into a PN is to associate the time duration
with the activities that induce state changes (i.e. transitions). The duration of each
activity is represented by a non-negative random variable with a known cumulative
distribution function (c.d.f.).

Let Γ = (γ1,γ2, . . . ,γnt) be the set of the nt random variables associated with the
nt transitions, then the set of their c.d.f. is:

G = [G1(t),G2(t), . . . ,Gnt(t)] (4.161)

When a waiting time γk is associated with a transition tk, the transition becomes
enabled according to the rules of the untimed PN, but it can fire only after a time
equal to γk has elapsed. This time between the enabling and the firing is referred to
as the firing time.

Let {M(t),t ≥ 0} be the marking process, M(t) representing the marking reached
by the PN at time t. The following analysis is restricted to SPNs in which the
random firing times have continuous c.d.f. with infinite support, i.e. (0,∞). With
this assumption, the marking process M(t) is a continuous-time, discrete-state,
stochastic process with a state space that is isomorphic to the reachability graph
of the untimed PN (i.e. the one looks exactly the same as the other).
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Given a marking in which more than one transition with the same priority level
(if priority is used) is enabled, the firing policy determines the transition that will
fire next. There are thus two possible alternatives (Ajmone Marsan et al. 1995):

• Race policy: the transition of which the firing time elapses first is assumed to be
the one that will fire next.

• Pre-selection policy: the next transition to fire is chosen according to an exter-
nally specified probability mass function independent of their firing times.

By far the most common firing policy for timed transitions is the race policy i).
The pre-selection policy ii) is commonly used for immediate transitions, which are
introduced for the first time into Markovian SPN (Ajmone Marsan et al. 1995).

Once the firing policy is defined, the execution policy must be specified. The ex-
ecution policy consists of a set of specifications for uniquely defining the stochastic
process, {M(t)}, under1ying an SPN. There are two elements that characterise the
execution policy: a criterion to keep memory of the past history of the process (the
memory policy), and an indicator of the re-sampling status of the firing time. The
memory policy defines how the process is conditioned upon the past. An age vari-
able ag associated with the timed transition tg keeps track of the time for which the
transition has been enabled. A timed transition fires as soon as the memory variable
ag reaches the value of the firing time γg. In the activity period of a transition, the
age variable is not 0.

The random firing time γg of a transition tg can be sampled at a time instant prior
to the beginning of an activity period. To keep track of the re-sampling condition
of the random firing time associated with a timed transition, a binary indicator vari-
able rg that is equal to 1 is assigned to each timed transition tg when the firing time
is to be sampled, and equal to 0 when the firing time is not to be sampled. Reference
is made to rg as the re-sampling indicator variable. Hence, in general, the (continu-
ous) memory of a transition tg is captured by the tuple (ag, rg). At any time period t,
transition tg has memory (its firing process depends on the past) if either ag or rg is
different from zero.

At the entrance to a marking, the remaining firing time (rft) has the value rft =
γg − ag, and is computed for each enabled transition given its currently sampled
firing time γg and the age variable ag. According to the race policy, the next marking
is determined by the minimal of the rfts. The following execution policies can now
be defined.

Execution policies A timed transition tg can be:

• Pre-emptive repeat different (prd): if both the age variable ag and the re-sampling
indicator rg are reset each time tg is disabled or it fires.

• Pre-emptive resume (prs): if both the age variable ag and the re-sampling indica-
tor rg are reset only when tg fires.

• Pre-emptive repeat identical (pri): if the age variable ag is reset each time tg is
disabled or fires but the re-sampling indicator rg is reset only when tg fires.
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Transition tg is prd—each time a prd transition is disabled or it fires, its memory
variable ag is reset and its indicator re-sampling variable rg is set to 0 (the firing
time must be re-sampled from the same distribution when tg becomes re-enabled).

Transition tg is prs—when tg is disabled, its associated age variable ag is not reset
but maintains its constant value until tg is re-enabled whereby tg = 1. At each suc-
cessive enabling point, ag restarts from the previously retained value. When tg fires,
both ag and rg are reset so that the firing time must be re-sampled at the successive
enabling point (γ2). The memory of tg is reset only when the transition fires.

Transition tg is pri—under this policy, each time tg is disabled, its age variable
ag is reset but its indicator re-sampling variable rg remains equal to 1, and the firing
time value γ1 remains active, so that in the next enabling period an identical firing
will result. The same value is maintained over different enabling periods up to the
firing of tg. Only when tg fires are both ag and rg reset, and the firing time is re-
sampled (γ2). Hence, also in this case, the memory is lost only upon firing of tg.

If the firing time is exponentially distributed, both the prd and prs policies behave
in the same way. However, the pri policy does not have the property of no memory.
Thus, the marking process of an SPN with only exponentially distributed firing times
is not a continuous-time Markov chain (CTMC) if at least a single non-exclusively
enabled transition exists with assigned pri policy.

If the firing time is deterministic, both the prd and pri policies behave in the
same way (that is, re-sampling a deterministic variable always provides an identical
value). The memory of the global marking process is considered as the superpo-
sition of the individual memories of the transitions. In general, the marking pro-
cess {M(t)} underlying an SPN is not analytically tractable (i.e. easily manageable)
unless some restrictions are imposed (Ciardo et al. 1994).

Note that a simulation approach for the prd and the prs cases, based on very
similar assumptions, has been adopted in the application simulation modelling of
Sect. 4.4.

d) Definition of Markovian Stochastic Petri Nets (MSPN)

When all the random variables γk associated with the PN transitions are exponen-
tially distributed, and the execution policy is not pri, the dynamic behaviour of the
PN is mapped into a continuous-time Markov chain (CTMC) with state space iso-
morphic to the reachability graph of the untimed PN. This restriction is the most
popular, and is usually referred to simply as MSPN or GSPN (Molloy 1982).

In order to completely specify the model, the set Λ = (λ1,λ2, . . . ,λnt) of the
nt firing rates assigned to the nt transitions is included. A usual convention in the
graphical representation is to indicate transitions with exponentially distributed fir-
ing times by means of empty rectangles, and transitions with non-exponentially dis-
tributed firing times by means of filled rectangles, as illustrated in Fig. 4.20.

Modelling real systems often involves the presence of activities or actions (such
as preventive maintenance activities) of which the duration is short or even negligi-
ble, with respect to the timescale of the process (especially continuous engineering
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Fig. 4.20 Illustrative example
of an MSPN for a fault-
tolerant process system (Aj-
mone Marsan et al. 1995)

processes). Hence, it is desirable to associate an exponentially distributed firing time
only with those transitions that are believed to have the largest impact on the system
operation. The starting assumption in the MSPN model is that transitions are parti-
tioned into two different classes, namely immediate transitions and timed transitions
(Ajmone Marsan et al. 1995).

Immediate transitions fire in zero time once they are enabled, and have prior-
ity over timed transitions. Timed transitions fire after an exponentially distributed
firing time (these are called EXP transitions). In the graphical representation of
MSPN, immediate transitions are drawn as thin bars. Markings enabling immediate
transitions are passed through in zero time and are called vanishing states. Mark-
ings enabling no immediate transitions are called tangible states. Since the process
spends zero time in the vanishing states, they do not contribute to the dynamic be-
haviour of the system, and a procedure can be developed to eliminate these from
the final Markov chain. With the partition of PN-transitions into a timed and an im-
mediate class, a greater flexibility of modelling is achieved without increasing the
dimensions of the final tangible state space from which the process measures are
computed. An illustrative example of an MSPN is given in Fig. 4.20.

Dealing with large complex systems MSPNs can provide a compact representa-
tion of very large systems. This is reflected in an exponential growth of the reachable
markings as a function of the primitive elements in the MSPN (places and transi-
tions), and as a function of the number of tokens in the initial marking.

This exponential growth of the state space has often been recognised as a severe
limitation in the use of the PN methodology to deal with real-life applications, and
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a significant effort has been devoted to overcome or to alleviate this problem (Mol-
loy 1982). Since Markovian-SPNs are based on the solution of a CTMC, all the
techniques that have been explored to handle very large Markov chains can prof-
itably be utilised in connection with MSPNs. When dealing with large models, not
only does the solution of the system become difficult but also the model description
and the computer representation become complex, which has resulted in an increas-
ing application of reachability graphs.

e) Generating Reachability Graphs

The generation of a PN reachability graph (an extended and a reduced) is best ex-
plained with the aid of an example. Consider a process system based on a queuing
client-server paradigm (typically in discrete event, single item and batch processing
systems), the PN model being shown in Fig. 4.21. Transitions labelled tek or stk are
timed transitions that fire after an exponentially distributed firing time EXP (rep-
resented by empty rectangles), and transitions labelled tik are immediate transitions
that fire in zero time once they are enabled (represented by thin single-line bars). The
system is made up of process units (clients) waiting in a controlled queue, requiring
processing (transition te1) that can be supplied with probability (1−c) (transition ti3)
by two servers (processing assemblies) working in parallel, and with probability c
(transition ti1) by accessing a resource (place p12) shared by the two servers (in this
case, the resource can be envisaged as some or other utility controlling the client
queue and the servers, such as a distributed control system DCS). In the case of
firing of ti3, a message forwarded by the client is split into two sub-messages each
addressed to a different server (places p5 and p6). The two servers are characterised
by an exponentially distributed service time modelled by transitions st1 and st2 re-
spectively.

It is assumed, in the definition of the process model, that a processing transac-
tion is concluded when all the servers have served the sub-messages they have been
assigned. When a server has processed its sub-message, it accesses the shared re-
source (DCS) to record its processing results (transitions te2 and te3). After both
servers have accessed the shared resource, a join operation is performed and the
processed result is returned to control the client queue (i.e. transition ti6).

Conversely, with probability c, the message of a client in the queue is already
available in the shared resource, so that the service requirement is met by the server
accessing the resource, retrieving the message and returning it to control the client
queue (transitions ti2 and te4). The reachability graph illustrated in Fig. 4.22 can now
be generated from the initial token distribution depicted in the PN model shown in
Fig. 4.21 and the markings of Table 4.3.

The extended reachability graph of an MSPN comprises both tangible and van-
ishing states. Elimination of the vanishing states results in a reduced reachability
graph that is isomorphic to the CTMC. Given a vanishing marking denoted by mb

(which is directly reachable from a tangible marking ma), and the set of tangible
markings S, reached from mb passing through a sequence of vanishing markings
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Fig. 4.21 MSPN for a process
system based an a queuing
client-server paradigm (Aj-
mone Marson et al. 1995)

Fig. 4.22 Extended reacha-
bility graph generated from
the MSPN model (Ajmone
Marsan et al. 1995)
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only, it is possible to evaluate the probability of the next tangible marking after mb

over S. Furthermore, ma may belong to S. The vanishing marking mb and the ones
reachable from mb by the firing of immediate transitions can be eliminated only by
introducing arcs directly connecting ma to mc ∈ S , mc �= ma, and by modifying the
firing rate associated with the generic transition tk enabled in ma (Ajmone Marsan
et al. 1995).

Table 4.3 gives the distribution of the tokens in the reachable markings. It is quite
evident that the markings m2,m3,m6,m7,m11,m13 and m16 are vanishing (shadowed
markings in Fig. 4.22) and can be eliminated. The reduced reachability graph,
defined over the tangible markings only, can then be generated as illustrated in
Fig. 4.23.

Once the reduced reachability graph is obtained, the matrix for the underlying
continuous-time Markov chain (CTMC) can be constructed. Let R0 be the reduced
reachability graph of a Markovian SPN, and N its cardinality. The infinitesimal gen-
erator of the underlying CTMC is then a N ×N matrix Q, where Q = [Qi j].

Let Π(t) be the N-dimensional state probability vector, of which the generic en-
try πi(t) is the probability of being in state i(i = 1,2, . . . ,N) at time t in the associated
CTMC. Then, Π(t) is the solution of the standard linear differential equation:

d
dt

Π(t) = Π(t) ·Q (4.162)

with initial condition:

Π(0) = [1,0,0, . . . ,0] .

Table 4.3 Distribution of the tokens in the reachable markings

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

m1 • •
m2 • •
m3 • •
m4 •
m5 • • •
m6 • • •
m7 • • •
m8 • •
m9 • • •
m10 • •
m11 • • •
m12 • •
m13 • •
m14 • •
m15 • • •
m16 • • •
m17 • •
m18 • •
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Fig. 4.23 Reduced reachability graph generated from the MSPN model

If the steady-state probability vector Π = limt→∞ Π(t) of the CTMC exists, it
can be calculated that:

ΠQ = 0

with:

N

∑
i=1

πi = 1

Since some of the output measures depend on the integrals of the probabilities,
rather than on the probabilities per se, it is necessary to provide the appropriate
computation of the integrals of the state probabilities:

Li(t) =
∫ t

0
πi(z)dz (4.163)

where Li(t) is the expected time that the CTMC stays in state i during the inter-
val (0,t).

Let L(t) denote the N-dimensional row vector consisting of the elements Li(t).
Integrating both sides of Eq. (4.162), the following relation is obtained:

d
dt

L(t) = L(t) ·Q+ Π(0) (4.164)

L(t) = N-dimensional row vector
Q = N ×N matrix of the CTMC
Π(0) = initial condition of the N-dimensional state probability vector.
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f) Measures of Markovian Stochastic Petri Nets (MSPN)

A fundamental property of the time-dependent representation of system behaviour
through SPNs is that they enable the user to define, in a simple and natural way,
a large number of different measures related to the performance and reliability of
the system.

The stochastic behaviour of a Markovian-SPN is determined by calculating
the Π(t), Π(0) and L(t) vectors over the reduced reachability set of R0. However,
the final output measures should be defined at the Petri net level as a function of its
primitive elements (i.e. places and transitions). The following mathematical models
provide a practical outline as how to relate the probabilities at the CTMC level with
useful measures at the PN level.

The probability of a given condition on the SPN By means of logical or algebraic
functions of the number of tokens in the PN places, a particular condition C (e. g.
no tokens in a given place) can be specified, and the subset of states S ∈ R0 can be
identified for which the condition is true. The output measure:

Cs(t) = Prob {condition C is true at time t}

given by:

Cs = ∑
s∈S

πs(t) (4.165)

where πs(t) is the probability of being in state s at time t.
Note: if S is the set of operational states, Cs(t) is the usual definition of system

availability.
A very useful case arises when the measure is the transient probability that the

condition is satisfied for the first time. By using such an approach in the analysis of
stochastic processes, the states s ∈ S can be made absorbing (i.e. assimilated), and
the quantity evaluated from Eq. (4.165) as the value of the process when entering S.
In this way, the above equation can be used to calculate system reliability:

Cs(t) = ∑
s∈S

πs(t)

System availability:
where S = set of operational states.

System reliability:

Cs(t) = ∑
s∈S

πs(t)

where s ∈ S and process entering S.
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The time spent in a marking Let S ∈ R0 be the subset of markings in which a par-
ticular condition is fulfilled. The expected time, ψs(t), spent in the markings s ∈ S
during the interval (0,t) is given by:

ψs(t) = ∑
s∈S

∫ t

0
πs(z)dz (4.166)

= ∑
s∈S

Ls(t)

Moreover, from the theory of irreducible Markov chains, as t approaches infinity,
the proportion of the time spent in states s ∈ S equals the asymptotic probability
(Choi et al. 1994):

ψs(t) = ∑
s∈S

πs (4.167)

= lim
t→∞

ψs(t)
t

ψs(t)/t represents the utilisation factor in the interval (0,1), and ψs the expected
steady-state utilisation factor. For example, if S is the set of states in which a pro-
cess is idle, ψs(t)/t is the fraction of idle time in (0,1) and ψs is the expected idle
time.

The mean first passage time Given that Cs(t), as calculated in Eq. (4.165), is
the probability of having entered subset S before t for the first time, the mean first
passage time μs can be calculated as:

μs =
∫ ∞

0
[1−Cs(z)]dz (4.168)

This formula requires the transient analysis to be extended over long intervals. There
are other direct techniques for calculating mean first passage times in a CTMC but
these are not relevant to this research (Ciardo et al. 1994).

The distribution of tokens in a place The cumulative distribution function (c.d.f.)
of the number of tokens in place pi of the SPN at time t is a step function in which
the amplitude of the kth step is obtained by summing up the probabilities of all
the states in the set R0 containing k tokens (k = 0, l,2, . . . ,K) in pi at time t. The
probability function fi(k,t) is the amplitude of the kth step. The expected value of
the number of tokens in place pi at time t is:

ET [mi(t)] =
∞

∑
k=0

k fi(k,t) (4.169)

As an example, if place pi represents identical units in a queue for a common re-
source, the above quantity gives the expected value of the number of units in the
queue at time t. In reliability analysis, the tokens in place pi represent the number
of failed components.
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The expected number of firings of a PN transition Given an interval (0,t), the
expected number of firings would indicate how many times, on average, an event
modelled by a PN transition has occurred in that interval. Let tk be a generic PN
transition, and let S be the subset of R0 that includes all the markings s ∈ S en-
abling tk. The expected number of firings of tk in (0,t) is given by:

ηk(t) = ∑
s∈S

λk(s)
∫ t

0
πs(z)dz (4.170)

= ∑
s∈S

λk(s) ·Ls(t)

where λk(s) is the firing rate of tk in marking s. In steady state, the expected number
of firings per unit of time becomes:

ηk(t) = ∑
s∈S

πsλk(s) (4.171)

This quantity represents the throughput associated with the given transition. If tran-
sition tk represents the completion of a service in a queuing system, ηk(t) is the
expected number of services completed in time (0,t) and ηk is the expected steady-
state throughput.

g) Definition of Stochastic Reward Nets

Stochastic reward nets (SRN) introduce a new extension into Markovian-SPNs, al-
lowing for the possibility of associating reward rates to the markings. The reward
rates are specified at the PN level as a function of its primitives (i.e. the number of
tokens in a place, or the rate of a transition). The underlying CTMC is then trans-
formed into a Markov reward model, thus permitting the eva1uation of performance
measures. Implementation of this extension allows the reward structure superim-
posed on the reachability graph to be generated automatically, and easily provides
performance measures (Ciardo et al. 1991).

The reward definition is called rate-based, to indicate that the system produces
reward at rate r(i) for all the time it remains in state i ∈ R0. Furthermore, impulse-
based reward models can be implemented where a reward function ri j is associated
with each transition from the state i ∈ R0 to j ∈ R0. Each time a transition from i
to j occurs, the cumulative reward of the system instantaneously increases by ri j . In
general, several combinations of the different reward functions can be specified in
the same model.

h) Definition of Non-Markovian Stochastic Petri Nets

As indicated previously, in order to define a PN with generally distributed tran-
sitions, the following entities must be specified for each transition: tg ∈ T : the
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c.d.f. Gg(t) of the random firing times γg, and the execution policy for determin-
ing (ag,rg).

Several classes of SPN models have been developed that incorporate some non-
exponential characteristics in their definition, and that adhere to the individual mem-
ory requirements indicated previously.

With the aim of specifying non-Markovian SPN models that are analytically
tractable, three approaches can be considered, specifically (Bobbio et al. 1997):

• An approach based on Markovian regenerative theory
• An approach based on the use of supplementary variables
• An approach based on state space expansion.

The first approach originates from a particular definition of a non-Markovian SPN
where, in each marking, a single transition is allowed to have associated with it
a deterministic firing time with prd execution policy (i.e. a deterministic SPN, or
DSPN). The marking process underlying a DSPN is a Markov regenerative process
(MRGP) in which equations can be derived for the transition probability matrix in
transient and in steady-state conditions (Choi et al. 1994).

Generalisation of the previous formulation is proposed by including the possi-
bility of modelling prs transitions and also by including pri transitions. The most
general framework under which the Markov regenerative theory has been applied
is where any regeneration time period is dominated by a single transition (non-
overlapping dominant transitions).

The second approach resorts to the use of supplementary variables. This method
has been applied to prd execution policies only, and with mutually exclusive gen-
eral transitions. A steady-state solution has been proposed, while the possibility
of applying the methodology to transient analysis has also been explored (German
et al. 1994).

The third approach is based on the expansion of the reachability graph of the
basic PN. In this approach, the original non-Markovian marking process is approxi-
mated by means of a continuous-time Markov chain (CTMC), defined over an aug-
mented state space. According to the definitions given previously, the reachability
graph expansion technique can be realised by assigning a continuous distributed
random variable to each transition (Neuts 1981).

Basically, the merit of this approach is the flexibility in modelling any combi-
nation of prd and prs memory policies, and any number of concurrent or conflict-
ing transitions with generally distributed firing times. Furthermore, the reachability
graph expansion technique can be implemented using a computer program. Starting
from the basic specification at the PN level, all the solution steps can be hidden from
the modeller in an OOP environment. The drawback of this approach is, of course,
the explosion of the state space.
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4.3.2.2 Designing for Availability Using Petri Net Modelling

Returning to the initial quantitative example of designing for availability with the
inclusion of preventive maintenance, Fig. 4.24 illustrates the MRSPN representation
of the system (Bobbio et al. 1997).

The working state is modelled by place Pup. The generally distributed transition
t f models the failure distribution of which the firing results in the system moving to
place Pdown. Upon system failure, the preventive maintenance activity is suspended;
the inhibitor arc from place Pdown to transition tclock is used to model this fact.

The deterministic transition tclock models the constant inspection interval. It is
competitively enabled with t f , so that the one that fires first disables the other.
Once tclock fires, a token moves in place Pmai, as well as the activity related with the
preventive maintenance (transition tmai starts). During the preventive maintenance
phase, the system is down and cannot fail by using the inhibitor arc from place Pmai

to transition t f .
The completion of the maintenance (firing of tmai) re-initialises the system in

an as-good-as-new condition; hence, t f is assigned a prd policy. Since upon failure
(and repair) a completed interval must elapse before the successive preventive main-
tenance takes place, tclock also must be assigned a prd policy. As can be observed
from Fig. 4.24, t f and tclock are conflicting prd transitions.

a) Numerical Computations for the Availability Petri Net Model

Since there are no immediate transitions in the PN, all the markings are tangible.
Starting from an initial marking m1, the token distribution of the reachable markings
represented in Fig. 4.24 (assuming the following order for the places: Pup, Pclock,
Pdown, Pmai) is given by:

m1 = (1,1,0,0) , m2 = (0,1,1,0) , m3 = (1,0,0,1) .

From marking m1, both t f and tclock may fire, leading to m2 and m3 respectively.
From m2, only tdown can fire, leading to m1 and, finally, from m3 only tmai can fire,

pup

pdown pmai

pclock

tclocktf tmaitdown

Fig. 4.24 MRSPN model for availability with preventive maintenance (Bobbio et al. 1997)
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leading to m1. As a consequence, the matrices E(t) and K(t) have the following
structure:

E(t) =

⎡
⎣E11(t) 0 0

0 E22(t) 0
0 0 E33(t)

⎤
⎦ (4.172)

K(t) =

⎡
⎣0 K12(t) K13(t)

K21(t) 0 0
K31(t) 0 0

⎤
⎦ (4.173)

Since E(t) is a diagonal matrix, the marking process is an SMP. Let Gf (t) be the
c.d.f. of the firing time associated with transition t f , and d be the deterministic main-
tenance interval associated with tclock.

Furthermore, let λ1 and λ2 be the firing rates associated with the transitions tdown

and also tmai respectively. The non-zero matrix entries are:

K12(t) =
[

Gf (t) 0 ≤ t < d
Gf (d) t ≥ d

]
(4.174)

K13(t) =
[

0 0 ≤ t < d
1−Gf (d) t ≥ d

]
(4.175)

K21(t) = 1− e−λ1t (4.176)

K31(t) = 1− e−λ2t (4.177)

E11(t) =
[

1−Gf (I) 0 ≤ t < d
0 t ≥ d

]
(4.178)

E22(t) = e−λ1t (4.179)

E33(t) = e−λ2t (4.180)

b) Steady-State Solution to the Availability Petri Net Model

To obtain the steady-state solution, the following procedure is given:
STEP 1:

α =

⎡
⎢⎣

α11 =
∫

[1−Gf (t)]dt 0 0

0 α22 = 1/λ1 0
0 0 α33 = 1/λ2

⎤
⎥⎦

ϕ =

⎡
⎣ 0 Gf (d) 1−Gf (d)

1 0 0
1 0 0

⎤
⎦
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Fig. 4.25 MRSPN model
results for availability with
preventive maintenance
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STEP 2:

D = [1/2 , 1/2[Gf (d)] , 1/2[1−Gf (d)]]

STEP 3:

ν = [1/A2 ·α11 1/A2 ·α22Gf (d) , 1/A2 ·α33[1−Gf (d)]]
A = 1/2α11 +1/2α22Gf (d)+1/2α33[1−Gf (d)]

The steady-state availability is given by the probability of being in state m1 (entry v1

in Step 3). The effect of the length of the preventive maintenance interval d on
system availability can now be determined.

The numerical computations are made assuming the following values:

i) Transition t f is distributed according to the Weibull cumulative distribution
function Gf (t) = 1− e−ctβ , with β the shape parameter and c the scale pa-
rameter. Assume β = 2.0 for an increasing failure rate (i.e. wear-out).

ii) Let λ1 = 0.1 h−1 and λ2 = 1.0 h−1 for the firing rates of the transitions tdown

and tmai respectively.
iii) The preventive maintenance interval d varies from 0 to 5,000 h.

Figure 4.25 is a representative plot of system availability t1 versus the maintenance
interval d. If d = 0, the system is always under maintenance and is completely un-
available. As d increases, the steady-state availability increases as well. For large d,
however, the effect of the preventive maintenance is nullified by the downtime due
to failure and, in the limit d → ∞, the availability approaches the value when there
is no preventive maintenance. The optimal maintenance interval d can now be com-
puted at which the availability achieves its maximum value vt → maximum.
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4.3.3 Analytic Development of Availability and Maintainability
Evaluation in Detail Design

Appropriate methods for further development as tools for availability and main-
tainability evaluation in determining the integrity of engineering design during the
detail design phase are:

i. The application of systems engineering in engineering design, particularly sys-
tems engineering analysis (SEA).

ii. The evaluation of complexity in integrated systems through complex systems
theory (CST).

4.3.3.1 Systems Engineering and Complex Systems Theory

Systems engineering is a discipline that establishes a structured analysis approach
to evaluate complex engineering design problems. Because systems engineering fo-
cuses in this case on the methodology of analysis and synthesis for determining
the overall integrity of complex integrated systems in engineering design, rather
than its execution, describing it precisely is more difficult than for other engineering
disciplines. Furthermore, its description varies considerably, particularly between
industrial and research applications. Industrial demand for systems engineering is
so pervasive that the approach is highly focused on methods for problem-solving in
the operation of engineered installations as well as in their engineering design, while
systems engineering in research concentrates mainly on mathematical methods and
algorithms needed for evaluating the complexity of these designs.

In the development of tools for availability and maintainability evaluation in de-
termining the integrity of engineering design during the detail design phase, key
characteristics of systems engineering are considered in industrial applications. Be-
cause the initial engineering approach must be quantitative, systems engineering
relies on mathematics, both for the representation of the real world as models and
simulations, and for analysis and synthesis in mathematical methods or algorithms.
This focus on mathematical methods and modelling translates the discipline of sys-
tems engineering into systems engineering analysis (SEA).

Systems engineering analysis is embodied in computer-based analysis of com-
plexity in engineering design, as well as in software programming. With the grow-
ing emphasis on computer aided design (CAD), systems engineering is increasingly
providing a central and complementary role as an integrating factor in collaborative
engineering design.

Complex systems theory (CST) cuts across the boundaries between conventional
scientific disciplines. It makes use of methods and examples from many disparate
fields, and its results are widely applicable to a great variety of scientific and engi-
neering problems (Wolfram 1988). Engineering systems, particularly industrial pro-
cess systems, are often described as being complex (Boullart et al. 1988; Pritsker
1990). The dynamic nature of process systems as well as the complex integration
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of these systems make it difficult to predict the effect of design decisions on future
system performance. Many integrated systems, which are designed to be flexible,
are constrained by their complexity in being inflexible.

An understanding of the effects of systems integration on system complexity is
essential for realising the full potential of process systems, their successful deploy-
ment in the process industry, and the economic justification of new process tech-
nologies. However, literature on system complexity, specifically in the process and
manufacturing context, is sparse (Ayres 1988; Deshmukh 1993).

The notion of complex systems has been thoroughly considered in systems engi-
neering analysis literature. Extrapolating from various different contexts in which
the idea of complexity is used, a complex system may be defined as one having
a static structure or dynamic behaviour that is counterintuitive or unpredictable
(Casti 1979). A complex system may also be referred to as a system that has patterns
of connections among sub-systems, such that any prediction of system behaviour
is difficult without substantial analysis or computation; or one in which decision-
making of alternative options in engineering design makes the effects of individual
choices difficult to evaluate (Simon 1981).

Computational or algorithmic complexity is often used for classifying process
control problems (Garey et al. 1979). However, computational complexity does not
capture all the aspects of complexity in engineering systems. Also, computational
complexity does not always relate to the performance of the system, since compu-
tational complexity is an algorithm-related measure.

The complexity of a physical system can be characterised in terms of its static
structure or time-dependent behaviour. Static complexity can be viewed as a func-
tion of the structure of the system, connective patterns, variety of components, and
the strengths of interactions, whereas dynamic complexity is concerned with unpre-
dictability in the behaviour of the system over a time period (Deshmukh 1993).

The process environment consists of physical systems in which concurrent and
sequential processes take place in order to produce an output. The nature of these
processes is dependent not only upon system capabilities but also on the process
characteristics (inputs, throughputs and outputs) being produced in the system.
Hence, any measure of system complexity should be dependent on both the system
and process characteristics, particularly with integrated systems that result in a mul-
tiplicity of characteristic-related event criteria. However, the complexity principle
states that as the complexity and uncertainty of an engineering system increases,
our ability to predict its behaviour diminishes, until a threshold is reached beyond
which accuracy and significance become almost mutually exclusive. This is often
termed the threshold of chaos. Phenomena that are chaotic are unpredictable (non-
repeatable) and, hence, cannot be optimised. The main reason for this is an extreme
sensitivity to initial conditions. Most complex systems contain some chaos. All that
can be done with chaotic phenomena is to increase the analysis of their properties,
patterns, structure and occurrence (Zadeh 1979).

The difficulty in making design decisions with complex systems arises from the
number of choices available at each decision point relating to each event in the
range of the event-criteria possibilities, and the unpredictability of the effects of
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these events on system performance. Computational complexity can be considered
to be the algorithmic effort required to evaluate these choices. In addition to systems
complexity, there is a further aspect that relates to the control of process systems:
static and dynamic complexities are usually considered assuming constant control
schemes. However, different process systems require varying levels of control, fur-
ther complicating the difficulty of regulating complex processes. The notion of com-
plexity needs to be qualified and quantified in order to compare different system
alternatives. The general lack of understanding in this area has hindered designers
in deciding to what extent systems integration is beneficial, and beyond which point
integration is actually detrimental to system performance, since correct decisions
are difficult to make due to high system complexity.

Another important consequence of developing an analytical framework for com-
plexity would be to assist designers in managing desired levels of complexity in
the system because, realistically, this cannot be eliminated due to the unavoidability
of systems integration in large engineered installations, resulting in unpredictable
changes in operating conditions. A fundamental problem of defining the notion of
complexity beyond simply a term for a phenomenon that appears to be counter-
intuitive or unpredictable, into a more formalised language (i.e. mathematically)
whereby the differences between the complex and commonplace can be better un-
derstood, is that it involves making that which is fuzzy, precise (Casti 1994).

In an effort to understand what is involved with complex systems, it would be
intuitive to first consider some of the properties associated with simple systems,
before attempting to express complexity in mathematical terms.

• Predictable behaviour: simple systems give rise to behaviour that is easy to de-
duce if the system’s process characteristics (i.e. inputs, throughputs and outputs)
can be defined. Such predictable behaviour is one of the principal characteristics
of simple systems.

• Interaction and feedback loops: simple systems generally involve a small num-
ber of components with interactions that dominate the linkages among the pro-
cess characteristic variables. In addition to having only a few variables, simple
systems generally consist of a few feedback/feed-forward loops that enable mod-
ification or regulation of interactions among the process characteristic variables.

• Centralised control: in simple systems, control is centred with very little, if any,
independent interactive control between lower-tiered components. Such systems
tend to be more robust, as they are better able to absorb process fluctuations.

• Decomposable and reducible: a simple system involves relatively weak interac-
tions among its various components that, if disconnected or degraded, would not
result in a total loss of process control or unstable behaviour.

By establishing a workable complex systems theory, a framework can be structured
within which complex systems can be better understood from the perspective of en-
gineering design, process control and operational stability. More importantly, CST
can provide a means of determining the limits of reduction of complex systems for
systems engineering analysis.
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4.3.3.2 Systems Engineering in Engineering Design

Like many other engineering disciplines, systems engineering:

• involves central concepts;
• uses specific methodologies;
• includes both analysis and synthesis for evaluating engineering design;
• relies on mathematics to express knowledge;
• bears an interdependent relationship to other engineering disciplines (since many

design problems are cross-disciplinary);
• provides profound benefit to engineering and industry in particular;
• stimulates research for further engineering benefit.

Many of the key thrusts of systems engineering are found within the other engineer-
ing disciplines. However, systems engineering is qualitatively different. Systems
engineering differs from the basic engineering disciplines in that these disciplines
concentrate on using knowledge of the real world for systems construction, e.g. ma-
terials, structures, electrical circuits, robotics, whereas systems engineering finds its
focus in constructs of analysis and synthesis for problems involving multiple as-
pects of complex real-world systems. The effectiveness of systems engineering in
analysing complex systems is determined by methodologies, algorithms and tools
available for advanced systems engineering analysis, such as performance metrics,
optimisation methods in the presence of various kinds of constraints, marginal and
sensitivity analysis, linear/non-linear programming, dynamic programming, utility
theory, decision analysis, mathematical modelling and simulation modelling (IN-
COSE 2002).

Systems engineering in engineering design involves several distinguishing char-
acteristics, such as:

• Design problems are highly inter-disciplinary: systems engineering in engineer-
ing design typically involves a spectrum of conventional engineering and science
disciplines.

• Design problems require high-level metrics: systems engineering problems place
a high priority on measuring and optimising values at higher levels of systems
integration.

• Design problems are hierarchical: as a result of integrating various factors into
high-level metrics, systems engineering structures large-scale systems into a ver-
tical hierarchy.

• Multiple metrics and optimisation are crucial: integrating a plurality of system
performance metrics leads to difficult challenges in multivariate optimisation of
design input variables to achieve reasonable optimisations of the various output
metrics.

• There is additional heterogeneity: the behaviour of systems brings additional het-
erogeneity into systems engineering problems that add more diversity to com-
plexity considerations.
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• The problems are dynamic: systems engineering places emphasis on dynamic
variations in time, necessitating design-for-integrity through a concurrent engi-
neering approach.

• Methodologies for process life cycle are central: because systems engineering
emphasises a structured approach to the analysis of design, analytic methodolo-
gies are central.

• Systems definition and development: systems engineering methods such as anal-
ysis of systems complexity, hierarchical modelling and concurrent engineering
design provide for a more comprehensive approach to process engineering de-
sign.

• Integrity of design: uncertainties in the development process underscore the im-
portance of systems engineering approaches to the integrity of process engineer-
ing design, together with system performance and life-cycle costs.

• Non-technical components and metrics: while cost and human resource factors
are normally considered intrinsic factors in conventional engineering disciplines,
systems engineering places an explicit, high priority on these factors.

• Other non-technical disciplines: human factors play a crucial role in systems
engineering, such as the disciplinary requirements in computer systems.

• Government regulatory policy and decision-making: systems engineering appli-
cation in many large-scale process projects involve not only technical compo-
nents but political, economic and sociological factors as well.

4.3.3.3 Complexity in Engineering Design and Systems Engineering

Systems engineering analysis (SEA) brings out clearly a systematic reasoning pro-
cess in which all the uncertainties associated with complex integrations of multiple
systems that may have impeded decision-making during the early phases of engi-
neering design are properly considered. Systems engineering analysis examines un-
certainties and assumptions made in the conceptual and preliminary design phases,
to determine the end-result integrity of the engineered installation as a whole. It is
a study of total systems performance, rather than a study of its elements. It stems
from the recognition that, even if each element of a system is optimised from a de-
sign point of view, the total systems performance may be less than optimal, owing
to complex interactions between the elements.

All complex systems have certain characteristics encountered not only in their
design but also in their application that cause many of the critical malfunctions in
industrial plant and equipment. Among these characteristics are the following:

• Change: the present state or condition of a system is the result of past per-
formances or its engineering design. No real-world system remains static over
a long period of time. The flow of the process enters and leaves the system either
through a birth-and-death occurrence or by passing through system boundaries.

• Environment: each system has its own environment and is, in fact, a sub-system
of some broader system. The environment of a system is a set of elements and
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their relevant properties that, although not a part of the system, if modified can
produce a change in the state of the system as a whole.

• Counteraction results: examination of some systems might indicate the need for
corrective action. This action can often be ineffective or even adverse in its re-
sults. Corrective action in complex systems may intensify a problem, rather than
solve it.

• Drift to low performance: complex systems generally tend towards a condition of
reduced performance with time. Components deteriorate and inefficiencies creep
in, their counteraction nature causing detrimental design changes.

• Interdependency: no activity in a complex system takes place in total isolation.
Each event is influenced by its predecessor and affects its successors. In addition,
real-world activities are generally parallel and ultimately influence each other.

• Organisation: all complex systems consist of highly organised elements or com-
ponents. These elements are combined into hierarchies of sub-systems, assem-
blies, components and parts that interact to carry out the function of the system.

• Variance: outputs from complex systems tend to have greater variances about
a mean result, because of the individual variances in performance of the con-
stituent elements.

Open and closed systems A closed system is considered to be one in which only
the components within the system are assumed to exist. All other influences or vari-
ables from outside the system are considered to be non-existent, or to be insignifi-
cant. It is a hypothetical assumptive system, as there probably never is a completely
closed system. Components within a system are always subject to outside influ-
ences. Closed systems are usually adopted for initial analysis, as they are usually
simple and each component in the system is more easily analysed with regard to its
effect on the other components in the system.

An open system is described by the basic properties of:

• Inputs: inputs (exogenous variables) are the independent variables of the system
model, and are pre-determined. Input variables can be classified as either con-
trollable or non-controllable. Controllable input variables can be manipulated.
Non-controllable input variables are generated by the environment in which the
system exists, and not by the system.

• Throughputs: throughputs (status variables) are indicative of the capability of the
system to achieve the desired output.

• Outputs: outputs (endogenous variables) are the dependent or output variables of
the system model, and are generated from the interaction of the system’s output
and status variables, according to the system’s operating characteristics.

Added to this are other attributes such as cyclic events, continuity, and differentia-
tion of functions.

An open system recognises and permits all interactions of its components to take
place across the boundaries of the system. It is more realistic, though more complex,
than closed systems and, therefore, more difficult to analyse or control. Diagrams
of a model of a closed system and a model of an open system are given below
(Fig. 4.26), together with the typical symbols used in such system models.



462 4 Availability and Maintainability in Engineering Design
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Fig. 4.26 Models of closed and open systems

a) Functions of Systems Engineering Analysis

Systems engineering analysis consists of the following functions:

• Problem definition
• System objectives
• System boundaries
• System components
• Requirements analysis
• Functional analysis
• Effectiveness measures
• Constraints evaluation
• Choosing alternatives
• Evaluating alternatives.
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Problem definition The first step in systems engineering analysis is to define the
problem. It is extremely important to examine critically whether the statement of
the problem expresses the reality of the problem. In most process engineering de-
signs, the design problem considers the criteria of system configuration, process
description and problem definition. For example, consider the following process en-
gineering design:

• Systems configuration: two coal slurry preparation, gasifier and gas cleaner
(scrubber) lines in parallel, each with separate oxygen inputs into the gasifier.

• Process description:
(1) A coal plant feeds coal to two coal slurry preparation mills.
(2) The slurry mills feed two coal gasifiers, each with separate oxygen inputs

from two oxygen compressors.
(3) The gas from the two gasifiers are fed into two gas cleaners or scrubbers,

from which raw fuel gas is obtained.

• Problem definition: determine the reduction in plant flow capacity as the number
of unavailable sub-systems increases due to system deterioration, and consider
the most appropriate alternatives to maintaining optimum availability.

System objectives It is also important to examine statements of objectives care-
fully for possible inconsistencies. An example of an inconsistent objective is the
frequently expressed ‘maximising effectiveness at the least cost’. It is, however,
highly unlikely that effectiveness can be maximised and costs minimised simultane-
ously. The objective should be stated as ‘maximisation of effectiveness for a given
cost’ or, alternatively, ‘minimisation of cost for a given effectiveness’. For the exam-
ple coal slurry preparation plant, the system objective may be stated as maximising
plant flow capacity by optimising systems availability.

System boundaries A problem always encountered in systems engineering anal-
ysis with systems optimisation is the difficulty or impracticality of analysing the
entire system or engineered installation (plant). When analysis of the total system is
not possible, optimisation of each sub-system may be feasible but the total system
may be sub-optimal. If the scope of the total system limits the extent of system op-
timisation, then definition of the system boundaries within which the analysis will
take place must be made. These boundaries are usually identified by the following
criteria:

• Material or process flow.
• Mechanical action.
• State changes.
• Changes in process characteristics (inputs, throughputs or outputs).

For the example coal slurry preparation plant, the system boundaries to be taken into
consideration will be defined during the functional analysis of the various systems
in which, for the sake of simplicity, a closed system approach will be taken.
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System components This step requires the specification of systems elements within
the specified systems boundary. In order to establish uniform terminology for later
use, system hierarchy definitions are necessary. These system hierarchy definitions
are considered, firstly from the overall plant down to its systems, then to its sub-
systems or assemblies, and to its sub-assemblies or components. A schematic pro-
cess flow block diagram of the coal slurry preparation plant is illustrated in Fig. 4.27.

The design objective is concerned with plant capacity and the availabilities of
each of the plant’s systems. At this stage, it would suffice to regard a three-level
systems hierarchy of a single plant with several system groups, and several sub-
systems within each group. Finalisation of the hierarchical grouping will coincide
with a requirements analysis as well as a functional analysis. At this stage, the
sub-systems are two coal slurry preparation mills, two coal gasifiers, two oxygen
compressors, and two gas cleaners or scrubbers, arranged in two parallel coal slurry
preparation lines or system groups.

Requirements analysis Requirements analysis consists of the identification and
evaluation of use. This analysis is possible once a systems hierarchy is identified,
and usually takes into consideration the sub-system’s assembly level, but can in
some instances go down to sub-assembly and/or component level, depending on the

Fig. 4.27 Coal gas production and clarifying plant schematic block diagram
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level of detail required for the identification and evaluation of use. Typically, the
systems analysis questions are:

WHAT are the sub-system’s assemblies (or components)?
FOR WHAT PURPOSE does the assembly (or component) exist?
WHY does the assembly (or component) exist?
WHERE does the assembly (or component) feature?
WHEN does the assembly (or component) feature?

Additional information concerning the requirement for the item would include the
following:

• The type of assembly (or component).
• The structure and content of the assembly (or component).
• The relationships of the assembly (or component) to others in the same level of

hierarchy.
• The degree to which the assembly (or component) is incompatible with others in

the same level of hierarchy.

From the coal slurry preparation plant point of view, the plant can be divided into
independent sub-systems to simplify accounting for partial outages. Each of the
sub-systems must meet the following requirements:

• It must be binary, i.e. it must be either available or unavailable with no partial
outages.

• Its failures and repairs must occur independently of what happens in the rest of
the plant.

• It must interconnect with other sub-systems only at its end-points, as represented
on an availability block diagram (ABD).

An availability block diagram (ABD) shows how sub-systems or assemblies are
grouped schematically into blocks and interconnected from the standpoint of repre-
senting a series logic for availability.

The sub-systems or assemblies, depending on the level of detail required of the
ABD, are functionally related to or have a functional dependence on one another.
It is this functional dependence that is shown in an ABD, and not the physical con-
nections between the sub-systems or assemblies. The blocks within an ABD are
basic sub-systems. A basic sub-system is an aggregation of one or more assemblies
logically linked together to define how their failures can cause failure of the basic
sub-system.

Functional analysis Before quantitative values can be assigned to measure the ef-
fectiveness of systems operation, an analysis must be made of the functions that the
system performs in the application of the sub-system’s assemblies (or components).
This analysis starts with a statement of boundary conditions and desired inputs and
outputs, then proceeds to a list of functions or operations that must be performed.
Each function in a system possesses inputs and outputs. Inputs and outputs of func-
tions are matched to determine the required sequence of operations or flow. The
problems that exist at the interface between functions are the most important to
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be resolved in systems engineering analysis. The analysis of system function in-
puts, outputs, and their relationships is essential to be able to resolve any interface
boundary problems.

Block diagramming is an important and useful technique in functional analysis.
It shows inputs, outputs, relationships, flow, and the functions to be performed at
each stage of the system. Block diagrams show specific relationships of one stage
of a system to another. Different block diagrams can be developed, such as:

• Process flow block diagram (PFD): these diagrams indicate how inputs are trans-
formed at each stage into outputs that, in turn, become the inputs to the next stage.
The major characteristic of a PFD is that it depicts flow.

• Availability block diagram (ABD): an availability block diagram is somewhat
related to a process flow diagram but is intended to show how systems or sub-
systems are interconnected in an availability sense. The level of detail of an avail-
ability block diagram should be as simple as possible, including the following:

(1) Availability data can be estimated for systems or sub-systems defined at that
level.

(2) Systems or sub-systems defined at that level can be considered binary, i.e.
they are either available or unavailable.

• Reliability block diagrams (RBD): in establishing reliability analysis of a com-
plex systems group, it is almost impossible to analyse the plant or systems group
in its entirety. The logical approach in reliability analysis is to apply a systems
approach.

A systems approach in block diagramming is where the plant or systems group is
broken down into its systems hierarchy to that level where it would be correct to
assume that the individual elements of the system’s hierarchy are binary—in other
words, that they can be regarded as being functionally operational, or having func-
tionally failed. This binary state is usually found at the component level of the sys-
tem’s hierarchy. Subdivision of the two possible states of components, i.e. working
or not working, on or off, etc., can be represented in a block diagram.

b) Reliability Block Diagrams

There are two types of reliability block diagrams, depending on the complexity of
the interconnectivity of the system’s components:

Series configuration reliability block diagram The simplest and perhaps most
common systems structure in reliability analysis is the series configuration in which
the functional operation of the system depends on the proper operation of all its
components. Failure of any component in a series configuration causes the entire
system to fail. A series configuration reliability block diagram and its related series
reliability graph are illustrated below (Fig. 4.28a,b).
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Fig. 4.28 a Series reliability block diagram. b Series reliability graph

Parallel configuration reliability block diagram In many systems, several func-
tional flow paths perform the same operation. In other words, the system has inher-
ent redundancy or parallel functional paths. If the system’s configuration of com-
ponents is such that failure of one or maybe more components in a specific parallel
path still allows the system to function properly, then the system can be represented
by a parallel configuration block diagram, indicating the various parallel functional
paths. This is sometimes called a redundant configuration.

In a parallel configuration, the system is operational if any one of the parallel
functional paths is operational. Failure of any component in a parallel configura-
tion does not cause the entire system to fail but can result in degradation of system
performance.

A parallel configuration reliability block diagram, together with its related paral-
lel reliability graph, is illustrated below (Fig. 4.29a,b).
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Fig. 4.29 a Parallel reliability block diagram. b Parallel reliability graph
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c) Availability Block Diagrams

On the basis of the definition of a system, and on the basis of the interconnectivity
of the various systems, an availability block diagram (ABD) for the example coal
slurry preparation plant can now be developed. As indicated previously, an ABD is
somewhat related to a process flow diagram but is intended to show how compo-
nents are interconnected in an availability sense. The coal slurry preparation plant is
divided into the smallest possible number of sub-systems, such that each one meets
the requirements criteria. Every set of identical sub-systems forms a sub-system
group. Figure 4.30 is a block diagram version of the process flow of the coal slurry
preparation plant.

The first step in dividing the plant into sub-system groups is to develop an ABD
of the plant. Although the oxygen feed is not directly connected to the slurry prepa-
ration in the process flow diagram, the two can be connected in the ABD because,
if the oxygen feed fails, the corresponding sub-systems will all be inoperable.

Thus, the ABD shows these four sub-systems connected in series (Fig. 4.31).
The level of detail chosen for drawing an ABD should be as simple as possible,

subject to the following:

• Data are obtainable or can be estimated for each sub-system defined at that level.
• Each sub-system defined at that level may be considered either available or un-

available.

Each sub-system’s process capacity, in terms of the percentage of the plant’s process
flow that the sub-system should support, is also shown because this information will
be used to divide the plant into sub-systems and to define their states. Two further
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Fig. 4.30 Process flow block diagram
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Fig. 4.32 Simple power plant schematic process flow diagram

examples are given for the development of availability block diagrams from process
flow diagrams. In the first example, Fig. 4.32 shows a simple process flow block
diagram for a simple power plant, and Figs. 4.33 and 4.34 show the development of
the ABD.

Example of a simple power plant process flow and availability block diagrams
Consider the development of an ABD and further systems engineering analysis for
a simple configuration of a power plant consisting of:

Two coal-handling bins.
Two coal grinding mills.
A gasifier and gas scrubbing system.
Three gas turbines.
Three generators.

Figure 4.33 shows that there are cross connections before (X1) and after (X2) the
coal-handling bins, after the coal grinding/slurry mills (X3), before the gas tur-
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Fig. 4.33 Power plant process flow diagram systems cross connections

bines (X4), and after the generators (X5). Every point on the process flow diagram
where all systems or sub-systems are cross connected is marked. Each cross con-
nection in the process flow diagram is numbered and marked with an X.

The significance of a cross connection is that any system on one side of a cross
connection can feed, or complement, any equipment on the other side. In the exam-
ple, either coal-handling bin can feed either coal grinding/slurry mill. Either coal
grinding/slurry mill can then ultimately feed, via the gasifier, any of the three gas
turbines. All of the systems that have a process flow link along each path between
the cross connections are then bound by a hatched boundary line, as indicated in
Fig. 4.34. The diagram shows that one coal grinding/slurry mill is a path between
cross connections 1 and 2. Similarly, one gas turbine and generator is a path between
cross connections 4 and 5. Each set of systems bounded in this way forms a separate
group or subgroup of systems. Thus, the two coal-handling bins are grouped with the
gasifier and gas cleaning systems to form one system group (A). Each group is then
marked with a one-letter designator (A, B or C). Identical groups are given the same
designator to form a common system group, such as the three identical ‘C’ sub-
groups. The groups thus developed will be binary in operation (i.e. either available
or unavailable), and will not contain cross connections to other groups. Furthermore,
all 100% capacity systems are grouped together, regardless of their configuration.

In the example, there are three sub-system groups (A, B and C) and six subgroups
(one of A, two of B, and three of C) out of a total of 12 systems, as indicated in
Fig. 4.34.

The A sub-system group contains one subgroup (1×A), which consists of four
sub-systems, i.e. the two coal-handling bins, the gasifier and the gas scrubber
(Table 4.4). The B sub-system group contains two subgroups (2×B), i.e. the two
coal grinding and slurry mills. The C sub-system group contains three subgroups
(3×C), each with two systems, namely a gas turbine and generator.
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Fig. 4.34 Power plant process flow diagram sub-system grouping

Table 4.4 Power plant partitioning into sub-system grouping

Sub-system group Number of subgroups Subgroup contents

A 1 2 × coal bins, 1 × gasifier, 1 × gas scrubber
B 2 2 × coal grinding, slurry mills
C 3 3 × gas turbines, 3 × generators

d) Effectiveness Measures

Before considering any systems constraints for defining the various plant states, it
is necessary to establish a set of measures, or criteria, by which the effectiveness of
the complex integration of systems can be evaluated. From Eq. (4.27), process effec-
tiveness was defined as the design’s manufactured and/or installed accomplishment
against the design’s intended capability.

Effectiveness is a measure of installed output against designed output. Further-
more, from Eq. (4.118) a system’s maximum dependable capacity was indicated to
be equivalent to process output at 100% utilisation. The following system variables
are thus applicable in formulating process (and, therefore, design) effectiveness:

• Utilisation
• Capacities
• Volumes
• Rates.

For the example, capacities are considered as the measure by which a complex in-
tegration of systems can be evaluated. All the possible states that the plant can be
in are defined in terms of the resultant capacity measures from the plant’s systems
that are available, and those that are unavailable, in each state. The grouping of
sub-systems in the simple power plant example allows for the process of defining
the states of plant operation in terms of which subgroups are either available or un-
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Fig. 4.35 Simple power plant subgroup capacities

available (i.e. binary). One plant state occurs if every subgroup in every sub-system
group were available for operation. Another would occur if one of the two B sub-
groups were unavailable. Also, another plant state would occur if the A subgroup
and two C subgroups were unavailable. These are only three of the possible states
for the example plant. There are, in total, six possible states that the plant can be in.
The system dividing process allows each state to be defined in terms of the number
of subgroups in each of the sub-system groups that are unavailable.

A state is defined as “one or more combinations of unavailable and available
systems that result in a specific plant effectiveness capability”.

e) Constraints Evaluation

A major part of the systems engineering analysis task is the definition of the bound-
ary between a system and its environment. As indicated previously, this task in-
volves the clarification and establishment of the parameters of the problem, and
definition of the specific areas within the general system to be studied. In addition
to the boundary conditions, there are some added limits called constraints. These
include all other aspects that limit or fix many of the external and internal properties
of the system. The identification of constraints together with their impact on system
effectiveness is an extremely important, yet often overlooked aspect of analysing
engineering design problems. Constraints may be classified according to their areas
of impact, i.e.:

• Utilisation limitations
• Capacity limitations
• Volume limitations
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Table 4.5 Process capacities per subgroup

Sub-system group No. of subgroups Capacity per subgroup

A 1 100%
B 2 75%
C 3 50%

• Process limitations
• Quality limitations, etc.

Each state in the simple power plant example has only one subgroup that is the
limiting factor, or bottleneck, for the plant’s power output capability in that state.
This constraint is illustrated in Fig. 4.35 where the example plant is represented
as a set of pipes and valves of varying capacities. Each section of pipe and valve
corresponds to a subgroup in which the subgroup’s unavailability is analogous to
a valve being closed:

• The single A subgroup (consisting of two coal bin sub-systems) is wide enough
to handle 100% of the flow;

• Each of the two B subgroups (consisting of the two slurry mill sub-systems) is
wide enough to handle 75% of the flow;

• Each of the three C subgroups (consisting of three gas turbines and three gener-
ators) is wide enough to handle 50% of the flow.

For example, if two C subgroups are unavailable, and one B subgroup is un-
available, the C subgroup is the limiting factor because its remaining capacity is
only 50%, whereas the remaining capacity in any one of the B subgroups is 75%.
Furthermore, when two C subgroups are unavailable, there could be either no un-
available B subgroups or one unavailable B subgroup, without further reducing the
process flow from the resulting 50% output brought about by the one available C
subgroup.

f) Defining Different States

(1) Table 4.5 shows the percentage of the plant’s process flow capability that each
type of subgroup could support.

(2) Table 4.6 shows the reduction in plant flow capacity as the number of unavail-
able subgroups in each sub-system group increases, given that all other subgroups
are available. Where excess capacity beyond 100% exists in a subgroup, 100% is
given as the throughput capacity.

(3) Table 4.7 shows the flow capacities and state definitions. The flow capacities
are taken from the previous table. Note that, although the 100% entry appears four
times, it is entered only once in the table below. All flow capacities other than 100%
are entered as many times as they appear in the previous table. Thus, the 0% flow
capacity is entered three times. The capacities should be entered in decreasing order
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Table 4.6 Remaining capacity versus unavailable subgroups

Sub-system Number of Subgroup Remaining capacity as n subgroups become unavailable
group subgroups capacity n = 0 n = 1 n = 2 n = 3

A 1 100% 100% 0%
B 2 75% 100% 75% 0%
C 3 50% 100% 100% 50% 0%

Table 4.7 Flow capacities and state definitions of unavailable subgroups

State number Flow capacity Unavailable subgroups
A B C

1 100% 0 0 0 or 1
2 75% − 1 −
3 50% − − 2
4 0% 1 − −
5 0% − 2 −
6 0% − − 3

to simplify the state definition process. The entries under columns A, B and C in
Table 4.7 must be the same as the entries under columns n = 0, n = 1, n = 2 and n = 3
in Table 4.6.

Process of entering the different state definitions

i) Enter for each sub-system group the number of unavailable subgroups that
would still allow 100% process flow. In the example, no unavailable subgroups
in sub-system group A would allow for 100% process flow. Similarly, no sin-
gle subgroup in sub-system group B would allow for 100% process flow. In
sub-system group C, either zero or one unavailable subgroup allows for 100%
process flow.

ii) Enter for each state the number of unavailable subgroups in the appropriate
sub-system group that are responsible for that state’s capacity. For example,
the 75% capacity of state 2 is the result of one of sub-system group B’s sub-
groups being unavailable; the 50% capacity of state 3 is the result of two
of sub-system group C’s subgroups being unavailable; the 0% capacity of
states 4, 5 and 6 each is the respective result that one of A’s subgroups, or
two of B’s subgroups, or three of C’s subgroups are unavailable. This is indi-
cated in Table 4.8.

iii) For each state that has a non-zero flow capacity, enter the subgroups in each re-
maining sub-system group that could be unavailable without further decreas-
ing the flow capacity of that state. For example, state 3 has a 50% flow ca-
pacity because of unavailability of two of C’s subgroups. Zero subgroups of
sub-system group A can be unavailable, and either zero or one of sub-system
group B’s subgroups can be unavailable without decreasing the flow capacity
of 50% for state 3.
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Table 4.8 Flow capacities of unavailable sub-systems per sub-system group

State number Flow capacity Unavailable subgroups
A B C

1 100% 0 0 0 or 1
2 75% 0 1 0 or 1
3 50% 0 0 or 1 2
4 0% 1 − −
5 0% − 2 −
6 0% − − 3

Table 4.9 Unavailable sub-systems and flow capacities per sub-system group

State number Flow capacity Unavailable subgroups
A B C

1 100% 0 0 0 or 1
2 75% 0 1 0 or 1
3 50% 0 0 or 1 2
4 0% 1 0 or 1 or 2 0, 1, 2 or 3
5 0% 0 2 0, 1, 2 or 3
6 0% 0 0 or 1 3

Table 4.10 Unavailable sub-systems and flow capacities per sub-system group: final summary

State number Flow capacity Unavailable subgroups
A B C

1 100% 0 0 < 2
2 75% 0 1 < 2
3 50% 0 < 2 2
4 0% 1 < 3 < 4
5 0% 0 2 < 4
6 0% 0 < 2 3

iv) The remaining entries to be made are in the 0% capacity states. These remain-
ing entries indicate the number of subgroups that can be unavailable in each
sub-system group in conjunction with other sub-system groups, where a 0%
capacity state can be defined. This is indicated in Table 4.9. The final summary
is indicated in Table 4.10.

g) Evaluating Complexity of the Different State Definitions

One of the more significant challenges of engineering design is to provide a rational
account of the uncertainty surrounding the state events of unavailable systems that
could be responsible for diminishing a design’s capacity and/or performance. Classi-
cal probability theory offers a feasible approach but it is burdened with well-known
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epistemological flaws, considered in Sect. 3.3.2 (Zadeh 1995; Laviolette et al. 1995).
Theories of fuzzy sets and possibility represent attempts to rectify some of the de-
ficiencies in classical probability theory (Dubois et al. 1993). However, all of these
theories fundamentally accept the basic fact that random variables form a significant
part of uncertainty.

Consider the state events of unavailable systems that diminish the overall ca-
pacity of the example power plant: Let xi represent the sub-system states listed in
Table 4.10 where i = states 1,2,3, . . . ,6. Furthermore, let yθ j represent the state
events of unavailable sub-system groups that could affect the overall capacity of
the example power plant, where the subscripts θ =sub-system group A, B or C,
and j = subgroup 1, 2, 3. Individual elements of xi can then be combined into
a primary set of state events of unavailable sub-systems, denoted by X , and the
elements yθ j can be combined into a secondary set of state events denoted by Y .

A graphical representation of these elements is called a complex, whereby each xi

element is taken as the vertex of a surface formed by connected points representing
the possible state events of each related subgroup yθ j, the state event elements of Y ,
which are called simplices (Casti 1994).

Thus, the system states represented by xi are:

X = {x1,x2,x3,x4,x5,x6} (4.181)

and the possible state events represented by yθ j are:

Y = {yA0,yA1,yB0,yB1,yB2,yC0,yC1,yC2,yC3} (4.182)

The outcomes of the compound events resulting from the integration of systems
forming each subgroup (as depicted in the availability block diagram of Fig. 4.27)
are given by the values (expressed as percentages of the overall capacity of the
example power plant) of the system states represented by xi, and are called random
variables. According to Table 4.10, outcomes of the compound events are:

x1 = (yA0 + yB0 + yC0,yC1,yC2,yC3)
= 100%

x2 = (yB1,yB2,yB1,+yC1,yB1 + yC2,yB1 + yC3,

yB2 + yC1,yB2 + yC2,yB2 + yC3)
= 75%

x3 = (yB1 + yC1 + yC2,yB1 + yC1 + yC3,yB1 + yC2 + yC3,

yC1 + yC2,yC1 + yC3,yC2 + yC3)
= 50%

x4 = (yA1)
= 0%
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Table 4.11 Unavailable subgroups and flow capacities incidence matrix

State number Flow capacity Unavailable subgroups

1 100% (yA0 + yB0 + yC0,yC1,yC2,yC3)
2 75% (yB1,yB2,yB1,+yC1,yB1 + yC2,yB1 + yC3,yB2 + yC1,

yB2 + yC2,yB2 + yC3)
3 50% (yB1 + yC1 + yC2,yB1 + yC1 + yC3,yB1 + yC2 + yC3,yC1 + yC2,

yC1 + yC3,yC2 + yC3)
4 0% (yA1)
5 0% (yB1 + yB2)
6 0% (yC1 + yC2 + yC3)

Table 4.12 Probability of incidence of unavailable systems and flow capacities

State number Flow capacity Unavailable subgroups Probability of incidence
A B C

1 100% 0 0 0 or 1 0.100
2 75% 0 1 0 or 1 0.200
3 50% 0 0 or 1 2 0.533
4 0% 1 0 or 1 or 2 0, 1, 2 or 3 0.017
5 0% 0 2 0, 1, 2 or 3 0.017
6 0% 0 0 or 1 3 0.133

x5 = (yB1 + yB2)
= 0%

x6 = (yC1 + yC2 + yC3)
= 0%

Taking the elements of X to be the vertices of the unavailability complex of the
power plant, and denoting the elements of Y to be simplices formed from these
vertices, the relation RY linking the two sets can be established, such that the pairs
of elements (yθ j,xi) are in the relation RY if, and only if, the possible state events
of unavailable subgroups, yθ j, form part of the elementary system states xi. Thus,
(yC1,x1) is in RY ; however, (yA1,x1) and (yB1,x1) are not.

Computing all the chains of connections in this complex enables the formation
of an incidence matrix for RY . This matrix is the kind of incidence structure for
which classical probability theory works well to express the concept of uncertainty
in evaluating the integrity of the design.

The complex of which the simplices are the state event elements of Y represents
the sample space of the various unavailability states, expressed as percentages of
the overall capacities, as indicated in Table 4.11. The probability of system unavail-
ability incidence is given in Table 4.12.
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h) Evaluation of Alternatives

At this point in systems engineering analysis, alternative design solutions that sat-
isfy system constraints are developed. Effectiveness measures are initially quantified
for each solution without serious consideration of cost. Later, both effectiveness and
costs are evaluated. After alternative system configurations have been synthesised
and the effectiveness requirements have been established for each alternative, they
can be compared. A typical trade-off matrix technique is appropriate. In most stud-
ies, the analysis is restricted to an evaluation of cost and to some physical attributes
of the system such as reliability, availability, maintainability or safety. It is, how-
ever, necessary to analyse cost and effectiveness in monetary terms. An adequate
analysis cannot be performed unless both parts of the relationship are evaluated in
commensurate terms—i.e. when evaluating on the basis of costs, all comparisons
must be kept in terms of costs. Prior to such a cost versus effectiveness compari-
son, however, it is necessary to determine the physical attributes of the system (i.e.
system integrity).

The following example indicates how overall system integrity can be determined
through systems engineering analysis to obtain the system’s sub-system and/or as-
sembly attributes of mean times between failures and failure repair times.

Figure 4.36 represents a process block diagram (i.e. a simplified process flow
diagram) of a turbine/generator system.

After the development of an availability block diagram (ABD), the overall in-
tegrity of the system can be determined based on the ABD configuration and at-
tributes of the system’s sub-systems and/or assemblies (Table 4.13).

An ABD of the super-heated steam turbine/generator system illustrated in the
process block diagram of Fig. 4.36 is given in Fig. 4.37.

Determining overall mean time to repair (MTTR system) From the integrity
values given in Table 4.13:

MTTR system =
Σ(λR)
Σ(λ )

(4.183)

where: λ = failure rate

R = repair time (h) .

MTTR system = 39,227/370.43

MTTR system = 105.9

Determining overall mean time between failures (MTBF system) From the in-
tegrity values given in Table 4.13:

MTBF system =
106

Σ(λ )
(4.184)

MTBF system = 2.699
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Fig. 4.36 Process block diagram of a turbine/generator system
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Fig. 4.37 Availability block diagram of a turbine/generator system, where A = availability,
MTBF = mean time between failure (h), MTTR = mean time to repair (h)
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Table 4.13 Sub-system/assembly integrity values of a turbine/generator system

Power system Failure rate MTBF Repair rate λ ×R
items (λ fail/106 h) (106/λ h) (R,h)

1. Generator 111.55 8.965 124.5 13.888
2. Turbine 48.42 20.653 142.5 6.900
3. Hot pump 27.73 36.062 48.3 1.339
4. Condenser 19.59 51.046 148.6 2.911
5. Cond. pump 16.04 62.344 39.5 0.634
6. De-aerator 10.94 91.408 96.3 1.053
7. Feed pump 11.68 85.616 42.5 0.496
8. Feed heater 8.90 112.306 98.5 0.876
9. Boiler 115.58 8.652 96.3 11.130

370.43 39.227

Determining overall availability (A system) From the integrity values given in
Table 4.13, and from the formula for steady-state availability, we get:

A =
MTBF

MTBF+MTTR
(4.185)

=
2.699

2.699+105.9
A = 96.2%

where, in Eqs. (4.184) and (4.185):

λ = failure rate
A = availability
MTBF = mean time between failure (h)
MTTR = mean time to repair (h).

4.3.3.4 Evaluating Complexity in Engineering Design

With the phenomenal advancement in process technology, there has been an almost
similar increase in the complexity of engineered installations, particularly large in-
tegrated systems. Much engineering effort has gone into analysing and understand-
ing systems complexity in an attempt to try and manage or reduce it at the design
stage. Relatively recent research has shown, however, that the real issue is not so
much reducing systems complexity but, rather, reducing complicatedness. This is
an important distinction because complexity can, in fact, be a desirable property of
integrated systems, provided it is specifically engineered complexity that reduces
complicatedness (Tang et al. 2001).

Complexity and complicatedness are not synonymous. Complexity is an inher-
ent property of systems and the integration of systems; complicatedness is a derived
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function of complexity, introduced in the notion of complicatedness of complex sys-
tems. Equations for each can be developed showing that they are separate and dis-
tinct properties that not only reflect the fundamental behaviour of complex systems
but that also provide a design methodology whereby complicatedness can be evalu-
ated. The implications for systems design engineers are enormous, especially con-
cerning complex systems analysis in engineering design. The difference between
complexity and complicatedness can be illustrated by the following example (Tang
et al. 2001).

Relative to a manual transmission, a motor vehicle’s automatic transmission has
more parts and more intricate linkages, making it more complex. To the vehicle
driver (operator), it is unquestionably less complicated but to the mechanic (main-
tainer), who has to repair it, it is more complicated. This illustrates a fundamental
fact about systems: operational control has an important role on systems to manage
their behaviour. Complexity, therefore, is an inherent property of systems. Compli-
catedness is a derived property that characterises the ability to control a complex
system. A system of complexity level Ca may present different degrees of compli-
catedness K to distinct control units E and F, where:

KE = KE(Ca)
KF = KF(Ca) (4.186)

and:

KE,KF = complicatedness of systems E and F .

a) Complexity in Systems

There is hardly any research on complicatedness and complexity as distinct prop-
erties of systems. The focus is on modularisation and integrated interactions with
a bias to linear systems and qualitative metrics. Overwhelmingly, the literature
considers systems with a large number of elements as complex (Suh 1999). Very
few studies address integrated linkages among the elements (Warfield 2000), and
at least one considers their bandwidth (Tang et al. 2001). All these factors are in-
herent characteristics of systems; the number of elements, the number of interac-
tions among these, and the bandwidth of the interactions determine the complex-
ity of the system. As these increase, system complexity is expected to increase.
For example, consider the system N = {ni} i = 1,2, . . . , p with binary interactions
among the elements. Complexity CN of this system does not exceed p2, which is
denoted by:

CN = O
(
p2)
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Thus, the system M = {mj} j = 1,2, . . . , p can have complexity:

CM = O(pk) where k > 2 . (4.187)

Thus, when M has {mj × mr} jr and {mj × mr × ms} jrs interactions, then
CM = O(p3).

Furthermore, when M has {mj × mr × ms × mt} jrst interactions, then
CM = O(p4).

This characterisation of complex systems considers systems with feedback loops
of arbitrary nesting (i.e. arbitrary loops within loops), and high bandwidth (i.e. vol-
ume or number) of interactions among system elements. Complexity is a monoton-
ically increasing function, as the size of the system and the number of interactions,
as well as the bandwidth of interactions increase (Tang et al. 2001).

In the limit, complexity → ∞. Complexity is thus defined by:

C = Xn ∑
b

Bb (4.188)

where:

X is an integer denoting the number of elements {xe}e = 1,2, . . . , p
n is the integer indicated in the relation O(pn)

and:

B1 = ∑
i j

λi jβi j (4.189)

B2 = ∑
k

λki jβki j (4.190)

where:

λi j = the number of linkages between xi and x j

βi j = the bandwidth of linkages between xi and x j

λki j = the number of linkages between xk and (xi,x j)
βki j = the bandwidth of linkages between xk and (xi,x j).

In general:

Bn = ∑
n

λ pi jk...n−1βni jk...n−1 (4.191)

where:

λ pi jk...n−1 is the number of linkages among xk and (xi,x j),(xi,x j,xk), . . . ,
(xi,x j,xk, . . . ,xn−1)

βni jk...n−1 is the bandwidth of linkages for xk and (xi,x j),(xi,x j,xk), . . . ,
(xi,x j,xk, . . . ,xn−1)

Bn is a measure of the capacity among the n elements of the system.
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Fig. 4.38 Example of defined computer automated complexity (Tang et al. 2001)

An indicative example of defined computer automated complexity is given in
Fig. 4.38 (Tang et al. 2001).

b) Complicatedness as a Function of Complexity

Complicatedness is the degree to which any control over the system is able to
manage the level of complexity presented by the system. The means of control
can be another system or a person. Complicatedness is a function of complexity,
K = K(C). Clearly, at C = 0, K = 0, the properties of a complicatedness function
are essentially the same as those of complexity but they are definitely not identi-
cal. For example, consider K when C → ∞. Inevitably, there is a level of complex-
ity at which any means of system control simply cannot cope with the system as
a whole. The system then becomes unmanageable through diminished or lack of
control.

It is relatively easy to visualise a graph for g = g(x,y) with Cg = O(p2) (i.e. two-
dimensional), and less easy to visualise a graph for h = h(x,y,z) with Ch = O(p3)
(i.e. three-dimensional). However, a surface with four variables is indeed difficult to
visualise, although complexity has only reached O(p4). Consider the incomprehen-
sible systems A and B where Ca = O(p100) and Cb = O(p1,000). The complicated-
ness functions are virtually the same in this case, Ka ≈ Kb, although O(p1,000) �
O(p100). Therefore, when C = 0,K = 0 and C → ∞, then K → Kmax.

Systems are designed to operate and be controllable at an optimal point of com-
plexity, i.e. C∗. Where C < C∗, although complexity increases, it is well within the
interval of controllability. Where C = C∗, the system complexity is optimal with re-
spect to its ability to be controlled and, where C >C∗, complexity is increasing, and
the system can be controlled only with decelerating (i.e. exponentially diminishing)
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Fig. 4.39 Logistic function of complexity vs. complicatedness (Tang et al. 2001)

effectiveness. This can be expressed mathematically as:

dK
dC

= {0,∞} (i.e. in the open interval between 0,∞) .

d2K
d2C

> 0 at C < C∗ where complexity is increasing faster than
complicatedness.

d2K
d2C

= 0 at C = C∗ where complicatedness has reached an
inflection point.

d2K
d2C

< 0 at C > C∗ where complicatedness has reached
saturation.

For C < C∗, d2K/d2C > 0, complexity is increasing faster than complicatedness.
For C > C∗, d2K/d2C < 0, the ability to manage complexity has reached dimin-

ishing returns.
Because the logistic function is one of the simplest mathematical expressions

that has all the properties considered previously, it is adopted to express complicat-
edness as indicated in the following expression and illustrated in Fig. 4.39 (Tang
et al. 2001):

K(C) =
Kmax

(1+ e−αC)
(4.192)

where:

e is the transcendental number e = 3.27182818284 . . .
α is a constant specific to the measure of control
C is the complexity of the system
Kmax = 1 indicates absolute complicatedness.
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There are other means of expressing complicatedness, such as using the Weibull
distribution. The major differences, though, are the location of the inflection point,
the growth pattern before and after the inflection point, and the symmetry around
the inflection point.

c) Designing for Complex but Uncomplicated Systems

The complexity of engineering designs increases relative to the integration of their
input vectors. The integration of system elements resulting in new interactions and
changes in bandwidth (due to volume or capacity constraints) increases the initial
design’s complexity. However, engineered complexity can reduce intractably com-
plicated input vectors to a minimum number of output vectors that renders the sys-
tem controllable—and system complexity manageable. The application of neural
networks is increasingly being considered for process control of complex integrated
systems, in situations where there are intractable numbers of data points to analyse.
This approach has proven effective for engineering designs in which the process is
controlled in real time by adaptive and distributed artificial neural networks (ANN)
embedded in distributed control systems. The application of ANN is considered in
detail in Sect. 5.3.3.

Earlier, the vehicle transmission was presented as a complex system that is
uncomplicated. The automatic transmission presents the system image of A =
{P,R,N,D1,D2,D3}, λi j = 24, the number of linkages between the transmission
interactions (four per ratio), and the bandwidth of linkages (capacity) between the
interactions βi j = 1; thus, Ca = (62)(24)(1) = 864 (where P = park, R = reverse,
N = neutral and D1 to D3 = drive transmission ratios). However, the manual trans-
mission presents the system image of M = {P,R,N,D1,D2,D3,C} where C = clutch.
This needs to be engaged and disengaged, so C’s interaction bandwidth is 2. Thus,
λi j = 10 (two per ratio) with βi j = 1, and λmn = 14 with βmn = 2. The complexity
of the manual transmission is:

Cm =
(
72) [10+(14) ·2]2 = 38,416 .

Suppose, for a novice driver,C∗ ≈Ca = 864 and, at C≈ 40,000, Kmax = 1, indicating
absolute complicatedness. The analytic form of the complicatedness function for
engineering design can now be determined for a system with complexity C and
complicatedness K:

• Determine optimal complexity, C∗, which can be optimally controlled.
• At the optimal complexity C∗, set K∗ = 1/2.
• Solve for α from K∗ = 1/(1+ e−αC∗

) where Kmax = 1.
• Determine K(C) = 1/(1+ e−αC).
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4.4 Application Modelling of Availability and Maintainability
in Engineering Design

In Sect. 1.1, the five main objectives that need to be accomplished in pursuit of the
goal of the research in this handbook are:

• the development of appropriate theory on the integrity of engineering design for
use in mathematical and computer models;

• determination of the validity of the developed theory by evaluating several case
studies of engineering designs that have been recently constructed, that are in the
process of being constructed, or that have yet to be constructed;

• application of mathematical and computer modelling in engineering design veri-
fication;

• determination of the feasibility of a practical application of intelligent computer
automated methodology in engineering design reviews through the development
of the appropriate industrial, simulation and mathematical models.

The following models have been developed, each for a specific purpose and with
specific expected results, in partly achieving these objectives:

• RAMS analysis model, to validate the developed theory on the determination of
the integrity of engineering design.

• Process equipment models (PEMs), for application in dynamic systems simula-
tion modelling to initially determine mass-flow balances for preliminary engi-
neering designs of large integrated process systems, and to evaluate and verify
process design integrity of complex integrations of systems.

• Artificial intelligence-based (AIB) model, in which relatively new artificial intel-
ligence (AI) modelling techniques, such as inclusion of knowledge-based expert
systems within a blackboard model, have been applied in the development of
intelligent computer automated methodology for determining the integrity of en-
gineering design.

The process equipment models (PEMs) for application in dynamic systems simula-
tion modelling will now be looked at in detail.

4.4.1 Process Equipment Models (PEMs)

As indicated previously, process equipment models (PEMs) have been developed for
application in dynamic systems simulation modelling to initially determine mass-
flow balances for preliminary engineering designs of large integrated process sys-
tems. The dynamic systems simulation modelling was developed using the propri-
etary OOP simulation shell, Extend c© (Diamond 1997).

Extend c© is a flexible simulation modelling system with a customisable interface
where system blocks can be modified or created using a built-in compiled language.
It combines the most powerful features of object oriented programming (OOP) for
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advanced dynamic simulation with discrete event/continuous system/combined sim-
ulation capability, top-down/bottom-up systems hierarchic reachability, animated
graphics, advanced statistical and sensitivity analysis, and computer interface with
drag-and-drop and point-and-click capabilities.

The PEMs incorporate all the essential preliminaries of process analysis to de-
termine mass-flow balances for preliminary engineering designs of large integrated
process systems. The simulation models also incorporate algorithms of process de-
sign integrity for assessing reliability, availability, maintainability and safety re-
quirements of process systems. These are incorporated in specific probability distri-
bution modifiers within each PEM. The application of dynamic systems simulation
modelling incorporating the PEMs is primarily intended to determine the applica-
bility and capability of simulation modelling during the engineering design stage,
in accurately assessing the effect of complex integrations of systems in large engi-
neered installations.

The dynamic systems simulation modelling is based on classic methodology
of systems simulation, which is described in detail in the following presentation
of the application of computer modelling in engineering design verification. The
PEMs have been developed within the Extend c© Performance Modelling program
(Extend 2001), integrated into a dynamic systems simulation blackboard model
for application in concurrent engineering design in an integrated collaborative de-
sign environment in which automated continual design reviews may be conducted
throughout the engineering design process by remotely located design groups com-
municating via the internet.

