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PREFACE BY THE SERIES EDITOR,
PROFESSOR M. CECCARELLI

This book is part of a book series on the History of Mechanism and Machine
Science (HMMS).

This series is novel in its concept of treating historical developments with
a technical approach to illustrate the evolution of matters of Mechanical Engi-
neering that are related specifically to mechanism and machine science. Thus,
books in the series will describe historical developments by mainly looking
at technical details with the aim to give interpretations and insights of past
achievements. The attention to technical details is used not only to track the
past by giving credit to past efforts and solutions but mainly to learn from the
past approaches and procedures that can still be of current interest and use
both for teaching and research.

The intended re-interpretation and re-formulation of past studies on ma-
chines and mechanisms requires technical expertise more than a merely his-
torical perspective, therefore, the books of the series can be characterized by
this emphasis on technical information, although historical development will
not be overlooked.

Furthermore, the series will offer the possibility of publishing translations
of works not originally written in English, and of reprinting works of histori-
cal interest that have gone out of print but are currently of interest again.

I believe that the works published in this series will be of interest to a wide
range of readers from professionals to students, and from historians to tech-
nical researchers. They will all obtain both satisfaction from and motivation
for their work by becoming aware of the historical framework which forms
the background of their research.



viii Preface by the Series Editor

I would like to take this opportunity to thank the authors and editors of
these volumes very much for their efforts and the time they have spent in
order to share their accumulated information and understanding of the use of
past techniques in the history of mechanism and machine science.

Marco Ceccarelli (Chair of the Scientific Editorial Board)
Cassino, April 2007



PREFACE

This is the first volume of a series of edited books whose aim is to collect
contributed papers in a framework that can serve as a dictionary of names of
individuals who have made contributions to the discipline of MMS (Mech-
anism and Machine Science). This dictionary project has the peculiarity that,
through descriptions of the ideas and work of these individuals, the papers
will illustrate mainly technical developments in the historical evolution of the
individual fields that today define the scope of MMS. Thus the core of each
contribution will be a survey of biographical notes describing the efforts and
experiences of these people.

Finding appropriate technical experts as authors for such papers and en-
couraging them to write them has been a challenge; it is a demanding and
time-consuming effort to produce such in-depth articles that delve deeply into
the historical background of their topics of expertise. This first volume of the
dictionary project has been possible thanks to the invited authors who have
enthusiastically shared the initiative and have spent time and effort in prepar-
ing papers that have the novel characteristics of survey and historical notes.
The papers in this volume cover the wide field of the History of Mechanical
Engineering with specific focus on MMS. I believe that a reader who takes
advantage of the papers in this book, as well as future ones, will find further
satisfaction and motivation for her or his work (historical or not).

I am grateful to the authors of the articles for their valuable contribu-
tions and for preparing their manuscripts on time. A special mention is due to
the community of the IFToMM Permanent Commission for History of MMS
and particularly to the past Chairperson (1990–1997) Professor Teun Koetsier
(Vrije University in Amsterdam, The Netherlands) and the current Chairper-



x Preface

son (2004–present) Professor Hong-Sen Yan (National Cheng Kung Univer-
sity in Tainan, Taiwan), both of whom supported my idea of the dictionary
project, even during my chairmanship in the years 1998–2004. With their
work in the IFToMM PC they have fostered both growth of interest in the
field of History of MMS and wider participation by the science community
at large.

I also wish to acknowledge the professional assistance of the staff of
Springer and especially of Miss Anneke Pot and Miss Nathalie Jacobs, who
have enthusiastically supported the project by offering their valuable advice
through all stages of the organization and writing.

I am grateful to my wife Brunella, my daughters Elisa and Sofia, and
my young son Raffaele. Without their patience and comprehension it would
not have been possible for me to work on this book and the dictionary project.

Marco Ceccarelli (Editor)
Cassino, March 2007



ARCHIMEDES
(287–212 BC)

Thomas G. Chondros

Mechanical Engineering and Aeronautics Department,
University of Patras, 265 00 Patras, Greece
E-mail: chondros@mech.upatras.gr

Abstract. Archimedes (ca. 287–212 BC) was born in Syracuse, in the Greek colony of Sicily.
He studied mathematics at the Museum in Alexandria. Archimedes systematized the design
of simple machines and the study of their functions. He was probably the inventor of the
compound pulley and developed a rigorous theory of levers and the kinematics of the screw.
He is the founder of statics and of hydrostatics, and his machine designs fascinated subsequent
writers. Archimedes was both a great engineer and a great inventor, but his books concentrated
on applied mathematics and mechanics and rigorous mathematical proofs. Archimedes was
also known as an outstanding astronomer; his observations of solstices were used by other
astronomers of the era.

Biographical Notes

Archimedes (ca. 287–212 BC) was born in Syracuse, in the Greek colony of
Sicily. His father was the astronomer and mathematician Phidias, and he was

the School of Mathematics and Statistics at the University of St Andrews, Fife, Scotland).

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 1–30.
© 2007 Springer. Printed in the Netherlands.

Fig. 1. Archimedes portrait (Courtesy of the MacTutor History of Mathematics Archive run by
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related to King Hieron II (308–216 BC). The name of his father – Pheidias –
suggests an origin, at least some generations back, in an artistic background
(Stamatis, 1973).

Archimedes went to Alexandria about 250–240 BC to study in the Mu-
seum under Conon of Samos, a mathematician and astronomer (the custodian
of the Alexandrian library after Euclid’s death), Eratosthenes and other math-
ematicians who had been students of Euclid. The decline of Greek civiliza-
tion coincides with the rise of Alexandria, founded in honor of Alexander the
Great (356–323 BC) in the Nile Delta in Egypt. Alexandria was the greatest
city of the ancient world, the capital of Egypt from its founding in 332 BC
to AD 642, and became the most important scientific center in the world at
that time and a centre of Hellenic scholarship and science. In its University,
the Museum (meaning, the house of Muses, the protectresses of the Arts and
Sciences) flourished a number of great mathematicians and engineers (Di-
marogonas, 2001).

Geometry, in Archimedes time (and almost for the next 2000 years) had
been accepted as being the Science of the space in which we live. Euclid
was one of the most well known scholars who lived in Alexandria prior to
Archimedes’ arrival in the city. Euclid’s “Elements,” written about 300 BC, a
comprehensive treatise on geometry, proportions, and the theory of numbers,
is the most long-lived of all mathematical works. This elegant logical struc-
ture, formulated by Euclid based on a small number of self-evident axioms
of the utmost simplicity, undoubtedly influenced the work of Archimedes
(Sacheri, 1986). Archimedes later settled in his native city, Syracuse, where
he devoted the rest of his life to the study of mathematics and the design of
machines.

Archimedes was both a great engineer and a great inventor, although
his books concentrated on applied mathematics and mechanics and rigorous
mathematical proofs (Heath, 2002). He established the principles of plane
and solid geometry. Some of Archimedes’ accomplishments were with math-
ematical principles, such as his calculation of the first reliable value for π to
calculate the areas and volumes of curved surfaces and circular forms. In this
process, Archimedes used a method similar to integral calculus, which was
not to be defined for almost another 2000 years by Newton (1642–1727) and
Leibniz (1646–1716). He also created a system of exponential notation to al-
low him to prove that nothing exists that is too large to be measured (Bell,
1965; Dijksterhuis, 1987; Heath, 2002; Netz, 2004).
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In addition to his mathematical studies, Archimedes invented the field of
statics, enunciated the law of the lever, the law of equilibrium of fluids, and
the law of buoyancy, and he contributed to knowledge concerning at least
three of the five simple machines – winch, pulley, lever, wedge, and screw
– known to antiquity. He discovered the concept of specific gravity and con-
ducted experiments on buoyancy. He is credited with inventing the compound
pulley, the catapult, and the Archimedes Screw, an auger-like device for rais-
ing water. He conducted important studies on gravity, balance, and equi-
librium that grew out of his work with levers and demonstrated the power
of mechanical advantage (Heath, 2001, Archimedes–Apanta (The Works)
Vols 1–3, 2002).

“Give me a place to stand,” Archimedes is said to have promised, “and I
will move the world.” Archimedes was referring to the law of the lever, which
he had proved in his treatise, Planes in Equilibrium (Archimedes–Apanta
Vol. 3, 2002). One can say that Archimedes moved the Earth – in principle –
without standing anywhere: It is evident that Archimedes was very close to
the theory of the force fields for the motion of celestial bodies. Apart from the
lever theory, this argument gave rise to a new philosophical problem, that of
the particular perspective from which we regard reality (Russell, 1912; Price,
1996).

Archimedes systematized the design of simple machines and the study of
their functions and developed a rigorous theory of levers and the kinematics
of the screw (Dimarogonas, 2001).

He designed and built Syracusia (“The Lady of Syracuse”), the largest
ship of his times, 80 m long, 4,000 ton displacement, with three decks. The
ship made only its maiden trip to Alexandria because it was too slow and
there were no harbour facilities anywhere to handle her (Dimarogonas, 2001;
Archimedes–Apanta Vol. 6, 2002).

Archimedes was also known as an outstanding astronomer; his observa-
tions of solstices were used by other astronomers of the era. As an astro-
nomer, he developed an incredibly accurate self-moving model of the Sun,
Moon, and constellations, which even showed eclipses in a time-lapse man-
ner. The model used a system of screws and pulleys to move the globes at
various speeds and on different courses (Archimedes–Apanta Vol. 6, 2002).

At the time of Archimedes, Syracuse was an independent Greek city-state
with a 500-year history. The colony of Syracuse was established by Corinthi-
ans, led by Archias in 734 BC (Figure 2). The city grew and prospered, and in
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Fig. 2. Syracuse, 37◦ 4′ N and 15◦ 18′ E, Carthagene and Rome shown in this medieval map.

the course of the 5th century BC the wealth, cultural development, political
power and victorious wars against Athenians and Carthaginians ensured for
a long time the dominance of Syracuse as the most powerful Greek city over
the entire southwestern Mediterranean basin.

During Archimedes’ lifetime the first two of the three Punic Wars between
the Romans and the Carthaginians were fought. The series of wars between
Rome and Carthage were known to the Romans as the “Punic Wars” because
of the Latin name for the Carthaginians: Punici, derived from Phoenici, refer-
ring to the Carthaginians’ Phoenician ancestry.

During the Second Punic War (218–201 BC) – the great World War of the
classical Mediterranean, Syracuse allied itself with Carthage, and when the
Roman general Marcellus began a siege on the city in 214 BC, Archimedes
was called upon by King Hieron to aid in its defense and later worked as a
military engineer for Syracuse (Plutarch AD 45–120).

The historical accounts of Archimedes’ war-faring inventions are vivid
and possibly exaggerated. It is claimed that he devised catapult launchers that
threw heavy beams and stones at the Roman ships, burning-glasses that re-
flected the sun’s rays and set ships on fire, and either invented or improved
upon a device that would remain one of the most important forms of warfare
technology for almost two millennia: the catapult. Plutarchos and Polybios
(201–120 BC) describe giant mechanisms for lifting ships from the sea, ship-
burning mirrors and a steam gun designed and built by Archimedes. The latter
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fascinated Leonardo da Vinci, however the validity of these stories is ques-
tionable.

Marcellus had given orders that when Syracuse was finally conquered,
Archimedes, whose reputation was widely known, should be taken alive.
When the Romans finally sacked the city in 212 BC, a soldier found
Archimedes quietly etching equations in the sand, absorbed in a mathem-
atical problem. Reportedly, Archimedes ordered the soldier not to disturb the
figures in the sand. Enraged, the soldier not knowing who he was (and against
the orders of Marcellus), killed him.

What we know of Archimedes’ life comes from two radically different
lines of tradition. One is his extant writings and the other is the ancient
biographical and historical tradition, usually combining the factual with the
legendary. The earliest source is Polybius a competent historian writing a
couple of generations after Archimedes’ death and from the histories authored
by Plutarch, Cicero, and other historians several centuries after his death. Due
to the length of time between Archimedes’ death and his biographers’, incon-
sistencies among their writings may arise.

The translation of many of Archimedes’ works in the sixteenth century
contributed greatly to the spread of knowledge of them, and influenced the
work of the foremost mathematicians and physicists of the next century, in-
cluding Johannes Kepler, Galileo Galilei, Descartes and Pierre de Fermat
(O’Connor and Robertson, 2006). Archimedes together with Isaac Newton
(1643–1727) and Carl Friedrich Gauss (1777–1855) is regarded as one of the
three greatest mathematicians of all times (Bell, 1965).

His studies greatly enhanced knowledge concerning the way things work,
and his practical applications remain vital today; thus Archimedes earned the
honorary title “father of experimental science” because he not only discussed
and explained many basic scientific principles, but he also tested them in
a three-step process of trial and experimentation (Bendick, 1997). The first
of these three steps is the idea that principles continue to work even with
large changes in size. The second step proposes that mechanical power can
be transferred from “toys” and laboratory work to practical applications. The
third step states that a rational, step-by-step logic is involved in solving mech-
anical problems and designing equipment.

The end of the Alexandrian era marked the eclipse of the ancient Greek
science, and the systematic study of the design of machines became stagnant
for a long period of time. The death of Archimedes by the hands of a Roman
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soldier is symbolical of a world-change of the first magnitude: the Greeks,
with their love of abstract science, were superseded in the leadership of the
European world by the practical Romans (Whitehead, 1958).

Archimedes’ Works

The attribution of works to Archimedes is a difficult historical question. The
extraordinary influence of Archimedes over the scientific revolution was due
in the main to Latin and Greek-Latin versions handwritten and then prin-
ted from the thirteenth to the seventeenth centuries. Translations into modern
European languages came later, and have contributed to an ongoing study
in the fields of the History of Greek Mathematics, History and Philosophy
of Science and Engineering (Stamatis, 1973; Heath, 2002; Netz, 2004). The
Works of Archimedes as well as other extant manuscripts had a difficult path
to follow through the ages. A wealth of written scientific heritage has been
preserved and a brief discussion on the unique historical significance of this
process follows.

Mathematics original texts survive from the earlier era of Babylonia.
Babylonians wrote on tablets of unbaked clay, using cuneiform writing. The
symbols were pressed into soft clay with the slanted edge of a stylus having
a wedge-shaped (hence the name cuneiform) appearance. Many tablets from
around 1700 BC have survived and the original text can be read (O’Connor
and Robertson, 2006).

Greeks started using papyrus rolls to write their works around 450 BC.
Earlier they had only an oral tradition of passing knowledge on (Dimaro-
gonas, 1995). As written records developed, they also used wooden writing
boards and wax tablets for works not intended to be permanent. Sometimes
writing from this period has survived on inscribed pottery fragments.

Papyrus comes from a grass-like plant grown in the Nile delta region
in Egypt and was used as a writing material since 3000 BC. Copies of
Archimedes works would have been written on a papyrus roll, about 10
metres long, a typical length of such rolls. These rolls were rather fragile
and easily torn, so they tended to become damaged if much used. Even if left
untouched they rotted fairly quickly except under particularly dry climatic
conditions such as exist in Egypt. The only way that such works could be
preserved was by having new copies made fairly frequently and, since this
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was clearly a major undertaking, it would only be done for texts which were
considered of major importance (O’Connor and Robertson, 2006).

No complete Greek mathematics text older than Euclid’s Elements has
survived, because the Elements was considered such a fine piece of work that
it made the older mathematical texts obsolete. From 300 BC until the codex
form of book was developed, copies of important mathematics texts must
have been copied many times. The codex consisted of flat sheets of material,
folded and stitched to produce something much more recognisable as a book.
Early codices were made of papyrus but later developments replaced this by
vellum. Books from late antiquity very rarely survive, and there is evidence
that, during the fifth and sixth centuries – during Byzantium’s first period of
glory – several such collections containing works by Archimedes were made.
At least three codices containing works by Archimedes were produced during
the ninth and tenth centuries.

Archimedes published his works in the form of correspondence with the
principal mathematicians of his time. How and when this web of corres-
pondence got transformed into collections of “treatises by Archimedes” is
not known. Late antiquity was a time of rearrangement, not least of ancient
books. Most important, books were transformed from papyrus rolls (typically
holding a single treatise in a roll) into parchment codices (typically holding
a collection of treatises). Byzantine culture began one of its several renais-
sances, producing a substantial number of copies of ancient works. It thus
appears that a book collecting several treatises by Archimedes was prepared
in the sixth century AD by Isidore of Miletus and Anthemios the Tralleus, the
architects of Agia-Sofia in Constantinopole. It is believed that this collection
of works was a “State-of-the-Art” review for the construction of this huge
building. This book was copied by Leo the geometer or his associates, once
again in Constantinople, in the ninth century AD (Lazos, 1995; Archimedes–
Apanta, 2002; Netz, 2004). At this time Eutocius the Ascalonites (1st century
AD), a student of Anthemios, wrote his commentaries on several books of
Archimedes that were subsequently lost. Thus, Eutocius commentaries are
considered today among the Archimedes books.

William of Moerbeke (1215–1286) archbishop of Corinth and a classical
scholar had two Greek manuscripts of the works of Archimedes and made
his Latin translations from these manuscripts. The first of the two Greek ma-
nuscripts has not been seen since 1311 when presumably it was destroyed.
The second manuscript survived longer and was certainly around until the
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16th century after which it too vanished. In the years between the time when
William of Moerbeke made his Latin translation and its disappearance, this
second manuscript was copied several times and some of these copies sur-
vive. A good deal of Archimedes’ work survived only in Arabic translations
of the Greek originals, and was not translated into Latin until 1543. In the
early 1450s, Pope Nicholas V commissioned Jacobus de Sancto Cassiano
Cremonensis to make a new translation of Archimedes with the commentar-
ies of Eutocius. This became the standard version and was finally printed in
1544.

Heiberg had studied the manuscript tradition of Archimedes for over 35
years, starting with his dissertation, Quaestiones Archimedeae (1879), go-
ing to his First Edition (1880–1881) and leading, through numerous articles
detailing new discoveries and observations, to the Second Edition (1910–
1915). Up until 1899 Heiberg had found no sources of Archimedes’ works
which were not based on the Latin translations by William of Moerbeke or
on the copies of the second Greek manuscript which he used in his translation
(Heiberg, 1972).

In 1899 an exceptionally important event occurred as a palimpsest, a
prayer book created by a monk on a reused parchment was recognized by
Heiberg (Heiberg, 1972; Stamatis, 1973; Netz, 2004) as containing previously
unknown works by Archimedes (palimpsest comes from the Greek, meaning
“rubbed smooth again”). The Archimedes Palimpsest, copied in the 10th cen-
tury, contains seven of the Greek mathematician’s treatises. Most importantly,
it is the only surviving copy of On Floating Bodies in the original Greek, and
the unique source for the Method of Mechanical Theorems and Stomachion.
The manuscript was written in Constantinople (today Istanbul) in the 10th
century. In the 12th century, the manuscript was taken apart, the original text
was scraped off and the Archimedes manuscript then disappeared. In 1906
Heiberg was able to start examining the Archimedes palimpsest in Istanbul.

Originally the pages were about 30 cm by 20 cm but when they were
reused the pages were folded in half to make a book 20 cm by 15 cm with
174 pages. Of course this involved writing the new texts at right angles to the
Archimedes text and, since it was bound as a book, part of the Archimedes
text was in the spine of the “new” 12th century book, and worse, the pages
of the Archimedes text had been used in an arbitrary order in making the
new book. However, Heiberg reproduced the text successfully and published
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his reconstruction of the works of Archimedes, while the palimpsest itself
remained in the monastery in Istanbul.

Exactly what happened to the Archimedes palimpsest is unclear. It was,
it appears, in the hands of an unknown French collector from the 1920s al-
though the palimpsest remained officially lost and most people assumed that it
had been destroyed. The French collector may have sold it quite recently, but
all we know for certain is that the palimpsest appeared at auction in Christie’s
in New York in 1998, sold on behalf of an anonymous seller. It was put on
display with the spine broken open to reveal all the original text which had
been in the spine when it had been examined by Heiberg. It was sold to an
anonymous buyer for 2 million dollars on 29 October 1998 but the new owner
agreed to make it available for scholarly research. Since 1999, intense efforts
have been made to retrieve the Archimedes text. Many techniques have been
employed. Multispectral imaging, undertaken by researchers at the Rochester
Institute of Technology and Johns Hopkins University, has been successful
in retrieving about 80% of the text. More recently the project has focused
on experimental techniques to retrieve the remaining 20% (The Archimedes
Palimpsest Website, 2005).

The best sources of the Archimedes works are those of Heiberg in 1915
(Heiberg, 1972), Heath’s translation into English of Archimedes’ collected
works in 1912, Dijksterhuis’ republished translation of the 1938 study of
Archimedes and his works (Dijksterhuis, 1987), Stamatis (1970) (in Greek)
with the addition of the Archimedes work on the hydraulic clock (in Arabic),
and the most recent from Netz in 2004 with a collection of Archimedes’
works translated into English based on the best sources and a comprehens-
ive analysis of the existing resources for the Archimedes works.

