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Preface

Vibro-impact dynamics has occupied a wide spectrum of studies by dynam-
icists, physicists, and mathematicians. These studies may be classified into
three main categories: modeling, mapping and applications. The main tech-
niques used in modeling of vibro-impact systems include phenomenological
modelings, Hertzian models, and non-smooth coordinate transformations de-
veloped by Zhuravlev and Ivanov. One of the most critical situations impeded
in vibro-impact systems is the grazing bifurcation. Grazing bifurcation is usu-
ally studied through discontinuity mapping techniques, which are very useful
to uncover the rich dynamics in the process of impact interaction. Note the
available mappings are valid only in the absence of non-impact nonlinearities.
Complex dynamic phenomena of vibro-impact systems include subharmonic
oscillations, chaotic motion, and coexistence of different attractors for the
same excitation and system parameters but under different initial conditions.

Selected applications of vibro-impact dynamics. These include lumped and
continuous systems. Lumped systems cover a bouncing ball on an oscillating
barrier, mass-spring-dashpot systems, normal and inverted pendulums, the
spherical pendulum, the ship roll motion against icebergs, joints with free-
play, rotor-stator rubbing in rotating machinery, vocal folds, microactuators,
strings, beams, pipes conveying fluids with end-restraints, nuclear reactors
and heat exchangers, and plates. These applications are discussed within the
framework of the deterministic theory. Under random excitation the treat-
ment requires special tools. The techniques of equivalent linearization and
stochastic averaging have been applied to limited number of problems. One
of the most beneficial outcomes of vibro-impact dynamics is the development
of impact dampers, which have witnessed significant activities over the last
four decades and have been used in several applications. On the other hand,
vibro-impact has detrimental effects on the operations of mechanical systems
and damage of pipes and rods in nuclear reactors. Each Chapter includes ex-
tensive literature review for its major sections followed by analytical descrip-
tion and main results. The book is supported by an extensive bibliography



VIII Preface

which exceeds 1,100 references of technical journal papers, technical reports,
research monographs, MS and Ph.D. theses, and conference proceedings.

Some of the presented results were the outcome of research grants from the
National Science Foundation (NSF) and the USA Office of Naval Research
(ONR). I like to express my gratitude to the Program Directors, particu-
larly Dr. Devendra Garg (NSF) and Dr. Kelly Cooper (ONR). I like to thank
Dr. Valery Pilipchuk, Dr. Mohamed El-Sayad, and Mr. Ihab Grace who col-
laborated with me in conducting these research projects. The original brief
form of this book was in the form of a review article citing about 550 ref-
erences. In view of its length, Professor Freidrich Pfeiffer, of the Technical
University of Munich and the Editor of the Springer series of Lecture Notes
in Applied and Computational Mechanics, suggested that I should modify it
as a research monograph. For that reason, I am indebted to Professor Pfeiffer
and would like to thank him for his encouragement. During the course of
modifications, I encountered some problems in presenting the derivations of
Zhuravlev non-smooth coordinate transformation and Nordmark discontinu-
ity mapping in a format suitable for the beginners. I am indebted to Professor
Victor Bedichevsky of Wayne State University, Professor Harry Dankowicz of
the University of Illinois, Urbana-Champaign, and Professor Xiaopeng Zhao
of University of Tennessee who provided me a lot of help.

It was my wife, Sohair, who has been always supporting and encouraging
me to accept the challenge and to complete the task on my own pace. I thank
her so deeply for her patience and long-suffering during writing this book.
Indeed without her support I could not complete this book.

Detroit, Michigan Raouf A. Ibrahim
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Introduction

Vibro-impact systems had been known to laymen and children before they
were considered by the scientific community. A skipping stone on the water
surface and woodpecker toy are common examples. According to Wikipedia:
“Stone skipping is a pastime which involves throwing a stone with a flattened
surface across a lake or other body of water in such a way that it bounces
off the surface of the water. The object of the game is to see how many
times a stone can be made to bounce before sinking.” It is amazing that
this game has attracted many researchers to provide analytical and physical
insight (see, e.g., [685], [358], [963], [126], [183], [706], [895], [914], [535]). The
woodpecker toy operates by self-excited vibrations due to the combined effects
of friction, impact and weight. The motion of this toy is greatly influenced
by simultaneous impacts, which cause discontinuous bifurcations ([836], [364],
[837], [838], [579], [581], [365], [578]). The dynamics of the woodpecker toy
can be analyzed with a one-dimensional Poincaré map.

Generally, vibro-impact systems involve multiple impact interactions in
the form of jumps in state space. In most cases, there is energy loss due
to impacts and the coefficient of restitution usually measures the degree of
energy dissipation associated with an impact event. The time scale involved
during impact is much smaller than the time scale of the natural frequency of
the oscillator. The motion of vibro-impact systems in the presence or absence
of friction, is usually described by strongly nonlinear non-smooth differential
equations. These systems together with the modeling of impact forces require
special treatments and representations, which will be described in Chapter
1. Chapter 1 presents some modeling and analytical techniques of vibro-
impact interaction. These include the phenomenological modeling, Zhuravlev
and Ivanov non-smooth coordinate transformations, Hertzian contact, point-
wise mapping, and saw-tooth-time-transformation. The early work of vibro-
impact dynamics is believed to be made by Bespalova [109] and Bespalova
et al [110]. The basic theory of vibro-impact dynamics is well documented
in many research monographs (see, e.g., [369], [518], [519], [53], [60], [61],
[132], [1135], [317], [135], [137], [456], [558], [964], [567], [697], [139]). Chapter
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2 Introduction

1 will not address a subclass of non-smooth multibody systems with planar
frictional-impact contacts ([837], and [140]). Wu et al [1085] and Brogliato
and Acary [139] presented a unified formulation of the equations of motion for
constrained multibody systems with Coulomb friction, stiction, and impact
together with constraint addition-deletion.

One of the most powerful tools of describing the complex characteristics of
vibro-impact dynamics is the mapping of grazing bifurcation. Chapter 2 de-
scribes discontinuities mappings such as grazing and C-bifurcation mappings.
Dankowicz and Piiroinen [203] presented a rigorous mathematical technique
for stabilizing periodic or other recurrent motions. The spectrum of Lyapunov
exponents of attractors of mechanical systems with impacts was estimated by
De Souza et al [224] and Twizell et al [1021]. They introduced transcenden-
tal maps that describe solutions of integrable differential equations between
impacts. This was supplemented by transition conditions at the instants of
impacts. De Souza and Caldas [221] applied a small and precise perturbation
on a given control parameter to stabilize desired unstable periodic orbits,
embedded in the chaotic invariant sets of mechanical systems with impacts.
Later, De Souza et al [219] applied a feedback control technique to sup-
press chaotic behavior in dissipative mechanical systems by using a small-
amplitude damping signal. The control signal was generated by varying the
damping coefficient according to the velocity direction. Wang et al [1059]
developed an impulsive control scheme to stabilize chaos in a class of vibro-
impact systems. The control is implemented just when the impact occurs,
i.e., in discrete time instants. The impact velocity measurement was required
for designing the controller. In another work, Wang et al [1060] examined the
dynamic behavior of a controlled two-degree-of-freedom vibro-impact system
with a damping control law using numerical simulation. The control signals
are expressed by two piecewise-linear absolute value functions. It was found
that this control scheme can successfully suppress chaos to periodic orbit.

Controllability and stabilization issues associated with a class of non-
smooth dynamical systems, namely complementarity dynamical systems were
addressed by Brogliato ([136], [138]), Brogliato et al [141] and Leine and Ni-
jmeijer [580]. Convex analysis and complementarity problems were claimed
to be the main analytical tools for control related studies. Lee and Yan ([575],
[576]) proposed the position control based on feedback control force of im-
pact oscillator under asymmetric double-sided barriers. It was shown that
the stable or unstable (chaotic) impact oscillators can be controlled and kept
in a desired position using a synchronization scheme.

Vibro-impact systems are encountered in many engineering applications
such as vibro-impact response of heat exchanger tubes to aerodynamic exci-
tation, impact of floating ice with ships, slamming of ocean waves on off-shore
structures, ships colliding against fenders, rubbing between the stator struc-
ture and rotor blades in turbomachinery, hand-held percussion machines,
loosely fitting joints, gear-pair systems with backlash, a ball bouncing on a
table, pile drivers, collision of human vocal folds, and automotive braking
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systems. Chapters 3 through 6 present different types of applications. For
example, Chapters 3 and 4 are devoted for lumped single and multi-degree-
of-freedom systems, respectively. In many situations, vibro-impact can be
associated with the generation of undesirable noise and sound. Some studies
have been carried out with the purpose of reducing impact noise. The pre-
diction of impact noise was the major theme of a series of research papers
([887], [888], [889], [890]). Igarashi and Aimoto ([440], [441]) discussed the
mechanism of impact sound generation when a ball collides against a plate.
The ball was attached with a force transducer and collided with a freely sus-
pended square steel plate. The frequency characteristics were not affected
by the size of the ball, the ball material, or the impact velocity. However,
they were dependent on the plate boundary conditions. Oppenheimer and
Dubowsky [752] predicted the noise and vibration of machines and their sup-
port structures using a heuristic energy-based criterion. The criterion revealed
that the mechanism-support coupling affects noise radiation. In some cases
the coupling was found to significantly affect vibration and noise radiation
of the support structure, while having a relatively minor effect on mecha-
nism response. Chapter 5 deals with other applications such as mechanical
joints, micro-actuators, vocal folds, vibration protection systems, and other
applications. Impact interactions can excite complex nonlinear responses in
structures subjected to simple periodic excitation ([501], [63]). Some specific
features include concentration of high harmonics in corresponding waveforms
and the dependence of their behavior on system parameters, initial conditions
and synergistic spatial effects.

Chapter 6 addresses the vibro-impact dynamics of continuous systems such
as strings, beams, constraint pipes conveying fluid, nuclear reactors and heat
exchangers, and plates. Equally important to analytical and numerical tech-
niques is experimental validations using small dynamical models. Experimen-
tal investigations are very valuable in revealing such complex phenomena that
are not predicted analytically or numerically. It has been proven that there is
a possible similarity of several important vibro-impact systems under certain
specific limits or constraints [89].

A common feature of these systems is that there is a discontinuity in the
stiffness at the onset of collision. The repetition of impact can be periodic
or random, and thus each class requires special mathematical treatment.
Such systems exhibit complex types of resonance, bifurcations and chaos. The
problem becomes more complex when different types of nonlinear resonance
conditions such as parametric and internal resonances occur simultaneously
in vibro-impact systems. When friction is accounted for, a variety of highly
complex characteristics including chaos are possible ([189], [1039], [1040],
[102], [118]).

The stability of periodic motion of impact systems can be studied by
developing recurrence equations describing the evolution of periodic mo-
tion disturbances from impact to impact [356]. Kalagnanam [487] applied
the Ott-Grebogi-Yorke (OGY) algorithm [758] to impact oscillators and
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stabilized their chaotic attractor on period-1 and period-2 orbits using small
time-dependent perturbations of the driving frequency. It was demonstrated
that the ability to switch the chaotic system between period-1 and period-2
orbits was achieved by controlled time-dependent perturbations. However,
before the system settles on the stabilized orbit, it exhibits a long chaotic
transient.

Janin and Lamarque [464] studied some numerical methods that can
handle the occurrence of discontinuities in single-degree-of-freedom vibro-
impact systems. These methods include classical Newmark and Runge-Kutta
schemes. Regularization techniques used with finite element usually avoid
the exact computation of all discontinuities using some kind of smoothing
scheme [297]. Some special non-standard finite-difference schemes were de-
veloped ([277], [278]) for solving the response of impact oscillators whose
numerical treatment by traditional methods is not always successful. These
schemes incorporated the intrinsic qualitative parameters of the system such
as the coefficient of restitution and the structure inherent nonlinearity. These
schemes were found unconditionally stable and replicate a number of impor-
tant physical properties of the oscillator such as the conservation of energy
between two consecutive impact times. Shaw et al [929] presented some re-
sults pertaining to chaotic motions in a periodically forced impacting sys-
tem, which is analogous to the version of Duffing’s equation with negative
linear stiffness. They developed a general method for determining parameter
conditions under which homoclinic tangles1 exist, which is a necessary con-
dition for cross-well chaos to occur. It was shown how one may manipulate
higher harmonics of the excitation in order to affect the range of excitation
amplitudes over which fractal basin boundaries between the two potential
wells exist. Imamura and Suzuki [444] developed the steady–state response
and periodic solution of an impact oscillator. A general form of the peri-
odic solution was obtained from a steady–state response. Later, Imamura
([442], [443]) derived an exact global form of all periodic solutions appearing
in one–degree–of–freedom forced impact oscillator based on pseudo-feedback
approach. For zero stiffness, Imamura [443] obtained all periodic solutions
of forced vibro-impact systems with damping. Specific initial conditions that
lead to periodic solutions were defined using pseudo-feedback approach.

This monograph provides an assessment of the common analytical tech-
niques, numerical algorithms, and experimental results under deterministic
and random excitations. The treatment under random excitation is addressed
in Chapter 7 and covers briefly the pertinent features of the stochastic com-
plex characteristics associated with simple vibro-impact systems. Related to
vibro-impact dynamics is the development of impact dampers described in
Chapter 8. This monograph will not address the problem of differential in-
clusion associated with unilateral constraints. The concept of a standard

1 Homoclinic tangles refer to the intersection of the stable and unstable manifolds at a
hyperbolic saddle point under the Poincaré map. Each point of transversal intersection
is called a transversal homoclinic orbit.
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inelastic shock was introduced by Moreau [694]. This concept yielded a very
consistent formulation for the dynamics of systems with frictionless unilateral
constraints. Moreau introduced convex analysis and formulated the governing
equations in terms of measure differential inclusions. Schatzman (1998) stud-
ied the existence and uniqueness of solutions of one-dimensional dynamics
with impact. Paoli and Schatzman ([783], [784]) considered discrete dynami-
cal systems with perfect unilateral constraints and employed Moreau’s impact
law to decompose the velocity on the normal and tangent cones to the set
of admissible positions at the impact point. Vibro-impact systems with a fi-
nite number of degrees of freedom was described by Paoli ([780], [781]) by
a second-order measure differential inclusion for the unknown position com-
pleted with a constitutive impact law. Another formulation of a frictionless
sweeping process is possible such that the unknown velocity belongs to an
appropriate functional space and satisfies a first-order measure differential
inclusion. Later, Paoli [782] proposed a time-discretization of the measure
differential inclusion to describe the system dynamics. The proposed scheme
proved the convergence of the approximate solutions to a limit motion, which
satisfies the constraints. As an application, Paoli and Schatzman [785] numer-
ically estimated the motion of a slender bar dropped on a rigid foundation.
The bar was discretized by a system of rigid bodies linked by spiral springs
or by a pair of linear springs. It was assumed that the impact is frictionless
modeled by Newton’s law.

Every chapter includes an extensive assessment in the beginning of each
major section. The book is closed by a list of over 1,100 references that are
cited in this research monograph.



Chapter 1
Modeling and Analytical Approaches

1.1 Introduction

The analytical modeling of vibro-impact systems is very crucial in predict-
ing their dynamical behavior. The system can be linear or weakly nonlinear
in the absence of impact. However, in the presence of impact, or friction, or
both, it becomes “strongly” nonlinear. This strong nonlinearity owes it origin
to the fact that the velocity before and after impact experiences a sudden
change in its direction, and thus resulting in what is known as “non-smooth
dynamics.” Three particular techniques have been developed over the years
in order to transform the non-smooth models into smooth ones. These in-
clude the power-law phenomenological modeling, the Zhuravlev and Ivanov
non-smooth coordinate transformations, and the Hertzian contact law. Vibro-
impact dynamics of linear systems, known as piecewise linear systems, have
been treated in the literature using point-wise mapping. This approach solves
the linear differential equation in two stages. The initial conditions of each
stage are taken as the values of the solution of the previous stage at the end of
its period. Other techniques include the saw-tooth-time transformation and
the Lie group transformation. The basic principles of these approaches are
presented in this chapter. The analysis of different models of vibro-impact
systems was considered by Babitsky and Krupenin ([59], [61]). Analytical
models approximating purely elastic and inelastic impact using smooth func-
tions have been reviewed by Manevich and Gendelman [636].

1.2 Power-Law Phenomenological Modeling

In order to understand this modeling we consider a particle moving between
two walls positioned at x = ±xi as shown in Fig. 1.1(a). For an assumed rigid
impact one must have to introduce the constraint x ≤ |xi|, where x is the
particle displacement. This modeling is similar to a great extent to the one
used by Shaw and Shaw [924], who represented the impact by the momentum

R.A. Ibrahim: Vibro-Impact Dynamics: Model., Map. & Appl., LNACM 43, pp. 7–29.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1.1. Spatial dependence of impact for different exponent values for (a) double-
sided barrier (b) single-barrier.

equation together with the definition of the coefficient of restitution. The
collision was assumed as a discontinuous process. This constraint complicates
the analysis since one must match solutions at points of interaction which are
a priori unknown. In order to avoid operations with this type of constraints,
one can introduce a phenomenological modeling that describes the interaction
between the system and barriers with a special potential field of interaction,
which is very weak in the region between the body surface and the barrier,
but becomes fast growing in the neighborhood of the point, x = ±xi. The
force of interaction can thus be phenomenologically represented by the power
function

Fi = κ

(
x

xi

)2n−1

, (1.1)

where n >> 1 is an integer and κ is a positive constant parameter usually es-
timated from experimental measurements. Such representation was proposed
in vibro-impact problems by Hunt and Crossley [434] and in simulating liq-
uid sloshing impact in moving containers by Pilipchuk and Ibrahim [852],
El-Sayad, et al [289] and Ibrahim and El-Sayad [439]. Fig. 1.1 shows the de-
pendence of the impact force on the spatial coordinate, x/xi, for different
values of n for the cases of double- and single-barrier. As n −→ ∞, we have
the case of absolutely rigid body interaction, where the corresponding po-
tential energy takes the square well form. For finite and large values of n,
the interaction field is not absolutely localized at the points x = ±xi. This
implies that both the system and barrier are not absolutely rigid, but admit
a small deformation at the regions of impact, x = ±xi, for double-sided bar-
rier. Nonlinear surface stiffness together with nonlinear surface damping was
adopted in the literature [405] in studying the reliability and noise emissions
from real mechanisms.
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Alternatively, a smoothened tri-linear spring model may be adopted ([770],
[772])

F (x) = κn [x− 0.5 (|x + xni| − |x− xni|)]n . (1.2)

where xni is the free gap. This modeling enables one to represent adequately
the free gap in which the constraints are zero and to smoothen the sharp
discontinuity at |x| = |xi|.

The damping effects during impact are spatially localized around the re-
gion, x = ±xi. The localized dissipative force may also be phenomenologically
represented for two-sided barrier by the expression

Fd = c

(
x

ci

)2p ·
x, (1.3)

where c is a constant coefficient, which is determined experimentally, p >> 1
is a positive integer, and a dot denotes differentiation with respect to time.
Päıdoussis et al ([769], [770]), and Päıdoussis and Semler [772] employed
similar phenomenological modeling to represent the nonlinear force on the
restraint due to impact on a cantilevered pipe conveying fluid. Kim et al [507]
presented several smoothening functions and demonstrated their influence on
the nonlinear frequency response characteristics of a single degree-of-freedom
system. Andrianov and Awrejcewicz [13] developed an asymptotical behavior
of a system with damping and high power-form nonlinearity.

Consider the vibro-impact oscillators described by the differential equation

··
x + dΠ(x)/dx = 0. (1.4)

where the potential Π(x) possesses the general power form

Π(x) = κ0x
(2m+2)/(2n+1). (1.5)

m ≥ n, m,n = 0, 1, 2, ... and κ0 is a positive stiffness constant. Equation (1.4)
has been addressed by many researchers (see, e.g., [672], [673], [674], [675],
[428], [849]). In order to apply the harmonic balance method both numera-
tor and denominator of the exponent have to be odd. Nonlinear models for
approximate description of elastic impacts with the help of smooth functions
were developed using even-power potential for two-sided impact and inverse-
power potential, 1/xα : x > 0 and α > 0, for one-sided impact [359]. It
was demonstrated that both models may be generalized to describe the case
of inelastic impact with velocity-independent recovery coefficient less than
unity. The modification was achieved by adding another strongly nonlinear
dissipative term. Pilipchuk [850] considered a family of strongly nonlinear
oscillators with a generalized power form elastic force and viscous damping.
An explicit analytical solution was obtained as a combination of smooth and
non-smooth functions.
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1.3 Zhuravlev Non-smooth Coordinate Transformation

This transformation was originally introduced by Zhuravlev [1137] who as-
sumed purely elastic barriers as well as inelastic ones. The main rationale
of such coordinate transformation is to convert the vibro-impact oscillator
into an oscillator without barriers such that the corresponding equation of
motion does not contain any impact terms. In the transformed form one can
utilize any standard asymptotic approximate technique to solve the equation
of motion. This technique has been widely used by researchers in the former
Soviet Union [242]. Ezovskikh [304] proposed a change of variables that elim-
inate infinite discontinuities on the right sides of the equations of motion of
vibro-impact systems with moving barriers. A number of typical problems
were solved for a system impact with one-sided barrier located at x = −xi,
see Fig. 1.2(a), using the transformation

x = zsgn(z)− xi. (1.6)

This transformation shifts the barrier to the axis z = 0 and maps the
domain x > −xi of the phase plane trajectories on the original plane (x,

·
x)

to the new phase plane (z,
·
z). The first and second derivatives with respect

to time are
·
x =

·
zsgn(z), and

··
x =

··
zsgn(z). Note that z [d(sgn(z))/dt] = 0,

because sgn(z) changes its sign at z = 0.
For the case of inelastic impact, the condition

·
x+ = −e

·
x− must be intro-

duced, where e is the coefficient of restitution, and
·
x+ and

·
x−are the system

velocities just after and before impact, respectively. Note that the additional
damping associated with inelastic impact may be significant than the inher-
ent system linear and nonlinear damping terms. The coefficient e is assumed

Fig. 1.2. Spring-mass systems with (a) one-sided barrier, (b) two-sided barrier.
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to be close to unity, such that (1 − e) is considered a small parameter. Ac-
cording to the coordinate transformation given by equation (1.6), the impact
is one-sided barrier at x = −xi, and thus the impact condition

·
x+ = −e

·
x−,

specified at x = −xi, is transformed to

·
z+ = e

·
z− at z = 0. (1.7)

The transformed velocity jump is reduced by an amount proportional to
(1 − e). It is possible to introduce this jump into the equation of motion
using the Dirac delta-function, and thus one avoids using condition (1.7).
The additional damping term due to impact may be written in the form( ·

z+ − e
·
z−
)
δ(t−ti) = (1−e)

·
zδ(t−ti), provided | ·z+| < | ·z| <

·
|z−|, (1.8)

where ti is the time instant of impact. Zhuravlev (1976) introduced trans-
formation of variables from the time domain to the space domain. This was
done by setting (t − ti) = z(t)/

·
z(ti), such that δ(t− ti) = δ(z(t)/

·
z(ti)), and

one can write δ(t− ti) = | ·z|δ(z)1. In this case, equation (1.8) can be written
in the form

(1 − e)
·
zδ(t− ti) = (1 − e)

·
z| ·z|δ(z). (1.9)

Dimentberg [242] provided a systematic description of Zhuravlev coordi-
nate transformation and demonstrated its application to vibro-impact sys-
tems under random excitation. A modified form transformation was proposed
by Privalov ([867], [868]). The transformation was used to investigate a typ-
ical example of a vibro-impact system with unilateral motion constraint.

For the case of a two-sided barrier with a distance 2xi between the two
barriers, see Fig. 1.2(b), one may consider a mass spring system where the
mass is located in the middle of the gap between the barriers. In this case,
the following coordinate transformation may be introduced

x = S(z) (1.10)

where S(z) is a piecewise saw-tooth piecewise linear function defined as

S(z) =
{

z if − xi ≤ z ≤ xi

2xi − z if xi ≤ z ≤ 3xi
S(z + 4nxi) = S(z), n = 1, 2, ...

(1.11)

1 This is obtained by writing z(t) = z(ti) +
·
z(ti)(t − ti), since z(ti) = 0, one can write

(t − ti) = z(t)/
·
z(ti). Thus δ(t − ti) = δ

(
z(t)/

·
z(ti)

)
.

Now consider

∞∫
−∞

f(z)δ(z)dz = f(0) and

∞∫
−∞

f(z)δ(λz)dz =

⎡⎣ ∞∫
−∞

f(u/λ)δ(u)du

⎤⎦ /λ = f(0)/λ, one can write δ(λz) = δ(z)/λ, provided λ > 0.
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The Lagrangian of a unit mass-spring system, L(x,
·
x) = (

·
x

2
/2) − Π(x),

where Π(x) is the system potential energy and a dot denotes differentia-
tion with respect to time, t. In terms of the transformed coordinate, the
Lagrangian takes the form

L =
1
2

[
dS(z)
dz

·
z

]2
−Π [S (z)] =

1
2

·
z
2 −Π [S (z)] . (1.12)

Note that the condition of constraints is automatically satisfied for any z
due to −xi ≤ S(z) ≤ xi, and the Hamilton principle gives the differential
equation of motion with no constraints

··
z +

dΠ [S (z)]
dS(z)

S
′
(z) = 0. (1.13)

where a prime denotes differentiation with respect to z. The function S(z)
belongs to a class of continuous but non-smooth functions. Its first deriva-
tive, dS(z)/dz, has bounded jumps at those points z for which S(z) = ±xi.
Physically equation (1.13) describes a particle moving in the periodic non-
smooth potential field as shown in Fig. 1.3. It is seen that the transformed
system (1.13) is written in terms of a smooth coordinate without barriers.
Note that the velocity,

·
x(t), changes its signs at the borders of the inter-

val −xi ≤ x ≤ xi, whereas the velocity of the transformed system,
·
z(t),

remains continuous. Furthermore, one will not deal any more with the prob-
lem of matching different pieces of the solution at the points x = ±xi. The

Fig. 1.3. Potential energy of the harmonic oscillator between two absolutely rigid
barriers in terms of Zhuravlev coordinates transformation. Each crossing of the
peaks corresponds to an impact, [854].
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transformation (1.10) provides such matching automatically and gives a uni-
form expression for the solution that is more convenient for further manipu-
lations. The most important advantage of the transformation is that it brings
a special geometrical treatment of the vibro-impact motion in terms of the
transformed system. Each impact event corresponds to a transmission (jump)
into a new cell of the periodic potential field shown in Fig. 1.3. Such visu-
alization may reveal interesting physical properties when dealing with more
complicated systems of many degrees of freedom as will be illustrated in
chapter 4.

1.4 Ivanov Transformation

A modified non-smooth coordinate transformation was developed by Ivanov
[455] for the case of inelastic impact. In terms of the generalized coordinates,
q0, q1, ..., qn, subject to the unilateral constraint q0 ≥ 0, these systems may
be described by the following set of equations in the vector form

·
X = F(t,X), F(t + T,X) = F(t,X), (1.14)

where X =
{
q0,

·
q0, q1, ..., qn, p1, ..., pn

}T

, pi are the generalized momenta.

The functions F(t,X) are periodic with period T , and the superscript T
denotes transpose. At the instant of impact, t = t∗, we have

q0(t∗) = 0, and
·
q0(t

∗) < 0. (1.15)

The impact reaction force R∗ involves energy dissipation [534] and can be
expressed by the viscoelastic model

R∗ =
{
−�2q0 − 2η�

·
q0 if q0 < 0

0 if q0 ≥ 0
, (1.16)

where � is large and η ∈ [0, 1). The equation of motion of the impact trajec-
tory in the region q0 < 0 is

··
q0 + 2η�

·
q0 + �2q0 = F2. (1.17)

The solution of this equation subject to the initial conditions (1.15) is

q0 =
F0

2(t
∗,X(t∗))
�2

[
1 − e−η�√

1 − η2
sin
(
�
√

1 − η2τ + arcsin
√

1 − η2
)]

+
·
q0(t∗)e−η�

�
√

1 − η2
sin
(
�
√

1 − η2τ
)

+ O(τ), (1.18)
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where τ = t − t∗, and Xj(t) = Xj(t∗) + O(τ), j = 3, ..., 2n + 2. Note that
τ = O(�−1), which implies that the duration of impact is very small, and
thus the variables Xj do not change during impacts. On the other hand, the
displacement q0 and velocity

·
q0, experience two distinct limiting regimes.

The first regime is the impact regime in which �| ·q0(t∗)| � |F0
2| and the

duration of the impact τ is close to π/(�
√

1 − η2). The restitution law is

·
q0(t

∗ + 0) = −e
·
q0(t

∗ − 0), e = e−πη/
√

1−η2 ∈ [0, 1]. (1.19)

Ivanov [455] introduced the new coordinate transformation

Y = {z, v, q1, ..., qn, p1, ..., pn}T
,

q0 = zsgn(z),
·
q0 = Rv sgn(z), (1.20)

where R = 1− ksgn(zv), k = [(1− e)/(1 + e)] ∈ [0, 1). The values of z and v
are not restricted. The substitution Y → X is irreversible since each vector
X has two inverses for which z1 = −z2, and v1 = −v2. However, for every Y
there exists a unique image X in accordance with the transformation

X = SY

S = diag {sgn(z), R sgn(z), 1, ..., 1} (1.21)

where the matrix S is diagonal of dimension 2n+2. The equations of motion
(1.14) will take the transformed form

·
Y = S−1F(t,SY) = G(t,Y). (1.22)

Equations (1.22) possess a discontinuous right-hand side due to the pres-
ence of terms such as sgn(z) and sgn(zv). However, their solutions are con-
tinuous vector functions in the time domain, and differentiable provided zv
	= 0. Note the first equation in the system (1.22) is

·
z = Rv. (1.23)

Since R > 0, the product zv changes its sign from negative to positive.
Before intersection R = 1+k, while after intersection R = 1−k. For the case
of purely elastic impact, i.e., e = 1, the transformation is reduced to the one
developed by Zhuravlev.

The second regime belongs to very small velocity in which �| ·q0(t∗)| 

|F0

2|. According to equation (1.18) the duration of impact is τ ≈ 2| ·q0(t
∗)|/F0

2,
and from equation (1.19) e = 1.

According to the impact rule given by equations (1.19), Ivanov [455] intro-
duced an auxiliary phase space such that all trajectories would be continuous.
This can be demonstrated by the linear oscillator with one-sided barrier:



1.5 Hertzian Contact 15

··
q + 2ζωn

·
q + ω2

nq = 0, (1.24)

such that q ≥ 0, and ζ < 1. System (1.24) allows a continuous representation
in the form

·
z = Rv,

·
v = −2ζωnv − ω2

n

R
z (1.25)

The solution of this system is

z = exp(ζωn)
(
Aj cosωn

√
1 − ζ2 + Bj sinωn

√
1 − ζ2

)
(1.26)

where the constants Aj and Bj are obtained at each intersection with the
the velocity v−axis to preserve the continuity of z(t) and v(t). For the initial
conditions q(0) = 0 and

·
q(0) = V > 0, one obtains A1 = 0, and B1 =

(V/ωn

√
1 − ζ2). The first impact occurs at time t = π/(ωn

√
1 − ζ2), and

during the second period, one obtains B2 = e[exp(−2πζ/
√

1 − ζ2)]B1. After
the second impact at t = 2π/(ωn

√
1 − ζ2) the value of B2 changes to B3 =

e2[exp(−2πζ/
√

1 − ζ2)]2B1. This sequence continues and depending on the
damping ratio ζ the phase portrait could be periodic, for ζ = 0, decaying for
ζ > 0, or unstable for ζ < 0.

Dimentberg et al [246] employed the path integral (PI) method together
with the Zhuravlev-Ivanov coordinate transformation to examine the re-
sponse probability density function of stochastic vibro-impact systems with
high energy losses at impacts. It was found that the response energy prob-
ability density function yields relatively larger response energy as the coef-
ficient of restitution increases and the results were confirmed using Monte
Carlo simulation. For a detailed description of the PI-method and its imple-
mentation the reader may consult references ([704], [532], [705], [259], [260]).
A general procedure for analyzing near-elastic vibro-impact problems using
a discontinuity-reducing transformation of coordinates together with an ex-
tended averaging scheme was proposed introduced in references ([322], [323],
[992], [993]). This combined procedure was demonstrated through several ap-
plications ranging from mass–spring–dashpot systems with inelastic one-sided
barrier to self–excited friction–oscillators with one or two stops.

1.5 Hertzian Contact

1.5.1 Modeling

Hertzian contact refers to the localized stresses that develop as two curved
surfaces come in contact and deform slightly under an applied load ([406],
[407]). This deformation is dependent on the elasticity of the material in
contact, i.e., its modulus of elasticity. The contact stress is usually given as
a function of the normal contact force, radii of curvature and the modulus
of elasticity of both bodies. The Hertzian contact law expresses the contact
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Fig. 1.4. Schematic diagram of an oscillator with Hertzian contact.

normal force, Fc, in terms of the penetration, x, i.e.,

Fc = κxn. (1.27)

where κ is the contact stiffness coefficient, which is a function of the elastic
properties and geometries of the contact bodies. This coefficient is derived in
details by Antoine et al [14]. The value of n for Hertzian elastic point contact
is 3/2 and for extended planar contact (non-Hertzian) is in the range 3/2 −
7/2. The contact stiffness can be obtained from analytical contact models
such as the Hertzian contact model for spherical contacts [481]. Equation
(1.27) is valid as long as the contact area is small compared to the geometry
of the colliding bodies and the contact areas are perfectly smooth such that
the impact is not associated with friction. Furthermore, the materials of the
impact bodies are assumed isotropic and linearly elastic.

For the case of rough surfaces in contact, the statistical model developed
by Greenwood and Williamson (GW) [377] for rough surfaces is usually used
to estimate the contact stiffness. For the case of a sphere-plane Hertzian
contact, shown in Fig. 1.4, Perret-Liaudet ([805], [806]) studied second-order
subharmonic and superharmonic resonances of the oscillator described by the
equation of motion

m
··
x + c

·
x + kx3/2 = F0 (1 + γ sinΩt) , for x ≥ 0. (1.28)

m
··
x = F0 (1 + γ sinΩt) , for x < 0. (1.29)

where F0 is the static external load component, Ω is the frequency of the
harmonic load component, and γF0 is the amplitude of the harmonic compo-
nent. The static contact compression and linearized natural frequency were
given by the expressions xs = (F0/κ)2/3 and ω2

n = (3κ/2m)
√
xs, respectively.

Equations (1.28) and (1.29) can be written in the non-dimensional form
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q
′′

+ 2ζq
′
+
(

1 +
2
3
q

)3/2

= 1 + γ sin ντ for q ≥ −3
2
, (1.30)

q
′′

= 1 + γ sin ντ for q < −3
2
, (1.31)

where the non-dimensional parameter q = 3
2

(
x
xs

− 1
)
, a prime denotes dif-

ferentiation with respect to the non–dimensional time parameter τ = ωnt,
ν = Ω

ωn
, and ζ = c

2
ωn

m .
Perret-Liaudet ([805], [806]) expanded the third expression on the left-hand

side of equation (1.30) in a Taylor series to give(
1 +

2
3
q

)3/2

≈ 1 + q +
1
6
q2 − 1

54
q3. (1.32)

Fig. 1.5 shows a comparison between the exact and approximate curves of
the normal restoring force, F (q). In this case, equation (1.30) takes the form

q
′′

+ 2ζq
′
+ q +

1
6
q2 − 1

54
q3 = γ sin ντ. (1.33)

Perret-Liaudet ([805], [806]) reported three frequency ranges characterized
by the number of coexisting responses. As the frequency decreases, a single
stable harmonic response loses its stability while, at the bifurcation point,
another stable 2−subharmonic response is created (flip bifurcation). At the

Fig. 1.5. Dependence of restoring contact force model (thick curve) and its ap-
proximate form (thin curve), [805].
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second bifurcation point, the unstable harmonic response recovers its stabil-
ity, while another unstable 2−subharmonic response is formed. It was noted
that the stable subharmonic response leads to contact loss. Thus, this reso-
nance can initiate vibro-impact phenomena. The occurrence of vibro-impact
gives rise to a sudden extension of the superharmonic resonance with high
response levels. It was found that both subharmonic and superharmonic res-
onances precede vibro-impact conditions.

If the contacting surfaces are not spherical, the contact force will differ from
the Hertzian law. In real structures, each impact is associated with energy
loss and thus the damping has to be included in the analytical modeling.
This damping is in general nonlinear function of deformation and velocity.
Půst [871] and Půst and Peterka [872] adopted the following modeling of the
contact force

Fc

(
x,

·
x
)

= f(x)
[
1 + g(

·
x)
]
. (1.34)

where the function f(x) > 0 is analytic for x > 0, and f(x) = 0 for x ≤ 0.
The damping function g(

·
x) is analytic and satisfies the conditions:

·
xg(

·
x) ≥ 0,

and
[
1 + g(

·
x)
]
> 0. Different forms were developed by Hunt and Crossley

[434], Yang and Lin [1095], and Půst and Peterka [872]. These include:

i. The behavior of damped stop with piecewise linear characteristics encoun-
tered in leaf springs where damping is caused by dry friction between leaves
and the contact force takes the form

Fc = κx

(
1 + α

·
x

| ·x|

)
. (1.35)

where α is a constant coefficient.

ii. The simple contact force model [434]

Fc = κx
(
1 + α

·
x
)
. (1.36)

iii. Contact force model with quadratic damping function

Fc = κx
(
1 + α1

·
x| ·x|

)
. (1.37)

iv. Hertz contact force with damping

Fc = κx3/2
(
1 +

·
x
)
. (1.38)

v. Another type of Hertzian contact force associated with hysteretic damping
was developed by Van de Wouw et al ([1024], [1025]). It takes the form
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Fc = κx3/2
(
1 +

μ

κ

·
x
)

= κx3/2

[
1 +

3
5
(
1 − e2

) ·
x
·
x
−

]
, for x ≥ 0. (1.39)

where e is the coefficient of restitution,
·
x
−

is the velocity difference of the two
colliding bodies at the beginning of impact. Both κ and e were estimated ex-
perimentally where several impacts were observed to measure the indentation
x, the indentation velocity

·
x, and the contact force Fc. The dependence of

the contact force between the impact of two half spheres on the indentation
was obtained by Van de Wouw et al [1024] and is shown in Fig. 1.6. The
coefficient of restitution can be obtained by estimating the energy loss per
impact, ΔE, which is equivalent to the area of hysteretic loop. This can be
written in the form, after using the second expression of the first form of
equation (1.39), i.e.,

ΔE =
∮

μx3/2 ·
xdx. (1.40)

The parameter μ can be estimated from the expression

μ =
ΔE∮

x3/2 ·
xdx

. (1.41)

Fig. 1.6. Dependence of contact force on indentation: —— measurement, - - - -
analytical kx3/2, [1024].
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Thus the coefficient of restitution is

e =

√
1 − 4μ

·
x
−

3κ
. (1.42)

Note that the Hertzian stiffness κ and the coefficient of restitution can be
determined from least-squares estimates from several impact tests.

When the contact stiffness coefficient increases, the response was found to
possess a non-zero mean. Furthermore, the clearance was found to be about
twice the square root of the mean square response of the corresponding linear
system. The stationary random response of single- and two-degree of freedom
systems with Hertzian contact law and subjected to a random excitation was
analyzed in the literature ([475], [476], [477]). Lin and Bapat [595] intro-
duced a clearance estimation algorithm to study the random response of a
single-degree-of-freedom oscillator with two elastic stops. Feng and He [319]
derived the mean of impact Poincaré map for a class of random vibro-impact
systems. The calculated results revealed complex nonlinear behavior and the
bifurcation diagrams exhibited the routes to random chaos.

1.5.2 Contact Stiffness of Braking Systems

In automotive braking systems, contact forces between sliding surfaces are
strongly nonlinear and non-smooth; and thus can result in complex dynamic
characteristics in the form of chatter and squeal. It is known that contact
stiffness, true contact area, and contact forces play an important role in the
dynamic behavior of braking systems. These parameters are important in
studying contact dynamics and interface modeling. Beside their importance
in automotive braking systems, they are important in other applications such
as robotic applications, micro-bearings and spindle bearings in magnetic stor-
age hard disk drives, and lightly loaded mechanical joints. The sliding fric-
tion measurements revealed the existence of natural normal micro-vibrations
whose frequency is determined by the contact stiffness and the slider mass.
The contact stiffness was found to be a function of the normal displacement
([1007], [1008]). Tolstoi [1007] found that both the negative friction-velocity
slope and the frictional self-excited vibration are closely associated with the
freedom of the slider to move in the normal direction.

Carson and Johnson [152] and Gray and Johnson [374] indicated that inelas-
tic deformation, sometimes leading to corrugations, is mainly due to the nature
of the Hertzian contact between elastic-plastic solids. Nayak [720] considered
the vibration of an elastic ball rolling over an elastic half-space. The contact
forces were represented by a viscous damper and a nonlinear contact spring.
Accordingly, the equation of motion for contact vibrations is essentially non-
linear. Nayak [720] developed a complicated damping model in which energy
loss depends on the frequency of stresses. Sosnovskiy and Sherbakov [953] re-
ported some experimental results dealing with irregularwavy residual damages
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(troppy phenomenon), which may occur in the contact area in rolling friction
as the result of a non-stationary process of cyclic deformation. These damages
initiate vibro-impact loading of an active system. It was concluded that vibro-
impact emerges as the result of drastic quasi-periodic change of contact pres-
sure accompanied by pulsations of displacements.

Hess and Soom ([411], [412]) examined normal vibrations and friction un-
der harmonic normal loads. They considered Hertzian and rough planar con-
tacts. The Hertzian contact yielded a nonlinear ordinary differential equation
with quadratic and cubic stiffness nonlinearities with negative and positive
coefficients. They used the method of multiple scales and the results revealed
softening amplitude-frequency response characteristics. The softening effect
is associated with decreasing contact stiffness. Castravete et al [154] measured
the contact stiffness in a pin-disc system and found the normal stiffness is
a mixture of soft and hard nonlinearities. It was phenomenologically repre-
sented by the following formula

κ(x) = k0 − k1x + k2x
2. (1.43)

where k0, k1, and k2 are positive constants and x is the normal penetration.
Fig. 1.7 shows the nonlinear dependence of the normal load on the penetra-
tion. Equation (1.43) was obtained from the slope of the curve fitting shown
in Fig. 1.7.

In order to measure the contact stiffness one should measure the elas-
tic deformation under the influence of contact forces. The onset of friction-
vibration instability is sometimes attributed to the inverse variation in the

Fig. 1.7. Static test of load-penetration of pin-on-disc system (frictional pin ma-
terial) points are experimental readings, solid curves are curve fitting, [154].
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friction force with the relative velocity of sliding whereby the friction-velocity
gradient becomes high compared with the system damping coefficient. Sherif
([936], [937], [938]) studied the influence of the effective contact stiffness on
the stability of sliding surfaces. It was found that the instability of frictional
vibrations is mainly dependent on the value of the total tangential contact
stiffness of sliding surfaces as well as the system stiffness. Furthermore, con-
tinuous modification of the equivalent contact stiffness by wear mechanism
was found to be the main cause of squeal initiation. The analysis revealed
that stability can be attained at all possible squeal frequencies of the friction
pad by the good selection of its geometrical configuration (thick, wide and
short brake pad) and its material loss factor within certain limits.

1.6 Point-Wise Mapping

The point-wise mapping may be demonstrated by considering the vibro-
impact system described by the equation of motion

··
x + 2ζωn

·
x + ω2

nx = f(t) for x < x0, (1.44)

subject to the velocity constraint

·
x+ = −e

·
x− for x = x0, and 0 < e < 1. (1.45)

The solution may be obtained by a step-wise integration ([53], [519], [925],
[930], [931], [932]). This is known as the point-wise mapping method, where
one has to match the solutions at points of impact. In the former Soviet
Union, it is known as the “stitching” method. In this method the equations
of motion are integrated between impacts. Kinematic impact conditions are
then used to switch between time intervals of solution and solutions over
times involving several impacts are obtained by gluing together a suitable
number of such partial solutions. Equation (1.44) is usually solved for a given
set of initial conditions during the free flight trajectory until the mass hits
the barrier at x = x0. The impact condition is then imposed to obtain the
velocity just after impact,

·
x+. This is then taken as the initial condition for

the trajectory after impact. Note that the time duration during impact must
be known a priori.

Shaw and Holmes ([930], [931], [932]) analyzed a simple model of a period-
ically forced oscillator with a constraint that leads to motions with impacts.
For perfectly plastic impacts, Shaw and Holmes [932] represented the system
dynamics by a discontinuous map defined on a circle. They considered the
system shown in Fig. 1.8 whose equation of motion may be written in the
form

x
′′

+ 2ζx
′
+ h(x) = f cos ντ. (1.46)
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Fig. 1.8. Schematic diagram of two-sided simple degree-of-freedom oscillator with
elastic supports.

where a prime denotes differentiation with respect to the non-dimensional
time parameter τ = ωnt, ω2

n = k1/m, x = X/X0, X0 is the gap between the
mass and spring k2, 2ζ = c/(mωn), ν = Ω/ωn, f = F0/mω2

nX0, h(x) = x for
|x| < 1 and h(x) = �2x + (1 − �2)sgn(x) for |x| ≥ 1, �2

i = (k1 + k2) /k1

for even i (during contact with spring k2) or �2
i = 1 for odd i (for free flight

motion). Equation (1.46) comprises two equations corresponding to the two
cases of h(x). The analytic solution of equation (1.46) for double-contact
motion is (modified after Shaw and Holmes [930])

x(τ) = e−ζ(τ−τ1) {Ai cos [ωid (τ − τi)] + Bid [ωid (τ − τi)]}
+ai cos ντ + bi sin ντ + sgn(τ)sgn

(
x

′
1

)(1 −�2
i

�2
i

)
, (1.47)

i = 0, 1, 2, ..., N.

where
Ai = − (�2

i −ν2)
(�2

i −ν2)2
+(2ζν)2

f cos ντ− 2ζν

(�2
i −ν2)2

+(2ζν)2
f sin ντ+(−1)i sgn(τ)sign(x

′
i)

�2
i

,

Biωid = x
′
i +(−1)i sgn(τ)sign(x

′
i)

�2
i

+
[

(�2
i −ν2)νf

(�2
i −ν2)2

+(2ζν)2
− 2ζ2νf

(�2
i −ν2)2

+(2ζν)2

]
sin ντ

− 1
ωid

[
(�2

i −ν2)ζf

(�2
i −ν2)2

+(2ζν)2
+ 2ζ2νf

(�2
i −ν2)2

+(2ζν)2

]
cos ντ,

ai = (�2
i −ν2)f

(�2
i −ν2)2

+(2ζν)2
, bi = 2ζνf

(�2
i −ν2)2

+(2ζν)2
, ωi =

√
�2 − ζ2.

Equation (1.47) involves contacting and non-contacting regimes. The cross-
ing times, when x(τi) = 1 are not known a priori and must be estimated from
the roots of the two solutions:

x0(τ ; τ0, x
′
0) = 1, and x1(τ ; τ0, x

′
1) = 1. (1.48)

The stability of a periodic response of the system may be examined by

evaluating the eigenvalues of the Jacobian of the return map at (
−
τ ,

−
x

′

). The
Poincaré section must satisfy the condition
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−
τ +

2πn
ν

,
−
x

′)
= Pk

(
−
τ ,

−
x

′)
, (1.49)

where Pk is the k-th iterated map and n is the order of subharmonic. Equa-
tion (1.49) holds for both symmetric (2k impact motion) and non-symmetric
periodic motion after impacts at x = ±1. The Jacobian of the oscillator is

J =

⎡⎣ ∂τi+1
∂τi

∂τi+1

∂x
′
i

∂x
′
i+1

∂τi

∂x
′
i+1

∂x
′
i

⎤⎦ , (1.50)

where ∂τi+1
∂τi

= e−ζ(τi+1−τi)

x
′
i+1

{
x

′
i cos [ωi (τi+1 − τi)]

− 1
ωi

[
ζx

′
i + (−1)isign(x

′
i) − f cos(ντi)

]
+ sin [ωi (τi+1 − τi)]

}
,

∂τi+1

∂x
′
i

= e−ζ(τi+1−τi)

x
′
i+1ωi

sin [ωi (τi+1 − τi)] ,

∂x
′
i+1

∂τi
= ∂τi+1

∂τi
ai+1 + e−ζ(τi+1−τi)

{[
2ζx

′
i + (−1)isign(x

′
i) − f cos(ντi)

]
×

cos [ωi (τi+1 − τi)]

+
[
x

′
i
ω2

i −ζ2

ωi
+ ζ

ωi

[
−(−1)isign(x

′
i) − f cos(ντi)

]]
× sin [ωi (τi+1 − τi)]

}
,

∂x
′
i+1

∂x
′
i

= e−ζ(τi+1−τi)
{
cos [ωi (τi+1 − τi)] − ζ

ωi
sin [ωi (τi+1 − τi)]

}
+∂τi+1

∂x
′
i

ai+1,

ai+1 = e−ζ(τi+1−τi)
{(

ζ2Ai − 2ζωiBi − ω2
i Ai

)
cos [ωi (τi+1 − τi)]

+
(
ζ2Bi + 2ζωiAi − ω2

i Bi

)
sin [ωi (τi+1 − τi)]

}
−aiν

2 cos(ντi) − biν
2 sin(ντi).

The map was shown to undergo period-doubling bifurcations followed by
complex sequences of transitions, due to discontinuities, in which arbitrarily
long super-stable periodic motions occur. Shaw and Holmes [930] considered
the case of one-sided spring k2 and showed that bifurcation occurs between
ν = 2.4 and ν = 2.42 for stiffness ratio � = 4.0 as shown in the two phase
portraits of Fig. 1.9. Other subharmonic orbits were found to exist for differ-
ent values of stiffness ratio and damping factor ([312], [313]). For two-sided
spring k2, Knudsen and Massih [514] found that the motion can be a sta-
ble periodic symmetric attractor, a supercritical breaking bifurcation, and
stable and unstable asymmetric periodic solutions depending on excitation
frequency ratio ν and initial conditions.

Shaw and Holmes [931] considered the simple harmonic oscillator with har-
monic excitation and a constraint that restricts motions to one side of the
equilibrium position. Upon reaching a specified displacement, the direction of
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Fig. 1.9. Phase portraits of one-sided second spring k2 (a) stable period one orbit
at ν = 2.4, and (b) stable period two orbit at ν = 2.42. For f = 1, � = 4, ζ = 0.125,
and x0 = 0, [930].

motion is reversed using the simple impact rule. The coefficient of restitution
for this impact was taken to be small. For zero coefficient of restitution the
motion of the system was studied using a one-dimensional mapping. It was
shown that stable periodic orbits exist at almost all forcing frequencies, how-
ever, transient non-periodic or chaotic motions can also occur. Moreover, over
certain (narrow) frequency windows arbitrarily long stable periodic motions
exist.

1.7 Saw-Tooth-Time-Transformation

The saw-tooth-time-transformation (STTT) method is based on a special
transformation of time and gives explicit form of analytical solutions for non-
linearities of high power. The physical and mathematical principles of the
STTT have been formulated in the literature (see, e.g., [843], [852]). The idea
of STTT is similar to a great extent to the trigonometric generating functions
{sin t, cos t} frequently used in constructing solutions of linear and weakly
nonlinear systems. Similarly, one can consider a pair of non-smooth func-
tions, which have relatively simple forms and will be termed as the saw-tooth
sine, τ(t), and the rectangular cosine, r(t), which is the generalized deriva-
tive of τ(t) as shown in Fig. 1.10. The functions {τ(t), r(t)} and {sin t, cos t}
describe the motions of the two simplest vibrating models, namely, the mo-
tion of a particle between two rigid barriers and a mass-spring oscillator,
respectively.
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Fig. 1.10. Saw-tooth functions sine and rectangular cosine, ξ = (t/t0).

The method may be demonstrated by considering the free undamped os-
cillation of the nonlinear system

m
d2x
dt2

+ kx + βN(x) = 0, (1.51)

where m is the system mass matrix, k is the linear stiffness matrix, x is
the system generalized coordinate vector, N(x) is the vector of high power
nonlinear terms that account for the strong impact nonlinearity, and β is a
positive constant parameter. A family of periodic solutions of equation (1.51)
may be written in the form [852],

x = X(τ), τ=τ(t/t0), (1.52)

where t0 is unknown scaling factor, which is equal to quarter of the period
T = 4t0 and must be defined for the autonomous case. Thus, the solution
can be constructed as a function of the saw-tooth function τ , which varies in
the region −1 ≤ τ ≤ 1. Note that equation (1.51) admits a group of trans-
formations x → −x. As a result the solution can be constructed as an odd
function: X(−τ) ≡ −X(τ). When substituting equation (1.52) into equation
(1.51), one should take into account the following differentiation scheme of
equation (1.52), and due to the equality r2(t/t0) = 1, one can write
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dx
dt

=
1
t0

dX
dτ

r, (1.53)

d2x
dt2

=
1
t20

d2X
dτ2

+
1
t20

dX
dτ

dr(t/t0)
d(t/t0)

. (1.54)

The last term in equation (1.54) contains the series of Dirac delta functions

dr(t/t0)
d(t/t0)

= 2
∞∑

j=−∞

[
δ

(
t

t0
+ 1 − 4j

)
− δ

(
t

t0
− 1 − 4j

)]
. (1.55)

Note that the delta functions in equation (1.55) are ‘localized’ at points
{t : τ(t/t0) = ±1}. It means that under the condition dX/dτ = 0, for τ = ±1,
all delta functions of the series will be eliminated, and as a result the sec-
ond derivative in equation (1.54) becomes continuous function. Substituting
equations (1.53) and (1.55) into equation (1.51) gives the boundary value
problem

m
d2x
dτ2

= −a2 [kX + βN(X)] , (1.56)

dX
dτ

|τ=1 = 0, X(−τ) ≡ −X(τ). (1.57)

The left-hand side of equation (1.56) does not include the linear stiffness
term, and by setting the right-hand side to zero, the left-hand side does not
represent a harmonic oscillator as in the case of quasi-linear treatment. This
means any generating solution for equation (1.56) should be based on the
solution of the left-hand side, i.e.,

m
d2x
dτ2

= 0. (1.58)

By setting the right-hand side of equation (1.56) to zero, the qualitative
structure of the periodic motion of the system will be preserved. This property
will be destroyed if the same argument is applied to the system equations of
motion before performing STTT. The transformed generating equation (1.58)
possesses a solution of the form

X(τ) = X(0) + X
′
(0)τ . (1.59)

A solution of equation (1.58) in the form of a series of successive approxi-
mations may be written in the form:

X = X0(τ) + εX1(τ) + ε2X2(τ) + ... (1.60)
a2 = εh0

(
1 + εγ1 + ε2γ2 + ...

)
. (1.61)

where the formal parameter ε = 1 is introduced as bookkeeping to iden-
tify terms of different orders in the expansion. All terms of the first series
are n–component columns, where n is the number the system degrees of
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freedom. These functions and the constants h0, γ1, γ2, ... are determined us-
ing an iterative process. This technique was used to analyze the response
of systems involving liquid sloshing impact under support excitation [852].
Pilipchuk [844] studied the dynamics of linear and nonlinear systems under
periodic impulsive excitation. The solutions of the differential equations were
represented in a special form, which contains a standard pair of non-smooth
periodic functions and possesses a convenient structure. This form is also
suitable in the case of excitation with a periodic series of discontinuities of
the first kind (a step-wise excitation).

