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Preface

The aim of this book is to outline the basic physical concepts and device applications
related to nanoscience and nanotechnology in semiconductor materials. As illustrated in
the book, when the dimensions of a solid are reduced to the size of the characteristic
lengths of electrons in the material (de Broglie wavelength, coherence length, local-
ization length, etc.), new physical properties due to quantum effects become apparent.
These novel properties are manifested in various ways: quantum conductance oscilla-
tions, quantum Hall effects, resonant tunnelling, single-electron transport, etc. They
can be observed in properly built nanostructures, such as semiconductor heterojunc-
tions, quantum wells, superlattices, etc. which are described in detail in the text. The
effects shown by these quantum structures are not only significant from a purely scien-
tific point of view – several Nobel prices were awarded during the last decades to their
discoverers – but also have important practical applications in most of last generation
microelectronic and optoelectronic devices.

Only about three decades have elapsed since the pioneering work of Esaki, Tsu, and
Chang at the beginning of the 1970s at IBM that established the bases for many of
the new effects later observed in quantum wells and superlattices. In order to observe
these effects, sophisticated techniques such as molecular beam epitaxy, allowing layer-
by-layer growth, and doping of semiconductor nanostructures were routinely set up in
many advanced research laboratories during the 1980s. Since all these new developments
took place in a relatively short time, it has been difficult to timely incorporate them into
the university curricula. However, recently most leading universities have updated their
curricula and are offering, both at the graduate and undergraduate levels, courses such
as: nanoscale science and engineering, nanoscale structures and devices, quantum devices
and nanostructures, etc. Even Masters Degrees are being offered in nanoscale science and
engineering. Frequently these courses and titles are included in the schools of physics,
materials science, and various engineering schools (electrical, materials, etc.).

In our opinion, there is a lack of comprehensive textbooks at the general undergraduate
level dealing with nanoscience and nanotechnology. A few general texts on solid state
physics are starting to include several sections, or in some cases, one full chapter, on
nanoscale science. Frequently, this material has been added as the last chapter of the new
editions of these well-known texts, sometimes without really integrating it in the rest of
the book. However, the situation is better for specialized books which can be partially
used in graduate courses, since in the last fifteen years a series of excellent texts dealing
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vi Preface

with nanotechnology and low-dimensional semiconductors have been published. A full
reference of these texts is given in the “further reading” sections after the corresponding
chapters of our book. They include, among others, the texts of Weisbuch and Vinter
(1991), Grahn (1995), Kelly (1995), Ferry and Goodnick (1997), Davies (1999), Mitin,
Kochelap, and Stroscio (1999), and Bimberg, Grundmann, and Ledenstov (2001).

Our book is mainly addressed to the final year undergraduate and beginning graduate
students in physics, materials science, and several kinds of engineerings (electrical, mate-
rials, etc.) with the objective in mind that it could be used in one semester. Alternatively,
the book can be of interest to scientists and practicing engineers who want to know about
the fundamental aspects of nanoscience and nanotechnology. Our intention has been to
write an introductory book on nanoscience and nanotechnology that starting with the
physics of low-dimensional semiconductors and quantum heterojunctions would build up
to the treatment of those new electronic, transport, and optical properties, which arise as
a consequence of both energy quantization of electrons in potential wells and the reduced
dimensionality (2D, 1D, 0D) of nanostructures. This process is sequentially carried out
showing that the physical concepts involved can be understood in terms of quantum-
mechanical and statistical physics theories at the level being taught in the undergraduate
school. This is therefore the only real prerequisite for readers to know in advance. We
hope that we have succeeded in our aim to show that the concepts related to the already
mature field of nanoscience are not more difficult to grasp (with the exception perhaps
of the quantum Hall effects) than those corresponding to bulk solid state and semicon-
ductor physics. Once the basic concepts of quantum nanostructures are presented in a
unifying scheme, the last chapters of the text deal with applications of nanotechnologies
in microelectronics and optoelectronics.

In the process of writing this book, we have always taken into consideration the main
objectives already mentioned. Other concerns were the following: (i) The extension of the
book has been limited so that it could be taught in one semester. This is especially the case
for students having a good knowledge of bulk semiconductor solid state physics, since
Chapters 2 and 3 can then be omitted. In addition, some relevant topics in nanotechnology,
like carbon nanotubes or biomolecular structures, have been omitted. (ii) We have tried to
make as clear as we could the new physical concepts and properties presented in the book,
although taking care not to lose the necessary scientific rigour. We have done the same
with the mathematical derivations which have been kept as simple as possible. In those
cases implying a lot of calculus we have quoted the result, giving the corresponding
reference, or have quoted the results of similar calculations in solid state physics, such as,
in the applications of the Fermi golden rule. (iii) Due to the introductory character and
academic orientation of the book, the bibliography presented at the end of each chapter
has been kept to a minimum. Anyway, credit is always given to those scientists who
discovered the new phenomena presented in the book or formulated the most admitted
theories for their explanation. (iv) To test the understanding of new concepts, a set of
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exercises is included at the end of each chapter. We have tried that the exercises have
a medium degree of difficulty and therefore have avoided those related to extending the
theory presented in the text to more difficult cases. We have also given numerous hints
directing the students on how to solve the exercises. It is important that the students get
the correct final numerical results so that they get an idea of the approximate values of
the physical magnitudes involved in nanotechnologies.
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Structure of the Book

The book comprises ten chapters, which can conceptually be divided into four parts.
The first part includes Chapters 1 to 3. Chapter 1 starts by reviewing the present trends
in microelectronic and optoelectronic devices. This chapter introduces the reader with the
physical bases of semiconductors of reduced dimensionality and with the concepts needed
for the definition of nanostructures. Chapters 2 and 3 comprise a short review of solid state
and semiconductor physics. These two chapters will be especially useful to non-physics
students who have not usually studied these matters with enough rigour and breadth. It is
also useful that students are provided with a review of the solid state physics needed for
the understanding of nanotechnologies, thus avoiding the frequent consultation of other
sources.

The objective of the second part (Chapters 4 and 5) is to expose the reader to the
physics explaining the behaviour of electrons in nanostructures and relating it to the
density of states function and the energy quantification of the electrons in the different
potential wells. The quantum nanostructures studied are the ones more often used in
research and in technological applications: semiconductor heterojunctions, quantum wells,
superlattices, etc.

The third part (Chapters 6 to 8) is devoted to the transport and optical properties of
nanostructures. Chapter 6 deals with transport under the action of electric fields which
exhibits some very interesting properties such as quantized conductance, Coulomb block-
ade, resonant tunnelling, etc. some of them with significant applications in devices. If,
in addition of the electric field, a magnetic field is applied (Chapter 7), then both the
integral and fractional quantum Hall effects are observed. Even if it does not yet exist
a theory fully explaining these two effects, they are studied because they constitute one
of the most significant discoveries of the last decades in solid state physics. Similar to the
transport properties, the optical properties of nanostructures, studied in Chapter 8, also
exhibit a wealth of new properties, very often completely different from those shown by
bulk semiconductors: tunability of the gap, microwave Bloch emission, optical properties
dependent on the nanocrystal size, etc.

With the above background, the students should be well prepared to tackle the
last part (Chapters 9 and 10) on advanced semiconductor devices based on nano-
structures. Chapter 9 deals with high frequency transistors (high electron mobility,
resonant tunnelling, etc.) as well as single-electron transistors. Finally, Chapter 10 is

xiii
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dedicated to advanced optoelectronic and photonic devices based on quantum heterostruc-
tures: quantum well and quantum dot lasers, superlattice photodetectors, high-speed
optical modulators, etc. After studying these two chapters, the students should appre-
ciate that it is possible to design advanced devices with pre-fixed electronic and optical
characteristics, through what is actually known as “band-structure engineering”. Another
idea we would like the students to get from these two chapters is that nanoscience is part
of today’s technology. Many of the devices explained, such as MODFET and heterojunc-
tion bipolar transistors, quantum well lasers, photodetectors, modulators, etc. are already
commercialized and used in a series of consumer electronic and optoelectronic products.
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Chapter 1

Mesoscopic Physics and Nanotechnologies

1.1. OUTLOOK OF THE BOOK

The interest in the study of the physical properties of electronic materials of very small
sizes, usually in the nanometre range, resides in various factors. One of them is due to the
trends in microelectronic integrated devices, for which smaller sizes imply operation at
higher frequencies, higher functionality, lower fabrication costs for a given performance,
etc. A second reason, more important from a scientific point of view, is related to the
appearance of new fundamental physical effects, such as resonant tunnelling, quantum
conductance, Coulomb blockade, Hall quantum effects, etc. In addition, very frequently,
these fundamental discoveries are related to practical devices like quantum well lasers,
single electron transistors, confined quantum Stark effect optical modulators, etc.

In Chapter 1 of this book, we start by reviewing the present trends of microelectronic
and optoelectronic semiconductor devices, which are the basis for the new field of nano-
electronics. After this we will revise a series of concepts of mesoscopic physics, such as
characteristic lengths, needed for the definition of nanostructures. We will also set up the
physical basis of semiconductors of reduced dimensionality: quantum wells (2D), quantum
wires (1D), and quantum dots (0D). We are aware that some of the concepts introduced
in this chapter will be difficult for some readers to grasp, especially if confronted to them
for the first time. However, we think that overall it is advantageous to get acquainted with
them from the very beginning. After this introductory chapter, a survey of the concepts
of quantum mechanics, solid state, and semiconductor physics is presented in Chapters 2
and 3. Chapter 4 deals with the physics of low-dimensional semiconductors, i.e. quan-
tum wells, wires, and dots. In Chapter 5, some of the most frequently used quantum
heterostructures are revised, as well as superlattices. The effects of electric and magnetic
fields on nanostructures are studied in Chapters 6 and 7, giving special emphasis to the
quantum conductance and the quantum Hall effect. The rich variety of optical processes
in semiconductor nanostructures is treated in Chapter 8, which completes the basic phys-
ical properties of the mesoscopic systems. The last two chapters of the book deal with
the electronic and optoelectronic semiconductor devices. In Chapter 9, several kinds of
high-frequency diodes and transistors, based on resonant tunnelling and single electron
effects, are illustrated. Finally, Chapter 10 is dedicated to the optoelectronic and photonic
devices which use quantum heterostructures: quantum well lasers, photodetectors, and
optical modulators.

3
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1.2. TRENDS IN NANOELECTRONICS AND OPTOELECTRONICS

The evolution of microelectronic devices is influenced by factors such as growing demands
in memory capacity of integrated circuits, high transmission data speed, optical communi-
cations, etc. This requires electronic devices with faster speed operation and smaller size,
as is the case of silicon integrated circuits, in particular dynamic random access memories
(DRAMs). Figure 1.1 shows the reduction of feature size of metal-oxide-semiconductor
(MOS) transistors, as well as the number of bits per chip for the period 1970–2000 [1].
For example, a 256 M-bit DRAM contains about 109 transistors with a feature size L close
to 100 nm. For structures with these dimensions, transport can still be treated classically,
but we are already at the transition regime to quantum transport (Section 1.8). Today it is
believed that present silicon technology will evolve towards feature sizes still one order
of magnitude lower, i.e. L ∼ 10 nm; but below this size, transistors based on new concepts
like single electron transistors, resonant tunnelling devices, etc. (Chapter 9) will have to
be developed. The operation of this new kind of devices has to be described by the con-
cepts of mesoscopic and quantum physics. It is interesting to remark that quantum effects
show up in III-V devices for larger feature sizes, as a consequence of the smaller value of
the effective mass, and therefore larger value of the de Broglie wavelength (Section 1.3).

In the near future, and due to the growing demands of calculus from industries like
communications, information, military, space, etc. microelectronics will be replaced by
nanoelectronics since the feature size of electronic devices will be reduced to about 10 nm.
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Although there has been an impressive advance at the device and technology level during
the last decade, the progress in the development of new system architectures dealing with
billions of transistors is scarce. In this sense, new architectures for parallel data processing
are under current development.

The evolution towards nanoelectronics has been possible because of advances in the
deposition of very thin films to form heterostructures in which electrons could be con-
fined to a 2D mesoscopic system. Standard evaporation and sputtering techniques did not
produce heterostructures of enough quality. However, during the 1980s both molecular
beam epitaxy (MBE) and metal organic chemical vapour deposition (MOCVD) became
available (Section 1.7). In MBE, a film of the desired material is epitaxially grown over a
substrate under ultrahigh vacuum conditions (pressure less than 10−10 mbar). The materi-
als are evaporated in tubular effusion cells of the Knudsen type at fairly high temperatures.
The atoms or molecules emerge from the effusion cells forming a molecular beam that
travels in straight lines towards the substrate where the molecules condense.

Very thin films of elemental semiconductors (Si, Ge), III-V (AlGa, AlGaAs, InP),
and II-VI compounds (CdTe, PbS) can be deposited by MBE. This technique allows a
layer-by-layer growth of films and superlattices as well as the doping of the material from
sources such as B, Al, As, etc. Although the deposited films are of very high quality,
the technique is somewhat slow and expensive. MOCVD is the preferred industrial tech-
nique to produce semiconductor heterostructures. For instance, GaAs can be grown over
a substrate at about 500 ◦C by the reaction of arsine (AsH3) gas and trimethyl gallium
(CH3)3Ga at sub-atmospheric pressures. Diluted dopant gases are also simultaneously
introduced; for instance Si n-type doping of GaAs can be obtained by means of SiH4

diluted in hydrogen which is used as carrier gas. This technique allows for simultaneous
deposition on several wafers and is used for the commercial production of semiconductor
lasers.

In general, mesoscopic systems require the formation of nanostructures in the range
close to 100 nm, that is, a decrease in specifications of about one order of magnitude in
comparison to the state-of-the-art some 20 years ago. Therefore at present we are close to
the limits of conventional optical lithography, and other high resolution nanolithographic
techniques (electron beam, ion beam, x-ray, etc.) have to be industrially implemented. As
for resists, the most commonly used in nanolithography is the positive tone resist known
as PMMA (poly-methylmethacrylate). Although the molecular weight of PMMA is close
to 106, its roughness, once spin coated onto the substrate, is only about 2 nm.

A frequent matter of present discussion is the ultimate limits in device size, taking into
account the evolution shown in Figure 1.1. It seems reasonable that the rate of scaling
down predicted by Moore’s law [2] will have to slow down. It is expected that the limits
of further miniaturization, from an industrial and economic point of view, will be reached
in about one decade. The technological limits are related to several factors of which we
will mention only two. The first has to do with the amount of heat generated by the
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power consumed, and which cannot be eliminated because of thermal conductivity limits
of the materials and the increasing number of overlayers. The other factor is related to the
so-called “parameter spread” in fabrication. For instance many of the electrical parameters
of the MOS transistors are set by doping; however, as the size of the region to be doped
is decreased to about 0.1 µm3, the number of doping atoms becomes so low (about 10)
that the parameter spread cannot be controlled appropriately.

In addition to the above mentioned technological limits, there are others of fundamental
nature, which are called physical limits. Although at present integrated devices are still
far from these limits, we think it is important to revise them. They are the following:
(i) Thermal limit: The energy necessary to write a bit should be several times kT which
is the average energy of thermal fluctuations. In CMOS the lowest values contemplated
to write a bit should not be smaller than about 2 eV, i.e. 100kT at room temperature or
∼3 × 10−19 J. (ii) Relativistic limit: Signals cannot propagate faster than the speed of
light. Therefore assuming that the nucleus of a microprocessor has a size of a few cm,
it takes 10−10 s for the signal to propagate, which corresponds to a frequency of about
10 GHz. (iii) Uncertainty principle: According to the Heisenberg’s uncertainty principle,
the energy and time needed to write or read a bit should be related by �E ·�t ≥ h. To be
safe, we ask the product �E ·�t to be 100h. Since for future circuits �E could be as low
as 10−19 J, we can appreciate that we can approach the quantum limit as the frequency
increases.

At present nanoelectronics is moving simultaneously along several directions. One of
them is solid state nanoelectronics, which is the object of this text, and usually consists
of heterostructures of well-known materials (Si, SiO2, III-V compounds), and several
types of transistors: heterojunction, single-electron, resonant-tunnelling, ballistic, etc.
However, the amount of computational capacity for some tasks like speech and visual
recognition is so large that other radically different alternatives are being sought. Some
of these alternatives, like superconductivity electronics and spintronics, use fabrication
techniques not too different from those employed in present integrated circuit technologies.
Superconducting electronics, proposed in the 1970s, and developed to the prototype stage
during the 1980s, is based on the switching properties of the Josephson junction, which
consists of two superconducting layers separated by a very thin oxide insulating film that
can be tunnelled by superconducting pairs of electrons. The advantages of superconducting
electronics are based on the fact that Josephson junctions can operate at high switching
speeds (switching times between 1 and 10 ps), the amount of dissipated power is very low
and the resistance of interconnect superconducting lines is practically null.

Another technology being pursued is spintronics which exploits the spin orientation
of electrons. Electron-spin transistors are built by enclosing a semiconductor layer (base)
sandwiched between two ferromagnetic layers (emitter and collector). Electrons acquiring
the magnetization state of the emitter can only travel through the collector across the base
if their spins are aligned with the magnetization of the collector. These developments can
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be considered as running parallel to the efforts in magnetoelectronics to develop MRAM
memories, based both in the giant magnetoresistance effect and in the magnetic tunnel
junctions developed in 1995. Electron-spin transistors have a big potential if successfully
integrated with CMOS circuits.

Other radically new alternatives for future nanoelectronics have been proposed. Molec-
ular electronics is based on the different states or configurations that molecules can take,
like “trans” or “cis”, as well as parallel or antiparallel alignment of the spin of unpaired
electrons. The change between states must be fast, consume little energy, should be
addressed by some external signal, and should be readable by a probe. If this technol-
ogy is able to be put to work, we will have the ultimate step in miniaturization, since
molecules are much smaller than present feature sizes in integrated circuits. Besides,
molecules have the advantage of being capable of self-organization in 3D supramolecular
entities, although, after the development of scanning atomic force microscopy, molecules
can be, in principle, individually manipulated. Examples of molecules that can be used
in molecular electronics are: azobenzene, hydrazobenzene, etc. One advantage of organic
molecules, when compared to inorganic ones, is that it is easier to isolate them in single
molecular systems. Although in the future it is expected that molecular wires or nan-
otubes can be developed for contacting molecules, today only metallic or semiconducting
electrodes are contemplated. Even with this limitation, the interfacing of molecules to
the external world for addressability in the case of large systems seems, at present, an
enormous problem.

Lastly, we mention biology-inspired electronics, also called bioelectronics. In trying to
copy nature, we are not concerned with the size of the building blocks, since for instance,
a neuron is very large for nanotechnology standards. What nanoelectronics would like to
imitate of biological neurons is the capabilities in parallel processing as well as their 3D
architectures and the topology of the interconnects. This results from the large number of
computations, needed for instance in pattern recognition of the visual systems of humans
and animals, which has to be performed simultaneously at different sites. In addition
to parallel processing, neural networks try to simulate the integration of computing and
memory functions, which in CMOS microprocessors are performed separately.

To conclude this section, the present situation in optoelectronics will be shortly
considered. Optoelectronic devices, based mainly in III-V direct gap semiconductors,
have received a great upsurge since the development of optical fibre communica-
tions. In addition, there is at present a tendency to replace, whenever possible, elec-
tronic devices by photonic ones. The III-V semiconductors more frequently used are
based on AlGaAs–GaAs and GaInAsP–InP heterostructures which cover the 0.8–1.6 µm
wavelength range. GaN blue lasers for short wavelength applications were developed
about ten years ago. In the last two decades, quantum well semiconductor lasers with very
low threshold currents and photodetectors are replacing the conventional ones, especially
in long distance optical communications. One very interesting type of quantum well



8 Nanotechnology for Microelectronics and Optoelectronics

lasers, which operate at still lower threshold currents, is based on strained-layer quantum
heterostructures.

At present, laser diodes are manufactured in chips by standard integrated circuit
technology, coupled to transistors and optical interconnects, constituting the so-called
optoelectronic integrated circuits (OEIC). In all cases, the trend in optoelectronic devices
is to achieve a high level of integration which implies smaller sizes, but still in the micron
range. Here again there is a lot of research in efficient integration architectures.

Perhaps, the greatest advances in optoelectronics based on quantum semiconductor
heterostructures can be found in the field of electro-optical signal modulation. In effect,
modulators based on the confined quantum Stark effect (Section 8.4) are several orders
of magnitude more effective than their bulk counterparts. As we will see in Section 10.8,
this is due to the fact that excitons in quantum wells have much higher ionization energy
than in the bulk, and therefore can sustain much higher electric fields.

1.3. CHARACTERISTIC LENGTHS IN MESOSCOPIC SYSTEMS

Mesoscopic physics deals with structures which have a size between the macroscopic
world and the microscopic or atomic one. These structures are also called mesoscopic
systems, or nanostructures in a more colloquial way since their size usually ranges from
a few nanometres to about 100 nm. The electrons in such mesoscopic systems show their
wavelike properties and therefore their behaviour is markedly dependent on the geometry
of the samples. In this case, the states of the electrons are wavelike and somewhat similar
to electromagnetic radiation in waveguides.

For the description of the behaviour of electrons in solids it is very convenient to define
a series of characteristic lengths. If the dimensions of the solid in which the electron is
embedded is of the order of, or smaller than these characteristic lengths, the material
might show new properties, which in general are more interesting than the corresponding
ones in macroscopic materials. In fact, the physics needed to explain these new properties
is based on quantum mechanics. On the contrary, a mesoscopic system approaches its
macroscopic limit if its size is several times its characteristic length.

Let us next describe some of the most commonly used characteristics lengths in
mesoscopic systems.

(i) de Broglie wavelength
It is well known from quantum mechanics that for an electron of momentum p, there
corresponds a wave of wavelength given by the de Broglie wavelength:

λB = h

p
= h

m∗v
(1.1)
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In Eq. (1.1) we have substituted p by m∗v in a semiclassical description, where
m∗ is the electron effective mass. From solid state physics, we know that inside a
semiconductor, electrons behave dynamically as if their mass was m∗, instead of the
mass m0 of the electron in vacuum. This observation is very important because for
many interesting semiconductors, like GaAs or InSb, m∗ is much smaller than m0.
For instance, for GaAs and InSb, m∗ is equal to 0.067m0 and 0.014m0, respectively
(the concept of effective mass is reviewed in Section 2.6.2). It can be observed,
therefore, that the smaller the value of m∗, the easier will be to observe the size
quantum effects in nanostructures of a given size. This is the case of semiconductors
in comparison with most metals, for which the conduction electrons behave as quasi-
free. In fact, with present lithographic techniques, it is relatively easy to construct
semiconductor nanostructures with one or two of their dimensions of the order of,
or smaller than λB.

(ii) Mean free path
As the electron moves inside a solid, it is usually scattered by interactions with crystal
imperfections like impurities, defects, lattice vibrations (phonons), etc. In most cases,
these scattering events or “collisions” are inelastic, i.e. the values of energy and
momentum of the system after the interaction, differ from the corresponding ones
before they interact. The distance covered by the electron between two inelastic
collisions is usually called the mean free path �e of the electron in the solid. If v is
the speed of the electron, then

�e = vτe (1.2)

where τe is known as the relaxation time.
(iii) Diffusion length

In a mesoscopic system of typical size L, the electrons can move either in the ballis-
tic regime or in the diffusive regime. If the previously defined mean free path �e is
much larger than L, the particle moves throughout the structure without scattering;
this is the so-called ballistic transport regime in which the surfaces usually are the
main scattering entities. In hot electron transistors (Section 9.5), electron transport
is ballistic and the electrons can reach energies much higher than the ones corre-
sponding to the lattice thermal energy. On the other hand, if �e � L, transport can
be explained as a diffusion process. In this case, the system is characterized by a
diffusion coefficient D. In terms of D, the diffusion length Le is defined by (see also
Eq. (3.51))

Le = (Dτe)
1/2 (1.3)

where τe is the relaxation time. In semiconductor theory, the concept of diffu-
sion length is used very often; for instance, if electrons diffuse within a p-type
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semiconductor, their concentration diminishes exponentially with distance with a
decay length equal to Le.

In the diffusive regime, transport in the mesoscopic systems is usually explained
by means of the Boltzmann equation, as in the bulk. On the contrary, in the ballistic
regime, the Boltzmann transport model is not valid, and electrons move through the
structure essentially without scattering.

(iv) Screening length
In extrinsic semiconductors, the dopants or impurities are usually ionized and consti-
tute a main factor contributing to scattering. However, in general we cannot consider
that the electrical potential produced by these impurities varies with distance as 1/r.
Because of the screening of free carriers by charges of the opposite polarity, the effect
of the impurity over the distance is partially reduced. It is found (see, for instance,
Ref. [3]) that the variation of the potential is modulated by the term exp(−r/λs)

where λs is called the screening length and is given by

λs =
(

εkT

e2n

)1/2

(1.4)

where e is the electronic charge, ε the dielectric constant of the semiconductor, and
n the mean background carrier concentration. One should be careful about nomen-
clature because some authors call λs the Debye length or the Fermi–Thomas length.
In a typical semiconductor, λs is in the range 10–100 nm, and is an indication of the
attenuation of charge disturbances in a semiconductor. From Eq. (1.4) it is determined
that λs should be much smaller in metals than for semiconductors.

Figure 1.2 shows both the Coulomb potential and the screened potential which
varies as

φsp = γ
e−r/λs

r
(1.5)

where γ = 1/4πε0, since for λs → ∞ the screening effect disappears, yielding
the Coulombic potential. It can be observed from Figure 1.2 that for distances from
the impurity larger than about 2λs, the screening is almost complete. In the above
discussion, we have considered that the charge originating the potential was an impu-
rity, but in general it can be any perturbation in the charge concentration. Another
interesting observation is that the above equations imply a dielectric function ε(r)

which is distance dependent.
(v) Localization length

The localization length can be understood in terms of transport in disordered mate-
rials, in which we know from solid state physics that, in addition to Bloch extended
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Figure 1.2. Comparison between screened and unscreened Coulombic potential.

states, there can also be localized states (see also Section 7.7.3). In disordered mate-
rials, the electrons move by “hopping” transport between localized states, or from a
localized state to a bound state.

In order to describe the hopping transport and other mesoscopic properties of the
localized states, it is assumed that the electron wave function is described by

ψ = exp(−r/λloc) (1.6)

where λloc is known as the localization length. Evidently, the electrical conductivity
of a material will be proportional, among other factors, to the overlap between the
wave functions. If the sample dimensions are of the order of λloc, we can say that our
system is mesoscopic. In fact, we will use the concept of localized states to explain
the quantum Hall effect in Chapter 7. The type of localization just mentioned is also
similar to the Anderson localization used to explain the metal–insulator transition in
solid state physics [4].

1.4. QUANTUM MECHANICAL COHERENCE

In a mesoscopic structure of dimensions similar to the electron de Broglie wavelength
λB, the behaviour of the electron should be described quantum mechanically, i.e. by
using Schrödinger equation. If the electron interacts inelastically with a defect, or any
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impurity, the electrons change their energy and momentum, as well as the phase of their
wave function. The phase coherence length Lφ is defined as the distance travelled by the
electron without the carrier wave changing its phase. Evidently, interference effects in the
electron waves should only be observed if the particles move over distances of the order
of, or smaller than, Lφ .

Since we are usually interested in mesoscopic systems in the quasi-ballistic regime, in
which electrons are practically unscattered, Lφ should be a length similar to the inelas-
tic scattering mean free path �e previously defined. Coherent states can evidently show
interference effects. On the contrary, once the coherent states loose their coherence, by
inelastic scattering, the corresponding waves cannot be superposed and cannot interfere (in
some way, the matter–wave becomes a particle). In mesoscopic physics, the loss of coher-
ence is usually called dephasing. Evidently, the coherence processes are characteristic of
mesoscopic systems.

From the above definition of Lφ , electrons can show interference effects over distances
smaller than Lφ . If electrons with phase φ1 interfere with electrons of phase φ2, we know
from the wave theory that the amplitude of the resultant wave varies as cos(φ1 − φ2)

and the amplitudes can add up to each other, or they can be subtracted depending on the
phase difference. Interference effects in mesoscopic systems will be studied in Chapter 7.
For instance, in the Aharonov–Bohm effect (Section 7.5) we will see how magnetic
fields (in reality, the vector potential) modulate the phase difference between two electron
currents which are added after having travelled through different channels. We will see
that variations of magnetic flux modulate the conductance (or its inverse, the resistance)
of the mesoscopic system in quantum units.

1.5. QUANTUM WELLS, WIRES, AND DOTS

In Section 1.3, we have defined a series of characteristic lengths λ which correspond to
physical properties of electrons which are size dependent. We have also seen that when
the dimensions of the solid get reduced to a size comparable with, or smaller than λ, then
the particles behave wave-like and quantum mechanics should be used.

Let us suppose that we have an electron confined within a box of dimensions Lx , Ly ,
Lz. If the characteristic length is λ, we can have the following situations:

(i) λ � Lx, Ly, Lz

In this case the electron behaves as in a regular 3D bulk semiconductor.
(ii) λ > Lx and Lx � Ly, Lz

In this situation we have a 2D semiconductor perpendicular to the x-axis. This
mesoscopic system is also called a quantum well (see, for instance, Figure 4.1,
Chapter 4).
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(iii) λ > Lx , Ly and Lx, Ly � Lz

corresponds to a 1D semiconductor or quantum wire, located along the z-axis
(Section 4.5).

(iv) λ � Lx, Ly, Lz

In this case it is said that we have a 0D semiconductor or a quantum dot (Section 4.6).

In general, we say in mesoscopic physics that a solid, very often a semiconductor, is
of reduced dimensionality if at least one of its dimensions Li is smaller than the charac-
teristic length. For instance, if Lx and Ly are smaller than λ we have a semiconductor of
dimensionality equal to one. We could also have the case that λ is comparable, or a little
larger, than one of the dimensions of the solid but much smaller than the other two. Then
we have a quasi 2D system, which in practice is a very thin film, but not thin enough to
show quantum size effects.

1.6. DENSITY OF STATES AND DIMENSIONALITY

Although the density of states (DOS) of physical systems will be derived formally in
Chapter 4, in this section we see from a mathematical point of view the consequences
of the dimensionality of the system in the DOS. As we know from solid state physics,
most physical properties significantly depend on the DOS function ρ. The DOS function,
at a given value E of energy, is defined such that ρ(E)�E is equal to the number of
states (i.e. solutions of Schrödinger equation) in the interval energy �E around E. We
also know that if the dimensions Li(i = x, y, z) are macroscopic and if proper boundary
conditions are chosen, the energy levels can be treated as a quasi-continuous. On the other
hand, in the case where any of the dimensions Li gets small enough, the DOS function
becomes discontinuous. Let us next obtain the DOS function for several low-dimensional
solids. First, let us remind that for bulk solids ρ(E) varies with energy in the form

√
E

(Section 2.3).
If each quantum state or Bloch state (Sections 2.4 and 2.5) in a solid is designated by

a quantum number k (Bloch state), the general expression for the DOS function should be

ρ(E) =
∑

k

δ(E − Ek) (1.7)

where the quantized energies are given by Ek and δ(E) is the Dirac’s delta function. If
we take into account the electron spin degeneracy, a factor 2 should also appear in the
above expression. Let us recall for simplicity the case of a cubic shaped 3D macroscopic
crystalline solid, of edge L = Na, where a is the lattice constant and N the number of
sites along the one-dimensional directions which is supposed to be large. In this case,
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the eigenstates can be considered as quasi-continuous and the summatory in k of Eq. (1.7)
can be replaced by an integral, i.e.

∑
k

→ L

(2π)3

∫
dk (1.8)

for the case of a cube of size L and volume V = L3 (Section 2.3). We also know from sim-
ple solid state theory that if we assume that the energy Ek only depends on the magnitude
of k in a parabolic energy dependence between the momentum �k, i.e. Ek = �

2k2/2m∗,
then (Section 2.3):

ρ3D(E) = V

2π2

(
2m∗

�2

)3/2 √
E (1.9)

We can follow exactly the same procedure for 2D and 1D semiconductors of area A
and length L, respectively (see Sections 4.2 and 4.5), reaching the following expressions
for ρ2D(E) and ρ1D(E):

ρ2D(E) = A

π

(
m∗

�2

)
(1.10)

ρ1D(E) = L

2π

(
2m∗

�2

)1/2 1√
E

(1.11)

Some important considerations can already be made: the DOS function in 3D semicon-
ductors is proportional to

√
E, in 2D is constant, and in 1D varies inversely proportional

to
√

E. This implies in the last case that at the bottom of bands, the DOS plays a very
important role, because there is a singularity for E = 0.

Eqs (1.10) and (1.11) were derived for perfectly 2D and 1D solids, but in the real
world a 2D solid, for instance, is really a 3D one where the perpendicular dimension is
very short. We will see in Section 4.2 that since electrons can move almost freely in the
(x, y) plane, Eq. (1.10) should be written for a quasi-2D solid as

ρ2D(E) = A

π

(
m∗

�2

)∑
nz

θ(E − Enz) (1.12)

where nz refers to the quantization in the confined z-axis and θ is the step function. This
function is represented in Figure 4.3.
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Similarly, for a quasi-1D solid or quantum wire along the z-direction

ρ1D(E) = L

2π

(
2m∗

�2

)1/2 ∑ 1√
E − Enx,ny

(1.13)

where nx and ny are the quantum numbers for the confined x and y directions. This
function looks like a series of peaks, similar to the one represented in Figure 4.7, one for
each value of Enx,ny .

Evidently, in the case of a quasi-0D solid or quantum dot, there is no continuous DOS
function, since there is quantization in the three spatial directions. Therefore the DOS
function consists of a series of peaks given by

ρ0D(E) =
∑

i

δ(E − Ei) (1.14)

where i = (nx, ny, nz) (see Figure 4.8). In reality, the peaks in quantum dots are not
perfect δ-functions since there is a broadening effect as a consequence of scattering
mechanisms.

1.7. SEMICONDUCTOR HETEROSTRUCTURES

Although a very large number of semiconductor electronic devices (of the order of 100)
can be individually identified, they can be considered as being built from only a few
fundamental structures. These structures are: (i) The p–n homojunction, mainly based
on crystalline silicon; (ii) the metal–semiconductor interface; (iii) the metal–insulator–
semiconductor structure, in particular the Si–SiO2–metal or MOS structure; and (iv) the
semiconductor heterojunction or interface between two semiconductors of different gaps.
Most of the electronic and optoelectronic devices studied in this text (Chapters 9 and 10)
are precisely based on heterojunctions. In addition, heterojunctions are very appropriate
for fundamental studies in mesoscopic physics, in particular 2D electron systems in quan-
tum wells. In fact, K. von Klitzing discovered the quantum Hall effect in a commercial
MOS structure (Section 7.7) [5].

At present, the best quality quantum heterostructures are made of III-V semiconductors.
The one most often used is the AlGaAs–GaAs heterostructure which is treated in detail
in Section 5.3. These heterostructures have been routinely produced since about 20 years
ago. Figure 1.3 shows the band diagram of the simplest AlGaAs–GaAs heterojunction.
As explained in Section 5.3, the most interesting effect of this heterojunction arises from
the large concentration of electrons, produced in the n-type doped AlGaAs, which drop
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Figure 1.3. Conduction band diagram of a modulation-doped heterojunction (see also Figure 5.3
in Section 5.3.1).

into the quantum well at the interface, and become spatially separated from the impurities.
This heterostructure is also known as modulation-doped since the doping is selective. If an
electric field, as in the MOSFET transistor, is applied parallel to the interface, the electrons
can move extremely rapidly, as a consequence of the small effective mass of electrons in
GaAs, and more importantly, due to the lack of impurity scattering inside the quantum
well. In addition, the electrons move in a quantum well of typical width smaller than
λB and therefore become quantified in the direction perpendicular to the interface. The
electron system in the well has the properties of a 2D system and the DOS is given by
Eq. (1.12) which, as we will see in Section 5.3, results in much improved electronic and
optical properties.

Modulation-doped heterostructures of high quality could be fabricated only after such
techniques as molecular beam epitaxy and metal organic chemical vapour deposition
were fully developed. These techniques allow to deposit very thin films, which grow
atomic layer by layer on a high quality substrate under a vacuum of about 10−12 mbar,
resulting in highly regular interfaces (no roughness) in the planar directions and very
abrupt composition gradients in the perpendicular direction. The quality of this interface
is much higher than the Si–SiO2 interface of MOS devices (Section 5.2) and therefore
allows a better observation of quantum effects.

Semiconductor quantum heterojunctions are at present the base of many electronic
and optoelectronic commercial devices. In this sense, we can say that some of the most
advanced electronic and optoelectronic devices are based on nanotechnologies. As we will
see in detail in Chapter 9, resonant tunnelling diodes are based on two heterojunctions
with a quantum well between them; also the high mobility transistor (Section 9.2) is
based on one heterojunction. In the same line, advanced optoelectronic devices like lasers
for optical communications, CD players, and very fast electro-optical modulators are
based on quantum well heterostructures (Chapter 10).
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1.8. QUANTUM TRANSPORT

Transport studies in nanostructures during the last 20 years have been mainly focused
in the study of quantum interference effects (Section 1.4) and in single-electron transport
(Section 6.4.3). Since the electron mean free path is usually much larger in semiconductors
than in metals, interference effects are better observed in semiconductor nanostructures.
Most of the earlier studies in macroscopic transport distinguished between the transport
in the diffusive regime and transport in the ballistic regime (Section 1.3(iii)). Diffusive
transport is practically independent of the shape of the system; therefore, the electron
numerous scattering mechanisms are practically similar to those in bulk materials. On the
other hand, in quantum heterostructures for which � � L the electron travels ballistically
and only interacts with the system boundaries. In this case, in which in addition λB is
comparable or larger than L, the energy quantization of the electrons in the well becomes
very significant. Ballistic electrons that travel through the structure without scattering, and
therefore, can show interference effects. Frequently, these effects, treated in Chapter 7,
are observed under the action of magnetic fields.

In metallic nanostructures, � is of the order of 100 Å and one usually has a diffusive
regime. On the other hand, in semiconductor heterostructures � is often of the size of
several micrometers, and the confinement effects become much more significant. In this
situation, we cannot describe transport by making use of macroscopic properties, like
electrical conductivity, and have to appeal to the wavelike properties of the wave func-
tion given by Schrödinger equation. In fact, a new formulation, due to Landauer and
Büttiker, will have to be used, which will be able to explain the observed quantization of
conductance (Section 6.4). Quantum transport also deals with electron tunnelling across
potential barriers of controlled height and width. One example is the resonant tunnelling
diode, which shows very interesting effects like a tunnelling probability of practically
100% for certain energies as well as a negative differential resistance (see Section 9.4) in
their I–V characteristics.
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PROBLEMS

1. Landau levels in a bulk solid. (The purpose of this exercise is to remind the reader
that low-dimensional confinement effects can also appear in bulk solids under the
action of a magnetic field). Show that the energy levels of a 3D solid in a magnetic
field B along the z-direction is given by

E(n, kz) = E(n) + E(kz) =
(

n + 1

2

)
�wc + �

2k2
z

2m∗ , n = 0, 1, 2, K

where the cyclotron frequency wc is given by wc = eB/m∗ (we have assumed that
the constant energy surfaces in k-space are spherical so that the effective mass is a
scalar).

2. Magnetic length. The characteristic magnetic length �m for electrons subjected to the
action of a magnetic field B is defined as

�m =
(

�

eB

)1/2

Show that �m is equal to the radius of the electron cyclotron orbit corresponding to
the value of the quantized energy in the plane perpendicular to B (see problem 1.1)
for n = 0. Hint: you can use a semiclassical argument and therefore write E =
(1/2) m∗υ2 with υ = rwc, wc being the cyclotron angular frequency.

3. Coherence length in superconductors. Compare the coherence length ξ of a super-
conductor with the characteristic lengths defined in Section 1.3. Hint: the definition of
ξ comes out in a natural way from the phenomenological Ginzburg–Landau theory of
superconductivity. For very pure superconductors, the mean free path � in the normal
state is quite large and it is shown that ξ = �υF/πEg where υF is the Fermi velocity
and Eg the superconductor gap. However, for very impure samples � is short and
ξ = (2�υF�/πEg)

1/2.
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4. Density of states function for a solid in a magnetic field. From the expression of
E(n, kz) of problem 1, show that the density of states of a bulk solid in a magnetic
field as a function of energy is equal to a series of infinite one-sided hyperbolic step
functions similar to Figure 4.7. In addition, show that analytically it can be written in
the form:

n1D ∝
∞∑

n=0

(E − En)
−1/2

where En is given by the quantized energies of problem 1. Represent n1D as a function
of E showing that has singularities (n1D → ∞) for values of the energy given by
En = �wc/2, 3�wc/2, etc.

5. Resistivity and conductivity tensors in 2D. (The expressions for the σ and ρ tensors
in 2D are useful for the study of magneto-transport and are used for the interpretation
of the quantum Hall effect in Chapter 7). In a 2D system in which the current flows
in the x-direction, as in Hall measurements, with the magnetic field applied along
the z-direction, show that the resistivity and conductivity tensors are related by the
following expressions

ρxx ≡ σxx

σ 2
xx + σ 2

xy

ρxy ≡ σxy

σ 2
xx + σ 2

xy

Hint: assume a relation between current and electric field of the form

Jx = σxxEx + σxyEy

Jy = σyxEx + σyyEy

and that the sample is homogeneous and isotropic, i.e. σxx = σyy and σxy = −σyx .
6. Hall coefficient in 2D. (The solution of this problem gets us used to handle 2D

electron systems under the action of a magnetic field). Assuming the geometry of
the previous problem, with a magnetic field B in the z-direction, show that: (a) the
components of the velocity for the electron motion in the (x, y) plane are given by

υx = − eτ

m∗ Ex − wcτυy

υy = − eτ

m∗ Ey + wcτυx
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Hint: assume the relaxation time approximation of transport in solids, reviewed in
Section 3.5.1.
(b) If υy = 0, as in a Hall measurement show that the Hall coefficient RH(≡ Ey/JxB)

is given by

RH = Ey

JxB
= υy

IB
= − 1

N ′
se

where N ′
s is the electron concentration per unit area and Jx = I/a, where a is the

width of the sample.
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Chapter 2

Survey of Solid State Physics

2.1. INTRODUCTION

Before we study the effects of reduced size and dimensionality on the properties of solids,
we review in this chapter those concepts of solid state physics which are essential for the
understanding of the behaviour of quantum nanostructures. For instance, the behaviour
of electrons in a quantum well is very different to the case of bulk solids if their motion
is across the potential barriers confining the quantum well, but is very similar if the
motion is parallel to the interfaces. In Section 2.2 of this chapter we review some basic
concepts of quantum mechanics, especially the time-independent and time-dependent
perturbation techniques which lead to the Golden rule for electron transitions between
states. Section 2.3 reviews the electron model of solids following the lines proposed by
Sommerfeld, based on the fact that quantum mechanics only allows a certain number
of states for a particle in a box. The model ignores the details of the crystalline peri-
odic potential and assumes a mean potential V0. This model explains qualitatively many
properties of solids: magnitude and temperature dependence of electronic heat capacity,
the Wiedemann–Franz ratio between thermal and electrical conductivities of metals, etc.
However, this model cannot explain other properties like the existence of Hall coefficients
with positive sign in some metals, the fact that some materials are semiconductors and
other metals, etc.

Section 2.4 deals with Bloch theorem which introduces the formalism for the explana-
tion of the behaviour of electrons in periodic potentials. Subsequently, the Bloch formalism
is applied in Section 2.5 to two limiting situations: the case of a weak periodic potential
(nearly free electron model) and the case of a potential so strong that in a first approxima-
tion assumes that the atomic potentials are the main components to the total energy (tight
binding approximation). Surprisingly enough both limits give results which are similar
from a qualitative point of view, and that can be summarized in the existence of an elec-
tronic band structure, i.e. the electrons can move within the allowed energy bands which
are separated by forbidden bandgaps.

Section 2.6 deals with electron dynamics in solids. The electron wave function, as
defined by Bloch, leads immediately to the concept of the velocity of the electron
(the group velocity of the superposition of Bloch states). When electrons are subjected to
external forces, the concept of the effective mass tensor is very useful to characterize the
dynamics of the electrons in the band, since it is linked to the curvature of the bands at a
given energy. The chapter ends (Sections 2.7 and 2.8) with the study of lattice dynamics
based on a description of the atomic vibrational normal modes in a crystal. As electrons in
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periodic structures, there are only allowed vibrational characteristic frequencies, depen-
dent on the wave vector. Next, in order to make the language “more physical”, the concept
of phonons is introduced in the study of lattice dynamics. Theoretically, the phonon is a
quasi-particle that can interact or suffer collisions with electrons and the concept is very
useful for the study of transport properties of solids.

2.2. SHORT REVIEW OF QUANTUM MECHANICS

In this section, we will review some of the basic concepts of quantum mechanics, which are
necessary to understand the properties of bulk and reduced dimensionality semiconductors,
as well as the operation of modern electronic and optoelectronic devices.

2.2.1. Wave-particle duality and the Heisenberg principle

In classical physics we deal with two kinds of entities: particles, such as a small mass
which obeys Newton’s equations, and waves as, for instance, electromagnetic waves or
light which behave according to Maxwell’s equations. However, in dealing with very small
objects, like atoms, the above classification is not enough to describe their behaviour, and
we have to turn to quantum mechanics, and to the dual concept of wave-particle. For
instance, if light interacts with a material, it is better to think of it as being constituted
by particles called photons instead of waves. On the other hand, electrons of which we
have the primary concept of particle, behave like waves when they move inside a solid
of nanometre (= 10−9 m) dimensions.

When we study in optic courses the phenomena of light interference and diffraction,
we assume that light behaves as a wave of wavelength λ and frequency ν, related by the
expression c = λν, where c is the speed of light in the medium of propagation, usually
vacuum or a transparent medium. However, Planck in 1901 assumed, in order to explain
the radiation from a black body, that light can only be emitted or absorbed in units of
energy quanta called photons. The energy of the photons is

E = hν = �ω (2.1)

where h = Planck’s constant (= 6.62×10−34 J·s), � = h/2π, and ω = 2πν is the angular
frequency.

The concept of light behaving as photons was completely admitted after Einstein
explained in 1905 the photoelectric effect. According to this effect, electrons are emit-
ted from the surface of a material when photons of sufficient energy impinge against it.
Evidently, the energy of the impinging photons has to be higher than the energy of the
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barrier that the electrons inside the solid have to surmount to be emitted. Einstein also
showed that a photon of energy E has a momentum given by

E = cp (2.2)

where c is the speed of light. It is also convenient to remember that since photons move
at the speed of light, their mass at rest should be zero.

At first, it was usual to think of electrons as particles, as for instance, when they strike
against a phosphorescent screen after being accelerated. However, in 1927, Davison and
Germer showed that electrons impinging against a nickel crystal surface were diffracted,
as if they were waves, and in fact followed Bragg’s law of diffraction. We can appreciate,
therefore, that the concept of wave-particle is well established by experimental results.
In fact, as de Broglie vaticinated in 1924, to every particle of momentum p, a wave of
wavelength

λ = h

p
(2.3)

can be associated, Eq. (2.3) can also be written as:

p = h

λ
= h

2π

2π

λ
= �k (2.4)

where k is the so-called wave number.
One very important principle of quantum mechanics was enunciated by Heisenberg in

1927. According to the Heisenberg uncertainty principle, in any experiment, the products
of the uncertainties, of the particle momentum �px and its coordinate �x must be larger
than �/2, i.e.:

�px�x ≥ �/2 (2.5)

There are of course corresponding relations for �py�y and �pz�z. It is important to
remark that this indeterminacy principle is inherent to nature, and has nothing to do with
errors in instruments that would measure px and x simultaneously. The second part of
this principle is related to the accuracy in the measurement of the energy E and the time
interval �t required for the measurement, establishing that

�E�t ≥ �

2
(2.6)
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2.2.2. Schrödinger wave equation. Applications

As it was established by Schrödinger in 1926, the dual wave-like and particle-like prop-
erties of matter are described by the so-called wave function �(r, t), which is continuous
and has continuous derivatives. The wave function is also complex, i.e. it has a real part
and an imaginary one. The wave function satisfies the second-order, linear, differential
Schrödinger equation:

[
− �

2

2m
∇2 + V (r, t)

]
� = i�

∂�

∂t
(2.7)

where ∇2 is the operator ∂2/∂x2 +∂2/∂y2 +∂2/∂z2, and V is the potential energy, which
is generally a function of position and possibly of time. Although the function � does not
have a physical meaning, the product of � by its complex conjugate is a real quantity,
such that the probability dP of finding a particle in a small volume dV is given by

dP = |�2|dV (2.8)

If the potential energy V is not time dependent, we can search for a solution to Eq. (2.7)
of the form

�(r, t) = ψ(r)e−iωt (2.9)

Substituting Eq. (2.9) in (2.7) and writing E = �ω, we find the time-independent
Schrödinger equation

[
− �

2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (2.10)

for the time-independent wave function ψ(r).
Schrödinger’s equation can be solved exactly only in a few cases. Probably the simplest

one is that of the free particle, as for instance a free electron of energy E and mass m.
In this case V (r) = 0 and the solution of Eq. (2.7) is easily found to be

� = Aei(kx−ωt) + Bei(−kx−ωt) (2.11)

where

k =
(

2mE

�2

)1/2

(2.12)
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Therefore, the free electron is described by a wave, which according to the de Broglie
relation has momentum and energy given, respectively, by

p = �k, E = p2

2m
(2.13)

In general we will assume that the electron travels in one direction, for instance, along
the x-axis from left to right, and therefore the coefficient B in Eq. (2.11) is zero. The
wave equation for the free electron can simply be written as:

� = Aei(kx−wt) (2.14)

Another example in which Schrödinger’s equation can be solved exactly is that of the
hydrogen atom for which the potential is Coulombic, i.e. V varies with the distance r

between the proton and electron in the form 1/r . Solving Schrödinger’s equation, one
gets the well-known expression for the electron energies:

En = − mre
4

2(4πε0)2�2

1

n2
= −13.6

n2
(eV), n = 1, 2, . . . (2.15)

where mr is the reduced proton–electron mass. In solid state physics, the mathematical
model of the hydrogen atom is often used, as for example, in the study of the effects
of impurities and excitons in semiconductors. Although the equation giving the values
of the energy is very similar to Eq. (2.15), the values of the energy are much smaller,
since the dielectric constant of the medium has to substitute the value of the permittivity
of vacuum ε0. For instance, in the case of silicon, the value of the dielectric constant is
about 12ε0.

The model of the harmonic oscillator is very often used in solid state physics, for
instance, in the study of lattice dynamics in solids (Sections 2.7 and 2.8). In general
terms, we can say that the harmonic oscillator model can be used to describe any system
which performs vibrations of small amplitude about an equilibrium point. The allowed
energies of the harmonic oscillator can be obtained from Schrödingers’s equation and are
given by:

En =
(

n − 1

2

)
�ω, n = 1, 2, 3, . . . (2.16)

Another potential that allows the exact solution of Schrödinger’s equation is the
so-called infinite square well potential, which consists of a flat potential of width a
surrounded by infinite potentials at its extremes. This potential is considered in detail
in Sections 4.2 and 5.4.1, since it is a fairly good approximation to modulation-doped
quantum wells, which is the basic structure of many quantum well transistors and lasers.
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2.2.3. Fermi–Dirac and Bose–Einstein distributions

In this section we will deal often with distribution functions of several particles of different
nature, for instance electrons, photons, etc. Electrons and other particles with half-integer
spin are called fermions and obey the Pauli exclusion principle and Fermi–Dirac statistics.
On the other hand, particles with zero or integer spin obey Bose–Einstein statistics and
are called bosons.

In equilibrium, the average number of fermions that occupy an energy state E is given
by the Fermi–Dirac distribution function fFD (E, T ):

fFD(E, T ) = 1

exp[(E − EF)/kT ] + 1
(2.17)

which gives the probability that a given energy state is occupied. The energy EF is called
the Fermi energy, or Fermi level in semiconductors. From Eq. (2.17), we see that fFD is
equal to 0.5 when E = FF. Figure 2.1 represents the Fermi–Dirac distribution function at
several temperatures. Evidently, all curves have the value 0.5 for E = EF. At T = 0 K,
fFD is a step function, all states of energy below EF being occupied and those for energies
above EF being empty. At any temperature, the transition at EF from 1 to 0 occurs in a
relatively small energy width of about 4kT .

Bosons obey the Bose–Einstein distribution function fBE(E, T ) which is given by

fBE(E, T ) = 1

exp(E/kT ) − 1
(2.18)
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Figure 2.1. Fermi–Dirac distribution function as a function of energy, at different temperatures.
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The negative sign of 1 in the denominator, in comparison with the positive sign that
appears in Eq. (2.17) for fFD, makes a significant difference. For instance, if E → 0 fBE

goes to infinity. For this reason bosons, in particular 4He, undergo Bose condensation,
i.e. all bosons “condense” in the ground state. As a contrast, fermions are forced apart,
since there can be only one particle in each state.

As it is easily appreciated from Eqs (2.17) and (2.18), for high energies in relation
to kT , the 1 that appears in the denominator can be neglected, and both distribution
functions approach the classical Boltzmann distribution function. Thus, if we have, for
instance, electrons in a semiconductor for which (E − EF) � kT , then

f (E, T ) ≈ exp

(
−E − EF

kT

)
(2.19)

Observe that for energies much higher than kT , both quantum distributions converge to
the classical one.