According to Netz (2004) in the most expansive sense, bringing in the
Arabic tradition in its entirety, 31 works may be ascribed to Archimedes. The
corpus surviving in Greek – where Eutocius’ commentaries are considered as
well – includes the following works:

1. On the Sphere and the Cylinder. The First Book
2. Eutocius’ commentary on the First Book
3. On the Sphere and the Cylinder. The Second Book
4. Eutocius’ commentary on the Second Book
5. Spiral Lines
6. Conoids and Spheroids
7. Measurement of the Circle (Dimensio Circuli)
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8. Eutocius’ commentary to the above
9. The Sand Reckoner (Arenarius)

10. Planes in Equilibrium
11. Eutocius’ commentary to the above
12. Quadrature of the Parabola
13. The Method
14. The first book On Floating Bodies (de Corporibus Fluztantzbus)
15. The second book On Floating Bodies (de Corporibus Fluztantzbus)
16. The Cattle Problem (Problems Bovinum)
17. Stomachion

Additionally, there are 13 works ascribed to Archimedes by Arabic
sources, five are paraphrases or extracts of 1, 3, 7, 14 and 17, four are
either no longer extant or, when extant, can be proved to have no relation
to Archimedes, while four may have some roots in an Archimedean original
(Heiberg, 1972; Stamatis, 1973; Netz, 2004). These four are:

• Construction of the Regular Heptagon
• On Tangent Circles
• On Lemmas
• On Assumptions

None of these works seems to be in such textual shape that we can con-
sider them, as they stand, as works by Archimedes, even though some of
the results there may have been discovered by him. Finally, several works
by Archimedes are mentioned in ancient sources but are no longer extant.
These are listed by Heiberg as “fragments,” collected at the end of the second
volume of the second edition:

• On Polyhedra
• On the Measure of a Circle
• On Plynths and Cylinders
• On Surfaces and Irregular Bodies
• Mechanics
• Catoptrics
• On Sphere-Making
• On the Length of the Year

From extant works whose present state seems to be essentially that inten-
ded by Archimedes, ten works mentioned above as: 1, 2, 5, 6, 9, 10, 12, 13,
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14, and 15 are attributed in great probability to Archimedes. A short descrip-
tion of the contents of each manuscript follows.

1. On the Sphere and the Cylinder. The First Book. In this treatise
Archimedes obtains the result he was most proud of: that the area and volume
of a sphere are in the same relationship to the area and volume of the cir-
cumscribed straight cylinder. Archimedes built on previous work of Euclid to
reach conclusions about spheres, cones, and cylinders. If these three figures
have the same base and height (a cone inscribed in a hemisphere which itself
is inscribed within a cylinder) then the ratio of their volumes will be 1:2:3. In
addition, the surface of the sphere is equivalent to two-thirds of the surface of
the cylinder which encloses it.

2. Eutocius’ commentary on the First Book. Commentaries in the form of
a collection of minimal glosses, selectively explicating mathematical details
in the argument.

3. On the Sphere and the Cylinder. The Second Book. Archimedes
provides the ratios for the surface area and volume of a sphere and then solves
a series of problems concerning spheres. Archimedes built on the previous
work of Euclid to reach conclusions about spheres, cones, and cylinders. If
those three figures have the same base and height (a cone inscribed in a hemi-
sphere which itself is inscribed within a cylinder) the ratio of their volumes
will be 1:2:3. In addition, the surface of the sphere is equivalent to two-thirds
of the surface of the cylinder which encloses it. The book contains several
famous proofs, including his demonstration that the surface of the sphere is
equivalent to two-thirds of the surface of the cylinder which encloses it and
the volume of a sphere is equal to 4/3r3.

4. Eutocius’ commentary on the Second Book. A very thorough work,
commenting upon a very substantial proportion of the assertions made by
Archimedes, sometimes proceeding further into separate mathematical and
historical discussions with a less direct bearing on Archimedes’ text.

5. Spiral Lines. In this scroll, spirals are first defined and Archimedes
develops many properties of tangents to, and areas associated with, the spiral
of Archimedes – i.e., the locus of a point moving with uniform speed along
a straight line that itself is rotating with uniform speed about a fixed point. It
was one of only a few curves beyond the straight line and the conic sections
known in antiquity. This is the first mechanical curve (i.e., traced by a moving
point) ever considered by a Greek mathematician.
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Fig. 3. Proof that the volume of a sphere equals two-thirds of the volume of a cylinder sur-
rounding it, as long as the cylinder’s height and width are equal to the sphere’s diameter if
these figures have the same base and height – imagine a cone inscribed in a hemisphere which
itself is inscribed within a cylinder – the ratio of their volumes will be 1:2:3 (Stamatis, 1973,
B p. 397).

6. Conoids and Spheroids. In this scroll Archimedes calculates the areas
and volumes of sections of solids formed by the revolution of a conic sec-
tion (circle, ellipse, parabola, or hyperbola) about its axis (cones, spheres and
paraboloids. In modern terms, these are problems of integration.

7. Measurement of the Circle (Dimensio Circuli). By a method that in-
volved measuring the perimeter of inscribed and circumscribed polygons,
Archimedes correctly determined with a method that can, in principle, be
extended indefinitely, that the ratio of a circle’s perimeter to its diameter is
the same as the ratio of the circle’s area to the square of the radius. He did
not call this ratio ã but he gave a procedure similar to integral calculus to ap-
proximate it to arbitrary accuracy and gave an approximation of it as between
3+10/71 (approximately 3.1408) and 3+1/7 (approximately 3.1429) which
was not to be defined for almost another 2000 years. Archimedes used this
method to figure the areas and volumes of curved surfaces and circular forms.
The use of this technique, elaborated upon in another volume, The Method,
anticipated the development of integral calculus by 2000 years.

8. Eutocius’ commentary to the above. Commentaries selectively explic-
ating mathematical details in the argument.
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9. The Sand Reckoner (Arenarius). In this work Archimedes created a
system of exponential notation to allow him to prove that nothing exists that
is too large to be measured. He also counts the number of grains of sand
fitting inside the universe. This book mentions Aristarchus of Samos’ theory
of the solar system (concluding that “this is impossible”), contemporary ideas
about the size of the Earth and the distance between various celestial bodies.
From the introductory letter we also learn that Archimedes’ father was an
astronomer.

10. Planes in Equilibrium. The mechanics of levers is used for the calcu-
lation of the areas and centers of gravity of various geometric figures. The
importance of the center of gravity in balancing equal weights is analysed in
detail.

11. Eutocius’ commentary to the above.
12. Quadrature of the Parabola. In this work, Archimedes calculates the

area of a segment of a parabola (the figure delimited by a parabola and a
secant line not necessarily perpendicular to the axis). The final answer is ob-
tained by triangulating the area and summing the geometric series with a ratio
1/4.

13. The Method. In this work, which was unknown in the Middle Ages,
came to the attention of modern readers only in 1906 AD, following the ini-
tial discovery of the Archimedes Palimpsest. Archimedes pioneered the use of
infinitesimals, showing how breaking up a figure in an infinite number of in-
finitely small parts could be used to determine its area or volume. In this work
Archimedes most explicitly connects the mathematical and the physical. He
claims here that he has invented a procedure that allows him to use physics
– in particular, mechanics – to derive mathematical results. Archimedes de-
rives a wide range of results, including such highlights of his mathematical
achievement as the volume of the sphere and the volumes of segments of
solids of revolution.

14. The first book On Floating Bodies (de Corporibus Fluztantzbus). In
the first part of this treatise, Archimedes spells out the law of equilibrium of
fluids, and proves that water around a center of gravity will adopt a spher-
ical form. This is probably an attempt at explaining the observation made by
Greek astronomers that the Earth is round. Note that his fluids are not self-
gravitating: he assumes the existence of a point towards which all things fall
and he derives the spherical shape. In this book, he demonstrated that the sur-
face of a liquid of constant density at rest, is spherical with the center of the
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sphere located at the earth’s center. One legend of Archimedes holds that he
first understood this connection between the weight of a floating object and
the resulting increase in water level while watching bath water rise as he sunk
his body into a tub.

15. The second book On Floating Bodies (de Corporibus Fluitantibus).
In the second part, a veritable tour-de-force, he calculates the equilibrium
positions of sections of paraboloids. This was probably an idealization of the
shapes of ships’ hulls. Some of his sections float with the base under water
and the summit above water, which is reminiscent of the way icebergs float,
although Archimedes probably was not thinking of this application.

16. The Cattle Problem (Problems Bovinum). Archimedes wrote a letter
to the scholars in the Library of Alexandria, who apparently had underestim-
ated the importance of Archimedes’ works. In these letters, he dares them
to count the numbers of cattle in the Herd of the Sun by solving a number
of simultaneous Diophantine equations, some of them quadratic (in the more
complicated version). This problem is one of the famous problems solved
with the aid of a computer. The solution is a very large number, approxim-
ately 7.760271 × 10206544.

17. Stomachion. Only a fragment survives. Apparently, this is a study in a
tangram-like game, where areas are covered by given geometrical figures.In
this scroll, Archimedes calculates the areas of the various pieces. This may
be the first reference we have to this game. Recent discoveries indicate that
Archimedes was attempting to determine how many ways the strips of paper
could be assembled into the shape of a square. This is possibly the first use of
combinatorics to solve a problem.

Review of Main Works on Mechanism Design

Archimedes’ mechanical skill, together with his theoretical knowledge, en-
abled him to construct many ingenious machines. Archimedes contributed
greatly to the theory of the lever, screw, and pulley, although he did not in-
vent any of these machines. Of these three, the lever is perhaps the oldest,
having been used in various forms for centuries prior to Archimedes. Levers
appeared as early as 5000 BC in the form of a simple balance scale (steel-
yard), and within a few thousand years workers in the Near East and India
were using a crane-like lever, called the shaduf, to lift containers of water.
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Archimedes’ contribution lay in his explanation of the lever’s properties, and
in his broadened application of the device.

The shaduf, first used in Mesopotamia in about 3000 BC, consisted of
a long wooden lever that pivoted on two upright posts. At one end of the
lever was a counterweight, and at the other a pole with a bucket attached. The
operator pushed down on the pole to fill the bucket with water, then used the
counterweight to assist in lifting the bucket. By about 500 BC, other water-
lifting devices, such as the water wheel, had come into use.

Where the lever was concerned, Archimedes provided a law governing the
use of levers. In this formulation, the effort arm was equal to the distance from
the pivot (fulcrum) to the point of applied effort, and the load arm equal to the
distance from the fulcrum to the center of the load weight. Thus established,
effort multiplied by the length of the effort arm is equal to the load multiplied
by the length of the load arm – meaning that the longer the effort end, the less
the force required to raise the load.

Archimedes’ work with levers and pulleys led to the inventions of the
compound pulley. This mechanism was crucial for the development of large
cranes and artillery machines. Figure 4 shows a lifting machine (trispas-

Fig. 4. Lifting machine (trispaston) from Archimedes times, drawing from Vitruvius book
(Lazos, 1995).
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ton) from a Vitruvius book (Lazos, 1995). Again, in the case of the pulley,
Archimedes improved on an established form of technology by providing a
theoretical explanation considering that a pulley operates according to much
the same principle as a lever and the principle of the mechanical advantage
was introduced. This he demonstrated, according to one story, by moving the
Syracusia ship fully loaded, single-handedly while remaining seated some
distance away. In the late modern era, compound pulley systems would find
application in such everyday devices as elevators and escalators.

Some three centuries after Archimedes, Hero of Alexandria (first cen-
tury AD) expanded on his laws concerning levers. Then in 1743 John Wyatt
(1700–1766) introduced the idea of the compound lever, in which two or more
levers work together to further reduce effort.

During his time in Egypt, he invented a hand-cranked manual pump,
known as Archimedes’ screw, that is still used in many parts of the world.
He used the screw principle to improve on the shaduf and other rudimentary
pumping devices. Its open structure is capable of lifting fluids even if they
contain large amounts of debris.

With regard to the screw, Figure 5, Archimedes provided the theory for
the screw geometry and construction, in this case with a formula for a simple
spiral, and translated this into the practical Archimedes screw, a device for
lifting water. The invention consists of a metal pipe in a corkscrew shape that
draws water upward as it revolves. It proved particularly useful for lifting
water from the hold of a ship, though in many countries today it remains in
use as a simple pump for drawing water out of the ground.

Vitruvius in his book De Architectura (Book X, Chapter VI, The Water
Screw) provides details for the construction and the operation of the water
screw (see Figure 6).

This idea of enclosing a screw inside a cylinder is in essence the first
water pump (Figure 7). This device soon gained application throughout the
ancient world. Archaeologists discovered a screw-driven olive press in the
ruins of Pompeii, destroyed by the eruption of Mount Vesuvius in 79 AD,
and Hero later mentioned the use of a screw-type machine in his Mechanica.
The Archimedean screw has been the basis for the creation of many other
tools, such as the combine and auger drills.

The Greeks from Syracuse developed the first catapults, a result of en-
gineering research financed by the tyrant Dionysius. Early catapults probably
fired arrows from a bow not much stronger than one a man could draw. By
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Fig. 5. Archimedes’ spiral (Stamatis, 1973).

Fig. 6. The Water Screw, Vitruvius De Architectura (Book X, Chapter VI).

Fig. 7. Archimedes’ screw machine from Archimedes times (Lazos, 1995).

mechanizing the drawing and releasing of the arrow, however, the catapult
inventors made possible the construction of much more powerful bows. To
mechanize the archer’s motions the catapult engineers incorporated a number
of appropriate design features (Soedel and Foley, 1979; Dimarogonas, 1993;
Dimarogonas, 1995).
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Fig. 8. Reconstruction of Catapult from Alexander the Great times (Lazos, 1995).

Fig. 9. Archimedes and his huge Catapult (Lazos, 1995).

The basic piece in the catapult was the stock, a compound beam that
formed the main axis of the weapon (Figures 8 and 9). Along the top of the
stock was a dovetail groove, in which another beam, the slider, could move
back and forth. The slider carried at its rear surface a claw-and-trigger ar-
rangement for grasping and releasing the bowstring. In front of the claw on
top of the slider was a trough in which the arrow lay and from which it was
launched. In operation the slider was run forward until the claw could seize
the bowstring. Then the slider was forced to the rear taking the string with it
until the bow was fully drawn. In the earlier versions linear ratchets alongside
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the stock engaged pawls on the slider to resist the force of the bow. Later a
circular ratchet at the rear of the stock was adopted. Forcing back the slider
on the first catapults was probably done by hand, but before long the size and
power of the machines called for a winch.

A flexible bow was mounted at the end of a long wood framework en-
closing a dovetail slider in this early arrow-firing catapult, based on a design
originally devised by technicians working for Dionysius the Elder of Syra-
cuse in the fourth century BC. The movable slider, carrying the bowstring
with it by means of a claw-and-trigger arrangement, was held to the rear of
the stock against the force of the bow by a linear ratchet, after being pulled
back with the aid of a circular winch. The piece connecting the catapult to
its pedestal appears to have been an ancient version of the universal joint.
The bow itself probably consisted of three different materials glued together:
a wood core, a front layer of animal sinew and a back layer of horn. Since
sinew is so strong in tension and horn in compression, such bows would have
been much more powerful than the ordinary kind carved out a single piece of
wood. The arrow was roughly two meters long.

Dimensions of a board forming the top piece of one of the torsion-spring
frames from a large stone throwing catapult were specified by the catapult de-
signers in terms of the dimensions of the vertical sides of the frame, which in
turn were determined by the diameter of the cord bundle forming the torsion
spring. The thickness of the top board is not known for certain, but was prob-
ably equal to the diameter of the cord bundle. The catapult builders appear
to have proceeded by first laying out a rectangle with one side equal to the
depths of the vertical framepiece and the other side equal to twice this length.

With the onset of specialized military engines the equality of arms was
lost. Special mathematical and technical skills were necessary to build and
maintain a catapult, and the risks involved in operating it were less than those
of the arms carried by the rank and file. One of the crucial steps in design-
ing the torsion springs was establishing a ratio between the diameter and the
length of the cylindrical bundle of elastic cords. All the surviving catapult
specifications imply that an optimum cylindrical configuration was indeed
reached, and it could not be departed from except in special circumstances,
such as the exclusively short range machines Archimedes built at Syracuse.

This optimization of the cord bundle was completed by roughly 270 BC,
perhaps by the group of Greek engineers working for the Ptolemaic dynasty in
Egypt. There and at Rhodes the experiments of the catapult researchers were,
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according to Philo, “heavily subsidized because they had ambitious kings
who fostered craftsmanship.” This phase of the investigations culminated in
quantified results of a distinctly modern kind. The results were summarized
in two formulas. For the arrow shooter the diameter of the cord bundle was set
simply as 1/9 of the arrow length. The more complex stone thrower formula
stated, in modern terms, that the diameter of the cord bundle in dactyls (about
19.8 millimeters) is equal to 1.1 times the cube root of 100 times the weight
of the ball in minas (about 437 grams). d = 1.13

√
100 m. The stone-thrower

formula has two remarkable features. First, it gives a true and accurate solu-
tion for optimal design. To do this they had to maximize the potential energy
stored in the torsion springs. Modern elasticity theory applied to the design
of these springs tells us that the stored energy available will be proportional
to the amount of initial tension given the bundle in stringing it through the
frame, the additional tension caused by the pre-twisting of the bundle, the
square of the angle indicating the amount of additional twisting by the pulling
back of the bow arm, and the cube of the bundle’s diameter. The cubing of
the bundle’s diameter means that to express the diameter in terms of the mass
of the projectile one would have to extract a cube-root.

It is the utilization of a cube-root extractor that constitutes the second
remarkable feature of the stone-thrower formula, because it was written at a
time when Greek mathematics was not yet capable of dealing fully with third-
degree equations. Archytas of Tarentum and Eudoxus of Cnidus had devised
elegant theoretical solutions, but they were three-dimensional, very awkward
physically and of no use in performing calculations. There the matter stood
until the advent of the torsion bow. Most of the next group of solvers of the
cube-root problem had either a direct or an indirect connection with catapults.

The next solver of the cube-root problem was Eratosthenes, a friend of
Archimedes and a native of Alexandria, which was then a center of cata-
pult research. Eratosthenes stated explicitly that the catapult was the chief
practical reason for working on cube-root problems. We can assume he was
interested in engineering problems, since Archimedes dedicated his book On
Method to him.

All of the next group of cube-root investigators, including Philo of
Byzantium, Archimedes of Syracuse and Hero of Alexandria, were fam-
ous for their work on catapults. It is interesting to note that the largest
stone-thrower on record, a three-talent (78 kilogram) machine, was built by
Archimedes. Archimedes was also forced to depart from normal catapult pro-
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Fig. 10. An illustration of a rather elaborate claw (Lazos, 1995).

portions in building his short-range machines. Their effectiveness testifies to
his skill as a mathematical engineer.

Having arrived at an optimal volume and configuration for the torsion-
spring bundle, the catapult engineers continued their experiments until they
had optimized the dimensions for the remaining pieces of the machine. Even-
tually the catapult engineers wrote their text in such a way that the dimensions
of the major parts were given as multiples of the diameter of the spring. Once
this diameter had been calculated for the size of the projectile desired, the rest
of the machine was automatically brought to the proper scale. The surviving
texts that contain this information testify to a level of engineering rationality
that was not achieved again until the time of the Industrial Revolution.

The last major improvement in catapult design came in later Roman times,
when the basic material of the frame was changed from wood to iron. This
innovation made possible a reduction in size, an increase in stress levels and
a greater freedom of travel for the bow arms. The new open frame also sim-
plified aiming, which with the wood construction of the earlier machines had
been limited, particularly for close moving targets.

As mentioned earlier, Plutarch and Polyvius describe giant mechanisms
capturing Roman ships for the defence of Syracuse. An illustration of a rather
elaborate claw of such a machine is shown in Figure 10.

Cicero (106–43 BC) writes that the Roman consul Marcellus brought two
devices back to Rome from the sacked city of Syracuse. One device mapped
the sky on a sphere and the other predicted the motions of the sun and the
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Fig. 11a. The first book On Floating Bodies OXOYMENΩN A. Proof of the vertical equilib-
rium of a spherical body lighter than the liquid immersed in (Stamatis, 1973 B, p. 287).

moon and the planets (i.e., an orrery). He credits Thales and Eudoxus for
constructing these devices. For some time this was assumed to be a legend
of doubtful nature, but the discovery of the Antikythera mechanism (De
Solla Price, 1975; Dimarogonas, 2001) has changed the view of this issue,
and it is indeed probable that Archimedes possessed and constructed such
devices. Also, Pappus of Alexandria and Sextus Empiricus (Archimedes–
Apanta Vol. 6, 2002) write that Archimedes had written a practical book on
the construction of such spheres entitled On Sphere-Making. Some of those
references may be based on confusions with other, extant works, while others
may be pure legend. The reference to the work On Polyhedra, however, made
by Pappus in his Mathematical Collections is very detailed and convincing.

Archimedes’ discoveries in catoptrics are reported (Lazos, 1995;
Archimedes–Apanta, 2002). It is said that Archimedes prevented one Roman
attack on Syracuse by using a large array of mirrors (speculated to have been
highly polished shields) to reflect sunlight onto the attacking ships causing
them to catch fire. This popular legend has been tested many times since the
Renaissance and often discredited as it seemed the ships would have had to
have been virtually motionless and very close to shore for them to ignite, an
unlikely scenario during a battle. Tests were performed in Greece by engineer
Sakas in 1974 (Lazos, 1995) and by another group at MIT (MIT experiments)
in 2004 and concluded that the mirror weapon was a possibility.
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Fig. 11b. The second book On Floating Bodies OXOYMENΩN B. Proof of the vertical equi-
librium of a spherical body lighter than the liquid immersed in (Stamatis E. B p. 345).

Fig. 12. Design of a curve, The Method (Heiberg, 1972, p. 99).

Archimedes discovered fundamental theorems concerning the center of
gravity of plane geometric shapes and solids. His most famous theorem,
which traditionally became known as Archimedes’ Principle, was used to de-
termine the weight of a body immersed in a liquid. Based on this Archimedes
principle, shipbuilders understood that a boat should have a large enough
volume to displace enough water to balance its weight (Figure 11).

Archimedes’ studies in fluid mechanics gave rise to the most famous story
associated with him. It was said that while trying to weigh the gold in the
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king’s crown, Archimedes discovered the principle of buoyancy: when an
object is placed in water, it loses exactly as much weight as the weight of the
water it has displaced. The result that Archimedes discovered was the first
law of hydrostatics, better known as Archimedes’ Principle.

Archimedes was the first mathematician to introduce mechanical curves
(those traced by a moving point) as legitimate objects of study (Figure 12).