For simple oscillators with a non-smooth restoring force described by the
equation of motion

··
x + sgn(x)f(x) = 0, (1.62)

where f(x) is an even and sufficiently smooth function, Pilipchuk [845] ob-
tained a closed-form solution by using the saw-tooth time transformation.
Linear elastic structures oscillating against absolutely rigid constraints were
also analyzed by Pilipchuk [847] who obtained exact solutions expressed
through a saw-tooth time argument. It was indicated that impact modes exist
when their basic frequencies are shifted into the right small neighborhood of
any natural frequency of the linearized system in the absence of barriers. The
frequencies of the localized impact mode solutions were found to be located
at the right of the linear spectrum and have no upper boundary.

Azeez et al [50] employed the non-smooth time transformations to study
strongly nonlinear periodic free oscillations of a vibro-impact system with two
degrees of freedom. Periodic solutions revealed vibro-impact states with one-
and two-sided collisions, including localized states. The non-smooth temporal
transformation was adopted by Pilipchuk et al [855] to construct a family of
periodic solutions of a weakly nonlinear system under parametric impulsive
excitation. The transformation reduced the equation of motion to a standard
weakly nonlinear boundary value problem. The numerical simulations showed
a principal role of the shifts of the impulses’ sequences. In particular, periodic,
multi-periodic and stochastic-like regimes were manifested under variations
of the shift parameter and small shift was found to lead to branching of curves
of the periodic solutions on the parameters plane.

A combination of non-smooth transformation of variables in space and time
was proposed by Pilipchuk ([846], [848]) to treat impulsively forced nonlin-
ear oscillator between two absolutely rigid elastic barriers. It was shown that
the space component of the transformation eliminates the barriers, whereas
the time component removes external δ-pulses. The advantage of this com-
bination was demonstrated in a boundary-value problem with no space- or
time-dependent δ-type singular terms.

The Lie group transformation, which can lead to the simplest form of
the system equations of motion has been employed in the literature for few
cases. It has become a powerful tool for studying differential equations among
mathematicians and specialists. The method is essentially based on the work
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of Zhuravlev [1138] and Zhuravlev and Klimov [1139]. An essential ingredient
of the Lie group operators is the Hausdorff formula, which relates the Lie
group operators of the original system and the new one, and the operator
of coordinate transformation. Zhuravlev [1138] and Zhuravlev and Klimov
[1139] made a conjecture that most of averaging techniques reproduce this
formula, each time implicitly, during the transformation process. Pilipchuk
and Ibrahim [853] employed this technique for an elastic structure carrying
a liquid container subjected to parametric support harmonic excitation.

1.8 Closing Remarks

The modeling techniques described in this chapter have been used for dif-
ferent applications. However, none of them has been verified experimentally.
Some experimental results have been reported in the literature but were not
compared with any analytical results. This will be discussed for the case of
signle-degree-of-freedom systems in Chapter 3.



Chapter 2
Mapping of Grazing and
C–Bifurcations

2.1 Introduction

In studying vibro-impact systems one may encounter critical orbits that are
neither free trajectories nor impact motion. For example, the trajectory of
an oscillating mass reaching a barrier at zero velocity separates two regimes
of motion, namely, non-impact and impact oscillations. The bifurcation asso-
ciated with zero velocity just at the barrier is referred to as grazing bifurca-
tion. Of particular interest of grazing impact bifurcation is its mapping. This
chapter presents the basic concept of grazing bifurcation and the discontinu-
ity mappings. It also addresses another type in which the fixed point or a
periodic orbit may cross or collide one of the boundaries and this type is re-
ferred to as border-collision or C-bifurcation. This bifurcation was originally
analyzed by Feigin ([313], [314], [315]).

2.2 Grazing Bifurcation

The theory of grazing bifurcation is believed to be motivated by a number
of dynamical systems. For example, the bifurcation associated with vibro-
impact of mooring towers of off-shore structures was numerically studied by
Thompson and Ghaffari [997] and Thompson [994]. Their results revealed
an infinite sequence of period-doubling bifurcations resulting in chaos. Shaw
and Holmes [930] studied the dynamic behavior of a periodically forced os-
cillator with one-sided barrier. They modeled the impact dynamics using a
discontinuous map, which exhibited period-doubling bifurcations followed by
a complex sequence of transitions of long super-stable periodic oscillations.

Grazing bifurcation may be classified into continuous and discontinuous.
Continuous grazing bifurcation is characterized by the occurrence of a con-
tinuous transition between different system attractors due to a slow variation
of the control parameter near its critical value that results in zero contact ve-
locity. The dynamics of this class after grazing contact remains in the vicinity
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of the original steady state to the grazing trajectory. On the other hand, dis-
continuous grazing bifurcations are characterized by the occurrence of jumps
between different system attractors due to a control parameter variation near
its critical value. For this case, there is a significant difference between the
system dynamics before and after grazing. Conditions that lead to continuous
and discontinuous grazing bifurcations have been developed for the case of
pre-grazing periodic attractors in vibro-impact systems ([731], [341]). Graz-
ing bifurcations through a codimension-2 grazing bifurcation were examined
by several researchers ([333], [334], [332], [153], [1086], [1087], [1088]). In par-
ticular, Foale and Bishop [333] suggested that grazing bifurcations are the
limiting cases of typical bifurcations that are encountered in smooth dynam-
ical systems as the impact is hardened. Later, Dankowicz and Jerrelind [205]
and Thota et al [1002] provided more rigorous study of grazing bifurcation
in a general class of single degree-of-freedom oscillators. There is a border-
line, which separates the free flight trajectory and impact motion, known as
grazing bifurcation of a periodic orbit ([732], [733], [146], [147], [145], [234],
[232]). Associated with grazing contact is the grazing point defined by the
intersection of the grazing trajectory and a codimension-one surface in the
state space.

Nordmark [734] and Stensson and Nordmark [960] discussed the creation
of periodic orbits associated with grazing bifurcations and developed suffi-
cient conditions for their existence. Peterka [819] demonstrated the existence
of transition regions, which correspond to grazing bifurcations and by the
boundaries of stability corresponding to the period-doubling and saddle-node
bifurcations. The transition between neighboring periodic impact motions
was found to be non-continuous, with the exception of singular points, where
the existence boundaries and stability boundaries intersect. The equation of
motion of a grazing impact oscillator was generalized by Hunt and Sarid [433]
who included compliant boundaries and impact energy dissipation, yielding
the phase diagram, indentation and force. The relationship between phase
and set-point amplitude was discussed in terms of energy dissipation, show-
ing that for a parameter space for which the system is highly nonlinear a
chaotic response is possible.

Grazing impact displays rich and yet complex nonlinear behavior such as
period doubling, multi-periodic orbits, subharmonic resonances, and chaos
(see, e.g., [835], [149]). Grazing bifurcation happens when a periodic orbit,
with zero or more impacts during the period, is displaced by a parameter
change that results in a new impact, which occurs with zero impact velocity.
Hu [427] developed a numerical algorithm to predict periodic grazing orbits
in a piecewise linear oscillator. The results revealed an abundance of graz-
ing phenomena and incident bifurcations of the oscillator. Nordmark [736]
studied the creation of a set of periodic orbits branching off from the graz-
ing bifurcation point. Criteria for the grazing bifurcation of a periodically
forced, piecewise linear system together with the initial grazing manifolds
were developed ([608], [609], [610]). The initial grazing manifold was found
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invariant. The dynamics of a piecewise linear oscillator close to grazing has
been experimentally examined by Ing et al [445]. The experimental results
revealed the occurrence of higher periodic responses after grazing.

The complex dynamics associated with high-dimensional mapping as ap-
plied to vibro-impact systems has been considered in several studies. For
example, the four-dimensional Poincaré map of the vibro-impact system was
reduced to a two-dimensional normal form using a center manifold reduc-
tion and a normal form technique [1068]. It was shown that there exists
codimension-2 Hopf bifurcation in multi-degree-of-freedom vibro-impact sys-
tems. The amplitude surface method was introduced by Avranov [42] to an-
alyze the bifurcation behavior when the excitation frequency and amplitude
are changed in a vibro-impact system. Ding et al [255] studied the interaction
of Hopf and period doubling bifurcations corresponding to a codimension-2
when a pair of complex conjugate eigenvalues crosses the unit circle and
the other eigenvalue crosses -1 simultaneously for the Jacobi matrix. The
four-dimensional map was reduced to a three-dimensional normal form using
the center manifold theorem and the theory of normal forms. The results
revealed curve doubling bifurcation (a torus doubling bifurcation), Hopf bi-
furcation and period doubling bifurcation. Numerical results indicated that
the vibro-impact system presents complicated and interesting curve doubling
bifurcation and Hopf bifurcation as the two controlling parameters vary. Xie
et al [1088] developed an algorithm to compute Hopf-flip bifurcations of fixed
points for high-dimensional maps with multiple parameters.

2.3 Discontinuity Mappings

2.3.1 Nordmark Mapping

The study of vibro-impact systems has been facilitated by the concept of
discontinuity mappings introduced by Nordmark [731]. These mappings ap-
proximate the near-grazing impacting dynamics using a discrete dynamical
system obtained solely from the conditions at the grazing contact. Discon-
tinuity mappings in dynamical systems were defined by piecewise smooth
vector fields [737]. The idea of a discontinuity mapping was utilized to estab-
lish a methodology for predicting the characteristics of system attractors that
occur following a grazing intersection of a two-frequency, quasi-periodic os-
cillation with a two-dimensional impact surface in a three-dimensional state
space by Dankowicz et al [204]. This work includes cases of trajectories that
either cross or are quadratically tangent to a codimension-one surface in state
space were treated. It was shown that the discontinuity mappings are equal
to the identity up to order n.

Near Grazing orbits, the oscillator can be reduced to iterations of a map-
ping ([731], [735], [341]). The derivation of mappings for special values of
the system parameters was considered in the literature ([1073], [1074], [146],
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Fig. 2.1. Schematic diagram of a mass-spring-dashpot system with one-sided
barrier.

[147], [148], [333]). Bud and Dux [146] and Budd et al [148] studied the dy-
namic behavior of a vibro-impact oscillator under forced excitation whose
frequency is twice the natural frequency of the oscillator. It was shown that
the grazing bifurcation can lead to an intermittent chaotic behavior with low
velocity impacts followed by an irregular sequence of high velocity impacts.
They also analyzed a discontinuous one-dimensional map as a tool to explain
the existence of periodic windows in which the period of impacting solutions
increases monotonically from one window to another one.

Chin et al ([172], [173]) provided an exhaustive examination of the Nord-
mark map [731], and predicted the occurrence of a series of transitions from
a non-impacting period-1 orbit to period-M orbits, with M = 2, 3, ... De
Weger et al ([226], [227], [225]) called this series as period–adding transitions.
They were able to explore these period-adding transitions experimentally. De
Weger et al [225] called the M -periodic orbits with one impact per period as
“maximal” periodic orbits.

Mappings that possess a particular form containing a square-root term
occur as local Poincaré mappings of the type considered by Nordmark [731]
and Fredriksson and Nordmark [341]. Mechanical systems characterized by
these mappings satisfy a condition for the occurrence of impact in the form
of a smooth surface of codimension–one in the state space. The equations of
motion of these systems are also smooth slightly beyond the impact surface.
Furthermore, there is a smooth impact law mapping that takes the system
to a new state when reaching the impact surface. This impact law becomes
the identity mapping as the impact velocity approaches zero. Consider the
linear oscillator, shown in Fig. 2.1, described by the equation of motion

··
z + 2ζωn

·
z + ω2

nz = f0 sinΩt. (2.1)
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where z is the position of the oscillator mass m, ζ is the damping ratio, ωn

is the oscillator undamped natural frequency, Ω is the excitation frequency,
and f0 = F0/m is the excitation amplitude. Equation (2.1) may be written
in the form

z
′′

+ ςz
′
+ �2z = f0 sin (2πτ) , (2.2)

where f0 = 4π2f0/Ω
2, �2 = 4π2ω2

0/Ω
2, ς = 4πζ (ωn/Ω) and a prime denotes

differentiation with respect to τ = Ωt/2π. The mapping from τ = n to
τ = n + 1, where n is an integer, is a Poincaré map on the plane (z, z

′
)

with constant phase and thus has the same set of eigenvalues as the Jacobian
matrix of the linear Nordmark [731] map

xn+1 = αxn + yn + �
yn+1 = −γxn

for xn ≤ 0, (2.3)

xn+1 = −√
xn + yn + �

yn+1 = −γe2xn
for xn > 0, (2.4)

where xn and yn are the transformed coordinates in the position-velocity
space evaluated at time tn, and Ωtn = 2nπ, � is a parameter related to the
amplitude of the external excitation and e is the coefficient of restitution. The
parameters α and γ depend on the intrinsic properties of the system equation
(2.2) such that the limit γ → 0 corresponds to large damping coefficient,
and γ = 1 corresponds to zero dissipation.

Since equations (2.3) and (2.4) are continuously differentiable except at
xn = 0, the term −√

xn is referred to as the “square-root singularity” because
its Jacobian matrix is singular. The relationship between these parameters
and the physical system parameters was developed by Chin et al [172].

2.3.1.1 Non-impact Mapping

For the case of non-impacting motion in which the oscillator does not reach
the barrier, we consider the general solution of equation (2.2), which may be
written in the form

z(τ) = Q(τ) + C1e
s1τ + C2e

s2τ , provided ς2 − 4�2 	= 0, (2.5)

where Q(τ) is the steady-state response, C1 and C2 are constants determined
from initial conditions, and

s1,2 =
1
2

(
−ς ±

√
ς2 − 4�2

)
(2.6)
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For τ = n, one can write the response state vector{
z(n)
z

′
(n)

}
=
[

1 1
s1 s2

]{
C1e

s1n

C2e
s2n

}
+
{

Q

Q
′

}
, (2.7)

For τ = n + 1, equation (2.7) takes the form{
z(n + 1)
z

′
(n + 1)

}
=
[

es1 es2

s1e
s1 s2e

s2

]{
C1e

s1n

C2e
s2n

}
+
{

Q

Q
′

}
. (2.8)

Pre-multiplying both sides of equation (2.7) by
[

1 1
s1 s2

]−1

= 1
s2−s1

×[
s2 −1
−s1 1

]
and rearranging gives

{
C1e

s1n

C2e
s2n

}
=
[

1 1
s1 s2

]−1{
z(n)
z

′
(n)

}
−
[

1 1
s1 s2

]−1{
Q

Q
′

}
. (2.9)

Now setting [
es1 es2

s1e
s1 s2e

s2

] [
1 1
s1 s2

]−1

=

B =
1

s2 − s1

[
s2e

s1 − s1e
s2 es2 − es1

s1s2 (es1 − es2) s2e
s2 − s1e

s1

]
, (2.10)

and substituting equation (2.9) into equation (2.8) gives{
xn+1

yn+1

}
= B

{
xn

yn

}
+ [I− B]

{
Q

Q
′

}
(2.11)

The matrix B has the same set of eigenvalues as the Jacobian, J, of the
matrix equation (2.3)

J − λI =

[
∂xn+1
∂xn

− λ ∂xn+1
∂yn

∂yn+1
∂xn

∂yn+1
∂yn

− λ

]
=
[
α− λ 1
−γ −λ

]
. (2.12)

This gives the two roots

λ1,2 =
1
2

(
α±

√
α2 − 4γ

)
. (2.13)

The eigenvalues of the matrix B are evaluated as follows

[B− λI] =
1

s2 − s1

[
(s2e

s1 − s1e
s2) − λ es2 − es1

s1s2 (es1 − es2) (s2e
s2 − s1e

s1) − λ

]
= 0 (2.14)
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Solving the determinant for λ, gives

λ1,2 = es1,2 . (2.15)

Equating (2.13) and (2.15) gives

λ1,2 = es1,2 =
1
2

(
α±

√
α2 − 4γ

)
, (2.16)

γ = λ1λ2 = es1+s2 = e−ς , (2.17)

α = λ1 + λ2 = 2e−ς/2 cosh
(

1
2

√
ς2 − 4�2

)
, (2.18)

where relation (2.6) has been used. For positive values of ς > 0, we have from
equations (2.17) and (2.18) the bounds 0 < γ < 1, and 0 < α < 1 + γ.

For the non-impact regime the map is linear. However, the impact orbit pos-
sesses a square-root singularity. Close to grazing, the acceleration near impact
can be considered constant and the square-root is simply the relationship be-
tween elapsed time and traveleddistance in systemswith constant acceleration.
The square-root singularity and the associated extreme stretching of phase
space near the point of grazing impact lead to highly non-trivial dynamics. The
radical changes in the dynamic behavior of a vibro-impact oscillator owe their
origin to the discontinuity in the derivative of the system’s Poincaré map as in-
dicated by Whiston [1076]. Janin and Lamarque [465] found that for some val-
ues of system parameters a non-differentiable fixed point of the Poincaré map
exists. A local expansion of the Poincaré map around such a point was found
to be a square-root term on the impact side. It was shown that the periodic
solution is stable when the Floquet multipliers are real.

2.3.1.2 Grazing Impact Case

With reference to Fig. 2.1, the oscillator mass hits the barrier when its displace-
ment reaches the value z = h. We introduce the coordinate shift ξ = z − h,
such that the impact occurs when ξ = 0. We also introduce the new coordinate
θ = Ωt. There exists a periodic orbit that grazes the rigid barrier such that
the orbit reaches the barrier with zero velocity. Let the displacement, velocity,
acceleration, and phase at the grazing contact point be ξg, vg, ag, and θg, re-
spectively. At grazing point we have ξg = 0, vg = 0, and ag < 0. Without loss of
generality,we set θg = 0. It is possible to choose a Poincaré section to be the sur-
face defined by v = 0 in the direction of decreasing v. We define the Poincaré
mapping P as the flow of dynamics that starts from a point on the Poincaré
section and ends at the Poincaré section in one period. Under zero forcing
excitation, the homogeneous solution of the oscillator in the phase space is
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ξ(t)
·
ξ(t)

}
=

1
s2 − s1

[
s2e

s1t − s1e
s2t es2t − es1t

s1s2 (es1t − es2t) s2e
s2t − s1e

s1t

]{
ξ(0)
·
ξ(0)

}
(2.19)

For convenience we write

P(t) =
1

s2 − s1

[
s2e

s1t − s1e
s2t es2t − es1t

s1s2 (es1t − es2t) s2e
s2t − s1e

s1t

]
=
[
P11(t) P12(t)
P21(t) P22(t)

]
.

(2.20)

If the wall did not exist, local stability of the grazing periodic orbit can
be determined by the eigenvalues of the Jacobian of P. If all eigenvalues are
outside the unit circle, the corresponding fixed point of P is unstable and
the associated periodic orbit is unstable limit cycle. If some, but not all of
the eigenvalues of the Jacobian are outside the unit circle, the corresponding
solution is unstable limit cycle of the saddle type. These cases belong to
what is known as hyperbolic fixed point [722] and the corresponding solutions
are referred to as hyperbolic. The solution is non-hyperbolic if one or more
of the eigenvalues lie on the unit circle. Under these states a linearization
of the Poincaré map may not be sufficient for determining the stability of
the trajectory. In other words, in the presence of the barrier, stability of the
grazing periodic orbit is not solely determined by the Jacobian because the
Poincaré mapping can not be directly applied to all the nearby trajectories.

An impacting trajectory dose not intersect the Poincaré section but jumps
across the section. This is demonstrated by Fig. 2.2, which shows a trajectory
starts at point A and impacts the barrier with velocity va = v−, at point a,
then rebounds with velocity vb = v+, at point b and finally ends at point
B. To utilize the Poincaré section, Xiaopeng Zhao1 proposed to temporally
ignore the existence of the wall and extend the trajectory forward in time
until it intersects the Poincaré section at point N . Apparently, this virtual
intersection point (ξn, θn) is at the right of the grazing contact point. The
next virtual intersection on the Poincaré section is (ξn+1, θn+1). Note that
if ξn > 0, we cannot directly apply the Poincaré section. However, imagine
the barrier is removed and extrapolate the trajectory backward from point B
in time until it intersects the Poincaré section at point C whose coordinate
is (ξc, θc). Obviously, point C is correction to point N and thus can be a
function of the coordinate (ξn, θn). The subsequent virtual intersection on
the Poincaré section can be obtained by applying P to (ξc, θc) as

ξn+1 = P11xc(ξn, θn) + P12θc(ξn, θn) (2.21a)

θn+1 = P21xc(ξn, θn) + P22θc(ξn, θn) (2.21b)

For trajectories near grazing, points a, b,N , and C are very close to the
grazing point G. The flow from N to C can be solved using local dynamic

1 Private communication.
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Fig. 2.2. Trajectory iteration near grazing point.

analysis. To this end, consider a trajectory starting from a point whose state
coordinates are ξ, v, θ, and continues for a short time interval Δt. The new
state variables at the end of this time interval are x+v Δt+ 1

2a(Δt)2, v+aΔt,
and θ + Δt. Since the motion is studied in the neighborhood of the grazing
point, the acceleration at G will be denoted as ag. Consider the flow in the
following three segments:

• Flow from N to a: Let the time interval of this segment be −Δt1 and note
that vn = 0. The state variables at point a can be written in terms of
those of point N as

ξa = ξn +
1
2
ag(Δt1)2 (2.22a)

va = −agΔt1 (2.22b)

θa = θn −Δt1 (2.22c)

Since ξa = 0, one can write

Δt1 =

√
−2

ξn

ag
(2.23)

• Jump from a to b: Applying the coefficient of restitution law, one can write
the state variables at point b as
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ξb = ξa = 0 (2.24a)

vb = −eva = eagΔt1 (2.24b)

θb = θa = θn −Δt1 (2.24c)

• Flow from b to C: Let the time interval of this segment be −Δt2. The
state variables at point C can be written in terms of those of point b as

ξC = −vbΔt2 +
1
2
ag(Δt2)2 = −eagΔt1Δt2 +

1
2
ag(Δt2)2 (2.25a)

vC = vb − agΔt2 = eagΔt1 − agΔt2 (2.25b)

θC = θb −Δt2 = θn −Δt1 −Δt2 (2.25c)

Since vC = 0, one can show that Δt2 = eΔt1 = e
√
−2 ξn

ag
. It then follows

that

ξC = −1
2
e2ag(Δt1)2 = e2xn (2.26a)

θC = θn − (1 + e)Δt1 (2.26b)

Now substituting equations (2.26) into equations (2.21) yields the mapping
equations for the grazing impact case, ξn > 0

ξn+1 = P11e
2ξn + P12[θn − (1 + e)Δt1] (2.27)

θn+1 = P21e
2ξn + P22[θn − (1 + e)Δt1] (2.28)

Equations (2.27) and (2.28) describe the mapping in the physical coordi-
nates. In order to express them in the most simplest form similar to those
derived by Nordmark [731] the following coordinate transformation is intro-
duced

ξn = l1xn (2.29a)

θn = l2xn + l3yn (2.29b)

where the constants l1, l2, and l3 are evaluated such that upon substituting
equations (2.29) into the mapping equations (2.27) and (2.28) the coefficients
of the square root

√
xn and the coordinate yn in equation (2.27) each becomes

unity, and at the same time the coefficient of yn in equation (2.28) vanishes
upon substitution. These constraints result in the following mapping equa-
tions in the transformed coordinates
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ξn+1 = −sgn(P12)
√

ξn +
[
α− (1 − e2)P11

]
ξn + θn (2.30)

θn+1 = −γe2ξn (2.31)

where α = P11 + P22, and γ = P11P22 − P12P21. Note that the constraints
imposed in reaching equations (2.30) and (2.31) require the following values
for the coefficients l1, l2, and l3

l1 = − 2
ag

(1 + e)2 P 2
12, (2.32a)

l2 = − 2
ag

(1 + e)2 P12P22, (2.32b)

l3 = − 2
ag

(1 + e)2 P12. (2.32c)

Chin et al [172] numerically generated the bifurcation phenomena for the
Nordmark map given by equations (2.3) and (2.4) as the bifurcation param-
eter, �, increases through � = 0 (grazing impact). Figs. 2.3(a) and 2.3(b)
show the bifurcation diagrams for e = 1, and two sets of the system pa-
rameters (γ, α) = (0.05, 0.65) and (0.01, 0.25), respectively. Three basic
bifurcation scenarios were reported. The first exhibits bifurcation from a sta-
ble period–1 orbit for � < 0 to reversed infinite period adding cascade as
increases through zero. For example, Fig. 2.3(a) shows such cascade where
chaos appears in bands between successive windows of periodic behavior. On
the other hand, Fig. 2.3(b) reveals a cascade with hysteresis. The bifurcation
diagrams of the other two cases are not shown here, however a brief descrip-
tion is provided. The second case is characterized by bifurcation from a stable

Fig. 2.3. Bifurcation diagrams for e = 1 : (a) (γ, α) = (0.05, 0.65) and (b) (γ, α) =
(0.01, 0.25), [172].
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period–1 orbit in � < 0 to chaotic attractor as � increases through zero. The
third scenario belongs to collision of an unstable period–M maximal orbit
(which is a regular saddle, and is created, together with a stable period–M
maximal orbit in a saddle-node bifurcation in � < 0) and the period–1 orbit
at � = 0.

2.3.2 Molenaar et al Mapping

Molenaar et al [686] and De Weger et al [225] introduced some modifica-
tions to the Nordmark mapping. They obtained the value of the bifurcation
parameter, �, using nonlinear and lengthy analysis, in the form

� =
1 − α + γ

2|A| (1 + e)2 [(−es1 + es2) / (s2 − s1)]
2

(
f0 − fg

fg

)
(2.33)

where A is the acceleration of the particular solution of the oscillator when
the excitation amplitude, f0, approaches its value, fg, at grazing impact.
Molenaar et al [686] observed that the fixed negative sign, which precedes the
square-root in equation (2.4), prohibits period-one maximal periodic orbits
for the underdamped oscillator. Their nonlinear analysis yielded the modified
form of the transformed map

xn+1 = αxn + yn + �
yn+1 = −γxn

for xn ≤ 0, (2.34)

xn+1 = −C1
√
xn + C2xn + yn + �

yn+1 = C3xn
for xn > 0, (2.35)

where

C1 = sgn

(−es1 + es2

s2 − s1

)
,

C2 = α− 2(1 + e)
(−s1e

s1 + s2e
s2

s2 − s1

)
+ (1 + e)2

(−s1e
s1 + s2e

s2

s2 − s1

)2

,

C3 = (1 + 2e)γ − (1 + e)2
(−s1e

s1 + s2e
s2

s2 − s1

)2

. (2.36)

One may observe a significant difference between the two maps given by
equations (2.3) and (2.4), on the one hand, and equations (2.34) and (2.35)
on the other hand. For example, the negative sign preceding the factor C1

guarantees the presence of maximal period-one orbits. The extra term, C2xn,
in the first equation of (2.35), provides a quantitative understanding of the
loss of stability of maximal periodic orbits due to an additional impact. The
coefficient C3 is different from that of Nordmark [731].
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For the case of flexible barrier the impact mass will penetrate the barrier
in a form of elastic deformation. In this case, the coefficient of restitution
must be within the range, 0 < e < 1. For low-velocity impact, the barrier will
influence the system dynamics when it absorbs energy, which is measured
by the value e < 1. For this case, Molenaar et al [686] obtained the same
mapping equations (2.35) but with the following coefficients:

C1 = sgn

(−es1 + es2

s2 − s1

)
,

C2 = α− 2(1 − e)
(−s1e

s1 + s2e
s2

s2 − s1

)
+ (1 + e)2

(−s1e
s1 + s2e

s2

s2 − s1

)2

,

C3 = (1 − 2e)γ − (1 − e)2
(−s1e

s1 + s2e
s2

s2 − s1

)2

,

� =
1 − α + γ

2|A| (1 − e)2 [(−es1 + es2) / (s2 − s1)]
2

(
f0 − fg

fg

)
(2.37)

This situation was considered in studying a linear oscillator with flexible
barrier of stiffness k2 as shown in Fig. 2.4(a) a linear oscillator. The equation
of motion of this system may be written in the form

··
z + ς

·
z + K(z) = F cos(2πt + φ), (2.38)

where K(z) =
{

ν2(1 + z) z ≤ 0
ν2(1 + z) + κ2z z > 0 ,

z/Z/�, ν2 = 4π2k1/
(
mΩ2

)
, F = 4π2f0/

(
m�Ω2

)
, � is the gap length between

the mass and the flexible barrier, ς = 2πc/(mΩ) , κ2 = 4π2k2/
(
mΩ2

)
, the

stiffness of the barrier is measured by the ratio Γ = κ2/ ν2, such that a rigid
barrier possesses Γ = ∞.

Fig. 2.4. Schematic diagram of (a) mass-spring-dashpot system with flexible barrier
and (b) experimental model used by de Weger et al, [225].
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Fig. 2.5. Bifurcation diagrams of the system of Fig. 2.4(a) for stiffness ratio (a)
Γ = k2/k1 = 10, and (b) Γ = 1000, [686].

Equation (2.38) was numerically solved in the presence of grazing impacts
by using the analytical solutions between impacts [686]. Figs. 2.5(a,b) show
the bifurcation diagrams for two different values of stiffness ratio Γ = 10 and
1000, respectively. In both cases the transition from period–3 to period–1 is
observed and is typical for a square–root map. It was concluded that the map
for impacts with compliant barrier is very similar to the one generated for a
rigid barrier. In another work, De Weger et al [225] conducted an experimental
investigation on a beam model excited by a sinusoidal excitation X0 sinΩt,
as shown in Fig. 2.4(b). They measured period-adding transitions p1 ←→
pM from the non-impacting state to the maximal periodic orbit with period
M = 3 to 10 as shown in Fig. 2.6. The measured period of free oscillations
of the beam was T = 40.8 ± 0.02 ms, and damping parameter ζωn = 2.1 ±
0.05 s−1. It is seen that the apparent hysteresis may irregularly vary. The
transition pM ←→ pM/2 was found to give rise to the jump characteristics
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Fig. 2.6. Experimental measurements of bifurcation diagrams of Maximal period
M and excitation frequency f : (a) M = 3, f = 20.90 Hz, (b) M = 4, f = 21.50
Hz, (c) M = 5, f = 22.20 Hz, (d) M = 6, f = 22.60 Hz, (e) M = 8, f = 23.05
Hz, (f) M = 10, f = 23.40 Hz. Closed circles (•)belong to the upward scan of the
excitation amplitude and open circles (©) for the downward scan, [225].

in the bifurcation diagram shown in Fig. 2.7 for the case of p4 ←→ p4/2.
It was reported that the additional impact occurred at the turning point
that immediately preceded the primary impact. This turning point was the
closest to the barrier. At bifurcation, the motion between these two impacts
experienced significant changes.

In terms of discontinuity mapping, De Weger et al [225] explicitly showed
that the square-root also survives soft impacts with a soft barrier. It was es-
sential to allow for a discontinuity in terms of a coefficient of restitution e < 1.
For perfectly elastic soft collisions with a soft barrier, however, the square-root
vanishes and collisions need to become hard again to restore it. Bifurcation and
chaos in piecewise-smooth dynamical systems with impacts were experimen-
tally demonstrated using a cam-follower system characterized by a radial cam
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Fig. 2.7. Grazing bifurcation of a maximal period−M orbit to a period−M/2 orbit
(two impacts per period) at the vertical dashed line, (X0 −Xg)/Xg ≈ 0.042, [225].

and a flat–faced follower [10]. Under variations of the cam rotational speed,
the follower was observed to detach from the cam and then exhibits periodic
impacting behavior characterized by many impacts and chattering2.

2.3.3 Further Developments

Mathematicians, physicists and applied dynamicists developed other disconti-
nuity mappings for non-smooth dynamics. For example, Thota and Dankow-
icz ([1000], [1001]) and Thota [999] formulated analytical conditions for the
persistence of a local attractor in the immediate vicinity of periodic and
quasi-periodic grazing trajectories. They employed a local analysis based on
the discontinuity-mapping approach to derive a normal-form description of
the dynamics near the grazing trajectory. It was found that the catastrophic

2 Chattering is a special type of oscillation characterized by very small amplitudes that
are decreasing with time, see more on chattering in Section 3.2.
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loss of a local attractor and strong instability characteristics of grazing bifur-
cations are directly associated with the repeated application of a square-root
term that appears to lowest order in the normal-form expansion. Further-
more, it was found that the square-root term is absent in the description of
the dynamics normal to a quasi-periodic trajectory covering a codimension-
one invariant torus resulting in a piecewise linear description of the normal
dynamics. In contrast, for codimension-2 or higher, the square-root term is
generically present in the normal dynamics. Qian and Sun [874] proved the ex-
istence of invariant tori and quasi-periodic solutions for asymptotically linear
impact oscillators by using the successor map and some generalized versions
of the Moser’s twist theorem.

Di Bernardo et al [233] presented a nice review of the one-parameter, non-
smooth bifurcations that take place in a variety of continuous time piecewise-
smooth dynamical systems. In particular, they defined discontinuity-induced
bifurcations as non-trivial interactions of a limit set with respect to a
codimension-one discontinuity boundary in phase space. A variety of dy-
namic phenomena such as the sudden creation or disappearance of attrac-
tors, jumps to chaos, bifurcation diagrams with sharp corners, and cascades
of period adding were discussed.

The occurrence of chaos in vibro-impact systems under different values of
system and excitation parameters was addressed by many researchers (see,
e.g., [996], [452], [453], [928], [934], [883], [51], [123], [960], [961], [563], [829],
[667], [1054], [826], [229], [601], [617], [619], [77], [830], [553], [255], [256],
[257], [624]). Through a corner bifurcation, the system can experience com-
plex dynamics, which can include periodic orbits of arbitrary period and
period-adding cascades ([150], [841], [230]).

Di Bernardo et al [241] treated specific transitions when the boundary equi-
librium, lying within a discontinuity manifold, is perturbed. They showed that
such equilibria can either persist under parameter variations or disappear,
and thus yield different bifurcation scenarios. They discussed the occurrence
of boundary-equilibrium bifurcations in three classes of piecewise-smooth dy-
namical systems, namely, piecewise-smooth continuous [325] and impacting
systems. Conditions for an equilibrium position of these systems to persist
or undergo a non-smooth fold scenario at the discontinuity-induced bifur-
cation point were given. It was shown that, under certain conditions, limit
cycles can branch off the boundary equilibrium bifurcation point. Conditions
for boundary-equilibrium bifurcation were illustrated based on the work of
Freire et al [344] and Leine [577].

In mechanical systems the inclusion of friction and impacts would lead
to discontinuities in the corresponding mathematical models. Oestreich et
al ([745], [746]) proposed different methods to treat vibro-impact models
and friction oscillators. These methods were also applied to experimental
measurements or simulated time signals. Furthermore, these methods include
one-dimensional maps, bifurcation and stability analysis, the determination
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of Lyapunov exponents, and the phase-space reconstruction with the aid of
general mutual information and false nearest neighbors.

Svahn and Dankowicz [973] examined the conditions under which a con-
tinuous/discontinuous transition occurs as a result of the grazing contact of
an initially stationary part of a mechanism with relatively more massive os-
cillating element in the presence of dry friction. They derived the conditions
for the persistence of a local attractor in the near-grazing dynamics of a two-
degree-of-freedom vibro-impact oscillator with friction. They also considered
a harmonic oscillator with Coulomb friction whose motion is limited by an os-
cillatory unilateral constraint corresponding to the case of infinite mass ratio.
Collisions between the harmonic oscillator and the unilateral constraint were
governed by a simple coefficient of restitution impact law. It was argued that
the loss of a local attractor and the associated large–amplitude oscillations of
the less massive part afford a means for energy transfer through the mecha-
nism by a means of energy damping. Nordmark et al [738] considered a series
of studies dealing with the non-smooth dynamics of planar mechanical sys-
tems with isolated contact in the presence of Coulomb friction. Their analysis
identified boundaries between open regions of initial conditions and param-
eter values corresponding to distinct forms of the impact law. According to
Stronge [964], they defined what is known as the energetic coefficient of resti-
tution, e∗, which is obtained by equating the total work done by the normal

force, FN , during restitution,
∫

v<0

Fnνdt, to the work done by the normal

force during compression times, −e∗2
∫

v>0

Fnνdt, where v is the velocity.

2.4 Border–Collision or C–Bifurcation

Border bifurcation occurs when a fixed point or a periodic orbit of a piecewise
smooth system crosses or collides one of the boundaries between different
phase spaces as a system parameter varies in quasi–statically manner [742].
It is termed as C–bifurcation by Feigin ([313], [314], [315], [316], [318]). Di
Bernardo et al [235] described a number of different dynamical scenarios that
can be observed after a C–bifurcation including (i) a transition from the orbit
involved in the C–bifurcation to an orbit of a different type, (ii) joining two
different solutions, and (iii) sudden transition to a chaotic attractor.

Di Bernardo et al [235] presented a systematic description of a local map
for C–bifurcations for dynamical systems described by the following set of
ordinary differential equations

·
z = f(z,t,μ), (2.39)

where f : R
n+1 → R

n is a piecewise smooth function, z ∈ R
n, and μ ∈ R

p is a
parameter vector. Let L0 be a periodic orbit of system (2.39) which is tangent
to one of the phase space boundaries, Φ0, for μ = μ0 as shown in Fig. 2.8. The
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Fig. 2.8. Illustration of (a) C-bifurcation and (b) grazing bifurcation where D is a
generic Poincaré section, [235].

system flow intersects transversally the Poincaré plane D at point M0, which
corresponds to the grazing limit cycle, L0, as shown in Fig. 2.9. All points on
the line S passing through M0 belong to all trajectories that are tangent to
the boundary Φ0 on the line Γ . In this case, the line S splits the plane D into
two planes D− and D+ such that trajectories emanating from D− cross the
boundary Φ0 while those crossing D+ stay away from Φ0. All points xi, i =
1, 2, ..., n on plane D, with origin located at point M0, are designated such that
x∗

n < 0 ⇐⇒ x∗ ∈ D−, x∗
n > 0 ⇐⇒ x∗ ∈ D+, and x∗

n = 0 ⇐⇒ x∗ ∈ S.
If the system is linearized with respect to xi and the control parameter μ in
the neighborhood of M0, then the motion is governed by the equations of the
Poincaré map Π , Di Bernardo et al [235],

x(k+1) =
{
A1x

(k) + cμ for x(k) > 0
A2x

(k) + cμ for x(k) < 0
(2.40)

where A1 = ∂Π+

∂x |x=0, A2 = ∂Π−
∂x |x=0, and c = ∂Π−

∂μ |μ=0 = ∂Π+

∂μ |μ=0.

It was assumed that the mapping is continuous when x
(k)
n = 0 and μ = 0

for all values of k, and smooth for k = 1, ..., n− 1. The elements of matrices
A1 =

[
a
(1)
ij

]
and A2 =

[
a
(2)
ij

]
are related such that a

(1)
ij = a

(2)
ij , j 	= n. Di

Bernardo et al [235] derived a set of elementary conditions describing the
possible consequences of the C–bifurcation. These include the existence of
a periodic orbit on one side of the boundary and is smoothly converted at
the C–bifurcation point (μ = 0) into a solution existing on the other side
of the boundary. Another possibility is the presence of two periodic orbits
corresponding to two fixed points, M∗ in the sub–mapping Π− and M∗∗ in
Π+, both exist on one side of the boundary, collide on the border at a C–
bifurcation, μ = 0, and then vanish on the other side. The third case involves
a new two-periodic solution originates at the C–bifurcation. The possibility of
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Fig. 2.9. Demonstration of C-bifurcation of a periodic orbit and Poincaré section
D, [235].

a sudden jump to a chaotic attractor at the C–bifurcation was demonstrated
for the case of a codimension-one map.

Halse et al [385] examined the behavior of piecewise-smooth, continuous,
one-dimensional maps that are linear for negative values of the control param-
eter and nonlinear for positive values. These maps display both period-adding
and period-doubling behavior and are described by the general form

xk+1 =
{
αxk − μ for xk ≤ 0
βxγ

k − μ for xk > 0 , (2.41)

xk+1 =
{

αxk − μ for xk ≤ 0
αxk + βxγ

k − μ for xk > 0 , (2.42)

where α ∈ R, β ∈ {1,−1} and γ > 1. The sign of β is important. For maps
with γ = 2 or 3/2, the stability and existence conditions of fixed points and
period–2 orbits in the vicinity of the border–collision were found analytically.
The period–adding behavior was examined in these maps, where analytical
solutions for the boundaries of periodic solutions do exist. It was shown that
these maps can exhibit different types of C–bifurcations. Conditions for the
existence of finite and infinite period adding sequences were shown to be de-
pendent on the map parameters. Closed form conditions for the existence and
stability of periodic orbits of increasing periodicity were derived for two spe-
cific cases of γ = 2 and γ = 3/2, which are associated to grazing and sliding
bifurcations. The sliding or Filippov [325] bifurcation is associated with the
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solution of piecewise systems. Sliding is only possible if the direction of the
system vector field on both sides of a discontinuity set points towards the set
itself so that nearby trajectories are constrained to evolve on it [240]. Slid-
ing motion may be understood as repeated switching between two different
system configurations as reported in references [239] and [231].

Non-smooth bifurcations are encountered in a number of physical and en-
gineering systems described by two or more sets of differential equations ([83],
[1013], [1140]). Examples of such systems include the Colpitts oscillator [633],
thyrister controlled reactor circuits [879], dc-dc converters [81], sigma-delta
modulators [310], digitally controlled systems [384], and other electronic cir-
cuits [923]. These systems give rise to piecewise smooth maps ([80], [1115],
[1116]).

Nordmark and Kowalczyk [739] developed an analytical unfolding of
codimension-2 bifurcation involving grazing sliding using discontinuity
mapping techniques. It was shown that the fold curve is one–sided and cubi-
cally tangent to the grazing curve locally to the codimension-2 point. Kowal-
czyk et al [531] proposed a strategy for the classification of codimension-2
discontinuity-induced C–bifurcations of limit cycles in piecewise smooth sys-
tems of ordinary differential equations. Specifically, codimension-2 grazing bi-
furcations that are local in the sense that the dynamics can be fully described
by an appropriate Poincaré map from a neighborhood of the grazing point
(or points) of the critical cycle to itself. Codimension-2 grazing bifurcations
were divided into three distinct types: 1) the grazing point is degenerate, 2)
the grazing cycle is itself degenerate (e.g., non–hyperbolic) or 3) simultaneous
occurrence of two grazing events.

The bifurcation theory of one– and two–dimensional continuous piecewise
smooth maps was developed by Banerjee and Grebogi [76] and Banerjee et
al [82]. Routroy et al [898], Hogan et al [420], and Dutta et al [281] ex-
tended Feigin’s approach to the case of discontinuous maps. They obtained
the conditions of existence of period–1 and period–2 fixed points in general
multi–dimensional maps. Banerjee and Grebogi [76] presented some experi-
mental results to establish a theoretical framework and classification of bi-
furcations resulting from border collision. It was found that there are eleven
qualitatively different types of border collision bifurcations depending on the
parameters of the normal form. Parui and Banerjee [791] developed the the-
ory of border collision bifurcation for the special case where the state space
is piecewise smooth, but two–dimensional in one–side of the borderline, and
one–dimensional in the other side. Jain and Banerjee [462] presented a clas-
sification of border–collision bifurcations in one–dimensional discontinuous
maps in the neighborhood of the point of discontinuity. For each range of
parameter values, the condition of existence and stability of various periodic
orbits and of chaos were defined. The dynamics of a mechanical switching
system in which the state variables are continuous was studied by Baner-
jee et al [79]. The first derivative of the vector field was found to change
discontinuously across the switching boundary at the switching events.
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Zhusubalyev et al ([1143], [1144], [1142]) and Zhusubalyev and Mosek-
ilde [1141] described the main bifurcations and routes to chaos exhib-
ited by piecewise–smooth dynamical systems. In particular, they examined
the complex behavior of multidimensional piecewise–smooth systems with
border–collision bifurcations. A new route to quasi–periodicity in the two–
dimensional piecewise–linear normal form map was developed. It was shown
that border–collision bifurcations can lead to the birth of a stable closed
invariant curve associated with quasi–periodic or periodic dynamics. It was
demonstrated that a two–dimensional torus can arise from a periodic orbit
through a bifurcation in which two complex–conjugate Poincaré character-
istic multipliers jump abruptly from the inside to the outside of the unit
circle.

Kousaka et al [525] studied a system interrupted by its own state and
a periodic interval. Tanaka and Ushio [978] considered a switching system
modeled by a discrete–time flow and exhibited a lot of border–collision bifur-
cations. Di Bernardo [228] and Di Bernardo et al ([230], [231]) analyzed the
corner–collision bifurcation in piecewise–smooth systems of ordinary differen-
tial equations whose periodic solution grazes with a corner of the discontinuity
set. Their results contrasted with the equivalent results when a periodic orbit
grazes with a smooth discontinuity set. Zhusubalyev et al [1145] studied some
resonance phenomena in a piecewise–smooth dynamical system with external
periodic excitation and examined transitions to chaos via border–collision
bifurcations of cycles on a two–dimensional torus. The analysis provided
the structure of border–collision bifurcation boundaries of synchronization
tongues and transitions to chaos via border–collision bifurcations of cycles
on a two–dimensional torus.

2.5 Border Bifurcation in Switching Circuits

The bifurcation theory for piecewise smooth systems has attracted significant
research attention in physical systems such as piecewise linear electronic cir-
cuits (see, e.g., [762], [269], [741], [236], [229], [1116]). In such systems, as a
control parameter varies through a critical value typical transitions exhibit
periodic orbits with period–1 bifurcating to a chaotic orbit or a periodic orbit
vanishing as it hits the border, resulting in an abrupt change in the Jacobian
matrix. These anomalous bifurcation phenomena lead to border collision bi-
furcations. Recent investigations on bifurcations in switching circuits revealed
that many typical bifurcations can occur in piecewise smooth maps that can-
not be classified among the generic cases like saddle–node, pitchfork, or Hopf
bifurcations occurring in smooth maps. The bifurcation structure associated
with grazing impact belongs to a more general class of border–collision bifur-
cations that arise in non–smooth systems as reported by Nusse and Yorke
([742], [743]) and Nusse et al [741].

Ohnishi and Inaba [748] observed a strange bifurcation route to chaos in a
piecewise–linear second–order non–autonomous differential equation derived
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from a simple electronic circuit. When a limit cycle loses its stability, the at-
tractor changes directly to chaos (instant chaos) without undergoing a period
doubling bifurcation or intermittency. The width of the attractor band was
found continuous at the bifurcation point, and the chaotic band grows larger
continuously as the system parameter varies. It was shown that the singular
phenomenon arises from the piecewise–linearity of the system and the Lya-
punov exponent jumps discontinuously from minus to plus at the bifurcation
point.

In the area of control theory, piecewise linear switched systems constitute
a special class of hybrid systems ([478], [590]). These systems arise when some
nonlinear components such as switching, dead–zone, saturation, relays, and
hysteresis are encountered. The local stability of periodic orbits in switched
discontinuous piecewise affine periodically driven systems was studied by El
Aroudi et al [288]. These systems are described by a set of affine differential
equations together with periodic (in time) switching rules to commute be-
tween them. The switching rules were described by switching functions that
are periodic in time and linear in state. The feedback control of piecewise
smooth discrete time systems that undergo border collision bifurcations was
studied by Di Bernardo et al [238], Hassouneh et al [399] and Hassouneh and
Abed [398]. The goal of the control was to modify the bifurcation so that
the bifurcated steady state is locally attracting and locally unique. In such
bifurcations, a fixed point remains asymptotically stable at both sides of the
critical bifurcation point, but at the critical bifurcation value, all orbits start-
ing from all points other than the fixed point diverge to infinity. Do [261] gave
an opposite view and investigated the mechanism causing dangerous border
collision bifurcations. At the critical bifurcation value the qualitative type of
the fixed point can be induced by invariant manifolds of the periodic saddle
orbit.

A model allowing a double impacting regime for a particle undergoing
simple harmonic motion was considered by Gutierrez and Arrowsmith ([382],
[383]). Control equations were developed followed by strategies for preserv-
ing and annihilating resonant periodic orbits. Gutierrez and Arrowsmith [383]
adopted a class of dynamic systems characterized by the discontinuous motion
of a spring–mass constrained by the motion of a feedback–assisted actuator.
It was shown that the combined effects of mechanical restitution coefficient
and displacement feedback can be exactly represented by a single equiva-
lent dissipation coefficient. The stabilization of grazing periodic trajectories
in a certain class of vibro–impact oscillators in the presence of control was
formulated by Dankowicz and Svahn [206]. They proposed a control algo-
rithm that guarantees the local persistence of system attractors with at most
low–velocity contact in vibro–impact oscillators. Sufficient conditions were
formulated on the linearization of the control strategies along a grazing pe-
riodic trajectory to ensure the asymptotic stability of the grazing trajectory.



54 2 Mapping of Grazing and C–Bifurcations

2.6 Closing Remarks

Theoretical developments of mapping associated with grazing and border
bifurcations have uncovered many complex dynamic characteristics of vibro–
impact systems. Three major types of grazing bifurcations have been reported
[172]. These are bifurcations from stable period–1 to a reversed infinite pe-
riod adding cascade, bifurcation from a stable period–1 orbit to attracting
chaos occupying a full interval of the bifurcation parameter, and collision of
an unstable maximal periodic orbit and period–1 orbit. The square–root sin-
gularity in the Nordmark mapping is directly linked to the phenomenon of
period adding. The Nordmark map [731] was originally developed for abso-
lutely rigid barriers. A modified map developed by Molenaar et al [686] was
developed to incorporate the effect of flexible barriers. It was found that the
map for impacts with a flexible barrier is very similar to the one developed
for rigid barriers. The only difference between the two cases was found in
a change of the scale of the bifurcation parameter. One may note that all
mapping techniques described in this chapter have been applied to piecewise
linear systems. The influence of the system inherent weak nonlinearity on
grazing bifurcation may cause a change in the value of the control param-
eter depending on whether the system nonlinearity possesses soft or hard
characteristics.



Chapter 3
Single–Degree–of–Freedom Systems

3.1 Introduction

The theory of vibro–impact dynamics has been applied to classical lumped
discrete systems represented by single–, two–, and multi–degree of freedom
against one– or two–sided barriers. One freedom systems in the form of mass–
spring–dashpot with one–sided barrier have been extensively studied in the
literature. Other systems such as a ball bouncing on an oscillating table, a
simple pendulum with one– or two–sided barriers, and ship roll dynamics
interacting with icebergs will be considered. The study of these systems has
revealed different and complex response characteristics such as periodic and
quasi–periodic oscillations, grazing and period doubling motions, chattering
and chaotic oscillations. A simple idealization of a vibratory plow impacting
against an immovable relatively rigid obstruction was analyzed to determine
possible periodic motions and the stability of these motions [921]. It should be
mentioned that these systems may exhibit some peculiar periodic or chaotic
response regimes (see, e.g., [811], [813], [417], [4], [418], [419], [124], [1077],
[1078], [945], [12], [127], [910], [23], [199], [552]).

Peterka and Kotera [828] described the behavior of impact motion of sin-
gle freedom systems experiencing more than one impact of the body against
the rigid stop during one excitation period. They presented some domains
of attraction of initial conditions from which one of several possible impact
motions becomes stabilized after cessation of the transient response. The
steady state vibro–impacting responses of harmonically excited linear oscil-
lators were studied by Whiston [1075]. By using the modern theory of dy-
namical systems together with numerical simulation, it was found that the
steady state motions are attracting sets in the system phase space and cap-
ture initial conditions in their domains of attraction. The phase space of a
vibro–impact system was found to be inhabited by many attracting sets. For
example, there are sub–harmonic, multi–impact, periodic orbits and chaotic,
steady state responses. An attempt was made to build generic topological
models of their phase spaces for physically significant parameter ranges.

R.A. Ibrahim: Vibro-Impact Dynamics: Model., Map. & Appl., LNACM 43, pp. 55–95.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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3.2 Bouncing Ball on a Vibrating Platform and Pile
Drivers

3.2.1 Analysis

The original elastic version of the problem of ball–platform collisions was in-
troduced by Fermi [321]. Earlier theoretical treatments, based on the Chirikov
[174] “high–bounce” approximation, chaos was observed to occur for the par-
tially elastic bouncing ball. The study of ball bouncing on an oscillating
surface was then introduced as an attempt to understand the impulsive noise
generated from metal–to–metal collision. Impulsive noise is a daily problem
for those who are operating pneumatic hammers, riveting machines, punch
presses and peening guns. This problem is believed to be considered by Wood
and Byrne ([1082], [1083]) who studied impact process under random vibrat-
ing surface. It was then studied by Holmes [423] and Guckenheimer and
Holmes [380] under sinusoidal surface excitation. With reference to Fig. 3.1,
the table of mass mt is moving sinusoidally, Z0 sinΩt, where Z0 and Ω are
the table amplitude and frequency. The recurrence relationship between the
state of the system at the (j + 1)–impact and j–impact was given by the
nonlinear mapping

tj+1 = tj + 2
Vj

g
, (3.1a)

Vj+1 = eVj + (1 + e)W (tj + 2Vj/g), (3.1b)

where V and W are the absolute velocities the ball rebound and the table, e is
the coefficient of restitution, tj is the time of the j–th impact, and g is the grav-
itational acceleration. Under sinusoidal excitation of the table, Holmes [423]

Fig. 3.1. Ball bouncing on an oscillating table.
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found that the fixed points with Ωtn < π sin (Ωtn + 2V/g) > 0 are all saddle
points of the first kind. Fixed points with Ωtn > π sin (Ωtn + 2V/g) < 0, were
found to be sinks (centers) if

nπ

(
1 − e

1 + e

)
<

Ω2Z0

g
<

√
n2π2

(
1 − e

1 + e

)2

+ 1. (3.2)

On the other hand, saddle point of second kind, i.e., π sin (Ωtn + 2V/g) < 0
occurs if

Ω2Z0

g
>

√
n2π2

(
1 − e

1 + e

)2

+ 1. (3.3)

From relation (3.2) the following local bifurcation points are obtained

Ω2Z0

g
= nπ

(
1 − e

1 + e

)
, (3.4)

Ω2Z0

g
=

√
n2π2

(
1 − e

1 + e

)2

+ 1. (3.5)

The value given by equation (3.4) establishes fixed points in a saddle–
node bifurcation. Equation (3.5) establishes the occurrence of stability change
known as a flip.

Luo and Han (1996) revisited Holmes work [423] and obtained the following
stability condition, for π sin (Ωtn + 2V/g) > 0,

nπ

(
1 − e

1 + e

)
<

Ω2Z0

g
<

√
n2π2

(
1 − e

1 + e

)2

+ 4
(1 + e2)
(1 + e)4

(3.6)

Stability and bifurcation boundaries were generated by Luo and Han [605]
for period–1 motion, coefficient of restitution e = 0.5, and n = 1 . The
dependence of the type of motion on the initial impact velocity and excitation
frequency is shown in Fig. 3.2, while the stability boundaries are shown in
Fig. 3.3. Luo and Han [605] compared their results with Holmes solution [423]
and showed that the range of stable motion is wider. The Poincaré mapping
sections of the unstable period–1 motion indicated the existence of identical
Smale horseshoe structures and fractals.

For the case of perfect elastic impacts, the equation is reduced to the
‘standard mapping’. For sufficiently large excitation velocities and a coeffi-
cient of restitution close to one, the bouncing ball–table system was found
to exhibit large families of irregular non–periodic solutions in addition to
the expected harmonic and subharmonic motions. Veluswami and Crossley
[1028] and Veluswami et al [1029] experimentally and analytically studied the
motion of a steel ball while impinging against two–end plates excited by an
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Fig. 3.2. Different regimes of motion of a bouncing ball, [605].

electromagnetic shaker. Over the frequency range (0−60 Hz) and amplitudes
(0 – 5 mm) the ball was found to hit several times on one boundary before
passing over to strike the other, per cycle of the shaker. Later, Veluswami
et al [1029] developed a mathematical model to describe the vibro–impact
dynamics of the system with contact stiffness modeled by the Hertzian spring
stiffness. During each impact the motion of the ball was taken to be a brief
half wave, due to the highly nonlinear forces of surface compliance and sur-
face damping. It was found that linearization of the surface stiffness does not
reproduce the observed phenomena.