2.2.4. Perturbation methods

We have seen in Section 2.2.2 some important problems in quantum mechanics, like
the harmonic oscillator, for which Schrödinger equation could be solved exactly. How-
ever, in most cases we must deal with potentials for which Schrödinger equation does
not provide exact solutions. Probably the most important method for obtaining approx-
imate solutions is the perturbation method. This method can be applied whenever the
Hamiltonian H of the system is not too different from a Hamiltonian H0 which describes
a system whose eigenfunctions can be found exactly. Therefore we assume that

H = H0 + H ′ (2.20)

where H ′ is called the perturbation Hamiltonian.
Our aim is to find the eigenvalues En and eigenfunctions ψn of H , i.e.

Hψn = Enψn = (H0 + H ′)ψn (2.21)

We have assumed that the unperturbated eigenvalues ξn and eigenfunctions φn can be
exactly calculated by solving the equation

H0φn = ξnφn (2.22)
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The unknown perturbed states ψn are expressed as a superposition of the complete set of
unperturbed wave functions, i.e.

ψn =
∑

i

cinφi (2.23)

Standard books in quantum mechanics [1] show how to proceed to obtain several approx-
imations to the eigenstates. For the zero-order approximation, we evidently get En = ξn.
Very often the first-order approximation suffices, and is given by

En
∼= ξn + H

′
nn = ξn + < φn|H ′|φn > (2.24)

which only involves the zero-order wave functions.
Generally, the unperturbed Hamiltonian H0 is usually symmetrical and the perturbation

Hamiltonian H ′ has a specific symmetry, either even or odd. In this case, it is easy to
prove that for H ′ even, all matrix elements between states of opposite parity are zero,
and, on the contrary, if H ′ is odd, all matrix elements between states of the same parity
automatically vanish. These results are equivalent to the selection rules in spectroscopy.

The perturbation theory discussed so far applies to time-independent stationary states.
In order to study the time-dependent perturbation theory, suppose next that one initial
state is subjected to some time-dependent force. As an example, imagine the oscillation
force exerted on an atom by a light wave. As in the previous case we assume that the
perturbation term H ′(t) in the Hamiltonian is small. We now try to find the eigenvalues
and eigenfunctions of the time-dependent Schrödinger equation (see Eq. (2.7))

Hψ = [H0 + H ′(t)]ψ = ih
∂ψ

∂t
(2.25)

Here again we can express ψ as a superposition of the unperturbed wave functions φn,
and proceed as before to find the different approximations to the eigenvalues.

A case often presented is that of the calculation of the transition probability from an
initial state to a group of very closely spaced states. Therefore, the final states can be
expressed by a density of states function ρ(E) (Section 1.6). It is found that the transition
rate W in this case is given by [1]:

W = 2π

�
ρ(E)|H ′

nk|2 (2.26)

Eq. (2.26) is usually called the Fermi rule or Golden rule of quantum mechanics because
of its usefulness. It states that the rate of transitions between one initial state m to a dense
group of final states k is given by 2π/� times the density of final states function multiplied
by the square of the matrix element connecting the initial and final states.
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Specially interesting is the case for which the time dependence of the perturbation is
of the harmonic type, i.e.

H ′(t) = H ′
0e

±iωt (2.27)

where H ′ could correspond to a perturbation from an electromagnetic field. Then,
the transitions from one state to another takes place preferably when a quantum of
energy �ω is either absorbed (resonance absorption) or emitted by the system (stimulated
emission).

2.3. FREE ELECTRON MODEL OF A SOLID. DENSITY OF
STATES FUNCTION

The simplest model explaining the behaviour of electrons in solids, especially in metals,
assumes that the valence electrons of the atoms can move freely inside the material.
Therefore, according to this model, electrons would behave as a gas enclosed in a box.
This model also assumes that the “free” electrons experience a constant electric potential,
except at the surfaces of the solid in which a potential barrier of height H prevents them
from escaping. From a quantum-mechanical point of view, the model is similar to that
of a particle (a fermion in this case) in a three-dimensional square potential well. This
relatively simple quantum model was proposed by Sommerfeld, based on the classical
Drude’s model.

Since the potential energy is constant inside the box, the time-independent Schrödinger
equation for electrons would simply be equal to Eq. (2.10) in which for simplicity we can
take V = 0. We have seen already in Section 2.2.2 that the wave functions are plane waves
of the form:

ψ(r) = 1√
V

eik·r (2.28)

where in three dimensions the amplitude of the wave function has been written as 1/
√

V ,
V being the volume of the potential box. In this way the wave function has been
normalized, since the probability of finding the electron inside the volume V is one,
that is,

∫
ψ∗ψdV = A2

∫
exp(−ik · r) exp(ik · r)dV = 1 (2.29)

and therefore A = 1/
√

V .
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In order to further proceed with the solution of the problem, we have to establish the
boundary conditions. In general, in solid state physics, two kinds of boundary conditions
are considered. The fixed or box boundary conditions, establish that the electron wave
function goes to zero at the box surfaces, since the electron cannot escape from the box
(we consider that the height of the energy barriers is infinite). This leads to standing wave
functions. On the other hand, the periodic or Born-von Karman boundary conditions lead
to travelling wave functions for the electrons, which are more convenient for studying the
behaviour of electrons in solids. These conditions only impose that the wave function has
the same value at the external boundaries of the solid. For simplicity, let us imagine that
the electron is inside a cube of edge L. Therefore, according to the periodic boundary
conditions:

ψ(x, y, z) = ψ(x + L, y, z)

ψ(x, y, z) = ψ(x, y + L, z) (2.30)

ψ(x, y, z) = ψ(x, y, z + L)

Imposing the periodic boundary conditions to the wave function given by Eq. (2.28)
we obtain:

eikxL = 1, eikyL = 1, eikzL = 1 (2.31)

from which the only allowed values for kx, ky, kz are:

kx = 2π

L
nx, ky = 2π

L
ny, kz = 2π

L
nz (2.32)

where nx , ny , nz = 0, ±1, ±2, . . .
Since the wave vectors are quantified according to Eq. (2.32), the corresponding

quantification for the energy is:

E(nx, ny, nz) = h2

2m
(k2

x + k2
y + k2

z ) = h2

2m

(
2π

L

)2

(n2
x + n2

y + n2
z) (2.33)

with nx , ny , nz = 0, ±1, ±2, . . .
In the above discussion, every set of numbers (nx, ny, nz) represents a state of the

electron of wave number and energy given by Eqs (2.32) and (2.33), respectively. Although
the ideal situation in a solid would be to know all the energies and wave functions of all the
states, often it is sufficient to know the density of states function ρ(E)(DOS), at a given
energy, which was defined in Section 1.6. As we see along the different chapters of this
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text, most of the important properties of a solid, like electrical and transport properties,
will be related to the DOS function.

Every electron state is defined by the set of numbers (kx, ky, kz). According to the
Pauli exclusion principle there will be two electrons (spin up and spin down) for each
occupied state. Since the electron energy is proportional to k2, the occupied points in
k-space (Figure 2.2), expressed by the set of all combinations of values of kx , ky , kz

will be located inside a sphere of radius k = kmax. On the other hand, the difference
between two consecutive values of each ki component (i = x, y, z) is 2π/L. Therefore,
each allowed value of k(kx , ky , kz) should occupy a volume in k-space given by

(
2π

L

)3

= (2π)3

V
(2.34)

where V is the volume of the crystal. Thus, the number of electron states with values
lying between k and k + dk (Figure 2.2) should be

2
4πk2dk

(2π)3/V
= V k2dk

π2
(2.35)

where the factor 2 takes into account the spin.
Since we know that the E = E(k) relation is given by Eq. (2.33), we have finally for

the DOS function in energy the expression

ρ(E) = 4π

�3
(2m)3/2E1/2 (2.36)

k+dk

kx

kz

ky

k

Figure 2.2. Spherical shell between radii k and k + dk in the three-dimensional k-space,
corresponding to energies between E and E + dE.
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Figure 2.3. Density of occupied electron states as a function of energy.

Observe that, as we have previously mentioned in Section 1.6, ρ(E) increases as the
square root of energy. If we multiply ρ(E) by the probability occupation factor given
by Eq. (2.17), we can represent the distribution function in energy for the electrons
(Figure 2.3). It is evident that at 0 K we only have occupied electron states up to EF. For
T > 0 K, some of the electrons with energies below EF are promoted to states above EF.

2.4. BLOCH THEOREM

Bloch’s theorem (1928) applies to wave functions of electrons inside a crystal and rests
in the fact that the Coulomb potential in a crystalline solid is periodic. As a consequence,
the potential energy function, V (r), in Schrödinger’s equation should be of the form:

V (r) = V (r + Rn) (2.37)

where Rn represents an arbitrary translation vector of the crystallographic lattice, i.e.
Rn = n1 a1 + n2 a2 + n3 a3, ( a1, a2, a3 are the unit lattice vectors).

Bloch’s theorem establishes that the wave function ψk(r) in a crystal, obtained from
Schrödinger’s Eq. (2.10), can be expressed as the product of a plane wave and a function
uk(r) which has the same periodicity as the lattice, i.e.

ψk(r) = eik·ruk(r) (2.38)
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where

uk(r) = uk(r + Rn) (2.39)

The electron wave functions, of the form of Eq. (2.38), are called Bloch functions.
Note that although the Bloch functions are not themselves periodic, because of the plane
wave component in Eq. (2.38), the probability density function |ψk|2 has the periodicity
of the lattice, as it can be easily shown. Another interesting property of the wave functions
derived from Bloch’s theorem is the following:

ψk(r + Rn) = eik· Rnψk(r) (2.40)

It can be appreciated that this property is a direct consequence of Eqs (2.38) and (2.39).

2.5. ELECTRONS IN CRYSTALLINE SOLIDS

2.5.1. Nearly free electron model

The free electron model in solids discussed in the previous section is very useful in order to
explain some of the electrical properties of metals, but it is in general too simple to explain
many of the electronic and optical properties of semiconductors. A normal extension of
this model is the nearly free electron model (NFE), which applies to crystals, since it is
assumed that the electrons are subjected to a periodic potential inside them. Figure 2.4
shows the representation, in one dimension, of the potential inside a crystal. Figure 2.4(a)
represents the potential along a line of nuclei in the 3D crystal, the Coulombic potentials
evidently approaching −∞ at the nuclei positions. However, most of the electrons in the
3D crystal move along lines located between crystallographic directions going through
the nuclei. For instance, for a direction located midway between two planes of ions, the
potential should be similar to the one shown in Figure 2.4(b).

As a consequence of the periodicity of the crystal, we will see that the electrons
can only have values of energy in certain allowed regions or bands, while some other
energy intervals will be forbidden. In the NFE model, the periodic potential is considered
as a small perturbation to the Hamiltonian corresponding to the free electron model.
Although the approximation is a little rough, the qualitative consequences of this simple
model are very important. In this text we will not try to fully develop the NFE model,
and therefore we will address readers to standard solid state physics books [2]. However,
we will present its main consequences. One of them, due to the periodicity of the crystal,
is that the electron wave functions ψ are of the Bloch type (Section 2.4), that is:

ψk = uk(x)eikx (2.41)
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(a)

(b)

Figure 2.4. Variation of the electrostatic potential for a simple cubic lattice. (a) Potential through
a line of atoms; (b) idem through a direction between lines of atoms.

where uk should have the periodicity of the lattice. (For simplicity we assume a 1D model
of lattice constant a.)

Since the periodic potential inside the crystal is taken as a perturbation, it is necessary to
use quantum mechanical perturbation theory (Section 2.2.4). The solution of this problem
by perturbative techniques gives us the result that there will be discontinuities in the
energy values whenever

k = π

a
n, n = ±1, ±2, . . . (2.42)

The values of the discontinuities in energy, or energy gaps, are proportional to the
coefficients |Vn| of the Fourier expansion of the potential [2], i.e.

V (x) =
+∞∑

n=−∞
Vne

i 2π
a nx (2.43)

The energy bands and gaps for the above 1D model are shown in Figure 2.5. This
is the usual extended zone representation, in which it can be appreciated the similarity
of the E = E(k) curve with the free electron parabola, except at the values of k given
by Eq. (2.42), where gaps open up. Figure 2.6(a) is the so-called reduced zone repre-
sentation, which in reality is a consequence of the periodicity of the wave functions in
reciprocal space. This representation is the most often used and can be obtained from that
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Figure 2.5. Structure of energy bands according to the NFE model.

of Figure 2.5 by translations of multiples of 2π/a along the k direction. Figure 2.6(b) is
called the repeated zone representation and is the least used since the information it gives
is redundant.

2.5.2. Tight binding approximation

The nearly free electron model of Section 2.5.1 is not appropriate for the description of
insulating materials like, for instance, diamond. In these cases, the tight binding (TB)
approximation yields better results. This approximation starts by considering, contrary to
the NFE model, that the potential energy of electrons in the atom is the main component
of the total energy and it is assumed that the wave functions of the electrons in two
neighbouring atoms have little overlap. The TB approximation, first proposed by Bloch,
is similar to the linear combination of atomic orbitals (LCAO) method for molecules and
works fairly well for the case of the electrons in insulators or for inner shell electrons in
metals. The method starts by assuming that the electron wave functions are known for
the orbitals of the individual atoms φ0(r − Rn), where Rn is a general translation vector
of the lattice. Next it is assumed that the wave function of the electron in the crystal is a
linear combination of atomic orbitals, i.e.

φk(r) =
∑
n

Cnφ0(r − Rn) (2.44)
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(a)

(b)

Figure 2.6. (a) Energy as a function of k in the repeated zone representation; (b) idem in the reduced
zone representation.

where the sum is extended to the lattice points. This wave function should verify Bloch
theorem and therefore the coefficients Cn are of the form eik· Rn, thus having:

φk(r) = √
N

∑
n

eik· Rnφ0(r − Rn) (2.45)
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where N is the number of atoms in the lattice and N1/2 is the proper normalizing factor
as it can be easily proven.

The TB approximation assumes that the potential experimented by the electron in the
solid V (r) is very close to V0(r) in the isolated atom, plus a small perturbation V ′(r).
Therefore, the Hamiltonian for the electron in the crystal can be written as

H = − �
2

2me

∇2 + V0(r − R) + V ′(r − R) (2.46)

Solving the perturbation problem with the Hamiltonian of Eq. (2.46) and the wave
functions of Eq. (2.45), it can be shown [3] that:

E(k) = E0 − α − β
∑
m

eik·( Rm− Rn) (2.47)

where the sum is over the nearest neighbours. In Eq. (2.47), α and β are the so-called
overlap integrals, which are often treated as adjustable parameters.
As an example, let us apply Eq. (2.47) to the case of a simple cubic lattice of parameter
a considering the six-nearest neighbours:

Rm − Rn = (± a, 0, 0), (0, ± a, 0), (0, 0, ± a) (2.48)

then:

E(k) = E0 − α − 2β(cos kxa + cos kya + cos kza) (2.49)

Observe that the width of the energy band is equal to 12β, i.e. the width depends on the
overlapping integral, which takes into account the overlap between neighbouring wave
functions and decreases rapidly with the distance between atoms. The minimum energy
occurs at k = 0, and the maximum at the boundary (kx = π/a, ky = π/a, kz = π/a) of
the Brillouin zone. Around the point k = (kx, ky, kz) = 0, Eq. (2.49) can be expanded in
series obtaining:

E(k) = E0 − α − 6β + βk2a2 (2.50)

Note that near k = 0, the dependence of energy on k is quadratic and the constant
energy surfaces are spherical. From Eq. (2.50) we can calculate the electron effective
mass (Section 2.6.2), yielding a value m∗ = �

2/2βa2. Observe that m∗ increases when
the overlap integral β decreases. In the limit of isolated atoms m∗ is infinite as expected,
since an external force provided by an electric field cannot translate the electron from one
lattice site to another.
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2.6. DYNAMICS OF ELECTRONS IN BANDS

2.6.1. Equation of motion

We have seen that the wave function of a free electron is a plane travelling wave. This
wave function represents a particle of a well-defined momentum p = �k. However, as a
consequence of Heisenberg’s uncertainty principle, this wave given by Eq. (2.14) cannot
tell us anything about the localization of the electron in space. For this reason, if we
want to describe the position and momentum of an electron inside a crystal, we have to
make use of wave packets. The usual way to form wave packets is by means of the lineal
superposition of plane travelling waves with wave vectors included in a small interval �k

around a mean value k, i.e. the wave function should be of the form:

ψ(x, t) ∝
∫ k+�k/2

k−�k/2
c (k) ei[kx−ωt]dk (2.51)

where, in general, ω = ω(k), for dispersive media. The wave packet moves with the
group velocity vg given by:

vg = ∂ω

∂k
(2.52)

which in general differs from the phase velocity (v = ω/k) of the plane waves.
Evidently, if the electron moves inside a crystal and we adopt the nearly free electron

model (Section 2.5.1) for the solid, the wave function of the electron can be expressed in
a three-dimensional crystal as a Fourier series

ψ =
∑

k

c(k, t)ei(k·r−ωt) (2.53)

where the values of k (Section 2.3) are defined by the periodic boundary conditions.
Extending Eq. (2.52) to three dimensions, the group velocity is given by:

vg = ∇kω
(k

)
= 1

�

∇kE
(k

)
(2.54)

where E = E(k) is the relation between energy and momentum for an electron in a
given band.
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Suppose now that we apply a force to an electron inside the crystal by means of an
electric field F and let us adopt a one-dimensional model for simplicity. The work δE

performed on the electron of charge −e by the field F during the time integral δt is, in
one dimension

δE = −eFvgδt (2.55)

but, from Eq. (2.54), the above expression can be written as:

δE =
(

dE

dk

)
δk = �vg δk (2.56)

Generalizing to three dimensions, we have the following expression for the force on the
electron:

−e F = h
dk
dt

(2.57)

Eq. (2.57) is the equation of motion of the electron. Observe that it looks similar
to Newton’s second law for free electrons, if we assign a momentum p to the electron
given by

p = �k (2.58)

The momentum given by Eq. (2.58) is not the true momentum since in reality the
electron not only interacts with the electric field, as we have considered in the derivation
of Eq. (2.57), but is also subjected to the Coulombic forces of the lattice ions. In fact,
inside the crystal, is impossible to treat individually each force acting on the electron,
as if it were isolated. Therefore, the momentum given by Eq. (2.58) is called the crystal
momentum and its full meaning is evidenced when the electrons interact with other parti-
cles such as electrons or phonons (Section 2.8), the crystal momentum being conserved,
together with energy, in these interactions.

2.6.2. Effective mass

In order to find for an electron in a crystal, the expression corresponding to the concept
of mass of a particle, let us find first the relation between force and acceleration. In
effect, let us apply to an electron in a crystal a force caused by an electric field F as we
did previously. According to Eqs (2.52) and (2.57), the expression for the acceleration
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should be, in one dimension,

dv

dt
= 1

�

d2E

dt dk
= 1

�

d2E

dk2

dk

dt
= 1

�2

d2E

dk2
(−eF ) (2.59)

From this relation, we define the effective mass m∗ of the electron in the crystal by the
expression:

1

m∗ ≡ 1

�2

d2E

dk2
(2.60)

Note that m∗ is inversely proportional to the curvature of the energy band, i.e. the
flatter the band in k-space, the larger the value of the effective mass.

In a three-dimensional crystal, the effective mass tensor has components

(
1

m∗

)
ij

≡ 1

�2

∂2E

∂ki∂kj
(2.61)

Observe that in a crystal the force and acceleration do not have, in general, the same
direction. In the simplest case, the three effective masses, corresponding to the principal
axes of the tensor of Eq. (2.61) are equal, and the expression for m∗ is similar to Eq. (2.60)
for the one-dimensional crystal, i.e. m∗ becomes a scalar. This should happen when the
E vs k relation has a parabolic dependence along every axis in k-space, i.e.

E(k) = E0 + �
2

2m∗ (k2
x + k2

y + k2
z ) (2.62)

From Eq. (2.62) it can be observed that in this case the surfaces of constant energy,
E = E(k) are spheres.

According to the definition of effective mass, we can note that if the dependence
of E on the wave vector has the shape shown in Figure 2.7(a), then m∗ from Eq. (2.60)
is represented in Figure 2.7(b). Observe that m∗ is positive at the bottom of the band
but negative (curvature of the opposite sign) for k values close to the zone boundaries
k = ± π/a. This means that if the electron is for instance approaching the boundary
k = π/a from the left, it cannot gain any more momentum from the electric field, or
better, the electron transfers more momentum to the lattice than what it gains from the
applied field. In the limit, at the zone boundaries (k = ± π/a), the electron gets Bragg
reflected.
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(a)

(b)

Figure 2.7. (a) Energy band for a one-dimensional atomic chain; (b) effective mass deduced from
the above energy band.

2.6.3. Holes

In the study of the behaviour of electrons in a band which is nearly filled, as it fre-
quently happens in semiconductors, it is convenient to introduce the concept of hole. For
simplicity, let us consider first the case of a band like the lower one in Figure 2.8 whose
states are all full, except for one electron with wave vector ke. The total wave vector kT of
this band can be written as the wave vector of a completely filled band, minus the wave
vector of the missing electron, i.e.

kT =
∑

ki

ki −
(ke

)
(2.63)
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Figure 2.8. Hole in the valence band of a direct gap semiconductor.

The sum in Eq. (2.63) is extended to the full band and should be zero if the crystal
has inversion symmetry. In this case, the band in k-space has also inversion symmetry,
and for each occupied state ki there is also one with wave vector −ki. Therefore from
Eq. (2.63) we have

kT = −ke (2.64)

The state of the missing electron can be assigned in the band to a new particle, known
as hole, with a wave vector

kh = −ke (2.65)

and momentum

ph = −�ke = �kh (2.66)

Since the concept of hole appears when the band is full except for one electron, it
should have a positive charge. In a semiconductor holes are often created if one photon
transfers its energy to an electron raising it from a state in the lower band to a state in the
upper band as shown in Figure 2.8. If the energy of the photon increases, holes with higher
energies can be created. Therefore the energy of a hole is higher as we move down the
band. The kinetic energy Eh of a hole is positive and from the relation Eh = �

2k2/2m∗
h,
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it is appreciated that the effective mass of a hole should be also positive. In summary, note
that the concept of hole has been conveniently introduced, since it is easier to describe
an almost filled band by a few empty states, instead of by means of many occupied
states.

2.7. LATTICE VIBRATIONS

In this section we pretend to give a short review of vibrations in periodic systems such
as crystals. The “adiabatic approximation” in solid state physics allows the separate study
of those properties of materials, attributed to electrons, like the electrical conductivity,
and those which depend on the vibrations of the atoms, such as the thermal properties.
Suppose a mechanical wave, or a sound wave, travelling through a solid. If its wavelength
λ is much larger than the lattice constant of the crystal, then the medium behaves as an
elastic continuum, although not necessarily isotropic. However, when λ is comparable
or smaller than the lattice unit cell, we have to consider the crystalline structure of the
solid.

In order to treat the vibrations of the lattice atoms, we will usually follow the harmonic
approximation. Forces between neighbouring atoms have their origin in a kind of potential
which is mainly attractive, giving rise to the interatomic bonding (e.g. covalent, ionic, van
der Waals). However, if the distance between atoms becomes very small, the electrons
between two neighbouring atoms start to interact, and because of the Pauli exclusion prin-
ciple, a repulsive interaction appears which increases very rapidly as the distance between
them decreases. One of the better-known potentials which describes this interaction is the
Lennard–Jones potential. This potential shows a minimum when the interatomic distance r

is equal to the one at equilibrium, i.e. to the lattice constant a. For values of r close to
a, the potential V (r) can be approximated by a parabolic or harmonic potential. At the
beginning, we will assume that this harmonic approximation is valid around r = a.

2.7.1. One-dimensional lattice

The simplest model to study vibrations in a periodic solid is known as the one-dimensional
monoatomic chain, which consists of a chain of atoms of mass m, equilibrium distance a,
and harmonic interaction between atoms (Figure 2.9(a)). In this figure we call un the
displacement of the atoms from the equilibrium position. The equation of motion of
atom n, if we only consider interaction between closest neighbours, should be:

m
d2un

dx2
= c [(un+1 − un) − (un − un−1)] = c(un+1 + un−1 − 2un) (2.67)
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(a)

(b)

Figure 2.9. (a) One-dimensional monoatomic chain of atoms in equilibrium (upper) and displaced
from equilibrium (lower); (b) representation of the dispersion relation.

and similarly for any other atom in the chain. In order to solve Eq. (2.67), travelling plane
waves of amplitude A, frequency ω and wave number k are assumed, i.e.

un = Aei(kxn−ωt) (2.68)

where xn = na is the equilibrium position of the atoms. Substituting Eq. (2.68) for the
atomic displacement un and the corresponding ones for un+1 and un−1, after some algebra,
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one gets [2] from Eq. (2.67).

ω =
(

4c

m

)1/2 ∣∣∣∣sin
ka

2

∣∣∣∣ (2.69)

Eq. (2.69), known as the dispersion relation for vibrations in a one-dimensional lattice, is
represented in Figure 2.9(b). One important consequence of this equation, difficult to imag-
ine in continuous media, is the existence of a maximum frequency of value 2(c/m)1/2,
over which waves cannot propagate. This frequency is obtained when k = π/a, i.e.
λ = 2a in Eq. (2.69). This condition is similar to that for a Bragg reflection for electrons
in periodic structures (Section 2.6.2), and mathematically leads to standing waves, instead
of travelling waves, which cannot propagate energy. This result should be expected since
for k = π/a, the group velocity is zero. Note also in Eq. (2.69) that for ka → 0, ω varies
linearly with k and the group velocity coincides with the phase velocity of the wave, both
having the value vs = a(c/m)1/2. This result is expected since for ka → 0, a/λ → 0,
i.e. the wavelength is much greater than the interatomic distance, and the medium can be
considered as continuous. In this situation vs is equivalent to the speed of sound in the
medium.

Following a similar procedure as in the case of electrons in periodic crystals
(Section 2.3), we can establish periodic boundary conditions for the solutions given by
the waves of Eq. (2.68). Physically these conditions could be obtained by establishing a
fixed link or constraint forcing the first and last atoms of the chain to perform the same
movement. This results (see Eq. (2.32)) in the following allowed values for k:

k = 2π

L
n, n = 0, ± 1, ± 2, . . . ± N (2.70)

where L and N are the length of the chain and the total number of atoms, respectively,
i.e. L = Na.

A final important consequence of the dispersion relation is that the value of ω remains
the same whenever the value of k changes in multiples of 2π/a. Therefore, it would be
sufficient, as it happens for electrons, to consider only the values of k belonging to the
first Brillouin zone, that is

− π

a
≤ k ≤ π

a
(2.71)

The next level of complexity in the study of lattice vibrations comes when the crystal
has more than one atom per primitive unit cell. Suppose then the diatomic linear chain
of Figure 2.10(a) with two kinds of atoms of masses M and m, where M > m. The main
difference arises now from the fact that the amplitudes of the atoms M and m are unequal.
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(b)

(a)

Figure 2.10. (a) Diatomic linear chain of atoms in equilibrium (upper) and displaced from
equilibrium (lower); (b) representation of the dispersion relation.

If one amplitude is A, the other is αA, where α is in general a complex number that takes
into account the relation between amplitudes as well as the phase difference. We can next
proceed in an analogous way as we did with the linear chain. The solution of the problem
becomes now more complicated but the calculation is straightforward and can be found
in any elementary text on solid state physics.

For the diatomic linear chain, the dispersion relation is found to be [2]:

ω2 = c(m + M)

Mm
± k

[(
M + m

Mm

)2

− 4

Mm
sin2

(
ka

2

)]1/2

(2.72)
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The dispersion relation, represented in Figure 2.10(b), has now two branches, the upper
and the lower corresponding to the ± signs of Eq. (2.72), respectively. As for the
monoatomic chain, it is instructive to examine the solutions at certain values of k,

close to the centre zone (k = 0) and at the boundaries (k = π/a). If ka � 1, then
α = 1 for the lower or acoustic branch and α = −M/m for the upper or optical branch.
If α = 1, the neighbouring atoms M and m vibrate essentially with the same phase,
as it happens with the sound waves in solids for which λ � a. If α = −M/m, both
particles oscillate out of phase, and the upper branch presents a maximum frequency
equal to:

ω+
max =

(
2c (M + m)

Mm

)1/2

(2.73)

The vibrational modes of this branch are called optical, because the value of the
frequency is in the infrared range and in crystals such as NaCl, with a strong ionic charac-
ter, the optical modes can be excited by an electromagnetic radiation. In these modes, the
positive and negative ions move evidently out of phase when excited by the oscillating
electric field of an electromagnetic radiation.

2.7.2. Three-dimensional lattice

The dispersion relations considered in Section 2.7.1 for the case of the 1D crystal can now
be generalized to three dimensions [4]. The number of acoustic branches for a 3D lattice
is three, one longitudinal in which the atoms vibrate in one direction of the chain and two
transverse ones, in which the atoms vibrate perpendicularly to the direction of the prop-
agation of the wave. Therefore, there will be one longitudinal acoustic branch (LA) and
two transverse acoustic branches (TA) which are often degenerated. As a note of caution,
we would like to remark that one has to be careful with the above statement regarding the
directions of the vibrations of the atoms, because if k is not along a direction with high
symmetry, then the atomic displacements are not exactly along k or perpendicular to it.

As in 1D, if there is more than one atom, let us say p per primitive unit cell, the number
of optical branches is, in general, 3p−3. If p = 2 , as for an example in alkali halides, there
are three acoustic branches and three optical ones. However in highly symmetric directions
the two transverse modes might be degenerated. Figure 2.11 shows schematically the
dispersion relations for a 3D crystal. Since there are no degeneracies we have assumed
that the crystal is anisotropic. Note also that in general, as it happens with electrons in
crystals, the dispersion curves cut the Brillouin zone boundaries perpendicularly, although
there might be exceptions in the case of very complicated shapes of the Brillouin zones.
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Figure 2.11. Dispersion relations for a 3D crystal with two atoms per unit cell.

2.8. PHONONS

In the study of the lattice vibrations we have assumed so far that the interaction between
neighbouring atoms was harmonic, and under this consideration we wrote the equations
of motion of the atoms like Eq. (2.67). This equation is somewhat similar to the equation
of an individual harmonic oscillator for un:

m
d2un

dt2
= −cun (2.74)

except that in the second term of Eq. (2.67) there also enter terms corresponding to
neighbouring atoms n−1 and n+1. It is known from classical mechanics that in this case
it is possible to find the normal coordinates of this system of particles, i.e. appropriate
linear combinations of un such that the equations of motion have the simple form of
Eq. (2.74). The advantage of using normal coordinates is that the Hamiltonian of the
system becomes diagonal, i.e. we can write the Hamiltonian as a sum of individual or
non-coupled Hamiltonians for harmonic oscillators.

After having performed the transformation to normal coordinates, it is easier to consider
the problem from a quantum-mechanical point of view. In effect, as a consequence of
the decomposition of the Hamiltonian of the system as a sum of uncoupled individual
Hamiltonians, the quantum-mechanical states can be expressed as the product of wave
functions of harmonic oscillators, one for each normal mode. Each normal mode of
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frequency ωk has the following possible values of energy Ek given by

Ek = (nk + 1

2
)�ωk, nk = 0, 1, 2, . . . (2.75)

This means, that the state k has nk quanta of energy �ωk . These quanta of energy that
arise from the lattice vibrations are called phonons. If the normal mode k is excited from
nk to nk + 1 we say that one phonon of energy �ωk has been gained by the system and
similarly for the loss of phonons. The creation and annihilation of phonons is possible
because phonons are quasi-particles and their total number does not have to be conserved.
Taking into account the above considerations, the total energy E of the lattice vibrations
of the system can be expressed as

E =
∑
k,p

�ωk,p(nk,p + 1

2
) (2.76)

where the summation is extended to all acoustic and optical branches.
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PROBLEMS

1. Fermi energy. Suppose that the behaviour of metallic sodium can be explained by
the free electron model. (a) Calculate the Fermi energy (the density of sodium is of
0.97 g cm−3). (b) Calculate the average energy per electron.
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2. Electronic bands in solids. Show that the energy bands of a crystal, derived either
from the nearly-free electron model or the tight-binding approximation, have many
points in common. In particular, show: (a) The bands have minima (electron states)
and maxima (hole states). (b) Around the maxima and minima the bands are parabolic
in k. (c) The bands are periodic in reciprocal space, and therefore all the information
is included in the first Brillouin zone.

3. Effective mass in a 1D solid. In a particular 1D lattice, the electron band energy can
be written as

E(k) = �
2k2

2m∗
0

− αk4

Determine the value of the constant α, the effective mass for k = 0 and k = π/a, the
maximum velocity and the corresponding energy, and the effective mass at the centre
and the edge of the Brillouin zone. Hint: first determine α considering that vg = 0
at π/a.

4. Effective mass tensor. Considering that the electronic energy band of a simple cubic
lattice of side a within the tight-binding approximation is given by

E = −E1(cos kxa + cos kya + cos kza),

calculate the effective mass tensor mij at the centre in k-space, at the face cen-
tre and at the corner. Hint: realize first that the three points in which you have to
determine the effective mass have coordinates in k-space given by k = π/a(0, 0, 0),
k = π/a(0, 0, 1), and k = π/a(1, 1, 1).

5. Bragg condition in 2D. Consider a square lattice of identical atoms and side a. Show
that a plane wave verifies Bragg reflection at the first Brillouin zone boundaries.

6. Dispersion curves in lattice vibrations. Considering a unidimensional lattice with
two molecules in each primitive cell, calculate the characteristic frequencies. Consider
a polyethylene chain (–CH=CH–CH=CH–) of identical masses of value M , con-
nected alternatively by springs of constants C1 and C2, respectively and only
interaction to first neighbours. Plot the resulting dispersion curves for the acous-
tic and optical branches. Hint: first show that the characteristic frequencies are
given by:

ω2 = C1 + C2

M

[
1 ±

(
1 − 4C1C2sin2(ka/2)

(C1 + C2)2

1/2)]
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7. Electron wave vector. Ideally assuming 100% efficiency, estimate the change in wave
vector associated to the dispersion of an electron from the valence to the conduction
band as a consequence of the absorption of a photon, and compare the resulting
values with the typical first Brillouin zone dimensions, in the following cases: (a) a
blue CdSe laser (Eg = 2.7 eV), GaAs (Eg = 1.6 eV), and (b) a HgCdTe compound
(Eg = 0.15 eV).
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Chapter 3

Review of Semiconductor Physics

3.1. INTRODUCTION

In this chapter, we make a review of the physics of bulk semiconductors which we
need as previous knowledge for the understanding of the behaviour of semiconductors in
mesoscopic systems of low dimensionality (Section 1.5). We will focus mainly on those
electronic and optical properties related to the understanding of device applications such
as transistors, lasers, etc. The chapter starts with a description of the band structure of typ-
ical semiconductors. Next, the calculation of electron and hole concentrations in intrinsic
and extrinsic semiconductors is considered. The mechanism of electron transport in semi-
conductors, both under the action of electric fields and carrier concentration gradients, is
also revised. Generation and recombination of carriers in electric fields and under con-
centration gradients lead to the continuity equation and to the concepts of minority carrier
lifetime and diffusion length. The last sections of the chapter are devoted to the study of
optical processes in semiconductors, especially to the processes of light absorption, light
emission, and exciton transitions, since they constitute the basis of many optoelectronic
devices like lasers, modulators, etc.

3.2. ENERGY BANDS IN TYPICAL SEMICONDUCTORS

The parameter which determines most of the properties (electrical, optoelectronic, etc.) of
semiconductors is the energy gap, or forbidden energy region between the last completely
filled band, known as the valence band, and the next higher energy band, or conduction
band, which can be empty or partially filled. In addition to the gap, it is important to know
the curvature of these bands in k-space, which determines the effective mass of the carriers
(electrons or holes). As we have seen in the previous chapter, in many solids, the shape of
energy bands around their maxima and minima in k-space can be considered parabolic in
a first approximation, a fact which simplifies the description of the semiconductors by the
effective mass approximation. The direct or indirect character of the gap has also a strong
influence in many of the properties of semiconductors, like for instance, those related to
optoelectronic applications.

Most of the important semiconductors from a technological point of view, like III-V
compounds, Si, Ge, etc., have cubic symmetry. In these semiconductors the maximum
of the valence band is located at k = 0. However, the minimum of the conduction band
is either located at k = 0, as in GaAs, or can be situated close to the border of the first

57
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Figure 3.1. Electronic transitions across the gap for: (a) direct semiconductor; (b) indirect
semiconductor.

Brillouin zone, as in the case of Si or Ge. Semiconductors of the first type are said to
have a direct gap, since the absorption or emission of photons involves the transfer of one
electron from one band to the other without changing the wave vector, i.e. the transition
can be represented by a vertical line in k-space like the one shown in Figure 3.1(a). In this
case, the wave number (and therefore the momentum) of the electron after the transition is
practically the same as the initial one, since the wave number k of the photons (k = p/�) is
practically negligible in comparison with those of the electrons. Suppose now an electron
transition between the maximum of the valence band to the minimum of the conduction
band in an indirect gap semiconductor like Si or Ge (Figure 3.1(b)). In this transition, the
electron has to change its wave vector by a large amount, almost π/a. Therefore for elec-
trons to absorb or emit photons, its momentum has also to be changed by a large amount.
This needs the participation of a third particle which emits or absorbs the difference in
momentum. Evidently this particle is a phonon (Section 2.8) of the appropriate value of
momentum. Since the participation of a third particle is needed, the probability of photon
emission is much lower for indirect gap semiconductors in comparison to direct ones. For
this reason, optoelectronic devices such as light emission diodes or semiconductors lasers
are built from direct gap semiconductors.

Figures 3.2(a) and (b) show the energy bands of gallium arsenide and silicon, respec-
tively. It can be seen that GaAs is direct and has a gap of 1.43 eV whereas silicon is an
indirect gap semiconductor with a gap of value EG = 1.1 eV. Since the relation E = E(k)

cannot be visualized in three dimensions, it is usually represented for some high symmetry
directions in k-space. For instance, in Figure 3.2 the right axis corresponds to the (1,0,0)
direction while the left axis corresponds to the (1,1,1) direction.

In order to calculate the effective masses, we have to make use of Eq. (2.61) of
Chapter 2 for the effective mass tensor. In this way we can calculate the effective mass
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Figure 3.2. Energy bands of typical semiconductors: gallium arsenide (left) and silicon (right).

for motion along any pre-determined direction. In the case of GaAs at point �, the
E = E(k) dependence is the same along the three main directions, and therefore the
following approximation is valid:

E(k) = �
2k2

2m∗
e

(3.1)

which indicates that the tensor reduces to a scalar. We can appreciate in Figure 3.2 the
large curvature of the energy band at � which implies a small value of the effective mass
(0.066m0). As also seen from Eq. (3.1) the surfaces of constant energy, i.e. E(k) = const,
are spherical for GaAs.

The equivalent E = E(k) expression for silicon is a little more complicated, but by
choosing the axes properly it can be written as:

E(k) = �
2

2

(
k2

l

m∗
l

+ k2
t

m∗
t

)
(3.2)

where kl and kt are longitudinal and transversal components of k and m∗
l and m∗

t are the
longitudinal and transversal electron effective masses, respectively. This is due to the fact
that the surfaces of constant energy are from Eq. (3.2) revolution ellipsoids as shown in
Figure 3.3. As seen from this figure, the six directions ±kx, ±ky, ±kz are equivalent. The
values of the electron effective masses for silicon are m∗

l = 0.98m0 and m∗
t = 0.066m0.
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Figure 3.3. Constant energy surfaces in silicon around the minima of the conduction band.

3.3. INTRINSIC AND EXTRINSIC SEMICONDUCTORS

Semiconductors have values of electrical conductivity between those of metals and insula-
tors. Another characteristic of semiconductors is that the electrical conductivity is strongly
dependent on temperature and the level of impurities or dopants. Typical semiconductors
can be elemental (Si, Ge), combination of group III and V elements (GaAs, GaP), II and
VI (ZnS, CdTe), etc. The semiconductor gap usually ranges from a few tenths of eV to
about 3 eV. If the gap is between 2 and 3 eV, the semiconductors are said to have a wide
bandgap, and if it is about 4 eV or larger, the material is considered an insulator.

Intrinsic semiconductors show a high state of purity and are perfectly crystallized.
Silicon is one of the most employed semiconductors for electronic device fabrication.
In the crystalline state, silicon atoms occupy tetrahedral positions in a face centred cubic
lattice similar to that of diamond, sharing their four valence electrons with the four nearest
neighbours in covalent bonds (Figure 3.4(a)). At a temperature of 0 K, all the bonds are
occupied by electrons and the valence band is completely full, whereas the conduction
band is completely empty. As the temperature increases over 0 K (Figure 3.4(b)), some of
the electrons can gain enough energy from the vibrations of the atoms (thermal energy) to
break a bond and become free; in this process a hole is also created. The energy needed
for the electron to make the transition between the valence band to the conduction band is
at least equal to the gap energy. It is important to remark that in intrinsic semiconductors
every time an electron is transferred from the valence band to the conduction band, a hole
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Figure 3.4. (a) Silicon lattice; (b) if T > 0 some of the bonds are broken liberating an electron and
a hole. (The created electrons and holes can move freely through the crystal.)

is created in the valence band. Therefore, in an intrinsic semiconductor, the concentration
of electrons should be equal to the concentration of holes. Evidently, photons with energies
larger than the gap can also create electron–hole pairs, a phenomenon which is exploited
in many optoelectronic devices.

The semiconductors mostly used in the fabrication of devices such as diodes, transis-
tors, solar cells, etc. are extrinsic semiconductors, which can be obtained from intrinsic
semiconductors by adding dopants in a controlled fashion. The concentration of added
dopants determines the electrical conductivity of the extrinsic semiconductors. Figure 3.5
shows a bidimensional representation of the silicon lattice, each atom bonded to the four
nearest neighbours. Suppose that some pentavalent impurity atoms such as As, Sb, etc.
are added in a small concentration; usual dopant concentrations range from one impurity
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(a) (b)

Figure 3.5. (a) Pentavalent impurity atom in silicon; (b) band diagram of a n-type semiconductor.
(The electrons can leave the impurity atoms if energy Ed is provided, and are free to
move through the crystal; the donor impurities become static positive ions.)

atom per 105 to 108 Si atoms. Figure 3.5(a) shows an impurity Sb atom of valence +5 in
a silicon lattice, where it substitutes a Si atom. Four of the valence electrons of Sb share
electrons with the four nearest neighbours. The fifth electron, however, does not partic-
ipate in a covalent bond and remains very weakly bounded to the Sb atom. At ambient
temperature, most of these electrons get enough energy to leave the atom and become
free to move around the crystal. As a consequence, the impurity Sb atom becomes pos-
itively ionized. In an energy diagram, the above process can be represented by means
of the transfer of an electron from an energy level Ed below the conduction band to the
conduction band edge (Figure 3.5(b)). This type of impurities which yield electrons to the
conduction band are called donors and the corresponding semiconductor is said to be of
n-type, since the concentration of electrons significantly exceeds that of holes, i.e. n � p.
The ionization energy Ed can be estimated by comparing the above situation with that
of a hydrogenic atom, since the extra fifth electron is attracted by the Sb ion which is
positively charged. Therefore, Eq. (2.15) of Chapter 2 giving the energy of the hydrogen
atom can be used to estimate Ed after some corrections. First, since the Coulombic system
formed by the ion or positive charge and the electron is located within a material medium,
(εr)

2 should be included into the denominator where εr is the relative dielectric constant;
in addition, the electron mass in vacuum has to be substituted by the electron effective
mass in the semiconductor. This calculation yields values of Ed of about 0.05 eV, which
are of the order of the values experimentally determined.

If trivalent impurities of valence +3 such as boron are added initially to intrinsic
silicon (Figure 3.6), the three valence electrons are covalently shared with three of
the four nearest neighbouring Si atoms; however, one of the otherwise covalent bond
has only one electron since there is a deficiency of one electron to complete the bond.
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(a) (b)

Figure 3.6. (a) Trivalent impurity atom in silicon; (b) band diagram of a p-type semiconductor. (If
energy Ea is provided, the acceptor impurities can trap electrons from the valence band
becoming static negative ions and simultaneously producing free holes.)

The state corresponding to the missing electron is therefore a hole (Section 2.6.3). If
activated thermally, neighbouring electrons can move to occupy the empty state forming
holes in the valence band. The activation energy for this process is usually very small and,
therefore, at room temperature, most trivalent impurities have received the extra electron
to complete the bond, becoming negative ions. In this process a number of holes similar
to the number of impurities are created. Consequently, the addition of trivalent impurities,
called acceptors, can create holes in the valence band. In an energy diagram the impurity
levels can be represented at an acceptor ionization energy level, Ea, above the valence
band edge, since electrons from the valence band are promoted in energy to the impurity
acceptor level, thus creating a hole in the valence band.

Doping in III-V compounds can be discussed in similar terms to the case of silicon.
If column VI impurities like Se or S occupy As (valence 5) sites in GaAs, they serve as
donors. On the other hand, if column II impurities as for example Be or Cd occupy Ga
(valence 3) sites, they act as acceptors. Column IV impurities (Si, Ge, etc.) added to III-V
compounds, can serve either as donors or acceptors depending on whether they substitute
atoms residing in column III or in column V sublattices, respectively. For instance, silicon
in GaAs occupies Ga vacancies and therefore normally acts as a donor.

3.4. ELECTRON AND HOLE CONCENTRATIONS IN SEMICONDUCTORS

For the calculation of the concentration of carriers in a semiconductor, for instance elec-
trons, it is necessary to previously know the density of electrons per energy interval in



64 Nanotechnology for Microelectronics and Optoelectronics

the conduction band, i.e. the density of states (DOS) function and the probability of each
state being occupied. The distribution in energy of electrons, n(E), is then given by

n(E) = ρ(E)fFD(E) (3.3)

where ρ(E) is the DOS function and fFD(E) is given by the Fermi–Dirac distribution
function. Substituting the expressions for ρ(E) and fFD(E) given by Eqs (2.36) and (2.17)
of Chapter 2, respectively, we get for the distribution of the electrons in energy in the
conduction band:

n(E) = 4π

h3

(
2m∗

e

)3/2
(E − Ec)

1/2 1

1 + e(E−EF)/kT
(3.4)

since the lowest electron energy in the conduction band is Ec.
In order to obtain the concentration of electrons, n, in the conduction band, the distri-

bution function n(E) given by Eq. (3.4) should be integrated from the conduction band
edge Ec to the highest level of the band Ec,max. However, since the Fermi level is located
at a considerable energy below this level, the integral can be extended to ∞, making the
calculations much easier. We have therefore to calculate the integral

n =
∫ ∞

Ec

n(E) dE (3.5)

Substituting n(E) by its expression of Eq. (3.4), we obtain:

n = NcF1/2(α) (3.6)

where the parameter α is given by

α = EF − Ec

kT
(3.7)

and Nc is the so-called effective density of states in the conduction band:

Nc = 2

(
m∗

ekT

2π�2

)3/2

(3.8)

In Eq. (3.6), F1/2(α) is the Fermi integral defined by

F1/2(α) = 2

(π)1/2

∫ ∞

0

y2dy

1 + e(y−α)
(3.9)
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The Fermi integral does not have a closed analytical expression and therefore the
electron concentration given by Eq. (3.6) has to be calculated by approximation methods.
For α ≤ −3, the degree of approximation is excellent, and under this assumption

F1/2 ≈ exp

(
EF − Ec

kT

)
(3.10)

A semiconductor is called non-degenerate when the above approximation is fulfilled,
i.e. if

Ec − EF ≥ 3kT (3.11)

Under this condition, we can write with a high degree of approximation:

n = Nce
−(Ec−EF)/(kT )

(3.12)

for the electron concentration in the conduction band, where Nc is given by Eq. (3.8).
We can proceed in a similar way for the calculation of the hole concentration p in the

valence band. The hole distribution function is given by

fh(E) = 1 − fFD(E) (3.13)

since a hole represents an electron energy state which is vacant. Therefore, from Eq. (3.3)

p =
∫ Ev

−∞
ρ h(E) fh(E) dE (3.14)

where Ev is the valence band edge. Proceeding as we did for electrons, the hole
concentration in a non-degenerate semiconductor is:

p = Nv e(EF−Ev)/(kT ) (3.15)

where

Nv ≡ 2

(
m∗

hkT

2π�2

)3/2

(3.16)

In this case Nv is called the effective density of states in the valence band. Figure 3.7
shows the DOS function (a), the Fermi–Dirac distribution function (b), and the distribution
of carriers in energy (c), for intrinsic, n-type and p-type semiconductors, respectively.
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Figure 3.7. (a) Density of states function; (b) Fermi–Dirac distribution function; (c) distribution
of carriers in energy. (The case of intrinsic n-type and p-type semiconductors are
shown.)

The electron and hole concentrations given by Eqs (3.12) and (3.15) correspond to the
shaded areas in the figure.

A very useful equation, called the law of mass action for charge carrier concentrations,
can be derived from the above expressions for the electron and hole concentrations. In
effect, from Eqs (3.12) and (3.15), we have:

np = NcNv e−(Ec−Ev)/(kT ) = NcNve−Eg/kT = const (T ) (3.17)
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where Eg is the semiconductor gap. Since, in particular, the above equation has also to
be verified for intrinsic semiconductors for which n = p = ni, we can write Eq. (3.17) in
terms of the carrier concentration ni for the intrinsic material:

ni = (np)1/2 = (NcNv)
1/2e−Eg/2kT (3.18)

From Eq. (3.18), we get the result that, for the case of intrinsic semiconductors, the
carrier concentration and the electron–hole pair concentration decreases exponentially with
the magnitude of the gap, and increases very strongly with temperature. As an example,
for silicon at room temperature one obtains ni ≈ 1.5 × 1010 cm−3. This very low value
of the carrier concentration (in a metal is of the order of 1022 cm−3) is the reason why
most non-doped semiconductors at room temperature behave, from the point of view of
electrical conduction, as if they were insulators.

In a given semiconductor, one usually knows the doping levels, i.e. the concentrations
of donors ND, and acceptors NA, which are fixed during the fabrication of the crystals.
The problem of finding the electron and hole concentrations is easy to solve if we are at
temperatures high enough for all impurities to be ionized. This is indeed the case for the
most semiconductors at room temperature. For instance, if T > 100 K all the impurities
in silicon are ionized, as a consequence of the low value of the impurity ionization energy
(Section 3.3). In addition, since matter is in general neutral, the total positive charge,
mobile and fixed, of the semiconductor should be equal to the total negative charge.
Therefore:

p + ND = n + NA (3.19)

which is the so-called condition of charge neutrality. From this equation and the law
of mass action np = n2

i , one immediately gets for the electron and hole concentrations,
assuming that all impurities are ionized:

n = 1

2

[
(ND − NA) +

√
(ND − NA)2 + 4n2

i

]
(3.20)

p = 1

2

[
(NA − ND) +

√
(ND − NA)2 + 4n2

i

]
(3.21)

Observe that in the case in which ND = NA, the semiconductor behaves as intrinsic
since the number of electrons and holes are equal, and therefore is called a compensated
semiconductor.

For most extrinsic semiconductors at room temperature, one of the doping concentra-
tions, ND or NA is much higher than ni. In general, semiconductors are usually fabricated
such that either ND � NA or NA � ND. In the first case the semiconductor is n-type,
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since conduction is mainly due to electrons originated by the ionized donor impurities.
For n-type semiconductors, we have from Eqs (3.20) and (3.21)

n ≈ ND, p ≈ n2
i

ND
(3.22)

Similarly, for p-type semiconductors:

p ≈ NA, n ≈ n2
i

NA
(3.23)

Evidently, the above approximations do not apply at high temperatures since ni

increases quasi-exponentially with T.
From Eqs (3.12) and (3.15), giving the carrier concentrations, it is also straightforward

to calculate the Fermi level in some limiting cases. For non-degenerate n-type semicon-
ductors, at temperatures high enough so that all impurities are ionized (n ≈ ND), but not
so high that still ND � ni, the Fermi level from Eqs (3.12) and (3.22) is given by:

Ec − EF = kT ln
Nc

ND
(3.24)

and similarly for a p-type semiconductor:

EF − Ev = kT ln
Nv

NA
(3.25)

Observe from Eqs (3.24) and (3.25) that the higher the doping levels, the closer are
the Fermi levels, located in the gap, to the respective bands edges.

If the semiconductor is intrinsic, n = p, and from Eqs (3.12) and (3.15), one gets for
the Fermi level (EF)i:

(EF)i = Ec + Ev

2
+ kT ln

Nv

Nc
= Eg

2
+ 3

4
kT ln

m∗
h

m∗
e

(3.26)

where Eg is the semiconductor gap. Observe that if T is relatively low, or if m∗
h and m∗

e
have similar values, the Fermi level of intrinsic semiconductors is located close to the
middle of the semiconductor gap.
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3.5. ELEMENTARY TRANSPORT IN SEMICONDUCTORS

The mechanism of carrier transport in semiconductors, under the action of low electric
fields, is quite similar to the case of metals. It is true that the electrical conductivity σ

of semiconductors is much lower than for metals, but this can be mainly attributed to
the much lower value of the carrier concentration, of the order of 1014 to 1017 cm−3, in
comparison to the case of metals (1022 cm−3).