Modern Interpretation of Main Contributions in Machines and
Mechanisms Design

The philosophical foundation of knowledge, aesthetics and ethics are dis-
cussed in the works of Dimarogonas1 (Dimarogonas, 1976, 1990, 1992, 1993,
1995, 1997) in order to identify their implications in engineering design. Di-
marogonas scrutinized many major scientific libraries in the United States
and Europe for source material. He documented that the fundamental axioms
of design were discovered during the middle of the last century in Europe
and traced the origin of vibration theory to Archimedes and others of that
period by unearthing obscure documents in continental libraries. He brought
to light certain important historical developments in the field of dynamics and
vibrations that were either glossed over or not fully understood.

In the Ancient Great Empires of Mesopotamia and Egypt and the feudal
societies of the East, India and China, there were parallel developments of
crafts and technology without the concurrent development of sciences. The
technical advances were arrived at by long evolution or invention and not by
a conscious search for the solution of a problem of society. Moreover, the
political and social system did not allow for liberal thinking, necessary for
the development of scientific thought, and the knowledge was confined to the
clergy or to the ruling cast.

In Greek Society, there was a production surplus which allowed mem-
bers of the society to be employed in tasks which were not of immediate use,
such as arts and philosophy (Dimarogonas, 2001). The general use of steel
in agriculture and war, the popularization of the alphabet and the general

1 Professor Andrew D. Dimarogonas (1938–2000) was widely recognized as a distinguished
authority in various specialties of mechanical engineering. He made important contribu-
tions to the study of mechanical design and vibrations and received the 1999 ASME
Engineer-Historian Award for his many works on integrating the history of mechanical
engineering.
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use of papyrus paper for book writing, were among the reasons for the rapid
advancement of learning and science in ancient Greece. Moreover, the col-
onization of the shores of the east Mediterranean created small but dynamic
and enterprising Greek communities with little or no dependence on the Met-
ropolis. This helped the development of science in two ways: It allowed for
exchange of ideas and information with the Eastern Civilizations and for the
development of new ideas. The most important contribution of the pioneers
of Greek (and Western) science, who were philosophers of the Ionian School,
was the idea that Nature can be explained.

Rapid advancement in natural sciences was followed by systematic at-
tempts to organize knowledge in engineering and, in particular, in machine
design, developing this body of knowledge beyond the level of a mere craft.
Kinematics and machine design have a distinct place in the history of en-
gineering because they comprised the very first of its divisions to receive a
mathematical foundation. Heraclitus of Ephesus (ca. 550–475 BC) appears
to have been the first to separate the study of motion itself from dynamics,
the forces causing the motion, and introduced the principle of retribution, or
change, in the motion of celestial bodies. The first known written record of
the word “machine” appears in Homer and Herodotus to describe political
manipulation (Dimarogonas, 1997). The word was not used with its modern
meaning until Aeschylus (4th century BC) used it to describe the theatrical
device used to bring the gods or the heroes of the drama on stage; whence
the Latin term deus ex machina. Mechanema (mechanism), in turn, as used
by Aristophanes, means “an assemblage of machines.” None of these theat-
rical machines, made of perishable materials, is extant. However, there are
numerous references to such machines in extant Greek plays and also in vase
paintings, from which they can be reconstructed (Chondros, 2004).

During this period Archimedes designed machines and mechanisms in a
systematic way using a mathematical axiomatic foundation and experiments.
This is a proccess not arrived at empirically through long evolution, and this
point separates engineering science from technology and crafts. According
to Dimarogonas (Dimarogonas, 2001) the first design theory was part of aes-
thetic theory. The “beautiful” included also functional (useful) and ethical
(good) implications. Their development and the relation of function with form
and ethical dimension prevailed, forming the intuitive knowledge required
for machine implementation with methods of systematic design. Function
and ethics were inseparable from form. This society simply could not af-
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ford spending resources only for aesthetic pleasure. It was able however to
afford a pleasing appearance for the useful goods of everyday life and to pay
attention to the more general societal needs.

As the slavery-based society of Rome reached maturity, productivity fell
and once again utility prevailed over form in design considerations. The Ro-
mans were great engineers and designers. Aesthetic and ethical dimensions
were not important. Romans were mostly unaware of Greek mathematics un-
til the 2nd Century AD, when Greek mathematical works started being trans-
lated into Latin. A substantial number of treatises in architectural and mech-
anical design exists, mainly encyclopedic in nature: thc one by Vitruvius is
the most notable. The Romans further gave the world sophisticated legal and
administrative systems and separated the professions of civil and mechanical
engineering (Dimarogonas, 2001).

It is among the Eleatic philosophers that we can find important begin-
nings of logic which was developed by Platon and Aristoteles into a science
and served as an instrument for the parallel development of the natural sci-
ences, especially mathematics and physics, by such pioneers as Pythagoras,
Aristoteles, Eucledes and Archimedes. Experimentation was established as a
method for scientific reasoning.

“Give me a place to stand, and I shall move the Earth,” Archimedes is said
to have promised (Dijksterhuis, 1987). Archimedes was referring to the law of
the lever, which (in the variant form of the law of the balance) he had proved
in his treatise, Planes in Equilibrium. One can say that Archimedes moved the
Earth – in principle – without standing anywhere. Also, Archimedes figured
out that the Earth and a pebble are the same kind of thing, differing only in
size. This revolutionary idea yields to imagine a vantage point from which the
earth and the pebble can both be seen for what they are. Archimedes went one
better, and offered to move the Earth, if someone would supply him with this
vantage point, and a suitable lever. Despite the familiar lever law this concept
gave rise to the question of the need to think about time from a new viewpoint
outside time. This atemporal perspective of time has been distinguished by
modern philosophers as the “Archimedean view from nowhere” leading to
the four-dimensional “block universe,” of which time is simply a part (Price,
1996).

Infinity is central to the history of Western mathematics and was in-
fluenced by the work of Archimedes. The theorem of the wedge, intro-
duced for calculation of the properties of curved objects, thus actually pro-
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ducing an argument using infinity, is a very Greek problem, the problem
to which Archimedes contributed more than anyone else. To determine the
area of sections bounded by geometric figures such as parabolas and ellipses,
Archimedes broke the sections into an infinite number of rectangles and ad-
ded the areas together. This is known as integration. He also anticipated the
invention of differential calculus as he devised ways to approximate the slope
of the tangent lines to his figures. In The Method, Archimedes was trying to
work out the volume of an unusual shape by dividing it into an infinite num-
ber of slices. Archimedes had drawn a diagram of a triangular prism. Inside
this he drew a circular wedge. This was the volume that he wanted to calcu-
late. He then drew a second curve inside the wedge. Modern mathematicians
already understood that Archimedes had used some very complex ideas to
work out that a slice through the wedge equals a slice through the curve times
a slice through the prism divided by a slice through the rectangle. But what
no-one knew was how Archimedes had added up an infinite number of these
slices to work out the volume of the wedge. His approximation of π between
3-1/2 and 3-10/71 was the most accurate of his time and he devised a new
way to approximate square roots. Unhappy with the unwieldy Greek num-
ber system, he devised his own that could accommodate larger numbers more
easily. However, his greatest invention was integral calculus.

Archimedes used mechanics as a tool to think about abstract problems,
rather than as a field of study itself. Archimedes systematized the design of
simple machines and the study of their functions. He invented the entire field
of hydrostatics with the discovery of the Archimedes’ Principle. Archimedes
studied fluids at rest (Dijksterhuis, 1987; Stamatis, 1973), hydrostatics, and
it was nearly 2000 years before Daniel Bernoulli took the next step when
he combined Archimedes’ idea of pressure with Newton’s laws of motion
to develop the subject of fluid dynamics. He made many other discoveries
in geometry, mechanics and other fields and introduced step-by-step logic
combined with analysis and experiments in solving mechanical problems and
design of machinery procedures.
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Abstract. Agustín de Betancourt, together with José María de Lanz, is known as co-author
of “Essai sur la composition des machines”, considered to be the first modern treatise on
machines and the first book that contains a proposal for the classification of mechanisms based
on criteria of transformation of motion. Two periods can be distinguished in his biographical
trajectory: the first one is in Spain at the service of the Spanish Crown, from his birth in 1758
until 1808, and the second one is in Russia at the service of the Russian Empire from 1808
until his death in 1824. This paper is focused on the works and contributions developed in the
Spanish period.

Biographical Notes

Agustín José Pedro del Carmen Domingo de Candelaria de Betancourt y Mo-
lina was born on the 1st of February, 1758 in Puerto de la Cruz (Canary
Islands, Spain), in the bosom of an enlightened family.

Fig. 1. A portrait of Agustín de Betancourt.

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 31–60.
© 2007 Springer. Printed in the Netherlands.
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His primary education was carried out in the Dominican Monastery of
La Orotava. Agustín de Betancourt himself will say later that, from all he
had learned throughout his life, nothing was as useful as the development
during his first years in the Canary Islands of some textile machines, such as
the thread covering machine, which were made as a hobby and had been the
origin of his attraction to the mechanical arts.

In his biography, several periods can be distinguished: from 1778 to 1784
there is a first formative period in Madrid; from 1785 to 1791 there is a second
formative period in Paris in which the future Royal Laboratory of Machines
was developed; from 1792 to 1793 there is a period in Madrid as Director
of the Royal Laboratory of Machines; from 1793 to 1796 he visited England
where he had the opportunity to learn about Watt’s works on the steam ma-
chine; from 1797 to 1798 he visited Paris where he published two important
essays on the steam engine; for the period 1799 to 1807 he returned to Spain
and created the School of Civil Engineering; for the period 1807 to 1808 he
returned to Paris and published “Essai sur la composition des machines”; in
1808 he moved to Russia, remaining there until his death in 1824. Next, each
one of these periods will be analyzed with greater detail.

Under a grant of the Secretary of Industry, D. José Gálvez, Betancourt
moved to Madrid in October of 1778. From 1778 to 1784 he studied in Mad-
rid at the Reales Estudios de San Isidro, directed by his cousin Estanislao
Lugo-Viña Molina, where he learned Arithmetic, Algebra, Geometry, Trigo-
nometry, Mathematical Analysis, Theory of Curved Lines, Differential and
Integral Calculus and Mechanics (static and dynamic) and at the Real Aca-
demia de Bellas Artes de San Fernando where he studied Physics and Draw-
ing. In 1783, D. José Moñino, Count of Floridablanca, first Secretary of State,
put him in charge of a visit to inspect the mines of Almadén, given his recog-
nized expertise. Betancourt wrote three important Reports about this inspec-
tion.

In 1784 he received a grant from the Secretariat of the Indies to study
underground architecture (mine engineering). Simultaneously he received an
order to visit the Channel of Aragón for an inspection. In April, on the way
to France, he elaborated a new Report, but until today it remains lost. In Paris
he participated in the activity of the École des Ponts et Chaussées.

In 1785 he went back to Madrid. After an interview with the Secretary
of State, D. José Moñino, Count of Floridablanca, he was asked to establish
in Spain a new school, namely, the Escuela de Caminos y Canales (School
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of Roads and Channels, today’s School of Civil Engineering). However, the
agreements for this assignment were: Betancourt and a selected group of
grant holders were to enroll at the École des Ponts et Chaussées in Paris in
order to obtain the degree of Hydraulic Engineer; in this school, and other
similar institutions, they would acquire expertise and mechanical specializa-
tion; and they were to collect models of machines of general utility in public
works and industry.

On September 10, 1785, Betancourt went again to Paris, where he was
well accepted from the Director of the School Jean Rodolphe Perronet and
professor Gaspard François de Prony. In April 1788 the Spanish ambassador,
the Count of Fernán-Núñez, visited Betancourt’s home and workshop and
was very impressed with the many scale models, so that in his letter to the
Secretary of State, dated 23 April, he proposed the creation of a Laboratory
of Machines in Madrid. In 1791, due to the situation in France, the King of
Spain, Carlos IV, decided that Betancourt should return to Spain, bringing
with him his collection of drawings and scale models. The whole collection
(including 42 drawings) was received in Spain between July and September.
In April 1792 the Laboratory, located in the Palacio del Buen Retiro, was
opened to the public. On the 14th of October, 1792, Betancourt was officially
appointed Director of the Laboratory. The whole collection was composed of
270 models, 359 drawings and 99 reports.

Due to scarce interest shown in the Laboratory, evidenced by the low num-
ber of visitors and because most of them were either curious or unemployed
people instead of people interested in applying the models to public works or
to industry, he asked for permission to go abroad to study, first in England,
from 1793 to 1796, and later to France, from 1797 to 1798.

In England he visited factories and saw different types of machines, which
attracted, without a doubt, Betancourt’s interest in research on the theory
of machines. While in France, he submitted two important reports to the
Académie des Sciences of Paris. In the first, “Mémoire sur une machine à
vapeur à double effet”, he revealed to the Continent the double-action steam
engine, which he had observed in action in England between 1793 and 1796.
This report led Jacque-Constantin Périer to construct the first double-action
steam engine in France. In the second report, “Mémoire sur la force expansive
de la vapeur de l’eau”, he published the results of a series of measurements
establishing the relation between temperature and steam pressure.
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From 1797 to 1798, in Paris, he received a grant to improve the optical
telegraph. In 1799 the Secretary of State, Don Mariano Luis de Urquijo, cre-
ated the General Inspectorate of Roads and the Body of Engineers of Roads,
which Betancourt joined with the category of Commissioner.

In 1799 he returned to Spain. From 1799 to 1800 he dedicated himself
fundamentally to the tasks of installing a line of optical telegraphs between
Madrid and Cádiz, building 70 turrets at intervals of ten to twelve kilomet-
ers. In 1802 Betancourt became the Chief Inspector, and from that position
he founded the School of Roads and Channels, locating it in the Real Gabin-
ete de Máquinas (Royal Laboratory of Machines). In that same year the ba-
sic textbooks for the education of the students were printed: “Geometría de-
scriptiva” by Monge and “Tratado de Mecánica” by Francoeur. By that time,
Lanz had joined the faculty of the Institution. From 1802 to 1807, Betancourt
remained in charge of the School of Roads and Channels, the Royal Labor-
atory of Machines and the General Inspectorate of the Corps of Road Engin-
eers. From 1802 to 1805 Lanz and Betancourt both taught in the classrooms
of the School.

From May to October 1807, Lanz and Betancourt were together again in
Paris. It was then when the work, developed previously by Lanz and Betan-
court, was reconstructed, reviewed and presented in the Ecole Politecnique
with the title of “Essai sur la composition des machines”. In October 1808,
due to the state of war created in Spain,1 Betancourt left for Russia and
worked for Czar Alexander I. In Russia he spent great efforts to successfully
make new inroads for engineering through several activities in design, teach-
ing, and organization. This activity was fully attributed to Betancourt and to
this date he is remembered in the Russian history of Mechanical Engineering.
In 1809 he organized the Institute of Engineers of Communication Routes in
Russia, of which he was inspector and advisor. In 1816 he was President of
the Committee of Constructions and Hydraulic Works and also of the newly
created committee for the construction of the fair at Nizhni Nóvgorod. In

1 His definitive departure from Spain to Russia was due to the difficult situation through
which Spain passed after the Napoleonic invasion and to the warm welcome on the part
of Czar Alexander I. In a letter addressed to his brother Jose in 1814, he commented on
the matter: “Since I observed the enmity that reigned in Spain between the Prince of As-
turias and Godoy, I supposed that a revolution should arise in Spain and that in such case
it was necessary, in order not to perish with my family, to look for asylum in a foreign
kingdom in which to put it out of danger, and it seemed to me that Russia would be the
most appropriate”.
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1818 he was named Chief of a main directorate of the Department of Com-
munication Routes. In Russia he improved the arms industry and constructed
bridges using a new system of arches. He built, in collaboration with Carbon-
nier, the hall of the riding school of Moscow, which was by then the largest
hall without inner supports; the span of its roof was said to be forty meters
long. He also constructed the aqueduct of Taïtzy and set up a state paper
industry. In 1822 he was removed from this position and saw his authority
diminished. In 1824 Betancourt died in Saint Petersburg.

List of Main Works

Manuscripts

Catálogo de la colección de Modelos, Planos y Manuscritos que, de orden del
Primer Secretario de Estado, ha recogido en Francia Don Agustín de Betan-
court y Molina. 1792. (Catalog of the collection of Models, Plans and Manu-
scripts that, by order of the First Secretary of State, Don Agustín de Betan-
court and Molina were collected in France.)

Descripción del establecimiento de Yndrid donde se funden y barrenan
los cañones de hierro para la Marina Real de Francia. 1791. (Description of
the factory at Yndrid where iron cannons are melted and drilled for the Royal
Navy of France.)

Description d’une machine à couper les roseaux et les autres plantes
aquatiques qui obstruent beaucoup de canaux et de rivières navigables. (De-
scription of a machine to cut the water reeds and other plants which block
many channels and navigable rivers.)

Dessin de la machine pour faire monter et descendre les bateaux d’un
canal inférieur et réciproquement, sur deux plans inclinés, exécutée en Ang-
leterre, dans le comté de Shropshire, sur le bord de la rivière de Severn, près
du pont de fer à Coalbrookdale, à 4 lieus environ à l’ouest de Shefnal: Levé
et dessiné sur les lieux par M. de Betancourt. (Drawing of a machine to lift
and take down boats from a lower channel and reciprocally, on two inclined
levels, carried out in England, in the county of Shropshire, on the river bank
of Severn, close to the iron bridge of Coalbrookdale, 4 lieus approximately to
the west of Shefnal: Surveyed and drawn on the spot by Mr. Betancourt.)

Explication des principales parties du moulin pour moudre le silex. 1796.
(Explanation of the main parts of a mill to grind flint.)
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Informe dirigido a Mariano Luis de Urquijo sobre el método de transmitir
noticias a distancia por medio de señales inventado por José Fornell. 1799.
(Report directed to Mariano Luis de Urquijo on a method for long-distance
transmission of news by means of signals invented by Jose Fornell.)

Informe dirigido al Duque de Alcudia sobre la bomba hidráulica diseñada
por Francisco Zacarías. 1793. (Report directed to the Duque of Alcudia on
the hydraulic pump designed by Francisco Zacarías.)

Machine à curer proposée pour le port de Venise. (Cleaning machine pro-
posed for the port of Venice.)

Mémoire sur une machine à vapeur à double effet. 1789. (Report on a
double-acting engine.)

Memoria sobre la purificación del carbón de piedra, y modo de aprovechar
las materias que contiene. 1785. (Report on the purification of stone coal, and
the way to take advantage of the materials that it contains.)

Primera memoria sobre las aguas existentes en las Reales Minas de Al-
madén, en el mes de julio de 1783: y sobre las máquinas y demás concerni-
ente a su extracción. 1783. (First report on the water found in the Royal Mines
of Almadén, the month of July 1783: and on the machines and others affairs
concerning its extraction.)

Segunda memoria sobre las máquinas que usan en las minas de Almadén,
en que se expresan sus ventajas, y defectos, y algunos medios de remediar-
los. 1783. (Second report on the machines used in the mines of Almadén, in
which their advantages are expressed, and defects, and some means to remedy
them.)

Tercera memoria sobre todas las operaciones que se hacen dentro del
Cerco en que están los hornos de fundición de Almadén. 1783. (Third re-
port on all the operations that are made in the surroundings of the smelting
furnaces at Almadén.)

Printed

Mémoire sur la force expansive de la vapeur de l’eau, lu a l’Académie Royale
des Sciences. 1790. (Report on the expansive force of steam, read at the Royal
Academy of Sciences.)

Essai sur la composition des machines: Programme du cours élémentaire
des machines pour l’an 1808 par M. Hachette. 1808. (Essay on the composi-
tion of machines: Program of the elementary course of machines for the year
1808 by Mr. Hachette.)
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Essai sur la composition des machines. 2 éd, rev., corr. y augm. 1819.
(Essay on the composition of machines. 2nd version reviewed, corrected and
augmented.)

Analytical essay on the construction of machines: translated from French.
1820.

Versuch über die Zusammenstzung der Machinens: aus dem Französis-
chen. 1829.

Essai sur la composition des machines. 3 éd, rev., corr. y augm. 1840.
(Essay on the composition of machines: 3rd version reviewed, corrected and
augmented.)

Review of Main Works on the Design of Mechanisms

There are two main works of Betancourt that are related to the Theory of
Machines. The first one is “Essai sur la composition des machines” which was
co-authored with José Maria de Lanz and was published in 1808, constituting
the first modern treatise on machines in which a classification of mechanisms
appears based on the transformation of motion. The second one is reflected in
“Mémoire sur une machine à vapeur à double effet”, presented to the Royal
French Academy of Sciences in 1789, which contains a description of Watt’s
double-acting steam engine together with the development of a method of
path-generating synthesis applied to dimensioning of Watt’s mechanism.

The “Essai sur la composition des machines”

In 1808, as it has been already mentioned, the treatise written by Lanz and
Betancourt was published. The title itself marked a substantial difference with
respect to previous works: it deals with the composition of the machines,
that is to say, it focuses the analysis not on the machine itself but on the
mechanisms that constitute it.

The book comes accompanied by the first program of the Elementary
Course of Machines, developed in l’École Polytechnique, that was given at
that time by Jean Nicolas Pierre Hachette (1769–1834), disciple of Monge.
In this program the initial steps that were taken in the creation of this first
Course of Machines are reported. Monge proposed to dedicate two months
of the first year of studies to the description of the elements of the machines
and also to the machines used in public works, with which a new approach to
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teaching on machines appears: the machines are combinations of elements,
whose purpose is to transform motion.

In the Journal of l’École, Monge exposed his ideas:

The forces of Nature at man’s disposal have three different elements:
mass, speed and direction of motion. Hardly ever do the three ele-
ments of the forces in question have the qualities that agree with the
proposed target; and the main object of the machines is to turn the
effective forces into others in which these elements are of such nature
so as to produce the desired effect. Each machine is made-up of sev-
eral elementary parts, each one with a particular target that can be
reached in several different ways according to the circumstances. The
enumeration of all the forms in which it is possible to change the
elements of the forces and the description of the different means to
produce the same change in different circumstances, must offer to the
workers the greater resources for all classes of jobs.2

The program shows ten types of elemental transformations of motion:

Rectilinear continuous in:

1. Rectilinear continuous.
2. Rectilinear alternative.
3. Circular continuous.
4. Circular alternative.

Circular continuous in:

5. Rectilinear alternative.
6. Circular continuous.
7. Circular alternative.

Rectilinear alternative in:

8. Rectilinear alternative.
9. Circular alternative.

Circular alternative in:

10. Circular alternative.
2 J.N.P. Hachette: “Sur le cours des machines de l’École Polytechnique”, introduction to the

1808 edition of “Essai sur la composition des machines” of J.M. Lanz and A. Betancourt,
p. VI.
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The program contains an attached picture of elementary machines in
which eighty nine mechanisms are classified according to the ten types of
transformations of motion previously described.