Design methodology and dynamic systems simulation The integration of dy-
namic systems simulation with blackboard design methodology allows for the devel-
opment and integration of the basic building blocks of systems engineering design
that can be represented in a design knowledge base. Support systems in the form
of general-purpose design knowledge sources are similarly developed to support the
design knowledge base. The design knowledge base and design knowledge sources
form the core of an integrated design support system. The design objects in the de-
sign knowledge base can be synthesised to generate conceptual design solutions, as
illustrated in Fig. 4.40.

A dynamic systems simulation blackboard model (ICS 2002) is developed to con-
trol the design knowledge sources and integrate the knowledge-based design appli-
cations such as the PEM blocks. The design knowledge base contains design objects,
relations, constraints in terms of intended function and interfaces, as well as detailed
information in terms of geometry and sizing.

The blackboard model The blackboard model is a paradigm that enables the flex-
ible integration of analytic methodology into a single problem-solving environ-
ment. In terms of the type of problems that it can solve, there is only one major
assumption—that the problem-solving activity generates a set of intermediate re-
sults. This is evident throughout the dynamic systems simulation modelling inte-
grated into the blackboard model, with systems selection in hierarchical structures
as illustrated in Fig. 4.41.
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Fig. 4.40 Blackboard model and the process simulation model

The blackboard model consists of a data structure (the blackboard) containing
information (the context) that permits a set of modules (knowledge sources) to inter-
act. The blackboard can be seen as a global database or working memory in which
distinct representations of knowledge and intermediate results are integrated uni-
formly. It is also a means of communication among design teams, and can be used
as a common display for review and performance evaluation.

Blackboard architecture consists of three major components:

• The knowledge sources, which are software specialist modules. Each knowledge
source provides specific expertise. The ability to support interaction and cooper-
ation among diverse knowledge sources creates enormous flexibility in engineer-
ing design.
Flexibility in this context is the ability to change the blackboard database imple-
mentation, the insertion/retrieval strategies, and the representation of blackboard
objects without modifying knowledge sources or base data such as design specifi-
cations. Flexibility in blackboard architecture for engineering design is important
for two reasons. First, understanding of the insertion/retrieval characteristics and
the representation of blackboard objects may be uncertain and, therefore, sub-
ject to change as the design is developed. Second, even after a schematic model
prototype of the design has been completed, the number and placement of black-
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Fig. 4.41 Systems selection in the blackboard model

board objects may differ from those of the prototype. This requires changes to
the blackboard representation to achieve the desired level of performance (Corkill
et al. 1987).

• The blackboard, which is a shared repository of problems, partial solutions, sug-
gestions, and contributed information. The blackboard can be thought of as a dy-
namic library of solutions to the design problem that have been contributed by
other knowledge sources. Thus, a blackboard in engineering design is an ap-
proach that allows knowledge sources to cooperate in solving a design problem.
This is analogous to a group of designers standing around a blackboard. The
blackboard is a database that is used to hold shared information among the par-
ticipants (or knowledge sources). It may be structured so as to represent different
levels of abstraction as well as distinct and possibly overlapping concepts in the
design solution. The division of the blackboard into systems hierarchy levels (as
with the PEMs) parallels the process of abstraction of the knowledge, allowing
elements at each level to be described approximately as abstractions of elements
at the next lower level. This partition of the knowledge is useful, in that a partial
solution (i. e. group of hypotheses relating to design optimisation) at one level
can be used to constrain the design at lower system levels.
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Fig. 4.42 Design equipment list data in the blackboard model

• The control shell, which controls the flow of problem-solving activity in the sys-
tem. Knowledge sources need a mechanism to organise their application in the
most effective and coherent fashion. In a blackboard system, this is provided by
the control shell.

Knowledge sources Each knowledge source is data-directed, in that the blackboard
is monitored for data matching-specific design preconditions. Knowledge sources
may be classified in a number of different ways depending on the characteristic that
is used to discriminate these. For example, a generic knowledge source may be use-
ful in a whole set of knowledge-based systems (e. g. design equipment list data for
application in dynamic systems simulation modelling of a particular design solution,
as illustrated in Fig. 4.42), or specific to one application (e. g. specific probability
distribution modifiers within each PEM for assessing reliability, availability, main-
tainability and safety requirements of process systems in a design).

The generic knowledge source in Fig. 4.42 of design equipment list data, for
application in dynamic systems simulation models of specific alumina processing
stages, gives relevant data of the equipment such as equipment code, flow volumes,
mass-flow volumes, liquid volumes and solids volumes.
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Fig. 4.43 Systems hierarchy in the blackboard model context

The context The context is a set of entries or context elements in the blackboard
that contain the information representing the state of the solution process. For ex-
ample, in the dynamic systems simulation blackboard model, PEMs are selected ac-
cording to a systems hierarchy, as illustrated in Fig. 4.43. Those entries may include
perceptions, observations, hypotheses, decisions, goals, interpretations, judgements
or expectations. Also, they may have relationships to one another. In particular, one
such organisation may combine a set of entries as the representation of a single ob-
ject viewed from different levels of abstraction. There can be objects that represent
goals, questions and information, knowledge sources, and other general concepts in
the blackboard, as well as domain-specific objects.

Figure 4.43 illustrates the selection of information representing the state of the
alumina process by plant/facility (third train), operation/area (bauxite grinding) and
section/building (also bauxite grinding).

The user interface The user interface permits the interaction of the user (designer)
with events inside the blackboard and indirectly with the rest of the knowledge
sources comprising the system. This interaction may occur in both directions—by
the users modifying the flow of control of the system by means of commands and an-
swers to questions, or by the system informing the user of important events, prompt-
ing for answers, or explaining decisions. The user interface manages the question
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Fig. 4.44 User interface in the blackboard model

and answer protocols, and informs the user of important events during the program’s
execution. Among its most important capabilities are the following: it checks if an
answer is valid, (based on pre-specified or dynamic menus or constraints), advises
the user on valid or desirable answers, manages default values, and automatically
completes queried answers.

Figure 4.44 illustrates a process pre-commissioning user interface in the black-
board model for information relating to a specific alumina process equipment: the
bauxite grinding system, and ball mill assembly.

Dynamic system simulation in engineering design Dynamic system simulation
in engineering design provides for typical virtual prototyping of engineering pro-
cesses, rather than experiments on the physical prototype. Not only does virtual
prototyping make design verification faster and less expensive but it also provides
various design teams in a collaborative design environment with immediate feed-
back on design decisions. This, in turn, promises a more comprehensive exploration
of design alternatives and a better performing final design. To fully exploit the ad-
vantages of virtual prototyping, dynamic system simulation is the most efficient and
effective. However, these simulation models have to be easy to create. Creating dy-
namic simulation models is a complex activity that can be quite time-consuming.
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Fig. 4.45 Dynamic systems simulation in the blackboard model

To take full advantage of virtual prototyping, it is necessary to develop a mod-
elling paradigm that supports model reuse, that is integrated with the design environ-
ment, and that provides a simple and intuitive user interface that requires a minimum
of analysis expertise, as shown in Fig. 4.45.

General configuration of process simulation model Many engineered installa-
tions have a modular architecture that is based on the optimum selection and com-
position of systems, assemblies and components from older designs. When the new
design is created, these system compositions are selected and then connected to-
gether in a configuration. In addition to the dynamics of the systems per se, physical
phenomena occur at the interfaces between the system’s components. These interac-
tions must also be modelled in an integrated framework that supports the following
aspects of interaction modelling:

• Model organisation: several models can represent a particular physical phe-
nomenon. These models are classified and organised so that the designer is not
inundated with choices. An interaction model taxonomy is developed with each
(PEM), based on a theoretical formalism to represent and organise the interac-
tions.
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• Model reuse through standardised representation: all interactions between the
system composition and its environment occur through the component’s inter-
face. Therefore, a library of interaction models can be indexed by their interfaces.
Candidate interaction models can be selected by searching the library for models
with interfaces compatible with the interfaces of the connected components.

• Capturing component interaction dynamics: when two components are con-
nected via their interfaces, the connection implies that there is an intended phys-
ical interaction between the two components. This interaction is captured in the
behavioural model and the results represented by graphic display.

Modular architecture is the configuration of a composition of systems showing what
types of modules are components of the system, how many components of each type
there are, and how components interact.

In object connection modular architecture, the component only has interfaces
and does not specify what dependencies it has. Thus, dependencies are created im-
plicitly by invoking information from other generic knowledge sources embedded in
the blackboard. This has a disadvantage, in that changes made to the initial configu-
ration of the composition of systems modify the modular architecture (e. g. replacing
a component causes different connections).

In interface connection modular architecture, all dependencies are explicit. In-
terfaces define what is required in order to function correctly.

Model configuration In many design processes, the target systems are designed
using predefined model components. In such processes, these model components are
selected, configured and assembled in such a way that the design specifications are
met. A model component is a modular design entity with a complete specification
describing how it may be connected to other model components in a configuration.
For example, a modelled pump assembly has intake and outlet ports to connect it
to other model components on each side. The pump’s intake and outlet collectively
form the ports or interface to this component.

A model component is instantiated in the design by specifying instantiation pa-
rameters that describe its specification. Once instantiated, the model component is
connected to other instantiated components via its ports or interface. Figure 4.46
illustrates several series of model components (in this case, complete PEMs) con-
nected together in a general configuration of the simulated process.

Composition of systems A configuration is created when two or more model com-
ponents are connected to each other via their interfaces. A model component can it-
self encapsulate a configuration of numerous model components, thus allowing for
a hierarchical structure of systems in a composition of systems. Multiple configura-
tions can represent a particular system composition, and are bound to the system’s
configuration interface. For example, a process system can be represented as a sin-
gle component or as a configuration of several model components. The candidate
configurations are all equivalent specifications of the same model components, and
the choice of configuration is independent of model behaviour.
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Fig. 4.46 General configuration of process simulation model

Figure 4.47 illustrates the very many compositions of systems of the process sim-
ulation model, where each system (PEM), consisting of model components, is con-
nected in a series-parallel configuration with object connection modular architecture
at the composition of systems level, and interface connection modular architecture
at the model components level.

Logical flows in process equipment models (PEMs) The overall configuration of
a comprehensive process simulation model in a composition of systems can include
a large amount of PEM blocks, each connected to another in many complex flow
configurations. There are two types of logical flows between the PEM blocks. The
first type of flow represents the items that move through the system. Items can be as-
sociated with attributes and priorities. The second type of logical flow changes over
time during the simulation run and is represented by values. Examples of values
include the number of items in a queue, the result of a random sample, or the level
of fluid in a tank. In Extend c© Performance Modelling, each block (model compo-
nent) has connectors that are the interface points of the block. Connections are lines
used to specify the logical flow from one block to another. Double lines represent
item connections and single lines represent value connections. The concept of value
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Fig. 4.47 Composition of systems of process simulation model

connections in addition to item connections is unique to Extend c©. Other contempo-
rary simulation applications require that a function be written whenever a simulation
input is based on a value from another point in the model. In the Extend c© Perfor-
mance Modelling program, this type of logic is performed without programming of
any type. More importantly, the logic of the model is visible to anyone examining
the model structure. To simplify the appearance of the model, the connections can
be hidden.

Optimisation using evolutionary algorithms The focus is on characterising, mod-
elling and organising the interactions between model components. The configura-
tion also contains analysis models, with rules imposed by a set theoretic formal-
ism. The model configuration is based on the context of design specification. This
framework also incorporates optimisation capabilities. The Extend c© Performance
Modelling program includes an ‘evolutionary optimiser’ that employs powerful en-
hanced evolutionary algorithms (EA) to determine the best possible model config-
uration. Using a drag-and-drop interface, performance metrics and parameters that
can be varied are entered into the ‘optimiser’ block. These parameters are used in an
equation that defines the objective function. When the model is run, the ‘optimiser’
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Fig. 4.48 PEM library and selection for simulation modelling

block generates alternatives and locates the statistically best configuration. Unlike
external optimisers, the Extend c© simulation model’s optimisation is well integrated
into the program. For example, when the optimisation process is complete, model
parameters are automatically set to the optimal configuration. In addition, because
the optimiser has been implemented in a block, the source code is available for
examination and modification.

Model component library The PEM models have been constructed with library-
based iconic blocks. These iconic blocks have been developed using a powerful
programming language, namely the Extend c© ModL language. Block dialogs are
the mechanism for entering model data and reporting block results. Blocks reside in
libraries, and each library represents a grouping of blocks with similar characteris-
tics. Blocks are placed on the model worksheet by dragging these from the library
window, as illustrated in Fig. 4.48.

Logical flow is established between the blocks. Interfaces, components and
graphics are created that tailor the model to a specific application. By modifying an
existing interface or creating a new one, the simulation modeller develops a model
that can be used by someone more familiar with the system than with the simulation
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tool, where each block then describes a calculation or a step in the process. Mod-
els can thus be aptly built for the conceptual framework of a collaborative design
environment.

Model development programming There are several advantages in a dynamic
systems simulation development environment applied concurrently in a collabora-
tive design environment. Design model builders are able to easily and reliably create
new or modified modelling constructs for demanding design modelling situations or
new applications. The significance of a powerful programming language such as
ModL further enhances the simulation modelling capability. Traditional simulation
languages or scripting environments typically lack full sets of language features
such as flexible condition statements (many are limited to a single condition at
a time), user-defined data structures, and user interface development tools. These
features are especially suited to the inclusion of dynamic systems simulation as an
imbedded knowledge source in a blackboard system. With ModL, only one language
and interface needs to be learned and, since ModL is based on the C language, its
learning curve is typically short. With less time learning and switching between lan-
guages, design model developers are able to develop more sophisticated models in
less time. This level of extensibility further prompts designers to develop libraries
of custom blocks for specific engineered installations.

The ability of the dynamic systems simulation blackboard model to communicate
with other knowledge source applications in the blackboard allows the model to ex-
change information with the knowledge base and with the expert systems within the
blackboard, using inter-process communication (IPC) and dynamic data exchange
(DDE) capability. Through IPC, the systems simulation model can act as a server
application, allowing the blackboard and other knowledge source programs, such
as expert system shells, or an artificial neural network (ANN) application, to re-
quest that a specific simulation model perform any task that the ModL language
allows.

The dynamic systems simulation blackboard model can also act as a client ap-
plication, requesting data and services from other programs. For example, an expert
system application can start and run a specific simulation model, or the simulation
model can instruct a spreadsheet to execute a macro and report the results back
through the blackboard. Several features of the Extend c© Performance Modelling
program provide the means for exchange information communication of the dy-
namic systems simulation blackboard model, specifically scripting and use of the
Extend c© notebook and cloning features.

Scripting Scripting is a feature that allows models to be created and/or modified
through a suite of ModL functions. With this functionality, designers can create ob-
jects that automatically build and modify models. With scripting, designers can de-
velop their own model-building wizards or self-modifying models. This is especially
attractive in a blackboard application. Coupled with the ability to communicate with
other knowledge source applications in the blackboard, and with the expert systems
within the blackboard using inter-process communication (IPC), scripting provides
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Fig. 4.49 Running the simulation model

an easy method of allowing applications such as the multi-disciplinary collaborative
expert systems to control every aspect of the dynamic systems simulation model, in-
cluding building the model, importing or exporting data, and running the simulation
with a specific simulation set-up.

Running the simulation is initiated by accessing the simulation set-up dialog,
which then provides the facility of setting various simulation time properties, as
illustrated in Fig. 4.49.

Simulation model output Input and output parameters associated with a model
can be found in the dialogs of the appropriate blocks or in the output document.
While this provides an intuitive association between system metrics and the con-
structs used to model these, it can make searching for specific data cumbersome.
This is especially true when working with large models containing many layers of
hierarchy, typical of engineering designs. An effective way of dealing with this is
to use the notebook and cloning feature. With the notebook, a single custom inter-
face is created that consolidates critical parameters, results, and model control to
a central location. The notebook is a separate window associated with each simula-
tion model. Initially, the notebook is a blank worksheet to which text, pictures and
clones can be added. Clones are direct links to dialog parameters. Once a clone is
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Fig. 4.50 Simulation model output results

created, any changes to the clone are immediately reflected in the block (or PEM)
and vice versa.

Creative use of the notebook can result in an effective modelling interface for
a large, complex engineering design, as illustrated in Fig. 4.50.

4.4.2 Evaluation of Modelling Results

The process of dynamic systems simulation evaluation can be divided into three
categories:

• Model verification, to ensure that the model’s functional behaviour is similar to
the real system being modelled;

• Model validation, to test the agreement between the results of the behaviour of
the model and that of the real system, i. e. determining a correlation between the
model’s results and the real system’s output variables;

• Problem analysis, which deals with the interpretation of the data generated by
the model. In other words, evaluation of dynamic systems simulation is con-
cerned with determining the consistency of functional behaviour of the model, its
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resulting correspondence with the real system, and the correct analytic interpre-
tation of the model’s resulting data.

Model verification Model verification implies proving that the model is function-
ally true according to a set of functional criteria that is applicable for comparison
between the model and the real system (i. e. similar types of exogenous, status and
endogenous variables). The problem of model verification can thus be reduced to
the problem of searching for a set of basic assumptions underlying the functional
behaviour of the real system. Such a procedure requires the formulation of a set of
postulates or hypotheses describing the behaviour of the real system. This includes
the specification of model components and the selection of variables, as well as the
formulation of functional relationships, all of which are inherent in the dynamic
systems simulation blackboard model that is used to control the design knowledge
sources and integrate the knowledge-based design applications such as the process
equipment model (PEM) blocks.

The design knowledge base and design knowledge sources form the core of an
integrated design support system that enables model verification. The following fig-
ures illustrate the design details of these PEM blocks for the various simulation
model sectors. In contrast to model verification, the validity of a model depends not
on the formulation of a set of postulates or hypotheses describing the behaviour of
the real system but, rather, on the ability of the model to predict the results of model
behaviour.

Model validation Model validation is the process of developing an acceptable level
of confidence that an inference about the results of a simulated process is a valid in-
ference for the outputs of the real system. The problem of model validation can
thus be reduced to two characteristic problems: to validate the results of a specific
model’s function, and not the mechanism that generated the results, and to compare
the input-output transformations generated by the model to those generated by, or
specified for, the real system. In the use of dynamic simulation models to represent
real systems, different types or classes of error can result, any one of which can lead
to erroneous conclusions, such as errors in model design through the exclusion of
significant variables, errors in the modelling approach whereby relevant variables
may be represented incorrectly, and errors in programming, input data, or interpre-
tation of results. The validity of the model is made probable, though not certain, by
analysis of the assumptions underlying the model, whereby the inductive inferences
are analysed through statistical methods.

Problem analysis The data generated by computer simulation models represent,
in effect, the inductive reasoning of the modelling process as the conclusion of
a set of inductive inferences, i. e. assumptions of behavioural results or the out-
come of operating characteristics about the behaviour of the real system. The rules
for analysing the data generated by computer simulation models are predominantly
statistical sampling rules based on the theory of probability. Statistical tests used
for analysing these assumptions, and also conclusions of the inductive inferences
drawn from simulation runs of the model are, in general, hypothesis testing and
estimation.
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Hypothesis testing normally includes the following:

• tests on estimates of parameters assuming an underlying probability distribution
(i. e. parametric tests);

• tests on estimates of parameters that are not dependent on assuming an underly-
ing probability distribution (non-parametric tests);

• tests to establish the probability distribution from which sample data are gener-
ated (goodness of fit tests such as Kolmogorov–Smirnov and Chi-square tests);

• tests on the relationship among variables (correlation analysis).

Estimation includes the calculation of point and interval estimations of parameters,
as well as a determination of quantitative equations relating two or more variables
(i. e. regression analysis). Statistical methods used for hypothesis testing and esti-
mating are, therefore, mainly tests of means, analysis of variance and covariance,
goodness of fit tests, regression and correlation analysis. The results of dynamic
simulation models are often used to determine estimates of the parameters of the
response variable or, in this case, the flow volume and/or mass flow consisting of
liquid and solids. Because these values are estimates, it is essential to assess their
accuracy, which is usually done by placing confidence bands or intervals about the
estimates. For example, if the simulation model estimate of the mean flow volume
of a particular PEM is a value designated by Ē , and the design flow volume is μ ,
an upper limit UL and lower limit LL could be established such that the probability
of the design flow volume being the mean of these two limits is equal to a specified
exact probability (using the t-distribution as inference).

Dynamic systems simulation case study The case study selected to determine the
applicability of dynamic systems simulation modelling in evaluating and verifying
process design integrity of complex integrations of systems is a typical alumina
refinery process. The data given in Tables 4.14, 4.17 and 4.20 are extracts from
a dynamic systems simulation case study (simulation model sectors 1, 2 and 3), and
represent preliminary design data of the real system process parameters of flow vol-
ume, mass flow, solids content and liquid content used in alumina production. The
estimates of the maximum, minimum and mean flow volumes of each PEM in the
specific sectors are given in the simulation model’s output notebook. Validation of
the dynamic systems simulation would include a comparative analysis of the prelim-
inary design data of the real system process parameters, as listed in the tables, with
the model parameter estimates of each PEM listed in the model’s output notebook.
Analysis of the flow volume data generated by the computer simulation model runs
would constitute a determination of the confidence intervals about the estimates,
such that the probability of correspondence with the design flow volume is equal
to a specified exact probability. The case study dynamic systems simulation model
evaluation for simulation model sector 1 is given in Figs. 4.51 through to 4.55. Case
study model evaluation for simulation model sector 2 is given in Figs. 4.56 through
to 4.59, and case study model evaluation for simulation model sector 3 is given in
Figs. 4.60 through to 4.63.
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Table 4.14 Preliminary design data for simulation model sector 1

Assembly Code Flow vol. Mass flow Liq. Solids

Transfer conveyor 1 C015141 575 1,508 106 1,403
Transfer conveyor 2 C015241 575 1,508 106 1,403
Rev.shuttle conveyor 1 C024111M 575 1,508 106 1,403
Rev.shuttle conveyor 2 C024211M 575 1,508 106 1,403
Storage bin 1 U024111 192 503 35 468
Storage bin 2 U024211 192 503 35 468
Storage bin 3 U024311 192 503 35 468
Belt feeder 1 Y024121 192 503 35 468
Belt feeder 2 Y024221 192 503 35 468
Belt feeder 3 Y024321 192 503 35 468
Mill feed conveyor 1 C024121 192 503 35 468
Mill feed conveyor 2 C024221 192 503 35 468
Mill feed conveyor 3 C024321 192 503 35 468

a) Evaluation of Simulation Model Sector 1

A major characteristic of the process flow diagram (PFD) of sector 1 is that it depicts
material flow and indicates how inputs are generated and then transformed by each
system (or assembly) into outputs that, in turn, become the inputs to the next system
(or assembly), as depicted in the preliminary design data given in Table 4.14. These
are specifically mass-flow volumes of solids. The PFD is systematically examined
to analyse deviations in process flow and system performance and, in this case,
to determine mass-flow balance through the integrated assemblies. Each assembly
is graphically represented in the simulation model by a virtual prototype process
equipment model (PEM).

Each of the assemblies of the PFD depicted in Fig. 4.51 (i. e. the feeder, three
storage bins, three chute conveyors, and three transfer conveyors) is a process equip-
ment model.

Each PEM contains selected model components that are linked together with
logical flows. A model component is a modular design entity with a complete spec-
ification describing how it is connected to other model components in a model con-
figuration. Model configurations are created when two or more model components
are connected to each other via their interfaces. Each model component has connec-
tors that are the interface points of the component (or block). Connections are lines
used to specify the logical flow between the connectors from one block’s output to
another’s input. Thus, a process system or assembly can be represented either as
a single model component or as a configuration of several components.

Logical flow initiation—the random number generator The model components
are selected, configured and assembled in such a way that the design specifications
of each system are met through the component’s attributes, and the linked logical
flows. Thus, the feeder assembly PEM, for example, has its own specific model con-
figuration, in contrast to that of the storage bins, as depicted in the design details of
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Fig. 4.51 Process flow diagram for simulation model sector 1

Figs. 4.52 and 4.53. However, all simulation models, especially Monte Carlo simu-
lation, have random number generators for ‘seed’ values initiation of the simulation
model’s input flow variable(s) that constitute the initial flow of the linked logical
flows thereafter.

The model component’s attributes depicted in Fig. 4.52 generate random num-
bers according to a statistical probability distribution, convert the outputs of a con-
version function by modifying the component’s inputs through a selection of statis-
tical functions, as well as calculating the mean, variance and standard deviation of
the component’s inputs.

Logical flow storage—the process equipment models (PEMs) Logical flow in
the context of process systems simulation modelling represents upstream material
feed that, in effect, causes the initiation of the process equipment model (PEM).
Logical flow storage PEMs are process simulation models in which the model con-
figuration incorporates a model component attribute of an output conversion func-
tion that modifies the component’s inputs through a selection of statistical functions,
and statistical probability distributions. As previously indicated, the PEMs incor-
porate all the essential process analysis preliminaries for preliminary engineering
designs of large integrated process systems.
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Fig. 4.52 Design details for simulation model sector 1: logical flow initiation

The application of dynamic systems simulation modelling incorporating the
PEMs is primarily to determine the effect of logic flow in complex integrations
of systems in large engineered installations. The model component’s attributes de-
picted in Fig. 4.53 incorporate probability distribution modifiers of the logic flow
within each PEM.

Output performance results The Extend c© Performance Modelling program pro-
vides a powerfully flexible graphical output presentation through dynamic plotters.
These plotters can be placed anywhere in the modelled system configuration, and
connected between any of the PEM input/output interface connectors, or within each
PEM between model component connectors.

Figure 4.54 illustrates a typical output document showing performance results of
the storage bin assembly. These performance variables relate to system or assembly
contents, input and output flow quantities, as well as flow surges. The flow surge
gives an indication of material flow balancing in the process, subject to upstream
material feed. The storage bin PEM illustrated in Fig. 4.54 has a plotter connected
to the output model components of the PEM. The plotted graph in the figure shows
the trend of material flow through the storage bin from start-up to steady state.
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Fig. 4.53 Design details for simulation model sector 1: logical flow storage PEMs

b) Conclusion of Simulation Model Sector 1 Evaluation

Table 4.15 below indicates the values of a comparative analysis of preliminary de-
sign data and simulation output data for simulation model sector 1. Column 2 of
the table gives the specified preliminary design flow volumes, and column 3 gives
the mean of the simulation model’s output data. On first scrutiny, these two values
are identical with an expectation of a 100% correlation, resulting in the conclusion
that the model’s output is a perfect match to the specified preliminary design flow
volumes of the listed assemblies in simulation model sector 1.

The evaluation of simulation model output data is, however, not that simple, as
other factors must be included such as requirements for meeting the full design spec-
ification inclusive of allowable tolerances, and determining whether the minimum
and maximum values, i. e. the range of output variances for each simulation run of
the model’s output data, fall within the expected confidence intervals of the design
specification. The test of whether the simulation model’s output variances fall within
the allowable design tolerances is set at a 99% level of confidence. The allowable
design tolerance for throughput flow volumes is set at ±2.5% of the mean.

Figure 4.55 indicates the simulation model’s output for simulation model sec-
tor 1, including operational flow throughput (OPS), maximum and minimum flow
(MAX) and (MIN), and mean flow output (MEAN). However, an acceptable lower
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Fig. 4.54 Design details for simulation model sector 1: output performance results

Table 4.15 Comparative analysis of preliminary design data and simulation output data for simu-
lation model sector 1

Assembly Design flow Model flow Model min. Model max.
vol. vol. flow vol. flow vol.

Transfer conveyor 1 575 575 565 585
Transfer conveyor 2 575 575 565 585
Rev.shuttle conveyor 1 575 575 565 585
Rev.shuttle conveyor 2 575 575 565 585
Storage bin 1 192 195 180 210
Storage bin 2 192 195 180 210
Storage bin 3 192 195 180 210
Belt feeder 1 192 195 180 210
Belt feeder 2 192 195 180 210
Belt feeder 3 192 195 180 210
Mill feed conveyor 1 192 195 180 210
Mill feed conveyor 2 192 195 180 210
Mill feed conveyor 3 192 195 180 210

tolerance limit (LL) and an upper tolerance limit (UL), against which the minimum
and maximum values of the simulation model’s output data can be compared, need
to be established to determine whether the range of variances of the model’s output
data falls within these tolerance limits.
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Fig. 4.55 Simulation output for simulation model sector 1

Table 4.16 Acceptance criteria of simulation output data, with preliminary design data for simu-
lation model sector 1

Assembly Design min. Design max. Model min. Model max. Yes/no
vol. 2.5% tol. vol. 2.5% tol. vol. vol. at 99%

Transfer conveyor 1 565 585 565 585 Yes
Transfer conveyor 2 565 585 565 585 Yes
Rev.shuttle conveyor 1 565 585 565 585 Yes
Rev.shuttle conveyor 2 565 585 565 585 Yes
Storage bin 1 187 197 180 210 No
Storage bin 2 187 197 180 210 No
Storage bin 3 187 197 180 210 No
Belt feeder 1 187 197 180 210 No
Belt feeder 2 187 197 180 210 No
Belt feeder 3 187 197 180 210 No
Mill feed conveyor 1 187 197 180 210 No
Mill feed conveyor 2 187 197 180 210 No
Mill feed conveyor 3 187 197 180 210 No

Validation of the simulation model’s output data is thus not confined to a mere
correlation of the mean values, whereby problems of autocorrelation can be sig-
nificant, and the simulation model runs are not large enough to justify statistical
spectral analysis of the output data (especially with very large, complex dynamic
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simulation models), but the range or variance of the model’s output data is com-
pared to acceptable lower and upper confidence limits within a specified exact prob-
ability. The design specification is thus used as the mean, and the allowable design
tolerance of ±2.5% of the mean is used as the square root of the variance, or stan-
dard deviation in the statistical t-distribution, to determine a confidence range or
interval with lower tolerance limit (LL) and an upper tolerance limit (UL) at a 99%
level of confidence for ten simulation runs. The minimum and maximum values
of the simulation model’s output data are then compared against this confidence
range or interval. The last column of Table 4.16 indicates whether the model’s
output is acceptable in meeting the design criteria within a 99% level of confi-
dence.

c) Evaluation of Simulation Model Sector 2

A major characteristic of the process flow diagram (PFD) of sector 2 is that it de-
picts the conversion of solids to a solids and liquid slurry flow (through the action
of the mills), and indicates how inputs are transformed into logical flow outputs
that become modified inputs to the following assemblies (through the action of the

Table 4.17 Preliminary design data for simulation model sector 2

Assembly Code Flow vol. Mass flow Liq. Solids

Rod mill 1 X024131 307 654 186 468
Rod mill 2 X024231 307 654 186 468
Rod mill 3 X024331 307 654 186 468
Rod mill 4 X024431 307 654 186 468
Mill discharge tank 1 T024141 1,119 2,102 943 1,159
Mill discharge tank 2 T024241 1,119 2,102 943 1,159
Mill discharge tank 3 T024341 1,119 2,102 943 1,159
Mill discharge tank 4 T024441
Classifier feed pump 1/1 P024151 560 1,051 472 580
Classifier feed pump 1/2 P024152 560 1,051 472 580
Classifier feed pump 2/1 P024251 560 1,051 472 580
Classifier feed pump 2/2 P024252 560 1,051 472 580
Classifier feed pump 3/1 P024351 560 1,051 472 580
Classifier feed pump 3/2 P024352 560 1,051 472 580
Classifier feed pump (S) P024451
Classifier feed pump (S) P024452
Screen feed pot 1 V024161 1,152 2,142 982 1,159
Screen feed pot 2 V024261 1,152 2,142 982 1,159
Screen feed pot 3 V024361 1,152 2,142 982 1,159
Screen feed pot 4 V024461
Ball mill 1 X024141 515 1,056 365 690
Ball mill 2 X024241 515 1,056 365 690
Ball mill 3 X024341 515 1,056 365 690
Ball mill 4 X024441 515 1,056 365 690
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Fig. 4.56 Process flow diagram for simulation model sector 2

pumps), as depicted in the preliminary design data given in Table 4.17. The PFD
is systematically examined to analyse deviations in process flow and system perfor-
mance and, in this case, to determine solids to fluids mass-flow balance through the
integrated assemblies.

Each assembly is graphically represented in the simulation model by a virtual
prototype process equipment model (PEM). Each of the assemblies of the PFD de-
picted in Fig. 4.56 (i. e. the four mill feeder chutes, eight mills, eight pumps, four
mixer chutes, four multi-bin feeders) is a process equipment model.

Process design specifications Each PEM contains model components that are con-
figured in such a way that the design specifications of each system or assembly are
met through the component’s attributes. The model component’s attributes for the
mill input feeder chute and the mill output mixer chute connect three input values to
a single output, and two input values to a single output respectively. The attributes
for the multi-bin feeder convert the output by modifying the component’s multi-
ple inputs through a selection of statistical functions. The attributes for the mill
pump also convert the pump’s output by modifying the component’s inputs through
a selection of statistical functions representing typical pump delivery character-
istics.
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Fig. 4.57 Design details for simulation model sector 2: holding tank process design specifications

Figure 4.57 illustrates the model component’s attributes of the rod mill, specifi-
cally the holding tank process characteristics such as operating contents, maximum
and minimum contents, initial flow, final flow, initial contents, final contents, as well
as initial and final flow surge.

Output performance results Performance variables relate to system or assembly
contents, input and output flow quantities, as well as flow surges. The flow surge
gives an indication of mass-flow balancing in the process. The output document is
particular to each PEM and can be opened at any time, anywhere, in the dynamic
systems simulation to determine the status of the process flow. The Extend c© Perfor-
mance Modelling program plotters can be placed anywhere in the modelled system
configuration, and connected between any of the PEM input/output interface con-
nectors, or within each PEM between model component connectors. The different
process equipment models illustrated in Fig. 4.58 have plotters connected to the
model components of each PEM’s model configuration.

Figure 4.58 illustrates a typical output document showing performance results of
the second-stage mill assembly. The plotted graph shows the trend of flow through
the mill from start-up to steady state.
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Fig. 4.58 Design details for simulation model sector 2: output performance results

d) Conclusion of Simulation Model Sector 2 Evaluation

Table 4.18 gives the values of a comparative analysis of preliminary design data and
simulation output data for simulation model sector 2.

Figure 4.59 shows the simulation model’s output for simulation model sector 2.
As with simulation model sector 1, the range or variance of the model’s output data
is compared to acceptable lower and upper confidence limits within a specified exact
probability. The design specification is again used as the mean, and the allowable
design tolerance of ±2.5% of the mean is used as the standard deviation in the
t-distribution, to determine a confidence range or interval with lower tolerance limit
(LL) and an upper tolerance limit (UL) at a 99% level of confidence for ten simula-
tion runs. The minimum and maximum values of the simulation model’s output data
are similarly compared against this confidence range or interval. The last column of
Table 4.19 indicates whether the model’s output is acceptable in meeting the design
criteria within a 99% level of confidence. As can be seen, the mills and classifier
feed pumps have a flow volume variance that is not acceptable within the 99% con-
fidence interval as set by the design criteria, whereas the ball mills partially comply
with the design criteria in that the simulated minimum flow is within the acceptable
lower limit (LL).
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Table 4.18 Comparative analysis of preliminary design data and simulation output data for simu-
lation model sector 2

Assembly Design flow Model flow Model min. Model max.
vol. vol. flow vol. flow vol.

Rod mill 1 307 315 285 345
Rod mill 2 307 315 285 345
Rod mill 3 307 315 285 345
Rod mill 4 307 315 285 345
Mill discharge tank 1 1,119 1,120 1,110 1,130
Mill discharge tank 2 1,119 1,120 1,110 1,130
Mill discharge tank 3 1,119 1,120 1,110 1,130
Mill discharge tank 4
Classifier feed pump 1/1 560 560 540 580
Classifier feed pump 1/2 560 560 540 580
Classifier feed pump 2/1 560 560 540 580
Classifier feed pump 2/2 560 560 540 580
Classifier feed pump 3/1 560 560 540 580
Classifier feed pump 3/2 560 560 540 580
Classifier feed pump (S)
Screen feed pot 1 1,152 1,154 1,148 1,160
Screen feed pot 2 1,152 1,154 1,148 1,160
Screen feed pot 3 1,152 1,154 1,148 1,160
Screen feed pot 4
Ball mill 1 515 520 580 540
Ball mill 2 515 520 580 540
Ball mill 3 515 520 580 540
Ball mill 4 515 520 580 540

e) Evaluation of Simulation Model Sector 3

A major characteristic of the process flow diagram (PFD) of sector 3 is that it depicts
continuous fluid flow and indicates how inputs are transformed by each assembly
into outputs that, in turn, become modified logical flow inputs to the next assembly,
as depicted in the preliminary design data given in Table 4.20. The PFD is sys-
tematically examined to analyse deviations in process flow and system performance
and, in this case, to determine mass fluid flow balance through integrated assem-
blies. Each assembly is graphically represented in the simulation model by a virtual
prototype process equipment model (PEM).

Each of the assemblies of the PFD depicted in Fig. 4.60, consisting of four pro-
cessing tank systems containing 23 assemblies (four double tank feeder chutes, four
processing tanks plus one standby, four sets of three-up parallel pumps, and one
pump/condensate assembly), is a process equipment model.

A fluid mass-flow balance is the application of conservation of mass to the anal-
ysis of physical systems. By accounting for materials (solids or fluids) entering and
leaving a system, mass flows can be identified from one system, or assembly, to the
next. The exact mass-balance theory used in the analysis of the system depends on
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Fig. 4.59 Simulation output for simulation model sector 2

the context of the design problem, specifically where the theory is used to analyse
alternative processes.

Process design specifications Each PEM contains selected model components that
are configured in such a way that the design specifications of each assembly are
met through the component’s attributes. The model component’s attributes for the
four double tank feeder chutes convert the chutes’ output by modifying the compo-
nent’s inputs through a selection of statistical functions based on feed specifications.
The model component’s attributes for each of the processing tanks’ pumps convert
a pump’s output by modifying the inputs through a selection of statistical functions
representing the appropriate pump delivery characteristics.

Figure 4.61 illustrates the application of Petri net (PN)-based optimisation algo-
rithms in dynamic systems simulation. The optimisation algorithm is a model com-
ponent inherent to the processing tank PEM and determines process flow pressure
surge through the tank.

Output performance results The fluid mass that enters a system must, by conser-
vation of mass, either leave the system or accumulate within the system. Basically,
the fluid mass-flow balance equation for a system without internal chemical reac-
tions is: input = output + accumulation. In the absence of a chemical reaction,
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Table 4.19 Acceptance criteria of simulation output data, with preliminary design data for simu-
lation model sector 2

Assembly Design min. Design max. Model min. Model max. Yes/no
vol. 2.5% tol. vol. 2.5% tol. vol. vol. at 99%

Rod mill 1 300 315 285 345 No
Rod mill 2 300 315 285 345 No
Rod mill 3 300 315 285 345 No
Rod mill 4 300 315 285 345 No
Mill discharge tank 1 1,080 1,148 1,110 1,130 Yes
Mill discharge tank 2 1,080 1,148 1,110 1,130 Yes
Mill discharge tank 3 1,080 1,148 1,110 1,130 Yes
Mill discharge tank 4
Classifier feed pump 1/1 545 575 540 580 No
Classifier feed pump 1/2 545 575 540 580 No
Classifier feed pump 2/1 545 575 540 580 No
Classifier feed pump 2/2 545 575 540 580 No
Classifier feed pump 3/1 545 575 540 580 No
Classifier feed pump 3/2 545 575 540 580 No
Classifier feed pump (S)
Screen feed pot 1 1,122 1,182 1,148 1,160 Yes
Screen feed pot 2 1,122 1,182 1,148 1,160 Yes
Screen feed pot 3 1,122 1,182 1,148 1,160 Yes
Screen feed pot 4
Ball mill 1 502 528 510 530 Part
Ball mill 2 502 528 510 530 Part
Ball mill 3 502 528 510 530 Part
Ball mill 4 502 528 510 530 Part

the logical fluid flow in and out of a system or assembly will be the same. To per-
form a balance, the boundaries of the system must be well defined. Fluid mass-flow
balances can be taken over physical systems at multiple scales, taking into consider-
ation flow surges, and can be simplified with the assumption of steady state, where
the accumulation term is zero.

Figure 4.62 illustrates a typical output document showing performance results of
the processing tank PEM. These performance variables relate to assembly contents,
input and output flow quantities, as well as flow surges. The flow surge gives an
indication of deviations from steady-state flow. The plotted graph shows the trend
of flow from start-up to steady state.

f) Conclusion of Simulation Model Sector 3 Evaluation

Table 4.21 gives the values of a comparative analysis of preliminary design data and
simulation output data for simulation model sector 3.

Figure 4.63 shows the simulation model’s output for simulation model sector 3.
As with simulation model sectors 1 and 2, the range or variance of the model’s
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Table 4.20 Preliminary design data for simulation model sector 3

Assembly Code Flow vol. Mass flow Liq. Solids

Desilicator 1 T026021 1,250 2,136 1,213 937
Desilicator 2 T026031 968 1,642 928 721
Desilicator 3 T026041 968 1,642 928 721
Desilicator 4 T026051 1,250 2,136 1,213 937
Desilicator 5 T026061 968 1,642 928 721
Slurry splitter box 1 L026031 1,250 2,136 1,197 938
Slurry splitter box 2 L026041 968 1,642 928 721
Slurry splitter box 3 L026051 968 1,642 928 721
Slurry splitter box 4 L026061 1,250 2,136 1,197 938
Slurry forwarding pump 1 P026011 1,250 2,136 1,197 938
Slurry forwarding pump 2 P026021 968 1,642 928 721
Slurry forwarding pump 3 P026031 968 1,642 928 721
Slurry forwarding pump 4 P026041 968 1,642 928 721
Slurry forwarding pump 5 P026051 968 1,642 928 721
Slurry forwarding pump 6 P026061 1,250 2,136 1,197 938
Discharge pump 1 P026071 323 547 312 235
Discharge pump 2 P026171 323 547 312 235
Discharge pump 3 P026271 323 547 312 235
Discharge pump 4 P026301 323 547 312 235
Discharge pump 5 P026302 323 547 312 235
Discharge pump 6 P026303 323 547 312 235

Table 4.21 Comparative analysis of preliminary design data and simulation output data for simu-
lation model sector 3

Assembly Design flow Model flow Model min. Model max.
vol. vol. flow vol. flow vol.

Desilicator 1 1,250 1,255 1,245 1,265
Desilicator 2 968 967.5 960 975
Desilicator 3 968 967.5 960 975
Desilicator 4 1,250 1,255 1,245 1,265
Desilicator 5 968 967.5 960 975
Slurry splitter box 1 1,250 1,250 1,245 1,255
Slurry splitter box 2 968 967.5 960 975
Slurry splitter box 3 968 967.5 960 975
Slurry splitter box 4 1,250 1,250 1,245 1,255
Slurry forwarding pump 1 1,250 1,250 1,240 1,260
Slurry forwarding pump 2 968 967.5 955 980
Slurry forwarding pump 3 968 967.5 955 980
Slurry forwarding pump 4 968 967.5 955 980
Slurry forwarding pump 5 968 967.5 955 980
Slurry forwarding pump 6 1,250 1,250 1,240 1,260
Discharge pump 1 323 325 320 330
Discharge pump 2 323 325 320 330
Discharge pump 3 323 325 320 330
Discharge pump 4 323 325 320 330
Discharge pump 5 323 325 320 330
Discharge pump 6 323 325 320 330
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Fig. 4.60 Process flow diagram for simulation model sector 3

output data is compared to acceptable lower and upper confidence limits within
a specified exact probability. The design specification is again used as the mean,
and the allowable design tolerance of ±2.5% of the mean is used as the square
root of the variance, namely the standard deviation, in the t-distribution, to deter-
mine a confidence range or interval with lower tolerance limit (LL) and an upper
tolerance limit (UL) at a 99% level of confidence for ten simulation runs. The mini-
mum and maximum values of the simulation model’s output data are similarly com-
pared against this confidence range or interval. The last column of Table 4.22 indi-
cates whether the model’s output is acceptable in meeting the design criteria within
a 99% level of confidence. As can be seen, all the assemblies have a flow volume
variance that is acceptable within the 99% confidence interval as set by the design
criteria.
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Fig. 4.61 Design details for simulation model sector 3: process design specifications

4.4.3 Application Modelling Outcome

Verification of the process simulation model with the PEM blocks included the spec-
ification of model components as well as the formulation of functional relationships,
all of which are inherent in the dynamic systems simulation blackboard model that
is used to control the design knowledge sources and integrate the knowledge-based
design applications. In contrast to model verification, the validity of the simulation
model depended on the ability of the model to predict the results of the model’s
behaviour. However, validation of the simulation model was not based on a corre-
lation of the mean values of the model’s output data and the specified design flow
volumes for each PEM, due to possible problems of autocorrelation and the lim-
ited number of simulation model runs not being large enough to justify statistical
spectral analysis of the output data. Rather, statistical inference was applied to de-
termine whether the range of the model’s output data fell between acceptable lower
and upper confidence limits within a specified exact probability.

In order to determine a confidence range or interval with a lower tolerance limit
(LL) and an upper tolerance limit (UL), the specified design flow volume was used
as the mean, and the allowable design tolerance of ±2.5% of the mean was used as
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Fig. 4.62 Design details for simulation model sector 3: output performance results

standard deviation in the statistical t-distribution at a 99% level of confidence for ten
simulation runs. The minimum and maximum values of the simulation model’s out-
put data were then compared against this confidence range or interval to determine
whether the model’s output was acceptable in meeting the design criteria.

As indicated in Tables 4.16, 4.19 and 4.22, not all of the assemblies listed met the
required design criteria, indicating that the simulation model failed at a 99% level
of confidence specifically for those assemblies. However, the statistical approach of
determining confidence intervals with the t-distribution was repeated for 95% and
90% levels of confidence. Close on 85% of the simulation model’s output data was
found to meet the required design criteria at a 95% level of confidence, and all of
the simulation model’s output data met the required design criteria at a 95% level
of confidence. This implies that the process simulation model with the PEM blocks
is capable of predicting process output within a 10% margin of error for each PEM.
Due to the fact that the model simulates a complex integrated continuous process
flow, a 90% level of confidence is acceptable for the preliminary design phase of the
engineered installation.
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Fig. 4.63 Simulation output for simulation model sector 3

4.5 Review Exercises and References

Review Exercises

1. Discuss cost modelling for design availability and maintainability.
2. Explain economic loss and the cost of dependency.
3. Give a brief account of life-cycle analysis and life-cycle costs.
4. Consider life-cycle cost elements in engineering design.
5. Describe present value calculations for life-cycle costs.
6. Discuss trade-off measurement for life-cycle costs.
7. Give a brief account of availability modelling based on system performance,

considering process capability, process characteristics and functional effective-
ness.

8. Explain the concept of sizing maximum or design capacity.
9. Define inherent availability (Ai)

10. Discuss inherent availability modelling with uncertainty.
11. Discuss the significance of the application of the exponential function for deter-

mining inherent availability.
12. Describe confidence determination of inherent availability predictions.
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Table 4.22 Acceptance criteria of simulation output data, with preliminary design data for simu-
lation model sector 3

Assembly Design min. Design max. Model min. Model max. Yes/no
vol. 2.5% tol. vol. 2.5% tol. vol. vol. at 99%

Desilicator 1 1,220 1,280 1,245 1,265 Yes
Desilicator 2 943 993 960 975 Yes
Desilicator 3 943 993 960 975 Yes
Desilicator 4 1,220 1,280 1,245 1,265 Yes
Desilicator 5 943 993 960 975 Yes
Slurry splitter box 1 1,220 1,280 1,245 1,255 Yes
Slurry splitter box 2 943 993 960 975 Yes
Slurry splitter box 3 943 993 960 975 Yes
Slurry splitter box 4 1,220 1,280 1,245 1,255 Yes
Slurry forward pump 1 1,220 1,280 1,240 1,260 Yes
Slurry forward pump 2 943 993 955 980 Yes
Slurry forward pump 3 943 993 955 980 Yes
Slurry forward pump 4 943 993 955 980 Yes
Slurry forward pump 5 943 993 955 980 Yes
Slurry forward pump 6 1,220 1,280 1,240 1,260 Yes
Discharge pump 1 315 330 320 330 Yes
Discharge pump 2 315 330 320 330 Yes
Discharge pump 3 315 330 320 330 Yes
Discharge pump 4 315 330 320 330 Yes
Discharge pump 5 315 330 320 330 Yes
Discharge pump 6 315 330 320 330 Yes

13. Discuss preliminary maintainability modelling.
14. Give a brief account of Markov modelling for design availability and maintain-

ability with regard to the two-state Markov model, and the multi-state Markov
model.

15. Define Markov model supplementary variables.
16. Define achieved availability.
17. Discuss achieved availability modelling subject to maintenance.
18. Consider maintainability assessment with maintenance modelling.
19. Discuss the impact of maintenance assessment on systems design.
20. Describe maintainability measures and maintenance assessment.
21. Discuss maintenance strategies and cost optimisation modelling.
22. Give a brief account of the basic principles of maintenance.
23. Describe a model of preventive maintenance physical checks.
24. Describe a model of preventive maintenance replacement shuts.
25. Define maintenance strategy.
26. Explain the concepts of reliability, availability and maintainability in mainte-

nance strategy and discuss their differences.
27. Give a brief account of the three principles of a maintenance strategy.
28. Discuss establishing maintenance strategies for engineering design.
29. Describe maintenance cost optimisation modelling.
30. Define dependability modelling.
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31. Discuss the significance of dependability modelling for design availability and
maintainability.

32. Define operational availability (Ao).
33. Discuss operational availability modelling with logistic support.
34. Consider a general approach for evaluating operational availability.
35. Give a brief account of system availability evaluation considerations.
36. Discuss maintainability evaluation and built-in or non-destructive testing (BIT).
37. Describe maintainability evaluation indices.
38. Give a brief account of diagnostic systems and built-in testing.
39. Explain basic system and BIT concurrent design and evaluation.
40. Discuss the evaluation of BIT systems.
41. Consider application modelling of availability and maintainability in engineer-

ing design.
42. Define equivalent availability (EA).
43. Discuss and compare the equivalent maintainability measures of downtime and

outage.
44. Describe outage measurement with the ratio of ER over EM.
45. Discuss system performance measures and limits of capability.
46. Describe performance parameters for system integrity and their significance in

engineering design.
47. Discuss analysis of the parameter profile matrix.
48. Discuss the significance of the design checklist.
49. Explain integrity prediction of common items of equipment.
50. Give a brief account of a design review of performance parameters for system

integrity.
51. Discuss the significance of reliability and maintainability checklists.
52. Describe system performance analysis and simulation modelling in engineering

design.
53. Consider different types of system performance models.
54. Briefly describe the significance and contribution of system simulation mod-

elling in engineering design.
55. Discuss uncertainty in system performance simulation modelling.
56. Explain propagation of the effect of uncertainties.
57. Describe the extreme condition approach for uncertainty analysis.
58. Describe the statistical approach for uncertainty analysis.
59. Give an explanation for mitigating the effect of uncertainty.
60. Describe maximising design availability using Petri net models.
61. Discuss Petri net theory and its application in engineering design.
62. Define the basic Petri net model and compare it to the definitions of stochastic

Petri nets as well as Markovian stochastic Petri nets.
63. Briefly explain the process of generating reachability graphs.
64. Discuss the measures of Markovian stochastic Petri nets.
65. Define stochastic reward nets and non-Markovian stochastic Petri nets.
66. Consider designing for availability using Petri net modelling.
67. Describe numerical computations for the availability Petri net model.
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68. Consider a steady-state solution to the availability Petri net model.
69. Explain complex systems theory.
70. Discuss systems engineering and complex systems theory.
71. Consider the application and significance of systems engineering in engineering

design.
72. Briefly discuss complexity in engineering design and its significance in systems

engineering.
73. Give a brief account of the functions of systems engineering analysis.
74. Describe reliability block diagrams (RBDs) and availability block diagrams

(ABDs), and indicate their fundamental differences.
75. Consider effectiveness measures in systems engineering and their significance

in engineering design.
76. Give a brief account of evaluating complexity in engineering design.
77. Define complexity in systems design.
78. Describe various system state definitions and evaluating complexity of the dif-

ferent state definitions.
79. Define complicatedness in systems design.
80. Describe complexity in systems and complicatedness as a function of complex-

ity in designing for complex but uncomplicated systems.
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Chapter 5
Safety and Risk in Engineering Design

Abstract In this chapter, the introduction of new or modified systems into an engi-
neering process is considered, whereby safety with respect to risk and loss through
accidents or incidents resulting from the complex integration of systems is pre-
dicted, assessed and evaluated, to ensure that the design will have as minimum
a risk as is reasonably practicable. Risk relates to a combination of the likelihood
of occurring hazards, and to the severity of their outcome or consequence. Safety
in engineering design begins with identifying possible hazards that could occur, as
well as the corresponding system states that could lead to an accident or incident
in the designed system. This is determined through hazards analysis. The initial
hazards analysis should begin at the earliest concept formation stages of systems
design, and the information should be used to guide the emerging design with re-
spect to safety requirements throughout the engineering design process. Safety in
engineering design normally includes a causal analysis, which involves identify-
ing various cause-effect sequences of hazardous events that may combine to cause
the identified hazards. Thereafter, a consequence analysis identifies the sequences
of events that could lead from a hazard to an accident or incident. Working through
these phases of hazards and safety analysis, and iterating where appropriate, a safety
case is prepared that relates to the assurance that the system is relatively safe. Haz-
ards and safety analyses provide a comprehensive methodology for designing for
safety. Designing for safety includes risk reduction measures and involves conduct-
ing risk mitigation strategies to, first, reduce the likelihood that a hazard could result
in an accident or incident and, second, to aim at reducing the severity of the likely
event. Because designing for safety strives for a significant level of confidence in
the results of these strategies, and the need for an objective systems scrutiny from
a safety viewpoint, it typically involves systematic safety analysis with independent
safety prediction, safety assessment, and safety evaluation during the schematic,
preliminary and detail design phases respectively of the overall engineering design
process.
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5.1 Introduction

The previous two chapters dealt with an analysis of engineering design that con-
sidered prediction, assessment and evaluation of systems reliability and functional
performance, and of systems availability and maintainability during engineering
process operations. In this chapter, the introduction of new or altered systems into
a complex engineering process environment is considered, whereby safety with re-
spect to risk and loss through accidents or incidents resulting from the complex
integration of systems is predicted, assessed and evaluated, to ensure that the design
will have as minimum a risk as is reasonably practicable. Risk relates to the combi-
nation of the likelihood of occurring hazards, and to the severity of their outcome or
consequence. An accident or incident may be viewed as an unintended event that re-
sults in either a critical or non-critical loss, and may include events such as death or
personal injury, and environmental or financial losses, according to a relative scale
of safety criticality.

Safety in engineering design starts by identifying the possible hazards of the
new system, which are system states that can lead to an accident or incident. This
is typically conducted through a series of collaborative hazards analysis sessions,
during which keyword prompts and checklists are used to aid identification of haz-
ardous system states. Suitably qualified experts representing all the areas that are
relevant to the system being designed must participate in these sessions. Normally,
a causal analysis is then conducted, which involves identifying various cause-effect
sequences of hazardous events that may combine to cause the hazards already iden-
tified. Thereafter, a consequence analysis is conducted, which identifies the next
sequences of events that could lead from a hazard to an accident or incident. Work-
ing through these phases of analysis, and iterating where appropriate, a safety case
is prepared, which relates to an assurance that the system is relatively safe. This
assurance is not a statement that the system is risk free—almost no system of any
complexity can demonstrate this property. Instead, risks are typically divided into
three categories, and each category is treated slightly differently.

The three categories of risks are the following:

• Intolerable risks:
These are risks that are not acceptable under any circumstances—for example,
the hazardous exposure to process products of a system that have a high likeli-
hood of affecting workers occupational safety and health. The engineering design
will need to include ways of removing such risks, or of drastically reducing their
severity. The safety case must show that no such risks remain in the system.

• Tolerable risks:
These are risks that are considered acceptable provided they confer some benefit,
and the risk has been reduced as much as was reasonably practicable. The ‘ben-
efit’ may be hard to measure objectively, especially in placing a cost value on
accidents such as personal injury or death with respect to the cost of preventive
measures. A typical example is the consideration of tolerable risks in the case
of large construction projects of engineered installations during which accidents
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and incidents are inevitable. The safety case would argue that there is a trade-off
benefit of allowing certain risks at a given criticality level.

• Negligible risks:
These are risks that are so small as to be insignificant, and no further precautions
are considered necessary. The safety case would only include negligible risks that
merit attention, such as those previously considered to be relatively significant
risks.

Designing for safety entails definitive risk reduction measures and involves conduct-
ing or specifying mitigation strategies to, first, reduce the likelihood that a hazard
will result in an accident or incident and, second, to aim at reducing the severity
of the likely event. Because designing for safety strives for confidence in the re-
sults of these strategies, and the need for an objective systems scrutiny from a safety
viewpoint, it typically involves systematic safety analysis, with independent safety
prediction, safety assessment, and safety evaluation audits dovetailing with the re-
spective schematic, preliminary and detail design phases of the overall engineering
design process. Designing for safety tends to be both costly and time consuming
because of the number of domain and other experts needed to determine those areas
of high safety risk in the total integrated engineering design, the wide range of fac-
tors that need to be considered, and the implementation of additional safety control
systems.

Techniques that are to be added into this work must therefore be cost and time
effective, whilst fitting within existing as well as new methodologies in determining
the integrity of engineering design.

Hazards and safety analyses provide a comprehensive methodology for design-
ing for safety. The initial hazards analysis should begin at the earliest concept for-
mation stages of systems design, and the information should be used to guide the
emerging design with respect to safety requirements throughout the engineering de-
sign process. Later equipment hazards analysis information is used to evaluate the
integrity of the design and to make trade-off decisions. The development of a safety
intent specification supports both the evolution of systems design as well as system
safety analysis. The design rationale for safety issues that are normally lost during
the design’s development stages is preserved in a single, logically structured docu-
ment (or electronic database) that is based upon fundamental principles of human
problem solving. Safety-related requirements and design constraints are traced from
the highest systems levels, down through system design to component design and
into hardware schematics and detail design specifications. An important feature of
the safety intent specification is that it integrates formal and informal design speci-
fications.

It is thus during the design stage of an engineering project when major improve-
ments in safety and occupational health relating to construction, ramp-up and op-
eration of an engineered installation can be achieved. However, there are real chal-
lenges involved in designing for safety in order to achieve the required step change
in a safe and healthy environment in the construction and operation of industrial
process plant and facilities. To date, there have been many factors that have limited
improvements in this area, such as a lack of time and funding—besides the lack
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of communication, understanding and commitment. The culture of a segmented en-
gineering construction industry with its fragmented processes, along with the fact
that many project clients are reticent in fully appreciating the significant added costs
of designing for safety, must be critically addressed in order to break through into
a new arena of safe working practices and performance. In appreciation of the chal-
lenges involved in designing for safety with the construction and operation of en-
gineered installations, an agenda for change was developed at a major international
conference on Designing for Safe and Healthy Construction, organised by the Euro-
pean Construction Institute (ECI) and the Conseil International du Bâtiment (CIB)
in London in June 2000.

These changes—in particular with respect to changes required of process engi-
neering designs—included the following (ECI 2001):

• Recognising the fact that engineering designs will dictate, to a considerable de-
gree, the nature and extent of hazards that will pose a threat to worker safety and
health, not only during construction but throughout the life cycle of the project.

• Concentrating on significant complex risks that competent contractors would not
be expected to be aware of, rather than on easily identified residual risks.

• Achieving better risk identification methods.
• Utilising different levels of risk assessment at different stages in the project.
• Concentrating on interfaces between systems where high risks occur.
• Developing a better awareness of safe working practices and ergonomics.
• Making occupational safety and health (OSH) a top priority in the design process.
• Considering OSH implications in the earlier part of the engineering design pro-

cess, such as safety predictions during the conceptual design phase.
• Recognising duty of care in considering OSH requirements in engineering de-

signs, and its impact on construction activities.
• Maximising the use of innovative techniques and methodology that reduces OSH

risk, such as pre-assembly and/or off-site manufacturing, and standardisation of
equipment.

• Using the appropriate CAD systems to schematically examine the project during
the preliminary design phase, to determine engineering design integrity.

• Using intelligent computer automated methodology for determining the integrity
of engineering design through the application of automated continual design re-
views throughout the engineering design process.

• Applying safety constructability reviews that contribute towards addressing con-
struction worker safety in the design.

• Maintaining communication feedback and risk data to reduce unplanned con-
struction work greater than required in the design.

• Designing for safe access for maintenance personnel to restricted areas, including
access for routine and preventive maintenance and for installation of replacement
equipment.

• Including risk analysis not only for construction, commissioning, ramp-up and
operation but also for decommissioning or deconstructing of plant and facilities.

Safety engineering has also received much attention from the defence industry for
several decades, particularly the US Department of Defence. The first military safety
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document titled “System Safety Engineering for the Development of United States
Air Force (USAF) Ballistic Missiles” was published in 1962. In 1963, the USAF
published a document titled “Safety Engineering of Systems and Associated Sub-
Systems and Equipment” (MIL-STD-38130 1963). This document was superseded
in 1969 by a document titled “Requirements for Safety Engineering of Systems and
Associated Sub-Systems and Equipment” (MIL-STD-882), which has subsequently
been updated in 1977 (MIL-STD-882A), in 1984 (MIL-STD-882B), in 1993 (MIL-
STD-882C) and in 2000 (MIL-STD-882D).

Additional military safety documentation covering system safety includes the fol-
lowing handbooks:

• the US Army handbook ‘System safety design guide for army materiel’ (MIL-
HDBK-764 1994),

• the US Air Force Systems Command handbook ‘System safety design handbook’
(AFSC DH 1-6 1967),

• the US National Aeronautics and Space Administration (NASA) handbook ‘Sys-
tem safety handbook’ (NASA DHB-S-00 1999).

In any engineered installation, human factors are an important part of process con-
trol. Therefore, an effective safety program cannot consider only the automated sys-
tems hierarchy but must also consider the impact of human error on the system, and
the effect of systems design on errors in human judgement and control.

Increased automation in complex systems has led to changes in the human con-
troller’s role, and to new types of technology-induced human error. Such errors
abound in records of major process engineering catastrophes. In a detailed survey
of safety incidents in the US nuclear power industry (INPO 84-027. 1984, 1985), it
was revealed that of the roughly 1,000 identified root causes of incidents that were
investigated, 51% were classified as “human performance problems”, and 74% of
these (i.e. 38% of all root causes) were “maintenance related”, this being broadly
defined to include preventive and corrective maintenance, surveillance testing and
modification work.

The Three Mile Island nuclear power generator accident in 1979 demonstrated
the significance of human error. The accident was attributed to mechanical failure
and operator error. Despite the fact that about half of the reactor core melted, the
containment building that housed the reactor prevented any release of radioactivity,
and the reactor’s other protection systems also functioned as designed. The emer-
gency core cooling system would have prevented the accident but for the interven-
tion of the operators. Investigations following the accident led to a new focus on the
human factors in nuclear safety. No major design changes were called for in nuclear
reactors but controls and instrumentation were improved and operator training was
overhauled.

By way of contrast, the Chernobyl reactor in the Ukraine did not have a contain-
ment structure like those used in the West or in post-1980 Soviet designs. The April
1986 disaster at the Chernobyl nuclear power plant was the result of major design
deficiencies in the type of reactor, the violation of operating procedures and the ab-
sence of a safety culture. The accident destroyed the reactor, killed 31 people, 28 of
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whom died within weeks from radiation exposure. It also caused radiation sickness
in a further 200–300 staff and fire fighters, and contaminated large areas of Belarus,
Ukraine, Russia and beyond. It is estimated that at least 5% of the total radioactive
material in the Chernobyl-4 reactor core was released from the plant, due to the lack
of any containment structure. Most of this was deposited as dust close by. Some was
carried by wind over a wide area. About 130,000 people received significant radi-
ation doses (i.e. above internationally accepted ICRP limits) and have been closely
monitored. About 800 cases of thyroid cancer in children have been linked to the
accident. Most of these were curable, though about ten have been fatal. No increase
in leukaemia or other cancers has been observed but some ongoing occurrences are
expected.

The World Health Organisation is closely monitoring most of those affected. An
OECD expert report concluded that “the Chernobyl accident has not brought to light
any new, previously unknown phenomena or safety issues that are not resolved or
otherwise covered by current reactor safety programs for commercial power reactors
in OECD member countries” (OECD NEA 1995).

The IAEA has given a high priority to addressing the safety of nuclear power
plants in Eastern Europe, where deficiencies remain. However, energy demand in
these countries is such that there is little flexibility for closing even those plants
that are of most concern, though the European Union is bringing pressure to bear,
particularly in countries that aspire to EU membership. A major international pro-
gram of assistance has been carried out by the OECD, IAEA and Commission of the
European Communities to bring early Soviet-designed reactors up to near-Western
safety standards, or at least to effect significant improvements to the plants and their
operation. Modifications have been made to overcome deficiencies in the 13 reac-
tors still operating in Russia and Lithuania. Automated inspection equipment has
also been installed in these reactors as added safety precaution. Another class of
reactors that has been the focus of international attention for safety upgrades is the
first-generation of pressurised water reactors. These were designed before formal
safety standards were issued in the Soviet Union, and they lack many basic safety
features. Eleven are operating in Bulgaria, Russia, Slovakia and Armenia (ANSTO
1994). From 1996 on, the Nuclear Safety Convention (NSC) came into force as the
first international legal instrument on the safety of nuclear power plants worldwide.
It commits participating countries to maintain a high level of safety by setting in-
ternational benchmarks to which they subscribe and against which they report. The
NSC has 65 signatories and has been ratified by 41 states.

For the past two decades, the University of Washington, Seattle, WA, has been de-
veloping a theoretical foundation and methodology for analysing safety in complex
systems, under grants from the US National Aeronautics and Space Administration
(NASA Langley, NASA Ames). The methodology includes safety analysis, system
hazard analysis, control software design, and special techniques for the design of
human–machine interaction (Leveson 1995). What is especially appealing in this
methodology is that it not only formulates system safety using control software in
system automation for enhanced control of complex integrations of systems but also
considers human error analysis.
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The problem of technology-induced human error on process systems control has
been approached in two ways in designing for safety.

The first approach is the detection of error-prone automation features early in
the conceptual design phase of the engineering design process while significant
changes can still be made. The information produced from this approach can be
used to redesign process automation to eliminate any error-inducing features, or to
design better human-machine interfaces, process operator procedures, and training
programs.

The second approach to safety analysis of human error is the more traditional
form of human factors analysis. This method looks at the types of human errors
that could arise in the system, and then performs a comparative analysis of the con-
troller’s job before and after system automation control. Potential safety issues are
identified that involve decreased awareness, increased vigilance requirements, and
skills degradation. Identification, classification and evaluation of potential hazards
are done through modelling and analysis in which the hardware, software, as well
as human components in the system are considered.

Risk in engineering design may simply be described as the process of risk anal-
ysis of hazardous systems at the conceptual, preliminary and detail design phases,
with respect to risk prediction, risk assessment and risk evaluation respectively. The
risk analysis process in engineering design is both iterative and progressive, in that
it is composed of five basic steps that are repeated for each progressive design phase
as the design becomes increasingly complex and detailed. These five steps include
the following:

• Design definition
• Hazards definition
• Risk estimation
• Risk verification
• Results application.

Design definition entails defining the system under consideration according to the
level of detail achieved at each particular design phase. Thus, at the conceptual de-
sign phase, the process and major systems are defined together with environmental
conditions and general system physical and functional boundaries.

At the schematic or preliminary design phase, the systems are reviewed inclusive
of their major items of equipment (predominantly sub-systems and assembly sets),
together with integrated systems conditions and specific equipment physical and
functional boundaries.

At the detail design phase, the systems are reviewed in greater depth to include
all items of equipment (e.g. assemblies and components) as well as major parts of
components, together with intrinsic system conditions and component physical and
functional boundaries.

Hazards definition is concerned with the identification of hazards that are evident
at each progressive level of design detail in the systems hierarchical structure. This
step includes estimates of the significance of the identified hazards, whereby each
phase of the risk analysis process results not only in an accumulation of potential
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hazards but also in the elimination of hazards that are found to be non-significant
through progressive clarity of the level of detail achieved at each design phase.

Analysis of hazards is done either through causal analysis or through conse-
quence analysis, or both, depending on the need to identify causes or consequences
of the hazards respectively. Identifying the causes of hazards usually makes use of
techniques such as root cause analysis, whereas consequence analysis makes use of
systems engineering analysis.

Risk estimation may be perceived as the application of a variety of methods and
techniques for risk prediction, risk assessment and risk evaluation. The prediction
of risk is usually at a higher process and systems level with minimal clarity on
detail, and is fundamentally useful in determining the configuration (inclusion of
parallel redundancy) and initial sizing (maximum strength-stress safety margins) of
the engineering design.

Risk assessment is usually conducted at equipment level, and includes investiga-
tion of potential sources of hazards to determine the probability/likelihood of oc-
currence of the originating hazard and its associated consequences for the system’s
operation as a whole. Risk assessment may also be targeted at the component level
whereby functional failures are identified based on the severity of their intrinsic
effects and the likelihood of their occurrence.

Risk verification is basically concerned with verifying the suitability of the risk
estimation techniques and their end results. It is fundamentally a design review pro-
cess used to determine the integrity of engineering design through verification of the
risk estimates. This is accomplished by considering the relevance and suitability of
the various risk estimation and analysis methods with respect to their appropriate-
ness in analysing the type of system and hazard being studied, as well as the format
of the results with respect to a correct understanding of the priority, occurrence and
severity of the risk.

Results application effectively incorporates the contents and results of the previ-
ous four risk analysis steps with the application of automated continual design re-
views in concurrent engineering design throughout the engineering design process.
In this research, these design reviews are modelled in an artificial intelligence-based
(AIB) blackboard system that is targeted for use by multi-disciplinary groups of de-
sign engineers, whereby each designed system is evaluated for integrity by locally
or remotely located design groups communicating via an intranet or via the inter-
net, within an integrated collaborative engineering design environment. The reviews
should contain information such as systems definition, analysis methodology and as-
sociated assumptions and limitations, modelling descriptions, quantitative data and
methods of accumulation, the specific techniques of risk estimation and the results
obtained, together with a discussion of the results, associated assumptions and sen-
sitivity analysis—all within intelligent computer automated methodology for deter-
mining the integrity of engineering design.
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5.2 Theoretical Overview of Safety and Risk
in Engineering Design

Safety, in contrast to risk, is a system property, not a component property. Therefore,
safety analysis must consider the entire system, and not its component parts. How-
ever, there exists no single safety analysis technique that can cope with all aspects
of complex systems or complex integrations of systems. Safety analysis of complex
systems is an inter-disciplinary effort, and must include systems design engineers,
software engineers, and human factors and cognitive experts. Safety analysis in en-
gineering design is, in effect, a program consisting of systems design activities and
special safety tasks and techniques that significantly interact with one another at
each progressive phase of the engineering design process. Such a program is highly
iterative and includes continual updating of what has been done previously in the
earlier phases, as new information and clarity of the design are gained. A safe sys-
tem is one that is free from accidents or incidents resulting in unacceptable losses.
Accidents or incidents result from hazards, where a hazard is defined as a system
state or condition that can lead to an accident or incident, given certain uncontrol-
lable or unpredictable environmental conditions.

Thus, safety in engineering design starts with a hazards analysis that identifies
and analyses the system for hazards. Once these hazards have been identified, steps
can be taken to eliminate these, reduce their likelihood, or mitigate their effect. In
addition, some hazard causes can be identified and eliminated or controlled. Al-
though it is usually impossible to anticipate all potential causes of hazards, obtain-
ing more information about these usually allows greater protection to be provided
with fewer trade-offs, especially if the hazards are identified in the early design
phases. Identifying hazards, and hazard causes, enables safety requirements to be
established during the engineering design process.

A hazard may be defined as “a source of potential harm or a situation with
a potential for harm”, where harm is defined as “a physical injury or damage to
health, property or the environment”. Furthermore, an accidental event is defined as
“an event which can cause harm” (IEC60300-3-9 1995). A hazard may thus lead to
an accidental event. To create a sound basis for further analysis, all the hazards have
to be identified in a systematic way. A commonly used technique for such a survey
is hazard identification (HAZID).

Hazard identification (HAZID) analysis is usually carried out in the early design
phases of a system. The objective of the analysis is to reveal potential hazards at
an early stage, such that the hazards may be eliminated, minimised or controlled as
early as possible in the development process. For each hazard that is identified, all
possible causes, effects and severity of potential accidents are described. Possible
improvements and precautions are also described. It is important that this analysis
is based on previous experience with similar equipment. Checklists of various types
are useful during the analysis. The analysis should be conducted with one or two ex-
perienced engineers in attendance, with a background in safety engineering. Since
the HAZID analysis is carried out in the early phases of the engineering design
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process, a limited amount of information about the specific system will normally
be available. For a process plant, the process concept has to be settled before the
analysis is initiated. At that point in time, the most important chemicals and reac-
tions are known, together with the main elements of the process equipment (vessels,
pumps, etc.). The HAZID analysis must be based on all safety-related information
about the system, with respect to design criteria, equipment specifications, specifi-
cations of materials and chemicals, operational procedures, previous hazard studies
of similar systems, and previous accident details if available.

The following input information should be available:

• Design sketches, drawings and data describing the system and sub-system ele-
ments for the various conceptual approaches under consideration.

• Functional flow diagrams and related data describing the proposed sequence of
activities, functions and operations of the system elements during the contem-
plated life span.

• Background information relating to safety requirements associated with the con-
templated testing, manufacturing, storage, repair and use locations, and safety-
related experiences of similar previous programs or activities.

The HAZID analysis is conducted by identifying hazards and thereby potential ac-
cidental events that may lead to unwanted consequences. The analysis must also
identify design criteria or alternatives that may eliminate or reduce the hazard. Dur-
ing the analysis, certain factors must be considered (AIChE 1992).

These factors are:

• Hazardous equipment and materials
(e.g. fuels, highly reactive chemicals, toxic substances, explosives, high-pressure
systems, and other energy storage systems)

• Safety-related interfaces between equipment and materials
(e.g. material interactions, fire/explosion initiation and propagation, and con-
trol/shutdown systems)

• Environmental factors that influence the equipment and materials
(e.g. storms, earthquakes, vibration, flooding, extreme temperatures, electrostatic
discharge, and humidity)

• Operating, testing, maintenance and emergency procedures
(e.g. human error, operator functions, equipment layout and/or accessibility, and
personnel safety protection)

• Facility support
(e.g. storage, testing equipment, training and utilities)

• Safety-related equipment
(e.g. safety device, fire suppression, personal protective equipment).

Some hazards can be identified by the following (Rausand 2000):

• examining similar existing systems,
• reviewing existing checklists and standards,
• considering energy flows through the system,
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• considering inherently hazardous materials,
• considering interactions between system components,
• reviewing previous hazard analyses for similar systems,
• reviewing operation specifications,
• considering all environmental factors,
• considering human/machine interfaces,
• considering usage mode changes,
• trying small-scale testing, and theoretical analyses,
• thinking through a worst-case scenario, what-if analysis.

The results from a HAZID analysis are usually presented in a specific HAZID work-
sheet, identifying the hazards, the causes, the potential consequences, and possi-
ble improvements and precautions. In most applications, it is relevant to start with
the accidental events. A generic list of hazards may often be useful in supporting
a brain-storming process to identify potential accidental events. A number of sim-
ilar methods with other names are also used. Among these are preliminary hazard
analysis (PHA), and rapid risk ranking (RRR).

The preliminary hazard analysis technique was developed by the US Army (MIL-
STD-882C 1993), and has been successfully used within defence-related industries,
and for safety analysis of engineering processes.

Hazard severity categories are defined to provide a qualitative measure of the
worst credible mishap resulting from personnel error, environmental conditions,
design inadequacies, procedural deficiencies, or system, sub-system or component
failure or malfunction. The starting point of a HAZID worksheet is defining the
potential accidental events. The worksheet has a column called ‘hazard category’.
In this column, the severity of the potential consequences is ranked. MIL-STD-882
requires that such a column for severity ranking be part of the HAZID (or PHA)
worksheet. These hazard severity categories are defined in the Military Standard
under the sub-title of ‘hazard severity’, and are presented in Table 5.1. An example
of a HAZID worksheet is shown in Table 5.2.

In some cases, it may be relevant to include a more detailed severity ranking,
e.g. distinguishing between human, environmental, and process or product conse-
quences. Such a ranking depends on the actual context of the consequences, i.e. the
risk assessment scale is given later in Table 5.7.

Table 5.1 Hazard severity ranking (MIL-STD-882C 1993)

Hazard severity Description category Mishap definition

I Catastrophic Death or system loos
II Critical Severe injury, severe occupational

illness, or major system damage
III Marginal Minor injury, minor occupational

illness, or minor system damage
IV Negligible Less than minor injury, occupational

illness, or system damage
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Table 5.2 Sample HAZID worksheet

System: Acid separation plant
Subsystem: Precipitation tanks—piping
Drawing: Al-ASP/PT 02-004

Date: Nov. 2006
Page: 11 of 32

Reference Accidental
event

Probable
causes

Major effects Consequence/
severity

Corrective/
preventive action

HC
piping

Gas
leak/losses

CO2
corrosion

Thin wall
cracking

Safety
catastrophic I

Ultrasonic
corrosion probe

Slurry
piping

Containment
losses

Pipe wall
penetration

Lack of
inhibition

Environment
critical II

Inhibitor piping
injection check

Water
piping

Containment
losses

External
erosion

Damage/water
traps

Environment
marginal III

Visual inspections

Table 5.3 Categories of hazards relative to various classifications of failure

Hazard category

by cause by effect by consequence by severity

Stress-related failure
Failure due to misuse
Failure due to damage
Failure due to weakness
Failure due to wear-out
Maintenance failures

Immediate functional
Gradual degradation

Critical safety
Critical operational
Major functional
Minor functional
Hidden failure
Non-operational

Catastrophic
Critical
Marginal
Negligible

Hazard consequences depend on the cause-effect nature of functional failure
within a system as well as system states that define system hazards. The various
combinations of the different defining categories of hazards (i.e. by cause, effect,
consequence and/or severity), relating to the various classifications of failure, are
presented in Table 5.3.

Hazards analysis can take the form of backward analysis, alternatively termed
causal analysis, or of forward analysis, alternatively termed consequence analysis,
depending on the need to identify causes or consequences respectively. Hazard anal-
ysis techniques that use backward search or analysis begin with a hazardous state
and then determine the events that could lead to this state. The analysis starts from
hazards identified at the process and/or systems level, and identifies their precursors
further down in the systems hierarchical structure. Thus, in the case of backward
analysis, the analysis is causal and the search is top-down. Conversely, in hazard
analysis techniques that use forward search or analysis, in which the next sequences
of events that could lead from a hazard to an accident or incident are identified, the
analysis is consequential and the search is bottom-up.