However, in semiconductors we have an additional type of conduction which does not
have the equivalent in metals, and is due to the differences in carrier concentrations from
region to region that often arise in semiconductors. One example can be a semiconduc-
tor fabricated with a non-uniform doping concentration. We can also change the carrier
concentrations in a given region of the semiconductor by illumination with photons of
enough energy to create electron–hole pairs. In such situations, electrons and holes move
independently by diffusion due to their respective concentration gradients.

3.5.1. Electric field transport. Mobility

In order to explain low field electrical conduction in semiconductors, a semiclassical
model can be considered. According to Eq. (2.57) of Section 2.6.1, if the force due to an
electric field F is applied to an electron, its wave vector k, and consequently its crystal
momentum, would increase indefinitely. As we can imagine, this is not the case, since
carriers, as they move by the action of the field, experience scattering events or collisions
due to the existence of phonons, doping impurities, etc. In a semiclassical formulation,
the scattering events are equivalent to a kind of frictional force acting in a direction
opposite to the motion. Therefore, we should have according to Newton’s second law in
one dimension:

(
qF − m∗

e

τe

)
ve = m∗

e
dve

dt
(3.27)

for an electron of effective mass m∗
e . We have assumed in Eq. (3.27) that the frictional

force is proportional to the electron drift velocity ve. The parameter τe is known as the
relaxation time, since when we disconnect the field:

ve = [ve]t=0 e−t/τe (3.28)

i.e. the electron velocity acquired by the field goes exponentially to zero with a charac-
teristic time equal to τe. From Eq. (3.27) we can appreciate that in the steady state, i.e.
when the total external force acting on the electron is zero, then the drift velocity acquires
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a constant value given by:

ve = −qτe

m∗
e
F (3.29)

The constant of proportionality between the electrical field and the drift velocity is
called the electron mobility µe, i.e.:

µe =
∣∣∣∣Fve

∣∣∣∣ (3.30)

From the above definition, we can consider the mobility as being equal to the velocity
acquired by the electron per unit electric field. According to Eqs (3.29) and (3.30), the
electron mobility can also be written as:

µe = qτe

m∗
e

(3.31)

Similarly, for the hole mobility, we have:

µh = qτh

m∗
h

(3.32)

The electron current density can be expressed as:

Je = −qnve (3.33)

where q is the electronic charge and n the carrier concentration, or by using Eq. (3.30)
for the mobility:

Je = qnµeF (3.34)

Let us assume Ohm’s law for the relation between Je and E, i.e.

Je = σF (3.35)

where σ is the electrical conductivity. Since the current, and therefore the conductiv-
ity, can be due to both electrons and holes, we have from Eqs (3.33) and (3.35) and
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similar equations for holes, the following expression for the electrical conductivity in a
semiconductor:

σ = q(nµe + pµh) (3.36)

where n and p are the electron and hole concentrations, respectively.
It is interesting to observe that the simple model that we have introduced allows us to

relate macroscopic parameters, such as electrical conductivity or mobility, with intrinsic
properties of the carriers, like the effective mass. For instance, in the case of GaAs, m∗

e has
a very low value (m∗

e = 0.066m0) and therefore the electron mobility given by Eq. (3.31)
is very large.

3.5.2. Conduction by diffusion

As we have previously mentioned, diffusion conduction in semiconductors is produced by
gradients in carrier concentration. In reality, diffusion is originated by the random motion
of the carriers and does not have anything to do with their charge. Carriers diffuse as
a consequence of several factors: concentration gradients, the random thermal motion,
and the scattering events produced by the lattice imperfections. Therefore, the diffusion
current in a semiconductor obeys the general equation of diffusion. In one dimension, the
diffusion currents for electrons and holes are given, respectively, by

Je = qDe
dn

dx
(3.37)

and

Jh = −qDh
dp

dx
(3.38)

where De and Dh are known as the diffusion coefficients for electrons and holes, and q is
the electronic charge. The negative sign of Eq. (3.38) is motivated by the negative sign
of the derivative (areas of high carrier concentration to the left of those with low carrier
concentration) and the fact that positive charges (holes) move in the positive x-direction
under the action of the concentration gradient, which makes the current positive.

In a given semiconductor, the carriers are scattered as they move, either by the action
of the electric field or the concentration gradient, by the same dispersion mechanisms.
Therefore, the mobility and the diffusion coefficient cannot be independent. In fact, they
are related by the Einstein relations for the electrons

De

µe
= kT

q
(3.39)
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and for holes

Dh

µh
= kT

q
(3.40)

At room temperature D/µ equals 0.026 V.

3.5.3. Continuity equations. Carrier lifetime and diffusion length

We have seen in previous sections how carriers can be generated in semiconductors. As
an example we considered the generation of electron–hole pairs, either thermally or by
incident photons. In addition, we have studied in Sections 3.5.1 and 3.5.2 the influence
of an electric field and a gradient concentration on the carrier transport. Once the carriers
are generated, they can recombine; for instance, an electron in the conduction band might
fall to an empty energy state (hole) in the valence band. If we call g and r the generation
and recombination rates, respectively, we can write a continuity equation, as it is done in
electricity, for the rate of change of the electron density n. Let us assume for simplicity a
one-dimensional model and consider that the concentration gradient is a function of time
and position. The rate of change of the electron density in a small region between x and
x + dx is then given by

∂n

∂t
= g − r + µe

∂(nF )

∂x
+ De

∂2n

∂x2
(3.41)

where the last two terms are the divergence ones obtained from Eqs (3.34) and (3.37).
Evidently, a similar equation can be obtained for the rate of change of holes. Since both
equations are coupled, the solution to them is quite complicated, unless we make some
simplifying assumptions. For this, let us first define the excess carrier concentrations.
If the electron concentration in equilibrium is n0, the excess carrier concentration �n is
defined as:

�n = n(x, t) − n0 (3.42)

where n(x, t) is the actual electron concentration. Similarly, for holes we define the excess
carrier concentration:

�p = p(x, t) − p0 (3.43)

The first simplifying assumption is the charge balance or neutrality condition which
assumes that the excess electron concentration is balanced by the one corresponding to
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holes, i.e.

�n = n − n0 = p − p0 = �p (3.44)

It is also assumed that either excess carrier concentration is much smaller than the
larger of the two equilibrium concentrations, n0 and p0. Under these assumptions, it
can be proved, in the case of strong character extrinsic semiconductors, that it is only
necessary to solve the continuity equations for the minority carriers [1]. Therefore in
a p-type semiconductor, we have for the excess electron concentration �n (minority
carriers):

∂(�n)

∂t
= g − r + µeF

∂(�n)

∂x
+ De

∂2(�n)

∂x2
(3.45)

Evidently, in the case of n-type semiconductors, the continuity equation states that:

∂(�p)

∂t
= g − r + µhF

∂(�p)

∂x
+ Dh

∂2(�p)

∂x2
(3.46)

where �p is the excess hole concentration. Notice that in Eqs (3.45) and (3.46), F is the
applied electrical field which we have assumed constant.

In semiconductor electronic devices such as p–n junctions, carriers of one sign, for
instance electrons from an n-type semiconductor, cross the interface and enter a p-region,
becoming minority carriers. In fact, the characteristics of electronic devices depend
markedly on the behaviour of the injected minority carriers, which can be described by
several parameters as their lifetime, diffusion length, etc. Let us suppose that an n-type
semiconductor is illuminated by photons which create electron–hole pairs with steady
excess carrier concentrations as defined in the previous section, such that �n = �p � n0,
�n = �p � p0 , where n0 and p0 are the equilibrium carrier concentrations in the n-type
material. If at instant t = 0, we stop illuminating the material, the minority hole excess
carrier concentration �p decreases with time by recombination of the holes proportionally
to its instant value of the concentration, i.e.:

[
∂�p

∂t

]
recomb

= −�p

τh
(3.47)

where 1/τh is the constant of proportionality. If we call (�p)0 the hole excess
concentration at instant t = 0, we get after integrating:

�p(t) = (�p)0 e−t/τh (3.48)
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Evidently, τh can be interpreted as the minority carrier lifetime of holes in the n-type
semiconductor. In the same way, a minority lifetime for electrons can be defined. Minority
carrier lifetimes in doped semiconductors are of the order of 10−7s, but they can be
increased by the addition of impurities or traps to the semiconductor.

Suppose, as in Figure 3.8(a), a different hypothetical experiment in which carriers of
one type, for instance electrons, are injected steadily into a p-type semiconductor at its
surface (x = 0) and we want to find how the carrier concentration diminishes with distance
x inside the p-type semiconductor, as a consequence of recombination with holes. For this,
let us apply the continuity equation under steady state conditions and zero applied electric
field. Under these conditions, Eq. (3.45) reduces to:

−�n(x)

τe
+ De

∂2(�n(x))

∂x2
= 0 (3.49)

where we have made use of the definition, just introduced, of minority carrier lifetime. If
we call N0 the steady rate of injected electrons at x = 0, we get after integration:

�n(x) = N0 e−x/Le (3.50)

0
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Figure 3.8. (a) Injection of electrons at the surface of a p-type semiconductor located at x = 0;
(b) dependence of concentration of injected electrons as a function of the distance to
the surface.



Review of Semiconductor Physics 75

where

Le = (Deτe)
1/2 (3.51)

Figure 3.8(b) represents how the concentration of injected electrons diminishes with
distance inside the p-type semiconductor. The parameter Le is known as the minority
diffusion length for electrons and represents the distance for which the injected electrons
diminish their concentration to 1/e of its value at x = 0.

3.6. DEGENERATE SEMICONDUCTORS

In Section 3.4 we gave the name non-degenerate semiconductors to those for which the
Fermi level EF is located in the gap at an energy of about 3kT or more away from the band
edges. Since for these semiconductors, classical statistics could be applied, we derived
simple expressions, Eqs (3.12) and (3.15), for the concentration of electrons and holes,
respectively. Under these premises we also derived Eqs (3.24), (3.25), and (3.26) which
give the location of the Fermi level for n-type, p-type, and intrinsic semiconductors,
respectively.

As the dopant concentration is increased, the Fermi level approaches the band edges
and when n or p exceeds Nc or Nv, given by Eqs (3.8) and (3.16), respectively, the Fermi
level enters the conduction band in the case of n-type semiconductors or the valence band
if the semiconductor is p-type. These heavily doped semiconductors are called degenerate
semiconductors and the dopant concentration is usually in the range of 1019–1020 cm−3.

In the case of degenerate semiconductors, the wave functions of electrons in the neigh-
bourhood of impurity atoms overlap and, as it happens in the case of electrons in crystals,
the discrete impurity levels form narrow impurity bands as shown in Figure 3.9(a). The
impurity bands corresponding to the original donor and acceptor levels overlap with the
conduction and valence bands, respectively, becoming part of them. These states which
are added to the conduction or valence bands are called bandtail states. Evidently, as a
consequence of bandtailing, the phenomenon of bandgap narrowing is produced. Bandgap
narrowing has important consequences in the operation of laser diodes (Section 10.3) and
in the absorption spectrum of heavily doped semiconductors.

Figure 3.9(b) shows the energy diagram of a degenerate n-type semiconductor. As we
know, the energy states below EFn are mostly filled. Therefore most of the electrons have
energies in the narrow range between Ec and EFn. The band diagram is somewhat similar
to metals and the Fermi level coincides with the highest energy of the electrons in the
band. However, if one dopes very heavily, to about 1020 cm−3, a carrier saturation effect
appears as a consequence of interaction between dopants. For this very high concentration
regime, Eqs (3.22), (3.23), and the law of mass action expressed in Eq. (3.17) do not apply.
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(a) (b)

Figure 3.9. (a) Impurity bands and bandtail states in degenerate semiconductors; (b) energy
diagram of an n-type degenerate semiconductor.

3.7. OPTICAL PROPERTIES OF SEMICONDUCTORS

3.7.1. Optical processes in semiconductors

When light incides on a semiconductor, we can observe a series of optical phenomena like
absorption, transmission, and reflection. All these phenomena induce a series of electronic
processes in the semiconductor, which can be studied by recording their respective optical
spectra. The absorption spectrum of a typical semiconductor shows several significant
features. The dominant absorption process occurs when the energy of the incident photons
is equal or larger than the semiconductor gap and therefore electronic transitions from
occupied valence band states to empty conduction band states become dominant. These
transitions can be either direct or indirect and the absorption coefficient is calculated by
means of time-dependent perturbation theory.

At the low energy side of the fundamental edge, exciton absorption can be observed
as a series of sharp peaks. An exciton consists of a bound electron–hole pair in which the
electron and hole are attracted by the Coulomb interaction and their absorption spectrum
is studied in Section 3.7.3. Other absorption processes in semiconductors correspond to
electronic transitions between donor levels and the conduction band states, and from
the valence band to acceptor levels. The corresponding absorption peaks are located
in the infrared ranges, as a consequence of the low values of the donor and acceptor
ionization energies (Section 3.3). In heavily doped semiconductors, optical absorption by
free carriers can also become significant, since the absorption coefficient is proportional to
the carrier concentration. Finally, in ionic crystals, optical phonons can be directly excited
by electromagnetic waves, due to the strong electric dipole coupling between photons and
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transverse optical phonons. These absorption peaks, arising from the lattice vibrations,
appear in the infrared energy range.

The absorption of light by a semiconductor can be described macroscopically in terms
of the absorption coefficient. If light of intensity I0 penetrates the surface of a solid, then
the intensity I (z) at a distance z from the surface varies as

I (z) = I0e
−αz (3.52)

where α is a material property called the absorption coefficient, which depends on the light
wavelength and is given in units of cm−1. The parameter 1/α is called the penetration
depth. Evidently, the higher the absorption coefficient, the smaller the depth at which
light can penetrate inside the solid. For semiconductors like GaAs, α increases very
sharply when the photon energy surpasses Eg, since the optical transitions are direct
(Section 3.7.2). On the contrary, for indirect semiconductors like Si or Ge, the increase of
α is slower since the optical transitions require the participation of phonons. Therefore,
the increase of α is not as sharp as in the case of direct semiconductors. In addition, the
onset of absorption does not occur exactly when hν = Eg as for direct transitions, but in
an interval of the order of the energy of the phonons around Eg.

3.7.2. Interband absorption

Interband absorption across the semiconductor gap is strongly dependent on the band
structure of the solid, especially on the direct or indirect character of the gap. In this
section we are mainly going to review the case of interband optical transitions in direct
gap semiconductors, since most of the optoelectronic devices of interest in light emission
(Chapter 10) are based on this type of materials.

For the calculation of the optical absorption coefficient we have to make use of the
quantum mechanical transition rate, Wif , between electrons in an initial state ψi which
are excited to a final state ψf . This rate is given by the Fermi Golden rule of Eq. (2.26)
of Chapter 2:

Wif = 2π

�
ρ(E)

∣∣H ′
if

∣∣2 (3.53)

In this expression, the matrix element H ′
if corresponds to the optical external perturba-

tion on the electrons and ρ(E) is the density of states function for differences in energy E
between final and initial states equal to the excitation photon energy �ω.

The perturbation Hamiltonian H ′ (Section 2.2.4) associated to electromagnetic waves
acting on electrons of position vector r is given by

H ′ = − p · F = er · F (3.54)
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and corresponds to the energy of the electric dipole of the electron −er under the action
of the wave electric field F . Since the electronic states are described by Bloch functions
(Section 2.4), we have to calculate matrix elements of the form

H ′
if ∝

∫
u.c.

u∗
i (r)xuf (r)dr (3.55)

The integral in Eq. (3.55) is extended to the volume of the unit cell, since the integral
over the whole crystal can be decomposed as a sum over the unit cells. The functions
ui(r) and uf (r) in Eq. (3.55) have the periodicity of the lattice, according to the Bloch
theorem.

The density of states function ρ(E) that appears in Eq. (3.53) has to be calculated at the
energy hν of the incident photons, since the final and initial states, which lie in different
energy bands, should be separated in energy by hν. For this reason the function ρ(E) is
usually called the optical joint density of states function, and for its calculation one has
to know the structure of the bands. Another condition which has to be fulfilled is that, for
direct gap semiconductors, the electron wave vector of the final state should be the same
as the one of the initial state, i.e.

kf = ki (3.56)

since the momentum associated to the photon can be considered negligible.
Optical transitions around k = 0 in direct III-V semiconductors like GaAs involve

the valence band of p-like atomic orbitals and the conduction band originated from
s-like orbitals. It is also known from the electric dipole selection rules that transitions
from p-states to s-states are allowed, and therefore a strong optical absorption should be
expected.

Let us now calculate the optical DOS. We can observe that the conduction band as well
as the three valence bands (heavy hole, light hole, and split-off band) are all parabolic close
to the � point (Figure 3.2(a)). The direct gap Eg equals the energy difference between
the minimum of the conduction band and the maxima of the heavy and light hole bands,
which are degenerated at �. For these transitions, conservation of energy requires

hν = Eg + �
2k2

2m∗
e

+ �
2k2

2m∗
h

= Eg + �
2k2

2µ
(3.57)

where µ is the reduced mass of the electron–hole system, and we have taken into account
only one of the two degenerated hole bands for simplicity; the split-off hole band would
show the absorption transition at higher photon energies. Considering the expression found
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in Section 2.3, Eq. (2.36), for the DOS function, we should have the absorption coefficient
α for hν ≥ Eg:

α(hν) = 1

2π2

(
2µ

�2

)3/2 (
hν − Eg

)1/2 (3.58)

Taking into account the expression for the rate of optical transitions Wif given by
Eq. (3.53) and that the optical absorption coefficient α is proportional to Wif , then, for
hν ≥ Eg, we find that α should be also proportional to the square root of the photon
energy minus the bandgap. Therefore, a plot of α2 as a function of hν should yield a
straight line which intercepts the horizontal axis (α = 0) at a value of the energy equal to
the semiconductor gap.

As an example, we show in Figure 3.10, α2 as a function of the photon energy for PbS
which shows the linear behaviour just discussed [2]. Some other direct gap semiconductors
do not verify this relation so exactly, since often not all the assumptions that we have
considered in the derivation of Eq. (3.58) are fulfilled. For instance, in the case of GaAs
at low temperatures, the region around the onset of this absorption can be overshadowed
by the exciton absorption that will be studied in the next section. Also, Eq. (3.58) was
only strictly valid for values of k close to k = 0, but, as the photon energy increases, this
condition does not hold anymore.
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Figure 3.10. Square of the absorption coefficient of PbS as a function of photon energy. After [2].
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3.7.3. Excitonic effects

As we have seen, photons of energy larger than the semiconductor gap can create electron–
hole pairs. Usually the created electron and hole move independently of each other, but
in some cases, due to the Coulomb interaction between them, the electron and hole can
remain together forming a new neutral particle called exciton. Since excitons have no
charge, they cannot contribute to electrical conduction. Exciton formation is very much
facilitated in quantum well structures (Sections 1.5 and 4.10), because of the confinement
effects which enlarge the overlapping of the electron and hole wave functions.

The simplest picture of an exciton consists of an electron and a hole orbiting inside the
lattice around their centre of mass, as a consequence of the Coulombic attraction between
them (Figure 3.11). There are two basic types of excitons: (a) Excitons for which the
wave function of the electron and hole have only a slight overlap, i.e. the exciton radius
encompasses many crystal atoms. These excitons are called Wannier–Mott excitons and
are usually detected in semiconductors. (b) Other excitons, mainly observed in insulators,
have a small radius of the order of the lattice constant and are called Frenkel excitons.

Wannier–Mott excitons can be described according to a model similar to the hydrogen
atom. Considering the exciton as a hydrogenic system, the energies of the bound states
should be given by an expression similar to Eq. (2.15) of Chapter 2, with the proper
corrections, in a similar manner as we did with ionization donor and acceptor impurity
levels (Section 3.3) in extrinsic semiconductors. Evidently, the mass in this expression
should be now the reduced mass µ of the system formed by the electron and hole effective

electron

hole

Figure 3.11. Representation of an exciton as a bound electron–hole pair in semiconductors.
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masses, i.e.

1

µ
= 1

m∗
e

+ 1

m∗
h

(3.59)

In addition, we have to consider that the electron and the hole are immersed within
a medium of dielectric constant εrε0, where εr is the high frequency relative dielectric
constant of the medium. The bound states of the excitons are, therefore, given by:

En = − µRH

m0ε2
r

1

n2
= − µ

m0ε2
r

13.6 eV

n2
= −Rex

n2
, n = 1, 2, 3, . . . (3.60)

where RH is the Rydberg constant for the hydrogen atom and Rex is called the exciton
Rydberg constant.

Figure 3.12 shows the excitonic bound states given by Eq. (3.60) and the exciton
ionization energy EI. The energy needed for a photon to create an exciton is smaller than
the one needed to create an independent electron–hole pair, since we can think of this
process as creating first the exciton and, later, separating the electron from the hole by
providing an amount of energy equal to the exciton binding energy. Therefore, as shown
in Figure 3.12, the exciton bound states, given by Eq. (3.60), should be located within the
gap just below the edge of the conduction band.

Figure 3.13 shows the absorption spectrum of GaAs for photon energies close to the
gap [3]. It is seen that the first three peaks predicted by Eq. (3.60), with Rex = 4.2 meV,
are well resolved. This is because the spectrum was taken at very low temperatures,
the spectrometer had a high resolution, and the sample was ultrapure. The advantage of
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n=1
n=2
n=∞

Figure 3.12. Excitonic states located in the gap, close to the conduction band edge.
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Figure 3.13. Exciton absorption spectrum of GaAs at 1.2 K. After [3].

working at low temperatures is double. On the one hand, excitons are less likely to be
destroyed by phonons and, on the other, the thermal broadening of the absorption lines
is reduced. Excitons are much better observed in intrinsic semiconductors than in doped
ones, where the free charge carriers partially screen the Coulombic interaction between
the electron and the hole.

A closer look to the band structure of semiconductors allows predicting which regions
in k-space are favourable for the formation of excitons. Since the exciton is composed of
a bound electron–hole pair, the velocity vectors of both particles should be the same, and
therefore, according to Eq. (2.52) of Chapter 2, their respective conduction and valence
bands should be parallel. This is evidently the case in the vicinity of the point k = 0 in
GaAs, i.e. around the spectral region corresponding to the direct gap.

If the intensity of the light that creates excitons is high enough, their density increases
so much that they start to interact among themselves and with the free carriers. In this
high density regime, biexcitons consisting of two excitons can be created. Biexcitons have
been detected in bulk semiconductors as well as in quantum wells and dots. Biexcitons
consist of two electrons and two holes and, similarly to the way followed to study excitons
in terms of hydrogenic atoms, they can be compared to hydrogen molecules. In addition
to biexcitons, trions consisting of an exciton plus either a hole or an electron have also
been experimentally detected in several nanostructures, among them, III-V quantum wells
and superlattices.

3.7.4. Emission spectrum

In Section 3.7.2, we have considered transitions of electrons from the valence band to the
conduction band in semiconductors caused by photon absorption. In the inverse process,
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light can be emitted when an excited electron drops to a state in a lower energy band. If
in this process light is emitted, we have photoluminescence due to a radiative transition.
The emitted photons have in general a different frequency than the previously absorbed,
and the emission spectrum is usually much narrower than the absorption spectrum. In
effect, suppose, as in Figure 3.14, that a photon of energy hν > Eg is absorbed and, as
a consequence, an electron–hole pair is produced. In this process, the electron and/or
the hole can get an energy higher than the one corresponding to thermal equilibrium.
Subsequently, the electrons (the same applies to holes) lose the extra kinetic energy very
rapidly by the emission of phonons (mainly optical phonons) occupying states close to
the bottom of the band. The time taken in this step is as short as 10−13s due to the strong
electron–phonon coupling. On the other hand, the lifetime of the radiative process by
which electrons drop to the valence band, by the emission of photons of hν ∼ Eg, is
several orders of magnitude longer (of the order of nanoseconds). Therefore, the emission
spectrum should range between Eg and Eg plus an energy of the order of kT, since the
electrons have enough time to get thermalized at the bottom of the conduction band. At
present, these phenomena can be studied very nicely by means of very fast time-resolved
photoluminescence spectroscopy, using ultra short laser pulses. Figure 3.15 shows the
spectra of bulk GaAs at 77 K, after having been excited by 14 fs laser pulses [4]. The curves
are shown for three different carrier concentrations of increasing values from top to bottom.
The fourth curve in the figure represents the autocorrelation (AC) of the laser pulse.

E(k)

kk = 0

light emissionlight
absorption

phonon
emission

Figure 3.14. De-excitation of an electron by first emitting an optical phonon and subsequently a
photon with energy approximately equal to the gap energy.
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Figure 3.15. Spectra of GaAs obtained by time-resolved photoluminescence spectroscopy.
After [4].

For many semiconductors, recombination of electrons and holes is mainly non-
radiative, that is, instead of emitting photons, the recombination process occurs via
recombination centres with energy levels located within the gap. In this case, the energy
lost by the electrons is transferred as heat to the lattice. We have already seen in Section 3.3
that impurity states in semiconductors are located within the gap, close to the band edges,
but other defects, such as vacancies or metal impurities, can have their levels much deeper
within the gap. Only for quantum wells of very high quality, the number of emitted
photons divided by the number of excited electron–hole pairs reaches values in the range
0.1–1. Even in direct gap bulk semiconductors, the values of the luminescence yield are
very low, between 10−3 and 10−1. Impurities and in general any kind of defects can act
as recombination centres by first capturing an electron or a hole and subsequently the
oppositely charged carrier. The defects which make possible electron–hole non-radiative
recombination are colloquially called traps and in them the recombination centre re-emits
the first captured carrier before capturing the second carrier. The recombination centres
are called either fast or slow depending on the time that the first carrier remains at the
centre before the second carrier is captured.

3.7.5. Stimulated emission

Suppose a simple electron system (Figure 3.16) of just two energy levels E1 and E2

(E2 > E1). Electrons in the ground state E1 can jump to the excited state E2 if they
absorb photons of energy E2−E1. On the contrary, photons of energy E2−E1 are emitted
when the electron drops from E2 to E1. In general, the emission of light by a transition
from the excited state E2 to the ground state E1, is proportional to the population of
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Figure 3.16. (a) Absorption; (b) spontaneous emission; (c) stimulated emission processes under
steady state conditions. (The absorption should be equal to the sum of spontaneous
and stimulated emission processes.)

electrons n2 at the level E2. This is called spontaneous emission and the proportionality
coefficient is called the Einstein A21 coefficient, while the corresponding one for the
absorption process is called the Einstein B12 coefficient. As Einstein observed, electrons
can also drop from E2 to E1 if they are stimulated by photons of energy hν = E2 − E1.
This process is therefore called stimulated emission and is governed by the Einstein B21

coefficient. Since stimulated emission is proportional to the density ρ(ν) of photons,
in order to have a high rate of stimulated emission, in comparison to the spontaneous
one, the radiation energy density should be very high. Evidently the above three Einstein
coefficients are related to each other, since in the steady state the rate of upward and
downward transitions shown in Figure 3.16 should be equal.

One very interesting aspect of stimulated emission is that the emitted photons are in
phase with the stimulating ones. Precisely, the operation of lasers is based on the process of
stimulated emission. Semiconductor lasers, which will be studied in Chapter 10, produce
monochromatic and coherent light. The rate of stimulated emission should be proportional
to n2ρ(ν) and therefore, in order to dominate over absorption (proportional to n1) we
should have n2 > n1. This condition is known as population inversion, since in thermal
equilibrium, according to the Boltzmann distribution, we have n1 < n2. Observe also that
since stimulated emission is proportional to the radiation energy density, lasers need to
make use of resonant cavities in which the photon concentration is largely increased by
multiple internal optical reflections.

Population inversion in semiconductor lasers is obtained by the injection of carriers
(electrons and holes) across p+–n+ junctions of degenerate direct gap semiconductors,
operated under forward bias. Figure 3.17(a) shows a non-biased p–n junction and
Figure 3.17(b) shows the junction when it is polarized under a forward bias. In this
situation, a region around the interface between the p+ and n+ materials, called the active
region, is formed, in which the condition of population inversion is accomplished.
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From Figure 3.18(a), it can be deduced the range of energies of incoming photons
which are able to produce a rate of stimulated emission larger than the absorption rate,
therefore resulting in an optical gain. Taking into account the density in energy of elec-
trons through density of states functions for the conduction and valence bands, one can
deduce qualitatively the dependence of optical gain as a function of the energy of the
incident photons. Evidently, as indicated in Figure 3.18(b), the photons that induce stim-
ulated emission should have energies larger than Eg and lower than EFn − EFp. At higher
temperatures, the Fermi–Dirac distribution broadens around the Fermi levels and as a
result there is a diminution in optical gain.

(a) (b)

Figure 3.17. (a) Energy diagram for a p–n junction made of degenerate semiconductors with no
bias; (b) idem, with a forward bias, high enough to produce population inversion in
the active region.

(a) (b)

Figure 3.18. (a) Density of states of electrons and holes in the conduction and the valence bands,
respectively; (b) optical gain as a function of photon energy.
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PROBLEMS

1. Electron mean free path. Find the electron mean path in GaAs, at room temperature
and T = 77 K knowing that the respective mobilities are approximately 3 × 105 and
104 cm2/Vs, respectively.

2. Semiconductor doping. In order to make a p–n diode, a sample of silicon of type n

is doped with 5 × 1015 phosphorous atoms per cm3. Part of the sample is additionally
doped, type p, with 1017 boron atoms. (a) Calculate the position of the Fermi levels
at T = 300 K, in both sides of the p–n junction. (b) What is the contact potential?

3. Carrier concentrations in germanium. Determine the free electron and hole con-
centration in a Ge sample at room temperature, given a donor concentration of
2.5 × 1014 cm−3 and acceptor concentration of 3.5 × 1014 cm−3, assuming that
all impurities are ionized. Determine its n or p character if the intrinsic carrier
concentration of Ge at room temperature is ni = 2.5 × 1013 cm−3.

4. Carrier concentrations in silicon. A semiconducting silicon bar is doped with a
concentration of 4 × 1014 cm−3 n-type impurities and 6×1014 cm−3 of p-type impu-
rities. Assuming that the density of states is constant with increasing temperature and
that electron mobility is twice that of holes, determine the carrier concentration and
the conducting type at 300 and 600 K. The bandgap energy of silicon is Eg = 1.1 eV
and ni (300 K) = 1.5 × 1010 cm−3.

5. Diffusion currents in semiconductors. The electron density in an n-type GaAs
crystal varies following the relationship n(x) = A exp(−x/L), for x > 0, being
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A = 8 × 1015 cm−3 and L = 900 nm. Calculate the diffusion current density at
x = 0 if the electron diffusion coefficient equals 190 cm2s−1.

6. Diffusion length. In a p-type GaAs sample electrons are injected from a contact.
Considering the mobility of minority carriers to be 3700 cm2V−1s−1, calculate the
electron diffusion length at room temperature if the recombination time is τn = 0.6 ns.

7. Carrier dynamics in semiconductors. The electron energy close to the top of
the valence band in a semiconductor can be described by the relationship E(k) =
−9 × 10−36k2(J ), where k is the wave vector. If an electron is removed from the
state k = 2 × 109ku, being ku the unity vector in the x-direction, calculate for the
resulting hole: (a) its effective mass, (b) its energy, (c) its momentum, and (d) its
velocity. Hint: suppose that we are dealing with states close to the maximum of the
valence band or to the minimum of the conduction band, thus being the parabolic
dispersion relationship a good approximation.

8. Energy bands in semiconductors. The conduction band in a particular semiconduc-
tor can be described by the relationship Ecb(k) = E1 − E2 cos(ka) and the valence
band by Evb(k) = E3−E4 sin2(ka/2) where E3 < E1−E2 and −π/a ≤ k ≤ +π /a.
Determine: (a) the bandgap, (b) the variation between the extrema (Emax −Emin) for
the conduction and valence bands, (c) the effective mass for the electrons and holes
in the bottom of the conduction band and the top of the valence band, respectively.
Sketch the band structure.

9. Excess carriers. An n-type Ge bar is illuminated, causing the hole concentra-
tion to be multiplied by five. Determine the time necessary for the hole density
to fall to 1011 cm−3 if τh = 2.5 ms. Assume the intrinsic carrier concentration to be
1013 cm−3 and the donor density 8 × 1015 cm−3.

10. Optical absorption in semiconductors. A 700 nm thick silicon sample is illuminated
with a 40 W monochromatic red light (λ = 600 nm) source. Determine: (a) power
absorbed by the semiconductor, (b) power dissipated as heat, and (c) number of
photons emitted per second in recombination processes originated by the light source.
The absorption coefficient at λ = 600 nm equals α = 7×104 cm−1 and the bandgap
of Si is 1.12 eV.

11. Excitons in GaAs. (For the following problem take µ = 0.05m0 as the exciton
reduced mass and εr = 13 as the relative dielectric constant.) (a) Calculate the
Rydberg energy RH. What is the largest binding energy? (b) Calculate the exciton
radius aex in the ground level, following Bohr’s theory. (c) Calculate the number of
unit cells of GaAs (a0 = 0.56 nm) inside the exciton volume. (d) Supposing that the
exciton is in its ground sate, up to what temperature is the exciton stable?

12. Excitons in a magnetic field. Suppose that a magnetic field B is applied to a
gallium arsenide sample. Find the value of B for which the exciton cyclotron energy
is equal to the exciton Rydberg energy of Eq. (3.60). Take ε = 13 for the value of
the dielectric constant.
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Chapter 4

The Physics of Low-Dimensional Semiconductors

4.1. INTRODUCTION

During the last few decades, advances in solid state physics have been characterized by
a gradual change in interest, from bulk crystals to solids which are very small in at least
one of their three dimensions. Since they are easy to produce, initial focus mainly centred
on very thin solid films, i.e. with a thickness comparable to the de Broglie wavelength λB

of the electrons in the solid. From this research, a new class of effects arose, such as the
quantum Hall effect (QHE), discovered by von Klitzing (1980) for which he received the
Nobel Prize in 1985.

When one of the three spatial dimensions of a solid, usually a semiconductor material,
is of a size comparable to λB, we say that we are dealing with a material or a structure of
low dimensionality. In some situations, other characteristic lengths, different from λB, and
revised in Section 1.3, are more convenient to use. For most important semiconductors,
λB usually ranges between 10 and 100 nm and therefore we have to deal with solids of
size in the nanometre range in order to observe quantum effects such as QHE, Coulomb
blockade, quantized conductance, etc. (Chapters 6 and 7). We recall from Chapter 1 that
low-dimensional materials are classified according to the number of spatial dimensions of
nanometric size. If only one of the three dimensions is small enough, then the structure is
called a quantum well (2D). In the case of quantum wires (1D), two of the dimensions are
in the nanometric range, and finally in the case that the three dimensions are comparable
to λB the structure is called a quantum dot (0D).

As seen in this chapter, a very thin semiconductor layer of nanometric size, e.g. GaAs,
surrounded on each side by higher energy gap semiconductors such as AlGaAs, is fre-
quently the main constituent of modern devices in optoelectronics. Another very interesting
structure is simply formed by the junction, or more accurately heterojunction, of two
semiconductors of different energy gaps (Section 1.7). In both cases, a potential well for
electrons, similar to that in a MOS structure, is formed at the interface. If these wells
have a width comparable to λB, then the electron energy levels are quantized in the well.
These heterojunctions are, for example, the basis of the very fast MODFET transistors
(Chapter 9).

91
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4.2. BASIC PROPERTIES OF TWO-DIMENSIONAL SEMICONDUCTOR
NANOSTRUCTURES

One of the most practical two-dimensional semiconductor structures consists of a sandwich
of gallium arsenide (GaAs), with a thickness in the nanometre range, surrounded on each
side by a semiconductor such as aluminium gallium arsenide (AlxGa1−xAs) of higher
bandgap. The bandgap of AlxGa1−xAs (x ∼ 0.3) is close to 2.0 eV while that of GaAs
is 1.4 eV. As a consequence, the potential energy profile has the shape of a square well
(Figure 4.1(a)), with a barrier height of 0.4 eV for electrons and 0.2 eV for holes. In reality,
the profile of the potential barrier is somewhat more complicated, since the potential
varies with atomic distances, which also affects the wave functions. However, in most
cases, it is a good approximation to consider the average over a few atomic distances
(envelope function approximation). As seen in Figure 4.1(a), carrier motion for both
electrons and holes is not allowed in the direction perpendicular to the well, usually
taken as the z-direction because of the potential walls. However in the other two spatial
directions (x, y), parallel to the semiconductor interfaces, the motion is not restricted, i.e.
the electrons behave as free electrons.

The behaviour of electrons when their motion is restricted along one direction in the
wells of infinite height corresponds to a well-known problem in quantum mechanics, the
so-called particle in a box of infinite wells. In Section 4.3 we will address the problem
for the case of barriers of finite height at the interfaces. It is well known from quantum
mechanics that, in the case of infinite potentials barriers, the wave functions and energy
levels of the bound electrons are given by

ψn(z) =
(

2

a

)1/2

sin
(πnz

a

)
(4.1)

En = �
2π2

2m∗
ea

2
n2, (n = 1, 2, . . .) (4.2)

where m∗
e is the effective mass of the electrons in the well material for the motion along the

z-direction and a is the width of the well. From Eq. (4.2) we can derive several important
consequences: (1) In general, quantum size effects will be more easily observable in
quantum structures of very small size a, and for materials for which the electron effective
mass is as small as possible. In this sense, GaAs nanostructures are very convenient since
m∗

e ∼ 0.067m0, where m0 is the free electron mass. This is equivalent to saying that in
materials for which the electron mobility (Section 3.5.1) or the free electron path are
large, quantum effects are easier to observe. (2) Quantum size effects, which require
energy transitions of electrons between levels, are better observed at low temperatures,
since the mean thermal energy of carriers is of the order of kT.
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Figure 4.1. (a) AlGaAs–GaAs–AlGaAs square potential well; (b) energy levels; (c) energy
subbands.

As it has been described, the motion of electrons in the quantum well is confined only in
one direction, z, but in the (x, y) planes the electrons behave as in a three-dimensional solid.
Therefore the electron wave function is separable as the product of ψx , ψy , and ψz, i.e.

� = ψxψyψz (4.3)
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where, in our simple model, ψx and ψy satisfy the Schrödinger equation for a free elec-
tron, i.e. a travelling wave, while ψz is given by the Schrödinger equation with a square
well potential V(z) and therefore can be expressed as in Eq. (4.1).

The expression for the total energy of electrons in the potential well, can then be
written as

E
(
kx, ky, n

) = �
2

2m∗
e

(
k2
x + k2

y

)
+ En = �

2

2m∗
e

(
k2
x + k2

y

)

+ �
2π2

2m∗
ea

2
n2, (n = 1, 2, . . .) (4.4)

where the quasi-continuous values of kx , ky are determined by the periodic boundary
conditions as in the case of a free electron in the bulk (Section 2.3).

Figure 4.1(b) schematically shows the discrete values of En corresponding to motion
in the z-direction while Figure 4.1(c) represents the E vs p dependence (remember that
p = �k) for values of p in the plane (px , py). For each fixed value of En, the values of E
as a function of p form the so-called energy subbands represented in Figure 4.1(c). It is
interesting to observe that the lowest energy of electrons, E1, is different from zero, in
contrast with classical mechanics. This result is expected from quantum mechanics since
a value of E = 0 would violate the uncertainty principle. In these systems the value of
E = E1 is called zero-point energy.

From solid state physics we know that many physical properties, e.g. optical absorption,
transport of electronic current, etc. depend both on the energy spectrum and the density
of states (DOS) function, which gives the concentration of electrons at each value of the
energy. In a three-dimensional electronic system, it is already known (Section 2.3) that
the DOS depends as a parabolic function on the energy. However in the two-dimensional
case, this dependence is completely different. Proceeding as in the 3D case, it can be
appreciated that for the 2D case (Figure 4.2) the possible values of kx , ky are separated
by 2π/L, where L is the dimension of the sample, which has been assumed to be square,
without loss of generality. The number of states in the k-space within a circular ring
limited by the circumferences of radii k and k + dk is therefore:

n2D(k)dk = 2πkdk

(2π/L)2

and the number of states in k-space per unit area is:

n2D(k) = k

2π
(4.5)
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Figure 4.2. Representation in k-space for the states (kx , ky ) of a 2D electron system.

If we wish to calculate the DOS in energy, we define n2D(E) such that n2D(E)δE is the
number of states in the range δE. The densities of states in energy and wave vector are
related by:

n2D(E)δE = n2D(k)δk (4.6)

where E and k are related by E = �
2k2/2m∗

e . Differentiating this expression and taking
into account Eq. (4.5), we have, after substitution in Eq. (4.6), and adding a factor 2
which accounts for the spin:

n2D(E) = 2
k

2π

δk

δE
= 2

k

2π

m∗
e

�2k
= m∗

e

π�2
(4.7)

Note that in the 2D case, the DOS function is a constant, independent of energy. Let us
show next that the DOS function, for the two-dimensional case, exhibits a staircase-shaped
energy dependence (Figure 4.3) in which all the steps are of the same height, but located
at energies En given by Eq. (4.2). In effect, from Figure 4.1(c) it can be appreciated that
the interval of energy between 0 and E1 is not allowed. For E such that E1 < E < E2

the electrons will be located in the subband corresponding to n = 1 and the value will
be m∗

e/π�
2. For the energy interval between E2 and E3, the electrons can be located
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Figure 4.3. Density of states function for a 2D electron system, as a function of energy.

either in the n = 1 or in the n = 2 subbands, and consequently the DOS function would
be twice the above value, i.e. 2m∗

e/π�
2, etc. The staircase shape of the n2D(E) function

can be directly observed by optical absorption measurements, as we will see in Chapter 8.
We have also represented the parabolic 3D case in Figure 4.3, from which it can be
appreciated that the differences between the 2D and 3D cases are more discernable for low
values of n.

According to the subband in which the electrons are located, their kinetic energy is
differently partitioned as a consequence of the relationship expressed in Eq. (4.4). For
instance, for a given energy in the interval E2 to E3, for the same value of energy, the
electrons located in subband n = 2 have higher energy in the z-direction, E2, than those
in the n = 1 subband for which the corresponding value is E1. Therefore the energy of
motion corresponding to the plane ( px , py) should be smaller for the electrons in subband
n = 2. Evidently the separation of energy in different “components” (remember that the
energy is a scalar function) is a direct consequence of the simple forms adopted for ψ and
the energy in Eqs (4.3) and (4.4).

4.3. SQUARE QUANTUM WELL OF FINITE DEPTH

The quantum wells for electrons and holes in GaAs nanostructures surrounded by higher
gap AlGaAs, studied in the previous section, are not of infinite height, as was assumed
in order to derive closed expressions for the energy and wave functions in Section 4.2.
In fact, the value of the height of the potential for electrons should coincide with the
discontinuity �Ec that appears at the interface in the conduction bands of AlGaAs and
GaAs, which for the above system is of the order of some tenths of an eV. However, it
is fairly easy to deduce that for electron energies in the quantum well not too close to
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the barrier �Ec (we take the energy as zero at the bottom of the well), the values obtained
for the case of infinite wells do not differ too much of those obtained in the case of finite
depth wells.

If we call V0 in Figure 4.4 the height of the finite square well, it is evident that for
states with energy E < V0 we have bound states, i.e. the electrons are trapped inside
the well of width a, while for E > V0, we have continuous propagation states, in which
the electrons are free to move from z = −∞ to z = +∞. Since this problem presents
inversion symmetry around the centre of the well, this point is chosen as origin for the
z-direction. In relation to the bound states, the wave functions inside the well should
have the same shape as in the case of the infinite well, i.e. the solutions are symmetric
or antisymmetric, and therefore should be sine or cosine functions, respectively. We also
know from quantum mechanics that the solutions outside the well, which are obtained
from the Schrödinger equation with a potential energy equal to V0, are exponential decay
functions. Therefore the solutions for the wave functions should be linear combinations
of the functions:

ψn(z) =



D exp(kz), z < −a
/

2
C cos(kz), C sin(kz), −a

/
2 < z < a

/
2

D exp(−kz), z > a
/

2
(4.8)
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(
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Figure 4.4. Finite potential square well. The first three energy levels and wave functions are shown.
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Note that in Eqs (4.9) we have assumed the same value for the effective electron mass
in the barrier and in the well. Usually, this is a good approximation because the barrier
material is similar to the well material (e.g. GaAs and AlGaAs with a small Al mole
fraction) and because the penetration of electron wave functions into the barriers is small
for the lowest states. In order to proceed with the solution of the problem we should
next realize that since ψ(z) is a continuous function, therefore, the functions of Eq. (4.8)
must be equal for z = ± a/2, and the same should hold for their derivatives in the
homogeneous effective mass approximation. From this fact a transcendental equation is
derived which can be easily solved numerically [1]. From this solution, several important
facts are derived. For instance, it can be shown that in a one-dimensional well there is
always at least one bound state, independent of how small the value of V0 might be. For
the case of weakly bound states, the exponential decay constant k in Eq. (4.8) is small and
therefore the wave function represented in Figure 4.4 penetrates deeply into the barrier
region. Evidently, the opposite should be true for strongly bound states, in which the
penetration in the energy forbidden region is very small.

4.4. PARABOLIC AND TRIANGULAR QUANTUM WELLS

4.4.1. Parabolic well

The case of the parabolic well is well known in solid state physics since the vibrations of
the atoms in a crystal lattice, whose quantification gives rise to phonons, are described
in a first approximation by harmonic oscillators. In addition, a magnetic field applied to
a two-dimensional electron system gives rise to a parabolic potential, and the electrons
oscillate at the so-called cyclotron frequency. Parabolic quantum well profiles can also
be produced by the MBE growth technique. In this case, alternate layers of GaAs and
AlxGa1−xAs of varying thickness are deposited, increasing the thickness of the AlGaAs
layer quadratically with distance, while the thickness corresponding to the GaAs layer is
proportionally reduced.

For the well-known potential energy of the one-dimensional harmonic oscillator

V (z) = 1

2
k2z2 (4.10)

with k a constant, we already know that the energy values are equidistant and given by

En =
(

n − 1

2

)
�ωo, n = 1, 2, 3, . . . (4.11)

where ω0 is the so-called natural angular frequency.
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Figure 4.5. Harmonic oscillator potential well V(z). The first three levels and corresponding wave
functions are shown.

Figure 4.5 shows the case of a parabolic well potential and the wave functions of
three electron bound states. The wave functions are mathematically expressed in terms
of the Hermite polynomials. Note, as in the case of the square well, the symmetric or
antisymmetric character of the wave functions and their exponential decay in the forbidden
energy zone.

4.4.2. Triangular wells

The triangular potential well is one of the most common geometries, since the potential
profile across quantum heterojunctions (Chapter 5), such as the well-known modulation-
doped AlGaAs–GaAs heterojunction, is almost triangular in shape for electrons within
GaAs. Of all heterostructures, this is probably the most investigated one and it will be
considered in detail in Section 5.3.1. Another very important case, where an almost
triangular-shaped well is formed, occurs at the semiconductor in a MOS structure
(Section 5.2).

Figure 4.6 shows a triangular potential well, in which, for simplicity, it is assumed that
the left barrier is infinite in energy and it increases linearly for z > 0:

V (z) = eFz, for z > 0 (4.12a)

V (z) = ∞, for z ≤ 0 (4.12b)
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Figure 4.6. Triangular potential well V(z). The first three levels and corresponding wave functions
are shown.

where e is a constant equal to the electron charge and F is a uniform electric field. As in the
other cases, the electron energies and states are found by solving the Schrödinger equation
subject to the boundary condition ψ(z = 0) = 0. In this case, the eigenvalues are given
in terms of the Airy functions. However, for small values of n, it can be demonstrated by
applying the WKB quantum-mechanical approximation, that [1]

En ≈
[

3

2
π

(
n − 1

4

)]2/3 (
e2F 2

�
2

2m

)1/3

, n = 1, 2, . . . (4.13)

Figure 4.6 shows the spacing between the energy levels, which get a little closer as n
increases, in contrast to the square well where the levels become further apart as n increases
(in the parabolic case they were equally spaced). In the same figure, the wave functions
are also represented. Observe that as n increases, the wave functions add one more half-
cycle. However at difference with the previous parabolic case, the wave functions are
neither symmetric or antisymmetric due to the asymmetry of the potential well.

4.5. QUANTUM WIRES

Having considered the two-dimensional electron gas in Section 4.2 it is easy to under-
stand that in the one-dimensional electron gas, the electrons should be confined in two
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directions, (x, y), and can freely propagate along the z-direction, usually perpendicular to
the plane defined by x and y. The propagation is therefore somewhat analogous from a
formal point of view to that of an electromagnetic wave guide.

Supposing that the confining potential is a function of r = (x, y), i.e. V = V (r), and
following the separation of variables method to solve the Schrödinger equation, as we did
in Section 4.2, we can look for wave functions of the form:

ψ(r) = eikzzu(r) (4.14)

with the following two-dimensional Schrödinger equation for the wave function u(r):

[
− �

2

2me

(
∂

∂x2
+ ∂

∂y2

)
+ V (r)

]
un1n2(r) = En1n2un1n2(r) (4.15)

with (n1, n2) = 1, 2, 3, . . .

The expression for the total energy of the electrons in the quantum wire should be of
the form:

En1,n2(kz) = En1,n2 + �
2k2

z

2m∗
e

(4.16)

where the last term represents the kinetic energy of the electron propagating along the
z-direction.

As an example to get specific expressions for the energy, we consider now the simplest
case of a two-dimensional rectangular potential of infinite depth and size ax , ay . That is:

V (x, y) = 0, 0 < x < ax, 0 < y < ay

V (x, y) = ∞, x ≤ 0, x ≥ ax, y ≤ 0, y ≥ ay
(4.17)

Taking into account the results of Section 4.2, the energy should be given by Eq. (4.16)
in which:

En1,n2 = �
2π2

2m∗
e

(
n2

1

a2
x

+ n2
2

a2
y

)
, n1, n2 = 1, 2, 3, . . . (4.18)

Another case, relatively easy to solve in cylindrical coordinates, is that of a wire with
circular cross section, in which case the solutions are given in terms of the Bessel functions.
Therefore in the case of quantum wires, the energy levels corresponding to the transverse
direction are specified by two quantum numbers, and each value En1,n2 is now the bottom
of a parabolic one-dimensional subband in kz space. Observe also that as the electron
moves in a narrower wire, the energy corresponding to the En1,n2 levels increases.



102 Nanotechnology for Microelectronics and Optoelectronics

Let us now calculate the density of states for the one-dimensional electron gas. The
concentration of states in energy is related to that in wave number by the expression:

n1D(E)∂E = n1D(E)
dE

dk
∂k = 2n1D(k)∂k (4.19)

The factor 2 appears because the wave number could be either positive or negative
corresponding to the two directions along the wire. The density of states in k-space per
unit length is 1/2π , as seen from considering the one-dimensional version of Figure 4.2.
Substituting in Eq. (4.19) and taking into account that E = �

2k2/2m∗
e , we obtain:

n1D(E) = 1

π�

√
2m∗

e/E (4.20)

which diverges for E = 0
In terms of the group velocity vg, given by Eq. (2.52):

n1D(E) = 2

π�vg
(4.21)

One interesting result of this equation is that the current in a one-dimensional system
is constant and proportional to the velocity and the density of states. The expression
(4.21) for the DOS function in a quantum wire, will have important consequences as, for
example, the quantized conductance which will be studied in Chapter 6.

The expression of the total DOS per unit length for a quantum wire can be expressed,
from Eq. (4.20) as

n1D(E) =
∑
n1,n2

1

π�

√
2m∗

e

E − En1,n2

(4.22)

Figure 4.7 represents the DOS for a one-dimensional system, which is compared to
the parabolic 3D case. Now the DOS diverges at the bottom of the subbands given by
the energy values En1,n2 . This result will have important consequences in the physical
properties of quantum wires.

4.6. QUANTUM DOTS

Quantum dots are often nanocrystals with all three spatial dimensions in the nanometre
range. Sometimes, as is the case of the II-VI materials, such as CdSe or CdS, the nanocrys-
tals can be grown from liquid phase solutions at well-specified temperatures. Conversely,
they can also be prepared by lithographic etching techniques from macroscopic materials.
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Figure 4.7. Density of states function for a 1D electron system, as a function of energy.

Although the word “dot” implies an infinitely small size, in practice dots might have
a large number of atoms: 104–106, and still have their three dimensions in the nanometre
region, so that the electron de Broglie wavelength is comparable to the size of the dot.
In this case, the wave nature of the electron becomes important. Quantum dots are often
referred to as artificial atoms, because, as we will see later, the spectrum of the energy
levels resembles that of an atom. In addition, at least in theory the energy spectrum can be
engineered depending on the size and shape of the dot. In analogy to atoms, we can also
define an ionization energy, which accounts for the energy necessary to add or remove an
electron from the dot. This energy is also called the charging energy of the dot, in an image
similar to the concept of capacitance of a body, in which the addition or subtraction of
electric charge is specified by the Coulomb interaction. Therefore the atom-like properties
of the quantum dots are often studied via the electrical characteristics. From this point
of view, it is very important to remark that even the introduction or removal of one
single electron in quantum dots, in contrast to the case of 2D or 1D systems, produces
dominant changes in the electrical characteristics, mainly manifested in large conductance
oscillations and in the Coulomb blockade effect (Chapter 6).