The Council of Instruction of l’École, as recorded in the introduction of
the Essai, affirmed with respect to the publication of the book:

So it was the system according to which Mr. Hachette had begun the
attached picture of the elementary machines, when he had knowledge
that Mr. Lanz and Betancourt had elaborated a similar work in agree-
ment with the same plan. The Council of Instruction, based on Mr.
Monge and Hachette’s report, proposed to the Governor that the res-
ult of Mr. Lanz and Betancourt’s work (both commissioned by the
Spanish government) should be put in print, the School paying for it.
This work, transferred by its authors to the Polytechnic School, now
appears under the title of “Essai sur la composition des machines”.
(The Council of Instruction of the School, which heard the reading of
this article in its meeting of the 12th of August of 1808, has ordered
to print it).3

The book served as support material to the Course of Machines. In the devel-
opment of the text, the motion by means of a given curve is added together
with the rectilinear and circular motion. This is a first important contribution
because the two last motions predominated in the old machines. The curvi-
linear motion represents an advance in the possibilities of the machines.

The introductory commentary to the general table is very interesting be-
cause in it the authors explain the principles of classification and the utility of
the table itself.

Motions used in the mechanical arts are rectilinear, circular or are
determined according to given curves; they can be continuous or al-
ternative (backward and forward motion or swinging) and can con-
sequently be combined in pairs resulting in fifteen different options
or twenty one if each one of these motions is combined with another
one of the same class. All machines have the aim of performing one
or several of these twenty one combinations. This picture includes
the exhibition of these different combinations of motions with all the

3 J.N.P. Hachette (1808): “Sur le cours des machines de l’ÉŘcole Polytechnique”, introduc-
tion to the 1808 version of “Essai sur la composition des machines” by J.M. Lanz and A.
Betancourt, p. VIII.
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examples that we have been able to find; the examples will be rep-
resented aside, in greater size, adding the explanation and the uses
to which each can be put. By means of this picture, great ease will
be acquired in choosing and creating all classes of machines and in
inventing new ones according to need.4

The combination of three trajectories (rectilinear, circular and curved) with
two types of motion (continuous and alternative) gives rise to six combina-
tions.

The combination of these six types of input motion with six types of out-
put motion would give rise, theoretically, to thirty-six combinations, but they
are reduced to twenty-one because some combinations do not appear.5 In con-
trast to the ten combinations of Hachette’s table twenty-one types of trans-
formations appear. The general table contains one hundred and thirty-four
mechanisms, as opposed to the eighty-nine of Hachette.

It is very important to emphasize the usefulness of the table and of the
book given by the authors because of the novelty of its methodology, based
on choosing mechanisms, to create and to invent new machines according to
need.

With the purpose of helping in the identification of each one of these solu-
tions, a classifying system was developed. Each figure is designated by a
letter and a number that indicates its position in the table. In the same treatise
the authors affirm that:

Each horizontal row will be the object of a section designated with the
same number; in it, the proposed target will be announced; the general
solution of analogous problems to the transformation that needs to be
carried out will be given; the particular cases or the different means of
execution which we know will be developed, indicating the sources
from where we have extracted this knowledge, and finally, thoughts

4 Lanz (1808), illustration AK6.
5 As for the circular continuous input there is no rectilinear continuous output; for the in-

put according to a continuous curve there is no rectilinear continuous output nor circular
continuous; for the rectilinear alternative input there is no rectilinear continuous output,
circular continuous and by continuous curve; for circular alternative input there is neither
rectilinear continuous nor rectilinear alternative output, there is no circular continuous and
by continuous curve output; for the input according to an alternative curve there is only
output according to an alternative curve. Altogether they make fifteen combinations that do
not appear.
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on the usefulness of these means and the diverse machines to which
they have been applied will be added.6

The book contains a large classifying table in which all the mechanisms that
are distributed according to the criteria of transformation of motion appear,
such as it has been commented previously. Such mechanisms appear depicted
on a greater scale throughout ten tables.

The tables come preceded by explanatory texts for each one of the mech-
anisms proposed. Sometimes, if the mechanisms are very elementary or very
known, the explanation is concise; nevertheless, in most of the mechanisms,
the authors explain their operation, they cite the sources from where they
have obtained the data and they include the applications to which they have
reference.7

As for the types of mechanisms, it can be indicated that the one hundred
and thirty-four proposals contain mechanisms of all types: by frequency of
appearance, gears predominate appearing thirty-nine times (wheels, racks,
cylindrical, conical and worm crown gears), pulleys and cables appear thirty-
three times; articulated mechanisms appear twenty-seven times; cams and
escapements appear both eighteen times; worm gears appear six times; and
chains appear five times. Seventeen mechanisms are operated by weights and
eleven mechanisms are operated by springs.

Although the explanations might suggest that some of the solutions have
been developed or improved by the authors, in two of them their applica-
tions are explicitly mentioned, and in another three, their design was made
by Betancourt.8 From these, mechanism I.17 seems to us especially interest-

6 Lanz (1808), p. 2.
7 As an example of the extensive research into sources, this commentary to the Archimedes’

screw is included: “About the theory of Archimedes, Hydrodynamique by Daniel Bernouilli
can be consulted; a Report by M. Pitot, printed in the Reports of l’Académie des Sciences
in 1736; another one by Mr. Euler in the Reports of l’Académie imperial of Pétersbourg,
volume V, year 1754; the work done by P. Belgrado, whose title is ‘Theorie cochleae
Archimedis, ab observationibus, experimentis et analyticis rationibus ducta’, year 1767;
the prize given in 1765 to M. Jean-Frédéric Hennert, by the Academy of Prusia; and the
work done by M. Paucton, on the theory of the screw of Archimedes”.

8 Figure H1 corresponds to a wedge mechanism that is said that was used by Betancourt
in England to raise the lower cylinder of a great rolling mill. In section S. II it is said
that in “L’Architecture Hydraulique” by Prony, vol. II, there is the description of a pro-
cedure invented by Betancourt, to regulate the velocity of a steam engine by means of a
floater provided with a siphon; in M7 an elevating water device, also attributed to Betan-
court; in O8 a universal joint appears of which an application by Betancourt and Breguet
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Fig. 2. Watt’s straight-line linkages: (Lanz 1808) (Fig. H 17) Watt’s extended linkage. (Fig. I
17) Watt’s singular linkage, attributed in the Essai to Betancourt.

ing (Figure 2) as it is none other than Watt’s straight-line linkage applied to
the steam engine. In the book it is attributed to Betancourt. Since the authors
always made reference to the known designers of the mechanism, it is quite
possible that Betancourt did not know of Watt’s design and arrived at the
same conclusion through the parallelogram mechanism applied to the steam
engine.

In some mechanisms the explanation is very long. For example in the one
that talks about the diverse hydraulic wheels using bowls or buckets, or also
on the different solutions to the escapement mechanisms used in clockmaking
and in part dedicated to mechanisms for plotting curves.

In certain cases, the description of the operation of the mechanism comes
accompanied by the explanation of a method for its dimensioning. It is in-
teresting to point out one referring to the design of a cam and another one,

to the optical telegraph is indicated; in I17 Watt’s four-link mechanism appears, attributed
to Betancourt.
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that we will mention later with greater amplitude, related to the design of a
mechanism of rectilinear guidance alternative to Watt’s.

Another very interesting aspect of the work is that, in most of the mech-
anisms, their well-known applications are mentioned. In contrast with the ex-
tended vision of which the book professes, fundamental mechanisms applied
to civil engineering, it is possible to observe that the more related application
is in machine tools which appear nineteen times; followed by clockmaking9

which appears fifteen times; next, mills and the steam engine, with each ap-
pearing ten times; which are followed by drop hammers and other similar
machines that appear nine times; drawing tools also appear nine times; textile
machinery appears seven times; pumps for water elevation appear six times;
lifting and dragging machines appear five times; and, hydraulic wheels and
polishing machines, with each appearing three times. Some few common ap-
plications stand out, such as for example a machine to fillet fish, a mechanism
applied to the optical telegraph, another used in the pedal of a piano or several
used in fair attractions. Also the use of measurement and control mechanisms
is interesting: balls for opening and closing of valves, an instrument for meas-
uring the speed of a ship, and stress control in transmissions.

From the commentaries included in the book it is possible to deduce that,
aside from the machines that could be known by the authors in their trips,
many mechanisms are selected after exhaustive bibliographical review. Some
famous authors of Theatrum Machinarum and machine collection books are
mentioned in the Essai: Besson (ca. 1540–1573), Branca (1571–1645), Leu-
pold (1674–1727), Diderot (1713–1784), Berthelot and Belidor (1693–1761).
The more referenced sources are diverse collections of inventions and pat-
ents published throughout the XVIII century: The “Machines approuvées par
l’Académie”, the “Annales des arts et manufactures” by O’Reylli and “The
repertory of arts and manufactures”. Along with them, reports and books by
well-known authors such as Daniel Bernouilli, Pitot, Euler, Hut, Coulomb,
De la Hire, Hachette and Prony appear.

The importance of this book and its diffusion throughout the first half of
the XIX century is authenticated by its numerous editions: three in French in
the years of 1808, 1819 and 1840; two in English with the title “Analytical
essay on the construction of machines” in the years 1820 and 1822; one in
German with the title “Versuch über Zusammensetzung der Maschinen von
Lanz und Betancourt” in 1829. Surprisingly there was no edition in Spanish.

9 Possibly it was due to the great friendship and collaboration with L. Breguet.
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In 1875, Reuleaux, talking about the Lanz and Betancourt book, writes:
“Without great changes, it has remained of general use until our times and,
therefore, it has obtained the approval of general recognition”.10

The “Mémoire sur une machine à vapeur à double effet”

At this point, Betancourt’s prominence returns. Betancourt’s description of
how he arrived at the knowledge of Watt’s machine is very interesting:

Being in charge of gathering a collection of models relative to hy-
draulics as ordered by the Spanish Court, I wished to see a steam en-
gine that had all the discoveries made until the moment. So I arranged
to move to England with the purpose of acquiring all the necessary
knowledge on the perfection of this machine; I did not ignore that in
this country, in which most of the applications of the steam engines
have been made, is where greater number of opportunities you can
have to recognize the defects and therefore the corrections to apply.

Hardly had I arrived at London, I spoke to several mechanics and
physicists; all they had done was to explain to me the effect of steam
in the old machines; and they did not say anything to me that was
not already known in France. But knowing that the gentlemen Wast
and Bolton (sic) had made recent discoveries on the steam engine, by
means of which they produced the same effects with less combustible,
I made the decision to go to Birmingham to meet these famous artists.
When I met them they received me with the greatest honesty and as a
sign of esteem they showed me their button and silver-clad factories;
but they did not show me any of their steam engines, all they did
was to tell me, that those they manufactured at that moment were
superior to any, because their velocities were controlled voluntarily
and they consumed much less combustible than those that they had
manufactured previously; they did not let me suspect where did so
great advantages came from.

Back to London, a friend got me a permission to see the mills
that have been constructed near the bridge of Blas-Friars; they should
have three steam engines and each one should drive ten mills. Only
one of these machines was mounted, the other two should be mounted
imminently.

10 Reuleaux (1875), p. 13.
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Fig. 3. Watt’s Double Acting Steam Engine: Drawing by Agustín de Betancourt (1788). The
drawing shows the novel aspects of the machine, some of which were seen and others guessed
by him.

At first I was surprised when I saw that the chain joined to the
rocker beam and from which the piston within the steam cylinder was
suspended had been eliminated; it had been replaced by a parallelo-
gram, of which I will give the description later on (. . . ).

The day after which I saw this machine I started off for France;
back in my house I dedicated myself with enthusiasm, remembering
faithfully all the pieces that I had been able to see, trying to guess its
use; for it I drew diverse diagrams and plots, and got to compose a
double acting machine; from that very moment I undertook the con-
struction of the model that has been a success beyond my hopes.

As this machine can be of a great usefulness in the mechanical arts
and I have taken advantage of its economy of construction and com-
bustible consumption, I have thought that the Academy would receive
with pleasure the description that I am going to give. (Figure 3)
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Betancourt presents the “Mémoire sur une machine à vapeur à double ef-
fet” the 15th of December of 1789 and signed as “Le chevalier de Betan-
court Capitaine au service d’Espagne”. The registry of sessions of the 16th of
December of 1789 of the Royal Academy of Sciences, states that “Mr. Betan-
court has presented a Report on a double acting steam engine” and that com-
missioners Jean Charles Hut (1733–1799) and Gaspard Monge (1746–1818)
have been designated to inform on this Report. In the session of the 10th of
February of 1790 the commissioners’s report concludes in the following way:

We thought that the Academy must welcome the fervour and the in-
telligence of Mr. Betancourt who has brought France the power of a
discovery whose knowledge would not have arrived to him in natural
form until much later and the report he presents, worthy of approval,
must be printed in the collection of those of foreign wise people.

Simultaneously, in 1790, the industrialist Périer, Betancourt’s friend, who had
asked for and obtained the privilege to install grain mills in the Parisian re-
gion, introduced the first double-acting steam engines installed in France in
the mill located in l’Île des Cygnes, following Betancourt’s instructions.

These facts, related by the same Betancourt, have been cited as an example
of industrial spying without enhancing the true prominence of Betancourt.
Certainly his role in the diffusion of the double effect steam engine goes
beyond the fact of transmitting the data obtained in England.

In the first place, it is a fact that Betancourt could not observe with enough
detail all of the machine. In fact, he did not get to have knowledge of a very
important element for the controlled operation of the machine, the Watt’s
flyball governor.

Some historians have wanted to see in Betancourt a good mechanic and
a good observer, mere transmitter of which he could see in Albion Mills.
Nevertheless, it seems that these qualities are not enough for the development
of the machine proposed by Betancourt.

In fact, in 1787, Albion Mills received the visit of three illustrious French
visitors. One of them, the famous Coulomb, was an expert on the simple act-
ing steam engine, as he had been a member of four commissions designated
in 1783 by the Academy of Sciences to inspect Périer’s designs obtained from
those of Watt. In his visit to Albion Mills it is a fact that he could see together
with his colleagues the machine of double effect and that he even tried to
make a sketch of it, when they were caught by an employee and, as a con-
sequence, Boulton was against a later visit to the facilities of Soho. Despite



Agustín de Betancourt y Molina 47

Fig. 4. Drawing by Watt of Watt’s singular mechanism: This drawing accompanies Watt’s
explanation about the justification of the cause by which the singular mechanism of Watt
generates an almost rectilinear trajectory.

having seen the machine in detail, until the point of trying to make a sketch,
the information did not serve Coulomb to make any proposal of designs after
his return to France.11

Gaspard F.C.M.R. de Prony (1755–1839), in his “Nouvelle Architecture
Hydraulique” (Paris, 1796), makes reference to Betancourt’s discovery and,
in words that might have been transmitted directly to him by the same Betan-
court, makes the following point:

Artists must know that these observations are difficult to do, when
only some few moments have been available to examine a machine
masked by the building distributions, that isolate the different parts,
even the outer ones, and prevent to have the matching, the set and the
general effect.

In order to confirm that Betancourt, in addition to mechanical vision, had a
high capacity of innovation when facing the problems of the design of mech-
anisms, we want to focus our view on a point that has been unnoticed to
historians: without anybody revealing it to him, it was Betancourt himself
who, when seeing the mechanism of connection of the piston with the rocker
arm, deduced that the machine had a double effect. It is indeed at this moment
when, in our opinion, an innovating contribution will take place.

Reuleaux, in the introduction to his “Theoretische Kinematik”, makes the
following comments about the development of the mechanism of rectilinear
guidance made by Watt (Figure 4):
11 Gouzévitch and Gouzévitch (2005), p. 21.
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Watt has shown to us in a letter some indications of the line of thought
that led him directly to the alluded mechanism. ‘The idea – he writes
to his son in November of 1808 – was originated in the following
way. Finding the double chains very inconvenient, or the racks and
indented sectors for the transmission of the motion from the axis to
the piston to the angular motion of the rocker arm, I worked to prove
if I would be able to find some means to make the same by means of
rotations around centers, and after some time it came up to me that
being AB and CD two equal radios rotating around centers B and C,
and connected among them by means of a rod AD, moving through-
out arcs of equal length, the deviation of the straight line would be
approximately equal and opposite, and the point E should describe
approximately one straight line, and that if by convenience the radius
CD was only half of AB, moving the closest point E to D it would
occur the same, and from this construction it was derived the later
denominated parallel motion’.

Being interested in the content of this letter, a more meticulous
examination of it reveals a deficiency that he might also have dis-
covered. We found in it both the reasons and some of the final results
of the exercise of Watt, but we do not obtain indications of any meth-
odical sequence of ideas directed to this aim.

Reuleaux himself affirms that this letter was written by Watt twenty-four
years after the invention, with a prolonged time for reflection.

In 1788 – four years after the presentation of the patent of Watt and twenty
years before the letter above commented – in the Report on the Steam Engine
Betancourt faces and works out the problem of dimensioning the four-bar
mechanism. The first theoretical study of Watt’s mechanism, that tried to
determine the deviation with respect to the rectilinear trajectory, is the one
carried out by Prony in the second volume of his “Architecture Hydraulique”,
published in 1796.12 Nevertheless, we can affirm that it was Betancourt, in the
Report on the Steam Engine presented in 1789, who made the first theoretical
study of such mechanism.

In the first place he describes the problem that he tries to solve with the
mechanism (Figure 5), in this detail of Betancourt’s drawing, some of the
parts to which he makes reference to explain the operation of Watt’s singular
mechanism can be observed: P′ and Q′ are the ends of the rocker arm; R′ and
12 Prony (1796), seconde partie, pp. 123–142.
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Fig. 5. Watt’s double acting Steam engine: Betancourt (1789), illustration III.

S′ are the hinged connection of Watt’s mechanism to the rocker arm; T′ is
the hinged joint with the lower rocker arm; V′ is the hinged joint of Watt’s
mechanism to the axis of the piston, being the point that describes an almost
rectilinear trajectory.

We have seen that the piston WW that makes the rocker arm move,
is pushed not only from top to bottom but also from bottom to top.
In order to produce the first motion, it will be enough to suspend the
piston from the rocker arm P′Q′ by means of a chain, as it is done in
the common pumps, but is not the same for the motion from bottom to
top, because the chain, folding itself, will not be able to communicate
the motion to the rocker arm.
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Fig. 6. Geometrical Scheme used by Betancourt to describe the operation of Watt’s mechan-
ism: Betancourt (1789), illustration IV.

It is then necessary to find, in order to communicate to the rocker
arm the double motion of the piston, means which are able to produce
both effects, without moving sensibly the piston out of the vertical,
since the end of the rocker arm travel a circle arc.

This is what Watt has achieved by means of a parallelogram that
I think it is of his invention and whose three vertices R′S′T′ have the
property to travel circular arcs, whereas the fourth V′, together with
the piston, describes a straight line approximately as we have seen it.

Next he set what he denotes as a general problem (Figure 6). In this figure
to the upper rocker arm corresponds the segment AC, that rotates around
the fixed point A; to the lower rocker arm corresponds the segment XE, that
rotates around the fixed point X; to the pantograph would correspond the
segments DE, EB, BC and CD, hinged in their four vertices; point D is the one
that moves throughout the almost rectilinear trajectory and would be the joint
point of Watt’s mechanism to the axis of the piston. The drawing represents
the mechanism in three positions: the upper rocker arm in the more elevated
position (position AC); in the intermediate position (position AO); and in the
lower position (position AQ):
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If it is wanted to deal with the problem of a parallelogram with all
possible generality, trying to find all the possible solutions, the task
could be presented to the geometricians enunciating the case in the
following way:

If in a parallelogram CB, DE the points CB draw up circle arcs
of radio AC, AB and point E also draws up a circle arc of radio XE,
what relation must exist between CB, BE, XE and XT so that the line
drawn up by point D approximates most possible to straight line DO
perpendicular to AO′

In contrast to the empirical approach of Watt, Betancourt sets out and solves
the problem by means of geometrical methods, intuiting that the solution can
only be approximated. That is something that will be enunciated by Hachette
some years later.13 At the sight of the complexity of the problem, Betancourt
states what he denotes as the particular approach of the general problem:

Since the only thing which interests to us in this matter is its applic-
ation to the motion of the steam engine, we will limit ourselves to
considering a particular case of the general statement that we have
just presented.

We have supposed that the sides of the parallelogram are given
and are constant, that point D is on the line DR, perpendicular to AO,
in three positions AC, AO and AQ and that angle CÂO is equal to
OÂQ. We try to calculate the radius of the circle that goes through the
three points ELM.

A clearer description of the procedure will be published later in the Essai.
Therefore, Betancourt sets out and solves an example of what, many years
later, will be known as the problem of path-generation Synthesis with three
precision points.

In a clearer form, Lanz and Betancourt explain in the Essai this method of
the so-called Evans’ mechanism. A question, without answer at this time, is
how this mechanism, attributed to Oliver Evans (1755–1819) and referenced
in 1813, appears in the Essai in 1808 accompanied by a method for dimen-
sioning it and without mentioning the sources from where it was taken.
13 In “Histoire des machines à vapeur depuis leur origine jusqu’à nos jours” by Hachette

(1830), he affirms without any proof that the curve described by the connection point of the
axis of the piston and Watt’s parallelogram is of sixth degree.
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Following the description of the procedure to determine the dimensions of
this mechanism that appears in the Essai, it can be notice that the method pro-
posed is absolutely the same one that is used in the present texts of Synthesis
of trajectory generation with three precision points in a four-bar mechan-
ism.14 In addition, it is added that this method can be used in Watt’s parallel-
ogram mechanism and in the one “solved” by Betancourt. The meaning in this
text of the word “solved” is an unknown, but it is clearly about the four-bar
singular mechanism patented by Watt. It is possible that, even if Betancourt
had already known Watt’s extended mechanism, he might have not known
the singular mechanism and, therefore, it could have been rediscovered by
Betancourt after Watt.