Everson [303] presented a detailed study of a two–dimensional manifold
mapping describing an imperfectly elastic ball bouncing on a vibrating plat-
form. Quasi–periodic motion on one–dimensional manifold was predicted nu-
merically at low forcing. At high forcing Smale horseshoes were reported. The
evolution of the attracting set with changing parameters was studied. A new
type of chaos, in which a trajectory alternates between two distinct chaotic
regions, was described and explained in terms of manifold collisions. Everson
[303] was able to obtain an analytic expression for Lyapunov exponents in
the quasi–periodic regime under the influence of high values of forcing ex-
citation. Marudachalam and Bursal (1995) developed a numerical algorithm
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Fig. 3.3. Stability boundaries of different motion regimes, [605].

for studying the global dynamics of an impact oscillator with two–sided rigid
barriers. The study included a peculiar type of solution in which the trajec-
tories on phase space from a certain set of initial conditions merge in finite
time, making the dynamics non–invertible. The effect of double prime grazing
on the dynamics of the system was considered.

Ivanov [455] introduced a unified approach to the analysis of bouncing ball
whose center of mass does not coincide with its geometric center. The math-
ematical essence of this approach was the continuous representation of the
impulsive motion in some auxiliary variables. He derived an explicit formula
for the fundamental matrix that allows the construction of the characteris-
tic equation. Zimmerman et al [1146] developed the electronic analog of the
bouncing ball to demonstrate the inherent nonlinear chaotic features of this
system. They used an operational amplifier circuit to simulate the free fall of
a ball in constant gravity. Current feedback through a precision diode recti-
fier was used to model free fall when the rectifier is backward biased and the
bounce when the rectifier is conducting.

The motion of a mass sliding on a rod with two end–barriers was ex-
perimentally investigated by Blazejczyk–Okolewske et al [123] when the rod
excited axially. The response of the mass was characterized by long intervals
with regular behavior (two impacts per excitation period). This motion was
occasionally interrupted with multi–periods with zero, one or three impacts.
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By increasing the excitation frequency the length of regular two–impact in-
tervals was found to decrease and periods with zero, one or three impacts
become more frequent.

3.2.2 Experimental and Simulation Results

Experimental studies of a bouncing ball on a vibrating table confirmed the
results of the exact model. For example, Tufillaro et al ([1017], [1015]) found
that all the major bifurcations predicted by the exact model were observed
experimentally within 2% accuracy. The experimental tests were conducted
by slowly increasing the amplitude of the oscillating table. The motion of the
ball was monitored through an experimental impact map, which is similar
to a next return map. Experimental bifurcation diagrams were generated for
different values of coefficient of restitution (obtained by changing the material
of the ball). It was observed that a chaotic invariant set was established at the
end of the period doubling cascade, but for a further increase in the driving
amplitude, the strange attractor was destroyed in a crisis. The dynamics of
the ball after this crisis was found to result in motion quickly approaching a
period sticking solution (for small coefficient of restitution) or to exhibit long
transients known as “transient chaos” following the “shadow of the strange
attractor” (for larger coefficient of restitution).

Fig. 3.4 shows a bifurcation diagram obtained by direct simulation of the
exact model as reported by Tufillaro [1014]. This figure reveals a period dou-
bling route to chaos for coefficient of restitution e = 0.5 similar to the same
behavior observed in the experimental tests reported by Tufillaro et al ([1017],
[1015]). At Z0 = 0.012, the strange attractor was found to be stable for over
106 impacts. Over the excitation amplitude range, 0.0118 < Z0 < 0.019, a
first crisis was predicted that expands the size of the strange attractor. Over
the narrow excitation amplitude range, 0.0121 < Z0 < 0.0122, another crisis
occurred, which destroyed this strange attractor. Above the excitation am-
plitude Z0 > 0.0122 the orbit was found to follow the shadow of the strange
attractor for a number of impacts but eventually converge to a sticking solu-
tion (typically after 100 to 1, 000 impacts). In both experiments and numeri-
cal simulations, the pre–crisis (chaotic) dynamics and post–crisis (eventually
periodic) dynamics can be distinguished.

The effect of a near–resonant perturbation in a bouncing ball was ex-
amined to suppress the onset of the first period doubling bifurcation by
Tufillaro and Albano [1016] and Wiesenfeld and Tufillaro [1079]. Near the
bifurcation point, the full dynamical equations were reduced to a discrete–
time map governing the dynamics on a slowly oscillating center manifold. The
geometry of the phase–space dynamics was utilized to clarify several points
of the effects of strong near–resonant perturbations. Topological parameters
were estimated by Tufillaro [1014] from a chaotic time series generated by a
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Fig. 3.4. Bifurcation diagram for the bouncing ball system, e = 0.5, [1014].

dissipative bouncing ball. Tufillaro [1014] used the braid analysis and pruning
front approach. Braids arise as periodic orbits in dynamical systems modeled
by three–dimensional flows. On the other hand, the pruning procedure deals
with chaotic two–dimensional diffeomorphisms under certain rules to prune
certain orbits of higher period. Kanso and Papadopoulos [490] examined the
dynamics of a pseudo–rigid ball impacting on an oscillating rigid foundation.

3.2.3 Chattering Phenomenon

The dynamics of the completely inelastic ball, e = 0, exhibited complexity in
its temporal behavior [666]. Mehta and Luck [666] developed an approximate
map and showed that its period–doubling sequence terminated abruptly in a
locking region. It was demonstrated that in this regime, the intervals in the
space of the table acceleration parameter, Z0Ω

2/πg, were characterized by
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different rational winding numbers. For any non–zero value of the coefficient
of restitution, e 	= 0, the ball was found to perform a large number of smaller
and smaller bounces, referred to as chattering, provided it lands deep enough
in the absorbing region of the phase space ([603], [147]). Chattering is one of
the most interesting properties of an impacting system, which is characterized
by an infinite number of impacts occurring in a finite time. The ball was shown
to wait until it rebounds at the beginning of the next platform cycle with the
initial conditions:

τ0 =
Ωt0
2π

=
1
2π

arcsin
(

g

Z0Ω2

)
, and V0rel = 0 (3.7)

where V0rel is the relative “take–off” velocity of the ball.
Giusepponi et al [363] presented a quantitative description of the chat-

tering dynamics of an ideal inelastic ball bouncing on a vibrating platform.
The velocity of the bouncing ball was sampled at each impact with the plate
(asynchronous sampling). Its random nature revealed that the chattering
mechanism, through which the ball gets locked on the plate, is accomplished
within a limited interval of the plate oscillation phase. Furthermore, chatter-
ing trajectories and strange attractors were found to coexist for appropriate
ranges of some parameter values. Structure and substructure of the chat-
tering bands were explained in terms of a simple impact map rule. A ball
undergoing inelastic collisions with its walls on an oscillating cart was nu-
merically studied by De Souza et al [219]. A multistable regime was found to
take place characterized by the coexistence of different attractors with a com-
plicated basin boundary structure in the phase space. Time history records
of typical chattering will be provided in Section 3.4 for the case of an inverted
pendulum oscillating against two rigid barriers.

3.2.4 Applications

It is interesting to note that applications based on the dynamics of a bounc-
ing mass have been reported in the literature. These applications include
the vibration hammers, inertial shakers, and pile drivers or vibro–impact
moling systems ([799], [801], [800], [796], [797], [798], [1080], [1081], [728],
[729], [615]). For example, Pavlovskaia and Wiercigroch [796] developed an
analytical transformation for vibro–impact systems with an impacting mass.
The transformation converts high–frequency low–amplitude excitation into
low–frequency high–amplitude response. It allows the vibrating system to
generate an appropriate internal force to overcome resistance forces of the
media and move downwards.

The dynamics of a small vibro–impact pile driver was studied by Luo et
al [623] using three–dimensional mapping, which is of piecewise property and
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singularities. The existence and stability of period−n single–impact motions
of the pile driver were obtained analytically and numerically. The study in-
cluded the influence of singularity of the Poincaré mapping, caused by the
grazing contact of driver and pile, on global bifurcations and transitions to
chaos. It was found that these transitions are not regular bifurcations but
emerge from piecewise property and singularity of the impact mapping. Sijin
et al [942] obtained the Poincaré map of period−n motions with single–impact
events for a linear vibro–impact system and determined grazing bifurcation
conditions and bifurcation equations.

Luo and Lv [615] developed an analytical model, which describes oscilla-
tory and progressive motions in the dynamics of a plastic impact oscillator
with a frictional slider. Dynamics of the impact oscillator was analyzed using
a five–dimensional map, which describes free flight and sticking solutions of
two masses of the system, between impacts, supplemented by transition con-
ditions at the instants of impacts. Piecewise property and singularity were
found to exist in the Poincaré map. The piecewise property is caused by
the transitions of free flight and sticking motions of impacting masses im-
mediately after the impact, and the singularity of the map is generated via
the grazing contact of impacting masses immediately before impact. These
properties were shown to exhibit particular types of sliding and grazing bi-
furcations of periodic–impact motions under parameter variation.

The problem of two–dimensional vibratory impact of a sphere bounces on
a massive flat horizontal surface was considered by Kozol and Brach [533].
Regions of periodic and chaotic responses were determined. Higher–order pe-
riodic motions were obtained through period–doubling bifurcations. Friction-
less periodic motions remain periodic and of the same order in the presence
of friction. Transition to chaos was also found unaffected by friction. Hill et al
[416] demonstrated that under certain conditions the ball can perform a ‘big’
bounce followed by a ‘little’ bounce, and then simply repeat the sequence.
Clark et al [184] experimentally found that an electronic impact oscillator,
simulating a ball bouncing on a vibrating surface, reveals interesting chaotic
regimes that are consistent with the numerical simulations. The problem of
the normal impact of an elastic sphere or bar on a Timoshenko beam was
considered by Rossikhin and Shitikova [897]. The impact process was found
to be accompanied by material local deformation and propagation of strong
discontinuity wave surfaces in the beam.

The case of a ball oscillating in a container subjected to harmonic exci-
tation was examined by Luo ([606], [607]). The stability and bifurcation of
the system revealed period–doubling bifurcation for unsymmetrical period–1
motions instead of symmetrical period–1 motion. Stability, saddle–node and
period–doubling bifurcation conditions for the model motion were determined
analytically and numerically. The stability and bifurcation conditions for all
motions of this impact oscillator were found to depend strongly on the initial
impact phase instead of excitation frequency.
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3.3 Mass–Spring System

3.3.1 Introduction

This classical system models some mechanical systems such as power ham-
mers and rams. The early study of this system is believed due to Rusakov and
Kharkevich [900], then followed by analytical and experimental studies (see,
e.g., [593], [94], [109], [901], [33], [930], [931], [932], [927], [928]). Kim and Noah
[509] developed a general approach for determining the periodic solutions and
their stability of nonlinear oscillators with piecewise–smooth characteristics.
The approach was based on a modified harmonic balance/Fourier transform
procedure. The method was applied to a forced oscillator interacting with
a stop of finite stiffness. Flip and fold bifurcations were manifested in the
response characteristics.

The bifurcation problem of a spring–mass system vibrating against an
infinitely large plane was studied by Xie [1086]. It was shown that there exist
phenomena of codimension–two bifurcations when the ratios of frequencies
are in the neighborhood of the same special values and the coefficient of
restitution approaches unity. This simple system exhibited flip bifurcations,
Hopf bifurcations of fixed points, and those of period of two points. Lazer and
McKenna [568] and Bonheure and Fabry [128] considered simple undamped
and damped oscillators driven by a periodic excitation, F (t), with a barrier
located at its equilibrium position and is free to oscillate on the right side
of the barrier. The existence of periodic oscillations for the resonance case,
i.e., when the natural frequency is identical to the number n/2 where n is an
integer number, was found to depend on the number of zeros of the function

Φn,p =
∫

F (t)| cos[n(t + θ)/2]|dt. (3.8)

The basic idea of this result is that the impact oscillator is considered as
a limiting case of an asymmetric oscillator.

3.3.2 Unperturbed Motion

With reference to Fig. 3.5(a), the mass–spring under unperturbed oscillations
is governed by the second order differential equation

··
x + ω2

nx = 0. (3.9)

subject to the initial conditions, x(t = 0) = h and x(t = 2π/ωi) = h, where
ωi is the impact natural frequency, i.e., when the mass interacts with the
barrier, h is the gap between the mass m in its static equilibrium position
and the barrier. It is not difficult to show that the subsequent motion of the
mass is given by the following solution
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Fig. 3.5. (a) Mass spring system oscillating against one-sided barrier, (b) typical
time history record, (c) possible phase portraits for different values of gap.

x(t) = h
cos(ωnt− πωn/ωi)

cos(πωn/ωi)
, t ∈ [0, 2π/ωi]. (3.10)

Babitsky [53] showed that this motion is also valid over the entire time
domain as shown in Fig. 3.5(b). The phase portraits for three different loca-
tions of the barrier are shown in Fig. 3.5(c). For the case of h > 0 there are
three different orbits, namely, the periodic, grazing, and impact. The length
of the impact orbit is proportional to the period of oscillations of impact or-
bit, 2π/ωi. This implies that ωn/ωi ≤ 1. Thus the three cases corresponding
to h > 0, h = 0, and h < 0, correspond to hard nonlinear, isochronous, and
soft nonlinear characteristics, respectively.

3.3.3 Perturbed Motion

The perturbed motion of the mass–spring system is considered under sinu-
soidal excitation. The equation of motion may be written in the form

··
x + ω2

nx =
F0

m
cos(Ωt + θ), (3.11)
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where θ is the initial phase angle. The following initial conditions are based
on the assumption of one impact per one period of oscillation

x(t = 0) = h,
·
x(t = 0) =

·
x+, x(t = 2πj/Ω) = h

·
x(t = 0) =

·
x−,

·
xj+ = −e

·
xj−, and

·
x− ≥ 0 (3.12)

The solution of equation (3.11) subject to the initial conditions (3.12) may
be written in the form, [53],

x(t) =
(
h− F0/k

|1 − ν2|
){

cos (ωnt) + tan
(
πk

ν

)
sin (ωnt)

}
+

F0/k

|1 − ν2| cos(Ωt + θ) (3.13)

sin θ = − (1 − e)
2Ω

|1 − ν2|
F0/k

·
x−, (3.14a)

cos θ =

[
1 +

(1 + e)
·
x−

2hωn
cot(πj/ν)

]
|1 − ν2|h
F0/k

(3.14b)

where ν = Ω/ωn. The value of the velocity just before impact can be obtained
from equations (3.13) and (3.14) in the form

·
x− = −2hωn

{
1 ±

√
1 −

[
1 −

(
F0

kh|1−ν2|
)2
] [

1 + 1
ν2

(
1−e
1+e

)2

tan2(πj/ν)
]}

(1 + e)
[
1 + 1

ν2

(
1−e
1+e

)2

tan2(πj/ν)
]

(3.15)
Real velocity values occur if the expression under the radical sign is always

positive, i.e., if

|h|
F0/k

|1 − ν2| ≤
√

1 +
ν2

tan2(πj/ν)

(
1 + e

1 − e

)2

(3.16)

Czolczynski [199] considered a mass–spring–dashpot system under sinu-
soidal excitation with one stop. The equation of motion of the system in the
non–dimensional form is

X
′′

+ 2ζX
′
+ X = cos(ντ + θ) (3.17)

where X = xk/F0, a prime denotes derivative with respect to the non–
dimensional time parameter τ = ωnt, ν = Ω/ωn, and ζ = c/

(
2
√
km
)
.
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The solution of equation (3.17) may be written in the form

X(τ) = Ae−ζτ cos
(√

1 − ζ2τ + ψ
)

+

(
1 − ν2

)
(1 − ν2)2 + (2ζν)2

cos(νt + θ)

+
2ζν

(1 − ν2)2 + (2ζν)2
sin(νt + θ) (3.18)

Equation (3.18) describes the system periodic motion in the absence of im-
pact with a period equivalent to the excitation period when the homogeneous
solution is completely decayed. Czolczynski [199] obtained the conditions for
periodic oscillations with impacts. It was assumed that the time interval be-
tween two subsequent impacts is equal to a multiple of the forcing period
2π/ν, i.e., when X(0) = X(2πj/ν) = −hk/F0, j = 1, 2, ..., where the dis-
placement x was assumed positive upward. This resulted in the value of the
phase angle ψ = −πk/ν. Using the impact law, X

′
(0) = −eX

′
(2πj/ν), the

coefficient A was obtained in the form

A = − (1 + e)ν
[
2ζν sin θ − (1 − ν2

)
cos θ

][
(1 − ν2)2 + (2ζν)2

]
M

(3.19)

where

M = ζ cosψ +
√

1 − ζ2 sinψ + e(exp(−2πjζ/ν))×[
ζ cos

(
2πj
ν

√
1 − ζ2 + ψ

)
+
√

1 − ζ2 sin
(

2πj
ν

√
1 − ζ2 + ψ

)]
.

The phase angle was given by the relationships

sin θ =
− (hk/F0)Ks ±Kc

√
K2

s + K2
c (hk/F0)

2

K2
s + K2

c

(3.20a)

cos θ =
− (hk/F0)Ks ∓Kc

√
K2

s + K2
c (hk/F0)

2

K2
s + K2

c

(3.20b)

where Ks = 1

[(1−ν2)2+(2ζν)2]

{
2ζν − (1−ν2)

M (1 + e)ν cosψ
}
, and

Kc = 1

[(1−ν2)2+(2ζν)2]

{(
1 − ν2

)− 2ζν2

M (1 + e) cosψ
}
.

The lower sign before the square roots in equations (3.20) correspond to
unstable solutions. Furthermore, the solution given by equations (3.20) is
real if

−
√

K2
s + K2

c ≤ (hk/F0) ≤
√

K2
s + K2

c . (3.21)
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Fig. 3.6. Amplitude frequency response and regions of existence of periodic solu-
tions with impacts for e = 0.6: (a) j = 1, ζ = 0.0, (b) j = 2, ζ = 0.0, (c) j = 1,
ζ = 0.025, [199].

The existence of periodic solutions with impacts and the stability of these
solutions were determined under the condition

·
x(2πj/ν) < 0. Fig. 3.6 shows

the regions of the existence of periodic solutions with impacts for e = 0.6,
j = 1 or 2, and two different values of damping factor ζ = 0 or 0.025 in
the domain of gap and excitation frequency parameters hk/F0. The influence
of the coefficient of restitution on the regimes of the oscillator motion with
impact was obtained by Czolczynski [199] in the absence and presence of
damping. Fig. 3.7 shows typical plots for two different values of coefficient of
restitution e = 0.6 and 0.8. It is seen that the large coefficient of restitution
results in widening the regions of periodic solutions. These regions also exist
for negative values of the gap clearance of the barrier.
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Fig. 3.7. Influence of the coefficient of restitution on the regimes of motion with
impact: (a) e = 0.6, ζ = 0.0, (b) e = 0.6, ζ = 0.1, (c) e = 0.8, ζ = 0.0, (d) e = 0.8,
ζ = 0.01, [199].

The dynamic characteristics of a mass–spring–dashpot system, with two
barriers, under support excitation, were studied by Shaw ([926], [927]). The
governing equation of motion of this system may be written in the form

X
′′

+ 2ζX
′
+ X = χ cos ντ, |X | < 1, (3.22)

X
′
+ = −eX

′
− (3.23)

where a prime denotes differentiation with respect to the non–dimensional
time parameter τ = ωnt, ωn =

√
k/m, X = x/x0, x0 is the gap between the

mass and each barrier as shown in Fig. 3.8, ν = Ω/ωn, χ = χ0/x0 and ζ =
c/
(
2
√
km
)
. Shaw [926] conducted stability analysis of the response periodic

motion. Stability boundaries were determined by evaluating the modulus of
the eigenvalues of the first derivative of the system response Poincaré map.
At a saddle–node bifurcation two orbits of the same period and number of
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Fig. 3.8. Schematic diagram of mass-spring-dashpot system with two barriers.

impacts, one a stable node and the other a saddle, were found to coalesce
and annihilate one another. This state was found to occur under the following
condition

χ =
|1 − ν2|(1 − e) [1 + cos(πn/ν)]√

(1 − e)2 [1 + cos(πn/ν)]2 + ν2(1 + e)2 sin2(πn/ν)
(3.24)

Fig. 3.9 shows the saddle–node bifurcation curves for different values of
coefficient of restitution and subharmonic order n as estimated from equa-
tion (3.24). These curves define the excitation frequency at which the jump
phenomenon takes place. As one system parameter varies, say the excitation
frequency parameter, ν, and an eigenvalues passes through +1, Shaw [926]
found three possible bifurcations. For ν = 1.6, the simulations revealed a
supercritical bifurcation characterized by a stable period–1 double–impact
symmetric orbit. For ν = 1.45 the orbit becomes unstable in the form of two
stable antisymmetric orbits.

Natsiavas [714] and Natsiavas and Gonzalez [719] obtained an exact solu-
tion for the periodic, symmetric, double–crossing response of a single–degree–
of–freedom strongly nonlinear oscillator, subjected to harmonic excitation.
The nonlinearity of the system was described by a symmetric tri–linear func-
tion of the system displacement. Both period–one and subharmonic motions
were analyzed. For some combinations of the system parameters, no stable
periodic motion was found to exist and the system exhibited chaotic behav-
ior. These studies examined the effect of asymmetries in the response due
to unequal gaps as well as unequal stiffness and damping coefficients. It was
found that the behavior of the system resembles the response of similar non-
linear systems with continuous characteristics, such as the response of the
Duffing and van der Pol oscillators.
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Fig. 3.9. Saddle-node bifurcation boundaries excitation amplitude-frequency do-
main for different values of coefficient of restitution and subharmonic order−n,
[926].

Natsiavas ([715], [716]) examined the long time response of a class of har-
monically excited, single degree–of–freedom, strongly nonlinear oscillators.
The nonlinearity appears in both the damping and restoring forces, which
are bi–linear functions of the system velocity and displacement, respectively.
It was found that the system exhibits a regular behavior for some combi-
nations of its parameters. However, there are sets of parameters for which
the system undergoes bifurcations which may lead to loss of stability of pe-
riodic solutions and the appearance of a chaotic response. The most general
n–periodic steady state solutions with an arbitrary number of contacts per re-
sponse cycle were analyzed. It was shown that, when the damping is positive,
the change of stability of the steady state response is not possible through
a Hopf bifurcation. Alexander et al [8] developed a finite element model and
an equivalent single–degree–of–freedom closed–form solution to predict the
dynamic parameters and response of an experimental structure interacting
with a gap. The equivalent model was represented by a piecewise linear sys-
tem. The results suggested that the closed–form solution approximates the
response of the experimental structure with accuracy greater than that of
the finite element model. Moorthy et al [693] presented a numerical solu-
tion algorithm of the chaotic problem of impacting single–degree–of–freedom
oscillators, using the Newmark method. The scheme incorporates an equilib-
rium iteration and variable time–stepping algorithm based on convergence
criteria which ensure minimum error at each step.
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Chillingworth [171] classified the local geometry of the discontinuity set
together with associated local dynamics for a single degree–of–freedom os-
cillator impacting against a fixed barrier. Generic transitions were found to
occur in the discontinuity set as the position of the barrier is smoothly var-
ied. Analytical and numerical solutions of two impacts per n periods of the
excitation force and its stability were obtained by Kotera and Peterka ([523],
[524]) and Peterka and Vacik [833]. Peterka and Formanek [827] developed
analogue and numerical simulation algorithms to predict a wide spectrum of
periodic and chaotic impact motions of single-degree-of-freedom systems with
strong nonlinearities (impacts and dry friction). The main outcomes of these
algorithms are the time and phase trajectories, bifurcations characteristics,
Lyapunov exponents, Poincaré maps and autocorrelation functions. Peterka
[822] studied the dynamics of a single degree–of–freedom impact oscillator
for the case when the stiffness of the barrier changes from zero to infinity.
The Kelvin–Voigt and piecewise linear model of soft impact was considered.
New phenomena were observed in the dynamics of motion with soft impacts
in comparison with known dynamics of motion with rigid impacts.

Kryzhevich [552] considered the absolute elastic impact against a fixed
limiter and analyzed the concept of overtaking phenomenon, which is a char-
acteristic feature of impact systems. Gendelman and Meimukhin [360] exam-
ined the response regimes of integrable strongly nonlinear damped oscillator
under periodic impact loading. For particular model coefficients the system
was made integrable. Stable and unstable response regimes corresponding to
single–period responses were predicted. For some regions of space of param-
eters and initial conditions, different response regimes were found to coexist
[1070]. Cheng and Xu [167] determined the stable periodic motion, saddle–
node, grazing and periodic doubling bifurcation conditions of a single–degree–
of–freedom impact oscillator. The grazing bifurcation, period doubling bifur-
cation and periodic motions were demonstrated on a Poincaré surface defined
at a constant excitation phase in terms of excitation amplitude. For fixed val-
ues of coefficient of restitution and viscous damping, the hysteretic region,
in the amplitude–frequency space, was found to grow with increasing the
excitation amplitude and frequency above the resonant frequency.

Lee and Nandi [573] performed signal analysis of the observed impacting
signals measured from an experimental model in the chaotic region. Two
stages of the signal processing were considered: (a) blind deconvolution and
optimization of the observed data, and (b) Lyapunov exponents and noise
reduction. The phenomena of the complete, incomplete and chaotic chattering
of a mass–spring–dashpot oscillator with end–barrier were examined in terms
of p–impact period–n motion using impact map and Poincaré map [572].
Later, Lee and Nadi [574] used blind deconvolution techniques for impact
force identification.

Cheng and Xu [167] considered the same system but in the dimensional
form, i.e.,

x
′′

+ 2ζx
′
+ x = χ0 cos ντ, (3.25)
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Fig. 3.10. Bifurcation diagram showing the dependence of response amplitude
on excitation amplitude showing the phenomenon of hysteresis, for excitation fre-
quency ratio ν = 2.1, e = 0.7, and symmetric clearance ±x0, [167].

with symmetric and asymmetric clearance. They examined the periodic mo-
tions of the system for orbits designated by Pnpq, where n is the number of
excitation cycles, p and q are the number of impacts on the first and sec-
ond barriers, respectively. The hysteretic behavior involving impacting and
non–impacting periodic orbits was analyzed. The bifurcation plot using the
excitation amplitude as the control parameter was generated by numerical
simulation of equation (3.25) for the case of symmetric clearance with e = 0.7.
The excitation amplitude was initially set to χ0 = 6.0 and the initial con-
ditions were set to x(τ = 0) = 0.9 and x

′
(τ = 0) = −1.1, which is a point

in the chaotic region. With each decrement of χ0 the initial conditions were
set to be the previous values. Fig. 3.10 shows the bifurcation diagram for
damping ratio ζ = 0.05 and excitation frequency ratio ν = 2.1. The only
coexisting stable attractors for χ0 < 6.0 were traced by increasing the exci-
tation amplitude from 0.0 to 6.0. Fig. 3.10 also shows four different types of
local transitions for period–1 orbit. The point at χ0 = 3.41 marks the occur-
rence of grazing bifurcation (GB1). Thus over the excitation amplitude range
χ0 = 0.0 to 3.41, the system exhibits non–impacting periodic oscillations of
the type P100 solution. At χ0 ≈ 0.5 the system possesses a saddle–node bi-
furcation (SN1) and the only stable state occupies the region χ0 = 0.0 to
0.5. At χ0 ≈ 0.5 a pair of symmetric impacting periodic orbits is created as
a result of the saddle node bifurcation in which one is a stable node and the
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Fig. 3.11. Domains of attraction showing the chaotic attractor by the white region
for ν = 2.1 and χ0 = 4.65, [167].

other is unstable saddle node. Thus, over the region χ0 = 0.0 to 3.41 both the
stable impacting and the non–impacting periodic orbits coexist, and the sys-
tem experiences hysteresis. At excitation amplitude χ0 = 3.45 the response
experiences symmetry breaking (SB) and two similar stable period–1 asym-
metric orbits are created. One of these asymmetric orbits experiences grazing
bifurcation (GB2) at χ0 = 5.215 and the system settles down to the chaotic
attractor. At χ0 = 4.51, a saddle–node bifurcation (SN2), there arise sta-
ble and unstable asymmetric orbits (P112 and P121). These orbits are shown
between point SN2 and the point of period doubling (PD). These orbits
lose their stability as a result of period doubling bifurcation at χ0 = 4.735
and lead to chaotic attractor at χ0 = 5.24. Thus between χ0 = 4.51 and
χ0 = 4.735 there are four different coexisting attractors including a pair of
asymmetric P111 coexisting with asymmetric P112 and P121 orbits or two dis-
jointed chaotic attractors or a pair of high periodic stable attractor. Fig. 3.11
shows the basins of attraction and two connected pieces of chaotic attractor.
The white region belongs to the basin of attraction for the chaotic attractor.
The stable manifold of the unstable symmetric periodic orbit is the basin
boundary. The same scenario applies to the case of asymmetric clearance.
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Experimental investigations of an impact oscillator with a one–sided elastic
constraint were reported by Ing et al [446]. The results revealed different
bifurcation scenarios under varying the excitation frequency near grazing
for different values of excitation amplitude. When a non–impacting periodic
orbit bifurcates into an impacting one via grazing mechanism, the resulting
orbit was found to be stable. However, in many cases it was observed to lose
stability through grazing. The evolution of the attractor is governed by a
complex interplay between smooth and non–smooth bifurcations.

3.4 Pendulum Oscillating Against One– or Two–Sided
Barrier

The simple pendulum is a classical example extensively used to demonstrate
complex dynamic characteristics. It possesses rich dynamics even in the ab-
sence of impact. It has also been utilized to simulate liquid sloshing dynamics
in partially filled containers both for impact and non–impact liquid motion
regimes [436]. The inverted pendulum was also used to model the ship roll
dynamics [696]. Blinov [125] analyzed the motion of a gyroscopic pendulum
with restricted rotation of the rotor, operating under an ideal unilateral con-
straint on the angle nutation. Blinov estimated the upper and lower bounds
for the period of the pendulum with respect to the angle of nutation. Other
applications include gantry crane dynamics and vibration absorbers.

The early work of vibro–impact oscillations of pendulums was reported by
Babitsky [52], Shaw ([927], [928]) and Sharif–Bakhtiar and Shaw [922]. These
studies dealt with the existence and stability of certain periodic and chaotic
motions of the pendulum. Moore and Shaw [691] experimentally investigated
the harmonic excitation of a pendulum against rigid barriers. The pendulum
was considered in both normal (downward) and inverted positions. The re-
sponse of the pendulum to sinusoidal excitation revealed non–impacting mo-
tions, stable subharmonics, and chaotic motions. These were experimentally
found to occur in the parameter regions predicted analytically. The inverted
pendulum was found to have 10 distinct possible steady–state responses at a
fixed driving amplitude and frequency, each of which was obtained simply by
changing the initial conditions. Sharif–Bakhtiar and Shaw [922] studied the
effects of motion–limiting stops on the dynamic behavior of a centrifugal pen-
dulum vibration absorber. Their analysis revealed the existence and stability
of nonlinear impacting periodic motions. One of the important observations
was the coexistence of impacting and non–impacting periodic motions at the
desired operating frequency.

Bayly and Virgin [99] and Slade et al [949] conducted numerical simulations
and experimental measurements to study the forced excitation of nonlinear
impacting pendulum. They reported periodic and chaotic regimes. Garza
and Ertas [357] and Todd and Virgin [1005] presented experimental stud-
ies of pendulum impacts including inverted and normal pendulums. They
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Fig. 3.12. Schematic diagrams of (a) pendulum on an inclined support and (b)
inverted pendulum under sinusoidal excitation.

demonstrated the chaotic responses between windows of periodic orbits. It
was indicated that the chaotic regime is characterized by finger–like attractors
whose number is governed by the periodicity of the previous periodic orbit. A
“double–impulse” model of a clock with one counter impulse and one pushing
impulse in the period was constructed by Amelkin and Kalitin [11].

The problem of an oblique frictional impact was found to introduce com-
plicated dynamics such as stick–slip motions. Based on a hybrid analysis of
vibro–impact dynamics, kinematics and complementary conditions, Dong-
ping and Haiyan [264] developed a piecewise analysis method to describe
the sliding motion during an oblique impact. They adopted a parametrically
excited planar pendulum between two parallel rigid walls as an illustrative
example. It was shown that the sliding impacts occur in such a system with
a set of properly selected parameters.

The dynamic behavior of a parametrically excited planar pendulum sub-
jected to a motion–dependent discontinuity was studied by Mann et al [637].
The contact force was modeled by nonlinear elastic and viscoelastic forces.
The model incorporated Hertzian contact law for elastic conformal contact.
This modeling was similar to the one adopted by Půst and Peterka [872] who
described the nonlinearity of the restoring contact force between solid bodies
as function of deformation and velocity. Such modeling was found conve-
nient for viscoelastic material barriers in which the material has a velocity–
dependent impact force. Experimental and numerical results revealed the
presence of multiple periodic attractors, subharmonic, quasi–periodic, and
chaotic oscillations.

Piiroinen et al [842] reported some experimental results of a free swinging
pendulum colliding with a rigid stop. The pendulum support was inclined at
an angle θ̂ as shown in Fig. 3.12(a) and subjected to a harmonic excitation,
x(t) = X0 sinΩt. The inclination of the support was introduced to reduce the
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Fig. 3.13. Bifurcation diagrams of experimental measurements in which the re-
sponse was sampled once every forcing cycle for (a) θ̂ = 10o, (b) θ̂ = 20o, (c)
θ̂ = 30o, and (d) θ̂ = 40o, [842].

influence of gravity, which results in a reduction of the natural frequency of
the pendulum, ωn. The equation of motion of the pendulum may be written
in the non–dimensional form

θ
′′

+
2ζ
ν
θ
′
+

1
4ν2

sin θ = x0 cos θ sin τ (3.25)

where a prime denotes to differentiation with respect to the non–dimensional
time parameter τ = Ωt, ν = Ω/2ωn, ωn =

√
g/L, and x0 = X0/L. Under

impact, equation (3.25) must be augmented with the impact law

θ
′
+ = −eθ

′
− (3.26)

Note that in the absence of any barrier, the response of the pendulum
as governed by equation (3.25) possesses soft nonlinear characteristics. The
numerical simulation of equations (3.25) and (3.26) for different values of
the barrier angle θ̂ revealed grazing bifurcation that lead to a rapid change
in the pendulum motion, from non–impacting period–one periodic motion
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to impacting chaotic motion containing windows of stable periodic orbits in
a period–adding cascade. The experimental results confirmed the numerical
simulation and Fig. 3.13 shows the dependence of the pendulum response,
θ, on the excitation frequency ratio, ν, for four different values of inclina-
tion angle, θ̂ = 10o, 20o, 30o, and 40o. There is a critical frequency ratio
below which a period–1 limit cycle exists and the pendulum does not experi-
ence any impact. At a critical forcing frequency the pendulum was observed
to graze with the stop and impacting oscillations took place at frequencies
greater than that critical value. The impacting oscillations were character-
ized by a complex sequence of chaotic and periodic motion. At a large enough
excitation frequency the motion settles into a period–1 motion that impacts
precisely once per period. The critical forcing frequencies were νc ≈ 0.343 for
θ̂ = 10o, νc ≈ 0.405 for θ̂ = 20o, νc ≈ 0.435 for θ̂ = 30o, and νc ≈ 0.446 for
θ̂ = 40o. It is known that the route to chaos is a period–doubling cascade,
however, Fig. 3.13 shows what is known as period–adding cascade.

Du and Zhang [265] considered a class of nonlinear impact oscillators based
on an inverted pendulum impacting against rigid walls under external peri-
odic excitation. They extended Melnikov method to non–smooth systems.
The absence of closed form solutions was found to create some difficulties in
estimating the gap between the stable manifold and unstable manifold. Du
and Zhang [265] and Du et al [266] introduced an algorithm to compute the
Melnikov functions up to the nth–order to obtain conditions of parameters
yielding homoclinic cycles and subharmonic bifurcation of the pendulum.

Under horizontal sinusoidal excitation and with reference to Fig. 3.12(b),
the inverted pendulum equation of motion may be written in the form

Θ
′′

+ 2ζΘ
′ − Θ = χ sin ντ, |Θ| < 1, (3.27)

Θ
′
+ = −eΘ

′
−, Θ = ±1 (3.28)

where Θ = θ/θi, ν = Ω
√

L/g, χ = (X0/L) ν2, and a prime denotes differ-
entiation to the non–dimensional time parameter τ = ωnt. Shaw and Rand
[934] presented analytical and numerical solutions to determine bifurcation
conditions including the appearance of subharmonics by saddle–node bifurca-
tions, secondary bifurcations, and global bifurcation. The particular solution
equation (3.27) for relatively small values of external excitation amplitude
may be written in the form

Θp(τ) =
χ sin(ντ − ψ)√

(1 + ν2)2 + (2ζν)2
, tanψ =

2ζν
1 + ν2

. (3.29)

As long as the response amplitude Θ0 = χ/

√
(1 + ν2)2 + (2ζν)2 < 1, the

motion is a non–impacting periodic of period–1. There exist other types of
periodic motions involving impacts at Θ = ±1. In particular, two types of
periodic motions were identified. The first is referred to as type–I periodic
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Fig. 3.14. Phase portraits generated for e = 1, ζ = 0.1: (a) Type I motion χ = 0.6,
ν = 4.0, period T , (b) Type I motion χ = 0.65, ν = 4.0, period 2T , (c) Type
II motion χ = 2.3, ν = 1.95, period T , (d) Type II motion χ = 2.3, ν = 1.8,
unsymmetric period T after pitchfork bifurcation, (e) Chaotic type motion χ = 2.0,
ν = 4.0, [934].

motions correspond to the pendulum impact at one side of the barrier wall
(Θ = +1 or −1) with period–1 or period–2 as shown in the phase portrait of
Figs. 3.14(a) and 3.14(b) respectively. Type–II periodic motions were found
to be either symmetric or unsymmetric as shown in Figs. 3.14(c) and 3.14(d),
respectively. These motions take place in the form of the pendulum impacts
on the two barriers. Fig. 3.14(e) exhibits a strange attractor type motion. Rest
motion in which the pendulum mass is in contact with one of the barriers was
found to coexist with stable subharmonics and/or chaotic motions. Moore and
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Fig. 3.15. Measured time response records in the chaotic motion regime: (a)
impacts on both barriers for χ = 1.42, ν = 5.05, (b) impacts on the right barrier
χ = 1.39, ν = 10.3, [691].

Shaw [691] conducted a series of experimental tests on normal and inverted
pendulums. Fig. 3.15(a) shows a typical time history record of chaotic motion
with impacts on both barriers for χ = 1.42 and ν = 5.05. Fig. 3.15(b) reveals
chaotic motion with impacts on the right barrier for χ = 1.39 and ν = 10.3.

Lenci and Rega [583] extended the work of Shaw and Rand [934] in an
attempt to reduce the regions of chaotic motions of the inverted pendu-
lum. They derived a closed form solution for the maximum reduction by
means of two impulses of amplitude. Later, Lenci and Rega [584] and Rega
and Lenci [885] considered a class of periodic motions of an inverted pendu-
lum with rigid lateral constraints. The system was excited by an arbitrary
periodic excitation. The periodic solutions were determined as fixed points
of the stroboscopic Poincaré map. It was shown that the stability is lost
through classical saddle–node or period–doubling bifurcations. The existence
paths were determined, both geometrically and analytically, on the basis of a
function that can easily be derived from the periodic excitation function.
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Fig. 3.16. Time history records of chattering oscillations regime where ΔΘ(τ ) =
[1 + Θ(τ )]104 for excitation frequency ratio ν = 5.0: (a) χ = 1.07, (b) χ = 1.0967,
[215].

Furthermore, the dynamics and control of an inverted pendulum with rigid
unilateral constraints was considered under optimal excitations that would
reduce the chaotic region in the parameter plane. The performance regimes
of the optimal excitations were numerically evaluated by comparison with
the reference case of harmonic force, and it was shown that it is possible to
improve some technical requirements of the dynamics through proper imple-
mentations of the optimal excitations.

Demeio and Lenci [215] analyzed the chattering oscillations of impact
dampersmadeup of an invertedpendulum impacting between two lateral walls.
An emphasis was given to estimate the time period required by the micro–
oscillations to come to rest. When the time period becomes equal to the ex-
citation period the chattering was observed to cease. Chattering oscillations
are characterized by very small amplitude, which decreases in time as shown
in Fig. 3.16. These oscillations consist of infinite number of impacts occurring
in finite time period, called the chattering time, τc, which is a fraction of the
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excitation period. As the excitation amplitude gradually increases the chatter-
ing amplitude and time increase until the chattering time reaches its critical
value, i.e., τcr = T . Above that value, the chattering disappears, and after a
transient time the response approaches another attractor, which may not coex-
ist with chattering over the range 1 < χ < χcr. It was shown that such critical
period is asymptotically proportional to the square root of the excitation am-
plitude. Later, Lenci et al [582] performed a numerical investigation of the non-
linear dynamics of an inverted pendulum and identified three different regimes.
These are periodic, chaotic, and rest positions with subsequent chattering.

3.5 Ship Impact Interaction with Ice

3.5.1 Introduction and Modeling

Ice impact loading can cause significant damage to offshore structures and
ships. The impact arises when drifting ice sheets, ice floe, and icebergs are
moving with considerable speed under the action of environmental condi-
tions. When a fast–moving ice feature crushes against a narrow structure,
the force of impact is irregular, random and contains repetitive fluctuations.
The random fluctuations can be explained by random variations of ice prop-
erties as well as ice failure at random locations along the contact area. For a
comprehensive account of the ice impact with ships and ocean structures the
reader may refer to the review article by Ibrahim et al [438].

Powell et al [866] studied the dynamic impact interaction between ice and
structures for a large ice floe striking a tubular steel platform. Mathemati-
cal models of ice feature impacts with offshore platforms or vessels include (i)
head–on impacts, when an iceberg has a single degree–of–freedom and an ab-
solutely rigid non–compliant structure [151], (ii) more complex models tak-
ing into account the structure compliance and its local and global deforma-
tions ([194], [974], [975], [280]), and (iii) eccentric impacts ([349], [911], [725]).
Ship hull–ice loading has been measured either with actual ships or small–scale
model basin tests, or controlled field tests [354]. The impact of a ship hull with
an ice cusp was experimentally simulated by Gagnon et al [353]. The impact-
ing ship or offshore structure was represented by a mass–spring–dashpot sys-
tem having a constant velocity relative to the ice sheet. The nonlinear dynamic
response was due to intermittent ice breakage and intermittent contact of the
structure with the ice. Periodic motions were found and the periodicity for a
particular system was found to be dependent upon initial conditions. A de-
scription of some of the effects of random variations in system parameters was
also discussed.

Related to ship impact dynamics is the problem of two–dimensional mo-
tions of a point mass and a rigid body supported by two cables, which model
a floating breakwater. This problem was studied in the upside–down config-
uration by Plaut and Farmer [858]. Buoyancy and the weight of the body
were included, and the wave forces were modeled as harmonic forces, which
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Fig. 3.17. Schematic diagram of one-sided ice barrier impact with ship in roll
oscillation showing the coordinates of motion.

follow an elliptical path in a vertical plane. The mooring lines were assumed
to have no effect on the breakwater when they are slack and to provide an
instantaneous impulsive force when they become taut. In the absence of wave
forces, the body ‘bounces’ on the boundaries and approaches the equilibrium
position in which both cables are taut. Under forcing excitation, the body was
found to settle down, or for sufficiently high forcing amplitudes may reach
the level of the supports.

During ship roll oscillations, ice sheets may impact with the ship side
surface. Let the ice forms a barrier with the ship when it hits ice at a roll
angle φ = −φi as shown in Fig. 3.17. The ship equation of motion may be
written in the form [373].

··
φ + 2ζωn

·
φ + a

·
φ|

·
φ| + ω2

nφ + C3φ
3 + C5φ

5 = ξ(t), for φ ≥ −φi (3.30)

where ζ and a are the linear and nonlinear hydrodynamic damping factors,
respectively. ωn is the roll natural frequency of small oscillations of the
ship, C3 and C5 are the ship nonlinear restoring moment coefficients. ξ(t) is
ocean wave excitation moment, which can be deterministic or random. When
the total restoring moment vanishes, i.e., ω2

nφ + C3φ
3 + C5φ

5 = 0, the ship
is either at its equilibrium position, φ = 0 (for unbiased ship equilibrium)
or has reached the capsizing roll angle, φc. Introducing the non–dimensional
parameters τ = ωnt and q = φ/φc, equation (3.30) takes the form

q
′′

+ ζq
′
+ γq

′ |q′ | + q + C3q
3 + C5q

5 = Z(τ), (3.31)

where ζ = 2ζ, γ = aφ2
c , C3 = C3φ

2
c/ω

2
n, C5 = C5φ

4
c/ω

2
n, and Z(τ) =

ξ(t)/
(
ω2

nφc

)
. Note that at impact we have qi = φi/φc.
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Equation (3.31) is a nonlinear differential equation describing the ship roll
dynamics under nonlinear hydrodynamic sea waves. For one–sided barrier
representing impact of floating ice on one side of the ship at an impact angle
q = −qi, the following Zhuravlev transformation is introduced

q = zsgn(z)− qi. (3.32)

This transformation shifts the barrier to the axis z = 0 and maps the
domain q > −qi of the phase plane trajectories on the original plane (q, q

′
)

to the new phase plane (z, z
′
). In this case the ship equation of motion takes

the following from

z
′′

+ ζz
′
+ γz

′2sgn(z
′
) + z

+sgn(z)
[
−qi + C3 (zsgn(z)− qi)

3 + C5 (zsgn(z)− qi)
5
]

= Z(τ)sgn(z).
(3.33)

Equation (3.33) describes the roll motion of the ship in terms of Zhuravlev
non–smooth coordinate z. It is seen that this equation does not explicitly
includes any impact terms. The free and forced dynamics will be discussed
in the next subsections.

3.5.2 Unperturbed Ship Dynamics

In the absence of damping the unperturbed motion equation takes the form

z
′′

+ Γ (z) = 0 (3.34)

where Γ (z) = z + sgn(z)
[
−qi + C3 (zsgn(z)− qi)

3 + C5 (zsgn(z)− qi)
5
]

is
the nonlinear restoring moment of the ship and is shown in Fig. 3.18(a) for
the selected impact angle qi = −0.4, and nonlinear coefficients C3 = −0.3,
and C5 = 0.1. It is seen that the restoring moment vanishes at z = 0.4. The
potential energy, Π(z), is obtained by integrating the restoring moment Γ (z)
over the limits qi and z, i.e.,

Π(z) =

z∫
qi

Γ (y)dy = a6z
6 + a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 (3.35)

where the coefficients ai are functions of C3, C5, and qi. Note that the choice
of the lower limit, qi, is chosen such that at qi the potential energy is min-
imum as shown in Fig. 3.18(b). It is seen that at z = 0 (corresponding to ship
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Fig. 3.18. Restoring moment and potential energy of the ship for the case of qi > 0:
(a) Restoring moment, and (b) Potential energy in terms of Zhuravlev’s non-smooth
coordinate z, [373].

angle q = −qi) the potential has a maximum of Π(z = 0) = 0.0730283.
The Hamiltonian of system (3.34), H =

(
z

′2/2
)

+ Π(z), possesses the first
integral of motion

z
′
= ±

√
2 [H −Π(z)]. (3.36)

As long as H > Π(z) the phase diagram is periodic closed orbit in the phase
space {z, z′} as shown in Fig. 3.19. With reference to Fig. 3.18(b),H reaches its
maximum value Hmax = Π(z = 0) = 0.0730283. The periodic orbits are only
restricted inside the domain D = {(z, z′

)|H ≤ Hc}, where Hc = Hmax −ΔH ,
and ΔH is sufficiently small. Hc is the critical energy level above which impact
of the ship will take place, and the trajectories of the motion will be structurally
unstable. The motion corresponding to Hmax = 0.0730283 follows a critical
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Fig. 3.19. Phase prorait showing three regimes of motion, impact motion (thick
solid curve), Grazing impact (dashed curve), H = 0.03 periodic non-impacting
oscillation (thin curve).

orbit shown by the dashed curve in Fig. 3.19. This orbit describes the grazing
impact of the ship with one–sided barrier.

Let the system be given an initial velocity z
′
0, i.e., H = z

′2
0 /2. The period

of oscillation, T , can be estimated from equation (3.36) as

T =
1√
2

z∫
0

dz√(
z

′2
0 /2

)−Π(z)
. (3.37)

Note that Π(z) < 0.0730283 is for the entire range of the ship motion
before capsizing as shown in Fig. 3.19. The character of motion depends on
the value of initial velocity

(
z

′2
0 /2

)
. For z

′2
0 /2 < 0.0730283 the integrand

is always real and can assume any value within a range governed by the
condition

(
z

′2
0 /2

)
−Π(z) = 0. For a given initial energy, z

′2
0 /2 < 0.0730283,

the ship will oscillate between two values z1 and z2 and the corresponding
period of oscillation is

T =
1√
2

z2∫
z1

dz√(
z

′2
0 /2

)−Π(z)
. (3.38)
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If z
′2
0 /2 < 0.0730283, the integrand is real and approaches ∞ and the ship

is at the verge of capsizing. If z
′2
0 /2 > 0.0730283 the integrand is always real

and the value of z increases indefinitely. In this case, the motion is unbounded
and the ship will acquire a rotational motion.

3.5.3 Perturbed Ship Dynamics

Under sinusoidal excitation Z(τ) =asin ντ , where a is the excitation ampli-
tude, and ν = Ω/ωn, equation (3.33) was solved numerically under different
values of excitation amplitude and frequency. The numerical solution was ob-
tained for all initial conditions occupying the grazing orbit shown in Fig. 3.19

Fig. 3.20. Samples of time history response records for excitation frequency ratio
ν = 0.88, and excitation amplitude: (a) a=0.02, (b) a=0.046, (c) a=0.084, (d)
a=0.094 (Period four), (e) a=0.106 (Period three), (f) a=0.11, [373].
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Fig. 3.21. Phase portraits corresponding to the time history records of Fig. 3.20,
[373].

by the dashed closed curve. Figs. 3.20(a)–(f) show six selected samples of the
response time history records for excitation frequency ratio ν = 0.88 and
six different values of excitation amplitude, a = 0.02, 0.046, 0.084, 0.094, 106,
and 0.11, respectively. It is seen that for relatively low excitation amplitude,
a = 0.02, the response is periodic and the ship roll amplitude does not reach
the barrier. This is confirmed by the phase portrait shown in Fig. 3.21(a)
and the Poincaré map shown in Fig. 3.22(a) reveals period–1 fixed point. As
the excitation amplitude increases the response experiences grazing bifurca-
tion and assumes amplitude modulated pattern as shown in Fig. 3.20(b) for a
= 0.046. Figs. 3.21(b) and 3.22(b) show the corresponding phase diagram and
Poincaré map, respectively. The response experiences one impact per 10 ex-
citation periods. At excitation amplitude a = 0.084, the response is bounded
chaotic with multi–impacts as shown in Figs. 3.20(c), 3.21(c) and 3.22(c). As
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Fig. 3.22. Poincaré maps corresponding to the time history records of Fig. 3.20,
[373].

the excitation amplitude increases, e.g., a = 0.094, the response possesses pe-
riodic motion with period–4 as shown in Figs. 3.20(d), 3.21(d) and 3.22(d).
It then assumes period–3 for excitation amplitude a = 0.106 as shown in
Figs. 3.20(e), 3.21(e) and 3.22(d). This is followed by period–7 for excitation
amplitude a = 0.11 as revealed in Figs. 3.20(f), 3.21(f) and 3.22(f). For any
excitation amplitude, a ≥ 0.12, the ship experiences rotational motion indi-
cating the occurrence of capsizing. Note that these scenarios are obtained for
given sets of initial conditions. However, for other initial conditions there is
a possibility of other attractors that may coexist under the same excitation
parameters.

Under forced excitation the ship roll dynamics is governed by the excitation
amplitude and frequency and the values of damping factors. The ship response
may be non–impacting or impacting bounded or can experience rotational
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Fig. 3.23. Domains of attraction for different excitation amplitudes for excitation
frequency ν = 0.88. � Period-1 response, � Modulated response, (gray squares)
Multi - periodic response, (quintet symbol) Chaotic motion, empty space: Rota-
tional Motion, [373].

motion leading to capsizing depending on initial conditions. For different sets
of initial conditions covering the entire domain of the phase diagram bounded
by the grazing orbit shown in Fig. 3.19, equation (3.33) was numerically
solved. Note that an initial condition that leads to a rotational motion is the
one that leads to response amplitude that exceeds the exit value φc. Thus, the
safe basin corresponds to the set of initial conditions that lead to bounded
response amplitudes smaller than φc.

Fig. 3.23 shows samples of safe basins of attraction for different values
of excitation amplitude and for excitation frequency parameter ν = 0.88.
It is seen that for relatively small values of excitation amplitude the entire
domain bounded by the grazing orbit experiences non–impact bounded os-
cillations of period–one as shown in Fig. 3.23(a) by the black region. As the
excitation amplitude gradually increases the response assumes modulated
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Fig. 3.24. Bifurcation diagram for excitation frequency ratio ν = 0.88. � Period-
one response, � Modulated response, (quentet symbol) Multi-periodic response,
Chaotic motion, RM = Rotational Motion, [373].

motion shaded by dark gray region as shown in Fig. 3.23(b). This motion is
characterized by one impact every ten excitation periods. The modulated mo-
tion then coexists with multi–periodic oscillation (shown by empty squares,
�) and the chaotic motion (indicated by the quintet symbol) as shown in
Fig. 3.23(c) up to excitation amplitude a < 0.094. Above that excitation
amplitude the region is eroded by regions of rotational motion as shown in
Fig. 3.23(d). For excitation amplitude a ≥ 0.12 the entire region belongs to
ship rotational motion or capsizing.

Fig. 3.24 shows the bifurcation diagram on the plane of response–excitation
amplitudes for frequency ratio ν = 0.88. This figure summarizes all possible
regimes of ship dynamics. Note that for other values of excitation frequency,
the bifurcation diagram may be different particularly as the excitation fre-
quency approaches the resonance frequency.

Fig. 3.25 shows the dependence of stability fraction, Sf , on excitation
amplitude for three different values of excitation frequency, ν = 0.88, 0.94
and 1.20. The stability fraction is also known in the literature (see, e.g., [565],
[995], [998]) as the safety integrity factor (S.I.F.). It is obtained by estimating
the ratio of the area of the stable region in the phase plane (area of the safe
basin) to the total area encompassed by the grazing orbit, which is the safe
basin in the absence of external excitation. For excitation amplitudes less than
a critical value, governed by the excitation frequency, there is no erosion at



92 3 Single–Degree–of–Freedom Systems

Fig. 3.25. Dependence of stability fraction on excitation amplitude for three
different values of excitation frequency: —— ν = 0.88., .... ν = 0.94, —.—.—
ν = 1.2, [373].

all for the safe basin. Above this critical value, the value of the safe basin
area shrinks and the stability fraction drops. It is seen that as the excitation
frequency increases the upper excitation level increases. This is attributed
to the fact that the system is governed by soft nonlinear characteristics and
more force is required to cause large response amplitude as the excitation
frequency increases. Another important feature of the decreasing curve of
the stability fraction is that it becomes progressively less steep when the
excitation frequency increases above the resonant frequency.