Let us now study the energy spectrum of quantum dots. The simplest case would be
that of a confining potential that is zero inside a box of dimensions ax , ay , and az and
infinite outside the box. Evidently the solution to this well-known problem are standing
waves for the electron wave function and the energy levels are given by

En1,n2,n3 = �
2π2

2m∗
e

(
n2

1

a2
x

+ n2
2

a2
y

+ n2
3

a2
z

)
, n1, n2, n3 = 1, 2, 3, . . . (4.23)
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Figure 4.8. Density of states function for a 0D electron system.

In contrast to the 2D and 1D cases, now the energy is completely quantized, and, as in the
case of atoms, there is no free electron propagation. However, the levels are frequently
degenerate, for instance, if two or three of the dimensions of the box are equal.

The case of a spherical dot in which the potential is zero inside the sphere and infinite
outside can also be exactly solved, and the solutions are expressed in terms of the spherical
functions. This problem resembles that of a spherically symmetric atom and the energy
depends on two quantum numbers, the principal quantum number n, arising from the
one-dimensional radial equation, and the angular momentum quantum number l.

Since in the case of quantum dots the electrons are totally confined, the energy spectrum
is totally discrete and the DOS function is formed by a set of peaks in theory with no
width and with infinite height (Figure 4.8). Evidently, in practice, the peaks should have
a finite width, as a consequence, for instance, of the interaction of electrons with lattice
phonons and impurities.

4.7. STRAINED LAYERS

In general, the quality of an interface between two materials depends greatly on the relative
size of the lattice constants. If the lattice constants are very similar, as in the case of the
AlxGa1−xAs–GaAs heterojunctions (see Figure 4.9), for which the lattice constant varies
less than 0.2% for the whole range of x, and the thermal expansion coefficients are similar,
no stresses are introduced at the interface. However, in other cases, heterojunctions with
differences in lattice constants up to 6% are fabricated (for instance, InxGa1−xAs–GaAs).
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Figure 4.9. Values of the energy gap and lattice constants for various semiconductors. The shaded
regions refer to typical families of semiconductors which form several types of
heterostructures.

In this case strong stresses appear at the interface and only very thin films of a few
monolayers can be grown on a given substrate. Nevertheless these strained layers show
new effects that are exploited in various optoelectronic applications, especially in quantum
well lasers and electro-optic modulators (Chapter 10). As a consequence, a new field of
strained layer epitaxy has been developed. Usually during the growth of the layer over
a substrate the lattice constant of the epilayer changes, and accommodates to the size of
the lattice constant of the substrate, a situation which is called pseudomorphic growth.
These stresses have very important effects such as the removal of the heavy and light hole
degeneracy of the valence band (see Section 4.8), changes in the bandgaps, etc. since
the structure of bands in solids is very sensitive to both changes in size as well as in the
symmetry of the unit cell.

Suppose that a layer of lattice constant aL is grown on a substrate of lattice constant
aS. The strain ε of the layer is defined as

ε = aL − aS

aS
(4.24)

In Figure 4.10 we show the case of InxGa1−xAs grown on GaAs for which aL > aS.
In Figure 4.10(a) the situation of the separate layer and substrate is depicted. If the
epilayer is not too thick, the atoms of the layer match those of the substrate. Therefore,
the layer is subjected to a compressive stress in the plane of the interface and the interplanar
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Figure 4.10. Growth of a layer of lattice constant aL on a substrate of constant aS for aL > aS.
(a) The layer is not yet deposited over the substrate; (b) the layer is subjected to a
compressive stress; (c) when the layer is thicker than the critical thickness, dislocations
are formed at the interface.

vertical (or on the growth direction) distance increases (Figure 4.10(b)). As a consequence
of the distortion of the InGaAs lattice, elastic energy is stored in the system, which
increases with layer thickness. Therefore, if the thickness of the film is larger than the
so-called critical thickness hc, the system relaxes and the appearance of dislocations in the
plane of the interface is energetically favourable (Figure 4.10(c)). Although it is possible
to grow layers without dislocations with a thickness greater than hc, evidently they are
in a metastable state. Therefore the layers are usually grown up to a thickness below hc.
In addition to the InxGa1−xAs layers grown on GaAs, another system that has been the
subject of many investigations is the GexSi1−x /Si system because of its applications in
microelectronics.

4.8. EFFECT OF STRAIN ON VALENCE BANDS

In order to study the electronic and optoelectronic properties of the most significant semi-
conductors for solid state devices, for instance, silicon and III-V compounds, it is essential
to have a good knowledge of the shape of the conduction and valence bands in k-space.
For electrons in a crystal, the band states arise from the outermost states of the elec-
trons in the atoms. In the case of the conduction band, the behaviour of electrons can
often be described by band states, which in the case of direct gap materials, are purely
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s-type. Using the notation of atomic physics these are called 1s wave functions for the
cell periodic part of the Bloch functions. However the band states of the indirect gap
semiconductors are a mixture of s and p states.

The case of the valence band is more complicated because there are three branches,
which are very close, around k = 0, and arise from the atomic p-states. This happens
for many important semiconductors like Si, Ge, and GaAs, which show degenerate hole
bands for k = 0, i.e. close to the maximum of the valence bands. In Figure 4.11, we can
observe that one of the bands corresponds to the light holes, whose curvature is larger,
and the other corresponds to the heavy holes and presents a smaller curvature. There is
also a third band, called split-off band, which appears below the above ones, and is a
consequence of the relativistic effects corresponding to the spin–orbit coupling. However,
very often the splitting is quite large and this band can be ignored, since the holes would
not fill the corresponding levels. Near the point �, the heavy- and light-hole bands depend
closely in a parabolic fashion on k and therefore can be described by the so-called effective
masses for the heavy holes (m∗

hh) and light holes (m∗
lh), respectively.

In order to discuss the E vs k dependence in the valence band, we can use the Luttinger–
Kohn formulation, based on the k · p method of band structure calculations. The eigenstates
in this formulation are the angular momentum p-states. Following the calculations of the
Luttinger–Kohn method, it is found that the energy depends on k approximately in the
following simple manner:

E(k) = Ev − h2

2m0

[
Ak2 ±

√(
Bk2

)2 + C2
(
k2
xk

2
y + k2

yk
2
z + k2

z k
2
x

)]
(4.25)
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Figure 4.11. Valence band structure of several typical semiconductors (Si, GaAs, etc.) for k = 0.
The heavy hole, light hole, and split-off bands are shown.



108 Nanotechnology for Microelectronics and Optoelectronics

where the upper sign corresponds to the heavy holes and the lower sign to the light holes,
respectively. In the above equation the dimensionless A, B, and C parameters are usually
expressed in terms of the Luttinger–Kohn parameters γ 1, γ 2, and γ 3:

A = γ1, B = 2γ2, C = 12
(
γ 2

3 − γ 2
2

)
(4.26)

In the case of GaAs we have the following values for these parameters: γ1 = 6.85,
γ2 = 2.1, and γ3 = 2.9.

The effect of strain on the band structure is very important especially in the hole
valence bands, as we should expect from the changes in the layer lattice constant and
crystal symmetry. As a consequence we can introduce modifications of the semiconductor
bandgaps and the lifting of the valence band degeneracies at �. The shifts in energy of
the electron and hole bands, as a consequence of the strain, can be calculated using the
usual methods of energy band calculations.

The most significant effects in III-V compounds are manifested in the changes of the
gaps and the structure of the valence bands. For layers grown in the z-direction or (0 0 1)
axis, the band structure of an unstrained layer, one under compression and one under
tension in the interface plane is represented in Figures 4.12(a)–(c), respectively [2].
As previously mentioned, the first observation is the removal of the heavy and light
hole degeneracy. In the case of compression, the top valence band (heavy hole band)
corresponds to the highest value of the effective mass mz (HH) but the in-plane mass
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Figure 4.12. Band structures of a layer deposited over a substrate for three cases: (a) the layer is
unstrained; (b) the layer is under compression; (c) the layer is under tension. After [2].
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is somewhat lighter (Figure 4.12(b)). In the case of tension (Figure 4.12(c)), in which
the lattice constant of the layer material in the bulk is smaller than that of the substrate
we find the opposite ordering of the bands, i.e. the light hole band is above the heavy
hole. Therefore the two bands will cross each other at some value of k||, although such
values are not usually reached (k|| is any vector included in the plane kx , ky). As it is
observed, strain induces band splittings of up to about 0.05 eV, in addition to anisotropy.
Strained structures find applications in the change of the bandgaps in heterojunctions such
as Si/SiGe, GaP/GaAsP, and in the fabrication of blue-green lasers based on ZnCdSe/ZnSe
heterostructures.

4.9. BAND STRUCTURE IN QUANTUM WELLS

In order to interpret correctly the optical absorption experiments in quantum wells, we
need to know the band structure. Figure 8.2 of Chapter 8 shows the absorption spectra
of a 40 period multiple quantum well (MQW) GaAs–AlGaAs, in which the barriers have
a width of 7.6 nm [3]. Observe that the spectrum follows in general the steps of the
DOS curve in 2D semiconductors (Section 4.2). At the edge of each step there is a sharp
maximum that, as will be shown in the next section, is attributed to excitonic effects.
It can also be observed in Figure 8.2 that at the edge of the first transition for electrons
between the conduction and valence bands for n = 1, there is a peak at 1.59 eV which
corresponds to the heavy hole (HH) valence band and one at 1.61 eV for the light holes
(LH), which is below the heavy ones (Section 4.8).

The reason for observing the above splitting corresponding to holes is that the one-
dimensional potential due to the quantum well breaks the cubic symmetry of the crystal,
and consequently lifts the degeneracy of the hole band in GaAs, in a similar manner as did
strain in the previous section. Detailed calculations, too long to be included in this text,
show that the presence of the well potential causes the LH states to move downwards in
energy more than the HH (Figure 4.13). It is interesting to know that if the calculations do
not take into account very small terms in the expansion of the perturbed Hamiltonian, the
hole bands cross each other because, then, the heavy hole band moves faster downwards.
The resulting crossing of the two bands, produced as a consequence of their different
curvature, would cause the phenomenon known as mass reversal. If this does not happen,
it is because, when very detailed calculations are performed, it can be shown that the
crossing effect is removed, appearing instead as an effect known as anticrossing.

We can therefore appreciate that the band structure in quantum wells, especially those
corresponding to holes, are fairly complicated and most results can only be numerical.
An additional complication comes from the fact that the square wells have barriers of
finite height (Section 4.3). Figure 4.14 shows the calculated band structure for MQW of
the type AlGaAs–GaAs [4]. Note that some of the bands have a shape far from the ideal
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Figure 4.13. (a) Valence bands of GaAs bulk crystal; (b) position of the valence bands in a GaAs
in a quantum well.
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parabolic one and that the sign of the curvature changes, implying the existence of hole
states with a negative effective mass.

As we have seen in this section, quantum confinement can cause a change of the energy
levels corresponding to the HH and LH bands. In addition, we can change the energy of
these bands by applying tensions or compressions (Section 4.8). In some cases, we can
move the LH band above the HH, or even cause degeneracy. As a consequence of the
degeneracy, a very high concentration of hole states is produced, a phenomenon which is
exploited in optoelectronic modulators.

4.10. EXCITONIC EFFECTS IN QUANTUM WELLS

In the case of confined systems for electrons and holes, such as quantum wells, wires,
and dots, the excitonic effects are much more important than in bulk solids. In effect, the
binding energy of the electron–hole system forming an exciton is much higher in quantum
confined systems than in the case of solids, and, therefore, the excitonic transitions can
be observed even at temperatures close to room temperature, as opposed to the bulk case
for which low temperatures are needed. This makes the role played by excitons in many
modern optoelectronic devices very important.

Qualitatively, it is easy to understand the reason by which the binding energies of
excitons EB in quantum confined systems are much higher than in the bulk. For instance,
in the case of bulk GaAs the binding energy of excitons is only EB = 4.2 meV and the
Bohr radius has a fairly large value of about aB = 150 Å. In Figure 4.15 the exciton is
represented in two situations, the one in (a), in which the Bohr radius of the exciton is much
smaller than the quantum well width, and the one in (b), for which the width of the well
is smaller than aB. In this case, the separation between the electron and the hole is limited
by the width of the well and therefore the exciton becomes squeezed, thus increasing the
Coulomb attractive force. For a two-dimensional hydrogenic atom, a simple calculation
shows that EB is about four times larger in the 2D case than for a 3D solid. Another
consequence of their high value of EB is that excitons can survive very high electric
fields in quantum wells which will find many applications in electro-optic modulators
(Section 10.8). In addition, the oscillator strength for excitonic transitions appears in a
narrow energy range, thus increasing the intensity of the excitonic transitions.

More realistic calculations based on numerical methods, rather than on the
two-dimensional hydrogen atom, allow for the calculation of the exciton binding energy
as a function of the quantum well width. For the AlxGa1−xAs–GaAs quantum well, the
results are shown in Figure 4.16 as a function of well width [5]. If this is much larger
than the bulk exciton Bohr radius, the exciton has a binding energy similar to the bulk.
As the width of the well decreases, the exciton squeezes inside the well, and the Coulomb
interaction increases. For a well width of 3–4 nm, the binding energy reaches a maximum
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Figure 4.15. (a) Exciton orbits in a very bulk crystal; (b) the spherical form of the exciton becomes
elongated when the width of the QW is smaller than the exciton radius.
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value, which is close to three times that in the bulk. When the well of finite height becomes
too thin, the exciton confinement energy increases and the electron (and to a lesser extent
the hole) wave functions leak into the barriers due to tunnelling. Then the effective local-
ization of the exciton in the well decreases and its binding energy also decreases towards
the bulk value of the barrier material (AlxGa1−xAs). It can be shown theoretically that
in the case of quantum wires (1D confinement) and quantum dots (0D confinement), the
effect on the exciton binding energy is even more important than for quantum wells (2D
confinement). However, fabrication technologies for the sub-2D systems are not as devel-
oped as for the 2D ones, and the effect of higher binding energies for excitons are not
usually exploited. One exception might be the case of quantum dot lasers, which will be
treated in Section 10.6.
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PROBLEMS

1. Electronic levels in a quantum well. Suppose a quantum well with a width a and a
conduction band discontinuity large enough so that the model of a box with infinite
wells can be applied. Explain how the effective mass of the semiconductor of the well
affects the values of the energy levels in the well. Do it for InSb (m∗ = 0.014m0),
GaAs (m∗ = 0.067m0), and GaN (m∗ = 0.17m0).

2. Band gap in quantum well systems. Suppose a quantum well of the type
AlxGa1−xAs/GaAs/AlxGa1−xAs with x ≈ 0.3. Calculate the bandgap if the width
a of the well is 16 nm. (b) Comment whether the model of infinite wells is appro-
priate for this value of a and also in the case of very small values of a, like, for
instance, 2 nm.

3. Fermi wavelength. The Fermi wavelength λF is defined as the wavelength of elec-
trons with energy equal to the Fermi energy EF. Calculate the values of λF for
electrons in the case of a quantum well of the type AlGaAs/GaAs/AlGaAs for
n2D = 1016m−2. Compare the result obtained with that of λF for a typical metal.

4. 2D density of states function. Show that the 2D density of states function per unit
area n2D (Figure 4.3) can be expressed as

n2D = m∗

π�2

∑
n

�(E − En)

where �(z) is the step function defined as �(z) = 1 for z > 0, �(z) = 0 for z < 0,
and the sum is over the subbands.

5. Concentration of electrons in a quantum well. From the expression of the den-
sity of states function and the Fermi–Dirac distribution function, show that the
concentration n2D of electrons in a 2D system is given by:

n2D = kT m

π�2

∗ ∑
n

ln(1 + e(EF−En)/kT )

where EF is the Fermi energy and En are the values of the energy levels in the
quantum well.
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6. Extreme quantum limit in a 2D system. From the expression for the concentration
n2D of electrons of the previous exercise, show that in the limit when only the first
subband (n = 1) is occupied, then

n2D = m∗

π�2
EF

where EF is the Fermi energy. Additionally show that the Fermi wave vector kF is
given by

kF = (2πn2D)1/2

7. Density of states in k-space. Show that the density of states in k-space g(k) depends
on k in the form: g(k) ∝ kn−1 where n is the number of dimensions of the system.
Hint: assume that the values of the components of k are obtained by applying periodic
boundary conditions, as it was done in Section 2.3 for n = 3.

8. Square potential well of finite height. Suppose a finite square well potential with
potential barriers of height V0 and width a for which the wave functions are of the
form of Eqs (4.8) and (4.9). Show that, in order to have bound states in the well,
the following conditions have to be satisfied

tan (kwa/2) = m∗
wkb

m∗
bkw

tan (kwa/2) = −m∗
bkw

m∗
wkb

where the subindexes w, b refer to the well material and barrier material, respec-
tively. Hint: assume as boundary conditions that both the wave function and the
particle flux (1/m∗) dψ/dz must be continuous.

9. Realistic AlGaAs/GaAs/AlGaAs quantum well. Based on the results of the pre-
vious problem find the electron ground state energy for a AlGaAs/GaAs/AlGaAs
quantum well of width a = 12 nm and height of the potential well V0 = 0.36 V.
Use for the effective masses m∗

w = 0, 067m0 and m∗
b = 0.095m0. Hint: in the

results of the previous problem, write the values of the wave vectors in terms of
energy using Eq. (4.9). Since there in no analytic solution for E, it is recommended
that the problem be solved graphically.

10. Structures of reduced dimensionality. Suppose a semiconductor quantum well of
width a, a quantum wire of square cross section (a×a) and a quantum dot of volume
(a × a × a). In the case of GaAs, and for a = 6 nm, calculate the energy Ee1 of
the electron ground level for each structure. Qualitatively comment why the value
of Ee1 gets larger when the confinement of the structure increases.
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11. Fermi energy in low-dimensional electron systems. Show that for 3D, 2D, and
1D electron systems for which the energy E depends on the wave vector k and
the effective mass m* in the form E = �

2k2/2m∗, the Fermi energy EF can be
expressed as

3D : EF = �
2

2m∗ (3π2n)2/3

2D : EF = �
2

2m∗ 2πn

1D : EF = �
2

2m∗
(π

2
n
)2

where n corresponds, in each case, to the 3D, 2D, and 1D electron concentration.
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Chapter 5

Semiconductor Quantum Nanostructures and Superlattices

5.1. INTRODUCTION

The previous chapter described the physical behaviour of electrons in low-dimensional
semiconductors. In this chapter we will study a series of nanostructures or devices formed
by one or several heterojunctions, which constitute the basis of modern microelectronic
and optoelectronic devices. These devices can be constructed from a few basic structures,
among them heterojunctions, or junctions between two semiconductors of different gaps,
and metal-oxide-semiconductor (MOS) structures. These two kinds of nanostructures
provide electrons with a potential well for electrons of nanometric size at the junction.
Since the MOS structure is the basic block of the most important device in microelec-
tronics, the metal-oxide-semiconductor field-effect-transistor (MOSFET), it is natural that
researchers have made use of them for the study of the behaviour of the electrons in
nanometric potential wells. In fact, the discovery of the quantum Hall effect (QHE) by
K. von Klitzing in 1980 was based on the study of the transport properties of electrons in
the channel of a MOSFET under the influence of simultaneous electric and magnetic fields
[1]. However, these new quantum effects (QHE, Aharonov–Bohm effect and Shubnikov-
de Haas oscillations, Chapter 7) are better observed in III-V heterojunctions, since the
electron effective mass is much lower in materials such as GaAs than in Si.

In this chapter we shall study first the behaviour of electrons confined in 2D wells at the
semiconductor-oxide interface in MOSFET transistors. Next, we shall proceed with the
III-V modulation-doped heterojunction used in high-frequency transistors. The strained
SiGe heterojunction will also be considered because of its interest. Next, we will focus
on the modulation-doped, square potential, quantum wells. This simple building block
is used as a single unit or, more often, as a multiple quantum well structure in devices.
When the thickness of the barriers separating the wells is small, tunnelling of electrons
between neighbouring wells takes place and the resulting device, called a superlattice
(SL), displays a band diagram similar to that of electron bands in crystals. However, the
allowed energy bands and gaps correspond to much smaller energy intervals, since the SL
has a spatial periodicity (equal to the sum of well and barrier thicknesses) which is much
larger than the lattice constant. The band structure of a SL can be engineered by a proper
choice of the well and barrier widths. In this sense, SLs can be considered as artificial
solids since their electron energy band structure is similar to the ones in crystals, but they
do not exist in nature. The idea of developing SLs was first proposed by Esaki and Tsu
in 1970 and implemented a few years later.

119
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5.2. MOSFET STRUCTURES

The main contribution to present technology in general, and microelectronics in particular,
is probably the metal-oxide-semiconductor field-effect-transistor (MOSFET). This device
is the basic unit of present ultra-large-scale-integration (ULSI) microelectronics industry.
It is estimated that MOSFET-based electronic devices now constitute close to 90% of
the semiconductor device market. The MOSFET is formed by a MOS structure and two
p–n+ junctions in which the n material is heavily doped (Figure 5.1(a)), which act as the
source and drain of the FET. The gate of the transistor is formed by the MOS structure.
The semiconductor is usually p-type silicon over which a thin oxide layer (gate oxide) is
grown by thermal oxidation.

Figure 5.1(b) shows the band diagram of the MOS structure for a p-type silicon semi-
conductor under a fairly strong positive bias. When a positive potential is applied to the
gate, the electrons coming from the n+ regions and some from the bulk p-silicon are
accumulated at the Si–SiO2 interface. These electrons form the so-called inversion layer
or channel and are located in an almost triangular-shaped potential well of nanometric
dimensions. The shape of the well is due to the space charge of ionized acceptors in the
p-type silicon, whose corresponding holes are repelled by the electric field across the
dielectric oxide produced by the positive gate potential. If a positive potential is applied
between drain and source, the electrons in the channel will create a current. The current
can be modulated by changes at the potential gate, since the amount of electrons in the
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Figure 5.1. (a) Structure of a MOS transistor; (b) band diagram of a MOS structure with a positive
strong bias applied to the gate.
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inversion layer depends on the magnitude of the electric field across the insulator. The
name “Field Effect Transistor” is due to the control effect of the electric field applied to
the gate.

The existence of a mature MOSFET technology and a strong microelectronic industry
is largely due to the excellent properties of the Si–SiO2 interface and the possibilities of
reducing the structure of the MOSFET to sizes below 100 nm in modern integrated circuits.
In 1957, Schrieffer had already pointed out the possible quantification of the electrons
in nanometric quantum wells, but it was not until a decade later that quantification was
really observed in a silicon surface. In order to observe quantum effects at the Si–SiO2

interface, several conditions must be met: (a) the SiO2 insulator, of amorphous nature,
should have neither high concentration of impurities (Na+ ions) nor of trapped charge;
(b) the smoothness of the Si–SiO2 interface should be controlled at the atomic size level,
since a rough surface on top of the inversion channel would greatly decrease the electron
mobility in the inversion layer.

In order to study the behaviour of electrons in the potential well, it should be recognized
that the electron inversion layer can be considered a 2D system of electrons immersed in a
triangular-shaped quantum well (Section 4.4.2), located in the semiconductor, close to the
interface with the oxide. In the MOS structure, although the electrons are confined along
the perpendicular direction, they are practically free to move in the plane of the interface.
Therefore, according to Section 4.2, the quantized values for the energy of confinement
should be given by

E = En + �
2

2m∗
x

k2
x + �

2

2m∗
y

k2
y (5.1)

where En corresponds to the quantized energy for the triangular well (Eq. (4.13)).

En ≈
[

3

2
π

(
n − 1

4

)]2/3 (
e2F 2

�
2

2m∗
z

)1/3

, n = 1, 2, . . . (5.2)

Evidently Eq. (5.1) represents parabolas as in Figure 4.1(c) in reciprocal space, the
bottoms having values given by En. Similarly, the density of states (DOS) function
corresponds to the 2D case and is given by

g(E) = gv
m∗

T

π�2
(5.3)

where we have added the factor gv which takes into account the conduction band valley
degeneracy. This degeneracy arises from the fact that constant energy surfaces of the silicon
conduction band are formed by six ellipsoids in the <001> direction of momentum space
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(Figure 3.3). The long axis of the ellipsoid corresponds to the longitudinal effective mass
m∗

L = 0.91m0 and the two equal short axes to the transversal effective mass m∗
T = 0.19m0,

which is the one that appears in Eq. (5.3). Therefore, there are two conduction band minima
corresponding to the heavy effective mass and four to the light one. As a consequence,
after solving the Schrödinger equation, neglecting coupling of the electrons in the various
conduction band minima, one should expect two different subband values, or subband
ladders for the Si <001>. First consider the electrons in valleys perpendicular to the
interfaces. The effective mass which enters Eq. (5.2) is m∗

L. Also, m∗
x = m∗

y = m∗
T in

Eq. (5.1) and gv = 2. This results in subbands of lower energy (higher value of effective
mass). Evidently the second subband ladder is originated when the parallel valleys are
considered. In this case, mT is the effective mass for the expression of En in Eq. (5.2)
and gv = 4.

Figure 5.2 shows the results obtained for the energies for the case of a Si-MOSFET with
the insulating oxide grown over a <001> silicon surface [2]. The results are obtained
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Figure 5.2. Energy subband series, conduction band profile V(z) and squared wave functions for
the potential well in a MOS structure for Si <001>. After [2].
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by the self-consistent numerical solution of Schrödinger and Poisson equations using
the parameters m∗

L = 0.916m0 and m∗
T = 0.190m0. The subband series E0, E1, E2

correspond to m∗
L and E0′ , E1′ , E2′ , to m∗

T. The solid curve represents the conduction band
profile V(z). The squared wave functions for the two subband series are also represented.
As seen in Chapter 7, there is now enough experimental evidence (quantum Hall effect and
Shubnikov–de Haas effect) which shows that the 2D electrons in the MOSFET inversion
layer are quantified.

5.3. HETEROJUNCTIONS

5.3.1. Modulation-doped heterojunctions

Heterojunctions, or interfaces between two semiconductors of different gaps, are one
of the most versatile building blocks of electronic devices, especially those based on
III-V compounds. Probably the most studied heterostructure is the one formed by n-type
AlxGa1−xAs and almost intrinsic or lightly doped p-type GaAs. In a similar fashion to the
case of the MOS (Section 5.2), an inversion layer of electrons is formed in the GaAs close
to the GaAs–AlGaAs interface. Therefore, the physics of this electronic system should
in principle be very similar to the case of the MOS structure studied in the previous
section. Devices based on AlGaAs structures can be used to much higher frequencies than
silicon devices due to the high mobility of electrons in GaAs. Since oxides and insulators
deposited over GaAs do not present an interface of sufficient quality, the most important
device applications are based on a Schottky structure of the type metal–AlGaAs–GaAs
(Figure 5.3(a)). In this section we will focus on the properties and band diagram of the
AlxGa1−xAs–GaAs heterojunction shown in Figure 5.3(b).

Let us first consider, from a qualitative point of view, how an electron well of
nanometric size is formed at the AlGaAs–GaAs interface. Suppose, as in Figure 5.4,
that we have an AlGaAs–GaAs heterojunction, where the left material is gallium arsenide
doped with aluminium and the right one is near-intrinsic GaAs. This structure is called
a modulation-doped heterojunction and the method to produce it is known as modula-
tion doping. First consider the hypothetical situation of Figure 5.4(a), before the two
semiconductors enter in contact. In the figure, for simplicity, we only draw the bottom of
the conduction bands and the Fermi level, which in the case of n-type AlGaAs is close to
the conduction band, and for lightly p-doped GaAs is located close to the middle of the
gap (Section 3.4). Evidently the bands are flat because the materials are electrically neutral
and have uniform doping. The barrier between them in the conduction band, �Ec, can
be approximately found following Anderson’s rule. According to this rule, when we join
two materials, the vacuum levels should line up. If χA and χB are the electron affinities of
the AlGaAs and GaAs, respectively, we should have �Ec ≡ χA − χB, since the electron
affinity of a semiconductor is defined as the energy required for an electron located at the
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Figure 5.3. (a) Structure of a AlGaAs–GaAs modulation-doped heterojunction; (b) corresponding
band diagram.

bottom Ec of the conduction band, to get out of the solid, i.e. χ = Evac – Ec. According
to this rule, one gets a value of �Ec of 0.35 eV for a doping x in AlxGa1−xAs around 0.3.

When both materials, AlGaAs and GaAs, enter in contact, some of the electrons from
the donors of the n-material will cross the interface reaching the undoped GaAs. Therefore,
as in the p–n junction, an internal electric field will be created and directed from the non-
neutralized donors in the AlGaAs to the additional electronic charges in the GaAs. This
field is the one that causes the band bending shown in Figure 5.3(b). At equilibrium, the
two Fermi levels line up, the bands are bent like in the case of the p–n junction, with
the only difference that the barrier �Ec is created. Note also that far from the interface,
the bottom Ec of the conduction bands is flat and at the same distance from the Fermi
level EF as in the case of Figure 5.4(a). Therefore, it is relatively easy to sketch the band
diagram of Figure 5.4(b). As it can be appreciated, a quantum well for the electrons has
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Figure 5.4. Formation of the band diagram in a modulation-doped heterojunction AlGaAs–GaAs
when both semiconductors enter in contact.

been formed which is limited by a potential well of height �Ec in the left and a potential
energy curve at the right, within the GaAs.

The quantum well for the electrons produced at the AlGaAs–GaAs interface has a
shape close to a triangle as in the case of the MOS structure. Therefore, if we call z the
direction perpendicular to the interface, the electrons forming the 2D inversion layer are
free to move along the (x, y) plane, but their energy for the motion along z is quantized
as in a potential well. The most important aspect of this heterojunction is that the charge
carriers are located in a region (mainly in the GaAs), spatially separated from the AlGaAs
semiconductor which originates the free electrons. The electrons in the well should have
very high mobility for their motion along the (x, y) plane, since they move within the GaAs
which is free of dopant impurities and it is well known that impurity scattering is one of
the main factors which limit carrier mobility, especially at low temperatures. Evidently,
the electron mobilities are also much higher than in the case of the MOS structure studied
in the previous section.

Although the above considerations are mainly qualitative, they allow us to describe
the main properties of AlGaAs–GaAs heterojunctions. For a rigorous treatment, one has
to numerically solve Poisson’s equation for the potential and Schrödinger’s equation for
the electron wave functions, following a self-consistent method. Although somewhat
complicated, the problem has been solved, usually taking some approximations, such
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as assuming that the potential well is perfectly triangular in shape. However, the wells
cannot be assumed to be of infinite height, since in our case �Ec ≈ 0.3 eV. Detailed
calculations also allow calculation of the average width of the well (40–80 Å), the electron
concentration per unit area, ns ≈ 1012cm−2, and the energy ε1 of the first level ≈ 0.04 eV.

Evidently, if we want to construct FET based on AlGaAs–GaAs heterojunctions, source
and drain contacts have to be deposited as shown in Figure 5.1 for the MOSFET. By apply-
ing differences of potential to the gate, the number of carriers in the channel, and therefore
its conductance, can be controlled as in the case of the MOSFET (Section 5.2). These
transistors are called modulation-doped field effect transitor (MODFET), from modulation
doping, or high electron mobility transistor (HEMT). In Section 9.2 we will consider in
detail MODFETs, which are used in many high-frequency applications due to the very
high electron mobility of the electrons in the channel.

5.3.2. SiGe strained heterostructures

SiGe heterojunctions did not attract too much attention at first because of the large lattice
constant difference between Si and Ge (Figure 4.9), which amounts to about 4%. This
means that the layers grow strained over the substrate and that a critical thickness should
not be surpassed (Section 4.7) otherwise the structure breaks off. It is also true that, since
the energy gaps of silicon (Eg = 1.12 eV) and germanium (Eg = 0.66 eV) are fairly
small, the height of the barriers which appear at the interface should always be small.
In spite of these difficulties, SiGe heterostructures have found interesting applications
in several fields such as high frequency transistors (Chapter 9) and IR photodetectors
(Chapter 10). Since SiGe are strained, the degeneracy of the heavy and light hole bands
is lifted (Section 4.8), and the band structures show similar features to those shown in
Figure 4.12.

Figure 5.5 shows two typical examples of SiGe heterostructures. In Figure 5.5(a)
the substrate is <001> Si (Eg = 1.17 eV) and the strained active layer Si0.7Ge0.3

(Eg = 0.78 eV). In this case the conduction band offset is rather small, in contrast to
the valence band offset. This situation allows the formation of a 2D hole gas in the SiGe
alloy, with electron mobilities around 2 m2V−1s−1, i.e. about half the value found for elec-
trons in a typical MOSFET (Section 5.2). In Figure 5.5(b) the situation is reversed and
the strained layer is Si. In this case the discontinuity in the conduction band is fairly large
and the electrons form a 2D gas, with free motion in the plane of the interface. The silicon
effective mass corresponding to this motion is the low transversal one (m∗

T ≈ 0.19m0),
therefore yielding a high mobility of around 20 m2V−1s−1, several times higher than the
one corresponding to the MOSFET.

SiGe heterostructures have also found an important application in the field of bipolar
silicon transistors which will be considered in more detail in Section 9.3. One way to
improve the efficiency of a bipolar transistor is to use a narrow-bandgap material for
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Figure 5.5. Simplified band diagram of two strained SiGe heterostructures. In (a) the active layer
is SiGe, while in (b) the SiGe acts as a substrate.

the base region, which improves the efficiency of the Si emitter region. In this case the
advantage stems from the reduced values of the SiGe bandgap alloys, in comparison
to silicon. It is important to mention that the strain that appears in the heterojunction
also contributes to the decrease of the bandgap. In addition, the large bandgap offset
allows the fabrication of a highly doped, low resistivity, base material, which extends the
performance of silicon transistors to much higher frequencies.

5.4. QUANTUM WELLS

5.4.1. Modulation-doped quantum well

It is often desirable, especially in the case of multiple quantum wells, that the individ-
ual wells are approximately symmetric and square-shaped, instead of being triangular
like the simple modulation-doped heterojunction studied in the previous section. Let us
now consider that we build a symmetric well by facing two AlGaAs–GaAs heterojunc-
tions opposing each other like in Figure 5.6(a). The wide gap semiconductor material
AlxGa1−xAs is located at the ends and the GaAs in the middle. Imagine next that the
distance between the two interfaces is made sufficiently small. Then the resulting well
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(Figure 5.6(b)) for electrons and holes would be almost square with a barrier on each side
of the same height as in Figure 5.6(a).

It is important to remark, as in Section 5.3.1, that the volume of material inside the well
is free of ionized donors (located in the AlGaAs material). Therefore the electrons inside
the well, which originated at the neighbouring AlGaAs donor-material, can move into the
GaAs region or channel with very high mobility. As in the case of the modulation-doped
heterojunctions, MODFET high-frequency transistors can be fabricated if appropriate
source and drain contacts are deposited.

Quantum well structures with either high or low mobility for electrons can be fabricated
by introducing a controlled amount of impurities. A double quantum well structure with
high and low mobilities constitutes the base of the velocity-modulation transistors. In
these transistors, the switching from one state to the other is controlled by an electric field
transverse to the layers which redistributes the amount of charged electrons and therefore
the current in either wells. Velocity-modulation transistors can be operated at very high
frequencies.

It is quite difficult to find accurate equations for the wave functions and energy levels
of electrons and holes in the wells, since the potential at the bottom, instead of being
flat, is influenced by the variations at the interfaces and the problem has to be solved
by numerical methods. However, in order to describe the general behaviour, we can use
perturbation theory and consider the potential variations as a perturbation. The perturbation
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potential should be symmetric, and thus an even function of z, which leads to the important
conclusion that only states with the same parity can be mixed, as we will see in more
detail, when we study optical transitions in quantum wells (Chapter 8). For instance, if
we assume that only three levels exist in the well, the first state can only be coupled with
the third. Evidently, the occupation of levels depends on the electron concentration in the
well, and for low concentrations usually the first level is the only one occupied.

5.4.2. Multiple quantum wells (MQW)

The signal provided by a single quantum well is usually too small to be used in the solid
state devices. Therefore, it is often necessary to use an array of quantum wells, especially
in optoelectronic devices, such as photodetectors. These structures are called multiple
quantum wells (MQW) and are formed by several single quantum wells. If the wells for
electrons and holes are located in the same space location, the MQW is called Type I
(Figure 5.7(a)), while the name Type II is used when the corresponding wells are located
alternatively as in Figure 5.7(b).

In a MQW system it is assumed that there is no interaction between neighbouring
quantum wells, because the barriers separating the wells are thick enough, usually more
than about 10 nm. However, if the energy barriers between consecutive wells are thin
enough, the wells will be coupled to each other by tunnelling effects. As we will see in
the next section, the discrete energy levels of the quantum wells are then transformed into
energy bands. In this case, the system of MQWs is called a superlattice and the energy
spectrum shows very interesting new features.
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Figure 5.7. (a) Type I MQW; (b) Type II MQW.
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In optoelectronics, MQWs are frequently used and are made of about 50 single wells.
In this case, if we consider that the periodicity (thickness of the well plus barrier) is about
20 nm, then the total thickness of the array approaches 1 µm. This value is usually taken as
the limit in thickness; otherwise radiation would be strongly absorbed before reaching the
inner quantum wells. It should also be observed that the spectrum of the total optical signal
does not necessarily coincide with that of a single quantum well since the thickness of each
well is not exactly the same for all (consider for instance the percentage variation in the
width of a quantum well when the thickness varies by just one monolayer). Consequently,
the breadth of the MQW energy levels can be used as an index of its uniformity in
thickness.

Figure 5.8 shows the band structure of a typical MQW for applications in IR photodetec-
tors or in electro-optic switching modulators under an applied electric field. Photodetectors
for the IR usually work at wavelengths in the 10 µm range. If we were to detect this long
wavelength radiation using bulk semiconductors, a gap of only about 0.1 eV would be
necessary. Therefore it constitutes a better option to use intersubband detection in quantum
wells. In the design of these detectors we have the freedom to adjust the well height �Ec

(by changing the value of x in AlxGa1−xAs/GaAs), as well as the values of energy levels
through the thickness of the well material. As shown in Figure 5.8, the levels are calculated
in such a way that the second level is only a little below the bottom edge of the conduction
band of the wide gap material (AlxGa1−xAs). In addition, the semiconductor doping is
chosen so that the n = 1 level is full and the n = 2 empty. Taking these considerations
into account, when a photon of energy �ω, equal to E2 − E1 impinges, electrons will be
liberated and drift along the z-axis by the action of a weak applied electric field.
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Figure 5.8. Band structure of a typical MQW for IR photodetectors, under an applied electric field.
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5.5. SUPERLATTICES

5.5.1. The concept of a superlattice

The concept of the superlattice (SL) was proposed by Leo Esaki and coworkers in the
late 60s and later fabricated by molecular beam epitaxy (MBE) techniques. Superlattices
can be considered one of the most important man-made or artificial materials. A super-
lattice consists of a periodic set of MQW in which the thickness of the energy barriers
separating the individual wells is made sufficiently small. As the barriers become thin-
ner, the electron wave functions corresponding to the wells overlap due to the tunnelling
effect. As a consequence, the discrete energy levels of the wells broaden and produce
energy bands, in a similar way as happens with the states of the individual atoms when
they are arranged in a crystal lattice. The most singular aspect of a superlattice consists
of introducing at will a new periodicity d in the material, which is equal to the breadth
of the well a, plus the thickness of the barrier b. Typical thicknesses for a and b could
be 4 and 2 nm, respectively. An accurate control over these small thicknesses can only be
achieved by techniques for thin film deposition such as molecular beam epitaxy or metal
organic chemical vapour deposition.

In order to study the origin of the band structure of superlattices, let us consider first
the overlapping between the electron states for a simple two-well system. This is already
a familiar problem, because from a quantum mechanical point of view it is formally
similar to the case of the diatomic molecule. Figure 5.9(a) shows two neighbouring iden-
tical quantum wells and corresponding wave functions of what is known as the double
coupled quantum well system. The solution for this problem is based on perturbation
theory in quantum mechanics. According to it, each original level, say E1, of the isolated
wells splits into two, with energies

E = E1 ± |V12| (5.4)

shown in Figure 5.9(b). V12 is given by the overlap integral

V12 =
+∞∫

−∞
ψ∗

1 V (z)ψ2dz (5.5)

The two resulting levels are separated in energy by 2|V12|, where the magnitude of
V12 of Eq. (5.5) is an indication of how much one well can influence the energy states of
the neighbouring one, hence the name overlap integral.
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Figure 5.9. (a) Double coupled quantum well; (b) splitting of the energy levels.

5.5.2. Kronig–Penney model of a superlattice. Zone folding

In order to determine the electronic band structure of superlattices, one can proceed as in
solid state physics if we assimilate the superlattice to the crystal lattice and the quantum
well potentials to the atom potentials in the crystal. Consequently, we can study the
superlattice band structure from the point of view of two approximations: the Kronig–
Penney model and the tight binding approximation, as we did for crystalline solids in
Chapter 2.

It is interesting to remark that as early as in 1931, Kronig and Penney established a
model [3] for a solid in which the periodic potential seen by the electrons was precisely
that of the square type shown in Figure 5.10 for a superlattice potential. This periodic

d = a +b

a

b

V0

V(z)

Figure 5.10. Scheme of the periodic potential of a superlattice.
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one-dimensional potential is characterized by the following parameters: well thickness a,
barrier thickness b, and barrier height V0. The spatial periodicity is d = a +b. Even if the
periodic potential of Figure 5.10 is much simpler than the real one, the Kronig–Penney
model yields very interesting results related to the structure of the bands, the forbidden
zones, size of the gaps, etc. In the well region (0 < z < a), V = 0, and the wave function
is, according to Eq. (2.11).

ψ(z) = Aeik0z + Be−ik0z (5.6)

with

k2
0 = 2mE

�2
(5.7)

Due to tunnelling, the wave function extends inside the energy barrier of height V0 and
thickness b. Therefore, if −b < z < 0,

ψ(z) = Ceqz + De−qz (5.8)

where the wave vector and the energy are related by

V0 − E = �
2q2

2m
(5.9)

From the conditions that both the wave functions and their derivatives are continuous at
z = 0 and z = a (the origin in z is taken at the left barrier of the well), we get after
operating

A + B = C + D (5.10)

ik0(A − B) = q(C − D) (5.11)

According to the Bloch theorem, expressed in the form of Eq. (2.40), we can relate the
wave functions at two different locations by

ψ(a) = ψ(−b)eik(a+b)

where k is the wave vector corresponding to the Bloch wave functions. Applying this
equation to the wave functions corresponding to the well and the barrier regions, Eqs (5.10)
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and (5.11), respectively, we have:

Aeik0a + Be−ik0a = (Ce−qb + Deqb)eik0(a+b) (5.12)

ik0(Aeik0a − Be−ik0a) = q(Ce−qb − De−qb)eik0(a+b) (5.13)

The four Eqs (5.10)–(5.13) for the amplitudes A, B, C, and D have a solution only if the
determinant of the coefficients equals zero. After some calculations, one gets the important
relation [4]:

q − k2
0

2qk0
sin k0a sinh qb + cos qa cosh qb = cos q(a + b) (5.14)

It is not difficult to solve this equation numerically. Let us assume the simple case of
a = b and further that the effective mass of the electron is the same in the well and
barrier materials. For the case of GaAs–AlGaAs and E < V0, solution of Eq. (5.14) gives
the values of allowed and forbidden energies, which are represented in Figure 5.11 for a
superlattice with a band discontinuity of 0.3 eV and an effective mass, m∗

e = 0.067m0 [5].
The figure shows that for values of a larger than about 10 nm, the electron energies are
well defined and correspond to the individual quantum wells. However, when the barrier
width is smaller than about 6 nm, bands as well as forbidden zones arise.
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Figure 5.11. Energy band diagram of a superlattice with the width of the barrier equal to the width
of the wells. After [5].
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It is evident from Figure 5.12 that the general features of the E–k relationship in a
superlattice, within the Kronig–Penney model, are very similar to the case of electrons
in solids (Section 2.5) if we replace the bulk lattice constant by the larger period of a
superlattice. The free electron parabola, therefore, breaks down into several bands and
gaps at the edges of the Brillouin zones k = ±nπ/d , as shown in the extended E–k
diagram of Figure 5.12. Next, the portions of the bands can be translated to the reduced
zone (–π/d ≤ z ≤ +π/d). Notice that everything occurs as if the superlattice potential
folds the quasi-free energy band of a solid into the centre of the reduced zone, as it can
be appreciated if we make the representation in the first Brillouin zone. Since, usually
d � a, the breadth of the bands and gaps in a superlattice are much smaller, often
receiving the names of minibands and minigaps. This band folding procedure is typical
of superlattices and is called zone folding since it implies that the pieces of the band in
the extended representation are zone-folded into the smaller zone with values of k smaller
than 2π /d.

The zone-folding effect has important consequences in the direct or indirect character
of semiconductor structures. Figure 5.13 represents the band diagram of a typical indirect
gap semiconductor with the minimum of the conduction band at the zone edge. Suppose
next that we construct a superlattice by alternating monolayers of two semiconductors
with similar electronic properties and well-matched lattice constants, but with one of
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Figure 5.12. Extended band diagram of a superlattice in reciprocal space (left). On the right, the
band diagram is represented in the reduced first Brillouin zone.
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Figure 5.13. Zone-folding effect in the band diagram of an indirect gap semiconductor.

them with the conduction band as in Figure 5.13. As indicated by the dotted line in the
figure, the minimum of the conduction band is translated to k = 0, according to the
folding procedure. The resulting semiconductor structure should, therefore, show a direct
gap at k = 0 of the same energy value as the indirect one.

Based on the zone folding concept, one can fabricate superlattices of GaAs and AlAs
with direct and indirect gaps, respectively, which show quasi-direct optical transitions.
Another example is that of the SinGem superlattices based on SiGe heterostructures
(Section 5.3.2). In these superlattices, which are constructed usually symmetrical (n = m),
the minimum of the Si conduction band close to the band edge can be brought close to
k = 0 by successive zone-folding. Evidently, the higher the number of monolayers (n),
the behaviour of the superlattice would better resemble that of a direct bandgap
semiconductor structure.

It is interesting to note that due to the small widths of the minigaps and minibands in
superlattices, as well as the quasi-direct type of transitions which might show, they find
many applications in infrared optics. In addition they can show new interesting properties
like Wannier–Stark localization and Bloch oscillations (Section 8.5).
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5.5.3. Tight binding approximation of a superlattice

In this section we will deduce a series of properties of the band diagram of a superlattice
from the tight binding approximation for solids (section 2.5.2), in a similar manner to the
previous section by using the Kronig–Penney model. For this purpose we consider the
superlattice as a set of N quantum wells along the z-direction that are weakly coupled,
in analogy with the potentials felt by electrons in solids. For instance, the Bloch wave
function in the ground state of the superlattice ψg.s. should be a linear combination of the
wave functions of each quantum well ψ(z − nd) of potential energy V (z − nd), where
we are supposing that each well is centred at locations z = nd

ψg.s. = 1√
N

∑
n

eiqndψ(z − nd) (5.15)

Proceeding as in the tight binding approximation, the Hamiltonian for the Schröedinger
equation for the wave function can be written as H0+H1, where H0 is the Hamiltonian for
one isolated well and H1 is the perturbation, in this case, the potential due to all the other
wells. Solving the perturbation problem, within the nearest neighbour approximation, one
gets following the same method as for the derivation of Eq. (2.49):

E(q) = E0 + s + 2t cos qd (5.16)

According to Eq. (5.16) the shape of the band follows a sinusoidal function
(Figure 5.14(a)), which is similar to Figure 2.6 for bands in solids [6]. Note also from
Eq. (5.16) that the band width is �E = 4 |t |, i.e. depends on the transfer integral t , which
takes into account the coupling between nearest neighbours and depends on the super-
lattice parameters. Figure 5.14(b) shows the dependence of the bandwidth on the barrier
thickness. As expected, when the barriers between wells get thicker, and therefore t ≈ 0,

we should have the same result as for multiquantum wells with single levels for the energy.
One interesting point that should be emphasized is related to the periodicity of the

superlattice in the z-direction, since in reality superlattices are three-dimensional struc-
tures. Therefore, the expression of the total energy should also take into account the
kinetic energy of electrons for their motion along the (x, y) planes. The total energy of the
electrons in the i subband should be equal to the kinetic term plus the energy corresponding
to the motion along the superlattice direction and given by equation

E(k, q) = �
2k2||

2m||
+ E0 + s + 2t cos qd (5.17)

where the subindexes of k and m refer to the bi-dimensional motion through the interface.
The DOS function can be calculated as we did for a quantum well in Section 4.2, where we
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obtained the factor m||/π�
2 for each band. Performing in the above expression the integral

over q from −π/d to +π/d we obtain, after some straightforward calculations [4], the
following expression for the DOS function:

nSL = N
m||

π2�2
cos−1

(
Ei − Eoi − si

2ti

)
(5.18)

Figure 5.15 shows the DOS function for a superlattice, together with the one for a
quantum well [5]. As a reference, the 3D-DOS function is also represented. Note that
at E = En, i.e. the values corresponding to the subband energies, the superlattice DOS
function has a value which equals half the value for a single quantum well. It should also
be remarked that as the value of the transfer integral t increases, the deviations to the
quantum well spectrum also gets larger.

5.5.4. nipi superlattices

The superlattices treated so far consisted of a periodic array of individual quantum wells
(Figure 5.10). They were obtained by alternating two materials with different gaps.
As proposed by Esaki and Tsu, an alternate way to produce a superlattice would consist
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Figure 5.15. Density of the states functions for a superlattice.

of the periodic arrangement of p–n homojunctions. In this case, there would be no band
discontinuities since the p or n character of a material, for instance, silicon, does not
change the magnitude of the energy gap. This type of structure is called a doping or nipi
superlattice. In this notation, the letter i stands for intrinsic since between p and n regions
there is always an intrinsic zone, however small, separating them. On other occasions an
extra intrinsic region is added purposely. In contrast to the quantum well superlattices,
where the electric potential space modulation along the growth direction was caused by the
conduction and valence band discontinuities, now the modulation is produced by ionized
donors and acceptors, which create the p–n space charged region around the interfaces.

Figure 5.16(a) represents an imaginary situation for the n and p regions, where the
respective impurity donors and acceptors have not been ionized yet. However, when the
unions are established, the donors and acceptors get positively and negatively charged,
respectively. As a consequence the potential energy differences originated by the space
charge causes the bending of Ec and Ev as represented in Figure 5.16(b). Taking into
account the electrostatics of the p–n junctions, it is evident that the amplitude of the
modulation EM depends on the dopant concentration (ND, NA). The magnitude of the
superlattice gap or energy difference between Ec and Ev is evidently, from Figure 5.16(b)
equal to the gap of the basic material forming the homojunction EG minus EM, i.e.

ESL = EG − EM (5.19)

Obviously, the gap can be tailored by adjusting the dopant concentrations. From
Figure 5.16(b) it can also be observed that the potential wells for electrons are located at
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Figure 5.16. (a) Doping concentration of a nipi superlattice; (b) bottom edge of conduction band
and upper edge of the valence band for a nipi superlattice.

the n regions. Around the minimum of the well, the potential can be approximated by a
parabolic one (Section 4.4.1). Within the harmonic oscillator approximation, the energy
of the electrons in the conduction band is quantized, according to Eq. (4.11). From the
solution of Poisson’s equation for the p–n junction, it is easy to calculate (Problem 5.5)
the values En of the quantized energy levels:

En = �e

(
ND

εm∗
e

)1/2 (
n + 1

2

)
, n = 0, 1, 2, . . . (5.20)

which depends on material parameters such as the effective mass, dielectric constant, and
impurity concentration. Some additional properties of nipi superlattices are: (i) The mobil-
ities are lower than in compositional superlattices because the carriers are not separated
in space from the impurities. (ii) Optical absorption is in general weaker than in composi-
tional superlattices, due to the fact that transitions from valence band levels to conduction
band ones have lower probability as a consequence of the indirect space character of the
superlattice, since electrons and holes are located at different places in real space. (iii) The
carriers show a long lifetime as a consequence of their separation after they are generated.
(iv) The nipi superlattices show interesting applications in optical computing based on the
quantum confined Stark effect (QCSE) (Section 8.4).
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PROBLEMS

1. MOSFET. (a) Make an estimation of the value of the electric field in an n-channel
MOSFET-Si transistor assuming a gate voltage VG of 4 V and an oxide thickness of
50 nm (Assume εox = 3.6, εSi = 12). Hint: from the value of the electric field in the
oxide, calculate the electric field at the interface applying the boundary condition on
the displacement vector. (b) Calculate the energy for the ground level. Hint: assume
the shape of the well is triangular.
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2. Modulation-doped heterostructure. Consider a modulation-doped AlGaAs/GaAs
heterostructure with a carrier density n2D equal to 1012 cm−2. What is the position
of the Fermi level at room temperature, assuming that the electrons are all located in
the first subband? Hint: show first that if E1 is the energy of the first subband, then

n2D = m∗
ekT

π�2
ln

[
1 + exp

(
EF − E1

kT

)]

3. Minibands in superlattices. Consider an AlGa1−xAs/GaAs superlattice with x ≈ 0.3,
a well width a = 10 nm and barrier width of b = 2.2 nm and a barrier height of V0 =
0.25 eV. From the theory of the Kronig–Penney model developed in Section 5.5.2: (a)
Find the widths of the minibands and minigaps that can exist within the barrier. (b)
Maintaining fixed value of the width (a = 10 nm), plot the energy of the first (n = 1)
conduction miniband and heavy-hole miniband as a function of the barrier width b

between 0 and 5 nm.
4. Si/SiGe superlattices. Calculate the period of a Si/SiGe superlattice, so that the band

minimum of Si, which occurs at wave number of approximately k ≈ 0.8π/a0, (a0 is
the lattice constant) be brought to k = 0. Hint: according to the zone folding concept
of Section 5.5.2, observe that the superlattice can behave optically as a direct gap
bulk semiconductor.