On the Circulation of Works

The Classification of Mechanisms

Although there is not much news on the influence of the Essai in later works,
its successive printing in French in 1819 and 1840, in English in 1820 and
German in 1829 gives an idea of the importance of the treatise.

Throughout the XIX century other contributions were made to the classi-
fying criteria. In 1811, Borgnis, in his “Traité complet de mécanique”, divides
the machines in six types: receivers, connecting, modifiers, supports, regulat-
ors and operators.15 As we can observe, it is a classifying criterion that gives
more emphasis to the type of function done in the machine than to its kin-
ematic characteristics. In 1830, Ampère, in his “Essai sur la philosophie des
Sciences”, classifies Monge’s studies as a third order science and affirms that:

This science must, therefore, define a machine, not as it is usually
done, as a tool thanks to which the direction and intensity of a given

14 In figure O17 in the Essai and in the text that accompanies it, the procedure for obtaining a
synthesis of rectilinear guidance with three precision points is explained, in a way similar
to the one used in a modern manual as, for example, Nieto (1978), pp. 102–103.

15 According to Borgnis, the receivers are the organs of the machine destined to receive the
immediate action of the motors; the connecting are those destined to transmit the move-
ment; the modifiers are those that modify the speed of the diverse mobile bars; the supports
are the centers of suspension, rotation or support of other organs; the regulators are those
that correct the irregularities of the motion; and the operators are those that produce the
final effect.
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force can be altered, but as a tool by which the direction and speed of
a given motion can be altered.

With it Ampère confers, on Monge’s approach, a category of specific science
for the kinematic study of machines. The Essai by Lanz and Betancourt is
based on this approach.

Willis, in 1841, introduces in his book “Principles of Mechanisms”, a
totally new system of classification: instead of using the relation between
the absolute input and output motions of the mechanism as classifying cri-
terion, he uses the relative motions between the diverse elements, taking into
account the change of direction and speed of the relative motion and whether
this relation is constant or variable. He considers that Ampère’s definition is
in opposition to some of the examples included in the Essai, such as hydraulic
wheels and wind-operated mills. Willis only considers mechanisms that are
compounded exclusively of solid bodies. Reuleaux affirms that this criterion
introduced by Willis was not successful even in England, so that, in general,
it was preferred to continue using the Lanz and Betancourt criterion.

Laboulaye, in his “Cinématique” in 1849, rejects Willis’s system, and di-
vides the elements of the machines in three types: lever system, winch system
and plane system, to which any mobile body belongs depending on whether
it has one, two or three fixed points respectively. Nevertheless his approach,
based on the motion of points, is not applicable to the motion of bodies.

Morin, in his book “Notions géométriques sur les mouvements”, in 1851,
and Weisbach, in his paper “Abänderung der Bewegung” (Alteration of the
motion), in 1841, remained faithful to Lanz and Betancourt’s system. Redten-
bacher, Reuleaux’s teacher, in “Die Bewegungsmechanismen”, printed in
1857, describes and analyzes theoretically the collection of mechanisms in
Karlsruhe, and he classifies them by their use, without using any kinematic
criterion. Reuleaux himself will describe the approach as nihilistic.

In France, geometrical methods were developed to study the motion of ri-
gid bodies. Example are in Poinsot’s book “Théorie de la rotation des corps”,
which was followed by others, such as the “Eléments de géométrie applique
à la transformation du movement” by Girault, in 1858; the “Cinématique” by
Belanger, in 1864, and “Traité des mécanismes” by Haton, in the same year.
Despite the different approach with respect to the Essai, Girault and Belanger
follow the classifying criterion of the transformation of motion. Haton estab-
lishes nine categories: rollers, slides, eccentrics, gears, bars and cables, and
he groups the last three under the denomination of accessory elements.
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Through this development we can observe an insuperable separation
between what we could denominate Theoretical Kinematics, of which several
of the previously mentioned designers are examples, and Applied Kinemat-
ics, in which the approach of the Essai would not be surpassed until 1875.
Reuleaux was wondering where the insufficiency of the methods developed
until that moment so that in fact Monge’s classification developed in Lanz and
Betancourt’s book was not surpassed. He responds by affirming that the insuf-
ficiency of such classification and the later contributions comes from the fact
of using the transformation of motions as classifying criterion, without in-
quiring into the reason for such transformations. Reuleaux discovers that the
fundamental reason for the transformation of motion lies on the constraints
imposed by the kinematic pairs on the different types of joints between solids.
This is the starting point for new classifying approaches.

It is possible to state that the Essai constitutes a first contribution to what
would be later called Synthesis of Type. The approach started by this book,
and continued by Reuleaux, reached its height in Artobolevsky (1976) that
contains more than 5,000 mechanisms, classified by structural and application
criteria.

The Rectilinear Guidance

Throughout the XIX century, enormous interest was raised on the part of en-
gineers and mathematicians, to study the properties of the trajectories drawn
up by the points of the coupler of a four-bar mechanism. The interest began
to appear in France and later it transferred to England and Germany.

As we have already mentioned previously, in 1796, Prony printed the
second volume of his “Architecture Hydraulique” and in it he developed the
first study on the deviation of the trajectory of Watt’s mechanism with respect
to the straight line.

Hachette, in his “Histoire des machines à vapeur depuis leur origine
jusqu’à nos jours” (1830), includes a proof of equivalence between Watt’s
mechanism and that developed by Oliver Evans in his Columbia machine
before 1813. In 1836, Alexandre Joseph Hidulphe Vincent (1779–1868) pub-
lished for the first time the equation of the curve of the point that generates
trajectories that are almost rectilinear.

Simultaneously, the great Russian mathematician Pafnuti Chebyshev
(1821–1894) tried to look for better solutions for the approximate drawing of
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rectilinear trajectories and showed his pessimism with respect to the possib-
ility of finding a four-bar mechanism that could draw up precisely a straight
line.

It seems that Vincent’s work had influence on Charles Nicolas Peaucellier
(1832–1913) who, in 1864, was the first to obtain a four-bar mechanism that
drew up precisely a rectilinear trajectory.

Many have been the mechanisms developed after Watt’s with the purpose
of drawing up trajectories that are almost rectilinear. Some of them can be
observed in Artobolevsky (1976).

A group of English mathematicians were affected by this interest in mech-
anisms and, particularly, in the trajectories drawn up by some of its creators,
who were precisely the ones that made important contributions to theoret-
ical kinematics: Arthur Cayley (1821–1895), Harry Hart (1848–?), Alfred
Bay Kempe (1849–1922), Samuel Roberts (1827–1913) and James Joseph
Sylvester (1814–1897).

Roberts and Cayley’s works are connected more directly with devel-
opments in analytical geometry, mainly in the theory of algebraic curves.
Roberts justifies his interest in mechanisms with the purpose of being able to
draw up and study the properties of the; he states that the motion of a point
of the coupler of a four-bar mechanism describes a curve of sixth degree and
that there are three different four-bar mechanisms whose coupler generates
the same trajectory. Sylvester and Kempe’s works, more elementary, are con-
nected clearly with the possibility of inventing new instruments. Their work
reflects in a more evident way that mechanical engineering was, at that mo-
ment, one of the dominant technologies.

Beyond the mechanisms that draw up rectilinear trajectories in an exact or
approximate form and the properties of the trajectories, a problem remained
unsolved and it was guessed by Betancourt and it would be approached in a
rigorous form one hundred years after the presentation of the Report on the
steam engine: the obtaining of the dimensions of a mechanism that allows
a certain trajectory to be generated. Burmester published his “Lehrbuch der
Kinematik” (1888) where he sets out for the first time geometrical methods
for the solution of the problem of path-generation synthesis.
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Modern Interpretation of Main contributions to Mechanism
Design

Classification of Mechanisms and Structural Synthesis

The collection and classification of mechanisms is still an important tool that
helps design since it facilitates the search of mechanisms that fit the applica-
tion you are trying to develop. The introduction of concepts such as kinematic
pair, link and its different types, has allowed the handling of the classific-
ation of mechanisms under new approaches. Classification is not limited to
motion transformation criteria, but also takes into account another important
element: the structure of the mechanism, understanding as such the definition
of the number of kinematic pairs, links, its types and the way in which they
are interconnected. Another important classifying element appears associated
to the structure, which is the number of degrees of freedom of the mechanism.

The best collection and classification of mechanisms can be found in Ar-
tobolevsky’s work. Throughout its five volumes (Artobolevsky, 1975), some
four thousand mechanisms have been gathered and classified by their struc-
tural and functional characteristics. The first and second volumes are devoted
to the n-link mechanisms. The third volume is devoted to gear, cam and fric-
tion mechanisms. The fourth and fifth volumes are devoted to mechanisms
with flexible links and to hydraulic, pneumatic and electrical mechanisms.

Beyond the collection and classification of mechanisms, the study of their
kinematic structure has given rise to an important research field within the
Machines and Mechanisms Science, which is structural kinematics. Different
problems have been approached in kinematic chains and mechanisms: struc-
tural synthesis, the problem of isomorphism, structural analysis, the auto-
matic development of mechanisms and the application of structural synthesis
to creative design. For them, tools such as the Franke’s notation, graph theory
and group theory have been used.

There have been important contributions to this field in the 1960s and
1970s from authors such as Crossley, Freudenstein, Hain and Manolescu. In
recent years outstanding work has been done in the field of isomorphism de-
tection by authors such as Agrawal and Rao, and in the field of analysis aided
by the computer about the structure of kinematic chains by Mruthyunjaya.
Diverse works give a vision of the state-of-the-art and the latest contributions
in this field (Mruthyunjaya, 2003; Kota, 1993). The research that is carried
out in this field makes available to the machine designer computational tools
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that facilitate the generation of alternatives in an automatic way so that they
fulfil the design criteria given.

Path Generation Synthesis

Path generation synthesis, as part of mechanism dimensional synthesis, has
had an important development throughout the second half of twentieth cen-
tury and continues in the twenty-first century.

The first methods of synthesis exploit the concept of precision points to
obtain mechanisms whose trajectory goes exactly through a set of specified
points. The problems that were encountered and solved had to do fundament-
ally with the development and solution of equations that include the condition
of going through the precision points and with the problems associated with
optimal spacing between the points in order to minimize error. Throughout
the 1950s and 1960s, there have been important contributions from authors
such as Freudenstein, Suh, Sandor, Roth, Gupta and others.

Due to limitations in the number of precision points, the importance of
the application of optimization methods, whose objective is minimizing an
objective function with or without constraints, has been greater and greater.
In the case of the path generation synthesis, the objective function to minim-
ize can be the error calculated as the difference between the desired trajectory
and the generated trajectory. Diverse approaches have been used to solve the
problem. A summary of contributions can be found (Angeles, 1993), where
different families of methods appear: using least-square normality condition
and Lagrange multipliers, general unconstrained optimization, constrained
optimization using penalty functions, constrained optimization using general
nonlinear programming techniques, mini-max optimization, methods based
on probability and statistics. Recent developments include the use of genetic
algorithms that try to avoid the problems associated with the selection of the
initial solution and its consequences on convergence.

Another completely different approach is based on the use of the storage
of coupler curves in a computer database for their comparison with the shape
of the curves. To counter the problems generated by the slowness and the
possible lack of convergence of optimization methods, other methods that
use neural networks have appeared to try to take advantage of the previous
knowledge available concerning the problem and its possible solutions.

Structural synthesis and path generation synthesis, to which Betancourt
contributed so much to their origin, are still research fields of high interest as
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evidenced by the quality of MMS researchers that have devoted their efforts
to these fields and by their practical importance to machine design.
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Abstract. Oene Bottema was a 20th century Dutch mathematician working in geometry. In
the third quarter of the 20th century, the great majority of mathematicians had turned away
from classical geometry. At the same time kinematics continued to play an important role in
mechanical engineering. The engineers needed a man like Bottema who applied his encyclo-
pedic knowledge of 19th century geometry with 20th century precision to many kinematical
problems. He wrote almost 50 papers on kinematics. Most of them contain original contribu-
tions. He invented the method of instantaneous invariants in instantaneous kinematics. With
Bernard Roth he wrote the influential survey Theoretical Kinematics, North Holland, Amster-
dam, 1979.

Biographical Notes

Oene Bottema was born on December 25, 1901 in Groningen, the capital of
the province of Groningen in the north of the Netherlands. He belonged to
the 10th generation of a family of Bottemas living in Friesland, the province
next to Groningen.

After primary school, Bottema attended the Hogere Burgerschool
(H.B.S.) in Groningen. This type of school had been introduced in The Neth-
erlands in 1863. Its five year courses were intended to prepare pupils for
business and industry. The curriculum included mathematics and science in
addition to Dutch and three modern foreign languages: English, French and
German. The introduction of the H.B.S. in the Netherlands was of great signi-
ficance. The school enabled many children with a middle class, or even lower
class, background to get an excellent secondary education. Moreover in 1917
parliament decided that the H.B.S. diploma was good enough to give access
to university studies in the sciences and medicine. Bottema was among the

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 61–78.
© 2007 Springer. Printed in the Netherlands.



62 Teun Koetsier

Fig. 1. Oene Bottema (1901–1992).

first to go directly from the H.B.S. to university. At the age of seventeen he
enrolled at the university in his home town in the Department of Mathematics
and Physics.

Bottema finished his university studies in 1924 and soon obtained a po-
sition as teacher at a secondary school, an H.B.S. He would work in sec-
ondary education until 1941, although from 1931 until 1935 and from 1937
until 1940 he taught classes at, respectively, the universities of Groningen
and Leiden as an external lecturer (privaat-docent). He was a good manager
and from 1933 to 1935 he was director of the State H.B.S. in Sappemeer,
near Groningen. From 1935 until 1941 he was director of the State H.B.S. in
Deventer.

In 1930 Bottema married Femmy Berendsen. She was two years younger.
She gave him a daughter born in Groningen and a son born in Deventer.

As we will see below, while working as a teacher and director at secondary
schools Bottema got his doctor’s degree in 1927. He published an average of
more than three papers per year in this period and he wrote a book. At the age
of forty the name Bottema had become very well known among Dutch math-
ematicians. His scientific qualities were generally recognized and in 1941 he
became full professor for pure and applied mathematics at the Technological
University in Delft. From 1951 to 1959 he was rector magnificus (president
or vice chancellor) of the university. He was a born manager, honest and hard
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working. As a rector he was admired and feared. He was, moreover, a gif-
ted orator. The speeches that he gave as rector were works of art. It is also
amazing that while rector he still managed to write 45 papers.

After 1959 Bottema devoted himself to teaching and scholarly work in
mathematics and kinematics.

In 1961 Bottema met Ferdinand Freudenstein and through Freudenstein
he met Bernard Roth. With his encyclopedic geometrical knowledge Bottema
was an ideal partner for the Americans. The cooperation undoubtedly stimu-
lated Bottema to do some excellent work in kinematics which he otherwise
would not have done.

He received many distinctions. In 1954 he became Officier de l’Académie
Française. The Dutch government made him, in 1955, Knight in the Order
of the Nederlandsche Leeuw and, in 1959, he became Commander to the Or-
der of Orange Nassau. In 1958 he got the degree of Doctor of Laws, honoris
causa from the University of Leeds. He was honorary member of the Dutch
Mathematical Society and of IFToMM (International Federation for the The-
ory of Machines and Mechanisms). At his retirement in 1971 he received the
Gold Medal of the city of Delft.

After his retirement he continued to work until a few years before his
death (of old age) in Delft on November 30, 1992. His wife Femmy had died
in 1981. Femmy died of multiple sclerosis after over thirty years of gradual
physical deterioration during which she became completely dependent on a
wheel chair. In all these years Bottema took care of her.

Bottema was an erudite man, the opposite of a man only occupied with
mathematics. He had a vast knowledge of history and literature, which is ob-
vious from his public lectures and articles in literary journals. On his seventi-
eth birthday his friends gave him a book, which he had in fact written himself.
It contains a selection of his best public addresses and literary articles. The
title of the book Steen en Schelp (Stone and Shell) was taken from an ad-
dress with the same title. Bottema admired Wordsworth, who in Book V of
The Prelude uses the stone and the shell to represent respectively geometrical
truth and poetry. For Bottema the unshakable argument of geometry and the
inspiration of poetry were the two indispensable guides in life. He disdained
belabored and messy solutions in his mathematics and in all other aspects of
his life. As a mathematician, an administrator and a human being, Bottema
always attempted to create a good balance between content and form. That is
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how we remember him; mathematics, poetry and, of course, the presence of
his inseparable pipe.

Bottema’s Main Works

Bottema published more than 400 papers and 10 books (including his doc-
toral dissertation). He published nearly 50 papers on kinematics (see the ref-
erences). Many of the papers can be considered as preparatory work for (Bot-
tema and Roth, 1979).

Review of Main Work Related to Mechanism Design

The Background

In order to understand Bottema’s work, it is necessary to briefly consider
the developments in geometry in the 19th century. In the eighteenth century
in mathematics developments in analysis and its applications in mechanics
had dominated. This changed radically in the nineteenth century. The nine-
teenth century was a golden age for geometry. Renaissance architects already
knew the technique of projecting a building on two perpendicular planes, but
in the late 1760s Gaspard Monge started to use and advocate such methods
at the military school at Mézières. It was classified knowledge, so only in
the 1790s could Monge go public with the details. He gave courses on de-
scriptive geometry at the Ecole Polytechnique and in 1799 J.N.P. Hachette
published Monge’s lectures as the book Géométrie descriptive. The largest
part of this book is devoted to surfaces and skew curves. Monge considered
in particular surfaces that can be kinematically generated by means of mov-
ing curves. His research in this respect can be seen as a continuation of work
done by Gilles Personne de Roberval and Isaac Newton. Monge created a
new school of geometers in France. Monge also established the theory of ma-
chines and mechanisms as a separate subject at the Ecole Polytechnique. This
was the beginning of spectacular developments in geometry and in kinemat-
ics that would last until the middle of the 20th century. Monge was one of
the first mathematicians participating in these developments who combined
an interest in both geometry and mechanisms.

As for geometry, after Monge, Jean Victor Poncelet rediscovered and im-
proved projective geometry. In the further development there was a split.
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Some, like C.G.C. von Staudt concentrated on synthetic methods in geometry.
Von Staudt was joined by, for example, Steiner, Chasles, Cayley and Cre-
mona. Others like August Ferdinand Möbius and Julius Plücker concentrated
on algebraic methods. They were followed by Clebsch, Gordan, Brill and
Klein. The 19th century was also the period in which the first non-Euclidean
geometries were introduced by Gauss, Bolyai and Lobachevski. Bernhard
Riemann introduced the idea of geometries of arbitrarily high dimensions. All
these developments made geometry look like a discipline consisting of many
very different, not always cohering, subjects. Very famous in this respect is
Felix Klein’s Erlanger Programm of 1872 in which he reunified the subject
by showing that all these different geometries could be defined by means of
a group of transformations. In geometry, Klein taught us, one always studies
properties that are invariants under a group of transformations.

Although in the 19th century geometry was one of the most fertile re-
search areas in mathematics, often the methods that were used lacked rigor.
At the end of the 19th century, in 1899, David Hilbert published Grundlagen
der Geometrie in which the modern axiomatic approach to geometry was in-
troduced. At the end of the 18th century geometry was restricted to Euclidean
space, which could be studied synthetically or analytically. In the first half of
the 20th century the word geometry had begun to refer to the properties of
many different spaces and their relations. Also methodologically the subject
had changed. Many new methods had been designed. The use of matrices
to describe displacements, quaternions, dual numbers, isotropic coordinates,
were all introduced in the 19th century. Moreover, when Bottema was intro-
duced to this new world, the foundational problems that had vexed 19th cen-
tury geometry had been solved, and it had become possible to do geometry in
a very rigorous way.

Bottema was working in this essentially 19th century tradition in which
many mathematicians were working in geometry; many of them combined
this with a great interest in kinematics. As for kinematics, he was aware of
the fact that he stood on the shoulders of the famous 19th century mathem-
aticians Chasles, Mannheim, Darboux, Burmester and many others. And he
was always very satisfied when he succeeded in reaching a little bit further
with respect to the problems that these great men had studied as well.
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Bottema’s Geometrical Work

The University of Groningen was founded in 1614. From 1695 until 1705
Johann Bernoulli (1667–1748) had been professor of mathematics at the uni-
versity in Groningen. It should be noted that Bernoulli discovered the instant-
aneous centre of rotation in planar instantaneous kinematics. After the depar-
ture of Bernoulli the level of mathematics education in Groningen had fallen.
Fortunately things had changed in the second half of the 19th century. Pieter
Hendrik Schoute (1846–1913), a specialist in multi-dimensional geometry,
had also been professor of mathematics in Groningen and he had raised the
level of geometry teaching considerably. The famous Dutch astronomer Jac-
obus Cornelius Kapteyn (1851–1922) worked in Groningen as well. When
Bottema enrolled at the University of Groningen, mathematics and science
were taught at an international level. In particular the classes of J.A. Barrau
(1873–1953), professor of geometry, had a great influence on Bottema and so
did the lessons in theoretical physics of Frits Zernike (1888–1966), winner of
a Nobel Prize for physics in 1953.