3.5.4 Inelastic Impact Modeling

For the case of inelastic impact, the impact condition q
′
+ = −eq

′
− must be

introduced, where e is the coefficient of restitution, and q
′
+ and q

′
− are the

ship velocities just before and after impact, respectively. The coefficient e is
assumed to be close to unity, such that (1−e) is considered a small parameter.
According to the coordinate transformation given by equation (3.32), the
impact condition q

′
+ = −eq

′
− specified at q = −qi, is transformed to

z
′
+ = −ez

′
− at z = 0 (3.39)
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It is possible to introduce this jump into the equation of motion using
the Dirac delta–function, and thus one can avoid using condition (3.39). The
additional term due to ice impact with the ship may be written in the form

(z
′
+ = −ez

′
−)δ (t− ti) = (1 − e) z

′
δ (t− ti) provided

∣∣∣z′
+

∣∣∣ < ∣∣∣z′∣∣∣ < ∣∣∣z′
−
∣∣∣

(3.40)
where ti is the time instant of impact. Since δ (t− ti) = z

′
δ (z), equation

(3.33) can be written in the following form for case of inelastic impact

z
′′

+ ζz
′
+ γz

′2sgn
(
z

′)
+ z + sgn(z)

{
−qi + C3 [zsgn(z)− qi]

3 +

C5 [zsgn(z)− qi]
5
}

+ (1 − e)z
′ ∣∣∣z′∣∣∣ δ (z) = Z(τ)sgn(z) (3.41)

Under sinusoidal excitation and for coefficient of restitution e = 0.8, equa-
tion (3.41) was solved numerically under different values of excitation am-
plitude. A comparison between the ship response due to inelastic impact
(e = 0.8) and its response to elastic impact (e = 1) for excitation frequency
ν = 1 and excitation amplitude a= 0.08 is shown in Figs. 3.26 and 3.27 for
two different sets of initial conditions. For the initial conditions z0 = 0.15,
and z

′
0 = 0.05, the ship experiences periodic impact roll oscillations as shown

Fig. 3.26. Time history records and phase portraits of ship response under wave
excitation frequency ν = 1.2, amplitude a= 0.08, and initial conditions z0 = 0.15,
z
′
0 = 0.05, for the cases of (a)-(b) purely elastic impact, e = 1, (c)-(d) inelastic

impact e = 0.8.
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Fig. 3.27. Time history records of ship response under wave excitation frequency
ν = 1.2, amplitude a= 0.08, and initial conditions z0 = 0.29, z

′
0 = 0.23, for the

cases of (a) purely elastic impact, e = 1 showing rotational motion, (b) inelastic
impact e = 0.8.

Fig. 3.28. Bifurcation diagrams for inelastic impact e = 0.8 and three different
excitation frequencies (a) ν = 0.88, (b) ν = 0.94, and (c) ν = 1.2. � period-1
non-impacting, � period-1 impacting motion, grey squares modulated response, �
multi-period response, quintet symbol is for chaotic motion, RM rotational motion.
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in Figs. 3.26(a)-(b) for the case of e = 1, while it reveals periodic non-impact
oscillations with a smaller steady state amplitude for the case of e = 0.8 as
shown in Figs. 3.26(c)-(d). Under a different set of initial conditions z0 = 0.29,
and z

′
0 = 0.23, the ship experiences rotational motion for the case of elastic

impact, e = 1, and periodic motion for the inelastic case, e = 0.08, as shown
in Fig. 3.27(a) and (b), respectively.

For three different excitation frequencies, ν = 0.88, 0.94, and 1.2, the de-
pendence of the response amplitude on the excitation amplitude is shown in
Figs. 3.28(a) – 3.28(c), respectively. These figures reveal the response bifur-
cation from one motion regime to another. These include period–1 motion,
modulation motion, multi–period motion, chaotic response and rotational
motion. There is also a coexistence of several response regimes that take
place over a finite region of excitation amplitude depending on initial con-
ditions. This is particularly manifested at excitation frequencies less than
unity, i.e., ν < 1. On the other hand, Fig. 3.28(c) shows a narrow region over
which a non-impacting period–1 and impacting period–1 motions coexist in
addition to the coexistence of rotational motion over a wide range of excita-
tion amplitude. Generally, as the excitation frequency increases the excitation
amplitude at which rotational motion occurs is decreased. As expected, the
additional damping associated with inelastic impact is significant than the
linear and nonlinear damping terms in equation (3.33).

3.6 Closing Remarks

This chapter presented a wide spectrum of problems modeled by one free-
dom motion against single– or double–sided barriers. The bouncing ball on
an oscillating table has been recognized a key problem to several applications
such as pneumatic hammers, riveting machines, peening guns, inertia shakers
and pile drivers. The protection of operators and vibration isolation means
of such systems will be discussed in Chapter 5. The conditions for the ex-
istence of periodic solutions of mass–spring–dashpot systems with restraints
together with the stability boundaries were obtained in terms of the coeffi-
cient of restitution and system parameters. The dynamic characteristics of
normal and inverted simple pendulums with one– or two–sided walls were
found to share complex phenomena with the restraint mass–spring oscilla-
tor such as chaos and chattering. One of the main features of these classical
systems is the occurrence of chattering, which is an inherent property of im-
pacting systems. An important application of vibro–impact dynamics is the
interaction of ship roll dynamics with icebergs in cold regions. The safety cri-
terion of ship navigation in these regions has been established by estimating
the stability index.



Chapter 4
Two– and Multi–Degree–of–Freedom
Systems

4.1 Introduction

This chapter considers the problem of vibro–impact dynamics of lumped sys-
tems represented by two and more degrees of freedom in the presence of single
and two barriers. Of particular interest of these systems is the prediction of
bifurcation and chaos manifested by the occurrence of period–doubling and
saddle–node bifurcations. These systems are mainly used as vibro–impact vi-
bration absorbers, spherical pendulums, and coupled pendulums. In the pres-
ence of weak nonlinearities these systems can experience internal resonance
conditions, and possibly parametric resonance when subjected to parametric
excitation. Vibro–impact systems have also been used as passive vibration
control such as vibro–impact dampers, which will be addressed in Chapter 8.

4.2 Two–Degree–of–Freedom Systems

4.2.1 Overview

Analytical and numerical simulations of two-degree-of-freedom systems may
exhibit a stable impact vibration occurring over a wide range of excitation
frequencies when the clearance between the two masses is close to the ex-
citation amplitude. A sub–impact vibration was found to occur when the
frequency is high, while a two–impact vibration occurs as the frequency be-
comes low. These systems were studied in the literature by many researchers
([655], [450], [482], [348], [187], [50], [499], [3], [832], [616], [618], [562], [621],
[457], [1050], [1052], [1068], [1069], [1089], [198], [491], [200], [201], [1046],
[792]). The harmonic excitation of a two–degree–of–freedom system with a
clearance was examined by Masri [655] and Irie and Fukaya [450]. Awrejcewicz
and Tomczak [43] considered the control of one– and two–degree–of–freedom
vibro–impact systems with a delay loop with the purpose of stabilizing the
vibro–impact periodic motion after the occurrence of disturbances.

R.A. Ibrahim: Vibro-Impact Dynamics: Model., Map. & Appl., LNACM 43, pp. 97–123.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Blazejczyk–Okolewska et al [118] considered vibro–impact oscillators driven
by harmonic excitation. They obtained the bifurcation diagram of the rela-
tive displacement of two oscillators versus the excitation frequency. It re-
vealed complicated structure caused by jumps of the system trajectory from
one type to another type. Three or four attractors of different types such as
periodic, chaotic and two different quasi–periodic attractors were found to
coexist. These jumps may occur in random and unpredictable fashion. Dy-
namical uncertainty introduced by these jumps was observed similar to the
uncertainty introduced by riddled basins in coupled systems.

The problem of periodic impact of a bouncing mass on a coupled two–
degree–of–freedom system in the presence of 1 : 4 strong resonance was stud-
ied by Luo et al ([628], [630]) using the center manifold theorem. Here the
strong resonance follows the definition given by Ioos [447], Arnold [31], and
Kuznetsov [560]. If the Jocobian of the system equations of motion pos-
sesses a pair of complex conjugate eigenvalues, which satisfy the condition
|λ1,2| = 1, as the control parameter passes the critical value, and λm

1,2 = 1,
m = 1, 2, 3, and 4 at the bifurcation point, it is possible that Hopf or sub-
harmonic bifurcations in strong resonance cases (1 : 1, 1 : 2, 1 : 3 or 1 : 4)
occur. On the other hand, weak resonance occurs when λm

1,2 = 1, m ≥ 5, and
λm

1,2 	= 1, m ≥ 1. Luo et al [630] found that two–parameter bifurcations of
fixed points in their system near 1 : 4 strong resonance are characterized by
quasi–periodic impact motion, stable and unstable 4 : 4 motions, i.e., four
excitation periods and four impacts during one impact motion period. This
concept of strong or weak resonance is different from that was originally in-
troduced by Kunitsyn and Matveyev [556] and Kunitsyn and Muratov [557]
who formulated the normal form of a dynamical system that contains the
first nonlinear terms for an arbitrary number of non–interacting as well as
interacting resonances of an odd order. They classified the internal resonance
conditions into weak and strong. Weak resonance preserves the stability of
the system, while strong resonance results in system’s instability.

Aidanpää and Gupta [3] identified the system parameter ranges (such as
damping, coefficient of restitution, distribution of masses and clearance) in
a two–degree–of–freedom impact oscillator with proportional damping that
result in stable periodic multiple impacts. The maximum displacement of
one of the masses was limited to a threshold value by a rigid wall. Mikhlin
[676] and Mikhlin et al [679] studied direct and inverse problems that arise in
vibro–impact oscillators with two coordinates undergoing single– or double–
sided impacts. It was found that these systems possess nonlinear vibro–impact
localized and non–localized time–periodic motions, complicated bifurcation
structures giving rise to new types of single– and double–sided impacting
motions, mode instabilities, and chaotic responses.

The presence of friction in vibro–impact oscillators adds another de-
gree of complexity to the modeling of these systems. Peterka ([820], [821]),
Marghitu and Hurmuzlu [641], and Peterka and Szollos [831] considered differ-
ent vibro–impact oscillators with frictional impact. Půst et al [873] presented
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an overview of the vibration of two degrees of freedom systems with impacts
and dry friction.

Qian and Torres [875] examined the existence and multiplicity of non–
trivial periodic bouncing solutions for linear and asymptotically linear impact
oscillators by applying a generalized version of the Poincaré–Birkhoff theorem
to an adequate Poincaré section called the successor map. Luo [611] consid-
ered two vibro–impact systems and analytically derived period−n single–
impact motions and Poincaré maps. It was found that near the point of
codimension–two bifurcation, Hopf bifurcation of period–one single–impact
motion can coexist with Hopf bifurcation of period–two double–impact mo-
tion. Period doubling bifurcation of period–one single–impact motion was
found to exist near the point of codimension–two bifurcation. Luo et al ([631],
[629], [627]) considered the periodic excitation of an oscillator with symmet-
rically placed rigid stops. They used the center manifold theory to analyze
local codimension–two bifurcations associated with double Hopf bifurcation
and interaction of Hopf and pitchfork bifurcation. It was found that near
the value of double Hopf bifurcation there exist period–one double–impact
symmetrical motion and quasi–periodic impact motions.

Pinnington [856] considered the problem of a single collision between two
single–degree–of–freedom systems separated by a gap. The main parameters
governing the motion of this system are the ratio of strain energy to kinetic
energy at initial contact and the damping of the contact. A strong impact
was found to give a half–sine displacement pulse, while a weak impact gives a
truncated half–sine pulse. The coefficient of restitution describing the energy
loss during collision was found to increase with the contact stiffness, damp-
ing, and the relative velocity. A time–stepping power balance algorithm was
developed to calculate the work done due to oscillator internal hysteresis and
the work done of collision between a series of colliding oscillators [857]. The
energy exchange and dissipation from a collision of a pair of oscillators was
studied by creating an equivalent oscillator pair, one has the energy of the
in–phase motion and the other has the out–of–phase energy. It was found
that the energy exchange between colliding oscillators is proportional to the
initial kinetic energy difference of the oscillators. Furthermore, the work done
during collision was found to be proportional to the out–of–phase energy.

The dynamic behavior of two linearly coupled masses in which one mass
can have inelastic impacts with a fixed rigid stop was studied by Valente et
al [1022]. The system was found to be governed by three types of motion:
coupled harmonic oscillation, simple harmonic motion, and discrete rebounds.
It was proven the existence of a non–zero measure set of orbits that lead to
infinite impacts with the stop in a finite time. Pascal [792] considered a two–
degree–of–freedom oscillator with a colliding component and analyzed the
dynamic behavior of the system when the barrier stiffness changes from a
finite value to an infinite one (see also [824]). For the case of rigid impact
and in the absence of external excitation, a family of periodic solutions was
obtained analytically. In the case of soft impact, with finite time duration
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of the impact, periodic solutions with an arbitrary value of the period were
reported. Periodic motions were also obtained when the system is subjected
to harmonic excitation.

Two harmonically excited systems having symmetrical rigid constraints
were considered by Luo and Zhang [626]. The impact in one system was
characterized by collisions with the two constraints, while one of components
of the other system collides with rigid obstacles. The dynamic characteristics
of these systems were studied with special attention to Neimark–Sacker bifur-
cations associated with several periodic–impact motions. Period–one double–
impact symmetrical motions and associated Poincaré maps of two systems
were derived analytically. Neimark–Sacker bifurcations associated with sev-
eral periodic–impact motions were found by numerical simulation. It was
found that the vibratory systems having symmetrical rigid amplitude con-
straints may exhibit complex and rich quasi–periodic impact behavior under
different system parameter conditions.

4.2.2 Vibro–Impact Absorbers

The dynamics of a harmonically excited primary mass and a secondary mass
moving in an inclined slot within the primary mass was studied by Heiman
et al ([400], [401]). In particular, the dynamics of the secondary mass for a
number of impacts during an integer number of cycles of the base motion was
formulated in terms of a return map. It was shown that harmonic, subhar-
monic, and chaotic motions can exist for various values of system parameters.
Different types of stable motions as well as chaotic motions were found to co–
exist. In another treatment, the primary mass was constrained to move verti-
cally within a massive hollow shell [202]. The shell was subjected to harmonic
excitation while gravity and shell contact govern the dynamic response of the
primary mass. The equations of motion for separate domains controlling the
mass were expressed as functional relationships. Natsiavas ([717], [718]) ex-
amined the response of vibration absorbers with elastic stops. The absorber
with stops was shown to possess superior performance characteristics. For
example, it was possible to design nonlinear absorbers and to suppress vi-
bration levels over broader forcing frequency ranges than the conventional
absorber. However, high amplitude beating and chaotic response were found
to arise near the original resonance, because the coexisting periodic response
may become unstable due to Hopf bifurcation.

Nucera et al [740] considered the concept of nonlinear vibration absorbers
by introducing a set of nonlinear energy absorbers that are locally attached
to the main structure. The purpose was to passively absorb a significant part
of the applied seismic energy, locally confining it and then dissipating it in
the smallest possible time. It was demonstrated that it is possible to passively
divert the applied seismic energy from the main structure to a set of preferen-
tial nonlinear substructures where this energy is locally dissipated at a time
scale fast enough to be of practical use for seismic mitigation. They adopted
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a two degree–of–freedom primary linear system and studied seismic–induced
vibration control through the use of vibro–impact nonlinear energy absorbers.
Karayannis et al [493] considered different configurations of linear primary
systems with vibro–impact attachments, which act as shock absorber over a
wide frequency range. It was found that better energy dissipation is achieved
for weak values of the coupling stiffness and relatively large values of mass.
Pilipchuk [851] considered coupled nonlinear two–degree–of–freedom oscilla-
tors, whose characteristic is close to linear for low amplitudes but becomes
infinitely growing as the amplitude approaches certain limit. In particular,
the analysis predicted the evolution of vibration modes as the energy is grad-
ually pumped into or dissipates out of the system. It was shown that the
in–phase and out–of–phase motions may follow qualitatively different scenar-
ios as the system energy increases. For example, the in–phase mode was found
to absorb the energy with equi–partition between the masses. On the other
hand, the out–of–phase mode provides equal energy distribution only until
certain critical energy level. Above that level and as a result of bifurcation of
the 1 : 1 resonance path, one of the masses was found to become a dominant
energy absorber.

Zhang and Luo [1129] described briefly the main features of complex dy-
namic characteristics of two–degree–of–freedom systems contacting a single
barrier. These include Hopf bifurcations, period–doubling bifurcations, singu-
larities and chaos for a two–degree–of–freedom vibro–impact system. Later,
Mikhlin and Reshetnikova ([677], [678]) considered a nonlinear two–degree–
of–freedom system consisting of a linear oscillator with a relatively large
mass, and an essentially nonlinear oscillator with a relatively small mass,
which acts as an absorber of the main linear system vibrations. It was shown
that a stable localized vibration mode exists in a large region of the system
parameters. Frequency response of the system under external periodic force
was obtained.

4.2.3 Dynamic Analysis

The complex dynamic behavior of two–degree–of–freedom systems with one
sided–barrier as shown in Fig. 4.1(a) was considered by Luo and Xie [616]
and Wen and Xie [1069]. The equations of motion in non–dimensional form
was given in the form

μmX
′′
1 + 2ζ (1 + μc)X

′
1 − 2ζX

′
2 + (1 + μk)X1 −X2 = f1 sin(ντ + θ) (4.1)

X
′′
2 + 2ζX

′
2 − 2ζX

′
1 −X1 + X2 = (1 − f1) sin(ντ + θ) (4.2)

where a prime denotes differentiation with respect to the non–dimensional
time parameter τ = ω22t, ω22 =

√
k2/m2, ν = Ω/ω22, Xi = xi/x0, i =
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Fig. 4.1. Schematic diagrams of two-degree-of-freedom systems with (a) one-sided
barrier for one mass, (b) two-sided barrier on one mass, (c) one-sided barrier on
each mass.

1, 2, x0 = (F1 + F2) /k2, μm = m1/m2, μk = k1/k2, μc = c1/c2, f1 =
F1/ (F1 + F2), ζ = c2/2

√
k2m2.

Equations (4.1) and (4.2) describe the system dynamics in the absence of
any barrier. In the presence of the barrier to the second mass, the following
impact law must be augmented:

X
′
2+ = −eX

′
2− (4.3)

where e is the coefficient of restitution.
While the second mass experiences non–smooth dynamics due to impact

with the barrier, the first mass experiences periodic smooth velocity. The
periodic motion implies

X1(0) = X1(2π/ν), X
′
1(0) = X

′
1(2π/ν), X2(0) = H = h/x0

X
′
2(2π/ν) = H, X

′
2+(0) = −eX

′
2−(2π/ν) (4.4)
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Luo and Xie [616] obtained the linearized Poincaré map at the fixed point.
The stability of periodic impacts was determined by estimating the eigenval-
ues of the Jacobian of the Poincaré map, Df(ν, 0) = D{f1, f2, f3, f4}T , where
T is the transpose, f1 = ΔX̃20 is the net displacement of the perturbed sys-
tem trajectory from the unperturbed trajectory, f2 = ΔX̃ ′

10, f3 = ΔX̃ ′
2+,

f4 = Δθ̃. If all eigenvalues of Df(ν, 0) are inside the unit circle, then the
periodic solution is stable, otherwise it is unstable. When the eigenvalues of
Df(ν, 0), with the largest modulus, are on the unit circle, bifurcations occur
in various ways according to their numbers and their positions on the unit cir-
cle. This results in qualitative changes in the system dynamics. Luo and Xie
[616] considered the case of a single complex conjugate pair of simple non–
real eigenvalues, crossing the unit circle with non–zero velocity as ν passes
the critical value νc. For the system parameters μm = 2, μk = 5, f1 = 0,
ζ = 0, H = 1.5, and e = 0.8, the eigenvalues of Df(ν, 0) were estimated
over the range of ν = 0.7219 to 0.7368 and were found to be strictly inside
the unit circle. For ν = νc = 0.7368, it was found that there is a complex
conjugate pair of eigenvalues on the unit circle and the remainder is inside
the unit circle. At the critical excitation frequency ratio νc a supercritical
Hopf bifurcation occurred. At ν = 0.7369 a quasi–periodic response was re-
ported and the corresponding Poincaré sections were estimated and plotted in
Fig. 4.2(a). It was found that a single torus doubling begins to occur at
ν = 0.744, see Fig. 4.2(b), and at ν = 0.7519 and 0.7555 the system settled
into chaotic motion as shown in Figs. 4.2(c,d).

Wen and Xie [1069] considered the stability problem of the same system
but for different system parameters, μm = 2, μk = 6.1, f1 = 0, ζ = 0,
H = 1.6, and e = 0.82, for which νc = 0.745716. For ν = 0.75 the system was
found to experience stable period–2 fixed points after 1500 impacts. As ν is
allowed to increase the system exhibits stable period–4 points, above this ex-
citation frequency ratio, period–doubling cascade stops and four Hopf circles
emerge simultaneously by Hopf bifurcations of the corresponding period–4
points. As ν is increased further the system develops chaotic response through
a finite number of times of torus–doubling process. Further increase of ex-
citation frequency results in stable quasi–periodic impacts represented by a
complex torus. The sequence settles after that to chaotic motion through
torus–doubling bifurcation.

The system shown in Fig. 4.1(b) is a two–degree–of–freedom system with
symmetrically placed rigid stops at the right mass was studied by Luo and Xie
[620]. The period–one double–impact symmetrical motion and its Poincaré
map were derived analytically. The routes from period–one double–impact
symmetrical motion to chaos, via pitchfork bifurcations and period–doubling
bifurcation, were numerically studied. Some non–typical routes to chaos,
caused by grazing and Hopf bifurcation of period–2 four–impact motion, were
studied. Hopf bifurcations of period–one double–impact symmetrical and



104 4 Two– and Multi–Degree–of–Freedom Systems

Fig. 4.2. Projection of Poincar é sections showing the quasi-periodic response for
system parameters μm = 2, μk = 5, f1 = 0, H = 1.5, e = 0.8, (a) ν = 0.7369, (b)
ν = 0.744, (c) ν = 0.7519, (d) ν = 0.7555, [616].

antisymmetrical motions were shown to exist in the two–degree–of–freedom
vibratory system with two–sided stops. Interesting feature like the period–one
four–impact symmetrical motion was also found.

The existence and stability of period–one double–impact symmetrical mo-
tions were examined by Luo and Xie [620]. The vibro–impact system was con-
sidered for the system parameters m1/ (m1 + m2) = 0.6667, k1/ (k1 + k2) =
0.8333, ζ = 0.05, e = 0.8, f1 = 0, and H = 0.1. Fig. 4.3 shows phase por-
traits taken for different values of excitation frequency. The periodic motions
of the system is characterized by the symbol n− p− q, where n is the forcing
cycles, p and q are the number of impacts occurring at constraints B and
A, respectively. As the excitation frequency increases from ν = 3.716962, the
1− 1− 1 symmetrical motion changes its stability, and pitchfork bifurcation
of 1 − 1 − 1 symmetrical motion occurs so that a pair of antisymmetrical



4.2 Two–Degree–of–Freedom Systems 105

Fig. 4.3. Phase portraits of the impacting mass m2 (a) Pair of antisymmetric
period−1 double impact motions, ν = 3.5 pair of antisymmetrical period−1 double-
impact motions, (b) 2−2−2 asymmetrical motion, ν = 3.1, (c) 4−4−4 asymmetrical
motion, ν = 3.029, (d) chaos, ν = 2.9, [620].

double–impact orbits are born, as demonstrated in Fig. 4.3(a). The stability
and local bifurcation of period–1 double–impact symmetrical motion were
numerically confirmed. With further decrease in the excitation frequency ra-
tio ν, the 1− 1− 1 antisymmetrical motion became unstable. These motions
then undergo a succession of period doubling bifurcations, which eventu-
ally result in apparently non–periodic, or chaotic motions. The 2 − 2 − 2,
and 4 − 4 − 4 impact motions, and chaotic regime of the mass are shown in
Figs. 4.3(b) through 4.3(d), respectively, in the form of phase plane portraits.
Later, Yue and Xie [1120] considered a two–degree–of–freedom vibro–impact
system having two–sided impact constraints. They predicted a symmetric pe-
riod n − 2 motion. The symmetric period n − 2 motion corresponds to the
symmetric fixed point of the Poincaré map. It was shown that the symme-
try of the Poincaré map suppresses the period–doubling bifurcation, Hopf–
flip bifurcation and pitchfork–flip bifurcation of the symmetric period n− 2
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motion. They proved that both the two antisymmetric period n− 2 motions
have the same stability.

In the design process of impact forming machines, it is important to achieve
the desired periodic impact velocities. The global bifurcation diagrams for the
relative impact velocities of the impact–forming system versus the excitation
frequency enable the design engineer to select excitation frequency ranges in
which stable period–1 single–impact response to occur, and to predict the
peak–impact velocity and shorter impact period of such response. The dy-
namics of an impact–forming machine was analytically modeled by a lumped
two–degree–of–freedom system by Luo [612]. Special attention was given to
the stability of period–n single–impact motion, Hopf bifurcations in non–
resonance and weak resonance cases, subharmonic and Hopf bifurcations in
1 : 4 strong resonance, and codimension–two bifurcations and chaotic mo-
tions. Stability and local bifurcations of period–1 single–impact motion were
analyzed by using the Poincaré map. Local bifurcation analyses and numeri-
cal simulation revealed that period–1 single–impact motion undergoes period
doubling bifurcation or Hopf bifurcation with change of control parameters.
Period–one single–impact motion undergoes either subharmonic or Hopf bi-
furcation in 1 : 4 strong resonance case. The grazing instability was found
to occur in the strong resonance case. On the grazing boundary of periodic–
impact motion a new impact in the motion period was found to appear.
Luo et al ([625], [622]) introduced a three–dimensional map with dynamical
variables defined at the impact instants for a two–degree–of–freedom plastic
impact oscillator. The piecewise nature of the system was caused by the tran-
sitions of free flight and sticking motions of two masses immediately after the
impact, and the singularity of map was generated via the grazing contact of
two masses and corresponding instability of periodic motions. These proper-
ties of the map were shown to exhibit particular types of sliding and grazing
bifurcations of periodic–impact motions under parameter variation.

Wagg and Bishop [1050] considered the dynamics of a two–degree–of–
freedom impact oscillator with a motion limiting constraint. Bifurcations
occurring between differing regimes of impacting motion and in particular
those occurring due to a grazing bifurcation was observed for a particular set
of parameters. Both periodic and chaotic chatter motions and the regions of
sticking were found to exist. The so–called “rising phenomena”, which occur
in sticking solutions of a two–degree of freedom impact oscillator with double
barriers was considered by Wagg [1045]. The system is shown in Fig. 4.1(c),
which is described by the equations of motion

··
x1 +

c

m

(
2
·
x1 − ·

x2

)
+

k

m
(2x1 − x2) =

A1

m
sinΩt (4.5)

··
x2 +

c

m

( ·
x2 − ·

x1

)
+

k

m
(x2 − x1) =

A2

m
sinΩt (4.6)
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Fig. 4.4. Rising bifurcation in a two degree-of-freedom impact oscillator for system
parameters m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, s1 = −0.3, s2 = 0.1, e = 0.7,
A1 = 0.5, A2 = 0.0, (a,b) Ω = 0.255, (c,d) Ω = 0.2561, (e,f) Ω = 0.26. ..... x1, ——
x2, [1045].

where x1 and x2 are the displacements of masses m1 = m and m2 = m,
respectively. The spring stiffnesses are k1 = k2 = k and the damping co-
efficients are c1 = c2 = c. A1 and A2 are the excitation amplitudes of the
two masses and Ω is the excitation frequency. The barriers are positioned at
distances h1 and h2 from the static equilibrium position. Equations (4.5) and
(4.6) are subject to the following conditions for the free flight

(xi − hi) ≶ 0 for all hi ≷ 0 (4.7)

For system parameters m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1,
h1 = −0.3, h2 = 0.1, e = 0.7, and excitation amplitudes A1 = 0.5 and
A2 = 0.0 , Wagg [1045] carried out a series of numerical simulations and ob-
tained the response time history records shown in Fig. 4.4 for excitation
frequencies Ω = 0.255 (shown in Figs. 4.4(a,b)), Ω = 0.2561 (shown in
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Figs. 4.4(c,d)), and Ω = 0.26 (shown in Figs. 4.4(e,f)). It is seen that the
mass lifts off, or rises, part way through the sticking phase of the motion.
The mass then experiences a chatter sequence and then sticks to the stop
again. As the excitation frequency increases, say, Ω = 0.26, the amplitude
rise grows and the second part of the sticking phase reduces until only a single
impact remains. Toulemonde and Gontier [1011] indicated that the sudden
drop in sticking in the sticking regime is one way of identifying that a rising
even had occurred.

4.3 Spherical Pendulum under Liquid Flow

Flow–induced oscillations of rod elements in pressurized water reactors may
interact with constraints. The planar impact oscillation of these elements was
analytically and experimentally studied by Hennig and Grunwald [403]. The
treatment dealt with the dependence of the pendulum elements oscillation
on the water flow rate. Low–speed oblique elastic impacts frequently occur
in heat exchangers and other equipment having loosely supported tubes or
pipes. It was found that in addition to the planar or “polarized” impact self–
oscillation, both gyratory spatial impact motions and almost non–impact
pendulum sliding around the channel wall can coexist. Päıdoussis et al [769]
experimentally demonstrated that a cantilevered pipe conveying fluid, inter-
acting with motion–limiting nonlinear constraints, exhibits regions of chaotic
motions. In their analysis it was shown that the planar dynamics of the flexi-
ble pipe system revealed chaotic oscillations in the parameter space. The case
of restraint pipes conveying fluid will be considered in Chapter 6.

Osakue and Rogers [754] developed a pendulum–type impact apparatus to
study friction during impacts. A hardened steel sphere at the end of the pen-
dulum collides with a flat steel surface for a range of approach velocities and
angles. The normal and tangential contact force waveforms were measured
using a tri–axial piezoelectric force transducer. The results showed that the
tangential force is less than the limiting Amontons–Coulomb friction predic-
tions at low impact angles. Two regimes of stick–slip and gross–slip friction
were clearly distinguished by a new friction parameter called the “specific
traction ratio”. Tangential force reversal was observed at low impact angles
indicating local tangential oscillations. The stick–slip results were found con-
sistent with a partial slip model where the contact zone has a central sticking
region surrounded by a ring area undergoing slip. This section deals with
the flow–induced impact oscillations of a spherical pendulum whose motion
is described in terms of two angular motions, θ and ϕ as shown in Fig. 4.5.
The equations of motion of this system were written in the form [814]

··
ϕ−

·
θ
2

sinϕ cosϕ + ω2
n sinϕ = 0 (4.8)

··
θ sin2 ϕ− 2

·
ϕ

·
θ sinϕ cosϕ = 0 (4.9)
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Fig. 4.5. Schematic diagram of the spherical pendulum suspended in a cylindrical
tube showing the coordinate frame as considered by Peterka. [814].

where ωn =
√

3g(ρ−ρf )(�2−�20)
2(ρ+cM ρf )(�3−�30)

, � and �0 are the lengths of the suspension

massless arm and the total pendulum arm, respectively. ρ and ρf are densities
of the pendulum and fluid, respectively, and cM is the coefficient of the virtual
mass of the fluid. In view of the restricted motion of the pendulum, the angle
ϕ is very small and equations (4.8) and (4.9) can be linearized with respect
to ϕ to take the form

ϕ
′′

+
(
1 − θ

′2
)
ϕ = 0 (4.10)

θ
′′

+ 2θ
′
ϕ

′
/ϕ = 0 (4.11)

where a prime denotes differentiation with respect to the non–dimensional
time parameter τ = ωnt. Peterka [814] introduced the effect of fluid hydro-
dynamic forces and damping forces due to fluid and structure. The resulting
equations of motion are
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ϕ
′′

+ ϕ
′
F
(
ϕ, ϕ

′
, θ

′)
+
(

1 − θ
′2 +

JcMU2

ρ + cMρf

)
ϕ = 0 (4.12)

θ
′′

+ θ
′ [

2
(
ϕ

′
/ϕ
)

+ F
(
ϕ, ϕ

′
, θ

′)]
= 0 (4.13)

where F
(
ϕ, ϕ

′
, θ

′
)

=

[
G
√

ϕ′2+ϕ2θ′2+H−(KcN+LcM)U
]

(ρ+cM ρf ) , U = u/ (�ωn) , u

is the fluid flow velocity. G =
3α(�4−�40)(cD)0

4A(�3−�30)
, H =

3β(�5−�50)(ck)0

5Aωn(�3−�30)
, J =

3αρf D�2(�2−�20)(cD)0

4A(�3−�30)
, K = �Dρf

2A , L =
3ρf �2(�2−�20)
4A(�3−�30)

, α = cD/ (cD)0 , β =

ck/ (ck)0 , cN , cD, ck are coefficients of hydrodynamic force, liquid damp-
ing, and structural damping, respectively. (cD)0 and (ck)0 are coefficients
corresponding to zero flow velocity. D is the pendulum diameter.

Note that equation (4.13) includes singularity when ϕ = 0. In view of
this singularity together with the sudden change of pendulum velocity at
the instant of impact, Peterka [814] used a special algorithm for accurate
numerical simulation. The dependence of the critical liquid flow velocity at
which the pendulum experiences self oscillations on the viscous hydrodynamic
force coefficient, cN , is shown in Fig. 4.6 for different values of liquid virtual
mass coefficient, cM .

In the presence of a circular barrier of radius R, equations (4.12) and (4.13)
must be augmented with the impact law and braking coefficient, respectively

Fig. 4.6. Dependence of the critical flow velocity on the hydrodynamic force coeffi-
cient for different values of the coefficient of the virtual liquid mass, � = 1.54m, �0 =
0.4m, R = 4.5mm, ρf = 1, 000kg/m3, ρ = 11, 800kg/m3, (cD)0 = 0.127kg/m2,
(ck)0 = 0.2kg/sm3, [814].
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ϕ
′
+ = −eϕ

′
−, and θ

′
+ = (1 −B) θ

′
− (4.14)

where e is the coefficient of restitution of the normal part of the impact,
and B is known as the “braking” coefficient of the circumferential part of the
impact velocity (see Section 5.3 for more details). The numerical simulation of
equations (4.12) and (4.13) subject to conditions (4.14) was found to exhibit
self–excited oscillations of the pendulum with periodically stabilized impact
regardless of the initial conditions of the gyratory motion. Fig. 4.7(a) shows
the locus of the stabilized motion by solid curves. The dependence of the
pendulum angular circumferential displacement, Δθ, and pendulum velocity,
ϕ

′
−, on the braking coefficient, B, is shown in Fig. 4.7(b). It is seen that

for low values of B, the values of Δθ and ϕ
′
− reach their low values and

the gyratory motion approaches that of the pendulum sliding around the
channel wall. As B increases both Δθ and ϕ

′
− increase until B reaches its

critical value, Bc, at which the gyratory self–excited oscillation turns into a

Fig. 4.7. Periodic impact of self-excited oscillation (a) stabilized motion shown by
solid paths, (b) Dependence of the angular difference Δθ and the velocity before
impact ϕ

′
− on the braking coefficient B, [814].
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dangerous polarized oscillation along the channel diameter Δθ = 180o with
intensive impacts of the pendulum against the opposite sides of the channel
wall. The polarized oscillations become stabilized regardless of the value of
the braking coefficient, B, when the initial conditions do not provide the
pendulum rotational motion, i.e., θ

′
(0) = 0.

The bi–planar vibration of the beam experiencing oblique impacts was de-
scribed in two perpendicular planes which intersect in the beam longitudinal
axis ([815], [816]). Three types of oblique impacts were assumed. These are:
1) impact on the plane stop, 2) impact in a circular hole eccentrically placed
with respect to the beam axis, and 3) impacts between neighboring beams in
the bundle. The velocity component in the direction normal to the contact
surfaces of impacting masses is changed by means of the restitution coeffi-
cient. The tangential component of the velocity is changed using the braking
coefficient which depends on the dry friction coefficient, the restitution coef-
ficient and on the incidence angle.

4.4 Pendulum Simulating Liquid Sloshing Impact

An impulsive acceleration to a liquid container can result in impact hydrody-
namic pressure of the free liquid surface on the tank walls. It can also occur
during maneuvering or docking of spacecraft in an essentially low gravity field.
When hydraulic jumps or traveling waves are present extremely high impact
pressures can occur on the tank walls in gasoline tankers and ship cargo tanks
[192]. Typical pressure traces recorded under this sloshing condition were re-
ported by Cox et al [192]. Rumyantsev [899] analyzed the collision of a body
containing a viscous liquid with a rigid barrier. Liquid sloshing impact can
be more severe longitudinally than laterally if no transverse baffles are intro-
duced. The longitudinal acceleration peaks are larger than the lateral ones.
The liquid impact is probably more severe to the structure for longitudinal
than for lateral sloshing. Ye and Birk [1102] measured the fluid pressure in
horizontal partially filled cylindrical tanks with different length to diameter
ratios when suddenly accelerated by impact along the longitudinal axis. The
peak pressure on the end of the tank was strongly affected by the fill level
and the tank length–diameter ratio.

The hydrodynamic pressure distribution of impact loads is an important
factor in studying the integrity of storage tanks and related safety problems.
Milgram [680] experimentally studied the sloshing impact pressure in roofed
liquid tanks. The sloshing roof impact problem was studied by Kurihara, et
al [559]. Minowa et al [682] conducted a series of shaking table tests of a
rectangular tank to measure roof impact pressures, natural frequencies and
modes of bulging vibrations. Their measured results showed that the roof im-
pact pressures possess great potential damage to tank as the pressure reached
as high as 30 psi under 400 gal1 El–Centro seismic excitation. An improved
1 The gal, or galileo, is a unit of acceleration, centimeter per second squared used exten-

sively in the science of gravitational field.
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Fig. 4.8. Schematic diagram of a liquid sloshing impact represented by a simple
pendulum inter-acting with its support structure represented by inverted pendulum.

numerical algorithm, which permits repeated liquid impacts, was developed
by Su and Kang ([965], [966], [967]). Later, Su and Wang ([968], [969]) devel-
oped a three–dimensional finite difference scheme for large liquid amplitude
motion in rectangular and cylindrical containers subjected to vertical and ar-
bitrary excitations. Minowa [681] studied the large sloshing amplitude under
impulsive earthquake inputs. He observed that the high sloshing waves were
produced in the vicinity of surface centers.

The equivalent mechanical model of liquid impact loading is a pendulum
describing impacts with the tank walls. Pilipchuk and Ibrahim [852] introduced
this modeling into the equations of motion of a nonlinear system simulating
liquid sloshing impact in tanks supported by an elastic structure. The system
comprised of a liquid container supported by four massless rods of length L,
which are restrained by four torsional springs of stiffness k at the base as shown

in Fig. 4.8. The base is subjected to vertical base acceleration
··
Y (t). The total

mass of the container including liquid is M and the equivalent sloshing mass of
the first asymmetric mode of the liquid is m. The fluid free surface is modeled
as a pendulum of length �. The equivalent pendulum parameters for different
types of container geometry are documented in Ibrahim [436]. The pendulum
can reach the walls of the tank if its angle with the vertical axis is θ = ±θ0.
Following the idea of non–smooth coordinate transformation due to Zhuravlev
[1137], Pilipchuk and Ibrahim [854] introduced the new coordinate x = x(t)
through the coordinate transformation
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θ = θ0S(x), (4.15)

where S(x) is a periodic saw–tooth piecewise linear function defined as

S(x) =
{

x if − 1 ≤ x ≤ 1
2 − x if 1 ≤ x ≤ 3 S(x+ 4n) = S(x), n = 1, 2, ... (4.16)

The system kinetic energy may be written in the form

KE =
1
2

{
(M −m)L2 ·

ϕ
2

+ m

[
L2 ·

ϕ
2

+ 2�L
·
ϕ

·
θ cos(ϕ + θ) + �2

·
θ
2]}

(4.17)

The transformation (4.15) produces singular terms (δ− functions) in the

equations of motion due to the product
·
ϕ

·
θ. Alternatively, the following trans-

formation may be introduced{
θ
ϕ

}
= θ0

[
1 0
a b

]{
S(x)
y

}
. (4.18)

Introducing transformation (4.18) into equation (4.17) gives

KE =
[(

ML2

2
a2 + m�La +

m�2

2

)
·
x

2
+ (MLa + m�) bLS

′
(x)

·
x

·
y

+
ML2

2
b
·
y
2
]
θ2
0, (4.19)

where the equality
[
S

′
(x)
]2

= 1 has been used and a prime denotes differen-
tiation with respect to x. The constants a and b are selected such that the
product S

′
(x)

·
x

·
y is eliminated, i.e.,

a = − m�

ML
, and b2 =

(
1 − m

M

) m�2

ML2
. (4.20)

The following symmetric form of the kinetic energy is obtained, i.e.,

KE =
1
2

(
1 − m

M

)
m�2θ2

0

(
·
x

2
+

·
y
2
)
. (4.21)

The potential energy is

Π =
1
2
[
(k −MgL)ϕ2 + mg�θ2

]
. (4.22)

In terms of the non–smooth coordinates, equation (4.22) takes the form

Π =
1
2

{
(k −MgL) [aS(x) + by]2 + mg�S2(x)

}
θ2
0. (4.23)
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The equations of motion in terms of the non–smooth coordinates are

�2m
(
1 − m

M

) ··
x +

(
a2c1 + c2

) ·
x +

{(
g −

··
Y

)
�m

+a2

[
k −

(
g −

··
Y

)
LM

]}
S(x)S

′
(x)

= −ab

{[
k −

(
g −

··
Y

)
LM

]
y + c1

·
y

}
S

′
(x), (4.24)

�2m
(
1 − m

M

) ··
y + b2c1

·
y + b2

[
k −

(
g −

··
Y

)
LM

]
y

= −abc1S
′
(x) − ab

[
k −

(
g −

··
Y

)
LM

]
S(x), (4.25)

where c1 and c2 are the damping coefficients associated with the ϕ and θ oscil-
lations, respectively. These equations may be written in the non–dimensional
form

d2x

dτ2
+ ζ2

dx

dτ
+

1
(1 − μ)

[(
1 + μν2

)− (1 − λμ)AY (τ)
]
S(x)S

′
(x)

=
√

μ

1 − μ

[[
ν2 + λAY (τ)

]
y + ζ1

dy

dτ

]
S

′
(x), (4.26)

d2y

dτ2
+ ζ1

dy

dτ
+
(
ν2 + λAY (τ)

)
y

=
√

μ

1 − μ

{
AY (τ)

μ
+ ζ1

dx

dτ
S

′
(x) +

[
ν2 + λAY (τ)

]
S(x)

}
, (4.27)

where μ = m/M , λ = �/L, τ = t
√

g/�, AY (τ) =
··
Y (t)/gθ0, ν = ωL/ω�,

ωL =
√

k−MgL
ML2 , ω� =

√
g/�, ζ1 = c1

ML2ω�
, and ζ2 = μζ1

1−μ

(
1 + c2

c1λ2μ2

)
.

In the absence of damping equations (4.26) and (4.27) take the form

d2x

dτ2
+ �2S(x)S

′
(x) = {a1y + [a2S(x) + a3y]AY (τ)}S′

(x), (4.28)

d2y

dτ2
+ ν2y = a1S(x) + [a3S(x) − λy]AY (τ), (4.29)

where �2 =
(
1 + μν2

)
/(1 − μ), a1 = ν2

√
μ/(1 − μ), a2 = (1 − λμ)/(1 − μ),

a3 = λ
√

μ/(1 − λμ).
For small amplitude oscillations, i.e., when |x| ≤ 1 one has S(x) = x and

S
′
(x) = 1 and equations (4.28) and (4.29) are linearly coupled oscillators
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under parametric excitation. Above the critical value |x| = 1, the identities
S(x) = x and S

′
(x) = 1 do not hold and the system becomes essentially

nonlinear.

4.4.1 Unperturbed System Dynamics

In the absence of parametric excitation the undamped system oscillations
depend on the initial conditions x(0), y(0) and its dynamics is governed by
the autonomous equations

d2x

dτ2
+

∂Π(x, y)
∂x

= 0, (4.30)

d2y

dτ2
+

∂Π(x, y)
∂y

= 0, (4.31)

where the potential energy Π(x, y) is

Π(x, y) =
μν2

2(1 − μ)

[
S(x) −

√
1 − μ

μ
y

]2
+

S2(x)
2(1 − μ)

. (4.32)

Equations (4.30) and (4.31) admit the energy integral

E = Π(x, y) +
1
2

[(
dx

dτ

)2

+
(
dy

dτ

)2
]
. (4.33)

Equation (4.33) reveals that the system cannot leave the region D =
[(x, y) : Π(x, y) ≤ E] bounded by the curves

Π(x, y) = E = const. (4.34)

For different levels of initial energy (initial conditions) the system may
experience non–impact periodic motion, grazing impact, and impact motion.
Fig. 4.9 shows a family of curves for different levels of initial energy, E.
For sufficiently small energy, the family consists of periodic set of separated
ellipses in the configuration plane (x, y). If the energy is localized initially
in only the in–phase mode the system will remain inside the cell where the
motion started at t = 0. The onset of windows is provided by the system’s
critical energy level, Ec, which is sufficient to reach the barrier with zero
velocity, at which grazing impact occurs. The critical energy corresponding
to the grazing impact can be determined from the energy integral (4.33).
When the system reaches the barriers, one has S(x) = ±1, and the minimum
total energy is given by equation (4.33) when the kinetic energy is zero and
y = ±√μ/(1 − μ). Substituting this value of y, one obtains the critical energy

Ec =
1

2(1 − μ)
. (4.35)
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Fig. 4.9. Contours of constant energy levels E = const and trajectory of the model
on the configuration plane. Closed orbits belong to non-impact periodic motion,
open curves belong to impact motion, grazing motion is identified by contacted
ellipses, [854].

Above this critical energy level, the barriers become reachable at non–
zero velocity. In this case, impact occurs and penetration through a potential
window geometrically becomes possible. However, the condition E > Ec is
not sufficient and does not guarantee impact. The sufficient condition depends
on both the total energy and its distribution among the modes as well. For
example, Fig. 4.9 reveals the linear in–phase mode associated with the major
axis (shown by the inclined dashed straight line) of the truncated ellipses
does not cross the potential window. It means that the system will never
reach the windows if the initial energy is localized in the in–phase mode.

Fig. 4.9 demonstrates essential features that depend on a combination
of the system parameters. For example, the potential curves of the linear
system with no barriers are “structurally stable”, i.e., they possess the same
geometrical properties for any energy level. In the presence of barriers the
family of potential curves experience symmetry breaking as indicated by the
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family of incomplete ellipses. These curves intersect each other at cusps which
are aligned along a vertical line at a particular value of x. Thus, it is important
to select some essential parameters to characterize the geometrical properties
of the non–homogeneous potential field. An analysis of Fig. 4.9 shows that
such a natural parameter can be associated with inclination of the ellipses to
the x–axis. This inclination is defined by the angle between the major axis
of the ellipse and the x–axis

tanΦ =
2ν2
√

μ− μ2√
(1 − ν2)2 + 4μν2 − 1 + ν2(1 − 2μ)

. (4.36)

The angle Φ indicates the directions of the normal modes to the barriers
and thus it represents one of the two possible parameters by which different
systems of the class considered can be distinguished.

4.4.2 Perturbed System Dynamics

In the linear domain of the system dynamics, one has to set S(x) = x,
and S

′
(x) = 1 in equations (4.28) and (4.29), which may be written in the

compact matrix form

d2u
dτ2

+ Ku = PuAY (τ), (4.37)

where u =
{
x
y

}
, K =

[
�2 −a1

−a1 −λ

]
, and P =

[
a2 a3

a3 −λ

]
.

By setting the right–hand side of equation (4.37) to zero, one can study
the linear normal mode natural frequencies. The corresponding normalized
natural frequencies and modal fractions are, respectively,

ω2
1,2 =

1
2

[(
ν2 + �2

)∓√(ν2 −�2)2 + 4a2
1

]
, (4.38)

and

{φ1,2} =
1√(

ν2 − ω2
1,2

)2 + a2
1

{
ν2 − ω2

1,2

a1

}
,

with φT
k φn =

{
1 if k = n
0 if k 	= n

. (4.39)

The first modal vector corresponds to the lowest natural frequency ω1 and
is directed along the major axes of the ellipses shown in Fig. 4.9. The direction
can be defined by the angleΦ, i.e., tanΦ = a1/

(
ν2 − ω2

1

)
which is equivalent to

equation (4.36). Introducing the transformation to the principal coordinates
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the equation of motion may be written in the form

d2q1
dτ2

+ ω2
1q1 = (p11q1 + p12q2)AY (τ), (4.41)

d2q2
dτ2

+ ω2
2q2 = (p21q1 + p22q2)AY (τ), (4.42)

where pkn = {φk}T P {φn}.
Under harmonic parametric excitation, AY (τ) = F cosΩτ . One can deter-

mine the response characteristics under three different parametric resonance
conditions. These are 1) first mode excitation: Ω = 2ω1, 2) second mode
excitation: Ω = 2ω2, and 3) mixed mode excitation Ω = ω1 + ω2. The re-
sponse characteristics of these three cases were determined using the method
of averaging and the temporal evolution of the system energy was estimated
for each case.

For the case of first mode parametric excitation in the neighborhood of the
resonance condition Ω = 2ω1, Figs. 4.10(a), and 4.10(b) show qualitatively
different energy time history records of the in–phase mode for undamped and
damped cases, respectively. It is seen that for the undamped case, the energy
response tends to grow with time as shown in Fig. 4.10(a) whereas for the
damped case the energy becomes bounded. The suppression of the energy
growing is due to a cooperative role of the damping and impacts. Over the
time period 0 ≤ τ ≤ 2500 the system behavior is governed by parametric
resonance as shown in Fig. 4.10(b). Above this period impact occurs and the
system energy behaves randomly with bounded levels.

Fig. 4.10. System response energy time history records under first mode parametric
excitation for λ = 0.5, μ = 0.5, ν = 1.0, F = 0.7, Φ = 1.01722: (a) ζ1 = ζ2 = 0.0,
(b) ζ1 = ζ2 = 0.01, [854].
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Fig. 4.11. System response energy time history records under second mode para-
metric excitation for λ = 0.5, F = 0.7, ζ1 = ζ2 = 0.0: (a) μ = 0.5, ν = 0.5,
Φ = 1.01722, (b) μ = 0.5, ν = 1.0, Φ = 1.33897, [854].

Fig. 4.12. System response energy time history records under mixed mode para-
metric excitation for λ = 0.5, F = 0.7, ζ1 = ζ2 = 0.0: (a) μ = 0.5, ν = 0.5, (b)
μ = 0.5, ν = 1.0, [854].

For the case of second mode parametric excitation in the neighborhood of
the resonance condition Ω = 2ω2, the scenario is quite opposite. As the angle
Φ increases the impacts become more beneficial. Figs. 4.11(a) and 4.11(b)
show two time history records of the system response energy for two values
of Φ. It is seen that the energy level decreases as the angle Φ increases. The
damping is set to zero to demonstrate the role of impacts in suppressing the
influence of parametric resonance.
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For the case of mixed mode excitation, in the neighborhood of combina-
tion parametric resonance, Ω = ω1 + ω2, Figs. 4.12(a) and 4.12(b) show two
different response energy time history records for two different values of fre-
quency parameters, ν = 0.5 and 1.0, respectively. Comparing Figs. 4.10(b)
and 4.11(a), obtained for the same parameters, reveals that the system en-
ergy response is greater for the case of combination resonance than for the
case of the principal resonance. The same comparison is also observed in
Figs. 4.11(a) and 4.12(b). Fig. 4.12(b) reveals that the energy is growing
with time with random fluctuations. To this end, these results show that the
system response under combination parametric resonance involves combined
features of both in–phase and out–of–phase modes.

4.4.3 Influence of Internal Resonance

One can phenomenologically describe the interaction between the pendulum
and the tank walls with a power function as Fimpact = b(θ/θ0)2n−1, where
n � 1 is an integer and is a positive constant parameter usually measured
experimentally. The localized dissipative force may be approximated by the

expression Fd = d(θ/θ0)2p
·
θ, where d is a constant, p is a positive integer

(generally p 	= n), and a dot denotes differentiation with respect to time t.
With reference to Fig. 4.8, the equations of motion of this system are
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where the approximations sin θ ≈ θ − θ3/3! and cos θ ≈ 1 − θ2/2 have been
introduced. In addition to the parametric resonance conditions there arises
also an internal resonance condition of fourth–order, i.e., ω3 = 3ω1.

Pilipchuk and Ibrahim [852] employed the saw–tooth time transformation
to describe the in–phase and out–of phase nonlinear periodic regimes. Based on
explicit forms of analytical solutions, all basic characteristics of nonlinear free
and forced response regimes were estimated. It was found that a high frequency
out–of–phase nonlinear mode takes place with relatively small tank amplitude
and is more stable than the in–phase oscillation mode under small perturba-
tions. The in–phase mode was found to possess relatively large tank amplitudes
and does not preserve its symmetry under periodic parametric excitation.
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The same system was later examined using the multiple scale method by
El–Sayad et al [289] in the neighborhood of the three parametric resonance
conditions. When the first normal mode was parametrically excited the sys-
tem exhibits hard nonlinear behavior and the impact loading reduced the
response amplitude. On the other hand, when the second mode was para-
metrically excited, the impact loading results in complex response behavior
characterized by multiple steady–state solutions where the response switches
from soft to hard nonlinear characteristics. Under combined parametric res-
onance the system behaves like a soft system in the absence of impact and
as a hard system in the presence of impact.

Under simultaneous parametric and internal resonance conditions the sys-
tem response was studied using the multiple scales method by Ibrahim and
El–Sayad [439] and by applying the Lie group transformations by Pilipchuk
and Ibrahim [853]. Both studies predicted the same system response charac-
teristics. For example, under first– and mixed–mode parametric excitation,
the normal modes interact through internal resonance. Depending on ini-
tial conditions and internal detuning parameter, the response can be quasi–
periodic or chaotic with irregular jumps between two unstable equilibria. In
the presence of impact forces, the system preserves fixed response amplitude
response within a small range of internal detuning parameter. Beyond that
range, the response exhibits quasi–periodic motion mainly governed by ini-
tial conditions, internal detuning parameter, damping ratios and excitation
level. Under second mode parametric excitation the second mode reaches
fixed response amplitude, depending on initial conditions, with no energy
sharing with the first mode. However, the phase angles were found to vary
with time. Under combination parametric resonance, and in the absence of
impact forces, the response was found to be sensitive to initial conditions.

4.5 Multi–Degree–of–Freedom Systems

The analysis of three and multi-degree-of-freedom systems in the presence
of constraints is more involved than the single and two-degree-of-freedom
systems. However a number of attempts have been reported in the literature
(see, e.g., [195], [196], [370], [1010], [1011], [870], [1049], [431], [1047]). Gontier
and Toulemonde [371] employed a continuation method and showed that the
dynamics of multiple impact periodic responses was manifested in a typical
cascade of subharmonic bifurcation pattern. Zones of chaotic motion and
coexisting attractors were identified. Natsiavas [718] determined the exact
steady state response for a class of strongly nonlinear multi–degree–of–
freedom oscillators involving colliding components. These oscillators were
represented in the form of an arbitrary number of degrees of freedom and
configuration, incorporating a component with a geometric nonlinearity. The
analysis defined the location of harmonic and subharmonic responses char-
acterized by one abrupt change of the nonlinear element parameters per re-
sponse cycle. Performance of vibration absorbers with elastic stops was also
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considered. Furthermore, examples of oscillators exhibiting 2 : 1 and 3 : 1
internal resonance conditions were treated. The response characteristics were
compared with those of systems with continuous nonlinearities.

Fredriksson and Nordmark [342] considered a class of impact oscillators
with several degrees of freedom described by non–smooth nonlinear equa-
tions of motion. The impact is due to the motion of one body, constrained
by a motion limiter. The velocities of the system were assumed to change in-
stantaneously at impact. By defining a discontinuity mapping, it was shown
how Poincaré mapping can be obtained as an expansion in a local coordinate.
This gives the mapping the desired form, thus making it possible to employ
standard techniques.