Information that is derived from both backward and forward analysis, i.e. cause-
consequence analysis, relates to recognisable failed system states that can be used to
redesign the system to prevent or minimise the probability of occurrence and/or the
severity of the hazard. In order to be able to apply causal analysis techniques, such as
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fault-tree analysis (FTA), a more detailed specification or model of the behaviour of
the system is required at the lower equipment levels of the systems hierarchy (e.g.
assembly, sub-assembly and component levels). A high-level system design may
appear to be safe, while the detailed design contains hazardous equipment interac-
tions inherent within the system. However, these interactions may not be inherent
within a single system and may arise only on the functional interface of equipment
belonging to different systems, due to a complex integration of the various sys-
tems by design. The hazards and design constraints must be traced right down to
the system components where feasible, so that assurance may be provided that the
hazards have been eliminated or mitigated. Although theoretically this type of anal-
ysis can be comprehensively performed only on the detail design of the system, the
practical approach is to progressively structure the design according to systems hier-
archical modelling that is continually enhanced as the emerging systems breakdown
structure (SBS) becomes more definite with each phase of the engineering design
process. The use of object oriented programming (OOP) simulation modelling that
provides graphic displays (preferably animated) of the various systems and equip-
ment of the design enables realistic three-dimensional visualisation of the model
appropriate to the system’s domain. The OOP simulation must have the capability
of backward and forward processing to accommodate both causal and consequence
analysis respectively.

5.2.1 Forward Search Techniques for Safety
in Engineering Design

Forward search techniques begin with an initiating event and trace it forwards in
time or in effect. At the higher systems levels, the appropriate forward analysis
technique is consequence analysis. As indicated previously in Sect. 3.3.2.1 dealing
with failure modes and effects analysis, the consequences of failure are associated
with the overall results that occur in the system or process as a whole, whereas the
effects of failure are associated with the immediate results that initially occur within
the assembly’s or component’s environment.

Thus, at the lower systems levels, the appropriate forward analysis techniques are
failure modes and effects analysis (FMEA) and failure modes and effects criticality
analysis (FMECA) or, in the case of safety analysis, event tree analysis (ETA), haz-
ards and operability (HAZOP) studies, and failure modes and safety effects (FMSE)
analysis. The difference between FMSE and FMECA is in the construct of the in-
ductive FMSE spreadsheet that, in addition to the standard columns of an FMECA,
includes safety-related aspects such as failure root causes, integrity measures, and
inspection methods.

Hazard analysis thus conventionally includes the following deductive and induc-
tive analysis techniques:

• Fault-tree analysis (FTA)
• Root cause analysis (RCA)
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• Event tree analysis (ETA)
• Cause-consequence analysis (CCA)
• Hazardous operability studies (HAZOP).

These techniques have been developed for visualising the sequence of events in
the operation of a complex engineered system and for estimating the probability of
occurrence of the end result. They start either with an expected, unwanted effect (i.e.
fault) and work backwards to the logical cause, or with a proposed cause (i.e. event)
and proceed forwards through the relevant analysis steps, ending up with an end
result effect and/or several effects. As indicated in Sect. 3.2.2, backward analysis
techniques are deductive, whereas forward analysis techniques are inductive. These
are often termed ‘top-down’ or ‘bottom-up’ procedures that emulate the diagram-
matical arrangement representing the systems hierarchical structure that is used to
define the path from effect to cause, or from cause to effect respectively.

Fault-tree analysis is a typical application of deductive analysis, in which the
analysis begins with the system in a hazardous state and then works backwards one
step at a time, during which irrelevant branches of possible causes can be omit-
ted, or specific branches of greater significance can further be followed. However,
applying a reachability graph to visualise the structural extent of backward anal-
ysis of process engineering systems, it becomes evident that the graph explodes
quickly for complex systems, and in itself becomes complex (Leveson 1995). Many
of the branches of the structural graph are either incomplete or impossible to pur-
sue, requiring alternative analytic approaches, which will be considered in Sect. 5.3.
Figure 5.1 shows the format for a fault-tree analysis that is a ‘top-down’ deductive
analysis method, and here the branch points lead to the typical question:‘What are
the conditions that lead to this point?’.

Root cause analysis utilises the deductive logic tree approach, similar to fault-
tree analysis, in establishing the root causes of a problem, whether it is a functional
failure or a system state. Such a logic tree approach to problem solving is partic-
ularly useful for determining safety in detail engineering designs. By organising
problem analysis results in an orderly manner as the design progresses, the time
spent to find the root causes of possible problems is minimised. The method uses
factor trees to guide the course of the analysis. These factor trees diagrammatically
present the major functions to be considered in the design’s project stages, and pro-
vide an excellent method for sorting out facts and zeroing-in on the root causes of
problems.

Fig. 5.1 Fault-tree analysis

Fault

Analysis

Possible
initiating
causes
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Event tree analysis, unlike fault-tree analysis, uses inductive logic. This tech-
nique is a method for illustrating the sequence of outcomes that may arise after the
occurrence of a selected initial event. It is mainly used in consequence analysis for
pre-incident and post-incident application. The left side connects with the initiator,
the right side with plant damage state; the top defines the systems; nodes (dots) call
for branching probabilities obtained from the system analysis. If the path goes up at
the node, the system succeeded, if down, it failed. Event trees have been applied in
the nuclear industries for operability analysis of nuclear power plant as well as for
accident sequence in the Three Mile Island nuclear power generator accident (INPO
84-027 1984).

Figure 5.2 shows an event tree format classified as a ‘bottom-up’ inductive anal-
ysis method. Here, the branch points follow a YES or NO criterion for a specific
question of the type ‘is valve V1 closed?’.

Cause-consequence analysis is a combination of deductive analysis and of induc-
tive analysis. This technique combines cause analysis (described by fault trees) and
consequence analysis (described by event trees). The purpose of cause-consequence
analysis is to identify chains of events that can result in undesirable consequences.
With the probabilities of the various events in the CCA diagram, the probabilities
of the various consequences can be calculated, thus establishing the risk level of
the system. This technique was developed by RISO Laboratories in Denmark to be
used in risk analysis of nuclear power stations (Aven 1992). It can also be adapted
for process engineering in the estimation of the safety of protective systems.

Figure 5.3 shows a layout of a cause-consequence analysis that is both a ‘top-
down’ deductive analysis and a ‘bottom-up’ inductive analysis.

These tree-based methods are used mainly to find cut sets leading to the undesired
events. Fault trees and event trees have been widely used to quantify the probabil-
ities of occurrence of accidents and other undesired events leading to the loss of
life or economic losses in probabilistic risk assessment. However, use of fault tree
and event tree analysis techniques is usually confined to static, logic modelling of
accident scenarios, and does not cover risk assessment for dynamic systems (Siu
1994).

Methodologies for the analysis of dynamic systems include techniques such as
digraphs or fault graphs, dynamic event logic, as well as Markov modelling, which
will be considered later. In giving the same treatment to process failures and human
errors in fault tree and event tree analysis, the conditions affecting human behaviour
cannot be modelled explicitly. This affects the assessed level of dependency be-
tween events. Relatively new techniques such as human cognitive reliability (Gert-

Fig. 5.2 Event tree Analysis

EffectsInitiating
event
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Consequence Consequence Consequence

No

Condition

Time delay

Initiating
event

Fault tree

Fault tree

Yes

No

Condition

Yes

Fig. 5.3 Cause-consequence diagram

man et al. 1994), and programmable user modelling applications (Blandford et al.
1999) have emerged to reconcile deficiencies in the tree-based analysis techniques.

Furthermore, although the use of techniques are adequately suitable in designing
for safety of process engineering designs, their use in designing for systems control
is complicated by the large number of ways that computational control can address,
or even contribute to, hazardous system states. This problem is solved by the use
of a relatively new forward analysis technique called deviation analysis (Leveson
1995).

Deviation analysis (DA) is based on the underlying assumption that many acci-
dents or incidents are the result of deviations in system variables, where a devia-
tion is the difference between the actual and correct values appropriate for system
control. The method originates from the forward analysis technique of software de-
viation analysis (SDA) in which hazardous behaviour in system control software is
analysed. DA is an extension of the technique to system control hardware. Deviation
analysis determines whether hazardous systems behaviour can result from a class of
input deviations inclusive in the broad range of process characteristics such as ca-
pacity, input, throughput, output and quality. It is a means of determining system
component robustness (or, in safety terminology, its survivability), or how it will
behave in an imperfect environment.

Hazardous operability studies (HAZOP, short for hazard and operability), was
first introduced by engineers from ICI Chemicals in the UK, in the 1970s. The
method entails the investigation of deviations from the design intent for a process
engineering installation by a design team with expertise in different areas such as
engineering, operations, maintenance, safety and chemistry. The team is guided in
a structured process, by using a set of guidewords to examine deviations from nor-
mal process conditions at various key points (nodes) throughout the process. The
guidewords are applied to the relevant process parameters—for example, flow, tem-
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perature, pressure, composition, etc.—in order to identify the causes and conse-
quences of deviations. Typical terms used in a HAZOP are the following (Kletz
1999):

• Node: a specific location in the process in which (the deviations of) the process
intention are evaluated.

• Intention: description of how the process is expected to behave at the node;
this is qualitatively described as an activity (e.g. feed, reaction, sedimentation)
and/or quantitatively in the process parameters, like temperature, flow rate, pres-
sure, composition, etc.

• Deviation: a way in which the process conditions may depart from their inten-
tion.

• Parameter: the relevant parameter for the condition(s) of the process; e.g. pres-
sure, temperature, composition, etc.

• Guideword: a short word to describe a deviation of the intention. The mostly
used guidewords are NO, MORE, LESS, AS WELL AS, PART OF, OTHER
THAN and REVERSE. In addition, guidewords like TOO EARLY, TOO LATE,
INSTEAD OF, etc. are used, the latter mainly for batch-like processes. The
guidewords are applied, in turn, to all parameters, in order to identify unex-
pected and yet credible deviations from the intention.

• Cause: the reason(s) why the deviation could occur. Many causes could be iden-
tified for one deviation.

• Consequence: the results of the deviation, in case it occurs. Consequences may
comprise both process hazards and operability problems, like plant shutdown or
quality decrease of the product. Many consequences can follow from one cause
and, in turn, one consequence can have several causes.

• Safeguard: facilities that help to reduce the occurrence frequency of the devia-
tion or to mitigate its consequences. There are five types of safeguards:

a) Facilities that identify the deviation. These comprise, among others, alarm
instrumentation and human operator detection.

b) Facilities that compensate the deviation, e.g. an automatic control system
that reduces the feed to a vessel in case of overfilling (increase of level).
These usually are an integrated part of the process control.

c) Facilities that avoid the deviation from occurring.
d) Facilities that prevent deviation from escalating (e.g. trips). These facilities

are often interlocked with several units in the process, and controlled by
logical computers.

e) Facilities that relieve the process from the hazardous deviation. These com-
prise, for instance, pressure safety valves (PSV) and vent systems.

• Recommendation: activities identified during a HAZOP study for follow-up.
These may comprise technical improvements in the design, modifications in
the status of drawings and process descriptions, procedural measures to be de-
veloped or further in-depth studies to be carried out.
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5.2.1.1 Fault-Tree Analysis for Safety in Engineering Design

The concept of fault-tree analysis (FTA) was originated by Bell Telephone Labora-
tories in the 1960s as a technique to perform a safety evaluation of the Minutemen
Intercontinental Ballistic Missile Launch Control System. A fault tree is a logical
diagram that shows the relation between system failure, i.e. a specific undesirable
event in the system, and failures of the components of the system. It is a technique
based on deductive logic. An undesirable event is first defined and causal relation-
ships of the failures leading to that event are then identified. Fault trees can be used
in qualitative or quantitative risk analysis. The difference between the two is that the
qualitative fault tree is linguistic in structure and does not require use of the same
rigorous logic as does the formal quantitative fault tree (cf. Fig. 5.4).

FTA is a deductive technique that focuses on a particular accident or failure, and
provides a method for determining causes of that event. Fault-tree diagrams use log-
ical operators, principally the OR and AND gates. The terminology is derived from
electrical circuits, the term ‘gate’ referring to the control of a signal or electrical cur-
rent. The term OR denotes a choice between two or more signals, either of which
can ‘open’ the gate. The AND term refers to the requirement that both signals are
necessary before there is an output from the gate. Figure 5.4 shows the logic and
event symbols used in FTA.

Fault-tree analysis for safety in engineering design is conducted in several steps,
from defining the problem to constructing the fault tree, analysing the fault tree, and
documenting the results, specifically:

OR gate
The output event occurs if any of the input events occur

AND gate
The output event occurs only when all input events occur

Intermediate event
A fault that results from the interactions of other fault events

Basic event
A component failure that requires no further development

Undeveloped event
A fault that is not examined further because 
information is unavailable

Transfer IN/OUT symbols
IN indicates the tree is developed further at a 
corresponding OUT symbolIN

AND

OR

Undeveloped
event

Basic
event

Intermediate
event

Fig. 5.4 Logic and event symbols used in FTA
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Step 1. Defining the Problem

The engineering design team selects:

• the top event,
• the boundary conditions,
• system physical bounds,
• the level of systems resolution,
• initial conditions,
• events that are not allowed,
• existing conditions,
• conditional assumptions.

Defining the top event is one of the most important aspects of the first step. The
top event is the accident (or undesired event) that is the subject of the FTA. The top
event is often identified through other hazard analysis studies (such as HAZID). Top
events should be precisely defined for the system or plant being evaluated, because
analysing broadly scoped or poorly defined top events can often lead to an inefficient
analysis.

For example, a top event of ‘gas leaks in the plant’ is too general. Instead, an
appropriate top event would be ‘gas leak in the HC piping of the acid separation
plant precipitation tank B’.

The physical system boundaries encompass the system’s equipment, the equip-
ment’s interfaces with other processes, and the utility/support systems that are to be
included in the FTA. The design team should also specify the level of systems reso-
lution for the fault-tree events. For example, a motor-operated valve can be included
as a single item of equipment (i.e. component) or it can be described as several hard-
ware items (i.e. parts, e.g. the valve body, valve internals, and motor operator). The
systems resolution of the FT should be limited to the detail needed to satisfy the
analysis objective, and should parallel the resolution of the available information.

The initial equipment configuration or initial operating conditions describe the
system in its normal, unfailed state. Events that are not allowed are, for the purposes
of the FTA, events that are considered to be unlikely or that are not to be consid-
ered in the analysis, for some exclusive reason. For example, wiring failures may
be excluded from the analysis of an instrument system, or cabling may be excluded
from the analysis of power generating units. Existing conditions within which the
system functions are estimates (and assumptions) of the possible operational con-
ditions that may arise within the system and its equipment, either as a result of the
system’s inherent complexity, or as a result of the complex integration of various
systems.

Step 2. Constructing the Fault Tree

The FTA begins at the top event and proceeds, level by level, until all fault events
have been traced to their basic contributing causes (i.e. basic events). At each level,
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Fig. 5.5 Safety control of cooling water system

the immediate, necessary and sufficient causes are defined that would result in the
intermediate or top event under consideration. The analysis continues at each level,
until basic causes or the analysis boundary conditions are reached.

Returning to the simple fault tree of a cooling water system depicted in Fig. 3.19
of Sect. 3.2.2.6 dealing with fault-tree analysis in reliability assessment, assume that
the systems design included provision for a back-up surge tank with an appropriate
control alarm in the event the tank over-flowed, indicating problems with the cooling
water feed. These problems would typically be:

Excess inflow.
Low surge outflow.
Control alarm failure.
Operator error.

Figure 5.5 shows an example of the cooling water surge tank fault tree with two
levels below the top event.

Step 3. Analysing the Fault Tree

The analysis ‘solves’ the fault tree by identifying combinations of failures that can
lead to accidents. These are called minimal cut sets (MCS). The minimal cut sets
for the example shown in Fig. 5.5 would be:
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• ‘No surge control’ and ‘No alarm control’
• ‘Excess inflow’ and ‘Alarm failure’
• ‘Excess inflow’ and ‘Operator error’
• ‘Low surge outflow’ and ‘Alarm failure’
• ‘Low surge outflow’ and ‘Operator error’.

If the states of each of the control valves (CV1 and CV2) are in failure mode (i.e.
failed closed and failed open), then further low-level cut sets can be defined, and the
fault tree needs to be modified (additional rectangular boxes above each CV circular
box) to include the failed states:

• ‘CV1 fails open’ and ‘Alarm failure’
• ‘CV1 fails closed’ and ‘Alarm failure’
• ‘CV2 fails open’ and ‘Alarm failure’
• ‘CV2 fails closed’ and ‘Alarm failure’.

Failure probabilities can now be assigned. The probabilities that are allocated to the
events can be combined to estimate the probability of the top event. The probabil-
ity of two events, the one with probability p1 and the other with probability p2,
occurring together are:

P (AND) = p1 × p2 (5.1)

and q1 and q2 are the complements of p1 and p2 respectively:

q1 = 1− p1

q2 = 1− p2

Then: q1 is ‘NOT p1’ and: q2 is ‘NOT p2’.
The probability of event 1 not occurring is thus q1 and the probability of event 2

not occurring is q2. Thus, for event 1 OR event 2 to occur, the probability of the
combination that either does not occur—that is, that one of the two occurs—is given
by the following expression:

P(OR) = 1− (q1×q2) (5.2)

The concept of this expression can be clarified by the following example. In Fig. 5.5,
the probabilities of the equipment failures in the circles are derived from expert
judgement, and the activities in the rectangular boxes are calculated from frequen-
cies further down the tree.

The probability for no surge control is calculated as:

P(OR) valves = 1− [(1−0.025)× (1−0.025)]
= 0.050

The probability for no alarm control is calculated as:

P(OR) alarm = 1− [(1−0.025)× (1−0.052)]
= 0.075
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The probability for the top event shown in the figure (tank overflow) is:

P(AND) tank = 0.050×0.075
= 0.00375

Although the example is hypothetical, it closely resembles a real-world scenario
in which it is interesting to note that the safety alarm control system’s reliability is
lower than that of the surge system it is meant to control! This is due to operator
error where operator judgement is jeopardised by failure in the operator control
panel (OCP)–which, in many processes, is often the case. The failure of an item of
equipment will result in its replacement, which reduces the failure frequency, and
which then changes the risk probabilities all the way up the tree.

The use of computer models is necessary to maintain the fault-tree analysis up
to date. It is common in large process plants, however, for the maintenance group
not to communicate these improvements to the reliability engineers who continue to
use outdated high-risk numbers. Similarly, experiences of ineffective operation will
usually initiate improved training, so that operator errors are less frequent and the
reliability of the whole system is improved.

Step 4. Documenting the Results

The analysis should provide a description of the system, a discussion of the problem
definition, a list of assumptions, the fault-tree model(s) that were developed, lists
of minimal cut sets, and an evaluation of the significance of the MCSs and any
recommendations that arise from the FTA.

Probability evaluation of fault trees is considered in most technical papers and
books about safety and hazard analysis. However, some approximation discrepan-
cies are evident, especially in the basic theory of assigning probabilities to the fault-
tree gates—specifically, the OR gate.

The probability expression for the statistically independent input events for the
OR gate has been given as, (Dhillon 1983):

P(OR) = P(a+b+ c+ . . . etc.) (5.3)

P(OR) = P(a)+P(b)+P(c)+ . . . etc.

a,b,c, etc. = input events .

In the example of Fig. 5.5, this is equivalent to:

P (OR) = p3 + p4 or p5 + p6

= 0.050 or 0.077

Considering the complements of p1 and p2, namely q1 and q2, results in:

P (OR) = 1− (q3×q4) or 1− (q5×q6)
= 0.049375 or 0.0757
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5.2.1.2 Root Cause Analysis for Safety in Engineering Design

Root cause analysis is predominantly a technique for determining the origin of
causes of failure in engineered installations after completion of their design. How-
ever, the approach can also be used to identify potential root causes of failure, par-
ticularly failures with critical safety consequences, during the engineering design
process before systems manufacture, installation and/or construction. The funda-
mental need for design engineers to consider how their designs operate in the field
and, more importantly, how they fail is imperative to successfully achieving integrity
in engineering design. This will ultimately result in engineering designs that sat-
isfy both functional and integrity requirements, using sound engineering judgement,
rather than ‘crystal ball’ prediction techniques.

Although there is a wealth of knowledge and data concerning systems perfor-
mance of existing engineered installations, in general this is not utilised to the ex-
tent that information may be obtained for use in new designs, especially in complex
integrations of designs. To this end, more formal and systematic methods should be
introduced during the engineering design process.

Although specific methods and tools are available to facilitate designing for reli-
ability, for example, their use is often limited to reliability engineers, with the design
engineers of other disciplines frequently adopting an intuitive approach to consider-
ing reliability in design. As the design process becomes increasingly sophisticated
with higher-level design tasks of complex integrations of similarly complex sys-
tems, it has become essential that design engineers formally investigate the integrity
of these designs, particularly at each interface of the integrated systems.

Examining and understanding the root cause of failure of a design’s functional
operation can aid in designing for safety and designing-out unreliability. In select-
ing equipment from an existing design to meet a new requirement within different
systems integration, it is important that design engineers look beyond the standard
reliability metric of the existing design, and review in particular the root causes of
failure and significant factors affecting the equipment’s reliability and safety. In the
past, there has been an over-reliance on the use of prediction methods. For exam-
ple, the original reliability prediction handbook of the USA Department of Defence
(DoD), MIL-HDBK-217, contained failure rate models for the various part types
used in electronic systems, and concentrated mainly on the use of prediction meth-
ods that did not provide engineers with any knowledge of what might fail in service
(MIL-HDBK-217F 1998).

A methodology aimed at integrating reliability enhancement practices into the
engineering design process has been developed as part of a UK government and
aerospace industry initiative. As a result, the Reliability Enhancement Methodol-
ogy and Modelling (REMM) project was funded in part by the UK’s Department of
Trade and Industry through the Civil Aviation Research and Development program
and by industrial partners involved (Marshall et al. 1998). The main objectives of
the project are to develop a methodology that supports reliability enhancement in
engineering design and to develop a model that facilitates reliability assessment
throughout a system’s life cycle. REMM is primarily used within the aerospace
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environment but the methodology and model developed are equally applicable to
other high-reliability system designs, such as in process, chemical and mechanical
engineering design projects. A number of simple practical analyses for use by design
engineers, during the early stages of systems realisation, have been developed as
part of the REMM methodology. These analyses are aimed at improving high-level
decision-making using simple graphical representations of reliability data, such as
analyses of root causes, trends, and manufacturing data.

These graphical representation analyses include:

• Root cause analysis and classification of events into high-level failure categories,
providing the means to determine those factors that have most effect on the sys-
tem’s service reliability and, hence, which elements should be tackled as a prior-
ity.

• Root cause and trend data across specific criteria such as equipment type, periods
of time (e.g. particular manufacturing time-line points), application or use, pro-
viding further understanding of the nature of the failure that may be characteristic
of the environment in which it is operating.

• Manufacturing data analysis, providing valuable insight into the factors that af-
fect service reliability. Correlation between manufacturing methods and service
requirements can often illuminate small changes in design and manufacturing
process that result in significant effects on service reliability.

Root cause analysis also utilises the deductive logic tree approach, similar to fault-
tree analysis (FTA), in establishing the root causes of functional failure or of a sys-
tem state. Such an approach to problem solving is particularly useful for determining
safety in engineering designs.

The approach of establishing the root causes of functional failure in systems
design is intended to achieve the following:

• To organise and control design integrity problem identification.
• Provide a visual checklist to ensure all pertinent areas are covered.
• Allow for a standardised approach to safety problem identification.
• Serve as a documented guide for design integrity problem reviews.

The most common root cause analysis methods cover topics from events and causal
factor analysis to change analysis, barrier analysis, management oversight and risk
assessment, human performance evaluation, standard problem solving and basic
decision-making.

These methods are considered in the common root cause analysis approach de-
veloped by the Office of Nuclear Energy, US Department of Energy in their DOE
guideline DOE-NE-STD-1004-92, and ‘Root cause analysis: guidance document’
(DOE-NE-STD-1004-92. 1992).
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Common Root Cause Analysis Methods

• Events and causal factor analysis identifies the time sequence of a series of tasks
and/or actions and the surrounding conditions that can lead to a failure occur-
rence. The results are displayed in an events and causal factor chart that gives
a picture of the relationships of the events and causal factors.

• Change analysis is used when the problem is obscure. It is a systematic process
that is generally used for a single failure occurrence and focuses on elements that
change.

• Barrier analysis is a systematic process that can be used to identify physical, and
procedural barriers or controls that should prevent the occurrence of failure.

• Management oversight and risk tree (MORT) analysis is used to identify inad-
equacies in barriers/controls, specific barrier and support functions, as well as
management functions. It identifies specific factors relating to a possible failure
occurrence and identifies factors that permit these factors to exist.

• Human performance evaluation identifies those factors that influence task perfor-
mance. The focus of this analysis method is on operability, work environment,
and management factors, as well as man-machine interface studies to improve
performance.

• Problem solving and decision-making provides a systematic framework for gath-
ering, organising and evaluating information, and applies to all phases of a pos-
sible failure occurrence investigation (Kepner et al. 1981).

By organising problem analysis results in an orderly manner as the design pro-
gresses, the time spent to find the root causes of possible problems is minimised.
The method consists of using factor trees to guide the course of the analysis. Factor
trees diagrammatically present the major areas to be considered in the various stages
of an engineering design project, such as:

• Systems and equipment design.
• Manufacturing and installation.
• Process start-up and ramp-up.
• Operations and maintenance.

To conduct a root cause analysis specifically in the systems and equipment design
stage, a series of charts can be developed representing those functional areas to be
investigated, and the various factors to be considered when investigating the func-
tional areas for causes of potential failure problems. These root cause factors for the
systems and equipment design area include the following:

• Origin of design criteria.
• Utility inputs prior to design.
• Equipment specifications.
• Constraints on the design.
• Actual design solution and test.



554 5 Safety and Risk in Engineering Design

Feed water
system

problem ID

Feed water
pump

Feed water
pump shaft

Bending of
pump shaft

Thermal
stress

Lack of
lubrication

Manufacture
and 

installation

Systems and 
equipment

design

Operations
and

maintenance

ComponentAssembly Failure mode Failure cause Root cause

Fig. 5.6 Outage cause investigation logic tree expanded to potential root cause areas

Origin of
design criteria

Utility inputs
prior to
design

Equipment
specifications

Constraints
on the design

Actual design
solution and

tests

Systems and 
equipment

design

Fig. 5.7 Root cause factors for the systems and equipment design area

Each of these factors is developed into a factor tree chart indicating functional areas
to be explored with the equipment’s design. A thorough examination of preliminary
information should eliminate the need for going through all the factor trees and
all the associated questions concerning the potential root causes of design integrity
problems.

In the following Figs. 5.6 and 5.7, a graphic example is given of a potential
outage in a power generation unit due to root cause failure in the boiler feed water
pump, expanded to the potential root cause areas of equipment design, manufacture
and maintenance. Figure 5.8 gives a layout of the factor tree for the origin of design
criteria.

5.2.1.3 Event Tree Analysis for Safety in Engineering Design

As indicated before, event tree analysis (ETA) is an inductive logic method for
identifying the various accident and/or incident sequences that can generate from
a single initiating event. The approach is based on the derivation of a sequence of
hazardous events (accidents and incidents) that are then quantified in terms of their
probability of occurrence. The events delineating these sequences are usually char-
acterised in terms of:
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• The intervention of protection systems that are supposed to take action for the
mitigation of hazardous events (system event tree);

• The fulfilment (or not) of safety functions (functional event tree);
• The occurrence of physical phenomena (phenomena event tree).

Functional event trees are an intermediate step to the construction of system event
trees. Following the initiating event, the safety functions that need to be fulfilled are
identified; these will later be substituted by the corresponding safety and protection
systems in the schematic design phase. The system event trees are used to identify
the hazardous event sequences that may develop within the process engineering de-
sign that would require protection and safety systems. The phenomena event trees
describe the evolution of hazardous event phenomena outside the process (i.e. fire,
contaminant dispersion, etc.).

Event tree analysis may be qualitative, quantitative, or both, depending on the
objectives of the analysis. In the application of hazards analysis, event trees may be
developed independently or follow on from fault-tree analysis. An ETA is usually
carried out in six steps (AIChE 1985):

1. Identification of a relevant initiating event that may give rise to unwanted con-
sequences.

2. Identification of the safety functions that are designed to deal with the initiating
event.

3. Construction of the event tree.
4. Description of the resulting hazardous event sequences.
5. Calculation of probabilities/frequencies for the identified safety consequences.
6. Compilation and presentation of the results from the analysis.

Step 1. Identification of a Relevant Initiating Event

An event tree begins with a defined hazardous event (accident and/or incident),
termed the initiating event, the preciseness of the definition being essential for fur-
ther analysis. The initiating event may be an internal or external failure, or even
human error, and may have been identified by other risk analysis techniques like
preliminary hazard analysis (PHA) or HAZID. To be of interest for further analysis,
the initiating event must give rise to a number of safety consequence sequences.
If the initiating event gives rise to only one consequence sequence, then fault-tree
analysis is a more suitable technique to analyse the problem. The initiating event
is often identified and anticipated as a possible critical event already in the early
schematic design phase. In such cases, barriers and safety functions have usually
been introduced to deal with the event.

Initiating events may be defined slightly different. For example, in the safety
analysis of the cooling water system of an oxidation reactor, ‘loss of cooling water
to the reactor’ may be chosen as a relevant initiating event. Alternatively, ‘rupture
of cooling water pipeline’ may be chosen as the initiating event. Both of these are
equally correct. It therefore follows that there is one event tree for each initiating
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event considered. This aspect obviously poses a limitation on the number of initiat-
ing events that can be analysed in detail. Thus, one of the initial activities of event
tree analysis is to group similar initiating events. Initiating events that are grouped in
the same class usually have similar characteristics that lead to similar consequences
and warrant the same safety functions. Only one typical initiating event for each
class is investigated in detail.

Step 2. Identification of the Safety Functions

Once an initiating event is defined, all the safety functions that are required to miti-
gate the hazardous event must be defined and organised according to their time
of intervention. The safety functions (safety systems, procedures, operator actions,
etc.) that respond to the initiating event may be thought of as the system’s defence
against the occurrence of the initiating event. All safety functions that have an im-
pact on the safety consequences of an initiating event must be identified in the se-
quence in which they are assumed to be activated. For each safety function, the set
of possible success and failure states must be defined and enumerated, each state
giving rise to a branching of the event tree.

The safety functions are classified in the following groups (AIChE 1985):

• Safety systems that automatically respond to the initiating event
(e.g. automatic shutdown systems).

• Alarms that alert the operator(s) when the initiating event occurs
(e.g. fire alarm systems).

• Operator procedures following an alarm.
• Barriers or containment methods intended to limit the effects of the initiating

event.

The possible event chains, and sometimes also the safety functions, will be affected
by various hazard-contributing factors (events or states) such as:

• Ignition or no ignition of a gas release.
• Explosion or no explosion.
• Time of the day.
• Wind direction.
• Meteorological conditions.
• Liquid/gas release containment.

Step 3. Construction of the Event Tree

The event tree displays the chronological development of event chains, starting with
the initiating event and proceeding through successes and/or failures of the safety
functions that respond to the initiating event. The safety consequences are clearly
defined events that result from the initiating event. The diagram is usually drawn
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from left to right, starting from the initiating event. Each safety function or hazard-
contributing factor is called a node in the event tree, and is formulated either as
an event description or as a question, usually with two possible outcomes (‘true’
or ‘false’—‘yes’ or ‘no’). At each node, the tree splits into two branches, an upper
branch signifying that the event description in the box above that node is ‘true’, and
a lower branch signifying that it is ‘false’. The outputs from one event lead to other
events. The development is continued to the resulting safety consequences.

For example, if the initiating event is the explosion of a process environment
impregnated with flammable dust, coupled with the possible sparking of fire, the
first function required would be that of quenching the fire with the appropriately
installed sprinkler system and, finally, the setting off of a fire alarm. Following the
initiating event ‘explosion’, fire may or may not break out. A sprinkler system and
an alarm system have been installed that may or may not function. The quantitative
analysis of the event tree is considered later. The functions are structured in the form
of headings in the functional event tree, as shown in Fig. 5.9.

In Fig. 5.9, the calculation of the frequencies for the identified safety conse-
quences are:

Fire control, with alarm = 10−2/year×0.80×0.99×0.999 = 7.9×10−3

Fire control, no alarm = 10−2/year×0.80×0.99×0.001 = 7.9×10−6

No control, with alarm = 10−2/year×0.80×0.01×0.999 = 8.0×10−5

No control, no alarm = 10−2/year×0.80×0.01×0.001 = 8.0×10−8

No fire = 10−2/year×0.20 = 2.0×10−3

Fig. 5.9 Event tree for a dust explosion (IEC 60300-3-9)
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Step 4. Description of Resulting Hazardous Event Sequences

The next step in the qualitative part of the analysis is to describe the different event
sequences arising from the initiating event. One or more of the sequences may repre-
sent a safe recovery and a return to normal operation or an orderly shutdown. The se-
quences of importance, from a safety point of view, are those that result in accidents.
The structure of the event tree diagram, clearly showing the progression of events
relating to the accident, helps in specifying where additional procedures or safety
systems will be most effective in protecting against these accidents. The resulting
safety consequences must be described in a clear and unambiguous way. Once the
safety consequences have been described, a criticality analysis is conducted, and the
safety consequences ranked according to their criticality. Such a criticality ranking
is based on the risk of the safety consequence, in terms of its severity and probability
of occurrence. This is considered later in Sect. 5.2.1.6. Sometimes, it is beneficial
to split the end safety consequences (outcomes) of the event tree, such as the as-
sessment of ‘estimated disabling injury frequency’ and ‘estimated reportable hazard
frequency’, into different categories of safety consequences, namely:

• Life risk—when the occurrence of critical functional failures can be expected to
result in a risk of loss of life every time.

• Loss risk—when the occurrence of critical functional failures can be expected to
result in a risk of loss of limb every time.

• Health risk—when the occurrence of critical functional failures can be expected
to result in the risk of a health hazard every time.

• People risk—when the occurrence of critical functional failures can be expected
to result in the risk of an accident affecting people working in the area every time.

• Environment risk—when the occurrence of critical functional failures can be ex-
pected to result in the risk of an accident affecting the environment every time.

• Process risk—when the occurrence of critical functional failures can be expected
to result in the risk of an accident affecting the production process every time.

• Product risk—when the occurrence of critical functional failures can be expected
to result in the risk of an accident affecting the related product every time.

In the example event tree for a dust explosion shown in Fig. 5.9, the following
simplified categories are used:

• loss of lives
• environmental damage
• material damage.

The safety consequences may be ranked within each of these simplified categories.
For the categories ‘environmental damage’ and ‘material damage’, typical sub-
categories are used such as N (negligible), L (low), M (medium), and H (high).
What is meant by these categories has to be defined in each particular case. If the
safety consequences cannot be placed into a single group, a probability distribution
may be given for various sub-categories, such as for the category ‘loss of lives’.
Thus, for this category, the sub-categories 0, 1–2, 3–5, 6–20, etc. are proposed. The
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outcome of an event chain may be, for example, that 0 persons would be killed with
probability 50%, 1–2 persons may be killed with probability 40%, 3–5 persons may
be killed with probability 10%, and 6–20 persons may be killed with probability
2%. If, in addition, the frequency of the outcome can be estimated, then the fatal
accident rate (FAR) associated to the specified initiating event can be calculated
(Rausand 1999).

Quantitative Assessment of the Event Tree

If sufficient information is available for the initiating event and all the relevant safety
functions and hazard-contributing factors, a quantitative analysis of the event tree
may be carried out to give frequencies or probabilities of the resulting consequences.
The probability of occurrence of the initiating event is usually modelled according
to a homogeneous Poisson distribution, and a frequency that is measured as the ex-
pected number of occurrences per year (or a time unit). For each safety function,
the conditional probability that it will function properly when the previous events in
the event chain have occurred must be estimated. Some safety functions, like emer-
gency shutdown (ESD) systems on offshore oil/gas platforms, may be very complex
and will require a detailed analysis for the integrity of their design. The conditional
reliability of a safety function will depend on a wide range of environmental and
operational factors, such as stress-strength loads from previous events in the event
chain, time since the last function test, etc.

In many cases, it will also be difficult to distinguish between ‘functioning’ and
‘non-functioning’. For example, a fire pump may promptly start but stop prema-
turely before the fire is extinguished. The reliability assessment of a safety function
may in most cases be performed by a fault-tree analysis or by an analysis based
on a reliability block diagram. If the analysis is computerised, a link may be es-
tablished between the reliability assessment and the appropriate node in the event
tree, to facilitate automatic updating of the outcome frequencies and for sensitivity
analysis. It may be relevant to study the effect on the outcome frequencies by chang-
ing the testing interval of a safety valve, for example. Graphically, the link may be
visualised by a transfer symbol on one of the output branches from the node.

The probabilities of the various hazard-contributing factors (events/states) that
enter into the event tree must also be estimated for the relevant contexts. Some of
these factors will be independent of the previous events in the event chain, while
others are not. However, most of the probabilities in the event tree are conditional
probabilities. The probability that the sprinkler system in Fig. 5.9 will function after
the initiating event is not equivalent to the probability that it will function on the
basis of pilot tests under normal conditions. The possibility that the sprinkler system
may have been damaged during the dust explosion and the first phase of the fire (i.e.
before it is activated) must also be taken into account.

Considering the event tree in Fig. 5.9, let fA denote the frequency of the initiating
event A, ‘explosion’. In this example, fA is assumed to be equal to 10−2 per year,
which means that an explosion will occur on average once every 100 years. Let B
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denote the event ‘start of a fire’, and let P (B|A) = 0.8 be the conditional probability
of this event when a dust explosion has already occurred. In the same way, let C
denote the event ‘sprinkler system on’, following the dust explosion and outbreak
of a fire. The conditional probability of C that the sprinkler system will function is
P (C|BA) = 0.99. The event ‘fire alarm activated’ is denoted by D with probability
P (D|BA) = 0.999.

In this example, the probability that the alarm will be activated by the event ‘start
of a fire’ is assumed to be the same whether the sprinkler system is functioning or
not. In most cases, however, the probability of this event would depend on the out-
come of the previous event. Thus, let b, c and d denote the negation (non-occurrence)
of the events B, C and D respectively, where P (b|xy) is equal to 1−P (B|xy), etc.

The frequencies (per year) of the end consequences may now be calculated as
follows:

1. ‘Fire control, with alarm’

fA ×P(B|A)×P(C|BA)×P(D|BA)

= 10−2/year×0.80×0.99×0.999= 7.9×10−3

2. ‘Fire control, no alarm’

fA ×P(B|A)×P(C|BA)×P(d|BA)

= 10−2/year×0.80×0.99×0.001= 7.9×10−6

3. ‘No control, with alarm’

fA ×P(B|A)×P(c|BA)×P(D|BA)

= 10−2/year×0.80×0.01×0.999= 8.0×10−5

4. ‘No control, no alarm’

fA ×P(B|A)×P(c|BA)×P(d|BA)

= 10−2/year×0.80×0.01×0.001= 8.0×10−8

5. ‘No fire’

fA ×P(B|a) = 10−2/year×0.20 = 2.0×10−3

It is evident that the frequency of a specific outcome (consequence) is simply
obtained by multiplying the frequency of the initiating event by the probabilities
along the event sequence leading to the outcome in question. If it is assumed that
occurrences of the initiating event may be described by a homogeneous Poisson
process, and that all the probabilities of the safety functions and hazard-contributing
factors are constant and independent of time, then the occurrences of each outcome
will also follow a homogeneous Poisson distribution.
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Evaluation of the Event Tree

Once the final event tree has been constructed, the remaining task is to compute the
probabilities of system failure. Each event (branch) in the tree can be interpreted as
the top event of a fault tree that allows the evaluation of the probability of the occur-
rence of such event. The value thus computed represents the conditional probability
of the occurrence of the event, given that the events preceding that sequence have
occurred.

In the case of independent events, multiplication of the conditional probabilities
for each branch in a sequence gives the probability of that sequence. This was illus-
trated in the example functional event tree for a dust explosion given in Fig. 5.9 (IEC
60300-3-9). Similarly, an illustration of independent event tree branching for a re-
actor safety study by the US Nuclear Regulatory Commission is given in Fig. 5.10
(NUREG 75/014 1975).

Once the system failure and success states have been properly defined, the states
are then combined through the tree branching logic to obtain the various accident
sequences that are associated with the given initiating event. Figure 5.10 shows
a graphical example of a system event tree where the initiating event (I) is first
depicted, and the system states are then connected in a stepwise, branching fashion.

System success or failure states are denoted by Si and Fi respectively, where i =
the number of systems in the configuration. The accident sequences that result from
the tree structure are shown in the last column. Each branch yields one particular
accident sequence; for example, (I)(S1)(F2) denotes the accident sequence in which
the initiating event (I) occurs and system 1 is called upon and succeeds, (S1), and
system 2 is called upon but fails to perform its defined function, (F2).

For larger event trees, this stepwise branching would simply be continued.
The success and failure of a system must be defined under the condition that the

Initiating event

Initiating event (I)

Success state (S1)

Success state (S2) (I) (S1) (S2)

(I) (S1) (F2)

(I) (F1) (S2)

(I) (F1) (F2)

Success state (S2)

Failed state (F1)

Failed state (F2)

Failed state (F2)

System 1 System 2 Sequences

Fig. 5.10 Event tree branching for reactor safety study
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initiating event has occurred. Likewise, the system states on a given branch of the
event tree are conditional on the previous system states having occurred. In the case
of dependent events, two approaches to accident sequence modelling are available.

The first approach is called boundary condition event trees, and consists of de-
composing the system so as to identify the supporting parts or functions upon which
some components and systems are simultaneously dependent. The functions appear
explicitly as system event tree headings, preceding the dependent protection sys-
tems and components. Since dependent parts are extracted and explicitly treated as
boundary conditions in the event tree, this approach leads to relatively small event
trees.

For example, consider an initiating event that requires two systems, S1 and S2, to
intervene and suppose that, to operate, S1 needs the pumps of S2. Then, one could
extract the ‘common part’ and consider three systems: S1, S∗2, which is the S2 system
without the pumps common to S1, and S3, which includes the pumps used by both
S1 and S2. It is obvious that S3 is logically placed before S1 and S2 in the event tree,
as schematically shown in Fig. 5.11, because it is the function that first responds to
the initiating event because, to operate, S1 needs the pumps of S2.

The dependencies are then explicitly represented in the tree, and the branching
associated with S1 and S∗2 may be eliminated when S3 is not functioning. Thus, all the
conditional probabilities are made independent, and the probability of the accident
sequences can be computed by simple multiplication. This approach considerably
simplifies the computations but it requires a great deal of expertise by the analyst.
In fact, since system interactions and dependencies are treated primarily within the
inductive logic of the event tree, those dependencies not recognised by the analyst
may not be incorporated into the analysis.

The second approach is called fault-tree linking. In this method, the dependencies
from support systems or common parts are modelled in fault trees and thus, at the
level of the event trees, the systems are inserted without the need to consider their
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F3

S3

S1

S1

F1

S2 *

S2 *

F2 *

S2 *

F2 *

Freq (Sequence)

Freq (Seql) = f (E1).Pr (S3).Pr (S1).Pr (S2*) etc.

Fig. 5.11 Event tree with boundary conditions



564 5 Safety and Risk in Engineering Design

structural dependencies. For each sequence of the event tree, the fault trees of the
composing events are linked in one large fault tree that follows the logic depicted in
the event tree, and the fault tree is then solved with the usual techniques to compute
the probability of occurrence of that sequence.

Figure 5.12 shows the previous example of an initiating event that requires two
systems, S1 and S2, to intervene, where both systems are explicit on the event tree
without care to their dependence. The hazardous event (accident and/or incident)
sequences in Fig. 5.12 may now be calculated using Bayes’ theorem of conditional
probability:

(I)(S1)(S2) = P(S2|S1I)P(S1|I)P(I)
(I)(S1)(F2) = P(F2|S1I)P(S1|I)P(I)
(I)(F1)(S2) = P(S2|F1I)P(F1|I)P(I)
(I)(F1)(F2) = P(F2|F1I)P(F1|I)P(I)

(5.4)

If the probability of the sequence (I)(S1)(S2) is to be evaluated, a fault tree is
developed with the top event occurring when the initiating event I, and the failure
of both systems S1 and S2 occur. In place of the events S1 and S2, the corresponding
system fault trees can be substituted, thus obtaining a large fault tree that can be
logically simplified (accounting for the existing dependencies) and evaluated so as
to give the probability of the top event, i.e. the probability of the sequence of interest.
With this method, the dependencies are properly treated even if the analysis had,
a priori, no information that the dependency existed. This is particularly useful in
evaluating systems for safety critical consequences during the engineering design
stage when information concerning the dependencies of hazardous events is still

System 1 
success state S1

System 2 S2 (I) (S1) (S2)

System 2 F2 (I) (S1) (F2)

(I) (F1) (S2)

(I) (F1) (F2)

System 2 S2

System 2 F2

System 1 
failed state F1

Initiating

Event E1

Fig. 5.12 Event tree with fault-tree linking



5.2 Theoretical Overview of Safety and Risk in Engineering Design 565

vague. Conversely, the resulting fault tree for an accident sequence may be rather
large, necessitating more time for safety analysis during the design stage.

In summary, all the significant dependencies of hazardous events among systems
are explicitly represented in the event trees with boundary conditions. The fault
trees for the individual events are then simple and independent. However, great care
must be taken in identifying all the existing dependencies. In the fault-tree link
approach, dependencies of hazardous events are included in the fault trees for the
various systems and, thus, are not dependent. The accident sequence in the linked
fault tree is rather large and complex but all dependencies are treated automatically.

In Fig. 5.13, a simplified version of a functional event tree is illustrated for the
case of a pipe rupture in the primary cooling circuit of a nuclear reactor. It is evident
from these simplified event trees that for realistic systems, event tree analysis and,
thus, safety analysis in engineering design can become quite complicated.

5.2.1.4 Cause-Consequence Analysis for Safety in Engineering Design

The cause-consequence analysis (CCA) method or, alternatively, the cause-
consequence diagram (CCD) method is a tool for system safety and risk analysis. As
with the fault-tree analysis method, the cause-consequence diagram documents the
failure logic of the system. In addition to this, the cause-consequence diagram pro-
duces the exact failure probability in an efficient calculation procedure. The cause-
consequence diagram technique, as applied to static systems, has been shown to
yield the same result as those produced by the solution of the equivalent fault tree
and binary decision diagram. On this basis, general rules have been devised for the
construction of a cause-consequence diagram, given a static system. The use of the
method in this manner has significant implications in terms of efficiency of con-
ducting safety analysis, and can be shown to have benefits for determining safety in
engineering design.

Safety analysis of industrial systems is carried out to reduce the risk of adverse
events such as injury or death, as well as to aid in the protection of systems and
facilities, by reducing the frequency or consequences of accidents and/or incidents.
Since the early 1960s, various mathematical models have been used to perform re-
liability analysis in order to predict the likelihood that a system will function under
a given demand. Each analysis model had different features that made it more ap-
propriate to specific types of systems, and the most efficient analysis was to utilise
the simplest technique. The most commonly employed technique to assess the prob-
ability of failure of industrial systems is fault-tree analysis (FTA).

For systems containing independent failure events, it has been shown that the
FTA technique produces a logical description of the failure process and yields,
among other results, the system’s unreliability. It has been highlighted, however, that
this technique has limitations even when it is applied to systems containing indepen-
dent failure events, in that the structural extent of backward analysis for this tree-
based deductive method quickly becomes multi-branched for complex systems, and
in itself becomes complex. Qualitatively, if the fault tree is complex, then finding the
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Fig. 5.13 Function event tree for loss of coolant accident in nuclear reactor (NUREG 75/014 1975)
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minimal cut sets can be time-intensive. In addition, the top event probability, found
via the inclusion-exclusion formula, may also be computationally time-consuming
if the system contains a moderate number of minimal cut sets.

In the past, this problem was solved by using a simple approximation for the
probability of occurrence of the top event. These approximations, however, can be
inaccurate if the likelihood of component failure is large. The problem of inaccu-
racies due to approximation techniques has been alleviated by the development of
the binary decision diagram (BDD) approach. BDDs are based on Bryant’s trees
(Bryant 1986) to obtain the exact top event probability efficiently by expressing the
system failure modes as disjoint paths. The calculation of the top event probabil-
ity is achieved by summing the probabilities of these disjoint paths. This analysis
procedure makes the BDD technique more efficient than the traditional FTA tech-
nique. The BDDs, however, cannot be constructed from the system description, and
are developed from the fault-tree representation of the system. During the conver-
sion process, the BDD loses all the causality information that is represented in the
fault-tree structure. In addition to this, an inefficient ordering of the basic events can
result in an excessively large diagram that can prove difficult to analyse, reducing
the efficiency of the method.

A technique has been developed that represents all system outcomes, given an
initial event, on a diagram that contains a full textual description of the systems
behaviour, and produces an exact quantification of system failure probability. This
technique is based on the cause-consequence diagram (CCD) method developed at
RISO Laboratories in Denmark in the 1970s to aid in reliability analysis of nuclear
power plant (Villemeur 1991).

The cause-consequence diagram method involves the identification of the poten-
tial modes of failure of individual components and then relates the causes to the
ultimate consequences for the system. The consequences evaluated include those
that represent system failure as well as those that represent other systems behaviour.
As all consequence sequences are investigated, the method can assist in identifying
system outcomes that may not have been envisaged during the earlier design phases.

Cause-consequence analysis (CCA) is most frequently applied to systems where
the system state changes with time (Nielsen et al. 1975). Application of cause-
consequence analysis to a static system, and development of rules for the construc-
tion of a cause-consequence diagram representing a static system have been used in
a high-integrity protection system (HIPS) to prevent the passage of a high-pressure
surge in downstream vessels in a process engineering design (Ridley et al. 1996).

The Cause-Consequence Diagram Method

Cause-consequence diagramming is a technique that embodies both causal and con-
sequence analysis. The technique provides a diagrammatic notation for expressing
the potential consequences of an event (normally, a hazard) and the factors that influ-
ence the outcome. The basic notation is introduced in the context of the example in
Fig. 5.14. In this diagram, the hazard is ‘ignition’. The final outcomes (or so-called
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Fig. 5.14 Example cause-
consequence diagram

YES

No fire Minor fire Major fire

Alarm on

Sprinkler on

Ignition

YES NO

NO

significant consequences) are shown in octagons and vary from ‘no fire’, ‘minor
fire’, to ‘major fire’. The main factors that influence the outcomes are shown in
‘condition vertices’ (i.e. YES or NO branching), specifically ‘alarm on’ and ‘sprin-
kler on’. The diagram shows that a major fire will occur as a result of the ignition
hazard only if both the sprinkler and alarm system fail. If the frequency with which
the hazard will occur can be estimated, and the probability that the sprinkler and
alarm systems will fail on demand (and, importantly, to what degree these failures
are correlated), then the frequency with which the hazard will give rise to this in-
cident can be estimated. This is an essential step on the way to estimating the risk
arising from the hazard.

Symbols Used for a Cause-Consequence Diagram

There are basically six types of symbols used for constructing a cause-consequence
diagram. These symbols include the decision box, fault-tree arrow, initiator triangle,
time delay box, OR gate, and consequence box, as illustrated in Table 5.4.

The cause-consequence diagram is thus developed from an initiating event, i.e.
an event that starts a particular operational sequence, or an event that activates cer-
tain safety systems. The cause-consequence diagram is comprised of two conven-
tional safety analysis techniques, the fault-tree analysis (FTA) method and the event
tree analysis (ETA) method.

The event tree analysis method is used to identify the various paths that the sys-
tem could take, following the initiating event, depending on whether certain sub-
systems/components function correctly or not.

The fault-tree analysis method is used to describe the failure causes of the sub-
systems considered in the event tree part of the diagram. This relationship is shown
in Fig. 5.15.
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Table 5.4 Cause-consequence diagram symbols and functions

SYMBOL FUNCTION

The decision box represents the functionality 
of a component/system. The NO box represents 
failure to perform correctly, the probability of 
which is obtained via a fault tree or single 
component failure probability qi

Fault tree arrow represents the number of the 
fault tree structure which corresponds to the 
decision box

The initiator triangle represents the initiating 
event for a sequence where λ indicates the rate 
of occurrence

YES

Ft1

t = x hrs

λ=

NO
Sprinkler

on

qi

Time delay 1 indicates that the time starts from 
the time at which the delay symbol is entered 
and continues up to the end of the time interval 
in the delay symbol

OR gate symbol: Used to simplify the cause-
consequence diagram when more than one 
decision box enters the same decision box or 
consequence box

Consequence box represents the outcome event 
due to a particular sequence of events

Initiating event

Consequence part:

Identification of sequence
depending on accident or
incident limiting systems.

Event tree analysis

Causal part:

Cause of accident or incident
limiting systems.

Fault tree analysis

Fig. 5.15 Structure of the cause-consequence diagram
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Rules for construction and quantification The cause-consequence diagram tech-
nique has been applied to a static safety system and found to yield results similar
to those produced by a conventional fault tree (Ridley et al. 1996). On the basis of
this study, general rules have been devised for the correct construction of the cause-
consequence diagram, as given below. The use of the cause-consequence method in
this manner has significant implications in terms of efficiency of reliability analysis,
and can be shown to have computational benefits for analysing static safety systems.

Step 1. Component failure event ordering If the order of failure is irrelevant,
which is typically the case in a static system, then the CCD can be initiated by
considering any of the components in the system. The analysis of the CCD should
yield identical results regardless of the component or variable ordering; however,
the actual diagrams may vary in size. The first step of CCD construction is there-
fore deciding on the order in which component failure events are to be taken. To
ensure a logical development of the causes of the system failure mode (i.e. initiating
event), the ordering should follow the temporal action of the system, or the system’s
activation for the function required.

Step 2. Cause-consequence diagram construction The second stage involves the
actual construction of the CCD. Starting from the initiating component, the func-
tionality of each component or sub-system is investigated and the consequences of
these sequences determined. If the decision box is governed by a sub-system, then
the probability of failure will be obtained via a fault-tree diagram.

Step 3. Reduction If any decision boxes are deemed irrelevant (for example, the
boxes attached to the NO and YES branches are identical, and their outcomes and
consequences are the same), then these should be removed and the diagram reduced
to a minimal form. Removal of these boxes will in no way affect the end result. This
is illustrated in Fig. 5.16 where failure (F) can occur due to either of the two paths
that terminate in the same failure function consequence, affecting either the NO or
YES branches of component A.

On one path, the component (A) works, on the other it fails, proving that the state
of component (A) represented by the decision box is irrelevant. When a redundant

Fig. 5.16 Redundant decision
box



5.2 Theoretical Overview of Safety and Risk in Engineering Design 571

decision box is identified, reduction is achieved by removing the box and replacing
it with the next decision/consequence box. When no further redundancies exist, the
cause-consequence diagram is deemed minimal.

Step 4. System failure quantification The probability of each consequence for
a static system is determined by summing the probability of each set of events that
lead to this particular outcome. Each sequence probability is obtained by simply
multiplying the probabilities of the component events represented by the branch.
This is possible because each sequence of events is mutually exclusive, and the
probability of a component failure event is assumed independent.

Three-component systems The cause-consequence diagram approach for static
systems can be demonstrated by a very simple system example. The approach shows
that it has potential advantages in comparison to a conventional fault-tree analysis
for larger systems. The system example contains three components A, B and C, and
system failure is caused by either A and B failing together, or C failing alone. The
system failure causes are illustrated as a fault-tree structure in Fig. 5.17.

The cause-consequence diagram can be constructed according to the following
steps:

Step 1. Component failure event ordering The ordering chosen is that of A, B and C.

Step 2. Cause-consequence diagram construction The CCD is constructed by in-
specting the failures of the components in that order (refer to Fig. 5.18).

Step 3. Reduction Boxes 3 and 4 are both irrelevant and are therefore removed.
This process reduces the CCD, the final form being illustrated in Fig. 5.19 and, as
no further redundancies exist, the diagram is minimal.

Step 4. System failure quantification The probability of system failure is equal
to the sum of the probability of the three sequence paths that lead to the conse-

Fig. 5.17 Example fault tree
indicating system failure
causes

TOP

G1 Function C

Function A Function B

C

A B
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Fig. 5.18 Cause-consequence diagram for a three-component system



5.2 Theoretical Overview of Safety and Risk in Engineering Design 573

quence ‘F’. Therefore, since the paths are mutually exclusive:

Probability of failure = P(path 1)+P(path 2)+P(path 4)
= qA ·qB +qA · (1−qB) ·qC +(1−qA) ·qC

= qA ·qB +qA ·qC−qA ·qB ·qC +qC −qA ·qC

= qA ·qB +qC−qA ·qB ·qC

The fault-tree quantification calculates the top event probability to be identical to
that obtained by the cause-consequence diagram approach. By studying the reduced
form of the CCD, it can be noted that it is equivalent to the binary decision diagram
(BDD) for the fault tree in Fig. 5.17 with the variable ordering A < B < C, as il-
lustrated in Fig. 5.20. The top event probability can also be obtained directly from
the BDD by multiplying the probabilities down the paths that lead to the terminal 1
node.

Fig. 5.19 Reduced cause-
consequence diagram

Fig. 5.20 BDD with variable
ordering A < B < C
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The cause-consequence diagram is reduced to a minimal form by, firstly, remov-
ing any redundant decision boxes and, secondly, manipulating any common failure
events that exist on the same path. The common failure events can be extracted as
common sub-modules or individual events. This process is equivalent to construct-
ing the fault tree, converting it to a BDD, and identifying and extracting indepen-
dent sub-modules. An algorithm has been developed that will produce the correct
cause-consequence diagram and calculate the exact system failure probability for
static systems with binary success or failure responses to the trigger event. This is
achieved without having to construct the fault tree of the system and retains the
documented failure logic of the system (Ridley et al. 1996)

The minimised cause-consequence diagram is then analysed using a BDD analy-
sis procedure. Thus, exact, rather than approximate calculations are performed. The
advantages of the cause-consequence diagram are:

• The diagram can be constructed directly from system description.
• Dependencies in the system can be incorporated in the analysis.
• The system is modularised to increase efficiency.
• Exact calculation procedures are adopted.

Repeated events The four-stage procedure developed to construct and analyse
a cause-consequence diagram is capable of dealing with the events that occur in
more than one fault-tree structure attached to the decision boxes in any sequence
path. The CCD method can deal with repeated events in a more efficient way to that
used for FTA (Ridley et al. 1996).

Using the CCD method, there is no need to obtain the Boolean expression of
the top event and then manipulate it to produce a minimal form prior to analysis.
The converse approach of the cause-consequence method deals with sequences of
events that either occur (fail) or do not occur (work). The probability of a partic-
ular outcome is obtained by summation of the probabilities of all paths that lead
to the outcome. Summation of the probabilities of the mutually exclusive paths in
the reduced diagram yields a result similar to that obtained from the fault tree fol-
lowing Boolean reduction. An algorithm has been developed that can trace through
a cause-consequence diagram, and identify and extract any repeated basic events in
more than one fault-tree structure on the same sequence path (Bryant 1986; Ridley
et al. 1996).

The procedural steps used in the extraction algorithm are the following:

1. Identify the fault-tree structures in the path under inspection.
2. Each fault tree in a path undergoes a modularisation process to identify inde-

pendence. The identified independent sub-trees are then individually considered
for further analysis.

3. The independent sub-trees for each fault-tree diagram are compared with one
another and following, the identification of any common sub-trees or individual
basic events, the cause-consequence diagram is modified.
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4. The cause-consequence diagram is modified by applying the following rules:

a. Following the identification of a common sub-tree or basic event, the com-
mon element is extracted and set as a new decision box at the highest point
in the cause-consequence diagram with all dependencies below it.

b. The cause-consequence diagram is then duplicated on each branch starting
from the new decision box.

c. Having developed a single decision box for the common sub-tree or basic
event, the decision boxes that contained the common event prior to extrac-
tion require modification. The common event/s are set to 1 (TRUE) in the
fault trees following the NO outlet branch from the new decision box, as this
indicates failure, and 0 (FALSE) in the fault trees following the YES outlet
branch to signify that the common event(s) are valid.

d. After extraction of the common sub-tree or basic event, each fault tree that
has been modified requires reorganisation. Each fault tree containing the ex-
tracted Boolean variable is inspected and the fault trees modified by setting
the Boolean variable to represent the path taken in the cause-consequence
diagram.

e. The cause-consequence diagram is then reduced to a minimal form by re-
moving any redundant decision boxes identified.

This procedure is repeated until all sequence paths have been inspected and no re-
peated sub-trees or basic events discovered.

For better clarity on the application of the procedural steps used in this extraction
algorithm, an example of the technique is given in Sect. 5.2.4 dealing with safety and
risk evaluation. The technique has been applied to a simple high-pressure protection
system. The basic functions of the system are to prevent the passage of a high-
pressure surge originating from upstream pumping of process material in order to
protect process vessels located downstream of the surge.

5.2.1.5 Hazardous Operability Studies in Engineering Design

Hazardous operability (HAZOP) studies are based on the principle that a team ap-
proach to hazards analysis will identify more potential problems in process designs
than would the combined results of individual designers of various disciplines and
expertise who are working separately. The expertise is brought together during HA-
ZOP sessions and, through a collaborative brainstorming effort, a thorough review
is made of the process design under consideration.

The HAZOP study focuses on specific portions of the process called ‘nodes’.
Generally, these are identified from the pipe and instruments diagram (P&ID) of
the process before the study begins. A process parameter is identified (for example,
flow), and an intention is created for the node under consideration. Then, a series of
guidewords is combined with the parameter ‘flow’ to create deviations. For exam-
ple, the guideword ‘no’ is combined with the parameter flow to give the deviation
‘no flow’. The team then focuses on listing all the credible causes of a ‘no flow’ de-
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viation, beginning with the cause that can result in the worst possible consequence
the team can think of at the time. Once the causes are recorded, the team lists the
consequences, safeguards and any recommendations deemed appropriate. The pro-
cess is repeated for the next deviation, and so on until completion of the node. The
study then focuses on the next node and the process is repeated. HAZOP studies
concentrate on identifying both hazards as well as operability problems. While the
HAZOP study is designed to identify hazards through a systematic approach, more
than 80% of the study’s recommendations are operability problems, and per se not
hazards. Although hazard identification is the main focus, operability problems are
identified for their potential to lead to process hazards, or for their negative impact
on the environment, or profitability of the engineered installation.

The definition of hazard is given as “any operation that could possibly cause
a catastrophic release of toxic, flammable or explosive chemicals, or any action
that could result in injury to personnel”, whereas the definition of operability is
given as “any operation inside the specific design under consideration that would
cause a shutdown that could possibly lead to a violation of safety and health or
environmental regulations, or negatively impact the profitability of the engineered
installation”.

a) Design Representations

A fairly wide range of design representations are in use in process engineering de-
sign and it is possible for any of these to be the basis of a HAZOP study. The
use of mathematically formed representations for safety-related software systems
is increasing and also these can be used for a HAZOP study. Examples of design
representations include:

• block diagrams
• flow charts
• data flow diagrams
• object oriented design diagrams
• state transition diagrams
• timing diagrams
• logic diagrams
• electrical circuit diagrams.

The design representations used should cover all aspects of the system that could
relate to hazards. If a single design representation does not, or cannot, cover all the
relevant attributes or credible failures, then one or more other forms of representa-
tion should be used. The following issues are relevant in the decision of whether or
not a further design representation is necessary (DEF STAN 00-58 2000):

• If dynamic behaviour is critical, such that hazards may result from incorrect se-
quencing, a representation such as a state transition diagram may be necessary.
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• If the system has multiple states (such as start-up, normal operation, and shut-
down), then representations of all of these should be available. Operating in-
structions or procedures should be included in the representation to be studied.

• If the timing of events is crucial, such that hazards could arise from timing devi-
ations, a timing diagram is necessary.

• If, during a study, a question arises regarding the possibility of a hazard, and
this cannot be answered by considering the attributes available on the design
representation being studied, there is the likelihood that a further representation
is necessary.

b) Entities and Their Attributes

It is the responsibility of someone familiar with the design, at the planning stage of
a HAZOP study, to identify and document, for each component and interconnection
on each design representation, the entities and their attributes, and also the attributes
of any components to be studied. When the interconnection between two points is
being studied, each type of flow should be identified as an entity in its own right, and
every attribute relevant to each entity should be listed and studied, as it is common
for there to be several types of data flow between two points. For example, there
may be both information and control data.

c) Deviations from Design Intent

A HAZOP study may often concentrate on the interactions, and address components
in detail only if an understanding of their failure modes is essential to the assessment
of deviations from design intent on interconnections. If components are to be stud-
ied, then their associated attributes need to be identified. It should be noted that the
term ‘components’ is used in the broadest sense and includes hardware, software,
mechanical, electrical and electronic elements. The examination of components is
not unique to HAZOP studies but this technique provides a systematic means of re-
viewing their possible failure causes and consequences. The deviations from design
intent on the interactions are, however, the novel feature of HAZOP studies. Con-
sidering the interactions between components is useful as a preliminary technique if
the failure modes of the components are not known at the early phases of the engi-
neering design process, or if the failure modes are found to be very complex at the
later detail design phase.

d) Guidewords and Interpretations

The principle of the use of guidewords is that, once a component or interconnection
on the design representation has been selected for study, an entity on it (there may be
one or more) and an attribute of the entity are chosen. A guideword is then applied to
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Table 5.5 Standard interpretations for process/chemical industry guidewords

Guideword Standard interpretation in process/chemical industry

No No part of the design intention is achieved
More A quantitative increase
Less A quantitative decrease
As well as All design intent achieved but with additional results
Part of Only some of the intention is achieved
Reverse Reverse flow in pipes and reverse chemical reactions
Other than A result other than the original intention is achieved

the attribute. For example, if the guideword ‘more’ is applied to the attribute ‘value’,
it may generate the questions ‘what are the possible causes of the value of this entity
being greater than the design intent?’ or ‘what are the consequences?’.

Inquiries are made into these questions and the results recorded. This process is
repeated for each guideword in turn, and the whole process is then carried out for
each other attribute of the entity being studied. Typical guidewords used in HAZOP
studies are:

no, more, less, as well as, reverse, other than.

The choice of guidewords should be considered carefully, as a guideword that is too
specific may limit ideas and discussion, and one that is too general may not focus the
HAZOP study efficiently. Guidewords may be interpreted differently when applied
to different design representations for different types of processes, as well as at
different stages of a system’s life cycle. When guidewords are chosen for a HAZOP
study, their interpretations should be defined, as each guideword may have more
than one interpretation in the context of its application to the design representation.
The guideword interpretations in Table 5.5 are normally adequate for the process
engineering industry (DEF STAN 00-58 2000).

Interpretations of attribute-guideword combinations Combinations of specific
guidewords and attributes, in the context of the particular design representation,
need interpretation according to standard guidelines as given in Table 5.5. A matrix
may be a convenient way of expressing attribute-guideword combinations. Exam-
ples in Table 5.6 provide a matrix of interpretations of the guidewords in the context
of design representations and attributes appropriate to those representations.

e) Selection of Process Parameters

The selection and application of process parameters in HAZOP studies of process
engineering designs will depend on the type of process being considered, the equip-
ment in the process, and the process intent. The most common specific process
parameters that should be considered are flow, temperature, pressure and, where
appropriate, level. In almost all instances, these parameters should be evaluated for
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Table 5.6 Matrix of attributes and guideword interpretations for mechanical systems

Attribute No More Less As well as Part of Reverse Other than

Generic
meanings

No part of the
intention is
achieved

Quantitative
increase

Quantitative
decrease

All design
intent with
additional
results

Only some of
the intent is
achieved

The logical
opposite of the
intention

Result other
than original
intention

Torque No torque
appears

Higher than
expected

Lower than
expected

N/A N/A Torque is
reversed

Torque is
cyclic

Load No load Higher than
expected

Lower than
expected

N/A N/A N/A Load is in
unexpected
direction

Speed No speed Overspeed Underspeed N/A N/A N/A Fluctuating
Force No force More than

expected
Less than
expected

N/A N/A N/A In wrong
direction

Temperature No temp. Higher than Lower than N/A N/A N/A N/A
Containment Complete

failure of
containment

N/A N/A N/A Partial loss of
containment

N/A N/A

Material Complete
failure

N/A Less of
material

Corrosion is
persistent

Fatigue, failure N/A Creep
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every node. The team’s comments concerning these parameters must be documented
without exception. Additionally, the node should be screened for application of the
remaining specific parameters such as those given in the list below. These should be
recorded only if there is a hazard or operability problem associated with the param-
eter. A sample set of specific process parameters includes the following:

flow, temperature, pressure, composition, phase, level, relief, instrumentation,
sampling, corrosion, erosion, services, utilities, maintenance, addition, safety, reac-
tion, inserting, purging, contamination.

Specific process parameters should be considered when evaluating each node.
If a particular parameter does not change from one node to the next, then it is not
necessary to repeat all of the deviations that were considered in the previous node.

Guideword-parameter combinations—exploring deviations from design intent
The HAZOP study creates deviations from the engineering design intent by combin-
ing guidewords (no, more, less, etc.) with process parameters, resulting in a possible
deviation from the design intent. For example, when the guideword ‘no’ is combined
with the parameter ‘flow’, the deviation ‘no flow’ results. The design team would
then list all credible causes that will result in a ‘no flow’ condition for the specific
node. Not all guideword-parameter combinations are meaningful, as the following
examples indicate:

no flow no temperature no pressure no reaction
more flow more temperature more pressure as well as reaction
less flow less temperature less pressure part of reaction
reverse flow – – other than reaction

f) The Concept of Point of Reference

When defining nodes and performing a HAZOP study on a particular node, it is
useful to use the concept of point of reference (POR) in the evaluation of deviations.

For example, in considering a node consisting of acidified gas piping up to the
inlet tank of a reverse jet scrubber vessel, if the deviation ‘no flow’ is applied, then
a dilemma results when considering the causes of ‘no flow’ due to pipe rupture of
the acid inlet line (with safety and environmental consequences). The term ‘no flow’
is ambiguous, since there is still a flow of gas to the inlet tank but no flow through
the acid piping to the inlet tank of the scrubber vessel. A POR should, therefore, be
clearly established at the time the node is defined, at the downstream terminus of
the node.

g) Screening for Causes of Deviations

It is necessary to be thorough in listing causes of deviations. A deviation is consid-
ered realistic if there are sufficient causes to consider that the deviation can occur.
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However, only credible causes should be listed. Team judgment is used to decide
whether to include events with a very low probability of occurrence. Expert judg-
ment is required in determining what events have a low probability of occurring, so
that credible causes are not overlooked. There are three basic types of causes:

• Human error, in the form of acts of omission or commission by an operator,
designer or constructor, creating a hazard that could possibly result in a release
of hazardous or flammable material.

• Equipment failure, in which a mechanical, structural or operating failure results
in the release of hazardous or flammable material.

• External events, in which items outside the unit being reviewed affect the opera-
tion of the unit to the extent that the release of hazardous or flammable material
is possible. External events include upsets on adjacent units affecting the safe
operation of the unit (or node) being studied, loss of utilities, and exposure from
weather and seismic activity.

The level of detail required in describing causes of a deviation depends on whether
or not the cause occurs inside or outside the node.

For example, suppose that the inlet tank of the reverse jet scrubber includes
a level controller as part of the node, where the level control valve results in a high-
level condition in the closed mode. Since the valve and controller are part of the
node, the causes should be stated in more detail because the valve may fail closed
due to mechanical failure of the valve (internal event), or the valve may close due to
loss of instrument air to the unit (external event). If the level controller was outside
the node being studied, it would be sufficient to merely state ‘level control valve
LV-XXXX closes’. When the analysis considers the node in which the level con-
troller is located, then more detail can be listed for the various causes.

h) Consequences and Safeguards

The primary purpose of a HAZOP study is the identification of scenarios that would
lead to the release of hazardous or flammable material into the atmosphere, thereby
exposing workers to injury. It is thus always necessary to determine, as exactly as
possible, all consequences of any credible causes of a hazardous release of toxic
material. This serves a twofold purpose, in that it aids in determining a risk ranking
of multiple hazards, so that priority can be established in addressing the most se-
vere hazards first; furthermore, it aids in determining whether a particular deviation
results in an operability problem or hazard. If the HAZOP study team concludes
from the consequences that a particular cause of a deviation results in an operability
problem only, then further investigation should end in this case, and consider the
next cause, deviation or node.

If the HAZOP study team determines that the cause will result in the release of
hazardous or flammable material, then safeguards should be identified. Safeguards
should be included whenever a combination of cause and consequence presents
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a credible process hazard. The basis of what constitutes a safeguard can be sum-
marised in the following criteria:

• Those systems and/or written procedures that are designed to prevent a catas-
trophic release of hazardous or flammable material.

• Those systems that are designed to detect and give early warning following the
initiating cause of a release of hazardous or flammable material.

• Those systems and/or written procedures that mitigate the consequences of a re-
lease of hazardous or flammable material.

The HAZOP study team should use care when listing safeguards. Hazards analysis
requires an evaluation of the consequences of failure of engineering and administra-
tive controls, so a careful determination of whether or not these items can actually
be considered safeguards must be made. In addition, the team should consider re-
alistic multiple failures and simultaneous events when evaluating whether or not
any of the above safeguards will actually function as such in the event of an occur-
rence.

i) Deriving Recommendations

Recommendations are made when the safeguards for a given hazard scenario, as
judged by an assessment of the risk of the scenario, are inadequate to protect against
the hazard. ‘Action items’ and ‘information needs’ are those recommendations that
have been assigned for follow-up by one of the team members. Implementation of
hazard analysis recommendations may follow the following guidelines:

• High-priority action items should be resolved within 4 months.
• Medium-priority action items should be resolved within 4–6 months.
• Lower-priority action items should be resolved following medium-priority items.

Review of all recommendations made in HAZOP studies must be made to deter-
mine relative priorities and determine a schedule of implementation. After each rec-
ommendation has been reviewed, all resolutions should be recorded in a tracking
document and kept on file. Recommendations include design, operating or main-
tenance changes that reduce or eliminate deviations, causes and/or consequences.
Recommendations identified in a hazard analysis are considered to be preliminary
in nature.

5.2.1.6 Risk Analysis in Engineering Design

Risk analysis methodology used for determining the integrity of engineering design
are grouped into two categories: hazards identification and risk estimation. This
level of risk analysis is usually for making an assessment of equipment criticality
during preliminary design through the use of a risk priority number (RPN) technique
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(Bowles et al. 1994). Although the technique has been described in Sect. 3.2.2.5,
some of the basic features are repeated here in summary.

This method prioritises risk by calculating a risk priority number for a component
failure mode using three factors:

• Failure mode occurrence probability.
• Failure effect severity.
• Failure detection probability.

The risk priority number is computed by multiplying the rankings on a scale from 1
to 10 assigned to each of these three factors, and is expressed by the relationship:

RPN = (OR)(SR)(DR) (5.5)

where:

RPN = the risk priority number
OR = the occurrence ranking
SR = the severity ranking
DR = the detection ranking.

Risk estimation, as adopted by the European Community (EC 1996) for use in
risk assessment, is defined in the following format:

Risk, related to an identified hazard, is a function of the probability of its occurrence with
respect to the frequency and duration of exposure to the hazard, and the means of avoiding
it, and the severity of the accident or incident that can result from the hazard.

Thus, risk can be quantified as the product of the level of severity of the risk (i.e.
disaster or loss), with its probability of occurrence (i.e. chance).

This can be formulated as the following:

Risk = Severity×Probability (5.6)

From the definition, severity is the disaster or loss incurred. The measure of
severity can be quantified in two events: accidents and incidents. The measure of
probability can be quantified in the form of appropriate statistical probability dis-
tributions or measures of statistical likelihood. In this regard, an accident is an un-
desired event that results in disastrous physical harm to a person. An incident is an
undesired event that could result in a loss. In the context of safety, this loss is in
the form of an asset loss, which implies damage to equipment or property. Risk is
thus an indication of the degree of safety, determined on the basis of two considera-
tions, the first according to design criteria, and the second according to operational
performance:

• The estimated degree of safety. This is assessed according to the contribution of:

– the ‘estimated disabling injury frequency’ arising from functional failure of
the item,
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– the ‘estimated reportable hazard frequency’ arising from functional failure of
the item,

– the ‘estimated physical condition’ of the item related to its safety.

• The actual degree of safety. This is measured according to the contribution of:

– the ‘actual disabling injury frequency’ arising from functional failure of the
item,

– the ‘actual reportable hazard frequency’ arising from functional failure of the
item,

– the ‘actual physical condition’ of the item related to its safety.

The assessment of ‘estimated disabling injury frequency’ considers severity criteria
such as:

• Life risk—when the occurrence of critical functional failures can be expected to
result in a risk of loss of life every time.

• Loss risk—when the occurrence of critical functional failures can be expected to
result in a risk of loss of limb every time.

• Health risk—when the occurrence of critical functional failures is expected to
result in the risk of a health hazard every time.

The assessment of ‘estimated reportable hazard frequency’ considers severity crite-
ria such as:

• People risk—when the occurrence of critical functional failures can be expected
to result in the risk of an accident affecting people working in the area every time.

• Environment risk—when the occurrence of critical functional failures can be ex-
pected to result in the risk of an accident affecting the environment every time.

• Process risk—when the occurrence of critical functional failures can be expected
to result in the risk of an accident affecting the production process every time.

• Product risk—when the occurrence of critical functional failures can be expected
to result in the risk of an accident affecting the related product every time.

The assessment of ‘estimated physical condition’ considers severity criteria such as:

• Loss risk—when the item’s physical condition can be expected to result in pro-
cess losses in the system that will result in critical functional failures becoming
imminent.

• Damage risk—when the item’s physical condition can be expected to result in
physical damage to related items that will result in critical functional failures
becoming imminent.

• Defects risk—when the item’s physical condition can be expected to result in
physical defects arising in the item or its parts that will result in critical functional
failures becoming imminent.
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The various severity criteria described above are rated by designating a probability
value from 0.1 to 1.0, for each criterion relevant to each failure mode, according to
a risk assessment scale. The severity criteria is designated a value ranging from 10
to 1. The most severe degree of safety (disabling injury—life risk) is valued at 10,
and no safety risk is valued at 1.

The probability value is assessed for different categories called ‘actual’, ‘proba-
ble’ and ‘possible’. These probability values range from:

0.95 to 1.00 for the category actual
0.50 to 0.95 for the category probable
0.01 to 0.50 for the category possible.

The estimated risk is thus rated according to the risk assessment scale shown in
Table 5.7, using the following probability qualifiers:

Actual occurrence: 0.95 to 1.00
Probable occurrence: 0.50 to 0.95
Possible occurrence: less than 0.50.