Bottema started publishing even before he finished his university studies
in 1924, and he went on doing so until a few years before his death. In 1927 he
defended his doctoral thesis at the University of Leiden. His supervisor was
W. van der Woude. The title of his thesis was De figuur van vier kruisende
rechte lijnen (The figure consisting of four mutually skew lines). In the thesis
Bottema deals with the projective properties of such figures. Grassmann had
discovered that the projective properties of such a figure are characterized
by the so-called Grassmann harmonic ratio, a projective invariant for four
mutually skew lines analogous to the harmonic ratio for four points on a line.
In 1878 Voss had discovered that although a calculation by means of degrees
of freedom suggests otherwise, in general there does not exist a third degree
curve of double curvature that touches four given straight lines. And if there
is such a curve there exist infinitely many of them. In this case the four lines
form a Voss-quadruple. In the thesis Bottema studies such Voss-quadruples
and other special quadruples of skew lines.

In his thesis Bottema’s elegant style in mathematics is already present.
Very elegant is also a paper that Bottema published in 1928 on the introduc-
tion of coordinates in projective geometry. The question whether the analyt-
ical method and the synthetic method in geometry are, with respect to their
results, equivalent had been answered before. Bottema’s solution, however,
is lovely. Addition and multiplication are defined with respect to points on a
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conic section. Pascal’s theorem and the well-known properties of projectivit-
ies on a conic section imply that the resulting system is a field.

In 1938 Bottema published his first book, De elementaire meetkunde van
het platte vlak (The elementary geometry of the plane). His goal was two-
fold. He had noticed that most books on plane geometry were, either, not
completely rigorous, although they proceeded quickly to non-foundational
problems, or were restricted to foundational questions. Bottema wanted both
in one book. He wanted, on the one hand, to give a completely rigorous treat-
ment of plane geometry, and, on the other hand, to deal with interesting non-
foundational questions as well.

De elementaire meetkunde van het platte vlak was well written and well
received. It is remarkable that from the book it is Bottema’s theorem on pedal
points which is best remembered (Dergiades et al., 2003; Sashalmi et al.,
2004). It says that if we consider a triangle ABC and on its three sides AB,
BC, CA, respectively, three points Pc, Pa and Pb, the relation

AP 2
b + CP 2

a + BP 2
c = AP 2

c + BP 2
a + CP 2

b

is a necessary and sufficient condition for Pa , Pb and Pc to be pedal points:
projections on the three sides of one and the same point P inside the triangle.

Bottema’s Kinematical Work

Bottema developed research interest in kinematics during World War II. In
1944 he published three papers on kinematical subjects. Two of them concern
the Darboux motion in elliptic space. In 1881 Darboux completely solved the
following problem: Determine all possible motions of a moving Euclidean
space E with respect to a fixed Euclidean space � such that the path of every
point of E is a plane curve in �. There are trivial solutions, for example
when the planes of the paths are all parallel. Darboux has shown that the only
existing non-trivial solutions are such that all paths are ellipses. The easiest
way to see that such motions exist is the following. In plane elliptic motion
the points on the moving polhode, a circle, oscillate on straight line segments,
diameters of the fixed polhode, also a circle. When we combine such elliptic
motion with a harmonic oscillation with a corresponding period in a direction
perpendicular to the plane, those points obviously describe planar oval curves.

In 1944 Bottema solved the analogous problem for 3-dimensional elliptic
kinematics: in elliptic space there exist motions analogous to the Darboux
motions in ordinary kinematics.
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The third 1944 paper on kinematics is on the coupler curve. Darboux had
already shown that the different positions of a four bar mechanism can be
mapped on a third degree curve. Bennett, Hippisley, Morley and Weiss had
shown that pairs of isogonal points on a coupler curve could be Laguerre
mapped on Hessian pairs of points on a third degree curve. It is then tempt-
ing to suppose that the set of coupler curves of a given four bar mechanism
corresponds to the set of coupler curves that can be generated from a certain
third degree curve by means of such a Laguerre mapping. Bottema showed
by means of two examples that this supposition is wrong.

The two papers on Darboux motion in elliptic space and the paper on
the coupler curve nicely illustrated what Bottema was good at. In the middle
of the 20th century many mathematicians were losing interest in classical
19th century geometry. Leading mathematicians like David Hilbert, Emmy
Noether, Barteld van der Waerden and the members of the French Bourbaki
school had developed a new view of mathematics: mathematics was no longer
merely the science of magnitude and number, but it had become the science
of all mathematical structures. Although in mechanical engineering the in-
terest in kinematics was growing, many mathematicians were caught up in
those new developments and turned away from classical geometry and kin-
ematics to the investigation of the multitude of new abstract structures. This
new structuralist research programme in mathematics was extremely fertile
and it has led to spectacular developments. Bottema however, continued to
work on classical subjects. Most of his papers find their starting point in ex-
isting results, which are then corrected, improved or generalized by Bottema.
They do not contain huge jumps forward, but his extensive knowledge, his
critical sense, his feeling for elegance and his ability to choose exactly the
right method for the problem involved, enabled him again and again to add
new results to the existing ones. There is, however, one exception. With his
notion of instantaneous invariants he succeeded in defining a new research
program. The idea was born in Bottema (1949) and Bottema seems to have
shelved the idea in the period in which he was rector magnificus of the Tech-
nological University. Only in (1961a) did he return to this line of research. In
1944 the outstanding German kinematician Hermann Alt (1889–1954) from
Dresden had written a paper in which he had criticized a long paper from
1938 by Kurt Rauh et al. on Cardan positions for the plane motion of a rigid
body. Such positions are positions of a moving plane which have a third order
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Fig. 2. The birth of the instantaneous invariants in Bottema (1949).

contact with an elliptic motion. Although he appreciated Alt’s work, Bottema
felt that the synthetic method that Alt had used lacked precision.

Bottema solved the controversy by introducing the instantaneous invari-
ants although he did not yet use the name. The basic idea of the method of
instantaneous invariants is simple. The position of a moving frame of refer-
ence with respect to a fixed frame of reference is determined by a function
which in a particular position can be developed in a Taylor series. The para-
meters that describe the motion (including the parameter that represents time)
and the two frames of reference are chosen in such a way that as many as pos-
sible of the coefficients of the Taylor series vanish. The other coefficients are
invariants under the group of Euclidean transformations. The instantaneous
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properties of the motion are determined by these invariants. The example of
plane instantaneous Euclidean kinematics will illustrate this.

If x, y; X,Y are the Cartesian coordinates of a point in the moving plane
and the fixed plane respectively, we have

X = x cos ϕ − y sin ϕ + a; Y = x sin ϕ + y cos ϕ + b, (1)

a and b being functions of ϕ. We will denote the values of the n-th derivatives
with respect to ϕ of the variables a and b for the position ϕ = 0 with the suffix
n. This means that the zero-order properties (they concern merely position)
in the position ϕ = 0 are determined by a0 and b0. The first-order properties
(they concern tangents) in the position ϕ = 0 are determined by a1 and b1.
And the second-order properties (they concern curvature) in the position ϕ =
0 are determined by a2 and b2.

When at ϕ = 0 the two coordinate systems coincide we have in that posi-
tion a0 = b0 = 0 and thus

X = x and Y = y. (2)

When the origin of the two systems coincides with the instantaneous centre
of rotation at the moment ϕ = 0, we have a1 = b1 = 0 and thus

X′ = −y and Y ′ = x. (3)

The primes denote the derivative with respect to ϕ in the position ϕ = 0. We
let the velocity vector of the position of the pole in the fixed system coincide
with the coinciding x-axes at this moment, so a2 = 0 as well. We then get for
the second-order properties

X′′ = −x and Y ′′ = −y + b2. (4)

Nota bene: the result is that in the position under consideration we can fi-
nally choose the direction of the two coinciding x-axes at the moment ϕ = 0
opposite to the direction in which the pole is moving on the fixed polhode.
This means that b2 is positive. The derivatives an and bn with n > 1 are the
instantaneous invariants. We will illustrate the geometrical significance of b2.
The points in the moving plane that are in an inflexion point of their traject-
ory satisfy the relation X′′: Y ′′ = X′ : Y ′, which gives the equation of the
inflexion circle by means of (3) and (4).
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x2 + y2 − b2y = 0. (5)

Clearly b2 is equal to the diameter of the inflexion circle. By means of Equa-
tions (4) and (6) we can calculate the curvature of the two polhodes at the
pole.1 For the curvatures kf and km of respectively the fixed and moving pol-
hodes at the pole we find

kf = −(a3 + b2)/b
2
2 and kb = −(a3 + 2b2)/b2

2 (6)

and this immediately yields a version of the Euler–Savary relation

kf − kb = 1/b2. (7)

In Bottema (1949) Bottema applied this method for the first time. He proved
that for elliptic motion we have a3 = b3 = 0. Then (6) and (7) yield that
kf = 2 · kb. This is obviously a necessary condition, but it is not a sufficient
one for a Cardan position. In this way Bottema could precisely point out
where Alt had been right and where Rauh had been right on Cardan positions.

The fact that Bottema met Ferdinand Freudenstein in 1961 and that he
later got in touch with Bernard Roth had a great influence on Bottema’s
research. At the time the graphical methods that had been very popular in
mechanism design until after World War II were being replaced by analytical
methods leading to systems of equations that could be solved by a computer.
The two Americans were very much part of that development and Bottema
with his extensive knowledge of geometry was an ideal partner. The excel-
lent publication (Bottema, 1964) on the analytical determination of the four
Burmester points was clearly written with the intention to yield a method
suitable for numerical computation.

The method of instantaneous invariants was repeatedly used by Bot-
tema. Bottema (1967a) and Bottema (1971a) are excellent papers. In Bottema
(1976a) he showed how the use of the instantaneous invariants makes it pos-
sible to generalize the well-known results concerning the existence in instant-
aneous plane kinematics of the inflexion circle, Ball’s point, the circling-point
curve and Burmester’s points, by asking the question of which points lie on
a parabola for five or six positions or on a conic section for six or seven po-
sitions. One of the results is that at each moment there are six points of the
moving plane which pass through a stationary parabolic or sextactic point of

1 We apply the formula: curvature k = (X′Y ′′ − X′′Y ′)/(X′2 + Y ′2)3/2.
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their path, namely a point for which six consecutive positions are on a para-
bola. Similarly there are at each moment eleven points in the moving plane
which pass through a septactic point of their path, namely a point for which
seven consecutive positions are on a conic. In (1971a) Bottema studied the
motion of a rigid body with two degrees of freedom. Obviously the traject-
ories are surfaces. The famous German geometer and kinematician, Wilhelm
Blaschke, had expressed pessimism with respect to the possibility to study
the second order properties of these surfaces, for example, the properties of
the curvature. Yet in (1971a) Bottema succeeded in deriving some results for
the curvature.

The method of instantaneous invariants was also successfully used by oth-
ers (Kamphuis, 1969) and in particular by Bottema’s pupil Geert Remmert
Veldkamp (1963, 1976, 1983). Veldkamp’s thesis (1963) was supervised by
Bottema. It contains a very thorough treatment of planar instantaneous kin-
ematics by means of instantaneous invariants.2

The method is also used in what must be considered as Bottema’s opus
magnum in kinematics, the textbook Theoretical Kinematics which he wrote
together with Bernard Roth (Bottema and Roth, 1979). To me the book seems
to be an example of a perfect cooperation between a mathematician and an
engineer. Without Roth, Bottema would never have written a book on kin-
ematics and without Bottema, Roth would have written a different book.

Theoretical kinematics deals with the general kinematical properties of
motion; in theoretical kinematics mechanisms only occur as devices that gen-
erate specific motions of which the properties either illustrate the theory or
are remarkable from the point of view of the general theory. Applied kin-
ematics specifically deals with mechanisms and their kinematical properties.
In (1979) Bottema and Roth deal with theoretical kinematics. Most of the
book is devoted to Euclidean kinematics. The following list of the first eight
chapters gives a good idea of the structure of the book:

Ch. I: Euclidean displacements
Ch. II: Instantaneous kinematics
Ch. III: Two positions theory
Ch. IV: Three positions theory
Ch. V: Four and more positions
Ch. VI: Continuous kinematics

2 G.R. Veldkamp, professor at the Technological University of Eindhoven, was an excellent
kinematician. His textbook (Veldkamp, 1970) is lovely, but unfortunately in Dutch.
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Ch. VII: Spherical kinematics
Ch. VIII: Plane kinematics

Fig. 3. Bottema’s handwriting. A concept of the beginning of chapter 2 of Bottema and Roth
(1979).

The fundamental notion is the notion of Euclidean displacement. The
treatment is analytical, based on vector algebra, matrix algebra and calculus.
The basic properties of Euclidean displacements for n-dimensional space are
derived in the first chapter. The second chapter introduces the investigation of
a time-dependent displacement of n-dimensional space at a particular instant.
The next three chapters are devoted to discrete 3-dimensional kinematics, re-
spectively to two, three and four position theory. The next three chapters deal
with 3-dimensional space kinematics and two of its very important special
cases: 3-dimensional space kinematics, spherical kinematics and plane kin-
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ematics. The authors start with general considerations and then move slowly
to special cases. The last five chapters of the book deal with special subjects:

Ch. IX: Special motions
Ch. X: n-Parameter motions
Ch. XI: A mapping of plane kinematics
Ch. XII: Kinematics in other geometries
Ch. XIII: Special mathematical methods in kinematics.

Chapter XI is remarkable. In 1911 Grünwald had introduced the idea to
map the set of displacements on the points of a three-dimensional space. The
motion of a one-degree of freedom mechanism then corresponds to a curve in
space and properties of this curve to properties of the mechanism. Blaschke
and Müller had used quaternions to bring this about and they had used the
method to derive theorems in plane kinematics. Bottema’s friend, H.J.E. Beth,
had written a book about it using geometrical reasoning (Beth, 1949). Al-
though the mapping was mathematically interesting in 1979 the subject may
have seemed very far away from applications. However, in the mean time
the kinematic mapping turned out to be a useful and elegant approach to the
kinematic analysis of parallel robot platforms (cf. Husty, 2003).

Fig. 4. Oene Bottema after his retirement. (Photo courtesy of Jurgen M. Bottema.)
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On the Reception of His Work

Theoretical Kinematics was very well received. In Mechanism and Machine
Theory, A.S. Hall Jr. wrote: “This is a very important book because it is
unique. There is nothing comparable available.” Hall was right, a comparable
book did not exist. For several decades the book provided the much needed
background knowledge for much work in applied kinematics. In the Zent-
ralblatt für Mathematik, D. Mangeron called the book “a masterly addition
to theoretical kinematics”. And indeed the authors expanded the theory and
filled various gaps.

The only critical remark can be found in the review written by R. Con-
nelly for the Mathematical Reviews. He wrote: “The results are never put
in the form of theorems and proofs. Important statements appear only in
italics as part of the general discussion.” Yet this is hardly a serious criti-
cism. The book indeed has its own style which deviated from what had in
1979 become the standard way to present mathematical results. This rigor-
ous formal style based on the language of modern logic and set theory is for
non-mathematicians often very inaccessible. Of course, the authors wrote for
mathematicians and many others, but primarily they wrote for mechanical en-
gineers. The book was a great success. In 1990 a reprint of the book appeared
in the Dover series.

Acknowledgements

Most of the biographical details in this paper are based on Veldkamp (1986).
I am also grateful to Bernard Roth for reading a previous version.

References

Bottema’s kinematical papers

Over bewegingen der elliptische ruimte, waarbij alle krommen congruente vlakke krommen
beschrijven, Nederlandsche Akademie van Wetenschappen, Afdeling Natuurkunde, 53,
1944, 25–30.

De bijzondere bewegingen van Darboux in de elliptische ruimte, Nederlandsche Akademie
van Wetenschappen, Afdeling Natuurkunde, 53, 1944, 58–65.

Eine Bemerkung über die Koppelkurve, Nieuw Archief voor Wiskunde, 22, 1944, 9–14.



76 Teun Koetsier

On Cardan positions for the plane motion of a rigid body, Proceedings Koninklijke Nederland-
sche Akademie van Wetenschappen, 52, 1949, 643–651.

Over de kinematische afbeelding volgens Beth en haar toepassing op de centrale drijfstangbe-
weging, Euclides, 25, 1949/50, 253–256.

Enige stellingen uit de kinematica, Simon Stevin, 227, 1950, 106–114.
Recent work on kinematics, Applied Mechanics Review, 6, 1953, 25–40.
On Alt’s special three-bar sextic, Proceedings Koninklijke Nederlandsche Akademie van

Wetenschappen, A57, 1954, 498–504.
Zur Kinematik des Rollgleitens, Archiv der Mathematik, 6, 1954, 25–28.
Zur Kinematik des Schleifkurvengetriebes, Öst. Akad. Wiss. Math. Naturw. Kl. Anzeiger,

1956, 109–111.
On Staude’s motion in five-dimensional space, Proceedings Koninklijke Nederlandsche

Akademie van Wetenschappen, A57, 1957, 248–253.
Die Bahnkurven eines merkwürdigen Zwölfstabgetriebes, Öst. Ing. Arch., 14, 1960, 218–222.
Zur Kinematik der Schlittenbewegung, Monatshefte Math. 64, 1960, 226–232.
Koppelkrommen met twee undulatiepunten, De Ingenieur 73, 49W, 1961, 188–189.
Some remarks on theoretical kinematics. I. On instantaneous invariants; II. On the applica-

tion of elliptic functions in kinematics, in Proceedings of an International Conference for
Teachers of Mechanisms, Yale University, New Haven, Hamden, Conn., 1961a, pp. 159–
167.

Ein Problem der affinen Kinematik, Proceedings Koninklijke Nederlandse Akademie van
Wetenschappen, 67, 1964, 290–300.

On the determination of the Burmester points for the five positions of a moving plane, Pro-
ceedings Koninklijke Nederlandse Akademie van Wetenschappen, A67, 1964, 310–318.

Acceleration axes in spherical kinematics, Trans. ASME, Journal Engineering Industry, 2,
1965, 150–154.

On Ball’s curve, Journal of Mechanisms, 1, 1966, 3–8.
A construction for the velocity and the acceleration of a cam, Journal of Mechanisms, 1,

1966a, 285–289.
With F. Freudenstein, Kinematics and the theory of mechanisms, Applied Mechanics Review,

19, 1966, 285–289. Also in Applied Mechanics Surveys, Washington, Spartan, 1966b, 85–
92.

On Staude’s motion in four-dimensional space, Nieuw Archief voor Wiskunde, (3) 14, 1966c,
1–6.

Flexible hexagons, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 70,
1967, 151–155.

On some loci in plane instantaneous kinematics, Journal of Mechanisms, 2, 1967a, 141–146.
Getriebe mit zwei Wälzkurvenpaaren, Forsch. Geb. Ing. Wes., 34, 1968, 149–150.
On displacements of a rigid body, Commun. Phys. Math. Soc. Sci. Fennica, 33, 1968, 1–3.
With F. Freudenstein and T. Koetsier, Finite conic section Burmester theory, Journal of Mech-

anisms, 4, 1969, 359–373.
On some loci of lines in plane kinematics, Journal of Mechanisms, 5, 1970, 541–548.
Een scheve stangenvierzijde, Euclides, 45, 1969/70, 267–269.
With T. Koetsier and B. Roth, On the smallest circle determined by three positions of a rigid

body, Trans. ASME, Ser. B. Journal of Engineering for Industry, 93, 1971, 328–333.



Oene Bottema 77

Instantaneous kinematics for spatial two-parameter motion, Proceedings Koninklijke Neder-
landsche Akademie van Wetenschappen, B74, 1971a, 53–62.

The motion of the skew four bar, Journal of Mechanisms, 6, 1971b, 69–79.
Characteristic properties of symmetric plane motion, Proceedings Koninklijke Nederlandsche

Akademie van Wetenschappen, B75, 1972, 145–151.
On a set of displacements in space, Trans. ASME, Ser. B. Journal of Engineering for Industry,

95, 1973, 451–454.
Beweging langs een lemniscaat, Euclides. 49, 1973/74, 150–154.
Cardan motion in elliptic geometry, Canadian Journal of Mathematics, 27(1), 1975, 37–43.
On the instantaneous binormals to the paths of points in a moving body, Mechanism and

Machine Theory, 10, 1975, 11–15.
The λ-pairs of curves for a cycloidal motion, Mechanism and Machine Theory, 10, 1975,

189–195.
Line envelope coupler curves of hinged four-bars, Teor. Mashin. Mech. Moscow, 1976, 156–

161 [in Russian].
With G.R. Veldkamp, On cage-plane motion, Trans. ASME, Ser. B Journal of Engineering for

Industry, 99, 1977, 662–664.
Eine spezielle ebene Affinbewegung, Anz. Math. Naturw. Klasse Öst. Akad. Wiss., 7, 1978,

168–172.
With G.R. Veldkamp, Instantane projektive und affine Kinematik, Sber. Öst. Akad. Wiss.

Math.-naturwiss. Klasse Abt. II, 188, Bd. 1 bis 3. Heft, 1979, 119–141.
With G.R. Veldkamp, Zweigliedrige äquiforme ebene Bewegungen, Proceedings Koninklijke

Nederlandsche Akademie van Wetenschappen, B84(1), 1980, 21–26.
A plane motion with a stationary pole, Bul. Inst. Politeh. Iasi, 26, 1980, 3–4.
Secondary centers of curvature for the pointpaths of a planar motion, Mechanism and Machine

Theory, 16, 1981, 147–151.
On the upward motion of a double cone on an inclined plane, Elemente der Mathematik, 36,

1981, 121–126.
With E.J.F. Primrose, A quadratric transformation in plane kinematics, Simon Stevin, 55, 1981,

197–203.
With Y. Chen and B. Roth, Rational rotation functions and the special points of rational algeb-

raic motions in the plane, Mechanism and Machine Theory, 17, 1982, 335–348.
Comments on ‘Axodes for the four-revolute spherical mechanism’ by R.S. Sodhi and T.E.

Shoup, Mechanism and Machine Theory, 17, 1982, 173–178, Letter to the Editor, Mech-
anism and Machine Theory, 20, 1985, 239–242.