Luo et al [613] considered a multi–degree–of–freedom system in which the
maximum displacement of one of the masses is limited to a threshold value by
the symmetrical rigid stops. Double Neimark–Sacker bifurcation of the system
was analyzed using the center manifold and normal form method of maps.
The period–one double–impact symmetrical motion and disturbed map of the
system were derived analytically. A center manifold theorem technique was
applied to reduce the Poincaré map to a four–dimensional one together with
the normal form map associated with double Neimark–Sacker bifurcation.
For the case of a three–degree–of–freedom system with symmetrical stops, the
existence and stability of period–one double–impact symmetrical motion were
obtained. Near the value of double Neimark–Sacker bifurcation it was found
that the system possesses period–one double–impact symmetrical motion and
quasi–periodic impact motions. With change of system parameters, the quasi–
periodic impact motions usually lead to chaos via ”tire–like” torus doubling.

The rising phenomenon was considered for multi–modal systems by Wagg
[1048] using energy balance techniques for an arbitrary contact interval the
effects of modal vibration can be included. The energy balance was used to
obtain a relationship between the coefficient of restitution and the modal
energy during the contact period. This allows one to study the effects of
impact-induced vibration.

4.6 Closing Remarks

The dynamic behavior of vibro–impact two– and mutli–degree–of–freedom
lumped systems under free and forced excitation revealed new nonlinear phe-
nomena not observed in single–degree–of–freedom systems. These phenomena
include the occurrence of strong resonance of different orders, the so–called ris-
ing phenomena that occur in sticking solutions. An important advantage of
these systems is their utilization as nonlinear vibration absorbers. Under para-
metric excitation, the absorbing phenomena are only restricted for the out–of–
phase modes. The presence of internal resonance may add more complexity in
the system behavior in which a steady state solution may not be achieved.



Chapter 5
Non–Classical Lumped Systems

5.1 Introduction

Traditional design tools and regulations are based on zero–clearance analy-
sis and are inadequate to account for the influence of contact loss. The re-
cent developments of the theory of vibro–impact dynamics form an excellent
foundation to modify the design tools of mechanical and electromechanical
systems with clearances, backlash and free–play nonlinearities. Examples of
such systems include mechanical joints in space truss structures, free–play
in aerospace control surfaces, rub–impact in rotating machinery, and impact
micro–actuators. The recent developments of the dynamic characteristics of
these systems will be assessed in this chapter. Another important application
is the human vocal fold collision and its effect on the tissue damage. Some
nonlinear two–dimensional models of vocal folds will be discussed. This chap-
ter is closed by a brief review of other applications including cutting tools
and machines, gear rattling, and multi–body systems.

5.2 Mechanical Joints

5.2.1 Overview

Mechanical joints exist in different forms and are essential in design and
construction of mechanisms, multi–body systems, space truss structures, and
aircraft wing–store coupling. Impact in joint gaps may cause a transfer of
vibration energy from low–frequency global modes to low–frequency local
modes. Contact loss in mechanisms’ joints may give rise to system degrading
impacts when contact is re–established. Pinned joints normally have a small
amount of clearance between pins and clevis/tang fittings. The small gap
can cause very significant changes in the dynamics and damping of truss
structures, particularly when the joint can traverse the dead–band region.

Very small gaps in joints usually create nonlinearities that may lead
to chaotic dynamics. Chaotic dynamics in space structures imposes some

R.A. Ibrahim: Vibro-Impact Dynamics: Model., Map. & Appl., LNACM 43, pp. 125–149.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



126 5 Non–Classical Lumped Systems

difficulties in the design of active control systems to damp out transient
oscillations ([518], [689]). Moon and Li [689] studied the dynamics of a pin–
jointed space truss structure. Their experimental results exhibited broad–
band chaotic–like vibrations under sinusoidal excitation. When a tension ca-
ble was added to place the structure under compressive loads, the level of
chaos was reduced. Dynamic contacts in an elastic joint were simulated by
a nonlinear joint model comprised of a nonlinear spring and damper ([689],
[413], [414]).

Dubowsky and Freudenstein ([267], [268]) formulated an analytical model
of an elastic mechanical joint with clearances, encountered in mechanical and
electromechanical systems. They estimated the dynamic force amplification,
frequency response, time–displacement characteristics, and other dynamic
characteristics. It was shown that the elastic impact–pair model exhibited a
variety of dynamic characteristics. Heiman et al [400] considered the dynam-
ics of an inclined impact pair consisting of an oscillatory base and a secondary
mass constrained to move in an inclined slot with the base mass. The dynam-
ics of the secondary mass for alternating impacts was formulated in terms of
a map over one period of the base motion. Steady state 2 : 1 motions, their
stability and subsequent period doubling bifurcations were estimated.

Available analytical tools such as the massless link model are complex and
computationally expensive. Earles and Seneviratne [282] studied the phe-
nomenon of contact loss using the massless link model. The massless link
basically models the joint clearance as an extra degree of freedom. They
derived the equations of motion of a four–bar mechanism with a clearance
joint. The equations were then decoupled to yield an expression for the clear-
ance joint force magnitude in terms of the system kinematic variables and
the clearance link response. It was shown that there exists a single zero–
clearance dimensionless parameter which governs the contact loss condition
at the clearance joint. Pereira and Nikravesh [804] presented a computational
scheme for the analysis of mechanical systems that undergo intermittent mo-
tion. A canonical form of the equations of motion was derived with a minimal
set of coordinates. These equations were used in a procedure for balancing
the momenta of the system over the period of impact, calculating the jump
in the body momentum, velocity discontinuities and rebounds. The work was
extended to open and closed–loop mechanical systems where jumps in the
constraints’ momenta were identified.

Folkman et al [338] measured damping characteristics of a three–bay truss
with pinned joints. Test results demonstrated that structures using pinned
joints can have damping that is dependent on gravity. Damping rates were
found to change by a factor of up to five due to variation of gravity in-
duced loads. This variation could be very significant when characterizing
space structures in a 1−g environment. As the joint gap opens and closes the
resulting impact was found to transfer vibration energy from low–frequency
global modes to high–frequency local modes. This was associated with an in-
crease in the rate of energy dissipation through material damping. Berzi et al
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[108] developed an identification approach for the nonlinear dissipative spring
mass model of a coupling sleeve joint. Stiffness, friction and mass parameters
were determined by minimizing the difference between simulated and mea-
sured responses of the joint. Flores et al [331] studied the influence of the joint
clearance of spatial joints on the kinematics and dynamics of multi–body sys-
tems. An analytical approach was developed for the revolute joint in which
the basic elements are the journal and bearing. Under certain working con-
ditions these two mechanical elements collide with each other. A continuous
contact force model was adopted to evaluate the contact–impact force.

5.2.2 Free–Play in Aerospace Structures

In aerospace structures, free–play nonlinearity effects have been the subject
several studies ([566], [1084], [505], [1098], [9]). For example, Laurenson and
Trn [566] investigated the flutter of a missile with control surfaces having
free–play nonlinearity. At a particular flight speed, the amplitude of oscilla-
tion, caused by external excitation, was found to build up. Due to the pres-
ence of free–play nonlinearity in combination with increasing amplitude of
oscillation, the effective stiffness of the system was found to increase and the
motion becomes stable at some limited amplitude. Kim and Lee [505] found
that responses involving limit cycle oscillation (LCO) and chaotic motion are
highly influenced by the pitch–to–plunge frequency ratio in an airfoil with
free–play nonlinearity. Experimental studies of a wing model with free–play
nonlinearity in pitch showed the appearance of double LCO [1098]. Alighan-
bari [9] studied three–degree–of–freedom airfoil–aileron dynamics with free–
play nonlinearity in the aileron hinge moment. Bifurcation analysis indicated
various LCO solutions for velocities well below the linear flutter boundary.
Depending on the initial conditions and air speed, quasi–periodic and chaotic
oscillations were reported for the aileron motion.

In a series of papers, Bae and Lee [66] and Bae et al ([69], [68], [67])
considered the influence of structural nonlinearities, represented by free–play
and bilinear, on various types of LCO and periodic motions. Zentner and
Poirion [1122] developed a reduced order model based on mode synthesis
where the degrees of freedom that might have contact are separated from
the regular substructures. This formulation allows for a direct application
of Moreau’s theory for non–smooth dynamics of contact problems. Their
approach was applied to a fluid–structure coupled system as given by an
aircraft wing with free–play in the control surface connection.

A nonlinear gust response analysis of a typical airfoil section with control
surface free–play was presented by Tang et al [984]. A two–degree–of–freedom
wing section with structural free–play type nonlinearity in the pitching free-
dom was experimentally examined in subsonic wind tunnel by Marsden and
Price [643]. The effect of the free–play on the aeroelastic response was stud-
ied and the flutter speed was found to decrease with increasing the free–play
length. An experimental model with a wing–store model with and without
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free–play was designed by Tang and Dowell [982] for the study of flutter
and LCOs. The wing was modeled as a simple plate of constant thickness.
The store was modeled as a slender rigid body that is jointed with the wing
through two support points. The fore support point was articulated to wing
and the aft support point connected with the wing through a spring with a
free–gap. This design allows the store to have motion only in pitch. In this
arrangement the store nonlinearity is mainly due to the free–play. Tang and
Dowell [983] experimentally and analytically examined the effect of free–play
in a wing–store model on the wing response amplitude. It was found that the
wing gust response amplitude increases as the free–play gap or the gust angle
increases and are almost independent for the store pitch initial conditions.

5.3 Rub–Impact Dynamics of Rotors

5.3.1 Overview

In operating rotating machinery, excessive rubbing between rotating and sta-
tionary parts can lead to destructive instability of rotors. During rubbing,
dynamic phenomena such as impact associated with friction, stiffening and
coupling effects may occur. Occasional partial rubbing between rotor/stator
systems forms a strong nonlinear system. Nonlinear rotor systems involv-
ing bearing clearances were extensively studied in the literature (see, e.g.,
[480], [117], [107], [723], [168], [169], [496], [497], [498], [100], [908], [1094],
[175], [176], [177], [178], [179], [761], [713], [284], [285], [510]). These studies
focused on estimating super and subharmonic responses using perturbation
techniques, harmonic balance method together with a fast Fourier transform
procedure. An assessment of early work on rub–related phenomena in rotat-
ing machinery was presented by Muszynska [701]. This serious problem was
claimed to cause about 10% of all aircraft engine failures. The main cause of
rubbing and impacting owes its origin to the existence of a small clearance
between the rotor and the casing and the existence of mass imbalance of the
rotor and its eccentricity.

The dry friction between the rotor and casing upon contact forms another
factor. Muszynska et al ([702], [703]) conducted analytical and experimental
investigations to examine the problem of rotor–to–stationary element rubbing
in rotating machines simulating the space shuttle main engine high pressure
fuel turbo–pump. They developed an analytical model of rotor/bearing/seal
system under rub condition and numerically estimated the dynamic rotor
responses. The estimated results were found to be in good agreement with
experimental measurements.

Goldman and Muszynska ([366], [367]) presented some experimental results
from a simulator of a rotating machine with clearances and impacting. Bifur-
cation diagrams were generated numerically and revealed stable and chaotic
response boundaries. They established the existence of main and higher order
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resonances in structures with clearances and impacting under external peri-
odic excitations. Transition from non–contact to contact states was found to
result in variable stiffness and damping, impacting, and intermittent friction.
For the case of rotator and stator contact, Goldman and Muszynska [367]
developed a model to correlate the local radial and tangential effects with
global behavior of the system. The results of numerical simulations of a sim-
ple rotor/stator system based on that model were presented in the form of
bifurcation diagrams, rotor lateral vibration time–base waves, and orbits. The
system was observed to exhibit an additional subharmonic regime of vibra-
tion due to the stiffness asymmetry. Later, Goldman and Muszynska [368]
considered the lateral vibration response of a rotor, experiencing periodic
contact with a non–rotating machine component. For the case of inelastic
impact, the system was described by a piecewise step–changing stiffness. A
special coordinate transformation was introduced to convert discontinuities
to smooth continuous forces. This transformation enabled them to apply
traditional methods such as the average technique to examine a variety of
unbalance–related resonant regimes of rotor lateral motion.

Wei et al [1067] highlighted the main features of the rub interaction be-
tween rotor and stator of rotating machinery. The contact forces induced by
rotor/stator rub were found to increase the system stiffness. The occurrence
of impact to the system created severe transient and nonlinear characteris-
tics. Furthermore, the friction force due to the relative motion between the
rotor and stator in contact may cause the reverse whirl motion of the rotor
and severe friction affecting the normal stress conditions and generates local
thermal distortion of the rotor. Furthermore, the contact introduces coupling
effect which feeds impact force back to the system and further complicates
the operating conditions of rotating machinery. Wei et al [1067] proposed
an analytical model of the rotor–stator rubbing by taking into account the
feedback of the impact forces. The response characteristics of rubbing at dif-
ferent speed values were examined based on a simple rotor/stator system.
Some experimental results were compared with those predicted numerically.

Chaotic motion was experimentally observed in a rubbing rotor system
by Piccoli and Weber [840]. Chu and Zhang ([181], [182]) identified three
routes to chaos following the occurrence of rub–impact as the rotating speed
increases. These were period doubling bifurcation, grazing bifurcation and
a sudden transition from periodic motion to chaos. Quasi–periodic motions
were also reported. The stability of the rub solutions of a general model of a
Jeffcott rotor system with rub–impact for micro–rotating machinery in power
microelectromechanical systems (MEMS) was studied by Zhang and Meng
[1125] and Zhang et al ([1126], [1127]). The effects of rotating speed, imbal-
ance, damping coefficient, and friction coefficient on the micro–rotor system
responses were examined. It was shown that the rub–impact in micro–rotor
system with the scale effects in friction alternates among periodic, quasi–
periodic and chaotic motions as the system parameters vary. Popprath and
Ecker [864] examined the intermittent contact of a Jeffcott rotor model with
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a stator interacting with the rotor model through nonlinear contact forces.
Banakh and Nikiforov [75] studied the vibro–impact interaction between a
rotor and floating sealing ring in the presence of hydrodynamic forces in the
clearance between the rotor and the ring as well as dry friction between the
ring and casing. Han et al [389] showed that the rub–impact of a rotor sys-
tem with a fixed limiter resulted in periodic, quasi–periodic, and complex
motions.

Azeez and Vakakis [49] studied the vibro–impact dynamics of a rotor–
dynamic system using the method of proper orthogonal decomposition to
extract dominant coherent structures from the time–series data. Conditions
for the existence of single rub–impacting period–n motions for a rotor system
with rigid constraints were analytically derived by Li and Lu [589] and Lu
et al [602]. The scalogram and the wavelet phase spectrum were introduced
to characterize the dynamical behavior of rotor–stator systems with rub–
impact by Peng et al [803]. Acoustic emission due to rub–impact between
the rotor and the stator is attributed to the elastic strain in the rubbing
location. Such acoustic emission was used to identify and diagnose the rub–
impact fault by Yongyong et al [1113]. They analyzed the acoustic emission
characteristics of the rub–impact in the rotor–bearing system experimentally.
The acoustic emission and the vibration signals were compared and analyzed
to demonstrate the superiority of the acoustic emission based method for the
rub–impact identification. The wavelet scalogram was used to analyze the
time–frequency features, propagation characteristic and frequency dispersion
characteristic of the rub–impact acoustic emission. The results revealed that
the rub–impact acoustic emission is due to the multi–modal elastic wave,
which mainly includes the flexural wave and extensional wave.

5.3.2 Case Study

Li and Päıdoussis [586] studied the rub–impact problem in a rotor–casing
system modeled by two degrees of freedom. The abrupt change in the trans-
lational velocity of the rotor was modeled by introducing a coefficient of
restitution, e, and dry friction coefficient, μ. With reference to Fig. 5.1 One
can decompose each velocity vector in terms of the normal (radial, er) and
tangential (transversal, eθ) components, i.e.,

V = Vner + Vteθ (5.1)

The normal velocities immediately before, Vn
−, and after, Vn

+, impact are
related by the impact law,

Vn
+ = −eVn

− (5.2)

The tangential velocity after impact was given in terms of the braking
coefficient, B, by applying the principle of linear impulse to the rotor in both
normal and tangential directions, i.e.,
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Fig. 5.1. The model and velocity components of the rotor, (a) velocity vectors
before and after impacts showing the normal and tangential forces, (b) velocity
components in polar and rectangular coordinates.

∫ +

−
Ndt = m

(
Vn

− − Vn
+

)
, (5.3a)∫ +

−
Fdt = m

(
Vt

− − Vt
+

)
. (5.3b)

Introducing the definition of the Coulomb friction law, i.e., F = μN , where
F and N are friction and normal forces of the rotor at the instant of impact,
one can establish the tangential velocity after impact, i.e.,

Vt
+ = (1 −B)Vt

−, (5.4)

where B = μ(1+e)Vn
−/V

t
− is the brake coefficient. If B ≥ 1, there is an inver-

sion of Vt− upon impact. The expression of B reveals that it can possess both
positive and negative values. For impacting to occur, Vn

− must be positive,
and thus Vt

− can be either positive (forward whirl) or negative (backward
whirl). If Vt− > 0 the direction of the precession velocity of the whirl motion
is the same as that of the rotor. On the other hand, if Vt

− < 0, the rotor
center motion is accelerated in the clockwise direction and the energy comes
from the external driving torque.

Under the influence of the rotor mass imbalance and zero initial conditions,
Li and Päıdoussis [586] obtained the regions of different steady state motions
of the rotor in terms of eccentricity parameter and the dry friction coefficient
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Fig. 5.2. Regions of different steady state rotor motions: Rubbing (+, counter-
clockwise, •, clockwise), and impacting (empty space) for e = 0.9, [586].

for a fixed value of coefficient of restitution e = 0.9. Fig. 5.2 shows three
regions. The first region occupied by dots represents a clockwise rubbing of
the rotor against the stator. This motion is called “dry whip” or backward
rub. The second region is occupied by crosses and each cross represents a
parameter pair resulting in rubbing in the same direction of the rotor motion
(counter–clockwise) or forward rubs. The empty regions represent impacting
motion. Fig. 5.3 shows a bifurcation diagram constructed by recording the
pre–impact steady state radial velocity

·
r for each value of the friction coeffi-

cient, μ, for e = 0.075. For μ ≤ 0.019 only finitely many values of the impact
velocity exist, indicating that the solutions are periodic or quasi–periodic. In
the neighborhood of μ = 0.02 the rotor motion is chaotic. A further increase
in the friction coefficient brings the rotor back to periodic over the friction
coefficient range 0.0212 ≤ μ ≤ 0.0242. Above that range the radial velocity
begins to assume multi–values. For μ ≥ 0.02875 another set of bifurcations
occur, leading to chaotic motion.

Qin et al [877] studied the contact between the rotor and its stator with
bearings. It was found that rubbing creates grazing bifurcation. With vari-
ation of system parameters, such as rotating speed, imbalance and external
damping, complex response characteristics were observed such as period–
doubling bifurcation and torus bifurcation. A general analytical model of
a rub–impact rotor–bearing system with mass imbalance was developed by
Shen et al [935]. The model consists of radial elastic impact and tangential
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Fig. 5.3. Bifurcation diagram showing the dependence of radial velocity on the
dry friction coefficient for eccentricity ε = 0.075, [586].

Coulomb friction. Bifurcation diagrams in the presence of mass eccentricity
were generated by taking the rotating speed as the control parameter. It was
found that the mass eccentricity of the rotor has a substantial effect on the
motion characteristics of the rub–impact rotor–bearing system.

Yue–Gang et al [1119] considered the influence of the nonlinear oil–film
force and nonlinear friction force in studying the rotor–bearing rub–impact
dynamics. It was shown that within the subcritical speed range both quasi–
periodic and chaotic motion regions increase with increasing the coefficient
of relative speed. Within the supercritical speed range, the chaotic motion
region was found to decrease. However, the rub–impact forces increase and
the quasi–period motions become gradually of period–3. These features were
used as a theoretical basis for the failure diagnostics of rotor–bearing sys-
tems at rub–impact fault. The rubbing between the stator structure and
rotor blades of turbo–machinery was examined by Sinha [947] and Chu and
Lu [180]. The nonlinear dynamic effect of repeated tip impact of a rotating
Timoshenko beam spinning with constant angular velocity was studied by
Sinha [947]. Due to the discontinuity of parameters in the differential equa-
tions of vibro–impact systems, the transient response exhibited complicated
dynamic behavior. An axial rub–impact force model corresponding to the six
degrees of freedom of the Jeffcott rotor was developed by Yuan et al [1117].
The mass imbalance and axial rub–impact effects were considered. It was
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concluded that the dynamic behavior of axial rub–impact is quite distinct
from those of radial ones, and that the axial vibrations are essential to the
diagnostics of axial rub–impact.

5.4 Micro–Actuators

Some micro–actuators are designed to perform repeated impacts to generate
large–scale displacements ([695], [683]). For example, a smooth impact lin-
ear motor is one of the superior actuators. Despite its simple construction,
this linear actuator demonstrates a long stroke and a high positioning reso-
lution because of its two modes of operation. One mode is for the long stroke
drive, and the other is for the positioning drive. Yamagata and Higuchi [1092]
proposed a positioning system comprised of a motion mechanism driven by
impact force generated by piezoelectric actuator. The system utilizes dry
friction and impulsive inertia force.

In micro– or nano–robotics, high precision movement in two or more de-
grees of freedom is one of the main requirements. Zesch et al [1123] described
some basic driving mechanisms for the Switzerland ETHZ Nanorobot Project,
in which two new piezoelectric devices were developed. “Abalone” is a three–
degree–of–freedom system that relies on the impact drive principle. Within
the actuator’s local range of 6 μm fine positioning is possible with a reso-
lution better than 10 nm. “NanoCrab” is a bearingless rotational micromo-
tor relying on the stick–slip effect. A new precise actuator with two degrees
of freedom for translational and rotational motions actuated by the impact
force of an end–loaded piezoelectric cantilever was proposed by Zhang et al
[1124]. The actuator performance on translational and rotational motions
were measured and revealed large travel range, strong driving ability, and
high positioning resolution.

Mita et al [683] developed a micro–machined actuator to produce a precise
and unlimited displacement. Their impact actuator is composed of a mov-
able mass, which is supported by suspensions, driving electrodes, stoppers
and a frame as shown in Fig. 5.4. The impact of the movable mass against
the stopper is the source of the action. The movable mass is accelerated by
the electrostatic force between the mass and electrodes. It collides with the
stopper that is fixed to the base of the actuator. When the impact force
exceeds the maximum static friction, the actuator begins to move. The actu-
ator stops eventually due to the resistance of frictional forces. The suspended
silicon micro–mass is encapsulated between two glass plates and driven by
electrostatic force. Dankowicz and Zhao [207], Zhao et al ([1132], [1133]) and
Zhao and Dankowicz ([1130], [1131]) analyzed the near–grazing dynamics
of the impact micro–actuator developed originally by Mita et al [683]. The
bifurcation behavior of the non–impacting and impacting dynamics of the
micro–actuator was discussed in terms of period–1 impacting orbits with one
impacting and one non–impacting loop per period. Kang et al [489] devel-
oped a computational toolbox for the bifurcation analysis of micro–actuators
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Fig. 5.4. Schematic diagram of impact actuator, [683].

interrupted by discrete–in–time events. Branches of multi–segment periodic
solution trajectories were continued under variations in a single parameter.
It also provided bifurcation curves corresponding to the locus of period–
doubling, saddle node, and grazing bifurcation points were continued under
variations in two parameters.

Zhang et al [1128] proposed a piecewise nonlinear model to understand the
impact dynamics of micro–oscillators such as MEMS switches and tapping–
mode atomic–force–microscopy. The deformation was considered large and
the tapping occurred in the nonlinear frequency response region. Both soften-
ing and hardening effects were considered. It was found that the nonlinearity
not only shifts the bifurcation area, but also changes the bandwidth of the
tapping event. The comparison between experimental and numerical results
demonstrated the validity of the considered piecewise nonlinear model.

The feedback control of a class of complementary–slackness hybrid me-
chanical systems composed of an uncontrollable part and a controlled one,
linked by a unilateral constraint and an impact rule was studied by Brogliato
and Zavala–Rio [142]. The approach was based on a nontrivial extension of
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Fig. 5.5. Autoresonant system showing (a) feedback design, (b) Matlab-Simulink
model, and (c) force (rectangular pulse) and velocity (sinusoidal) time history
record, [950].

the one degree–of–freedom juggler control design proposed by Zavala–Rio and
Brogliato [1121]. The role of various physical and control properties charac-
teristic of the system on its stabilization properties was considered. Later,
Menini and Tornambe [670] considered a particular class of jugglers, under
actuated linear mechanical systems, subject to non–smooth impacts. It was
shown that the overall system is controllable and that just the impacts can
be used to solve a dead–beat regulation problem.

Sokolov et al [950] introduced a new approach known as “autoresonant
excitation” to design resonant vibratory equipment as a self–sustained os-
cillating system with electronic and electro–mechanical feedback using an
actuator of the synchronous type. Synchronous actuators produce an excita-
tion force whose frequency does not depend on load but only on the frequency
of the power supply ([54], [36]). It was demonstrated that autoresonant ap-
proach can overcome the intrinsic drawback in the electromagnetic actuators
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for vibrating and vibro–impact machines. The basic idea of the autoresonant
system is shown in Fig. 5.5. Fig. 5.5(a) shows the feedback design scheme,
which shifts the phase of the vibration signal from the sensor and amplifies its
power with limitation. The actuator transforms the signal into an excitation
force. With a given phase shift in the feedback circuit the resulting vibration
would have the same frequency as the natural frequency of the mechanical
subsystem without feedback. Fig. 5.5(b) is the Matlab–Simulink model in
which the rectangular pulse force is used for excitation while the velocity sig-
nal is used in the feedback. The time history records of both the rectangular
pulse excitation and velocity are shown in Fig. 5.5(c). Physical phase–shift
was not required to provide resonant mode of vibration. Later, Babitsky and
Sokolov [64] and Voronina et al [1041] considered the autoresonance control
in a simple vibro–impact system with an elemental electromagnetic actuator
and ultrasonic transducers for machining applications. It was indicated that
autoresonant approach enhances the application of electromagnetic actuators
in vibrating machines.

5.5 Vocal Folds

When air passes the space between vibrating vocal folds (called glottis), the
vibration of the vocal folds is excited as a result of a fluid–structure interac-
tion mechanism. The glottal oscillations serve as the main generator of the
acoustic excitation of the whole human vocal tract, which finally results in
phonation. The collision between the vocal folds involves the interaction of
aerodynamic pressure with inertia and elastic forces of the folds. The con-
tact force produced by vocal fold collision increases the risk of tissue damage
([1004], [470], [471]). The study of vocal fold impact is important for under-
standing the mechanism of phonation and determining potential vocal fold
pathological development [987]. Furthermore, stresses and strains within the
vocal fold tissue may play a critical role in voice fatigue, tissue damage and
resulting voice disorders, and tissue healing.

Reviews of some models are given by Sorokin [952] and Kob [517]. These
models are valuable for understanding the mechanics of voice production and
in some applications such as speech synthesis and recognition [329] and voice
pathology [408]. The generation of voiced sound is a highly nonlinear process.
The nonlinearities owe their origin to the nonlinear stress–strain characteris-
tics of vocal fold tissue [1003], collision of the folds [451], nonlinear interaction
of the airflow, and glotted area [1026]. In view of these nonlinearities, com-
plex bifurcation patterns and low–dimensional chaos were reported in the
literature ([1003], [1004], [669], [410], [564], [472]). Herzel and Knudsen [409]
proposed an autonomous fourth–order model of vocal fold vibrations. Each
fold was represented by a lower and upper mass, and the aerodynamic forces
were derived from a modified Bernoulli equation. The model exhibited many
features of normal phonation in a wide parameter region. At the borderlines
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Fig. 5.6. Schematic diagrams of two-degree-of-freedom models of the vocal folds
as proposed by (a) Landa [564], (b) Horáček et al, [426].

of this region coexistence of limit cycles, period–doubling and chaos were
observed.

The mechanics underlying collision between vocal folds is associated with
aerodynamic variables that are linked to voice quality changes [422]. Gunter
[381] modeled the tissue mechanics governing vocal–fold closure and collision
during phonation. The role of elastic forces in glottal closure and in the de-
velopment of stresses that may be a risk factor for pathology development
was identified. The model involved nonlinear dynamic contact that incor-
porated three–dimensional, linear elastic, finite–element representation of a
single vocal fold, a rigid midline surface, and quasi–static air pressure bound-
ary conditions. Contact force between vocal folds was found to be directly
proportional to compressive stress, vertical shear stress, and Von Mises stress
in the tissue.

The vocal folds are living soft tissues of a complicated material struc-
ture composed of several tissue layers, and their motion is generally a three–
dimensional motion of a continuous viscoelastic system. However, they have
been frequently modeled with only a few degrees of freedom [1004]. For ex-
ample, Flanagan and Landgraf [330] represented each vocal fold by a simple
harmonic oscillator single–mass model. Landa [564] proposed a model that in-
volves two absolutely rigid plates suspended by springs to the walls of a tube
with rigid angled cross–section as shown in Fig. 5.6(a). Under air flow the
system is akin to that of the bending–torsion flutter of an aircraft wing. On
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Fig. 5.7. Schematic diagram of two-degree-of-freedom vocal folds model, [426].

the other hand, Horáček et al [426] considered another similar two–degree–
of–freedom model shown in Fig. 5.6(b).

With reference to Fig. 5.6(b) the model of the glottis with the vocal folds
is represented by a channel with planar symmetry conveying air. The length
of the channel, L, is measured parallel to both the plane of symmetry and the
direction of air–flow. The channel walls are shown by two vocal–fold–shaped
rigid bodies of mass m and moment of inertia I, which are vibrating symmet-
rically in the opposite phase identical amplitudes on an elastic foundation.
The rigid bodies oscillate in the fluid of density ρa flowing in the channel
with a mean flow velocity U0 at the inlet (y = 0). The width of the cross–
section of the channel is 2H0 at the inlet, and the minimum cross–section of
the channel, known as the glottal width is 2H1. The schematic diagram of
the lumped two–degree–of–freedom model proposed by Horáček et al [426] is
shown in Fig. 5.7 and the equations of motion of this model were developed
by Horáček and Švec [425] in the matrix form

M
··
V + B

·
V + KV = F(t), (5.5)
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where

V =
{
V1

V2

}
=
{ w2−w1

2lw2+w1
2l

}
, M =

[−lm1 m1 + m3
2

lm2 m2 + m3
2

]
, K =

[−lk1 k1

lk2 k2

]
, F(t) ={

F1(t)
F2(t)

}
, B is a proportional structural damping matrix given in the form

B = ε1M + ε2K, where ε1 and ε1 are constants related to the damping
coefficients c1 and c2. When the glottis is open, the equivalent excitation
aerodynamic forces F1(t) and F2(t) acting on the vocal folds are

F1,2(t) =
h

2

∫ (
1 ∓ x

l
± L1

l

)
p̃(y, t)dy, (5.6)

where the upper sign is belonging to the first force and the lower sign to
the second force. h is the width of the channel (identical to the width of the
rigid body) and is measured perpendicular to the direction of the air flow
and parallel to the plane of symmetry. p̃(y, t) is the air pressure along the
vibrating body surface. The masses are given by the expressions

m1,2 =
1

2l2
(
I + m�2 ±m�l

)
,

m3 = m

[
1 −

(
�

l

)2
]
− I

l2
(5.7)

where � is the location of the center of mass of the rigid body from the axis
passing through m3.

The unsteady aerodynamic forces for open glottis were developed based on
the unsteady continuity and one–dimensional Euler equations for incompress-
ible fluid. The complete expressions of aerodynamic forces F1,2(t) are lengthy
and the reader can consult Horáček and Švec [425] for complete derivation.
The Hertz model of impact was introduced to account for vocal–fold collisions
and was written in the form

FH = kHδ3/2

(
1 + bH

·
δ

)
(5.8)

where kH �
4
3

E
√

r
(1−ε2) , δ is the penetration of the vocal–fold element through

the contact plane, E is Young’s modulus, and ε is the Poisson ratio. r is the
radius of curvature of the impacting body surfaces of the vocal–fold model
in the contact point according to the well–known relationship of the radius

of curvature 1
r = |d2f(y)/dy2|

[1+(df(y)/dy)2]3/2 . This surface was approximated by the

function f(y) = a1y + a2
2 y2, where a1 = 1.858 and a2 = 319.722 m−1.

The moving surface of the vibrating vocal–fold element was expressed by
the function
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Fig. 5.8. Sequence of the vocal-fold motion during one period of oscillation for
air flow velocity: U0 = 1.6m/s, glottal half-gap, H1 = 0.2mm, natural frequencies
f1 = 100Hz, f2 = 105Hz, lung pressure plung = 380, mean glottal flow volume rate
Q = 0.181, [426].

X(y, t) = f(y) + w(y, t)
= f(y) + (y − L1)V1 + V2, y ∈ 〈0, L〉 (5.9)

The coordinates of the contact point were obtained in the form

xmax = f(ymax) + (ymax − L1)V1 + V2, (5.10a)
ymax = min {L, max [0, − (V1 + a1) /a2]} (5.10b)

During impact, when the glottis is closed, the aerodynamic forces, F1,2(t),
are switched off. In this case, three types of forces acting on the vocal–fold
shaped element were considered. These are 1) the Hertz contact force, 2)
the sub–glottal pressure, which acts on the sub–glottal part of the element
surface, and 3) the supra–glottal pressure, which acts on the supra–glottal
part of the element surface. That pressure was set to zero. The numerical
simulations performed by Horáček et al [426] provide useful information in
understanding the mechanism of vocal–fold collision. Fig. 5.8 shows a se-
quence of the vocal–fold motion during one period of oscillation. The impact
forces of the vocal folds resulting from the Hertz model were related to the
impact stress, which can be measured in the real vocal folds. The impact
stress σ was evaluated by dividing the impact force by the contact area. The
maximum impact stress σmax was calculated as the maximum value in one
oscillation period according to the formula
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Fig. 5.9. Dependence of the maximum impact stress during self-oscillations on the
pressure in lings for f1 = 100Hz, f2 = 105Hz, and glottal half-gaps: � H1 = 0.2mm,
• H1 = 0.5mm, [426].

σmax =
3
2
FH,max

πR2
(5.11)

where FH,max is the maximum contact force during one period of oscillation,
and R is the maximum contact radius. Fig. 5.9 shows the dependence of the
maximum impact stress σmax, for two glottal half–gaps, on the pressure in the
lungs. Each curve ends at the phonation instability pressure. The threshold
pressure increases with the pressure in lungs, Plung . The calculated values
for the maximum impact stress shown in Fig. 5.9 were found to be in good
agreement with impact stress values measured on real vocal folds by Jiang
and Titz [471], Hess et al [415] and Verdolini et al [1037].

Van Hirtum et al [1027] summarized preliminary experimental results on
physical modeling of vocal folds models and the collision of the two folds.
The distribution of the transverse strain component was used to examine the
influence of vocal fold collision on potential tissue damage [639]. In the posi-
tion of maximum opening the vocal folds are deformed by a combination of a
bulging–type deformation and the opening movement. At this time instance,
the transverse strains at the medial surface were negative, an indication of
Poisson’s deformation. During the closing stage, vocal folds collide and simul-
taneously a mode 3 vibration pattern emerges. Closure of the glottal opening
is not complete and two incomplete closure areas are formed during the clo-
sure stage. These open areas are located at the anterior and posterior ends
of the model larynx.

De Oliveira Rosa et al [216] developed a three–dimensional model to sim-
ulate the larynx during vocalization. A contact–impact algorithm was incor-
porated to deal with the physics of the collision between true vocal folds. The
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results revealed that the simulated larynx can reproduce the vertical and hori-
zontal phase difference in the tissue movements and that the false vocal folds
affect the pressure distribution over the larynx surfaces. A self–oscillating
finite–element model that combines aerodynamic properties, tissue mechan-
ics, airflow–tissue interactions, and vocal fold collisions, was developed by
Tao et al [987] and Tao and Jiang [986]. The model simulated the vocal fold
vibration during phonation. The spatial and temporal characteristics of me-
chanical stress in the vocal folds were predicted. It was found that mechanical
stress periodically undulates with vibration of the vocal folds and that vocal
fold impact causes a jump in the normal stress value. Spatially, the normal
stress was found to be significantly higher on the vocal fold surface than
inside of the vocal folds.

Spencer et al [954] conducted a series of experiments to determine the me-
chanical fields on the superior surface of a self–oscillating physical model of
the human vocal folds. They used a three–dimensional digital image correla-
tion obtained by using a high–speed camera together with a mirror system
to measure displacement fields. The strains, strain rates, and stresses on the
superior surface of the model vocal folds were computed. The dependence of
these variables on flow rate was established. A Hertzian impact model was
used to estimate the contact pressure on the medial surface from superior
surface strains. A tensile stress dominated state was observed on the supe-
rior surface during collision between the model folds. Collision between the
model vocal folds was found to limit the medial–lateral stress levels on the
superior surface.

5.6 Vibration Protection under Vibro–Impact

Systems subjected to impact and shock loads exhibit severe vibration and
they need special isolation means. Impact loading is encountered in many me-
chanical applications such as pneumatic hammers, slamming loads on water
waves acting on ships and ocean structures, and vibro–impact systems with
rigid or elastic stops. In order to protect a given object against these undesir-
able disturbances, a vibrating protection system may be placed between the
vibration source and the object. In their research monograph, Alabuzhev et
al [6] introduced a number of vibration protection systems with quasi–zero
stiffness. Fig. 5.10 shows schematic diagrams of selected systems whose load
bearing elastic elements possess constant positive stiffness as well as devices
with negative–stiffness. This type of isolators has been used for vibration
isolation of operators’ seats in vehicles [896], impact action hand–held ma-
chines (see, e.g., [1147], [7], [962]), and railway car suspensions ([361], [1099]).
Systems with negative–stiffness have been treated by Gerner et al [361] and
Yashin et al [1099], and the performance of such systems in the chaotic mo-
tion regime was examined by Goverdovskiy et al [372], Lee and Goverdovskiy
[570], and Lee et al [571].
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Fig. 5.10. Schematic diagrams of typical vibration protecting mechanisms: (a)
Vertical coil spring with two buckled beams, (b) Links restraint against horizontal
springs, (c) Buckled beam isolator, (d) Vertical and horizontal spring system, [6].

A comprehensive assessment of recent developments of nonlinear isolators
in the absence of active control means was presented by Ibrahim [437]. Some
modifications of the nonlinear characteristics of isolating mounts carrying
rigid structures subjected to impact loads were proposed by Dufour et al
[276]. The modifications were adapted with respect to impact vibrations to
achieve a well design behavior. The protection of workers against vibrations
generated from hand–held tools requires special vibration isolation means.
Dobry and Brzezinski [262] developed a strong elastic nonlinear isolator to
minimize the interaction force between the tool and the handle. In an effort
to prevent injuries from impact impulse loads, Balandin et al [73] presented a
review of research activities dealing with the limiting performance analysis of
impact isolation systems. Shu and Shen [941] and Zhiqing and Pilkey [1134]
conducted a limiting performance analysis to study the optimal shock and
impact isolation of mechanical systems via wavelet transform.

A bumpered vibration protection arrangement of a gimbaled electro–
optical device was developed by Veprik et al [1035]. This device was designed
based on a split Sterling cry cooler for the cooling of an infrared focal ar-
ray. The installation of bumpers with enlarged travel reduces the probability
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of accidental impacts and effectively reduces the excessive deflections. How-
ever, the presence of bumpers turns the vibration isolation arrangement into
a potential strongly nonlinear vibro–impact system with unfavorable char-
acteristics [53]. In an effort to eliminate these characteristics, Babitsky and
Veprik [62] introduced a new concept based on the cooperation use of an
undamped, low frequency vibration isolator in combination with optimally
damped bumpers installed with minimal free travel distance.

Some isolators experience a sudden change in the values of their parame-
ters, which can be represented as piecewise linear or nonlinear functions. It
is known that soft isolators are best for isolation. However, nonlinear hard-
ening is required to minimize relative displacement at high amplitude ([466],
[467], [712]). Patrick and Jazar ([793], [794]) introduced a secondary suspen-
sion to limit high relative displacements. Mahinfala et al [634] adopted a
hyperbolic–tangent saturation function to study the frequency response of
vibration isolators with saturating spring elements. Deshpande et al ([217],
[218]) employed an adapted averaging approach to study highly nonlinear
systems described by piecewise linear representation. They obtained an im-
plicit function for frequency response of a bilinear system under steady state.
This function was examined for jump–avoidance and a condition was derived
to ensure that the undesirable phenomenon of “jump” does not occur and
the system response is functional and unique.

Orzechowski et al [753] studied the behavior of nonlinear isolation mounts
and measured their response to impulsive inputs. Their results showed the
limitation of mounting linearity in reducing the transient portion of the re-
sponse due to impact without adding damping to the system. The presence
of barriers is known to prevent a vibratory system from exceeding the rela-
tive amplitude particularly in the neighborhood of resonance. The effect of
end stops in an isolator was studied by Narimani and Golnaraghi [711] and
Narimani et al [712]. They adopted a piecewise linear system and applied an
averaging method to identify the range of the parameters, which minimize
the relative displacement of the system. It was found that the damping ratio
plays a dominant role than stiffness in piecewise linear vibration isolators.

5.7 Other Applications

There are many other applications of vibro–impact systems and the purpose
of this section is to summarize them. These applications include the ultrasonic
cutting as a vibro–impact process ([34], [35], [865]), hand–held percussion ma-
chines, drills and forming machines ([55], [96], [97], [612], [629]), bumpered
vibration isolators ([62], [1031], [1032]), impact loading in disc brakes and
clutches ([1118], [120], [65]), impact–noise generation due to wheel and rail
discontinuities ([1036], [886], [511]), and systems described by a Duffing oscil-
lator under impact loading ([85], [112]). It was shown that excitation of the
vibro–impact mode of tool–workpiece interaction is the most effective way of
using ultrasonic influence on dynamical characteristics of machining.
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5.7.1 Drill–Strings

The dynamics of drill–strings used for oil well drilling can present complex vi-
brational states ([1105], [1106], [1012]). For example, Yigit and Christoforou
[1105] developed a model to study the transverse vibrations of drill–strings
caused by axial loading and impact with the well–bore wall. In a later work,
Yigit and Christoforou [1106] extended their model to account also for tor-
sional vibrations. Trindade et al [1012] examined the oscillations of a vertical
slender beam, clamped in its upper extreme, pinned in its lower one and con-
strained inside an outer cylinder in its lower portion. It was shown that one
should account for the axial displacement dynamics, using nonlinear strain–
displacement relations, since the coupling of axial–bending dynamics may be
very important in the dynamical behavior of general slender beams such as
a drill–string. In particular, the micro–impacts, accompanying the bottom
portion due to the beam compressive softening were represented only when
using a nonlinear axial–bending coupling.

5.7.2 Machine Tools

The flexibility of tools and work pieces, the high spindle frequencies, and
the inherent impact nonlinearities in the milling process can lead to compli-
cated dynamic tool–workpiece interactions. Davies and Balachandran [210]
conducted an experimental investigation to study the vibrations of a thin–
walled part during milling. From the time series, power spectra, autocorrela-
tions, auto–bispectra, and phase portraits, it was inferred that stiffness and
damping nonlinearities due to the intermittent cutting action have a pro-
nounced effect on the dynamics of the workpiece. A mechanics–based model
with impact nonlinearities was developed to explain the observed results. The
predicted results were found to be in good agreement with the experimental
observations.

Neumann and Sattel [724] proposed a model for a piezoelectric device for
drilling brittle materials. The motion of the piezoelectric actuator tip follows
a prescribed harmonic vibration. Experimental tests with a prototype device
as well as simulations with simple models revealed irregular motion of the
impacting mass. The temporal behavior of this system was examined using
the set–oriented numerical methods. These methods are based on an adaptive
subdivision technique for cell–mapping to approximate attractors and invari-
ant measures. The contact conditions between subsystems were described by
complementary kinematics and force relations and Newton’s impact law, re-
spectively. Periodic and chaotic orbits were detected and parameter ranges
for the occurrence of different types of solutions were determined. Informa-
tion on the probability of attaining a particular attractor was obtained by
quantifying its connected basin of attraction.

Peterka [823] modeled a forming machine by a double impact oscillator con-
sisting of two symmetrically arranged single impact oscillators. The anti–phase
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impact motion of this system was found identical to the dynamics of single–
degree–of–freedom systems with constraints. The in–phase motion and the
influence of asymmetries of the system parameters were numerically studied
and verified experimentally. Dynamic models of percussive–rotarydrilling have
been developed by Batako et al ([95], [96]) and Batako and Pioroinen [98]. This
nonlinear system exhibits friction–induced vibration resulting in impact exci-
tation, which influences the parameters of stick–slip motion. The model incor-
porates the friction force as a function of sliding velocity. The sliding velocity
allows for the self–excitation of the coupled vibration of the rotating bit and
striker, which tends to a steady state periodic cycle. It was found that the con-
tact stiffness does not strongly affect the system dynamic behavior, rather it
defines the magnitude of the impact force.

5.7.3 Printer Actuators

Hendriks [402] presented a lumped–parameter description of an impact
printer actuator of the stored–energy type. The equations of motion were in-
tegrated both for single– and multiple–current pulse excitation. It was shown
that for low repetition rates, each impact is distinct and independent, but at
higher rates of impacts interaction. The interaction manifested itself initially
as flight–time and print–force variations where strict periodicity of the actu-
ator motion is lost. At extremely high repetition rates it was found that the
actuator ‘hangs up’ and the backstop no longer participates in the actuator
dynamics. Tung and Shaw ([1019], [1020]) considered the chaotic dynamics
of a simple print hammer model in the form of a piecewise linear oscilla-
tor. The chaotic motion was characterized by Lyapunov exponents and by
the existence of a set of strange attractors. Later, Tung [1018] examined the
dynamic response of a single–degree–of–freedom system subjected to non–
harmonic excitation. The amplitude and stability of the periodic responses
together with Lyapunov exponents were estimated over a range of forcing
periods. Jerrelind and Dankowicz [469] proposed a control methodology that
introduces discrete changes in the position of a system discontinuity during
the printer hammer motion while the hammer is away from the discontinuity.
A forced, piecewise smooth, single–degree–of–freedom model of a Braille im-
pact hammer is used to illustrate the methodology and to yield representative
numerical results.

5.7.4 Gear Rattling

Gear rattling occurs due to repetitive impacts of teeth and is manifested by a
vibration signature, which corresponds to the bands of frequencies due to tor-
sional engine oscillations, meshing frequencies, and impact characteristics of
lubricant conjunctions. Brindeu [134] considered the case with one–degree–of–
freedom model realized by the rod–crank mechanism. Rattling in gear boxes
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and machines due to backlash has been studied extensively in the literature
(see, e.g., [48], [1095], [946], [188], [554], [555], [170], [492], [486], [894], [894],
[760], [759], [135], [137], [220], [506], [990], [508], [647], [977]). Halse et al [386]
studied the nonlinear dynamics of lightly damped pair of meshing spur gears
modeled as a single–degree–of–freedom oscillator with backlash that exhibits
undesired noise and vibration. The analysis included both large finite and
infinite stiffness values. It was shown that the permanent contact solution
can coexist with many other stable rattling solutions, which were computed
analytically. The regions of existence and stability of different families of
rattling solutions on two–parameter bifurcation diagrams revealed that the
large finite and infinite stiffness models give the same results. Tangasawi et
al [985] presented numerical models for a gear pair contact in an attempt
to study idle rattle conditions. It was found that gear rattle manifests itself
as a band of frequencies, which shift towards lower spectral regions as the
lubricant temperature rises.

5.7.5 Multi–Body Dynamics

In multi-body dynamics, the effects of zero velocity impacts were the subject
of many studies ([364], [136], [138], [140], [340]). By introducing a mapping, it
was possible to isolate the contribution to the local dynamics that comes from
the grazing impact. When a multi–body system collides with a single body
or with another multi–body system, impact dynamics with friction should
be considered. Han and Gilmore [388] presented a general computer oriented
analysis of impact dynamics incorporating friction. The presence of friction
between sliding contacts during the impact processes makes the problem diffi-
cult since events such as reverse sliding or sticking must be determined. This
may occur at different times throughout the impact, must be determined.
The boundary representations of the bodies were used to solve for velocities
at the points of contact. Barauskas [93] developed a numerical algorithm for
solving the structural equations of motion with unilateral constraints involv-
ing normal, oblique impact and friction interaction points. The algorithm
was an extension of the generalized Newmark scheme where Lagrange mul-
tipliers and a minimum work approach were employed at each time step.
The reduction of the number of dynamic degrees of freedom of the unilat-
erally constrained structures was carried out by representing the equations
of motion in modal coordinates of the unconstrained structure and truncat-
ing the dynamic contribution of higher modes. The algorithm was applied
to the problem of free longitudinal vibro–impact motion of an elastic vibro–
converter and free longitudinal and bending vibration of a vibro–converter
interacting with a moving rigid body by oblique impact and friction forces.

The dynamics of oblique impact in vibrating systems was considered in sev-
eral studies ([585], [802], [390], [391]). Numerical simulations of these systems
were carried out using the incremental impulse method. The results of numer-
ical simulations revealed dynamic phenomena such as periodic and chaotic
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vibro–impacts. Dynamic systems for the vibrational alignment of components
during automated assembly may experience lose of contact. In this case, vi-
brational impact motion regime occurs and the mobile component repeatedly
and systematically impact with other components. Baksys and Puodziuniene
([70], [71]) presented a two–degree–of–freedom vibro–impact system in which
the moving body experiences oblique impact. Vibro–impact motion of the
body starts from the static equilibrium to the sate of dynamic equilibrium
under transient regimes. The distance between these equilibrium positions
determines the maximum error of the mutual interpositions of assembly com-
ponents. It was concluded that impact body motion can occur only for certain
combinations of system and excitation parameters.

Complementarity conditions describe those conditions at the contact loca-
tion and govern the velocities before and after impact ([837], [158]).Brogliato
et al [140] presented an overview of some problems related to numerical simu-
lation of finite dimensional non–smooth multibody mechanical systems. This
class of systems involves complementarity conditions and impact phenomena,
which make its study and numerical analysis a difficult task that cannot be
solved by using known ordinary differential equation or differential–algebraic
equation integrators only.

5.8 Closing Remarks

Vibro–impact of non–classical systems constitutes a wide range of engineering
problems. Engineering applications include the free–play in joints of mecha-
nisms, trusses, aerospace applications, rotor–stator rubbing of rotating ma-
chinery, gear rattling, machine tools, and multi–degree–of–freedom systems.
Isolation of severe vibration due to impact loading is an important problem
that seeks effective solutions. In bioengineering, the vocal folds vibro–impact
plays a major role in sound generation. There is a strong need to develop
accurate analytical modeling and numerical algorithms under random exci-
tation. This issue will be addressed in Chapter 7.



Chapter 6
Continuous Systems

6.1 Introduction

Continuous structural elements differ from lumped systems in their analytical
modeling. Continuous systems are usually described by partial differential
equations together with appropriate boundary conditions in addition to the
impact law. The early work of vibro–impact of continuous systems such as
beams and plates is believed to be treated by Erington [298] for different
boundary conditions. The Hertz law of impact at the point of contact leads to
nonlinear integral equation for contact force in all cases of transverse impact.
A thin cantilever type plate impacting against a barrier is found in many
practical applications such as automatic reed type valves in small refrigeration
compressors or engines, switches in electrical relays, etc. The failure problem
of these systems owes its origin to impact stresses. This chapter addresses the
vibro–impact dynamics in strings, beams, constrained pipes conveying fluid,
nuclear reactors and heat exchangers, plates, and slamming waves on elastic
structures.

6.2 Strings

Strings are simple elements and rich in their dynamics. Their dynamics is
complex when their motion is limited by point stops. The impact of strings
with point stops was studied by Krupenin ([538], [539], [540]), Moon et al
[688], Astashev et al [39], Astashev and Krupenin ([37], [38]), and Murphy
and Morrison [700]. Murphy and Morrison [700] considered sinusoidally ex-
cited strings subject to an amplitude restraint. They included initiation of
both periodic trapezoidal standing waves and standing waves of other types
characterized by wave profiles composed of segments of straight lines. The
vibro–impact dynamics of a string carrying an array of masses was studied
experimentally by Moon et al [688]. A spatial pattern return map was then
used to observe the change in spatial patterns with time.

R.A. Ibrahim: Vibro-Impact Dynamics: Model., Map. & Appl., LNACM 43, pp. 151–191.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 6.1. Schematic diagram of a vibrating string against a knife-edge amplitude
constraint, [700].

In a series of papers ([39], [37], [38], [536], [537], [541], [542], [543], [544],
[545], [546], [547], [549], [550], [551], [1033], [1034]) some interesting phe-
nomena associated with discrete and distributed vibro–impact systems were
reported. These studies include multiple nonlinear effects related to the for-
mation of specific nonlinear waves of trapezoidal profiles, advent of localiza-
tion of intensive impacts, generation of higher harmonic components, and
generation of non–synchronic and chaotic oscillations. The hypothesis of in-
stantaneous impact that takes place in impact elements made up of strings
and absolutely rigid elastic stops was described by Krupenin [536]. Two types
of periodic standing waves of string dynamics were predicted. The waves of
the first type are observed upon passing linear resonance, while the second
type occurs when increasing the excitation amplitude, excitation frequency
(frequency pulling), or the gap (amplitude pulling). For regimes with trape-
zoidal profiles of claps, the usual dynamic effects for “impact vibrators” were
detected together with aperiodic waves of a more complicated nature.

Fig. 6.1 shows a schematic diagram of a vibrating string against a knife-
edge amplitude constraint modeled as localized stiff spring positioned as v0

from the string equilibrium position. The governing partial differential equa-
tion of a string in non–dimensional form may be written in the form, [700],

∂2V

∂τ2
+ 2ζω1

∂V

∂τ
−
[∫

1
2
EA

π2P

(
∂V

∂ξ

)2

dξ

]
∂2V

∂ξ2

+
KL2

π2P
δ (ξ − ξr) [V (ξ) − V0] =

δ (ξ − ξr)
π2P

F0 sin ντ (6.1)
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Fig. 6.2. A numerically generated amplitude versus excitation frequency response
diagram, which includes impacts. Note the apparently chaotic portions as well as
the periodic windows in the response, [700].

where ξ = x/L, L is the length of the string, P is the applied axial
tension, V (ξ) = v(x)/L, V0(ξ = ξr) = v0(x = xr)/L is the gap size,
τ = t(π/L)

√
P/m, F0 is the excitation amplitude, ν = Ω/ω1, δ(·) is the

Dirac delta function, K is the constraint stiffness given by

K =
{

0 −∞
≤ ∞ v0(xr) < ∞ (6.2)

Equation (6.1) was discretized using Galerkin’s method through the modal
expansion

V (ξ, τ) =
n∑

i=1

ai(τ) sin(iπξ) (6.3)

The resulting ith normal mode equation was obtained in the form

··
ai + 2ζωi

·
ai +

⎡⎣EAπ4

4P

n∑
j=1

j4a2
j + i2

⎤⎦ ai

+
KL2

π2P

⎡⎣ n∑
j=1

aj sin(jπξr) − V0

⎤⎦ sin(iπξr) =
2F0

π2P
sin(iπξr) sin ντ (6.4)
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Fig. 6.3. Boundaries of impact motion governed by excitation amplitude f and
frequency Ω. (a) and (b) correspond to a small gap size σ = 0.00167 (linear and
nonlinear respectively), while (c) and (d) correspond to a larger gap size σ = 0.005
(linear and nonlinear, respectively) L: Impact predicted by linear model, NL: Impact
predicted by nonlinear model, [700].