Table 5.7 Risk assessment scale

Risk assessment scale
Estimated degree of Risk assessment values:
safety: Degree of severity × Probability

Severity criteria Actual Probable Possible
0.95 to 1.00 0.50 to 0.95 0.01 to 0.05

(Disabling injury) Deg. Prob. Risk Deg. Prob. Risk Deg. Prob. Risk
Life risk 10 10 10
Loss risk 9 9 9
Health risk 8 8 8
(Reported accident)
People risk 7 7 7
Process risk 6 6 6
Product risk 5 5 5
(Physical condition)
Damage risk 4 4 4
Defects risk 3 3 3
Loss risk 2 2 2
(No safety risk) 1 1 1
Overall risk Total Total Total
Overall average Average Average Average
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Table 5.8 Initial failure rate estimates

Qualification Failure rate (×10−6)

Very low < 1
Low 1 to 10
Fair 10 to 100
High 100 to 1,000
Very high > 1,000

Once an overall total and an overall average value of risk has been assessed,
a safety criticality rank can be defined as follows:

Criticality rank = Risk×Failure rate (5.7)

If the failure rate for the item cannot been determined, qualifying values for ini-
tial failure rate estimates can be used (Table 5.8).

5.2.1.7 Summary of Safety and Risk Analysis in Engineering Design

Up to this point, the various conventional deductive and inductive analysis tech-
niques for safety hazards and risk analysis have been considered without giving
much attention to their specific application in each engineering design phase. Some
of the more appropriate techniques that relate to the progressive phases in the engi-
neering design process are the following:

• Design cost risk analysis.
Design cost risk analysis consists of identifying independent variables relating to
the system or equipment attributes such as mass, size, volume, material thickness,
etc. plus the cost of ensuring the required reliability and safety relative to the se-
lected attributes. The independent variables, also called cost drivers, are selected
through statistical analysis, and form the basis of cost estimating relationships
(CERs).

• Operational risk analysis.
Operational risk analysis considers risk in their operating environment. As a re-
sult, it is necessary and useful to develop a safety hypothesis, expressed as a risk
equation, which relates system throughput capacity to risk. Such a risk equation
has its roots in financial risk management and has been expanded to measure the
mean expected loss risk, which is more suitable for process systems in general.
Such a measure not only quantifies risk but also clarifies system safety principles
during conceptual design. Early identification of specific risk costs and safety
benefits of different design alternatives enables avoidance or mitigation of haz-
ards that could result in operational losses.
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• Operability analysis—formally, hazards and operability (HAZOP) analysis.
Operability analysis considers safety issues throughout an engineered installa-
tion’s life cycle, from design, manufacture, installation, assembly and construc-
tion, through to start-up and operation. The later that hazardous operating modes
are detected in this development process, the more serious and expensive they
become to avoid or mitigate through the required plant modifications. Extensive
and systematic examination of safety aspects has to be carried out carefully and
at the earliest possible opportunity in the engineering design stage.

• Point process analysis—formally, Markov chain point processes.
Point process analysis is intended to model a probabilistic situation that places
points on a time axis. For safety analysis, these points are termed accident or
incident events.

• Fault-tree analysis (FTA).
Fault-tree analysis is the most frequently used in the assessment of safety protec-
tion systems for systems design. For potentially hazardous process engineering
systems, it is required statutory practice to conduct a quantitative assessment of
the safety features at the engineering design stage. The design is assessed by pre-
dicting the probability that the safety systems might fail to perform their intended
task of either preventing or reducing the consequences of hazardous events.

• Root cause analysis (RCA).
Root cause analysis (RCA) considers multiple failures arising from a common
cause. This was first studied on a formal basis in the nuclear power industry. In
order to obtain sufficiently high levels of reliability and safety in critical risk con-
trol circuits, redundancy was introduced. In applying redundancy, several items
can be used in parallel with only one required to be in working order.

• Cause-consequence analysis (CCA)—failure modes and safety effects analysis.
Cause-consequence analysis for safety systems design explores the system’s re-
sponses to an initiating deviation from pre-determined norms (such as the lim-
its of safe operating parameters), and enables evaluation of the probabilities of
unfavourable outcomes at each of a number of mutually exclusive loss levels,
depending upon the extent of deviation from these norms.

• Hazards analysis (HAZAN)—probabilistic risk analysis.
Hazards analysis considers identifying potential hazards that may be caused ei-
ther by the nature of the process or the intended systems configuration. A thor-
ough safety and hazards analysis is compulsory during the engineering design
and development stages, for official approval to commence with construction.

These techniques are considered in detail below, within the appropriate conceptual,
preliminary or detail design phases of the engineering design process.
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5.2.2 Theoretical Overview of Safety and Risk Prediction
in Conceptual Design

Safety and risk prediction attempts to identify initial problems or preliminary haz-
ards, and to estimate the risks related to the severity of their consequences and re-
lated probabilities of occurrence. Safety and risk prediction is considered in the
conceptual design phase of the engineering design process, and includes concepts
of modelling such as:

i. Cost risk models in designing for safety
ii. Process operational risk modelling

iii. Hazard and operability studies.

5.2.2.1 Cost Risk Models in Designing for Safety

Cost estimates during the early stages of engineering design are crucial. They influ-
ence the go, no-go decisions concerning the development of engineering projects.
In many cases, from 70 to 80% of a design’s cost is committed during the concept
phase (Mileham et al. 1993).

Making a wrong decision concerning designing for reliability and safety can be
extremely costly later in the development project. System modifications and pro-
cess alterations become more expensive as the project progresses into manufacture,
installation and construction. However, the difficulties of cost estimating at the con-
ceptual design phase are well recognised (Meisl 1988). The two major obstacles that
need to be addressed in estimating costs at the conceptual design phase are, first,
working with a limited amount of available data concerning the new design and,
second, identifying the requirements that determine how cost estimates are derived,
including assumptions and risks. The task in overcoming these obstacles, particu-
larly in estimating risk costs for safety in engineering design, is concerned with the
choice of cost estimating methods, some of which include the following:

• Traditional cost estimating.
• Parametric estimating.
• Feature-based costing.
• Qualitative cost estimating.

a) Traditional Cost Estimating

In traditional costing, there are two main estimates: a ‘first sight’ or ‘first round’
estimate, which is done in the early design phases, and a detailed estimate, done
later to calculate costs precisely. The former of these cost estimating methods is
based largely on the experience of the estimator. For example, it is not uncommon
for a ‘first round’ project estimate to be based upon a past similar project, or purely
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on costing experience. Although useful for a rough order of magnitude estimate,
this type of estimating is too subjective in engineering designs of large integrated
systems, and more quantified and justified estimates are essential (Roy et al. 1999).

For detailed estimates, risk cost is based upon a knowledge of the cost of opera-
tions and the cost of failure repair. Typically, such a cost model would incorporate
the following

TC = Ci +Co +Cr (5.8)

where:

TC = total cost (safety life-cycle cost)
Ci = initial cost (design and manufacture)
Co = operating cost
Cr = risk cost.

The risk cost component of this safety life-cycle (SLC) costing of a process engi-
neering design can be expressed in terms of two cost components:

• the average cost of failure Cf, and
• the expected life of the system Lt

Cr =
Cf ·Lt

MTBF
(5.9)

where:

MTBF = mean time between failures.

The risk cost component of the average cost of failure, Cf, can in turn also be ex-
pressed in terms of two cost components:

• the cost of failure loss, and
• the cost of failure repair

Cf = [Cs(MTTR+Tm)+Cl] (5.10)

+[Cm(MTTR+Tm)+Cd +Cp]

where:

Tm = repaired system response time
Cs = cost of loss of service
Cl = cost of incident/accident loss
Cm = cost of failure repair
Cd = cost of failure delay
Cp = cost of parts replacement
MTTR = mean time to repair.

The expected life of the system Lt, expressed as a ratio against the mean time be-
tween failures (MTBF), is in effect the expected number of failures over the life
span of the system, which is a measure of the system’s reliability, R. This reasoning
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is based on the understanding that MTBF is a measure of the average time until the
occurrence of failure.

Thus

R =
Lt

MTBF
(5.11)

Cr = Cf ·R (5.12)

Because risk cost is based upon a detailed knowledge of the cost of system op-
erations and repair, the method is not useful during the conceptual design phase of
project development. In order to estimate costs during this phase, other approaches
are required.

b) Parametric Estimating

A widely used method for estimating costs at the early stages of process develop-
ment is known as parametric estimating (PE). Typically, for most systems in pro-
cess engineering, mass relates to the cost of its manufacture. That is, as the weight
of a pressure vessel increases, due to an increase in size (volume) or in thickness of
material, so does the cost of manufacturing it. Furthermore, this particular relation-
ship is often described as linear.

Using relatively simple algebra, it is possible to derive a formula to determine
a mathematical relationship for cost to mass (or size). The linear equation y = ax+b
is used to describe the line of best fit for points representing this relationship and,
once described, it is then possible to use the formula to predict the cost of other
similar pressure vessels, based on their size or weight alone. Within the field of
cost estimating, this relationship is known as a cost estimating relationship (CER).
This is a rather simplistic illustration describing the main principles of paramet-
ric estimating. As CERs become more complex, involving several variables, more
complex mathematical equations are used to describe the relationships. When CERs
become too complex for mathematical equations to solve, cost algorithms are devel-
oped, such as genetic algorithms (GAs) for determining the extent of the risk cost
associated with designing for reliability and safety. An example of the use of such
an algorithm is in optimising a risk cost function in the allocation of component
redundancy to a safety control system (Coit et al. 1996).

Parametric estimating can be used throughout the life cycle of an engineered in-
stallation. However, it is used mainly during the early stages of development (i.e.
conceptual design phase), and for design to cost (DTC) analyses, which is consid-
ered later. The techniques are acceptable for both military and industrial application
(PCEI 1999).

However, parametric estimating does have its disadvantages—for example, CERs
of many conceptual designs are too simplistic to forecast costs. Furthermore, para-
metric estimating is based primarily on statistical assumptions concerning cost
driver relationships to cost, and estimations should not completely rely upon sta-
tistical analysis. Hypotheses based on experience, common sense and engineering
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knowledge should come first, and then the relationship should be tested with statisti-
cal analysis. Most CER studies apply parametric estimating for quantitative criteria
in design, but not for vague or unknown criteria requiring qualitative or expert judg-
ment. Current research in this area has demonstrated the validity of the approach
(Roy et al. 1999).

Design to cost The objective with design to cost (DTC) is to make the design con-
verge to an acceptable cost, rather than to let the cost converge to design. DTC
activities, during the conceptual and early design phases, are those of determining
the trade-offs between cost and performance for each of the concept alternatives.

DTC can produce massive savings on risk cost before system development be-
gins. The general approach is to set a cost goal, then allocate the goal to the elements
of the design, including designing for reliability and designing for safety. The de-
sign must then be confined to the alternatives that satisfy the cost constraint (Michael
et al. 1989).

However, this is only possible once a risk cost algorithm has been developed
that can be used to determine the impact of these elements of the design such as
designing for reliability and safety. These algorithms are used primarily to monitor
the impact of design decisions on risk cost, rather than the converse, throughout the
engineering design process. It is thus the cost engineers who are responsible for es-
tablishing sufficient information on cost in the early stages of systems development
that will enable the design engineers to make meaningful decisions.

c) Feature-Based Costing

A relatively new form of PE is that of feature-based costing (FBC). This has become
popular due to the rise and sophistication of computer aided tools in engineering
design. The growth of CAD/CAM technology and that of 3D modelling tools have
largely influenced the development of feature-based costing. Researchers have for
some time investigated the integration of design, process planning and manufactur-
ing for costing using a feature-based modelling approach (Wierda 1991).

However, feature-based costing has not yet been fully established or developed
with respect to costing safety in engineering design. Nonetheless, there are several
good reasons for examining the use of features as a basis for risk costs during the
early design phases where certain equipment (i.e. assemblies, sub-assemblies and
components) have already been identified. Such equipment can essentially be de-
scribed as a number of associated features, i.e. holes, flat faces, edges, folds, etc.

It follows that each equipment feature has cost implications, since the more fea-
tures the equipment has, the more manufacturing it will require, and the greater its
safety risk with respect to operational reliability, durability and robustness. There-
fore, choices regarding the inclusion or omission of a feature impact the risk costs
of equipment, especially process control equipment.
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d) Qualitative Cost Estimating

Fuzzy logic, possibility theory and artificial neural networks present the next gen-
eration in computerising the human thought processes. Many researchers and prac-
titioners are fast developing and investigating the use of artificial intelligence (AI)
systems and applying these to cost estimating. For risk cost estimating purposes,
the basic idea of using neural networks is to provide data to a computer so that it
can computationally learn which safety attributes mostly influence the cost. This is
achieved by training the system with data from past case examples with respect to
the cost of losses due to hazardous failure, the estimated frequency of the initiating
event, and the severity and probability of the consequences. The neural network then
approximates the functional relationship between the attribute values and the risk
cost. Safety attribute values such as estimate values of frequencies and/or probabili-
ties are input to the network, which applies the approximated function obtained from
the training data and computes a prospective risk cost. Relatively recent work has
demonstrated that, under certain conditions, neural networks produce better cost-
ing predictions than do conventional regression costing methods. However, in cases
where appropriate CERs can be identified, regression models have significant ad-
vantages in terms of accuracy, variability, model creation and model examination
(Smith et al. 1997).

Artificial neural networks (ANN) require a large case base in order to be effective,
which is not always the case with safety attributes of equipment in process engineer-
ing systems. In addition, the case base needs to be comprised of similar equipment
in common applications, and new designs need to be of a similar nature, in order
for the cost estimate to be effective. Thus, neural networks cannot cope easily with
uniqueness or innovation in engineering design. With regression analysis, safety and
risk issues in the design can be argued logically, and an audit trail of the develop-
ment of the risk cost estimate can be established. This is because a CER equation
is developed that is based on common sense and logic. In many cases, when con-
sidering neural networks, the resultant equation does not appear logical even if it
was extracted by examining the weights, architecture, and nodal transfer functions
that are associated with the final trained model. The artificial neural network truly
becomes a ‘black box’ CER. This is disadvantageous if a detailed list of the reasons
and assumptions behind the risk cost estimate is required. The black box CER also
limits the use of risk analysis, which is a prime benefit of parametric estimating, and
which will be considered now in greater detail.

e) Parametric Costing and Risk Analysis

This sub-section provides fundamental knowledge concerning the tools and tech-
niques currently used within the area of parametric costing and risk analysis within
the conceptual design phase. The method of parametric cost estimating (PCE) is
commonly used to estimate the cost of new engineering designs. It provides a tech-
nique for predicting cost based on historical relationships between cost and one or
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more predictor variables such as cost estimating relationships (CERs). The method
uses a statistical approach, and is commonly used for risk cost estimation during the
conceptual design phase (Rush et al. 2000).

Cost Estimating Relationship (CER) Development

Cost estimating relationships (CERs) can range from simple heuristics (rules of
thumb) to complex relationships involving multiple variables. The principal func-
tion of CERs is to provide equations or graphs that summarise historical cost data
from which future cost estimates can be made. A general methodology for develop-
ing CERs includes activities such as data collection, testing a CER’s logic, statisti-
cal analysis, CER significance tests, and validation. The collection of data is often
a very critical and time-consuming activity, requiring more effort to be devoted to
assembling a quality database than to any other task in the CER development pro-
cess. After a database is developed, the next step is the mathematical formulation of
a hypothesis and then to test the mathematical form of the CER in order to determine
its logic. This involves identifying potential cost driving variables and identification
of cost relationships.

In order to test and validate a CER, the statistical analysis technique of multiple
regression is used to test the hypothesis. Although widely accepted, PCE is based
on statistical assumptions concerning cost driver relationships to cost, particularly
risk cost, and should therefore not be completely reliant upon statistical analysis
but based also on experience, common sense and engineering knowledge. Because
estimating is based on assumptions concerning the likely risk cost of an as yet un-
developed design, the preferred approach is to combine the statistical techniques of
parametric estimating with statistical risk analysis.

The introduction of risk cost analysis ensures that the consequences of risks are
correctly taken into account to be able to quantify risk cost early in the design stage
of the life cycle of a system.

f) Risk Cost Analysis

The first step in analysing risk cost is identification of the CER variables. This is
readily available from the results of the parametric cost estimating method. The risk
cost consists of independent variables relating to the system or equipment attributes
such as mass, size, volume, material thickness, etc. included in the CERs, plus the
cost of ensuring the required reliability and safety relative to the selected attributes.
The independent variables, also called cost drivers, are selected through statistical
analysis, and form the basis of the CER.

The risk cost can be expressed in terms of the following principal cost compo-
nents: the parametric cost estimates, and the cost of ensuring reliability and safety

RC = C0 +[C1(mass)+C2(material)]+Cs (5.13)
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where:

RC = risk cost
C0 = initial cost constant (set to zero for cost comparisons)
C1 = cost constant multiplied with the CER variable of mass
C2 = cost constant multiplied with the CER variable of material
Cs = cost variable for ensuring required reliability and safety.

The cost of ensuring the required reliability and safety relative to the selected at-
tributes can be formulated as

Cs = CfR (5.14)

where:

Cf = cost of failure relative to the selected attributes
R = risk of a failure incident occurring.

The risk of a failure incident occurring can be formulated as

R = p · c (5.15)

where:

p = the probability of the event occurring
c = the consequence of the risk on the estimate.

5.2.2.2 Process Operational Risk Modelling

Complex process systems, especially complex integrations of systems, increasingly
have to cope with risk in their operating environment. As a result, it is necessary and
useful to develop a safety hypothesis, expressed as a risk equation, which relates sys-
tem throughput capacity to risk. Such a risk equation has its roots in financial risk
management and has been expanded to measure the mean expected loss risk, which
is more suitable for process systems in general. Such a measure not only quantifies
risk but also clarifies system safety principles during conceptual design. Early iden-
tification of specific risk costs and safety benefits of different design alternatives
enables avoidance or mitigation of hazards that could result in operational losses.

a) Overview of the Risk Hypothesis and Risk Equation

From Eqs. (4.23) and (4.24) in Sect. 4.2.1.2, a process system is considered to be
a functional unit that converts inputs to outputs, and which may be composed of
sub-systems connected either in series or in parallel, enabling the system to convert
a set of process inputs, Ip, to a set of process outputs, Op, per unit time, so that Op

is equivalent to the system throughput, Tp, where the yield is 100%.
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Equation (4.23) is reviewed here as the following expression

Process throughput TC
proc =

Material in process
Processing time

(5.16)

= Rated capacity (Cr)

The term throughput capacity relates engineering process throughput Tp to rated
capacity Cr. If Tp is the maximum value for Op, then Tp is seen as the throughput
capacity of the system, measured as the units of output per unit time when the system
is operating at rated capacity. In general, if the system is operating at a fraction f of
throughput capacity Tp, due to process fluctuations, where f is an average constant
(i.e. 0.95), then the reduced throughput, U , can be determined.

The reduced throughput, U , can be expressed as

U = f ×Tp (5.17)

In reality, the system will be exposed to unpredictable fluctuations in through-
put capacity and, over a period of time t, the mean and, thus, expected throughput
capacity will be Tp, where

Tp =

[
n

∑
t=0

Ut

]
/n (5.18)

where:
Tp = mean throughput capacity
n = number of time periods.

In real loss-deviation time periods, the actual capacity values can be expressed
as the series

STp = {Tp −L1,Tp −L2, . . .Tp −Ln} (5.19)

where L1,L2, . . . ,Ln are loss deviations from the average Tp.
The expected or average Tp actually rarely occurs, if at all. In reality, it is the

unpredictable sequence of losses (L1, or L2, . . . ,Ln) with respect to an average or
expected throughput capacity Tp, in a given time period, which is used in the mea-
sure of risk of loss of throughput. Two meaningful measures of risk may be used,
the traditional standard deviation measure, and a new measure, the mean expected
loss that in many cases is more suitable for systems in general.

b) Risk Measures

Risk measures are statistical measures, such as the standard deviation risk (SD-risk)
with respect to the mean throughput capacity Tp; if twice the standard deviation is
used, then an even stronger risk measure is obtained, the two-standard deviations
risk (2-SD-risk) measure. A new measure more suitable for process systems in gen-
eral, termed the mean expected loss risk (MEL-risk) with respect to hazard-free Tp,
is proposed (Bradley 2001).
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In general, risk of loss L of throughput capacity has two components, namely the
probability of a hazard occurring, and the size of the loss in throughput with respect
to some standard level of throughput. A MEL-risk of loss L means that the average
loss, with respect to the mean throughput capacity Tp in a period where the hazard
does not occur, is exactly L.

The standard deviation measure of possible loss with respect to the mean through-
put capacity, Tp, is the SD-risk measure. This measure is obtained by determining
the standard deviation of the mean s of all the deviations (L1,L2, . . .,Ln) from the
mean throughput capacity Tp.

An SD-risk of s means that, in the next time unit, there is:

• a 50% chance or probability of a loss from the expected throughput capacity Tp,
• a 34.1% chance of a loss between 0 and s from the expected Tp,
• a 15.9% chance of a loss > s.

For a two-standard deviations measure, there is a 47.7% chance of a loss between
0 and 2s with respect to Tp. This implies that there is a 13.6% chance of a loss
between s and 2s, and a 2.3% chance of a loss >2s, both losses with reference to
the mean throughput capacity Tp. In specifying an SD-risk, the standard deviation
of the variations in throughput must be specified, as well as the standard level of
throughput.

A 2-SD-risk of 2s means that, in the next time unit, there is:

• a 50% chance or probability of a loss from the expected throughput capacity Tp,
• a 47.7% chance of a loss between 0 and 2s from the expected Tp,
• a 2.3% chance of a loss > 2s.

It is assumed that the losses in each time unit are distributed normally, and the
percentages are obtained from a normal distribution function table. These percent-
ages will inevitably be different if the distribution departs from normal. The SD-risk
measure is widely used in financial risk analysis, particularly for stock and bond
portfolio management, since stock and bond prices follow a random pattern that
gives rise to a near-normal distribution of price changes (Beaumont 1986).

Where there is exposure to future loss, which can be made up of two loss com-
ponents, namely a certain loss and a probable loss, the SD-risk measure considers
only the probable loss, which in effect is the true risk. This is better explained with
the aid of an example: assume a system has a mean throughput capacity Tp = 400 if
there was no future loss exposure. Suppose that the system has exposure to a future
loss in Tp with a mean of 100 and a standard deviation of 14 where the least loss is
always greater than 70. This implies a certain loss of 70 plus a loss that makes up
the balance with a mean of 30. This balance can, however, be as small as 0 (left side
of the mean) and as large as 60 (right side of the mean), with a standard deviation
of 14. The future loss thus has a certain loss of 70 and a probable loss of 30, with
a standard deviation about the mean of the loss variations of 30 that is equal to 14.
This standard deviation about the mean of the probable loss is the SD-risk. The sys-
tem has a certain loss of 70 and a probable loss with a mean of 30 and an SD-risk
of 14.
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To deal with the problems that arise in arbitrary systems, where variations in
throughput depart significantly from the normal distribution and the distribution of
losses is not normal, an additional risk measure becomes essential. This is the mean
expected loss risk (MEL-risk). Suppose that for a system exposed to risk, there is at
least one hazard-free time period in which, by chance, the hazard does not occur, and
where the loss with respect to the mean throughput capacity Tp is L in this hazard-
free time period, and where a loss exceeding L is not probable (but a loss less than L
is probable). Thus, in the best-case scenario, the total hazard-free throughput capac-
ity is Tp −L. Then all other throughput capacities, each in a time period where the
hazard does occur in varying degrees of intensity, i.e. Tp −L1,Tp −L2, . . .,Tp −Ln,
may be considered as exhibiting losses, or loss deviations, with respect to the value
of Tp in the hazard-free time period. The mean of these loss deviations from Tp in
a hazard-free time period may be used as a measure of the risk. This measure of
expected loss in the future with respect to the throughput capacity for a hazard-free
time period is the mean expected loss risk (MEL-risk). Thus, a MEL-risk of loss
L means that the average loss, with respect to the mean throughput capacity Tp in
a time period where the hazard does not occur, is exactly L. In specifying a MEL-
risk, the mean deviation of the variations in throughput must be specified, as well
as the standard level of throughput. A MEL-risk of loss L is two standard devia-
tions from the mean Tp. The definitions of the loss variance, standard deviation or
SD-risk, and two standard deviations or MEL-risk of loss L from the mean Tp are
considered by their formulation.

The variance (V) is the square of the differences between the losses and their
average

V = (1/n) ·∑(Lk −AL)2 (5.20)

where:

Lk = the loss Lk (k = 1 to n) for n losses
AL = the average (or mean) (1/n)∑Lk.

The standard deviation (SD) is the spread about the average (or mean)

SD2 = (1/n) ·∑(Lk −AL)2

SD =
√

(1/n) ·∑(Lk −AL)2
(5.21)

SD is the root mean square deviation between the losses and their average (SD2

is the difference between the average of the squares and the square of the average),
and can be computed as

MEL-risk =
√

(1/n) ·L2
k −
{
(1/n) ·∑Lk

}2
(5.22)

A1—standard deviation, SD1

SD1 =
√

(1/n) ·L2
k −
{
(1/n) ·∑Lk

}2

SD1 = SD-risk
(5.23)
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A2—standard deviation, SD2

SD2 =
√

(1/n) ·L2
k −
{
(1/n) ·∑Lk

}2

SD2 = MEL-risk
(5.24)

where:

Lk = the loss Lk(k = 1 to n) for n losses.

There are two extreme cases with regard to Tp for a hazard-free period of time
(Bradley 2001):

(i) Explicit hazard-free case:
In the explicit case, the hazard-free throughput capacity Tp −L cannot be ex-
ceeded beyond the value of L. This throughput capacity remains in a time period
when no hazard occurs. However, a hazard is certain to occur sometime. Thus,
over a period of time, there will be a distribution of n losses about the mean
and, in at least one of the n time periods, there will occur a loss deviation L with
respect to the mean throughput capacity Tp. However, no loss deviation below
L will ever occur. The concept of a hazard-free throughput capacity level Tp−L
implies:

(1) that no variation in throughput capacity can occur leading to a throughput
capacity below the hazard-free level, and

(2) that the only variations in throughput capacity that can occur must lead to
a throughput capacity at or below the hazard-free level.

This ensures that all probable losses are included in, and certain losses excluded
from, the MEL-risk measure.

(ii) Implicit hazard-free case:
In the implicit case, the values in each time period fluctuate about the mean
throughput capacity Tp, and the distribution of the deviations from the mean
follows some reasonably bell-shaped distribution, where large but usually im-
probable loss deviations from the mean throughput capacity Tp occur, and where
no explicit hazard-free throughput capacity can be determined. In such a case,
a hazard-free throughput capacity Tp−L may be defined where the loss L is two
standard deviations from the mean.
For this case, the MEL-risk is defined as the mean expected loss with respect
to Tp − L for the hazard-free period, with a value equivalent to two standard
deviations of the mean throughput capacity Tp.

MEL-risk can therefore be viewed as the hazard-free deviation, either explicit or
implicit, from the throughput capacity Tp, and is also equal to the average loss to be
expected in a future hazard-free time period, with respect to throughput capacity Tp.
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5.2.2.3 Hazard and Operability Studies for Risk Prediction

Safety issues have to be considered throughout an engineered installation’s life cy-
cle, from design, manufacture, installation, assembly and construction, through to
start-up and operation. The later the hazardous operating modes are detected in this
development process, the more serious and expensive they become to avoid or miti-
gate in terms of the required plant modifications. Thus, an extensive and systematic
examination of safety aspects has to be carried out carefully and at the earliest pos-
sible opportunity in the engineering design stage. To meet these essential demands,
a thorough safety and hazards analysis is compulsory during the engineering design
and development stages, for official approval to commence with construction.

The initial step of such an analysis is process hazard identification (PHI), which
aims at identifying potential hazards that may be caused either by the nature of
the process or the intended systems configuration. Further steps in this analysis are
achieved by a variety of methods such as what-if analyses and safety checklists, usu-
ally incorporated in a more formal hazard and operability study (HazOp) conducted
as early as possible in the conceptual and/or preliminary design phases. However,
investigations in these early design phases identify faults only in the basic plant
layout because no detailed specifications of process behaviour, or of the required
controller equipment, may yet be available. Therefore, in the later detail engineer-
ing phase, further examination of the dynamic behaviour of systems is necessary to
determine fail safe control by programmable logic controllers (PLCs) or distributed
control systems (DCSs).

The technique of HazOp has been used and developed over approximately four
decades for identifying potential hazards and operability problems caused by devi-
ations from the design intent of both new and existing process plants. Because of
the high profile of process plant accidents, emphasis has often been placed upon the
identification of hazards but, in so doing, potential operability problems have been
neglected. Yet, it is in the latter area that benefits of a HazOp study are usually the
greatest. With respect to ‘design intent’, all industrial processes are designed for
a purpose. Process systems are designed and constructed to achieve desired objec-
tives. In order to do so, each item of equipment must consistently function according
to specified criteria. These criteria can be classified as the ‘design intent’ for each
particular item.

As an example, in the cooling water system of Fig. 5.5, consider now the cooling
water circuit piping in which the pumps are installed. A simplified statement of
the design intent of this small section of the reactor cooling system would be ‘to
continuously circulate cooling water at an initial temperature of X ◦C and at a rate
of Y l per hour’. It is usually at this low level of design intent that a HazOp study
is directed. The use of the word ‘deviation’ now becomes easier to understand. In
the case of the cooling water circuit, a deviation or departure from the design intent
would be a cessation of circulation, or the water being at an excessively high initial
temperature. It is important to note the difference between a deviation and its cause.
In this case, failure of the pump would be a cause, not a deviation, and a bent shaft
due to insufficient lubrication would be a possible root cause. Essentially, the HazOp
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procedure involves taking a full description of a process system and systematically
questioning every part of it to establish how deviations from the design intent can
arise. Once identified, an assessment is made as to whether such deviations and their
consequences can have a negative effect upon the safe and efficient operation of the
system. If considered necessary, remedial action is then taken.

An essential feature in this process of questioning and systematic analysis is
the use of keywords to focus attention on deviations and their possible causes. In
Sect. 5.2.1.5, keywords consisted of guidewords, attributes and process parame-
ters. In the early conceptual phase of engineering design, when many equipment
attributes and process parameters have not yet been defined but it is considered ex-
pedient to conduct a preliminary HazOp study, these keywords are simplified by
grouping into two subsets:

• Primary keywords, which focus attention upon a particular aspect of the design
intent or an associated process condition or parameter
(e.g. isolate, vent, open, clean, drain, purge, inspect, maintain, start-up and shut-
down).

• Secondary keywords, which are combined with a primary keyword to suggest
possible deviations
(e.g. no, less, more, also, other, early, late, reverse, fluctuation).

The usefulness of a preliminary HazOp study thus revolves around the effective ap-
plication of these two subsets of keywords—for example, (pressure/maintain) (pres-
sure/less) as primary and secondary keyword combinations.

a) Primary and Secondary Keywords

Primary keywords reflect both the process design intent and operational aspects of
the system being studied. Typical process-oriented words are very similar to the pro-
cess parameters of Sect. 5.2.1.5, as the words employed will generally depend upon
the process being studied, whether at systems level or at a more detailed component
level. However, the technique is hazard and operability studies; thus, added to the
above primary keywords might be relevant operational words such as those given in
Table 5.9.

This latter type of primary keyword is sometimes either overlooked or given
secondary importance. Improper consideration of the word ‘isolate’, for example,
can result in impromptu and sometimes hazardous means of taking a non-essential

Table 5.9 Operational primary keywords

Isolate Drain
Vent Purge
Open Inspect
Clean Maintain
Start-up Shutdown
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item of equipment offline for repairs because no secure means of isolation has been
provided. Sufficient consideration of the words ‘start-up’ and ‘shutdown’ are par-
ticularly important, as most hazardous situations arise during these activities. For
example, during commissioning it is found that the plant cannot be brought on-
stream because no provision for safe manual override of the safety system trips has
been provided, or it may be discovered that it is necessary to shut down an entire
system just to re-calibrate or replace a pressure gauge.

Secondary keywords are similar to the HazOp guidewords of Sect. 5.2.1.5 and,
when applied in conjunction with a primary keyword, they suggest potential de-
viations or problems. Although they tend to be a standard set, the following list is
taken from Table 5.5 with a review of their meanings in line with industrial processes
(Table 5.10).

Table 5.10 Operational secondary keywords: standard HazOp guidewords

Secondary keywords (standard HazOp guidewords)

Word Meaning

No The design intent does not occur (e.g. flow/no) or the operational aspect is not
achievable (isolate/no)

Less A quantitative decrease in the design intent occurs (e.g. pressure/less)

More A quantitative increase in the design intent occurs (e.g. temperature/more)

Reverse The opposite of the design intent occurs (e.g. flow/reverse)

Also The design intent is completely fulfilled but, in addition, some other related
activity occurs (e.g. flow/also, indicating contamination in a product stream,
or level/also meaning material in a tank or vessel that should not be there)

Other The activity occurs but not in the way intended (e.g. flow/other could indicate
a leak or product flowing where it should not, or composition/other might
suggest unexpected proportions in a feedstock)

Fluctuation The design intention is achieved only part of the time (e.g. an airlock in
a pipeline might result in flow/fluctuation)

Early Usually used when studying sequential operations; this would indicate that
a step is started at the wrong time or done out of sequence

Late Usually used when studying sequential operations; this would indicate that
a step is started at the wrong time or done out of sequence

b) HazOp Study Methodology

In simple terms, the HazOp study process involves systematically applying all rel-
evant keyword combinations to the system in question, in an effort to uncover po-
tential problems. The results are recorded in columnar format under the following
headings:

node, attributes/parameters, deviations, causes, consequences, safeguards, action.
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Fig. 5.21 Example of part of a cooling water system

In considering the information to be recorded in each of these columns, an example
of part of the cooling water system depicted in Fig. 3.18 of Sect. 3.2.2.6 dealing
with fault-tree analysis is illustrated in the simple schematic below (Fig. 5.21).

HazOp Study for Part of Cooling Water System

Process from–to nodes
X1 → X2.

Attributes

Pump P1 flow, pressure
Dosing tank T1 flow, level
Strainer S1 flow
Cooling water tank T2 flow, level.

Deviation
The keyword combination being applied (e.g. no/flow).

Cause
Potential causes that would result in the deviation occurring (e.g. ‘strainer S1 block-
age due to impurities in dosing tank T1’ might be a cause of flow/no).

Consequence
The consequences that would arise, both from the effect of the deviation (e.g. ‘loss
of dosing results in incomplete precipitation in T2’) and, if appropriate, from the
cause itself (e.g. ‘cavitations in pump P1, with possible damage if prolonged’).

The recording of consequences should be explicit. An important point to note,
particularly for hazard and operability modelling (included later in this paragraph),
is that when assessing the consequences, credit for protective systems or instruments
that are already included in the design should not be considered.
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Safeguards
Any existing protective devices that either prevent the cause or safeguard against the
adverse consequences must be recorded. For example, the recording ‘local pressure
gauge in discharge from pump might indicate problem was arising’ might be con-
sidered. Safeguards need not be restricted to hardware but, where appropriate, credit
can be taken for procedural aspects such as the use of a standard work instruction
(SWI) and job safety instructions (JSI).

Action
Where a credible cause results in a negative consequence, it must be decided
whether some action should be taken. It is at this stage that consequences and as-
sociated safeguards are considered. If it is deemed that the protective measures are
adequate, then no action need be taken, and words to that effect are recorded in the
‘action’ column.

Actions fall into two groups:

• Actions that remove the cause.
• Actions that mitigate or eliminate the consequences.

Whereas the former is to be preferred, it is not always possible, especially when
dealing with equipment malfunction. However, removing the cause first should al-
ways take preference and, only where necessary, the consequences mitigated. For
example, to return to the example cause ‘strainer S1 blockage due to impurities etc.’,
the problem might be approached in a number of specific remedial ways:

• Ensure that impurities cannot get into T1, by fitting a strainer in the offloading
line. Consider carefully whether a strainer is required in the suction to pump P1.
Particulate matter might pass through the pump without causing any damage, and
it might be necessary to ensure that no such matter gets into T2. If the strainer can
be dispensed with altogether, the cause of the problem might be removed.

• Fit a differential pressure gauge across the strainer, with perhaps a high alarm to
give clear indication that a total blockage is imminent.

• Fit a strainer, with a regular schedule of changeover and cleaning of the standby
unit.

Having gone through the steps involved in recording a single deviation, the tech-
nique can now be inserted in the context of a qualitative hazard and operability
computational model. Such a model is quite feasible, as the HazOp study method is
an iterative process, applying in a structured and systematic way the relevant key-
word (guideword-parameter) combinations in order to identify potential problems.

The example serves to highlight several points of caution when formulating
actions:

Thus, it is not always advisable to automatically opt for an engineered solution,
adding additional instrumentation, alarms, trips, etc. Due regard must be taken of
the reliability of such devices, and their potential for spurious operation causing
unnecessary downtime. In addition, the increased operational cost in terms of main-
tenance, regular calibration, etc. should also be considered. It is not unknown for
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an over-engineered solution to be less reliable than the original design because of
inadequate testing and maintenance. Furthermore, it is always advisable to take into
account the level of training and experience of the personnel who will be operating
the plant. Actions that call for elaborate and sophisticated protective systems are
often wasted, as well as being inherently hazardous, if operators do not understand
how they function.

c) Hazard and Operability Modelling

A crucial step in support of a HazOp analysis is to find a suitable discrete event sys-
tem (DES) representation for the physical system behaviour, generally described by
continuous dynamics. However, systems modelling approaches have to be adapted
to the information that is available at certain points in the design stage.

To create a model that is appropriate for PHI, a method must be developed that
qualitatively maps the dynamics in state transition systems. This type of model is
ideal for HazOp but is often not sufficient for controller verification, especially if
thresholds of timeouts have to be considered. Thus, the initial model, derived in
the early design phases, must be refined by adding quantitative information so that
a timed discrete event system is obtained for controller verification in the detail
engineering design phase. As a basis for a concept to check the safety of a process
system in different design stages, the physical systems behaviour is mapped into
state transition systems given as a 6-tupel

TS = (S,S0, I,O,φ ,θ ) (5.25)

where:

TS = state transition system
S = finite set of states
S0 = set of initial states, where S0 ⊆ S
I = finite input
O = finite output.

Furthermore:

φ : S · I → 2S denotes the state transition function
j : S · I → θ denotes the state output function.

Application of the model (in computerised form) in a HazOp study relates system
behaviour, mapped into state transition systems, to the HazOp guidewords of ‘none’,
‘more of’, ‘less of’, ‘reverse’, ‘part of’, ‘more than’, ‘other than’, etc. This type of
DES is appropriate to represent the system’s behaviour qualitatively. However, to
introduce quantitative information into the TS, time-dependent transitions must be
augmented, which will be considered later.
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d) Qualitative Modelling for Hazard Identification

In a typical model-based PHI, as it is established in the process industries, a team of
experts systematically examines a system’s related process flow diagram (PFD) and
currently available piping and instrumentation diagram (PID).

To analyse failures and all conceivable deviations from the desired operation, the
HazOp guidewords ‘none’, ‘more of’, ‘less of’, ‘reverse’, ‘part of’, ‘more than’,
‘other than’, etc. are used to qualitatively describe the dynamic behaviour of the
system. If an inadequacy or a potential hazard is identified, appropriate counter-
measures have to be added. Current topics of research to formalise this procedure
are based on fuzzy modelling (Wang et al. 1995) or expert systems (Vaidhyanathan
et al. 1996).

In the conceptual engineering phase, further information about the detail of the
process, such as secondary reactions, equipment operations, and final mass and en-
ergy balances, is still vague. All data are eventually summarised in the PID and sup-
plemented by additional information about the purposes of controllers and safety
devices—but no exact specifications and detailed numeric data about the physical
functions are yet available. Thus, the interaction between the system’s physical be-
haviour and the controller actions can be modelled only qualitatively (to the degree
of abstraction used in a HazOp study based on the guidewords). However, even
a qualitative model must have features to express causality and the temporal order
of actions. The procedure of creating a model according to Eq. (5.25) is carried out
by the following four steps:

1. For each systems unit of a plant (reactor, pressure vessel, etc.) or item of equip-
ment of a system (tank, pump, etc.)—depending on the level of resolution of
the process at the particular design phase—the set V of process variables v ∈V
describing physical behaviour is identified. This set typically comprises process
quantities such as temperature, pressure, level, input flow and output flow.

2. Second, a set Qj of qualitative states is introduced for each process variable v j,
e.g. the states ‘critically low’, ‘low’, ‘normal’, ‘high’ and ‘critically high’ for
a process variable ‘pressure’. The set of states in Eq. (5.25) follows from S =
Q1,Q2, . . .,Qj. Usually, the set of initial states S0 corresponds to the system’s
normal operation mode.

3. The third step, a crucial one, is to define the interactions of the process variables
that are given as transitions between states in S depending on triggering signals.
Thus, for each pair of states, σ1,σ2 ∈ S, the analyst decides whether a physical
effect ik ∈ I exists that can cause a transition between the states

φ1k2 : (σ1, ik) → σ2

φ2k1 : (σ2, ik) → σ1
(5.26)

In this case, the enabling/enforcing effect is included into TS.
4. The modeller has to examine if the triggering input signal ik has any further

effect on the process behaviour. If there is an effect, then an output signal O1 ∈O
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that specifies this behaviour is introduced as

φ1k1 : (σ1, ik) → O1 (5.27)

An important aspect of creating the DES is that, in accordance with the HazOp
study, even unlikely triggering events and their consequences must be modelled.
A discrete model derived like this is not only suitable for PHI but can also be used
as a basis for later model refinement in the detail design phase. Relying upon a safe
system function defined in the early engineering design phases, one task of the later
detail design phase is to design supervisory controllers that ensure the exclusion of
dangerous operating modes.

To solve this task, model-based verification is used, which includes the following:

• A DES model of the system, including all possible physical behaviours, is gen-
erated.

• The controller specifications are transformed into a DES representation, and the
combination of both yields a discrete model of the controlled system.

• The avoidance of dangerous states is verified or falsified by reachability analysis.

e) Quantitative Representation of Uncontrolled Processes

An analysis aiming to check whether a supervisory controller always ensures safe
systems operation must satisfy the following questions:

• If a system’s state moves in the direction of a critical situation, does the controller
always react with an appropriate countermeasure to avoid this situation?

• Has the threshold of a process variable (or a threshold of time) at which a coun-
termeasure is applied been chosen correctly, to avoid the critical state?

In principle, a transition system obtained from qualitative modelling, such as
(Eq. 5.25), is sufficient to answer the first question. However, an examination of
controller thresholds asks for a model comprising also numerical data for thresh-
olds, and information about the duration for which a discrete state is active.

In this case, the DES of (Eq. 5.25) is extended to a timed transition system given
as 7-tupel

TTS = (S,S0, I,O,φ ,θ ,τ) (5.28)

where:

TTS = timed transition system
S = finite set of states
S0 = set of initial states, where S0 ⊆ S
I = finite input
O = finite output
τ = finite set of clocks.



5.2 Theoretical Overview of Safety and Risk in Engineering Design 607

Furthermore

φ : S · I ·ψτ) → 2S denotes the state-time transition function
j : S · I ·ψτ) → θ denotes the state-time output function.

In contrast to the TS of (Eq. 5.25), the TTS contains a finite set of clocks τ , and
the state transition function φ : S · I ·ψ(τ) depends on logical propositions ψ(τ) over
the clock variables.

f) Checking Safety by Reachability Analysis

Based on the discrete models generated as described in Eqs. (5.25) and (5.28),
a comprehensive investigation of the system’s safety is possible. The concept of
reachability analysis (RA) is appropriate for checking safety in different design
phases, since it is applicable to models of both degrees of abstraction (i.e. quali-
tative – Eq. 5.25, and quantitative – Eq. 5.28).

If SC denotes the set of critical states, a complete search over all possible runs of
the DES shows whether a path from an initial state s∈ S0 to a critical state contained
in SC exists – in this case, a hazard is identified, and respectively the correspondence
of controller implementation and specification is falsified. Obviously, the analysis
of the refined model of (Eq. 5.28) is more costly because the time constraints ψ (τ)
have to be considered in determining the transitions. Thus, to minimise the compu-
tational effort, model refinement should be limited to the necessary.

For preliminary hazards identification (PHI), alternative strategies can be consid-
ered. Following the HazOp study method, design failures can be identified by for-
ward simulation of the state transition model of (Eq. 5.25). In fact, such a simulation
imitates the application of guidewords, since a possible deviation from normal oper-
ation can be assumed by generating the corresponding input signal, and the propaga-
tion of its effect is investigated as a sequence of transitions in the model. However,
such a hazard identification approach relies on the user’s intuition in choosing the
right starting scenario, as well as one of several non-deterministic choices during
the simulation.

The application of hazard and operability modelling during the conceptual design
phase, including preliminary hazards identification (PHI) and reachability analysis
(RA) in a specific industrial process engineering example, is considered in detail in
Sect. 5.3.1.

5.2.3 Theoretical Overview of Safety and Risk Assessment
in Preliminary Design

Safety and risk assessment attempts to estimate the expected safety risk and critical-
ity for each individual system or assembly at the upper systems levels of the systems
breakdown structure (SBS). Safety and risk assessment ranges from estimations of
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the safety risk of relatively simple systems with series and parallel assemblies, to es-
timations of the safety risks of multi-state systems with random failure occurrences.
Safety and risk assessment is considered in the schematic or preliminary design
phase of the engineering design process, and includes basic concepts of modelling
such as:

i. Markov point processes in designing for safety.
ii. Fault-tree analysis for safety systems design.

iii. Common cause failures in root cause analysis.

5.2.3.1 Markov Point Processes in Designing for Safety

A point process is intended to model a probabilistic situation that places points on
a time axis. For safety analysis, these points are termed accident or incident events.
To express these points mathematically in an event space Ω , the following notation
is used: if A is a set of events in Ω , then NA is the number of events in the set A,
while if t is a positive real number, then N (t) is the number of events on (0,t]. Thus,
for example
if:

N(t) = N(0,t]

then:

N(a,b] = N(b)−N(a)

and:

N{a} = the number of events at the point a. (5.29)

A point process has no simultaneous event (i.e. more than one accident and/or
incident cannot occur simultaneously on the same equipment at the same time) if
each step of N(t) is of unit magnitude (where t is measured in units of time such as
seconds, minutes, hours, days, etc.), with complete certainty (i.e. probability = 1)
(Thompson 1988).

a) Point Process Parameters

In developing parameters of a point process, let M(t) be the expected value or mean
of N(t). Thus

M(t) = ĒN(t) (5.30)
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where:

M(t) = a non-decreasing continuous function
Ē = expected value.

Taking derivatives
μ(t) = d/dt[M(t)] = M′(t) (5.31)

where:

μ(t) = instantaneous rate of change of the expected value of the
number of events with respect to time t.

The instantaneous rate of change, μ(t), is termed the event or incident rate of the
process. Thus, in modelling a system or its equipment for reliability and/or safety
with respect to hazards (or events in a point process) during the schematic or pre-
liminary design phase, the incident rate of the process is, in effect, the failure rate
of the system. However, it must be expressly noted that this concept of incident rate
differs from the failure rate of the age distribution of equipment. Obviously, equip-
ment ages with use over a period of time, and becomes more prone to failure (i.e.
wear-out failure characteristic of the failure hazard curve of Fig. 3.19). This is the
hazard rate function, r(t), considered in Sect. 3.2.3 (refer to Eqs. 3.29 to 3.33), and
expressed as

r(t) = lim
Δt→0

P(t ≤ Z < t + Δt)
Δt

(5.32)

=
limΔt→0 F(t)

1−F(t)
(5.33)

where

F(t) =
t+Δt∫
x=t

f (x)dx (5.34)

The rates r(t) and μ(t) are quite different, in that the pattern of r(t) follows the
wear-out shape of the failure hazard curve (bathtub or U-shaped curve), whereas the
pattern of μ(t) is linear and follows the random failure or useful life shape of the
failure hazard curve. Another function of point processes, in addition to the incident
rate μ(t), is the intensity function. If there are no simultaneous events, then the
incident rate equals the intensity (Thompson 1988, cited Leadbetter 1970).

The intensity of point process events (accidents or incidents) can be expressed as

h(t) = lim
Δt→0

P(N(t + Δt))≥ 1
Δt

(5.35)

where:

h(t) = probability of one more event in the interval t + Δt.



610 5 Safety and Risk in Engineering Design

b) Markov Chains and Critical Risk

Critical risk theory hypothesises that, out of k risks, at least one will be critical
with respect to the severity of their consequences. The theory is based on predicting
a change in these consequences as a result of removing or adding a risk (Thompson
1988). For example, it attempts to predict a change in the useful life expectancy of
a cooling water tank, if an ant-corrosion agent was added to the tank’s contents; or
to predict the probability of an increase in random occurrence events (failures) in
electric pump motors due to pump seal deterioration as a result of the addition of an
anti-corrosion agent to the cooling water circuit.

Critical risk theory assimilates a stochastic process where the transition proba-
bilities from an earlier to a later state depend only on the earlier state, and the times
involved. This is typical of Markov chains. Thus, critical risk implies that initially
a system or an item of equipment is in an operable state 0 and, after a time period T ,
the system or equipment undergoes a state change or transition from being opera-
ble to being inoperable (i.e. failed) as a result of some consequence due to critical
risk C.

For a critical risk C, where C = 1,2,3, . . .,k, time and cause of failure are subject
to chance. Only transitions from state 0 to one of the different states 0,1,2,3, . . .,k
are possible, in which the states 1,2,3, . . .,k are considered to be absorbing (once in
the system, they are never removed).

Let Pi j(τ,t) be the probability of transition from state i at time τ to state j at
time t. Assume that the intensity functions hi(t) exist, and satisfy the following ex-
pressions

P00(t,t + Δt) = 1−
k

∑
i=1

hi(t)Δt +0(Δt) (5.36)

P0i(t,t + Δt) = hi(t)Δt +0(Δt) (5.37)

i = 1,2,3, . . .k .

This yields the Kolmogorov differential equations (Oksendal 1985):

d
dt

P00(0,t) = −P00(0,t) ·h(t) (5.38)

h(t) =
k

∑
i=1

hi(t) (5.39)

d
dt

P0i(0,t) = P0i(0,t) ·h(t) (5.40)

i = 1,2,3, . . .k .
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c) Review of Kolmogorov Differential Equations

It is useful at this point to review the Chapman–Kolmogorov equation, which states
that

Pi j(s+ t) = ∑
k

Pik(s) ·Pk j(t) (5.41)

or, in matrix terms
P(s+ t) = P(s) ·P(t) (5.42)

Note that P(0) = I, which is the identity matrix. For integer t, it follows that
P(t) = P(1)t but then t need not be an integer. Setting t = ds in the Chapman–
Kolmogorov equation gives

P(s+ ds) = P(s) ·P(ds)
P(s+ ds)−P(s) = P(s) · [P(ds)− I]

P′(s) = P(s) Q
(5.43)

where:

Q = P′(0) is the matrix (called the Q-matrix or the generator matrix of the chain).

This is termed the Kolmogorov forward equation, which is one part of the Kol-
mogorov differential equations. The Kolmogorov forward equation can be derived
as follows:

P[X(s+ ds) = j] = ∑
k

P[X(s+ ds) = j|X(s) = k]P[X(s) = k]

= ∑
k �=i

P[X(s) = k] ·qki ds+

(
1−∑

k �=i

qki

)
P[X(s = j)]

If qkk = −∑i qki then:

d
ds

P[X(s) = k] = ∑
k

P[X(s) = k] ·qki

The Kolmogorov backward equation (Eq. 5.44) is obtained by inserting s = dt into
the previous Chapman–Kolmogorov equation:

P �= (t) = QP(t) (5.44)

To appreciate the difference between the forward and backward equations, there
are two different ways of evaluating the linear birth-and-death process (or, in this
case, the operable and failed states). It is theoretically possible to solve the Kol-
mogorov equation, giving the solution:

P(t) = eQt = ∑
n

tn ·Qn/n !
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However, this solution is not very useful because Qn is difficult to evaluate; a sim-
pler method is the use of matrices, utilising the Q-matrix, or the generator matrix of
the chain.

d) The Q-Matrix

The row sums of the Q-matrix are always zero. For example, in the case of a linear
birth-and-death process, the rate of transitions from x to x+1 is the birth rate xβ and,
from x to x− 1, the death rate xδ . Therefore, with all other entries in the Q-matrix
being zero:

qx,x−1 = xδ , qx,x+1 = xβ , and qx,x = −(β + δ )x

Thus, the Q-matrix is represented in tabular form as:

Table 5.11 Values of the Q-matrix

0 0 0 0 –
δ −(β +δ ) β 0 –
0 2δ −2(β +δ ) 2β –
0 0 3δ −3(β +δ ) 3β

The time until the next event, starting in x, has an exponential distribution with rate
λx = −qx,x, after which it changes state according to the transition matrix R. For
calculating state change probabilities, the expected time to change to a particular
state, especially the expected time to the first state change, is 1/λx. State change
problems such as ‘find hx(t), the probability that X changes to state 0 before time t,
starting from state x’ can be treated in the following manner:

hx(t) =
∫
0,t

λx · e−λxu

{
qx0/λx + ∑

y�=0,x

·qxy/λx ·hy(t −u)

}
du

Substituting v = t −u:

hx(t) =
∫
0,t

e−λxv

{
qx0 + ∑

y�=0,x

·qxy ·hy(v)

}
/e−λxu

Differentiating, and setting λx = −qx,x, the expressions obtained are easier to solve
in specific cases:

h′(t) = Qh(t),h0(t) = 1,hx(0) = 0 for x �= 0
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Returning to the Markov chain model, the Kolmogorov differential equations are

d
dt

P00(0,t) = −P00(0,t) ·h(t) (5.45)

d
dt

P0i(0,t) = P00(0,t) ·h(t)

i = 1,2,3, . . .,k .

These may be solved to yield the following relationships

P00(0,t) = exp

⎡
⎢⎣−

∫

(0,t)

h(x)dx

⎤
⎥⎦ (5.46)

P0i(0,t) = exp

⎡
⎢⎣−

∫

(0,t)

hi(x) ·P00(0,x)dx

⎤
⎥⎦

where the survival function of the useful life expectancy is expressed as

P00(0,t) = F ′(t) (5.47)

The hazard rate, represented by the intensity function, is expressed as

h(t) =
k

∑
i=1

hi(t) (5.48)

The expected useful life is expressed as

μ =
∞∫

0

F ′(y)dy (5.49)

The joint probability of the random failure occurrence (useful life expectance),
together with the hazard rate, is expressed as

P(Z ≤ z,C = i) = P0i(0,z) (5.50)

P0i(0,z) =
z∫

0

F ′(x) ·hi(x)dx

The probability of failure resulting from critical risk C is expressed as

∏
i

= P(Z ≤ ∞,C = i) (5.51)

= P0i(0,∞)

P0i(0,∞) =
∞∫

0

F ′(x) ·hi(x)dx
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e) Critical Risk Theory in Designing for Safety

In applying critical risk theory to a series process engineering system, the following
modelling approach is taken:

Assume the system consists of k independent components, each with expected
useful life lengths of z1, z2, z3, . . . , zk, all of which must function for the system to
be able to function, and where the useful life length of the system is Z.

Denoting the survival function of the useful life expectancy of Z by F ′, and of zi

by F ′
i (i = 1,2,3, . . .,k), then

Z = min(z1,z2,z3, . . .,zk) (5.52)

F ′
i (z) = P00(0,zi)

Then: F ′(Z) = ∏k
i=1 F ′(Z).

The hazard rate represented by the intensity function can now be formulated

h(Z) =
k

∑
i=1

hi(Z) (5.53)

The probability of failure resulting from critical risk is expressed as (Eq. 5.54):

P0i(0,Z) =
∞∫

0

F ′(Z) ·hi(Z)dz (5.54)

Using the expression for the hazard rate hi(z) of useful life expectancy of Zi,
the survival function of the useful life expectancy of the series process engineering
system is then expressed as

F ′
i (Z) = exp

⎡
⎣− K

∏
i=1

z∫
0

f (z|C = i)
F ′(Z)

dz

⎤
⎦ (5.55)

f) The Concept of Delayed Fatalities

In assessing the safety of a complex process, critical risk may be considered as re-
sulting in fatalities due to an accident. These fatalities can be classified as immediate
or as delayed. It is the delayed fatalities that are of primary interest in high-risk en-
gineered installations such as nuclear reactors (NUREG 75/014 1975; NUREG/CR-
0400 1978). Critical risk analysis applies equally well to delayed fatalities as to
immediate fatalities. To model the impact of delayed fatalities in the assessment of
safety in engineering design, consider the effect of a new constant risk, with inten-
sity h(y), which is delayed for time d. The model parameters include the following
expressions (Thompson 1988):



5.2 Theoretical Overview of Safety and Risk in Engineering Design 615

The intensity function for the new risk is:

hnew(y) = 0 y ≤ d

= λ y > d

The probability that the new risk is the critical risk (resulting in fatality) is (from
Eq. 5.51)

∏
i

= P(y ≤ ∞,C = i) (5.56)

= P0i(0,∞)

P0i(0,∞) =
∞∫

0

F ′(y) ·hi(y)dy (5.57)

Pd(0,∞) =
∞∫

0

λ e−λ yF ′(y)dy (5.58)

= λ
∞∫

d

F ′(y)dy+(λ )

The expected useful life with the new risk delayed is expressed as (from Eq. 5.49)

μ =
d∫

0

F ′(y)dy+
∞∫

d

e−λ yF ′(y)dy (5.59)

= μ
∞∫

d

1− e−λ yF ′(y)dy

= μ −λ
∞∫

d

F ′(y)dy+(λ )

The US Nuclear Regulatory Commission’s Reactor Safety Study (NUREG 75/014
1975) also presents nuclear risk in comparison with the critical risk of other types
of accidents. For example, the annual chances of fatality for vehicle accidents in the
USA are given as 1 in 4,000, whereas for nuclear reactor accidents the value is 1 in
5 billion.

5.2.3.2 Fault-Tree Analysis for Safety Systems Design

For potentially hazardous process engineering systems, it is required statutory prac-
tice to conduct a quantitative assessment of the safety features at the engineering
design stage. The design is assessed by predicting the probability that the safety
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systems might fail to perform their intended task of either preventing or reducing
the consequences of hazardous events. This type of assessment is best carried out
in the preliminary design phase when the system has sufficient detail for a mean-
ingful analysis, and when it can still be easily modified. Several methods have been
developed for predicting the likelihood that systems will fail, and for making as-
sessments on avoiding such failure, or of mitigating its consequence. Such methods
include Markov analysis, fault-tree analysis, root cause and common cause analysis,
cause-consequence analysis, and simulation. Fault-tree analysis (FTA) is the most
frequently used in the assessment of safety protection systems for systems design.

a) Assessment of Safety Protection Systems

The criterion used to determine the adequacy of the safety system is usually a com-
parison with specific target values related to a system’s probability to function on
demand. The initial preliminary design specification is to predict its likelihood of
failure to perform according to the design intent. The predicted performance is then
compared to that which is considered acceptable. If system performance is not ac-
ceptable, then deficiencies in the design are removed through redesign, and the as-
sessment repeated. With all the various options for establishing the design criteria
of system configuration, level of redundancy and/or diversity, reliability, availabil-
ity and maintainability, there is little chance that this approach will ensure that the
design reaches its final detail phase with all options adequately assessed. For safety
systems with consequence of failure seen as catastrophic, it is important to optimise
performance with consideration of all the required design criteria, and not just ade-
quate performance at the best cost. The target values should be used as a minimum
acceptance level, and the design should be optimised with respect to performance
within the constraints of the design criteria. These analysis methods are well de-
veloped and can be incorporated into a computerised automatic design assessment
cycle that can be terminated when optimal system performance is achieved within
the set constraints.

Safety systems are designed to operate only when certain conditions occur, and
function to prevent these conditions from developing into hazardous events with
catastrophic consequences. As such, there are specific features common to all safety
protection systems—for example, all safety systems have sensing devices that re-
peatedly monitor the process for the occurrence of an initiating event. These sensors
usually measure some or other process variable, and transmit the state of the variable
to a controller, such as a programmable logic controllers (PLC) or distributed control
system (DCS). The controller determines whether the state of the process variable is
acceptable, by comparing the input signal to a set point. When the variable exceeds
the alarm limit of the set point, the necessary protective action is activated. This
protective action may either prevent a hazardous event from occurring, or reduce its
consequence.

There are several design options with respect to the structure and operation
of a safety system where, from a design assessment point of view, the level of
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redundancy and level of diversity are perhaps the more important. The safety sys-
tem must be designed to have a high likelihood of operability on demand. Thus,
single component failures should not be able to prevent the system from function-
ing. One means of achieving this is by incorporating redundancy or diversity into
the system’s configuration. Redundancy duplicates items of equipment (assemblies,
sub-assemblies and/or components) in a system, while diversity includes totally dif-
ferent equipment to achieve the same function. However, increased levels of redun-
dancy and diversity can also increase the number of system failures. To counter-
act this problem, partial redundancy is opted for—e.g. k out of n sensors indicate
a failed condition. It is specifically as a result of the assessment of safety in engi-
neering design during the preliminary design phase that decisions are made where to
incorporate redundancy or diversity, and if full or partial redundancy is appropriate.

b) Design Optimisation in Designing for Safety

The objective of design optimisation in designing for safety is to minimise system
unreliability (i.e. probability of component failure) and system unavailability (i.e.
probability of system failure on demand), by manipulating the design variables such
that design criteria constraints are not violated. However, the nature of the design
variables as well as the design criteria constraints engender a complexity problem
in design optimisation.

Commonly with mathematical optimisation, an objective function defines how
the characteristics that are to be optimised relate to the variables. In the case where
an objective function cannot be explicitly defined, some form of the function must
be assumed and the region defined over which the approximate function can be con-
sidered acceptable. Design criteria constraints fall into two categories: those that
can be determined from an objective function relating to the design variables, which
can be assessed mathematically, and those that cannot be easily expressed as a func-
tion, and can be assessed only through analysis. In the former case, a computational
method is used to solve the design optimisation problem of a safety system. The
method is in the form of an iterative scheme that produces a sequence of system
designs gradually improving the safety system performance. When the design can
no longer be improved due to restrictions of the design criteria constraints, the opti-
misation procedure terminates (Andrews 1994).

Assessment of the preliminary design of a safety system might require improve-
ments to system performance. This could imply developing a means of expressing
system performance as a function of the design variables

Qsystem = f (V1,V2,V3, . . .,Vn) (5.60)

where:
V1, V2, V3, . . . , Vn are the design variables, typically including:

• the number of high-pressure valves,
• the number of pressure transmitters,
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• the level of redundancy of valves,
• the number of transmitters to trip.

It is computationally difficult to develop a function Q that can consider all design
options. However, with the use of a Taylor series expansion, the following expres-
sion is obtained

f (x+ Δx) = f (x)+gTΔx+ 1
2 ΔxT ·G ·Δx (5.61)

where:

Δx = the change in the design vector
g = the gradient vector
G = the Hessian matrix.

The gradient g(x) is the first-order partial derivatives of f (x)

g(x) =
[

δ
δx1

f (x),
δ

δx2
f (x), . . .

δ
δxn

f (x)
]

(5.62)

The Hessian matrix G(x) is a square symmetric matrix of second derivatives
given as

G(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ 2F
δx1δx1

,
δ 2F

δx1δx2
, . . .

δ 2F
δx1δxn

δ 2F
δx2δx1

,
δ 2F

δx2δx2
, . . .

δ 2F
δx2δxn

...
...

...

δ 2F
δxnδx1

,
δ 2F

δxnδx2
, . . .

δ 2F
δxnδxn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.63)

Truncating (Eq. 5.61) after the linear term in Δx means that the function f (x+Δx)
can be evaluated provided that the gradient vector can be obtained, that is, ∂ f/∂x for
each design parameter. Since integer design variables are being dealt with, ∂ f/∂x
cannot be strictly formulated but, if consideration is taken of the fact that a smooth
curve has been used to link all discrete points to give the marginal distribution of
f as a function of xi, then ∂ f/∂xi can be obtained. Partial derivatives can be used
to determine how values of f are improved by updating each xi by Δxi. A fault tree
can be developed to obtain f (x + Δx) for each xi provided xi + Δxi is integer; finite
differences can then be used to estimate ∂ f/∂xi. This would require a large number
of fault trees to be produced and analysed, which would usually result in this option
not being pursued from a practical viewpoint.

Since truncating the Taylor series of (Eq. 5.61) at a finite number of terms pro-
vides only an approximation of f (x+Δx), the solution space over which this approx-
imation is acceptable also needs to be defined. This is accomplished by setting up
a solution space in the neighbourhood of the design’s specific target variable. This
procedure results in an iterative scheme, and the optimal solution being approached
by sequential optimisation.
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c) Assessment of Safety Systems with FTA

Where design criteria constraints can be assessed only through analysis, fault-tree
analysis (FTA) is applied. In the assessment of the performance of a safety system,
a fault tree is constructed and analysed for two basic system failure modes: failure
to work on demand, and spurious system trips. Fault trees are analysed in the de-
sign optimisation problem, to obtain numerical estimates of the partial derivatives
of system performance with respect to each design variable. This information is re-
quired to produce the objective function coefficients. However, the requirement to
draw fault trees for several potential system designs, representing the causes of the
two system failure modes, would make the optimisation method impractical. Man-
ual development of a new tree for each assessment would be too time-consuming.
One approach in resolving this difficulty is to utilise computer automated fault-tree
synthesis programs; at present, these have not been adequately developed to accom-
plish such a task. An alternative approach has been developed to construct a fault
tree for systems design, using house events (Andrews et al. 1986).

House events can be included in the structure of fault trees, and either occur with
certainty (event set to TRUE) or do not occur with certainty (event set to FALSE).
Their inclusion in a fault-tree model has the effect of turning on or off branches in
the tree. Thus, a single fault tree can be constructed that, by defining the status of
house events, could represent the causes of system failure on demand for any of
several potential designs. An example of a sub-system of a fault tree that develops
causes of dormant failure of a high-pressure protection system, alternately termed
a high-integrity protection system (HIPS), is illustrated in Fig. 5.22. In this exam-
ple, the function of the HIPS sub-system is to prevent a high-pressure surge pass-
ing through the process, thereby protecting the process equipment from exceeding
its individual pressure ratings. The HIPS utilises transmitters that determine when
pipeline pressure exceeds the allowed limit. The transmitters relay a signal to a con-
troller that activates HIPS valves to close down the pipeline. The design variables
for optimisation of the HIPS sub-system include six house events (refer to Fig. 5.22)
that can be summarised in the following criteria:

• what type of valve should be fitted,
• whether high-pressure valve type 1 should be fitted, or not,
• whether high-pressure valve type 2 should be fitted, or not.

The house events in the fault tree represent the following conditions:

H1 – HIPS valve 1 fitted
NH1 – HIPS valve 1 not fitted
H2 – HIPS valve 2 fitted
NH2 – HIPS valve 2 not fitted
V1 – Valve type 1 selected
V2 – Valve type 2 selected.

Considering first the bottom left-hand branch in Fig. 5.22 that represents ‘HIPS
valve 1 fails stuck’, this event will depend on which type of valve has been selected
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Fig. 5.22 Fault tree of dormant failure of a high-integrity protection system (HIPS; Andrews 1994)

in the design. If type 1 has been fitted, then V1 is set to TRUE. If type 2 is fitted, then
V2 is set to TRUE. This provides the correct causes of the event being developed in
function of which valve is fitted. One of either V1 or V2 must be set. Furthermore,
if no HIPS option is included in the system design, then house events NH1 and NH2
will both be set (i.e. TRUE). Once these events are set, the output event from the OR
gates into which they feed will also be true. At the next level up in the tree structure,
both inputs to the AND gate will have occurred and, therefore, the HIPS system will
not provide protection. Where HIPS valves are fitted, the appropriate house events
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NH1 or NH2 will be set to FALSE, requiring component failure event to render the
HIPS sub-system inactive.

By using house events in this manner, all design options can be represented in
a single fault tree. Another fault tree can be constructed using the same technique to
represent causes of spurious system failure for each potential design. The fault trees
are then analysed to obtain numerical estimates of the partial derivatives of system
performance with respect to each design variable. This information is required to
produce the objective function coefficients in the design optimisation problem. The
objective function is then derived by truncating the Taylor series at the linear term
of the gradient vector, g, and ignoring the quadratic term of the Hessian matrix.
This truncation means that a finite number of terms provide an approximation of the
objective function, with a valid representation of Qsystem only within the neighbour-
hood of the target design variables. Additional constraints are therefore included to
restrict the solution space in the neighbourhood of the design’s specific target vari-
ables. The objective function is then evaluated in the restricted design space, and the
optimal design selected.

5.2.3.3 Common Cause Failures in Root Cause Analysis

The concept of multiple failures arising from a common cause was first studied on
a formal basis during the application of root cause analysis in the nuclear power
industry. In order to obtain sufficiently high levels of reliability and safety in critical
risk control circuits, redundancy was introduced. In applying redundancy, several
items can be used in parallel with only one required to be in working order.

Although the approach increases system reliability, it leads to large increases in
false alarms measured in what is termed the false alarm rate (FAR). This is over-
come, however, by utilising a concept termed voting redundancy; in its simplest
arrangement, this is two out of three, where the circuit function is retained if two
or three items are in working order. This not only improves reliability and safety
but also reduces the FAR. Voting redundancy has the added advantage that a system
can tolerate the failure of some items in a redundant set, allowing failed items to be
taken out of service for repair or replacement (electronic control components such
as sensors, circuit boards, etc. are usually replaced).

a) Defining CMF and CCF

It has become evident from practical experience in the process industry that, in many
cases, the levels of reliability and safety that are actually being obtained have fallen
short of the predicted design values. This is due largely to common root causes
leading to the concurrent failure of several items. The concept of common mode
failures (CMF) was developed from studies into this problem. It was subsequently
recognised that multiple failures could arise from common weaknesses, where a par-
ticular item (assembly and/or component) was used in various locations on a plant.
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Furthermore, the term common cause failure (CCF) was applied to the root causes
of these failure modes, not only manifested at the parts and component level but also
including the effects of the working environment on the item, e.g. the effects from
the assembly, sub-system and system levels, as well as the process and environmen-
tal conditions. Consequently, the term dependent failure was used to include both
CMF and CCF, although CMF is, in effect, a subset of CCF. Many terms relating
to the integrity of systems and components were formally defined and included in
a range of military standards, especially reliability and maintainability. However, it
took some time before CMF and CCF were formally defined in the nuclear energy
industry.

The UK Atomic Energy Authority (AEA) has defined CMF as follows (Edwards
et al. 1979):

“A common-mode failure (CMF) is the result of an event which, because of dependencies,
causes a coincidence of failure states of components in two or more separate channels of
a redundancy system, leading to the defined system failing to perform its intended function”.

The UK Atomic Energy Authority has also defined CCF as follows (Watson 1981):

“A common-cause failure is the inability of multiple first in line items to perform as required
in a defined critical time period, due to a single underlying defect or physical phenomena,
such that the end effect is judged to be a loss of one or more systems”.

CCF can arise from both engineering and operational causes:

• Engineering causes can be related to the engineering design as well as manu-
facturing, installation and construction stages. Of these, engineering design cov-
ers the execution of the design requirement and functional deficiencies, while
the manufacturing, installation and construction stages cover the activities of
fabrication and inspection, packaging, handling and transportation, installation
and/or construction. Plant commissioning is often also included in the engineer-
ing causes.

• Operational causes can be separated into procedural causes and environmental
effects. The procedural causes cover all aspects of maintenance and operation
of the equipment, while environmental causes are quite diverse in that they in-
clude not only conditions within the process (influenced partly by the process
parameters and the materials handled in the process) but external environmental
conditions such as climatic conditions, and extreme events such as fire, floods,
earthquakes, etc. as well.

Typical examples of actual causes of CCF are (Andrews et al. 1993):

• Identical manufacturing defects in similar components.
• Maintenance errors made by the same maintenance crews.
• Operational errors made by the same operating crews.
• Components in the same location subject to the same stresses.

Since the earliest applications of CCF, two methods have been extensively used to
allow for such events. These are the cut-off probability method and the beta factor
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Table 5.12 Upper levels of systems unreliability due to CCF

Systems configuration Minimum failure probability

Single instrument 10−2

Redundant system 10−3

Partially diverse system 10−4

Fully diverse system 10−5

Two diverse systems 10−6

method. The cut-off probability method proposes limiting values of failure proba-
bility to account for the effect of CCF.

The basis of this is the assumption that, because of CCF, system reliability can
never exceed an upper limit determined by the configuration of the system. These
upper levels of systems unreliability were generically given as shown in Table 5.12
(Bourne et al. 1981).

The beta method assumes that a proportion, β , of the total failure rate of a com-
ponent arises from CCF. It follows, therefore, that the proportion (1−β ) arises from
independent failures. This can be expressed in

λt = λi + λccf (5.64)

where:

λt = the total failure rate
λi = the independent failure rate
λccf = the common cause failure rate.

From this equation follows
λccf = β ·λt

and:
λi = 1−β ·λt (5.65)

The results from the beta factor method must, however, be considered with some
pessimism because they need to be modified for higher levels of redundancy than
is needed for the simple one-out-of-two case. Although in theory CCF can occur, it
does not follow that it will. The probability of failure of all three items of a two-out-
of-three redundancy system due to CCF is likely to be lower than the probability of
two failing (Andrews et al. 1993).

The cut-off method is thus extensively used where there are no relevant field
data or even if any database is inadequate, and serves as a suitable guide in the
preliminary design phase for determining the limiting values of failure probability
to account for the effect of CCF. It is also quite usual in such circumstances to use
the beta factor method, but this requires engineering judgment on the appropriate
values for beta—in itself, this is probably no more accurate than using the cut-off
method. A combination of both methods in the assessment of reliability and safety
due to CCF in engineering design is best suited for application by expert judgment
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in an information integrated technology (IIT) program considered in Sect. 3.3.3.4
and illustrated in Fig. 3.46.

The beta factor model is extensively used in predictions, in which the appropri-
ate values for beta are selected on the basis of expert engineering judgement. The
problem with the model, though, is the lack of any detailed data for generic sys-
tems, assemblies and components, to provide an adequate assessment of safety in
engineering design—especially in the preliminary design phase. As a result, quite
large beta factors have been applied without any justification, and caution needs to
be exercised when selecting these beta values, otherwise the estimates will give un-
justifiably pessimistic results with possible over-design of safety-related systems.
A somewhat different approach to the beta factor model has thus been taken in
which the beta values are not used but predictions are made directly from event
data using expert judgment. This approach necessitates identifying the root causes
of failure and the likelihood of generating simultaneous failures in similar equip-
ment (Hughes 1987). Fundamentally, the basis of this approach, typical to IIT, is to
represent the variability of a component failure probability by distributions that can
be estimated directly from a relatively small database. However, some researchers
have pointed out the deficiencies of expert engineering judgement as applied to
common cause failures, and contend that analysis of such failures is a knowledge-
based decision process and, therefore, is itself subject to error or uncertainty (Do-
erre 1987).

b) Problems with Applying CCF in Safety and Risk Analysis
for Engineering Design

Problems with applying CCF in safety and risk analysis for engineering design as-
sessment in the preliminary design phase can thus be reviewed.

These problems are summarised as (Hanks 1998):

• The lack of a suitable comprehensive database for CCF.
• Use of simple CCF models giving pessimistic results for redundancy systems.
• The assumption that similar components will be similarly affected.
• Errors in understanding the nature of CCF and applying the appropriate method-

ology.

Various alternative models that refine the beta factor method have thus been pro-
posed, such as a binomial failure rate model that assumes that a component has
a constant independent failure rate and a susceptibility to common cause shocks at
a constant rate (NUREG/CF-1401 1980). This has been extended to include com-
mon cause shocks that do not necessarily result in catastrophic failure. A practical
method of common cause failure modelling modifies the beta factor model to take
account of the levels of redundancy and diversity in systems (Martin et al. 1987).
It was previously noted that the simple beta model is pessimistic when applied to
redundancy systems. This can also be the case when it is applied to a range of sim-
ilar components even if they are installed in one system. To illustrate this problem,
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an example is given based on a simplified high-pressure protection redundancy con-
figuration relating to the high-integrity protection sub-system (HIPS) illustrated in
Fig. 5.22. As indicated in Sect. 5.2.3.2, the function of the HIPS sub-system is to
prevent a high-pressure surge passing through the process, thereby protecting the
process equipment from exceeding its individual pressure ratings.

A schematic of the simplified configuration is given in Fig. 5.23. In this example,
a possible source of CCF is the contamination of the upstream high-pressure line. In
theory, all the regulators should be equally affected—however, much depends upon
the design features of the main valves and their control systems. Contamination of
the high-pressure line will affect the active control valve, A1, in the operating stream.
Whether it will affect the monitor valve M1, and to what extent, depends on the way
the control system functions. Both the regulators in the standby stream should be
unaffected. In this example, there is a potential for CCF to occur but normal practice
would be to assume that CCF applies equally to all the four identical valves—so, it
will be seen that the result of any prediction would be pessimistic. Another problem
in this case would be the total misunderstanding of how to apply CCF prediction
methodology.

In Fig. 5.23, there are two control streams, one functioning as an operating stream
with two identical regulators (pressure valves), M1 and A1, and the other functioning
as a standby stream with two identical regulators, M2 and A2. Each stream’s regu-
lator configuration consists of a monitor valve, Mi, and an active control valve, Ai

(i = 1,2). The first regulator in the operating stream, the monitor valve M1, is fully
open in readiness to take over control should the pressure rise above a predeter-
mined level due to failure of the active control valve A1. The active control valve A1

controls the outlet pressure. Similarly, the first regulator in the standby stream, M2,
is fully open and will function in a similar manner as valve M1, should the standby
stream be activated. The second regulator in the standby stream, A2, is closed and
will take over pressure regulation if either of the regulators in the operating stream
fails to reduce the outlet pressure to below a predetermined level.

Common cause failures can arise from a wide range of potential problems, typ-
ically identified through factor tree charts and associated questions concerning the
potential root causes of design integrity problems (as indicated in Sect. 5.2.1.2, and
Figs. 5.6 through to 5.8).

Fig. 5.23 Schematic of a sim-
plified high-pressure protec-
tion system
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Table 5.13 Analysis of valve data to determine CCF beta factor

Valve type CCF beta factor

Ball, plug and gate valves 0.01–0.02
Relief valves, all types 0.05
Check and non-return valves 0.05
Cut-off valves 0.05
Large regulators/control valves 0.10–0.19
Small regulators/control valves 0.05–0.12
Actuators, all types 0.05–0.16

Minimising the effects of CCF is thus an on-going process, already from the
early phases of engineering design to the in-service life. Any attempt to cut corners
or costs will almost inevitably expose engineered installations to a higher level of
CCF-induced failures, with resulting increased costs of failure maintenance, lost
production and possible loss of life.