5. nipi superlattices. Consider a gallium arsenide nipi superlattice with equal N =
ND = NA donor and acceptor concentrations of value 5 × 1017cm−3. (a) Calculate
the separation between levels in the conduction and valence bands. (b) Show that the
value of the effective bandgap is given by

Eg = Ebulk + Ee1 + Eh1 − 2V0

where V0 is the amplitude of the periodic potential. Show that, if NA = ND = N ,
the amplitude of the periodic potential in the superlattice is given by

V0 = e2

2ε
Nz2

0

where z0 is the depletion layer width. (d) Calculate V0 and the effective bandgap
assuming the previous concentration doping and taking z0 = 20 nm.
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Chapter 6

Electric Field Transport in Nanostructures

6.1. INTRODUCTION

In previous chapters, we have studied the formation of quantum wells at interfaces between
semiconductors of different gaps. Conduction band electrons in these quasi-2D wells
behave almost as free carriers for their motion along planes parallel to the interfaces of
the well. For this kind of transport, usually called parallel transport, a semiclassical
approach, somewhat similar to the 3D bulk case, is usually valid. The main differences
which arise are related to the characteristics of the density of states function, and to those
electron scattering mechanisms which are peculiar to low-dimensional systems. However,
in the case of transport through the potential barriers at the interfaces, which is known
as perpendicular transport, the mechanisms involved are completely different to those
present in the bulk and are mainly based on the quantum tunnelling effect.

In this chapter, we study the transport properties due exclusively to the action of electric
fields and we will postpone to the next chapter, the study of these properties due to the
joint action of electric and magnetic fields. We will see that entirely new quantum effects
arise when transport in a low-dimensional semiconductor is studied under the action of
magnetic fields, such as for instance, the quantum Hall effect and the Aharonov–Bohm
effect. However, we would like to remark that, even under the sole action of electric fields,
transport in nanostructures also shows some new unexpected effects such as quantized
conductance, Coulomb blockade, etc.

6.2. PARALLEL TRANSPORT

Electronic transport in 2D quantum heterostructures, parallel to the potential barriers at the
interfaces, can be treated following a semiclassical approach as in the bulk case, if we take
into consideration that there are additional electron scattering mechanisms (e.g. scattering
due to interface roughness) and that we are dealing with a low-dimensional system. Parallel
transport in nanostructures was investigated first in the conduction of electrons along the
channel of MOSFET structures. Later, it received a great boost with the fabrication in
the 1970s of MODFETs based on modulation-doped quantum heterostructures. Common
to both devices is the fact that electron motion takes place in a region free of charged
dopants, and therefore, electrons can reach very high mobilities.
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6.2.1. Electron scattering mechanisms

The main scattering mechanisms for parallel transport in semiconductor nanostructures
are due, as in the case of bulk samples, to phonons and impurities (neutral and ionized). In
addition, there are other mechanisms, characteristic of nanostructures, such as scattering
due to interface roughness. Below we treat each of these scattering mechanisms separately.

(i) Electron–phonon scattering

Calculations performed on electron–phonon scattering mechanisms in low-dimensional
semiconductors show that the results are somewhat similar to the bulk case. In this sense,
the phonon scattering mechanism is the predominant one for temperatures higher than
about 50 K. However, when the width a of the quantum wells becomes very small, the
role of acoustic phonons is different, and usually more important, than in the 3D case,
as a consequence of the non-translational invariance in the perpendicular direction. This
can be appreciated, for instance, in a 2D quantum well for which the uncertainty in the
perpendicular component of the momentum should be ≥h/a. Hence, contrary to the bulk
case, where acoustic phonons have well defined momenta, in the case of electron–phonon
scattering in very narrow quantum wells, the phonon momentum is not conserved. As
the uncertainty in momentum increases, the number of electron–phonon scattering mech-
anisms also increases and for this reason phonon scattering becomes very considerable in
low-dimensional semiconductors.

The case of optical phonons is quite different from the bulk one, especially for nano-
structures of strongly polar materials such as III-V compounds. The interaction is
especially strong in quantum wells (Section 5.4) when there is no overlapping between
the optical phonon energy bands of the well semiconductor (e.g. GaAs) and the barrier
semiconductor (e.g. AlGaAs). If this is the case, the contributions to phonon scattering
of the confined optical modes and those associated to the interfaces become much more
important than the contribution of bulk-like optical phonons.

(ii) Impurity scattering

As for bulk samples, ionized and neutral impurity scattering constitutes the largest con-
tribution to scattering in low-dimensional semiconductors at low temperatures. The main
difference between scattering events in a bulk or in a 2D system is that, for parallel
transport, the location of the impurities is often separated from the 2D plane in which
electrons move. In modulation-doped heterostructures (Figures 5.4 and 5.6), the charged
donors are located in the AlGaAs, while electron motion takes place in a separated region
in the GaAs parallel to the interface. Similarly, in a MOS structure (Figure 5.1), electrons
move within the inversion channel, which is separated from impurities located in the thin
gate oxide.
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For the calculation of impurity scattering in MODFET quantum heterostructures
(Section 5.3.1) some simplifying assumptions are usually made, such as δ-doping, i.e.
the ionized impurities are supposed to be located in a 2D plane at a distance d of the
electron channel, and that the electrons in the channel which participate in the scatter-
ing events are those with energies very close to the Fermi level. Furthermore, it is also
assumed that the concentration of impurities is not too high, so that each charged impurity
interacts independently with the carriers. With these assumptions, is not difficult to reach
the conclusion (see for instance, Ref. [1]) that the mobility of the carriers increases as d3.
However, there is an optimum value of d, because if d is too large, the concentration of
electrons in the channel diminishes significantly, as a consequence of the decrease in the
electric field, and the transconductance of MODFETs is greatly reduced.

(iii) Surface roughness scattering

Interface scattering is due to the interaction of electrons with a roughened surface, in
contrast to an ideal perfect flat surface for which this interaction would be elastic. Real
interfaces have a roughness at the atomic level, which produces non-specular reflections of
carriers, and therefore, a loss of momentum contributing to relaxation mechanisms. Inter-
face scattering has been studied for a long time, due to its important role in transport along
thin films, but modern quantum theories in low-dimensional systems were not developed
until the 1980s. The role of interface scattering for parallel transport in modulation-doped
heterostructures is not very important, due to the high perfection of the interfaces when
growth techniques such as molecular beam epitaxy are used. In this case the surfaces are
practically flat, with few steps of the size of a monolayer.

In the case of MOS structures, interface scattering becomes more important since the
oxide is grown thermally and the interface is not as perfect as in the modulation-doped
heterostructure. The contribution of interface scattering in MOS structures depends on
the quantum well width. In effect, as the width decreases the electron wave function
penetrates deeper into the oxide-semiconductor potential barriers, i.e. the electrons are
more exposed to the interface roughness and the corresponding scattering increases. This
is the reason behind the observed decrease of mobility with applied gate voltage. Anyway,
roughness scattering, like impurity scattering, only becomes significant at temperatures
low enough for phonon scattering to be negligible. Finally, in the case of narrow quantum
wires, the contribution of interface scattering is almost one order of magnitude larger than
in 2D systems. This is especially so when the boundaries of the wires are defined by
lithographic techniques, in which case surface roughness can be a limiting factor for the
mobility, even at room temperature.

(iv) Intersubband scattering

Let us consider a 2D electron system confined in a potential well as in the case of a
modulation-doped quantum heterojunction or the MODFET (Section 5.3.1). It is evident
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that for large electron concentrations in the well, the levels with energies higher than
the first one E1 will start to become filled. Imagine a situation in which the electron
concentration is high enough so that the Fermi level EF just crosses the quantized level
corresponding to n = 2. Then, electrons with energies around EF can either undergo an
intraband scattering transition within the subband n = 2 or an interband transition between
subbands n = 1 and n = 2. Therefore, these electrons have two possible scattering chan-
nels and the total scattering probability should increase. As a consequence, the electron
mobility should become smaller. This effect can be generalized to other subbands. In
summary, as the electron concentration in a quantum well increases, additional scatter-
ing channels start to contribute to the overall scattering rate, and the mobility of the
2D electron gas decreases. This effect is even more acute in 1D systems for which the
density of states diverges at those values of energy coinciding with the quantum levels
(Section 4.5).

The effect of subband scattering in the mobility has been studied by Störmer et al. in
1982 in AlGaAs/GaAs modulation-doped heterojunctions [2] to which a third terminal
(the gate) was added, like in the MODFET, in order to control the electron concentration
in the well. As Figure 6.1 clearly shows, the onset of a second channel allows intersubband
scattering between the n = 1 and n = 2 subband. At a given gate voltage, the Fermi level
reaches the n = 2 level and the corresponding subband can host scattered electrons, thus
decreasing mobility at a given voltage interval.
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Figure 6.1. Decrease in mobility as a consequence of subband scattering between subbands n = 1
and n = 2. After [2].
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6.2.2. Experimental data on parallel transport

Figure 6.2 shows the large improvement, experienced during a 12-year period by the
electron mobility for parallel transport at low temperatures in GaAs-based nanostruc-
tures [1], like for instance MODFETs. There are several reasons for this success. The
main reason, as pointed out before, is due to the physical separation between dopants
and carriers in modulation-doped heterostructures. In order to make this separation even
more effective, a semi-insulating layer, called a spacer, is added between the donor
layer and the 2D electrons in the conducting channel. This spacer is especially effec-
tive at low temperatures for which the impurity–electron scattering mechanism becomes
predominant. Another reason for the large increase in the electron mobility is the high
purity of the bulk material, caused by the improvement in the growth techniques of
III-V materials, as can be appreciated in Figure 6.2 for the “clean bulk” curve, which for
T ≥ 100 K shows excellent results. The improvements in the purity of the layer constitute
another important factor and are due to the ultrahigh vacuum and gas purity characteris-
tics of growth techniques such as molecular beam epitaxy. As the temperature approaches
100 K and gets close to room temperature, the dominant scattering mechanisms are due
to phonons, especially optical phonons in the case of highly polar substances like GaAs
(Section 6.2.1 (i)).

As we should expect, the mobility of electrons in a silicon MOSFET should be much
lower than in a MODFET. The mobility in modulation doped AlGaAs/GaAs can reach
values as high as 107 cm2 V−1s−1, while in a MOSFET the values are about three orders
of magnitude lower (Figure 6.3) [3]. There are several reasons for this. First, the effective
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mass of electrons in Si is much higher than in GaAs. Second, the effect of impurity
scattering in a Si MOSFET, caused by charges and impurities in the oxide and the interface,
is larger than in the case of AlGaAs/GaAs, where the separation of charged impurities and
carriers is very effective. Third, as can be appreciated in Figure 6.3 the effect of surface
roughness at low temperatures becomes the dominant scattering factor. This was expected
because, as we remarked in Section 6.2.1(iii), the silicon–oxide interface, grown thermally,
is not as perfect as the AlGaAs/GaAs interface produced by sophisticated techniques such
as MBE.

Under the action of very high electric fields (≥1 MV cm−1), surface roughness
scattering dominates over all other mechanisms in limiting the value of the electron
mobility. In this respect, it is also interesting to mention that in quantum wires, sur-
face roughness scattering mechanisms, produced as a consequence of present patterning
techniques used in their production, result in experimental values of mobility much lower
than the predicted ones.

Recently, the mobility in Si–Ge strained heterostructures (Section 5.3.2) has been
the object of several investigations in an effort to fabricate high frequency bipolar het-
erostructure transistors (Section 9.3) and high electron mobility transistors based on silicon
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technology. As we know, holes in III-V compounds and heterostructures have very high
effective masses. Therefore, 2D hole transport in Si–Ge heterostructures with large valence
band discontinuities has been intensively investigated, proving that hole mobilities as high
as 105 cm2V−1s−1 can be attained.

6.2.3. Hot electrons in parallel transport

In some kinds of field effect transistors (Section 9.5) and in some nanostructures, electrons
are accelerated by the electric field to kinetic energies much higher than their energies at
thermal equilibrium, which are of the order of kT. After the acceleration by high electric
fields, the electron energy distribution corresponds to an effective temperature higher
than that of the crystal lattice, and the electrons receive the name hot electrons. In this
situation, the new electron energy distribution is said to be decoupled from that of the
lattice. Following a semi-classical approach, the effective electron temperature Te of the
electron distribution of average energy �E is defined by the equation

�E = 3

2
kTe (6.1)

Hot electron transport has been widely studied in bulk semiconductors and since the
1980s in nanostructures. Studies of hot electron parallel transport in AlGaAs/GaAs het-
erostructures have shown that the electron velocities reached under the action of an electric
field are higher than in bulk GaAs and that the difference becomes larger at low temper-
atures (Figure 6.4) [4]. The increase in velocity has been attributed to the quantization of
electron energies in quantum wells. The value of the velocity is specially high for the low-
est subband (E = E1) in comparison to the second subband (E = E2) for which the electron
wave function extends much more outside the barrier region and, as a consequence, the
carriers are located closer to the charged donors, thus increasing impurity scattering.

An interesting effect, called real-space transfer (RST), arises for hot electron parallel
transport in quantum heterostructures and constitutes the basis of a new kind of high
frequency devices. If the energy of the hot electrons is high enough, some of them will be
able to escape from the well as indicated in Figure 6.5 [5] for an AlGaAs/GaAs/AlGaAs
quantum well, for which the electrons are transferred in real space from the undoped
GaAs to the surrounding AlGaAs doped semiconductor. In a low-dimensional electronic
device as the one shown in Figure 6.5(b), electrons can be transferred from a high electron
mobility material (GaAs) to one with a lower mobility (AlGaAs) as the voltage between
source and drain is increased. As a consequence, a negative differential resistance (NDR)
region in the I–V characteristics (Figure 6.5(c)) is observed. As will be shown in Chapter 9,
the NDR effect leads to new kinds of devices such as resonant tunnelling transistors.
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In bulk samples, transport under the action of electric fields is studied in regions of
dimensions much larger than the electron mean free path. However, in modern field effect
devices (e.g. the MODFET) the source–drain distance and the gate lengths are very short,
of the order of hundreds of nanometres. Therefore, electrons can be accelerated under
the action of an electric field without suffering any collision. These electrons are called
ballistic electrons and can reach drift velocities of the order of 107 cms−1, higher than the
saturation drift velocities by a factor as much as two. This is called the velocity-overshoot
effect, which can be used in FET’s to make the transit time of electrons between source
and drain shorter, and consequently operate at higher frequencies (Chapter 9).

6.3. PERPENDICULAR TRANSPORT

In this section, we study the motion of the carriers perpendicularly to the planes of the
potential barriers separating quantum heterostructures. This kind of transport is often
associated to quantum transmission or tunnelling, since the carriers do not need to have
enough energy to surmount the barriers. When a particle goes through a potential barrier,
the wave function and its derivative (in the perpendicular direction) must be continuous,
which leads to transmitted and reflected wave functions. As we will see, tunnelling through
potential barriers will also lead us to the concept of negative differential resistance in the
I–V characteristics, a phenomenon already observed by Esaki in 1957. It is also interesting
that sixteen years later at IBM, Esaki, together with Tsu, proposed the observation of
negative differential resistivity effects across AlGaAs/GaAs superlattices, arising from
resonant tunnelling (RT) through the barriers. However, it was not until the beginning
of the 1980s that heterojunctions of enough quality could be fabricated and used in RT
diodes and transistors (Chapter 9).

6.3.1. Resonant tunnelling

Resonant tunnelling (RT) through a potential double barrier is one of the quantum vertical
transport effects in nanostructures with more applications in high frequency electronic
diodes and transistors as we will see in Chapter 9. Figure 6.6(a) shows the energy band
diagram of a double barrier nanostructure made of undoped GaAs surrounded by AlGaAs
in each side, and Figures 6.6(b) and 6.6(c) show the same structure under increasing
applied voltages [6]. RT occurs for a voltage V1 = 2 E/e, where E coincides (Figure 6.6(b))
with the quantized energy level E1. In this situation, the Fermi level EF of the metal-
lic contact on the left coincides with the n = 1 level in the well. Then, the tunnelling
transmission coefficient approaches unity and a large current flows through the structure.
As the voltage increases over 2E1/e (Figure 6.6(c)), EF surpasses E1 and the current
through the structure decreases. Figure 6.6(d) shows the variation of the current as a
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Figure 6.6. Schematics of the resonant tunnelling effect, as described in the text. After [6].

function of voltage. Evidently, for high values of V, the barriers that electrons have to
tunnel become much smaller and the current increases again. This qualitative explanation
was quantitatively described by Tsu and Esaki, both in diodes and superlattices quantum
heterostructures grown by molecular beam epitaxy. The most important feature in the I–V
characteristics of Figure 6.6(d) is that after the maximum, the slope of the curve becomes
negative, i.e. there exists a region with differential negative resistance. To study the trans-
mission properties of the double barrier, use is made of the results of a single barrier. The
transmission probability in a single barrier T(E) continually increases with the energy E
of the incident electrons if E/e < V0. The case of a double barrier is completely different
and T(E) is given by the product of TE for the first barrier or emitter and that of the second
one TC or collector, that is,

T (E) = TETC (6.2)

Again we are only interested in the case where E is smaller than the barriers’ height.
To find T(E) the so-called transfer matrix method described in quantum mechanics and
optics texts is used. This method relates the coefficients of the incident and reflected
wave functions of the neighbouring adjacent barriers by a 2 × 2 matrix, called transfer of
propagating matrices. The case in which both barriers are identical is particularly simple
to solve. The transmission coefficient of the structure is then given by [3]:

T (E) = T 2
0

T 2
0 + 4R0 cos2(ka − θ)

(6.3)
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Figure 6.7. (a) Electron of energy E impinging on a resonant double barrier. The quantum well has
energy levels E1, E2, E3; (b) transmission coefficient as a function of incident energy.

where T0 and R0 are the transmission and reflection coefficients of the single barrier, a is
the well thickness, k the electron wave number of the wave function in the well, and θ is
the phase angle.

Figure 6.7 shows the dependence of T(E) as a function of E for an RT structure with
three energy levels in the quantum well. Observe that the transmission coefficient is one,
at energies corresponding to the three levels, i.e. when the energy of the incident electron
is aligned with these levels. The width of the resonance peaks increases with energy. This
can be qualitatively explained by the Heisenberg uncertainty principle since �E should be
inversely proportional to the lifetime τ of the states in the well. Electrons at higher levels
in the well have to tunnel through lower effective barriers and should therefore have a
shorter τ .

6.3.2. Electric field effects in superlattices

We have seen in Chapter 5 that electron states in superlattices are grouped in elec-
tronic bands or minibands, which are very narrow in comparison with bands in crystals
(Figures 5.11 and 5.12). The small width of the bands and the energy gaps, or mini-
gaps, was a consequence of the much larger dimensions of the superlattice period d in
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comparison with the lattice constant of a crystal, a. As we will describe in this section,
electrons in narrow bands, under the action of an electric field will reveal some observ-
able effects, such as Bloch oscillations, which were theoretically predicted several decades
before. Also, the energy levels in each quantum well of width a of the superlattice will
form a Stark ladder of step height eFa, where F is the applied electric field.

Let us suppose an electronic band in k-space such as the one shown in Figure 6.8,
which is similar to the first miniband of a superlattice (Figure 5.12). Since F is applied in
a given direction (let us call it z, perpendicular to the planes of the quantum wells), we
can treat the problem as being one dimensional. The equation of motion for an electron
in this band, under the action of an electric field is, from Eq. (2.57):

�
dk

dt
= −eF (6.4)

Since the electric field is constant, the solution of Eq. (6.4) for the wave number is

k(t) = k(0) − eF

�
t (6.5)

According to this equation, the wave vector increases linearly with time. Suppose that
the electron is initially at rest at the origin O in Figure 6.8 and that the direction of the
field is opposite to k. Under this condition, the electron starts to move from O towards A
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Figure 6.8. Motion in k-space of an electron in an energy band under the action of an electric field
(scattering effects are neglected).
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until it reaches the border of the Brillouin zone at point B (k = π/d). At B, the velocity
is zero because the slope is zero (see Eq. (2.52)) and the electron is transferred to point C
at k = −π/d by the reciprocal vector G, i.e. it suffers a Bragg reflection (Section 2.5.1).
From C, it moves in k-space towards D by the action of the field, closing one cycle in
k-space when the electron reaches O again. The motion of the electron is periodic and the
velocity is given by equation:

v = 1

�

dE

dk
(6.6)

also oscillates if the band energy is like the one represented in Figure 6.8. Therefore, the
electron performs an oscillatory motion both in real and k-spaces.

The period TB of the oscillatory motion in k-space is determined by the time spent in
covering the width 2π /d of the Brillouin zone and given by:

TB = 2π

ωB
= 2π�

eFd
(6.7)

Note that TB and ωB depend only on the periodicity of the superlattice and the electric
field, but are independent of the energy width of the miniband. Evidently, in order to
experimentally observe Bloch oscillations, TB should be shorter that the relaxation time
due to scattering. Bloch oscillations cannot be observed in bulk solids because their typical
values of TB (∼10−11s) are much longer than the corresponding ones in a superlattice,
since d can be as much as two orders of magnitude larger than the lattice constant. We
can reach the same conclusion if we consider that the width of the energy bands in solids
are much greater than in a superlattice. Therefore the electrons close to O in Figure 6.8,
are not able to surmount the energy to values close to B at the Brillouin zone (k = π /d)
since the wave number given by Eq. (6.5) cannot become large enough, due to scattering
events which send back the electrons again close to O. In practice, the value of TB cannot
be made very low by making the values of F very high since this would produce Zenner
tunnelling, that is, electrons originally in one tilted miniband (see Figure 6.9(b)) could
tunnel across the gap to a neighbouring miniband and Bloch oscillations would not be
produced. Therefore, in order to observe Bloch oscillations the minibands should be quite
narrow, contrary to the minigaps.

Figure 6.9(a) shows the miniband energy structure of a superlattice in which for sim-
plicity only two minibands are shown. If a constant electric field F is applied in the
z-direction, the bands become tilted with a slope equal to –eF, since the expression of the
potential energy becomes, in relation to the energy E0 at the origin:

E(z) = E0 − eFz (6.8)
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Because of the inclination of the bands, shown in Figure 6.9(b), an electron with total
energy ET will oscillate in space between locations z1 and z2. If F increases, the bands
become steeper and the electron is spatially localized in a smaller region. Evidently, for
fields high enough, the electron would eventually become localized within a quantum
well. The condition for this to occur is that the energy drop �E between levels in two
successive walls should be higher than the energy width � of the minibands, since for
�E = eFd > �, the wells become completely decoupled (Figure 6.10(a)). Therefore,
for fields larger than �/ed, the electrons are localized in quantum wells whose eigenstates
differ considerably in energy and the concept of energy miniband breaks down. Instead,
the quantized energy states form what is known as a Stark ladder. Stark localization in
AlGaAs–GaAs superlattices, first observed by Méndez [6], has important applications in
electro-optical devices (Chapter 10).

Similarly to resonant tunnelling diodes, superlattices also show negative differential
resistance (NDR) regions in their I–V characteristics, which can be used in a series of
electron devices. The regions of NDR are observed when high electric fields are applied
through the structure and the successive quantum wells differ in energy by about eFd.
From Section 6.3.1 we know that resonant tunnelling occurs when

E2 − E1 = eFd (6.9)
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where E1 and E2 are now the levels when F is applied, which do not have necessarily to
coincide with the levels when F = 0. As shown in Figure 6.10(b), a region of pronounced
NDR appears in the I–V curve, right after the resonance peak. Therefore superlattices, like
resonant tunnelling diodes, can also be used in high-frequency oscillators and amplifiers.

6.4. QUANTUM TRANSPORT IN NANOSTRUCTURES

Next we are going to deal with quantum transport, which is produced when nanostructures
are connected to an external current by means of leads or contacts. This transport is also
called mesoscopic transport. As we explained in Section 1.3, the term “mesoscopic” refers
to systems with a range of sizes between the macroscopic world and the microscopic or
atomic one, and which have to be explained by quantum mechanics. These systems
in electronics are also known as submicron or nanoscale devices. One very interesting
phenomenon which appears in mesoscopic transport is the quantization of the conductance
in units of 2e2/h (Sections 6.4.1 and 6.4.2). Another very interesting phenomenon called
Coulomb blockade can be observed in very small nanometric structures, like a quantum
dot (Section 6.4.3).
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In order to observe quantum transport effects in semiconductor nanostructures, some
conditions must be met. In general we can say that at a given temperature, quantum
transport will be more easily revealed in nanostructures in which the electron effective
mass is small, since this implies high electron mobilities. In addition, as was remarked in
Section 4.2, the energy of electron levels in a quantum well increases when the effective
mass decreases. Therefore, the smaller the effective mass, the higher the temperature at
which quantum transport can be observed.

Transport in mesoscopic devices is usually ballistic (Section 6.2.3), since the dimen-
sions of the devices are smaller that the mean free path of electrons, which in the case of
AlGaAs/GaAs heterostructures at low temperatures can be longer than several microns.
Another important property of ballistic transport, in addition to the non-scattering proper-
ties, is that electrons do not lose their phase coherence, since they do not suffer inelastic
collisions. Therefore electrons can show phase interference effects in mesoscopic systems.

6.4.1. Quantized conductance. Landauer formula

For an elementary description of quantum conductance effects, it is more appropriate to
deal with 1D mesoscopic semiconductor structures like quantum wires. If the wire is
short enough, i.e. shorter than the electron mean free path in the material, there would
be no scattering and the transport is ballistic. Suppose, as in Figure 6.11, that the 1D
quantum wire is connected through ideal leads, which do not produce scattering events,
to reservoirs characterized by Fermi levels EF1 and EF2. Suppose also that in order for
the current to flow through the quantum wire, a small voltage V is applied between the
reservoirs. As a consequence, there is a potential energy eV between the two reservoirs
equal to EF1 − EF2. The current across the wire should be given by the product of the
concentration of electrons (obtained from the density of states function n1D(E), in the

Reservoir

Lead

Quantum wire 

Lead

Reservoir

Figure 6.11. Schematics of a 1D mesoscopic system used to derive the Landauer formula.
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energy interval eV ), the electron velocity v(E), and the unit electronic charge:

I = en1D(E)v(E)eV (6.10)

Substituting n1D(E) by its expression given by Eq. (4.21) (without the two factor
because now the electrons move in one direction), one obtains the following value of the
current:

I = 2e2

h
V (6.11)

which, interestingly enough, is independent of the carrier velocity. The value of the
conductance G ≡ (I/V ) is therefore:

G = 2e2

h
(6.12)

It is interesting to observe that the conductance of the quantum wire is length
independent, in contrast to the classical case where it varies inversely to the length.

The quotient

G0 = e2

h
(6.13)

is called the quantum unit of conductance and corresponds to a quantum resistance of
value

R0 = h

e2
= 25.812807 k� (6.14)

which can be experimentally determined. Since the quantity 2e2/h appears very often, it
is usually called fundamental conductance.

The above results on quantum conductance and resistance have been derived in the
simplest possible manner, using a 1D mesoscopic system. This quantification of macro-
scopic classical concepts, like conductance and resistance, is of fundamental importance in
mesoscopic physics. Before we go into deeper subjects, it is convenient to generalize the
above results. One generalization which will be treated in the next section consists of the
study of nanostructures with many leads, instead of the two characteristic of a 1D system.
A second generalization is related to the existence of energy subbands in low-dimensional
semiconductors (see, for instance, Section 4.2). Higher subbands than those correspond-
ing to the first quantization level can participate in transport if the electron concentration
or the energy becomes high enough.
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In the case of quantum wires, the subbands – or channels in the language of quantum
transport – arise from the transverse states (Section 4.5). Assuming the existence of several
channels, let us suppose that the leads can inject electrons in any channel or mode m and
that, after interacting with a scattering centre in the mesoscopic structure, the electrons
emerge through any channel n. These electrons will make a contribution to the system’s
total conductance equal to the product of the conductance quantum 2e2/h and the quantum-
mechanical transmission probability |tnm|2 for electrons being injected through channel
m and emerging through channel n. (Observe that, in this formulation, the transmission
probability is expressed in terms of the amplitude or transmission coefficients tnm of the
electron wave functions.) Therefore, the total conductance will be obtained by adding
over all channels:

G = 2e2

h

N∑
n,m

|tnm|2 (6.15)

where N is the number of quantum channels contributing to the conductance. Eq. (6.15)
can be considered as a generalization of Eq. (6.12) for a mesoscopic system with two
leads and many channels, and is called the Landauer formula.

For many quantum transport studies, a nanostructure consisting of a small constriction
within a 2D system is used. Such a structure is illustrated in the inset of Figure 6.12 and
is based on a split gate acting on the electrons of a 2D heterostructure. Because of the
special shape of the gate, the electrons in the 2D plane are constrained to travel through
a very small or quasi-1D region, as a consequence of the distribution in electrical voltage
when an external voltage is applied to the gate. This structure is called quantum point
contact (QPC) or an electron waveguide, because of the analogy of the structure with
waveguides in electromagnetism.

Figure 6.12 shows the first observation of quantum conductance by Wees et al. in 1988
in the QPC structure (see inset) formed in an AlGaAs/GaAs quantum heterostructure [7].
As can be appreciated, the values of the conductance are quantized in multiples of the
fundamental conductance 2e2/h when the gate voltage is varied. This quantification can
be shown to arise from Eq. (6.15) since the transmission probability coefficients approach
unity for very low scattering rates as is the case in the QPC. The observation of sharp
plateaus in the I–V characteristics is not always easy since the sharp I–V structure can
be degraded by several factors: inelastic scattering effects, non-zero resistance of the
electrical contacts to the leads, impurities, surface roughness, etc. As a consequence,
the magnitudes of the experimental values of the conductance steps can vary by a few
percent, as shown in the figure. In contrast, we will see in the next chapter that, under
the effect of strong magnetic fields, the accuracy in the conductance steps can be about
106 times better. This is the reason why the quantum Hall effect (Section 7.7) finds many
applications in metrology.
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Figure 6.12. Quantum conductance at 0.6 K as a function of gate voltage for the quantum point
contact, shown in the inset, created within an AlGaAs–GaAs heterojunction. After [7].

6.4.2. Landauer–Büttiker formula for multi-probe quantum transport

In the preceding section we have derived Eq. (6.15) for quantum transport in a two-lead
nanostructure. Now let us generalize this equation to the case of nanostructures with
several leads. Let us suppose a nanostructure like the one shown in Figure 6.13, often
used in quantum Hall effect measurements (Section 7.7), with two current leads connected
to corresponding reservoirs and several voltage probes. The reservoirs serve as an infinite
source and sink of electrons and are kept at constant temperature, even if they provide
or take electrons from the structure. We will calculate as before the current in any lead
i connected to reservoir µi by assuming first that there is only one channel in each lead.
Similarly, we also follow the procedure of the scattering or transmission matrix formed by
the transmission coefficients Tij connecting leads i and j. Since electrons incident to the
structure from any lead can be reflected, we also make use of the reflection coefficients Ri.
To find the current Ii in lead i, we have to take into account the following contributions:
(i) the current injected through the lead taken from reservoir µi which is given by (2e/h)µi;
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Figure 6.13. Diagram of a typical nanostructure used to make quantum Hall effect measurements
(see text).

(ii) the fraction Ri of this current which is reflected back into the lead, and (iii) all the
currents from the other leads injected into lead i. The sum of all these contributions, with
their respective signs, gives the current Ii in lead i:

Ii = 2e2

h


(1 − Ri) Vi −

∑
j�=i

TijVj


 (6.16)

where use has been made of the voltages Vi corresponding to µi, i.e. µi = eVi. We should
point out that the values of Vi in the above expression are referred to a common voltage
V0 = µ0/e, where µ0 corresponds to the lowest energy level of the Fermi distribution in
the reservoirs, below which all energy levels are occupied and therefore cannot contribute
to the current. Evidently, at temperatures close to T = 0 K, µ0 should coincide with the
Fermi value of the smallest value of all µi.

The above equation was obtained for leads with one single channel. The multiprobe
generalization assumes that in each lead i, there are Ni propagating channels. We define
generalized transmission coefficients Tij,αβ for the probability of a carrier in lead j and
channel β to be transmitted into lead i and channel α. In the same manner, general-
ized transmission coefficients Ri,αβ are also defined for the probability of a carrier being
reflected from channel β into channel α, both in lead i. Proceeding now similarly to the
case of one channel, we add the contributions of all possible currents to the total current
in lead i and obtain:

Ii = 2e2

h


(Ni − Ri) Vi −

∑
j�=i

TijVj


 (6.17)
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where Vi is the voltage of reservoir i and Tij and Ri are the reduced transmission and
reflection coefficients defined by

Tij =
∑
α,β

Tij,αβ and Ri =
∑
α,β

Ri,αβ (6.18)

Eq. (6.17) is called the Landauer–Büttiker formula for multi-probe quantum transport
for leads with several channels. As in the equation for the quantized conductance of
Section 6.4.1, the fundamental conductance factor, 2e2/h, appears again in the expression
for the current.

We can further simplify this equation if we take into account the conservation of current
in the mesoscopic structure. The net current Ii injected into the structure by lead i, which
equals (2e2/h)NiVi minus the reflected fraction (2e2/h)RiVi, should have the same value
as the sum of all currents that originating from Ii leave the structure, i.e. (2e2/h)

∑
j�=i

TijVij

Therefore, we should have

Ni − Ri =
∑
j�=i

Tij (6.19)

Using this result, Eq. (6.17) can also be written in the form

Ii = 2e2

h

∑
j�=i

Tij(Vi − Vj) (6.20)

which is another expression of the Landauer–Büttiker formula.

6.4.3. Coulomb blockade

We know that in microelectronic devices like the MOSFETs the magnitude of the currents
are reduced as the feature size of the device shrinks. In the limit we can ask ourselves
what happens when the current is transported by just one single electron. Imagine a
semiconductor of nanometric size in the three spatial dimensions, such as for instance,
a quantum dot (Section 4.6). We will show in this section that even the change of one
elementary charge in such small systems has a measurable effect in the electrical and
transport properties of the dot. This phenomenon is known as Coulomb blockade, which
we will discuss in the simplest possible terms.

Let us imagine a semiconductor quantum dot structure, connected to electron reservoirs
at each side by potential barriers or tunnel junctions (Figure 6.14(a)). In order to allow
the transport of electrons to or from the reservoirs, the barriers will have to be sufficiently
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Figure 6.14. (a) Sketch of a quantum system to observe Coulumb blockade effects; (b) energy
distribution when an external voltage is applied through the dot. The levels shown in
the dot depend on the number N of electrons in it.

thin, so that the electrons can cross them by the tunnel effect. Figure 6.14(b) represents
the energies of the quantum dot when the number of electrons in the dot, N, is changed
in amounts of single unit charges. Evidently potential differences can be provided if an
external voltage source is connected to them.

Suppose that we wish to change the number N of electrons in the dot by adding just
one electron, which will have to tunnel for instance from the left reservoir into the dot.
For this to happen, we will have to provide the potential energy eV to the electron by
means of a voltage source. If the charge in the quantum dot is Q and its capacitance C,
the potential energy is Q2/2C. Therefore an energy of at least e2/2C will have to be
provided to the electron, which means that for the electron to enter the dot, the voltage
will have to be raised to at least e/2C. Since the electron can either enter the dot or leave
it (this process is equivalent to a hole entering the dot), we see that electrons cannot
tunnel if

|V | <
e

2C
(6.21)

Therefore, there is a voltage range, between −e/2C and e/2C, represented in Figure 6.15
in which current cannot go through the dot, hence the name of Coulomb blockade given
to this phenomenon.
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Evidently if the above process is continued and we keep adding more electrons, we
will have the situation represented in Figure 6.16, in which we will observe discontinu-
ities in the current through the quantum dot whenever the voltage acquires the values
expressed by:

V =
(

1

2C

)
(2n + 1)e, n = 0, 1, 2, . . . (6.22)
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Figure 6.15. I–V characteristics in a quantum dot showing the Coulomb blockade effect.
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Figure 6.16. Charging of a quantum dot capacitor as a function of voltage, in normalized
coordinates (see text).
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Observe that in Figure 6.16 we have made use of normalized coordinates, both in the
horizontal and vertical axes, to better appreciate the effect of the quantification in current
and voltage.

It is also interesting to observe from the above equations that as the size of the quantum
dot is reduced, and therefore C gets smaller, the value of the energy necessary to change
the number of electrons in the dot increases. In this case, it will be easier to observe the
Coulomb blockade, since the changes in voltage and electric energy for electrons to enter
the dot also increase. This change in electric energy has to be much larger than the thermal
energy kT at the working temperature, in order to observe measurable Coulomb blockade
effects. Therefore, we should have for the capacitance

C � e2

kT
(6.23)

For this condition to be fulfilled, either the capacitance of the dot should be very
small (values less than 10−16 F are very difficult to get) or we should work at very low
temperatures, usually smaller than 1 K.

Another condition to observe single electron effects is that the number of electrons
in the dot should not fluctuate in equilibrium. Let us assume that the time taken for an
electron to be transferred in or out of dot is of the order of RTC, where RT is the equivalent
resistance of the tunnel barrier and C the capacitance of the dot. Fluctuations in the number
of electrons in the dot induce changes in potential energy of the order of e2/C. Therefore
we should have, according to the uncertainty principle,

�E�t = e2

C
RTC > h (6.24)

and consequently for Coulomb blockade effects to be clearly observed we should have

RT � h

e2
= 25.8 k� (6.25)

In single electron transport experiments, usually the current is measured, which is
proportional to the conductance G. In terms of the conductance, the above condition can
be written as

G � e2

h
(6.26)

A very interesting challenge of future electronics is the control of switching devices
by just one electron. In Section 9.7, we will consider the single electron transistor (SET)
whose functioning is based on single electron effects.
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PROBLEMS

1. Impurity scattering for parallel transport. The mobility of electrons for parallel
transport at low temperatures in a 2D structure similar to that of Figure 5.4 is limited
by ionized impurity scattering and is approximately given by (see Ref. [1])

µ ≈ 16|d|3 e

�
(2πn2D)1/2

where d is the distance from the plane where electrons move to the plane in which the
impurities are located and n2D is the density of ionized impurities. (a) Calculate
the values of µ for the cases d = 10 nm and d = 20 nm, and n = 1016 m−2. Compare the
calculated values of µ to those of Figure 6.2 at low temperatures. (b) Explain
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qualitatively the strong dependence of µ on d, as well as the compromise that should
be reached between large and small values of d.

2. Resistance of one channel. (a) From the Landauer formula for the total conductance
of a system, Eq. (6.15), show that the resistance for the case of just one channel can
be expressed as

R = h

2e2
+ h

2e2

R

T

where R and T are the transmission and reflection coefficients. (b) Show that if the
channel of the above example is formed by a material which is a perfect conductor,
then

R = h

2e2

Explain why the above value for the resistance is different from zero.
3. Voltage probes. Suppose a system formed by one 1D conductor between two contacts,

1 and 2, which transports a current I when a difference of voltage V is applied between
them. A voltage probe (contact 3) is connected in the middle between contacts 1 and 2.
Show that the voltage V3 at this probe is given by V/2, i.e. the same value as we would
expect classically. Hint: for the voltage probe 3 the current is I = 0. With this value
for I, obtain from the Landauer–Büttiker formula, Eq. (6.17), the expression for V3

and assume that by symmetry considerations t3,1 = t3,2.
4. Incoherent transmission through a double barrier. Suppose two tunnelling barriers

in series separated by a small distance. Show that the transmission T through the
double barrier is given by

T = |t1|2|t2|2
1 − |r1|2|r2|2

where t1, t2 are the transmission amplitudes of each barrier and r1, r2 the correspond-
ing reflection amplitudes. Hint: if you call α the amplitude from barrier 1 inciding
in barrier 2, β the amplitude from barrier 2 inciding in barrier 1, and γ the outgoing
amplitude from barrier 2, we have

|α|2 = |t1|2 + |r1|2 |β|2

|β|2 = |α|2 |r2|2

|γ |2 = |α|2 |t2|2
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5. Composition of two series resistances. Suppose two tunnel barriers in series with
the amplitudes of transmission and reflection given in the previous problem. Show
that the total resistance is equal to

R = h

2e2

(
1 + |r1|2

|t1|2 + |r2|2
|t2|2

)

Compare with the classical result derived from Ohm’s law.
6. Two-terminal and four-terminal resistances. A current of value I is passed between

contacts 1 and 2 along the two ends of a longitudinal structure. Voltage probes 3
and 4 are placed between contacts 1 and 2. Define a two-terminal resistance R12,12

as the quotient of the voltage V12 between contacts 1 and 2 divided by the current
I12 between these contacts. We also define a four-terminal resistance R12,34 as the
quotient of the difference of potential between the voltage probes 3 and 4 divided by
I12. By following the procedure of Landauer–Büttiker show that:

R12,12 = h

2e2

1

t12

R12,34 = h

2e2

1

t12

t31t42 − t32t41

(t31 + t32) (t41 + t42)

(Perhaps, at this time you wonder why both results are different, since the voltage
probes take no current. This point has arisen a long controversy.)

7. Observation of single electron effects. Suppose a metallic quantum dot, of shape
similar to a flat circular disk of radius R parallel to an infinite metal plane, at a
distance L from the plane. Show that in order to observe single electron effects at
room temperature, the radius of the dot should be of the order of a few nanometers.
Explain also the situation if the temperature is very low. Hint: assume that we know
from electrostatics that if R � L the capacitance of the dot is C = 8ε0εrR. Take as
value of εr the relative dielectric constant of silicon.

8. Single-electron turnstile. The single-electron turnstile consists of a quantum dot
that, under the action of an alternating voltage, transfers one electron through the dot
each cycle. Two AC signals, 180 degrees out of phase, are applied to each barrier
surrounding the dot, thus shifting the heights of the wells by equal and opposite
amounts. Show the operation of the turnstile considering the quantum dot structure of
Figure 6.14(a) and that a constant current I = ef is produced by the turnstile where
e is the electron charge and f the frequency of the applied AC signal.
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Chapter 7

Transport in Magnetic Fields and the Quantum
Hall Effect

7.1. INTRODUCTION

This chapter is mainly focused on the study of transport properties of the 2D electron
systems in magnetic fields, which led to the discovery of the quantum Hall effect, one
of the most monumental findings in modern solid state physics. The significance of the
quantum Hall effect is reflected in the fact that Nobel prizes were awarded to von Klitzing
in 1985 and Tsui, Stormer, and Laughlin in 1999, for the discovery of the integral and
fractional quantum Hall effects, respectively. The chapter starts, Section 7.2, with a
brief review of the effects of magnetic fields on bulk metals and semiconductors, in
particular the quantization of the orbital motion of the electrons into Landau levels. The
next Sections 7.3 and 7.4 deal with the action of magnetic fields on 2D electron systems
formed at quantum heterojunctions. In this case, the constant 2D density of states (DOS)
function collapses into δ-functions (in real systems broadened by electron scattering), as
a consequence of the degeneracy of the Landau levels.

The effects of magnetic fields on the 2D electron systems have important practical
consequences. In Section 7.5, we show that currents in mesoscopic systems can produce
interference effects which are manifested by the modulation of the conductance under the
action of a magnetic vector potential A (Aharonov–Bohm effect). Another very interesting
effect is demonstrated by the Shubnikov–de Haas oscillations (Section 7.6), which are
observed in the conductance of the 2D systems under the action of a magnetic field, and
are much more pronounced than in bulk semiconductors.

With this background, the reader is now prepared to face in Section 7.7 the quantum
Hall effects. According to the integral quantum Hall effect (IQHE, Section 7.7.1), the
Hall voltage of a mesoscopic 2D electron system is quantized in voltage “plateaux”.
Consequently, both, the conductance and its inverse resistance, are also quantized. The
impressive fact about this quantification is that it is both independent of the semiconductor
materials forming the quantum heterostructure, and of the geometry of the sample. The
values of the voltage “plateaux” are so precise that they have led to the introduction of a
new universal constant, the von Klitzing constant (RK = h/e2), which can be measured
with a precision of a few parts in 1010. This resistance has been used since 1990 for the
determination of the resistance standard (ohm) in the SI system. In Section 7.7.2, the link
between the formalism of the IQHE and the Landauer–Büttiker formulation of quantum
transport, originally introduced in Chapter 6, is established through the new concepts of
skipping orbits and edge states. The physics of the IQHE culminates (Section 7.7.3) with

175
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the introduction of the concepts of localized states for explaining the width of the Hall
“plateaux”.

The experimental results of the fractional quantum Hall effect (FQHE) might appear
somewhat similar to those of the IQHE, although its theoretical explanation is completely
different. The understanding of the FQHE is based on many-body interactions between
electrons at very low temperatures under the action of magnetic fields. Although a theory
explaining all aspects of the FQHE does not exist yet, we present in Section 7.7.5 some
concepts of the two theories that in our opinion have the most credit. The theory of
Laughlin (1983) is based on many-body electron interactions, which explains the fractional
values of the Landau levels filling factor, and even postulates excitations of quasi-particles
with a fraction (e.g. 1/3) of the electron charge. The theory of the composite fermion
(CF), introduced by Jain (1989, 1990), postulates the CF as a new entity consisting of one
electron with two attached fluxons �0(= e/h). This theory, which predicts the existence
of quasi-particle excitations of a charge equal to a fraction of the electron charge has
recently been receiving much support.

7.2. EFFECT OF A MAGNETIC FIELD ON A CRYSTAL

First let us review the effect of a magnetic field on the conduction electrons in a solid.
We know from solid state physics that the application of high magnetic fields to a crystal
has remarkable effects, among them, the collapse of energy states of conduction electrons
into Landau levels, oscillations in the magnetization M when the magnetic flux density
B varies (de Haas–van Alphen effect), oscillations of the electrical resistivity as a func-
tion of the magnetic field (Shubnikov–de Haas effect), etc. These effects are due to the
quantization of the energy of the conduction electrons under the action of a magnetic field
Bz, applied in the z-direction, according to:

En =
(

n + 1

2

)
�ωc + �

2k2
z

2m∗
e
, n = 0, 1, 2, . . . (7.1)

where ωc is the cyclotron frequency given by

ωc = eBz

m∗
e

(7.2)

which corresponds to the frequency of the cyclotron orbits that the electrons perform
in the (x, y) plane. In Eq. (7.1) the quantum number n corresponds to the different
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Landau levels. On the other hand, the field does not alter the motion of the electrons
along the z-direction. As shown in Eq. (7.1) and Figure 7.1(a) the electrons behave with
respect to the z-direction as if they were free. This behaviour is expected because a
magnetic field cannot exert a force to an electron moving parallel to it. On the other hand,
the electron motion in the x and y directions is quantized according to a quantum harmonic
oscillator model.

Let us now discuss the effect of the previous magnetic field on the 3D density of
states. As we know from solid state physics, when a magnetic field Bz is applied, the
3D allowed states in k-space collapse into a set of concentric tubes parallel to B, which
leads to the result that each Landau tube presents a degeneracy given by gn = eB/π�. In
addition, since each Landau level is associated with a 1D free electron behaviour along
the direction of B, the energy dependence of the (DOS) function n2D should be of the
form (see Eq. (4.20)), g(E) ∝ 1/

√
E. The DOS function should also present singularities

(Figure 7.1(b)) at the bottom of each subband, corresponding to the respective Landau
level. Evidently, in a practical situation, the singularities which appear at every Landau
level (n = 1, 2, 3, . . .) are removed as a consequence of electron scattering.
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Figure 7.1. (a) Electron energy bands for a 3D solid vs the z-direction wave vector for different
Landau levels (n = 0, 1, 2 . . .); (b) density of states function for the Landau levels
compared with the free-electron gas for the case B = 0.
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7.3. LOW-DIMENSIONAL SYSTEMS IN MAGNETIC FIELDS

Unlike the case for bulk crystals (3D), where, under the action of B, the electron system
was quantized in the plane perpendicular to B, in a 2D electron system, the energy spec-
trum becomes completely quantized. In order to show this, let us proceed to write down
Schrödinger’s equation for an electron in a 2D system under the action of a magnetic field
applied in a direction (z) perpendicular to the low-dimensional system. In this derivation
we make use of the Landau gauge, in which the vector potential A has only one compo-
nent, let us say Ay , such that Ay = Bx. As we recall from any text on quantum mechanics,
Schrödinger’s equation in an electromagnetic field is obtained from its regular expression
by substituting the canonical momentum p by p − q A (Peierl’s substitution). Therefore
the expression of Schrödinger’s equation becomes for the wave function ψ(r) = ψ(x, y)

of the 2D system:

[
− �

2

2m

∂2

∂x2
+ 1

2m

(
i�

∂

∂y
+ eBx

)2
]

ψ(x, y) = Eψ(x, y) (7.3)

Operating in this equation:

[
− �

2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
− i�eBx

m
+ (eBx)2

2m

]
ψ(x, y) = Eψ(x, y) (7.4)

Let us now try a solution of the form:

ψ(x, y) = ϕ(x)eiky (7.5)

to make Schrödinger’s equation separable. The plane wave corresponding to the y

coordinate (free electron motion) is suggested by the fact that A does not depend on
y. Substituting the expression of the wave function given by Eq. (7.5) into Eq. (7.4), the
plane wave dependence cancels, leaving the following equation in x:

[
− �

2

2m

d2

dx2
+ 1

2
mω2

c (x − x0)
2
]

ϕ(x) = Enϕ(x) (7.6)

where ωc is given by Eq. (7.2) and

x0 = hk

eB
(7.7)

Eq. (7.6) can be recognized immediately as Schrödinger’s equation for a one dimen-
sional harmonic oscillator, since the term x0, added to x, only implies that the origin of
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the parabolic potential is displaced by x0. (For this reason x0 is known as the coordinate
centre.) We therefore reach the important conclusion that the eigenstates of the 2D system
in a magnetic field are given by:

En =
(

n + 1

2

)
�ωc, n = 0, 1, 2, 3, . . . (7.8)

Note that the energy attributed to the magnetic field depends only on the quantum number
n and the magnetic field B through ωc.

7.4. DENSITY OF STATES OF A 2D SYSTEM IN A MAGNETIC FIELD

We have seen in the previous section that if a strong magnetic field is applied perpendic-
ularly to a quasi-two-dimensional electron system, the electrons adopt a cyclotron orbital
motion of frequency ωc given by Eq. (7.2), and that the energy is quantified according to
a 1D harmonic oscillator model. Therefore, the DOS function of the 2D gas (with B = 0),
collapses into a δ-function at each Landau level as a consequence of the application of B.

Figure 7.2 shows how the n2D DOS function, which is constant, i.e. independent of
energy for each subband, as given in Section 4.2, collapses into δ-functions at each Landau
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Figure 7.2. Density of states function vs energy for a 2D electron gas in a magnetic field. (For
comparison, the curve corresponding to a 2D system with B = 0 is also shown.)
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level when a magnetic field is applied in a direction perpendicular to the 2D system. As we
can appreciate in Figure 7.2, the lowest Landau level is located at an energy, �ωc/2, higher
than the energy corresponding to the bottom of the parabolic subband. Since the electrons
suffer scattering events in their motion through the crystal, the δ-function states broaden
as shown in the figure. This broadening effect, caused by defects such as impurities or by
lattice vibrations (phonons), is characterized by a characteristic energy width �. Evidently,
for the Landau levels to become well identified, �ωc > �. This is equivalent to saying
that the scattering time in transport τi should be sufficiently large or that the mobility of
the electron in the system should be high enough.

Since all the levels in an interval �ωc collapse into the same Landau level when the
field B is applied, the degeneracy D of each Landau level should be given by

D = m∗
e

2π�2
�ωc = eB

2π�
(7.9)

where use has been made of the expression for the DOS n2D (Eq. (4.7) in Chapter 4),
but without taking into account spin degeneracy. Note from Eq. (7.9) that the degeneracy
of the Landau levels increases linearly with the magnetic field, a fact which will have
important consequences in the explanation of the quantum Hall effects in Section 7.7.

7.5. THE AHARONOV–BOHM EFFECT

Magnetic fields can produce and control interference effects between the electrons in
solids. Evidently, in order to observe interference effects between different electron waves,
their phase has to be maintained. Recall from Section 1.4 that we defined the phase
coherence length Lφ as the distance travelled by an electron without changing its phase.
The phase of an electron wave is generally destroyed when electrons interact inelastically
with defects in the lattice. In general, ballistic electrons (Section 1.8) with a mean free path
� much larger than sample dimensions L, i.e. � � L, travel through the lattice without
scattering and therefore can show interference effects.

In 1959, Aharonov and Bohm proposed that an electron wave in a solid has a phase
factor which could be controlled by a magnetic field. This phenomenon was proved by
Webb et al. in 1985 at IBM [1] in a structure similar to that shown in Figure 7.3(a)
consisting of a metallic ring of diameter 800 nm made of a wire about 50 nm thick. The
electrons entering the ring at P from the left have their wave function amplitude divided
in two equal parts, each one travelling through a different arm of the ring. When the
waves reach the exit at Q, they can interfere. Suppose that a magnetic flux � produced
by a solenoid passes through a region inside the ring and concentric to it. We choose this
highly symmetric configuration to make the calculations easier.
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Figure 7.3. (a) Schematics of an interferometric mesoscopic system to experimentally demonstrate
the Aharanov–Bohm effect; (b) conductance oscillations as a function of magnetic field
due to the Aharanov–Bohm effect. After [2].