Other references

H.J.E. Beth, Kinematica in het platte vlak, Gorinchem, 1949.
O. Bottema, Het invoeren van coördinaten in de projectieve meetkunde, Koninklijke Academie

van Wetenschappen te Amsterdam, Verslag van de gewone vergadering der afdeeling
Natuurkunde, XXXVII, No. 7, 1928, 1–10.

O. Bottema, De elementaire meetkunde van het platte vlak, P. Noordhoff N.V., Groningen,
Batavia, 1938.

O. Bottema and Bernard Roth, Theoretical Kinematics, North Holland Publishing Company,
Amsterdam/New York/Oxford, 1979.



78 Teun Koetsier

N. Dergiades and F. Van Lamoen, Rectangles attached to the side of a triangle, Forum Geom.,
3, 2003, 145–159.

M. Husty, On the kinematic constraint surfaces of general three-legged planar robot platforms,
Mechanism and Machine Theory, 38, 2003, 379–394.

H.J. Kamphuis, Application of spherical instantaneous kinematics to the spherical slider-crank
mechanism, Journal of Mechanism, 4, 1969, 43–56.

G.R. Veldkamp, Curvature Theory in Plane Kinematics, J.B. Wolters Groningen, 1963.
G.R. Veldkamp, Kinematica, Scheltema & Holkema, Amsterdam, 1970.
G.R. Veldkamp. Canonical systems and instantaneous invariants in spatial kinematics, Journal

of Mechanisms, 2, 1976, 329–388.
G.R. Veldkamp, The instantaneous motion of a line in a t-position. Mechanism and Machine

Theory 18, 1983, 439–444. G.R. Veldkamp, Oene Bottema: A biographical sketch, Mech-
anism and Machine Theory, 21, 1986, 447–449 (with a short list of Bottema’s publica-
tions).

G.R. Veldkamp, Oene Bottema: A biographical sketch, Nieuw Archief voor Wiskunde, 4e serie,
deel 5, nr. 3, 1987, 249–276. (This is a slightly corrected version of Veldkamp, (1986). The
paper is accompanied by a complete list of publications.)

Sashalmi, É. and Hoffmann, M., Generalizations of Bottema’s theorem on pedal points, An-
nales mathematicae et informaticae, 31, 2004, 25–31.



WILLIAM KINGDON CLIFFORD
(1845–1879)

Joe Rooney

Department of Design and Innovation, The Open University, Walton Hall,
Milton Keynes MK7 6AA, UK
E-mail: j.rooney@open.ac.uk

Abstract. William Kingdon Clifford was an English mathematician and philosopher who
worked extensively in many branches of pure mathematics and classical mechanics. Although
he died young, he left a deep and long-lasting legacy, particularly in geometry. One of the
main achievements that he is remembered for is his pioneering work on integrating Hamilton’s
Elements of Quaternions with Grassmann’s Theory of Extension into a more general coher-
ent corpus, now referred to eponymously as Clifford algebras. These geometric algebras are
utilised in engineering mechanics (especially in robotics) as well as in mathematical physics
(especially in quantum mechanics) for representing spatial relationships, motions, and dynam-
ics within systems of particles and rigid bodies. Clifford’s study of geometric algebras in both
Euclidean and non-Euclidean spaces led to his invention of the biquaternion, now used as an
efficient representation for twists and wrenches in the same context as that of Ball’s Theory of
Screws.

Biographical Notes

William Kingdon Clifford was a 19th Century English mathematician and
scientific philosopher who, though he lived a short life, produced major con-
tributions in many areas of mathematics, mechanics, physics and philosophy.
This he achieved during a mere fifteen-year professional career. He was the
archetypal polymath, since as well as displaying remarkable mathematical
skills, he was also an accomplished literature and classics scholar. Clifford
was fluent in reading French, German and Spanish, as he considered these
to be important for his mathematical work. He learned Greek, Arabic and
Sanskrit for the challenge they presented, Egyptian hieroglyphics as an intel-
lectual exercise, and Morse code and shorthand, because he wished to under-
stand as many forms for communicating ideas as possible. During his lifetime
Clifford was energetic and influential in championing the scientific method in

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 79–116.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. A portrait of William Kingdon Clifford (1845–1879). (Source: School of Mathem-
atics and Statistics, University of St Andrews, Scotland) (URL: http://www-history.mcs.st-
and.ac.uk/history/PictDisplay/Clifford.html)

social and philosophical contexts, and was a leading advocate for Darwinism.
He and his wife Lucy socialised regularly with many famous scientists and
literary figures of the period. He even had several non-academic strings to
his bow, notably gymnastics and kite flying, at which he impressed his con-
temporaries on numerous occasions. He was slight of build but his renowned
physical strength and athletic skills no doubt came to the fore when, on a sci-
entific expedition to Sicily (for the 22 December 1870 solar eclipse), he was
shipwrecked near Catania and survived. Despite this experience he fell in love
with the Mediterranean area. Sadly his health was relatively poor throughout
his life and he died of pulmonary tuberculosis (then referred to as consump-
tion) at the early age of 33 (Chisholm, 2002).

William Kingdon Clifford was born on 4th May 1845 at Exeter in the
county of Devon in the south-west of England. His father (William Clifford)
was a book and print seller (mainly of devotional material), an Alderman
and a Justice of the Peace. His mother Fanny Clifford (née Kingdon) was the
daughter of Mary-Anne Kingdon (née Bodley) who was related to Sir Thomas
Bodley (1545–1613). The latter had been a lecturer in natural philosophy at
Magdalen College, Oxford University during the reign of Queen Elizabeth I,
and was one of the main founders of the Bodleian Library in Oxford. As a
child William Kingdon lived at 9 Park Place in Exeter, the house where his
mother had been born, just a short walk from 23 High Street, Exeter, where
the family later moved. Exeter Civic Society has since placed a commemor-
ative plaque on the wall of 9 Park Place, for ease of identification. Clifford
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suffered early tragedy in his short life with the death of his mother in 1854,
aged 35, when he was only nine. His father re-married, had four more chil-
dren, and eventually died in 1878, aged 58, in Hyères, France.

On 7 April 1875 William Kingdon Clifford, aged 29, married Sophia Lucy
Jane Lane, aged 28, of Camden Town, London. Lucy (her preferred appella-
tion) claimed, romantically, to have been born in Barbados, but it seems that
her only association with the island was through her grandfather John Brand-
ford Lane, who had been a landowner there. It is unlikely that Lucy herself
was ever there, and indeed there was some mystery about her background,
not least because she continually lied about her age, reducing it eventually by
ten years, apparently to conceal details of her past (Chisholm, 2002).

Ostensibly, William and Lucy had a happy marriage and produced two
daughters. However, he was prone to overwork, lecturing and performing ad-
ministrative duties during the daytime, and doing research and writing his
many papers and articles at night. This probably led to a deterioration in his
health, which had never been robust, and in the Spring of 1876 he accepted
his poor state of health and agreed to take a leave of absence from his duties.
The family then spent six months in the Mediterranean region (Algeria and
Spain) while he convalesced, before returning to his academic post at Univer-
sity College, London in late 1876. Within eighteen months his health failed
again and he travelled to the Mediterranean once more, this time returning in
a feeble state in August 1878. By February 1879, with the rigours of the Eng-
lish winter in full force, desperate measures were required, and despite the
dangers of travel in such a poor state of health William sailed with the family
to the Portuguese island of Madeira in the North Atlantic Ocean to attempt to
recuperate. Unfortunately he never recovered and after just a month of debil-
itating illness he died on 3 March 1879 at Madeira of pulmonary tuberculosis.
His body was brought back to England by his wife and was buried in High-
gate Cemetery in London. The following epitaph (taken from Epictetus) on
his tombstone was chosen by Clifford himself on his deathbed:

I was not, and was conceived.
I loved and did a little work.

I am not, and grieve not.

Sadly the marriage had been cut short after only four years with the un-
timely death of William aged 33. During their four-year marriage, and sub-
sequently as his widow, Lucy had become a successful novelist, playwright
and journalist. Throughout their time together they moved in sophisticated
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social circles – scientific as well as literary. After William’s death Lucy be-
came a close friend of Henry James and regularly mixed socially with many
other prominent figures including Virginia Woolf, Rudyard Kipling, George
Eliot, Thomas Huxley and Thomas Hardy. Lucy outlived William by fifty
years and died on 21 April 1929, aged 82. She was buried beside her hus-
band in Highgate Cemetery. The following epitaph for Lucy was added to
Clifford’s tombstone:

Oh, two such silver currents when they join
Do glorify the banks that bound them in.

Clifford’s formal education had begun when he gained a place at the Ex-
eter Grammar School. However, he only spent a few months there before he
transferred in 1856 to the Mansion House School, also in Exeter. This school
was subsequently renamed Mr. Templeton’s Academy, and was eventually
demolished by Exeter City Council after having been bombed in 1942 during
World War II. In 1858 and 1859, whilst at Mr. Templeton’s Academy, Clifford
took both the Oxford and the Cambridge University Local Examinations in
an impressive range of subjects, gaining many distinctions. Continuing his
excellent academic record, Clifford won, at age 15, a Mathematical and Clas-
sical Scholarship to join the Department of General Literature and Science at
King’s College, London, and so he left Mr Templeton’s Academy in 1860. At
King’s College more achievements followed when he won the Junior Math-
ematical Scholarship, the Junior Classical Scholarship and the Divinity Prize,
all in his first year. He repeated the first two of these achievements in both
his second and third years at King’s College, and additionally he won the
Inglis Scholarship for English Language, together with an extra prize for the
English Essay. Clifford left King’s College in October 1863, at age 18, after
securing a Foundation Scholarship to Trinity College, Cambridge, to study
Mathematics and Natural Philosophy. At Cambridge he continued to shine
academically, winning prizes for mathematics and for a speech he presented
on Sir Walter Raleigh. He was Second Wrangler in his final examinations
in 1867 and gained the Second Smith’s Prize. Clifford was awarded his BA
degree in Mathematics and Natural Philosophy in 1867. He completed his
formal education on receiving an MA from Trinity College in 1870.

On 18 June 1866, prior to obtaining his BA, Clifford had become a mem-
ber of the London Mathematical Society, which held its meetings at Uni-
versity College. He had served on its Council, attending all sessions in the
periods 1868/69 to 1876/77. Within a year of being awarded his BA, Clifford
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was elected in 1868 to a Fellowship at Trinity College. He remained at Trin-
ity College until 1871 when he left to take up an appointment as Professor of
Mathematics and Mechanics at University College, London. It appears that he
had ‘lost his (Anglican Christian) faith’ and realistically could no longer re-
main at Trinity College. Unlike Trinity College, University College had been
founded in 1827 as a strictly secular institution and the Professors were not
required to swear allegiance to a religious oath. This liberal-mindedness ap-
pealed to Clifford’s freethinking viewpoint at the time, although he had been
a staunch Anglican in his youth. In June 1874 Clifford was elected as a Fellow
of the Royal Society, and soon afterwards he was also elected as a member of
the Metaphysical Society. The latter was chiefly concerned with discussing
arguments for or against the rationality of religious belief, in the prevailing
intellectual climate where Darwinian evolutionary theory was at the forefront
of debate. At this time he also delivered popular science lectures as well as
investigating psychical research and he was instrumental in debunking spirit
mediums and general claims for so-called paranormal activity.

Clearly, Clifford had wide-ranging interests, producing a considerable
output of work, considering his brief life span. However, much of his aca-
demic writings were published posthumously. His academic publications fall
mainly into three categories – Popular Science, Philosophy and Mathematics.

List of Main Works

A good representative example of Clifford’s Popular Science Lectures is
“Seeing and Thinking”. His main Philosophical Works include the import-
ant “The Ethics of Belief” (Clifford, 1877), “Lectures and Essays”, and “The
Common Sense of the Exact Sciences”. However, his Mathematical Works,
such as “Elements of Dynamic Vol. 1”, “Elements of Dynamic Vol. 2”,
and “Mathematical Papers” (Clifford, 1882), are especially interesting in
the present context. In particular, the “Mathematical Papers” (edited by R.
Tucker) published originally in 1882, and reprinted in 1968 (by Chelsea
Publishing Company, New York), is the most relevant reference here. These
mathematical papers were organised by their editor into two main groupings,
namely: Papers on Analysis, and Papers on Geometry. The former analysis
papers were grouped into papers on Mathematical Logic, Theory of Equa-
tions and of Elimination, Abelian Integrals and Theta Functions, Invariants
and Covariants, and Miscellaneous. Although at least four papers within this
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Analysis grouping are relevant in Mechanism and Machine Science, they are
not of central importance. The papers in Tucker’s Geometry grouping are the
more relevant ones. Tucker organised Clifford’s geometry papers into papers
on Projective and Synthetic Geometry, Applications of the Higher Algebra to
Geometry, Geometrical Theory of the Transformation of Elliptic Functions,
Kinematics, and Generalised Conceptions of Space. At least sixteen papers
from this Geometry grouping are directly related to the Mechanism and Ma-
chine Science field, but the following six are of fundamental importance:

Preliminary Sketch of Biquaternions (Clifford, 1873)
Notes on Biquaternions
Further Note on Biquaternions
On the Theory of Screws in a Space of Constant Positive Curvature
Applications of Grassmann’s Extensive Algebra (Clifford, 1876a)
On the Classification of Geometric Algebras (Clifford, 1876b)

Here, only the first of these papers (on biquaternions) will be reviewed.

Review of Main Works on Mechanism and Machine Science

Preamble

Partly because of his short life, much of Clifford’s academic work was pub-
lished posthumously. However, his widespread network of scientific contacts,
and his reputation as an outstanding teacher, together with his clear notes and
instructive problems ensured that he gained the acknowledgement that he de-
served during his lifetime. In the context of the history of mechanism and
machine science, his papers on geometry (Clifford, 1882) are most relevant,
particularly those on kinematics, and on generalised conceptions of space.

A general rigid-body spatial displacement with no fixed point can be
achieved as a twist about a screw axis. This is a combination of a rotation
about and a translation along a specific straight line (the axis) in 3D space
(Ball, 1900). A similar situation arises when the rigid body undergoes con-
tinuous spatial motion, in which case, at any instant of time, it is performing
a twist-velocity about a screw axis. Analogously, the most general system
of forces acting on a rigid-body may be replaced with an equivalent wrench
about a screw axis. This is a combination of a single force acting along a
specific straight line (the axis) in 3D space, together with a couple, first in-
troduced by Poinsot (1806), acting in any plane orthogonal to the line. These
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scenarios may be represented algebraically in many different ways (Rooney,
1978a), but Clifford’s biquaternion (Clifford, 1873) offers one of the most
elegant and efficient representations for kinematics.

All three of Clifford’s papers on biquaternions discuss and develop the
concept, although the first paper, Preliminary Sketch of Biquaternions, is the
main one that introduces the biquaternion – it is considered to be a classic
and is the main one to be reviewed here. The second paper, Notes on Bi-
quaternions, was found amongst Clifford’s manuscripts and was probably
intended as a supplement to the first paper. It is short and develops some of
the detailed aspects of biquaternion algebra. The third paper, Further Note
on Biquaternions, is more extensive and it discusses and clarifies why a bi-
quaternion may be interpreted in essentially two different ways, either as a
generalised type of number, or as an operator.

Preliminary Sketch of Biquaternions

The idea of a biquaternion, as presented in Clifford’s three papers, Prelim-
inary Sketch of Biquaternions, Notes on Biquaternions and Further Note on
Biquaternions (Clifford, 1882), originated with Clifford, although the term
“biquaternion” had been used earlier by Hamilton (1844, 1899, 1901). to de-
note a quaternion consisting of four complex number components, rather than
the usual four real number components. Clifford acknowledges Hamilton’s
priority here but he considers that because “all scalars may be complex”
Hamilton’s use of the term is unnecessary. Clifford adopts the word for a
different purpose, namely to denote a combination of two quaternions, algeb-
raically combined via a new symbol, ω, defined to have the property ω2 = 0,
so that a biquaternion has the form q+ωr, where q and r are both quaternions
in the usual (Hamiltonian) sense.

The symbol ω (and its modern version, ε) has been the focus of much
misunderstanding since it is a quantity whose square is zero and yet is not
itself zero, nor is it ‘small’. It should be viewed as an operator or as an abstract
algebraic entity, and not as a real number. Clifford confuses matters further by
using the symbol in several different contexts. In Part IV (on elliptic space)
of the Preliminary Sketch of Biquaternions paper ω has a different meaning
and an apparently different multiplication rule ω2 = 1, and in the papers
Applications of Grassmann’s Extensive Algebra and On the Classification
of Geometric Algebras there is yet another related use of the symbol ω, and
this time its defining property is ω2 = ±1. In the early part of the Preliminary
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Sketch of Biquaternions paper Clifford even uses ω to denote angular velocity,
so there is much scope for confusion.

The classic first paper on biquaternions, Preliminary Sketch of Biqua-
ternions, is organised into five sections. Section I introduces and discusses
the occurrence of various different types of physical quantity in mechan-
ical systems, and how they may be represented algebraically. Section II pro-
ceeds to construct a novel algebra, for manipulating various physical quant-
ities, based on an extension and generalisation of Hamilton’s algebra of qua-
ternions, and this is where the term biquaternion is introduced. Section III
briefly investigates non-Euclidean geometries (and specifically elliptic geo-
metry with constant positive curvature) for the purpose of interpreting some
of the projective features and properties of biquaternions. Section IV exam-
ines several particular physical quantities and shows that in some sense their
‘ratio’ is a biquaternion. Finally Section V looks at five specific geometrical
scenarios involving biquaternions. The short second paper of the trio, Notes
on Biquaternions, appears to continue this latter Section V with a further two
geometrical scenarios.

Clifford’s motivation in creating his biquaternion derives essentially from
mechanics, and in Section I of Preliminary Sketch of Biquaternions he draws
attention to the inadequacies of algebraic constructs such as scalars and vec-
tors for representing some important mechanical quantities and behaviours.
Many physical quantities, such as energy, are adequately represented by a
single magnitude or scalar. But he states that other quantities, such as the
translation of a rigid body, where the translation is not associated with any
particular position, require a magnitude and a direction for their specifica-
tion. Another example is that of a couple acting on a rigid body, where again
a magnitude and direction are required but the position of the couple is not
significant. The magnitude and direction of either a translation or of a couple
may be represented faithfully by a vector, as Hamilton had shown.

However, Clifford emphasises that there are several mechanical quantities
whose positions are significant, as well as their magnitudes and directions.
Examples include a rotational velocity of a rigid body about a definite axis,
and a force acting on a rigid body along a definite line of action. These cannot
be represented adequately just by a vector, and Clifford introduces the term
rotor (probably a contraction of ‘rotation vector’) for these quantities, that
have a magnitude, a direction and a position constrained to lie along a straight
line or axis.
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In order to combine or to compare scalar, vector and rotor quantities, some
form of consistent algebra is desirable that faithfully represents the required
processes of combination/comparison. Scalar quantities may be dealt with us-
ing the familiar real number algebra. Its standard operations of addition, sub-
traction, multiplication and division usually yield intuitively plausible results
for the magnitudes of scalars.

For vectors in a 2D space the complex numbers (considered as 2D vec-
tors), offer something fundamentally new in that they can be used to represent
and compare directions as well as magnitudes, by forming the ratio of two
complex numbers and hence by using the complex number division opera-
tion. Moreover, complex numbers may be used as operators for rotating and
scaling geometrical objects in a 2D space.

In the case of vector quantities in 3D space, consistent addition and sub-
traction operations may be defined using “vector polygons” to combine vec-
tors (denoted by straight line segments) in a way that takes account of their
directions. The standard approach is based on empirical knowledge of how
two translations (or two couples) behave in combination. So, two vectors may
be added (subtracted) to give a meaningful sum (difference), which is itself
another vector. But if an attempt is made to compare two vectors, in the way
that two scalars might be compared, by forming their ratio using algebraic
division, there is a problem.

In 3D space Hamilton (1844, 1899, 1901) had shown that it is difficult
to define any form of division operation to obtain the ratio of two vectors
because such a ratio could not itself be a vector. He had demonstrated con-
clusively that forming the ‘ratio’ of two 3D vectors requires the specification
of four independent scalar quantities, and so the outcome must be a 4D object
in general. He had also shown that two different vector ‘ratios’ are obtained
from ‘left-division’ and ‘right-division’ (left- and right-multiplication by an
inverse), and so the operation is non-commutative. Hamilton had solved the
problem by inventing quaternions and their consistent non-commutative (4D)
algebra. A 3D vector algebra cannot be closed under multiplication and ‘divi-
sion’, despite the fact that it is closed under addition and subtraction. Instead
the 3D vectors must be embedded in a 4D space and treated as special cases
of 4D vectors with one zero component. Hamilton’s algebra was based on a
quaternion product that could be partitioned into a scalar part and a vector
part. These parts were subsequently treated separately by Gibbs as a ‘dot’
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product and a ‘cross’ product to form the basis of his later vector algebra
(Gibbs, 1901).

Clifford extends Hamilton’s approach and investigates the situation with
rotors, which are even more problematical than 3D vectors. In this case em-
pirical knowledge and experience demonstrate that the combination of two
rotational velocities with different (skew) axes does not produce a rotational
velocity. Instead it produces a general rigid-body motion. In a similar way the
combination of two forces with different (skew) lines of action does not pro-
duce another force with a definite line of action. Instead it produces a general
system of forces (Ball, 1900). So, an algebra for rotors in 3D space cannot be
expected to be closed under addition or subtraction, and by analogy with the
situation with 3D vectors neither can it be expected to be closed under multi-
plication or division. Clifford tackles the problem by proceeding to develop a
consistent approach that can deal comprehensively with scalars, vectors and
rotors, together with their combinations under suitably defined operations of
addition, subtraction, multiplication and division. His aim is to provide an
algebra for an extended range of physical quantities in mechanics.