Design criteria databases do not usually include common cause failure data.
One problem is that CCF data for a particular component can be specific to the
application and, hence, require a whole series of design, operation and mainte-
nance considerations for a particular process. Detailed analysis of valve data from
a large database collected from maintenance and operational records has yielded
useful information on the incidence of CCF (Hanks 1998). The data, summarised
in Table 5.13, cover a wide range of valve types and applications, including actua-
tors.

This quantification of the CCF beta value, indicating that a significant portion of
the total failure rate of a component arises from common cause failures, has placed
upper limit constraints on obtaining sufficiently high levels of reliability and safety
in critical risk control circuits. As indicated previously, redundancy is one method
in avoiding this problem, although the approach does lead to large increases in the
false alarm rate (FAR).

This is overcome, however, by utilising voting redundancy where several items
are used in parallel and a selected amount are required to be in working order.
The voting redundancy problem involves the simultaneous evaluation and selec-
tion of available components and a system-level design configuration that collec-
tively meets all design constraints and, at the same time, optimises some objec-
tive function, usually system safety, reliability, or cost. In practice, though, each of
these parameters may not be exactly known and there is some element of risk that
the constraint will not actually be met or the objective function value may not be
achieved.
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5.2.4 Theoretical Overview of Safety and Risk Evaluation
in Detail Design

Safety and risk evaluation determines safety risk and criticality values for each in-
dividual item of equipment at the lower systems levels of the systems breakdown
structure (SBS). Safety and risk evaluation determines the causes and consequences
of hazardous events that occur randomly, together with a determination of the fre-
quencies with which these events occur over a specified period of time based on
critical component failure rates. Safety and risk evaluation is considered in the de-
tail design phase of the engineering design process, and includes basic concepts of
modelling such as:

i. Point process event tree analysis in designing for safety.
ii. Cause-consequence analysis for safety systems design.
iii. Failure modes and safety effects evaluation.

5.2.4.1 Point Process Event Tree Analysis in Designing for Safety

The most extensive safety study to date is the US Nuclear Regulatory Commis-
sion’s report “Reactor Safety Study” (NUREG-75/014 1975). In October 1975, the
NRC issued the final results of a 3-year study of the risks from postulated accidents
during the operation of nuclear power reactors of the type used in the USA. This re-
port, known as the “Reactor Safety Study (RSS)”, or by its NRC document number,
WASH 1400, was the first comprehensive study that attempted to quantify a variety
of risks associated with power reactor accidents. Since that time, about 40 reactors
have been analysed using the same general methodology as WASH 1400 but with
considerably improved computer codes and data.

The most recent and the most detailed of these studies has been the effort under-
taken by the NRC to analyse five different reactors using the very latest methodology
and experience data available. In June 1989, the second draft of this work, “Severe
Accident Risks: An Assessment for Five U.S. Nuclear Power Plants” (NUREG 1150
1989), was issued for public comment. There is, however, widely held belief that
the risks of severe nuclear accidents are small. This conclusion rests in part upon
the probabilistic analysis used in these studies (NUREG/CR-0400 1978).

The analysis used in these studies provides a suitable example in order to better
understand the application of point process event tree analysis in the evaluation of
safety and risk in the detail design phase. The approach to safety evaluation, as
researched in these two studies, considered the sources of the risk, its magnitude,
design requirements, and risk determination through probabilistic safety evaluation
(PSE). These points of approach, although very specific to the example, need to be
briefly explained (Rasmussen 1989).
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a) Determining the Source of Risk

During full power operation, a nuclear power reactor generates a large amount of ra-
dioactivity. Most of this radioactivity consists of fission products, resulting from the
fission process, which are produced inside the reactor fuel. The fuel is uranium diox-
ide, a ceramic material that melts at about 5,000 ◦F. The fuel effectively contains the
radioactive fission products unless it is heated to the melting point. At temperatures
in this range, essentially all the gaseous forms of radioactivity will be released from
the fuel. In addition, some of the more volatile forms of the solid fission products
may be released as fine aerosols. If any of these forms were to be released into the
atmosphere, they could be spread by prevailing winds.

b) Designing for Safety Requirements

Design requirements for safety in US nuclear plants mandate that the plants have
systems to contain any radioactivity accidentally released from the fuel. The main
system for accomplishing this is the containment building, an airtight structure that
surrounds the reactor. In addition, all reactors have a system for removing aerosols
from the containment atmosphere. In many reactors, this system consists of a wa-
ter spray that can create the equivalent of a heavy rainstorm inside the contain-
ment building. Boiling water reactors (BWR) accomplish this function by passing
released gases through a pool of water. The principal goal of the reactor safety phi-
losophy is to prevent the accidental release of radioactivity. As a backup, systems
are added that prevent the release of radioactivity to the atmosphere even if it were
released from the fuel. Despite these efforts, one can always postulate ways in which
these systems might fail to prevent the accidental release of radioactivity.

It is the task of probabilistic safety evaluation (PSE) to identify how this might
happen, to determine how likely it is to happen and, finally, to determine the health
effects and economic impacts of the radioactive releases upon the public.

c) Probabilistic Safety Evaluation (PSE)

• The first step in a PSE analysis begins by developing the causes and likelihood
of heating the fuel to its melting point due to either external causes (earthquakes,
floods, tornadoes, etc.) or internal causes. This analysis involves developing
a logical relationship between the failures of plant components and operators,
and the failure of system safety functions. The result of this analysis is an esti-
mate of the probability of accidentally melting the fuel, a condition often called
‘core melt’. Of the plants analysed thus far, most have an estimated likelihood of
core melt of between 1 in 10,000 and 1 in 100,000 per plant year.

• The second step in a PSE analysis is to determine the type and amount of radioac-
tivity that might be released in the different accidents identified. These fractions
of the various types of radioactivity released are called the ‘source terms’ for
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the accident. The values from WASH 1400 are in most cases significantly larger
than those from NUREG 1150. The lower values of NUREG 1150 are the result
of new information gained from major research in the USA, Japan and Western
Europe. These experiments, and the measurements at Three Mile Island confirm
that the values used in WASH 1400 are too high.

• The final step in a PSE analysis is to calculate the effects of any radioactivity re-
leased in the accident. Sophisticated computer models have been developed to do
this calculation. These models require input of the source terms, the population
density around the site, and weather data for recent years from the plant site. The
code then calculates thousands of cases to generate curves that give the magni-
tude of given risks versus their probabilities. The results of the calculations are in
the form of fatality curves. The curves generally give the frequency in units per
reactor year for events of a given size, and have a wide range of consequences,
from quite small at high frequencies to quite large at very low frequencies.

• Curves of this shape are typical of all accidents where a number of factors affect
the magnitude of the event. In the case of catastrophic accidents, clearly this
refers to accidents of low probability near the high-consequence end of the scale.
These extreme accidents come about only if the various factors affecting the
magnitude of the consequences are all in their worst states. Thus, for example,
the core must melt, then the containment must fail above ground level, the wind
must be blowing towards an area of relatively high population density, inversion
conditions must prevail, and civil protection efforts must fail to be effective.

Criticism of the Reactor Safety Study pointed to inadequacies in the statistical
methodology, particularly the uncritical use of the log-normal distribution to derive
probability estimates for the failure of individual nuclear safety systems (NUREG/
CR-0400 1978). There is an inherent weakness to the approach, in that there is no
way of being sure that a critical initiating event has not been overlooked. The logic
event tree consists of the initiating event and the success or failure response of each
of the applicable engineered safety features. After identifying the accident sequence,
the probability of occurrence of each engineered safety system in the sequence must
be evaluated. As no empirical data are available on which to base estimates of sys-
tem failure rates, it is necessary to use techniques that generate system failure rates
from comparative estimates of failures of similar equipment. The extended use of
event trees to derive probability estimates for both the failure of individual nuclear
safety systems, as well as the accident sequences was developed by the US Depart-
ment of Defense and the US National Aeronautics and Space Authority (NASA;
NUREG 1150 1989).

With the identification of potential accidents and the quantification of their
probability and magnitude, accident sequences are identified by means of logic
diagrams—in this case, logic event trees. The starting point for the development
of these logic event trees is the identification of the event that initiates a potential
accident (due to a catastrophic failure event) or potential incident (due to a criti-
cal failure event). A typical initiating event for the nuclear reactor safety example
would be a pipe break that results in a loss of coolant. Initiating events are usu-
ally identified using technical information and engineering judgment, similar to an
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Fig. 5.24 Typical logic event tree for nuclear reactor safety (NUREG-751014 1975)

integrated information technology (IIT) program considered in Section 3.3.3.4 and
in Fig. 3.41.

Figure 5.24 shows a typical logic event tree with an initiating event of a pipe
break in a nuclear reactor coolant line, with probability of occurrence of λ . The
logic event tree is simplified in that only seven out of 24 possibilities need to be
considered—for example, if electric power fails with an event rate of λP2, then none
of the engineering safety features will function. The output of the logic event tree
is the release category consequences with their event rates. Since the probability of
occurrence is small (i.e. equivalent to the concept of a rare event), the probabilities
are approximated by omitting all 1−Pi terms.

d) Point Process Consequence Analysis

The basic methodology of the Reactor Safety Study used an approach of determin-
ing a demand failure rate. This can briefly be explained as the control of the rate
of reaction in an atomic power plant by the insertion of control rods. The times at
which control is needed is termed the transient demand, and was assumed to occur
in an operating time equivalent to a Poisson process. When a transient demand oc-
curs, the conditional probability that the safety system does not function, resulting
in the consequence of an accident, was determined. Based on the Reactor Safety
Study, a method for evaluating consequences as a result of safety system failure in
a catastrophic-event process such as a nuclear reactor has been researched (Thomp-
son 1988).

Suppose the events initiating accident sequences (as in Fig. 5.24) occur in time
according to a stochastic point process with an event rate of μ(t). Furthermore,
let N(t) denote the number of events up to time t, and Ti (i = 1,2,3, . . .,k) denote
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the time at which the ith initiating event occurs. Suppose further that the ith ini-
tiating event yields the consequence Ci. Assume that Ci is a non-negative random
variable with failure distribution function P(Ci ≤ c) = F(c), and survival function
P(Ci ≥ c) = F ′(c). The consequences can be assumed to be identically distributed
and independent of one another, with the understanding that there are several kinds
of risks, each with its own initiating event rate and consequence distribution. Fi-
nally, the evolution of consequences has been assumed to follow a point process.
Actually, the consequences of many accidents and incidents are difficult to express
numerically and most are vector valued in time. The basic methodology of the Re-
actor Safety Study in dealing with this problem was to conduct a separate study for
each type of consequence, and to present the risk in terms of an event rate against
a consequence in the form of a risk curve, as illustrated in Fig. 5.25. In mathematical
terms, if μk(t) is the event rate at time t of consequences exceeding k, the critical
number of consequences, then the risk curve is a graph for fixed t of μk(t) versus k.
The event rate of consequences that exceed k is related to the process of initiating
events and the distribution of consequences

μk(t) = [1−F(k)]μ(t) (5.66)

where:

F(k) is the failure distribution function of Ci.

Fig. 5.25 Risk curves from nuclear safety study (NUREG 1150 1989) Appendix VI WASH 1400:
c.d.f. for early fatalities
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Different process systems designs have different consequence sequences. The
consequence sequences, S, of a particular process, P, over a time period, t, can be
expressed as

SP(t) =
{

0 N(t) = 0
C1 +C2 +C3 + . . .CN(t) N(t) > 0

(5.67)

Characteristics of SP(t) are determined by N(t) and the distribution of the con-
sequences Ci, where the sequence of consequences constitutes a point process. Of
specific interest is to determine the catastrophic event having the greatest conse-
quence when one accident is too much in the sequence of consequences. This is
done by defining an expression for S′P in the catastrophic case

SP(t) =
{

0 N(t) = 0
max[C1 +C2 +C3 + . . .CN(t)] N(t) > 0

(5.68)

Probability S′P(t) being less than k, the critical number of consequences is given
by

P(S′P(t) ≤ k) = P′ (5.69)

where:

P′ =
∞

∑
n=0

P[Ci ≤ k; i = 1,2,3, . . . ,n|N(t) = n]

If Ci is a non-negative random variable with the failure distribution function
P(Ci ≤ c) = F(c), then

P(S′P(t) ≤ k) =
∞
∑

n=0
[F(k)]n ·P[N(t) = n] (5.70)

= ψt [F(k)] (5.71)

where:

ψt = probability generating function of N(t) (i.e. Bernoulli transform)

and if Ci is a non-negative random variable with the survival function P(Ci ≥ c) =
F ′(c), then

P(S′P(t) > k) = 1−ψt[F(k)] ≤ [1−F(k) ·E N(t)] (5.72)

Thus, for consequences exceeding k, the critical number of consequences (or the
‘cut-off value’ between acceptable and unacceptable consequences), the probability
of the occurrence of an unacceptable consequence within time t will be less than
F ′(k)E N(t), where F ′(k) is the survival function P(Ci > k), and E N(t) is the ex-
pected value or mean of N(t), the number of events on (0,t].

If system failure is now identified with obtaining an unacceptable consequence,
then F ′(k) is the demand failure rate (such as the demand to control the rate of reac-
tion in an atomic power plant by the insertion of control rods). This demand failure
rate yields an upper bound for the probability of failure. Since k is the unaccept-
able critical number of consequences, the probability of a consequence exceeding
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that value must be as small as possible—that is, F ′(k) will be near 0 with an upper
bound when F(k) is near 1.

The expected maximum consequence can be expressed as

EC′(t) =
∞∫

0

{1−ψt[F(k)]}dk (5.73)

EC′(t) =
∞

∑
n=0

∞∫
0

{1− [F(k)]n}dk ·P[N(t) = n] (5.74)

From Eqs. (5.72) and (5.74) we get:

EC(t) ·P[N(t) ≥ 1] ≤ EC′(t) ≤ EC(t) ·N(t)

where:

EC(t) = the expected value of consequence C in period t
EC′(t) = the expected value of consequence C′ in period t
P[N(t) ≥ 1] = the probability that the number of events ≥ 1.

The expected time to the first critical event with unacceptable consequence is given
as

EVk =
∞∫

0

ψt [F(k)]dt (5.75)

EVk =
∞

∑
n=1

ETn[F(k)]n[1−F(k)] (5.76)

where:

Tn = time of occurrence of the nth initiating event.

The probability generating function (p.g.f.), or Bernoulli transform ψt , needs to
be defined in greater detail: Thus, given a random variable N(t), its generating func-
tion ψt(z) is expressed as

ψt(z) =
∞

∑
n=1

znP[N(t) = n] (5.77)

ψt(z) = EzN(t) (5.78)

ψt(z) is a function in terms of z with the following properties:

• The p.g.f. is determined by and also determines C
• ψ ′

t (1) is the expectation of N(t)
• ψ ′′

t (1) is the expectation of N(t) · [N(t)−1].

Probability generating functions also provide for addition of independent ran-
dom variables. For example, if N(t) and C(t) are independent, then the p.g.f. of
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{N(t)+C(t)} is obtained by multiplying the p.g.f.s of the random variables together

EzN(t) ·EzC(t) = EzN(t)+C(t) (5.79)

where N(t) and C(t) are independent.

5.2.4.2 Cause-Consequence Analysis for Safety Systems Design

Cause-consequence analysis for safety systems design is fundamentally a combina-
torial symbolic logic technique, utilising the symbolic logic of fault-tree analysis
(FTA), reliability block diagramming (RBD) and event tree analysis (ETA). Each of
these techniques has unique advantages and disadvantages. In most complex safety
systems designs, it is beneficial to construct a model using one technique, then trans-
form that model into the domain of another technique to exploit the advantages of
both. Fault trees are generated in the failure domain, reliability diagrams are gen-
erated in the success domain, and event trees are generated in both the success and
failure domains.

Methodology to transform any one of the above models into the other two, by
translating equivalent logic from the success to failure or failure to success domains,
is considered later. Probabilities are propagated throughout the logic models to de-
termine the probability that a system will fail, i.e. its risk, or the probability that
a system will operate successfully, i.e. its reliability. Probability data may be de-
rived from available empirical data or, if quantitative data are not available, then
subjective probability estimates may be used.

Cause-consequence analysis for safety systems design explores the system’s re-
sponses to an initiating deviation from predetermined norms (such as the limits
of safe operating parameters), and enables evaluation of the probabilities of un-
favourable outcomes at each of a number of mutually exclusive loss levels, depend-
ing upon the extent of deviation from these norms. The deviation beyond a set limit
is designated an event.

The analysis then begins with an initiating event and performs a forward (bottom-
up) analysis using ETA. This technique provides data similar to those available with
conventional event tree analysis; however, it affords two advantages over the con-
ventional event tree—time sequencing of events is better portrayed, and discrete,
staged levels of outcome are analysed. The cause portion of this technique is the
safety system response to an undesired process state or condition. This process state
is represented as a fault-tree TOP event and is normally, but not always, quantified
by its probability of occurrence. The consequence portion of this technique yields
a display of potential outcomes representing incremental levels of success or failure
of the safety system. Each increment has an associated level of assumed or calcu-
lated probability, based on variations of responses of the safety system to the various
process states or conditions. The cause has an associated probability, and each con-
sequence has an associated severity and probability (NASA 1359 1994).
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Cause-consequence analysis for safety systems design is particularly useful in
analysing command-start and command-stop protective devices, emergency re-
sponse systems, and engineered safety features. Cause-consequence analysis is
fundamentally useful in evaluating design decision options concerning the effects
and/or benefits of sub-tiered redundant or diverse countermeasures for safety sys-
tems design. This technique may be used to compliment a failure modes and effects
analysis (FMEA) or, more specifically, a failure modes and safety effects (FMSE)
analysis, otherwise known as probabilistic risk analysis (PRA).

a) Fault Tree, Reliability Block Diagram, and Event Tree Transformations

Fault trees, reliability block diagrams (RBDs) and event trees are all symbolic logic
models. Fault trees are generated in the failure domain, reliability diagrams are gen-
erated in the success domain, and event trees are generated in the success and failure
domains. These techniques transform any one of the above models into the other
two by translating equivalent logic from the success to failure or failure to success
domain. Fault trees offer comprehensive qualitative or quantitative analysis. RBDs
offer a simplistic method to represent system logic, and event trees enable systems
evaluation in both the success and failure domains. Prior to considering the methods
for transforming a fault tree, RBD or event tree into either of the other two logic
models, it is essential to first review reliability block diagrams (RBDs):

A reliability block diagram (RBD) is a deductive, top-down analysis, symbolic
logic model, used to define the path from effect to cause, and generated in the suc-
cess domain. Each RBD has an input and an output and flows left to right from the
input to the output. Blocks may depict failure events or element functions within
a system, though most RBDs typically depict system element functions only. A sys-
tem element can be a sub-system, assembly, sub-assembly, component or part. Sim-
ple RBDs are constructed of series, parallel, or combinations of series and parallel
elements, as indicated in Fig. 5.26 (NASA 1359 1994).

An RBD may contain a combination of series and parallel branches where each
block represents an event or system element function. These blocks are connected in
series if all elements must operate for the system to operate successfully, or they are
connected in parallel if only one element needs to operate for the system to operate
successfully.

Reliability is the probability of successful operation during a defined time inter-
val and, conversely, unreliability is the probability of failure during a defined time
interval. In a safety analysis context, RBDs indicate system reliability or unreliabil-
ity, where each block may represent a system element function (operates success-
fully) or a failure event. Each element of a block diagram is assumed to function or
to fail independently of the other elements. The overall system reliability can thus be
determined from the relationships between element reliability and system reliability
for series and parallel systems.
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Fig. 5.26 Simple RBD construction

The relationships between element reliability and system reliability for series and
parallel systems can be mathematically expressed as

Series RS =
n

∏
i

Ri = R1 ∗R2 ∗R3 . . .Rn (5.80)

Parallel RS = 1−
n

∏
i

(1−Ri)

Parallel RS = [1− (1−R1)(1−R2)(1−R3) . . . (1−Rn)]

where:

RS = system reliability
Ri = system element reliability
n = number of system elements that function independently.

Not all systems can be modelled with simple RBDs. Some complex systems cannot
be modelled with true series and parallel branches. These systems must be modelled
with a complex RBD. Such an RBD is presented in Fig. 5.27. In this example, if
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Fig. 5.27 Layout of a complex RBD (NASA 1359 1994)

element E fails, then paths B, E, G and B, E, H are not success paths; thus, this is
not a true series or parallel arrangement.

An RBD enables evaluation of various potential design configurations. The re-
quired element reliability levels can be determined to achieve the desired system
reliability. An RBD can also be used to identify design configuration elements in
symbolic logic as a precursor to performing an FTA. The procedures to generate
a simple RBD are as follows:

(1) Define the system into its SBS from the available functional diagram of the
system.

(2) Construct a block diagram using the convention illustrated in Fig. 5.26.
(3) Calculate system reliability bands, RSL (low) to RSH (high), from each element’s

reliability band, RiL (low) to RiH (high), in the following manner:

a. For series systems with n elements that are to function independently

RSL =
n

∏
i

RiL = R1L ·R2L ·R3L · . . . ·RnL (5.81)

RSH =
n

∏
i

RiH = R1H ·R2H ·R3H · . . . ·RnH .

b. For parallel systems with n elements that are to function independently

RSL = 1−
n

∏
i

(1−RiL) (5.82)

RSL = [1− (1−R1L)(1−R2L)(1−R3L) . . . (1−RnL)]

RSH = 1−
n

∏
i

(1−RiH)

RSH = [1− (1−R1H)(1−R2H)(1−R3H) . . . (1−RnH)]

c. For series-parallel systems, first determine the reliability for each parallel
branch using the equations in step 3b. Then treat each parallel branch as an
element in a series branch and determine the system reliability by using the
equations in step 3a.

d. For parallel-series systems, first determine the reliability for each series
branch using the equations in step 3a. Then treat each series branch as an
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element in a parallel branch and determine the system reliability by using
the equations in step 3b.

For systems that are composed of the four arrangements given above, the relia-
bilities for the simplest branches are first determined, which then become branches
within the remaining block diagram. The reliability for the new branches are then
determined. This process is continued until one of the above four basic arrangements
remains, from which system reliability is calculated.

As an example, consider a high-pressure process with a high-integrity protection
system (HIPS) containing two sub-systems designated S1 and S2. Sub-system S1 has
three sensor components and at least one of the three must function successfully for
the sub-system to operate. Sub-system S2 is an essential instrumentation path for
the protection system. Sub-system S2 has three components that all need to function
successfully for the sub-system to operate. The estimated reliability band for each
component is given in Table 5.14.

The components for sub-system S1 are in a parallel branch with the compo-
nents of sub-system S2. In addition, the components for sub-system S1 form a series
branch, and the components for sub-system S2 form a parallel branch. An RBD for
the system is illustrated in Fig. 5.28.

Sub-system S1 reliability
Low band value: RS1L = 1− (1−0.80)(1−0.80)(1−0.80)= 0.992
High band value: RS1H = 1− (1−0.85)(1−0.85)(1−0.85)= 0.997

Table 5.14 Sub-system component reliability bands

Component Low High

1 A 0.80 0.85
1 B 0.80 0.85
1 C 0.80 0.85
2 D 0.90 0.95
2 E 0.90 0.95
2 F 0.90 0.95

Fig. 5.28 Example RBD
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Sub-system S2 reliability
Low band value: RS2L = (0.90)(0.90)(0.90) = 0.729
High band value: RS2H = (0.95)(0.95)(0.95) = 0.857

System reliability
Low band value: RSL = 1− (1−0.992)(1−0.729)= 0.998
High band value: RSH = 1− (1−0.997)(1−0.857)= 0.999

The reliability band for the combined system is 0.998 to 0.999. This example
is of particular interest in that the configuration for the HIPS produces an overall
reliability range that is higher than any of the sub-system reliabilities. The reliability
values for the parallel sub-system S1 are higher than the reliability values for the
series sub-system S2, implying that the sensors configuration of the HIPS has higher
priority than does the instrumentation path.

The application of an RBD in safety systems design provides several advantages
in that it allows evaluation of design concepts when design changes can still be
incorporated. Furthermore, it tends to be easier to visualise than other logic models,
such as fault trees, because blocks representing elements in an RBD can be arranged
in a manner representing how these elements function in the system. Since RBDs are
easy to visualise, they can be generated prior to conducting FTA, and transformed
into a fault tree.

The methods for transforming a fault tree, RBD or event tree into either of the
other two logic models are as follows (NASA 1359 1994), starting with the RBD to
fault tree transformation shown in Fig. 5.29.

Fig. 5.29 RBD to fault tree transformation
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b) RBD to Fault Tree Transformation

A fault tree represents system functions that, if they fail, produce a TOP event fault
in place of a success event, which the reliability block path indicates. The series
nodes of an RBD denote an OR gate beneath the TOP event of a fault tree. The
parallel paths in an RBD denote the AND gate for redundant component functions
in a fault tree. The reliability diagram can thus be relatively easily transformed into
a fault tree, as shown in Fig. 5.29.

c) Fault Tree to RBD Transformation

An RBD represents system component functions that produce success in place of
a TOP fault event, if these functions prevail. A fault tree can be transformed into
a reliability diagram, as illustrated in Fig. 5.30.

d) RBD and Fault Tree to Event Tree Transformation

An event tree represents path sets in the success branches of the tree and all the
cut sets in the failure branches of the tree. Therefore, if the path sets and cut sets
of a system are known for the TOP event of a fault tree, then an event tree can be

Fig. 5.30 Fault tree to RBD transformation
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Fig. 5.31 Cut sets and path sets from a complex RBD

Fig. 5.32 Transform of an event tree into an RBD

constructed. Cut sets and path sets may be obtained from a reliability diagram as
shown in Fig. 5.31 (cf. Fig. 5.32).

e) Event Tree to RBD and Fault Tree Transformation

An event tree represents path sets in the success branches of the tree and all the cut
sets in the failure branches of the tree. To transform an event tree into an RBD, the
process is reversed as illustrated in Fig. 5.32. Once the RBD is formed, a fault tree
can be developed as illustrated in Fig. 5.33.

These techniques allow for weaknesses of any one of the analysis techniques
to be overcome by transforming a system model into an equivalent logic model as
another analysis technique. For example, a complex system that may be hard to
model as a fault tree might be easily modelled with an RBD. Then, the RBD can
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Rs = 1− (1−RA)∗ (1−RB)∗ (1− (RC)(RD)(RE))

Fig. 5.33 Transform of an RBD to a fault tree

be transformed into a fault tree, and extensive quantitative or pseudo-quantitative
(partially qualitative and quantitative) analysis can be performed.

However, these techniques do possess some limitations, such as the following:

• No new information concerning the system is obtained and the models are only
as good as the models being transformed.

• The cut sets and path sets required to perform these transformations for large
complex systems may require extensive computer resources to determine.

f) Structuring the Cause-Consequence Diagram

Previously in Sect. 5.2.1.4, a four-stage procedure to construct and analyse a cause-
consequence diagram was given as:

• Step 1) Component failure event ordering.
• Step 2) Cause-consequence diagram construction.
• Step 3) Reduction.
• Step 4) System failure quantification.

If this procedure is to be considered as a generally applicable approach, it must be
capable of dealing with the events that occur in more than one fault-tree structure
attached to the decision boxes in any sequence path. It can be shown that the cause-
consequence diagram method can deal with repeated events in a more efficient way
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than that used for fault-tree analysis (FTA). Using the cause-consequence diagram
method, there is no need to obtain the Boolean expression of the top event and then
manipulate it to produce a minimal form prior to analysis.

The cause-consequence method deals with sequences of events that either occur
(fail) or do not occur (work). The probability of a particular outcome is obtained by
summation of the probability of all paths that lead to the outcome. Summation of
the probabilities of the mutually exclusive paths results in the development of the
reduced form that would be obtained from the fault tree following Boolean reduc-
tion. An algorithm has been developed that can trace through a cause-consequence
diagram, and identify and extract any repeated basic events in more than one fault-
tree structure on the same sequence path. Certain procedural steps are used in this
extraction algorithm (Ridley et al. 1996).

Procedural steps used in an extraction algorithm to identify and extract any re-
peated basic events in more than one fault-tree structure on the same sequence path:

• Step 1) Identify the fault-tree structures in the path under inspection.
• Step 2) Each fault tree in a path is modularised and the independent sub-trees

identified.
• Step 3) Each independent sub-tree for each fault-tree diagram is compared to

the others and, following identification of common sub-trees or individual basic
events, the cause-consequence diagram is modified.

• Step 4) The cause-consequence diagram is modified using the following rules:

a. Following the identification of a common sub-tree or basic event, the com-
mon element is extracted and set as a new decision box at the highest point
in the cause-consequence diagram that has all dependencies below it.

b. The cause-consequence diagram is then duplicated on each branch.
c. Having developed a decision box for the common sub-tree or basic event, the

decision boxes that contained the common event prior to extraction require
modification. The common event(s) are set to 1 (TRUE) in the fault trees
following the NO outlet branch from the new decision box, as this indicates
failure, and to 0 (FALSE) in the fault trees following the YES branch to
signify that the common event(s) works.

d. After extraction of the common sub-tree or basic event, each fault tree that
has been modified requires reorganisation. Each fault tree containing the ex-
tracted Boolean variable is inspected and the fault trees modified by setting
the Boolean variable to represent the path taken in the cause-consequence
diagram.

e. The cause-consequence diagram is then reduced to a minimal form by re-
moving any redundant decision boxes that have been identified. This proce-
dure is repeated until all sequence paths have been inspected and no repeated
sub-trees or basic events discovered.

As an example, the technique is applied to the simple high-pressure protection sys-
tem depicted in Fig. 5.34. The basic functions of the components of the system are
shown in Table 5.15. The overall function of the protection system is to prevent
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Fig. 5.34 High-integrity protection system (HIPS)

Table 5.15 Component functions for HIPS system

Component Code Function Failure modes λ and mean
repair time

Maint.
interval

Main PCV V1 Stop high-pressure
surge passing
through system

Valve fails
open: PCV-M

1.14×10−5, 36.0 4,360

Sub-PCV V2 Stop high-pressure
surge passing
through system

Valve fails
open: PCV-S

1.14×10−5, 36.0 4,360

ESD valve V3 Stop high-pressure
surge passing
through system

Valve fails
open: V-ESD

5.44×10−6, 36.0 4,360

HIPS1 V4 Stop high-pressure
surge passing
through system

Valve fails
open: VH1

5.44×10−6, 36.0 4,360

HIPS2 V5 Stop high-pressure
surge passing
through system

Valve fails
open: VH2

5.44×10−6, 36.0 4,360

Solenoid Sol Supply power to
valves

Fails energised:
PCVs M, S, and
ESD, and SH1,
SH2

5.00×10−6, 36.0 4,360

Relay
contacts

RC Supply power to
solenoids (2 per
solenoid)

Fails closed:
R1–R10

0.23×10−6, 36.0 4,360

Pressure
sensors

Pr S Indicate the level of
pressure to the
computer

Fails to record
actual pressure:
P1–P6

1.50×10−6, 36.0 4,360

DCS DCS Reads information
sent from pressure
sensors and acts to
close values

Fails to read or
act on
information

1.00×10−5, 36.0 4,360

a high-pressure surge originating from process circulation pumps, to protect equip-
ment located downstream of the process.

The first level of protection is the emergency shutdown (ESD) sub-system. This
comprises three pressure sensors (P1, P2, P3), for which two out of three must in-
dicate a high pressure to cause a trip. Two pressure control valves (PCVs), a main
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PCV, a subsidiary PCV, and an emergency shutdown (ESD) valve (V1, V2, V3)
activate to trip.

If a high-pressure surge is detected, the ESD sub-system acts to close the main
PCV, the sub-PCV and the ESD valve. To provide an additional level of protection,
a second sub-system is included, the high-integrity protection sub-system (HIPS).

This sub-system also comprises three pressure sensors (P3, P4, P5), for which
two out of three cause a trip, and two isolation valves labelled HIPS1 and HIPS2
(V4, V5). The HIPS works in a manner identical to that of the ESD but has indepen-
dent pressure sensors. These pressure sensors feed information for each sub-system
into a common distributed control system (DCS).

The cause-consequence diagram is constructed following the rules given in Sub-
section f) above, including component failure event ordering, cause-consequence
structure, reduction, and system failure quantification.

g) Event Ordering and Cause-Consequence Diagram Construction

The ordering is based on the action of components that could perform the task re-
quired by the system, i.e. main valve, subsidiary valve, ESD valve, HIPS1 valve and
HIPS2 valve. The cause-consequence diagram is constructed by considering the

Fig. 5.35 Cause-consequence diagram for HIPS system (Ridley et al. 1996)
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Fig. 5.36 Combination fault trees for cause-consequence diagram

functionality of each valve and their effect on the system. Following the removal
of all redundant decision boxes, the minimal cause-consequence structure can be
developed as indicated in Fig. 5.35. The combination fault trees developed for each
decision box are illustrated in Fig. 5.36.

Following the construction of the cause-consequence diagram, each sequence
path is inspected and any common independent sub-trees or basic events are iden-
tified. The first sequence path inspected in the HIPS system reveals that a common
sub-module is present in ft1, ft2 and ft3, namely the failure of the pressure sensors
P1, P2 and P3 respectively.

Extraction of this common sub-module, namely the failure of the pressure sen-
sors P1, P2 and P3, results in a modified cause-consequence diagram depicted in
Fig. 5.37. The cause-consequence diagram is reduced to a minimal form by remov-
ing any redundant decision boxes that have been identified. From the new version
of the cause-consequence diagram, all sequence paths are investigated and modified
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Fig. 5.37 Modified cause-consequence diagram for HIPS system (Ridley et al. 1996)

accordingly, using the rules outlined previously in Sub-section f). This procedure is
repeated until all sequence paths have been inspected and no repeated sub-trees or
basic events discovered.

The corresponding combination fault trees developed for the modified cause-
consequence diagram for the HIPS system in Fig. 5.37—specifically, for ‘valve fails
open’ (PCVs, M, S and ESD), as well as for ‘sensors fail’ (HIPS V1 and V2)—are
given in Fig. 5.38.

The final cause-consequence diagram with corresponding combined fault trees
can now be constructed as illustrated in Fig. 5.39.

The corresponding combined fault trees shown in Fig. 5.40 are now in a form
where each path contains independent events in the decision boxes and can be easily
quantified.

The probability of a high-pressure surge could now be obtained by summing the
probabilities of ending in the consequence PS, which was reached via five mutually
exclusive paths.

Therefore

Probability (High Pressure) =
n

∑
i=1

P(Path i) (5.83)
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Fig. 5.38 Combination fault trees for modified cause-consequence diagram

Component failures on safety systems are not corrected during scheduled main-
tenance. Their failure probabilities are given by

Qi = λi[τ + θ/2] (5.84)

where:

Qi = probability of the ith failure
λi = ith failure rate
τ = mean time to repair
θ = maintenance interval.

The calculated system unavailability is identical to that produced by the FTA
method. This result does reflect well on the cause-consequence diagram method,
in comparison to the FTA method, as it emphasises the fact that the example sys-
tem can fail by a single component, namely the DCS. The remaining minimal cut
sets are of order 4 or more and, therefore, have little effect on the overall system
unavailability. For a system that contains a large number of small order minimal cut
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Fig. 5.39 Final cause-consequence diagram for HIPS system (Ridley et al. 1996)

sets, it can be seen that the cause-consequence diagram method would yield a more
accurate result than that obtained from FTA.

The developed algorithm will produce the correct cause-consequence diagram
and calculate the exact system failure probability for static systems with binary suc-
cess or failure responses to the trigger event. This is achieved without having to
construct the fault tree of the system, and retains the documented failure logic of the
system (Ridley et al. 1996).

The cause-consequence diagram is reduced to a minimal form by, first, removing
any redundant decision boxes and, second, manipulating any common failure events
that exist on the same path. The common failure events can be extracted as common
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Fig. 5.40 Combination fault trees for the final cause-consequence diagram (Ridley et al. 1996)

sub-modules or individual events. This process is equivalent to constructing the fault
tree, and identifying and extracting independent sub-modules. Thus, exact, rather
than approximate calculations are performed.

5.2.4.3 Failure Modes and Safety Effects Evaluation

Failure modes and effects criticality analysis (FMECA) is a design discipline where
an engineer examines and records the consequences of any (usually only single
point) failure on the operation of a system. The purpose of the analysis is to high-
light any significant problems with a design and, if possible, to change the design
to avoid those problems (Price 1996). In contrast, failure modes and safety effects
(FMSE) evaluation is a detail design discipline that examines and records the safety
consequences of a system through safety criticality analysis.
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a) Safety Criticality Analysis

In complex engineering designs, the determination of safety criticality is essentially
an expansion of risk analysis in which focus is placed upon the importance of safety-
critical equipment early in the engineering design stage. Any significant effect on
the operational performance of critical equipment as a result of changes in designing
for safety will inevitably have an impact on the performance of the total process. In
effect, risk-based safety criticality analysis quantifies these impacts on the total pro-
cess performance, whereby preventive maintenance tasks are scheduled according
to required frequencies. Essential preventive maintenance intervals are set by equip-
ment age analysis in which the rate of deterioration and resulting potential failure
ages are determined through the statistical method of residual life evaluation. Safety
criticality in process engineering is complex, and basically depends upon the reli-
ability of equipment subject to a variety of failure risks. This complexity is due
to the interaction between the various risks of failure. These risks are defined as
the result of multiplying the consequence of failure by the probability of its occur-
rence.

Consequence of failure The main concern for equipment failure, particularly
equipment functional failure, is its consequence. Consequences of functional fail-
ures may range from the cost of replacement of a failed component, to the conse-
quential damage of equipment, and possibly to a safety hazard through loss of life
or limb. The more complex equipment designs are, with regard to constituent com-
ponents and their configuration, the more ways there are in which various functional
failures can possibly occur.

Some typical process engineering consequences of functional failure are abnor-
mal pressures, excessive vibration, overheating, cracking, rupturing, warping, etc.
As many functional failures can be defined as there are different types of compo-
nent functions. However, a point of interest that becomes evident after scrutinising
these consequences of failure is that there are two types of consequences that can be
defined, specifically operational consequences of failure and physical consequences
of failure.

It is obvious that the consequences of functional failures such as abnormal tem-
perature, abnormal pressure, excessive vibration, overheating, etc. are consequences
affecting the operational function or working performance of the equipment or sys-
tem. Similarly, the consequences of functional failures such as cracking, rupturing,
warping, etc. are consequences affecting the physical function or material design
of the equipment or system. Thus, at each level of a systems hierarchy, or systems
breakdown structure (SBS), an item at a specific level may have functional failures
of its operational or physical functions that may have consequences of functional
failure affecting the operational or physical functions of a higher level of the sys-
tems hierarchy. These consequences of functional failure are then also recognised
to be either operational consequences or physical consequences. Thus, the more
complex equipment designs become, the more ways there are in which functional
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failure can occur. As a result, equipment operational and physical consequences of
functional failure can be grouped into five significant categories:

• Safety operational and physical consequences.
• Economic operational and physical consequences.
• Environmental operational and physical consequences.
• Systems operational and physical consequences.
• Maintenance operational and physical consequences.

Safety operational and physical consequences Safety operational and physical
consequences of functional failure are alternately termed critical functional failure
consequences. In general, if the consequences of functional failure are critical, then
the functional failures resulting from the inability to carry out the operational or
physical functions are defined as critical failures. Safety consequences of functional
failure in certain operational or physical functions are always critical. In evaluating
functional failure, the first consideration is safety.

Functional failures that fall into this category are classed as critical. These func-
tional failures affect either the operational or physical functions of equipment that
could have a direct effect on safety. The term ‘direct’ implies certain limitations. The
impact of the functional failure must be immediate if it is considered to be direct.
Safety of equipment in this context implies certain specific definitions, where:

Safety is defined as “not involving risk”.
Risk is defined as “the chance of disaster or loss”.

It can be interpreted from these definitions that the concept of safety as not involving
risk in the form of disaster has to do with personal protection against injury or the
loss of ‘life or limb’, and safety not involving risk in the form of loss of property has
to do with equipment protection against ‘consequential damage’. Safety can thus be
classified into two categories, one relating to personal protection, the other relating
to equipment protection. Risk can be quantified as the product of the probability of
occurrence (chance), with the level of severity of the risk (disaster or loss). Risk is
an indication of the degree of safety. Thus:

Risk = Severity × Probability

The measure of probability can be quantified in the form of statistical probability
distributions or measures of statistical likelihood. Severity relates to the disaster or
loss incurred. The measure of severity can thus be quantified based on two aspects—
accidents and incidents, according to the two categories of safety (i.e. personal pro-
tection and equipment protection). In this regard, an accident is an undesired event
that results in disastrous physical harm to a person. An incident is an undesired event
that could result in a loss. In the context of safety, this loss is in the form of an asset
loss, which implies consequential damage to equipment or property. Assessment of
severity related to risk, or the severity of risk, would therefore be an estimate of the
disaster or loss that can occur, whereas an evaluation of the severity related to risk
would be an account of the actual disaster or loss that has occurred.
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The estimated severity of risk is a vital tool in the evaluation of designing for
safety, and is assessed on the basis of the estimated measure of severity, which is
quantified in terms of two aspects, namely accidents and incidents, according to
which an estimation of the possible occurrences of accidents or incidents needs to
be made. This is known as the estimated degree of safety (accidents or incidents).

The estimated degree of safety—accidents: This is assessed according to the
contribution of the estimated physical condition of the equipment to its safety, the
estimated disabling injury frequency, as well as the estimated reportable accident
frequency, arising from functional failure predictions of the equipment resulting in
disastrous safety consequence of failure.

However, not every critical functional failure results in an accident. Some such
failures may have occurred with no disastrous safety consequences but, rather, with
a loss in the form of an asset loss, which implies consequential damage to equipment
or property. The severity of risk in this case is assessed on the basis of the measure
of severity quantified in incidents, where an estimation of the possible occurrences
of incidents is made. This is known as the estimated degree of safety (incidents).

The estimated degree of safety—incidents: This is assessed according to the con-
tribution of the estimated physical condition of the equipment to its safety, the esti-
mated downtime frequency, as well as the estimated reportable incident frequency,
arising from functional failure predictions of the equipment resulting in an asset loss
consequence of failure. Aside from an assessment of severity related to risk, or the
severity of risk being an assessment of the disaster or loss that can occur, the issue
in designing for safety is not whether the estimated degree of safety is based on ac-
cidents or incidents being inevitable but, rather, whether they are probable—hence,
the measure of probability in assessing risk.

Safety operational and physical consequences should always be assessed at the
most conservative level and, in the absence of proof that a functional failure can
affect safety, it is precautionary to nevertheless classify it by default as critical.

In contrast, the actual severity of risk is a vital tool in the verification of designing
for safety, where the statistics of safety operational and physical consequences of
functional failure, as well as of the causes of critical functional failures are essential
for validating the safety criticality analysis applied during the detail design phase.
The actual severity of risk is evaluated on the basis of the actual measure of severity
that is quantified in the two aspects of accidents and incidents, according to which
an analysis of the actual occurrences of accidents or incidents needs to be made.
This is known as the actual degree of safety (accidents or incidents).

The actual degree of safety—accidents: This is evaluated according to the contri-
bution of the actual physical condition of the equipment to its safety, the actual dis-
abling injury frequency, as well as the actual reportable accident frequency, arising
from the functional failure history of the equipment resulting in disastrous safety
consequence of failure. Similarly, actual severity is evaluated on the basis of the
measure of severity quantified in incidents, where a determination of the actual oc-
currences of incidents needs to be made. This is known as the actual degree of safety
(incidents).
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The actual degree of safety—incidents: This is evaluated according to the contri-
bution of the actual physical condition of the equipment to its safety, the actual
downtime frequency, as well as the actual reportable incident frequency, arising
from the functional failure history of the equipment resulting in an asset loss conse-
quence of failure. Besides safety operational and physical consequences of failure,
the other consequences (economic, environmental, systems and maintenance) are
typically measured as the cost of losses plus the cost of repair to the failed item
and to any consequential damage (although, in reality, all safety consequences are
eventually also measured as a cost risk). These cost risks of failure are also defined
as the result of multiplying the consequence of failure (i.e. the cost of losses plus the
cost of repair), by the probability of its occurrence.

Reliability analysis in engineering design tends, however, to simplify these risks
to the point of impracticality where, for example, consideration is given only to sin-
gle modes of failure, or only to random failure occurrences, or to maintenance that
results in complete renewal and ‘as new’ conditions. In reality, the situation is much
more complicated with interacting multiple failure modes, variable failure rates, as
well as maintenance-induced failures that influence the rates of deterioration, and
subsequent failure (Woodhouse 1999).

It is somewhat unrealistic to assume a specific failure rate of equipment within
a complex integration of systems with complex failure processes. At best, the intrin-
sic failure characteristics of components of equipment are determined from quan-
titative probability distributions of failure data obtained in a somewhat clinical en-
vironment under certain operating conditions. The true failure process, however, is
subject to many other factors, including premature or delayed preventive mainte-
nance activities conducted during shutdowns of process plant.

It is generally accepted that shutdowns affect the failure characteristics of equip-
ment as a whole, although it is debatable whether the end result is positive or nega-
tive from a residual life point of view, where residual life is defined as the remaining
life expectancy of a component, given its survival to a specific age. This is a concept
of obvious interest, and one of the most important notions in process reliability and
equipment aging studies for safety criticality analysis.

Safety criticality analysis is thus always faced with combinations of interacting
failure modes and variable failure rates, where the cumulative effects are much more
important than estimates of specific probabilities of failure. Qualitative estimates of
how long equipment might last in certain engineering processes, based on operating
conditions and failure characteristics, are much more easily made than quantitative
estimates of the chances of failure of individual equipment. These cumulative effects
are represented in equipment survival curves where a best-fit curve is matched to
specific survival data, and a pattern of risks calculated that would be necessary for
these effects to be realised. In analysing survival data, there is often the need to
determine not only the survival time distribution but also the residual survival time
(or residual life) distribution. A typical equipment survival curve and hazard curve
are illustrated in Fig. 5.41a and 5.41b (Smith et al. 2000).

Typical impact, risk exposure, lost performance, and direct cost patterns based on
shutdown maintenance intervals for rotating equipment, as well as risk-based main-
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Fig. 5.41 a Kaplan–Meier survival curve for rotating equipment, b estimated hazard curve for
rotating equipment

tenance patterns based on shutdown maintenance intervals for rotating equipment
are illustrated in Fig. 5.42a and 5.42b (APT Maintenance 1999).

b) Risk-Based Maintenance

Risk-based maintenance is fundamentally an evaluation of maintenance tasks, par-
ticularly scheduled preventive maintenance activities in shutdown programs. It con-
siders the impact of bringing forwards, or delaying, activities that are directed at
preventing cost risks to coincide with essential activities that address safety risks. If
the extent of these risks were known, and what they cost, the optimum amount of
risk to take, and planned costs to incur, could be calculated. Similarly, better deci-
sions could be made if the value of the benefits of improved performance, longer life
and greater reliability was known. These risks and benefits are, however, difficult to
quantify, and many of the factors are indeterminable. Cost/risk optimisation in this



656 5 Safety and Risk in Engineering Design

Fig. 5.42 a Risk exposure pattern for rotating equipment, b risk-based maintenance patterns for
rotating equipment

context can thus be defined as the minimal total impact, and represents a trade-off
between the conflicting interests of the need to reduce costs at the same time as the
need to reduce the risks of failure. Both are measured in terms of cost, the former
being the planned downtime cost plus the cost of preventive maintenance in an at-
tempt to increase performance and reliability, and the latter being the cost of losses
due to forced shutdowns plus the cost of repair and consequential damage.

The total impact is the sum of the planned costs and failure costs. When this sum
is at a minimum, an optimal combination of the costs incurred and the failure risks
is reached, as illustrated in Fig. 5.43.

Cost/risk trade-off decisions determine optimal preventive maintenance intervals
for plant shutdown strategies that consider component renewal or replacement cri-
teria, spares requirements planning, etc. Planned downtime costs plus the costs of
preventive maintenance are traded-off against the risk consequences of premature or
deferred component renewals or replacements, measured as the cost of losses plus
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Fig. 5.43 Typical cost optimisation curve

the cost of repair. In each of these areas, cost/risk evaluation techniques are applied
to assist in the application of a safety-critical maintenance approach.

Component renewal/replacement criteria are directly determined by failure
modes and effects criticality analysis (FMECA), whereby appropriate maintenance
tasks are matched to failure modes. In applying FMECA, the criticality analysis
establishes a priority rating of components according to the consequences and mea-
sures of their various failure modes, which helps to prioritise the preventive main-
tenance activities for scheduled shutdowns. An example of an FMECA for process
criticality of a control valve, based on failure consequences (downtime) and failure
rate (1/MTBF), is given in Table 5.16.

Reliability, availability, maintainability and safety (RAMS) studies establish the
most effective combination of the different types of maintenance (i.e. a maintenance
strategy) for operational systems and equipment. The deliverable results are opera-
tions and maintenance procedures and work instructions in which the different types
of maintenance are effectively combined for specific equipment.

Failure modes and effects criticality analysis (FMECA), as given in Table 5.16,
is one of the most commonly used techniques for prioritising failures in equipment.
The analysis at systems level involves identifying potential equipment failure modes
and assessing the consequences of these for the system’s performance.

Table 5.17 shows the designation of maintenance activities, the appropriate main-
tenance trade, and the recommended maintenance frequency for each failure mode,
based on MTBF. It is evident that some activities need to be delayed to coincide
with others.

Different types and levels of maintenance effort are applied, depending upon the
process or functional criticality (Woodhouse 1999):

• Quantitative risk and performance analysis (such as RAM and FMECA) is war-
ranted for about 5–10% of the most critical failure modes. This is where cost/risk
optimisation is applicable for significant costs or risks that are sensitive to high-
impact strategies.



658
5

Safety
and

R
isk

in
E

ngineering
D

esign

Table 5.16 Typical FMECA for process criticality

Component Failure description Failure
mode

Failure
consequences

Failure causes D/T (h) (plus
damage)

MTTR (h)
(repair time)
and damage

MTBF
(months)

Process
criticality
rating

Control valve Fails to open TLF Production Solenoid valve fails, failed
cylinder actuator or air
receiver failure

9 8 12 Medium
critical

Control valve Fails to open TLF Production No PLC output due to
modules electronic fault or
cabling

4 2 6 Medium
critical

Control valve Fails to seal/close TLF Production Valve disk damaged due to
corrosion wear (same ‘fails
to open’)

5 4 6 Medium
critical

Control valve Fails to seal/close TLF Production Valve stem cylinders seized
due to chemical deposition
or corrosion

5 4 4 Medium
critical

Instrument
loop (press. 1)

Fails to provide
accurate pressure
indication

TLF Maint. Restricted sensing port due
to blockage of chemical or
physical accumulation

0 1 3 Low
critical

Instrument
loop (press. 2)

Fails to detect low
pressure condition

TLF Maint. Low pressure switch fails
due to corrosion or
mechanical damage

0 2 3 Low
critical

Instrument
loop (press. 2)

Fails to detect low
pressure condition

TLF Maint. Pressure switch relay or
cabling failure

0 8 4 Low
critical

Instrument
loop (press. 2)

Fails to provide
output signal for
alarm

TLF Maint. PLC alarm function or
indicator fails

0 8 4 Low
critical
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Table 5.17 FMECA with preventive maintenance activities

Component Failure
description

Failure causes D/T (h)
(plus
damage)

MTTR (h)
(repair time)
and damage

MTBF
(months)

Maintenance activity Maintenance
trade

Maintenance
frequency

Control valve Fails to open Solenoid valve fails,
failed cylinder
actuator or air
receiver failure

9 8 12 Service control valve.
Replace components
and test PLC
interface

Instr. tech. 12 monthly

Control valve Fails to open No PLC output due to
modules electronic
fault or cabling

4 2 6 Covered by control
valve service as
above

Instr. tech. 12 monthly

Control valve Fails to
seal/close

Valve disk damaged
due to corrosion wear
(same causes as ‘fails
to open’)

5 4 6 Remove control
valve and check
valve stem, seat and
disk or diaphragm for
deterioration or
corrosion and replace
with overhauled
valve if required

Fitter 6 monthly

Control valve Fails to
seal/close

Valve stem cylinders
seized due to
chemical deposition
or corrosion

5 4 4 Covered by control
valve condition
assessment and
replace components

Instr. tech. 6 monthly
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Table 5.17 (continued)

Component Failure
description

Failure causes D/T (h)
(plus
damage)

MTTR (h)
(repair time)
and damage

MTBF
(months)

Maintenance activity Maintenance
trade

Maintenance
frequency

Instrument loop
(press. 1)

Fails to
provide
accurate
pressure
indication

Restricted sensing
port due to blockage
of chemical or
physical accumulation

0 1 3 Remove pressure
gauge and check for
blocked sensing lines
and gauge
deterioration.
Replace with new
gauge if required

Instr. tech. 3 monthly

Instrument loop
(press. 2)

Fails to detect
low pressure
condition

Low pressure switch
fails due to corrosion
or mechanical
damage

0 2 3 Verify correct
operation of pressure
switch and wiring.
Test alarm’s
operation

Instr. tech. 3 monthly

Instrument loop
(press. 2)

Fails to detect
low pressure
condition

Pressure switch relay
or cabling failure

0 8 4 Covered by switch
operation verification

Instr. tech. 3 monthly

Instrument loop
(press. 2)

Fails to
provide
output signal
for alarm

PLC alarm function
or indicator fails

0 8 4 Covered by switch
operation verification

Instr. tech. 3 monthly



5.2 Theoretical Overview of Safety and Risk in Engineering Design 661

• Rule-based analysis methods (such as RCM and RBI) are more appropriate for
about 40–60% of the critical failure modes, particularly if supplemented with
economic analysis of the resulting impact strategies. This is where cost/risk op-
timisation is applicable for the costs or risks for setting preventive maintenance
intervals.

• Review of existing maintenance (excluding simple FMEA studies) provides
a simple check at the lower levels of criticality to verify that there is a valid
reason for the maintenance activity, and that the cost is reasonable compared to
the consequences.

c) Safety Criticality Analysis and Risk-Based Maintenance

Safety criticality analysis was previously considered as the assessment of failure
risks. In this context, safety criticality analysis is applied to determine the essential
maintenance intervals, and the impact of premature or delayed preventive mainte-
nance activities where failure risks are considered to be safety critical. A safety/risk
scale is applied, based on a specific cost benchmark (usually computed as the cost
of output per time interval) related to the cost of losses and the likelihood of failure.

A safety criticality model to determine the optimal maintenance interval, and
the impact of premature or delayed preventive maintenance activities considers the
following:

• A quantified description of the degradation process, using estimates wherever
data are not available, as well as identification of failure modes and related
causes.

• Cost calculations for material and maintenance labour costs for each failure
mode, including possible consequential damage.

• Cost/risk calculations for alternative preventive maintenance intervals based on
a specific cost benchmark related to the cost of losses and the likelihood of fail-
ure.

• Cost criticality rating of failure modes, and sensitivity testing to the limits of the
likelihood of failure under uncertainty of unavailable or censored data.

• Identification of key decision drivers (which assumptions have the greatest effect
upon the optimal decision), for review of the preventive maintenance program.
In many cases, there are several interacting failure modes, causes and effects, all
in the same evaluation.

The preventive maintenance program or, in the case of continuous processes, the
shutdown strategy thus becomes a compromise of scheduled times and costs. Some
activities will be performed ahead of their ideal timing, whilst others will be delayed
to share the downtime opportunity determined by safety-critical shuts.

The risks and performance impact of delayed activities, and the additional costs
of deliberate over-maintenance in others, both contribute to the costs for a partic-
ular shutdown program. The degree of advantage, on the other hand, is controlled
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by the costs involved. The downtime impact (the cost of losses due to forced shut-
downs as a result of failure, plus the cost of repair to the failed item and to any
consequential damage) often dominates the direct cost advantage (planned shut-
down lost opportunity costs, use of facilities, materials and labour costs, etc.) of
shutting down and starting up again. Such a cost criticality analysis also reveals the
scope for de-bottlenecking improperly evaluated reliability constraints by eliminat-
ing frequent interim shutdowns and extending operational run lengths. The analysis
process is also able to calculate the net payback for such de-bottlenecking. The
grouping and re-grouping of activities as well as re-programming the preventive
maintenance program (i.e. combining activities in different bundles and moving the
bundles to shorter or longer intervals) are fundamentally a scheduling problem, re-
quiring the application of formalised risk analysis and decision criteria based on as-
sessment scales, and the use of computer automated computation. Table 5.18 shows
the application of cost criticality analysis to the FMECA for process criticality of
the control valve given in Table 5.17. It indicates the cost criticality rating of each
failure mode related to the cost of losses and the cost risk based on estimates of the
likelihood of failure. Table 5.19 shows a comparison between the process criticality
rating and the cost criticality rating of each failure mode of the control valve. In this
case, the ratings correspond closely with one another.

The maintenance frequencies of the preventive maintenance activities that were
typically based on the mean time between failures (MTBF) are, however, not rela-
tive to either the process criticality rating or the cost criticality rating. The mainte-
nance frequencies thus require review to determine the optimal maintenance inter-
vals whereby the impact of premature or delayed preventive maintenance activities
is considered.

This example of a relatively important item of equipment, such as a process con-
trol valve, is typical of many such equipment in process plant where RAM, FMECA
or RCM analysis do not provide sufficient information for decisive decision-making,
as the equipment’s failure modes are not significantly high risk but rather medium
risk. Where the criticality ratings are not significant (i.e. evidence of high critical-
ity), as in this case of the control valve, maintenance optimisation becomes difficult,
necessitating a review of the risk analysis and decision criteria according to qualita-
tive estimates.

d) Risk Analysis and Decision Criteria

In typical process plant shutdown programs, decisions concerning the extent and
timing of component renewal/replacement activities are generally determined by
the dominant failure modes that, in effect, relate to less than a third of the program’s
total preventive maintenance activities. Criticality ranking or prioritising of equip-
ment according to the consequences of failure modes is essential for a risk-based
maintenance approach, though comparative studies have shown that qualitative risk
ranking is, in many cases, just as effective in identifying the key shutdown drivers,
often at a fraction of the cost. Typically, these risks can be ranked by designating
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Table 5.18 FMECA for cost criticality

Component Failure
description

Failure
mode

Failure causes Defect.
MATL &
LAB
($)/failure
(incl.
damage)

Econ.
$/failure
(prod.
loss)

Total
$/failure
(prod. and
repair)

Risk Cost criticality
rating

Control
valve

Fails to open TLF Solenoid valve fails,
failed cylinder actuator
or air receiver failure

$5,000 $68,850 $73,850 6.00 Medium cost

Control
valve

Fails to open TLF No PLC output due to
modules electronic
fault or cabling

$2,000 $30,600 $32,600 6.00 Medium cost

Control
valve

Fails to
seal/close

TLF Valve disk damaged
due to corrosion wear
(same causes as ‘fails
to open’)

$5,000 $38,250 $43,250 6.00 Medium cost

Control
valve

Fails to
seal/close

TLF Valve stem cylinders
seized due to chemical
deposition or corrosion

$5,000 $38,250 $43,250 6.00 Medium cost

Instrument
loop
(press. 1)

Fails to provide
accurate
pressure
indication

TLF Restricted sensing port
due to blockage of
chemical or physical
accumulation

$500 $0 $500 2.00 Low cost
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Table 5.18 (continued)

Component Failure
description

Failure
mode

Failure causes Defect.
MATL &
LAB
($)/failure
(incl.
damage)

Econ.
$/failure
(prod.
loss)

Total
$/failure
(prod. and
repair)

Risk Cost criticality
rating

Instrument
loop
(press. 2)

Fails to detect
low pressure
condition

TLF Low pressure switch
fails due to corrosion
or mechanical damage

$10,000 $0 $10,000 2.00 Low cost

Instrument
loop
(press. 2)

Fails to detect
low pressure
condition

TLF Pressure switch relay
or cabling failure

$10,000 $0 $10,000 2.00 Low cost

Instrument
loop
(press. 2)

Fails to provide
output signal
for alarm

TLF PLC alarm function or
indicator fails

$10,000 $0 $10,000 2.00 Low cost
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Table 5.19 FMECA for process and cost criticality

Component Failure
description

Failure
mode

Failure
consequences

Total
$/failure
(prod. and
repair)

Cost risk MTBF
(months)

Process
criticality
rating

Cost
criticality
rating

Maintenance
frequency

Control
valve

Fails to open TLF Production $73,850 6.00 12 Medium
criticality

Medium cost 12 monthly

Control
valve

Fails to open TLF Production $32,600 6.00 6 Medium
criticality

Medium cost 12 monthly

Control
valve

Fails to
seal/close

TLF Production $43,250 6.00 6 Medium
criticality

Medium cost 6 monthly

Control
valve

Fails to
seal/close

TLF Production $43,250 6.00 4 Medium
criticality

Medium cost 6 monthly

Instrument
loop
(press. 1)

Fails to
provide
accurate
pressure
indication

TLF Maint. $500 2.00 3 Low
criticality

Low cost 3 monthly

Instrument
loop
(press. 2)

Fails to detect
low pressure
condition

TLF Maint. $10,000 2.00 3 Low
criticality

Low cost 3 monthly

Instrument
loop
(press. 2)

Fails to detect
low pressure
condition

TLF Maint. $10,000 2.00 4 Low
criticality

Low cost 3 monthly

Instrument
loop
(press. 2)

Fails to
provide
output signal
for alarm

TLF Maint. $10,000 2.00 4 Low
criticality

Low cost 3 monthly
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qualitative assessment values for the likelihood of occurrence and the impact that the
risk may have on costs. Assessment values for risk may be designated as indicated
previously, where risk has been defined as the result of multiplying the consequence
of the failure mode (i.e. its severity) by the probability of failure (i.e. its likelihood):

Risk (R) = Severity × Probability (or Likelihood)

Severity
The use of qualitative assessment scales for determining the severity of a failure
consequence is common in risk analysis, where severity criteria are designated
a value ranging from 10 to 1. The most severe consequence is valued at 10 (dis-
abling injury—life risk), whereas no safety risk is valued at 1, or 0, as indicated in
the risk assessment scale in Table 5.20.

Likelihood
Many different scales have been developed for determining the likelihood of failure
occurrence. One commonly used scale is expressed in terms of ‘probability quali-
fiers’ given as:

Actual occurrence = 0.95 to 1.00 ,

Probable occurrence = 0.50 to 0.95 , and

Possible occurrence = less than 0.50 .

Criticality
Once an overall total and an overall average value of risk has been assessed accord-
ing to the risk assessment scale, a criticality rating can be defined for each failure
mode, using the following expression:

Criticality (C) = Risk × Failure rate

Failure Rate
If the failure rate for the item cannot be determined from available data, a represen-
tative estimation for failure rate in high-corrosive process applications can be used.
This is done by the following qualifying values:

Qualification Failure rate (×10−4)

Very low <100
Low 100 to 500
Medium 500 to 1,000
High 1,000 to 5,000
Very high >5,000
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Table 5.20 Risk assessment scale

Risk assessment scale
Estimated degree of Risk assessment values:
safety: Degree of severity × Probability

Severity criteria Actual Probable Possible
0.95 to 1.00 0.50 to 0.95 0.01 to 0.05

(Disabling injury) Deg. Prob. Risk Deg. Prob. Risk Deg. Prob. Risk
Life risk 10 10 10
Loss risk 9 9 9
Health risk 8 8 8
(Reported accident)
People risk 7 7 7
Process risk 6 6 6
Product risk 5 5 5
(Physical condition)
Damage risk 4 4 4
Defects risk 3 3 3
Loss risk 2 2 2
(No safety risk) 1 1 1
Overall risk Total Total Total
Overall average Average Average Average

e) Qualitative Criticality Analysis

Qualitative criticality analysis is structured in a failure modes and safety effects
(FMSE) analysis, in contrast to the standard FMECA, which is based on failure
rates, MTBF and MTTR. The outcome of the FMSE, given in Table 5.21, indicates
that the dominant failure modes that are the key shutdown drivers in determining the
optimum maintenance frequency are the two control valve failure modes of medium
criticality and scheduled frequency of 6 months.

All other tasks relating to the control valve can be re-scheduled into this half-
yearly shut. This implies that the annual scheduled service of the control valve can
be premature with a low risk impact, and the quarterly scheduled checks or compo-
nent replacements of the pressure instrument loops (pressure gauges and switches)
can be delayed with low risk impact.

A cost criticality analysis can now be conducted on the basis of the shutdown
frequency of 6 months being the estimated likelihood of failure for all the relevant
failure modes. This approach is repeated for all those items of equipment initially
found to be critical items according to a ranking of their consequences of failure.
The task seems formidable but, following the Pareto principle (or 80–20 rule), in
most cases 80% of cost risk consequences are due to only 20% of all components.
Table 5.21 shows the application of qualitative risk assessment in the form of an
FMSE for process criticality of the control valve given in Table 5.19.
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Table 5.21 Qualitative risk-based FMSE for process criticality, where (1)=likelihood of occurrence (%), (2)=severity of the consequence
(rating), (3)=risk (probability×severity), (4)=failure rate (1/MTBF), (5)=criticality (risk×failure rate)

Component Failure
description

Failure
mode

Failure
consequences

Failure causes (1) (2) (3) (4) (5) Criticality rating

Control
valve

Fails to
open

TLF Production Solenoid valve fails,
failed cylinder actuator or
air receiver failure

75% 6 4.50 0.083 0.37 Low criticality

Control
valve

Fails to
open

TLF Production No PLC output due to
modules electronic fault
or cabling

75% 6 4.50 0.167 0.75 Low criticality

Control
valve

Fails to
seal/close

TLF Production Valve disk damaged due
to corrosion wear (same
causes as ‘fails to open’)

100% 6 6.00 0.167 1.0 Medium criticality

Control
valve

Fails to
seal/close

TLF Production Valve stem cylinders
seized due to chemical
deposition or corrosion

100% 6 6.00 0.25 1.5 Medium criticality

Instrument
loop
(press. 1)

Fails to
provide
accurate
pressure
indication

TLF Maint. Restricted sensing port
due to blockage of
chemical or physical
accumulation

100% 2 2.00 0.33 0.66 Low criticality
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Table 5.21 (continued)

Component Failure
description

Failure
mode

Failure
consequences

Failure causes (1) (2) (3) (4) (5) Criticality rating

Instrument
loop
(press. 2)

Fails to
detect low
pressure
condition

TLF Maint. Low pressure switch fails
due to corrosion or
mechanical damage

100% 2 2.00 0.33 0.66 Low criticality

Instrument
loop
(press. 2)

Fails to
detect low
pressure
condition

TLF Maint. Pressure switch relay or
cabling failure

75% 2 1.50 0.25 0.38 Low criticality

Instrument
loop
(press. 2)

Fails to
provide
output
signal for
alarm

TLF Maint. PLC alarm function or
indicator fails

100% 2 2.00 0.25 0.5 Low criticality
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f) Residual Life Evaluation

Component residual life, in the context of a renewal/replacement process that is
typically carried out during scheduled preventive maintenance shutdowns in pro-
cess plant, is in effect equivalent to the time elapsed between shutdowns. This is,
however, not the true residual life of the component based on its reliability charac-
teristics. The difference between the two provides a suitable means of comparison
for maintenance optimisation of safety-critical components.

Optimum maintenance intervals are best determined through the method of
equipment age analysis, which identifies the rate of component deterioration and
potential failure ages. The risk-based maintenance technique of residual life assess-
ment is ideally applied in equipment age analysis where the frequencies of preven-
tive maintenance activities in shutdown programs can be optimised. However, resid-
ual life is widely used in modelling stochastic processes during detail engineering
design, and is one of the random variables that determines the design requirements
for component renewal/replacement; the other being the component age once the
process design has progressed beyond the engineered installation stage, and has
been in operation for some time.

In reliability theory, residual life appears as the time until the next failure,
whereas for the renewal/replacement process it is normally expressed as a math-
ematical function of conditional reliability in which the residual life is determined
from the component age. The mean residual life or remaining life expectancy func-
tion at a specific component age is defined to be the expected remaining life given
survival to that age. It is a concept of obvious interest in maintenance optimisation,
and most important in process reliability.

g) Failure Probability, Reliability and Residual Life

There are fundamentally two measures of reliability: the failure density function,
which quantifies how many components would fail at different time points (i.e.
a combination of how many components survive at each point, and the risk of fail-
ure in the interval up to the following time point), and the hazard rate, which is the
conditional chance of failure, assuming the equipment has survived so far. It is the
hazard rate that is essential for decisions about how long equipment can be left in
service with a related risk of failure, or whether it should be renewed or replaced.
Component failure density in a common series systems configuration (or in a com-
plex system reduced to a simple series configuration) is defined by the following
function

fi(t) = lim
Δt→0

αS(t)−αS(t + Δt)
α0Δt

(5.85)

where:

fi(t) = the ith component failure
Δt = the time interval
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α0 = the total number of components in operation at time t = 0
αS = the number of components surviving at time t or t + Δt.

The ith component cumulative distribution function (failure probability) is defined
by the following expression

Fi(t) =
t∫

0

fi(t)dt (5.86)

and the ith component reliability is defined by:

Ri(t) = {1−Fi(t)}

Substituting the equation for Fi(t) in the equation for Ri(t) leads to

Ri(t) = 1−
t∫

0

fi(t)dt (5.87)

However, a commonly used alternative expression for Ri(t) is

Ri(t) = e
−

t∫
0

λi(t)dt
(5.88)

where:

λi(t) = the ith component hazard rate or instantaneous failure rate.

In this case, a component failure time can follow any statistical distribution function
of which the hazard rate is known. The expression Ri(t) is reduced to

Ri(t) = e−λit (5.89)

The mean time between failures (MTBF) is defined by the following expression

MTBF =
∞∫

0

R(t)dt (5.90)

Substituting the expression for Ri(t) and integrating in the series gives the model
for MTBF—in effect, this is the sum of the inverse values of the component hazard
rates, or instantaneous failure rates of all the components in the series

MTBF =

[
n

∑
i=1

λi

]−1

(5.91)

where:

λi = the ith component hazard rate or instantaneous failure rate.
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Residual life Let T denote the time to failure. The survival function can then be
expressed as

R(t) = P(T > t) (5.92)

The conditional survival function of a component that has survived without fail-
ure can now be formulated.

The conditional survival function of a component that has survived (without fail-
ure) up to time x is

R(t|x) = P(T > t + x|T > x) (5.93)

=
P(T > t + x)

P(T > t)

=
R(t + x)

R(x)

R(t|x) denotes the probability that a component (of age x) will survive an extra
time t. The mean residual life (MRL) of a component of age x can thus be expressed
as

MRL(x) =
∞∫

0

R(t|x)dt (5.94)

If x = 0, then the initial age is zero, implying a new item, MRL(0) = MTTF, the
mean time to fail. The difference between MTBF and MTTF is in their application.
Although both are similarly calculated, MTBF is applied to components that are
repaired, and MTTF to components that are replaced. The mean residual life (MRL)
function or remaining life expectancy function at age x is defined to be the expected
remaining life given survival to age x. Consider now the reliable life for the one-
parameter exponential distribution, compared to the residual life

h(x) =
MRL(x)
MTTF

(5.95)

Certain characteristics of the comparison between the mean residual life MRL
and the mean time to fail MTTF are the following:

• When the time to failure for an item, T , has an exponential distribution (i.e.
constant hazard rate), then the function h(x) = 1 for all x and MRL = MTTF.

• When T has a Weibull distribution with shape parameter β < 1 (i.e. a decreasing
failure rate), then h(x) is an increasing function.

• When T has a Weibull distribution with shape parameter β > 1 (i.e. an increasing
failure rate), then h(x) is a decreasing function.

Thus, in the case of scheduled preventive maintenance activities with frequencies
less than their MTTF, the cost/risk of premature renewal or replacement is the loss of
potential equipment life (accumulated over all components), equivalent to the sum
of the differences between the residual life of each component and the scheduled
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frequency. Similarly, for those scheduled preventive maintenance activities with fre-
quencies greater than their MTTF, the cost/risk of delayed renewal or replacement
is the cost of losses (accumulated over all components) due to forced shutdowns as
a result of failure, plus the cost of repair to the failed component and to any con-
sequential damage. The likelihood of failure is equivalent to the ratio of the differ-
ences between the MTTF of each component and the scheduled frequency, divided
by the differences between the residual life of each component and the scheduled
frequency. Table 5.22 shows the replacement of (1) = likelihood of occurrence and
(4) = failure rate with the calculated residual life values, to the FMSE of Table 5.21.

h) Sensitivity Testing

Sensitivity testing in FMSE considers limits of the likelihood of failure. This is done
by representing the likelihood as a statistical distribution (usually, the standard nor-
mal distribution), and determining the variance and standard deviation of the range
of likelihood values. Sensitivity testing in this case is thus a statistical measure of
how well a likelihood test correctly identifies a failure condition. This is illustrated
in the concept tabulated below. The sensitivity is the proportion of ‘true positives’
or true likelihood of failure, and is a parameter of the test.

Specificity in the concept diagram is a statistical measure of how well a likeli-
hood test correctly identifies the negative cases, or those cases that do not result
in a failure condition. The significance level of the sensitivity test is a statistical
hypothesis testing concept. It is defined as the probability of making a decision to
reject the null hypothesis when the null hypothesis is actually true (a decision known
as a type I error, or ‘false positive determination’). The decision is made using the
P-value of the hypothesis test. If the P-value is less than the significance level, then
the null hypothesis is rejected. The smaller the P-value, the more significant the
result is considered to be. Different α-levels of the hypothesis test indicate greater
confidence in the determination of significance with smaller α-levels but run greater
risks of failing to reject a false null hypothesis (a type II error, or ‘false negative de-
termination’). Selection of an α-level involves a compromise in tendency towards
a type I error, or a type II error. A common misconception is that a statistically
significant result is always of practical significance. One of the more common prob-
lems in significance testing of sensitivity is the tendency for multiple comparisons
to yield spurious significant differences even where the null hypothesis is true. For
example, in a comparison study of the likelihood of failure of several failure modes,
using an α-level of 5%, one comparison will likely yield a significant result despite
the null hypothesis being true.

During a sensitivity analysis, the values of the specified sensitivity variables are
modified with changes to the expected value. For one-way sensitivity analyses, one
variable is changed at a time. For two-way sensitivity analyses, two variables are
changed simultaneously. For a more sophisticated sensitivity analyses, an FMSE
what-if analysis is conducted. The differences between the outcomes of the qualita-
tive risk-based FMSE and related cost risk for different expected values can then be
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Table 5.22 FMSE for process criticality using residual life

Component Failure
description

Failure
mode

Failure
consequences

(1) (2) (3) (4) (5) Criticality
rating

Cost
criticality
rating

Maintenance
frequency

Control valve Fails to open TLF Production 75% 6 4.50 0.083 0.37 Low
criticality

Medium
cost

6 monthly

Control valve Fails to open TLF Production 75% 6 4.50 0.167 0.75 Low
criticality

Medium
cost

6 monthly

Control valve Fails to
seal/close

TLF Production 100% 6 6.00 0.167 3.0 Medium
criticality

Medium
cost

6 monthly

Control valve Fails to
seal/close

TLF Production 100% 6 6.00 0.5 1.5 HIGH
criticality

Medium
cost

6 monthly

Instrument
loop (press. 1)

Fails to
provide
accurate
pressure
indication

TLF Maint. 100% 2 2.00 0.67 1.34 Medium
criticality

Low cost 6 monthly

Instrument
loop (press. 2)

Fails to detect
low pressure
condition

TLF Maint. 100% 2 2.00 0.67 1.34 Medium
criticality

Low cost 6 monthly

Instrument
loop (press. 2)

Fails to detect
low pressure
condition

TLF Maint. 100% 2 2.00 0.5 1.0 Medium
criticality

Low cost 6 monthly

Instrument
loop (press. 2)

Fails to
provide output
signal for alarm

TLF Maint. 100% 2 2.00 0.5 1.0 Medium
criticality

Low cost 6 monthly
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Condition (likelihood of failure)

True False

Positive True positive False positive
(type I error,
P-value)

Positive
predicted value

Negative False negative
(type II error)

True negative Negative
predicted value

Sensitivity Specificity

determined. Using decision trees and influence diagrams details all the possible op-
tions for a decision model. Decision trees provide a more formal structure in which
decisions and chance events are linked from left to right in the order they would
occur. Probabilities of the likelihood of failure events are added to each node in
the tree. A decision analysis generates a risk profile. The risk profile compares the
sensitivity of different decision options. Such sensitivity analysis is best conducted
with the aid of specialised application software such as @RISK c©, in which the
outcome is expressed as a probability distribution, as illustrated in the insert below
(Fig. 5.44).

Fig. 5.44 Probability distribution definition with @RISK (Palisade Corp., Newfield, NY)
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5.3 Analytic Development of Safety and Risk
in Engineering Design

A significant factor in considering analytic development of safety and risk in engi-
neering design is the extent to which probabilistic analysis and deterministic analy-
sis can complement each other in safety and risk prediction, assessment and evalu-
ation of engineered installations at each respective phase of the engineering design
process. This requires an understanding of the advantages of each specific approach
taken in the analysis of safety, and the basic concepts of potential risk and residual
risk (de Gelder 1997).

Concepts of risk The prediction, assessment and evaluation of risk in the con-
ceptual, preliminary/schematic or detail design stages respectively of engineered
installations have to distinguish between:

• potential risk, which can lead to accidents or incidents if no protection measures
are considered or taken,

• residual risk, which remains after having considered all measures taken to pre-
vent accidents or incidents, and to mitigate their consequences.

The main contributions to residual risk stem from events that are not considered
in the design, such as vessel rupture; an accident/incident progression worse than
the assumptions considered in the design basis, such as multiple failures, common
mode failures (resulting in complete failure of a safety system) and operator errors;
cumulative occurrence of initiating events that are considered in the design but not
accounted for, since cumulative occurrence is not considered to be a design basis
event.

As considered previously, the assessment of risk requires two measures—speci-
fically, the frequency of occurrence of potential accidents, and the severity of their
consequences. During the analysis of safety, both these measures are considered
with the objective that accidents with the most significant consequences should have
the lowest frequencies of occurrence. The main objective of safety analysis is to
verify that measures taken at the design stage, as well as during construction and
operation of the engineered installation are adequate in achieving the prescribed
safety requirements.

The probabilistic safety analysis approach The probabilistic approach enables
the prediction or assessment of the major contributors to potential risk, and evalu-
ation of the most significant contributors for further reduction of residual risk. The
major steps in a probabilistic safety analysis are as follows:

• Identification of the initiating events and the plant operational states to be con-
sidered.

• Analysis of the possible accident scenarios, by means of event trees.
• Reliability analysis, by means of fault trees, of the systems considered in the

event trees.
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• Collection of probabilistic data (failure probability or unavailability for test and
maintenance, initiating event frequencies).

• Use of analytic techniques such as sneak analysis, genetic algorithms and neural
nets.