The first summation on the left–hand side represents geometric nonlinear-
ity associated with large deflection. The last expression on the left–hand side
arises from strong stiffness nonlinearity of the barrier. ωi = (iπ/L)

√
P/m is

the ith mode linear natural frequency. Murphy and Morrison [700] carried
out numerical simulations for the first 20 terms of equation (6.4). In view
of the large stiffness associated with impact, equation (6.4) experiences nu-
merical stiffness since the eigenvalues of the local Jacobian matrix ranges
over several orders of magnitude. A hybrid integration routine employing
Geer’s method during non–impact portion of the trajectory was adopted.
This was then switched to a backward difference method. The problem of
determining the exact time instance of impact was overcome by recasting the
equations of motion according to Hénon’s scheme [404]. Fig. 6.2 shows the
dependence of the string steady state response on the excitation frequency
ratio at the stop. The response amplitude was Poincaré sampled once per



6.3 Beams 155

forcing frequency at zero–phase relative to the excitation. Over an excitation
frequency range 0.9 < ν < 0.9936, the response is periodic with period–one
and non–impacting. At ν = 0.9936 grazing occurs with high–period motion
then followed by chaotic motion. The boundaries separating between impact
and non–impact oscillations were generated using the multiple–scales method
where the response amplitude was set equal to the stop gap. On the plane
of excitation amplitude–frequency these boundaries are shown in Fig. 6.3 for
two different values of stop gap according to linear and nonlinear analyses.
The experimental results are shown by crosses (×) and empty circles (©).
This figure reveals that the experimental results are in good agreement with
the predicted ones only for excitation frequency ratio below resonance above
which the results drastically differ. The observed deviation may be attributed
to the inaccuracy of the method of multiple scales. This could be verified by
conducting a numerical simulation.

6.3 Beams

6.3.1 Overview

Structural elements such as beams are usually subjected to dynamic exci-
tations including impact loading. The dynamics of beam elements involving
amplitude constraint barriers was extensively studied in the literature ([1062],
[1063], [208], [834], [690], [926], [596], [197], [113], [114], [115], [1053], [1051],
[1012], [645], [646]). Maezawa and Watanabe [632] found that the coefficient
of restitution is not a constant parameter and the duration of collision is not
zero. The forced vibration of a structure with an added spring constraint act-
ing at a point was considered by Davies and Rogers [209]. A set of constrained
vibration modes was obtained in terms of the assumed known modes of the
unconstrained structure. It was shown that the unconstrained modes form a
complete set for the constrained beam. The response was described in terms
of constrained or unconstrained modes. The two descriptions were shown to
be equivalent only if the damping is independent of the mode number.

Masri [658] and Masri et al [663] conducted analytical and experimental
investigations of the response of a cantilever beam whose free–end oscillates
against a single–sided elastic spring and its clamped end is subjected to har-
monic excitation. The predicted and measured results were compared and
the qualitative difference between the two results was found in the response
of the system with increasing and decreasing the excitation frequency. A
computer algorithm was developed by Fathi et al [309] to assess appropriate
clearances and stiffness parameters of a given number of vibro–impact stops
in a homogeneous and uniform beam colliding with a single stop. The dy-
namic response of a cantilever beam with its free end oscillates against double
sided barriers was studied by Chattopadhyay and Saxena [162] under base
harmonic excitation of the clamped end. The response was measured at the
loose support for different values of excitation frequency for given initial gap
and gap stiffness. The response was found to exhibit discontinuous resonance
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curves and multiple valued responses typical of nonlinear systems. Fathi and
Popplewell [308] described computational strategies to accurately calculate
the contact forces and their peaks when a beam impacts a resilient stop. The
modified equation of motion of Timoshenko beam was developed by Chen et
al [163] who obtained the impact response formulae under the impact of a
lumped mass.

Lo [599] studied the contact chatter of a cantilever beam with the free
end pressed against a barrier. The beam was modeled by the Bernoulli–Euler
beam theory and the resulting integral equation was solved by the small time
increment technique. Deflections, contact force, and chatter were calculated.
The number of modes included in the solution, which depends on the fixed
contact stiffness, was found to have a great effect on the details of chatter, but
to have little effect on the overall pattern of chatter or deflection. Moon and
Shaw [690] showed that forced vibrations of an elastic beam with nonlinear
boundary conditions exhibit chaotic behavior of the strange attractor type
under a sinusoidal forcing excitation. The beam was clamped at one end, and
the other end was pinned for the tip displacement less than some fixed value
and was free for displacements greater than this value. Subharmonic oscil-
lations were dominating these types of motion. For certain values of forcing
frequency and amplitude, the periodic motion was found to be unstable and
non–periodic with bounded vibrations. These chaotic motions have a narrow
band spectrum of frequency components near the subharmonic frequencies.
Later, Shaw ([926], [927]) presented experimental results and compared them
with those predicted analytically by Moon and Shaw [690]. Bishop [113] con-
firmed similar results for an impacting beam driven near its linear natural
frequency.

The dynamic response of a thin cantilever beam impacting against an
elastic stop of general three–dimensional geometry was studied by Wang and
Kim ([1055], [1056]). The contact area between the beam and barrier was
taken as the control parameter. Variation of the contact area was found to
result in significant changes of the contact force. Furthermore, it was shown
that at a point relatively far from the contact center the dynamic response
is slightly influenced by the assumed area. It was also reported that fatigue
failures of thin beams usually occur near the free edge, relatively far from the
contact point, where the stress wave is reflected. Impact fatigue caused by a
cyclic repetition of low energy and low velocity impacts can have detrimental
effect on the performance and reliability of structural components ([463],
[479]). For example it has the potential to initiate a crack and to cause its
rapid propagation. Silberschmidt et al [943] analyzed the impact fatigue and
associated mechanisms for specific features of cracking in adhesively bonded
joints.

Fang and Wickert [307], Van de Vorst et al [1023], and Yagci et al [1091]
conducted experimental investigations to measure the response of a cantilever
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beam carrying an end mass and that could impact a vibrating surface. The
response exhibited a recurring pattern of resonances, period doubling bifur-
cations, and regions of aperiodic motions. Ervin and Wickert ([299], [300])
conducted another experimental study on a beam structure carrying a rigid
body and impacts against compliant base structure subjected to sinusoidal
excitation. It was demonstrated that the response characteristics associated
with repetitive impact become increasingly complex as the eccentricity of
the impact location and gap clearance grow. The contact force, impulse, and
displacement were found to exhibit complex response characteristics as a
function of the excitation frequency.

Numerical and experimental studies were conducted by Emaci et al [294]
and Emad et al [295] to examine the nonlinear motion confinement phenom-
ena in a nonlinear flexible assembly of two coupled cantilever beams whose
motion is constrained by rigid barriers. The impact nonlinearities were sim-
ulated by clearance nonlinearities with steep stiffness characteristics. The
predicted results confirmed the properties of the phenomenon of motion con-
finement. It was shown that under certain conditions the vibrational energy
of the system is passively confined to only one of the two beams. The ex-
perimental results confirmed analytical predictions both in the transient and
steady state regimes.

The impact problem of a helicopter blade droop stop was analyzed by Han
et al [387]. It was shown that the coupling of elastic deflections with rigid
motions is distinctive. When the rotation angle is large, couplings increase
distinctly and the differences between the results of two different compu-
tational methods increase. Furthermore, the bending stiffness was found to
have a direct influence on the coupling such that the coupling was found to
increase with decreasing the bending stiffness.

Yin et al [1107] examined the transient behavior of a cantilever beam sub-
jected to periodic excitation against a rod–like barrier. As impact and sep-
aration phase take place alternately, the transient waves induced either by
impacts or by separations were found to travel in more complicated ways. In
both impact and separation phases, the transient wave propagations were
solved by the expansion of transient wave functions in a series of eigen-
functions (wave modes). Numerical results showed the convergence of the
time–step size and truncation number of wave modes in the calculations of
impact force. The results also revealed several transient phenomena involv-
ing the propagation of transient impact–induced waves, sub–impact phases,
long–term impact motion, chatter, sticking motion, synchronous impact, non–
synchronous impact (including asynchronous impact) and impact loss.

The case of a cantilever beam with its free end constraint between one
(asymmetric collision) or two stops (symmetric collision) has received exten-
sive analytical, numerical and experimental investigations ([690], [926], [21],
[22]). Contrary to the case of continuous systems with symmetrical collision
characteristics, the resonance curves of nonlinear response of approximate so-
lution were shown as discontinuous. Bishop and Xu [116] performed numerical
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simulations to examine the behavior of a mathematical model approximating
the response of a beam held vertically and clamped at its base. The beam
was driven to impact against a motion limiting constraint. Control techniques
have been used to eliminate chaotic motion followed impacts by tracking
lower periodic solutions. The stabilized motions near the grazing incidence
have lower impact velocities than the naturally existing stable solutions lead-
ing to a significant reduction of the impact force. Balachandran [72] studied
experimentally and numerically the dynamics of a cantilever beam subjected
to impact excitations in the form of harmonic and aharmonic functions of
the form Y0| cosΩt|. During harmonic impacting motions, period–doubled
motions, incomplete period–doubling sequences, aperiodic motions, and mul-
tiple responses were observed. Furthermore, during half–sine impact motions
the response exhibited period–3 motions and modulated motions.

6.3.2 Analysis

With reference to Fig. 6.4(a), the equation of motion of the beam may be
written in the form [22]

∂2z

∂t2
+

EI

ρA

∂4z

∂x4
= Y0Ω

2 cosΩt, (6.5)

where z(x, t) is the beam lateral displacement, ρ is the beam mass density,
A is the beam cross–section area, EI is the beam flexural rigidity, and y =
z+Y0 cosΩt. Note that the origin of the nonlinear boundary condition at the
beam free end is mainly due to the collision with the barrier and is represented
by the piecewise condition

EI
∂3z

∂x3
|x=L =

{
K (zL − z0) if zL ≥ z0

0 if zL ≤ z0
, (6.6)

where K is the contact stiffness between the beam end and the barrier, and
z0 is the clearance. Based on the assumption of one impact per one excitation
period, Aoki and Watanabe [22] represented the nonlinear impact force by a
periodic function, g(θ) with θ = Ωt of period 2π, as shown in Fig. 6.4(b), i.e.,

g(θ) =
{
K (zL − z0) − θ0

2 ≤ θ ≤ θ0
2

0 θ0
2 ≤ θ ≤ 2π − θ0

2

, (6.7)

where θ0 denotes the value of the phase angle over which the contact of the
beam end with the stop takes place. The representation of equation (6.7)
states that one period of θ, i.e., 2π, of the resulting vibration is divided into
two intervals. The first is of length θ0 over which the beam end moves in
contact as shown in Fig. 6.4(b). The second interval is of length 2π − θ0

2
over which the beam end experiences free flight. The function g(θ) was then
expanded into a Fourier series and the first two terms were retained to give
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Fig. 6.4. Cantilver beam with one-sided restraint at the free end: (a) schematic
diagram of a beam with unsymmetric boundary condition, and (b) periodicity of
boundary force, [22].

g(θ) =
a0

2
+ a1 cos θ. (6.8)

Watanabe et al [1065] and Watanabe and Shebata [1064] showed that
when g(θ) is approximated by the fundamental term of the Fourier series,
the approximate solution agrees with the exact solution for low values of the
stiffness ratio KL3/(3EI) = K/k, where k = 3EI/L3. Applying the bound-
ary conditions including equation (6.6), Aoki and Watanabe [22] obtained
the following solution

z(x, θ) = Y0(cosλx− 1) cos θ
+ [A1 (coshλx − cosλx) + B1 (sinhλx− sinλx)] cos θ, (6.9)

where

λ = 1.8751
L

√
Ω/ω1, ω1 = 3.516

L2

√
EI/(ρA),
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A1 =
1
Δ

[Y0 (1 + coshλx cosλx + sinhλx sinλx)

− (a0/2) + a1 cos θ
EIλ3 cos θ

(sinhλx + sinλx)
}
,

B1 =
1
Δ

[−Y0 (coshλx sinλx + sinhλx cosλx)

− (a0/2) + a1 cos θ
EIλ3 cos θ

(coshλx + cosλx)
}
, and

Δ = 2 (1 + coshλx cosλx) .

The displacement of the beam end, z(L, θ), was obtained in the form

x(l, θ) =
Y0NL cos θ

1 −M1 (a1L3/(3EIΓ ))
+

M1

(3EI/L3)
· 3λ1Lg(θ)
(1.8751)2(Ω/ω1)2

, (6.10)

where

Γ = Y0NL + M1a1
(3EI/L3) , N1 = (1−cos λ1L)(cosh λ1L−1)

1+cos(λ1L) cosh(λ1L) ,

M1 = cos(λ1L) sinh(λ1L)−cosh(λ1L) sin(λ1L)
1+cos(λ1L) cos(λ1L) .

For a given frequency ratio Ω/ω1, Aoki and Watanabe (1998) obtained the
following cubic equation in θ0

M1K

12πk

(
1 +

Y0NL

2Z0

)
θ3
0 − NLY0

8Z0
θ2
0 +

NLY0

Z0
− 1 = 0 (6.11)

Equation (6.11) was found to possess only one real root which estab-
lishes the interval over which impact occurs. θ0 was obtained for the case
of Γ/Z0 > 1. Typical values of θ0 were found to be less than π/2 . The im-
pact was assumed to take place once in one period of the beam vibration. In
the presence of energy dissipation in the form of hysteresis loop, Aoki and
Watanabe [22] obtained an algebraic equation of order 8 in θ0. Bishop et al
[114] used a simple mathematical model utilizing a coefficient of restitution
rule to capture qualitative behavior of an experimental apparatus allowing
the parameter space to be divided into zones according to their behavior type.
Their results identified the zones, which separate regular period–1 impacting
solutions from irregular, apparently chaotic, impacting and non–impacting
motions.

Bishop et al [115] considered the dynamical response of a constrained thin
beam held fixed at one end under external excitation. It was demonstrated
that the parameter space around the natural frequency of the beam can
be divided into two main regimes separated by a codimension–two bifur-
cation. It was shown that a smooth transition from non–impacting to one
impact per period is possible by winding frequency up or down through a
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Fig. 6.5. Amplitude-frequency response of a cantlever beam restrained at the free
end: (a) analytical, and (b) numerical predictions, solid curves belong to stable
response of one impact per period while dashed curves belong to unstable for F =
0.25, [115].

critical value of the excitation amplitude. Above this critical value, jump
phenomenon took place between impacting and non–impacting solutions.
Figs. 6.5(a) and 6.5(b) show the amplitude–frequency response curves as
predicted analytically and numerically, respectively for F = 0.25. Curves ‘A’
belong to non–impacting response, while curve ‘B’ belongs to one impact
per period responses. Stable period–1 non–impacting motion was found to
exist as the excitation frequency was increasing from zero. As Ω increases
the response amplitude grows until it approaches the barrier at which graz-
ing occurs at the point GP , where Ω/ω1 = 0.875 producing a zero–velocity
impact. Beyond the grazing point, the response loses its stability. Fig. 6.5(b)
shows the subsequent motion may either be chaotic or experience complicated
sequence of bifurcations. At point PD the response stabilizes to one impact
per period via period–doubling bifurcation. This trend continues until the re-
sponse reaches a saddle–node bifurcation at SN and the motion jumps to a
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Fig. 6.6. Dependence of response amplitude ratio on excitation amplitude and
frequency, [115].

non–impacting period–1 solution. As the excitation frequency decreases from
Ω/ω1 = 1.6, the non–impacting period–1 response grows until the grazing
point GS at frequency ratio 1.11. This is followed by an impacting motion in
the form of a hysteresis loop between GS and SN similar to the scenario de-
scribed by Foale and Bishop ([334], [335]). Fig. 6.6 shows the locus of grazing
bifurcations in the three–dimensional parameter space. The locus of the first
grazing bifurcations is shown by the solid curve. The dashed curve between
points ‘C1’ and ‘C3’ is the locus of period–doubling bifurcations. The other
dashed curves represent the loci of saddle–node bifurcations. Points ‘C1’ and
‘C3’ belong to grazing, period–doubling and saddle–node loci meet, forming
a codimension–two bifurcation ([454], [332]).

Wagg et al [1053] measured impact loads using an impact load cell. The
impact load was observed to form spike train–type data. For vibro–impact
motion of the beam, the duration of impacts was examined using a time of
contact measure. The implications were discussed for vibro–impact systems
mathematically modeled by using instantaneous impact assumptions (coeffi-
cient of restitution). The influence of noise and the data–acquisition process
on the impact process was examined using numerical simulations of the ex-
perimental data. Later, Wagg and Bishop [1051] and Wagg [1044] applied a
non–smooth dynamics approach to a cantilever beam discretized into several
modes. Numerical simulations were compared with experimentally measured
data for a flexible beam constrained to impact on one side.

6.4 Constrained Pipes Conveying Liquid

6.4.1 Two–Dimensional Dynamics

Pipes conveying fluid may experience fluidelastic instability in the form of
static buckling (divergence) or unstable oscillations (flutter) similar to those
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encountered in aeroelastic structures ([764], [765], [766]). The case of diver-
gence may occur in pipes supported at both ends, while flutter instability
may occur for cantilevered pipes. Experimental investigations conducted by
Gregory and Päıdoussis [378] revealed that at sufficiently high flow speed
the cantilevered pipe loses stability by flutter (Hopf bifurcation), leading to
a stable limit–cycle planar motion. The orientation of this planar motion is
usually dictated by the inherent imperfections in the axial symmetry of the
pipe. The amplitude of oscillations was found to increase with flow velocity,
so that if the motion constraints are appropriately positioned, then above
a certain flow speed the pipe bangs on one or both constraints. In other
cases, this planar impact oscillation deteriorates into a three–dimensional
oscillation. Chen [164] considered a fluid conveying tube clamped at the up-
stream end and supported by a displacement spring at the other end. Stability
and instability boundaries were constructed. The spring was found to have a
destabilizing effect on the tube for certain ranges of the system parameters.
Other early studies ([468], [970]) considered the case of pipes supported on
a linear spring. It was found that the system exhibits instability in the form
of either divergence or flutter. Edelstein and Chen [283] and Makrides and
Edelstein [635] considered the same system but with a variable knife–edge
support at some interior point of the free end. The support position was
found to have a significant effect on the stability of the system.

Päıdoussis and Moon [771] studied the dynamic behavior of a cantilevered
pipe restricted by nonlinear motion restraints. For flow velocities sufficiently
higher than the critical value for the Hopf bifurcation, the limit cycle mo-
tion was found to be large enough for the pipe to experience impact. As
the flow speed was increased, a series of period doubling bifurcations led to
chaos. It was argued that the mechanism leading to chaos was related to
the interaction of limit–cycle oscillation occurring beyond Hopf bifurcation
and potential wells associated with incipient divergence of the pipe with the
motion barriers. Another study by Tang and Dowell [981] considered a pipe–
beam system with two permanent magnets placed on both sides of the free
end of the system. The force of the magnetic field was modeled by linear and
cubic terms. It was found that chaotic oscillations may exist due to flutter
instability alone when the flow velocity reaches a certain value and other
parameters have appropriate values. Under forced external sinusoidal excita-
tion, the characteristics of pipe–beam dynamics were found to be sensitive to
both the damping and the number of degrees of freedom used in the model.
By increasing the number of degrees of freedom, Päıdoussis et al ([769], [770],
[767]) and Päıdoussis and Semler [772] showed that convergence is achieved
with four or five degrees of freedom, which was confirmed experimentally. It
was shown experimentally that a cantilevered pipe interacting with motion–
limiting nonlinear constraints exhibits regions of chaotic motions. Motions
of the system, sensed by an optical tracking system, were analyzed and the
values of the fractal dimension of the system 1.03, 1.53, and 3.20 were ob-
tained in the period–1, ‘fuzzy’ period–2 and chaotic regimes of oscillation,
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respectively. A four–dimensional analytical model was found to capture the
essential dynamical features of observed behavior.

The chaotic dynamics of heat exchanger tubes impacting on loose baffle
plates was studied by using an analytic model that involves delay differential
equations [768]. The critical flow velocity for the local instability near the
static equilibrium position of the flexible cylinder was obtained by assuming
a harmonic solution in the discretized linearized model. It was found that
by increasing the flow velocity beyond the critical value, the amplitude of
oscillation grows until impacting with the loose support occurs. More complex
motions then arise, leading to chaos for a sufficiently high flow velocity. A
Lyapunov exponent technique was developed for delay differential equations
and showed definitely that chaotic motions do occur. Fredriksson et al [343]
reported some experimental results of a cantilevered pipe conveying fluid
unilaterally constrained. The transition from stable periodic non–impacting
motion to impacting motion, due to variations of parameters, was observed
over a wide range of vibro–impact systems. The transition was found to
emerge in a supercritical Hopf bifurcation. If the onset of impacting motion
is close to the Hopf bifurcation, the impacting motion would exhibit chaotic
behavior.

Päıdoussis and Semler [773] considered the case of an intermediate spring
support, and studied the stability of the original equilibrium. The regions in
the parameter space where the system is stable or loses stability by divergence
or flutter were determined. The stability of the other fixed points that emerge
with increasing flow velocity was obtained for various system parameters. It
revealed a very rich bifurcational behavior. The dynamics in the presence of
harmonic perturbations in the flow was examined in the neighborhood of the
double degeneracy, where heteroclinic orbits arise, and chaotic regions were
shown to exist.

De Langre et al [213] and De Langre and Lebreton [214] developed a simpli-
fied model of loosely supported tubes impacting on elastic supports. Impact
forces and sliding velocities were found to experience significant changes ac-
cording to the vibratory regime. The system exhibited chaotic behavior due
to impact nonlinearities at the supports. This phenomenon was studied both
experimentally and numerically in order to test the ability of computer meth-
ods to predict chaos in such systems. The range of physical parameters where
chaotic motion occurs was identified using spectral analysis at low frequency.
A numerical time–stepping integration of the equation of motion was adopted
and the amplitudes as well as chaotic regions of parameters were found in
good agreement with experimental results.

The dynamics of a slightly modified pipe with the motion–limiting con-
straints and a linear spring support was studied by Jin [473] and Jin and
Zou [474]. It was shown that for small flow velocities the static equilibrium
was found stable for any value of the spring stiffness. However, when the flow
velocity is relatively large, the pipe loses stability either by divergence if the
spring stiffness is relatively large, or by flutter if it is relatively small. The
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numerical simulation revealed seven sub–regions in the flutter region. In each
of these sub–regions a different behavior was found to emerge including the
chaotic motions of the pipe. It was also found that there exist the quasi–
periodic motions and route to chaos through breakup of the quasi–periodic
torus surface in some parameter region of the system, which differs from that
of periodic–doubling bifurcation route.

Steady nonlinear vibratory tube motions are possible due to the limiting
effect of the support clearances. A convenient method was developed for the
electro–mechanical simulation of unstable conditions, and the results were
reported on vibro–impact tests using a planar system. Vento et al [1030]
conducted experimental investigation allowing for two–dimensional tube
motions. Experimental tests utilized a straight tube with an instrumented
circular clearance–support at mid span and obtained a limited number of
vibro–impact tube responses. The characteristics of steady vibrations were
found to depend on the instability level, tube–support eccentricity and the
initial conditions. In most of the experiments, tube responses became almost
planar after some impacts. However, for a few tests, more complex orbital
motions were observed.

Yau et al [1101] designed an active vibration control system to suppress
the undesirable chaotic vibration in a constrained flexible pipe conveying
fluid, which exhibits regions of flutter and chaotic motions at sufficiently high
flow velocity. A four–dimensional analytical model obtained was utilized for
designing the control law. Yau et al [1101] applied an optimal regulator theory
to obtain feedback gains to stabilize the system with full state information. A
state observer was added to estimate the required state signals. Furthermore,
a robust controller based on quantitative feedback theory (QFT) scheme was
developed. It was found that the QFT scheme provided stability robustness
with respect to flow velocity variations.

6.4.2 Three–Dimensional Dynamics

The three–dimensional dynamics of a cantilevered pipe with an intermedi-
ate rotationally symmetric spring support was studies by Steindl and Troger
([955], [956], [957], [958], [959]). The three–dimensional transversal motion
was constrained by an elastic support, which has the symmetry of the square.
Kirchhoff’s rod theory and the Kelvin–Voigt viscoelastic law were used to de-
rive the pipe equations under the assumption of large displacement but small
strain. The loss of stability of the trivial equilibrium position was studied.

In a three–part study, Päıdoussis and his co–workers ([1043], [774], [684])
considered the three–dimensional nonlinear dynamics of unrestrained and
restrained cantilevered pipes conveying fluid. The full derivation of the equa-
tions of motion of a cantilevered pipe using a modified version of Hamilton’s
principle, was adopted. Intermediate nonlinear spring constraints were incor-
porated into the equations of motion via the method of virtual work. A point
mass fixed at the free end of the pipe was also added to the system. The
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effects of arrays of four or two springs or a single spring at a point along
the pipe length with different spring configurations, and points of attach-
ment on the pipe dynamics were examined. The main generic difference was
found that in some cases, the system loses stability by planar flutter, and
thereafter performs two–dimensional or three–dimensional periodic, quasi–
periodic and chaotic oscillations. In other cases, the system was found to lose
stability by divergence, followed at higher flows by oscillations in the plane
of divergence or perpendicular to it, in the form of periodic, quasi–periodic
or chaotic motion. These results were verified experimentally. When an ad-
ditional “point” mass was attached at the free end, the dynamical behavior
was analyzed in the form of a bifurcation diagram, along with time history
records, phase–plane plots, power spectra and Poincaré maps. The results
revealed planar periodic, quasi–periodic and chaotic oscillations, followed by
three–dimensional quasi–periodic and chaotic motions.

The flow–induced vibration of a nonlinear restrained curved pipe convey-
ing fluid was studied by Wang et al [1058] and Wang and Ni [1057]. The
nonlinear partial–differential equation governing the pipe in–plane vibration
was discretized using the differential quadrature. The numerical simulation
revealed several complex dynamic characteristics, such as limit cycle oscilla-
tions, chaotic motion, and static buckling, depending on the fluid flow velocity
parameter. The same system was also considered by Qiao et al [876] and Lin
and Qiao [597]. Under harmonic excitation, the numerical results indicated
that the pipe without motion–limiting constraints behaves as an ordinary
linear system. On the other hand, if the pipe is subjected to cubic motion–
limiting constraints, nonlinear dynamic phenomena emerge. The route to
chaos was shown to be reached through a sequence of period–doubling bi-
furcations. The problem of a block repeatedly sliding, jumping and being
conveyed inside a vibrating spatial–curved tube was studied by Long et al
[600]. Analytical models and the governing equations of motion were devel-
oped taking into account three types of motion regimes. These were relative
sliding motion, flying motion and the bumping process. The study included
the inclined friction with component velocities for oblique impact. The de-
tailed motion of the entire response, manifested in the form of ‘subperiodic
motion’, was revealed through numerical solutions.

6.4.3 Modeling and Response Analysis

The nonlinear equations of motion of pipes conveying fluid were developed
using energy and Newtonian methods by Semler et al (1994). The derivations
were made for cantilevered and clamped end pipes. It was shown that the
origin of various terms and the structure of the equations of motion are
distinctly different in these two cases. A critical assessment of derivations
developed by others was presented. Some of the equations were found to be
fully correct, while others were found to be inadequate, due to either the
assumptions made or inconsistencies in the derivations; for pipes with both
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Fig. 6.7. Restraint pipe and restrained force characteristics: (a) schematic dia-
gram of a constrained cantilevered pipe, (b) dependence of restrained force on the
displacement, [770].

ends fixed. It was claimed that the equations presented by Semler et al [920]
are complete and correct.

In modeling the dynamics of a constrained cantilevered pipe shown in Fig.
6.7(a), Päıdoussis et al ([769], [770]) considered a tubular vertical beam of
length L, internal cross–sectional area A, mass peer unit length m, flexural
rigidity EI and coefficient of Kelvin–Voigt damping c, conveying a fluid of
mass M per unit length with a constant axial velocity U . The equation of
motion of the pipe in the presence of motion limiting restraints may be de-
scribed by the Euler–Bernoulli beam theory in the non–dimensional form,
([769], [770], [772]),

∂2η

∂τ2
+
(

1 + α
∂

∂τ

)
∂4η

∂ξ4
+
[
u2 − γ(1 − ξ)

] ∂2η

∂ξ2

+2u
√
μ

∂2η

∂ξ∂τ
+ γ

∂η

∂ξ
+ f(η)δ(ξ − ξb) = 0 (6.12)

where the last term represents the high power nonlinear impact force due to
the presence of restraint at x = xb, and δ(·) is the Dirac delta function. η =
w/L, ξ = x/L, u = UL

√
M/EI, τ = t

√
EI/(M + m)/L, μ = M/(M + m),

γ = (M + m)gL3/EI, α = c
√

EI/(M + m)/L, and f(η) = F (w)L3/EI.
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The stiffness of the constraint was measured and confirmed the power
law phenomenological modeling, f(η) = κnη

2n−1, as described in Chapter 1.
With reference to Fig. 6.7(b), Päıdoussis et al [769] adopted the impact cubic
model:

f(η) = κη3 (6.13)

where κ = kL5/EI, k is the stiffness of the cubic spring. Alternatively,
Päıdoussis et al [769] and Päıdoussis and Semler [772] adopted smoothened
tri–linear spring model

f(η) = κn

[
η − 1

5
(|η + ηnb| − |η − ηnb|)

]n

(6.14)

This modeling enables one to represent adequately the free gap in which
the constraints are zero and to smoothen the sharp discontinuity at |η| = ηb.
Päıdoussis and Semler [772] adopted the cubic, n = 3, tri–linear model with
κ3 = 5.5 × 106, and ηb3 = 0.044. The approximation of the cubic spring
stiffness was found to be κ = 105, which fits the experimental measurements.

Päıdoussis and Semler [772] obtained added inertia nonlinearity to equa-
tion (6.12) to account for large pipe deflection. Equation (6.12) was dis-
cretized through the modal expansion

η(ξ, τ) =
∑

i

φi(ξ)qi(τ)

together with Galerkin’s method for the first two modes. This resulted in the
following equations in the matrix form{

d2q

dτ2

}
+ [C]

{
dq

dτ

}
+ [K] {q} + {f(q)} = {0} (6.15)

The elements of damping, Csr , stiffness, Ksr, and the nonlinear stiffness,
f(q), matrices are Csr = αλ4

rδsr + 2ubsr
√
μ, Ksr = λ4

rδsr +
(
u2 − γ

)
csr +

γ (dsr + bsr), fr = κ [φrbqr + φsbqr]
3
φrb. The constants bsr, csr and dsr are

documented by Päıdoussis and Moon [771]. λr is the non–dimensional eigen-
value of the cantilever pipe.

For mass ratio μ = 0.2, weight to stiffness ratio γ = 10, damping parameter
α = 5 × 10−3, barrier location ξb = 0.82, and barrier stiffness coefficient
κ = 100, a series of numerical simulations were performed to construct the
bifurcation diagrams shown in Figs. 6.8(a–c). These diagrams represent the
dependence of the pipe free–end displacement on the flow velocity parameter.
The displacement was estimated using two–mode approximation of the free
end displacement, i.e., η(1, τ) = φ1(1)aq1(τ)+φ2(1)q2(τ). The corresponding
velocity was estimated and the displacement corresponding to zero–velocity
was recorded to obtain the bifurcation diagrams of Fig. 6.8. The symmetry of
the solutions was broken for certain values of the flow velocity, u. Päıdoussis
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Fig. 6.8. Segments of bifurcation diagram over different values of flow speed pa-
rameter showing the dependence of the free-end displacement on the flow speed
parameter, for μ = 0.2, γ = 10, α = 5 × 10−3, ξb = 0.82, and κ = 100: (a) lower
speed region, (b) magnification over small range of flow speed, (c) large range of
flow speed, ([769], [772]).

et al [769] found that chaotic motion occurs at the flow speed parameter
u = 8.03 after a sequence of period–doubling bifurcations as shown in Figs.
6.8(a) and 6.8(b). Fig. 6.8(a) shows that Hopf bifurcation occurs at the critical
flow speed uH ≈ 6.22 with two solution branches for u > uH . At ubf ≈ 7.52, a
pitchfork bifurcation occurs and the limit cycle oscillation loses its symmetry.
The dashed–dot curves shown in Fig. 6.8(a) represent unstable solutions,
and the upper and lower branches, in the positive and negative parts of the
diagram, bifurcate into period doubling at up2. Fig. 6.8(b) is a magnification
of the bifurcation diagram over a small range of flow speed (u = 8.0 to 8.06)
and it shows a sequence of period–doubling bifurcations. The motion of the
pipe was found to be narrow–band chaotic for u > 8.03, and then at u ≈ 8.2
it becomes wide–band chaotic.

When the pipe inertia nonlinearity is included in the analytical modeling,
the pipe does not experience any chaos, even for higher flow values of flow
speed. In this case the inertia nonlinearity acts as a stabilizing mechanism.
Another observation is that chaotic oscillations can occur for sufficiently large
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barrier location ξb. The flow velocity range in Fig. 6.8(c) was extended be-
yond the one given in Fig. 6.8(a), [771], and thus it reveals that the pipe
regains stability after the region of chaos, around u = 10.87. This feature
was observed experimentally where the pipe sticks permanently to one of the
barriers. This implies that the system becomes unstable by divergence. The
existence of fixed points was examined and it was indicated that a subcritical
saddle–node bifurcation occurs at u = 9.85. This is followed by two fixed
points one of them is stable and the other one unstable. Other bifurcation
diagrams represented by the dependence of the pipe–end displacement on the
location ξb of the barriers were also obtained for different values of barrier
stiffness. It was shown that the pipe amplitude displacement decreases as the
barrier location increases. Furthermore, as the barrier location increases dif-
ferent scenarios of response were reported. These include periodic solutions
with symmetric limit–cycle oscillation, followed by a transcritical pitchfork
bifurcation, then cascades of period–doubling bifurcations leading to chaotic
motion.

6.5 Nuclear Reactors and Heat Exchangers

6.5.1 Fretting Wear Problem

Nuclear reactor components such as fuel rods and steam generator tubes are
usually arranged with gaps at support points to allow for thermal expansion.
In nuclear fuel systems, gaps may develop during service due to relaxation
of support springs and creep down of cladding tubes. The rod cluster control
assemblies in these plants can be damaged by impact–sliding wear due to
flow–induced vibrations, which generate contacts with their guidance devices
(guide tube) inside the reactor pressure vessel. Päıdoussis [763] presented
an excellent account of the practical experiences and state of knowledge of
flow–induced vibrations in nuclear reactors and heat exchangers.

The occurrence of flow–induced vibration fretting wear in process equip-
ment such as heat exchangers and steam generators accounts for the majority
of failures due to vibration. Fretting (or fretting corrosion) refers to corrosion
damage at the asperities of contact surfaces. This damage is induced under
load and in the presence of repeated relative surface motion. Fretting wear
prediction requires nonlinear computations of the tube dynamics in which
proper modeling of the fluid forcing function plays an important role. Shin
et al ([939], [940]) carried out a series of experimental tests to determine the
effects of tube/support misalignment, tube/support–hole clearance, support
thickness, exciting force amplitude, and support spacing on the vibrational
characteristics (resonant frequencies, mode shapes, and damping) and dis-
placement response amplitude of a heat exchanger tube. The test results were
compared with analytical results based on a multi–span beam with simple
intermittent supports.
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Yetisir et al [1103] proposed a simple criterion to estimate fretting wear
damage in heat exchanger tubes with clearance supports. The criterion was
based on parameters such as vibration frequency, mid–span vibration ampli-
tude, span length, tube mass, and an empirical wear coefficient. Fretting wear
damage is known to be proportional to a parameter called “work rate.” Work
rate, defined later by equation 6(33), is a measure of the dynamic interaction
between a vibrating tube and its supports. Work rate calculations for heat ex-
changer tubes require specialized nonlinear finite element codes. These codes
will be described in the next subsection and they take into account contact
models for various clearance support geometries. The proposed criterion was
obtained from an extensive parametric study that was conducted using a non-
linear finite element program. It was shown that work rate can be estimated
within a factor of two.

One of the parameters, which plays a vital role in the prediction of tube
wear rate, is the impact force that occurs when the free displacements of the
tube exceed the clearance in the support plates, resulting in a collision ([516],
[916]). Sauve and Teper [916] developed an analytical approach to simulate
the nonlinear dynamic–impact response of multi–supported tubes including
U–bends and the effect of non–uniform gap clearances at the supports. The
approach was incorporated into a computer code based on finite element and
displacement methods using an unconditionally stable numerical integration
scheme to solve the nonlinear equations of motion. The method simulated
impacts between tubes and support plates in steam generators and heat ex-
changers in order to determine tube bundle susceptibility to fretting wear
failure at the design stage or operational phase. The impact and/or sliding
forces which occur at interfaces lead to progressive thinning of tube walls
and ultimate failure in the extreme case. Fricker [345] presented a method
for analyzing the impact behavior of a steam generator tube, which has one
or more loose supports and is fluidelastically unstable. Fluidelastic instability
under conditions of turbulence and nonlinearities in nuclear power plants was
analyzed by Mureithi et al [699]. The results confirmed the existence of an
attractor distinguishable from randomness.

Boucher and Taylor [131] conducted an experimental investigation to sim-
ulate two–phase cross flow in the region of U–bend tubes of heat exchangers.
The effectiveness of U–bend tube restraints was studied by monitoring the
tube vibration and the tube–to–support contact during single– and two–
phase cross flow. Work–rate was taken as a measure of the contact criteria
that combines both contact force and sliding distance. The work–rate is di-
rectly related to the wear rate between the tube and support. Effectiveness
of the tube supports in the in–plane and out–of–plane directions was studied
by examining tube response and the resultant work–rates for two different
tube–to–support clearances. U–bend tube restraints limit the out–of–plane
tube motion to the magnitude of the tube–to–support clearance while in–
plane motion continues to increase with flow rate.
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A robust feedback controller to suppress flutter–type chaotic vibrations in
baffled heat exchanger tubes was presented by Bedout et al [101]. The vibra-
tions are the result of the fluid dynamic forces on the tube, which behave
as a negative damping element. These vibrations result in tubes impact with
baffle plates. The heat exchanger tube and fluid dynamic forces acting on
the tube were modeled with linear delayed differential equations. The feed-
back controller was realized using a frequency domain loop shaping approach.
The control effector is a magnetic force transducer that acts on the heat ex-
changer tube. The feedback controller was shown to provide robust stability
and performance over a large flow velocity regime.

6.5.2 Computational Methods

The relatively small inherent tube–to–baffle hole clearances associated with
manufacturing tolerances in heat exchangers are known to affect the vibra-
tional characteristics and the tube response. Various computational methods
were employed to predict some aspects of vibro–impact dynamics. Rogers and
Pick ([892], [893]) and Fisher et al [326] developed a dynamic finite element
code VIBIC (Vibration of Beams with Intermittent Contacts) for predicting
the motions and baffle contact forces of a single heat exchanger tube. The
modal equations of motion were generated and numerically integrated. Es-
sentially the numerical code VIBIC simulates the dynamic response of a heat
exchanger tube as it impacts and rubs against its supports.

A simplified two–dimensional dynamic model describing the interaction
of a heat exchanger tube and its support, with transitions to and from solid
contact, was developed by Zhou and Rogers [1136]. A new friction model with
six degrees of freedom was merged into the test code. Numerical analyses and
simulations were performed. The simulation results for three typical tube mo-
tions were generated from the test code and one was from an improved VIBIC
code. A WOrk–Rate Measuring Station (WORMS) was developed by Fisher
et al [328] to measure the relative motion and contact forces between a vibrat-
ing fuel element and its support. These measurements confirmed numerical
simulations of in–reactor interaction predicted earlier using the VIBIC code.

The fluidelastic vibration of a tube array caused by cross flow was exam-
ined by Nakamura and Fujita ([707], [708]) using a time–history simulation. It
was possible to extract impact vibration from the time series. The computed
results were compared with the measured impact force and were extended
to account for a steam–water two–phase flow. Flow–induced vibration on a
tube array caused by two–phase flow at high–pressure and high–temperature
conditions was examined experimentally by Nakamura et al [709]. The ex-
perimental measurements included the turbulent buffeting force by air–water
two–phase flow and by steam–water flow of extreme conditions up to pressure
5.8MPa and temperature 272◦C. The main source of the buffeting force by
two–phase flow in slug or froth flow pattern was recognized to be the impact
force caused by the intermittently rising liquid slug. The slug speed and the
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fluid force acting on a tube were estimated, combined with the estimation of
the intermittence of the occurrence of the liquid slug rising.

Numerical investigations utilizing the finite element method were con-
ducted to simulate the nonlinear tube response. These studies considered
tubes supported by loose baffle plates ([893], [916], [884]), broached hole
[327], and flat–bar supports [1104]. Axisa et al [46] further elaborated on the
method of Rogers and Pick ([892], [893]) to compute displacements and im-
pact forces in tubular structures using a nonlinear tube–support contact force.
The impact behavior of a periodically forced oscillator with limiting stops was
studied by Nguyen et al ([726], [727]) and Axisa et al [44] for different val-
ues of excitation and system parameters. The results were utilized in related
studies of noise and wear in mechanical systems with clearances. Later, Axisa
and Izquierdo [47] utilized this method to assess experimental measurements
on vibro–impact dynamics of loosely supported tubes under harmonic ex-
citations. Sauve and Teper [916] analyzed the vibro–impact tube dynamics
using finite element method and an unconditionally stable numerical scheme
to solve the nonlinear equations of motion. They introduced Rayleigh pro-
portional damping for the damping matrix in the equations of motion. Lin
and Bapat [596] used three approaches to estimate clearances and impact
forces for a simple undamped beam–stop system. The predictions of impact
forces and clearances obtained using data from the mechanical experiments,
were compared with measured impact forces and actual clearances, respec-
tively, and were found in good agreement. Peterka ([817], [818]) examined
the impact interaction of single and two heat exchanger tubes.

Hassan et al [396] presented numerical simulations of a loosely supported
heat exchanger tube excited by turbulence. The effects of support clear-
ance and flow orientation were examined for various support geometries and
lattice–bar support offset. The finite element method was utilized to model
the vibrations and the impact dynamics. Three different friction models were
introduced to account for the tube/support friction forces. It was found that
some flow orientations, support types, and support offsets provide favorable
support conditions for higher tube sliding motion against the support. This
results in potentially greater wear rates under service conditions. Further-
more, minimizing tube–to–support clearance was found beneficial in terms of
reducing wear in heat exchangers. Offset of rhomboid–flat bar support was
found to result in nonlinear coupling of tube modes and even greater complex-
ity in tube dynamics. Increasing offset would result in increasing normal work
rate since constraint of the tube by one support increases sliding contact with
the adjacent support. Thus, wear should be minimized by minimizing support
offset. Later, Hassan et al [397] and Hassan [392] proposed computational al-
gorithms to examine the tube/support impact considering a finite support
width. The tube/support contact was modeled by a distributed stiffness to
account for the segment contact. The impact forces were distributed along
the contact segment using the beam displacement interpolation function. The
tube/support impact was shown to be a combination of edge (point) and
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Fig. 6.9. Tube-contact modeling: (a) Point contact, (b) Segment Contact, [397].

segmental (line) contact. It was also found that smaller tube/support clear-
ances tend to produce segmental contact and therefore larger contact areas
as well as increased support stiffness against tube rotation.

Various support geometries currently used by manufacturers in heat ex-
changer U–bends were discussed by Weaver & Schneider [1066]. The geometry
of the support affects the dynamics of the tube due to variances in the con-
tact configurations. An accurate modeling of the nonlinear tube–support in-
teraction is very important in order to predict its response. Note that the
tube/support contact configuration may change with the heat exchanger
operating conditions. Kim et al [503] and Hassan et al [392] classified the
tube/support contact into two main categories shown in Fig. 6.9. The first is
the point contact at the support edge and the second is the segment contact
over a line. The two models were formulated in details by Hassan et al [397],
and the following treatment is adapted from their derivation.

6.5.3 Point Contact Model

Fig. 6.10 shows a segment of the tube with the point contact model. The
segment line AE connects the principal contact node A and the neighboring
contact node E. Two side supports each modeled by a spring–dashpot system.
Note the maximum penetration distance δB between the tube’s surface B and
the support plane is

δB = dB
n − Cr, (6.16)

where Cr is the radial clearance and dB
n is the normal displacement of

point B.
The impact force, Fimp, constitutes the spring force component, Fpring, re-

sulting from a concentrated spring at point B and the damping force, Fdamp,
accounting for energy dissipation during impact, i.e.,

Fimp = Fpring + Fdamp, (6.17)

where
Fpring = (KspringδB) · usmn, (6.18a)
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Fig. 6.10. Contact node set showing the principal contact node A and the neigh-
boring contact node E, [397].

Fdamp = −sgn
(
δ̇B

)(3
2
ζimp|KspringδB|

)
· usmn, (6.18b)

usmn is the support normal unit vector, ζimp is an impact damping parameter
related to the coefficient of restitution [434]. Decomposing the impact force
into tube local normal, Fin, and axial, Fia components, gives

Fin = Fimp · utn, Fia = Fimp · uta (6.19a,b)

where utn and uta are the tube unit vectors along normal and axial directions.
The frictional force acting in the plane containing the tube tangential ve-

locity and the axial unit vector requires the estimation of the tube tangential
velocity in the friction plane. The resultant tangential velocity, V B

rt , in the fric-
tion plane was determined by the vector sum of the tube velocity components
in the directions of uta and utt. Note that the velocity of point B must be ob-
tained by interpolating the velocity with respect to the nodal velocities. Hassan
et al [397] incorporated the following three friction models ([18], [976], [396]):

Velocity–limited friction model : This model was also adopted by Rogers and
Pick [893], and Yetisir and Weaver [1104]. It employs a limiting velocity, V0,
to overcome the problem of discontinuity of the classical Coulomb friction
model. The friction force, Ff , was modeled by the two expressions
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|Ff | = μFin if |Vt| > V0, (6.20a)

|Ff | =
|Vt|
V0

μFin if |Vt| ≤ V0, (6.20b)

where μ is the kinetic coefficient of friction and Fin is the normal force.
The velocity–limited friction model was found to yield good tube response,

impact force, contact ratio and work rate for a small preload and no substan-
tial initial eccentricity. This model does not address the influence of sticking
on wear. Under significant preload and initial contact, the next two models
are recommended ([396], [394]).

Spring damper friction model : This model was modeled by Antunes et al [18]
who introduced adherence stiffness, Ka, and an adherence damper, Ca, for
the sticking force

|Ff | = μFin for sliding, (6.21a)
|Ff | = Ka (dc − d0) + CaVt for sticking (6.21b)

where dc and d0 are the current and zero–velocity tangential displacements,
respectively. Note that sticking is detected by a negative dot product of the
present tangential velocity vector with its value at the previous time step.

Force balance friction model : This model was proposed by Tan and Rogers
[976] who detected sticking whenever the absolute velocity is less than a small
limiting velocity, V0. During sticking the friction force was calculated such
that it balances the net force, i.e.,

Ff = Ku− Fe (6.22)

where Ku represents the internal tangential forces at the point of contact
and Fe is the external force.

The condition |Ff | < μsFin must be satisfied for the occurrence of sticking,
where μs is the static friction coefficient.

Hassan et al [397] adopted the third modeling in developing a computa-
tional algorithm to describe tube/support impact interaction. The calculated
resultant frictional forces and moments were translated to the tube local co-
ordinates and the following results were obtained

Ffa = Ff · uta, Fft = Ff · utt,

Mfa = Mf · uta, Mft = Mf · utt (6.23)

The total contact forces and moments in the local tube directions are

Fca = Fia + Ffa, Fcn = Fin, Fct = Fft

Mca = Mfa, Mcn = 0, Mct = Mft (6.24)
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These components of forces and moments are defined at the impact point
B. Since in the finite element algorithm loads are applied at the nodes, these
components have to be expressed as concentrated loads and moments applied
at the nodes. In this case the work done by impact forces is equivalent to the
work done by equivalent concentrated forces at the nodes. Thus the work
done, W , by the impact and frictional forces and moments is

W = Fcad
B
a (η) + Fcnd

B
n (η) + Fctd

B
t (η) + Mcaθ

B
a (η) + Mctθ

B
t (η) (6.25)

where η = b/Le, b is the distance between point B and the node A, Le is
the length of the element of the tube AE, dB

a , dB
n , and dB

t are the axial,
normal, and tangential components of the displacement vector of the node,
respectively, θB

a and θB
t are the rotational displacement components.

6.5.4 Segment Contact Model

When the displacements of the principal contact node A or the pair of points
A and E exceeds the support gap, an overlap segment takes place as shown
in Fig. 6.11. The strain energy, Ug, of the deformed distributed stiffness is

Ug =
1
2
KgLe

∫
[dn (ξ) − Cr]

2
dξ (6.26)

where Kg is the gap stiffness, assumed constant over the overlap segment
η. dn (ξ) is an interpolated displacement using the beam displacement shape

Fig. 6.11. Schematic diagram of the segment contact model showing a pair of
nodes A and E, [397].
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function. Upon integrating equation (6.26) the nodal forces and moments can
be obtained by differentiating the strain energy with respect to the nodal
degrees of freedom with the result⎧⎪⎪⎨⎪⎪⎩
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where Hi, i = 1, 2, 3, ..45, are polynomials of the dimensionless contact seg-
ment η and are documented in reference [397]. The work done by the sliding
friction forces, Wfa, in the axial direction is

Wfa = −μd (utr · ua)KgLe

{
dA

a dE
a
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(6.28)

The consistent load vector describing the sliding tangential friction force is

{Ffa} = −μd (utr · ua)KgLe

⎡⎢⎢⎣
H11 H12 H13 H14 H15

H21 H22 H23 H24 H25

H31 H32 H33 H34 H35

H41 H42 H43 H44 H45

⎤⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dA
n

Leθ
A
t

dE
a

Leθ
E
t

Cr

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6.29)

where μd is the dynamic friction coefficient (projected on the friction plane).
The time history of the tube response was computed using the standard

finite element solution of the beam equation

[M ]
{··
d

}
+ [C]

{ ·
d

}
+ [K] {d} = {Fe(t)} +

{
Fimp

(
d,

·
d

)}
(6.30)

The total power induced by turbulence, Wtur, and absorbed by the tube of
length L and mass per unit length m may be expressed by the formula [1103]

Wtur =
∑ SFF (fi)J2

i L

2m
(6.31)

where SFF (fi) is the power spectral density of the local force per unit
length in the ith mode and J2

i is the joint acceptance given by the expres-
sion ([40], [41])

J2
i =

1
L

L∫
0

L∫
0

Φi(x′)Γ (x′, x′′, ω)Φi(x
′′
)dx′dx′′ (6.32)
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Fig. 6.12. Schematic diagram of the tube/support finite element model studied by
Hassan et al, [397].

where Φi(x′) is the mode shape function, Γ = |Spx′x′′(f)|2 / [Spx′(f)Spx′′(f) ]
is the coherence function, Spx′x′′(f) is the pressure cross–spectral density,
Spx′(f) is the pressure power spectral density. The theoretical development
of the acceptance integral method used to estimate the random vibration
of structures subjected to turbulent flow was critically reviewed by Au–Yan
([40], [41]). Based on the finite element of tube/stop interaction model shown
in Fig. 6.12, Hassan et al [397] estimated the dependence of dimensionless
root-mean square (rms) impact force, Fimp/ (FturL), where Ftur is the dis-
tributed turbulence force per unit length on the dimensionless clearance ratio,
Cr/drsi, where drsi is the tube response at the support location obtained by
applying the same excitation on the linear unconstrained tube. The results
of their numerical algorithm are shown in Figs. 6.13(a) and 6.13(b) for the
segment impact force and point impact force respectively and different values
of support width ratio, w/D, where w is the support width and D is the tube
diameter. For the case of segment impact, Fig. 6.13(a) shows that the rms
impact force decreases as the width ratio increases. Furthermore, the impact

Fig. 6.13. Dependence of the rms impact force on the clearance size and for
different values of width ratio w/D : � 0.63, � 0.94, � 1.26, · 1.56, © single point
contact model: (a) Segment impact, and (b) point impact, [397].
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Fig. 6.14. Dependence of the normal work done ratio on the clearance size and for
different values of width ratio w/D : � 0.63, � 0.94, � 1.26, · 1.56, ©: (a) Segment
impact, and (b) point impact, [397].

force predicted by the single point contact model is very close to all other
tested support width ratio over the lower region of clearance ratio up to 0.2
above which the impact force of single point model exceeds those values due
to other support widths. Note that for all support width values, the tube has
100% segment contact ratio, η = b/le, with the support at zero clearance.

For the case of point impact force, the impact force is zero for zero clear-
ance, see Fig. 6.13(b), in contrast with case of segment impact force. As the
clearance ratio increases the impact force increases for all values of support
width ratio up to a clearance ratio Cr/drsi > 0.2 depending on the support
width ratio. Beyond the peak value of the impact force, the rms of impact
force begins to decrease with the support width ratio and eventually all curves
merge in one curve as shown in Fig. 6.13(b). As the clearance ratio increases,
the edge contact ratio increases dramatically up to a clearance ratio Cr/drsi >
0.2 depending on the support width ratio, then follows the same trend of the
impact force.

Tube fretting wear is usually estimated by correlating the experimental
wear with the computed work rate. Work rate, WN , is estimated by averaging
the product of the impact forces and tube sliding displacement, i.e.,

WN =
1
N

T∫
0

FNds (6.33)

where FN is the normal impact force and ds is the displacement. The de-
pendence of the normal work rate ratio WN/Wtur on the clearance ratio
for different values of width ratio is shown in Figs. 6.14(a) and 6.14(b) for
segment contact and edge contact, respectively. It is seen that the normal
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Fig. 6.15. Time history records of the pipe response (a-c) along the flow, (d-f)
along the lift, and (g-i) impact force, for clearance Cr = 0.1mm, and three different
values of flow velocity parameter Ur = 31, 50, and 92, [393].

work rate curves of the edge contact case are lower than those of the segment
contact for all support contact width ratios.

Hassan and Hayder [393] extended the work of Hassan et al [395] and de-
veloped a time–domain model for fluidelastic instability forces of tubes with
loose–supports. In their model the fluidelastic force, which is dependent on
the flow velocity and array geometry, was superimposed on the turbulent
forcing function. Fig. 6.15 shows time history records of the tube tip dis-
placement along the flow, along the lift, and the time history of the impact
force for three different values of the flow velocity parameter, Ur = U/fD,
where U is the undisturbed fluid flow velocity across tubes bundle, and f
is the fundamental tube velocity. These velocity parameters exceed the crit-
ical flow velocity. Below that flow velocity the tube was found to oscillate
periodically without impact.
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6.5.5 Experimental Results

The vibro–impact of an instrument tube against adjacent fuel channel boxes
in a boiling water reactor (BWR) has been the subject of many studies (see,
e.g., [103], [698], [665]). It was proposed that the magnitude of the normalized
cross–spectral density between the signals of two detectors in the instrument
tube in the frequency range 3.5 Hz to 6.0 Hz to be used as an indicator of
impact. Axisa and Antunes [45] reported some results of experimental tests
dealing with the vibro–impact motion of linearly unstable multi–supported
tubes. A simple method was described for simulating the fluidelastic forces,
using a feedback velocity loop. Experiments were performed for different val-
ues of the instability growth rate and for several initial motion conditions of
the system. The results revealed that various stationary tube responses are
possible depending on these parameters. Jacquart and Gay [461] described
the Electricite de France (EDF) numerical development with the Aster me-
chanics computer code to calculate the nonlinear dynamics of tubular struc-
tures with loose supports. Both numerical and experimental validations of
this computer code were presented. They also reported the research activi-
ties of nuclear power plant components of EDF and the design requirements
to prevent various damaging processes including flow–induced vibration and
wear mechanisms. The vibration and impacting of an instrument tube in a
(BWR) were studied by Laggiard et al [561] using one–dimensional bimodal
model. Four modal nonlinear boundary conditions were applied and a set of
coupled nonlinear equations describing the temporal evolution of two con-
tinuous modal amplitudes were obtained. These equations were numerically
solved by means of a generalized Runge–Kutta algorithm.