For an electron in a magnetic field B, its momentum p = hk should be substituted
by p + e A where A is the vector potential ( B = curl A). As the electron moves from P
to Q in Figure 7.3(a), it is known from quantum mechanics that the change in phase is
given by

ϑ(r) = e

�

∫ Q

P

A·ds (7.10)

where the integration is the line integral along a given path which joints P with Q. The
difference in phase between a wave travelling around the upper path and the lower one in
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Figure 7.3(a) is:

�ϑ = ϑ1 − ϑ2 = e

�


 ∫

lower arm

A·ds −
∫

upper arm

A·ds

 = e

�

∫
circle

A·ds (7.11)

since in the top and bottom branches the electron waves advance in opposite directions
to A, which in our geometry is along concentric lines. Applying Stoke’s theorem to
Eq. (7.11) we get

�ϑ = e

�
� (7.12)

where

� =
∫

area

(curl A) · d S =
∫

circle

B · d S (7.13)

The quantity

�0 = h

e
(7.14)

is defined as the quantum of flux. We finally get for �ϑ from Eq. (7.12)

�ϑ = ϑ1 − ϑ2 = 2π�

�0
(7.15)

The intensity of the interference of the waves, ψi ∝ exp(iϑi), is proportional to the
probability amplitude given by

P = (ψ1 + ψ2)
2 ∝ cos(ϑ1 − ϑ2) = cos 2π

�

�0
(7.16)

and therefore interference effects should be observed when � is varied.
According to the above result, one should observe a complete oscillation when the

magnetic flux � through the inside of the structure is changed by one magnetic quantum
flux �0. Since the flux area is fixed, we can appreciate from the expression for �, in
Eq. (7.13), that when B is varied there would be oscillations in observable quantities such
as the conductance. Figure 7.3(b) shows a pattern of conductance oscillations observed
by Ford et al. (1994) [2].
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One very interesting aspect of the Aharonov–Bohm effect is the observation that vari-
ations in phase can be induced by changing B, even if the electron waves are not directly
subjected to the action of B. This point which had been controversial for some time is
now settled because, contrary to the field, a vector potential A indeed exists in the region
around the ring of Figure 7.3(a), and the changes in phase are produced by A according
to Eq. (7.11). Another interesting observation is that the Aharonov–Bohm quantum inter-
ference effects are frequently observed even in samples of size in the micrometre range.

7.6. THE SHUBNIKOV–DE HAAS EFFECT

In this section we continue with the study of the effect of magnetic fields on the electronic
and transport properties of the 2D systems. We have seen in the previous section that as
the intensity of B is varied, the energy and degeneracy of the Landau levels also varies,
something that should have profound effects on the transport properties of materials in
general and of the 2D systems in particular. In many experimental conditions, the density
in energy of electrons, n2D, in the 2D system is kept constant, while the magnitude of the
magnetic field is varied. As B increases, the Landau levels move up in energy since the
separation between them, �ωc, gets larger. Similarly, the degeneracy D of each level also
increases, according to Eq. (7.9). A filling factor ν is usually defined as

ν = n2D

D
= 2π�n2D

eB
(7.17)

i.e. the filling factor is equal to the quotient between the density in energy of the electrons
divided by the degeneracy of each level. In general ν is not an integer, but at T = 0 K the
maximum integer number, smaller than ν, should indicate the number N of Landau levels
which are completely occupied. Evidently, the top Landau level is in general partially
occupied. However, when the filling factor is an integer, all Landau levels are completely
occupied. Therefore, if ν = N , then the values BN of the magnetic field for which
full occupancy of the Landau levels takes place, should be given, from Eq. (7.17), by

BN = 1

N

2π�n2D

e
, (N = 1, 2, . . .) (7.18)

Let us now look at the variation, as a function of B, of the Fermi level, EF, at T = 0 K.
Qualitatively, we can say that if the filling factor is an integer, i.e. ν = N , EF should
lie in the gap between Landau levels in which, from Figure 7.2, n2D ≈ 0. In this case,
the values of the magnetic fields BN are given by Eq. (7.18). Since n2D ≈ 0 in a fairly
large energy interval, small energy changes should not practically affect n2D. In addition,
in this situation the electrical conductivity of the sample should be small because carriers
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responsible for transport lie around EF. In contrast, when υ is an integer plus or minus
1/2, then n2D shows maxima (Figure 7.2), and EF should have values of energy located
right at the peaks. In this case, a small change in energy has a large effect in n2D and the
conductivity of the sample should be large. Figure 7.4 shows the oscillatory dependence
on the gate voltage of the potential difference UPP between two probes situated along
the length of the sample, like in the inset of the figure. This voltage drop is evidently
proportional to the resistivity ρxx along the sample. This arrangement also allows the mea-
surement of the resistivity ρxy across the sample, which is proportional to the Hall voltage
UH. In the case of Figure 7.4, a magnetic field B of 18 Tesla is applied perpendicularly to
the 2D structure, which is kept at T = 1.5 K. This figure corresponds to the results of von
Klitzing et al. (1980) [3] which led to the discovery of the quantum Hall effect (QHE).

Let us now focus our attention on Vpp or ρxx of Figure 7.4. As discussed above, the
voltage oscillations of Vpp are a consequence of the Shubnikov–de Haas effect, which is
really due to the formation of Landau levels by the electrons in a magnetic field. Evidently,

Figure 7.4. Hall voltage (VH) and longitudinal voltage (VPP), as a function of the gate voltage,
for a 2D electron system in the channel of a silicon MOSFET (T = 1.5 K), under the
action of a 18 T magnetic field (these results led to the discovery of the quantum Hall
effect). After [3].
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there are also oscillations in conductance corresponding to the longitudinal resistivity
oscillations. In this experiment, the filling factor of the Landau levels is changed by the
positive gate voltage, which controls the electron concentration at the Si–SiO2 interface. It
is also interesting to point out that the Shubnikov–de Haas oscillations in the 2D systems
depend only on the component of B perpendicular to the interface. These oscillations were
previously observed in bulk semiconductors, but they were much weaker and dependent
on both components of B, the perpendicular and the in-plane ones.

7.7. THE QUANTUM HALL EFFECT

7.7.1. Experimental facts and elementary theory of the integer quantum
Hall effect (IQHE)

One striking observation in the results of Figure 7.4 comes from the quantification of the
values of the Hall voltage VH (in the figure, UH). It is usual when commenting on these
results, to speak in terms of the Hall resistance RH, but other authors speak in terms
of the transversal or Hall resistivity ρxy . Since the voltage steps have the same value,
independent of the shape of the sample, we can speak indistinctively in terms of the
resistivity or the resistance. The subindexes of the resistivity are related to the fact that
the difference in voltage is measured in the perpendicular direction ( y) to the current flow
(x). Evidently the longitudinal resistivity ρxx is obtained when the voltage differences are
recorded across the direction of the current.

The quantification of the values of the Hall resistance is given, with an outstanding
precision, by the equation:

RH = h

e2

1

n
= 25812.807 �

(
1

n

)
, n = 1, 2, . . . (7.19)

These values of RH can be registered very accurately, since the experimental curves for
VH in Figure 7.4 show broad “plateaux”, i.e. they remain constant over a wide range, even
if the gate voltage and hence the 2D electron concentration varies (later on, we will see
that these “plateaux” also appear when the electrical parameters are recorded as a function
of the magnetic field). It is also interesting to observe that the “plateaux” in the values of
ρxy appear precisely when ρxx becomes zero, as it can be appreciated from Figure 7.4.
We would also like to remark that the Hall resistance RH should not be confused with the
Hall coefficient, for which a similar nomenclature is used. In fact RH is known today as
the von Klitzing constant (when n = 1 in Eq. (7.19)) and is written as RK. The value of
RK can be measured at present with an accuracy of the order of 10−9 or better and for
this reason is used as a standard in metrology (see Section 7.7.4 below).
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One elementary theory that explains the values of the quantification of the Hall resis-
tance RH of Eq. (7.19) is based on the location in energy and the degeneracy of the Landau
levels, together with a classical argument for transport of carriers. In effect, in the above
definition of RH we can substitute the Hall voltage, VH, as in the classical Hall effect by
bBv (b is the width of the sample and v the carrier drift velocity) and the current, I, by
bn2Dev. With these substitutions, the expression for the quantized resistance is:

RH = VH

I
= B

en2D
(7.20)

For a given distribution, when the last Landau level becomes completely filled, the next
one is completely empty, and there cannot be electron scattering. Substituting in Eq. (7.20)
the values of the magnetic field BN when the levels are completely filled, Eq. (7.18), one
obtains for RH:

RH = 1

n

h

e2
, n = 1, 2, 3, . . . (7.21)

Observe also that the inverse of RH gives:

(RH)−1 = e2

h
n (7.22)

which is in accordance with the values obtained for the quantization of conductance
(Section 6.4.1).

Another interesting observation is that the quantized values of RH correspond with
the null values of the longitudinal resistance, as shown in Figure 7.4. This is interpreted
as the filling of Landau levels as observed when we studied the Shubnikov–de Haas
oscillations in Section 7.6. The results described in this Section constitute the so-called
integer quantum Hall effect (IQHE).

7.7.2. Edge states and the IQHE

The IQHE has also been interpreted by Büttiker in the late 1980s in terms of the Landauer–
Büttiker formalism [4] for multi-probe quantum transport introduced in Section 6.4.2. Let
us consider that, to the various Landau levels of the 2D electron system, correspond
classical cyclotron orbits caused by the perpendicular magnetic field. For simplicity, let
us assume that we have a sample of longitudinal shape, with electrical leads connected
to each side. The cyclotron orbits are shown in Figure 7.5(a), directed counterclockwise.
Before we proceed, the reader should be cautioned that the argument which follows
is mainly qualitative; however, a detailed discussion can be found in the specialized
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Figure 7.5. (a) Skipping orbits corresponding to edge states, and cyclotron orbits for a 2D electron
system under the action of a magnetic field; (b) schematic representation of the edge
currents.

literature [5]. The closed cyclotron orbits, which do not carry current on the average, are
no longer possible near the edges of the sample. Therefore, as observed in Figure 7.5(a),
the electrons at the edges move in the so-called skipping orbits, which have a net drift
velocity, and consequently are the origin of the edge currents. Quantum mechanically, the
states associated with the skipping orbits are called edge states. The upper edge states in
Figure 7.5(a) have a positive velocity, while the lower ones have negative velocity. These
edge states, which propagate in opposite directions, are usually represented by compact
flow lines of edge currents, localized in a quantum waveguide (Figure 7.5(b)).

We have seen in Section 6.4 that quantization of conductance, and therefore resistance,
was derived in a natural manner from the Landauer–Büttiker formalism of quantum trans-
port. Similarly, the IQHE can be interpreted on the basis of edge channels. For this, we
consider a sample with a bar geometry, such as the ones used to detect the IQHE and
apply the general formula of Eq. (6.17) of Chapter 6 to evaluate the current transported
by the edge channels. In the application of this equation, which we reproduce here for
convenience:

Ii = 2e2

h


(Ni − Ri)Vi −

∑
j �=i

TijVj


 (7.23)



188 Nanotechnology for Microelectronics and Optoelectronics

we should strictly follow the line of argumentation introduced by Landauer and Büttiker.
Let us assume that the edge current contains N channels, although in Figure 7.6 we have
represented only two. Current only flows in or out of the sample through the contact
leads 1 and 4 and the Hall voltage arises between probe contacts 6 and 2 or, alternatively,
5 and 3. The longitudinal resistance of the sample (see Section 7.7.1) can be measured
between contacts 5 and 6 or 3 and 2. As indicated by the edge channels of Figure 7.6,
the current arising at contact 1 enters into probe 6, but since this is a voltage probe, it
cannot take net current; therefore a current of the same value enters the probe, so that
I6 = 0. The same argument can be applied to the other voltage probes 2, 3, and 5. For
the application of Eq. (7.23) for the currents, we assume perfect contacts, i.e. they do
not reflect currents which means Ri = 0. In Figure 7.6 we also observe that N states
propagate from contact 1 to contact 2, i.e. T21 = N , but no states propagate from contact
2 to contact 1, i.e. T12 = 0. Evidently the same applies to the other adjacent contacts and
therefore T32 = T43 = T54 = T65 = T16 = N and T23 = T34 = T45 = T56 = T61 = 0. All
remaining Tij are zero since currents cannot jump contacts as seen in Figure 7.6. With all

V3V2

V6 V5

V4
V1 1 4

32

6 5

Figure 7.6. Two-dimensional test sample for the measurement of the quantum Hall effect. The
current goes from probe 1 to 4. The Hall voltage can be measured from probes 6
and 2 or, alternatively, 5 and 3. The voltage drop in the direction of the current is
measured from probes 5 and 6 or 3 and 2. The edge currents (two in the figure) are
also shown.
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these considerations, let us write Eq. (7.23) in matrix form for compactness:




I1

I2

I3

I4

I5

I6




=




−I

0
0
I

0
0




= Ne2

h




1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 1







V1

V2

V3

V4

V5

V6




(7.24)

We have written I1 = −I and I4 = I since the arrows in Figure 7.6 indicate the electron
motion. Several interesting conclusions can be reached from the above set of equations.
From the equations for I2 and I3, it can be obtained that V2 = V3 = V4, and similarly
V1 = V5 = V6, i.e. all the contacts along the top edge are at the source potential, while
the ones at the bottom edge are at the drain potential.

In order to calculate the Hall resistance we have to divide the voltage between probes
6 and 2 by the current I between contacts 1 and 4:

R14,62 = V6 − V2

I
(7.25)

Substituting V6 and V2 by their expressions obtained from Eq. (7.24), we get for the Hall
resistance:

RH = h

e2

1

N
(7.26)

Proceeding in the same fashion for the longitudinal resistance, we can calculate the voltage
difference between probes 5 and 6, for instance, and one obtains zero values, as expected.
The above results show that the quantization of the transverse resistance, and therefore
conductance, is consistent with the quantization of conductance seen in Section 6.4.1.

7.7.3. Extended and localized states

The above models put forward for the explanation of the IQHE predict correctly the
quantization of the Hall resistivity ρxy, simultaneously with the null values of the longi-
tudinal resistivity ρxx . However, these models do not explain the existence of the Hall
“plateaux”, i.e. the constancy of the Hall voltage or Hall resistance in a given range of
values of the magnetic field. The existence of Hall “plateaux” of finite width can be inter-
preted in terms of localization of the electron states as a consequence of disorder. We
have already appealed to disorder while explaining the broadening of the Landau levels in
Section 7.4. It is known from solid state physics that, in addition to Bloch extended states,
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there can be also localized states originated by disorder, as explained by the Anderson
localization theory (1958) [6]. The degree of localization can be characterized by the local-
ization length α, defined in Section 1.3. In fact, according to this theory, for sufficiently
disordered semiconductors, all states in a 3D solid are localized. A partial degree of local-
ization can be caused by point defects such as dopant impurities, structural disorder which
causes fluctuations in the electrostatic ionic potentials and interface roughness scattering
(Section 6.2.1) in the case of heterojunctions.

Figure 7.7 shows the DOS function, for which the δ-functions have been broadened as
explained in Section 7.4 and Figure 7.2. Now there are extended Bloch states around the
peaks at energies E = (n + 1/2) �ωc which represent the mobile electrons and localized
non-conducting states. This figure also shows the mobility edges separating the extended
and localized states. In this situation, as remarked by Laughlin (1981) [7], the Landau
levels are not filled at fixed concentrations. When the Fermi level lies within the localized
states, they do not participate in conduction, only the extended states do. In this case,
theoretical calculations show that the extended states have to carry more current to com-
pensate for the unlocalized states and to maintain constant the value of the resistivity as
shown in Figure 7.4. The additional current is due to the acceleration caused by the scat-
tering potentials related to the disorder. At this point, it might be interesting to comment
that although the IQHE was discovered more than two decades ago, there are still some
theoretical aspects under intense investigation.
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Figure 7.7. Schematic representation of the extended and localized states in the DOS function of
a 2D electron system in a magnetic field.
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7.7.4. Applications in metrology

The advantage of the modern standards adopted by the International System of Units (SI),
based on fundamental constants, is that they do not depend on ambient conditions and
can be realized at any location in the world. For instance, the unit of time (second) is now
defined in terms of the period of the radiation of atomic transitions in atomic Cs.

One of the most significant applications of the QHE is in the field of metrology. In
particular, since 1990, the standard of resistance [8] has been adopted by measuring the
Hall “plateaux” in ρxy . As indicated in Section 7.7.1, this standard is the von Klitzing
constant defined by Eq. (7.19) with n = 1:

RK = h

e2
= 25812.807572 � (7.27)

The specific number of ohms given by Eq. (7.27) was recommended by a consultant
international committee after analysing the best data available until 1998. This number
has an improvement of about three orders of magnitude with respect to the first standard
of 1990. The resolution of the measurements is of a few parts in 1010, so the precision
of the value of the resistance in Eq. (7.27) is higher than 10−9, at least two orders of
magnitude better than the old realization of the ohm based on standard resistors.

The impressive accuracy in the determination of RK rests on several facts. First on
the existence of the Hall “plateaux”, which remain extremely constant in relatively wide
ranges of variations of both the magnetic fields and gate voltages, as in the case of the
measurements of Figure 7.4 in MOSFET–Si structures. Second, it is important to remark
that the value of RK(≡ h/e2) does not depend on material properties, although in practice
only two types of samples are used, one based on the Si–MOSFET and the other on the
AlGaAs/GaAs heterostructure. Third, the values do not depend on geometrical factors
such as the width of the test bar samples. In fact, it has been demonstrated that size
effects are negligible in the test samples used today for metrology purposes. However,
extreme care has to be taken with the electrical contacts, as well as with the current density
which should not exceed a critical value or otherwise the IQHE breaks down. The precise
conditions for the breakdown of the IQHE for high density currents are still under intense
theoretical and experimental research.

The fine structure constant α, defined by

α = e2

2ε0ch
(7.28)

constitutes a unique combination of fundamental constants such as the electron charge,
speed of light, Planck’s constant, and permittivity of vacuum. From Eqs (7.27) and (7.28),
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α is related to the von Klitzing constant RK by

RK = h

e2
= 1

2ε0cα
(7.29)

Therefore, the value of the fine structure constant, which is the basis of the fundamental
concepts of physics, can be obtained at present by means of the IQHE. The values of α

obtained by measuring RK are comparable, if not better, than the theoretical calculations
of quantum electrodynamics (QED) which have an estimated uncertainty of 1 part in
109. The technique based on the IQHE also yields more accurate values of α than those
determined experimentally through the measurement of the anomalous magnetic moment
of electrons.

7.7.5. The fractional quantum Hall effect (FQHE)

As we recall from previous sections, in order to observe the IQHE, samples do not have
to be extremely pure or have a perfect crystallinity. In fact, we had to invoke some degree
of disorder, when we introduced the concept of “localized states” (see Section 7.7.3)
to explain the observed Hall voltage “plateaux”. Two years after the discovery of the
IQHE, Tsui, Stormer, and Gossard (1982) discovered the so-called fractional quantum
Hall effect (FQHE) [9]. As is observed in Figure 7.8, in the FQHE new “plateaux”
associated with ρxy as well as the null values for ρxx appear at fractional values of the
filling factor ν given by Eq. (7.17). These fractional values are of the form ν = p/q

where p and q are integers and q is odd. The FQHE is observed in the 2D systems
formed at the heterojunctions of very pure semiconductor samples, and consequently with
high electron mobility, and low 2D electron concentration. In addition, the temperature
should be close to 0 K and the magnetic field should be high enough, as to allow only
the existence of one Landau level. The filling factor is then equal or smaller than one;
therefore all electrons are at the same energy which is the lowest and is given, according
to Eq. (7.8), by �ωc/2. As can be appreciated in Figure 7.8, strong features appear for the
filling factors ν = 1/3, 2/3, 2/5, 3/5, . . .

It can be observed from the above experimental facts that the FQHE is a completely
different phenomenon than the IQHE. Therefore, if the latter is well explained by a
model based on the non-interacting electrons, it is reasonable to expect that many-body
interactions among the electrons should now be taken into account. Accordingly, soon
after the discovery of the FQHE, it was suggested that the electron gas could undergo a
condensation into a Wigner crystal, in which the energy related to the Coulomb repulsions
is minimized. However, this idea was soon abandoned, after theoretical calculations
showed that values of the total energy lower than that of a Wigner crystal could be obtained
for electronic systems of a few electrons, under the action of very strong magnetic fields.
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Figure 7.8. Fractional quantum Hall resistance and longitudinal resistance, as a function of the
magnetic field, for a 2D electron system in a modulation-doped heterojunction AlGaAs–
GaAs (T = 0.085 K). These results led to the discovery of the fractional quantum Hall
effect. After [9].

In fact, we have already seen that for very high values of B, all Landau levels of a 2D
electron system collapse to one ground level.

Soon after the discovery of the FQHE, Laughlin (1983) [10] proposed a theory based
on many-body Coulomb interactions between the electrons at very high magnetic fields
and low temperatures. According to this theory, the electron gas condenses into a corre-
lated quantum fluid, where electrons are kept apart from each other due to the Coulomb
interaction. Laughlin calculated the ground state wave function of the many-body elec-
tron system and found that this state was separated by an energy gap from the excited
states. In this theory, Laughlin found that the correlated ground state was formed when the
Landau level is partially filled according to a fractional value of υ, for example, 1/3. In
addition, he showed that the elementary excitations of the system correspond to particles
of fractional charge given by 1/3 of the electron charge. Recent experiments, based on the
measurement of electrical noise in the current passing through quantum point contacts,
seem to confirm the existence of fractional electronic charges.

One of the most attractive theories to explain the FQHE is based on the model
of the composite fermion (CF), introduced by Jain (1989) [11] and later expanded by
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Halperin et al. (1993) [12]. According to this model, two magnetic flux tubes of quanta
�0 are attached to each electron. One can think of these flux tubes as infinitely small
solenoids carrying the quanta of flux �0 given by Eq. (7.14). This unit behaves as a
fermion, hence the name of “composite fermion”. Looking carefully at Figure 7.8 it can
be observed that around the value of the filling factor ν = 1/2, the longitudinal resistivity
ρxx seems to behave normally, as if B was not present. It can be shown that for ν = 1/2
and its corresponding value of B = B0, the CF behaves as if the magnetic field did not
exist, while for values of B larger or smaller than B0, then the CF obeys to the existing
magnetic fields. Based on the model of the CF, Jain was able to explain most of the series
of fractional values of ν = p/q for which the FQHE is manifested.
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PROBLEMS

1. Similarity of the Aharonov–Bohm effect and interference effects in SQUIDS.
(a) Discuss the similarity between interference effects in Superconducting Quantum
Interference Devices (SQUIDS) and the Aharonov–Bohm effect (Section 7.5).
Hint: recall that the SQUID critical current is modulated by the quantum flux �0,
yielding a Fraunhoffer interference pattern. (b) Given the value of �0 and the fact
that SQUIDS can have areas of about 1 cm2, compare the accuracy in the determi-
nation of changes in B (measured in Tesla) by counting cycles in current with the
accuracy of measuring resistances discussed in Section 7.7.4. (c) Discuss similarities
between phase coherence of a superconductor macroscopic wave function and the
coherence of phases introduced in Sections 7.5 and 1.4.

2. Shubnikov–de Haas oscillations. (a) Show that for the Shubnikov–de Haas oscilla-
tions observed in a 2D electron systems the period in 1/B for the oscillations is given
by �(1/B) = 2e/hNs, where Ns is the electron concentration. (b) From the results on
the integer quantum Hall effect of Figure 7.4, calculate approximately, the 2D carrier
density.

3. Integer quantum Hall effect (IQHE). (a) From the values for the ρT “plateaux” of
Figure 7.4, show that they are in agreement with the Eq. (7.19), i.e.:

RH = h

e2

1

n
= 25812.807 �

(
1

n

)
, n = 1, 2, . . .

(b) From the variation of ρL as a function of B from Ref. [13] find the 2D concentration
of electrons (Hint: use low values of B since for high values, more than one subband
might be populated).

4. Variation of the Fermi level with B and the IQHE. A magnetic field B is applied
perpendicularly to a planar heterojunction similar to those employed to observe the
integer quantum Hall effect (IQHE). Suppose that the n2D electron concentration is
n2D = 1012 cm−2 and the temperature very low so that kT � �wc, where wc =
eB/m∗

e is the cyclotron frequency. (a) Find the dependence of the Fermi energy
EF as a function of B (call E0

F the Fermi energy when B = 0). Hint: at very low
temperatures, if n Landau levels are exactly filled, EF lies in the empty space of
Figure 7.2 between the energies of the levels n and n + 1, or in the level n + 1 if
this level is partly occupied. As B increases, EF also increases linearly with B until
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it reaches a value so that the next level becomes empty (the degeneracy of the levels
and the fill factor increase with B) and EF falls back to the previous level. As a result,
EF oscillates around E0

F. (Note that this behaviour of EF is what really makes ρxx

oscillate.) (b) Estimate the maximum temperature at with the steps in ρT of Figure 7.4
would not be observed.

5. 2D electron system under high magnetic fields. Using the expressions of prob-
lem 1.5 for the relations between the 2D resistivity and conductivity tensors, as well
as the expressions for the velocities and RH derived in problem 1.6, show that, under
high magnetic fields as those necessary for the observation of the IQHE, we have:
ρxx ≈ σxy/σ

2
xy and ρxy ≈ 1/σxy = RHB. Observe that according to this result ρxx

is proportional to σxx . Please, comment on the origin of this unexpected result.
6. Spin splitting of Landau levels in a 2D electron system. (a) Show that to each

of the energies found for the Landau levels in Section 7.2, one should add the spin
splitting energy. Therefore, the Landau levels have in reality, the energies:

En = �eB

m∗
e

(
n + 1

2

)
± 1

2
g∗µBB, n = 0, 1, 2, . . .

where g∗ is the effective g factor and µB is the Bohr magneton. (Observe that although
we have twice the number of Landau levels, if we account for the spin splitting,
the derivations of Sections 7.6 and 7.7 do not change because, simultaneously the
degeneracy is half the previous value.) (b) Calculate the value of g∗µBB and compare
it with the difference in energy between Landau levels.

7. Effect of subband occupation in the IQHE. Indicate in a schematic plot of ρL vs B,
the effect of the occupation of two subbands n = 1 and n = 2. (Hint: use the
expression �(1/B) = 2e/hn2D for the two values of n2D.) Discuss what is the
situation of the oscillations of ρL vs B both for low and high values of B.
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Chapter 8

Optical and Electro-optical Processes in Quantum
Heterostructures

8.1. INTRODUCTION

The determination of the optical properties of low-dimensional semiconductor structures
allows the verification of the physics we have developed in Chapters 1, 4, and 5 on
quantum wells (QWs), superlattices, and quantum dots (QDs). The agreement between
the theory and the experimental results shows that the predictions derived from the energy
dependence of the DOS function, and the behaviour of excitons in 2D and 0D systems,
were indeed correct. The optical properties of low-dimensional quantum heterostructures
that we study in this chapter constitute the basis of a new generation of electronic devices,
such as QW lasers, QD lasers, IR photodetectors, electro-optic modulators, etc. The
operation of these devices, many of them in commercial production at present, will be
treated in Chapter 10.

In Section 8.2, we review interband and intraband optical transitions in quantum wells
and the influence of the excitonic effects. In this section, the studies on optical properties
of single quantum well are extended also to superlattices. Section 8.3 is dedicated to
the optical properties of QDs and nanocrystals, in which the confinement on the three
dimensions in 0D structures leads to new phenomena with applications in newly developed
QD lasers and photodetectors. The section starts with a review of the growth of QD and
nanocrystals, since their optical properties are strongly dependent on the growth technique.

Section 8.4 deals with the effects of electric fields in quantum wells. The effects of
an electric field on the optical properties (index of refraction, transmission spectra, etc.)
are very much enlarged in low-dimensional systems. Modern electro-optical modulators,
based on the quantum-confined Stark effect (QCSE), take advantage of the large changes
in excitonic optical absorption as the electric field is varied. The effects of electric fields
on superlattices are treated in Section 8.5. In superlattices, the electric field produces
localization of carriers at the wells and generates a set of equidistant energy levels (Stark
ladders). The recent (1993) observation of Bloch oscillations and the related microwave
emission are also treated in Section 8.5.

8.2. OPTICAL PROPERTIES OF QUANTUM WELLS AND SUPERLATTICES

The optical properties related to interband transitions in quantum wells are quite dif-
ferent than those corresponding to bulk semiconductors, since one has to consider both

199
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the 2D optical density of states and the fact that excitonic absorption is much stronger
in 2D systems (Chapter 4). With respect to intraband transitions, in contrast to the
3D situation, 2D systems can show transitions without the necessity of involving phonons.
Intraband transitions can be among electrons (or holes) in confined states in wells, or
between confined states and the continuum. These transitions can be tailored for light
emission (quantum cascade lasers) or detection (IR photodetectors).

In Figure 8.1, we have represented a quantum well both in real and wave vector spaces.
Interband transitions take place from an initial state in the valence band to a final state
in the conduction band. First, observe that absorption will appear at energies higher than
for the 3D case, since the energy difference between these states is larger than the energy
bandgap of the semiconductor. In order to calculate the transition rates, we should follow
the procedure of the Fermi Golden rule, Eq. (2.26) of Chapter 2, for time-dependent
perturbation theory:

W = 2π

�
ρ(E)

∣∣H ′
nk

∣∣2 (8.1)

with the perturbation, associated with the interaction of photon–electron, given by:

H ′ = −er · E0 (8.2)

where r is the position vector of the electron in the plane of the interface, i.e. r = (rx, ry)

and E0 is the amplitude of the electric field related to the incident light. The matrix element

E E

E

E

E
E

z k

E

E
E bulk

electron
subbands

hole
subbands

(a) (b)

Figure 8.1. Band diagram of a quantum well: (a) in real space; (b) in k-space.
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for the transitions between the initial electron state �i in the valence band and the final
state �f in the conduction band is:

M =
∫

�∗
f rx �i dr (8.3)

Observe that since r = (rx, ry) is a planar vector, we can write either rx or ry in
Eq. (8.2) which are in reality the (x, y) coordinates of the electron in the plane. Assuming
cubic (square) symmetry, the directions x and y are equivalent. In the crystalline 2D
structure the electron states are described by Bloch functions:

�i ∝ uv (r) ψvn (z) eik·r (8.4)

�f ∝ uc (r) ψcn′ (z) eik·r (8.5)

where the vectors r and k correspond to the electrons in the 2D system. We have written
the same wave vector in Eqs (8.4) and (8.5) because there is momentum conservation in
the transition and the momentum of the photons is negligible in comparison to that of the
electrons. By the substitution of Eqs (8.4) and (8.5) in Eq (8.3), the matrix element M can
be expressed as the product of two factors, i.e.:

M = MvcMnn′ (8.6)

where:

Mvc =
∫

u∗
c(r)rxuv(r)dr (8.7)

is the matrix element corresponding to the dipole moment transitions among Bloch states
in the valence and conduction bands, and

Mnn′ =
∫

well

ψ∗
cn′(z)ψvn(z)dz (8.8)

corresponds to the overlapping between the electron and hole wave functions in the wells.
Since, according to Eq. (8.6), the matrix elements of the interband transitions

decompose into two factors, the following conditions or selection rules, must be satisfied:

(i) The overlap of the electron and hole envelope functions given by Eq. (8.8) should be
different from zero. Therefore, in the case of square wells of infinite walls, we have
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from the orthonormality of the wave functions:

�n = n′ − n = δnn′ (8.9)

where n and n′ are the quantum numbers corresponding to the electron and hole
quantum wells, respectively.

(ii) The matrix elements between Bloch functions corresponding to the electric dipole
transitions given by Eq. (8.7) should be different from zero. Since this is the case
for AlGaAs/GaAs quantum wells, the expression of Eq. (8.9), related to envelope
functions, can be taken, in practice, as the selection rule.

Figure 8.2 [1] shows the absorption spectrum of MQW of GaAs/AlAs at 6 K. Observe
the increasing absorption with photon energy which in general follows the steps of the
DOS function for 2D systems (Section 4.2). Added to this, the excitonic peaks can be
clearly seen at the beginning of each step. In 2D systems, the binding energy of excitons,
as well as their absorption, are very much enhanced by the confinement effects, and
therefore, make excitons much easier to detect than in bulk semiconductors. At every
peak in Figure 8.2, there appears the spin–orbit interaction doublet, which corresponds to
the heavy and light hole valence bands characteristic of III-V compounds (Section 4.9).
The transitions for n = 1, 2, 3 from the heavy holes (HH) and light holes (LH) to the
electron states can be clearly distinguished in Figure 8.2.

With respect to intraband transitions the emission or absorption of photons can occur,
as shown in Figure 8.3(a), between the “free” carriers within the conduction (or valence)
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Figure 8.2. Absorption spectrum of a GaAs/AlAs MQW with quantum wells of width 7.6 nm. The
transitions to the electron states can be originated at the heavy hole (HH) or at the light
hole (LH) states. After [1].
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(a) (b)

Figure 8.3. Intraband optical transitions in a quantum well. (a) Intersubband transitions; (b) tran-
sitions between bound states in the well and extended states. After [2].

bands, which occupy the subbands corresponding to the levels of each electron (or hole)
located in the corresponding well. Notice that these intersubband transitions only occur
within each quantum well. In addition, intraband transitions can also occur between the
quantum well states and the extended electron states as shown in Figure 8.3(b). With a
reasoning similar to the one performed in relation to interband transitions, the selection
rule should connect now the states of opposite parity, since the matrix element now
includes the position coordinate, i.e.:

�nz = nz,f − nz,i = ±1 (8.10)

In an ideal case, the selection rule says �nz should be equal to an odd number, but when
�nz = ±3 the transitions are too weak, and therefore, are not accounted for in Eq. (8.10).
The other requirement is that E is perpendicular to the well, i.e. the polarization of light
should occur along the z-direction. For this, in practice, the light should not be incident
vertically, or alternatively a diffraction grating should be placed on the surface of the
sample. Both solutions imply a partial attenuation of light and therefore to overcome it,
one should use MQWs with a high number of wells (close to one hundred).

The changes induced in the optical properties of quantum wells and superlattices by
electric fields are quite different, and they will be treated in Sections 8.4 and 8.5, respec-
tively. At present, research on electro-optic effects in superlattices is centred around Bloch
oscillations and the possibility of Terahertz emission (Section 8.5). However, the optical
properties of superlattices are somewhat similar to those of quantum wells. Optical prop-
erties of superlattices, contrary to MQWs, have found few applications in optics, and the
interest on them has been frequently focused on other materials science topics, such as
growth of quantum dots, bandgap engineering, etc.

There are some differences between the optical properties of superlattices and quantum
wells. In superlattices, the absorption edge is blue-shifted due to the splitting of the levels
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Figure 8.4. Absorption spectrum of a AlGaAs/GaAs superlattice. After [2].

into a miniband. Also the transitions are smoother, reflecting the density of states function
of a superlattice (Figure 5.15) in comparison with the step function character of quantum
wells. Due to the tunnelling of the electrons through the barriers, the wave function of
the exciton extends along several wells in strongly coupled superlattices. Therefore, the
exciton is less localized and its size and binding energies are smaller than for quantum
wells. Weak excitonic features appear also near the transitions from the bottom of the hole
miniband to the top of the electron miniband (saddle-point excitons). Figure 8.4 shows
the absorption spectrum of an AlGaAs/GaAs superlattice [2]. Observe the similarity with
the spectrum for a single quantum well. The excitons shown in the figure correspond to
n = 1 transitions from the heavy hole and light hole to the first electron state. The peaks
marked with Shh and Slh correspond to saddle-point excitons.

8.3. OPTICAL PROPERTIES OF QUANTUM DOTS AND NANOCRYSTALS

8.3.1. Growth techniques. Self-assembled quantum dots

The growth techniques of QDs are very important since they influence their structure,
shape and distribution of nanocrystal sizes, stoichiometry, structure of the surfaces or
interfaces, etc. Therefore, before studying in the next section the optical properties of
QDs, we want first to briefly look to the growth techniques, paying special attention to
the recently developed techniques of self-assembling.

Nanostructuring by physical techniques based on lithography and etching does not
usually produce dots of sizes small enough for the detection of quantum size effects, even if
one uses electron beam techniques. The advantage of these techniques is their compatibility
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with microelectronics techniques. One technique where advances are made very fast is
scanning tunnelling microscopy (STM), and the related atomic force microscopy (AFM).
Therefore, it would not be surprising if in the near future they will be used to fabricate
isolated QDs as well as QD arrays.

The chemical techniques are the ones most used for the preparation of QDs. However,
there are so many chemical techniques for producing QDs, that we will only mention a
few of them:

(i) Nanocrystals in glass matrices

The techniques for growing nanocrystals inside a glass matrix are very developed, partly
as a consequence of the industrial production of colour filters and photochromic glasses
based on copper halides, such as CuCl, CuBr, CuI, etc. Nanocrystals of II-VI compounds
(CdS, CdSe, ZnSe, etc.), starting from supersaturated viscous solutions, are also frequently
incorporated in glass matrices for applications in optical filters due to the ease in controlling
the dot size.

(ii) Colloidal synthesis

Colloidal synthesis, by the reduction of metal salts in solutions with organic ligands, are
frequently used to produce metal nanoclusters (e.g. gold). As for II-VI semiconductors,
nanoparticles of CdSe, CdS, etc. are produced from reagents containing the nanocrystals
constituents. One reagent contains the metal ions (e.g. Cd2+) and the other provides the
chalcogenide (e.g. Se2−). The size of the nanocrystals is controlled by the temperature of
the solutions and the concentrations of the reagents and the stabilizers.

(iii) Gas-phase

The gas-phase methods consist of the gas condensation of clusters which precipitate on
a substrate, or that are adsorbed on the substrate. The gas-phase techniques include sput-
tering and laser vapourization among others and are very much used for metal clusters.
However, since the discovery of nanoporous silicon of visible photoluminescence, silicon
clusters deposited by laser-induced decomposition of SiH4 or magnetron sputtering, are
very much investigated at present for light emission sources.

(iv) Self-assembled quantum dots

Since the 1990s, there has been great interest in self-assembled QDs which can be fabri-
cated by techniques compatible with present microelectronic and optoelectronic device
technologies. One fabrication technique is based on a modification of the Stranski–
Krastanow (S–K) method. When a material is grown over a substrate with similar lattice
constant, then the growth is monolayer by monolayer. However, if there is a lattice
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Figure 8.5. Schematic diagram of possible growth modes: (a) Monolayer by monolayer;
(b) Stranski–Krastanow (S–K); (c) Volmer–Weber (V–W).

mismatch of a small percentage, then the overlayer starts to grow monolayer by monolayer,
but at a given stage the layer grows in the island mode (Stranski–Krastanow mode), so
that the strain energy is minimized. For a higher lattice mismatch, the islands nucleate
directly since the beginning (Volmer–Weber mode).

Figure 8.5 shows a schematic diagram of the three modes that we have mentioned:
(a) the monolayer-by-monolayer growth, (b) the Stranski–Krastanow mode, and (c) the
Volmer–Weber mode. The resulting mode depends not only on the lattice mismatch, but
also on the values of the interface energies. QDs for lasers (Section 10.6) are grown in the
S–K mode with materials like InGaAs/GaAs, but the method also works for the SiGe/Si
and CdSe/ZnSe. The advantage of the S–K method over physical lithographic techniques
is that the resulting QDs are smaller.

8.3.2. Optical properties

In quantum dots or boxes, the potential confines the electrons in the three spatial dimen-
sions, which are supposed to be in the nanometre range, so that the energy levels appear
as discrete bound states (Section 4.6), as in the case of isolated atoms. The confinement of
the electronic wave functions has very important consequences for the optical properties.

Let us comment some general optical properties of 0D confined systems:

(a) Bandgap widening

The first characteristic of the optical properties of QDs is related to bandgap widening,
as can be appreciated in Figure 8.1(a). Depending on the size R of the QD, which is
supposed to be spherical, several regimes can be considered. To define these regimes,
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R is compared with the size of the excitons as defined by its Bohr radius:

aB = �
2

4πε0ε

1

µe2
(8.11)

where µ is the exciton reduced mass (Section 3.7.3). In the “strong confinement regime”,
for R ≤ 2aB, the confinement energy is greater than that corresponding to the Coulombic
interaction. In this case, the excitonic effects due to the electron–hole interaction can be
neglected, and we can consider that electrons and holes reside in quantum boxes defined
by the dot dimensions. This is a consequence of the fact that the Coulombic energy
increases as the inverse of R while the confinement energy increases as the square of the
inverse. The excitonic Bohr radius in CdS is 29 Å, so nanocrystals of sizes smaller than
about 50 Å should behave as QDs. When R is much smaller than aB, then the effective
mass approximation does not apply and the dot should be treated as a large molecule and
consequently should be treated in terms of molecular orbitals.

In the “weak confinement regime”, R ≥ 4aB, the envelope function is practically not
affected, although the exciton increases its kinetic energy associated to the centre of mass
motion, and therefore, there is a decrease in its binding energy. This case occurs in CdSe
for R larger than about 100 Å. For copper halides (CuCl, CuBr), aB is so small (∼1 nm)
that QDs are usually in the weak confinement regime. Evidently, the most difficult case to
consider from a theoretical point of view is medium or intermediate confinement among
the two above cases, since approximations cannot be applied.

(b) Enhancement of oscillator strengths

We have seen that as the dimensionality decreases (3D → 2D → 1D → 0D) the allowed
electron states become more concentrated in energy, as shown by the respective energy
dependences of the DOS functions. For the 0D limit, the dots behave like atoms with
sharp energy levels and the oscillator strengths of optical transitions are larger. This is
important for optoelectronic devices and we will see more clearly in Sections 10.3 and
10.6, how concentration of states on energy leads to higher gains in lasers. Due to the same
reason, the electro-optic effects (Sections 8.4 and 8.5), used in quantum well optoelectronic
modulators (Section 10.8), become stronger as the dimensionality decreases.

(c) Optical transitions

As we have seen in Section 8.2, intersubband optical transitions in 2D systems are only
allowed when light propagates in the quantum well plane, so that the photon electric field
is perpendicular to the interfaces. However, QDs can absorb incident light polarized in any
direction. This is because of the confinement in the three optical directions which means
that the wave functions of electrons are also quantized in the three spatial directions.
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(d) Broadening of spectra

Another important property of QDs is that there is no temperature dependence of
the line width of the spectra, since there are no continuum states for the electrons
to be promoted. However, in 1D and 2D there are one and two directions of con-
tinuum k states, respectively. The theoretical expected line spectra of QDs are not
completely sharp (δ-functions) but in reality they have some width (∼10 meV), as a
consequence primarily of QD size distribution. If the dots are very homogeneous,
then the width can be smaller than 10 meV, but in contrast, for the cases of wide
size distributions, the width can approach 0.1 eV. Variations of the QD bandgap due
to small variations in composition also produce broadening. Other causes are impu-
rities, surface or interface states, etc. In order to study the intrinsic properties of
QDs and avoid the broadening effect, single dot spectroscopy has been developed
(see below).

After describing the main characteristics related to the optical properties of QDs, let
us now review some of the results on optical characterization of various QD systems:

(i) Compound semiconductor QDs

We will only give a few examples of QDs spectra of semiconductor compounds, since there
is a wealth of results. Some of the most studied QDs, have been the II-VI nanocrystals,
because of their facility of preparation and important technological applications. In many
cases, II-VI compounds are introduced as dopants during the glass fusion process for
the production of doped glasses. The resulting nanocrystals can be controlled in size
in order to modify the glass colour. Figure 8.6 shows the absorption spectra of CdS
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Figure 8.6. Absorption spectra of CdS nanocrystals of different sizes in a glass matrix. After [3].
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(EG = 2.6 eV) QDs in glass [3]. Observe the blue-shift caused by the quantum size effects.
Using mixtures of Cds with another II-VI material like CdSe (EG = 1.75 eV) the whole
optical spectrum can be covered. Interesting results with CdSe nanocrystals were also
obtained by Empedocles et al. (1996) [4] using single-dot spectroscopy, similar to that
used for single-molecule spectroscopy. Figure 8.7 shows the great difference between a
single-dot spectrum of an 8 nm nanocrystal and that from an ensemble of nanocrystals.
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Figure 8.7. (a) Comparison between spectra of CdSe single nanocrystals with average size of 3.9 nm
(top) and that of a large ensemble (bottom); (b) the histogram of the energies of about
500 dots with an average size of 4.3 nm (top) and their emission spectrum (bottom).

(ii) Self-assembled QDs

3D island formation (Section 8.3.1) was already observed in 1985 by Goldstein et al.
during the growth of InAs/GaAs superlattices [5]. When a few monolayers are grown
(∼2.5 ML), then the InAs QD formation is produced as can be shown by high-resolution
transmission electron microscopy. The photoluminescence line spectrum is quite broad
due to the distribution of sizes and the photoluminescence peak goes to lower energies
than the one corresponding to the superlattices, because of the larger size of the dots
in comparison to the superlattice period. Since 1994, there has been a great interest in
these dots for the fabrication of QD lasers from the InGaAs/GaAs system. Figure 8.8
shows the photoluminescence and electroluminescence spectra of InAs/GaAs QDs grown
by MOCVD, similar to those used in QD lasers [6].
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Figure 8.8. Photoluminescence (PL) and electroluminescence (EL) spectra of InAs/GaAs quantum
dots grown by MOCVD. After [6].

Grundmann et al. (1995) [7] used spatially resolved cathodoluminescence for obser-
vations of single InAs/GaAs QDs (Figure 8.9). They observed several important facts:
(a) the spectral lines do not increase their width in the temperature range up to 70 K,
which proves the above mentioned 0D character of the nanocrystals; (b) the width of the
individual lines is smaller than 0.15 meV; (c) the spectroscopic resolution of the technique
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Figure 8.9. Spatially resolved cathodoluminescence spectrum of InAs/GaAs quantum dots.
After [7].



Optical and Electro-optical Processes in Quantum Heterostructures 211

is so good that taking into account the relatively small number of molecules in each dot
(about 2000), the addition or substraction of a single InAs molecule can be detected.

(iii) Indirect gap semiconductor nanocrystals

Since the discovery of a strong luminescence in Si nanocrystals by Canham (1990) [8],
there has been a high interest in the research of both Si crystalline clusters and porous
silicon. Although we know from semiconductor physics that indirect gap bulk semi-
conductors should present a very low efficiency for the emission of light, the situation
changes in a nanocrystal. The emission of light by silicon nanocrystals occurs in the
visible (∼2 eV) instead of the IR (EG = 1.1 eV) because of bandgap widening as a con-
sequence of quantum size effects (Figure 8.1(a)). Numerous experiments have proved,
in addition, the blue-shift effect as the size of the crystal diminishes. As for the strong
luminescence, it has been usually explained in terms of the relaxation of the k wave vec-
tor (or momentum p = hk) conservation law, under low-dimensional confinement effects
(see below).

Strong visible luminescence is specially observed in porous silicon (PS) prepared from
silicon single crystals by anodic electrolytic formation in HF–ethanol electrolytes. The
resulting porous layer is formed by 0D and 1D nanocrystals of nanometre range size. The
emission spectrum is quite wide as a consequence of the quasi-Gaussian distribution in
nanocrystal size. At the beginning many authors attributed the visible strong luminescence
to the formation of siloxene (Si6O3H6), Si-hydrides, Si-oxides, or Si-oxihydrides, incor-
porated on the nanocrystal surfaces and interfaces as a consequence of the electrolytic
formation. However, although in some situations that could be the case, today it is known
that quantum size effects are always a valid explanation, since the luminescence is still
observed in nanocrystals without the above surface compounds, as checked by multitude
of surface and thin film analytical techniques (Auger and XPS spectroscopies, Rutherford
back-scattering spectrometry, FTIR, etc.).

Quantum size effects in Si compounds can also be observed in SiGe superlattices and
quantum wells. The interest in SiGe heterostructures comes from their use in the fabrica-
tion of heterostructure bipolar transistors (Section 9.3). Strained SiGe heterojunctions are
built taking advantage of the difference of bandgaps in silicon (1.1 eV) and germanium
(0.74 eV), and the SiGe mixtures with values of the bandgap between the above values.

The strong luminescence observed in silicon nanocrystals and silicon–germanium
superlattices can be explained by the Heisenberg uncertainty principle or by the Brillouin
zone folding concept, respectively. Suppose that the Si nanocrystal has a size of about
30 nm only, or smaller. Then, the carriers, as shown in Figure 8.10(a), will have a distri-
bution in momenta, which results in a higher probability of direct transitions. As for the
case of SiGe superlattices, minibands and minigaps are formed around k = 0 on the dia-
gram for the energy bands, as shown in Figure 8.10(b) and Section 5.5. As a consequence,
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(a)

(b)

Figure 8.10. (a) Enhancement of optical transitions in a silicon nanocrystal due to Heisenberg
uncertainty relation; (b) schematic illustration of the effect of Brillouin zone folding
in SiGe superlattices.
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the superlattice would behave as a quasi-direct gap semiconductor, with a high probability
for direct optical transitions.

8.4. ELECTRO-OPTICAL EFFECTS IN QUANTUM WELLS. QUANTUM
CONFINED STARK EFFECT

An external electric field induces changes in the optical properties of a material. These
changes are called electro-optical effects and can affect the refractive index (electrorefrac-
tion effects) or the absorption coefficient (electroabsorption effects). For photon energies
well below the bandgap of the material, electrorefraction is the most important effect,
because the absorption coefficient is negligible. Electro-optical effects are used in many
optoelectronic devices to control light with an external electronic circuit. They provide a
bridge between the photonic and microelectronic devices. Semiconductor quantum wells,
and all semiconductor nanostructures in general, have interesting electro-optic properties
due to quantum confinement of electrons, strong exciton binding energies, and the possi-
bility to tailor the bandgap. An electric field normal to the well plane shifts the absorption
edge to lower energies (red-shift) and increases the refractive index below the absorption
edge. In the proximity of the bandgap the changes are very strong and depend critically
on the photon energy.

The most direct way to control the intensity of a light beam is through electroabsorp-
tion. As we know from solid state physics, an electric field applied to a bulk semiconductor
shifts the absorption edge to lower energies and produces oscillations above the bandgap
due to the Franz–Keldysh effect. For a light beam with a photon energy slightly below the
absorption edge, the semiconductor is transparent under no applied field and absorbent
under an applied field. However, in a bulk semiconductor this effect is too weak for
practical applications. In quantum wells the quantum confinement produces new electroab-
sorption effects which are much stronger than in bulk materials (see also Section 10.8).
This opens the way for the fabrication of electroabsorption modulators based on quantum
wells. When the electric field vector is parallel to the quantum well plane, the situation
is very similar to the bulk case because electrons can move freely along that direction.
Therefore, the electro-optic effect resembles the Franz–Keldysh effect and has less prac-
tical interest. The most interesting case occurs when the electric field is applied along the
direction perpendicular to the layers. In this case the effect is in some sense similar to
the Stark effect in atoms, which produces a shift of the energy levels under the action of
the field, and so it is called the quantum confined Stark effect (QCSE).

Figure 8.11 shows the energy band diagrams for a quantum well before and after
applying a constant electric field F perpendicular to the layers. The field introduces an
electrostatic potential energy eFz for electrons, which adds to the crystal potential given
by the profile of the conduction band minimum. Therefore, this profile tilts under the
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Figure 8.11. Band structure and wave functions for the fundamental states of electrons and heavy
holes for a 100 Å thick GaAs/Al0.35Ga0.65As quantum well under electric fields of
(a) zero field; (b) 100 kV/cm. Circular insets show Stark shifts of energy levels
amplified by a factor 3.

influence of the field, as indicated in the figure and something equivalent occurs for
the holes. The consequence of this perturbation is a deformation of the electronic states
wave functions and a reduction of the confinement energy of carriers. As it corresponds
to particles with a negative charge, the wave function of electrons deforms toward the
direction opposite to that of the electric field. In contrast, the wave function of holes
deforms toward the opposite direction. Due to the decrease of the confinement energy for
electrons and holes the absorption edge of the quantum well shifts toward lower energy
values, i.e. red-shifts.