• Event sequence quantification, resulting in a frequency for each event.
• Interpretation of results (including sensitivity and importance analyses).

The deterministic safety analysis approach This approach has constituted a basis
for the design of most high-risk engineered installations. The deterministic approach
is based on regulations and guides established by the appropriate regulatory author-
ity. The major steps in a deterministic safety analysis are the following:

• Identification and categorisation of events considered in the design basis:
At the beginning of the design stage, a list of initiating events to be covered in the
design is established and constitutes the so-called design basis events. These are
then grouped into categories, based on their estimated frequency of occurrence.
This categorisation of the initiating events is basically into classes, depending
on the significance of the overall risk posed by the engineered installation. For
example, the categorisation of initiating events into classes was established by
the US Nuclear Regulatory Commission for high-risk engineered installations
such as nuclear power plants (NUREG 75/014 1975; NUREG/CF-1401 1980).
The following categorisation is of initiating events into classes:

– Class 1: normal operation,
– Class 2: incidents of moderate frequency,
– Class 3: incidents/accidents of low frequency,
– Class 4: hypothetical accidents.

• Analysis of enveloping scenarios:
For each category, a number of enveloping scenarios are identified in such a way
that their analysis covers all events to be considered in that category. Each en-
veloping scenario is then analysed by using conservative assumptions in the ini-
tial conditions of plant, such as:

– power, flows, pressures, temperatures,
– most unfavourable moment in the process cycle,
– instrumentation uncertainties,
– hypotheses concerning the accident/incident progression.

• Evaluation of consequences:
The potential consequences of these enveloping scenarios are analysed using
conservative assumptions, such as:

– the initial activity of a primary circuit is supposed to be equal to the maximum
activity allowed by the technical specifications,

– unfavourable climatic conditions.
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• Verification with respect to acceptance criteria:
The results of the analysis of the enveloping scenarios are finally compared with
predefined acceptance criteria. These acceptance criteria can be expressed in re-
lation to parameters of the engineered installation, and to the protection of people
and the environment. When all analyses show that acceptance criteria are met, the
proposed design is accepted in the deterministic safety approach.

Below, various methodologies for the analytic development of safety and risk in the
design of engineered installations are considered, incorporating probabilistic anal-
ysis in the respective prediction, assessment and evaluation of safety and risk prob-
lems at each phase of the engineering design process. Various AI analytic techniques
presented, such as evolutionary algorithms, genetic algorithms and neural networks,
are basically stochastic search and optimisation heuristics derived from classic evo-
lution theory and implemented in intelligent computer automated methodology in
the prediction, assessment and evaluation of engineering design safety and risk.

5.3.1 Analytic Development of Safety and Risk Prediction
in Conceptual Design

In this section, the development of a design space is considered in which methods
of design preferences and scenarios are integrated with analytic techniques such
as evolutionary algorithms, genetic algorithms and/or artificial neural networks to
perform multi-objective optimisation in designing for safety. In Sect. 5.4, computer
automated methodology is presented in which optimisation algorithms have been
developed for knowledge-based expert systems within a blackboard model that is
applied in determining the integrity of engineering design. Certain approaches are
therefore adopted for the prediction of risk in the conceptual design stage, specifi-
cally in:

i. Establishing an analytic basis for developing an intelligent computer automated
system;

ii. Evolutionary computing and evolutionary design.

5.3.1.1 Establishing an Analytic Basis for Developing an Intelligent Computer
Automated System

The goal is to establish an analytic basis for developing an intelligent computer
automated system that will be able to work together with the designer during the
different phases of the engineering design process—especially during the concep-
tual design phase when interaction and designer knowledge are sometimes more
important than accuracy.
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a) A Computer Automated Design Space

The core of a computer/human design space consists of four parts:

• The designer/design team.
• Fuzzy preference handling (for objective importance specification).
• Dynamic constraints handling (scenarios, etc.).
• Analytic module for multi-objective optimisation.

Furthermore, such a design space must be suited to applied concurrent engineer-
ing design in an integrated collaborative design environment in which automated
continual design reviews may be conducted throughout the engineering design pro-
cess by remotely located design groups. Therefore, interaction with the designer (or
design team) is very important. The goal is to provide the designer with a multi-
ple criteria decision aid for multiple criteria decision-making during the conceptual
phase of the engineering design process.

The methodology is generic and could be easily integrated with other conceptual
design problems. Such a computer/human design space is illustrated in Fig. 5.45.

b) Preferences and Fuzzy Rules

The problem of qualitative versus quantitative characterisation of the relative impor-
tance of objectives in a multi-objective optimisation framework is usually encoun-
tered during the conceptual design phase. At this initial stage of the engineering
design process, it is much easier for the designer to give qualitative definition to the
objectives (i.e. ‘objective A is much more important than objective B’) than to set
a weighted value of objective A to, say, 0.1 or to 0.09. The method of fuzzy prefer-
ences and induced preference order is used for information transformation in which
predicates are introduced (Fodor et al. 1994).

Table 5.23 shows the relation and intended meaning of some predicates.
These predicates, together with the complementary relations of > and �, can

help build the relationship matrix R necessary for ‘words to numbers’ transfor-
mation, and the induced order for the relation R. Integrated preferences in multi-
objective optimisation techniques basically include two methods: one that uses

Fig. 5.45 Schema of a con-
ceptual design space

Designer
(engineer)

Optimisation
module

Fuzzy rules
module

Constraint
module
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Table 5.23 Fuzzy and induced preference predicates

Relation Intended meaning

≈ Is equally important
< Is less important
� Is much less important
# Do not know
¬ Is not important
! Is important

weighted sums, and one that uses a modified Pareto method that computes the ob-
jective weights.

c) Dynamic Constraints and Scenarios

The other second tier module from Fig. 5.45 handles dynamic constraints and sce-
narios. Each scenario is a set of additional constraints or objectives that the designer
can change, add and/or delete interactively. More formally, a scenario is represented
as conjunctions of relations (constraints) in a fairly precise mathematical/modelling
language. Each scenario is a function of variables, objectives and possible additional
parameters. In an optimisation framework, these scenarios could return a value as
a percentage of the relations satisfied for given input values. The concept behind the
scenarios is that the designer can specify conditions that are not part of the mathe-
matical model (such as ‘set y5 ∈ [0,4] or, if not possible, then set y1 + y3 > 100’).
This allows the designer to focus on certain regions of the design space. An ad-
ditional advantage is that scenarios are dynamic and are interpreted ad hoc without
any change to the program or model, and can be added, modified or deleted ‘online’.

Integrating scenarios in the design space provides the ability to assign a different
level of importance to each scenario, and to calculate the value of a set of scenarios
in different ways:

• Using weights or preferences for specifying scenario importance.
• Calculating multiple scenario values.
• Considering only one scenario at a time.

The third approach is adopted in the automated methodology presented in Sect. 5.4,
as it enables the use of various imbedded software programs (analytic methods)
that can analyse the various scenarios and signal any possibility or impossibility of
satisfying the design constraints.

In the application of optimisation algorithms in artificial intelligence-based
(AIB) modelling within a blackboard model, such as presented in Sect. 5.4, there
is no need for specifying, quantitatively or qualitatively, the importance (as in the
first method) or order (as in the second method) of the various scenarios.
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d) The Optimisation Module

Optimisation in the early phases of engineering design represents a rather insignifi-
cant part of the overall design problem. The fuzzy nature of initial design concepts,
and efficient exploration across the many different variants that the designer needs
to assess are of greater interest. The methods of design preferences and scenarios
are integrated with analytic techniques such as evolutionary algorithms, genetic al-
gorithms and/or artificial neural networks to perform multi-objective optimisation
in designing for safety.

Evolutionary computing (including evolutionary algorithms, genetic algorithms,
and related models such as artificial neural networks) is based on a continuous and
probabilistic representation of algorithmic optimisation (e.g. weight matrices) that
would likely be able to provide the best scenario for design optimisation, in the
sense that it achieves a better design with respect to performance, depending on the
design problem (Cvetkovic et al. 1998).

5.3.1.2 Evolutionary Computing and Evolutionary Design

Design optimisation is a fairly common computational approach that attempts to
utilise design requirements as an integral part of the design space. Design optimisa-
tion views requirements as a fixed set of criteria, and creates an evaluation function
(referred to as the fitness function in artificial intelligence literature) against which
the design solutions are weighed. However, design is seldom a static activity in
time, especially during conceptual design. Requirements as well as design solutions
change as the search for the best design progresses. This places a significant demand
on the development of a suitable computational environment for interdisciplinary
design collaboration in which various techniques for design concept generation as
well as the evolution of design requirements and solutions are established, prompt-
ing a need for evolutionary techniques for design optimisation (Tang 1997).

The integration of evolutionary computing with artificial intelligence-based
(AIB) design methodology allows for the development and integration of the ba-
sic building blocks of design (or examples of past or existing designs) that are rep-
resented in a design knowledge base. Several general-purpose design knowledge
sources (or support systems) are similarly developed to support the design knowl-
edge base. The design knowledge sources (or support systems) are developed to
support the following design activities (Tang 1997):

• synthesis of conceptual design solutions from building blocks of design models
and design requirements, using inductive learning,

• transferring conceptual design solutions into detailed design models containing
spatial, geometric and structural knowledge,

• manipulation and partition of detailed design models into smaller design problem
spaces containing suitably constrained design variables and constraints,

• searching for solutions in the partitioned design problem spaces using evolution-
ary computing techniques,



682 5 Safety and Risk in Engineering Design

Fig. 5.46 Selecting design objects in the design knowledge base

• exploration of alternative design solutions when considering different design is-
sues,

• documentation and explanation of design results.

The design knowledge base and design knowledge sources form the core of an in-
tegrated design support system. An artificial intelligence-based blackboard system
is used to control the design knowledge sources and integrate the knowledge-based
design applications. The design knowledge base contains design objects, constraints
in terms of intended function and interfaces, as well as detailed information in terms
of materials and geometry, etc.

The design knowledge base is developed by a knowledge engineer or by the var-
ious design teams. The design objects in the design knowledge base can be selected
and synthesised to generate conceptual design solutions, as graphically indicated
in Figs. 5.46 and 5.47. At an abstract level, a conceptual design solution identifies
the basic components and their topological arrangement to the satisfaction of initial
design requirements. At the early stages of the design process, many alternative con-
ceptual design solutions must be analysed, evaluated and selected before confirming
a design concept that can progressively evolve in detail for further investigation.

Once a conceptual design solution is selected, it is transformed into a schematic
design model using the knowledge stored in advance in the design knowledge base.
A schematic design model contains design variables and constraints describing the
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Fig. 5.47 Conceptual design solution of the layout of a gas cleaning plant

Fig. 5.48 Schematic design model of the layout of a gas cleaning plant
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Fig. 5.49 Detail design model of the scrubber in the layout of a gas cleaning plant

structural and geometric feature of the design. A schematic design model of the gas
cleaning plant is graphically illustrated in Fig. 5.48.

After evaluation of the design variables and constraints describing the structural
and geometric feature of the design, a detail design model is prepared. In process
engineering design, a detail design model typically has variables and constraints
representing embodiment, structure and assembly, and dynamic flow and energy
balance information of the process layout. A detail design model of the scrubber
system of the gas cleaning plant is graphically illustrated in Fig. 5.49. A detail de-
sign model is computationally represented as a network of design variables and con-
straints that can be manipulated to identify critical equipment, for example, using
constraint-based techniques (Smithers et al. 1990).

The network of design variables and constraints of a detail design model can be
partitioned into smaller sets to identify relations. AI-based search methods, such as
genetic algorithms and neural networks, can then be used to find a set of design
variable values that best satisfy the constraints. This partition can be done based on
the following:

• mathematical relations of the design variables,
• assembly of the detail process model,
• configuration of the systems layout,
• heuristics introduced by designers.
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A partition of the constraint network identifies a small region of the design space
in which, for example, design variables and constraints are evaluated to identify crit-
ical equipment in designing for safety, and explored using evolutionary computing
techniques such as evolutionary algorithms.

a) Fundamentals of Evolutionary Algorithms (EA)

Evolutionary algorithms (EA) are stochastic search and optimisation heuristics de-
rived from classic evolution theory. The basic idea is that if only those individuals
of a population reproduce that meet a certain selection criteria, and the other indi-
viduals of the population die, then the population will converge to those individuals
that best meet the selection criteria. If imperfect reproduction is included, the pop-
ulation begins to explore the search space and will move to individuals that have an
increased selection probability, whereby this property is passed down to their de-
scendants through inheritance. This population dynamics follows the basic rule of
evolution theory, which can best be described as ‘survival of the fittest’. To solve
optimisation problems with an evolutionary heuristic, the individual items of a pop-
ulation group have to represent a possible solution of a given problem, and the se-
lection probability is set proportional to the quality of the represented solution. The
quality of the represented solution is termed the fitness (F) of the individual item.

For example, let A, B, C represent sets of items or population groups, and the
current generation of the evolutionary process be indicated by s. Furthermore, a sin-
gle individual item with the index i from the population A(s) is represented by ai(s).
The quality of the solution represented by an individual item is termed the fitness Fi

of the individual item ai(s). The selection probability of an individual item ai(s) is
indicated by pi. When a description of alternative solutions consists of n elements,
the ith element forming a possible solution is termed attribute xi. An individual item
consists of several attributes x that could represent a possible solution that can then
be optimised. An EA heuristic follows this scheme (Bäck 1994):

1. initialise a population group A(s = 0)
2. evaluate fitness of all ai from A(s)
3. select the fittest ai as parents B(s) from A(s)
4. reproduce descendants C(s) from B(s).

Deductively, until a specific criterion is met, it thus follows that

A(s+1) = C(s) (5.96)

In the first step, a population of random possible solutions is identified. The EA
generational loop is then initialised whereby the fitness Fi for each individual item
ai(s) within the current population A(s) is evaluated. The best individual items ai

are selected from the population A(s) as parents B(s) for the next generation. The
selection probability pi is set proportional to the fitness Fi of the individual item.
From the selected parents B(s), descendants are reproduced to form the popula-
tion C(s). In all EA heuristics, either the descendants are imperfect clones of the



686 5 Safety and Risk in Engineering Design

parents with small variations, or the descendants are the product of multiple parents
and inherit some attributes from the associated parents. The descendants C(s) form
the next generation denoted by the expression A(s+1) = C(s).

A significant property of EA heuristics is that the search space is not explored
by starting with only one possible solution but rather with a whole population of
possible solutions, in which the individual items of a population group can inter-
exchange solution attributes. Thus, compared with general optimisation techniques,
an EA heuristic is more resistant to premature convergence towards a local optima
in the search space.

Evolutionary computing techniques address design problems as a goal-directed
search problem. This evolutionary approach is useful in engineering design applica-
tions. In such applications, the goal is to minimise the number of constraints that are
violated in a particular design solution. The process of exploring a design solution
involves symbolic computation in terms of constraint propagation and satisfaction.
This exploration process is common to most engineering design domains. However,
whilst the evolutionary computing approach relies more on automatic formation and
evolution of design concepts, the EA heuristic approach emphasises the use of sym-
bolic computation and heuristic-based evaluation and selection of a potentially large
number of solutions, before any automatic searching methods are used (Tang et al.
1997).

The latter is particularly important in engineering design where the search space
for a design solution needs to be confined to a small region. The EA heuristic ap-
proach can be usefully employed, applying specific techniques such as genetic al-
gorithms that seamlessly scale between the exploration of the search space through
genetic crossover and mutation, and the exploitation of known optima through the
selection of fit individual items.

b) Fundamentals of Genetic Algorithms (GA)

Genetic algorithms (GA) originated from the work of John Holland and exhibit the
most obvious mapping of natural evolutionary processes into a computer system,
because they focus on the coding of attributes into a set of genes. The most common
method of coding attributes is binary coding into a bit-string that represents these
genes. Thus, some biological terms are used to illustrate the functionality of genetic
algorithms (Holland 1992).

GA individual items GA individual items store the solution attributes in a coded
representation. The most common representation is the binary coding of an attribute
in a chain of bits. The bit-string consists of L number of bits, which are clustered
into meaningful data representing information typically in the form of semantics,
such as words, wi. The decoded words w are the solution attributes x, which are
to be optimised. Each attribute xi is assigned to the word wi. In the simplest case,
a word codes a real number. In this case, the real number attributes are limited to
a range of values, since the length l of a word is always limited.
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If the range of an attribute and the length l of a word wi are given, then the
attribute is fixed to a real number. This coding is called standard binary coding.
Similar coding styles can be found for nearly every data type that can be used as an
attribute of a GA individual item, and can thus be optimised using the GA search
heuristic. After the attributes xi of an individual item have been determined—for
instance, by decoding the word wi—the fitness Fi can be calculated by using a target
function F(xi) as the fitness function. After the fitness for every individual ai of
the population A(s) has been calculated, the best individual items of the population
group A(s) are selected to be the parents of the next generation A(s + 1). This is
called Holland’s fixed-length coding (Holland 1992).

The main advantages of genetic algorithms are that they are very easy to imple-
ment and they can be applied to nearly every kind of optimisation problem. Because
of the general binary coding style, almost any data type can be stored in an individ-
ual item and then be optimised by the GA heuristic. However, there are also some
drawbacks using binary coding. For example, if real numbers are used as attributes,
they become discretised (i.e. distinctively separate) and, because of the non-linear
behaviour of standard binary coding, the search space for a design solution that is
confined to a small region can get disrupted.

5.3.2 Analytic Development of Safety and Risk Assessment
in Preliminary Design

For safety systems of which the failure could result in loss of life, it is imperative
that the best use is made of systems that are optimal and not just adequate, and that
a design optimisation scheme is applied for systems that require a high likelihood
of functional reliability on demand. Considering a more advanced analytic develop-
ment of safety and risk assessment in preliminary design, a genetic algorithm (GA)
is used to perform design optimisation, resulting in a design specification for later
evaluation during the detail design phase. Analyses of system designs are carried
out using the latest advances in fault-tree analysis (FTA), utilising the binary deci-
sion diagram (BDD) approach whereby the method can be applied to high-integrity
protection systems (HIPS). Varying parameters, which inevitably affect the action
of the GA, are thus considered to determine areas where the application of genetic
algorithms for safety and risk assessment in preliminary design could be improved.

5.3.2.1 Genetic Algorithms in Optimal Safety System Design

Failure of a safety system for a potentially hazardous industrial process may have
severe consequences, possibly resulting in personal injuries or loss of life. It is there-
fore imperative that such systems have a high likelihood of functioning on demand.
One measure of system performance is the probability that the system will fail to
operate when required. Typically, the preliminary design of a safety system follows
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the traditional design process of analysis, assessment, appraisal and redesign. If,
following analysis, the preliminary design does not meet some predetermined ac-
ceptability target for system reliability, then deficiencies in the design are removed,
and the assessment and appraisal stages are repeated.

Once the predicted system reliability of a design reaches the acceptable criteria,
the design process stops and the system is adopted. For a system of which the failure
could result in fatality, it would inevitably be considered that a merely adequate level
for system reliability is not sufficient. It is highly unlikely, however, that the design
parameters can be manually selected such that optimal system performance can be
achieved within the set design criteria and constraints.

An approach by which optimal performance can be obtained, using the fault-tree
analysis (FTA) method to determine the availability of each system design, was pre-
viously described in Sect. 5.2.3.2 dealing with design optimisation in designing for
safety. The method is in the form of an iterative scheme that produces a sequence of
system designs gradually improving the safety system performance. When the de-
sign can no longer be improved due to restrictions of the design criteria constraints,
the optimisation procedure terminates (Andrews 1994).

An alternative methodology is presented (Andrews et al. 1997), which incorpo-
rates the latest advances in the fault-tree analysis technique, based on binary deci-
sion diagrams and utilising a genetic algorithm (GA) to perform the optimisation
(Painton et al. 1995).

Further research into utilising a genetic algorithm to perform design safety opti-
misation considers the effects of modifying the GA process and the parameter values
used, in order to make the GA process more accurate and effective (Pattison et al.
1999).

a) Safety Design Considerations

Safety systems are designed to operate when certain conditions occur, and to pre-
vent their development into a hazardous situation. Where possible, safety systems
should not be designed so that single component failures can prevent the system
from functioning. To ensure this, several options are available (Pattison et al. 1999):

• Redundancy or diversity can be incorporated into the system. Redundancy dupli-
cates elements within a system, while diversity involves the addition of a totally
different means of achieving the same function.

• Component selection is another design option. Each component selected for the
design is chosen from a group of possible alternatives. The design engineer must
decide how to trade off the specific characteristics of each component to give the
most effective overall system performance.

• The time interval between preventive maintenance activities is a further consid-
eration. This is generally assigned on an ad hoc basis after the design has been
fixed. Significant gains are to be made by considering the maintenance frequency
at the design stage.
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The choice of design is not unrestricted, in that practical considerations place
limits on resources both during the design stage as well as in the later stages of the
engineered installation, preventing a completely free choice of system design and
rendering some design variations infeasible.

b) The Design Optimisation Problem

The objective of the design optimisation problem is to maximise design integrity
by minimising system unreliability and unavailability through manipulation of the
design variables such that constraint propagated limitations are not violated. Dif-
ferent optimisation approaches to determine optimal design solutions have included
dynamic programming, integer programming, mixed integer programming, as well
as non-linear programming and heuristics. Dynamic programming in this context
is applicable to maximise reliability for a system given a single cost constraint in
which the problem is to identify the optimal levels of redundancy (Bellman et al.
1962).

The dynamic programming approach can also be applied to more difficult design
problems in which a system has multiple sub-systems and components, each with
constraints on cost and weight. For each sub-system, several component choices
are made with different reliability, cost and weight. However, to accommodate such
multiple constraints, the use of a Lagrangian multiplier within the objective func-
tion is essential (Fyffe et al. 1968). While such a formulation provides a selection
of different components, the search space is restricted to consider only solutions
where identical components are in parallel. The use of a Lagrangian multiplier with
dynamic programming is, however, often inefficient, necessitating the use of a sur-
rogate constraints approach (Nakagawa et al. 1981).

An alternate approach to the design optimisation problem has been to use integer
programming. In applying integer programming, it is necessary to restrict the search
space and prohibit mixing of different components within a sub-system. To max-
imise reliability given non-linear but separable constraints, many variations of the
problem can be transformed into an equivalent integer programming problem, using
a branch-and-bound approach (Ghare et al. 1969). The design optimisation problem
can also be formulated as a multi-objective decision-making problem with distinct
goals for reliability, cost and weight (Misra et al. 1991). There have been several ef-
fective uses of mixed integer and non-linear programming to solve the redundancy
allocation problem in optimising a specific design. In these problems, component
reliability is treated as a continuous variable, and component cost is expressed as
a function of reliability and several other parameters (Tillman et al. 1977).

While the redundancy allocation problem in design optimisation has been stud-
ied in great detail and, in practice, many system designs use multiple different (yet
functionally similar) components in parallel, two areas that have not been suffi-
ciently analysed are the implications of mixing functionally similar components
within a parallel sub-system, and the use of k-out-of-n: G redundancy (k > 1). A typ-
ical example is the determination of solutions to the redundancy allocation problem
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for a system design comprising series-parallel components in a high-integrity pro-
tection system (HIPS). In such cases, use of genetic algorithms (GAs) in design
optimisation is most appropriate. The power of genetic algorithms is that they can
easily be adapted to diverse design scenarios including those with functionally simi-
lar components, k-out-of-n: G redundancy, and more complex forms of redundancy.

c) Genetic Algorithms (GAs)

The use of genetic algorithms (GAs) in designing for safety in process engineer-
ing systems is a new approach to determining solutions to the redundancy alloca-
tion problem for a series-parallel system design comprising multiple components
in a high-integrity protection system (HIPS). In such design problem formulations,
there are specified numbers of sub-systems and, for each sub-system, there are mul-
tiple component choices that can be selected and used in parallel. For designed sys-
tems using off-the-shelf component types, with known cost, reliability and weight,
system design and component selection become a combinatorial optimisation prob-
lem where new system designs are composed largely of standard component types
(pressure sensors, pressure control valves, etc.) with known characteristics. The
problem is then to select the optimal combination of components with specific levels
of redundancy, to collectively meet reliability and weight constraints at a minimum
cost or, alternatively, to maximise reliability given cost and weight constraints.

The GA optimisation approach is one of a family of heuristic optimisation tech-
niques that has been demonstrated to converge to the optimal solution for many
diverse, difficult problems, although optimality cannot always be guaranteed. The
ability of the GA to efficiently find good solutions often depends on properly cus-
tomising the encoding, operators and fitness measures to the specific engineering
design problem. Genetic algorithms have been used to solve many difficult combi-
natorial optimisation problems with large and complex search spaces.

For a fixed design configuration and known incremental decreases in component
failure rates and their associated costs, a GA can be used to find maximum reliability
solutions to satisfy specific cost constraints. The algorithm can be formulated to
optimise reliability, mean time between failure (MTBF), and availability (Painton
et al. 1995).

Genetic algorithms have also been used in the analysis of series-parallel systems
with multiple sub-systems and unique component choices for each sub-system (Coit
et al. 1994), and to find solutions to the redundancy allocation problem where there
are several failure modes (Ida et al. 1994). An interesting feature of this work, which
will be considered in greater detail in a later section, is the use of neural network
approximations to sub-system reliability, instead of exact solutions.

The GA methodology A genetic algorithm (GA) is a stochastic optimisation tech-
nique patterned after natural selection in biological evolution (Goldberg 1989). The
main advantage of the GA is that there are very few restrictions on the form of
the solutions. The GA thoroughly examines the search space, and readily identifies
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design configurations that will improve the final solution but would not be identified
using prior dynamic programming, integer programming or non-linear program-
ming formulations of the same design optimisation problem. The GA methodology
is characterised by:

• Encoding of solutions.
• Generation of an initial population.
• Selection of parent solutions for breeding.
• Crossover breeding operator.
• Mutation operator.
• Culling of inferior solutions.
• Iteration, i.e. repetition of steps 3–6 until termination criteria is met.

An effective GA depends on complementary crossover and mutation operators. The
effectiveness of the crossover operator dictates the rate of convergence, while the
mutation operator prevents the algorithm from prematurely converging to local op-
tima. The number of children and mutants produced with each generation are vari-
able parameters that are held constant during a specific trial (Smith et al. 1996).

Solution encoding Traditionally, solution encoding has been a binary string, as
considered later in the example. For combinatorial optimisation, however, an encod-
ing using integer values can be more efficient. Each possible solution to the redun-
dancy allocation problem can be viewed as a collection of components in parallel
for each sub-system. The selected components can be chosen in any combination
from among the available components. These selected components are indexed in
descending order of reliability (1 being the most reliable, etc.). The solution encod-
ing is a vector representation in which each of the sub-systems is represented by the
selected components, which form a particular solution and are listed according to
their reliability index. The sub-system representations are then placed adjacent to
each other to complete the vector representation.

As an example, consider a system with sub-systems s = 3, with available com-
ponents for each sub-system equating to m1 = 5, m2 = 4, m3 = 5, and the max-
imum number of components predetermined to be nmax = 5. The solution string
vq = (11 666|22 355|46 666) represents a prospective solution with two of the most
reliable components used in parallel for the first sub-system, two of the second most
reliable, and one of the third most reliable components used in parallel for the sec-
ond sub-system, and one of the fourth most reliable components used for the third
sub-system. Certain assumptions are inevitably made, typically:

• The component reliabilities are known and deterministic.
• Failures of individual components are independent.
• All redundancy is active redundancy without repair.

Initial population In general, the minimum effective population size would grow
with problem size. For example, for a given population size P, the initial population
is determined by randomly selecting p solution vectors. For each solution, s inte-
gers are randomly selected to represent the number of components in parallel ni for
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a specific sub-system. Then, ni components are randomly and uniformly selected
from among the mi components that are available. The selected components are se-
quenced in accordance with their reliability.

Objective function A typical objective function of the redundancy allocation prob-
lem in design optimisation is the sum of the reliability or cost, and a dynamic penalty
function determined by the relative degree of infeasibility of the solution set. Thus,
in the specific case of a redundancy allocation problem for a series-parallel system,
the problem formulation is to maximise reliability (problem P1) or to minimise cost
(problem P2), given that these constraints are specified for each sub-system.

This is given in the algorithmic expressions of

Problem P1:

max
x

∏
i=1

Ri(xi|ki) (5.97)

Problem P2:

min
s

∑
i=1

Ci(xi) ≤ C (5.98)

s

∑
i=1

Wi(xi) ≤ W

where:

Ri(xi|ki) = reliability of sub-system i, given k
Ci(xi) = total cost of sub-system i
Wi(xi) = total weight of sub-system i
ki = minimum number of components in parallel

required for sub-system i to operate.

Within the two problem formulations, system weight and cost are often defined as
linear functions because this is a reasonable representation of the cumulative effect
of component cost and weight. Using probability principles, it can be shown that
system reliability can be expressed as a function of the decision variable xi, as indi-
cated in Eq. (5.99) below. However, with such a general form of system reliability,
it is not possible to determine a linearly equivalent objective function or constraint,
as is done in integer programming formulations.

Rs(x1,x2, . . .,xs|k) =
x

∏
i=1

Ri(xi|ki) (5.99)

Dynamic penalty function It is important to search through the infeasible region
of the solution set, particularly for highly constrained problems, because in most
cases the optimal solution can efficiently be reached via the infeasible region and,
often, good feasible solutions are a product of breeding between a feasible and an
infeasible solution.
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To provide an efficient search through the infeasible region, but to ensure that
the final best solution is feasible, a dynamic penalty function based on a significant
criterion is defined to incrementally increase the penalty for infeasible solutions.

For cost minimisation (problem P2), the objective and penalty functions are de-
fined as follows

f (λ ,vq) =
s

∑
i=1

Ci(xi)+P(λ ,vq) (5.100)

where:

s = total number of sub-systems
λ = Lagrangian multiplier vector
vq = vector encoding of solution q
f (λ ,vq) = fitness for the q member of the population
Ci(xi) = objective function for total cost of sub-system i
P(λ ,vq) = penalty function for q member of the population.

Crossover breeding operator The crossover breeding operator provides a thor-
ough search of areas of the sample space that demonstrate to produce good solu-
tions. For the developed GA, parents are selected based on the ordinal ranking of
their objective function. A uniform random number U , between 1 and p, is selected,
and the solution with the ranking closest to U is selected as a parent, following an
appropriate selection procedure (Smith et al. 1993). The crossover operator retains
all identical genetic information from both parents, and is then randomly selected
with equal probability from either of the two parents for components that differ.
Because the solution encoding is ranked, matches will inevitably be found.

Mutation operator The mutation operator performs random perturbations to se-
lected solutions. A predetermined number of mutations within a generation is set
for each GA trial. Each value within the solution vector, which is randomly selected
to be mutated, is changed with probability equal to the mutation rate. A mutated
component is changed with 50% probability, and a randomly chosen component
with 50% probability (Smith et al. 1996).

Evolution A survival of the fittest strategy is employed. After crossover breeding,
the p best solutions from among the previous generation and the new child vec-
tors are retained to form the next generation. The fitness measure is the objective
function value.

Mutation is then performed after culling inferior solutions from the population.
The best solution within the population is never chosen for mutation, to ensure that
the optimal solution is never altered via mutation. The GA is terminated after a pre-
selected number of generations, although the optimal solution is usually reached
much earlier.
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d) Systems Analysis with GAs and Fault Trees

Commonly with mathematical optimisation problems, such as linear programming,
dynamic programming and various other optimisation techniques, an explicit objec-
tive function is derived that defines how the characteristic to be minimised is related
to the variables. However, in many design optimisation problems, an explicit objec-
tive function cannot be formulated, and system performance is assessed by fault-tree
analysis (FTA). This is often the case in safety systems design. The nature of the de-
sign variables also adds difficulty to the problem. Design variables that represent the
levels of duplication for fully or partially redundant systems, as well as the period
between preventive maintenance, are all integer. Furthermore, selecting component
types is governed by Boolean variables, i.e. selection or non-selection.

A numerical scheme is therefore required that produces integer values for these
variables, since it will not be appropriate to utilise a method where real numbers
are rounded to the nearest whole number. Constraints involved in this problem fall
into the category of either explicit or implicit constraints. Expected maintenance
downtime, for example, can be represented by an explicit function of the design pa-
rameters; however, the number of spurious process trips can be assessed only via
a full analysis of the system, which will again require employment of the fault-tree
analysis methodology. As no explicit objective function exists for most preliminary
designs of safety systems, particularly in redundancy allocation problems for design
optimisation, fault trees are used to quantify system unreliability and/or unavailabil-
ity of each potential design. It is, however, a time-consuming and impractical task
to construct a fault tree for each design variation, especially at the lower systems
hierarchy levels. To resolve this difficulty, select events can be used to enable the
construction of a single fault tree capable of representing causes of the system fail-
ure mode for each possible system design. Select events in the fault tree, which are
either TRUE or FALSE, are utilised to switch on or off different branches to model
the changes in the causes of failure for each design alternative.

As an example, consider the choice of a valve type, from the possible alternative
valves V1, V2 or V3 in a safety system (Pattison et al. 1999). The fault tree is shown
in Fig. 5.50.

If valve type V1 is selected, the select event H1 corresponding to the selection of
this valve is set to TRUE. Select events H2 and H3, corresponding to the selection
of V2 and V3, are conversely set to FALSE. A contribution to the top event arises
from the left-most branch only. The two right-most branches are, in effect, switched
off. Levels of redundancy are handled similarly. Furthermore, the spurious trip fre-
quency for each design is an implicit constraint that requires the use of fault-tree
analysis to assess its value. Select events are again used to construct a fault tree
capable of representing each potential design for this failure mode.
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Fig. 5.50 Fault-tree structure for safety valve selection (Pattison et al. 1999)

e) Algorithm Description Using Binary Decision Diagrams

A binary decision diagram (BDD) is a type of oriented graph used notably for the
description of algorithms. It basically consists of two types of nodes: the decision
or test node, and the output node. The decision node is equivalent to an if-then-
else instruction that realises a test on a binary variable and, according to this value,
indicates the following node. The output node produces a value.

There are two rules of BDD assemblage, namely that there is one and only one
initial node (the entry point of the algorithm), and that the output point of a node
can be connected to only one entry point of another node. More precisely, a BDD
is a rooted, directed, acyclic graph with an unconstrained number of in-edges and
two out-edges, one for each of the 1 and 0 decision paths of any given variable. As
a result, the BDD has only two terminal nodes, representing the final value of the
expression, 1 or 0—although occasionally the zero (false) node and edges leading
to it are omitted (Akers 1978; Bryant 1986).

To improve efficiency of analysis, the binary decision diagram (BDD) method is
used to solve the resulting fault tree. The BDD is composed of terminal and non-
terminal vertices that are connected by branches in the diagram. Terminal vertices
have the value of either 0 or 1, whereas the non-terminal vertices correspond to the
basic events of the fault tree. Each vertex has a 0 branch that represents the basic
event of non-occurrence (i.e. it works), and a 1 branch that represents the basic event
of occurrence (i.e. it fails). Thus, all paths through the BDD terminate in one of two
states—either a 1 state, which corresponds to system failure, or a 0 state, which
corresponds to system success. The BDD represents the same logical function as
the fault tree from which it is developed; however, the BDD produces more accurate
results. As an example, consider the BDD illustrated in Fig. 5.51.

The fault-tree structures for each system failure mode are converted to their
equivalent BDD. Analysis of a BDD has proven to be more efficient than the quan-
tification of the fault-tree structure because evaluation of the minimal cut sets for
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Fig. 5.51 Binary decision diagram (BDD) for safety valve selection

quantification is not required. For the purpose of BDD construction, select events
in the fault tree are treated as basic events. Using this process, the fault tree for the
component design variables that is shown in Fig. 5.50 is represented by the BDD in
Fig. 5.51.

The quantity q appearing on the 1 and 0 branches developed from each node in
Fig. 5.51 represents the probability of each path. The select events are turned on
or off by setting their probability to 1 or 0 respectively. Consider, for example, the
design where valve 1 has been selected for the fault tree shown in Fig. 5.50. This
is then presented by S1 = 1, S2 = 0, S3 = 0 for the select events and, hence, the
corresponding probabilities qS1 = 1, qS2 = 0 and qS3 = 0 are set on the equivalent
BDD. The only path to a terminal 1 node leaves V1 and S1 on their 1 branches, which
have probability qV1 . The probability values assigned to each select event, which are
determined by a particular design, are automatically assigned to the BDD. Thus, the
major advantage of the BDD is its practicality.

f) Example of Genetic Algorithm Application

As an example, the BDD methodology is applied to a high-pressure protection sys-
tem. The example is taken from Sect. 5.2.4.2 dealing with the structuring of the
cause-consequence diagram, in which the CCD diagramming technique was applied
to the simple high-pressure protection system as depicted in Fig. 5.34. The features
of this high-integrity protection system (HIPS) are shown in Fig. 5.52.

The function of the protection system is to prevent a high-pressure surge originat-
ing from process circulation pumps, to protect equipment located downstream of the
process. Returning to the previous example, the basic functions of the components
of the system are shown in Table 5.1. The first level of protection is the emergency
shutdown (ESD) sub-system with its specific pressure control valves (PCVs). Pres-
sure in the pipeline is monitored using pressure transmitters (P1, P2 and P3). When



5.3 Analytic Development of Safety and Risk in Engineering Design 697

Fig. 5.52 High-integrity protection system (HIPS): example of BDD application

Table 5.24 Required design criteria and variables

Design criteria Design variable

How many ESD valves are required? (0, 1, 2) E
How many HIPS valves are required? (0, 1, 2) H
How many pressure transmitters for each sub-system? (1, 2, 3, 4) N1, N2
How many transmitters are required to trip? K1, K2
Which ESD/HIPS valves should be selected? V
Which pressure transmitters should be selected? P
What should the maintenance interval be for each sub-system? θ 1, θ 2

the pipeline pressure exceeds the permitted value, the ESD system acts to close the
main PCV (V1) and sub-PCV (V2), together with the ESD valve (V3). To provide
an additional level of protection for high integrity, a second level of redundancy
is incorporated by inclusion of a high-integrity protection system (HIP sub-system).
This works in a similar manner to that of the ESD system but is completely indepen-
dent in operation with its specific pressure control valves, HIPS V1 (V4) and HIPS
V2 (V5). Even with a relatively simple system such as this, there are a vast number
of options for the engineering designer to consider. In this example, it is required to
determine values for the design variables given in Table 5.24.

Several constraints have been placed on the design criteria, as follows:

• The total system cost must be minimised.
• Spurious system shutdowns would be unacceptable if this was more than once

per year.
• The average downtime per year owing to preventive maintenance must be min-

imised.

Genetic Algorithm Implementation As previously indicated, genetic algorithms
(GAs) belong to a class of robust optimisation techniques that use principles mim-
icking those of natural selection in genetics. Each individual design at assembly
level, and at component level where such components have been identified in the
preliminary design phase, is coded as a string of parameter values where each string
is analogous to a chromosome in nature. The GA method is then applied with a pop-
ulation of strings, each string being assigned a measure of its fitness. Selection (or
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reproduction, as it is termed in genetics) then exploits this fitness measure. The
greater the fitness value, the higher is the string’s chance of being selected for the
next generation.

The entire process is influenced by the action of the genetic operators—typically,
crossover and mutation. Crossover involves crossing information between two so-
lution strings that are already selected to enter the next generation. Mutation is the
alteration of a parameter value on the solution string. Both operators enable explo-
ration of different system designs.

To specify a safety system design, a value is assigned to each of the ten design
variables given in Table 5.24. These values are then expressed in binary form, such
as a string of binary digits. Each variable is given a particular length, in order to ac-
commodate the largest possible value in binary form. In total, each string represent-
ing the design variables can be interpreted as a set of concatenated integers coded
in binary form. However, the restricted range of values assigned to each parameter
does not in each case correspond to the representative binary range on the solution
string. For this reason, a procedure is used to code and, in subsequent generations,
to check the feasibility of each string.

Evaluating String Fitness Constraints are incorporated into the optimisation by
penalising the fitness when they are violated by the design.

The fitness of each string consists of four parts (Pattison et al. 1999):

1. Probability of system failure unreliability.
2. Penalty for exceeding the total cost constraint.
3. Penalty for exceeding the total maintenance downtime constraint.
4. Penalty for exceeding the spurious trip constraint.

The result is a fitness value for each design, which can be referred to as the pe-
nalised system unreliability of design. Calculating this system unreliability involves
derivation of the penalty formula for excess cost, spurious trip occurrences, and
maintenance downtime. If a particular design exceeds any of the stated limits, the
respective penalty is added to the system unreliability of design. The formula used
for the penalty function is described later. The penalised probability of system un-
reliability is thus calculated using the following expression

Q′
s = Qs +CP +TP +DP (5.101)

where:

Q′
s = penalised probability of system unreliability

Qs = un-penalised prob. of system unreliability
CP = penalty due to excess cost
TP = penalty due to excess spurious trips
DP = penalty due to excess maintenance downtime (DT).

Derivation of the Penalty Formula If the performance of a design is significantly
improved owing to comparatively small excesses in one or more of the constraints,
the specific design deserves further consideration. Conversely, excessive abuse of
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the limits with only a small degree of performance improvement implies that the
design be discarded.

It is essential that an appropriate penalty be applied to the system unreliability
when constraints are violated. For example, a spurious trip can affect the reliability
of the system and result in a loss of production. For this reason, a spurious trip is
expressed in terms of unreliability and cost. This is achieved using a multiplying
factor that, rather than being fixed, varies according to the system unreliability of
the design, as indicated in (Eq. 5.102) below.

A penalty function based on sub-system unreliability and cost is defined to in-
crementally increase the penalty. This requires careful consideration of unreliability
and cost minimisation of the design being penalised, where the objective and penalty
functions are defined as follows

fSystem =
s

∑
i=1

[1−Ri(xi)]−Ci(xi) (5.102)

where:

s = total number of sub-systems
xi = decision variable relating to system reliability
fSystem = fitness function for system unreliability and cost
Ri(xi) = objective function for total reliability of sub-system i
Ci(xi) = objective function for total cost of sub-system i.

In this expression of the fitness function, the relationship between unreliability and
excess cost is assumed to be linear. However, although small excesses in cost may be
tolerated, as the extra cost becomes much larger its feasibility should significantly
decrease. For this reason, an exponential relationship is preferred for the objective
function for the total cost of sub-system i, as given in (Eq. 5.102).

To illustrate this, consider a particular design in which a base level in system
performance is assumed and an unreliability value of 0.02 (i.e. 0.98 or 98% relia-
bility) for the system is considered reasonable. Should the cost of a design exceed
a certain base level (say, 1,000 units), the excess cost percentage should be reflected
in the system unreliability as a corresponding percentage improvement about that
base level. If the relationship between unreliability and excess cost is assumed to be
linear, a design that costs 1,100 units should show an improvement of at least 0.002
in unreliability (i.e. 10%). However, the multiplying factor of 0.002, or 10% of the
base level performance, is the area of concern if the value is a fixed percentage of
system unreliability. With such a fixed multiplying factor, the penalty formula does
not properly take into account system unreliability of comparative designs that are
being penalised.

To further illustrate this, consider the following example: design A costs 1,100
units and has an un-penalised system unreliability of 0.02 (reliability of 0.98 or
98%). The objective function for total system cost is given as the exponential re-
lationship of the ratio of total system costs to a base cost of 1,000 units, which is
modified by the power 5/4 (Pattison et al. 1999).
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This is expressed as
s

∑
i=1

Ci(xi) =
[Cs]
Cb

5/4

(5.103)

Applying the penalty function formula of (Eq. 5.102) then gives the following:

fSystem = 0.02× [1,100]
1,000

5/4

= 0.0225

The cost penalised fitness value is 0.0225, a fitness decrement of approximately
25% compared to the un-penalised unreliability of 0.02.

Design B costs 1,150 units but has an un-penalised system unreliability of 0.015
(i.e. reliability of 0.985 or 98.5%). Applying the penalty formula gives a cost pe-
nalised fitness value of 0.018, a fitness decrement of approximately 20% compared
to the un-penalised unreliability of 0.015. The comparative cost penalty for the fitter
string (design A) is thus greater by 5% (25–20%). The difference in un-penalised
system reliability between design A and design B is only 0.5%. Thus, the penalty
should take the fitness value of the system to be penalised into consideration. Con-
sider, therefore, a particular design with cost C. The percentage excess of the sys-
tem’s cost is calculated as Xc. The multiplying factor is then derived by calculating
Xc percent of the system unreliability of the engineering design under consideration.

Reproduction probabilities The fitness value, or penalised system unreliability,
is evaluated for each string. For the purpose of selection in the GA, each string is
assigned a reproduction probability that is directly related to its fitness value. In the
safety system optimisation problem, the smaller the fitness value, the fitter is the
string and, hence, the greater should be its chance of reproduction. For cases such
as these, a possible approach is to let the reproduction probability be one minus the
fitness value. However, the penalised system unreliability fitness values may result
in all reproduction probabilities of a string having similar values, thereby detracting
from the specific fitness information available to the GA. A more objective method
is required that retains the accuracy of each string’s fitness value during conversion
to its corresponding reproduction probability.

Converting the fitness value Each design receives a measure of its fitness. This
is the design string’s penalised system unreliability. However, this value is not in
an appropriate form to be used directly in the selection process of the GA, since the
smaller the fitness value, the better is the design. A specialised conversion method is
required that gives rise to weighted percentages in accordance with the fitness value
of each string. A system with a performance twice as good as that of another should
have twice the percentage allocation.

One conversion method is to allocate each string to one of three categories ac-
cording to its fitness value. Strings in category 1 are automatically given 0%, as this
category consists of poor system designs and these are eliminated from the succeed-
ing generation. Strings in category 2 contain relatively unfit designs, and are allo-
cated a relative portion up to a total of 5%. The strings that fall into category 3 are of
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ultimate interest. The remaining 95% is then allocated to each string, depending on
how much their fitness value exceeds a base limit of 0.1. The percentage allocated
to each category is fixed and, therefore, independent of the number of strings that
it contains. Problems occur, however, when a very high or a very low proportion
of strings fall into a particular category, and an improved method is required that is
able to cope with very diverse populations and simultaneously to show sensitivity
to a highly fit set of strings. This is done by proportioning the percentage allocation
for a category by a weighted distribution of the fitness value of each string in the
category and the number of strings it contains.

GA parameters The GA requires the following selection parameters to be set:

• population size,
• crossover rate,
• mutation rate and
• number of generations.

The values entered for these parameters have a marked effect on the action of the GA
and on the penalised system unreliability of the best overall string for each parameter
set. To obtain an indication of the effect of setting each parameter to a particular
value, the penalised system unreliability obtained is summed and averaged against
results obtained for the mutation rate, crossover rate and population size for the
example GA.

g) Results of the GA Methodology

The simple example GA is a very effective design tool in its application to the high-
pressure protection system shown in Fig. 5.47. The modified cost penalty and the
modified conversion method established the preferred GA methodology. This mod-
ified GA demonstrates the ability to find and explore the fittest areas of the search
space and it is able to differentiate between highly fit strings as the algorithm pro-
gresses, whereby retention of the best design over later generations is achieved. Us-
ing the modified GA, the characteristics of the best design obtained for the design
variables given in Table 5.24 are represented in Table 5.25.

Table 5.25 GA design criteria and variables results

Design criteria Design Sub-system
variable

ESD HIPS

How many ESD valves are required? (0, 1, 2) E 0 –
How many HIPS valves are required? (0, 1, 2) H – 2
How many transmitters per sub-system? (0, 1, 2, 3, 4) N1, N2 4 4
How many transmitters are required to trip? K1, K2 1 2
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5.3.3 Analytic Development of Safety and Risk Evaluation
in Detail Design

The engineering design process presents two fundamental problems: first, most en-
gineering systems have complex, non-linear integrative functions; second, the de-
sign process is fraught with uncertainty, typically when based on iterative evolu-
tionary computational design. This trial and error feedback loop in detail design
evaluation needs to be tightened by improving design analysis before the onset of
system manufacturing or construction (Suri et al. 1989).

Artificial neural networks (ANN) offer feasible solutions to many design prob-
lems because of their capability to simultaneously relate multiple quantitative and
qualitative variables, as well as their ability to form models based solely on minimal
data, rather than assumptions of linearity or other static analytic relations. Basically,
an artificial neural network is a behaviour model built through a process of learning
from forecast example data of the system’s behaviour. The ANN is progressively
modified using the example data, to become a usable model that can predict the sys-
tem’s behaviour, expressed as relationships between the model’s variables. During
the learning process, the network evaluates relationships between the descriptive or
explicative data (i.e. network inputs) and the outcome or explained data (i.e. network
outputs). The result of the learning process is a statistical model that is able to pro-
vide estimates of the likely outcome. The predictive power of the ANN is assessed
on test data excluded from the learning process.

Because ANNs need training data, experimental results or similar systems data
must be available. These, however, are usually limited, as large amounts of data
cannot easily be generated in the detail design phase of the engineering design pro-
cess. To obtain the best possible ANN models, and to validate results, strategies that
maximise learning with sparse data must be adopted. One such method is the ‘leave-
k-out’ procedure for training (Lawrence 1991). A small number, k, of vectors out
of the training vectors are held back each time for testing, and networks are trained,
changing the k holdback vectors each time. Since the size of each network is usually
modest for product design applications, and the number of training vectors small,
training progresses rapidly, and creating multiple networks is not a burden. Another
method for sparse training data is to insert ‘noise’ into the training set, creating
multiple variant versions of each training vector.

5.3.3.1 Artificial Neural Network Modelling

Predictive artificial neural network (ANN) modelling can relate multiple quantitative
and qualitative design parameters to system performance. These models enable en-
gineering designers to iteratively and interactively test parameter changes and eval-
uate corresponding changes in system performance before a prototype is actually
built and tested. This ‘what-if’ modelling ability both expedites and economises on
the design process, and eventually results in improved design integrity. ANN models
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can also supplement controlled experiments during systems testing to help ascertain
optimum design specifications and tolerances. Artificial neural networks have been
successfully applied to develop predictive networks for system performance sensi-
tivity studies of the effects of alterations in design parameters. After translating as
many parameters as possible into continuously valued numeric measures, so that
alternate designs can be better compared, a ‘leave-k-out’ training procedure is used
to develop predictive networks for performance on each of the quality tests, based
on the design parameter specifications. A sensitivity model for each neural network
is built by changing each design parameter in small increments across its range.
Design engineers can thus use the models interactively to test the effects of design
changes on system performance. In this way, designs can be optimised for perfor-
mance, given manufacturing and cost constraints, before prototype models are built
(Ben Brahim et al. 1992).

A further use of ANN models in engineering design is for the models to act as an
expert system, where rules are learned directly through system instances, rather than
defined through knowledge engineering. Artificial neural networks have also been
successfully applied in engineering design by training a multi-layered network to act
as an expert system in designing system mechanical components. The method uses
documented design policies, heuristics, and design computation to construct a rule
base (or decision table). The network is then trained on representative examples
adhering to this rule base. This approach, which uses neural networks in lieu of
expert systems, is advantageous in that rules are learned directly through design
examples, rather than through tedious and often problematic knowledge acquisition
(Zarefar et al. 1992).

A disadvantage of using neural networks in lieu of expert systems, though, is that
explanation and tracing through the reasoning process are impossible; the neural
networks then act essentially as a black box. The application of expert systems is
considered later in greater detail.

The disadvantage, however, of using expert systems on their own is the time re-
quired for analysis and formatting, which are increased and not decreased. Experts
systems are slow to develop and relatively expensive to update, as well as having
fundamental, epistemological problems such as the appropriateness in representing
knowledge in the form of decision rules or decision trees. The need to manually
update expert systems each time expertise changes is cumbersome, while with arti-
ficial neural networks, all that is required is to launch a new learning process. The
immense advantage of ANN models in lieu of expert systems is that analysis pro-
ceeds directly from factual data to the model without any manipulation of example
data.

Artificial neural networks (ANN) can also be mathematically termed as univer-
sal approximations (according to Kolmogorov’s theorem; Kolmogorov 1957), in
that they have the ability to represent any function that is either linear or non-linear,
simple or complicated. Furthermore, they have the ability to learn from representa-
tive examples, by error back propagation. However, artificial neural networks supply
answers but not explanations. The ANN model embodies intuitive associations or
correlations, not causal relations or explanations. ANN models are predictive (i.e.
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close to reality) and associative (i.e. include typical profiles) but not descriptive. Ex-
amining the artificial neural network itself only shows meaningless numeric values.
The ANN model is fundamentally a black box. On the other hand, being contin-
uous and derivable, one can explore ANN models beyond simple statistical inter-
rogation to determine typical profiles, explicative variables (network inputs), and
apply example data to determine their associated probabilities. Artificial neural net-
works have the ability to account for any functional dependency by discovering (i.e.
learning and then modelling) the nature of the dependency without needing to be
prompted. The process goes straight from the data to the model without intermedi-
ary interpretation or problem simplification. There are no inherent conditions placed
on the predicted variable, which can be a yes/no output, a continuous value, or one
or more classes among n, etc. However, artificial neural networks are insensitive to
unreliability in the data.

Artificial neural networks have been applied in engineering design in predictive
modelling of system behaviour using simulation augmented with ANN model in-
terpolation (Chryssolouris et al. 1989), as well as in interpolation of Taguchi robust
design points so that a full factorial design can be simulated to search for optimal
design parameter settings (Schmerr et al. 1991).

An artificial neural network is a set of elements (i.e. neurodes or, more com-
monly, neurons) linked to one another, and that transmit information to each other
through connected links. Example data (a to i) are given as the inputs to the ANN
model. Various values of the data are then transmitted through the connections, be-
ing modified during the process until, on arrival at the bottom of the network, they
have become the predicted values—for example, the pair of risk probabilities P1
and P2 indicated in Fig. 5.53.

a) The Building Blocks of Artificial Neural Networks

Artificial neural networks are highly distributed interconnections of adaptive non-
linear processing elements (PEs), as illustrated below in Fig. 5.54.

The connection strengths, also called the network weights, can be adapted so that
the network’s output matches a desired response. A more detailed view of a PE is
shown in Fig. 5.55.

An artificial neural network is no more than an interconnection of PEs. The form
of the interconnection provides one of the key variables for dividing neural networks
into families. The most general case is the fully connected neural network. By defini-
tion, any PE can feed or receive activations of any other, including itself. Therefore,
when the weights are represented in matrix form (the weight matrix), it will be fully
populated. A (6×6) PE fully connected network is presented in Fig. 5.56.

This network is called a recurrent network. In recurrent networks, some of the
connections may be absent but there are still feedback connections. An input pre-
sented to a recurrent network at time t will affect the networks output for future time
steps greater than t. Therefore, recurrent networks need to be operated over time.
If the interconnection matrix is restricted to feed-forward activations (no feedback
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Fig. 5.53 Schematic layout of a complex artificial neural network (Valluru 1995)

Fig. 5.54 The building blocks
of artificial neural networks,
where σ is the non-linearity,
xi the output of unit i, x j the
input to unit j, and wi j are the
weights that connect unit i to
unit j

Fig. 5.55 Detailed view of
a processing element (PE)

nor self connections), the ANN is defined as a feed-forward network. Feed-forward
networks are instantaneous mappers, i.e. the output is valid immediately after the
presentation of an input. A special class of feed-forward networks is the layered
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Fig. 5.56 A fully connected ANN, and its weight matrix

Fig. 5.57 Multi-layer percep-
tron structure

class, also termed a multi-layer perceptron (MLP). This describes a network that
consists of a single layer of non-linear PEs without feedback connections. Multi-
layer perceptrons have PEs arranged in layers whereby the layers that receive input
are called the input layers, layers in contact with the outside world are called output
layers, and layers without direct access to the outside world, i.e. connected to the
input or output, are called hidden layers (Valluru 1995).

The weight matrix of a multi-layer perceptron can be developed as follows
(Figs. 5.57 and 5.58): from the example MLP in Fig. 5.57, the input layer contains
PEs 1, 2 and 3, the hidden layer contains PEs 4 and 5, and the output layer contains
PE 6.

Figure 5.58 shows the MLP’s weight matrix. Most entries in the weight matrix
of an MLP are zero. In particular, any feed-forward network has at least the main
diagonal, and the elements below it populated with zeros. Feed-forward neural net-
works are therefore a special case of recurrent networks. Implementing partially
connected topologies with the fully connected system and then zeroing weights is
inefficient but is sometimes done, depending on the requirements for the artificial
neural network. A case in point would be the weight matrix of the MLP below:
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Fig. 5.58 Weight matrix
structure for the multi-layer
perception

b) Structure of Artificial Neural Networks

A basic artificial neural network (ANN) structure thus consists of three layers: the
input layer, the hidden layer, and the output layer, as indicated in Fig. 5.59 (Haykin
1999).

This MLP works in the following manner: for a given input vector

[(x0)\ vec] = {a0, . . .ai} (5.104)

the following output vector is computed

[(o0)\ vec] = {c0, . . .ci} (5.105)

The ANN implements the function f where

f ([(x0)\ vec]) = [(o0)\vec] (5.106)

The basic processing element (PE) group of the MLP is termed the artificial
perceptron (AP). The AP has a set of input connections from PEs of another layer,
as indicated in Fig. 5.60 (Haykin 1999).

Fig. 5.59 Basic structure of
an artificial neural network
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Fig. 5.60 Input connections
of the artificial perceptron
(an,b1)

a0

a1 b1

an

Wan b1

Wa1 b1

Wa0 b1

An AP computes its output in the following fashion: the output is usually a real
number, and is the function of the activation, zi, where

bi = σi(Zi) (5.107)

The activation is computed as follows

zi = σ jw ja j (5.108)

δ = the activation function

There are many different activation functions (σ ) in use. ANNs that work with
binary vectors usually use the step-function:

σ(z) = 1

z ∈ [θ ,∞) else 0 (usually θ = 0)

These activation functions (σ ) are called threshold logic units (TLUs), as indi-
cated in the binary step-function illustrated in Fig. 5.61.

Fig. 5.61 The binary step-
function threshold logic unit
(TLU)

1
z

σ(z)

θ
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Fig. 5.62 The non-binary
sigmoid-function threshold
logic unit (TLU)

1

z

σ(z)

Graphic examples of threshold logic units (TLU) (Fausett 1994):

Non-binary ANNs often use the sigmoid function as activation function where the
parameter ρ determines the shape of the sigmoid, as indicated in Fig. 5.62 and in
Eq. 5.109

σ(z) = [1/(1+ ez/p)] (5.109)

The most significant advantage of an MLP is that the artificial neural network
is highly parallel. The MLP is also robust in the presence of noise (i.e. deviations
in input) where a small amount of noise will not drastically affect the output. Fur-
thermore, it can deal with unseen output, through generalisation from the learned
input-output combinations. The threshold function ensures that the activation value
will not go beyond certain values (generally, between 0 and 1) and prevents against
catastrophic evolutions (loop effect where values become higher and higher).

c) Learning in Artificial Neural Networks

The basic operation of each AP is to multiply its input values by a weight (one
per input), add these together, place the result into a threshold function, and then
send the result to the neurodes downstream in the following layer. The learning
mechanism of artificial neural networks is as follows: each set of example data is
input to the ANN, then these values are propagated towards the output through the
basic operation of each AP.

The prediction obtained at the ANN’s output(s) is most probably erroneous, espe-
cially at the beginning. The error value is then computed as the difference between
the expected value, and the actual output value. This error value is back-propagated
by going upwards in the network and modifying the weights proportionally to each
AP’s contribution to the total error value. This mechanism is repeated for each set
of example data in the learning set, while performance on the test set improves.

This learning mechanism is called error back propagation. The method is not
unique to artificial neural nets, and is a general method (i.e. gradient method) appli-
cable to other evolutionary computation objects.
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Fig. 5.63 Boolean-function
input connections of the
artificial perceptron (an,o0)

Table 5.26 Boolean-function input values of the artificial perceptron (an,o0)

a0 a1 z o0

0 0 0 0
0 1 1 0
1 0 1 0
1 1 2 1

For example, consider the input connections of the AP of an artificial neural
network implementing the Boolean AND function (θ = 2), as illustrated in Fig. 5.63
(Haykin 1999).

Consider all the possible values of the ANN implementing the Boolean AND
function (θ = 2) for a0, a1, z, and o0.

The two-dimensional pattern space of the AP can now be developed according
to the values given in Table 5.26. This is illustrated in Fig. 5.64. The TLU groups
its input vectors into two classes, one for which the output is 0, the other for which
the output is 1. The pattern space for an n input unit will be n-dimensional (Fausett
1994).

If the TLU uses threshold θ , then for the [(x0)\vec] input vector, the output for
the decision plane ∑∀i wi ai ≥ θ will be 1, else 0. The equation for the decision plane
is ∑∀i wi ai = θ , which is a diagonal line, as illustrated in Fig. 5.64. Thus, in the case
of the previous example:

w0a0 +w1a1 = θ ⇔ a1 = −(w0/w1) ·a0 +(θ/w1)

Learning rules Several learning rules are used to train threshold logic units
(TLUs), such as the gradient descent technique and the delta learning rule.

Fig. 5.64 Boolean-function
pattern space and TLU of the
artificial perceptron (an,o0)
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Fig. 5.65 The gradient de-
scent technique

Suppose y is a function of x (y = f (x)), f (x) is continuous, and the derivative
dy/dx can be found at any point. However, if no information is available on the
shape of f (x), local or global minimums cannot be found using classical methods
of calculus. The slope of the tangent to the curve at x0 is [dy/dx]x0 .

For small values of Δx, Δy can be approximated using the expression

y1 − y0 = [dy/dx]x0(x1 − x0) (5.110)

where:

Δy = y1 − y0

Δx = x1 − x0 .

Let:

Δx = dy/dx ·α ⇒ Δy

= α(dy/dx)2

where:

α is a small parameter not to overshoot any minimums or maximums.

Starting from a given point (x0) in Fig. 5.65, the local minima of the function f (x)
can be found by moving down the curve (Δx = dy/dx ·α), until Δy becomes neg-
ative (at that point, the curve has already started moving away from the local min-
ima). This technique is termed the gradient descent. The gradient descent technique
is used to train TLUs.

d) Back Propagation in Artificial Neural Networks

Consider the ANN of Fig. 5.66. Assume the neurodes are the TLUs α(x) = 0, ∀x
(Haykin 1999).

The back-propagation (BP) algorithm accounts for errors in the output layer us-
ing all the weights of the ANN. Thus, if a TLU in the output layer is off, it will
change weights not only between the hidden and output layer but also between the
input and hidden layer. The BP algorithm uses the delta learning rule expressed as
Δwi = α(t j − z j) ·a ji(Δx = dy/dxα).
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Fig. 5.66 Basic structure of
an artificial neural network:
back propagation

If the training set consists of the following pairs for the TLU:

〈[(x j)\vec],t j〉 , j = 0, . . .n and [(x j)\vec] = 〈a j0, . . .a jm〉

then the error for each pair is defined as

Ej = 1
2(t j −o j)2 · j (5.111)

The total error for the training set is

E = ∑∀ j
E j (5.112)

where Ej ∀ j is a function of the weights connected to the TLU.
Thus, for all possible weight vectors, there exists an error measure (E) for a given

training set. However, since the activation function is a step function, the error mea-
sure would not be a continuous function. The value o j must be changed to z j in the
definition of the error Ep, which means that the activation level is used, rather than
the produced output to compute the error. This yields a continuous function

Ej = 1
2 (t j − z j)2 j (5.113)

It can be shown that the slope of Ej with respect to the ith weight is: −(t j−z j) a ji;
the delta learning rule is thus expressed as

Δwi = α(t j − z j)a ji(Δx = dy/dxα) (5.114)

when working with the jth training pair. Thus, for a training set defined as:

〈[(x j)],t j〉 , j = 0, . . .,m , x j = 〈x j0, . . .,x jn〉 , and t j = 〈t j0, . . .,t jn〉
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i) Compute the output of the hidden layer using x j.
ii) Compute the output of the output layer using the output of the hidden layer

(b0 . . .bn).
iii) Calculate the error for each output node. For the kth output node:

δk = (t jk − zk), where zk is the activation of the kth output node.
iv) Train the output nodes using the delta rule, assuming mth hidden node, kth out-

put node is: Δwbmck = αδkbm.
v) Calculate the error for each hidden node. For the mth hidden node:

δm = ∑k=1...n δkwbmck where δk is the computed error for the kth output node.
vi) Train hidden nodes using the delta rule (assuming the hth input node, lth hidden

node): Δwahbm = αmx jh.

These steps are repeated for each training vector, until the ANN produces acceptable
outputs for the input vectors.

e) Fuzzy Neural Rule-Based Systems

The basic advantage of neural networks is that the designer does not have to pro-
gram the system. Take, for example, a complex ANN of which the input is an n×n
bitmap, which it recognises as the process equipment model (PEM) on the AIB
blackboard (assuming the ANN is capable of distinguishing between a vessel, tank
and container, then the input layer has n2 nodes, and the output layer has three nodes,
one for each PEM). In the ideal case, the designer does not have to write any code
specific, and simply chooses an appropriate ANN model and trains it. The logic of
each PEM is encoded in the weights and the activation functions.

However, artificial neural networks also have their drawbacks. They are funda-
mentally black boxes, whereby the designer does not know what part of a large
designed network is responsible for a particular part of the computed output. Thus,
the network cannot be modified to improve it.

ANN models are good at reaching decisions based on incomplete information
(i.e. if the input vector does not match any of the training vectors, the network
still computes a reasonable output in the sense that the output will probably be
close to the output vector of a training vector that, in turn, is close to the input).
Fuzzy rule-based systems are good at dealing with imprecise information. However,
determining their membership functions is usually difficult. The fuzzy rule-based
neural network basically makes up a membership function based on training vectors.

Consider for example, the fuzzy rules (Valluru 1995):

R1 : IF x is F1 THEN z is H1

R2 : IF x is F2 THEN z is H2

. . . and
Rn : IF x is Fn THEN z is Hn .

To teach this rule-base to an ANN, the training pairs are: ((F1,H1) . . . (Fn,Hn)).



714 5 Safety and Risk in Engineering Design

The problem is that the fuzzy sets Fi and Hi are both defined by their membership
functions μ , with domain R, the set of real numbers, the input vectors of the training
set having infinite elements.

Obviously, it is impossible to have infinitely large neural networks, so the mem-
bership functions are transformed so that they are discrete (by taking samples
at equal intervals). Furthermore, the range of the membership functions are con-
tained to the interval [0, 1]. If the range is [−∞,+∞], the transform T is then
D[−∞,+∞] → D[0,1].

This is termed a loss-less transformation. To graphically present this transfor-
mation, as illustrated in Fig. 5.67, draw a semicircle in the region defined by
0 < x < 1,0 < y < 0.5, with the centre (0.5, 0.5), and draw lines to all points on
the x-axis. T (x0) is the x coordinate of the intersection of the line crossing the x-axis
at x0 with the semicircle.

With k samples of the membership function at xi and i = 0 . . .k,xi = i/k, i, the
training set of the fuzzy neural network is:

{(μFi(x0),μFi(x1) . . .μFi(xk)),(μHi (x0),μHi(xi) . . .μHi(xk))|i = 0 . . .n}

The training set consists of pairs of sampled membership functions. The pairs
correspond to the rules of the fuzzy rule-based neural network considered. As in-
dicated previously, the advantage of fuzzy rule-based neural networks is the fact
that the designer does not have to program the system, and the fuzzy neural net-
work makes the membership functions. With the example above, the membership
functions were already known. In actual use of fuzzy ANN models, the membership
functions would be extracted from the training pairs using the ANN.

Fuzzy artificial perceptrons (FAP) Fuzzy T-norm functions have the following
properties:

T : [0,1]x[0,1]→ [0,1],T (x,y) = T (y,x),T (0,x) = 0 ,
T(1,x) = x,T (T (x,y),z) = T (x,T (y,z)) ,
x ≤ a∩ y ≤ b → T (x,y) ≤ T (a,b)

From the definition of intersection of fuzzy sets, the notation

μF∩G(x,y) = min(μF(x),μG(y)) is a T-norm, where x = y .

Fig. 5.67 Graph of member-
ship function transformation
of a fuzzy ANN
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Fig. 5.68 A fuzzy artificial
perceptron (AP)
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W x 0
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Fuzzy T-conorm functions have the following properties:

T : [0,1]x[0,1]→ [0,1],T (x,y) = T (y,x),T (0,x) = x ,
T(1,x) = 1,T (T (x,y),z) = T (x,T (y,z)) ,
x ≤ a∩ y ≤ b → T (x,y) ≤ T (a,b)

From the definition of union of fuzzy sets, the notation

μF∪G(x,y) = max(μF(x),μG(y)) is a T-conorm, where x = y .

A fuzzy artificial perceptron (AP) can now be defined; these are really ANNs with
two input neurodes (x and y), no hidden layer, and an output neurode o (Fig. 5.68).
The weights are wxo and wyo.

Fuzzy AND AP: x, y, o, wxo, wyo ∈ [0,1]. Where t is a T -norm function, s is
a T -conorm function: o = t(s(x,wxo),s(y,wyo)).

Fuzzy OR AP: x, y, o, wxo, wyo ∈ [0,1]. Where t is a T -norm function, s is a T -
conorm function: o = s(t(x,wxo),t(y,wyo)).

f) Artificial Neural Networks in Engineering Design

As indicated previously, an ANN is a computer model consisting of many simple
processing elements (PEs) in layered structures. The PEs interact through weighted
connections that, when manipulated, enable an ANN to recognise patterns from
sample data of system (or assembly/component) performance based on specific in-
put variables. Neural networks can also be used to predict input variables for condi-
tions that have not been determined experimentally.

Figure 5.69 is an example of an ANN-generated, three-dimensional plot of pre-
dicted wear rate for a mechanical device, as a function of piston sliding distance and
sliding speed. The figure depicts wear rate values obtained for different distances
and speeds (Fusaro 1998).

Critical parameters such as load, speed, sliding distance, friction coefficient,
wear, and material properties are used to produce models for each set of sample
data.

The study shows that artificial neural networks are able to model such simple
systems, illustrating the feasibility of using ANN models to perform accelerated life
testing on more complicated prototype mechanical systems. The following graph
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Fig. 5.69 Three-dimensional
plots generated from a neural
network model illustrating the
relationship between speed,
load, and wear rate (Fusaro
1998)

Fig. 5.70 Comparison of
actual data to those of an
ANN model approximation
(Fusaro 1998)

(Fig. 5.70) compares actual wear data to those generated from an ANN model. As
the graph illustrates, the correlation is very good (Fusaro 1998).

ANNs are normally classified by learning procedure, the most common being un-
supervised and supervised learning. In unsupervised learning, the network is trained
by internal characterisation of data patterns, with no other information or teaching
requirement. This type of ANN is appropriate to preliminary engineering design ap-
plications, as it can analyse the possible occurrence of a process failure condition
but not necessarily the type of failure characteristics or extent of the fault.

In supervised learning, individual values of the weighted connections between
neurodes are adjusted during training iterations to produce a desired output for
a given input. Knowledge is thus represented by the structure of the network and
the values of the weights. This type of ANN is appropriate to detail design appli-
cations supported by sample data. This procedure offers several advantages in the
field of pattern recognition and analysis of sample failure data, including an ability
to learn from examples, and the ability to generalise. The generalisation property
results in a network trained only on representative input sample data, to be able to
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provide relatively accurate results without being trained on all possible input data.
Thus, the primary advantage of ANN models over operational modelling and expert
system approaches is that representative sample data can be used to train the ANN
with no prior knowledge of system operation (Farell et al. 1994).

ANN models typically exhibit the rule-based expert system characteristics of
knowledge-based expert systems without the need for prior representation of the
rules. However, it is the ability to generalise and form accurate evaluations from
design specification data not present in the sample data training set that is the key
requirement of the ANN.

Example of ANN in engineering design—preparation of training data The ma-
jority of designs based on process engineering analysis rely on operational models
or simulated processes. While providing guidelines for design implementation, they
do not highlight inherent problems regarding information quality and availability.
For this reason, engineering design data depend on practical process information,
such as sensitivity of parameters to fault conditions and, of course, expert process
design knowledge. As an example of the application of ANN models in engineering
design, a feed-forward ANN topology, using the back-propagation learning algo-
rithm for training, is investigated for pump fault prediction (Lippmann 1987).

This ANN topology incorporates a supervised training technique and, thus, it is
necessary to define training data prior to the ANN analysis. Process measurements
relating to potential fault conditions and normal operation, including information on
types of failure, are necessary for ANN learning. This information can, however, be
difficult to obtain in practical situations. Knowledge for ANN training is established
from models or experience.

Engineering processes and systems are often complex and difficult to incorporate
precise descriptions of normal and faulty operating conditions into models. Data
founded on experience can be based on quantitative measurements or even quali-
tative information derived from previous measurements. The quantitative approach,
involving data corresponding to historically experienced failures in similar systems
and equipment, produces a more accurate evaluation of the design specifications but
is dependent on data quality. In real-world situations, the quality of historical con-
dition data and records relating to failure conditions of complex systems is more
often questionable. Furthermore, it is unlikely that every potential failure would be
experienced historically; consequently, qualitative data are often incorporated to ex-
pand quantitative data in the design knowledge base, or even used on their own if
no quantitative data are available. However, in situations such as critical pump fail-
ure analysis, where problems can be manifested in various forms depending on the
design type and size, qualitative data are not considered precise.

A database of historical pump problems and typical failure data of similar pumps
enabled an initial approach to pump failure prediction based on quantitative data.
The cumulative sum charting method is applied to assign specific parameter mea-
surements to pump operating conditions for ANN training purposes. The cusum
chart is constructed from an initial choice of target values. The difference between
each measurement and the target is added to a cumulative sum. This value is plotted
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Fig. 5.71 Example failure data using cusum analysis (Ilott et al. 1997)

to provide a simple yet effective way to determine minor deviations in parameter
levels. A knowledge base is established from parameters commonly available for
typical fault conditions of similar pumps, as the ANN requires consistent parameter
input to distinguish between different operating conditions. The parameters used in
the example are motor current and delivery pressure (Ilott et al. 1995).

From motor current data prior to failure, a target value is chosen for calculation of
the cumulative sum, such as 150 A. Initial observation of the sample data highlights
the difficulty in identifying fault data. For example, the motor current data relating to
a specific fault may be consistently higher during the initial stages of operation, due
to a primary bearing problem. On further examination of the sample data, there is
evidence of a marked deviation in motor current values that coincide with a decrease
in delivery pressure. The cusum chart clearly indicates a deviation in motor current
operating level from positive to negative during the sample data period, indicating
the motor current to be consistently below target value.

This procedure is repeated for all historical pump failures to establish a usable
knowledge base of pump failure data. Figure 5.71 shows the motor current data prior
to failure, including both sample data and cumulative sum values.

ANN model experimental procedure A feed-forward ANN is trained using the
back-propagation learning algorithm to predict pump operating conditions from fea-
tures provided by the knowledge base of motor current and delivery pressure values.
The knowledge base established from the cusum analysis is split into training data
and test datasets for ANN implementation. These datasets typically include a series
of data patterns, each incorporating one motor current and one delivery pressure
parameter value, relating to specific fault conditions as well as normal pump oper-
ation. The data patterns are input to the ANN every training iteration. Once trained
to a preset number of iterations or error levels, the ANN is tested with data not pre-
sented in the training dataset to verify generalisation capability. The quantity and
quality of data available for ANN training purposes is an important issue and dic-
tates the confidence in results from the ANN model. Sufficient data would provide
good representation of the decision space relating to specific fault conditions and
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normal pump operation. The exact quantity of data required cannot be specified but
insufficient data cause poor generalisation ability.

In designing non-complex pumping systems where adequate models can be de-
veloped, the knowledge base can simply be manufactured. The ANN model is
trained using the back-propagation learning algorithm where the sum squared er-
ror (SSE) between the desired and actual ANN output is used to amend weighted
connections between the PEs to reduce the SSE during further training. For complex
system designs, many amendments are required due to re-investigation and system
alterations. Representation capability of an ANN is determined by the size of the
input space.

The example ANN structure consists of three layers, and its topology consists
of two sets of input neurodes (values of delivery pressure and motor current scaled
between 0 and 1), several hidden neurodes, and five output neurodes (for fault con-
ditions and normal operation). The ANN topology is illustrated in Fig. 5.72 (Ilott
et al. 1997).

The example involves training the ANN model to a predefined error level, to
investigate the effect on generalisation ability. The learning rule performs weight
adjustment in order to minimise the SSE. Furthermore, a learning coefficient is used
to improve ANN learning. The learning coefficient governs the size of the weight
change with every iteration and subsequently the rate of decrease of the SSE value,
and is adjusted dynamically so as to speed up network training. Convergence speed
refers to the number of iterations necessary for suitable training of the ANN.

Fig. 5.72 Topology of the example ANN (Ilott et al. 1997)



720 5 Safety and Risk in Engineering Design

Fuzzy ANN modelling Fuzzy ANN modelling is based on fuzzy pre-processing
of input data. The purpose of such fuzzy pre-processing is to observe the effect
of data representation on ANN performance with respect to the sensitivity of the
pump parameters to identification of pump failure conditions. This methodology
considers the definition of qualitative membership functions for each input param-
eter, and is considered an alternative method to increase ANN representation ca-
pability through compression of training data. Using the pump example, a motor
current of 140 A would have membership of 0.5 to membership function 2 (MF2),
a lower degree of membership to MF3 (0.06) and no membership to MF1. This pro-
cedure is repeated for delivery pressure and a value of each parameter MF is input
to the ANN. An example of the fuzzy membership functions for motor current and
delivery pressure parameters is given in Fig. 5.73a,b.

Example results The example results focus on the importance of data quality and,
consequently, pre-processing with respect to ANN convergence speed and general-
isation ability. The ANN topology is trained to investigate the effect of data quality

Fig. 5.73 a) An example fuzzy membership functions for pump motor current (Ilott et al. 1995),
b) example fuzzy membership functions for pump pressure (Ilott et al. 1995)
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Fig. 5.74 Convergence rate of ANN iterations

on ANN performance. The SSE value is used to gauge the accuracy of training.
The ANN converges faster with each iteration of refined test training data, as indi-
cated in Fig. 5.74. After ANN training, generalisation ability is investigated using
the original test set patterns. The quality of training data has a considerable effect
on generalisation ability, which varies with the type of failure, and is lower for fail-
ure classes defined by fewer measurements in the training dataset. The example
focused on maximising a design knowledge base despite the inherent limitations of
real sample data.

The cusum charting procedure is a valuable tool in the development of the ANN
knowledge base, through identification of parameter deviations in the sample data.
The quality of training data as well as pre-processing both influence ANN con-
vergence rate and ANN generalisation ability. Generalisation is one of the primary
goals in training neural networks, to ensure that the ANN performs well on data that
it has not been trained on. The standard method of ensuring good generalisation is
to divide the training data into multiple datasets.