Due to tube–support gaps in heat–exchangers, low–frequency modes may
develop and become unstable at comparatively low flow velocities. This kind
of linear fluidelastic instability results in a negative value of the modal damp-
ing, which is a function of the flow velocity. The response amplitude of the
unstable tubes was found to increase steadily until tube–support impact be-
comes unavoidable. Antunes et al [15] conducted a series of experimental tests
to validate nonlinear predictions on vibro–impact dynamics of heat exchanger
tube bundles under fluidelastic instability. In particular the actual behavior
of the U–band portion of heat exchanger tube bundles was the main focus
of the study. The results showed that several steady motion regimes may
arise, depending on the system parameters and initial conditions of the mo-
tion. In another study, Antunes et al [16] reported some results on a series of
laboratory experiments with the purpose of validating numerical predictions
of vibro–impact dynamics of heat exchanger tube bundles under fluidelas-
tic instability. The test model was designed for unidirectional motion. The
system instability was generated by a velocity feedback loop. This method
presents significant advantages due to simplicity of the setup and the con-
trollability of the system parameters, in particular concerning the negative
damping ratio of the unstable model. A comparison of experimental and
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computed system response for several values of instability growth rate and
different initial conditions revealed several steady state motion regimes. Fur-
thermore, a satisfactory qualitative and quantitative agreement was obtained
between theoretical predictions and test data. Antunes et al [17] developed
a theoretical analysis of a simplified model with reduced dimension to pre-
dict some essential aspects of the system nonlinear dynamics. The system
was found to develop a number of possible nonlinear periodic motions, which
are essentially controlled by the modal parameters of the first and second
unconstrained modes.

Whiston [1072] and Jordan and Whiston [485] proposed a technique for
remote impact analysis applicable to on–line vibration wear assessment. Com-
parison was made between predicted and measured Timoshenko transfer func-
tions between the remote acceleration transform and the impact force–time
history transform. The inversion process was applied to experimental im-
pacting data and good representations of impact force–time histories were
obtained. De Aroujo et al [211] developed experimental identification of the
wave path propagation parameters and impact forces by using tube response
measurements at remote locations. Experiments performed on a long steel
beam were described and a simple method was developed to deal with the
boundary reflections of a wave generated by a single impact. Experimental
identification of the wave–path properties of isolated impact forces and im-
pact locations was performed. This study was extended by Antunes et al [19]
who found that the loosely supported tubes display very complex rattling mo-
tions. The rattling was associated with the impact–generated primary waves
completely immersed in countless wave reflections traveling between the tube
boundaries. As a consequence, multiple–impact patterns of tube–support in-
teraction were found to be much more difficult to identify than isolated force
spikes. However, Antunes et al [19] considered the identification of impacts for
realistic tube vibrations by using a signal–processing technique for separating
the multiple wave sources. The technique uses the information provided by a
limited number of vibratory transducers.

The remote identification of impact forces on loosely supported tubes was
performed by Paulino et al [795]. Experiments were performed on a long beam
with three clearance supports, excited by random forces. Antunes et al [20]
extended their previous work by including several simultaneous responses.
From numerical simulations and experiments, it was shown that the robust-
ness to noise contamination is increased by using multiple response data.

6.5.6 Case Study

Knudsen et al [515] and Knudsen and Massih ([512], [513], [514]) con-
sidered the dynamic response of a cantilever beam having loose supports
with a prescribed clearance subjected to a harmonic excitation as shown in
Fig. 6.16(a). The results were compared with those measured experimentally.
The dynamic characteristics of vibro–impacts were studied by evaluating the
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Fig. 6.16. Schematic diagrams of (a) the cantilever beam with loose supports at
one end subject to a time-varying force, (b) single-degree-of-freedom oscillator with
two-sided constraints subjected to a harmonic load, and (c) the rod-support cell
system, showing also the deformed support cell with gaps, [513].

contact velocity as a function of excitation frequency for two kinds of struc-
tures, namely a two–sided single–degree–of–freedom impact oscillator, and a
two–dimensional cantilever beam with a double–sided support clearance. It
was found that neglecting friction at contact would lead to an overestimation
of the mean wear work rate.

Figs. 6.17(a) and 6.17(b) show the impact forces versus time in the
x− and y−directions, respectively. The coordinate directions are defined in
Fig. 6.16(c), i.e., a positive force in the x−direction represents the force act-
ing on the arches, and a negative force in the x− direction is the force acting
on the opposing soft spring. In the y−direction, the situation is reversed.
The magnitude of the impact forces acting on the arches are overestimated,
especially in the y−direction. However, the forces acting on the soft springs
were found in good agreement with the measured values.
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Fig. 6.17. Vibro-impact dynamic behavior of a loosely supported rod under har-
monic excitations with a clearance of 0.25mm and 0.20 mm in x and y directions,
respectively. The driving frequency is 20Hz. Computations utilize the simple con-
tact algorithm, neglecting friction: (a) Impact force in x direction; (b) force in y
direction. The solid line shows measured values while the broken line indicates
calculated values, [513].

Knudsen and Massih [513] tried to make the single–degree–of–freedom os-
cillator shown in Fig. 6.16(b) and the cantilever beam dynamically compara-
ble. The extent of the agreement between the behavior of the two systems can
be seen in Figs. 6.17(a) and (b). For low frequencies, the two systems show
similar features, albeit the velocities are somewhat higher in the beam case.
The difference increases with increasing the applied frequency as the higher
modes of the beam are excited. These differences were found to exist and can-
not be avoided when comparing one freedom system and continuous beam
solutions. There are, however, differences in modeling the two cases. These
differences are mainly due to initial conditions and damping parameters.
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Fig. 6.18. Dependence of non-dimensional contact velocity on excitation frequency
ratio for (a) single–degree–of–freedom two–sided impact oscillator and (b) cantilever
beam with two–sided supports subjected, [513].

Fig. 6.18 shows the dependence of the non–dimensional contact velocity on
the excitation frequency ratioΩ/ω1, whereΩ is the excitation frequency andω1

is the natural frequency of the system without impact. It shows the impact and
release velocities at 200 consecutive impacts for each value of the forcing fre-
quency. The figure reveals that the system experiences a multitude of complex
impact patterns including chaotic behavior. For frequency ratios Ω/ω1 = 1, 2,
and 3 the system displays aperiodic behavior. Over the interval 4 ≤ Ω/ω1 ≤ 7,
the system assumes periodic oscillations with one or more impacts per support
per forcing cycle. For a frequency ratio exceeding the value 8, the contact ve-
locity displays an unsettled periodic motion. The overall increase in contact
velocity associated with increasing the forcing frequency corresponds to the re-
sponse of a single–degree–of–freedomoscillatorwith spring stiffness k = k1+k2

subjected to harmonic excitation approaching resonance.
The dependence of the non–dimensional contact velocity on the excitation

frequency ratio Ω/ω1 for the beam of Fig. 6.16(a) is shown in Fig. 6.18(b).
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Impact occurrence was identified when |Fn(jΔt)| > 0 and Fn [(j − 1)Δt] = 0,
where j is an integer identifying the current iteration step and Fn is the normal
component of the contact force. Calculations were made for forcing frequencies
corresponding to integer multiples of the first free beam eigenfrequency (≈ 7.5
Hz) and halfway between these, i.e., Ω/ω1 ∈ {1, 1.5, 2.0, ..., 10}. At forcing
frequencies of Ω/ω1 < 4 and 7 ≤ Ω/ω1 ≤ 8, the beam experiences aperiodic
motion. Periodic solutions with one impact per contact site per forcing cycle,
were found between these intervals.

6.6 Plates

Switching devices usually contain units consisting of plates activated by a
magnetic field generated by a control coil. When the control coil windings
are connected to a power source, a magnetic field is generated which magne-
tizes the plates. As a result, these plates move towards each other and collide.
The collision of plates is accompanied by their rebounding and vibrate in sev-
eral modes. Computing the dynamic characteristics of such systems requires
knowledge of the distribution of the magnetic flux. This flux generates the
magnetic forces acting on the elastic plates. The behavior of the plates under
the effect of the magnetic flux was studied using the finite element method
by Ostasavichyus et al ([755], [756], [757]) and Gaidis et al [355].

Noise generation by the impact of thin plates is an example of energy
transfer from the low frequency vibration of the fundamental modes to high
frequency vibration modes. The noise radiation from the impact is determined
by the impact dynamics. Qiu and Feng [878] extracted low–dimensional mod-
els for the impact dynamics based on a single–mode impact modeling. It was
found that many periodic solutions bifurcate from the grazing bifurcation
point. Most of these periodic orbits terminate at secondary grazing bifurca-
tions due to an additional impact.

Fig. 6.19 shows a bifurcation diagram in the space of excitation force am-
plitude parameter, f/h, and the excitation frequency parameter, ν, where f
and ν are non–dimensional excitation amplitude and frequency, respectively,
and h is a non–dimensional gap between the plate mid–point and the barrier.
Fig. 6.19 was generated for plate damping factor ζ = 0.05, and coefficient of
restitution e = 0.6. For one impact per n−forcing cycles (1 : n), Fig. 6.19
reveals four stable regions of 1 : 1, 1 : 2, 1 : 3, and 1 : 4 periodic orbits. Curve
G corresponds to the primary grazing bifurcation. Below this curve the lin-
ear analysis predicts non–impact solution. However, the nonlinear analysis
reveals the existence of impact solutions below curve G. There is a region
between G and H where stable 1 : 1 impact solution coexists with the stable
non–impact solution (see also [121]).

Figs. 6.20(a)–(c) show the dependence of three kinematic parameters on
the excitation frequency parameter, ν. These parameters are the impact
velocity, Vim, the positive velocity crossing the line of static equilibrium po-
sition, Vx=0, and the average impact velocity per forcing cycle, Vav. As the
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Fig. 6.19. Bifurcation diagram shows stable regions of periodic solutions of 1/n
type for n = 1, 2, 3, 4. Curve G belongs to grazing bifurcation as predicted by linear
analysis. The region between G and H corresponds to two stable steady solutions:
one with impact of 1 : 1 type and the other without impact, [878].

excitation frequency slowly increases, the non–impact solution ceases to exist
at the grazing bifurcation point ν = 0.907 as predicted by the linear theory.
After grazing bifurcation, 1 : 5 periodic orbit emerges and terminates at a
secondary grazing bifurcation at ν = 0.913. This is followed by 1 : 4 orbit
until ν = 0.928 at which the plate experiences chaotic motion. At ν = 0.95
a stable 1 : 3 orbit emerges, which terminates at ν = 0.953 through a sec-
ondary grazing bifurcation. This is again followed by chaotic dynamics and
at ν = 0.973 another bifurcation occurs to stable 1 : 2 orbits. These orbits
terminate at ν = 0.985 through a secondary grazing bifurcation with 1 : 1
orbits. They remain in effect up to an excitation frequency of ν = 1.23 above
which unstable 1 : 1 orbits emerge through a saddle–node bifurcation and
then disappear.

Experimental investigations on a thin plate impacting a striker revealed
significant differences of plate impact depending on whether the forcing is
above or below the resonance frequency. The hysteresis above the resonance
frequency was found much larger than those below resonance. In addition the
impact above resonance frequency was noisier than that below resonance.

Fegelman and Grosh [311] analyzed the fundamental mechanics of rat-
tling plates. A flexible beam model was found to capture more of the high–
frequency response, but the rigid model captured the qualitative behavior
of the rattling beam. These models were used to predict stable and chaotic
ranges of rattle motion as a function of excitation level and frequency. Later,
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Fig. 6.20. Dependence of the impact velocity, Vim, Velocity crossing, Vx=0, and
average velocity, Vav, on excitation frequency upsweep at fixed forcing amplitude
F = 0.2, and e = 0.6 non-dimensional gap parameter h = 1, [878].

Oppenheimer and Dubowsky [752] presented a methodology for predicting
noise and vibration of machines and their support structures. The method-
ology was implemented using highly idealized closed form and more elabo-
rate numerical descriptions. The predicted results were verified by vibration
and sound measurements of a plate subjected to periodic impacts by balls
and a beam that rattles within a clearance bearing. The energy–based cri-
terion was found to indicate situations in which mechanism–support coupling
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affects noise radiation. In some cases the coupling was observed to signif-
icantly affect vibration and noise radiation of the support structure, while
having a relatively minor effect on the response mechanism.

6.7 Slamming of Ocean Waves

The design of floating systems, liquid storage tanks and off–loading platforms,
and floating storage units depends on the values the forces acting on these
systems. The impact between sea water waves and ships, known as slamming,
can cause important global and local effects. The global loads are induced
by the unsteady hydrodynamic pressure due to fluid oscillatory motions sur-
rounding the ship hull. The local component represents the local or secondary
loads, such as slamming and whipping, are due to wave impacts. Ochi and
Motter [744] and Kawakami et al [500] developed some simple formulae for
estimating the slamming loads based on experimental results. Belik et al [104]
and Belik and Price [105] divided the bottom slamming into impact and mo-
mentum slamming components. They found that the predicted magnitudes
of the responses after a slam depend very much on the mathematical model
adopted in estimating slamming loads. Molin et al [687] found that the val-
ues of impact force as determined by conservation of momentum are almost
identical to those predicted by conservation of kinetic energy.

Cooker and Peregrine [190] considered a mathematical model of the
large, short–lived pressures brought about by waves breaking against coastal
structures. They used the pressure impulse to simplify the equations of
ideal incompressible fluid motion and solved analytically a two–dimensional
boundary–value problem, which models an idealized wave striking a vertical
wall. Expressions were derived for the impulse on the wall, the peak pres-
sure distribution, and the change in fluid velocity due to impact. The results
were found insensitive to the shape of the wave far from the wall. Later,
Lugni et al [604] analyzed the impact of waves on a vertical, rigid wall during
sloshing with reference to the modes that lead to the generation of a flip–
through. Experimental measurements were used to characterize the details
of the flip–through dynamics while wave loads were computed by integrating
the experimental pressure distribution.

The hydrodynamic elastic response of ship hulls considering slamming im-
pact loads due to navigation in rough seas was analyzed by Park et al [789].
Ship hull structures were modeled as elastic body based on Timoshenko’s
beam theory. The momentum slamming theory was used to derive nonlinear
hydrodynamic forces considering the intersection between free surface and
ship hull surface. The results provided various design information such as
time history records of relative displacement, velocity, acceleration, vertical
shear force and vertical bending moment of all sections of ship involving the
effects of slamming.

Greco et al ([375], [376]) experimentally and numerically studied the ship-
ping of water on the deck of a vessel in head–sea conditions and zero–forward
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speed. The fluid–structure interaction was formulated by coupling the non-
linear potential flow model with a linear Euler beam to represent a portion
of the deck house under the action of the shipped water. The loading condi-
tions related to violent fluid impacts and air–cushion effects were considered.
For realistic system parameters, Greco et al [376] were able to define the
occurrence of critical conditions for structural safety.

Faltinsen and Chezhian [306] numerically estimated the water entry loads
on three–dimensional bodies. Their experimental results for vertical force
revealed a strong oscillatory nature, which was analyzed using a simplified
hydroelastic model. The hydroelastic model was found to provide reasonable
representation of the dynamic oscillations found in the vertical force. Sun
and Faltinsen [971] developed a two–dimensional boundary element method
to simulate the water flow during the water impact of a horizontal circular
cylinder. They solved for the water impact problem of an elastic cylindrical
shell in which water–structure interaction was considered. Craig and Kingse-
lev [193] presented a multidisciplinary design and optimization approach for
the design process of partially filled liquid containers involving sloshing and
impact.

6.8 Closing Remarks

The study of vibro–impact dynamics of continuous systems plays an impor-
tant role in the design and safety of mechanical systems. In particular, the
design and safe operation of nuclear reactor components such as fuel rods
and steam generator tubes take into account the gaps developed during ser-
vice due relaxation of support springs and creep down of cladding tubes. This
problem motivated design engineers to develop computational algorithms and
computer codes based on finite element and boundary element methods. This
chapter addressed classical continuous elements such as strings, beams, tubes
conveying fluid and plates in the presence of motion restraints. Slamming of
ocean waves acting on navigating ships was also considered in few studies.
However, there are many issues have not been studied such as the influence
of ocean wave impact on the aging problem and joint relaxation of ship outer
structure under severe environmental conditions.

This chapter did not address the impact of continuous systems with a
high velocity that may result in fracture of the stricken structure. Examples
of this problem include the deformation of continuous system from projectile
impact and the damage of an airplane with the exterior columns of buildings
as occurred on September 11, 2001 terrorist attack. This type of impact is
not associated with vibration but with damage and the reader may refer to
Jones [483], Teng and Wierzbicki ([988], [989]), and the references cited.



Chapter 7
Stochastic Vibro–Impact Dynamics

7.1 Introduction

The analysis of random excitation of vibro–impact systems is not a simple
task. The difficulty arises due to the fact that impact loading introduces
strong nonlinearity. The theory of nonlinear random vibration encompasses
analytical techniques that can handle developed for weakly nonlinear sys-
tems. Thus it is imperative to recast the vibro–impact system into a form
amenable for the traditional analytical techniques. A nice overview of vibro–
impact dynamics under random excitation has been presented by Dimentberg
and Iourtchenko [251]. The article addressed analytical approaches and some
results pertaining to random excitation of systems with lumped parameters
and “classical” impacts. Emphasis was given to special piecewise–linear trans-
formation of state variables using Zhuravlev transformation. Exact analyses
for stationary probability densities of the response to white–noise excitation
were found in few cases, whereas the stochastic averaging method was ap-
plied in some other cases. The method of direct energy balance was also
illustrated based on direct application of the stochastic differential calculus
between impacts. The problem of random excitation of vibro-impact systems
attracted the attention of several researchers in the former Soviet Union (see,
e.g., [56], [57], [58], [253], [254], [243], [244], [245], [247], [248], [252], [249],
[250], [133], [448], [526], [527], [528], [529], [530], [61]). These studies reduced
the modeling by using the stochastic averaging method and thus it was pos-
sible to estimate the statistical response characteristics of the vibro–impact
motion. The response statistics revealed how the energy is transferred from
the impacting mass to the secondary structure.

Iourtchenko and Song [449] estimated the response probability density
function of vibro–impact systems with one or two rigid barriers. The system
was subjected to an additive Gaussian white noise and the response statistics
were estimated using Monte Carlo simulation. It was shown that the response
probability density functions possess peaks near the barrier, which increase as
the value of the restitution coefficient decreases. In another study, Song and
Iourtchenko (2006) used the energy balance method to estimate the average
energy of stochastic vibro–impact systems with inelastic impacts.

R.A. Ibrahim: Vibro-Impact Dynamics: Model., Map. & Appl., LNACM 43, pp. 193–216.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Metrikyn [671] established a theoretical analysis of vibro–impact devices
with randomly varying parameters. The bouncing ball under a Gaussian
random process was studied by Wood and Byrne ([1082], [1083]) who ob-
tained a stationary distribution for the impact velocity. Krupenin [548] stud-
ied random oscillations of a periodic structure near a plane travel limiter
installed parallel to the plane of structure static equilibrium. Namachchivaya
and Park [710] developed an averaging approach to study the dynamics of a
vibro–impact system excited by random perturbations and obtained a model–
reduction through stochastic averaging. They were able to estimate the mean
exit time, probability density functions and stochastic bifurcations.

Yokomichi et al [1108] studied the random oscillation of engine mounting
systems with motion–limiting stops. Lee and Byrne [569] studied the stochas-
tic rattling using a small mass constrained to move along a slot of fixed length
in a large mass, which is vibrating randomly in the direction of the slot. The
statistics of impacts between the rattling ball and the large randomly driven
mass were numerically determined. Rattling in change–over gears of road ve-
hicles due to backlash of their teeth was modeled by an impulsive system con-
sisting of some unloading gears ([554], [555], [839], [320], [1071]). Probability
density functions of the unperturbed system and the perturbed system due
to an added random noise were obtained using the stationary Fokker–Planck
equation of the system response. A discrete stochastic model described by
a mean map was developed using the non–Gaussian closure technique. The
analysis revealed stochastic chaotic behavior.

A combined tuned absorber and pendulum impact damper under random
excitation was studied numerically and experimentally by Collette [185]. The
optimal mass ratio between the impact damper and tuned absorber was found
to be 25%. The clearance was found to be directly proportional to the exci-
tation level provided that the primary system is linearly elastic.

Vibro–impact devices are commonly used in automated assembly lines.
The existence of nonlinear phenomena such as cascade of bifurcations
and chaotic solutions were examined by Hongler [424]. A micro–electro–
mechanical system (MEMS) inertial switch can be modeled as a classical
vibro–impact dynamic system in the form of a single degree–of–freedom os-
cillator impacting against one-sided rigid barrier. Field and Epp [324] consid-
ered the random excitation of a MEMS device that causes repetitive impacts
with the barrier.

This Chapter considers the random excitation of structural elements such
as beams, with one– and two–sided barriers. The modeling of the barriers will
be either a stiff spring or a Hertzian contact stiffness. The stochastic equiva-
lent linearization, stochastic averaging method, Fokker–Plank–Kolmogorov
equation, and Monte Carlo simulation are used to estimate the response
statistics. The roll dynamics of ships subjected to beam random impulsive
loading, modeled as a Poisson process will also be considered using the path
integral approach.
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7.2 Beam–Stop under Random Excitation

Chapter 6 outlined the dynamic behavior of a beam–stop system used in nu-
clear systems where flow–induced vibrations or seismic excitations can result
in impact interactions in pipe–baffle interfaces. Under random excitation, the
analysis of such systems needs a special treatment. The random excitation of
a beam impacting with elastic barrier (two–sided spring) was considered by
Davies [208] who employed an equivalent linearization analysis. The spring
barrier was found to introduce coupling between the beam normal modes.
Bellizzi and Bouc [106], Bouc and Defilippi ([129], [130]) and Falsone and
Muscolino [305] employed an equivalent non-linearization approach to esti-
mate the response statistics of a beam–stop system subjected to a boundary
random excitation. The original bilinear impact force was replaced by a cu-
bic term whose coefficient is evaluated by minimizing the difference between
the original and the equivalent systems. Fogli et al [337] and Fogli and Bres-
solette [336] determined the response spectra of vibro–impact systems. For
example, the perturbation method and stochastic averaging were adopted by
Fogli and Bressolette [336] to estimate the response spectrum of an oscillator
with elastic impacts under a Gaussian white noise excitation. They replaced
the initial system by a regular system obtained by approximating the non-
linear restoring force using a Chebyshev polynomial. Two approximations
were included: one for the flow and one for the stationary distribution of the
response amplitude.

The response of strongly nonlinear dynamic systems to stochastic exci-
tation exhibits many interesting characteristics in the frequency domain. De
Kraker et al [212] and Van de Wouw et al [1025] performed numerical simula-
tions and experimental tests to examine the random response of an impacting
beam system under Gaussian wide– and narrow–band random excitation. It
was shown that in modeling the linear system with a local nonlinearity, the
linear part can be effectively reduced to a description based on several modes.
Combining this reduced linear part with the local nonlinearity in a reduced
nonlinear model was shown to result in a nonlinear model. The nonlinear
model can be used to accurately predict the stochastic response character-
istics of the original system. By including more modes one would obtain re-
sults that differ significantly from that of a single–degree–of–freedom model.
One also may obtain better correspondence with experimental results. The
results revealed the occurrence of multiple resonance frequencies and stochas-
tic equivalents of harmonic and subharmonic solutions. Sampaio and Soize
[912] studied the transient dynamics of a Timoshenko beam with elastic bar-
riers under a deterministic transient force whose Fourier transform is limited
to a narrow frequency band. The mechanical energy transferred outside the
frequency band of excitation was found to be a source of excitation for other
subsystems. The influence of random uncertainties was also considered.
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Fig. 7.1. Schematic diagram of a beam with elastic stop.

Bouc and Defilippi [129] estimated response spectra of a randomly excited
beam with elastic stop of springs of stiffness k and clearance Δ as shown in
Fig. 7.1. They described the motion of the beam by the partial differential
equation

ρA
∂2u(x, t)

∂t2
+

∂2

∂x2

[
EI

∂2u(x, t)
∂x2

]
+F (u0(t))δ(x−x0) = −ρA

d2ys(t)
dt2

, (7.1)

where u(x, t) is the beam deflection, ρ, A, E and I are the mass density,
area of the beam cross–section, modulus of elasticity, and area moment of
inertia of the beam, respectively. ys(t) is the support displacement excitation,
which was assumed stationary wide–band random process with zero–mean
(not necessarily Gaussian). δ(x−x0) is the Dirac delta function and F (u0(t))
is the impact force at x0 described by the three segments

F (u) = k(u + Δ) if −∞ < u ≤ −Δ
F (u) = 0 if −Δ < u < +Δ

F (u) = k(u−Δ) if Δ ≤ u ≤ +∞.
(7.2)

According to the stochastic equivalent linearization, equation (7.1) may
be replaced by the linear equation

ρA
∂2u(x, t)

∂t2
+

∂2

∂x2

[
EI

∂2u(x, t)
∂x2

]
+Kequ0(t)δ(x−x0) = −ρA

d2ys(t)
dt2

, (7.3)
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where the equivalent spring stiffness is

Keq = arg min
K

E
[
(F (u0) −Ku0)

2
]
, (7.4)

such that
Keq =

E [F (u0)u0]
E [u2

0]
, (7.5)

where E[·] denotes expectation of the expression in the brackets. For the
case of a simply–simply support beam whose natural frequency ωn =
(πm/L)2

√
EI/ρA, and mode shapes Φm(x) =

√
2 sin(mπx/L), m = 1, 2, 3,

the solution may be expressed by the modal summation

u(x, t) =
3∑

m=1

Φm(x)qm(t),

where qm are the generalized coordinates. The equivalent stiffness, Keq, was
expressed in terms of the amplitude a of the beam deflection at the impact
location. The deflection at x0 was written in the form u0(t) = Φ1(x0, t)q1(t),
where q1(t) = a cosφ, a ≥ 0, φ(t) = ω1(a)t+ϑ. The expectations in equations
(7.4) and (7.5) were evaluated for a given value of the amplitude a with
respect to the phase φ, which was assumed uniformly distributed over (0, 2π).
Bouc and Defilippi [129] obtained the following result:

Keq =
1

π [Φ1(x0, a)a]
2

2π∫
0

F (Φ1(x0, a)a cosφ)Φ1(x0, a)a cosφdφ. (7.6)

Setting U0
1 (a) = |Φ1(x0, a)a|, equation (7.6) gives

Keq = 0, if U0
1 (a) ≤ Δ, (7.7)

Keq =
2m
π

⎡⎣arccos
Δ

U0
1 (a)

− Δ

U0
1 (a)

√
1 −

(
Δ

U0
1 (a)

)2
⎤⎦ , (7.8)

if U0
1 (a) > Δ.

Thus Φk(x, a) = Φk(a) and ωm(a) = ωm for U0
1 (a) < Δ. The modal

analysis with the equivalent linear system given by equation (7.3), gives

Φm(x0) =
EI

Keq

⎡⎣ 1
L

L∫
0

G2
0 (x, x0;ωm) dx

⎤⎦−1/2

, (7.9)
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where the Green function, G0, is

G0 (x, x0;ωm) =
EI

ρAL

3∑
m=1

Φm(x)Φm(x0)
ω2

m − ω2(a)
. (7.10)

The modal equations of motion after adding linear viscous damping take
the form ··

qm + 2ζmωm
·
qm + ω2

m(a)qm = −νm
··
y(t), (7.11)

where νm = 1
L

L∫
0

Φm(x)dx.

Expressions for the response power spectra and cross spectra are

Su(ω;x) =
∑
m,n

Φm(x)Hm(ω)S··
y
(ω)H∗

n(ω)Φn(x), (7.12)

Su(ω;x, y) =
∑
m,n

Φm(x)Hm(ω)S··
y
(ω)H∗

n(ω)Φn(y), (7.13)

where
Hm(ω) =

νm

ω2
m(a) − ω2 + 2iζmωm(a)ω

.

Fig. 7.2 shows the dependence of the first two modal natural frequencies
on the amplitude of the first mode. It is seen that as the beam amplitude
increases the first mode natural frequency does not exhibit any appreciable
increase until the beam deflection approaches the gap clearance, a = Δ =
0.0019 m above which the natural frequency experiences significant increase.

Bouc and Defilippi [130] employed the stochastic averaging method and
solved for the stationary solution of the Fokker–Planck equation for the first

Fig. 7.2. Dependence of the first two modes natural frequency on the vibration
amplitude for gap clearance Δ = 0.0019m, beam length L = 4.2m, spring stop
stiffness k = 0.85× 106 at x0 = 2.0m: (a) first mode (f1 = 6.5Hz in the absence of
spring stop), (b) second mode (f2 = 26Hz in the absence of spring stop), [130].
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mode amplitude response. They obtained the following closed form solution
for the response probability density function

p(a) = p0aω1(a)D(a) exp

⎡⎣− a∫
0

4ζ1ω1ω
2
1(a)D(a)

ν2
1(x)S··

y
(ω1(x))

dx

⎤⎦ , a ≥ 0, (7.14)

where p0 is the normalization constant, ζ1 is the first mode damping factor
(introduced in the modal equation of motion), ω1 is the beam first mode
natural frequency in the absence of spring stop, ω1(a) is the first mode natural
frequency that depends on the amplitude response as shown in Fig. 7.2,

D(a) = (1/2π)

2π∫
0

D(a, φ)dφ, D(a, φ) = 1 +
(∂ω1(a)/∂a)a

ω1(a)
sin2 φ,

S··
y
(ω1(x)) is the power spectral density of the base acceleration, and ν1(a) =

1
L

L∫
0

Φ1(x, a)dx.

Fig. 7.3 shows the response probability density function, which is essen-
tially non–Gaussian with non–zero mean. The response power spectral den-
sity of the beam–spring system was obtained by averaging the conditional

Fig. 7.3. Response probability density function pf the beam amplitude, [130].
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Fig. 7.4. Response power spectral density function as estimated by: —— numerical
simulation, —· — stochastic Gaussian linearization, - - - proposed method by Bouc
and Defilippi, [130].

power spectral density with respect to the response probability density func-
tion given by equation (7.14). For example, the power spectral density func-
tion of the beam deflection, u(x, t), was given by the expression

Su(ω) =

∞∫
0

Su(ω;x|a)B2(a)p(a)da

where

B2(a) =
2ζ1ω1a

2ω2
1(a)

ν2
1S··

y
(ω1(a))

.

Fig. 7.4 shows the mean response power spectral density function over the
entire length of the beam defined by

νm =
1
L

L∫
0

Su(x, ω)dx.

Fig. 7.4 also shows stochastic Gaussian linearization result indicated by the
dash–dot curve (− · − ). The stochastic Gaussian linearization result yields
correct resonance frequency but overestimates associated level and underes-
timates spectral band–width.
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Fig. 7.5. Schematic diagram of a cantilever beam with its free constrained by a
half spherical barrier, and shows the experimental set up, [1025].

7.3 Cantilever Beam with One–Sided Barrier

In an effort to understand the dynamic response of a cantilever beam whose
free end is restrained by one-sided barrier Van de Wouw et al [1024] considered
the first mode response under support Gaussian band limited random excita-
tion. The beam was replaced by an equivalent mass–spring–dashpot system
and the contact force was represented by the Hertzian contact with hysteretic
energy dissipation. Nonlinear stochastic phenomena like multiple resonance
peaks and high–energy low–frequency response content were observed un-
der broad–band excitations. The origin of the multiple resonance frequencies
was demonstrated by investigating the system’s response to narrow–band ex-
citations covering harmonic and subharmonic resonance regions. Stochastic
equivalents of harmonic and subharmonic solutions were reported. Numeri-
cal simulations and experimental results were found in good agreement. The
observed phenomena can also be found in systems with other one–sided non-
linearities.

The normal modal interaction of a cantilever beam with its free end con-
strained against half spherical barrier was considered by Van de Wouw et
al [1025] under Gaussian random excitation of its support. Fig. 7.5 shows a
schematic diagram of their experimental system. The contact force due to
the beam impact with the elastic barrier may be represented by the Hertzian
model with hysteretic energy dissipation as described in Chapter 1. The beam
was modeled as an Euler beam and its equation of motion was discretized
through Galerkin’s method in terms of the first two modes. The estimated
first two modal natural frequencies of the beam model are ω1 = 109.1 rad/s
and ω2 = 790.7 rad/s. The experimental measured values were found to be
ω1 = 101.5 rad/s and ω2 = 781.6 rad/s . The corresponding modal damping
factors were 1.5% and 0.5%, respectively. The modal equations of motion
may be written in the matrix form
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[M ]{··q}+[C]{ ·
q}+[K]{q}+[KH ]ε(δ)

{
δ3/2

}⎡⎣1 − 3
·
δ

4
·
δ
−
(
1 − e2

)⎤⎦ = {m0} ··
y(t),

(7.16)
where

ε(δ) =
{

1 for δ > 0
0 for δ ≤ 0 ,

a dot denotes differentiation with respect to time, e is the coefficient of resti-
tution, {q} is the vector of the natural coordinates of the first two modes,
[M ], [C], and [K] are the mass, damping, and stiffness matrices, respectively.
[KH ] is a coefficient matrix of contact stiffness, {δ} = {y − x(z = l + le/2),

y − x(z(l/2)}T ,
·
δ
−

is the velocity difference of the two colliding bodies at
the beginning of impact, x(·) is the absolute displacement of a point on the
beam at the designated location in the parentheses, {m0} is the mass vector
associated with the random support motion y(t), and T denotes transpose.
Equations (7.16) were solved numerically utilizing Hénon’s method to deter-
mine the time of impact. The system of equations (7.16) was written first
in the space vector form, then rearranged without nonlinearities such that δ
becomes the independent variable whereas the time t becomes one of the de-
pendent variables. In this case, the nonlinear part becomes superfluous since
the last time interval before impact was obtained. At the time step before
impact the rearranged equations were integrated until δ = 0. This integration

Fig. 7.6. Beam response power spectral density as estimated numerically by Van
de Wouw et al, [1025].
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Fig. 7.7. Beam response probability density function for one-sided barrier as esti-
mated by Van de Wouw et al, [1025].

step results in the variables tcontact, and {x}contact, for which δ(tcontact) = 0
holds. The process continues by switching to a small integration step size
to solve the state vector equations. Upon leaving contact, the integration
routine switches back to the large integration time step.

The numerical simulation was performed for a Gaussian wide band ran-
dom excitation of the base with a constant power spectral density Syy(ω) ≈

0.5 × 10−10m2s over the frequency band ωband = (0.0 to 1, 222.6 rad/s).
Fig. 7.6 shows the beam response power spectral density and reveals the first
eigenfrequency at ω1 ≈ 195 rad/s while the second mode at ω2 ≈ 780 rad/s.
It is known that for a piecewise linear system [930] the nonlinear resonance
frequency is almost twice the linear eigenvalues of the same system without
barriers. This feature is only manifested in the first mode since the impact
plays a less important role in the nonlinear response of the second mode.
Fig. 7.7 shows the beam response probability density function of the relative
end displacement δ. The response probability plot reveals asymmetry and
non–Gaussian distribution due to the presence of one–sided barrier.

Van de Wouw et al [1025] conducted an experimental investigation of
the same model. However, the measured excitation power spectral density
function was not uniform as it was assumed in the numerical simulation.
Fig. 7.8 shows a typical plot of the measured excitation power spectral plot
which was also used in the numerical simulation to verify the experimental
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Fig. 7.8. Measured excitation power spectral density of the beam support, [1025].

Fig. 7.9. Measured ——, and estimated -.-.- response power spectral density of
the beam free end, [1025].

measurement of the response power spectral density. Fig. 7.9 shows a com-
parison between the response power spectra as measured (shown by solid
curve) and estimated (shown by dashed–dot curve). The two results exhibit
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the second mode harmonic at ω2 ≈ 780 rad/s. Other experimental tests were
conducted under narrow–band random excitation. Two excitation frequency
bands were selected. The first was (144.5 to 270.2) rad/s, which covers the
first mode nonlinear resonance frequency. The second was (351.9 to 477.5)
rad/s, which is away from the first mode and is close to half the second mode
frequency. In the second case the response displayed stochastic half subhar-
monic solution. In both cases, the results confirmed the importance of the
inclusion of the second mode in the analytical modeling.

7.4 Pre–Loaded Vibro–Impact Hertzian Contact

Huang et al ([429], [430]) studied single and multi–degree–of–freedom vibro–
impact systems under white noise excitations as a dissipated Hamiltonian
system. The constraints were modeled as nonlinear springs according to the
Hertzian contact law. Approximate stationary solutions of the system were
obtained using the stochastic averaging method for quasi–Hamiltonian sys-
tems. It was shown that the stochastic averaging method is applicable if the
nonlinear forces according to the Hertzian contact law take an important
role in the response of the system. On the other hand, the stochastic aver-
aging method for quasi–integrable–Hamiltonian systems is applicable if the
nonlinear forces are neglected.

Rigaud and Perret–Liaudet [891] and Perret–Liaudet and Rigaud ([807],
[808]) experimentally measured the nonlinear dynamic response of a normally
excited pre–loaded Hertzian contact (including possible contact losses). They
considered a system consisting of a double sphere–plane contact loaded by
the weight of a rigid moving mass. Contact vibrations were generated by an
external Gaussian white noise and exhibited vibro–impact responses when
the input level is sufficiently high. Theoretical response characteristics were
also predicted using the stationary Fokker–Planck equation and Monte Carlo
simulations. When contact loss occasionally occurred, numerical results re-
vealed a good agreement with experimental measurements. However, poor
agreement was reported for the case of the occurrence of vibro–impacts. The
contact loss nonlinearity was found to be rather strong compared to the
Hertzian nonlinearity. It results in widening the spectral contents of the re-
sponse. Perret–Liaudet and Rigaud [807] considered the random excitation
of the system shown in Fig. 7.10. The system was described by the equation
of motion

m
··
x + c

·
x + κ [xH(x)]3/2 = F0

[
1 +

√
DW (t)

]
, (7.17)

where x is the displacement of the system mass m, measured such that x <
0 corresponds to loss of contact. c is a linear viscous coefficient, κ is the
contact stiffness coefficient, which is a function of the elastic properties and
geometries of the contact bodies, and H(x) is the Heaviside step function.
F0 is the static external load component, W (t) is a stationary zero–mean
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Fig. 7.10. Schematic diagram of a nonlinear oscillator with Hertzian contact.

Gaussian white noise, and D is the intensity of the random normal force.
Defining the static contact compression and the linearized natural frequency
as given in Chapter 1, i.e., xs = (F0/κ)2/3, and ω2

n =
(

3κ
2m

)√
xs, respectively,

equation (7.17) can be written in the non–dimensional form

q
′′

+ 2ζq
′
+ [(1 + 2q/3)H (1 + 2q/3)]3/2 = 1 +

√
Dw(τ), (7.18)

where q = 3
2

(
x
xs

− 1
)
, τ = ωnt, and ζ = c

2
ωn

m .
Note that w(τ) is selected such that it possesses a unit power spectral

density, i.e., Sw(ν) = 1, where ν = ω/ωn is a non–dimensional frequency
parameter. Perret–Liaudet and Rigaud [807] wrote equation (7.18) in the
general form

q
′′

+ 2ζq
′
+ G(q) = f(τ), (7.19)

where f(τ) is a zero–mean stationary Gaussian white–noise with auto–
correlation function Rf (τ ) = 2πDδ(τ ), and a prime denotes differentiation
with respect to the non–dimensional time parameter τ . In this case the power
spectral density Sf (ν) = DG(q) represents the nonlinear restoring force in-
cluding the nonlinearity due to contact loss. The Fokker–Planck equation
which governs the evolution of the response transitional probability density
function p

(
q, q

′ |q0, q′
0

)
may be written in the form
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∂p

∂τ
+ q

′ ∂p

∂q
=

∂p

∂q′

[
2ζq

′
+ G(q)

]
p + πD

∂2p

∂q′2 . (7.20)

The stationary joint probability function may be written in the form

ps

(
q, q

′)
= p0 × exp

(
−2ζ
πD

q
′2

2

)
× exp

⎡⎣−2ζ
πD

q∫
0

G(y)dy

⎤⎦ , (7.21)

where p0 is the normalization constant. The marginal probability densities
for the displacement and velocity are independent and a closed form of the
probability density of the response displacement is

p(q) =

{
p× exp −2ζ

πD

[
3
5

(
1 + 2

3q
)5/2 − q − 3

5

]
for q > − 3

2

p× exp −2ζ
πD

[−q − 3
5

]
for q ≤ − 3

2

, (7.22)

where p is the normalization constant. The corresponding probability density
function of the response velocity is

p(q
′
) = p̂× exp

−2ζ
πD

q
′2

2
. (7.23)

The n–th statistical moment of the response displacement is

E [qn] =

∞∫
−∞

qnp(q)dq. (7.24)

The normal load, N = G(q), may be defined by the expressions

N =
{(

1 + 2
3q

3/2
)− 1 for q > − 2

3−1 for q ≤ − 2
3

. (7.25)

The roots of this equation were obtained numerically and are designated
by qi, i = 1, ..., s. In this case the probability density function of the elastic
restoring force may be written in the form

p(N) =
∑ p(qi)

|dN(qi)
dq |

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 + N)−1/3
p
[

3
2 (1 + N)2/3 − 2

3

]
for N > −1

δ(−1)

−3/2∫
−∞

p(y)dy for N = −1

0 for N < −1

, (7.26)
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Fig. 7.11. Response probability density function of the elastic restoring force for
different values of excitation level, D: Da = 3×10−6, Db = 8×10−5, Dc = 5×10−4,
Dd = 1.2 × 10−3, De = 2 × 10−3, and Df = 3.2 × 10−3. (——) Analytical results,
(◦) Monte Carlo simulation, [807].

where δ(·) is the Dirac delta function. For N < −1, p(N) contains an impulse
of an area equivalent to the probability of loss of contact and lim

N→−1
N>−1

p(N) =

+∞. The n−th moment of the normal force is

E [Nn] =

∞∫
−∞

Nnp(N)dN. (7.27)

Fig. 7.11 shows the stationary probability response of the restoring force for
two different sets of excitation level and for damping ratio of 0.005. The ana-
lytical results are shown by solid curves while the results generated by Monte
Carlo simulation are indicated by empty circles (©). It is seen that as the
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Fig. 7.12. Response spectra of the elastic restoring force for different values of
excitation level, D: Da = 3×10−6, Db = 8×10−5, Dc = 5×10−4, Dd = 1.2×10−3,
De = 2 × 10−3, and Df = 3.2 × 10−3, [807].

excitation level increases the response probability density function becomes
more flat for the first three levels (a, b, and d) as shown in Fig. 7.11(a). As
the excitation level increases the analytical results reveal a spike at N = −1.
Fig. 7.12 shows the corresponding response spectra and it demonstrates the
broadening resonance associated with increasing the excitation level. This
effect was verified experimentally as shown in Fig. 7.13. The measured re-
sults reveal a shift of resonance peaks as the excitation level increases. These
features are well known for nonlinear systems under random excitation as
documented by Ibrahim [435]. Depending on the type of nonlinearity, the
shift moves to the left for soft nonlinearity, and to the right for hard non-
linearity as the excitation level increases. Note that as the excitation level
increases there is a possibility of an intermittent contact loss as the normal
force reaches the static value.
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Fig. 7.13. Experimental response spectra of the elastic restoring force for different
values of excitation level, Da = 6× 10−4, Db = 1.7× 10−3, Dc = 2.5× 10−3, [807].

7.5 Random Impulsive Excitation

Random impulsive events are characterized by signals of short duration but
with large magnitude and occur randomly. Examples of such loads include
the hail–ice impact on structures [504] and impulsive loads of floating ice on
ocean structures [438]. The impact was classified into the low–velocity and
high–velocity regimes. Jackson and Poe [460] analytically studied the tran-
sition between high and low velocity impacts and highlighted the dramatic
differences between the two velocity regimes. It was concluded that the peak
force developed during impact is a key parameter in evaluating delamination
formation of composite structures.

Random impulsive loads of floating ice interacting with ocean systems has
been modeled by a Poisson arrival process of loading events, not necessarily
with a constant arrival rate. Jordaan [484] adopted an expression for the
distribution, ΠZ(z), of extreme load, Z, which can be derived by writing the
expression for zero arrivals in the process, with rate N [1 −ΠX(Z)], where
N is the number of arrivals in a year and X is the force or pressure under
consideration. The probability of exceedance Πe = 1 −ΠX(x) is

Πe = exp [−(x− x0)/α] (7.28)

where x0 and α are constants.
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The randomness of ice–induced loads was characterized in terms of prob-
ability distributions that were fitted to measured ice loads and stress levels.
It was assumed that the number of load impacts on the bow of a ship navi-
gating in solid ice, as a function of time, is distributed according to a Poisson
law [502]. The measured stress amplitudes on a frame at the bow were found
to follow an exponential distribution. Extreme value statistics were applied
to the short–term maximum ice–induced pressures measured onboard the
MS Igrim [522], and to daily maximum ice–induced pressures and stresses on
plating and frames measured during winter 1978 at the bow of IB Sisu [1042].

Fuglem et al [350] indicated that the design load depends on the number of
interactions per unit of time. The greater the number of interactions per unit
of time, the further one has to approach the tail of the parent distribution,
because the design naturally concentrates on extreme values. In formulating
the design values recommended by Fuglem et al ([349], [351]), it is impor-
tant to distinguish the factors contributing to the number of interactions as
opposed to those affecting the failure load itself.

In some cases, ice loads are of impact type and have been assumed as a
Poisson arrival process of loading events. Sample functions of Poisson white
noise process WP (t) may be written in the form

WP (t) =
N(t)∑
i=1

Riδ(t− Ti) (7.29)

where δ(·) is the Dirac’s Delta function, Ri is the ith realization of the random
variable R with assigned probability density function pR(r), Ti is the ith

realization of the random variable t independent of R and distributed in
time according to the Poisson law, and N(t) is the so–called counting process
giving the total number of impulse occurrences in [0, t). The whole process
defined by equation (7.29) is fully described in probabilistic setting by the
cumulants, Kn:

Kn [WP (t1)WP (t2)...WP (tn)] = λE [Rn] δ(t1 − t2)...δ(t1 − tn) (7.30)

where E [·] denotes the expectation, and λ > 0 is the mean number of impulse
occurrences per unit time. When λ approaches infinity and at the same time
λE
[
R2
]

remains constant, the Poisson white noise approaches the normal
white noise. The treatment of dynamical systems under Poisson random pro-
cesses has been considered in many references (see, e.g., [458], [459], [532],
[258], [869]).

The response of ship roll oscillation under random ice impulsive loads de-
scribed by a Poisson arrival process is very important in studying the safety
of ships navigation in cold regions. Under both external and parametric ran-
dom excitations the evolution of the roll response in terms of its probability
density function was evaluated using path integral solution [191]. The path
integral method relies on the Chapman–Kolmogorov equation which governs
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the response transition probability density functions at two close intervals
of time. If the response probability density function at an early close time
is known a priori, its value at later close time can be evaluated. The roll
dynamics of a ship subjected to impulse excitation, WP (t), and parametric
random excitation, W0(t), may be described by the equation of motion:

··
φ + 2ζ̃ωn

·
φ + a

·
φ|

·
φ| + ω2

nφ− δφ3 + W0(t)φ = WP (t). (7.31)

φ(0) = φ0,
·
φ(0) =

·
φ0

where φ is the ship roll angle, ωn is the natural frequency of the ship roll
oscillation, ζ̃ is the linear viscous damping factor, the third term represents
nonlinear damping, and ω2

nφ−δφ3 represents the restoring moment. Note that
W0(t) represents the pitch angle which is assumed to be a random stationary
process and the right hand side represents a Poisson random process and
describes the moment acting on the ship due to sea waves. When ω2

nφ−δφ3 =
0, the ship experiences capsizing. If we consider W0(t) as a normal white
noise, the ship roll dynamics is captured by the solution of a single oscillator
under parametric normal white noise acting simultaneously with an additive
external Poisson white noise.

Equation (7.31) may be rewritten in terms of state variables as follows

Z(t) = DZ(t) + f(Z, t) + LWP (t), (7.32)

Where Z(t) =
{
Z1(t)
Z2(t)

}
=

{
φ(t)
·
φ(t)

}
; D =

[
0 1

−ω2
n −2ζ̃ωn

]
;

f(Z, t) =
{

0
−aZ2|Z2| + δZ3

1 −W0(t)Z1

}
; and L =

{
0
1

}
.

The Chapman Kolmogorov equation may be written in the form:

pZ(Z, t + τ) =

∞∫
−∞

pZ(Z, t + τ |Z)pZ(Z, t)dZ1dZ2 (7.33)

The conditional pdf in equation (7.33) may be derived by considering the
pdf of the response in τ of the following system{ ·

Z = DZ(ρ) + f(Z, ρ) + LWP (t + ρ)
Z = z

(7.34)

where the initial conditions are the considered deterministic, zT =
{
z1 z2

}
.

Equations (7.34) may be rewritten in the state vector form

·
Z1(ρ) = Z2(ρ)
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·
Z2(ρ) = −2ζ̃ωnZ2(ρ) − ω2

nZ1(ρ) − aZ2(ρ)|Z2(ρ)| + δZ
3

1(ρ) −
Z1(ρ)(t + ρ) + WP (t + ρ) (7.35)

Z1(0) = z1, Z2(0) = z2

For small τ , equation (7.35) yields the following statistics

E
[
Z1(τ)

]
= z1 + z2τ, σ2

Z1
(τ) = 0 (7.36)

pZ1
(z1, z1, z2; τ) = δ(z1 − y1(z1, z2)) (7.37)

Furthermore, there are two possible situations over the time interval (t, t+
τ). The first does not contain spikes in the presence of the normal white noise,
and this happens in mean 1 − λ(t)τ times. The second includes one spike,
which occurs simultaneously with the normal white noise. The second case
occurs λ(t)τ times. In the first case we set WP (t) = 0, and thus one can write

E
[
Z2(τ)

]
= z2 −

(
2ζ̃ωnz2 + ω2

nz1 + az2|z2| + δz3
1

)
τ = y1(z1, z2) (7.38a)

σ2
Z2

(τ) = E
[
Z

2

2(τ)
]
− (E [Z2(τ)

])2
= z2

2qτ (7.38b)

Since Z1 is deterministic, the two processes Z1 and Z2 are independent.
In the absence of spikes, the contribution for the whole conditional pdf in
equation (7.33) is given in the form

pZ(z1, z2, t + τ |z1, z2, t)no spikes = (1 − λτ)
δ (z1 − (z1 + z2τ))√

2πz2
1qτ

×

exp

{
− [z2 − y1(z1, z2)]

2

2z2
1qτ

}
(7.39)

The contribution due to the presence of one spike as well as a normal white
noise is given by the convolution integral of both:

pZ(z1, z2, t + τ |z1, z2, t)one spikes = λτ
δ (z1 − (z1 + z2τ))√

2πz2
1qτ

×

∞∫
−∞

exp

{
− [ξ − y1(z1, z2)]

2

2z2
1qτ

}
pR(z2 − ξ)dξ (7.40)
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The cpdf of the kernel of equation (7.33) is

pZ(z1, z2, t + τ |z1, z2, t) = δ (z1 − (z1 + z2τ))

{
(1 − λτ)√

2πz2
1qτ

×

exp

{
− [z2 − y1(z1, z2)]

2

2z2
1qτ

}
+

λτ√
2πz2

1qτ

∞∫
−∞

exp

{
− [ξ − y1(z1, z2)]

2

2z2
1qτ

}
pR(z2 − ξ)dξ

⎫⎬⎭ (7.41)

The ship roll response pdf is determined for ζ = 0.1, ωn = 1, a = 0.005, and
δ = 0.006.The external Poissonwhitenoise,WP(t),has a jumpGaussiandistri-
bution, pR(x),with zeromean and standarddeviationσR = 0.07, and the mean
rate arrival λ = 1/3. The parametric normal white noise, W0(t), is assumed to

possess an intensity parameter q = 0.05. The initial condition p
φ

·
φ
(φ,

·
φ; 0) is

assumed to be a bivariate normal distribution with vector mean (0.05, 0.025)

and covariance matrix Σ =
[

0.1332 0
0 0.1332

]
. Integrals have been performed

numerically on a grid of Δφ = Δ
·
φ = 0.01 and time step τ = 0.1 sec.

Fig. 7.14. Response pdfof ship roll angle for three different values of time instants,
[191].
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Fig. 7.15. Influence of the mean rate arrival parameter λ on the response pdf of
ship rll angle, [191].

Fig. 7.14 shows the evolution of the response pdf at various time instants
starting from the initial condition at t = 0. It is seen that as the time pro-
gresses, the peak value of the pdf is reduced and approaches the equilibrium
position, φ = 0. The response pdf is essentially non-Gaussian. In order to
explore the influence of the mean rate arrival parameter λ on the response
pdf at the extreme roll angle, the numerical integration was performed for
three different values of λ = 1/3, 1, and 3. Fig. 7.15 shows three different
plots of the response pdf . As the mean rate arrival increases, the peak of
the response pdf is reduced and the pdf is spread over larger range of the
roll angle. In other words, the probability of the ship response to reach the
capsizing angle increases as the mean rate arrival increases.
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7.6 Closing Remarks

The response statistics of random excitation of vibro–impact systems have
been developed for few cases. The strong nonlinearity arises from impact load-
ing introduces an additional complexity to an already difficult problem. Non–
smooth coordinate transformations due to Zhuravlev and Ivanov for purely
elastic and inelastic impacts have proven to be powerful tools to convert the
vibro–impact governing equations of motion to equations without impact.
This facilitates the analysis such that one can apply of the well established
techniques in the theory of nonlinear random vibration. The method of path
integral is convenient for systems subjected to random impulsive loading de-
scribed by a Poisson arrival process. There are open avenues of potential
research need to be considered for future research. These include the relia-
bility and first passage problem of vibro–impact systems. Equally important
is the stochastic stability analyses of these systems under different types of
random excitation and constraint stiffness.



Chapter 8
Impact Dampers

8.1 Introduction

One of the most significant benefits of vibro–impact dynamics is the passive
control of vibrating systems. The applications of impact masses as an absorb-
ing source of undesirable vibration of structures, machines, and multi–storey
buildings have been introduced over the last fifty years. This chapter provides
an overview of the basic concept of impact dampers and their applications.
Analogue computer, numerical simulations, and analytical techniques were
employed to uncover their effectiveness in suppressing unwanted vibrations
under deterministic and random excitations. Design considerations of impact
dampers are assessed together with active and semi–active control techniques.

8.2 Basic Concept and Applications

Impact dampers, also referred as acceleration dampers, have been used to
eliminate undesirable oscillations in mechanical systems ([591], [592], [913],
[74]). In the absence of any source of energy dissipation, these systems act as
vibro–impact isolators due energy transfer from the main system to the im-
pact mass. The impact dampers can take the form of one mass impact damper
(Fig. 8.1(a)), particle damper (Fig. 8.1(b)), and liquid sloshing damper (Fig.
8.1(c)). The liquid sloshing dampers are not discussed in this chapter and
the reader may consult reference [436]. Impacts may occur as soon as the
displacement of the main system exceeds the clearance between the mass
damper and its clearance. Every collision produces some energy dissipation
and exchange of momentum between colliding bodies. Energy dissipation is
useful in attenuating the excessive vibration amplitudes of the main struc-
ture, but the important control mechanism is the exchange of momentum
during collisions. For an adequate choice of clearance, the main structure
and impact mass move in opposite directions before collision. The direction
of motion of the smaller impact damper is reversed after collision, whereas

R.A. Ibrahim: Vibro-Impact Dynamics: Model., Map. & Appl., LNACM 43, pp. 217–232.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 8.1. Three different types of impact dampers: (a) Impact damper, (b) Particle
damper, (c) Liquid sloshing damper.

the velocity of the main structure is only reduced due to its larger inertia. As
a result of the reduced velocity, the main system attains smaller displacement
amplitude than it would have without impacts.