Figure 8.12 shows the effect on the absorption spectrum of various electric fields
perpendicular to the layers for a 9.4 nm thick GaAs quantum well [9]. In contrast to the
bulk case, excitonic effects are important for field values up to 100 kV/cm. This is due
to the fact that the well potential avoids exciton ionization by keeping the electron–hole
separation smaller than the well thickness. The figure also shows the red-shift of the
absorption edge and the exciton peak. Let us consider a rectangular quantum well with
infinite barriers and a width L. For moderate electric fields the Stark shift �E can be easily
obtained analytically from the Schrödinger equation by considering the applied potential
as a second-order perturbation. For the fundamental level the shift is (see problem 7):

�E1 ≈ −2.19 × 10−3e2

�2
m∗F 2L4 (8.12)
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Figure 8.12. Absorption spectra for a 9.4 nm thick GaAs quantum well at different values of the
electric field, applied normal to the layers. After [9].

where m∗ is the effective mass in the direction perpendicular to the layers and e the
electron charge. Note that the shift increases sharply with the well width and that it
depends quadratically on the electric field, being independent on its sign (although this is
valid only for symmetric wells). Moreover, due to the linear dependence with the effective
mass, the shift is much larger for the heavy hole than for the electron or the light hole
levels, and the electric-field-induced decrease of the quantum well bandgap is due mainly
to the heavy-hole contribution. Figure 8.13 gives the Stark shift as a function of the applied
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Figure 8.13. Excitonic band gap energy as a function of the electric field for GaAs/Al0.35Ga0.65As
quantum wells of various thicknesses, obtained from photoluminescence emission
experiments at 5 K. After [10].
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field for GaAs quantum wells of different widths [10]. As an example, for a 100 Å-thick
GaAs/Al0.35Ga0.65As quantum well under a field of E = 100 kV/cm Eq. (8.12) predicts
shifts of −10 and −2 meV for the heavy hole and electron levels, respectively. A numerical
calculation that takes into account the finite barrier height and the different effective masses
in the barriers gives shifts of −15 and −6 meV, respectively. For photon energies slightly
below the position of the latter at zero field, the well is transparent but shows a sharp
increase on the light absorption when the field increases.

In summary, quantum wells can be used for the direct modulation of transmitted
light beams. In this case, the electro-optic modulation is much more efficient than in
devices based on bulk semiconductors or other conventional electro-optic materials like
lithium niobate. Quantum well electro-optic modulators will be discussed in more detail
in Section 10.8.

8.5. ELECTRO-OPTICAL EFFECTS IN SUPERLATTICES. STARK LADDERS
AND BLOCH OSCILLATIONS

In coupled quantum wells, the electric field strongly affects the coupling between wells.
Since the electrostatic energy of an electron in a uniform electric field depends linearly
on the distance, the relative shift of levels originating in different wells is �E = eFd,
where d is the distance between the centres of the wells. The resonance between two states
varies roughly inversely proportional to the energy separation of their levels and thus the
field can easily tune the coupling among states coming from different wells.

When the coupling is small, an electronic state is localized mostly on one of the
wells and the optical transitions can be classified as intrawell transitions among hole
and electron states of the same well, and interwell transitions, among hole and electron
states of different wells (Figure 8.14). For intrawell transitions the electro-optic effects
are similar to those of single quantum wells. For interwell transitions the electric field
induces a linear shift in energy �E = eFd, which can be positive or negative depending
on the direction of the field. If the latter points from the electron to the hole state, the
transition experiences a red-shift. Interwell transitions usually decrease in intensity and
finally disappear when the field grows. The linear shift in coupled quantum wells offers
great advantages when a large tunability of the transitions is needed at moderate electric
fields.

In superlattices the strongest excitonic peak corresponds to the transition from the top
of the hole miniband to the bottom of the electron miniband (Figure 8.15(a)). When an
electric field is applied normal to the layers, the coupling between the wells is reduced and
the minibands split into a series of equally spaced discrete levels. The separation between
two consecutive levels is �E = eFd, where d is the superlattice period. The levels
form the so called Stark ladder. Each level corresponds to an electronic state localized
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intrawell
interwell

(a) (b)

Figure 8.14. Symmetrical coupled double quantum well showing optical transitions from the right-
well hole state. (a) At zero electric field the wells are coupled and electron states
extend over both wells; (b) at finite electric fields the states are localized mostly in
either one of the wells and transitions can be classified as intrawell or interwell.

F=0

–1 0 0
+1

(a) (b) (c)

Figure 8.15. Electric field effects on a superlattice. (a) At zero electric field exciton transition
occurs between miniband edges; (b) at moderate electric fields, holes are localized
and the electron miniband splits into a Stark ladder, producing a number of transitions,
intrawell and interwell; (c) at high electric fields electron states localize into single
wells, and interwell transitions disappear. From (a) to (c) the absorption edge blue-
shifts by roughly half the miniband width. For simplicity transitions are shown only
to the central well electron state.

around a different well (Figure 8.15(b)). For fields of the order of F ≈ �/ed , where
� and d are the miniband width and the superlattice period, respectively, the states of
the Stark ladder become completely localized in the corresponding well (Figure 8.15(c)).
This effect is difficult to observe in bulk crystals because the bandwidths are of the order
of a few eV and extremely large electric fields are required. However, in superlattices
the bandwidths are much smaller and the needed fields are easily attained. For example,
in a typical 40/20 Å GaAs/Al0.35Ga0.65As superlattice the electron miniband has a width
of about 65 meV and the electric field necessary for Stark localization is of the order of
115 kV/cm. The heavy-hole miniband has a width of only 6 meV and the heavy holes
become localized for fields as small as 10 kV/cm.
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The absorption spectrum of a superlattice (or related spectra, like photocurrent spectra,
Figure 8.16) [11] reflects the field-induced localization. At zero electric field there is an
exciton peak for the transition from the top of the hole miniband to the bottom of the elec-
tron miniband, corresponding to the transitions between delocalized states (Figure 8.15(a)).
At intermediate fields (Figure 8.15(b)) the spectrum splits into a series of peaks correspond-
ing to interwell transitions between the different states of the Stark ladder (Figure 8.17)
[11]. At the fields where Stark localization occurs (Figure 8.15(c)) the interwell transitions
disappear and only a peak corresponding to the intrawell transitions remains. Since the
single well level is close to the centre of the miniband, the absorption edge of the super-
lattice experiences a blue-shift from zero to high fields. The blue-shift, which opposes the
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Figure 8.16. Photocurrent spectra for a 40–20 Å GaAs/Al0.35Ga0.65As superlattice measured at 5 K
for various electric fields. (Spectra have been offset for clarity.) Interwell transitions
are labelled according to the number of periods between the centres of the electron
and the hole states. Note the blue-shift of the absorption edge from 0 to 167 kV/cm.
After [11].
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Figure 8.17. Heavy hole transition energies vs electric field measured under the same conditions
as in Figure 8.16. Straight lines are a guide to the eye. After [11].

usual red-shift found in thick single quantum wells, is roughly equal to half the electron
miniband width and has been the basis of some electro-optic devices.

In the previous section, we have limited ourselves to the static behaviour of electrons
in the Stark ladder regime. However, the dynamical behaviour is also of great interest
since it could provide the means to produce very fast electromagnetic emitters or Bloch
oscillators. Terahertz emission was first observed in 1993, but it had already been predicted
in the Esaki and Chang (1970) original paper on superlattices. Let us consider again the
effect of a constant electric field on the electronic states of a superlattice with the help of
Figure 8.18. At zero electric field quantum well states are fully coupled and the superlattice
electron states have an infinite extension, their energy levels ranging continuously from
the bottom to the top of the miniband (Figure 8.18(a)). Under a finite electric field the

(a) (b)

D

F = 0 F > 0

Figure 8.18. Schematic representation of the effects of an electric field on the electronic properties
of a semiconductor superlattice. The field is applied perpendicular to the layers. (a) For
a zero field; (b) for an applied electric field.
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coupling is reduced and the miniband splits into a Stark ladder of levels (Figure 8.18(b)).
The spatial extension of the corresponding states can be estimated by considering that
the miniband is still a valid approximation. The edges of the miniband will tilt with the
electric field due to the eFz term of the electrostatic potential energy. In a semiclassical
picture the electron can only have kinetic energy values within the miniband range, thus
defining a finite region of space where an electron at a certain energy level can move. The
borders of this region are given by the values of z where the level energy intersects the
edges of the miniband. The distance between these two points is:

λ = �E

eF
(8.13)

In the absence of scattering, an electron wave packet will oscillate from one end to the
other. As in the harmonic oscillator problem, the frequency is determined by the spacing
between the levels, i.e.:

ωB = �E

�
= eFd

�
(8.14)

where d is the superlattice period. The angular frequency ωB is called the Bloch fre-
quency and can reach values in the THz range. Bloch oscillations have been observed in
semiconductor superlattices by various optical techniques.

In summary, Bloch oscillations in superlattices can generate microwave radiation under
the action of an electric field. The emission corresponds to transitions between the levels
that form the Stark ladder. The emission occurs in the frequency range around 1 THz,
which is not covered by conventional semiconductor microwave sources. However, effi-
cient emission by devices based on superlattices still needs some more development before
standard fabrication is implemented.
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PROBLEMS

1. Optical transitions in a quantum well. For the cases n = 1 and 2 in an AlGaAs/GaAs
quantum well, calculate the transitions between the electrons and the holes, taking
into consideration the selection rule of Section 8.2. Draw schematically the optical
absorption coefficient as a function of photon energy. Assume the width of the well
of a = 10 nm. Hint: observe that the absorption starts to increase strongly at the
transition HH → e for n = 1, then decreases and increases again for the transition
LH → e for n = 1. Almost simultaneously the increase due to the n2D density of
states starts. Continues to the n = 2 transition.

2. Linewidth broadening in quantum wells. One of the causes of linewidth broad-
ening in quantum wells is due to the fluctuations in their width a. The influence of
these fluctuations produces a band width increment �. (a) Show that, due to this
effect, the broadening of the linewidth of the absorption or emission spectrum can be
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expressed as

� = �
2

2

π2

a3

(
1

m∗
e

+ 1

m∗
h

)
�a

(b) Estimate the value � for a typical quantum well, assuming �a = a0/2, where
a0 is the lattice constant of the well material. (Observe that this situation is also
encountered if one stops the production of the quantum well, by MBE techniques for
instance, when the last monolayer is not completed.)

3. Excitons in quantum wells. From the results of Figure 4.16 discuss qualitatively
the variation of the excitonic heavy hole and light hole energies with the well width.
Discuss the differences in the values of binding energy for the HH and LH cases.
Discuss also the differences for x = 0.32 and x = 0.15, where x indicates the
proportion of Al atoms in the AlxGa1−xAs/GaAs structure.

4. Quantum dots. Consider a quantum dot made of GaAs of cubic shape with a size of
5 nm which has a quantum confinement energy of about 0.8 eV. Calculate the value
of the Coulomb energy and show that is much smaller than the confinement energy.

5. Si/SiGe superlattices. Calculate the period of a Si/SiGe superlattice, so that the band
minimum of Si, which occurs at a wave number of approximately k ≈ 0.8π/a0 (a0 is
the lattice constant), is brought to k = 0. Hint: according to the zone folding concept
of Section 5.5.2, observe that the superlattices can behave optically as direct gap bulk
semiconductors.

6. Type II superlattices under electric fields. In a type II superlattice (see Figure
5.7(b)), the electron and hole wave functions are separated by half the period, i.e. d/2.
For a 80/30 Å AlAs/GaAs type II superlattice, calculate the energy shift produced by
an electric field of value F = 104 Vcm−1. Calculate also the Stark shift and observe
that is smaller than the above result. (Note: it is known that when the thickness of
GaAs is less than about 35 Å, the superlattices become of type II.)

7. Quantum confined Stark effect. Show Eq. (8.12) for the quantum confined Stark
effect in a quantum well. Hint: take H ′ = eFz as a perturbation Hamiltonian where
F is the electric field applied along z (growth axis). Since the first-order shift gives
zero as result, proceed to second order. Assume wave functions as if the quantum
well had infinite walls. (Note: observe that this effect is similar to the quadratic Stark
effect in the hydrogen atom.)

8. Bloch oscillations. Electron transport in a superlattice can be modelled by the elec-
tron motion in a weak periodic potential of period a. (a) Assuming that the electron
scattering is negligible, calculate the frequency of Bloch oscillations for a = 4 nm
and F = 3 × 106 V/m. (b) Supposing a low concentration of electrons, explain how
the polarization P corresponding to the electrons, i.e. P = ex, where x is the position
and v = (1/�)(∂E/∂k) the group velocity, oscillates as a function of time.
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Chapter 9

Electronic Devices Based on Nanostructures

9.1. INTRODUCTION

The high level of circuit integration in today’s silicon technology could not have been
achieved with III-V semiconductor compounds. However, from the point of view of
operating speed, III-V devices show many advantages, mainly due to the high carrier
mobility, µ, and lower effective mass of electrons in III-V compounds. As seen in
Chapter 3 (Section 3.5.1), carrier mobility in GaAs is about one order of magnitude
higher than that of silicon. In fact, the electron velocity in a semiconductor under the
effect of an applied external electric field is probably the most representative parameter
for the design of high-speed advanced electronic circuits. As we will see in this chapter,
MODFETs, based on modulation-doped quantum heterostructures (Section 5.3.1), can
work up to very high frequencies due to the large values of µ for parallel electron trans-
port. The value of the cut-off frequency of these devices is larger than the corresponding
values in Si-based MOSFETs and also GaAs MESFETs. It has to be pointed out that the
high carrier mobility associated with these structures is a consequence of the quantifica-
tion of electron states when a 2D system is formed, as well as the good quality of the
AlGaAs–GaAs interface.

Figure 9.1 shows the maximum operation frequency (in GHz) of different MODFETs
as a function of gate length (in microns) [1]. Due to their particular characteristics, these
transistors are also called high electron mobility transistor (HEMT) (Section 9.2). For
comparison purposes, Figure 9.1 also includes typical parameters of silicon MOSFETs
as well as GaAs MESFETs. Frequency values are given for room temperature (300 K),
although these frequencies are much higher for operation temperatures close to 0 K, as
a consequence of the increase in mobility at low temperatures (Figures 6.2 and 6.3).
At present, MODFET devices with gate lengths of about 100 nm and maximum operation
frequencies at room temperature of several hundreds of Gigahertz (GHz) are available.

The use of quantum heterostructures is not only limited to field effect transistors, in
which electron transport is parallel to the quantum well interfaces, but also to those
transistors for which electron transport is perpendicular to the heterostructure interfaces.
The operation of these transistors is based on the application of voltage differences to
the emitter, base, and collector, similar to the case of bipolar junction transistors. In
bipolar transistors, the maximum operating frequency is limited by the transit time of
carriers through the base. As will be shown below (Section 9.3), heterostructure bipolar
transistors (HBTs), based on AlGaAs–GaAs junctions or on Si–Ge junctions, provide
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Figure 9.1. Maximum operation frequencies reached by MODFET (HEMT), MESFET, and
MOSFETs as a function of gate length. After [1].

a notable improvement of the parameters of conventional silicon bipolar transistors, such
as cut-off frequency, β factor, base resistivity, etc.

Another very interesting quantum effect to take into account for the development of
advanced transistors is the so-called resonant tunnelling effect (Section 9.4). Resonant tun-
nelling diodes (RTD), based on that effect, basically consist of a quantum well surrounded
by two potential barriers thin enough to allow electron tunnelling. Due to the extremely
low electron transit time through these semiconductor structures, electronic devices based
on RTDs can operate at extremely high frequencies, in the range of 1 THz. By the addition
of an RTD to a bipolar transistor or to a FET, it is possible to build resonant tunnelling
transistors (RTT), described in Section 9.6. In these transistors, the resonant tunnel struc-
ture injects very hot electrons (i.e. electrons of very high kinetic energy) into the transistor
active region. Transistors based on this effect are called hot electron transistors (HET)
and will be analysed in Section 9.5.

The reduction of the characteristic device size to the nanometric range leads to a
notable reduction in the number of electrons contained in the electric signals transferred
through electronic devices. This tendency has led to the development of the so-called single
electron transistor (SET). As will be seen in Section 9.7, the performance of SETs is based
on the Coulomb blockade effect, which is manifested in zero-dimensional semiconductor
structures, such as the so-called quantum dots (Section 4.6). The electronic current through
a quantum dot in a SET, connected to the terminals by means of tunnel junctions, can be
controlled electron by electron, by the application of a signal to an electrode that behaves
as the gate of the transistor.
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9.2. MODFETS

As previously seen in Section 5.3.1, a potential well for electrons is formed in AlGaAs–
GaAs heterojunctions which, due to its reduced dimensions, results in quantified energy
levels for the electron energy corresponding to the direction perpendicular to the interface.
However, from the point of view of the motion parallel to the interface, electrons can be
practically considered as free particles. It was remarked that the mobility of electrons can
be, in this particular case, extremely high, since electrons which originated in the AlGaAs
layer are transferred to the undoped GaAs layer where no impurity scattering takes place
when they move under the action of an electric field parallel to the interface. These
reasons motivated the fabrication from the beginning of the 1980s of very high electron
mobility transistors (HEMT). These transistors are also called modulation-doped field effect
transistors (MODFET), since they are based on modulation-doped heterojunctions, and
their operation is controlled by an electric field that controls the motion of electrons along
the channel. MODFETs, widely used for high-frequency applications, constitute a good
example of devices whose performance is based on the quantum behaviour of electrons,
since they are localized in a nanometric potential well which is smaller that the electron
de Broglie wavelength (Section 1.3).

Field effect transistors based on heterojunctions show a layer structure that allows the
creation of a 2D electron gas of high mobility. Figure 9.2(a) shows the cross-sectional
schematic representation of a typical MODFET, with the source, gate, and drain electrodes.
The representation of the energy bands, or more precisely, the conduction band in the per-
pendicular direction to the structure is shown in Figure 9.2(b). The most significant aspect
related to these transistors is the potential quantum well for electrons formed between
the n-doped AlGaAs semiconducting layer and the usually undoped GaAs layer. It has
to be remembered from the AlGaAs–GaAs heterostructure (Section 5.3.1) that a potential
quantum well is formed at the interface due to the larger gap of AlGaAs (Eg ≈ 2.0 eV)
in comparison to that of GaAs (Eg = 1.41 eV). The typical width of the quantum well,
approximately triangular-shaped, is of about 8 nm, which is thin enough for the electron
gas to behave as a 2D semiconductor. Figure 9.2(b) just shows one energy level. The
role of the undoped AlGaAs spacer is to further separate the conducting electron channel
from the n-type AlGaAs layer that generates the carriers, thus leading to higher electron
mobilities due to reduced interaction with the ionized donors. The typical width of the
spacer is about 50 Å.

It can be clearly appreciated from Figure 9.2 that the structure of a MODFET or
HEMT is very similar to that of the MOSFET, already analysed in Section 5.2, in which
the potential well for the electron channel is located at the Si–SiO2 interface. In a similar
way to the case of MOSFETs, in normal HEMT operation an electron current is created
from source to drain when a voltage difference is applied between them. This current can
be modulated by a voltage signal introduced through the gate lead. Likewise, the analytical
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Figure 9.2. (a) Cross-sectional schematic representation of a MODFET (HEMT); (b) representation
of the conduction band through a direction perpendicular to the structure.

expression that gives the dependence of the saturation current on the gate voltage, VG,
is in the form ID,sat ∼ (VG − VT)2, where VT accounts for the threshold voltage. As a
consequence, the MODFET I–V characteristics are very similar to those of the MOSFETs.
In relation to the performance of the MODFETs at high frequencies, the switching speed
is improved as the electron transit time, tr , is made shorter. Therefore the gate length, L,
should be as short as possible (L ≈ 100 nm). In contrast, a large width of the gate is
usually preferred to increase the signal and the transistor’s transconductance. In the case of
MESFETs, in order to obtain large values of transconductance it is necessary to use highly
doped samples (between 1018 and 1019 cm−3), which limits the electron drift velocity due
to impurity scattering by electrons. Hence, the MODFET structure presents an additional
advantage since carrier transport takes place in the undoped layer (GaAs).

MODFETs dominate the low-noise device market, since they are capable of oper-
ating in the frequency range from microwaves up to about 100 GHz (Figure 9.1). The
newly proposed AlGaAs–InGaAs–GaAs heterostructure makes electron confinement in
the quantum well even more effective than in AlGaAs–GaAs heterojunctions and, in
addition, electrons moving in the InGaAs layer show higher saturation drift velocities
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when compared to transport in GaAs. Transconductance reaches values up to 100 mS/mm,
with cut-off frequencies of about 100 GHz and a noise level of only 2 dB. This behaviour
is produced by the smaller gate-channel distance due to more abrupt barriers and reduced
parasitic capacitance. For all these reasons, MODFETs are preferred in signal amplifica-
tion in the microwave range, up to frequencies of 300 GHz, i.e. about six times higher
than the maximum operation frequency of transistors fabricated with MOS technology,
for a given lithographic resolution (Figure 9.1). MODFETs can also be fabricated from
SiGe-based structures, although SiGe MODFETs have not moved into production like the
HBTs (Section 9.3), due to their relatively high leakage currents.

9.3. HETEROJUNCTION BIPOLAR TRANSISTORS

A desirable property for junction bipolar transistors is to have a high value of the amplifi-
cation factor β up to the largest frequencies possible. The maximum operating frequency
of these devices depends on several design parameters, such as geometrical dimensions
and doping levels of emitter, base, and collector regions. In order to obtain a high β, both
the current gain through the base, α, and the injection efficiency factor of the emitter, γ ,
should be as close as possible to unity (it is assumed that the reader is acquainted with
junction bipolar transistor terminology). This condition requires the emitter region doping
level to be much higher than that of the base region. However, there is a reduction in
the energy gap of semiconductors when the doping level is very high (Section 3.6). For
instance, there is a gap reduction of about 14%, when the doping level reaches 1020 cm−3

which results in a notable reduction in carrier injection from the emitter region to the
base region. For this reason, shortly after the invention of the homojunction bipolar tran-
sistor, Shockley suggested that the emitter could be fabricated by using a wide bandgap
semiconductor. This would reduce the amount of injected carriers from the base region to
the emitter region, thus improving the overall injection efficiency of the emitter. Bipolar
transistors fabricated by using heterojuntions are called heterostructure bipolar transistors
(HBT), whose industrial production was started in the 1970s.

Figure 9.3(a) and (b) shows the differences between the band structures correspond-
ing to npn homojunction and heterojunction transistors. Note that in the later case
(Figure 9.3(b)), the band gap of the emitter is larger than that of the base region and conse-
quently the barrier for the injection of electrons from the emitter to the base, eVn, is lower
than that corresponding to holes, eVp, which results in a notable increment of the β factor.
The barrier height difference has an enormous influence on carrier injection through the
emitter–base junction, since injection processes show a quasi-exponential dependence on
barrier height. In fact, the β factor is proportional to the ratio between the doping concen-
tration of the emitter and base regions and to the coefficient exp(�Eg/kT ), where �Eg

is the energy difference between the value of the wide bandgap of the emitter and that
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of the narrow bandgap of the base region. Thus at room temperature kT ∼ 0.026 eV,
a small gap difference �Eg substantially increases the β factor. All these factors mean
that HBTs display an ample margin for fabricating heavily doped base transistors with
a very low value of the base resistance and of the electron transit time through the base.
Simultaneously, the doping of the emitter can be somewhat reduced, resulting in a smaller
parasitic capacitance associated to the emitter–base junction. The simultaneous reduction
of the base resistance and the capacitance of the emitter–base junction are essential for
the correct performance of HBTs at high frequencies.

Another interesting feature of heterostructures is the possibility to fabricate a
graded base HBT, with diminishing bandgap from the emitter to the collector region
(Figure 9.4(a)). As a consequence, an internal electric field is created which accelerates
electrons travelling through the base region, and therefore, allows HBTs to operate at even
higher frequencies. Finally, if the collector region is also fabricated from a wide bandgap

(a) (b)

Figure 9.3. Band structure under polarization in the active region of: (a) homojunction bipolar
transistor; (b) heterojunction bipolar transistor (HBT).

(a) (b)

Figure 9.4. (a) HBT with graded base region; (b) double HBT, with wide bandgap emitter and
collector semiconductors.
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semiconductor (Figure 9.4(b)), the breakdown voltage of the base–collector junction can
be notably increased. In addition, this structure, called double HBT or DHBT, allows the
interchange between the emitter and collector terminals, which facilitates the design of
integrated circuits.

Due to the good behaviour of AlGaAs–GaAs heterojuntions, and to high values
of the mobility, HBTs are usually fabricated from III-V semiconductors. In a typi-
cal HBT, the base length can be of about 50 nm and is heavily doped, usually in the
range of 1019 cm−3. These transistors can be used up to frequencies of approximately
100 GHz, much higher than the corresponding values for silicon-based homojunction
bipolar transistors. The use of InGaAs–InAlAs and InGaAs–InP based heterostructures
allows even higher operating frequencies (∼200 GHz) to be reached. An additional advan-
tage of III-V semiconductor-based HBTs is the possibility of their integration in the same
chip that includes electronic and optoelectronic devices. These optoelectronic integrated
circuits (OEIC) usually include semiconductor lasers (Chapter 10), something which is
not possible in the case of silicon-based technology.

There are also research projects focused on the development of HBTs based on silicon
technology, which make use of different silicon compounds as wide bandgap materi-
als. One of these compounds is silicon carbide (SiC), whose bandgap is 2.2 eV. Another
material widely employed is hydrogenated amorphous silicon, whose bandgap is 1.6 eV.
However, these materials show quite high emitter resistance, associated with the material
itself or to the metallic contact. The most promising of all silicon compounds for the fab-
rication of HBTs are SiGe-based alloys, from which heterojunctions can be formed since
the bandgap of silicon is 1.12 eV, while that of Ge is 0.66 eV. Si–SiGe heterostructure
devices were developed much later (1998) than GaAs and other III-V materials due to the
less mature SiGe growth technology. For the fabrication of Si and SiGe-based HBTs, the
Si emitter region is usually followed by a SiGe base region with bandgap energy notably
smaller than that of Si. This bandgap energy difference allows doping of the base region
with relatively high concentrations, thus extending the allowed operation frequency to
values comparable to those of III-V compounds. Commercial HBTs have cut-off frequen-
cies over 100 GHz, while research devices have reached values close to 400 GHz. This
high value of the cut-off frequency is partly due to compressive strains which change the
energy band structure of the strained layers and, as a result, the effective mass of the
carriers is reduced. Therefore, carrier mobilities are increased up to about 60%.

Finally, a gradual base region can be grown, by changing the value of x in the GexSi1−x

compound. The slope of the conduction energy band, as a consequence of the variation
of the bandgap energy across the base, provides a quite high built-in electrical field
(∼10 kV/cm) which results in a reduced transit time for electrons as they travel through
the base. These HBTs have a higher power dissipation than MOSFETs, but can be operated
at higher frequencies and with lower noise. All these improvements make the SiGe-based
HBTs very promising devices.
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9.4. RESONANT TUNNEL EFFECT

It was shown in the previous sections that electrons in heterojunctions and in quantum
wells can respond with very high mobility to applied electric fields parallel to the inter-
faces. In this section, the response to an electrical field perpendicular to the potential
barriers at the interfaces will be considered. Under certain circumstances, electrons can
tunnel through these potential barriers, constituting the so-called perpendicular transport
(Section 6.3). Tunnelling currents through heterostructures can show zones of negative
differential resistance (NDR), which arise when the current level decreases for increasing
voltage. The NDR effect was first observed by Esaki when studying p–n junction tunnel
diodes in 1957 and, together with Tsu, proposed in the 1970s that this effect would be
also observed in the current through quantum wells. However, it was not until the mid
1980s that the experimental growth deposition systems for heterostructures allowed the
standard fabrication of quantum well devices based on NDR effects.

The operation of NDR quantum well electronic devices is based on the so-called
resonant tunnel effect (RTE), which takes place when the current travels through a structure
formed by two thin barriers with a quantum well between them. The I–V characteristics
of RTE devices are somewhat similar to that of Esaki’s tunnel diode. Figure 9.5(a) shows
the representation of the conduction band of a double heterojunction with a quantum well
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Figure 9.5. Schematic representation of the conduction band of a resonant tunnel diode: (a) with
no voltage applied; (b), (c), and (d) for increasing applied voltages; (e) current–voltage
characteristic.
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between the junctions. The thickness of the quantum well is supposed to be small enough
(5–10 nm) as to have only one allowed electron energy level E1 (resonant level). The well
region is made from lightly doped GaAs surrounded by higher gap AlGaAs. The outer
layers are made from heavily doped n-type GaAs (n+ GaAs) to facilitate the electrical
contacts. The Fermi level of the n+ GaAs is represented within the conduction band, since
it can be considered a degenerated semiconductor (Section 3.6).

Let us suppose that an external voltage, V, is applied, starting from 0 V. It can be
expected that some electrons tunnel from the n+ GaAs conduction band through the
potential barrier, thus resulting in increasing current for increasing voltage (region 1–2
in the I–V curve near 0 V). When the voltage increases, the electron energy in n+ GaAs
increases until the value 2E1/e is reached, for which the energy of the electrons located in
the neighbourhood of the Fermi level coincides with that of level E1 of the electrons in
the well (Figure 9.5(b)). In this case, resonance occurs and the coefficient of quantum
transmission through the barriers rises very sharply. In effect, when the resonant condition
is reached, the electron wave corresponding to the electrons in the well is coherently
reflected between the two barriers (this is analogous to the optical effect produced in
Fabry–Perot resonators). In this case, the electron wave incident from the left excites
the resonant level of the electron in the well, thus increasing the transmission coefficient
(and thus the current) through the potential barrier (region 2 in the I–V characteristic).
In this condition, the effect is comparable to electrons impinging from the left being
captured in the well and liberated through the second barrier. If the voltage is further
increased (Figure 9.5(c)), the resonant energy level of the well is located below the
cathode lead Fermi level and the current decreases (region 3), thus leading to the so-
called negative differential resistance (NDR) region (region 2–3). Finally, for even higher
applied voltages, Figure 9.5(d), the current again rises due to thermo-ionic emission over
the barrier (region 4).

Commercial resonant tunnelling diodes (RTDs) used in microwave applications are
based on this effect. A figure of merit used for RTDs is the peak-to-valley current ratio
(PVCR), of their I–V characteristic, given by the ratio between the maximum current
(point 2) and the minimum current in the valley (point 3). Although the normal values of
the figure of merit are about five for AlGaAs–GaAs structures at room temperature, values
up to 10 can be reached in devices fabricated from strained InAs layers, surrounded by
AlAs barriers and operating at liquid nitrogen temperature.

If RTDs are simulated by a negative resistance in parallel with a diode capacitance
C and a series resistance RS, as is the case of normal diodes, it is relatively easy to
demonstrate that the maximum operation frequency increases as C decreases. The resonant
tunnel diode is fabricated from relatively low-doped semiconductors, which results in
wide depletion regions between the barriers and the collector region, and accordingly,
small equivalent capacity. For this reason, RTDs can operate at frequencies up to several
terahertz (THz), much higher than those corresponding to Esaki’s tunnel diodes which
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just reach about 100 GHz, with response time under 10−13 s. Small values of the negative
differential resistance, i.e. an abrupt fall after the maximum of the I–V curve result in
high cut-off frequencies of operation. In fact, RTDs are the only purely electronic devices
that can operate up to frequencies close to 1 THz, the highest of any electron transit time
device.

In a general sense, the power delivered from the RTDs to an external load is small and
the output impedance is also relatively small. For this reason, it is sometimes hard to adapt
them to the output of waveguides or antennas. The output signal is usually of low power (a
few milliwatts) since the output voltage is usually lower than 0.3 V, due to the values of the
barrier heights and energy levels in quantum wells. RTDs have been used to demonstrate
circuits for numerous applications including static random access memories (SRAM),
pulse generators, multivalued memory, multivalued and self-latching logic, analogue-to-
digital converters, oscillator elements, shift registers, low-noise amplification, MOBILE
logic, frequency multiplication, neural networks, and fuzzy logic. In particular, for logic
applications, values of PVCR of 3 or higher and a high value of the peak current density,
Jp, are required. In the case of memory applications, the ideal PVCR is 3 and values of Jp

of a few Acm−2 are more appropriate. High frequency oscillators always require high Jp

with PVCR over 2. Table 9.1 shows a comparison of the device performance of different
materials systems.

Table 9.1. Comparison of RTDs from different materials systems. Jp is the peak current density,
PVCR the peak-to-valley current ratio, �I�V the maximum available power (assuming 100%
efficiency) in the NDR region; and RD the negative resistance of the diode in the NDR region.
Adapted from Paul, D.J. (2004) Semicond. Sci. Technol., 19, R75–R108.

Material InGaAs InAs Si/SiGe GaAs Si Esaki

Jp (kAcm−2) 460 370 282 250 151
PVCR 4 3.2 2.4 1.8 2.0
�I�V 5.4 9.4 43.0 4.0 1.1
RD (�) 1.5 14.0 12.5 31.8 79.5
Area (µm2) 16 1 25 5 2.2

9.5. HOT ELECTRON TRANSISTORS

When electrons are accelerated in high electric fields, they can acquire energies much
higher than those corresponding to thermal equilibrium. For a three-dimensional crystal
it is possible to associate a given temperature Te, to electrons in the conduction band,
by the use of relationship Ek = (3/2)kTe, for the average kinetic energy of electrons.
Evidently, in the case of a 2D electron gas the numeric factor of the above expression will
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be one. When the semiconductor is in thermal equilibrium, the electron temperature Te

coincides with the temperature T of the crystal structure. However, under non-equilibrium
conditions, for instance, when an external applied electric field accelerates electrons to
very high velocities, the kinetic energy, and thus Te, can reach values which are much
higher than those corresponding to the temperature of the crystal. In this case, the electrons
are far from thermodynamic equilibrium, and receive the name of hot electrons.

Heterojunctions between different gap semiconductors allow the generation of hot elec-
trons, since the electrons will acquire a kinetic energy, given by the energy discontinuity in
the conduction band �Ec, when travelling from a wide bandgap semiconductor to one with
smaller bandgap. In the particular case of the AlGaAs–GaAs heterojunction, the value of
�Ec, ranges from 0.2 to 0.3 eV, which is about 10 times higher than kT = 0.026 eV
at room temperature, and corresponds to a carrier velocity higher than 108 cms−1.
In addition, when travelling across the junction the electron beam suffers a collimat-
ing effect as a consequence of the acceleration suffered by the electrons in the direction
of the electric field, that is, perpendicular to the interface. This effect, called electron
injection by heterojunction, makes the outgoing electrons concentrate inside a cone of
about 10° of aperture.

One way of selecting the most energetic electrons in a given distribution consists of
making them cross a potential barrier. Evidently, if the barrier is not very thin, only the
most energetic electrons will have enough energy to overcome the barrier by a mechanism
similar to the thermoionic effect. A much more effective procedure to inject hot electrons is
based on the formation of thin potential barriers in the conduction band of semiconductor
structures, to allow electron tunnelling. In this case, the resulting electron beam is almost
monochromatic.

The idea of developing hot electron transistors (HETs) came when designing faster
transistors, as proposed by Mead as early as the 1960s. However, these devices were not
developed in any efficient way until some decades later, when growth techniques based on
molecular beam epitaxy (MBE) allowed the fabrication of AlGaAs–GaAs heterojunctions
of sufficient quality. Figure 9.6(a) shows the typical structure of a hot electron transis-
tor [2], consisting of a n+ GaAs emitter, a very thin (∼50 Å) AlGaAs barrier, the GaAs
base region (∼1000 Å), another thick AlGaAs barrier of about 3000 Å, and the n+ GaAs
collector. When a positive voltage is applied to the collector, the injection of hot electrons
coming from the emitter takes place by tunnelling through the thin AlGaAs barrier, since
the base is positively biased with respect to the emitter (Figure 9.6(b)). It must be noted
that the barrier’s effective thickness can be modulated by varying the voltage difference
between emitter and base, VBE. The velocity of the injected electrons is, in this particular
case, of about 5×108 cms−1, much higher than in other type of transistors and, in addition,
the electrons are collimated inside a cone of about 6°. The current gain through the base, α,
can be made close to unity if both the scattering in the base region (which is usually very
thin) and reflection in the collector barrier are reduced as much as possible. The base transit
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Figure 9.6. Hot electron transistor: (a) structure of the device; (b) energy band diagram (for the
conduction band) under positive voltage applied to the collector. After [2].

time when the transistor is polarized can be of the order of tens of femtoseconds, but that
associated to the crossing of the collector barrier is relatively higher. Nowadays, there
are several efforts to reduce this time, although the collector barrier cannot be reduced as
desired since leakage currents have to be prevented. Realistic estimations predict that the
total time of transit should be considered on the order of 1 ps.

Similarly to the case of HEMTs, much effort is currently being developed to progres-
sively reduce the dimensions of HET devices, so that the electron transit time is as short as
possible. This evidently implies the reduction of the thickness of the space charge regions
by increasing, for instance, the semiconductor doping level. However, this method has the
drawback that the doping impurities can diffuse through the material and form complex
chemical compounds that would result in a variation of the chemical composition of the
materials. In order to overcome some of these problems, it was proposed to substitute
the semiconductor at the base by a material that behaves as a metal, is non-contaminant,
and does not show electromigration effects. The resulting device is called metal base
transistor (MBT). For the base region of MBTs, materials such as cobalt silicide (CoSi2)
can be used; this silicide shows a conductivity almost as high as that of metals and is
chemically compatible with silicon technology. As is well known, the operation speed of
bipolar transistors is limited by the low mobility of holes. In this sense, one of the most
significant advantages of MBTs is that they are unipolar devices and can operate at higher
frequencies.

The two most common MBTs structures are represented in Figure 9.7. Figure 9.7(a)
shows the band structure of a device consisting of a metal-oxide-metal-oxide-metal het-
erostructure, under forward bias between the emitter–base and base–collector electrodes.
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2

(a) (b)

Figure 9.7. Energy band diagram of ballistic transistors: (a) metal-oxide-metal-oxide-metal
heterostructure; (b) metallic base (cobalt silicide) heterostructure (Si–CoSi2–Si).

In this case, electrons are injected by tunnelling through a thin barrier into the emitter
junction. Figure 9.7(b) shows an even simpler MBT, formed by Si–CoSi2–Si. The first
Schottky junction is forward biased so that the electrons can overcome the emitter bar-
rier by the thermoionic effect. CoSi2 is chosen as material for the base region due to
the good lattice matching properties with silicon that results in high quality interfaces
and also due to its high electromigration resistivity. In these transistors, hot electrons
behave as ballistic electrons when they reach the base region, that is, they practically do
not suffer scattering since their mean free path is larger than the thickness of the base
region.

9.6. RESONANT TUNNELLING TRANSISTOR

Diodes based on the resonant tunnel effect (RTE) discussed in Section 9.4 can be incorpo-
rated into standard bipolar transistors, field effect transistors or into hot electron transistors,
thus creating devices with new properties called resonant tunnelling transistors (RT T).
Let us first consider a bipolar transistor in which a RTD is added to the emitter junction.
Since the emitter to base polarization voltage, VEB, controls the tunnelling resonant current,
the collector current will show the typical RTD dependence (Figure 9.8(a)). Figure 9.8(b)
shows the dependence of the collector current as a function of VCE. Therefore, the output
I–V characteristics present alternate regions of positive and negative transconductance that
can be controlled by the voltage VEB.

Figure 9.9 shows the band energy diagram of a transistor known as hot electron res-
onant tunnelling transistor biased in the active region [3]. Between the emitter and base
regions of this transistor there exists a resonant tunnelling heterostructure, capable of
injecting a large current when the electron resonant condition is reached. The position of
the resonant level related to the emitter, is controlled by the voltage level applied to the
base region, VBE. This voltage can be increased until the resonant condition is reached.
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Figure 9.8. Qualitative dependence of the collector current of a resonant tunnelling transistor as a
function of: (a) base–emitter voltage; (b) collector–emitter voltage.

Figure 9.9. Schematic energy band representation of a resonant tunnelling hot electron transistor
biased in the active region. After [3].

A maximum in the output current, IC, is then produced. If VBE is further increased, the
current starts to diminish until a minimum value at V2 is reached, similar to the description
of the I–V characteristic of Figure 9.5 in Section 9.4. Therefore, the output charac-
teristics of this transistor also show regions of negative differential resistance. Unlike
simple HETs, the resonant tunnel structure injects electrons in a very narrow energy range



Electronic Devices Based on Nanostructures 239

Figure 9.10. Schematic representation of a resonant tunnelling transistor (RTT) with a quantum
well in the base region. After [4].

(∼1 meV, i.e. about ten times lower than that of HEMTs of Section 9.2). As pointed
out above, resonant tunnelling diodes can also be incorporated in a different manner to
bipolar transistors. Figure 9.10 shows a AlGaAs–GaAs bipolar transistor to which a RTD
has been added to the base terminal [4], in addition to a tunnel injector (Section 9.5).
Observe the quantum well between the two potential barriers in the RTD. The exis-
tence of several energy levels in the quantum well has been considered, which results in
the apparition of various peaks in the collector current, rather than a single peak as in
Figure 9.5.

There are several new applications of RTTs, mainly in the field of digital electronics.
This is a consequence of the variation of IC as a function of voltage curves as previously
pointed out. In effect, let us suppose that several resonant tunnelling devices are connected
in series with a voltage source V and a resistance R. The intersection of the load line with
the characteristic curve of the tunnel device will give several stable operating points. If the
number of stable points is two, we will have a binary logical circuit element. Evidently,
if there are several energy levels available in the quantum well, we will have the same
number of peaks or stable operating points. Digital amplifiers fabricated from these devices
allow the implementation of logic gates with a smaller number of transistors than usually
needed. For instance, a full adder circuit can be fabricated from just one resonant tunnel
bipolar transistor and two standard ones, while the same conventional adding circuit needs
about 40 transistors. As a consequence, much higher packing densities and computing
speeds can be reached.
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9.7. SINGLE ELECTRON TRANSISTOR

A very interesting aspect of future electronics is the capability of controlling with the high-
est possible accuracy the amount of charge in a tiny region, i.e. control the addition or
the subtraction to the region of a single electron. The new field of single electron devices
covers digital and analogical circuits, metrological standards, quantum information pro-
cessing, etc. The concept of single electron transistor (SET) is based on the behaviour
of 0D nanometric structures, such as quantum dots, in which electrons are distributed in
discrete energy levels. One of the most interesting properties of these structures, associ-
ated to energy level quantification, is the so-called Coulomb blockade effect, which was
already analysed in Section 6.4.3. When the tiny conducting material is extremely small
(also called “island”), the electrostatic potential significantly increases even when only
one electron is added to it.

In Section 6.4.3, we have seen that for the correct operation of SETs two conditions
have to be met. First, the change in electric energy when an electron enters or leaves the
quantum dot, i.e. the charging energy, has to be much larger than kT, which in terms of
the capacitance is expressed as in Eq. (6.23): C � e2/kT. Secondly, the resistance RT of
the tunnel junction must be large enough compared to the quantum resistance RQ = h/e2

(∼25.8 k�), Eq. (6.25), in order to avoid fluctuations in the number of electrons in the
quantum dot as a consequence of the Heisenberg uncertainty principle.

At first, quantum dots were considered as two terminal devices. However, in order to
fabricate transistors based on the Coulomb blockade effect, three terminals are needed.
One of these terminals can be used as a gate to control the current flow through the quan-
tum dot. Therefore, the SET basically consists of a quantum dot connected to the source
and drain electrodes through tunnel junctions. The gate electrode is coupled to the quan-
tum dot by an insulating material, in such a way that the electrons cannot tunnel through
the barrier. Since the source or drain current flow is controlled by the gate, the described
three-terminal device operates as a transistor, although it cannot be used for signal ampli-
fication. As it can be appreciated, the terminology used for the electrodes is similar to
that in MOSFETs, the quantum dot playing the role of the channel region in MOSFETs.

Figure 9.11(a) shows the schematic representation of a SET and Figure 9.11(b)
its equivalent circuit as a three-terminal device. The quantum dot, with total electron
charge Ne, is widely referred to as Coulomb island and is connected to the source and
drain by two tunnel barriers. The number of electrons in the Coulomb island can be
controlled by the external voltage, VG, through the equivalent gate capacitance of the
semiconductor structure chosen to implement the transistor. Contrary to source and drain
potential barriers, there is no tunnelling current through this electrode.

The current–voltage characteristics of the SET can be determined by applying a contin-
uously sweeping voltage, VG, to the gate electrode. The applied voltage induces a charge
CVG in the opposite plate of the capacitor, which is compensated by the tunnelling of a
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Figure 9.11. (a) Structure of a single electron transistor (SET); (b) equivalent circuit as a three-
terminal device; (c) current as a function of the gate voltage.

single electron that enters the quantum dot. Thus, some kind of competence between the
induced charge and the discrete one that tunnels through the barriers is established, that
results in the so-called Coulomb oscillations, associated with the current flow due to the
discrete charges that tunnel through the barriers. These oscillations are recorded as a cur-
rent variation between the source and the drain, IDS, as a function of the gate voltage, as
represented in Figure 9.11(c). Between two consecutive peaks, the number of electrons
in the quantum dot is fixed and therefore no current flows. The periodicity of the voltage
peaks, �V, in these curves is given by the one electron variation in the total number of
electrons in the quantum dot, i.e. �V = e/C. In fact, the capacitance of the quantum dot
can be obtained by measuring the voltage difference between two consecutive peaks.

From the point of view of specific applications, logic circuits based on SETs can be
implemented, in particular, as inverters substituting CMOS transistors. The inverter will
be based in the schematic representation shown in Figure 9.12(a) [5], in which each tunnel

(a) (b)
VDD
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Vi CG

e/2CG
e/2CG0

e/CD

e/(CS+CD+CG)CDRD

CSRS

Figure 9.12. (a) Schematic representation of a SET as an inverter; (b) ideal transfer characteristic.
After [5].
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barrier is represented by a resistance in parallel with a capacitor. It is easy to observe that
the output voltage, Vo, of this device as a function of the input voltage, Vi, shows a
periodic variation, as shown in Figure 9.12(b). The periodicity of the output voltage is
e/CG and its amplitude is given by e/(CS + CD + CG). For this transistor, values for
the voltage gain, Av = CG/CS, close to 10 can be obtained, since CG ∼ 1 fF while
CS = CD ∼ 0.1 fF. In practical devices, values of the gain of about 3 were demonstrated
at low temperatures but not too close to 0 K. As T approaches 0 K, Av should reach the
theoretical amplification factor. The described inverters have been already used in the
design of logical circuits and as unit memory cells formed by two inverters combined
with MOSFETs.

Based on the conductance behaviour of carbon nanotubes, reminiscent of Coulomb
blockade transport in metal and semiconductor wires and dots, carbon nanotube field effect
transistors have been demonstrated for single- or few-electron charge-storage memories.
The nanotube FETs show an extremely high mobility (about 10,000 cm2/Vs), large geo-
metrical capacitance, and large transconductance. In addition, it was recently demonstrated
that single-walled carbon nanotubes FETs can be used in logic circuits, showing favourable
device characteristics such as high gain (over 10), a large on–off ratio (over 105), and
room temperature operation. Carbon nanotube transistor circuits exhibited a range of digi-
tal logic operations, apart from static random access memory cell, such as inverters, logic
NOR, AC ring oscillators, etc.

Before ending the present chapter, a comparison of SETs and MOSFETs should
be carried out. It is well known that until recently MOSFETs have been the basic
devices of semiconductor chips, but we are already approaching their limiting feature
size (Section 1.2). From this point of view, SETs would present the advantage of fabricat-
ing devices that, in principle, allow smaller sizes. They would also dissipate less power,
since power consumption is proportional to the number of electrons in the input current
flow to the device. One significant disadvantage of SETs is given by their high output
impedance, due to the resistance associated to tunnel barriers. Another disadvantage is
related to the size of the quantum dot, since for room temperature operation its capacitance
should be as a small as possible.
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PROBLEMS

1. MODFET. (a) Compare the values of the carrier mobility, transit time under the gate,
and maximum operating frequencies (Figure 9.1) of a MODFET and a MOSFET.
(b) Explain why the cut-off frequency of a AlGaAs/GaAs MODFET is higher than
that of a GaAs MESFET. (c) As shown in Figure 9.1, explain the better performance
of an AlInAs/GaInAs transistor in comparison to the AlGaAs/GaAs transistor.

2. Heterostructure bipolar transistor. (a) Show that in a npn heterojunction bipolar
transistor (HBT), the current gain β of the transistor is proportional to exp(�Eg/kT ),
in the form,

β ∝ Nd

Na
e�Eg/kT

where �Eg is the bandgap difference of emitter and base materials, Nd is the doping
of the emitter, and the Na doping of the base. (b) If typically �Eg ≈ 0.2 eV calculate
the increase in β at room temperature. (c) Explain why even in a homojunction
transistor �Eg is not zero. (Hint: the doping of the emitter is usually more than one
order of magnitude higher than the doping of the base.) (d) Explain why in a HBT
the emitter doping can be reduced to more realistic values and, in addition, the base
resistance can be lowered.

3. Hot electron transistor. Suppose that electrons are injected from the emitter to
the base in a AlGaAs/GaAs hot electron transistor similar to the one of Figure 9.6.
(a) Show that the velocity vB of the entering electrons at the base is given by vB ≈
(2eVb/m∗)1/2 where eVb is the emitter barrier potential height. (b) Show also that
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the electrons are collimated within a narrow velocity cone with a characteristic angle
θ given by θ = (kT /eVb)

1/2. Calculate the value of θ at low temperatures, knowing
that eVb ≈ 0.3 eV.

4. Resonant hot electron transistor. Show how a resonant hot electron transistor
(RHET) can be used as an “Exclusive-Nor” logic gate. Hint: consider the basic
RHET of Figure 9.9. Put it to work in a common emitter configuration similar to that
of bipolar transistors. The two binary inputs A and B are introduced in parallel to the
base, while the result C of the logic operation is taken right at the collector.

5. Real-space transfer of hot electrons. Suppose the structure of Figure 6.5 formed
by a quantum well material surrounded by two barrier materials, with mobilities µw

and µb, respectively, and concentrations nw and nb respectively. (a) If µw � µb,
show that the I–V characteristic presents negative differential resistance (NDR) and
oscillations for high electric fields. Hint: consider spilling of electrons from the well
to the surrounding barrier material when they acquire enough energy from the electric
field to become hot. (b) Suppose we split the drain contact into two different contacts,
one attached to the well and the other to the barrier semiconductor. Show how this
three-terminal device can act as a transistor, and also that the current through the well
would show a strong NDR and large PVR (peak-to-valley ratio).

6. Single electron transistor. Show that the transfer characteristic for the inverter con-
figuration of the simple electron transistor (SET) of Figure 9.12(a) has the sawtooth
form of Figure 9.12(b), where CG represents the capacitances between the dot and the
gate, and C� = CS + CD + CG represents the sum of the capacitances between the
source, drain, and gate. (Assume that CG = 8CS, CS = CD, RS = RD ≡ R). Explain
why the period of oscillation of the gate voltage is q/CG, and that the maximum volt-
age gain appears in the falling part of the curve and is given by Av = − |CS/CG| = 8,
while in the raising part takes the value CG/(CD + CG).
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Chapter 10

Optoelectronic Devices Based on Nanostructures

10.1. INTRODUCTION

This chapter is dedicated to optoelectronic and photonic devices based on nanostructures.
Research into these devices has experienced a great upsurge during the last two decades
due to the development of optical fibre communications. At present, there is a tendency to
replace electronic functions by optical ones and to integrate electronic and optical devices
in the same chip, creating the so-called optoelectronic integrated circuits (OEICs).

After the development of the semiconductor homojunction laser in the early 1960s,
it soon became evident that double heterostructure lasers (Section 10.2) provided much
higher carrier and optical confinement, which resulted in much lower threshold currents
and better efficiency. More advanced semiconductor lasers, implemented in the late 1980s
and based on quantum wells (Section 10.3), showed even lower threshold current densi-
ties (∼50Acm2), especially in the case of strained quantum wells (Section 10.5). Another
type of quantum well laser considered in Section 10.4 is the vertical cavity surface emit-
ting laser (VCSEL). Millions of these lasers, which emit from the top surface, can be
integrated in the same chip, finding many applications in displays and optical signal
processing.

Although not yet widely available commercially, we also consider in this chapter
(Section 10.6) lasers based on systems with a dimensionality lower than 2D, like for
instance quantum dots. These lasers, fabricated from 0D structures, show lower threshold
currents and higher efficiency than quantum well lasers. However, with present litho-
graphic techniques, there are still problems related to the difficulty of routinely producing
quantum dots of small enough size and homogeneity. In this area, self-assembled growth
techniques for the production of 0D and 1D structures are very promising. The last two
sections of the chapter, Sections 10.7 and 10.8, deal with quantum well photodetectors
and modulators, which are at present standard devices for long wavelength light detection
and high-speed modulation of optical signals, respectively.

10.2. HETEROSTRUCTURE SEMICONDUCTOR LASERS

Before we treat laser structures based on low-dimensional quantum heterostructures, it
is convenient to review some of the basic properties of semiconductor laser devices.
We have seen in Section 3.7.5 that optical gain in semiconductors, as a consequence of
stimulated emission, is obtained in p+–n+ GaAs junctions of degenerate semiconductors

247
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under forward bias. In this way, an active region with population inversion is created,
since the Fermi quasi-levels of the degenerate p+ and n+ materials are located within the
conduction and valence bands, respectively. Continuous laser operation is produced by the
injection of carriers to the junction under forward bias. Lasers based on p–n junctions of
the same semiconductor, as for example GaAs, have several drawbacks, partly due to the
bad definition of the light emitting active region, with a size of about the diffusion length
LD, i.e. a few micrometre (Sections 1.3 and 3.5.3). In addition, the threshold current, i.e.
the minimum current necessary for laser action, is quite large.