The most common datasets are the training, cross validation, and testing datasets.
Refinement of the original training data improves ANN generalisation ability. The
fuzzy pre-processing methodology results in a better improvement to ANN gener-
alisation ability but is slow to converge during learning. The fuzzy pre-processing
technique converges much faster during the learning phase, and produces generali-
sation ability comparative to that of the fuzzy approach.

Conclusion Accurate ANN analysis of pump failure conditions, based on a lim-
ited supply of historical data, is feasible for engineering design application during
the detail design phase. However, the use of ANN models for engineering design,
particularly in designing for safety, is dependent upon the availability of histori-
cal data and the sensitivity of parameter values in distinguishing between failure
conditions. ANN analysis capability is also very much dependent upon methods of
knowledge base generation, and the availability of design knowledge expertise (Ilott
et al. 1995).
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g) ANN Computational Architectures

Neural networks can be very powerful learning systems. However, it is very impor-
tant to match the neural architecture to the problem. Several learning architectures
are available with neural network software packages. These architectures are cat-
egorised into two groups: supervised and unsupervised. Supervised architectures
are used to classify patterns or make predictions. Unsupervised neural networks are
used to classify training patterns into a specified number of categories.

Supervised learning paradigms (back-propagation, probabilistic, and general re-
gression) are composed of at least three layers: input, hidden and output. In each
graphical representation, the input layer is on the left and the output layer on the
right. Hidden layers are represented between the input and output layer. The input
layer contains variables used by the network to make predictions and classifications.
Analysis of data patterns or learning takes place in the hidden layer. The output layer
contains the values the neural network is predicting or classifying. Information in
the input layer is weighted as it passed to the hidden layer.

The hidden layer weight values are received from the input layer and produces
outputs. Historical information is continuously analysed by the system through back
propagation of error, where error is passed backwards until it is reduced to accept-
able levels. Learning takes place when the neural network compares itself to correct
answers and makes adjustments to the weights in the direction of the correct an-
swers. Variations of supervised learning paradigms include differences in the num-
ber of hidden neurodes and/or weight connections.

The unsupervised network is composed of only two layers: input and output. The
input layer is represented on the left and the output layer on the right. Information
fed into the input layer is weighted and passed to the output layer. Learning takes
place when adjustments are made to the weights in the direction of a succeeding
neurode. In the illustrations below, each artificial neural network architecture is rep-
resented by a graphic containing rectangles and lines. Rectangles depict layers and
lines depict weights.

Several types of supervised neural networks and one unsupervised neural net-
work are illustrated collectively in Figs. 5.75 through to 5.81 (Schocken 1994).

ANN model architecture: supervised neural networks (I=input layer, H=hidden
layer, O=output layer)

Standard back propagation —each layer is connected to the immediately previous
layer (with either one, two or three hidden layers). Standard back-propagationneural
networks are known to generalise well on a wide variety of problems (Fig. 5.75).
Jump connection back propagation—each layer is connected to every previous layer
(with either one, two or three hidden layers). Jump connection back-propagation
networks are known to work with very complex patterns, such as patterns not easily
noticeable (Fig. 5.76).
Recurrent back-propagation networks with dampened feedback—each architecture
contains two input layers, one hidden layer, and one output layer (Fig. 5.77).
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Fig. 5.75 Standard back-propagation ANN architecture (Schocken 1994)

Fig. 5.76 Jump connection back-propagation ANN architecture (Schocken 1994)

Fig. 5.77 Recurrent back-propagation with dampened feedback ANN architecture (Schocken
1994)

The extra input layer retains previous training experiences, much like memory.
Weight connections are modified from the input, hidden or output layers, back into
the network for inclusion with the next pattern. Recurrent back-propagation net-
works with dampened feedback networks are known to learn sequences and time
series data.
Ward back propagation—each architecture contains an input layer, two or three hid-
den layers, and an output layer. Different activation functions (method of output) can
be applied. Ward networks are known to detect different features in the low, middle
and high dataset ranges (Fig. 5.78).
Probabilistic (PNN)—each layer is connected together. The hidden layer contains
one neurode per data array. The output layer contains one neurode for each possible
category. PNNs separate data into a specified number of output categories and train
quickly on sparse data (Fig. 5.79).
General regression (GRNN)—each layer is connected together. Hidden and out-
put layers are the same as PNN. Rather than categorising data like PNN, however,
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Fig. 5.78 Ward back propagation ANN architecture (Schocken 1994)

Fig. 5.79 Probabilistic (PNN)
ANN architecture (Schocken
1994)

Fig. 5.80 General regression
(GRNN) ANN architecture
(Schocken 1994)

GRNN applications are able to produce continuous valued outputs and respond bet-
ter than back propagation in many cases (Fig. 5.80).

Unsupervised neural network Kohonen self-organising map—contains an input
and an output layer. One neurode is present in the output layer for each category
specified by the user. Kohonen networks are known to separate data into a specified
number of categories (Fig. 5.81).

In Sect. 5.4, an artificial intelligence-based blackboard model is used to hold
shared information in a general and simple model that allows for the representa-
tion of a variety of modelled system behaviours. The AIB blackboard system is
prescribed for problem-solving in knowledge-intensive domains that require large

Fig. 5.81 Kohonen self-
organising map ANN archi-
tecture (Schocken 1994)
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amounts of diverse and incomplete knowledge, therefore necessitating multiple co-
operation of various knowledge sources.

One knowledge source, a neural expert program (Lefebvre et al. 2003), is em-
bedded in the AIB blackboard for processing of time-varying information, such as
non-linear dynamic modelling, time series prediction, and adaptive control of vari-
ous engineering design problems.

5.4 Application Modelling of Safety and Risk
in Engineering Design

Returning to Sect. 1.1, the five main objectives that need to be accomplished in
pursuit of the goal of the research in this handbook are:

• the development of appropriate theory on the integrity of engineering design for
use in mathematical and computer models;

• determination of the validity of the developed theory by evaluating several case
studies of engineering designs that have been recently constructed, that are in the
process of being constructed or that have yet to be constructed;

• application of mathematical and computer modelling in engineering design veri-
fication;

• determination of the feasibility of a practical application of intelligent computer
automated methodology in engineering design reviews through the development
of the appropriate industrial, simulation and mathematical models.

The following models have been developed, each for a specific purpose and with
specific expected results, in partly achieving these objectives:

• RAMS analysis model, to validate the developed theory on the determination of
the integrity of engineering design.

• Process equipment models (PEMs), for application in dynamic systems simula-
tion modelling to initially determine mass-flow balances for preliminary engi-
neering designs of large integrated process systems, and to evaluate and verify
process design integrity of complex integrations of systems.

• Artificial intelligence-based (AIB) model, in which relatively new artificial intel-
ligence (AI) modelling techniques, such as inclusion of knowledge-based expert
systems within a blackboard model, have been applied in the development of
intelligent computer automated methodology for determining the integrity of en-
gineering design.

The third model, the artificial intelligence-based (AIB) model, will now be consid-
ered in detail in this section.
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5.4.1 Artificial Intelligence-Based (AIB) Blackboard Model

Artificial intelligence (AI) has been applied to a number of fields of engineering
design. Although there are some features that the various design areas share, such
as the need to integrate heuristics with algorithmic numerical procedures, there are
also some important differences. Each field of engineering seems to recognise the
importance of representing declarative concepts, although specific needs vary. In
process engineering, for example, the hierarchical representation of components
with their functional relationships seems to be vital. In mechanical engineering, the
representation of solid geometric shapes has been thoroughly studied and is viewed
as being crucial to the successful evolution of computer aided design or manufac-
turing CAD/CAM systems. Artificial intelligence in engineering design can be de-
scribed as a discipline that provides a multi-level methodology for knowledge-based
problem-solving systems, in which a knowledge-level specification of the system
(and the class of problems it must solve) is mapped into an algorithm-level descrip-
tion of an efficient search algorithm for efficiently solving that class of problems.

The algorithm description is then mapped into program code at the program level,
using one or more programming paradigms (e.g. procedural programming, rule-
based programming or object-oriented programming, OOP), or shells (e.g. RAM-
ESP), or commercially available sub-systems (e.g. CLIPS, JESS or EXSYS).

The application of AI to engineering design thus represents a specialisation of
software engineering methodology to:

• Design tasks
(specified at the ‘knowledge level’).

• Design process models
(described at the ‘algorithm level’).

• Design programs built from shells
(implemented at the ‘program level’).

Integration of the design process with blackboard models The quality of engi-
neering design using traditional CAD techniques is adversely affected by two fea-
tures of the design process.

Features of the design process affecting the quality of engineering design are:

• Limited scope in addressing problems that arise in the many stages of the devel-
opment of an engineered installation.

• A lack of understanding of the essential processes involved in engineering de-
sign.

Both of these are related to systems integration issues. The life cycle of an engi-
neered installation can be described by a collection of projects, where each project
involves a coherent set of attributes, such as the design, manufacturing or assem-
bling of a system. Traditional CAD tools typically address some narrow aspect of
the design project, and fail to provide integrated support for the development of an
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engineered installation, particularly evaluation of design integrity. Essentially, mod-
ern engineering design of complex systems requires an approach that allows mul-
tiple, diverse program modules, termed knowledge sources, to cooperate in solving
complex design problems.

The (AIB) blackboard model The artificial intelligence-based (AIB) blackboard
model that has been developed enables the integration of multiple, diverse program
modules into a single problem-solving environment for determining the integrity
of engineering design. This AIB blackboard model is a database that is used to
hold shared information in a centralised model that allows for the representation
of a variety of modelled system behaviours. Given the nature of programming for
blackboard systems, it is prescribed for problem-solving in knowledge intensive
domains that require large amounts of diverse and incomplete knowledge, therefore
requiring multiple cooperation of various knowledge sources in the search of a large
problem space.

The AIB blackboard model consists of a data structure (the blackboard) contain-
ing information (the context) that permits a set of modules (knowledge sources) to
interact. The blackboard can be seen as a global database or working memory in
which distinct representations of knowledge and intermediate results are integrated
uniformly. It can also be seen as a means of communication among knowledge
sources, mediating all of their interactions in a common display, review and per-
formance evaluation area. The engineering design methodology for the AIB black-
board model, presented in the following graphical presentation (Fig. 5.82), applies
the concept of object-oriented programming.

Object-oriented programming (OOP) has two fundamental properties, encapsu-
lation and inheritance. Encapsulation means that the user (the engineering designer)
can request an action from an object, and the object chooses the correct operator,
as opposed to traditional programming where the user applies operators to operands
and must assure that the two are type compatible. The second property, namely
inheritance, greatly improves the re-usability of code, as opposed to traditional pro-
gramming where new functionality often means extensive re-coding.

In this way, the AIB blackboard model may be structured so as to represent dif-
ferent levels of abstraction and also distinct and possibly overlapping solutions in
the design space of complex engineering design problems. In terms of the type of
problems that it can solve, there is only one major assumption—that the problem-
solving activity generates a set of intermediate results.

The AIB blackboard model for engineering design integrity consists of four
sections, each section containing six design modules, culminating in a summary
design analysis module particular to each specific section (Fig. 5.83). The first sec-
tion of the AIB blackboard model contains modules or knowledge sources for as-
sessing preliminary design (inclusive of conceptual design basics), such as process
definition, performance assessment, RAM assessment, design assessment, HazOp
analysis, and critical process specifications, including a summary process analysis
module. The second section contains modules for evaluating detail design, such as
systems definition, functions analysis, FMEA, risk evaluation, criticality analysis,
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Fig. 5.82 AIB blackboard model for engineering design integrity (ICS 2003)

and critical plant specifications, including a summary plant analysis module. The
third section contains modules related to operations analysis, and the fourth sec-
tion contains modules of knowledge-based expert systems relating to the modules
of the three former sections. Thus, the expert system module called ‘facts’ relates to
process definition, systems definition and operating procedures, etc.

Most engineering designs are still carried out manually with input variables based
on expert judgement, prompting considerable incentive to develop model-based
techniques. Investigation of safety-related issues in engineering designs can effec-
tively be done with discrete event models. A process plant’s physical behaviour can
be modelled by state transition systems, where the degree of abstraction is adapted
both to the amount of information that is available at a certain design phase, and to
the objective of the analysis. A qualitative plant description for designing for safety
is sufficient in the early design phases, as indicated in Figs. 5.83 to 5.87. However,
the verification of supervisory controllers in later design phases requires finer mod-
elling such as the development of timed discrete models. The procedure of model
refinement and verification is later illustrated by the application of expert systems.

A systematic hierarchical representation of equipment, logically grouped into
systems, sub-systems, assemblies, sub-assemblies and components in a systems
breakdown structure (SBS), is illustrated in Fig. 5.84.
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Fig. 5.83 AIB blackboard model with systems modelling option

The systems breakdown structure (SBS) provides visibility of process systems
and their constituent assemblies and components, and allows for safety and risk
analysis to be summarised from system level to sub-system, assembly, sub-assembly
and component levels. The various levels of the SBS are normally determined by
a framework of criteria established to logically group similar components into sub-
assemblies or assemblies, which are then logically grouped into sub-systems or sys-
tems. This logical grouping of items at each level of an SBS is done by identifying
the actual physical design configuration of the various items at one level of the
SBS into items of a higher level of the systems hierarchy, and by defining common
operational and physical functions of the items at each level. When designing or
analysing a system for safety, a method is needed to determine how the variables
are interrelated. System hierarchical models based on a structured SBS, as illus-
trated in Fig. 5.85, provide formulations of the core concept of a system in order to
match the particular modelling perspective—for example, establishing FMEA and
criticality analysis in designing for safety.

The particular model formalisms that are used depend on the objectives of
the modelling requirements and the modelling techniques applied. In the case of
schematic design modelling, the formalisms commonly used are functional (what
a system can do), behavioural (describes or predicts the system’s dynamic response)
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Fig. 5.84 Designing for safety using systems modelling: system and assembly selection

and schematic (an iconic model of the system’s structure and connectivity). Thus,
a schematic design model contains design variables and constraints describing the
structural and geometric feature of the design. A detail design model typically has
variables and constraints representing embodiment, structure and assembly, and dy-
namic flow and energy balance information of the process layout. Designing for
safety begins with a schematic design model, as graphically illustrated in Fig. 5.85,
and development of a systems hierarchical structure as graphically illustrated in
Fig. 5.86.

The treeview illustrated in the left column of Fig. 5.86 enables designers to view
selected equipment (assemblies, sub-assemblies and components) in their cascaded
systems hierarchical structure.

The equipment and their codes are related according to the following systems
breakdown structure (SBS):

• components,
• assemblies,
• systems,
• sections,
• operations,
• plant.
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Fig. 5.85 Designing for safety using systems modelling

A selection facility in the treeview, alongside the selected component, enables the
designer to directly access the component’s specific technical specifications, or
spares bill of materials (BOM).

Equipment technical data illustrated in Fig. 5.87 automatically format the tech-
nical attributes relevant to each type of equipment that is selected in the design
process.

The equipment technical data document is structured into three sectors:

• technical data obtained from the technical data worksheet, relevant to the equip-
ment’s physical and rating data, as well as performance measures and perfor-
mance operating, and property attributes that are considered during the design
process,

• technical specifications obtained from an assessment and evaluation of the re-
quired process and/or system design specifications,

• acquisition data obtained from manufacturer/vendor data sheets, once equipment
technical specifications have been finalised during the detail design phase of the
engineering design process.

A feature of the systems modelling option in the AIB blackboard model is to de-
termine system failure logic from network diagrams or fault-tree diagrams, through
Monte Carlo (MC) simulation.
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Fig. 5.86 Treeview of systems hierarchical structure

Figure 5.88 illustrates the use of the network diagram in determining potential
system failures in a parallel control valve configuration of a high-integrity protection
system (HIPS). Isograph’s AvSim c© Availability Simulation Model (Isograph 2001)
has been imbedded in the AIB blackboard for its powerful network diagramming ca-
pability, especially in constructing block diagrams. The network diagram consists of
blocks and nodes connected together in a parallel (and/or series) arrangement. The
blocks in the network diagram usually represent potential component or sub-system
failures, although they may also be used to represent other events such as operator
actions, which may affect the reliability of the system under study. The nodes in the
network diagram are used to position connecting lines and indicate voting arrange-
ments. The complete system network diagram will consist of either a single node
or block on the left-hand side of the diagram (input node or block) connected via
intermediate nodes and blocks to a single node or block on the right-hand side of
the diagram (output node or block). A complete system network diagram can have
only one input node or block and one output node or block. In addition, all the inter-
mediate nodes and blocks must be connected. The entire system network diagram
represents ways in which component and sub-system failures will interact to cause
the system to fail.
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Fig. 5.87 Technical data sheets for modelling safety

Monte Carlo simulation is employed to estimate system and sub-system param-
eters such as number of expected failures, unavailability, system capacity, etc. The
process involves synthesising system performance over a given number of simula-
tion runs. In effect, each simulation run emulates how the system might perform in
real life, based on the input data provided by the blackboard system’s knowledge
base. The input data can be divided into two categories: a failure logic diagram,
and quantitative failure and/or maintenance parameters. The logic diagram (either
a fault tree or a network diagram, in this case) informs the knowledge base how
component failures interact to cause system failures. The failure and maintenance
parameters indicate how often components are likely to fail and how quickly they
should be restored to service. By performing many simulation runs, a statistical pic-
ture of the system performance is established. Monte Carlo simulation must emulate
the chance variations that will affect system performance in real life. To do this, the
model must generate random numbers that form a uniform distribution. Simulation
methods are generally employed in reliability studies when deterministic methods
are incapable of modelling strong dependencies between failures. In addition, sim-
ulation can readily assess the reliability behaviour of repairable components with
non-constant failure or repair rates.
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Fig. 5.88 Monte Carlo simulation of RBD and FTA models

During the simulation process, the model will be able to determine whether the
system will fail, by examining the developed network diagram. The model does
this by determining whether there are any open paths from the input node or block
to the output node or block. An open path is a path that does not cross any failed
component or sub-system blocks.

Network diagrams may also be used to represent voting arrangements. Nodes
to the right of a parallel arrangement may be given a vote number to indicate how
many success paths must be available through the parallel arrangement (if a vote
number is not specified, then only one path need be available). The simple parallel
arrangement of the four blocks 1, 2, 3 and 4 in Fig. 5.88, with a vote number (number
of available paths required for success) of 2, would result in the truth table given in
Table 5.27.

Figure 5.89 illustrates the use of the fault-tree diagram in determining potential
system failures in a parallel control valve configuration of a high-integrity protection
system (HIPS). This is developed from the imbedded Isograph AvSim c© Availabil-
ity Simulation Model (Isograph 2001). Fault-tree diagrams graphically represent the
interaction of failures and other events within a system. Basic events at the bottom
of the fault tree are linked via logic symbols (known as gates) to one or more TOP
events. These TOP events represent identified hazards or system failure modes for
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Table 5.27 Simple 2-out-of-4 vote arrangement truth table

Valve 1 Valve 2 Valve 3 Valve 4 System

Working Working Working Working Working
Failed Working Working Working Working
Working Failed Working Working Working
Working Working Failed Working Working
Working Working Working Failed Working
Working Working Failed Failed Working
Working Failed Working Failed Working
Working Failed Failed Working Working
Failed Working Working Working Failed
Failed Working Failed Failed Working
Failed Failed Working Working Working
Working Failed Failed Failed Failed
Failed Working Failed Failed Failed
Failed Failed Working Failed Failed
Failed Failed Failed Working Failed
Failed Failed Failed Failed Failed

which predicted reliability or availability data are required. Basic events at the bot-
tom of the fault tree generally represent component failures, although they may also
represent other events such as operator actions. Fault trees may be used to analyse
large and complex systems, and are particularly adept at representing and analysing
redundancy arrangements.

Figures 5.90 and 5.91 illustrate the Monte Carlo simulation results in the form of
a Weibull cumulative failure probability graph, and an unavailability profile of the
HIPS.

The Weibull analysis module (Isograph 2001) analyses the simulation data by
assigning probability distributions that represent the failure or repair characteris-
tics of a given failure mode. In the integration of complex systems, the purpose of
determining equipment criticality, or combinations of critical equipment, is to as-
sess the times to wear-out failures. The Weibull distribution is particularly useful
because it can be applied to all three phases of the hazard rate curve. The failure
distribution assigned to a given set of times to failure (known as a dataset) may be
assigned to failure models that are attached to blocks in a network diagram or events
in a fault-tree diagram. The model automatically fits the selected distribution to the
data and displays the results graphically in the form of cumulative probability plots,
unconditional probability density plots, and conditional probability density plots.

Figure 5.90 illustrates Monte Carlo simulation results of unreliability displayed
in the form of a Weibull cumulative failure probability graph.

Unavailability profile graphs display the mean unavailability values for each time
interval. Unavailability values may be displayed for several sub-systems, assemblies
and components of a system, or integrated systems, which are concurrently being
designed. Figure 5.91 illustrates the Monte Carlo simulation results in the form of
an unavailability profile of the high-integrity protection system (HIPS).
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Fig. 5.89 FTA modelling in designing for safety

As stated in Sect. 4.4.1, dynamic system simulation in engineering design pro-
vides for virtual prototyping of engineering processes, making design verification
faster and less expensive. To fully exploit the advantages of virtual prototyping, dy-
namic system simulation is the most efficient and effective. Dynamic system sim-
ulation provides various design teams in a collaborative design environment with
immediate feedback on design decisions, allowing for a comprehensive exploration
of design alternatives and for optimal final designs. However, dynamic simulation
modelling can be very complex, resulting in a need for simulation models to be easy
to create and analyse.

To take full advantage of virtual prototyping (i.e. developing PEMs), it is neces-
sary for dynamic system simulation modelling to be integrated with the design en-
vironment (through the AIB blackboard), and to provide a simple and intuitive user
interface that requires a minimum of analysis expertise. Figure 5.92 illustrates the
AIB blackboard model selection menu with the process flow diagramming (PFD)
option that includes systems modelling and systems simulation. Access to a simula-
tion modelling capability by design engineers in a collaborative design environment
is a powerful feature provided by the AIB blackboard.

Many engineered installations have a modular architecture that is based on the
optimum selection and composition of systems, assemblies and components from



5.4 Application Modelling of Safety and Risk in Engineering Design 737

Fig. 5.90 Weibull cumulative failure probability graph of HIPS

older designs. When the new design is created, these system compositions are se-
lected and then connected together in a systems configuration. Figures 5.93 to 5.97
illustrate the overall systems configuration of an extend process simulation model
with PEM blocks.

Multiple logical flow configurations can represent a particular system composi-
tion, and are bound to the system’s configuration interface. The industrial systems
simulation option of the Extend c© Performance Modelling (Extend 2001) software
has been modified and imbedded into the AIB blackboard to include a wide range
of process equipment models (PEMs). These PEMs are held in a general systems
simulation database library that can be accessed by various programming options
in the AIB blackboard (either imbedded as third-party software or as developed
application software). A PEM system can be represented either as a single block
(model component) or as a configuration of several blocks. These configurations are
equivalent PEM specifications of the same blocks, and the choice of configuration
is independent of the PEM system behaviour.

Figure 5.93 shows a specific section’s process flow diagram (PFD) consisting
of ten systems, each system graphically represented by a virtual prototype process
equipment model (PEM). The systems, or PEM blocks, are linked together with
logical flows.
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Fig. 5.91 Profile modelling in designing for safety

In many process designs, the physical or real-world systems are designed using
model components. In such processes, these model components are selected, con-
figured and assembled in such a way that the design specifications are met. A model
component is a modular design entity with a complete specification describing how
it may be connected to other model components in a model configuration. A model
configuration is created when two or more model components are connected to each
other via their interfaces. A model component can itself encapsulate a configura-
tion of numerous model components, thus allowing for a hierarchical structure of
sub-models as illustrated in Fig. 5.94.

Each block pertaining to a PEM has connectors that are the interface points of
the block. Connections are lines used to specify the logical flow from one model
component to another, as illustrated in Fig. 5.94. As will be shown later, a model
component is instantiated in the design by specifying instantiation parameters that
describe its specification.

Figures 5.95 and 5.96 illustrate the PEM simulation models process informa-
tion. This information is generated either in a document layout of system perfor-
mance variables (such as system contents, flows and surges, in the case of Fig. 5.95)
or in a graphical display of system performance variables (such as in the case of
Fig. 5.96).
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Fig. 5.92 AIB blackboard model with system simulation option

Figure 5.95 illustrates system performance variables that describe PEM spec-
ifications. In this case, the PEM specifications are represented by the modelling
component called ‘holding tank’, relating to the PEM system, ‘reverse jet scrub-
ber’. These PEM specifications include performance variables such as operating
contents, maximum contents, minimum contents, initial inflow, final inflow, initial
outflow, final outflow, initial contents, final contents, initial flow surge, final flow
surge, and accumulative surge. Several simulation run options are available, such
as for operating contents going below minimum contents, or for steady-state flow
(outflow=inflow).

The graphical display (plotter) shows both a graphical representation of the pro-
cess values of a performance variable during a simulation run, as well as a table of
the numerical values of the performance variable. A powerful feature of the graph-
ical display in engineering design is that plots of a performance variable taken in
previous simulation runs is ‘remembered’ (up to four previous simulation runs), to
allow for a comparative analysis in the event a performance variable is changed for
design cost/performance trade-off. Such a trade-off would not be considered in as-
sessing safety criteria related to a specific performance variable, where an increase
in safety might result in a decrease in performance as shown in previous simulation
runs.
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Fig. 5.93 PFD for simulation modelling

Figure 5.96 illustrates the graphical display model component for system be-
haviour of the performance variable ‘operating contents’ of the PEM system ‘re-
verse jet scrubber’, indicating a trend towards steady state.

Petri net-based optimisation algorithms are usefully applied in dynamic systems
simulation—in this case, the determination of pressure surge through a continuous
process flow line. Petri nets have been used as mathematical graphical tools for mod-
elling and analysing systems of which the dynamic behaviours are characterised by
synchronous and distributed operation, as well as non-determinism. A basic Petri net
structure consists of places and transitions interconnected by directed arcs. Places
are denoted by circles and represent conditions, while transitions are denoted by
bars or rectangles and represent events. The directed arcs in a Petri net represent
flow of control where the occurrence of events is controlled by a set of conditions
that can be either instantaneous or gradual (averaged).

The pressure surge Petri net depicted in Fig. 5.97 includes conditions of flow
surge criteria such as outlet diameter and fluid modulus, together with events repre-
senting the combination and manipulation of criteria in the flow surge algorithm to
obtain results in graphical displays.

Design automation (DA) environments typically contain a design representation
or design database through which the design is controlled. The design automation
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Fig. 5.94 PEMs for simulation modelling

environment usually interacts with a set of resident computer aided design (CAD)
tools and will attempt to act as a manager of the CAD tools by handling input/output
requirements, invocation parameters and, possibly, automatically sequencing the
CAD tools. Thus, a DA environment provides a design framework that, in effect,
shields the designer from cumbersome details and enables the designer to work at
a high level of abstraction. Design automation environments have great potential
in CAD because they can encapsulate expert design knowledge as well as rapidly
changing domain knowledge, typical of process engineering design. Since they can
be easily extended and modified, rule-based systems allow for limited automated
design.

Figure 5.98 illustrates the AIB blackboard data browser option with access to
a database library of integrated CAD data relevant to each PEM.

CAD models provide a comprehensive and detailed knowledge source for the
AIB blackboard, which can be integrated with an expert systems knowledge base
for process information. The most useful CAD model for knowledge integration is
the three-dimensional CAD (3D CAD), which entails parametric solid modelling
that requires the user to apply what is referred to as ‘design intent’. Some soft-
ware packages provide the ability to edit parametric as well as non-parametric ge-
ometry without the need to understand or undo the design intent history of the
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geometry by use of direct modelling functionality. Parametric designs require the
user to consider the design sequence carefully, especially in a collaborative design
environment. What may be a simple design now could be worst case later.

Figure 5.99 shows a three-dimensional CAD model of process configuration in-
formation, accessed from a database library of integrated CAD data relevant to each
PEM in the AIB blackboard.

Knowledge training is an important application of three-dimensional CAD mod-
elling, especially for training operators and engineers for the engineered installation,
notably during the ramp-up and warranty stages. A CAD modelling system can be
seen as built up from the interaction of a graphical user interface (GUI) with bound-
ary representation data via a geometric modelling kernel. A geometry constraint
engine is employed to manage the associative relationships between geometry, such
as wire frame geometry in a schematic design or components in a detail design. Ad-
vanced capabilities of these associative relationships have led to a new form of pro-
totyping called digital prototyping. In contrast to physical prototypes, digital proto-
types allow for design verification and testing on screen, enabling three-dimensional
CAD to be more than simply a documentation tool (representing designs in graphi-
cal format) but, rather, a more robust designing tool that assists in the design process
as well as post-design testing and training.
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Fig. 5.96 PEM simulation model graphical display of process information

Figure 5.100 shows a typical CAD integrated training data library in the AIB
blackboard of performance variable data relevant to each PEM.

Artificial neural network (ANN) computation, unlike more analytically based
information processing methods, effectively explores the information contained
within input data, without further assumptions. Statistical methods are based on cer-
tain assumptions about the input data (i.e. a priori probabilities, probability density
functions, etc.). Artificial intelligence encodes deductive human knowledge with
simple IF THEN rules, performing inference (search) on these rules to reach a con-
clusion. Artificial neural networks, on the other hand, identify relationships in the
input datasets, through an iterative presentation of the data and intrinsic mapping
characteristics of neural topologies (referred to as learning). There are two basic
phases in neural network operation: the training or learning phase, where sample
data are repeatedly presented to the network, while their weights are updated to ob-
tain a desired response; and the recall or retrieval phase, where the trained network
is applied to prototype data.

Figure 5.101 shows the AIB blackboard ANN computation option with access to
an imbedded NeuralExpert c© program (NeuroDimension 2001).

A neural expert program (Lefebvre et al. 2003) is a specific knowledge source
of the AIB blackboard for processing time-varying information, such as non-linear
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dynamic modelling, time series prediction, adaptive control, etc., of various engi-
neering design problems. A typical design problem that is ideal for ANN mod-
elling is the formulation and evaluation of stream surge pressures in continuous
flow processes, given in the simulation option of the AIB blackboard as illustrated
in Fig. 5.97.

The NeuralExpert c© (NeuroDimension 2001) program, imbedded in the AIB
blackboard, asks specific questions and intelligently builds an ANN. The first step in
building an ANN is the specification of the problem type, as illustrated in Fig. 5.102.
The four currently available problem types in the NeuralExpert are classification,
function approximation, prediction, and clustering. Once a problem type is selected,
the program configures the parameters based on a description of the problem. These
settings can be modified in the AIB blackboard, or in the NeuralExpert.

Input data selection is the next step in constructing an ANN model. The input
file selection panel specifies where the input data file is located by choosing the
‘browse’ button and searching through the standard Windows tree structure to find
the relevant file referenced in the AIB blackboard database, or by clicking on the
triangle at the right edge of the text box to indicate a list of recently used text files
in the NeuralExpert.
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Fig. 5.98 AIB blackboard model with CAD data browser option

Figure 5.103 illustrates typical input data attributes for the example used to de-
termine the stream surge pressure given in the simulation model option of the AIB
blackboard illustrated in Fig. 5.97. In this case, the sample data would represent
x1, x2, x3, x4 values of the input attributes. The pressure surge Petri net given in
Fig. 5.97 includes conditions of flow surge criteria that now become the ANN input
attributes, such as the pipe outlet diameter, pipe wall thickness, the fluid bulk mod-
ulus, and Young’s modulus. The goal is to train the ANN to determine the stream
surge pressure (desired output) based on these attributes.

Typical computational problems associated with artificial neural network pro-
grams, with regard to specific as well as general engineering design requirements,
include the following:

Classification problems are those where the goal is to label each input with
a specified classification. A simple example of a classification problem is to la-
bel process flows as ‘fluids’ and/or ‘solids’ for balancing (the two classes, also the
desired output) using their volume, mass and viscosity (the input). The input can be
either numeric or symbolic but the output is symbolic in nature. For example, the
desired output in the process balancing problem is the ratio of fluids and solids, and
not necessarily a numeric value of each.
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Fig. 5.99 Three-dimensional CAD integrated model for process information

Function approximation problems are those where the goal is to determine a nu-
meric value, given a set of inputs. This is similar to classification problems, except
that the output is numeric. An example is to determine the stream surge pressure
(desired output) in numeric values, given the pipe outlet diameter, the pipe wall
thickness, the fluid bulk modulus and Young’s modulus. These problems are called
function approximation because the ANN will try to approximate the functional re-
lationship between the input and desired output. Prediction problems are also func-
tion approximation problems, except that they use temporal information (e.g. the
past history of the input data) to make predictions of the available data.

Prediction problems are those where the goal is to determine an output, given
a set of inputs and the past history of the inputs. The main difference between pre-
diction problems and the others is that prediction problems use the current input
and previous inputs (the temporal history of the input) to determine either the cur-
rent value of the output or a future value of a signal. A typical example is to predict
process pump operating performance (desired output) from motor current and de-
livery pressure performance values.

Clustering problems nformation is to be extracted from input data without any
desired output. For example, in the analysis of process faults in designing for safety,
the faults can be clustered according to the severity of hazard consequences risk.
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The fundamental difference between the clustering problem and the others is that
there is no desired output (therefore, there is no error and the ANN model cannot be
trained using back propagation).

For classification problems to label each input with a specified classification, the
option is given to randomise the order of the data before presenting these to the
network. Neural networks train better if the presentation of the data is not ordered.
For example, if the design problem requires classifying between two classes, ‘fluids’
and/or ‘solids’, for balancing these two classes (as well as the desired output) using
their volume, mass and viscosity (the input), the network will train much better if
the fluids and solids data are intermixed. If the data are highly ordered, they should
be randomised before training the artificial neural network.

One of the primary goals in training neural networks in the process of ‘iterative
prediction’ is to ensure that the network performs well on data that it has not been
trained on (called ‘generalisation’). The standard method of ensuring good general-
isation is to divide the training data into multiple datasets or samples, as indicated in
Fig. 5.104. The most common datasets are the training, cross validation, and testing
datasets.

The cross validation dataset is used by the network during training. Periodi-
cally while training on the training dataset, the network is tested for performance
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Fig. 5.101 ANN computation option in the AIB blackboard

on the cross validation set. During this testing, the weights are not trained but the
performance of the network on the cross validation set is saved and compared to
past values. The network shows signs of becoming over-trained on the training data
when the cross validation performance begins to degrade. Thus, the cross validation
dataset is used to determine when the network has been trained as best as possible,
without over-training (i.e. maximum generalisation).

Although the network is not trained with the cross validation set, it uses the cross
validation set to choose the best set of weights. Therefore, it is not truly an out-
of-sample test of the network. For a true test of the performance of the network, an
independent (i.e. out of sample) testing set is used. This provides a true indication of
how the network will perform on new data. The ‘out of sample testing’ panel shown
in Fig. 5.105 is used to specify the amount of data to set aside for the testing set.

It is important to find a minimal network with a minimum number of free weights
that can still learn the problem. The minimal network is more likely to generalise
well with new data. Therefore, once a successful training session has been achieved,
the process of decreasing the size of the network should commence, and the training
repeated until it no longer learns the problem effectively.

The genetic optimisation component shown in Fig. 5.106 implements a genetic
algorithm to optimise one or more parameters within the neural network. The most
common network parameters to optimise are the input columns, the number of
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hidden processing elements (PEs), the number of memory taps, and the learning
rates. Genetic algorithms combine selection, crossover and mutation operators with
the goal of finding the best solution to a problem. Genetic algorithms are general-
purpose search algorithms that search for an optimal solution until a specified ter-
mination criterion is met.

Network complexity is determined by the size of the neural network in terms of
hidden layers and processing elements (neurons). In general, smaller neural net-
works are preferable over large ones. If a small one can solve the problem suffi-
ciently, then a large one will not only require more training and testing time but also
may perform worse on new data. This is the generalisation problem—the larger the
neural network, the more free parameters it has to solve the problem. Excessive free
parameters may cause the network to over-specialise or to memorise the training
data. When this happens, the performance of the training data will be much better
than the performance of the cross validation or testing datasets.

The network complexity panel shown in Fig. 5.107 is used to specify the size of
the neural network. It is essential to start ANN analysis with a ‘low-complexity’ net-
work, after which analysis can progress to a medium- or high-complexity network to
determine if the performance results are significantly better. A disadvantage is that
medium- or high-complexity networks generally require a large amount of data.
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Fig. 5.103 ANN NeuralExpert example input data attributes

In the NeuralExpert c© (NeuroDimension 2001) program, imbedded in the AIB
blackboard, several criteria can be used to evaluate the fitness of each potential so-
lution. The solution to a problem is called a chromosome. A chromosome is made
up of a collection of genes, which are simply the neural network parameters to be
optimised. A genetic algorithm creates an initial population (a collection of chro-
mosomes) and then evaluates this population by training a neural network for each
chromosome. It then evolves the population through multiple generations in the
search for the best network parameters. Performance measures of the error crite-
rion component provide several values that can be used to measure the performance
results of the network for a particular dataset. These are:

• the mean squared error (MSE),
• the normalised mean squared error (NMSE),
• the percent error (% error).

The mean squared error (MSE) is defined by the following formula

MSE =
∑P

j=0 ∑N
i=0(di j − yi j)2

NP
(5.115)
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Fig. 5.104 ANN NeuralExpert sampling and prediction

where:

P = number of output processing elements
N = number of exemplars in the dataset
yi j = network output for exemplar i at processing elements j
di j = desired output for exemplar i at processing elements j.

The normalised mean squared error (NMSE) is defined by

NMSE =
P ·N ·MSE

P
∑
j=0

(
N ∑N

i=0 d2
i j −
(
∑N

i=0 di j
)2

N

) (5.116)

where:

P = number of output processing elements
N = number of exemplars in the dataset
MSE = mean squared error
di j = desired output for exemplar i at processing elements j.
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Fig. 5.105 ANN NeuralExpert sampling and testing

The percent error (%E) is defined by the following formula

%E =
100
NP

P

∑
j=0

N

∑
i=0

|di j −ddi j|
ddi j

(5.117)

where:

P = number of output processing elements
N = number of exemplars in the dataset
di j = denormalised network output for exemplar i at elements j
ddi j = denormalised desired output for exemplar i at elements j.

Knowledge-based expert systems Expert knowledge of how to solve complex en-
gineering design problems is not often available. Knowledge-based expert systems
are programs that capture that knowledge and allow its dissemination in the form of
structured questions, to be able to determine the reasoning behind a particular de-
sign problem’s solution. The knowledge-based expert systems incorporated in the
AIB blackboard are based on the classical approach to expert systems methodology,
which incorporates the following:
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• User interface,
• Working memory,
• Inference engine,
• Facts list,
• Agenda,
• Knowledge base,
• Knowledge acquisition facility.

The user interface is a mechanism by which the user and the expert system com-
municate. The working memory consists of a global database of facts used by rules.
The inference engine controls the overall execution of queries or selections related
to problems and their solutions based around the rules. The facts list contains the
data on which inferences are derived. An agenda is a list of rules with priorities
created by the inference engine, the patterns of which are satisfied by facts in the
working memory. The knowledge base contains all the knowledge and rules. The
knowledge acquisition facility is an automatic way for the user to enter or modify
knowledge in the system, rather than by having all the knowledge explicitly coded
at the onset of the expert systems design.

The user interface of the AIB blackboard is an object-oriented application in
which the designer can point-and-click at digitised graphic process flow diagrams
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(PFD) of a plant to access specific details of any object shown on the PFD, as well
as the object’s detailed specifications, diagnostics or performance measures. The di-
agnostics inference engine contains diagnostic charts and queries relating to failure
characteristics, failure conditions, equipment criticality, performance measures, and
operating and maintenance strategies.

The knowledge base consists of facts and functions relating to all the techni-
cal data pertaining to process definition, systems definition, performance assess-
ment and analysis, conditions and constraints relating to equipment failure modes
and effects, the level of risk and mitigating maintenance procedures, as well as an
assessment of the required resources. Figure 5.108 illustrates the AIB blackboard
knowledge base user interface to access the various expert systems with their rules
and goals.

A knowledge-based expert system emulates the interaction a group of multi-
discipline design engineers will have in solving a design problem. The decision trees
or rules used in a knowledge-based expert system contain the knowledge of the hu-
man specialist(s) in a particular field. The inference engine makes use of these rules
to solve a problem in achieving set goals (design criteria). The end user (designer)
asks structured questions until the expert system has reached an optimal solution in
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Fig. 5.108 Expert systems functional overview in the AIB blackboard knowledge base

meeting the specific design criteria, and gives information on how they were arrived
at, and why.

As previously indicated, the diagnostics inference engine contains diagnostic
charts and queries relating to equipment failure characteristics and failure condi-
tions. Figure 5.109 illustrates a user’s access to the AIB blackboard’s diagnostics
inference engine selection menu for assessment of equipment conditions, risk and
criticality, as well as operating and maintenance costs and strategies and logistic
support.

The first step in diagnostics of equipment condition is finding the failure effect
on a process by determining the impact of an isolated failure on neighbouring and
dependent components. This is the basic precursor to establishing a failure modes
and effects analysis (FMEA). FMEA is a powerful design tool to analyse engineer-
ing systems, and may simply be described as an analysis of each potential failure
mode in the system and examination of the results or effects of such failure modes
on the system.

The strength of FMEA is that it can be applied at different systems hierarchy lev-
els. In the specific case illustrated in Fig. 5.110, it is applied to determine the perfor-
mance characteristics of the gas cleaning process, the functional failure probability
of its critical systems, such as the halide tower, the failure-on-demand probability
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Fig. 5.109 Determining the conditions of a process

of the duty of a single pump assembly, namely the halide pump no. 1, down to an
evaluation of the failure mechanisms (or failure modes) such as ‘failure to open’,
failure effects and causes associated with a control valve component.

By the analysis of individual failure modes, the effect of each failure can be
determined on the physical condition and operational functionality of the relevant
systems hierarchy level, up to the consequence on the overall process. In preparation
for establishing an expert system knowledge base pertaining to the diagnostics of
equipment condition, the FMEA is performed in several steps, which are as follows:

• Identify the relevant hierarchical levels, and define systems and equipment.
• Establish ground rules and assumptions, i.e. operational phases.
• Describe systems and equipment functions and associated functional blocks.
• Identify and describe possible failure modes and their associated effects.
• Determine the effect of each item’s failure for every possible failure mode.
• Determine the consequence of each item’s failure on system performance.
• Determine the cause of each item’s failure for every possible failure mode.

In this way, a knowledge base is built up of the conditions and constraints relating
to failure characteristics and failure conditions.
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The advantages of performing a design-level failure modes and effects analysis
(FMEA) in building up an equipment condition knowledge base include: identifi-
cation of potential design-related failure modes at system/sub-system/component
level; identification of important characteristics of a given design; documentation of
the rationale for design changes to guide the development of future designs; help
in the design requirement objective evaluation; assessment of design alternatives
during the preliminary and detail phases of the engineering design process; and es-
tablishing priority for design improvement actions during the preliminary design
phase. Furthermore, a design-level FMEA is a systematic approach to reduce risk
and criticality, when the FMEA is extended to classify each potential failure effect
according to its severity and consequence of failure on the system as a whole, in
a systems-level failure mode effects and criticality analysis (FMECA).

The risk of common failure mode is influenced by stress and time. As both stress
and the time-at-stress increase, the risk increases. The point of maximum common
failure mode risk occurs when both stress and time are at a maximum. However, this
risk cannot be evaluated by either reliability analysis or high-stress exposure tests
alone, and it becomes necessary to review design criteria conditions to evaluate
risk in a design-level FMEA. The intention of this type of FMEA is to validate the
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Fig. 5.111 Determining the risk of failure on a process

design parameters chosen for a specified functional performance requirement where
the risk of common failure mode is at a maximum.

The risk evaluation of the common failure mode ‘fail to open’, associated with
the example control valve, is illustrated in Fig. 5.111. Several risk categories are
shown, specifically: a risk rating (value of 6 out of 10); a risk classification of a low
risk value of MC–MHR (medium cost, and medium to high production risk); the
grouping of the common failure mode risk into a risk category (medium criticality).

Thus, for making an assessment of equipment criticality, particularly at the com-
ponent level, the priority for a component failure mode is calculated using three
factors:

• Failure effect severity.
• Failure consequence likelihood.
• Failure mode occurrence probability.

Figure 5.112 illustrates the further development of an expert system knowledge base
pertaining to the diagnostics of equipment condition, with the inclusion of determin-
ing the criticality of failure on a process. The objective of criticality assessment is to
prioritise the failure modes identified during the FMEA on the basis of the severity
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of their effects and consequences, and the likelihood of occurrence, i.e. the risk, as
well as the estimated failure rate.

The assessment of decision logic in design problem solutions is to determine
the required operating, maintenance and logistic strategies based on specific
criteria related to system and equipment specifications, such as equipment techni-
cal specifications, process functional specifications, operating specifications, equip-
ment function specifications, failure characteristics and failure conditions, equip-
ment fault diagnostics, equipment criticality, equipment performance measures,
operating and maintenance tasks, operating procedures, maintenance procedures,
process cost models, critical spares, and spares logistic requirements.

Figure 5.113 illustrates decision logic assessment questions for building up
a knowledge base of design problems pertaining to process functionality
(cf. Fig. 5.96) and to design parameters (cf. Fig. 5.97). These questions serve to
define the rules in a rule-based expert system. The questions are multiple-choice
entries that are typically text and can contain several values. As an aid to the de-
cision logic assessment, the FMECA results of the component under scrutiny are
displayed.

Applying AI methodology to engineering design Aside from the use of in-
telligence in system components, there has been significant progress in its use
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during design and evaluation of safety-related systems. Intelligent systems provide
the safety engineer with valuable knowledge-based tools; the use of expert systems
for verification and validation, or for use in FMEA studies, are typical examples.
However, some deterministic systems have become so complex and sensitive to triv-
ial input changes that complete analysis becomes a virtual impossibility. AI can sup-
port this process by providing experiential analysis of the system outputs, thereby
eliminating false logical paths and reducing the amount of analysis required. There
is also a move towards analysis whereby only a system’s interface performance is
assessed against benchmarks provided by an ‘acceptable’ system.

Figure 5.114 illustrates the options selection menu with ‘expert systems’ high-
lighted, which appears by clicking on a selected PEM in the PFD. This accesses the
internal AIB blackboard knowledge-based expert systems.

A facts frame is a structure that represents a concept in knowledge-based expert
systems. It can have any number of attributes or properties attached to it, some
of which can be relationships. An attribute may have any number of values (i.e.
no value, one value, several values, etc.). The types of relationships among frames
include hierarchical, classification relations, time precedence, and resource depen-
dent. The importance of being able to represent relations is that a given frame can
inherit properties (attributes and/or values) from the frames to which it is related.
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Facts frames are a convenient and natural way to represent descriptive informa-
tion, related objects, their properties and their relationships. They also represent the
information carried in hierarchically structured domains. Relationship frames con-
tain a number of slots representing attributes or relationships with the relevant ques-
tions, topic, class, problem statement and solution hypotheses relating to functions,
conditions and consequences, as illustrated in Fig. 5.115. These frames represent
the knowledge-based information of the design integrity of the equipment.

Frames are also known as schemata and scripts, and are abstractions of semantic
network knowledge representation. As a result, frames are effective in expectation-
driven processing, a technique often used in architecture and engineering design,
where a knowledge-based expert system looks for expected data, based on context.
Frames may inherit information from other frames. Frames are similar to forms
that have a title (frame name) and a number of slots (frame slots) that accept only
predetermined data types. A collection of nodes and links, or slots, together describe
an object or event.

A frame is thus a format for expressing declarative knowledge, in which an ob-
ject is represented by a data structure containing a number of slots (representing
attributes or relationships of the object), with each slot filled with one or more val-
ues (representing specific values or relevant questions of attributes or other objects
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that the object is related to). Figure 5.116 illustrates a typical frame slot representing
attributes or relationships with relevant questions pertaining only to condition.

The system/assembly/component selection capability of a system breakdown
structure (SBS) relates hierarchical systems data to a particular hierarchical frame.
Hierarchical frames provide the means to efficiently represent certain types of data
that have a hierarchical structure, such as engineering systems. Hierarchical frames
allow for complex search criteria with Boolean operators in design optimisation.
The data in such a frame can be read or updated by the expert system. These frames
provide inheritance that allows a hierarchical set of frames to be created with data
in ‘parent’ frames available to lower-level frames. The use of hierarchical frames
provides a means for the AIB blackboard to manage hierarchically related data that
are portable and maintainable in multiple expert systems.

Figure 5.117 illustrates the system breakdown structure (SBS) tab as part of a set
of tabs (references, facts, functions, conditions, consequences, rules and goals) that
contain various instructions in accessing data from the expert system knowledge
database for application in an expert system user interface.

The AIB blackboard provides flexible use of multiple expert systems, and other
knowledge source applications, to store and retrieve data for use by multi-disciplin-
ary groups of design engineers in a collaborative design environment. The data are
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shared among multiple knowledge-based expert systems as well as other knowledge
sources. A set of blackboard commands enables designers to access specific frames
to read or write design data to the blackboard. The blackboard files can be jointly
read or created by the knowledge-based expert systems that automatically identify
inappropriate design data or conflicting design specifications.

Figure 5.118 illustrates the ‘goals’ option tab of the imbedded ExSys c© Expert
System (ExSys 2000). Goals are the design criteria among which the expert sys-
tems will decide. An expert system is required to find solutions to a design problem
subject to design criteria. A goal may be assigned a confidence value to determine
its relative likelihood. Goals can be used only in the THEN part of trees, which are
considered later.

Factors are text or numeric data items that are used to define the rules in a rule-
based expert system (or the nodes of a decision tree). There are two types of factors:
‘questions’ and ‘variables’.

Questions are multiple-choice lists that are typically text and can contain several
values. A question condition is a statement in the rule (or tree) made up of the
starting question text and several associated choices. Questions can be used in the
IF part of a rule to test a value, or in the THEN part to assign a value.
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Figure 5.119 illustrates the ‘questions’ option tab of the imbedded ExSys c© Ex-
pert System (ExSys 2000). In the illustration, one question relates to temperature,
which refers to the expert system goal and is a design criteria constraint. Another
question relates to a pressure constraint, where both constraints need to be consid-
ered concurrently, as the one impacts upon the other in a particular system design.

Figure 5.120 illustrates a multiple-choice question editor for application in the
rule-based expert system. The multiple-choice question editor is used in establishing
lists for questions relating to both temperature and pressure for application in the
same rule-based expert system. The values of these variables are divided into ranges
defined by the logical break points in the decision-making process (i.e. too low,
within or exceeding specification, too high or critical).

Variables are both numeric or string variables, including expressions, parenthe-
sis, Boolean operators, trig functions and exponential functions. A numeric variable
may have any value between its upper and lower bounds. For the purposes of defin-
ing IF–THEN expert system rules, the value of the variable is divided into ranges
defined by the logical break points in the decision-making process. For example, an
IF part test expression might be the rule: IF (([X]<[Z]) AND (SIN([X]/2)>0.4)).
The more standard MIN, MAX conditional assignment operators are also supported,
as well as an approximately equal operator to handle round-off error problems.
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A tree, or branched decision tree, represents all or a portion of the decision-
making instructions for input into a particular design scenario. Tree representation
can be used for any design problem that involves a selection from among a definable
group of goals (design criteria), where the decision is based on logical steps that can
be described as a set of tree diagrams. The trees can involve relative probabilities of
a goal being correct. Trees can also be used to derive data needed by other trees or
rules. Individual rules are added to represent specific facts that cannot be represented
as trees (usually rules requiring an ELSE part, or specific facts that are not part of
an overall structure of information).

Figure 5.121 illustrates the ‘trees’ option tab of the imbedded ExSys c© Expert
System (ExSys 2000). The branched decision tree in the illustration relates to a pro-
cess adjustment for the design criteria constraint of temperature for establishing
decision-making instructions as input into a particular design scenario.

A branched decision tree is made up of nodes that represent decision branch
points, and those that are assignments of value, as illustrated in Fig. 5.122. These
correspond to IF and THEN conditions in a rule. The IF node has two or more
values that are joined together in a block. The node values can be multiple-choice
text items, ranges of a numeric variable or true/false tests of a mathematical expres-
sion. THEN nodes have a single value and assign a value to the goal of the expert
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Fig. 5.119 Expert System questions factor—temperature

system, assign text or numeric data, or annotate the tree. Trees can assign values in
their THEN part. If other tree nodes require these choices, the appropriate rules will
automatically be called through backward chaining.

The ability to add nodes or automatically expand the tree, to consider all pos-
sible combinations of input, allows rules to be built very rapidly. The designer is
prompted to consider all possible cases, which guarantees system completeness. In
most applications there would be multiple trees, each representing a different aspect
of the decision-making process.

Knowledge-based expert systems deal with knowledge, rather than data, and the
files they use are often referred to as knowledge bases. This knowledge is repre-
sented as rules, as illustrated in Fig. 5.123. A rule is made up of a list of IF condi-
tions (normal semantic sentences or algebraic expressions that can be tested to be
TRUE or FALSE), and a list of THEN conditions (also semantic sentences or alge-
braic expressions) or statements about the probability of whether a particular value
is the appropriate solution to the design problem. If the expert system determines
that all IF conditions in a rule are true, it adds the rule’s THEN conditions to what
it knows to be true.

The ability of an expert system to derive information, rather than prompting the
user, enables the expert system to combine many small pieces of knowledge to arrive
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Fig. 5.120 Expert System multiple-choice question editor

at logical conclusions about complex problems. In this way, the expert system can
manage the rules in a knowledge base from the point of view of conflicting meanings
or values.

Although the use of decision trees are an ideal way to rapidly develop most
systems, the logic of some complex systems cannot be described as trees. These
systems require that individual rules be defined. A rule editor is provided for this
ability. The expert system’s rule editor is a powerful and flexible tool for knowledge-
based expert system development, and enables the designer to rapidly write rules
using the same data elements as the trees. As each rule is input, it is compiled to the
knowledge base. This means that the rule editor has access to the logic of the rules
already entered. Thus, if a rule is potentially in conflict with an existing rule, the
editor will immediately highlight the conflict and give the designer the opportunity
to correct it.

Figure 5.124 illustrates the rule editor of the imbedded ExSys c© Expert System
(ExSys 2000). Rules entered in an editor window are divided into three main parts:
an IF part, a THEN part, an optional ELSE part, with an optional NOTE, and an
optional REFERENCE.
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Fig. 5.121 Expert System branched decision tree

The basic structure of a rule has the following format:

IF – conditions
THEN – conditions and goals
ELSE – conditions and goals.

The IF part is simply a series of tests, expressed as semantic sentences or algebraic
expressions. The IF conditions are tested against the data provided by the knowledge
base, information that can be derived from other rules, or data obtained from other
knowledge sources. In the IF part, the tests can be combined with either AND or
OR. Boolean operators can also be used to build complex logical tests.

The THEN part can contain conditions similar to those of the IF part. However,
in the THEN part, they are not tests but statements of fact. In the IF part, a statement
would be a test that might be true or false. The same statement in the THEN part
would be considered to be a valid fact, if the IF conditions in the rule were true.
When the IF conditions in a rule are determined to be true, the expert system as-
sumes the THEN part is true and adds any facts in the THEN conditions to what it
knows. The THEN part can also contain the possible goals that the expert system
will decide among, along with their assigned probability values. The expert system
keeps track of the value each goal receives, and calculates a final confidence value
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Fig. 5.122 Expert System branched decision tree: nodes

for each of the choices. The THEN conditions may also include statements that
assign a value to a numeric or string variable. This allows values to be calculated
during a run and displayed at the end.

The ELSE part is the same as the THEN part and is applied if any of the IF
conditions are FALSE. The ELSE part is optional and not needed in most rules.
(Rules built in tree structures have only IF and THEN parts.)

In some cases, it is desirable to add a NOTE to a rule to provide some special
information to the knowledge base. If there is a NOTE added, it will be displayed
with the rule. The NOTES from rules that fired (i.e. are activated) can also be applied
as information output, using the report generator. The expert system knowledge base
may also include a REFERENCE for a rule. This is intended to assist in finding the
source of the knowledge contained within a rule, or for more information relating to
the rule. As with the NOTE, the REFERENCE is optional and only for containing
information. It has no effect on the running of the program.

The difference between the NOTE and the REFERENCE is that the NOTE is
displayed whenever the rule is displayed. The REFERENCE is displayed only if it
is requested. The REFERENCES from rules that fired can also be applied as output
using the report generator. Both NOTE and REFERENCE elements can contain
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Fig. 5.123 Expert System rules of the knowledge base

links to other blackboards, which is useful to display different parts of a complex
design.

Backward chaining is a term used to describe running the rules in a goal-driven
manner. In backward chaining, if an item of information is needed, the expert system
will automatically check all of the rules to see if there is a rule that could provide the
needed information. The system will then ‘chain’ to this new rule before completing
the first rule. This new rule may require information that can be found in yet another
rule. The expert system will then again automatically test this new rule. The logical
reasoning of why the information is needed goes backwards through the chain of
rules. The called rules can be anywhere in the expert system. It is not necessary
to specify which rules apply to which information. Backward chaining simplifies
the development of the expert system. Each rule can simply state an individual fact.
Unlike some expert system models, the relationships between rules do not have to be
explicitly assigned in the blackboard. Expert systems incorporated in the blackboard
will automatically find the relevant rules and use these. In a backward chaining
system, the rules can be in any order. As new facts are added to the design, rules are
simply added and the expert system will automatically determine when and how to
use the new items of information.
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Fig. 5.124 Expert System rule editor

Forward chaining is a data-driven method of running the rules (unlike the goal-
driven approach of backward chaining), and is an alternative to backward chaining.
In backward chaining, there is always a goal to be satisfied and a specific reason why
rules are tested. In pure forward chaining, rules are simply tested in the order they
occur based on available data. If information is needed, other rules are not invoked—
instead, the designer is asked for the information. Consequently, forward chaining
systems are more dependent on rule order. However, since time is not spent deter-
mining if information can be derived from other rules, forward chaining is much
faster. The blackboard expert system also provides a hybrid between backward and
forward chaining, where the basic approach is data-driven but information needed
by rules is derived through backward chaining. Another technique is to divide an
expert system into subsets of rules and run some in forward chaining and some in
backward chaining with procedural command language.

Testing and validating a knowledge-based expert system must be a major part
of any expert system development project. It is important to make sure that end
users will get valid answers to any input. The automatic validation function greatly
simplifies and automates this process. The expert system automatically tests the
design application, unattended, for a variety of errors. There are two methods of
validation testing, namely systematic and random testing. Systematic testing allows
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Fig. 5.125 Testing and validating Expert System rules

all possible combinations of input to be tested for a variety of possible errors. If the
expert system is very large and systematic testing of the entire system would take too
long, testing of portions of the system, or random testing of the entire system, can be
performed. The blackboard system has built-in functions to automatically validate
a particular design application, and to check for a variety of common errors.

Figure 5.125 illustrates the validation test facility of the imbedded ExSys c© Ex-
pert System (ExSys 2000). A validation test run is illustrated of the example HIPS
system with specific temperature and pressure design constraints.

Confidence methods for managing uncertain data The AIB blackboard expert
system provides several ways to manage uncertain data, and the confidence or prob-
ability factors within each expert system. The different systems are designed to pro-
vide a range from simple and intuitive confidence systems, to complex methods of
assessing and evaluating confidence. These confidence methods are:

YES/NO system If the system does not require any estimate of probability, the
YES/NO (0/1) system is the easiest to apply. This confidence system is very easy
to use, since the first rule that fires for a choice sets the value to 1 for ‘yes’, or 0
for ‘no’. No intermediate values are assigned. This confidence system is good for
selecting choices from a list, an automated questionnaire, or other systems where
the choices used by such systems are ‘yes’ or ‘no’.
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0–10 system The 0–10 system provides confidence values on a scale of 0–10. This
is often quite compatible with the intuitive knowledge used in the development of an
expert system. A value of 0 locks the value for the goal at 0 (no—not possible) and
a value of 10 locks the value for the goal at 10 (yes—definitely selected). Confidence
values between 1 and 9 are averaged to give a relative likelihood.

This system can positively select or reject a goal (with a value of 10 or 0) but
can also allow intermediate values to indicate goals that may also be appropriate.
When obtaining a designer’s intuitive recommendation in an event, a 0–10 scale is
often easy to use. Unless valid statistical data are available, precision higher than
0–10 is difficult to obtain from intuitive knowledge, especially for conceptual de-
sign. Despite its simplistic calculations, the 0–10 system is quite suitable for many
expert systems and has been used to build thousands of real-world applications.

–100 to 100 system Values can be assigned to goals in the range of −100 to 100.
This provides greater resolution than the 0–10 system. However, there is no value
that locks the value at ‘yes’ or ‘no’, and values of 0, 100 and −100 are treated
like any other value. There are three methods of combining the confidence values—
average, dependent probabilities, or independent probabilities. The system is effec-
tive if the nature of the problem requires that the confidence factors be combined as
dependent or independent probabilities.

Fuzzy logic is a very powerful technique that enables the expert systems to ma-
nipulate imprecise data (i.e. the temperature is too high) and more closely reflect
the real world. In the fuzzy logic confidence mode, fuzzy membership functions
are defined that assign confidence to items based on the value of a variable. These
confidence values are propagated through the rules to the confidence assigned to the
goals. Specific values can be defuzzified out of the results, to have the expert system
give precise recommendations.

Figure 5.126 illustrates the application of fuzzy logic for managing uncertainty
concerning the design constraint of temperature, and can similarly be done for the
pressure design constraint. The fuzzy membership functions are represented by a tri-
angular distribution mapping (t-norm), established by input of membership func-
tions against specific confidence levels. The resulting rules developed with fuzzy
logic inference are similar in construct to Fig. 5.124, except with < or � notation.

Plant analysis, with specific reference to the integrity of engineering design, fo-
cuses on equipment functional failure, their causes and effects, and the overall con-
sequences that affect safety, operations, quality and the environment. It includes
the identification of critical equipment with regard to safety, risk, operations down-
time, product quality and environmental impact, as well as costs of downtime. The
outcome of plant analysis determines maintenance procedures, plant isolation pro-
cedures (with the establishment of statutory requirements), plant shutdown proce-
dures (shutdown and start-up), standard work instructions, maintenance and oper-
ating resource requirements, and logistical spares requirements, for the effective
care of plant and equipment to ensure safety, operational performance, production
output, product quality and environmental protection. Figure 5.127 illustrates the
plant analysis functional overview option in the AIB blackboard. It also provides
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Fig. 5.126 Fuzzy logic for managing uncertain data

a theoretical overview of reliability, availability, maintainability and safety in engi-
neering design—the methodology presented in this handbook.

Plant analysis in the AIB blackboard is the working memory of the knowledge-
based expert systems, consisting of a global database of facts relating to the integrity
of engineering design, which are used for establishing automated continual design
reviews. The basic aims of automated continual design reviews are to automatically
assess system requirements and allocations to ensure that the design specifications
are complete; to automatically compare the design output against design specifica-
tions; to automatically present the risks associated with a collaborative and continu-
ous design effort; and to continually allow for decision-making in selecting the most
suitable design amongst the current design solutions.

Figures 5.128 and 5.129 illustrate the typical AIB blackboard format of an au-
tomated continual design review. Figure 5.128 shows the blackboard systems hier-
archy navigation and selection format whereby critical components can be viewed
with regard to their systems relationships.

Figure 5.129 shows a typical criticality assessment of a component, based on
condition and performance obtained from an FMECA analysis.

The artificial intelligence blackboard model—overview Artificial intelligence-
based strategies for decision-making and, in particular, for decisions concerning the
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Fig. 5.127 AIB blackboard model with plant analysis overview option

integrity of engineering design are centred around three approaches termed deter-
ministic knowledge, probabilistic knowledge and possibilistic knowledge.

Deterministic knowledge, in engineering design integrity formulation, is based
on a well-defined systems structure and definition of the operational and physical
functions of equipment, the usefulness of which depends on the ability to relate
the information specifically to failure conditions (or failure modes) in identifying
problems of equipment failure consequences.

Probabilistic knowledge is gained mainly from a statistical analysis of the prob-
able occurrences of events, such as component failures, in order to predict the ex-
pected occurrence of these events in the future to be able to design-out problems or
to implement some form of preventive action.

Possibilistic knowledge focuses primarily on imprecision or uncertainty that is
intrinsic to equipment degradation. Imprecision here is meant to express a sense of
vagueness, rather than the lack of any knowledge at all about predicted equipment
condition, particularly its physical condition. In other words, possibilistic knowl-
edge concerns the concept of ‘fuzziness’, and not ‘randomness’.

The application of fuzzy logic expert systems focuses on the use of expert systems
technology and fuzzy logic to achieve intelligent computer automated methodology
to determine the integrity of engineering design. The most important impact areas
of expert systems on the integrity of engineering design are:
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Fig. 5.128 Automated continual design review: component SBS

• automatic checking of design constraints that affect the design’s integrity, allow-
ing for alternatives to be considered in a collaborative design environment;

• automation of complex tasks and activities for determining design integrity
where expertise is specialised and technical;

• strategies for searching in the space of alternative designs, and monitoring of
progress towards the targets of achieving the required design integrity;

• integration of diverse knowledge sources in an AIB blackboard system, with ex-
pertise applied concurrently to the problem of ensuring design integrity;

• provision of intelligent computer automated methodology for determining the
integrity of engineering design through automated continual design reviews.

5.4.2 Evaluation of Modelling Results

As previously indicated, blackboard systems consist mainly of a set of knowledge
sources and a blackboard data structure. A blackboard knowledge source is a highly
specialised, highly independent process that takes inputs from the blackboard data
structure, performs a computation, and places the results of the computation back in
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Fig. 5.129 Automated continual design review: component criticality

the blackboard data structure. This blackboard data structure is a centralised global
data structure partitioned in a hierarchical manner and used to represent the problem
domain (in this case, the engineering design problem), and acts as a shared memory
visible to all of the knowledge sources to allow intercommunication between the
knowledge sources. The blackboard data structure contains shared blackboard data
objects and can be accessed by all of the knowledge sources. This design allows
for an opportunistic control strategy that enables a knowledge source to contribute
towards the solution of the current problem without knowing which of the other
knowledge sources will use the information.

Blackboard systems are a natural progression of expert systems into a more pow-
erful problem-solving technique. They generally provide a way for several highly
specialised knowledge sources to cooperate to solve larger and more complex prob-
lems. Due to the hierarchical structure of the blackboard, each data object on
the blackboard will usually have only one knowledge source that can update it.
Although these knowledge sources are often referred to as ‘experts’, knowledge
sources are not restricted to expert systems such as the ExSys c© Expert System
(ExSys 2000) or other AI systems, and include the ability to add conventionally
coded software such as the artificial intelligence-based (AIB) model, to cooperate
in solving problems.
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Many knowledge sources are numeric or algorithmic in nature (i.e. the AIB
blackboard knowledge source for artificial neural network (ANN) computation that
is specifically applied for processing time-varying information, such as non-linear
dynamic modelling, time series prediction, adaptive control, etc. of various engi-
neering design problems). The use of multiple, independent knowledge sources al-
lows each knowledge source to use the data representation scheme and problem-
solving strategy that best suit the specific purpose of that knowledge source. These
specialised knowledge sources are thus easier to develop and can be hosted on dis-
tributed hardware.

The use of opportunistic problem-solving and highly specialised knowledge
sources allows a set of distributed knowledge sources to cooperate concurrently to
solve large, complex design problems. However, blackboard systems are not easily
developed, especially where a high degree of concurrent knowledge source execu-
tion must be achieved while maintaining knowledge consistency on the blackboard.
In general, blackboard systems have not attained their apparent potential, because
there are no established tools or methods to analyse their performance.

The lack of a coherent set of performance analysis tools has in many cases re-
sulted in the revision of a poorly designed system to be ignored once the system
had been implemented. This lack of the appropriate performance analysis tools for
evaluating blackboard system design is one of the reasons why incorporating con-
currency into the blackboard problem-solving model has not generally been suc-
cessful. Consequently, a method for the validation of blackboard system design has
been developed (McManus 1991). This method has been applied to the AIB black-
board system for determining the integrity of process engineering design.

Knowledge source connectivity analysis is a method for evaluating blackboard
system performance using a formalised model for blackboard systems design. A de-
scription of the blackboard data structure, the function computed by each knowledge
source, and the knowledge source’s input and output variables are sufficient to create
a formalised model of a blackboard system (McManus 1992). Connectivity analy-
sis determines the data transfers between the knowledge sources and data migration
across the blackboard.

The attributes of specialisation, serialisation and interdependence are evaluated
for each knowledge source. This technique allows for the evaluation of a blackboard
design specification before the blackboard system is developed. This also allows the
designer to address knowledge source connectivity problems, feedback loops and
interdependence problems as a part of the initial design process. Knowledge source
connectivity analysis measures the output set overlap, functional connectivity, and
output to input connectivity between pairs of knowledge sources. Output set overlap
is a measure of the specialisation of pairs of knowledge sources, whereas functional
connectivity between pairs of knowledge sources is a measure of their serialisation,
and output to input connectivity is a measure of their interdependence.



5.4 Application Modelling of Safety and Risk in Engineering Design 779

a) The Formalised Model for Blackboard Systems Design

Knowledge source connectivity analysis requires a specification of the system de-
veloped using a formalised model for blackboard systems (McManus 1992). Black-
board systems can be modelled as a blackboard data structure containing shared
blackboard data objects, and a set of cooperating knowledge sources that can access
all of the blackboard data objects. These knowledge sources are processes that take
inputs from the blackboard, perform some computation, then place the results back
on the blackboard for other design teams in a collaborative design environment.

Blackboard data structure A blackboard data structure is a global data structure
consisting of a set of blackboard data objects, {d1, . . . ,d j}, used to represent the
problem domain.

Blackboard data object Each blackboard data object is a predefined data object
type with a point value or a range of values. A blackboard data object, d j, is thus an
object that has a single value or multiple values.

Knowledge source A knowledge source, ks j , of a set of knowledge sources, β =
{ks1, . . . ,ks j}, consists of the following:

• a set of input variables, IV = {iv1, . . . , ivn},
• a set of input conditions, IC = {ic1, . . . , icn},
• a set of output variables, OV = {ov1, . . . ,ovm},
• a description of the computation delivered by the knowledge source,
• a set of preconditions, PR = {pr1, . . . , prk},
• a set of post-conditions, PT = {pt1, . . . , ptk} and
• an input queue, IQ.

A knowledge source’s input conditions are a set of Boolean variables used to notify
a knowledge source when one of its input variables has been updated. The precondi-
tions are a set of Boolean functions that all must be TRUE for a knowledge source to
be activated, and the post-conditions are a set of Boolean functions that all must be
TRUE for a knowledge source to post the result of its computation to the blackboard.
If all of a knowledge source’s activation conditions are met while it is executing, the
input queue stores the knowledge source’s input variables.

There are two classes of input variables pertaining to knowledge sources: ex-
plicit input variables and generic input variables. An explicit input variable spec-
ifies a single, unique blackboard data object that is used as the input variable to
a knowledge source. A knowledge source can use only the blackboard data object
specified by the explicit input variable as a valid input. A generic input variable
specifies a class or type of blackboard data object that can be used as the input
variable to the knowledge source. The knowledge source can accept an instance
of a blackboard data object of the specified class as an input variable. The use of
generic input variables allows development of knowledge sources that function on
a class of blackboard data objects.
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Knowledge sources can be classified by their input variables:

• Explicit knowledge sources have only explicit input variables;
• Mixed knowledge sources have both explicit and generic input variables;
• Generic knowledge sources have only generic input variables.

Blackboard system A blackboard system is used to allow intercommunication of
knowledge sources, and acts as a shared memory that is visible to all of the knowl-
edge sources. A blackboard system, B, is a tuple 〈X ,P,β ,Id,θ 〉, where:

• X is a set of blackboard data objects, X = {d1, . . . ,di};
• P is the set of blackboard data object states, P = V1 ·V2 · . . . ·Vi, where Vi is a set

of all valid values for blackboard data object di;
• β is the set of knowledge sources, β = {ks1, . . . ,ks j};
• each knowledge source’s domain is a subset of P, and its range is a subset of P;
• Id is an i-vector describing the i initial values of the blackboard data objects,

Id ∈ P;
• θ is a relation on β , where θ ⊂ β ·β and 〈ks j , ksk〉 ∈ θ if and only if ∃d j ∈ X

where: d j ∈ OV and (ks j)∧d j ∈ IV(ksk);
• If 〈ks j , ksk〉 ∈ θ , then ksk is a successor of ks j, and ks j is a predecessor of ksk.

b) Performance Analysis of the Blackboard Systems Design

The performance of a blackboard system design can be analysed in the following
manner (McManus 1991): for each knowledge source ks j in β is an input set, Ψj,
containing all of the input variables of ks j and an output set, Φ j, containing all of
the output variables of ks j

Ψj = {iv1, iv2, . . . , ivn} (5.118)

Φ j = {ov1,ov2, . . . ,ovm}

Once Ψj and Φ j have been established for all ks j in β , the sets Γj,k and θ j,k can
be computed for all knowledge source pairs {ks j,ksk} in β ( j �= k)

Γj,k = Φ j ∩Φk (5.119)

θ j,k = Φ j ∩Ψk

As indicated, output set overlap is a measure of the specialisation of pairs of
knowledge sources, whereas functional connectivity between the pairs of knowl-
edge sources is a measure of their serialisation, and output to input connectivity is
a measure of their interdependence.

Specialisation value The output set overlap is a measure of the specialisation of
pairs of knowledge sources, whereby the set Γj,k is computed to assess functional
specialisation. The cardinality of the set Γj,k for each pair {ks j,ksk} in β is a mea-
sure of the output overlap for the pair {ks j,ksk} (i.e. a measure of the specialisation
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of pairs of knowledge sources). Knowledge source pairs {ks j,ksk} with a large out-
put overlap imply that ks j and ksk share a large number of output variables and,
thus, have similar functions. Knowledge source pairs {ks j,ksk} with a low overlap
imply that ks j and ksk have different functions. A proposed heuristic to measure
knowledge source specialisation is to compute a specialisation value, Ω j,k, for each
pair {ks j,ksk} in β. Specialisation values measure the output set overlap of a pair
of knowledge sources, {ks j,ksk}. The specialisation value is computed using the
following (McManus 1992):

Ω j,k =
card(Γj,k)

min(card(Φ j),card(Φk))
(5.120)

The cardinality of the set Γj,k divided by the minimum of the cardinalities of
the sets Φ j and Φk computes a percentage of overlap between the set Γj,k and the
smaller of the sets Φ j and Φk. As Ω j,k approaches 1.0, the output overlap between
ks j and ksk increases. As Ω j,k approaches 0.0, the output overlap between ks j and
ksk decreases. For the limiting cases, where Φ j ⊃ Φk or Φk ⊃ Φ j, we know that
Ω j,k = 1.0, and ks j and ksk compute the same outputs—thus, the knowledge sources
are not specialised. However, if Γj,k = φ (where φ is the null value), then Ω j,k = 0.0,
and the two knowledge sources have no common outputs and are highly specialised
in relation to each other.

Serialisation value The functional connectivity between pairs of knowledge
sources is a measure of their serialisation, whereby the set θ j,k is computed to
assess serialisation. The cardinality of the set θ j,k for each pair {ks j,ksk} in β ,
compared to the cardinality of the set Ψk, is a measure of the input overlap for the
pair {ks j,ksk} (i.e. a measure of the serialisation of pairs of knowledge sources).
Knowledge source pairs {ks j,ksk} with a large input overlap imply that ks j and ksk

share a large number of output to input variables and, thus, form serialised execu-
tion. Knowledge source pairs {ks j,ksk} with a low input overlap imply that ks j and
ksk can execute separately. A serialisation value measures the functional connectiv-
ity between a pair of knowledge sources where the functional connectivity is the
relative output to input ratio. A proposed heuristic, therefore, to measure knowledge
source serialisation is to compute a serialisation value, Σ j,k, for each pair {ks j,ksk}
in β . Serialisation values measure the functional connectivity of a pair of knowledge
sources, {ks j,ksk}.

The serialisation value is computed using (McManus 1992):

Σ j,k =
(cardθ j,k)
(cardΨk)

(5.121)

This heuristic computes the percentage of the input data objects for knowledge
source ksk that are provided by knowledge source ks j. The cardinality of the set
θ j,k divided by the cardinality of the set Ψk computes a percentage of input overlap
between θ j,k and Ψk.
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As Σ j,k approaches 1.0, the percentage of overlap between θ j,k and Ψk is greater,
and the serialisation between ks j and ksk strengthens. As Σ j,k approaches 0.0, the
serialisation between ks j and ksk weakens. For the limiting cases, if Ψk ⊃ Φ j,
Π j,k = 1.0, and ks j and ksk have direct serialisation. If θ j,k = φ (where φ is the
null value), then Σ j,k = 0.0, and the two knowledge sources are independent and
can execute concurrently.

Strongly connected knowledge sources have high serialisation values. These
knowledge sources form serialised execution pipelines, with each knowledge source
blocking completion of any computation for the same input data objects by other
knowledge sources. Unless multiple copies of the serialised knowledge sources are
developed, the serial pipelines reduce the blackboard’s capability for concurrent
execution. Weakly connected knowledge sources reduce knowledge source serial-
isation and increase the opportunity for concurrent knowledge source execution.
Knowledge source pairs that have high serialisation values are best suited for knowl-
edge source integration whereby the first knowledge source provides all of the in-
puts to the second knowledge source. Such a serially connected pair of knowledge
sources can be reduced to a single knowledge source that combines the functionality
of the two.

Interdependence value The output to input connectivity between pairs of knowl-
edge sources is a measure of their interdependence, whereby the set θ j,k is computed
to assess interdependence. The cardinality of the set θ j,k for each pair {ks j,ksk} in
β is a measure of the output to input connectivity for the pair {ks j,ksk}. Knowl-
edge source pairs {ks j,ksk} with a high output to input connectivity imply that ksk

is highly dependent on ks j for its input variables. Knowledge source pairs {ks j,ksk}
with a low output to input connectivity imply that ksk’s inputs are independent of
ks j’s outputs.