The concept of suppressing vibration of mechanical systems using a mass
moving between two walls of a tank is believed to be conceived by Lieber
and Jensen [591]. Lieber and Jensen [591] introduced the impact damper
to control the flutter of aeroelastic structures. They considered the case of
two impacts per cycle and found that maximum flutter suppression occurs
if the phase angle between the motion of the impact mass and the main
system is 180o. Later, Grubin [379] assumed the existence of symmetric two
impacts per cycle and determined the behavior of the main system by adding
the effects of many impacts. It was found that the impact damper is most
effective at resonance and large values of the coefficient of restitution result
in more beneficial damping. Warburton [1061] allowed the impact at the right
end of the container to occur at zero time and modified the excitation force
to have a phase component. Arnold [30] represented the acting impact force
by a Fourier series.

Noise generated from impact can be reduced using non–metallic layers
(and/or inserts) on the surface of one of the impacting bodies ([155], [156],
[92]). A rheological model of impact was proposed by Oledzki [749]. Oledzki
et al [750] introduced an impact damper to suppress severe vibrations of
long tubes in the structures of light aircraft. The numerical simulation of
the rheological model showed a reduction in the resonance amplitude. This
model was used in a mathematical model of impact damper and applied in the
numerical simulation. They were found in good agreement with experimental
results.

The response of a mass–spring damper exposed to repetitive impact was
studied by Park [790]. The system was convenient to control equipment
utilizing repetitive impact as driving force such as electric and pneumatic
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hammers, shakers, bin vibrators and pile drivers. Impact–dampers have been
developed for industrial applications such as turbine blades, aircraft wings,
and lighting poles along high–speed highways. For example, Tokumaru and
Kotera [1006] introduced a concentrated–mass–continuum system with an
impact–body moving in a groove of the mass and strikes it at opposite ends of
the groove. They obtained periodic solutions under the base harmonic excita-
tion. The analytical model resulted in a partial integro–differential equation.
Other applications include impact dampers to the carrying cylinder of a web–
fed printing press [948]. Yamamoto et al [1093] applied a set of turrets, used
for providing punches and dies, to a damper for a C–frame turret punch press
in an attempt to reduce the vibration and noise. The damping characteristics
can be changed by adjusting the preload. Over a wide frequency range, the
effect of the sound pressure level reduction was found to be the same for
either one turret or a set of turrets. Furthermore, the complex structure of
the turret damper and the double wall eliminates the first tuning vibration,
and was found to reduce the sound pressure level in the actual punching by
about 11dB.

Moore et al [692] described high speed rotor–dynamic dampers for rocket
engine turbo–pumps operating at cryogenic temperatures, such as those used
in the space shuttle main engines. An impact damper was designed and tested
to obtain effective damping in a rotor–bearing system. Their analytical results
revealed a strong amplitude dependence on the impact damper performance.
The damper performance was characterized by an equivalent viscous damping
coefficient. The test results indicated that the impact damper is a viable
means to suppress vibration in cryogenic rotor–bearing systems.

Impact dampers may be used to control vibrations of buildings and struc-
tures subjected to earthquake motion, mechanisms, and machine tool vibra-
tion [296]. For example, particle dampers have been utilized by Sato et al
[915] to reduce the vibration in pantograph–support systems, and by Sims et
al [944] to improve the chatter stability of a machining process. They have
recently been used to control chaos in systems with limited power supply
[222]. Fuse [352] utilized the impact dampers to eliminate the effects of reso-
nance in mechanical systems by making the impact of the main system and
the additional vibration system to mutually collide with each other at an
opposite phase. Gibson [362] and Torvik and Gibson [1009] employed the
impact dampers for space applications. The decay rate and the minimum
effective amplitude were found to be the main two critical parameters that
govern the damper design. This special class comprises a container filled with
thousands of small granular particles which dissipate energy by friction and
impact when the container vibrates. The resulting behavior is highly non-
linear but can provide very high levels of damping across a wide frequency
range. Ogawa et al [747] introduced an impact mass damper as a damping
device to suppress wind–induced vibration of a single pylon of a cable–stayed
bridge.
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Aiba and Murata [1] described an impact damper having a spring sup-
ported impactor without gap and pre–pressure. The transient response of
the damper was obtained for various conditions based on experiments and
numerical simulations. It was found that the damper without gap and pre–
pressure practically has no residual vibration and the damping effects are
not dependent on amplitude. A variable–attractive–force impact damper was
introduced by Aiba et al [2] to eliminate chatter vibrations in the cutting
process. The system was applied to eliminate chatter vibrations in the face
milling process for very weak workpieces. The cutting tests showed that the
system is very effective and versatile for stopping chatter vibrations.

Friend and Kinra ([346], [347]), Marhadi and Kinra [642], and Olson [751]
considered particle impact damping for achieving high structural damping by
the use of a particle–filled enclosure attached to the structure in a region of
high displacements. The particles absorb kinetic energy of the structure and
convert it into heat through inelastic collisions between the particles and the
enclosure, and amongst the particles. Particle impact damping was measured
for a cantilevered aluminum beam with the damping enclosure attached to
its free end. It was found that the impact damping is highly nonlinear.

8.3 Analogue Computer and Numerical Simulations

Early research of impact dampers relied on analogue computer simulation.
For example, Masri [650], Bhattacharyya and Chatterjee [111] and Peterka
([809], [810], [812]) used analogue computers to study the effectiveness of
impact dampers in reducing vibration–amplitude levels under sinusoidal
and random excitations. Peterka [812] demonstrated the symmetric periodic
damper motion with two impacts of masses per period. He was able to explain
the complex non–symmetric, beat, and multi–impact types of motion. Man-
sour and Teixeira Filho [638] conducted a parametric study of the modes
and transitions of the auxiliary masses for impact dampers with Coulomb
friction using analogue and digital simulations. It was shown that for shorter
containers, Coulomb friction may introduce stability to the motion of the
primary mass, improve the response for harmonic excitation and accelerate
the attenuation of the amplitude of oscillations for step inputs.

Bapat and Sankar [91] studied the single unit impact damper under free
and forced vibrations using numerical simulations. The simulations were used
to predict the effects of mass ratio, coefficient of restitution and gap size on
the free vibrations. In the study of forced motion, charts were generated to
provide useful information such as optimum gaps and corresponding displace-
ment amplitude reduction within the resonant frequency range. These results
were later confirmed by Ema and Marui [290] who showed that the damping
capability of impact dampers arises from collision between the free mass and
the main mass. The optimum damping effect was achieved in combinations
of the mass ratio (ratio of the mass damper to the main system mass) and a
clearance. It was found that the use of a free mass of only 25% of the main
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mass and a clearance of 0.6–mm can improve the damping capability of the
main vibratory system at least 10 times or more, even though the clearance
and the free mass are not adjusted to amplitude of the main vibratory system.

The damping effects of an impact damper for the vibration neutralizer of
pillar bodies were examined by Saito et al [909]. They considered a beam rep-
resenting a pillar body together with an auxiliary mass coupled to the beam
by means of a spring–dashpot system. The system includes a gap between the
beam and the auxiliary mass, and they collide with each other at one point
when the system vibrates. The impact force was modeled using Hertz’ con-
tact theory and the normal–mode approach was employed in the simulation.
The numerical simulation results for free and random forced excitation were
experimentally verified. The effects of mass ratio, natural frequency ratio,
gap size and impact point for free and random responses were obtained by
numerical simulation. Akl and Butt [5] demonstrated that impact dampers
can increase the intrinsic damping of a lightly–damped flexible structure. The
test structure consists of a slender flexible beam supported by a pin–type sup-
port at one end and supported by a linear helical flexible spring at another
location. Sinusoidal excitation spanning the first three natural frequencies
was applied in the horizontal plane. The orientation of the excitation and the
test structure in the horizontal plane minimizes the effect of gravity on the
behavior of the test structure. The results showed that the impact damper
significantly increases the damping ratio of the test structure.

Duncan et al [279] presented computer simulations to examine the damp-
ing performance of a single particle vertical impact damper over a wide range
of excitation frequencies and amplitudes. The influences of other parameters
such as particle–to–structure mass ratio, lid clearance ratio, structural damp-
ing ratios and coefficient of restitution on the damping performance were also
examined. Maximum damping at a fixed oscillation frequency was found to
occur at an optimal lid height that increases with increasing mass ratio,
increasing structural damping ratio, but decreases with coefficient of restitu-
tion. The corresponding maximum degree of damping was found to increase
with increasing mass ratio and coefficient of restitution, but decreases with
increasing structural damping ratio.

8.4 Analytical Results

Exact analytical solutions for the steady–state motion of undamped harmonic
oscillator equipped with two–particle single–container impact damper were ob-
tained by Masri ([648], [651]). The resultswere comparedwith those of the same
damper with single–particle impact damper. Later, Masri ([652], [653], [654],
[656]) obtained an exact solution for symmetric two impacts/particle/cycle
motion of n–unit impact damper attached to a sinusoidally excited primary
system. It was found that properly designed multiple–unit impact dampers are
more efficient than equivalent single–unit impact dampers in regard to vibra-
tion reduction and noise level of operating units.
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Masri and Caughey [659] analytically derived an exact solution and stable
regions for symmetric two–impacts–per–cycle motion of impact dampers. The
stability analysis defined the domains over which the modulus of all eigen-
values of certain matrix relating conditions after each of two conservative
impacts is less than unity. Masri [657] conducted analytical and experimen-
tal forced excitation studies to examine the dynamic response of a system
with a motion–limiting stop. The response under harmonic excitation was
found to exhibit the jump resonance phenomena. Nigm and Shabana [730]
studied the steady state vibrational motion of a multi–degree of freedom
system equipped with an impact damper. The steady state of the damper
was characterized by the existence of as many as three modes for a given
excitation frequency.

Brown and North [144] and Brown [143] studied the free decay of impact–
damped oscillators under a wide range of oscillator amplitudes. Three oper-
ating regions were reported:

• Low–amplitude range with less than one impact per cycle and very low
damping.

• Useful middle amplitude range with a finite number of impacts per cycle.
• High–amplitude range with an infinite number of impacts per cycle and

progressively decreasing damping.

Bapat et al [90] and Bapat and Bapat [88] predicted stability regions of
two equi–spaced impacts/periodic motion of an impact–pair under a pre-
scribed periodic displacement. Some techniques for estimating the clearance
and impact forces were proposed by Lin and Bapat [594] based on a de-
scribing function and an optimization approach for a harmonically excited
vibro–impact system exhibiting periodic oscillations. Bapat ([84], [86]) an-
alyzed multi–stable impacts per period of an inclined impact damper with
friction and collision on either one or both sides of the main mass with iden-
tical and non–identical coefficients of restitution. Bapat [87] developed the
nonlinear equations governing multi–impact periodic motions of a single–
degree–of–freedom oscillator under sinusoidal and bias force contacting rigid
amplitude constraints on one or both sides. Exact closed form expressions
were derived for one and two equi–spaced and non–equi–spaced impacts per
cycle.

The problem of quenching self–excited vibrations by an impact damper
composed of a ball impacting with its container walls was considered by Yoshi-
take and Sueoka [1114]. The Runge–Kutta–Gill method with variable time
increment was applied to the numerical analysis of the self–excited system
of Rayleigh’s type. The response was found to exhibit periodic and chaotic
motions after period doubling bifurcation and intermittency. It was indicated
that for an optimum design of impact dampers there exists a certain relation-
ship between the coefficient of restitution and clearance. An experiment was
performed in order to quench vortex induced vibration by an impact damper.
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Friction and impacts during oscillation lead to discontinuities of the ve-
locity and internal forces in the time–domain and result in changes in the
number of degrees of freedom. The analytical procedure for integrating such
non–smooth motions involves the computation of the history dependent sep-
aration times and patching a sequence of solutions for successive smooth
problems ([859], [860]). However, this procedure has its limitations even for a
relatively low number of generalized coordinates because of the required com-
putation. Regularization techniques were used with finite element to avoid
the exact computation of all discontinuities by smoothing. However, there is a
significant uncertainty in the choice of the regularization parameters needed
for a sufficiently correct description of oscillations. Stationary solutions of
two forced mass–spring oscillators were used to calibrate the regularization
parameters by comparing analytical results with regularized ones. This al-
lows one to compute the self–excitation of a continuous system and validate
the phenomena with known experimental data. Koizumi et al [520] studied
the dynamic characteristics of a steady–state repetitive impact motion. The
impulse intensity was adjusted to be proportional to the pressure force level
required to support the follower.

A relationship between the coefficient of restitution and impact damping
ratio was developed by Cheng and Wang [165] and Cheng and Xu [166]. It
was shown that the effective reduction of the response amplitude is nearly
independent of the number of impacts, but primarily related to the type of
collision. Furthermore, the results revealed that the clearance of an effective
impact damper should be smaller than twice of the initial displacement of
the main mass if the system is stimulated by an initial displacement only.
Blazejczyk–Okolewska [119] and Peterka and Blazejczyk–Okolewska [825]
considered a two–degree–of–freedom system whose parameters were properly
selected to act as an impact damper. The regions of bifurcation diagrams
and motion trajectories of different kinds of impact motion were estimated.
The concept of targeted energy transfer was applied to seismic mitigation
by Nucera et al [740]. It was demonstrated that a single–degree–of–freedom
nonlinear energy absorber with non–smooth vibro–impact nonlinearities can
passively absorb and locally dissipate a significant portion of the seismic en-
ergy of the primary structure.

Ekwaro Osire and Desen [286], Semercigil et al [919] and Shaw and Pierre
[933] experimentally and analytically examined different types of impact vi-
bration absorbers. Shaw and Pierre [933] considered absorbers using cen-
trifugally induced restoring forces so that their non–impacting dynamics are
tuned to a given order of rotation, whereas their large amplitude dynam-
ics involve impacts with the primary flexible system. A class of symmet-
ric impacting motions was analyzed and used to predict the effectiveness of
the absorber when operating in its impacting mode. It was observed that
two different types of grazing bifurcations take place as the rotor speed
varies through resonance. Mikhlin and Reshetnikova [678] considered a non-
linear two–degrees–of–freedom system consisting of a linear oscillator with a
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relatively large mass and a vibro–impact oscillator with a relatively small
mass. Their analysis showed that a stable localized vibration mode exists in a
large region of the system parameters. Sung and Yu [972] used Poincaré map-
ping to detect bifurcation phenomena in studying the existence and stability
of subharmonic motions in a vibro–impact two–degree–of–freedom damper.
The evolution from the period–doubling sequence to chaotic motions was
demonstrated. Ekwaro Osire et al [287] considered the dynamic character-
istics of a bi–unit impact damper referred to as bi–unit impact vibration
absorber. They experimentally analyzed the performance of the impact vi-
bration absorber using digital image processing.

Ramachandran and Lesieutre ([880], [881], [882]) made an attempt to un-
derstand the dynamics of a particle impact damper as well as parameters
governing its dynamic behavior. The base was harmonically excited in the
vertical direction. A discrete event approach was used, wherein the variables
at one ’event’ (or impact) uniquely dictate the variables at the next ‘event,’
leading to a two–dimensional difference map. Periodic impact motions and
‘irregular’ motions were observed. The results revealed a peak for certain
combinations of parameters. These parameters correspond to a region of
parameter space where two–impact–per–cycle motions were observed over
a wide range of base acceleration. The range of gap clearance over which
two–impact–per–cycle solutions were found to increase as the coefficient of
restitution increases.

8.5 Experimental Results

Numerous analytical and experimental studies of impact dampers have been
reported in the literature. The main purpose of these studies was to val-
idate the predicted results. Furthermore, experimental investigations have
been conducted to explore the effectiveness of the impact dampers under dif-
ferent damper parameters. For example, Veluswami and Crossley [1028] and
Veluswami et al [1029] used three different materials for coating the impacting
plates in their impact dampers. It was found that the soft materials possess
a lower coefficient of restitution and provide a smaller amount of damping
at resonance. Sadek and Mills [904] and Sadek et al [905] examined the ef-
fects of gravity on impact dampers and found that the dampers are most
effective under zero gravity, which occurs when the damper is excited in a di-
rection perpendicular to gravity. Effective damping was also found when two
symmetric and equal impacts take place per cycle and the effect of gravity
resulted in impulses at the ends of the container. In the vicinity of resonance
the steady state of two un–equi–spaced impacts prevail.

Cempel and Lotz [157] presented experimental results of vibration damping
of shot–filled containers with some empty volume acting as the shot damper
clearance. The energy dissipation by shot was found to depend on the in-
ternal and the external (container walls) impacts of shot particles associated
with their internal and external friction. Hollkamp and Gordon [421] utilized
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particle damping in the form of metallic or ceramic particles inside struc-
tural cavities. As the cavity vibrates, energy is dissipated through particle
collisions. Yokomichi et al ([1109], [1111], [1110], [1112]) and Saeki ([906],
[907]) studied the performance of the shot impact damper applied to vibrat-
ing systems subjected to harmonic excitations. The periodic motion of the
self–excited vibration accompanied by the damper mass was analytically and
numerically determined. It was found that heavier damper mass provides
greater damping effect on the fully built–up vibrations, and that a lighter
mass is effective at the onset of the vibration. The optimum clearances under
which the response amplitudes are reduced to a minimum for suppressing
the vibrations were also determined. Yang [1096] and Yang et al [1097] devel-
oped design curves to predict the damping characteristics of particle impact
dampers.

Li [587] conducted a series of experimental investigations to find out the
effect of an impact damper on a multi–degree–of–freedom system. The ef-
fects of the size of the impact mass, clearance between the impact mass and
the stops, excitation type and location were considered. The results in some
instances did not correspond to those found for control of single–degree–of–
freedom systems. In particular, increasing the size of impact mass was found
not necessarily lead to an increase in damping for all modes.

Mao et al [640] employed a three–dimensional discrete element method for
characterizing the performance of particle damping. It was found that the
particle damping can achieve a very high value of specific damping capacity.
The particle damping is a combination of the impact and friction damping.
The damping was found to be highly nonlinear as the rate of energy dissi-
pation depends on amplitude. Particularly, the damping effect results in a
linear decay in amplitude over a finite period of time. It was concluded that
the particle damping is a combination of these two damping mechanisms and
the relative significance of these damping mechanisms depends on a partic-
ular arrangement of the damper. The problem was further studied by Xu et
al [1090] who confirmed that the mechanisms of energy dissipation of parti-
cle damping are primarily related to friction and impact phenomena. They
considered elastic beam and plate structures with drilled longitudinal holes
filled with damping particles. Particular attention was given to the form of
damping due to shear friction induced by strain gradient along the length of
the structure. Experimental tests of beam and plate structures for different
damping treatments revealed that the particle damping is remarkably strong
for a broadband frequency range. Moreover, the shear friction was found to
be the major contributing mechanism of damping especially at a high volu-
metric packing ratio. The numerical and experimental results suggested that
the best damping effect can be achieved by using a design of multiple particle
chambers involving an appropriate combination of the impact, friction and
shear mechanisms.

Experimental investigations on a platform wedge damper were conducted
to compare its effectiveness with that of the impact damper ([271], [272],
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[273], [274], [275]). The self–tuning impact damper combines the tuned mass
damper and the impact damper. It consists of a ball located within a cav-
ity in the blade. The ball rolls back and forth on a spherical trough under
centrifugal load (tuned mass damper) and can strike the walls of the cavity
(impact damper). The ball rolling natural frequency is proportional to the ro-
tor speed and can be designed to follow an engine–order line (integer multiple
of rotor speed). The excitation was provided by three different sources: 1) an
eddy–current engine–order excitation, 2) electromechanical shakers, and 3)
magnetic bearing excitation. The eddy–current system consists of magnets
located circumferentially around the rotor. As a blade passes a magnet, a
force is imparted on the blade. The number of used magnets can be varied
to change the desired engine order of the excitation. The other two methods
apply force on the rotating shaft itself at frequencies independent of the ro-
tor speed. Later, Duffy [270] analytically and experimentally investigated a
self–tuning impact damper as a device to inhibit vibration and increase the
fatigue life of rotating components in turbomachinery.

8.6 Random Excitation

The effectiveness of impact dampers under random excitation has been con-
sidered in few studies. For example, the response statistics of an impact
damper to a white noise Gaussian excitation using numerical simulation and
analogue computer were estimated by Masri and Ibrahim ([661], [662]), Masri
and Stott [664] and Semercigil et al [918]. Masri and Ibrahim [660] obtained
an approximate analytical solution for the stationary response of a highly
nonlinear auxiliary mass damper attached to a single–degree–of–freedom os-
cillator subjected to a white noise random excitation. It was found that the
impact damper is substantially more effective than the conventional dynamic
vibration neutralizer in controlling the response of stochastically excited pri-
mary systems.

Papalou and Masri ([786], [787]) presented experimental and analytical re-
sults describing the performance of granular material dampers with tungsten
powder, as an impacting mass, under a wide–band random excitation. The
influence of the auxiliary mass ratio, container dimensions and excitation in-
tensity were investigated using a small building model under base excitation.
An approximate analytical solution based on the concept of an equivalent
single–unit impact damper was developed. Comparison between experimen-
tal and analytical results revealed accurate estimates of the rms response of
a primary system under stationary random excitation.

Nayeri et al [721] developed and evaluated practical design strategies
for maximizing the damping efficiency of multi–unit particle dampers un-
der random excitation. Both stationary and nonstationary excitations were
considered. They performed high–fidelity simulation with a variable num-
ber of multi–unit dampers ranging from 1 to 100. The magnitude of the
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Fig. 8.2. Multiple unit impact damper and associated characteristic functions:
(a) schematic diagram of the multiple unit impact damper, (b) nonlinear function
G(zk) and (c) nonlinear function H(zk,

·
zk), [721].

“dead–space” nonlinearity was considered as a random variable with a
prescribed probability distribution. Computational results were calibrated
with experimental measurements for a single–unit/single–particle, single–
unit/multi–particle, and multiple–unit/multi–particle dampers. It was shown
that wide latitude exists in the trade–off between high vibration attenuation
over a narrow range of damper gap size versus slightly reduced attenuation
over a much broader range. The study considered the multiple impact damper
shown in Fig. 8.2. The primary system has mass M with a nonlinear aux-
iliary multi–unit impact damper. Each unit of the damper consists of mass
mk, which is coupled to the main mass by a piecewise linear dashpot c2 and
spring k2 with a dead space of clearance h2. The analytical model according
to Nayeri et al [721] is described by the equations of motion
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Fig. 8.3. Dependency of the coefficient of restitution on the damping parameter
ζ2: —– ω2/ωn = 5, - - - ω2/ωn = 20, ◦ experimental measurements, [721].
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k = 1, 2, ..., N,

where x is the displacement of mass M , zk is the relative displacement of the
k−th particle with respect to the primary system, and f(t) is the external ex-
citation force. ωn and ζ are the natural frequency and damping factor of the
primary system, respectively. ω2 and ζ2 are the natural frequency and damp-
ing factor of the impact damper stops, respectively. μk = mk/M is the mass
ratio of the k−th particle, and μs is the friction coefficient between particles
and primary mass. g is the gravitational acceleration, G(zk) and H(zk,

·
zk) are

nonlinear functions shown in Figs. 8.2(b) and 8.2(c), respectively. Note that the
damping factor ζ2 and the function H(zk,

·
zk) provide means for simulating in-

elastic impacts, ranging from purely plastic to the purely elastic ones. Accord-
ingly, the value of the coefficient of restitution, e, can be adjusted by selecting
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Fig. 8.4. Dependence of the response rms displacement of the main system for
e = 0.75, μ = 0.1, and ζ = 0.01: © one particle, � 2 particles, � 10 particles, Δ
100 particles, [721].

the appropriatevalue of ζ2 as shown in Fig. 8.3. Under stationaryGaussian ran-
dom excitation, the response statistics were estimated numerically and Fig. 8.4
shows the dependence of rms ratio of the response displacement, σx/σx0, on
the clearance ratio h/σx0, where σx0 is the rms of the primary mass displace-
ment in the absence of the multi–unit impact dampers. Fig. 8.4 was obtained
for four different number of particle units. For all cases, the rms level of the
response exhibits a definite minimum for certain clearance ratios in the neigh-
borhood of h/σx0 ≈ 5.0. It was reported that as the number of unit particles
increases, the sensitivity of vibration attenuation to changes in h decreases.

8.7 Design Considerations

Particle vibration damping combines impact suppression and friction damp-
ing ([776], [777], [778], [779]). The particle damper shown in Fig. 8.1(b) has
been extensively studied by Araki et al ([24], [25], [26], [27], [28], [29]) to
determine the characteristics of the damper with granular materials with
the purpose of reducing the vibration of a single degree–of–freedom system.
They also determined the characteristics of the impact damper for reducing
the vibration of the system under horizontal excitation. The main design
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Fig. 8.5. Impact damper used in boring tools, [293].

parameters of these dampers were discussed by Estabrook and Plunckett
[301] and Dokainish and Elmaraghy [263]. The influence of mass ratio, par-
ticle size, particle/slot clearance, excitation levels and direction of excitation
was studied in several references (see, e.g., [861], [863], [775], [788]). Impact
motions were found to be very sensitive to small fluctuations in the clearance
between masses and the stiffness and loading of the oscillator near its linear
resonant frequency. It was concluded that the rigid mass acts as an effec-
tive damper at or just above this frequency condition. Furthermore, a plastic
bean bag filled with lead shot exhibited much greater damping effectiveness
and softer impacts than a single lead slug of equal mass [339]. Popplewell
and Liao [862] introduced approximate techniques to simplify the design of
an impact damper intended to reduce resonant displacements.

Impact dampers capable to control machine tool chatter and to improve
the damping capability of boring tools were developed in the literature ([903],
[902], [290], [291], [292], [293]). These dampers consist of a free mass and a
clearance as shown in Fig. 8.5. It was demonstrated that the damping capabil-
ity of boring tools is considerably improved using impact dampers. All types
of impact dampers used in the experiment can considerably suppress the vi-
bration of boring tools in the vertical direction (principal force direction), but
hardly suppress it in the horizontal direction (thrust force direction) where
the amplitude is extremely small.
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Thomas et al [991] found that the impact damper boring bar is very ef-
fective and provides a stable metal removal rates. A theoretical analysis for
predicting the effectiveness of the impact damper with a spring supported
impacting mass was presented. The results of this analysis were used to se-
lect the optimum mass ratio and gap setting for specific characteristics of
the vibrating systems to which the damper is fitted. A systematic approach
based on a univariate search optimization method was used to determine the
best design parameters for suppressing self–excited vibrations [32]. Optimum
parameters for complete quenching of such vibrations were obtained using
quasi–static as well as dynamic variations of the bifurcation parameter for
both supercritical and subcritical Hopf bifurcation.

Liu et al [598] studied the influence of parameters governing the design of
a bean bag damper. The basic parameters include the size of beans, the mass
ratio of the bean bag to the structure to which it is attached, the clearance
distance and the position of the bag. It was found that reducing the size of
beans would increase the exchange of momentum in the system due to the
increase in the effective contact areas. Within the range of values of mass ratio
studied, the damping performance of the damper was found to improve with
higher values of mass ratio. There was an optimum clearance for any specific
damper whereby the maximum attenuation could be achieved. It was shown
that an appropriately configured bean bag damper was capable of reducing
the amplitude of vibration by 80% to 90%.

8.8 Semi–Active and Active Control of Impact
Dampers

Active and semi–active controls of impact dampers are usually introduced to
improve their performance. Karyeaclis and Caughey ([494], [495]) examined
the stability of a semi–active impact damper. All solutions of the system were
shown to be bounded when the input is bounded. Emphasis was given to the
case of two impacts/cycle periodic solutions. Sensitivity to clearance was ex-
perimentally studied by Papalou and Masri [788]. They showed that particle
dampers, even with a small mass ratio, can be very effective in attenuating
the vibrations of lightly damped structures.

A dynamic damper with a preview action was proposed by Tanaka and
Kikushima [979] with the purpose of verifying the control effect of the dy-
namic damper for the transient vibration caused by an impact force. The
influence of the maximum impact force upon the control effect for suppress-
ing the first wave of the transient vibration was examined. Later, Tanaka and
Kikushima [980] proposed a new semi–active damper driven by the motion of
a released damper mass from an initial displacement for suppressing impact
vibration. Using the principle of impact vibration control, the optimal design
conditions of the semi–active damper were derived.

Li and Darby [588] considered an impact damper in the form of a freely
moving mass constrained by stops and located on a dynamic structural
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system. At the point of impact, large values of acceleration were imparted
to the structure. In order to reduce the associated high accelerations, it was
proposed to incorporate a buffer region between the mass and the stop. The
performance of the buffered impact damper was compared with that of a con-
ventional rigid impact damper. It was found that the buffered impact damper
not only significantly reduces the accelerations, contact force and the asso-
ciated noise generated by a collision but also enhances the level of vibration
control.

Chatterjee et al ([160], [161]) and Chatterjee and Mallik [159] studied
the performance of different types of nonlinear oscillators including a hard
Duffing oscillator impact damper under harmonic excitation. Both elastic
and inelastic collisions were considered. The use of an impact damper as
an on–off migration controller for a guided transition from the resonance to
the non–resonance branch of the solution was proposed. Bifurcations of self–
excited oscillators with an impact damper were determined. The persistent
bifurcation structure of codimension–one which is independent of the exact
functional form of the self–excitation mechanism was determined. Yasuda et
al [1100] and Kamiya et al [488] introduced an elastic impact damper made of
an elastic impacting body and a container. Possibility of vibration suppression
of resonances for several modes of the beam was numerically studied. They
also experimentally measured the influence of the system parameters on its
performance.

Hundal [432] analyzed an impact absorber consisting of a linear spring in
parallel with a hydraulic damper with variable area orifice. The orifice area
was made to vary in two stages in order to overcome the deteriorating effect of
fluid compressibility. Collette [185] and Collette et al [186] studied the control
of excessive transient vibrations of a light and flexible secondary system with
a tuned absorber and impact damper combination. The particular modified
tuned absorber concept was mounted on a single degree–of–freedom primary
structure.

8.9 Closing Remarks

Although vibro–impact is detrimental and undesirable for the safe opera-
tion of mechanical systems, it has one bright and attractive advantage in
suppressing severe vibration of structural and mechanical systems. This has
been achieved by the advent of impact dampers. The design of these dampers
has taken different schemes and approaches such as mass dampers, particle
dampers, bean bag dampers, and liquid sloshing dampers. An optimum de-
sign of impact dampers is based on appropriate selection of the coefficient
of restitution and clearance. The damping performance of bean bag dampers
was found to improve if the designer increases the mass ratio of the bean bag
to the structure mass. This chapter provided a brief overview; however, the
subject matter deserves an independent research monograph.
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765. Päıdoussis, M.P.: Fluid–Structure Interactions: Slender Structures and Axial
Flow, vol. 1. Academic Press, London (1998)
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872. Půst, L., Peterka, F.: Impact oscillator with Hertz’s model of contact. Mec-
canica 38(1), 99–114 (2003)
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920. Semler, C., Li, G.X., Päıdoussis, M.P.: The nonlinear equations of motion of
pipes conveying fluid. J. Sound & Vib. 169, 577–599 (1994)

921. Senator, M.: Existence and stability of periodic motions of a harmonically
forced impacting system. J. Acoust Soc. Amer. 47(5), pt.2, 1390–1397 (1970)

922. Sharif–Bakhtar, M., Shaw, S.W.: The dynamic response of a centrifu-
gal pendulum vibration absorber with motion–limiting stops. J. Sound &
Vib. 126(2), 221–235 (1988)

923. Sharkovsky, A.N., Chua, L.O.: Chaos in some 1–D discontinuous maps that
appear in the analysis of electrical circuits. IEEE Trans. Circuits Syst.
I 40(10), 722–731 (1993)

924. Shaw, J., Shaw, S.W.: The onset of chaos in a two–degree–of–freedom im-
pacting system. ASME J. Appl. Mech. 46, 168–174 (1989)

925. Shaw, S.W.: A Periodically Forced Piecewise Linear Oscillator, Ph.D. Dis-
sertation, Cornel University (1983)

926. Shaw, S.W.: Forced vibration of a beam with one–sided amplitude constraint:
Theory and experiment. J. Sound & Vib. 99(2), 199–212 (1985a)

927. Shaw, S.W.: Dynamics of harmonically excited systems having rigid ampli-
tude constraints, Part 1– Subharmonic motions and local bifurcations. ASME
J. Appl. Mech. 52, 453–458 (1985b)

928. Shaw, S.W.: Dynamics of harmonically excited systems having rigid ampli-
tude constraints, Part 2– Chaotic motions and global bifurcations. ASME J.
Appl. Mech. 52, 459–464 (1985c)

929. Shaw, S.W., Haddow, A.G., Hsieh, S.R.: Properties of cross–well chaos in an
impacting systems. Phil. Trans. Royal Soc. London Series A–Mathematical
Physical and Engineering Sciences 347(1683), 391–410 (1994)

930. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator.
J. Sound & Vib. 90, 129–155 (1983a)

931. Shaw, S.W., Holmes, P.J.: A periodically forced impact oscillator with large
dissipation. ASME J. Appl. Mech. 50, 849–857 (1983b)

932. Shaw, S.W., Holmes, P.J.: A periodically forced linear oscillator with impacts:
Chaos and long period motions. Phys. Rev. Lett. 51, 623–626 (1983c)

933. Shaw, S.W., Pierre, C.: The dynamic response of tuned impact absorbers
for rotating flexible structures. ASME J. Comput. Nonlin. Dyn. 1(1), 13–24
(2006)

934. Shaw, S.W., Rand, R.H.: The transition to chaos in a simple mechanical
system. Int. J. Nonlin. Mech. 24, 41–56 (1989)

935. Shen, X., Jia, J., Zhao, M.: Numerical analysis of a rub–impact rotor–bearing
system with mass unbalance. J. Vib. & Cont. 13(12), 1819–1834 (2007)

936. Sherif, H.A.: Effect of Contact Stiffness on the Establishment of Self–Excited
Vibrations. Wear 141, 227–234 (1991a)

937. Sherif, H.: On the design of anti–squeal friction pads for disc brakes. Soc.
Aut. Eng. Trans. 100(Sect 6), 678–686 (1991b)

938. Sherif, H.: Parameters affecting contact stiffness of nominally flat surfaces.
Wear 145(1), 113–121 (1991c)



282 References

939. Shin, Y.S., Jendrzejczyk, J.K., Wambsganss, M.W.: Vibration of a heat ex-
changer tube with tube/support impact. ASME Paper No. 77–JPGC–NE–5,
13 p. (1977)

940. Shin, Y.S., Sass, D.E., Jendrzejczyk, J.A.: Vibro–impact responses of a tube
with tube–baffle interaction. In: Proc. ASME Pressure Vessels and Piping
Conf. Proceedings, Paper No. 78–PVP–20, ASMSA4, 8 p. (1978)

941. Shu, Z.Z., Shen, X.Z.: Theoretical analysis of complete stability and auto-
matic vibration isolation of impacting and vibrating systems with double
masses. Chinese J. Mech. Eng. 26(3), 50–57 (1990) (in Chinese)

942. Sijin, Z., Libiao, Z., Qishao, L.: A map method for grazing bifurcation in
linear vibro–impact system. Acta Mechanica Sinica 39(1), 132–136 (2007)
(in Chinese)

943. Silberschmidt, V.V., Casas–Rodriguez, J.P., Ashcroft, I.A.: Impact fatigue
in adhesive joints. Proc. IMech. E Part C: J. Mechanical Engineering Sci-
ence 222, 1981–1994 (2008)

944. Sims, N.D., Amarasinghe, A., Ridgway, K.: Particle dampers for work–piece
chatter mitigation. ASME Manufacturing Engineering Division MED 16–1,
825–832 (2005)

945. Sin, V.T.W., Wiercigroch, M.: Symmetrically piecewise linear oscillator: De-
sign and measurement. Proc. Inst. Mech. Eng. C 213, 241–249 (1999)

946. Singh, R., Xie, H., Comparin, R.J.: Analysis of an automotive neutral gear
rattle. J. Sound & Vib. 131, 177–196 (1989)

947. Sinha, S.K.: Nonlinear dynamic response of a rotating radial Timoshenko
beam with periodic pulse loading at the free end. Int. J. Nonlin. Mech. 40,
113–149 (2005)

948. Skipor, E., Bain, L.J.: Application of impact damping to rotary printing
equipment. ASME J. Mech. Design 102, 338–343 (1980)

949. Slade, K.N., Virgin, L.N., Bayly, P.V.: Extracting information from inter-
impact intervals in a mechanical oscillator. Phys. Revs. E 56(3), 3705–3708
(1997)

950. Sokolov, I.J., Babitsky, V.I., Halliwell, N.A.: Autoresonant vibro–impact sys-
tem with electromagnetic excitation. J. Sound & Vib. 308, 375–391 (2007)

951. Song, L.L., Iourtchenko, D.V.: Analysis of stochastic vibro–impact systems
with inelastic impacts. Mech. Solids 41(2), 146–154 (2006)

952. Sorokin, V.N.: The Theory of Speech Production, Radio I Svyaz, Moscow
(1985) (in Russian)

953. Sosnovskiy, L.A., Sherbakov, S.S.: Vibro–impact in rolling contact. J. Sound
& Vibr. 308(3-5), 489–503 (2007)

954. Spencer, M., Siegmund, T., Mongeau, L.: Determination of superior surface
strains and stresses, and vocal fold contact pressure in a synthetic larynx
model using digital image correlation. J. Acoust. Soc. Amer. 123(2), 1089–
1103 (2008)

955. Steindl, A., Troger, H.: Flow–induced bifurcations to 3–dimensional motions
of tubes with an elastic support. In: Besserling, J.F., Eckhaus, W. (eds.)
Trends in Applications of Mathematics to Mechanics, pp. 128–138. Springer,
Berlin (1988)

956. Steindl, A., Troger, H.: Nonlinear Stability and Bifurcation Theory. Springer,
Berlin (1991)

957. Steindl, A., Troger, H.: Nonlinear three–dimensional oscillations of elasti-
cally constrained fluid conveying tubes with perfect broken O(2)–symmetry.
Nonlin. Dyn. 7, 165–193 (1995a)



References 283

958. Steindl, A., Troger, H.: One and two–parameter bifurcations to divergence
and flutter in the three–dimensional motions of a fluid conveying viscoelastic
tube with D4–symmetry. Nonlin. Dyn. 8(1), 161–178 (1995b)

959. Steindl, A., Troger, H.: Heteroclinic cycles in the three–dimensional post–
bifurcation motion of O(2)–Symmetrical fluid conveying tubes. Appl. Math.
& Comput. 78, 269–277 (1996)

960. Stensson, A., Nordmark, A.B.: Chaotic vibrations of a spring–mass sys-
tem with unilateral displacement limitation: Theory and experiments. Phil.
Trans. Royal Soc. London A 337, 439–448 (1994)

961. Stensson, A., Nordmark, A.B.: Existence of periodic solutions in grazing
bifurcations of impacting mechanical oscillators. J. Tech. Phys. 37(3–4), 531–
534 (1996)

962. Stepanov, P.T.: Investigation of vibro–impact mechanical systems. Novosi-
birsk, NETI, pp. 67–71 (1979)

963. Stinner, A.: Physics and the Dumpsters. Phys. Educ. 24, 260–267 (1989)
964. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge

(2000)
965. Su, T.C., Kang, S.Y.: Analysis of liquid impact of moving containers. Devel-

opments in Appl. Mech. 12 (1984a)
966. Su, T.C., Kang, S.Y.: Numerical simulation of liquid sloshing. In: Boresi,

A.P., Chong, K.P. (eds.) Mechanical and Civil Engineering. ASCE, vol. 2,
pp. 1069–1072 (1984b)

967. Su, T.C., Kang, S.Y.: Analysis and testing of the large amplitude liquid
sloshing in rectangular containers. In: Proc. ASME Pressure Vessels and
Piping Conf., Seismic Engineering Piping Systems, Tanks and Power Plant
Equip, New York, N. Y., PVP. ASME, vol. 108, pp. 149–154 (1986)

968. Su, T.C., Wang, Y.: Numerical simulation of three–dimensional large ampli-
tude liquid sloshing in rectangular containers subjected in vertical excitation.
In: ASME Pressure Vessels and Piping Division, Sloshing and Fluid Structure
Vibration, Honolulu, HI, PVP, vol. 157, pp. 115–126 (1989)

969. Su, T.C., Wang, Y.: Numerical simulation of three–dimensional large ampli-
tude liquid sloshing in cylindrical tanks subjected to arbitrary excitations.
In: ASME Pressure Vessels and Piping Conf., Flow–Structure Vibration and
Sloshing, Nashville, TN, PVP, vol. 191, pp. 127–148 (1990)

970. Sugiyama, Y., Tanaka, Y., Kishi, T., Kawagoe, H.: Effect of a spring support
on the stability of pipes conveying fluid. J. Sound & Vib. 100, 257–270 (1985)

971. Sun, H., Faltinsen, O.M.: Water impact of horizontal circular cylinders and
cylindrical shells. Appl. Ocean Res. 28(5), 299–311 (2006)

972. Sung, C.K., Yu, W.S.: Dynamics of a harmonically excited impact damper:
bifurcations and chaotic motion. J. Sound & Vib. 158, 317–329 (1992)

973. Svahn, F., Dankowicz, H.: Energy transfer in vibratory systems with friction
exhibiting low–velocity collisions. J. Vib. & Cont. 14(1–2), 255–284 (2008)

974. Swamidas, A.S.J., Arockiasamy, M.: Iceberg impact forces on gravity plat-
forms. In: Proc. 3rd Cold Regions Engineering specialty Conf., Edmonton,
vol. 1, pp. 431–458 (1984)

975. Swamidas, A.S.J., Arockiasamy, M.: Structural integrity of semi–
submersibles and gravity platforms to berg–bit/iceberg impact. In: Proc.
18th Annual Offshore Technology Conf., Houston, OTC, vol. 5087, 39–49
(1986)



284 References

976. Tan, X., Rogers, R.: Dynamic friction modeling in heat exchanger tube sim-
ulation. In: ASME Proc. Pressure Vessels and Piping Conf., Flow–Induced
Vibration, Montreal, Canada, 328, pp. 347–358 (1996)

977. Tanagasawi, O., Theodossiades, S., Rahnejat, H.: Lightly loaded lubricated
impacts: Idle gear rattle. J. Sound & Vib. 308, 418–430 (2007)

978. Tanaka, H., Ushio, T.: Analysis of border–collision bifurcations in a flow
model of a switching system. IEICE Trans. Fund Elect, Comm. & Comp.
Sci. E85-A(4), 734–739 (2002)

979. Tanaka, N., Kikushima, Y.: Study of the dynamic damper with a preview
action (experiment of the dynamic damper with a preview action). JSME
Int. Journal 30(268), 1631–1637 (1987)

980. Tanaka, N., Kikushima, Y.: Impact vibration control using a semi–active
damper. J. Sound & Vib. 158(2), 277–292 (1992)

981. Tang, D.M., Dowell, E.H.: Chaotic oscillations of a cantilevered pipe convey-
ing fluid. J. Fluids & Struct. 2, 263–283 (1988)

982. Tang, D., Dowell, E.H.: Flutter and limit cycle oscillations of a wing–store
model with free-play. J. Aircraft 43(2), 487–503 (2006a)

983. Tang, D., Dowell, E.H.: Experimental and theoretical study of gust response
for a wing–store model with free-play. J. Sound & Vib. 295, 659–684 (2006b)

984. Tang, D., Kholodar, D., Dowell, E.H.: Nonlinear aeroelastic response of airfoil
section with control surface free-play to gust loads. AIAA Journal 38(9),
1543–1557 (2000)

985. Tangasawi, O., Theodossiades, S., Rahnejat, H., Kelly, P.: Nonlinear vibro–
impact phenomenon belying transmission idle rattle. Proc. IMech. E Part C:
J. Mechanical Engineering Science 222, 1909–1923 (2008)

986. Tao, C., Jiang, J.J.: Mechanical stress during phonation in a self–oscillating
finite–element vocal fold model. J. Biomechanics 40(10), 2191–2198 (2007)

987. Tao, C., Jiang, J.J., Zhang, Y.: Simulation of vocal fold impact pressures
with a self–oscillating finite–element model. J. Acoust Soc. Amer. 119(6),
3987–3994 (2006)

988. Teng, X., Wierzbicki, T.: Interactive failure of two impacting beams. J. Eng.
Mech. 129(8), 918–926 (2003)

989. Teng, X., Wierzbicki, T.: Multiple impact of beam–to–beam. Int. J. Impact
Eng. 31(2), 185–219 (2005)

990. Theodossiades, S., Natsiavas, S.: Periodic and chaotic dynamics of motor–
driven gear–pair system with backlash. Chaos, Solitons & Fractals 12, 2427–
2440 (2001)

991. Thomas, M.D., Knight, W.A., Sadek, M.M.: The impact damper as a method
improving cantilever boring bars. ASME J. Eng. Indust. 97(3), 859–866
(1975)

992. Thomsen, J.J., Fidlin, A.: Discontinuous transformations and averaging for
vibro–impact analysis. In: Proc. XXI Int. Cong. Theor. Appl. Mech. (ICTAM
2004) Abstract Book and CDROM ID:SM25L–12694 (2004) (CD–ROM)

993. Thomsen, J.J., Fidlin, A.: Near–elastic vibro-impact analysis by discontinu-
ous transformations and averaging. J. Sond & Vib. 311, 386–407 (2008)

994. Thompson, J.M.T.: Complex dynamics of compliant off–shore structures.
Proc. Royal Society of London Series A, Mathematical and Physical Sci-
ences 387, 407–427 (1983)

995. Thompson, J.M.T.: Chaotic behavior triggering the escape from a potential
well. Proc. Royal Society of London A 421, 195–225 (1989)



References 285

996. Thompson, J.M.T., Ghaffari, R.: Chaos after period doubling bifurcations in
the resonance of an impact oscillator. Phys. Lett 91A, 5–8 (1982)

997. Thompson, J.M.T., Ghaffari, R.: Chaotic dynamics of an impact oscillator.
Phys. Rev. A 27(3), 1741–1743 (1983)

998. Thompson, J.M.T., McRobie, F.A.: Indeterminate bifurcations and the
global dynamics of driven oscillators. In: Kreuzer, E., Schmidt, G. (eds.)
Proc. 1st European Nonlinear Oscillations Conf., Hamburg, August 16–20,
1993, pp. 107–128. Academie Verlag, Berlin (1993)

999. Thota, P.: Analytical and Computational Tools for the Study of Grazing Bi-
furcations of Periodic Orbits and Invariant Tori, PhD Dissertation, Virginia
Tech., Blacksburg, Virginia (2007)

1000. Thota, P., Dankowicz, H.: Continuous and discontinuous grazing bifurcations
in impacting oscillators. Physica D 214, 187–197 (2006a)

1001. Thota, P., Dankowicz, H.: Analysis of grazing bifurcations of quasi–periodic
system attractors. Physica D 220(2), 163–174 (2006b)

1002. Thota, P., Zhao, X., Dankowicz, H.: codimension–two grazing bifurcations
in single–degree–of–freedom impact oscillator. ASME J. Comput. & Nonlin.
Dyn. 2, 328–335 (2006)

1003. Titze, I.R. (ed.): Vocal Fold Physiology: New Frontiers in Basic Science.
Singular Publication Group, San Diego (1993)

1004. Titze, I.R.: Mechanical stress in phonation. J. Voice 8, 99–105 (1994)
1005. Todd, M.D., Virgin, L.N.: An experimental impact oscillator. Chaos, Solitons

& Fractals 8(4), 699–714 (1997)
1006. Tokumaru, H., Kotera, T.: On impact–damper for concentrated–mass–

continuum system. Bull JSME 13, 59 (1970)
1007. Tolstoi, D.M.: Significance of the Normal–Degree–of–Freedom and Natural

Normal Vibrations in Contact Friction. Wear 10, 199–213 (1967)
1008. Tolstoi, D.M., Borisova, G.A., Grigorova, S.R.: Role of Interinsic Contact of

Oscillations in Normal Direction during Friction. In Nature of the Friction
in Solids, Nauka i Tekhnica, Minsk (1971)

1009. Torvik, P.J., Gibson, W.: Design and effectiveness of impact dampers for
space applications. ASME Design Engineering Division (Publication) DE,
vol. 5, 65–74 (1987)

1010. Toulemonde, C., Gontier, C.: Multiple degree of freedom impact oscillator.
European J. Mech., A/Solids 16(5), 879–904 (1997)

1011. Toulemonde, C., Gontier, C.: Sticking motions of impact oscillators. Euro-
pean J. Mech., A/Solids 17(2), 339–366 (1998)

1012. Trindade, M.A., Wolter, C., Sampaio, R.: Karhunen–Loeve decomposition of
coupled axial/bending vibrations of beams subject to impacts. J. Sound &
Vib. 279, 1015–1036 (2005)

1013. Tse, C.K.: Complex Behavior of Switching Power Converters. CRS Press,
Boca Raton (2003)

1014. Tufillaro, N.B.: Braid analysis of a bouncing ball. Phys. Rev. E 50, 4509–4522
(1994)

1015. Tufillaro, N.B., Abbott, T.A., Reilly, J.P.: An Experimental Approach to
Nonlinear Dynamics and Chaos. Addison–Wesley, Reading (1992)

1016. Tufillaro, N.B., Albano, A.M.: Chaotic dynamics of a bouncing ball. Amer.
J. Physics 54(10), 939–944 (1986)

1017. Tufillaro, N.B., Mello, T.M., Choi, Y.M., Albano, A.M.: Period doubling
boundaries of a bouncing ball. J. de Physique 47, 1477–1482 (1986)



286 References

1018. Tung, P.C.: Dynamics of a nonharmonically forced impact oscillator. JSME
Int. Journal, Series 3: Vibration, Control Engineering, Engineering for In-
dustry 35(3), 378–386 (1992)

1019. Tung, P.C., Shaw, S.W.: The dynamics of an impact print hammer. ASME
J. Vib., Acoust, Stress & Rel. Design 110, 193–200 (1988a)

1020. Tung, P.C., Shaw, S.W.: A method for the improvement of impact printer
performance. ASME J. Vib., Acoust, Stress & Rel. Design 110, 528–532
(1988b)

1021. Twizell, E.H., Jin, L., Lu, Q.S.: A method for calculating the spectrum of
Lyapunov exponents by local maps in non–smooth impact–vibrating systems.
J. Sound & Vib. 298(4–5), 1019–1133 (2006)

1022. Valente, A.X.C.N., McClamroch, N.H., Mezic, I.: Hybrid dynamics of two
coupled oscillators that can impact a fixed stop. Int. J. Nonlin. Mech. 38,
677–689 (2003)

1023. Van de Vorst, E.L.B., Heertijes, M.F., Van Campen, D.H., de Kraker, A., Fey,
R.H.B.: Experimental and numerical analyses of the steady state behavior of
a beam system with impact. J. Sound & Vib. 212, 321–336 (1998)

1024. Van de Wouw, N., Van de Bosch, H.L.A., de Kraker, A., Van Campen, D.H.:
Experimental and numerical analysis of nonlinear phenomena in a stochas-
tically excited beam system with impact. Chaos, Solitons & Fractals 9(8),
1409–1428 (1998)

1025. Van de Wouw, N., de Kraker, A., Van Campen, D.H., Nijmeijer, H.: Nonlinear
dynamics of a stochastically excited beam system with impact. Int. J. Nonlin.
Mech. 38, 767–779 (2003)

1026. Van den Berg, J., Zantema, J.T., Doornebal, P.: On the air resistance and
Bernoulli effect of the human larynx. J. Acoust. Soc. Amer. 29, 626–631
(1957)

1027. Van Hirtum, M., Ruty, N., Pelorson, X., Lopez, I.: Experimental validation of
some additional issues in physical vocal folds models. Acta Acustica United
With Acustica suppl.1,S 53 (2005)

1028. Veluswami, M.A., Crossley, F.R.E.: Multiple impacts of a ball between two
plates, part 1: Some experimental observations. ASME J. Eng. Indust. 97,
820–827 (1975)

1029. Veluswami, M.A., Crossley, F.R.E., Horvay, G.: Multiple impacts of a ball be-
tween two plates. Part 2: Mathematical modeling. ASME J. Eng. Indust. 97,
835–838 (1975)

1030. Vento, M.A., Antunes, J., Axisa, F.: Tube/support interaction under sim-
ulated fluidelastic instability: Two–dimensional experiments and computa-
tions of the nonlinear responses of a straight tube. In: Proc. ASME Pressure
Vessels and Piping Conf., Cross–Flow Induced Vibration of Cylinder Arrays,
Anaheim, CA, PVP, vol. 242, pp. 151–166 (1992)

1031. Veprik, A.M., Babitsky, V.I.: Vibration protection of sensitive electronic
equipment from harsh harmonic vibration. J. Sound & Vib. 238(1), 19–30
(2000)

1032. Veprik, A.M., Babitsky, V.I.: nonlinear correction of vibration protection
system containing tuned dynamic absorber. J. Sound & Vib. 239(2), 335–
356 (2001)

1033. Veprik, A.M., Krupenin, V.L.: On the solution of systems containing dis-
tributed impact elements. Machine Sciences 6 (1985) (in Russian)



References 287

1034. Veprik, A.M., Krupenin, V.L.: On the resonance oscillation of a system with
a distributed impact element. Machine Science 6, 39–47 (1988) (in Russian)

1035. Veprik, A.M., Meromi, A., Leschecz, A.: Novel technique of vibration con-
trol for split Sterling crycooler with linear compressor. In: Proc. SPIE 11th

Ann. Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls
AeroSense, Orlando, FL, USA. Infrared Technology and Applications XXIII,
vol. 3061, p. 640 (1997)

1036. Vér, I.L., Ventres, C.S., Myles, M.M.: Wheel/rail noise, Part III: Impact
noise generation by wheel and rail discontinuities. J. Sound & Vib. 46, 395–
417 (1976)

1037. Verdolini, K., Hess, M.M., Titze, I.R., Bierhals, W., Gross, M.: Investigation
of vocal fold impact stress in human subjects. J. Voice 13, 184–202 (1999)

1038. Vinogradov, O.C.: Simulation methodology of vessel–ice floes interaction
problems. In: Proc. Int. Symp. on Offshore Mechanics and Arctic Engineering
(OMAE), Tokyo, Japan, vol. 4, pp. 601–606 (1986)

1039. Virgin, L.N., Begley, C.J.: Grazing bifurcations and basins of attraction in
an impact–friction oscillator. Physica D 130(1–2), 43–57 (1999)

1040. Virgin, L.N., Begley, C.J.: Nonlinear features in the dynamics of an impact–
friction oscillator. In: Proc. AIP Conf., Ambleside, UK, vol. 502, pp. 469–475
(2000)

1041. Voronina, S., Babitsky, V., Meadows, A.: Modeling of autoresonant control
of ultrasonic transducer for machining applications. Proc. IMech E Part C:
J. Mechanical Engineering Science 222, 1957–1974 (2008)

1042. Vuorio, J., Riska, K., Varsta, P.: Long–term measurements of ice pressure
and ice–induced stresses on the icebreaker Sisu in Winter. Winter Navigation
Research Board, Report 28, Helsinki (1979)
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