It soon became evident in the 1970s that double heterostructure (DH) lasers, which
provide both carrier and optical confinement, could be much more efficient than homo-
junction lasers and show threshold density currents (∼1000Acm−2) at least one order
of magnitude lower. With these improved properties, DH lasers were very appropriate
for applications in the emerging field of optical communications. Figures 10.1(a) and
10.1(b) show the basic structures of homojunction and DH lasers [1], respectively. The
heterojunctions allow the formation of potential wells for electrons and holes, as shown in
Figure 10.1(b), which increases the carrier concentration and, more importantly, the degree
of inversion of the population of electrons and holes (Section 3.7.5). The active region of
the DH lasers is still of the order of 0.1 µ, a value not small enough to show quantized
levels in the potential wells. Quantum well lasers will be treated in the following section.

One interesting additional aspect of DH lasers is due to the larger value (∼5%) of the
GaAs refractive index in comparison with the AlGaAs surrounding material. This dif-
ference is enough to provide an excellent optical confinement. The optical confinement
factor �, which indicates what fraction of the photon density is located within the active
laser region, is given by

� =
∫

act.region |E(z)|2 dz∫ +∞
−∞ |E(z)|2dz

(10.1)

where E(z) is the distribution of the electromagnetic wave amplitude in the perpendic-
ular direction to the interfaces. In the DH lasers, the value of � can approach unity.
Figure 10.1(b) shows the optical confinement effect in the active region for DH lasers.

In order to make the DH laser more efficient, the transverse stripe geometry configu-
ration has been adopted almost universally (Figure 10.2). In this geometry, the transverse
or horizontal dimension of the active region, and consequently the threshold current, is
greatly reduced. Because of the shape of the active region, stripe geometry lasers are
much easier to couple with fibres, waveguides, etc. The width of the active region in this
geometry can be as small as 1 µm, so that the magnitude of the threshold currents is of
the order of 10−2 A. In addition, optical confinement along the transverse direction can
also be obtained by proper design of the index of refraction profile, in a similar way as it
was done for the vertical direction. These lasers are called index guided lasers or buried
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Figure 10.1. Comparison of the structure and characteristics of semiconductor lasers:
(a) homojunction; (b) double heterostructure. From top to bottom: semiconductor
regions forming the laser structure, band diagram which shows the potential wells
for electrons and holes, profile of the refractive index, and optical confinement in the
active region. After [1].

DH lasers (Figure 10.3). The width w of the optical Fabry–Perot cavity is made sufficiently
small, so that only the lowest transverse modes of the optical radiation field will set up.
Evidently, the transverse modes, for instance, TEM00, will comprise several longitudinal
modes, whose frequency separation depends on the cavity length.

Double heterostructures of the type n-AlGaAs–GaAs (active region)–p-AlGaAs–GaAs
allow the creation of potential wells with excellent carrier and optical confinement as
shown in Figure 10.1(b). Observe especially in this figure that potential wells for electrons
and holes are created, a consequence of the values of the energy gaps of the semiconductors
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Figure 10.2. Stripe geometry double heterostructure semiconductor laser.

Figure 10.3. Geometry of the index guided semiconductor laser (it differs from the stripe geometry
in the control of the optical confinement across the transversal direction).

forming the heterojunctions and the location of the Fermi levels. In spite of bandgap
narrowing in degenerate semiconductors (Section 3.6), the wavelength of the light emitted
by lasers based on AlGaAs–GaAs heterojunctions is still too short for transmission through
optical fibres. Therefore, for optical communications, which take advantage of the 1.3
and 1.55 µm optical windows in fibres, one has to relay on quaternary InGaAsP on InP
substrates (see Figure 4.9).
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10.3. QUANTUM WELL SEMICONDUCTOR LASERS

As we have seen in the previous section, double heterostructure (DH) lasers show a high
efficiency, low threshold current, and a high modulation bandwidth, which makes them
very suitable for optical communications. In order to further improve their properties,
and in particular to have a very narrow emission spectrum and wavelength tunability, the
next natural step was the development of quantum well (QW) lasers in the late 1970s.
In this section, we will see that the improved characteristics of quantum well lasers are
mainly due to the properties of the 2D density of states function and characteristic of
quantum wells. One drawback of the regular DH lasers is that both carrier confinement
and optical waveguiding takes place in the same region. Figures 10.4(a) and 10.4(b) show
two separate confinement structures frequently used. These structures are obtained for
instance by grading the composition of AlxGa1−xAs compounds with values of x between
zero and about 0.30, the value of the gap increasing from 1.41 eV to about 2.0 eV. In the
separate confinement structure of Figure 10.4(a), a quantum well of width d of 5–10 nm
is immersed in a wider cavity of width w which is optimized for enhancing the light
waveguiding effect, thus having separate carrier and optical confinement structures. The
waveguiding effect can be further improved by grading the refractive index, as shown
in the lower part of Figure 10.4(b), in the so called graded index separate confinement
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Figure 10.4. Separate confinement structures of quantum wells inside optical cavities: (a) profile
of the conduction band and index of refraction; (b) GRINSCH structure; (c) multiple
quantum well separated confinement heterostructure.
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heterostructures (GRINSCH). Very often, in order to enlarge the emitted laser signal, a
structure with multiple quantum wells is implemented (Figure 10.4(c)) instead of just one
single quantum well.

Consider now a situation in which there is only one quantum well. In Section 3.7.5,
we have derived the lasing condition Eg < hν < EFe − EFh for bulk semiconductors,
which means that the photons of the emission spectrum should have energies between
the values corresponding to the gap, and that equal to the difference of the Fermi energy
levels of the two degenerate semiconductors forming the heterojunction. The shape of the
gain coefficient as a function of hν was shown in Figure 3.18(b).

Let us now consider the gain for the 2D system and compare it with the case of the bulk,
supposing lasing action between the n = 1 electron and hole levels. Evidently, the gain for
the 2D system should start at Eg1 = Eg +Ec1 +Ev1 as can be appreciated in Figure 10.5,
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Figure 10.5. Gain factor in a quantum well (2D) in comparison with a bulk semiconductor (3D):
(a) density of states functions; (b) occupancy probability factors; (c) gain factors.
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while in the 3D case it starts at lower energies and increases much more slowly with
energy. This is due to the fact that the electron density of states for the bulk increases
only as the square root of energy above Eg, whereas the n2D density of states function
increases as a step function (Figure 10.5(a)). The first energy step of the distribution is
considered, since the second step occurs at much higher energies. The important point
to consider is the high slope (almost infinity) for the 2D system in comparison with the
small slope for 3D. The decrease of the gain curves for the combined electron–hole system
represented in Figure 10.5(c) arises from the Fermi factors (Figure 10.5(b)). Evidently, if
we had considered the particular case of T = 0 K, the curve of Figure 10.5(b) would go
from +1 to −1 at exactly EFn −EFp and the gain factor would have a constant value from
Eg + Ec1 + Ev1 to EFn − EFp. The concentration of the gain factor for the 2D system in
a much narrower energy range than in the 3D case implies that the population inversion
can be achieved with a much lower injected current in quantum well lasers in comparison
to DH lasers.

Let us next indicate the steps for the calculation of the gain as a function of photon
energy for various carrier concentrations, for the situation in which only one of the
conduction and one of the valence subbands are occupied. For this, the quasi-Fermi
levels are calculated from the concentration of injected electrons and holes as well as
from the interband matrix elements. Next, the gain can be related to the current density
J by assuming a value of τ for the recombination time, since J = endτ−1, where d

is the thickness of the active region; alternatively, τ could be obtained from the rate of
radiative recombination. The rate of non-radiative recombination as well as other loses,
like leakage current, have to be subtracted. The results for the gain gw in a quantum well
are shown in Figure 10.6(a) [2]. For the case of MQW structures with nw quantum wells,
each with a gain gw, the total gain nwgw as a function of the total injection current density
nJ is plotted in Figure 10.6(b) for nw = 1, 2, 3, and 4. Observe that the gain starts to
become positive in practically equal current steps which are proportional to n. The case of
a single quantum well (SQW) can be compared to the MQW. If one is interested in small
values of Jth, then SQW structure has advantages over the MQW. On the other hand, in
order to obtain a high differential gain one should use a MQW structure.

QW lasers have proved to be very reliable and do not suffer degradation of the mirror
facets as is the case for DH lasers, in which failure is induced by the large recombination
rates in the active region. QW lasers also show a higher efficiency and smaller internal
losses than DH lasers. Perhaps the main advantage for applications in high-speed optical
communication is their high differential gain, defined as G = dg/dJ, previously mentioned,
which for MQWs is of the order of 10 cm−1mA−1, about one order of magnitude larger
than for the DH laser. For the high-speed operation of QW lasers, a proper design of
the separate confinement well heterostructure is important. Towards this end, a built-in
electric field can be produced (as in Section 9.3 for heterostructure transistors), which
considerably decreases the effective times of capture and release of carriers inside the
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Figure 10.6. Gain as a function of injection current density for: (a) one single quantum well;
(b) multiple quantum wells system with n = 1, 2, 3, and 4 single quantum wells.
After [2].

optical and carrier confinement regions. These lasers can be modulated with injection
currents up to frequencies of about 30 GHz.

10.4. VERTICAL CAVITY SURFACE EMITTING LASERS (VCSELS)

The most important characteristic of vertical cavity surface emitting lasers (VCSELs) is
that light is emitted perpendicularly to the heterojunctions. There are several obvious
advantages related to this geometry, including ease of testing at the wafer scale before
packaging, the construction of large arrays of light sources (more than one million on
a single chip), easy fibre coupling, and the possibility of using chip-to-chip optical
interconnects.
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The geometry of VCSELs, represented in Figure 10.7, consists of a vertical cavity
along the direction of current flow (instead of perpendicular to it), in which the active
regions surface dimensions are very small, so that light is extracted from the surface
of the cavity rather than from the sides. Two very efficient reflectors are located at the
top and bottom of the active layer. The reflectors are usually dielectric mirrors made
of multiple quarter-wave thick layers of alternating high and low refractive indexes (for
instance, GaAs/AlGaAs). The dielectric mirrors consist of distributed Bragg reflectors
(DBR) which have a high selective reflectance at a wavelength λ given by (constructive
interference):

n1d1 + n2d2 = λ

2
(10.2)

Since the reflectivity of these mirrors should be very high (close to 99%), as many as
30 layers are sometimes needed. The role of the high reflectance mirrors is to compensate
for the low optical gain of the active region due to its short cavity length. Lateral con-
finement can be obtained with the mesa structure, as indicated in Figure 10.7, by etching
through the upper DBR mirrors, sometimes even through the active region. Evidently,
charge injection through DBR mirrors can only be possible if the materials are semicon-
ductors. If insulators are used, such as titanium and silicon oxides, ring contacts can be
employed to inject the charge directly into the active region. This region is usually quite
thin, of the order of 100 nm, and consists of a few quantum wells, located at the maximum
of the standing wave pattern produced in the middle of the two sets of mirrors. The set of
quantum wells is surrounded by two spacers, one at each side, so that the vertical cavity

Laser emission

λ/4 layer
top contact

Bragg mirror (p-type)

quantum wells

substrate (n-type)

bottom contact

Bragg mirror (n-type)

Figure 10.7. Schematic diagram of a vertical cavity surface emitting laser.
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Figure 10.8. Array of VCSELs microlasers.

laser region has a length L such that L ≈ λ/n. In this way, there is one full wave of
constant amplitude in the active region and evanescent waves in the DBM mirrors, since
these media are optically forbidden due to their high reflectivity.

One important aspect of VCSELs is that, due to the short cavity length in comparison
to other “longitudinal” laser structures, the modes are widely separated. The frequency
separation of the modes is of the order of 1013 Hz, comparable to the frequency at which the
DBMs show their maximum reflectivity. Therefore, one can have single-mode oscillations.
This is in contrast to edge-emitting lasers which have cavity lengths more than two orders
of magnitude larger, and therefore, a small mode frequency spacing. Because of the small
size of the resonant cavity dimensions, VCSELs are also called microlasers. Arrays of
microlasers, as the one shown in Figure 10.8, with more than one million VCSELs in a
microchip, provide very high optical power sources, which have important applications
in optical communications and optical computation.

10.5. STRAINED QUANTUM WELL LASERS

Although the first quantum well lasers were constructed using lattice-matched heterostruc-
tures, especially from AlGaAs and InGaAsP compounds, it was shown some years later
that strained layer lasers could show superior properties, specially from the point of view
of lower threshold currents. Furthermore, strain introduces a new variable to extend wave-
length tunability, in addition to controlling the width and barrier height of the quantum
wells. The strained quantum well lasers were proposed in the late 1980s and developed in
the early 1990s. Evidently, the strain depends on the amount of lattice mismatch as seen
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in Section 4.7. The lattice constant a of the ternary compound In1−xGaxAs, frequently
used in quantum well lasers, can be calculated by a linear interpolation from the GaAs
and InAs lattice constants (Figure 4.9).

One of the most investigated strained quantum wells for lasers is the GaAs–InGaAs–
GaAs. In this case, the inner InGaAs layer is under compressive strain. This has
important consequences in the band structure (Figure 10.9) [3]. In addition to remov-
ing the degeneracy at k = 0 between the HH and LH bands, as mentioned in Section 4.7,
it changes considerably the values of the hole effective masses and increases the value
of the energy gap. It is the large decrease in the parallel effective mass which causes a
reduction in the threshold current. Compressive strains cause a reduction of a factor of
about three of the in-plane (parallel) hole effective mass. This reduction makes the value
of the hole effective mass similar to the electron effective mass, i.e. the curvatures of
the E = E(k) energy bands are almost the same for the conduction and valence bands.
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It can be shown [2] that in this case population inversion becomes more efficient, i.e. the
gain coefficient increases as a function of the injected carrier concentration and the lasing
condition occurs at lower threshold currents.

A variety of heterostructures are used for the construction of strained quantum well
lasers with a wide tunability (0.9–1.55 µm): InGaAs–GaAs, InGaAs–InP, InGaAsP–
InGaAs, InGaAlP–GaInP, etc. In addition to their low values of the threshold current,
it has been verified that strained quantum well lasers show superior reliability, which
seems to be due to the decrease of the propagation of defects in strained semiconductor
layers.

The role of strained layers has been especially studied for quantum well lasers based
in the materials system InGaAs–InP with a small bandgap energy appropriate for fibre
optical communications. However, the values of Jth in experimental devices, even for the
GRINSCH structure (Section 10.3), were larger than those predicted. This was solved by
making use of strained active layers in this system, where values of Jth ≈ 200 Acm−2

have been obtained. In this case, the effectiveness of the strained layer has been attributed
to the symmetrization of the conduction and valence bands. In order to find the correct
value of the strain in the ternary alloy In1−xGaxAs on InP, the lattice constant a(x) of
the alloy can be expressed as a linear interpolation of those of GaAs and InAs, i.e. in Å,
a(x) = 5.6533x − 6.0584(1 − x). When InGaAs is grown over InP substrates with a
lattice constant of 5.8688 Å, one can have either compressive or tensile strains depending
on the value of x. For x ≈ 0.47, the heterojunction is unstrained. At present, the physics
and the applications of strained quantum well lasers are still under intensive investigation.

10.6. QUANTUM DOT LASERS

One of the most promising applications of semiconductor quantum dots and wires is for
diode lasers. It was realized as early as 1976 that increasing the carrier confinement would
provide multiple advantages for diode lasers over bulk materials. Among other advantages,
the ideal quantum dot and quantum wire lasers would exhibit higher and narrower gain
spectrum, low threshold currents, better stability with temperature, lower diffusion of
carriers to the device surfaces, and a narrower emission line than double heterostructure or
quantum well lasers. Real quantum dots and wires, however, have a finite size dispersion,
defects, and limited carrier capture, which have slowed their progress. In the following,
we will refer only to quantum dot lasers, since the experimental values obtained for
quantum wire lasers are still far from the theoretical predictions. The growth technologies
for quantum wire structures will have to improve, especially with respect to the quality of
interfaces, uniformity of the wires, development of optical cavities with high confinement
factor, etc.
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In quantum dots, carriers are confined in the three directions in a very small region
of space, producing quantum effects in the electronic properties. For optical applications,
quantum dots must confine in the same region of space both electrons in the conduction
band and holes in the valence band. The electronic joint density of states for semiconductor
quantum dots shows sharp peaks corresponding to transitions between discrete energy
levels of electrons and holes. Outside these levels the density of states vanishes. In many
ways, the electronic structure of a quantum dot resembles that of a single atom. Lasers
based on quantum dots could have properties similar to those of conventional ion gas
lasers, with the advantage that the electronic structure of a quantum dot can be engineered
by changing the base material, size, and shape.

Let us assume that the quantum dots are small enough so that the separation between the
first two electron energy levels for both electrons and holes is much larger than the thermal
energy kT (i.e. E2e − E1e � kT and E2hh − E1hh � kT ). Then for an undoped system,
injected electrons and holes will occupy only the lowest level. Therefore, all injected
electrons will contribute to the lasing transition from the E1e to the E1hh levels, reducing
the threshold current with respect to other systems with lower confinement. The evolution
of the threshold current density obtained along the years for various laser structures is
shown in Figure 10.10 [4]. The lowest threshold currents have already been reached for
quantum dot lasers. As long as the thermal energy is lower than the separation between
the first and second levels, the emission band in an ideal quantum dot laser is very sharp
and does not depend on temperature. Therefore, quantum dot lasers should have a better
stability with temperature without the need for cooling.

The gain spectrum calculated for lasers based on different ideal quantum confinement
structures is shown in Figure 10.11 [5]. Quantum dots should have the narrowest spectrum
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and the highest gain. Also they should have a symmetrical spectrum, which would produce
no jitter if the lasing wavelength is at the centre. For real quantum dots, however, there is
a finite distribution of sizes that causes inhomogeneous broadening in the gain spectrum.
This lowers the attainable gain, but has the advantage that the gain spectrum can be tailored
by varying the size distribution. Tunable quantum dot lasers with a large tunability range
are then possible. A more detailed treatment of the principles of quantum dot lasers can
be found in the selected bibliography [6].

Despite the multiple advantages expected for quantum dot lasers, their development
has been hindered by the difficulties found in the fabrication of arrays of quantum dots
free of defects and with uniform sizes. Traditional methods for fabricating quantum dots
include semiconductor precipitates in a glass matrix or etching away a previously grown
epitaxial layer. None of these methods can produce large densities of dots, and the control
of size and shape is difficult. Moreover they introduce large defects into the dots and create
many surface states that lead to non-radiative recombination. Therefore, the appearance
of quantum dot lasers had to wait until self-organized methods for the growth of quantum
dots matured.

The most successful method to date has been the growth of self-assembled quantum
dots at the interface of two lattice-mismatched materials. In this method a material such
as InAs is grown by chemical vapour deposition, metalorganic vapour phase epitaxy
or molecular beam epitaxy on a substrate with a larger lattice parameter and a larger
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bandgap such as GaAs. The first few monolayers grow in a planar mode with a large
tensile strain and form the wetting layer. But beyond a critical thickness, it is more
energetically favourable to form islands (the so-called Stranski–Krastanow regime) as
shown in Figure 8.5 (Section 8.3.1). This creates a coherent array of pyramidal quantum
dots on top of the wetting layer. Subsequently, a layer is overgrown epitaxially on top of
the dots, creating an excellent heterostructure between two single-crystal materials: the
dots and the surrounding matrix.

Figure 10.12 shows schematically an edge-emitting laser based on self-assembled
quantum dots. The device consists of several layers forming a pin diode structure. The
layers are, from bottom to top, the n-GaAs substrate, a n-AlGaAs layer, an intrinsic GaAs
layer with the dots, a p-AlGaAs layer, and a p-GaAs cap layer. Metallic contacts on the
substrate and the cap layer connect the device to an external circuit. Under a forward
bias voltage, electrons and holes are injected into the middle intrinsic GaAs layer or
active layer, where they fall into the quantum dots, which have a smaller bandgap, and
recombine there. The emission wavelength corresponds to the interband transition of the
InAs quantum dots. The GaAs layer, which is sandwiched between AlGaAs layers with
a lower refractive index, confines the light and increases the interaction with the carriers.
The InAs wetting layer contributes to an efficient diffusion of carriers into the dots. Its
bandgap is smaller than that of GaAs, and therefore, collects carriers that reach the GaAs
layer. Because the wetting layer is very thin, its bandgap is larger than that of the quantum
dots, and carriers diffuse quickly into the dots. To increase the areal density of quantum
dots, several wetting layers with pyramidal quantum dots are grown successively on top
of each other with a layer of GaAs in between to form a stack of quantum dots.

The first Fabry–Perot laser based on self-organized quantum dots was developed in
1994 using InGaAs dots in a GaAs matrix [7]. At present quantum dot lasers emitting
in the visible and infrared regions of the spectrum are already available in the market.

Bottom contact

n-GaAs substrate

p-GaAs cap layer

Top contact

p-AlGaAs layer

n-AlGaAs layer

GaAs layer with InAs dots

Laser emission

InAs pyramidal
quantum dots

InAs wetting layer

Figure 10.12. Schematic illustration of a quantum dot laser based on self-assembled dots. The inset
shows a detail of the wetting layer with the pyramidal quantum dots.
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Although there is still room for improvement, these lasers already show some advantages
over quantum well lasers. For example, their broader gain spectrum makes them useful for
telecommunication amplifiers and tunable lasers. Also they present a better stability with
operation temperature. Finally, GaAs quantum well lasers have an emission wavelength
that is far from the fibre optic transmission windows. This spectral range has been covered
traditionally with InP-based devices, but InP technology is not yet well developed. On
the other hand, the growth of In-rich quantum wells on GaAs is difficult because of the
large lattice mismatch. The advantage of InGaAs/GaAs quantum dot lasers is that they
use the well established technology of GaAs substrates, but their emission wavelength
falls within the fibre optic transmission window used for local area networks (1.3 µm).

10.7. QUANTUM WELL AND SUPERLATTICE PHOTODETECTORS

(a) Quantum well subband photodetectors

In principle, quantum wells can be used for the detection of light in any spectral region, as
can be easily appreciated from their optical absorption properties (Section 8.2). However,
it is in the IR region between 2 and 20 µm, that quantum well photodetectors are preferably
used for example in applications of night vision and thermal imaging.

The problem with photodiodes based on band to band transitions across the semi-
conductor gap Eg in p–n homojunctions is that they require materials with very low values
of Eg, which makes it necessary to work at cryogenic temperatures. For instance, in the
case of III-V compounds (see Figure 4.9) this leaves us with InAs1−xSbx with x ≈ 0.5.
Some II-VI compounds like HgCdTe can also be used in the IR, but these materials are
quite soft, difficult to process, and have large dark currents. Another aspect which makes
quantum wells very appropriate for use in IR detection is due to the large values of the
dipole matrix elements corresponding to intersubband optical transitions (Section 8.2).
In addition, wavelength tunability is easily implemented since the energies of the levels
in a quantum well can be adjusted by the fabrication parameters, in particular its width.
Especially important is the 8–12 µm interval in the IR, since in this wavelength range there
is an atmospheric window, i.e. a region of low absorption which facilitates atmospheric
optical communications, tracking of satellites, CO2 laser optics (10.6 µm), etc.

Figure 10.13 shows the absorption transitions suitable for IR detection for a single
quantum well under the action of an applied electric field, although practical devices
are made with MQWs. In Figure 10.13(a) there are two energy levels in each well, the
second level being located close to the top of the barriers. The separation between levels
should be in the range 0.1–0.2 eV, which for III-V compounds implies a width of the
wells of about 10 nm. We should remember (Section 8.2) that, due to the selection rules,
the polarization of the incident radiation should be parallel to the confinement direction.
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Figure 10.13. Optical absorption transitions for IR detection in a quantum well: (a) intersubband
transitions; (b) transition from a bound state to the continuum narrow band outside
the potential wells. (F is the applied electric field.)
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Under light irradiation, this type of photodetectors generates a current by tunnelling of
the carriers outside the wells. Sometimes, it is more effective to make use of absorption
transitions between a single level in the well and the first continuum narrow band outside
it (Figure 10.13(b)). In the case of the system AlGaAs–GaAs–AlGaAs, this energy is
about 0.12 eV, and therefore, the spectral response is around 10 µm. The advantage of
using this scheme is that the photodetector dark current is smaller than for the previous
case in which the carriers had to leave the wells by tunnelling.

(b) Superlattice avalanche photodetectors

It is known that avalanche photodetectors (APD) based on semiconductors can present
a high level of noise if precautions are not taken. The noise can be gradually reduced
if the avalanche multiplication coefficient, α, is much larger for one of the carriers, for
instance electrons, in comparison to the other carrier (hole) multiplication coefficient.
In this sense, silicon is a very appropriate semiconductor for APDs, since the ratio αe/αh

has a value of about 30. For a given semiconductor, the ratio αe/αh is practically fixed
by the semiconductor band structure.

Quantum wells, on the other hand, allow a design control of αe/αh. For instance,
a superlattice or MQW structure can be designed such that the conduction band discon-
tinuities �Ec are much larger than the �Ev ones corresponding to the valence band.
In this way, the electrons gain much more kinetic energy than the holes when they cross
the band discontinuity. The same objective can be achieved by the design of a staircase
profile superlattice (Figure 10.14(a)) for which the bandgap is graded in each well. In this
case, the electrons have an extra kinetic energy �Ec when they enter the next quantum
well. This extra energy makes the impact ionization phenomenon very efficient so that
electron avalanches are easily generated under the action of an electric field F , as shown
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Figure 10.14. Superlattice avalanche photodetectors: (a) energy band diagram of a staircase super-
lattice; (b) formation of electron avalanche in the biased detector under light
irradiation.
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in Figure 10.14(b). In contrast, holes only gain a small energy �Ev which is not high
enough to produce impact ionization. Most superlattice APDs with very low noise figures
are based on III-V compounds such as GaAs or InP. However, it should be mentioned
that staircase superlattices are difficult to fabricate since their production requires strict
control of the deposition parameters of quaternary III-V compounds.

10.8. QUANTUM WELL MODULATORS

Quantum wells can be conveniently used for the direct modulation of light, since they
show much larger electro-optic effects than bulk semiconductors. Electro-optic effects are
rather weak in bulk semiconductors and, for this reason conventional modulators make use
of materials such as lithium niobate. In relation to excitonic absorption, we have already
seen in Section 8.4 that, due to the quantum confined Stark effect (QCSE), large changes
in the optical absorption spectrum of quantum wells could be induced by the application
of electric fields. Because of the high barriers of the wells, excitons in these nanostructures
do not field ionize as easily as in the bulk, and can therefore, sustain much higher electric
fields (∼105 Vcm−1). One important advantage of quantum well modulators is that they
are compatible with microelectronic technology.

Electroabsorption modulators are based on the change of the optical absorption
coefficient in a quantum well under effect of an electric field (Section 8.4). Figure 10.15
shows a mesa-etched modulator based on this effect. Evidently, to make the effect more
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Figure 10.15. Mesa-etched electroabsorption modulator based on the quantum confined Stark
effect.



266 Nanotechnology for Microelectronics and Optoelectronics

significant, one uses a set of multiple quantum wells (MQW). The MQW structure consists
generally of an array of several quantum wells (5 to 10 nm in thickness each) of the type
AlGaAs–GaAs–AlGaAs. The structure is placed between the p+ and n+ sides of a reverse
biased junction. Since the whole MQW structure has a thickness of about 0.5 µm, small
reverse voltages can produce electric fields in the 104 to 105 Vcm−1 range. These fields
induce changes in the excitonic absorption edge in the energy range 0.01–0.05 eV (see
Figure 8.12).

Electroabsorption modulators, such as the one described, allow high speed modulation
with a large contrast ratio of transmitted light through the device. The contrast ratio can
be as high as 100 by working in the reflection mode instead of the transmission one. This
is done by depositing a metal layer substrate and forcing light to make two passes. The
modulation factor can also be improved by working at low temperatures. Electroabsorption
modulators can operate up to frequencies of several tens of GHz and if high electric fields
are applied, the maximum frequency can approach 100 GHz. This is because the maximum
frequency of operation is limited by the mechanism of carrier extraction from the quantum
wells. For low fields, the generated electron–hole pairs during absorption are unable to
escape from the quantum well. However, if the fields are high enough, the electrons
and holes can escape from the wells by tunnelling with a characteristic time of a few
picoseconds.

Another use of quantum well modulators is also based on the QCSE (Section 8.4),
but operating at a photon energy below the excitonic absorption edge. In this case, the
electric field affects mostly the refractive index and consequently the phase of the light
beam. The frequency of the photon energy should be close to the exciton absorption
resonance to make the effect more pronounced, but not so close as to significantly absorb
the light signal. For symmetric quantum wells, the dependence of the refractive index
on the electric field is quadratic, like in the electro-optic or Kerr effect shown by centre-
symmetric crystals in bulk semiconductors. However, in the case of quantum wells, the
corresponding coefficient is about two orders of magnitude larger and consequently the
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Figure 10.16. Schematic of a Mach–Zehnder interferometer.
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distance which light has to travel through the material is much shorter. Therefore, devices
with lengths shorter than about one hundred microns can be integrated in optoelectronic
integrated circuits (OEICs). One example is the Mach–Zehnder interferometer shown in
Figure 10.16. In this device, the incoming signal from an optical waveguide is split in
two beams of the same intensity which travel through different channels in the material
of the same length before they recombine again. An electric field is applied to one of the
branches causing differences in phase between the two beams and causing interference
patterns at the meeting point.
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PROBLEMS

1. Double heterostructure lasers. Suppose an AlGaAs–GaAs–AlGaAs heterostructure
laser which emits at 885 nm and that the optical length cavity is of 150 µm. (a) Find the
order n of the principal optical mode (take the index of refraction of GaAs as 3.8).
(b) Find the separation in wavelength and wave vector between modes. (c) For a
temperature increase of 12◦C, estimate the change in the emission wavelength and
recalculate the order of the principal mode. (The index of refraction of GaAs changes
about 1.5 × 10−4 per degree.)

2. Optical emission in quantum wells. For a typical AlGaAs–GaAs–AlGaAs quantum
well laser of width 8 nm find the energy and wavelength of the emitted radiation.
Compare the obtained value with that of a semiconductor GaAs laser. Solve the
problem in the limit of infinite and finite quantum well heights.

3. Distributed Bragg reflectors (DBR) and single mode lasers. (A DBR structure
consists in a periodic grating formed by a corrugated dielectric structure which is
designed similarly to a reflection diffraction grating. Distributed feedback lasers
(DFB) make use of DBR structures and are used in today’s optical communications.
They can be considered single frequency lasers and the spectral bandwidth is of the
order of 0.1 nm.) (a) Find the Bragg wavelength λB of a DBR structure with a cor-
rugation period of 240 nm and a refractive index of 3. Hint: first show that, if the
DBR structure is considered as a grating, in first order, λB = 2�cn, where �c is the
corrugation period and n the refractive index. (b) Find the emission wavelength λ of
the DFB laser for a length of the optical cavity of 300 µm. (Hint: in a DFB laser it can
be shown that the only allowed modes are given by the expression λ = λB +λ2

B/2nL

or λ = λB − λ2
B/2nL, where L is the length of the optical cavity, and λB is the value

obtained in (a).)
4. Gain in a quantum well laser. Show that the gain γ (� ω0) in a quantum well laser

is proportional to the n2D density of states function and to the inversion population
factor fc(� ω0) − fv(� ω0), where fc and fv are the occupancy Fermi–Dirac factors
for the n = 1 energy states in the conduction and valence bands quantum wells,
respectively. Hint: assume parabolic bands around k = 0 in k-space and that only the
optical transition corresponding to n = 1 is significant. Follow the same procedure
as in a bulk semiconductor and get

γ (� ω0) = m∗
r λ

2
0

4π�an2τ

[
fc(� ω0) − fv(� ω0)

]

where m∗
r is the effective electron–hole reduced mass, a the well width, n the index

of refraction, and τ the relaxation time.
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5. Quantum well modulators. Consider a MQW electroabsorption modulator consisting
of AlxGa1−xAs/GaAs quantum wells of width a equal to 8 nm and a total active layer
thickness of L = 640 nm. The half-width of the excitonic peak is 25 meV. Calculate
the modulation factor, i.e. the ratio of the intensities of the transmitted light with and
without the action of an electric field F = 105 Vcm−1. Hint: for the above quantum
well, with x = 0.3 for the Al content, use the expression of the excitonic absorption
given in Ref. [8]:

α(� ω) ≈ (2.9)(103)

aσ
exp

(
−Eex − � ω

(2)1/2σ 2

)

where a should be written in Å, σ in eV, and α is given in cm−1. Note that for no field
Eex = � ω, and when the field is applied the exponent �Eex is given by Eq. (8.12)
of Section 8.4.

6. Electroabsorption modulators. (Electroabsorption modulators, as the one shown in
Figure 10.15 are said to be of the transverse transmission type. In them, an absorption
coefficient, which is a function of the reverse applied voltage, i.e. α = α(V ), is
defined as the average absorption coefficient characteristic of the MQW region. These
modulators operate at photon energies � ω0 close to the exciton peak; the variation
of the peak intensity as a function of V can be obtained from curves similar to those
represented in Figure 8.12 for various electric fields.) (a) Show that the contrast ratio R

defined as the transmission for V = 0 and V = V , can be expressed in decibels as:

R(db) = 4.34 [α(V ) − α(0)] W

where W is the width of MQW structure. Evidently, the contrast ratio increases
with W . (b) Since W cannot be made very long because no signal would appear at
the output, estimate what would be the optimum value of W so that the ratio Pout/Pin

is not made too small.
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2D mesoscopic system, 5
3D supramolecular entities, 7

Absorption coefficient, optical, 76, 77, 79,
88, 213, 221, 265, 269

Acoustic branch, phonon, 49
Active region, 85, 86, 226, 230, 237, 238,

248, 249, 253, 255, 256
Aharonov–Bohm effect, 12, 119, 145, 175,

180, 183, 195
conductance oscillations, 182
interference effects, 182
quantum, of flux, 182

Airy function, 100
AlGaAs/GaAs

interface, 150
superlattices, 153

Alternatives for nanoelectronics,
bioelectronics, 7
magnetoelectronics, 7
molecular electronics, 7
optoelectronics, 7
spintronics, 6
superconducting electronics, 6

Analogue-to-digital converters, 234
Anderson localization theory, 190
Angular momentum, 104, 107
Anticrossing, 109
Artificial atoms, 103
Atomic force microscopy (AFM), 7, 205
Auger and XPS spectroscopies, 211
Autocorrelation (AC), 83
Avalanche photodetectors (APD), 264

Ballistic electrons, 17, 153, 180, 237
Bandgap, 23, 60, 75, 79, 87, 88, 92, 105,

107–109, 114, 126, 127, 136, 229

Bandgap narrowing, 75, 250
Bandtail states, 75, 76
Biexcitons, 82
Binding energy, exciton, 81, 88, 111–113,

202, 207, 222
Bipolar transistors

double heterostructure bipolar
transistors (DHBT), 231

heterostructure bipolar transistors
(HBTs), 225, 231

homojunction bipolar transistor, 229,
231

junction transistors, 225
silicon transistors, 126

Bloch
extended state, 189
functions, 35, 78, 107, 201, 202
oscillations, 136, 156, 157, 199, 203,

216, 220, 222
oscillators, 219
states, 13, 23, 190, 201
theorem, 23, 34, 39, 78, 133
wave functions, 133

Blue–green laser, 109
Bohr radius, 207, 111
Boltzmann distribution function, 29
Boltzmann transport model, 10
Bose–Einstein distributions, 28
Bound states, 80, 81, 97–99, 115,

203, 206
Boundary conditions, 13, 32, 40, 47,

94, 115
fixed or box, 32
periodic (or) Born-von Karman, 32, 40,

47, 94, 115

271
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Bragg reflection, 47, 52, 157
Brillouin zone, 39, 47, 49, 52, 53, 58,

135, 157
Brillouin zone folding, 211, 212
Bulk-like optical phonon, 146

Carbon nanotube transistor, 242
Cathodoluminescence, 210
Centre-symmetric crystals, 266
Characteristic lengths, 3, 8, 12, 13,

18, 91
de Broglie wavelength, 8
diffusion length, 9
localization length, 10
mean free path, 9
screening length, 10

Charging energy, 103, 240
Chemical vapour deposition (CVD), 16,

260
Clean bulk curve, 149
CMOS

microprocessors, 7
transistors, 241

Composite fermions (CF), 176,
193, 194

Concentration gradients, 57, 69, 71
Condition of charge neutrality, 67
Conduction band

edge, 62, 64, 81
electrons, 145
valley degeneracy, 121

Confinement
0D (quantum dots), 113
1D (quantum wires), 113
2D (quantum wells), 113
carrier, 251, 254, 258
optical, 247–251

Confinement regime
strong, 207
weak, 207

Constructive interference, 255
Continuity equation, 57, 72–74
Continuous propagation states, 97

Coulomb
blockade, 3, 91, 103, 145, 159, 165,

166, 168, 240
effects of, 103, 167, 168, 226,

239, 240
interaction, 82, 207
island, 240
oscillations, 241
potentials, 10, 11, 34

Critical thickness, 106, 126, 261
Crystal imperfections, 9
Cyclotron frequency, 18, 98, 176, 195
Cyclotron orbit, 18, 176, 179, 186,

187

de Broglie wavelength, 4, 8, 11, 91,
103, 227

de Haas–van Alphen effect, 176
Debye length, 10
Density of states (DOS), 13, 14, 16, 95,

102, 148, 177, 179, 253, 259
Dephasing, 12
Dielectric

constant, 10, 27, 62, 81, 88, 140, 171
function, 10

Diffusion
coefficients, 9, 71, 88
length, 9, 57, 72, 73, 75, 88, 248

Digital logic operations, 242
Diluted dopant gases, 5
Dirac’s delta function, 13
Distributed Bragg reflector (DBR), 255,

268
DOS function, 13, 19, 30–32, 66, 77, 78,

86, 96, 103, 104, 145, 160, 177,
202, 204, 251, 253, 268

Dynamic random access memories
(DRAMs), 4

Edge states, 175, 186, 187
Effective density of states, 64, 65
Effective mass

approximation, 57, 98, 207
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of electrons, 16, 225
tensor, 23, 42, 52, 58

Effects
electroabsorption, 213
electro-optical, 213, 216
electrorefraction, 213

Eigenstates, 14, 30, 107, 158, 179
Einstein relation, 71
Electrical conductivity, 11, 17, 45, 60,

61, 69–71, 183
Electroluminescence, 209, 210
Electromagnetic waveguide, 8, 101
Electro-optic

effect, 203, 207, 213, 216, 265
modulators, 105, 111, 199, 216
switching modulators, 130

Electro-optical signal modulation, 8
Electron

injection, 235
spin degeneracy, 13
temperature, 151, 235
waveguide, 162

Electron–hole
concentration, 57, 63, 66, 67, 71, 87
interaction, 207
pairs, 61, 69, 72, 73, 80, 84, 266

Electron scattering mechanisms
electron–phonon, 146
impurity, 146
intersubband, 147
surface roughness, 147

Electron-spin transistors, 6, 7
Electrostatic ionic potential, 190
Emission spectrum, 82, 83, 211, 221,

251, 252
Energy bands, 23, 36, 37, 52, 57–59,

78, 88, 119, 129, 131, 138, 146,
157, 177, 211, 227, 257

Energy gaps, 36, 91, 126, 155, 249
Energy subbands, 93, 94, 161
Equation of motion, 40, 156

crystal momentum, 41
wave packets, 40

Evanescent waves, 256
Excess carrier concentration, 72, 73
Excitation photon energy, 77
Exciton

Bohr radius, 207, 111
confinement energy, 113
Frenkel excitons, 80

Exciton Rydberg constant, 81
Excitonic effect, 80, 109, 111, 199,

207, 214
Extended electron states, 203

Fermi energy, 28
Fermi Golden rule, 77, 200
Fermi integral, 64, 65
Fermi level, 28
Fermi–Dirac distribution

fermions, 28, 31
function, 28, 64–66, 114

Fermi–Thomas length, 10
Field effect transistor (FET), 119, 120,

121, 151, 225, 227, 237
Filling factor, 176, 183, 185, 192, 194
Fluxons, 176
Forbidden energy zone, 99
Fourier series, 40
Fractional electronic charge, 193
Fractional quantum Hall effect (FQHE),

175, 176, 192, 193
Franz–Keldysh effect, 213
Free electron

model, 23, 31, 35, 37, 41, 52
motion, 178

Frenkel excitons, 80
FTIR, 211
Fundamental conductance, 161, 162, 165

Generation rates, 72
Giant magnetoresistance effect, 7
Graded index separate confinement

heterostructures (GRINSCH),
251, 252

Group velocity, 23, 40, 47, 102, 222
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Growth modes
Stranski–Krastanow, 206, 261
Volmer–Weber, 206

Hall resistance, 185, 186, 189, 193
Hall voltage, 175, 184–186, 188,

189, 192
Harmonic oscillators, 50, 98
Heavy hole (HH), 78, 107–109, 142, 202,

204, 214–217, 219, 222, 257
Heisenberg uncertainty principle, 25, 155,

211, 240
Hermite polynomial, 99
Heterojunction transistors, 229
Heterostructures, 123

AlGaAs–GaAs, 105, 108, 126
GaInAsP–InP, 7
strained-layer quantum, 8

High electromigration resistivity, 237
High electron mobility transistor (HEMT),

126, 225, 227, 228
High resolution nanolithography, 5
Hole degeneracy

heavy, 105, 108, 126
light, 105, 108, 126

Holes
inversion symmetry, 44
wave vector, 44

Hopping transport, 11
Hot electron transistors (HET), 9, 226,

235, 237
Hot electrons, 151, 235

Impurities
pentavalent, 61, 62
trivalent, 62, 63

Impurity bands, 76
Incoherent transmission, 170
Inelastic collision, 160
Integer quantum Hall effect (IQHE)

applications in metrology, 191
edge states, 186
elementary theory, 185

experimental facts, 185
extended and localized states, 189

Interatomic bonding
covalent, 45
ionic, 45, 49
van der Waals, 45

Interband absorption, 77
Interband transition, 200
Interface roughness scattering, 190
Interference

effects, 12
pattern, 195, 267

Intersubband
transition, 203, 207, 262, 263

Intraband scattering transition, 200
Inversion channel, 121, 146
Ionization energy, 8, 62, 63, 67, 81, 103

Josephson junction, 6

Kerr effect, 266
Knudsen type effusion cells, 5
Kronig–Penney model, 117, 132, 133,

135, 137, 142

Landau gauge, 179
Landau levels, 18, 175–177, 180,

183–185, 189, 190, 193,
195, 196

Landauer formula, 160, 162, 170
Landauer–Büttiker formula, 163, 165, 170
Landauer–Büttiker formulation, 175
Laser

distributed feedback (DFB), 268
double heterostructure (DH), 248–251,

258, 268
edge-emitting, 256, 261
Fabry–Perot, 261
homojunction, 247, 248
index guided, 248
quantum dot, 113, 258–262
quantum well, 3, 105, 247, 248, 251,

253, 257, 258, 262, 268
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Lattice
atoms, 45
constant, 3, 45, 80, 105–108, 119, 126
vibrations, 45, 47, 50–52, 77, 108

Law of mass action, 66, 67, 75
Lennard–Jones potential, 45
Light

absorption, see absorption
detectors, see photodetectors
emission, see emission

Light hole (LH), 78, 105, 107–109, 126,
202, 204, 215, 222, 257

Linear combination of atomic orbitals
(LCAO) method, 37

Lithographic etching techniques, 102, 192
Localized state, 11, 176, 189, 190, 192
Longitudinal acoustic branch (LA), 49
Low-noise amplification, 234
Luminescence yield, 84
Luttinger–Kohn method, 107

Mach–Zehnder interferometer, 266, 267
Magnetic flux density, 176
Magnetic tunnel junctions, 7
Magnetic vector potential, 175
Magnetization, 6, 176
Magnetoelectronics, 7
Mass reversal, 109
Mesoscopic physics, 3, 12, 13, 15, 161
Mesoscopic transport

Coulomb blockade, 159
quantization conductance, 159

Metal base transistor (MBT), 236
Metal organic chemical vapour deposition

(MOCVD), 5, 16, 131, 260
Metal-oxide-semiconductor (MOS), 4, 119
Metal-oxide-semiconductor

field-effect-transistor (MOSFET),
16, 119–123, 126, 141, 145, 149,
150, 165, 184, 191, 225–228,
231, 240–243

Metrology, 162, 185, 191
Microlaser, 256

Minibands, 135, 136, 142, 155, 157, 158,
211, 216

Minigaps, 135, 136, 142, 155, 157, 211
Minority carrier lifetime, 57, 74
Mobility

electron, 70, 71, 87, 92, 121, 126,
148–151, 192, 225, 227

hole, 70
Modulation-doped field effect transistor

(MODFET), 91, 126, 128, 145,
147–149, 153, 225–229, 243

Modulation-doped heterojunction, 119,
123–125, 127, 128, 148, 193, 227

Modulation-doped quantum
heterostructures, 145, 225

Modulator
effect, 203, 207, 213, 216, 265
electro-optic, 105, 111, 199, 216
mesa-etched electroabsorption, 265
quantum well, 265, 266, 269
switching modulators, 130

Molecular beam epitaxy (MBE), 5, 16,
131, 150, 222, 235

Moore’s law, 5
MRAM memories, 7
Multiple quantum wells (MQW), 109,

129–131, 137, 159, 202, 203,
253, 262, 264–266, 269, 270

Multi-probe quantum transport, 163,
165, 186

Multiquantum wells, see Multiple
quantum wells (MQW)

Multivalued and self-latching logic, 234
Multivalued memory, 234

Nanocrystals, 102, 199, 204, 205,
207–211

Nearly free electron model (NFE), 35, 37
Negative differential resistance (NDR),

151, 158, 159, 232–234, 244
Neutrality condition, 72
Normalized coordinates, 168
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Occupancy probability factor, 252
One-dimensional lattice

diatomic linear chain, 47, 48
dispersion relation, 47–49
one-dimensional monoatomic chain,

45, 49
Optical

communication, 4, 7, 16, 248, 250,
251, 253, 256, 258, 262, 265

computation, 256
confinement factor, 248, 258
detectors, see photodetectors
emission, 268
filters, 205
gain, 86, 247, 255
joint density of states function, 78
lithography, 5
phonon, 76, 77, 83, 146, 149

Optical process in semiconductors,
absorption, 76
reflection, 76
transmission, 76

Optoelectronic integrated circuit (OEIC),
8, 231, 247, 267

Optoelectronic modulators, 111, 207
Oscillator elements, 234
Overlap integrals, 39, 131

Parallel transport
electron scattering mechanisms, 145,

146
experimental data, 149
hot electrons, 151

Parameter spread, 6
Patterning techniques, 150
Pauli exclusion principle, 28, 33, 45
Peak-to-valley current ratio (PVCR),

233, 234
Peierl’s substitution, 178
Penetration depth, 77
Perpendicular transport

electric field effects in superlattices,
155

resonant tunnelling (RT), 153
Perturbation methods

eigenfunctions, 29
eigenstates, 30
eigenvalues, 29
first-order approximation, 30
Hamiltonian, 29
perturbation Hamiltonian, 29
zero-order approximation, 30

Perturbation theory, 30, 36, 76, 128, 131,
200

Phase coherence, 12, 160, 180, 195
Phase coherence length, 12, 180
Phase velocity, 40, 46
Phonons, 9, 24, 41, 50, 51, 69, 76, 77,

82, 83, 98, 104, 146, 149, 180,
200

Photocurrent spectra, 218
Photodetectors

Avalanche (APD), 264
quantum well subband, 262
superlattice avalanche, 264

Photoluminescence, 83, 84, 205, 209, 215
Photonic devices, 3, 247
Physical limits of nanostructures

relativistic, 6
thermal, 6
uncertainty principle, 6

p–n junction, 73, 85–87, 124, 139, 140,
248

Poisson equations, 123
Poly-methylmethacrylate (PMMA), 5
Population inversion, 85, 86, 248, 253,

258
Porous silicon (PS), 211
Potential barrier, 92
Potential well, 121, 125

harmonic oscillator, 99
triangular, 99

Pseudomorphic growth, 105
Pulse generators, 234
Pyramidal quantum dots, 261
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Quantization, 14, 15, 17, 151, 159, 161,
175, 186, 187, 189

Quantized energy, 18, 121, 140, 153, 158
Quantum

confinement, 111, 213, 222, 259
dots, 3, 13, 15, 91, 101–104, 113, 115
heterojunction, 16, 99, 147, 175
heterostructures, 3, 8, 15, 17, 113
resistance, 161, 240
transport, 4, 17, 159, 186
unit of conductance, 161
waveguide, 187
wells, 3, 7, 8, 12
wires, 3, 13, 15, 91, 100–102

Quantum cascade lasers, 200
Quantum confined Stark effect (QCSE), 3,

8, 140, 199, 213, 265, 266
Quantum dot lasers, 113, 258–262
Quantum dots (QDs), 3, 15, 103, 104, 113,

199, 203–206, 210, 226, 239,
240, 247, 258

Quantum electrodynamics (QED), 192
Quantum Hall effect (QHE), 91, 119, 184
Quantum point contact (QPC), 162
Quantum well semiconductor lasers, 7
Quantum well states, 203, 219
Quantum wells (QWs), 3, 8, 15, 27, 82,

84, 96, 98, 111, 113, 119, 121,
127, 129–131, 137

Quasi, 2D
system, 13
wells, 145

Quasi-ballistic regime, 12
Quasi-Gaussian distribution, 211
Quasi-particle excitation, 176

Radiative transition, 83
Real-space transfer (RST), 151, 243
Recombination

centres, 84
rates, 72, 253

Reduced dimensionality, 3, 13, 115

Refractive index, 213, 251, 255, 261,
266, 268

Relaxation time, 9, 20, 69, 157, 268
Resonance absorption, 31
Resonant cavities, 85
Resonant tunnelling

diodes (RTD), 226, 233, 237
effect (RTE), 226, 237
transistors (RTT), 226, 232, 237

Rutherford back-scattering spectrometry
(RBS), 211

Rydberg constant, 81

Scanning tunnelling microscopy (STM),
205

Schottky junction, 237
Schrödinger equation, 11, 13, 17
Schrödinger wave equation

free particle, 26
harmonic oscillator, 27, 29
infinite square well potential, 27
time-independent equation, 26, 31
wave function, 11, 13, 17, 26, 30

Selection rules, 30, 78, 201, 262
Self-assembled quantum dots, 205,

260, 261
Semiconductor

devices, 3, 120
gap, 60, 67, 68, 76–80, 262
lasers, 5, 7, 85, 231, 247, 249–251
types

compensated, 67
degenerate, 75
direct gap, 7, 58, 77–79, 85, 107,

135
doped, 74–76, 151
extrinsic, 10, 57, 60, 61, 67, 73, 80
indirect gap, 58, 107, 135, 136, 211
intrinsic, 5, 7, 60
n-type, 62, 65, 73, 75
non-degenerate, 65, 68, 75
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Semiconductor (Continued)
types (Continued)

non-doped, 67
p-type, 65, 75

Shift registers, 234
Shubnikov–de Haas effect, 123, 176, 185,

186, 195
Shubnikov–de Haas oscillations, 119, 175,

183, 184
Si-Ge strained heterostructures, 126, 150
Silicon, porous (PS), 211
Silicon integrated circuits, 4
Silicon lattice, 61, 62
Silicon nanocrystals, 211, 212
Silicon-oxide interface, 150
Single dot spectroscopy, 207, 209
Single electron transistor (SET), 3, 4, 168,

226, 240–242, 244
Single-electron turnstile, 171
Single quantum well (SQW), 129, 130,

138, 199, 204, 216, 219, 252,
253, 262

Skipping orbits, 175, 187
Solid state nanoelectronics, 6
Spacer, 149, 227, 255
Spin degeneracy, 13, 180
Spin–orbit interaction doublet, 202
Split gate, 162
Split-off energy, 107
Spontaneous emission, 85
Square well potential

finite, 115
infinite, 24

Stark ladders, 199, 216
Stark shift, 214, 215, 222
Static random access memories

(SRAM), 234
Static random access memory cell

AC ring oscillators, 242
inverters, 242
logic NOR, 242

Stimulated emission, 31, 85, 86, 247
Strained layer epitaxy, 105

Stranski–Krastanow growth, 206, 261
Stripe geometry configuration, 248
Superlattice (SL)

doping, 139
nipi, 139

Terahertz emission, 203, 219
Thermal oxidation, 120
Thermoionic effect, 235, 237
Thin gate oxide, 146
Three-dimensional lattice, 49
Threshold density current, 248
Tight binding (TB) approximation, 37, 132
Transfer matrix method, 154
Transmission electron microscopy

(TEM), 209
Transport regime

ballistic, 9
diffusive, 17

Transverse acoustic branches (TA), 49
Traps, 74, 84
Trions, 82

Uses of quantum well photodetectors
night vision, 262
thermal imaging, 262

Velocity-modulation transistors, 128
Velocity-overshoot effect, 153
Velocity, phase, 40, 46
Vertical cavity surface emitting laser

(VCSEL), 247, 254–256
Volmer–Weber mode, 206
Voltage “plateaux”, 175, 176, 192
von Klitzing constant, 175, 185, 191, 192

Wannier–Mott excitons, 80
Wannier–Stark localization, 136, 199,

215, 216
Wave packet, 40, 220
Wave-particle duality

de Broglie, 25
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photoelectric effect, 24
photons, 24

Wigner crystal, 192

Zone folding, 132, 135, 136, 142, 211,
212, 222

Zone representation
extended, 36
reduced, 36
repeated, 36
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