A proposed heuristic to measure knowledge source interdependence is to com-
pute an interdependence value, Π j,k, for each pair {ks j,ksk} in β . Interdepen-
dence values measure the output to input connectivity between knowledge sources,
{ks j,ksk}. The interdependence value is computed using the following (McManus
1992):

Π j,k =
(cardθ j,k)

min(card(Φ j),card(Ψk))
(5.122)

This heuristic computes the percentage of overlap between the sets Φ j and Ψk, or
the percentage of output data objects of ks j that are used as input data objects by ksk.
The cardinality of the set θ j,k divided by the minimum of the cardinalities of the sets
Φ j and Ψk computes a percentage of overlap between the set θ j,k and the smaller of
the sets Φ j and Ψk. As Π j,k approaches 1.0, the output to input connectivity between
ks j and ksk strengthens and the knowledge sources become more interdependent. As
Π j,k approaches 0.0, the output to input connectivity between ks j and ksk weakens
and the knowledge sources become independent. For the limiting cases, if Φ j ⊃Ψk,
Π j,k = 1.0, and ks j and ksk have direct output to input connectivity and are interde-
pendent. If the set θ j,k = φ (where φ is the null value), then Π j,k = 0.0, and the two
knowledge sources have no output to input connectivity and are independent.
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c) Evaluation of the AIB Blackboard Model for Determining the Integrity
of Engineering Design

The AIB blackboard model for determining the integrity of engineering design in-
cludes subsets of the knowledge sources and blackboard data objects that are used
by the knowledge-based expert system section. This knowledge-based expert sys-
tem section allows for the development of various expert systems, and is structured
into facts, functions, conditions, constraints, rules and goals related to the subsets of
the knowledge sources and blackboard data objects of process analysis, plant analy-
sis and operations analysis sections. The primary subsets of the knowledge sources
for the process analysis and plant analysis sections are described below in accor-
dance with Fig. 5.82 illustrating the AIB blackboard model for engineering design
integrity.

Process analysis section

• Let Ks1 be the process definition module. This knowledge source makes use of
six global data object inputs—di1, di2, di3, di4, di5 and di6, which can be repre-
sented by the set of input variables IV6 = {iv1, . . . , ivn}—as well as a process
description input, and computes five data object outputs that can be represented
by the set of output variables OV5 = {iv1, . . . , ivn}, for the data object outputs do1

to do5.

The data object inputs di1 to di6 and data object outputs do1 to do5:

di1 = Plant/facility di7 = Process description
di2 = Operation/area do1 = Process sequence
di3 = Section/building do2 = Mass balance
di4 = System/process do3 = Heat balance
di5 = Assembly/unit do4 = Energy balance
di6 = Component/item do5 = Utilities balance.

• Let Ks2 be the performance assessment module. This knowledge source makes
use of the six global data object inputs di1, di2, di3, di4, di5 and di6, as well as
a performance specification set, di8, and computes a performance output variable
set, do6.
The performance specification set di8 can be represented by the set of input vari-
ables IV8 = {iv1, . . . , ivn}, where di8 =performance specification data object with
IV8 = {efficiency, flow, precipitation, throughput, output, pressure, viscosity, ab-
sorption, temperature, losses, etc.}.
The performance output variable set do6 can be represented by the set of output
variables OV6 = {ov1, . . . ,ovm}, where do6 is the performance output data ob-
ject with OV6 = {efficiency rating, flow rating, throughput rating, output rating,
yield, pressure rating, consistency, temperature rating, productivity, etc.}.

• Let Ks3 be the RAM assessment module. This knowledge source makes use of the
six global data object inputs di1, di2, di3, di4, di5 and di6, as well as a conditions
description set, di9, and computes a conditions failure output variable set, do7.
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The conditions description set di9 can be represented by the set of input vari-
ables IV9 = {iv1, . . . , ivn}, where di9 = conditions description data object with
IV9 = {function description, failure description, failure effects, failure conse-
quences, failure causes, failure mode description, failure frequency, restoration
tasks description, procedure description, maintainability, etc.}.
The conditions failure output variable set do7 can be represented by the set of
output variables OV7 = {ov1, . . . ,ovm}, where do7 is the conditions failure data
object with OV7 = {failure severity, probability of consequence, failure risk, fail-
ure criticality, failure downtime, restoration downtime, availability, etc.}.

• Let Ks4 be the design assessment module. This knowledge source makes use of
the six global data object inputs di1, di2, di3, di4, di5 and di6, as well as a design
specification set, di10, and computes a design criteria output variable set, do8.
The design specification set di10 can be represented by the set of following in-
put variables IV10 = {iv1, . . . , ivn}, where di10 = design specification data object
with IV10 = {mass, volume, capacity, circulation, agitation, fluids, solids, con-
sumption, heat input, energy input, etc.}.
The design criteria output variable set do8 can be represented by the set of output
variables OV8 = {ov1, . . . ,ovm}, where do8 is the design criteria data object with
OV8 = {efficiency, flow, precipitation, throughput, output, pressure, viscosity,
absorption, temperature, losses, etc.}.

• Let Ks5 be the hazardous operations (HazOp) assessment module. This knowl-
edge source makes use of the six global data object inputs di1, di2, di3, di4, di5

and di6, as well as the operational hazards set di11, and computes an operational
risk output variable set, do9.
The operational hazards set di11 can be represented by the set of input vari-
ables IV11 = {iv1, . . . , ivn}, where di11 = operational hazards data object with
IV11 = {efficiency rating, flow rating, throughput rating, output rating, pressure
rating, temperature rating, design torque, design stress, etc.}.
The operational risk output variable set do9 can be represented by the set of
output variables OV9 = {ov1, . . . ,ovm}, where do9 is the operational risk data
object with OV9 = {operational failure description, operational failure effects,
operational failure consequences, operational failure causes, etc.}.

Systems analysis section

• Let Ks6 be the systems definition module. This knowledge source makes use of
the six global data object inputs di1, di2, di3, di4, di5 and di6, as well as a systems
description input, di12, and computes a systems definition output variable set,
do10.
There is no output variable set for systems description input.
The systems definition output variable set do10 can be represented by the set of
output variables OV10 = {ov1, . . . ,ovm}, where do10 is the systems definition data
object with OV10 = {system efficiency rating, system flow rating, system output
rating, system pressure rating, system temperature rating, etc.}.

• Let Ks7 be the functions analysis module. This knowledge source makes use of
the six global data object inputs di1, di2, di3, di4, di5 and di6, as well as a func-
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tions description input, di13, and computes a functions definition output variable
set, do11.
There is no output variable set for functions description input.
The functions definition output variable set do11 can be represented by the set of
output variables OV11 = {ov1, . . . ,ovm}, where do11 is the functions definition ob-
ject with OV11 = {type, make, size, weight, capacity, cooling, insulation, power
rating, power source, governing, rotation, speed, acceleration, torque, stress, volt-
age, current, etc.}.

• Let Ks8 be the FMEA module. This knowledge source makes use of the six global
data object inputs di1, di2, di3, di4, di5 and di6, as well as a failure modes set, di14,
and computes a failure effects output variable set, do12.
The failure modes set di14 can be represented by the set of input variables IV14 =
{iv1, . . . , ivn}, where di14 is the failure modes data object with IV14 = {system
failure description, system failure mode description, etc.}.
The failure effects output variable set do12 is represented by the set of output
variables OV12 = {ov1, . . . ,ovm}, where do12 is the failure effects data object
with OV12 = {system failure effects, system failure severity, etc.}.

• Ks9 is the risk evaluation module. This knowledge source makes use of the six
global data object inputs di1, di2, di3, di4, di5 and di6, as well as a risk identifica-
tion set, di15, and computes a failure risk output variable, do13.
The risk identification set di15 can be represented by the set of input vari-
ables IV15 = {iv1, . . . , ivn}, where di15 is the risk identification data object with
IV15 = {system failure effects, system failure consequences, system failure mode
description, system probability of consequence, system failure severity, system
failure frequency, system failure risk, etc.}.

Table 5.28 The AIB blackboard data object construct

Data object input variables Data object output variables

di1 = Plant/facility do1 = Process sequence
di2 = Operation/area do2 = Mass balance
di3 = Section/building do3 = Heat balance
di4 = System/process do4 = Energy balance
di5 = Assembly/unit do5 = Utilities balance
di6 = Component/item do6 = Performance output
di7 = Process description do7 = Conditions failure
di8 = Performance specification do8 = Design criteria
di9 = Conditions description do9 = Operational risk
di10 = Design specification do10 = Systems definition
di11 = Operational hazards do11 = Functions definition
di12 = Systems description do12 = Failure effects
di13 = Functions description do13 = Failure risk
di14 = Failure modes do14 = Failure criticality
di15 = Risk identification
di16 = Failure identification
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• Let Ks10 be the criticality analysis module. This knowledge source makes use of
the six global data object inputs di1, di2, di3, di4, di5 and di6, as well as a failure
identification set, di16, and computes a failure criticality output variable, do14.
The failure identification set di16 can be represented by the set of input vari-
ables IV16 = {iv1, . . . , ivn}, where di16 is the failure identification data object with
IV16 = {system function description, system failure description, system failure
consequences, system failure causes, system failure mode description, system
failure frequency, system probability of consequence, system failure severity,
system failure frequency, system failure risk, etc.}.

The input and output variable sets are summarised in Table 5.28.

d) The AIB Blackboard Model Specifications

The AIB blackboard model developed for determining the integrity of engineer-
ing design, has basically three levels of application which in effect divides the
blackboard model into three separate blackboard sections: a process design black-
board section (B1), a systems design blackboard section (B2), and a systems pro-
cedures blackboard section (B3). The process design blackboard section, (B1), is
constrained to the input and output variables directly related to the process anal-
ysis section, while the systems design blackboard section, (B2), is constrained to
the input and output variables directly related to the plant analysis section, and the
systems procedures blackboard section, (B3), is constrained to the input and output
variables directly related to the operations analysis section.

Specification of the process design blackboard section (B1)

Xi = {di1,di2,di3,di4,di5,di6,di7,di8,di9,di10,di11};
Xo = {do1,do2,do3,do4,do5,do6,do7,do8,do9};
Pi = {IV6 × IV8 × IV9 × IV10 × IV11};
Po = {OV6 ×OV7 ×OV8 ×OV9};
β = {ks1,ks2,ks3,ks4,ks5};

where di1, di2, di3, di4, di5, di6 = IV6, do1, do2, do3, do4, do5 = OV5;

ks1 = {IV6,di7,OV5}
ks2 = {IV6,di8,do6} = {IV6, IV8,OV6}
ks3 = {IV6,di9,do7} = {IV6, IV9,OV7}
ks4 = {IV6,di10,do8} = {IV6, IV10,OV8}
ks5 = {IV6,di11,do9} = {IV6, IV11,OV9} .

For each knowledge source ks j in β is an input set, Ψj, containing all of the input
variables of ks j, and an output set, Φ j , containing all of the output variables of ks j:

Ψ1 = {IV6,di7} Φ1 = {OV5}
Ψ2 = {IV6, IV8} Φ2 = {OV6}
Ψ3 = {IV6, IV9} Φ3 = {OV7}
Ψ4 = {IV6, IV10} Φ4 = {OV8}
Ψ5 = {IV6, IV11} Φ5 = {OV9} .



5.4 Application Modelling of Safety and Risk in Engineering Design 787

Table 5.29 Computation of Γj,k and θ j,k for blackboard B1

Γ1,2 = Φ1 ∩Φ2 = {OV5}∩{OV6} = 0 θ1,2 = Φ1 ∩Ψ2 = {OV5}∩{IV6, IV8} = 0
Γ1,3 = Φ1 ∩Φ3 = {OV5}∩{OV7} = 0 θ1,3 = Φ1 ∩Ψ3 = {OV5}∩{IV6, IV9} = 0
Γ1,4 = Φ1 ∩Φ4 = {OV5}∩{OV8} = 0 θ1,4 = Φ1 ∩Ψ4 = {OV5}∩{IV6, IV10} = 0
Γ1,5 = Φ1 ∩Φ5 = {OV5}∩{OV9} = 0 θ1,5 = Φ1 ∩Ψ5 = {OV5}∩{IV6, IV11} = 0
Γ2,1 = Φ2 ∩Φ1 = {OV6}∩{OV5} = 0 θ2,1 = Φ2 ∩Ψ1 = {OV6}∩{IV6, IV7} = 0
Γ2,3 = Φ2 ∩Φ3 = {OV6}∩{OV7} = 0 θ2,3 = Φ2 ∩Ψ3 = {OV6}∩{IV6, IV9} = 0
Γ2,4 = Φ2 ∩Φ4 = {OV6}∩{OV8} = 0.7 θ2,4 = Φ2 ∩Ψ4 = {OV6}∩{IV6, IV10} = 0
Γ2,5 = Φ2 ∩Φ5 = {OV6}∩{OV9} = 0 θ2,5 = Φ2 ∩Ψ5 = {OV6}∩{IV6, IV11} = 0.7
Γ3,1 = Φ3 ∩Φ1 = {OV7}∩{OV5} = 0 θ3,1 = Φ3 ∩Ψ1 = {OV7}∩{IV6,di7} = 0
Γ3,2 = Φ3 ∩Φ2 = {OV7}∩{OV6} = 0 θ3,2 = Φ3 ∩Ψ2 = {OV7}∩{IV6, IV8} = 0
Γ3,4 = Φ3 ∩Φ4 = {OV7}∩{OV8} = 0 θ3,4 = Φ3 ∩Ψ4 = {OV7}∩{IV6, IV10} = 0
Γ3,5 = Φ3 ∩Φ5 = {OV7}∩{OV9} = 0 θ3,5 = Φ3 ∩Ψ5 = {OV7}∩{IV6, IV11} = 0
Γ4,1 = Φ4 ∩Φ1 = {OV8}∩{OV5} = 0 θ4,1 = Φ4 ∩Ψ1 = {OV8}∩{IV6,di7} = 0
Γ4,2 = Φ4 ∩Φ2 = {OV8}∩{OV6} = 0.6 θ4,2 = Φ4 ∩Ψ2 = {OV8}∩{IV6, IV8} = 1.0
Γ4,3 = Φ4 ∩Φ3 = {OV8}∩{OV7} = 0 θ4,3 = Φ4 ∩Ψ3 = {OV8}∩{IV6, IV9} = 0
Γ4,5 = Φ4 ∩Φ5 = {OV8}∩{OV9} = 0 θ4,5 = Φ4 ∩Ψ5 = {OV8}∩{IV6, IV11} = 0.6
Γ5,1 = Φ5 ∩Φ1 = {OV9}∩{OV5} = 0 θ5,1 = Φ5 ∩Ψ1 = {OV9}∩{IV6,di7} = 0
Γ5,2 = Φ5 ∩Φ2 = {OV9}∩{OV6} = 0 θ5,2 = Φ5 ∩Ψ2 = {OV9}∩{IV6, IV8} = 0
Γ5,3 = Φ5 ∩Φ3 = {OV9}∩{OV7} = 0 θ5,3 = Φ5 ∩Ψ3 = {OV9}∩{IV6, IV9} = 1.0
Γ5,4 = Φ5 ∩Φ4 = {OV9}∩{OV8} = 0 θ5,4 = Φ5 ∩Ψ4 = {OV9}∩{IV6, IV10} = 0

Once Ψj and Φ j have been established for all ks j in β , the sets Γj,k and θ j,k

can be computed for all knowledge source pairs {ks j,ksk} in β ( j �= k) where
Γj,k = Φ j ∩Φk and θ j,k = Φ j ∩Ψk. The set Γj,k is computed to assess functional
specialisation, whereas the set θ j,k is computed to assess serialisation and interde-
pendence (Table 5.29).

Knowledge source specialisation Ω j,k is computed from (Eq. 5.120), knowledge
source serialisation Σ j,k is computed from (Eq. 5.121), and knowledge source inter-
dependence Π j,k is computed from (Eq. 5.122) (McManus 1992).

From Table 5.29, the sets Γj,k and θ j,k for the pairs of data objects that are zero in-
dicate that their specialisation, serialisation and interdependence are also zero, with
the conclusion that the relevant knowledge sources are highly specialised with no
serialisation and total independence, making these suitable for concurrent execution.

However, the sets Γj,k and θ j,k for certain pairs of data objects that are not zero
indicate that their specialisation, serialisation or interdependence will also not be
zero, resulting in a diminished capability for concurrent execution. These sets’ val-
ues are given below (Table 5.30).

Table 5.30 Computation of non-zero Ω j,k,Σ j,k and Π j,k for blackboard B1

Γ2,4 = 0.7 θ2,4 = 0 Ω2,4 = 0.67 Σ2,4 = 0 Π2,4 = 0
Γ2,5 = 0 θ2,5 = 0.7 Ω2,5 = 0 Σ2,5 = 0.43 Π2,5 = 0.67
Γ4,2 = 0.6 θ4,2 = 1.0 Ω4,2 = 0.67 Σ4,2 = 1.0 Π4,2 = 1.0
Γ4,5 = 0 θ4,5 = 0.6 Ω4,5 = 0 Σ4,5 = 0.75 Π4,5 = 0.75
Γ5,3 = 0 θ5,3 = 1.0 Ω5,3 = 0 Σ5,3 = 0.40 Π5,3 = 1.0
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Specification of the systems design blackboard section (B2)

Xi = {di1,di2,di3,di4,di5,di6,di12,di13,di14,di15,di16};
Xo = {do10,do11,do12,do13,do14};
Pi = {IV6 × IV14 × IV15 × IV16};
Po = {OV10 ×OV11 ×OV12};
β = {ks6,ks7,ks8,ks9,ks10};

where di1, di2, di3, di4, di5, di6 = IV6 and do10 = OV10;

ks6 = {IV6,di12,OV10}
ks7 = {IV6,di13,do11} = {IV6,di13,OV11}
ks8 = {IV6,di14,do12} = {IV6,di14,OV12}
ks9 = {IV6,di15,do13} = {IV6, IV15,do13}
ks10 = {IV6,di16,do14} = {IV6, IV16,do14} .

For each knowledge source ks j in β is an input set, Ψj, containing all of the input
variables of ks j and an output set, Φ j, containing all of the output variables of ks j:

Ψ6 = {IV6,di12} Φ6 = {OV10}
Ψ7 = {IV6,di13} Φ7 = {OV11}
Ψ8 = {IV6, IV14} Φ8 = {OV12}
Ψ9 = {IV6, IV15} Φ9 = {do13}
Ψ10 = {IV6, IV16} Φ10 = {do14} .

Once Ψj and Φ j have been established for all ks j in β , the sets Γj,k and θ j,k

can be computed for all knowledge source pairs {ks j,ksk} in β ( j �= k) where
Γj,k = Φ j ∩ Φk and θ j,k = Φ j ∩Ψk. The set Γj,k is computed to assess functional
specialisation, whereas the set θ j,k is computed to assess serialisation and interde-
pendence.

From Table 5.31, the sets Γj,k and θ j,k for the pairs of data objects that are zero in-
dicate that their specialisation, serialisation and interdependence are also zero, with
the conclusion that the relevant knowledge sources are highly specialised with no
serialisation and total independence, making these suitable for concurrent execution.

However, the sets Γj,k and θ j,k for certain pairs of data objects that are not zero
indicate that their specialisation, serialisation or interdependence will also not be
zero, resulting in a diminished capability for concurrent execution.

These sets’ values are given below (Table 5.32).

e) Findings of Specialisation, Serialisation or Interdependence Computation

As previously indicated, the set Γj,k is computed to assess functional specialisation
and the cardinality of the set Γj,k for each pair {ks j,ksk} in β is a measure of the
output overlap for the pair {ks j,ksk} (i.e. a measure of the specialisation of pairs of
knowledge sources). Knowledge source pairs {ks j,ksk} with a large output overlap
imply that ks j and ksk share a large number of output variables and, thus, have
similar functions. Knowledge source pairs {ks j,ksk} with a low overlap imply that
ks j and ksk have different functions.
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Table 5.31 Computation of Γj,k and θ j,k for blackboard B2

Γ6,7 = Φ6 ∩Φ7 = {OV10}∩{OV11} = 0 θ6,7 = Φ6 ∩Ψ7 = {OV10}∩{IV6, IV14} = 0
Γ6,8 = Φ6 ∩Φ8 = {OV10}∩{OV12} = 0 θ6,8 = Φ6 ∩Ψ8 = {OV10}∩{IV6, IV14} = 0
Γ6,9 = Φ6 ∩Φ9 = {OV10}∩{do13} = 0 θ6,9 = Φ6 ∩Ψ9 = {OV10}∩{IV6, IV15} = 0
Γ6,10 = Φ6 ∩Φ10 = {OV10}∩{do14} = 0 θ6,10 = Φ6 ∩Ψ10 = {OV10}∩{IV6, IV16} = 0
Γ7,6 = Φ7 ∩Φ6 = {OV11}∩{OV10} = 0 θ7,6 = Φ7 ∩Ψ6 = {OV11}∩{IV6,di12} = 0
Γ7,8 = Φ7 ∩Φ8 = {OV11}∩{OV12} = 0 θ7,8 = Φ7 ∩Ψ8 = {OV11}∩{IV6, IV14} = 0
Γ7,9 = Φ7 ∩Φ9 = {OV11}∩{do13} = 0 θ7,9 = Φ7 ∩Ψ9 = {OV11}∩{IV6, IV15} = 0
Γ7,10 = Φ7 ∩Φ10 = {OV11}∩{do14} = 0 θ7,10 = Φ7 ∩Ψ10 = {OV11}∩{IV6, IV16} = 0
Γ8,6 = Φ8 ∩Φ6 = {OV12}∩{OV10} = 0 θ8,6 = Φ8 ∩Ψ6 = {OV12}∩{IV6,di12} = 0
Γ8,7 = Φ8 ∩Φ7 = {OV12}∩{OV11} = 0 θ8,7 = Φ8 ∩Ψ7 = {OV12}∩{IV6,di13} = 0
Γ8,9 = Φ8 ∩Φ9 = {OV12}∩{do13} = 0 θ8,9 = Φ8 ∩Ψ9 = {OV12}∩{IV6, IV15} = 1.0
Γ8,10 = Φ8 ∩Φ10 = {OV12}∩{do14} = 0 θ8,10 = Φ8 ∩Ψ10 = {OV12}∩{IV6, IV16} = 1.0
Γ9,6 = Φ9 ∩Φ6 = {do13}∩{OV10} = 0 θ9,6 = Φ9 ∩Ψ6 = {do13}∩{IV6,di12} = 0
Γ9,7 = Φ9 ∩Φ7 = {do13}∩{OV11} = 0 θ9,7 = Φ9 ∩Ψ7 = {do13}∩{IV6,di13} = 0
Γ9,8 = Φ9 ∩Φ8 = {do13}∩{OV12} = 0 θ9,8 = Φ9 ∩Ψ8 = {do13}∩{IV6, IV14} = 0
Γ9,10 = Φ9 ∩Φ10 = {do13}∩{do14} = 0 θ9,10 = Φ9 ∩Ψ10 = {do13}∩{IV6, IV16} = 1.0
Γ10,6 = Φ10 ∩Φ6 = {do14}∩{OV10} = 0 θ10,6 = Φ10 ∩Ψ6 = {do14}∩{IV6,di12} = 0
Γ10,7 = Φ10 ∩Φ7 = {do14}∩{OV11} = 0 θ10,7 = Φ10 ∩Ψ7 = {do14}∩{IV6,di13} = 0
Γ10,8 = Φ10 ∩Φ8 = {do14}∩{OV12} = 0 θ10,8 = Φ10 ∩Ψ8 = {do14}∩{IV6, IV14} = 0
Γ10,9 = Φ10 ∩Φ9 = {do14}∩{OV13} = 0 θ10,9 = Φ10 ∩Ψ9 = {do14}∩{IV6, IV15} = 0

Table 5.32 Computation of non-zero Ω j,k,Σ j,k and Π j,k for blackboard B2

Γ8,9 = 0 θ8,9 = 1.0 Ω8,9 = 0 Σ8,9 = 0.28 Π8,9 = 1.0
Γ8,10 = 0 θ8,10 = 1.0 Ω8,10 = 0 Σ8,10 = 0.18 Π8,10 = 1.0
Γ9,10 = 0 θ9,10 = 1.0 Ω9,10 = 0 Σ9,10 = 0.64 Π9,10 = 1.0

From Table 5.30, the knowledge sources ks2 = {IV6, IV8,OV6} and ks4 =
{IV6, IV10,OV8} have a relatively low level of functional specialisation with a large
output overlap, where ks2 and ks4 share a large number of output variables and, thus,
have similar functions.

The knowledge source ks2 = the performance assessment module with output
variable set OV6 = {efficiency rating, flow rating, throughput rating, output rating,
yield, pressure rating, consistency, temperature rating, productivity, etc.}.

The knowledge source ks4 = the design assessment module with output variable
set OV8 = {efficiency, flow, precipitation, throughput, output, pressure, viscosity,
absorption, temperature, losses, etc.}.

Similarly, the set θ j,k is computed to assess serialisation and interdependence.
The cardinality of the set θ j,k for each pair {ks j,ksk} in β , compared to the car-

dinality of the set Ψk, is a measure of the input overlap for the pair {ks j,ksk} (i.e.
a measure of the serialisation of pairs of knowledge sources). Knowledge source
pairs {ks j,ksk} with a large input overlap imply that ks j and ksk share a large num-
ber of output to input variables and, thus, form serialised execution. Knowledge
source pairs {ks j,ksk} with a low input overlap imply that ks j and ksk can execute
separately.
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Knowledge sources ks2 = {IV6, IV8,OV6}, ks4 = {IV6, IV10,OV8} and ks5 =
{IV6, IV11,OV9} have a relatively high level of serialisation and interdependence
with a large input overlap, and share a large number of output to input variables, thus
forming serialised execution in the blackboard section (B1), related to the process
analysis section.

Knowledge sources ks8 = {IV6,di14,OV12}, ks9 = {IV6, IV15,do13} and
ks10 = {IV6, IV16,do14} also have a relatively high level of serialisation and in-
terdependence with an input overlap, and share a varied number of output to input
variables, thus forming serialised execution in the blackboard section (B2), related
to the systems analysis section.

The relative input overlaps for knowledge sources ks8 and ks9 are small compared
to that for knowledge source ks10, which requires a significant effort for re-design
of the knowledge source resulting in concentrated focus on ks10.

Knowledge source ks8 = the FMEA module with the input variable set IV14 =
{system failure description, system failure mode description, etc.}. Knowledge
source ks9 = the risk evaluation module with the input variable set IV15 = {system
failure effects, system failure consequences, system failure mode description, sys-
tem probability of consequence, system failure severity, system failure frequency,
system failure risk, etc.}. Knowledge source ks10 = the criticality analysis module
with the input variable set IV16 = {system function description, system failure de-
scription, system failure effects, system failure consequences, system failure causes,
system failure mode description, system failure frequency, system probability of
consequence, system failure severity, system failure frequency, system failure risk,
etc.}.

It is quite apparent that these knowledge sources share the same input variables,
not necessarily requiring serialised execution based on their serialisation value, Σ j,k,
but having a tight output to input connectivity (value=1.0) where the knowledge
sources are totally interdependent.

5.4.3 Application Modelling Outcome

Of the ten knowledge sources evaluated in the two blackboard sections, B1 and
B2, for the process analysis section and the systems analysis section of the AIB
blackboard model respectively, several knowledge sources failed to meet stringent
constraints of specialisation, serialisation or interdependence. This prompted re-
design of some of the knowledge sources’ interconnectivity to minimise serialised
execution in the AIB blackboard model, whereby automated continual design re-
views could be conducted throughout the engineering design process on the basis of
concurrent evaluations of design integrity in an integrated collaborative engineering
design environment.

The performance assessment module and the design assessment module of the
process analysis section were found to have a relatively low level of functional spe-
cialisation with a large output overlap, indicating that a large number of output vari-
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ables were common and, thus, had similar functions. This necessitated combining
the two knowledge sources both in access and in application during re-design of
the knowledge sources, thereby enhancing functional specialisation of the process
design blackboard section (B1).

The FMEA module, risk evaluation module, and criticality analysis module of
the systems analysis section of the AIB blackboard model had a relative input over-
lap, indicating that they shared a varied number of output to input variables, thus
forming serialised execution. However, the relative input overlap for the FMEA and
risk evaluation knowledge sources were small compared to the criticality analysis
knowledge source. The relatively low serialisation value for the FMEA and risk
evaluation modules indicated that these knowledge sources shared the same input
variables but did not necessarily have complete serialised execution. The criticality
analysis module had a relatively high serialisation value (64%), indicating the need
for a high level of serialised execution. All three knowledge sources had a tight
output to input connectivity (value=1.0), where the knowledge sources were totally
interdependent. This necessitated combining the three knowledge sources both in
access and in application during re-design of the knowledge sources, thereby en-
hancing functional independence of the systems design blackboard section (B2).

5.5 Review Exercises and References

Review Exercises

1. Discuss and compare fault-tree analysis (FTA), root cause analysis (RCA), and
event tree analysis (ETA) for determining system safety in engineering design.

2. Discuss the general application of cause-consequence analysis for determining
system safety in engineering design.

3. Give a brief account of the process of hazardous operability (HazOp) studies
in designing for safety, considering concepts such as design representations,
entities and their attributes, guidewords and interpretations, process parameter
selection, point of reference, consequences and safeguards, and deriving recom-
mendations.

4. Explain deviations from design intent and screening for causes of deviations.
5. Discuss the significance of safety and risk analysis in engineering design.
6. Describe the use of cost risk models, considering feature-based costing, para-

metric costing and risk analysis in designing for safety.
7. Discuss traditional cost estimating and consider comparisons between paramet-

ric cost estimating and qualitative cost estimating.
8. Discuss the significance of risk cost analysis in designing for safety.
9. Discuss process operational risk modelling and give an overview of developing

a risk hypothesis and risk equation and measures.
10. Give a brief account of the application of hazard and operability (HazOp) studies

for risk prediction in designing for safety.
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11. Give an example of primary and secondary keywords in a HazOp study for risk
prediction in engineering design.

12. Briefly describe the steps in the HazOp study methodology.
13. Consider the concept of hazard and operability modelling.
14. Describe qualitative modelling for hazard identification in contrast to a quanti-

tative representation of uncontrolled processes.
15. Discuss checking safety by reachability analysis.
16. Give a brief description of the application of Markov point processes in design-

ing for safety.
17. Define point process parameters.
18. Explain Markov chains and critical risk in safety analysis.
19. Briefly discuss the application of Kolmogorov differential equations.
20. Describe the Q-matrix.
21. Discuss critical risk theory in designing for safety.
22. Explain the concept of delayed fatalities.
23. Give a brief account of fault-tree analysis (FTA) for safety systems design and

assessment of safety protection systems.
24. Discuss design optimisation in designing for safety.
25. Describe the process of assessment of safety systems with FTA.
26. Describe common cause failures in root cause analysis (RCA).
27. Define CMF and CCF and consider problems with applying CCF in safety and

risk analysis for engineering design
28. Explain point process event tree analysis in designing for safety by determining

the source of risk and designing for safety requirements.
29. Define probabilistic safety evaluation (PSE)
30. Explain point process consequence analysis.
31. Discuss the relationship between cause-consequence analysis, FTA and reliabil-

ity analysis.
32. Give a brief account of fault tree, reliability block diagram, and event tree trans-

formations.
33. Briefly describe the process of RBD to fault tree transformation.
34. Briefly describe fault tree to RBD transformation.
35. Briefly describe RBD and fault tree to event tree transformation.
36. Briefly describe event tree to RBD and fault tree transformation.
37. Give a brief description of structuring the cause-consequence diagram with

event ordering and cause-consequence diagram construction.
38. Discuss failure modes and safety effects (FMSE) evaluation.
39. Define safety criticality analysis.
40. Define risk-based maintenance.
41. Discuss the significance of safety criticality analysis and risk-based maintenance

in designing for safety.
42. Discuss risk analysis and decision criteria in designing for safety.
43. Define qualitative criticality analysis.
44. Describe residual life evaluation.
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45. Consider the concepts of failure probability, reliability and residual life in de-
signing for safety.

46. Define sensitivity testing.
47. Consider establishing an analytic basis for developing an intelligent computer

automated system, including concepts such as a computer automated design
space.

48. Discuss preferences and fuzzy rules, and dynamic constraints and scenarios in
developing an intelligent computer automated system.

49. Discuss evolutionary computing and evolutionary design.
50. Define evolutionary algorithms (EA).
51. Describe the fundamentals of evolutionary algorithms.
52. Define genetic algorithms (GA).
53. Describe the fundamentals of genetic algorithms (GA).
54. Consider genetic algorithms in optimal safety system design.
55. Give a brief account of safety design considerations in the design optimisation

problem.
56. Discuss systems analysis with GAs and fault trees.
57. Describe the concepts of algorithm description and binary decision diagrams in

GA methodology for optimal safety system design.
58. Give an example of a genetic algorithm application in designing for safety, with

typical results expected of the GA methodology.
59. Briefly describe artificial neural network (ANN) modelling in designing for

safety.
60. Give a brief description of the building blocks of artificial neural networks

(ANNs) and consider a typical structure of the ANN.
61. Briefly describe the process of learning in artificial neural networks.
62. Consider back propagation in artificial neural networks.
63. Briefly discuss the application of fuzzy neural rule-based systems in designing

for safety.
64. Give a brief account of the significance of artificial neural networks in engineer-

ing design.
65. Describe the various ANN computational architectures.

References

AFSC DH 1-6 (1967) System safety design handbook. United States Air Force Systems Command
AIChE (1985) Guidelines for event tree analysis. American Institute of Chemical Engineers, Cen-

ter for Chemical Process Safety, New York
AIChE (1992) Guidelines for hazard evaluation procedures. American Institute of Chemical Engi-

neers, Center for Chemical Process Safety, New York
Akers SB (1978) Binary decision diagrams. IEEE Trans Computers vol C-27, no 6, June
Andrews JD (1994) Optimal safety system design using fault tree analysis. Proc Inst Mech Engrs

208 I Mech E:123–131
Andrews JD, Morgan JM (1986) Application of the digraph method of fault tree construction to

process plant. Reliability Eng 14:85–106



794 5 Safety and Risk in Engineering Design

Andrews JD, Moss TR (1993) Reliability and risk assessment. American Society of Mechanical
Engineers

Andrews JD, Pattison RL (1997) Optimal safety system performance. In: Proc Reliability and
Maintainability Symp, Philadelphia, PA, pp 76–83

ANSTO (1994) The safety of nuclear power reactors. Nuclear Services Section Background Paper,
Australian Nuclear Science and Technology Organisation

APT Maintenance (1999) Cost/risk evaluation & optimisation of planned maintenance. Asset Per-
formance Tools, Berkshire

Aven T (1992) Reliability and risk analysis, 1st edn. Elsevier, Amsterdam
Bäck T (1994) Parallel optimisation of evolutionary algorithms. In: Proc Int Conf Evolutionary

Computation. Springer, Berlin Heidelberg New York, pp 418–427
Beaumont GP (1986) Probability and random variables. Ellis Horwood, New York
Bellman RE, Dreyfus E (1962) Applied dynamic programming. Princeton University Press, Prince-

ton, NJ
Ben Brahim S, Smith A, Bidanda B (1992) Estimating product performance and quality from

design parameters via neural networks. In: Proc IIE Research Conf, pp 319–323
Blandford A, Butterworth B, Duke D, Good J, Milner R, Young R (1999) Programmable user

modelling applications: incorporating human factors concerns into the design and safety engi-
neering of complex control systems. Middlesex University Work Pap WP22, EPSRC Res Pap
GR/L00391

Bourne AJ, Edwards GT, Watson IA (1981) Defences against common mode failures in redundancy
systems. SRD R196, UKAEA

Bowles JB, Bonnell RD (1994) Failure mode effects and criticality analysis. In: Proc Annu Relia-
bility and Maintainability Symp, pp 1–34

Bradley J (2001) A risk hypothesis and risk measures for throughput capacity in systems. Rep
Department of Computer Science, University of Calgary

Bryant RE (1986) Graph-based algorithms for Boolean function manipulation. IEEE Trans Com-
puters 35(8)

Chryssolouris G, Lee M, Pierce J, Domroese M (1989) Use of neural networks for the design of
manufacturing systems. Proc American Society of Mechanical Engineers, pp 57–63

Coit DW, Smith AE (1994) Use of a genetic algorithm to optimize a combinatorial reliability
design problems. In: Proc 3rd Int Engineering Research Conf, pp 467–472

Coit DW, Smith AE (1996) Stochastic formulations of the redundancy allocation problem. In: Proc
5th Industrial Engineering Research Conf, Minneapolis, MN, pp 459–463

Cvetkovic D, Parmee IC (1998) Evolutionary design and multi-objective optimisation. In: EUFIT,
Aachen, pp 397–401

Cvetkovic D, Parmee IC, Webb E (1998) Multi-objective optimisation and preliminary design. In:
Parmee IC (ed) Adaptive computing in design and manufacture. Springer, Berlin Heidelberg
New York, pp 255–267

DEF STAN 00-58 (2000) HAZOP studies on systems containing programmable electronics. Part 2.
General application guidance. Ministry of Defence, Defence Standard 00-58, Issue 2, 19

de Gelder P (1997) Deterministic and probabilistic safety analyses. Rep AVN AIB-Vinçotte Nu-
clear, AVN-97/014, O/Ref 97-2635/PDG, Class XP.00.NS

DOE-NE-STD-1004-92 (1992) Root cause analysis: guidance document. DOE Guideline, US De-
partment of Energy, Office of Nuclear Energy, Washington, DC

Doerre P (1987) Some inconsistencies in CCF data evaluation and interpretation. In: Proc National
Reliability Conf

EC (1996) Safety machinery—principles for risk assessment. European Community Rep EN 1050
ECI (2001) Designing for safe and healthy construction. Int Conf Designing for Safe and Healthy

Construction, June 2000, European Construction Institute (ECI), Conseil Internationale du Bâ-
timent (CIB W99), London

Edwards GT, Watson IA (1979) A study of common mode failures. SRD R146 UKAEA
ExSys (2000) The ExSys Knowledge Automation Expert Systems Program. ExSys Inc, Albu-

querque, NM



5.5 Review Exercises and References 795

Extend (2001) Extend performance modelling for decision support. Imagine That Inc, San Jose,
CA

Farell AE, Roat SD (1994) Framework for enhancing fault diagnosis capabilities of artificial neural
networks. Computers Chem Eng 18(7):613–635

Fausett L (1994) Fundamentals of neural networks. Prentice Hall, Englewood Cliffs, NJ
Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support.

Kluwer, Dordrecht
Fusaro RL (1998) Feasibility of using neural network models to accelerate the testing of mechani-

cal systems. NASA Glenn’s Research & Technology Reports, NASA Lewis Research Center
Fyffe DE, Hines WW, Lee NK (1968) System reliability allocation and a computational algorithm.

IEEE Trans Reliability R-17:64–69
Gertman DI, Blackman HS (1994) Human reliability & safety analysis data handbook, 1st edn.

Wiley, New York
Ghare PM, Taylor RE (1969) Optimal redundancy for reliability in series system. Operations Res

17:838–847
Goldberg DE (1989) Genetic algorithms in search, optimization & machine learning. Addison-

Wesley, Reading, MA
Hanks BJ (1998) An appreciation of common cause failures in reliability. Proc Inst Mech Engrs

212 Part E:31–35
Haykin S (1999) Neural networks. Prentice Hall, Englewood Cliffs, NJ
Holland J (1992) Genetic algorithms. Scientific American, pp 44–50
Hughes RP (1987) A new approach to common-cause failure. Reliability Eng System Safety

17:211–236
ICS (2003) The Pro-RAM Artificial Intelligence Based Blackboard Model for Engineering Design.

ICS Industrial Consulting Services, Gold Coast City, Queensland
Ida K, Gen M, Yokota T (1994) System reliability optimisation with several failure modes by

genetic algorithm. In: Proc 16th Int Conf Computers and Industrial Engineering, pp 349–352
IEC 60300-3-9 (1995) Dependability management. Part 3. Application Guide Section 9. Risk Anal-

ysis of Technological Systems. International Electrotechnical Commission (IEC), Geneva
Ilott PW, Griffiths AJ (1997) Fault diagnosis of pumping machinery using artificial neural net-

works. Proc Inst Mech Engrs 211 Part E:185–194
Ilott PW, Griffiths AJ, Wililarns JM (1995) Condition monitoring of pumping systems. In: Proc 8th

Natl Congr Condition Monitoring and Diagnostic Engineering Management, 1, pp 369–376
INPO 84-027 (1984) An Analysis of root causes in 1983 significant event reports. Rep 84-027,

Institute of Nuclear Power Operations (INPO), Atlanta, GA
INPO NUMARC (1985) A maintenance analysis of safety significant events. NUMARC Com-

mittee Pap, Maintenance Work Group, Institute of Nuclear Power Operations (INPO), Atlanta,
GA

Isograph (2001) The AvSim c© Availability Simulation Model. Isograph, Irvine, CA
Kepner CH, Tregoe BB (1981) The new rational manager. Princeton Research Press, Princeton, NJ
Kletz T (1999) HAZOP and HAZAN: identifying and assessing process industry hazards. Institu-

tion of Chemical Engineers (IchemE), Warwickshire
Lefebvre C, Principe J (2002) NeuroSolutions: a network simulation environment. NeuroDimen-

sion, Gainesville, FL
Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Mag, pp 4–22
Marshall J, Newman R (1998) Reliability enhancement methodology and modeling for electronic

equipment—the REMM Project. Proc ERA Avionics, pp 4.2.1–4.2.13
Matlab (1995) Fuzzy Logic Toolbox User’s Guide. MathWorks, Natick, MA
McManus JW (1991) Design and analysis tools for concurrent blackboard systems. In: 10th

AIAA/IEEE Proc Digital Avionics Systems
McManus JW (1992) Design and analysis techniques for concurrent blackboard systems. PhD The-

sis, Faculty of the Department of Computer Science, College of William and Mary, Williams-
burg, VA



796 5 Safety and Risk in Engineering Design

Meisl C (1988) Techniques for cost estimating in early program phases. Eng Costs Production
Economics 14:95–106

Michael J, Wood W (1989) Design to cost. Wiley, New York
Mileham RA, Currie CG, Miles AW, Bradford DT (1993) A parametric approach to cost estimating

at the conceptual stage of design. J Eng Design 4(2):117–125
MIL-HDBK-217F (1998) Reliability prediction of electronic equipment. Notice 2 (217F-2), De-

partment of Defense, Washington, DC
MIL-HDBK-764 (MI) (1990) System Safety Engineering Design Guide for Army Materiel. DoD,

Washington, DC
MIL-STD-882 (1962) Systems Safety Program for System and Associated Sub-System and Equip-

ment. DoD, Washington, DC
MIL-STD-882A (1977) Systems Safety Program for System and Associated Sub-System and

Equipment. DoD, Washington, DC
MIL-STD-882B (1984) Systems Safety Program for System and Associated Sub-System and

Equipment. DoD, Washington, DC
MIL-STD-882C (1993) Systems Safety Program for System and Associated Sub-System and

Equipment. DoD, Washington, DC
MIL-STD-882D (2000) Systems Safety Program for System and Associated Sub-System and

Equipment. DoD, Washington, DC
MIL-STD-38130 (1963) Safety Engineering of Systems and Associated Sub-Systems and Equip-

ment. DoD, Washington, DC
Misra KB, Sharma U (1991) An efficient algorithm to solve integer programming problems arising

in system reliability design. IEEE Trans Reliability 40:81–91
Nakagawa Y, Miyazaki S (1981) Surrogate constraints algorithm for reliability optimization prob-

lems with two constraints. IEEE Trans Reliability R-30:175–180
NASA 1359 (1994) System engineering toolbox for design-oriented engineers. National Aeronau-

tics and Space Administration (NASA), Huntsville, AL
NASA DHB-S-00 (1999) System safety handbook. National Aeronautics and Space Administra-

tion (NASA), Dryden Flight Research Center, Edwards, CA
NeuroDimension (2001) NeuroSolutions and NeuralExpert. NeuroDimension, Gainsville, FL
Nielsen DS, Platz O, Runge B (1975) A cause-consequence chart of a redundant protection system.

IEEE Trans Reliability 24(1)
NUREG 1150 (1989) Severe accident risks: an assessment for five US nuclear power plants. US

Nuclear Regulatory Commission, NRC Rep NUREG 1150
NUREG 75/014 (1975) Reactor safety study: an assessment of accident risks in US commercial

nuclear power plants. US Nuclear Regulatory Commission, NRC Rep WASH-1400, NUREG
75/014, NTIS

NUREG/CF-1401 (1980) Estimates for the binomial failure rate common-cause model. US Nu-
clear Regulatory Commission NRC Rep WASH-1400, NUREG/CF-1401

NUREG/CR-0400 (1978) Risk Assessment Review Group Report. US Nuclear Regulatory Com-
mission NRC Rep WASH-0400

OECD NEA (1995) Chernobyl ten years on. Nuclear Energy Institute, Source Book
Oksendal B (1985) Stochastic differential equations: an introduction with applications. Springer,

Berlin Heidelberg New York
Painton L, Campbell J (1995) Genetic algorithms in optimisation of system reliability. IEEE Trans

Reliability 44(2):172–178
Pattison RL, Andrews JD (1999) Genetic algorithms in optimal safety system design. Proc Inst

Mech Engrs 213 Part E:187–197
PCEI (1999) Parametric estimating handbook, 2nd edn. Joint Industry/Government Parametric

Cost Estimating Initiative (PCEI), Department of Defense, Washington, DC, Defense Contract
Audit Agency, Special Projects Division, VA

Price CJ (1996) Effortless incremental design FMEA. In: Proc Annu Reliability and Maintainabil-
ity Symp, IEEE Press, pp 43–47



5.5 Review Exercises and References 797

Rasmussen NC (1989) Report to the Congress from the Presidential Commission on Catastrophic
Nuclear Accidents. Appendix B. The Nature of Severe Nuclear Accidents. MIT Ro 24-205

Rausand M (1999) Supplement SIO3020: safety and reliability engineering event tree analysis.
Pap Department of Production and Quality Engineering, Norwegian University of Science and
Technology, Trondheim

Rausand M (2000) Hazard identification (HAZID). Pap Department of Production and Quality
Engineering, Norwegian University of Science and Technology, Trondheim

Ridley LM, Andrews JD (1996) Application of the cause-consequence diagram method to static
systems. Pap Department of Mathematical Sciences, Loughborough University, Loughborough,
Leicestershire

Roy R, Bendall D, Taylor JP, Jones P, Madariaga AP, Crossland J, Hamel J, Taylor IM (1999) Iden-
tifying and capturing the qualitative cost drivers within a concurrent engineering environment.
Advances in Concurrent Engineering, Technomic, Lancaster, PA, pp 39–50

Rush C, Roy R (2000) Analysis of cost estimating processes used within a concurrent engineering
environment throughout a product life cycle. In: Proc 7th Int Conf Concurrent Engineering,
University Lyon 1

Schmerr LW, Nugen SM, Forourachi B (1991) Planning robust design experiments using neural
networks and Taguchi methods. In: Dagli C, Kumara S, Shin Y (eds) Intelligent engineering
systems through artificial neural networks. ASME Press, New York, pp 829–834

Schocken S (1994) Neural networks for decision support: problems and opportunities. Decision
Support Systems 11(4):393–414

Siu N (1994) Risk assessment for dynamic systems: an overview. Reliability Eng System Safety
43:43–73

Smith AE, Coit DW (1996) Reliability optimization of series-parallel systems using a genetic
algorithm. IEEE Trans Reliability 45(1)

Smith AE, Mason AK (1997) Cost estimation predictive modelling: regression versus neural net-
work. Eng Econ 42(2):137–162

Smith TC, Smith B (2000) Survival analysis and the application of proportional hazards modelling.
Pap 244-26, Statistics, Data Analysis and Data Mining, Center for Deployment, DoD, US Navy,
San Diego, CA

Smith AE, Tate DM (1993) Genetic optimization using a penalty function. In: Proc 5th Int Conf
Genetic Algorithms, pp 499–505

Smithers T, Conkie A, Doheny J, Logan B, Millington K, Tang M (1990) Design as intelligent
behaviour: an AI in design research programme. Int J Artificial Intelligence Eng 5

Stuart JR, Norvig P (1995) AI: a modern approach. Prentice Hall, Englewood Cliffs, NJ
Suri R, Shimizu M (1989) Design for analysis: a new strategy to improve the design process. Res

Eng Design 1:105–120
Tang M (1997) A knowledge-based architecture for intelligent design support. Int J Knowledge

Eng Rev 12:4
Thompson WA (1988) Point process models with applications to safety and reliability. Chapman

and Hall, New York
Tillman FA, Hwang CL, Kuo W (1977) Determining component reliability and redundancy for

optimum system reliability. IEEE Trans Reliability R-26:162–165
Vaidhyanathan R, Venkatasubramanian V (1996) Experience with an expert system for automated

HAZOP analysis. Computers Chem Eng suppl 20:1589–1594
Valluru BR (1995) Neural networks and fuzzy logic. M&T Books, IDG Books Worldwide, Foster

City, CA
Villemeur A (1991) Reliability, availability, maintainability and safety assessment. Wiley, Chich-

ester, NY
Wang XY, Yang SA, Veloso E, Lu ML, McGreavy C (1995) Qualitative process modeling—a fuzzy

signed directed graph method. Computers Chem Eng 19:735–740
Watson IA (1981) Review of common cause failures. NCSR R27 UKAEA
Wierda LS (1991) Linking design, process planning and cost information by feature-based mod-

elling. Eng Design 2(1):3–19



798 5 Safety and Risk in Engineering Design

Woodhouse J (1999) Cost/risk optimisation. European MACRO Project, Woodhouse Partnership
Ltd, Newbury, Berkshire

Zarefar H, Goulding JR (1992) Neural networks in design of products: a case study. In: Kusiak A
(ed) Intelligent design and manufacturing. Wiley, New York, pp 179–201



Appendix A
Design Engineer’s Scope of Work

Initial Definitive Study Planning and Implementation

Fully develop and detail the scope and implementation methodology of the definitive
study and submit to the owner for approval. Specific deliverables to be submitted as
part of this initial phase are to include:

• Study scope of work and specific study deliverables list.
• Study resourcing plan.
• Study schedule.
• Study budget.
• Study procedures.

Feasibility Studies

Carry out a number of feasibility studies leading to specific recommendations in
order to confirm and validate the optimal plant design and configuration. Studies to
be undertaken will include but will not be limited to:

• Plant throughput.
• Plant location.
• Onsite production of additives.
• Availability of local supplies of materials.

The following requirements are divided into the different engineering disciplines
and their relevant activities, such as process engineering, control systems engineer-
ing, mechanical engineering, civil, structural architectural and environmental engi-
neering, and electrical engineering.

R.F. Stapelberg, Handbook of Reliability, Availability, 799
Maintainability and Safety in Engineering Design, c© Springer 2009
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Process Engineering

Testwork Review of all testwork completed to date together with a review of the
proposed future testwork program. The results of any additional testwork under-
taken are also to be incorporated into the design. The contractor is also expected
to participate in any additional testwork program undertaken by way of attendance
during testing and logging of results to ensure timely and accurate incorporation of
data from testwork into the process design.

Process design Process engineering deliverables generally issued for detail design:

• Process description and block flow diagrams.
• Process design criteria.
• PFDs for normal, start-up, shutdown & upset conditions.
• Heat and material balances for normal, start-up, shutdown and non-steady-state

conditions.
• Dynamic mass-balance simulation model.
• Plant water balance (including tailings & evaporation ponds).
• Process and utility P&IDs.
• Consumption, waste and emission summary.
• Utility summary.
• Process/utility integration and optimisation study for normal operation, start-up,

shutdown and upset process conditions.
• Preliminary Hazop reviews.

Plant layout

• Dimensional site plan.
• Unit plot plans.
• General arrangement plans, elevations and sections.

Piping

• Piping design criteria.
• Pipe and valve specifications.
• Line and valve lists.
• Site plan review for critical and expensive pipe routings, access arrangements

and process requirements.
• Preliminary MTOs in sufficient detail for estimate purposes.

Control Systems Engineering

• Control system, operating philosophy & strategy.
• Advanced controls—where applicable.
• Applicable codes & standards.
• DCS specifications.
• Instrumentation list.
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• Inline instrument data sheets.
• Control and automation plan.
• Process package plant control philosophy.
• Emergency shutdown philosophy.
• Fire and gas detection philosophy.
• Plant communications philosophy.
• CCTV & UHF radio requirements.
• Instrument air and UPS requirements.
• Standard installation details.
• Specifications for general instruments, control valves and safety systems.
• Control room layout.

Mechanical Engineering

• Mechanical design criteria.
• Full equipment list.
• Technical specifications.
• Technical data sheets.
• Reliability and maintainability analysis.
• Maintenance spares list.

Civil, Structural and Architectural Engineering

• Civil, structural and architectural design criteria.
• Coordination and integration of geotechnical investigations and topographic sur-

veys.
• Preliminary designs for:

– Buildings; descriptions and conceptual designs for any required buildings and
structures.

– Water supply systems and dams.
– Standard steelwork connection details.
– Underground drainage:

· sanitary.
· contaminated storm water.

• Roads and site earthworks.
• Pipe racks—loads and congestion.
• Foundations—design requirements.
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Electrical Engineering

• Electrical design criteria.
• Electrical equipment list.
• Electrical load list.
• Motor list.
• Technical specifications and data sheets.
• Preliminary design of all facilities downstream of the main power transformers

through to main users including all transformers, sub-stations and MCCs.
• Voltage selection for high-KW motors.
• Emergency power supply requirements.
• Plant lighting design.
• Preliminary data and communication equipment requirements.
• Optimisation study on number and size of generating units.
• Power generation control philosophy.
• Load cycle strategy for various plant operating modes.
• Load sharing study between diesel and steam turbines.
• SLDs for each unit.
• Overall SLD for total power supply system.
• GAs for electrical equipment/sub-stations.
• Standard installation drawings.
• Standard schematic and termination drawings.
• Grounding/earthing system preliminary design.
• Cable ladder route layout drawings.
• MTOs for estimate purposes.

Loss Prevention

• Fire protection, and safety equipment requirements review.
• Plant layout review—spacing of equipment.
• Emergency shutdown plan.
• Area classification (schedule and layout drawings).
• Design of fire and gas detection systems.
• Design of fire protection system.
• Spill control/containment strategy.
• Noise control.
• Ventilation.
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Environmental and Permitting

Liase, interface and support the nominated environmental consultant with the eval-
uation and assessment of impacts as required, including:

• Ambient air quality/source.
• Waste water discharge.
• Fugitive emissions.
• Noise regulations.
• Visual impacts.
• Product transportation issues.
• Permitting/statutory requirements.

Mining

Liase, interface and support the nominated mining consultant as required on activi-
ties that will include as a minimum:

• Geotechnical investigations.
• Pit optimisations.
• Preparation of pit designs and ore reserve statements.
• Mine scheduling.
• Preparation of waste dump and haul road designs.
• Pit permeability investigations.
• Determination of materials handling properties.
• Preparation of a detailed report.

Constructability and Logistics

Constructability and logistical study addressing the following:

• Identification of delivery routes and lifting/rigging of heavy equipment.
• Site access for construction equipment.
• Scope for modularisation and offsite assembly.
• Strategy for minimising double handling of equipment and different bulk mate-

rials.
• Strategy for minimising clashes onsite.
• Plan for incorporation of locally based contractors as appropriate.
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Procurement

• Develop procurement policies and procedures.
• Issue & evaluate bids for major equipment items and sub-contracts.
• Develop installed equipment costs.
• List suitable vendors for key equipment.
• Identify long-lead items.

Development of Capital and Operating Cost

The capital and operating cost estimates will be developed into a format to be agreed
by the owner. The estimates will be developed to an accuracy of ±10%.

Development of the Project Schedule

• The master schedule will be developed for the project.
• The format and level of detail to be included is to be agreed by the owner.
• The master schedule must reflect the following:

– Fabrication/installation schedules.
– Vendor baseline commitments.
– Construction schedules.
– Commissioning schedules.

Value Engineering and Risk Assessment

The contractor will ensure that during the definitive study phase, engineering effort
is directed at minimising the cost of the EPC phase of the project without intro-
ducing unacceptable risk. As part of this requirement, a full risk assessment will be
undertaken on the project to ensure that all risks have been adequately identified
and quantified. Significant effort will be put into the planning of the project deliv-
ery to ensure the best approach. The constructability of the plant and such issues as
onsite or offsite pre-assembly of structures and vessels will be assessed for the im-
pact on overall cost and schedule. During engineering, discussions will be held with
the owner to look at ways to optimise the design especially the full utilisation of
services and utilities. Commonality of designs will be considered to reduce spares
inventories, and prior studies will be reviewed and incorporated where appropriate.
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Project Execution Plan

A project execution plan will be prepared that includes the following sub-plans as
a minimum:

• Occupational health and safety plan.
• Contracting plan.
• Industrial relation plan.
• Procurement plan.
• Human resources plan.
• Quality assurance plan.
• Automation plan.
• Procedures for the implementation phase of the project.

General

All work during the course of the definitive study is to be completed in accordance
with procedures to be developed by the contractor and approved by the owner. The
contractor will make suitable office facilities available for the owner’s entire project
team including office accommodation and general office administration and IT sup-
port. The contractor is to provide progressive reporting on the progress of the pro-
gram together with cost and schedule status.

Final Report

The contractor will be responsible for the preparation of the final study report. This
is to include preparation, compilation, review & editing, and final issue. The con-
tractor will also be responsible for incorporating the owner’s contributions into the
full report where relevant. The format and content of the final report will be devel-
oped by the contractor and approved by the owner.

This report will include:

• A written description of the plant and all of its sub-facilities.
• A written description of the services provided.
• A written description of the major equipment required for each area of the plant.
• All the information produced as part of the services.

Ten copies of the final report (bound) are to be made available to the owner on com-
pletion, together with a computer hard disk drive containing the complete report,
all of the study deliverables and all of the information/calculations, etc. used to de-
velop the study deliverables. All information is to be appropriately logged to ensure
its rapid retrieval if required.
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784

hazards analysis (HazAn) 7, 34, 529, 530,
537, 541, 582, 587

hazards criticality analysis 263, 264
condition spreadsheet 264
costs spreadsheet 268
costs worksheet 268
criticality worksheet 265
logistics spreadsheet 270
logistics worksheet 269
strategy worksheet 266

hazards definition 535, 576
HAZID see hazard identification
HAZOP see hazardous operability studies
HazOp see hazardous operations

secondary keyword 601
HAZOP study 577

consequences 581
process parameter 578
safeguard 581

HazOp study
methodology 601
primary keyword 600
secondary keyword 600

health risk 584
health status and monitoring (HSM) 304
hedge 151
heuristic knowledge 27, 29
hierarchical frame 762
high-integrity protection system (HIPS) 619,

625, 638, 687, 690
cause-consequence diagram 649
component functions 644
control valve 270

higher-order uncertainty 172
HIPS see high-integrity protection system
holding ability 334
Holland’s fixed-length coding 687
house event 619, 621
human error 581
human error analysis 534
human factor 533
human factor analysis 535
human–machine interaction 534
human performance evaluation 553
hypothesis testing 501, 502, 673

I

IIT see information integration technology
implication-based fuzzy rule 165
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incidence matrix 477
incompleteness 15
independent demand maintenance spares

382
indeterminate rate of return 325
inductive analysis 543
industry perception 34
information integrated technology (IIT) 624
information integration technology (IIT) 18,

214, 346, 348
inherent availability 303, 344, 346, 387

exponential function 345
inhibitor arc 441
initial failure rate estimate 586
initial operational test and evaluation (IOT&E)

399
initiating event 556
installation costs 64
instantiation parameter 494, 738
integrated information technology (IIT) 630
integrity engineering design 3
integrity prediction 420
intelligent computer automated methodology

12
intelligent design system 37
intensity function 610, 613
interaction and feedback loops 458
interaction model taxonomy 493
interchangeability 305
interference theory 65
internal rate of return (IRR) 322–324
internal uncertainty 428, 430
inter-process communication (IPC) 498
interval matrix 130
inventory control 380
IPAT SO3 cooler 275
IRR see internal rate of return
item criticality number 84

J

job safety instruction (JSI) 603
judgment bias 222
jump connection back propagation 722

K

k-out-of-m unit network 104
Kaplan–Meier estimator 202
Kaplan–Meier survival curve

rotating equipment 655
kinetic energy 342
knowledge base 766
knowledge-based decision process 624

knowledge-based expert system 11, 22, 25,
26, 34, 37, 107, 330, 334, 415, 419, 486,
678, 717, 752, 754

testing and validating 771
knowledge engineer 27, 682
knowledge engineering 26, 703
knowledge-level specification 726
knowledge source 11, 30, 488–490, 768,

776, 779, 780
connectivity analysis 778
interdependence 778, 782, 790
serialisation 778, 781, 790
specialisation 778, 781, 787
specialisation value 780

knowledge training 742
Kohonen self-organising map 724
Kolmogorov backward equation 611
Kolmogorov differential equations 610, 613
Kolmogorov forward equation 611
Kolmogorov’s theorem 703
Kolmogorov–Smirnov (K–S) test 283

L

labelled interval 130
labelled interval calculus (LIC) 17, 112, 113,

123
labelled interval inference 115
Laplace transform 75, 89, 354
Latin hypercube sampling technique 429
law of multiplication 48
laws of probability 52
LCC see life-cycle costs
Lebesgue logic 220
level of diversity 617
level of redundancy 52, 617
LIC see labelled interval calculus

inference rules 124
life-cycle analysis 314, 315
life-cycle costs (LCC) 309, 314, 316

present value calculations 321
trade-off measurement 325

life risk 584
likelihood function 222, 223
limit of capability 416
limit theory 383
linguistic variable 150, 159

translation rule 160
logic diagram 733
logical flow initiation 503
logical flow storage 504
loss in production 310
loss-less transformation 714
loss of function 139, 403
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loss risk 584
lower limit interval 128
lower tolerance limit (LL) 507, 509, 512,

517

M

maintainability 5, 14, 19, 298
analysis 12, 299, 304, 306
analytic development 415
application modelling 486
assessment 349, 356, 436
checklist 422
cost indices 392
cost modelling 308
design review 19, 301
evaluation 385, 391
evaluation indices 391
function 347
measures 358
modelling 300
score 306
specific application modelling 399
theoretical overview 302

maintenance
assessment 358
basic principles 361
cost optimisation modelling 375
modelling 356
practice 67
ratio (MR) 392
spares

dependent demand 381
independent demand 381

strategy 360, 367, 368, 372, 377, 657
management oversight and risk tree (MORT)

analysis 553
manpower costs 376
manufacturability 328
mapping 160
marking 438

tangible state 444
vanishing state 444

marking-dependent arc multiplicity 441
Markov chain 610, 613
Markov modelling 73, 349, 350, 543
Markov point process 608
Markov regenerative process (MRGP) 452
Markov reward model 451
Markovian stochastic Petri net (MSPN)

definition 443
measures 449

mass-flow balance 340, 341
mass-flow rate 339

mathematical model 10, 338, 350
preventive maintenance physical checks

365
preventive maintenance replacement costs

377
preventive maintenance replacement shuts

366
spares requirement 382

maximum dependable capacity (MDC) 401,
406, 412, 471

maximum likelihood 14, 223
maximum likelihood estimation (MLE) 193,

194, 203, 348
parameter estimation 193

maximum likelihood ratio test 224
maximum-likelihood technique 76
maximum limit interval 124
maximum process capacity 412
maximum safety margin 17
maximum time to repair (MaxTTR) 304,

391
MDT see mean downtime
mean downtime (MDT) 18, 389, 403
mean expected loss risk (MEL-risk) 595,

597
mean residual life (MRL) 672
mean squared error (MSE) 750
mean time between failures (MTBF) 18,

211, 478, 662, 671
mean time between maintenance actions

(MTBMA) 392
mean time for maintenance 357
mean time to fail (MTTF) 94, 97, 379, 672
mean time to repair (MTTR) 18, 300, 304,

391, 403, 406, 478
measure of performance 370
measure of probability 652
median rank 201
membership function 151, 217, 218, 223,

225, 240
probability measures 219

memory policy 442
military standard technique 82
minimal cut set (MCS) 548
minimal network 748
minimum limit interval 125
MLE see maximum likelihood estimation

normal distribution 195
MLP see multi-layer perceptron
model

component 518
configuration 494, 738
functional behaviour 500
scripting 498
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structure uncertainty 428
validation 500, 501
verification 500, 501

modelling result, evaluation 271, 776
modular architecture 494

interface connection 494
object connection 494

modus ponens 163
modus tollens 163
moment matching method 435
Monte Carlo (MC) simulation 15, 230, 232,

286, 300, 302, 416, 432, 433, 731, 733,
735

MTBF see mean time between failures
MTTF see mean time to fail
MTTR see mean time to repair
multi-layer perceptron (MLP) 706

weight matrix 706
multi-layered network 703
multi-state Markov model 351, 353
multiple expert system 762
multiple logical flow 737
mutation operator 693

N

net present value (NPV) 322
network complexity 749
network diagram 731, 732, 734
neural expert program 725, 743
neural network 411, 678

iterative prediction 747
NeuralExpert c© program 744, 750
non-destructive test (NDT) 365, 391
non-Markovian marking process 452
non-Markovian stochastic Petri net

definition 451
non-Markovian system 352
non-recurring costs 63
normalised mean squared error (NMSE) 751
NPV see net present value
nuclear power plant 77
numerical analysis 142

O

OA see optimisation algorithm
object-oriented programming (OOP) 21, 486

encapsulation 727
inheritance 727
simulation model 21, 23, 541

occupational safety and health (OSH) 532
occurrence probability 84

off-system maintainability indices 392
OOP see object-oriented programming
open mode probability 106
open system 461
operability analysis 587
operating costs 309
operating environment 67
operational availability 303, 355, 387, 400

time-line model 389, 390
operational condition 423
operational failure rate λo 86
operational integrity 370, 386
operational modelling 385
operational risk analysis 586
operational time 401
operator control panel (OCP) 550
OPI see overall performance index
optimisation algorithm (OA) 10, 415, 680

Petri net (PN)-based 514
optimisation capability 496
optimisation module 681
order of magnitude 143
OSH see occupational safety and health
outage 403, 405

measurement 408
output conversion function 504
output performance results 505, 511, 514
output set overlap 780
overall performance index (OPI) 113, 131,

133

P

parallel configuration 50
parallel network 103, 105
parallel reliability block diagram 467
parameter performance index (PPI) 130,

132, 417, 418
parameter profile index (PPI) 113
parameter profile matrix 108, 112, 338, 417,

421
parametric cost estimating (PCE) 592
parametric estimating (PE) 590
Pareto principle 243, 667, 680
partial functional loss 176
partial loss of system function 409
partial outage 409, 413, 415
partial redundancy 617
partial state matrix 413
PDS see procedural diagnostic system
PEM see process equipment model

holding tank 739
penalty formula 698
penalty function 699
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people risk 584
percent error 752
performance 16, 35, 43, 70
performance and reliability evaluation with

diverse information combination and
tracking (PREDICT) 214

performance assessment 783, 790
performance distribution

statistical approach 435
performance measure 31
performance specification 783
performance variable 31
periodic monitoring 364
personal protection 6, 652
perspective 22
Petri net (PN) 19, 436, 437, 745

definition 439
graphical representation 440
model

numerical computations 453
steady-state solution 454

reachability graph 445
theory 437
transition 451

Petri net-based optimisation algorithm 740,
744

Petri nets and performance models (PNPM)
437

PFD see process flow diagram
PHA see preliminary hazard analysis
phenomena event tree 556
physical design factor 307
pipe and instruments diagram (P&ID) 45,

264, 303, 575, 605
plant analysis 773
point of reference (POR) 580
point process 608

intensity function 609
point process analysis 587
point process consequence analysis 630
point process event tree analysis 627
Poisson demand 384
Poisson distribution 15, 67, 231, 383, 560,

561
Poisson process 94, 300, 630
POR see point of reference
possibilistic knowledge 775
possibilistic logic

generalised modus ponens 178
possibility distribution 151
possibility rule 166
possibility theory 16, 18, 169, 216, 220, 347

deviation from fuzzy logic 170
engineering design analysis 172

post-design testing and training 742
potential energy 342
potential failure 141, 362
potential risk 676
PPI see parameter profile index, see

parameter performance index
predictable behaviour 458
prediction problem 746
predictive maintenance 364
preliminary 73
preliminary design 135

safety and risk assessment 607, 687
preliminary design phase 535
preliminary design process analysis 24
preliminary hazard analysis (PHA) 539
preliminary hazards identification (PHI) 607
preventive action 362
preventive maintenance 344, 363, 369, 436,

455
preventive maintenance policy 355
preventive maintenance program 358
preventive maintenance strategy 378
preventive replacement modelling 378
probabilistic analysis 676
probabilistic knowledge 775
probabilistic reasoning 171
probabilistic risk analysis (PRA) 635
probabilistic safety evaluation (PSE) 627,

628
probability density function 91, 93, 193,

199, 345
probability distribution 14
probability distribution definition 675
probability function 225
probability generating function 633
probability law 52
probability of failure 20, 210
probability of failure consequence β 86
probability of survival 210
probability plotting 200
probability qualifier 666
probability theory 216, 347
probable loss 596, 598
problem analysis 501
procedural diagnostic system (PDS) 13
process analysis 13, 21, 23
process block diagram 479
process capability 328, 331, 386, 423
process capability model 330
process capacity 334

measuring 335
process critical item 243
process criticality 8
process definition 31, 783
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process description 783
process design 800
process design blackboard section 786

functional independence 791
functional specialisation 791

process design criteria 8
process design specifications 510, 514
process effectiveness 337, 471
process engineering 800
process equipment model (PEM) 10, 241,

439, 486, 503, 504, 510, 513, 713, 725,
737

logical flow 495
logical flow storage 504
model component 503

process failure consequences 8
process flow block diagram 464, 466, 468
process flow diagram (PFD) 8, 45, 250, 251,

264, 303, 605, 736, 737, 754
sector 1 503
sector 2 509
sector 3 513

process flow rate 339
process hazard identification (PHI) 599
process industry 4
process level 44
process-level FMEA 79
process operational risk modelling 594
process parameter 578, 580
process reliability 8
process risk 584
process simulation model 488, 493
process stability 333
process utilisation 338
process view 332, 333
processing element (PE) 704, 749
procurement costs 64
product assurance 6, 21
product risk 584
product yield 336
productive capability

efficiency measurement 337
productivity 337
productivity ratio 368
profitability index 322
programmable logic controller (PLC) 273,

274, 599, 616
project cost estimation 62
project execution plan 805
propagation rule 121
proportional hazards (PH) model 191, 193

non-parametric model formulation 191
parametric model formulation 192
reliability function 193

propositional logic 161
PSE see probabilistic safety evaluation

Q

Q-matrix 612
qualitative analysis 12, 16
qualitative assessment scale 666
qualitative cost estimating 592
qualitative criticality analysis 667
qualitative FMECA 178, 189
qualitative parameter estimation 194
qualitative simulation 143
quantitative analysis 12
quantitative maintainability analysis 19
quantitative review 420
queuing theory 300

R

RA see risk analysis
RAM assessment 783
RAMS analysis 3, 6, 10
RAMS analysis list 251, 258
RAMS analysis model 21, 23, 241, 242, 486,

725
RAMS program 373

principles 374
RAMS study 657
random failure 77, 94
random failure occurrence 613
random failure test 285
rapid risk ranking (RRR) 539
rated capacity 335, 400
Rayleigh distribution 204, 208
RBD see reliability block diagram
RCA see root cause analysis
reachability analysis 606

checking safety 607
reachability graph 445, 452, 542
reachable markings

distribution of the tokens 447
reactor safety study 630
receiving ability 334
recovery costs 320
recovery time 390
recurrent back-propagation 722, 723
recurrent network 704
recurring costs 63, 64
reduced efficiency 399, 400
reduced reachability graph 445, 447
redundancy 15, 56
redundancy allocation problem 689, 691

objective function 692
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redundancy condition 118
relative lost time cost 311, 312
relative value of dependency 311
reliability 5, 14, 35, 43
reliability analysis 12, 46, 654, 676
reliability application modelling 241
reliability assessment 44, 45, 69, 72, 86, 106,

133, 174, 560
reliability Bayesian evaluation 233
reliability block diagram (RBD) 466, 634,

635
parallel configuration 467

reliability checklist 422
reliability-critical item 134
Reliability Enhancement Methodology and

Modelling (REMM) project 551
reliability evaluation 44, 45, 69, 90, 106

fuzzy logic 217
fuzzy set 217
three-state device networks 105
two-state device networks 102

reliability function 91
reliability index 691
reliability initial calculation 230
reliability modelling 65
reliability of a component 47
reliability of a system 47
reliability prediction 44, 45, 68, 106, 110
reliability system-level 226
reliability theory 670
reliability uncertainty 239
reliable life 96
remote terminal unit (RTU) 274
renewal theory 383
repair action 19, 299
repair rate 88
replacement costs 309
replacement policy 379
replacement-power costs 309
reproduction probability 700
requirements analysis 464
residual life 96, 672
residual life evaluation 651, 670
residual risk 676
reuse 23
Reynolds number 341
risk

actual severity 653
estimated severity 653
verification 536

risk analysis (RA) 47, 546, 582
decision criteria 662

risk assessment 536, 804
risk assessment scale 585, 667

risk-based maintenance 655, 661
risk cost analysis 593
risk cost curve 61
risk cost estimation 60
risk equation 594
risk estimation 536, 582, 583
risk evaluation 785
risk hypothesis 594
risk identification 785
risk measure 595
risk of failure 20
risk priority number (RPN) 582
risk priority number (RPN) technique 80
robust design (RD) 329, 416, 419, 428, 429,

434, 436
root cause analysis (RCA) 47, 542, 551, 552,

587
common cause failures 621
safety 551

routine maintenance 363, 369, 372
RRR see rapid risk ranking
rule editor 767
rule-based expert system 759

multiple-choice question editor 764

S

safety 6
actual degree 584
estimated degree 583

safety analysis 534, 537, 565
safety consequences 559
safety criticality 530
safety criticality analysis 650, 651, 654, 661
safety criticality rank 586
safety engineering 532
safety function 557, 558
safety intent specification 531
safety margin 20, 31, 67, 71, 72, 108, 416
safety protection system 616
safety risk 655
safety system 89, 688
safety systems design, cause-consequence

analysis 634
safety systems, assessment with FTA 619
satisficing 23
SBS see systems breakdown structure
SCADA system 274
scale parameter 227
schematic design 7, 11, 73, 682, 729
schematic design review 301
scripting 498
SEA see systems engineering analysis
sector 1, simulation output 508
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sector 3, simulation output 520
select event 694
selected equipment specifications 254
sensitivity testing 673
series configuration 50
series formula of reliability 54
series network 102, 106
series reliability 48
serviceability 300
set label 114
set-point control 273
shell 28, 38
sigmoid function 709
simplex 476, 477
simulation 230
simulation analysis 12
simulation model 384, 416, 423, 425, 427

output 499
sector 1 506, 508
sector 2 509, 512
sector 3 513, 515, 520

single failure mode 177
sizing design capacity 343
software deviation analysis (SDA) 544
solution encoding 691
spares requirements planning (SRP) 380
specification costs 319
specifications worksheet 260
square symmetric matrix 618
SRP see spares requirements planning
standard back propagation 722
standard deviation 211
standard work instruction (SWI) 603
standby redundant system 105
state matrix 412, 413
state probability 448
statistical approach 428, 429
statistical model 702
statistical technique 14
steady-state availability 351
stochastic optimisation technique 690
stochastic Petri net (SPN) 438, 441
stochastic point process 630
stochastic reward net (SRN) 451
stochastic system 384
stress/strength interference diagram 66
string fitness 698
sufficiency 76
sum squared error (SSE) 719
super-projects 4, 9
supervised learning 716
supervised learning paradigm 722
supervised training 717

supervisory control and data acquisition
(SCADA) 273

supplementary variable 352
supportability 301
sustaining costs 316, 318
synthetic fault insertion 399
system analysis 12, 23

with GAs and fault trees 694
system availability 30, 449, 455
system boundary 463
system breakdown structure (SBS) 8, 47, 61,

69, 72, 88, 134, 135, 138, 243, 246, 397,
607, 627, 728, 729, 762

system complexity 457, 480
system component 464
system composition 494
system configuration 463
system definition 784
system dependency 310
system design blackboard section 786

specification 788
system effectiveness (SE) 325, 327, 388
system engineering 456, 459

complexity 460
system engineering analysis (SEA) 69, 411,

456, 457, 460, 462
system event tree 556
system failure 353, 562, 632

quantification 571
system failure effect 8
system hazard analysis 534
system hierarchical modelling 541
system hierarchy 70, 78
system integrity 478
system-level FMEA 79
system-level reliability 226
system life-cycle analysis 315, 551
system modelling option 729
system objective 463
system operability 342
system output

deviation 432
nominal value 432

system performance 134, 145, 328, 342
prognosis 44

system performance analysis 416, 423, 424
system performance index (SPI) 111, 130,

132
system performance measures 108
system performance model 425
system performance sensitivity 703
system procedures blackboard section 786
system reliability 16, 46, 134, 449, 637

effect of redundancy 55



826 Index

system safety 533
system simulation option 739
system state space 74
system success 562
system transition diagram 74
system unreliability 46, 623

T

T-conorm function 715
t-norm operator 168
Taguchi’s methodology 329
Taguchi’s orthogonal arrays technique 429
Taguchi’s robust design 429, 434, 704
target engineering design project 21
tautology 162
Taylor series 618, 621
technical specification document 253
test equipment 305
test point 305
testability 301, 305
theory of constraints (TOC) 343
three-parameter beta distribution function

237
three-parameter Weibull distribution 209
three-parameter Weibull fit 285
threshold logic unit (TLU) 708
threshold of chaos 457
throughput capacity 595, 597

hazard-free 598
time before failure (TBF) 286
TOC see theory of constraints
total energy balance 341, 342
total loss of system function 409
total preventive maintenance 355
total system cost

objective function 699
trade-off matrix technique 478
traditional cost estimating 588
transition priority 441
translation rule 121
truth table 162
truth value 149
two-state Markov model 349, 353

U

unavailability 301, 408
unavailability profile graph 735
uncertainty 15, 146, 153, 216
uncertainty analysis 428

extreme condition approach 430
statistical approach 432

uncontrolled process
quantitative representation 606

universal approximation 703
universe of discourse 150
unreliability 46, 54, 301

consequences 51
unsupervised learning 716
unsupervised network 722
unsupervised neural network 724
updating process 235
upper limit interval 127
upper tolerance limit (UL) 507, 509, 512,

517
useful life expectancy 613

survival function 614
utilisation costs 320
utilisation factor 450
utilisation rate 388

V

value engineering 804
value of the system 326
vertex 476, 477
virtual prototyping 492, 736
volumetric energy 342
volumetric flow rate 340
voting redundancy 621

W

Ward back propagation 723
WBS see work breakdown structure
Weibull analysis 735
Weibull cumulative failure probability graph

737
Weibull density function 99
Weibull distribution 15, 192, 285, 485, 672

function 100
standard deviation 212
statistical properties 98

Weibull distribution model
expansion 204
qualitative analysis 212
quantitative analysis 212

Weibull equation 231
Weibull failure distribution 90, 97
Weibull failure rate function 206
Weibull graph 210
Weibull graph chart 101
Weibull hazard rate function 101, 227
Weibull life distribution 191
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Weibull probability density 199, 227
Weibull probability distribution 219
Weibull reliability function 205
Weibull scale parameter 208
Weibull shape parameter 99
Weibull unreliability function 205
work breakdown structure (WBS) 63, 317

Y

Young’s modulus 745, 746

Z

Zadeh’s possibility measures 147
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