As a first step Clifford refers to Ball’s work on screw theory (Ball, 1900)
which he acknowledges as a complete exposition of general velocities of rigid
bodies and of general systems of forces on rigid bodies. Ball had shown that
the most general velocity of a rigid body is equivalent to a rotation velocity,
about a definite axis, combined with a translation velocity along this axis,
thus forming a helical motion, which he referred to as a twist velocity about a
screw. The screw consists of a screw axis (the same line as the rotation axis)
together with a pitch (a linear magnitude) given by the ratio of the magnitude
of the translational velocity to the magnitude of the rotational velocity. The
twist velocity is hence a screw with an associated (angular speed) magnitude.

Analogously Ball had also shown that the most general system of forces
on a rigid body is equivalent to a single force with a definite line of action,
combined with a couple in a plane orthogonal to this axis, thus forming a
helical force system that he referred to as a wrench about a screw. In this case
the screw consists of a screw axis (the same line as the line of action of the
single force) together with a pitch (a linear magnitude) given by the ratio of
the magnitude of the couple to the magnitude of the single force. The wrench
is hence a screw with an associated (force) magnitude.

Clifford completes Section I of the paper by introducing the term motor
(probably a contraction of ‘motion vector’) to denote this concept of a (force
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Fig. 2. The ratio of two vectors. (Source:
W.K. Clifford, 1882, Collected Papers, fa-
cing p. 228, Chelsea Publishing Company,
New York)

Fig. 3. The ratio of two rotors. (Source:
W.K. Clifford, 1882, Collected Papers, fa-
cing p. 228, Chelsea Publishing Company,
New York)

or angular speed) magnitude associated with a screw. He thus designates the
sum of two or more rotors (representing forces or rotation-velocities) as a
new object, namely a motor, and then establishes that although the addition
of rotors is not closed, the addition of motors is closed. By considering any
vector and any rotor to be degenerate forms of motor, and noting that the sum
of two motors is always a motor, Clifford effectively achieves an algebra of
vectors, rotors and motors that is closed under addition and subtraction.

In Section II of Preliminary Sketch of Biquaternions Clifford proceeds
to develop further his algebra of motors by examining whether or not he can
define their multiplication and ‘division’. He begins by noting that Hamilton’s
quaternion may be interpreted either as the ratio of two 3D vectors, or as the
operation which transforms one of the vectors into the other. He illustrates
this with a figure (Figure 2) showing two line segments, labelled AB and
AC, to represent the two vectors. These have different lengths (magnitudes)
and directions, and although the vectors have arbitrary positions, the line seg-
ments are positioned conveniently so that they both emanate from the same
point, A. He explains that AB may be converted into AC by rotating it around
a rotation axis through A that is perpendicular to the plane BAC, until AB

has the same direction as AC, and then stretching or shrinking its length until
it coincides with AC. The process of combining the rotation with the magni-
fication may be thought of as taking the ratio of AC to AB, or alternatively
as operating on AB to produce AC. Hamilton had previously shown this pro-
cess to be representable as a quaternion q. It may be written either in the form
of a ratio AC/AB = q or in the form of an operation q · AB = AC. If the
magnification is ignored, the rotation by itself essentially represents the ratio
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of two directions, namely those of AC and AB, or, equivalently, the process
of transforming one direction into the other.

Clifford states that this particular quaternion q will operate on any other
vector AD in the plane BAC in the same way, so that another such vector AD

will be rotated about the same axis perpendicular to the plane BAC through
the same angle, and be magnified in length by the same factor to become AE

in the plane BAC, where angle DAE equals angle BAC. However, he also
states that this quaternion q operating on any vector, say AF , not lying in the
plane BAC does not rotate and magnify AF in this way. In fact he gives no
meaning to this operation. So, a quaternion formed from the ratio of the two
vectors AB and AC can operate only on vectors in the plane BAC.

By analogy with Hamilton’s quaternion, used for the ratio of two 3D vec-
tors, Clifford considers forming the ratio of two rotors. He describes how two
rotors (with different (skew) axes) may be converted one into the other. Again
he uses a diagram (Figure 3) to illustrate the procedure. The two rotors are
represented as two line segments lying along (skew) axes, and labelled AB

and CD. These have different lengths (magnitudes), directions and positions,
but they are partially constrained in position to always lie somewhere along
their respective axes. He states that there is a unique straight line that meets
both rotor axes at right angles, and he positions the line segments so that the
points A and C lie on this unique line. The length of the line segment AC then
represents the shortest distance between the two rotor axes. Clifford outlines
how the rotor AB may be converted into the rotor CD, in three steps. Firstly,
rotate AB about the axis AC into a position AB ′, which is parallel to CD.
Secondly, translate AB ′ along AC, keeping it parallel to itself, into the pos-
ition CD′. Thirdly, stretch or shrink the length of CD′ until it coincides with
CD. The combination of the first two operations is clearly seen to be a twist
about the screw with axis AC with pitch given by length AC/angle BAB ′.
The third operation is simply a magnification (a scale factor). So, Clifford
demonstrates that the ratio of the two given rotors AB and CD is a twist about
a screw combined with a (real number) scale factor. He writes this ratio in the
form CD/AB = t or alternatively as an operation in the form t · AB = CD,
and he refers to t as a tensor-twist (the word “tensor” in the sense that he
uses it here is not related to the modern use of the word). If the scale factor is
ignored, the twist about the screw by itself essentially represents the ratio of
two (skew) axes, namely those of CD and AB, or, equivalently, the process
of transforming one axis into the other.
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Clifford states that this particular tensor-twist t (the ratio of the two rotors
AB and CD) will operate on any other rotor EF whose axis meets the axis
of t (that is the axis of AC) at right angles. It will rotate EF about the axis
of AC through an angle BAB ′, translate it along this axis through a distance
equal to the length of AC, and stretch or shrink its length in the ratio of the
lengths of CD to AB. However, Clifford also states that t operating on any
rotor, say GH , that does not meet the axis of AC, or that does not meet it
at right angles, will not rotate, translate and magnify GH in this way. In this
case he gives no meaning to the operation. So, a ratio of two rotors AB and
CD can operate only on other rotors whose axes intersect their screw axis
orthogonally.

At this stage the ratio of two vectors has been considered (following
Hamilton) and the ratio of two rotors has been derived. Clifford now invest-
igates the ratio of two motors. He first looks at a special case, namely that
where the two motors have the same pitch. He shows that in this case the ra-
tio of these two motors is again a tensor-twist. His proof relies on expressing
each of the motors as the sum (actually he uses a linear combination) of two
rotors (he had stated earlier that the sum of two rotors is a motor). Clifford
considers the first motor to be a linear combination of two rotors α and β, so
the first motor is mα+nβ, where m and n are real scale factors (scalars). Then
he considers a tensor-twist t whose axis intersects both of the axes of α and
β at right angles (hence the axis of t lies along the common perpendicular of
the axes of α and β). The effect of t on the rotor α is to produce a new rotor
γ = tα, and similarly t acting on the rotor β produces another new rotor
δ = tβ. He now forms a second motor, this time from a linear combination
of the two new rotors γ and δ, by using the same scale factors m and n as
he used in constructing the first motor, giving the second motor as mγ + nδ.
This ensures that the second motor has the same pitch as the first motor. Fi-
nally, he assumes that the distributive law is valid for rotors and constructs
the following sequence: t (mα + nβ) = m(tα) + n(tβ) = mγ + nδ. Hence
he shows that:

t = mγ + nδ

mα + nβ

is the ratio of the two motors having the same pitch.
This establishes that the ratio of two motors with the same pitch is again

a tensor-twist. Unfortunately, if the motors do not have the same pitch, their
ratio is not a tensor-twist, and so Clifford then sets out to derive the general
case. The procedure is quite lengthy and involves the introduction of a new
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operator ω with a somewhat counter-intuitive property, namely ω2 = 0. In
modern times this symbol has been changed to ε, partly to avoid confusion
with the commonly used symbol for rotational speed, and partly to suggest
pragmatically that it is akin to a small quantity whose square may be neg-
lected in algebraic calculations and expansions. It is now referred to as a dual
number, or more specifically as the dual unit.

Clifford considers that the ratio of two general motors will be established
if a geometrical operation can be found that converts one motor, say A, into
another motor, say B. He begins his analysis of the general case by observing
that every motor can be decomposed into the sum of a rotor part and a vector
part, and that the pitch of the motor is given by the ratio of the magnitudes of
the vector and rotor parts. This is justified empirically by remembering that
a wrench (an example of a motor) consists of the sum of a force with its line
of action (a rotor), and a couple in a plane orthogonal to the line of action (a
vector). Another example is a twist velocity (a motor) consisting of the sum
of a rotational velocity about an axis (a rotor), and a translational velocity
along the axis (a vector). Clifford states that, because of this generally avail-
able decomposition of any motor into a rotor plus a vector, it is possible to
change arbitrarily the pitch of the motor without changing the rotor part, by
combining the motor with some other suitable vector. So, to convert a given
general motor A into another given general motor B, he proceeds by introdu-
cing an auxiliary motor B ′ that has the same rotor part as B but that has the
same pitch as A. He has already shown that the ratio of two motors with the
same pitch is a tensor-twist, so he immediately knows the ratio B ′/A = t .
He expresses B ′ in terms of B by adding an appropriate vector, −β, so that:
B = B ′ + β where β is a vector parallel to the axis of B.

Clifford can then write the ratio of B to A as:

B

A
= B ′

A
+ β

A
= t + β

A
.

This is the sum of a tensor-twist t with a new object β/A. The latter is the ratio
of a vector in some direction, to a motor with an axis generally in a different
direction, and as yet its nature is unknown. He proceeds to investigate the
nature of this new ratio by introducing a symbol ω to represent an operator
that converts any motor into a vector parallel to the axis of the motor and of
magnitude equal to the magnitude of the rotor part of the motor. Thus, for
example, ω converts rotation about any axis into translation parallel to that
axis. Similarly, ω converts a force along its line of action into a couple in a
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plane orthogonal to that line of action. By definition ω operates on a motor,
and the effect of ω operating on a vector such as a translation or a couple is
to reduce these to zero. So, ω operating on a motor, produces a (free) vector
from its rotor part and simultaneously eliminates the vector part of the motor.
Thus, operating with ω twice in succession on any motor A always reduces
the motor to zero, that is ω2A = 0, or expressed simply, in more modern
form, ω2 = 0.

Clifford states the above operation algebraically as ωA = α, where A

is a general motor and α is the (free) vector with the same direction and
magnitude as the rotor part of A. He recalls that the ratio of two vectors is a
quaternion and hence β/α = q is a quaternion, so β = qα. This allows him
to write the following sequence: β = qα = qωA, so that: β/A = qω, and
therefore: B/A = t + qω.

The latter expresses the ratio of two general motors A and B as the sum of
two parts, namely a tensor-twist t and a quaternion q multiplied by ω. At this
stage Clifford has derived a clear interpretation for the ratio of two motors
but he is not content with this form. He proceeds to interpret the ratio B/A

differently and eventually expresses it in an alternative interesting form.
His alternative interpretation requires some further analysis, but it leads to

a more sophisticated result involving the new concept of a biquaternion. He
starts by considering an arbitrary point, O, in space as an origin. From em-
pirical knowledge of forces, couples, rotational and translational velocities,
he is able to state that, in general, any motor may be specified uniquely as
the sum of a rotor with axis through the origin, O, and a (free) vector, with a
different direction from that of the rotor. He proceeds to observe that rotors
whose axes always pass through the same fixed point behave in exactly the
same way as (free) vectors. The ratio of any two of these rotors is of course
a tensor-twist, because both have the same (zero) pitch. But the pitch of this
tensor-twist is zero because the rotor axes intersect (in modern terms there
is no translation along a common perpendicular line), and so the ratio of the
two rotors through the same fixed point is essentially a quaternion with axis
constrained to pass through the fixed point.

At this stage Clifford’s notation becomes slightly confusing. Now he
chooses to use a cursive Greek letter to represent a rotor whose axis passes
through the origin, and the same cursive Greek letter prefixed by the symbol
ω to represent a vector with the same magnitude and direction as the corres-
ponding rotor. So, the rotor α whose axis passes through the origin, and the
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vector ωα are parallel in direction and they have the same magnitude. This
does make sense because, as stated earlier, the effect of ω operating on any
motor, including the zero-pitch motor α (a rotor) with axis through the origin,
is to convert it into a vector in just this way. Clifford writes (à la Hamilton)
the ratio of two such vectors ωα and ωβ as a quaternion p = ωβ/ωα and
by ‘cancelling’ the ω this becomes p = β/α where α and β are rotors with
axes through the origin. [Clifford uses the letter q, rather than p, as a general
symbol for a quaternion, but the letter p has been substituted here instead to
distinguish it as a different quaternion from the one to be introduced below.]
So, in this way he has shown that the quaternion p represents either the ra-
tio of two vectors ωα and ωβ, or, equivalently, the ratio of two respectively
parallel rotors α and β with axes passing through the origin.

Clifford is now able to state the general expression for a motor as α +ωβ.
This agrees with empirical evidence since it is the sum of a rotor α, with
axis through the origin, and a (free) vector ωβ, with a direction that differs, in
general, from the direction of α. The ratio of two such general motors, α+ωβ

and γ + ωδ, is the algebraic expression:

γ + ωδ

α + wβ
.

To evaluate this, Clifford continues by recognising that the ratio of the two
rotors α and γ , with axes through the origin, is some quaternion, γ /α = q.
From this he has that qα = γ , and so q(α + ωβ) = qα + qωβ = γ + ωqβ.
But now he has to determine the geometrical nature of the algebraic product
qβ in this expression. Operating on α with q clearly rotates it into γ , but since
β does not in general lie in the same plane as α and γ , the geometrical effect
of operating on β with q is not yet known, although algebraically it is just
another quaternion.

Clifford tackles this problem of geometrical interpretation by introducing
yet another quaternion r and using the algebra of quaternions to derive, in
the first instance, some formal algebraic expressions. Since any algebraic
combination of quaternions, vectors (equivalent to quaternions with zero first
component) and rotors through a fixed point (equivalent to vectors) is a qua-
ternion, he defines r as the quaternion,

r = δ − qβ

α
,

from which he has: rα = δ − qβ. He then operates on this with ω and ob-
tains ωrα = ωδ − ωqβ. Finally, he adds this equation to the earlier one
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q(α + ωβ) = γ + ωqβ, to derive the following expression:

(q + ωr)(α + ωβ) = γ + ωδ,

in which the defining property ω2 = 0 is used. Re-writing the final expression
in the form:

γ + wδ

α + ωβ
= q + ωr

shows that the ratio of two general motors is the sum of two terms. The first is
a quaternion and the second is a quaternion operated on by ω. Clifford refers
to this new quantity, representing the ratio of two general motors, as a biqua-
ternion. Unfortunately, he then states that this biquaternion has no immediate
interpretation as an operator in the way that a quaternion operates on a vec-
tor to give another vector (if the first vector is orthogonal to the axis of the
quaternion). This conclusion is somewhat unsatisfactory but in the remaining
Sections III–V of the paper Preliminary Sketch of Biquaternions he addresses
the shortcoming by setting the biquaternion concept in the wider context of
projective geometry. He ends the section with the following Table 1, summar-
ising his perception of the situation so far.

Table 1. Summary of geometrical forms and their representations. (Source: W.K. Clifford,
1882, Collected Papers, p. 188, Chelsea Publishing Company, New York)

In Section III of Preliminary Sketch of Biquaternions, Clifford amplifies
the concept of the biquaternion in the context of non-Euclidean spaces, par-
ticularly the elliptic geometry of constant positive curvature. This is a gener-
alisation into 3D (curved space) of the 2D geometry of the (curved) surface of
a sphere. Using the formalism of projective geometry he outlines the follow-
ing facts, relating to this elliptic (constant positive curvature) non-Euclidean
space:
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• Every point has a unique set of three coordinates, and conversely every
set of three coordinate values defines a unique point;

• There is a quadric surface, referred to as the Absolute, for which all its
points and tangent planes are imaginary;

• Two points are referred to as conjugate points, with respect to the absolute,
if their ‘distance’ (an angle) apart is a quadrant, and two lines or two
planes are conjugate if they are at right angles to each other;

• In general, two lines can be drawn so that each meets two given lines at
right angles, and the former are referred to as polars of each other;

• A twist-velocity of a rigid body has two axes associated with it because
translation along one axis is equivalent to rotation about its polar axis and
vice versa;

• A twist-velocity of a rigid body has a unique representation as a combin-
ation of two rotation-velocities about two polar axes;

• The motion of a rigid body may be expressed in two ways, either as a
twist-velocity about a screw axis with a certain pitch, or as a twist-velocity
about the polar screw axis with the reciprocal of the first pitch;

• In general, a motor may be expressed uniquely as the sum of two polar
rotors;

• A special type of motor arises when the magnitude of the two polar rotors
are equal, because the axes of the motor are then indeterminate, so that
the motor behaves as a (free) vector;

• There are right vectors and left vectors in elliptic space, depending on the
handedness of the twist of the motor from which they are derived, whose
axes are indeterminate;

• In elliptic space if a rigid body rotates about an axis through a certain ‘dis-
tance’ and simultaneously translates along it through an equal ‘distance’,
then all points of the body travel along ‘parallel straight lines’ and the mo-
tion is effectively a rotation about any one of these lines together with an
‘equal’ translation along it.

From these facts Clifford derives the following proposition at the end of Sec-
tion III:

Every motor is the sum of a right and a left vector.

This he expresses in the form

A = 1

2
(A + A′) + 1

2
(A − A′),
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where A is the motor and A′ is its polar motor, and where (A + A′) and
(A −A′) are both motors of pitch unity, but one is right-handed and the other
is left-handed.

In Section IV of Preliminary Sketch of Biquaternions, Clifford continues
with his treatment of motors in the context of elliptic geometry and essen-
tially sets up a coordinate system for rotors passing through the origin. He
bases this on the three mutually perpendicular unit rotors i, j , and k whose
axes are concurrent at the origin. Any rotor through the origin then has the
form ix + jy + kz, where x, y, and z are scalar quantities (ratios of mag-
nitudes). He gives another interpretation to i, j , and k as operators. Thus for
instance i operates on any rotor that intersects the axis of i at right angles and
rotates it about the axis of i through a right angle. Similar comments apply
to j and k, and their axes. Clifford refers to these operations as rectangular
rotations. Performing repeated rectangular rotations leads to the familiar qua-
ternion equations i2 = j 2 = k2 = ijk = −1 and hence Clifford interprets
the unit quaternions i, j and k as rectangular rotations about the coordinate
axes. He states that for operations on rotors which are orthogonal to, but do
not necessarily intersect, the axes of i, j , and k, the quaternion equations are
still valid.

The rotor ix+jy+kz is interpreted as a rectangular rotation about the axis
of the rotor, combined with a scale factor (x2 + y2 + z2)1/2. It operates only
on those rotors whose axes intersect its axis at right angles. The remainder of
Section IV explores various consequences of these interpretations and con-
cludes with another proof that the ratio of two motors is a biquaternion, as
defined in Section II.

The final Section V of Preliminary Sketch of Biquaternions, is short and
deals with some applications of the rotor concept in elliptic geometry looking
at special cases of geometrical interest. There are five sub-sections as follows:
Position-Rotor of a point; Equation of a Straight Line; Rotor along Straight
Line whose Equation is given; Rotor ab joining Points whose Position-Rotors
are α, β; Rotor parallel to β through Point whose Position-Rotor is α. These
are not reviewed here since they are not of central interest to the field of
Mechanism and Machine Science.
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Modern Interpretation of Contributions to Mechanism and
Machine Science

Preamble

Since the time of Clifford’s seminal papers on biquaternions considerable
progress has been made in this topic. The theoretical aspects have been sig-
nificantly advanced by mathematicians developing new types of ‘number’,
such as dual numbers and double numbers (Dickson, 1923, 1930; Yaglom,
1968), and new fields in abstract algebra such as the eponymous Clifford al-
gebras (Grassmann, 1844; Clifford, 1876a, 1876b; Altmann, 1986; Hestenes
and Sobczyk, 1987; Conway and Smith, 2003; Rooney and Tanev, 2003;
Rooney 2007). In the realm of applications, major progress has been made
in mechanics (particularly in kinematics) using various dual quantities and or
motors (Denavit, 1958; Keler, 1958; Yang, 1963, 1969; Yang and Freuden-
stein, 1964; Dimentberg, 1965; Yuan, 1970, 1971; Rooney, 1974, 1975b), and
many other leading researchers in mechanics refer to quaternions and biqua-
ternions in dealing with screw theory, notably (Hunt, 1978; Davidson and
Hunt, 2004). In physics also (and particularly in quantum mechanics) various
types of Clifford algebras are in use (Hestenes, 1986; Penrose, 2004). Fur-
thermore, other related application areas have used or could profitably use
the quaternion concept (Rogers and Adams, 1976; Kuipers, 1999) and could
benefit from a generalisation to the biquaternion. However, it must be said
that Clifford’s inventions have not had universal acceptance, and, as noted
by Baker and Wohlhart (1996), one early researcher in particular (von Mises,
1924a, 1924b) deliberately set out to establish an approach to the analysis of
motors that did not require Clifford’s operator ω.

Clifford’s important achievements are numerous and wide-ranging, but
in the present context the more significant ones include: the invention of the
operator ω; the clarification of the relationship between (flat) spatial geometry
and (curved) spherical geometry; the derivation of the biquaternion concept;
and the unification of geometric algebras into a scheme now referred to as
Clifford algebras. But before considering these in more detail from a modern
viewpoint it is worth drawing attention to some problematical aspects.

Despite the elegance of Clifford’s work on biquaternions, there are several
subtleties that must be considered in the context of mechanics. The immedi-
ate problem, apparent from the outset is that a biquaternion, defined originally
by Clifford as a ratio of two motors, does not appear to be interpretable as an
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operator that generally transforms motors, one into another. Actually it can
be interpreted in a restricted sense in this way provided that it operates only
on motors whose axes intersect the axis of the biquaternion orthogonally.
This is analogous to the situation with Hamilton’s quaternion and rotations.
However, these difficulties are resolved by forming a triple product operation,
involving three terms, rather than the one used initially by Clifford, involving
just two terms, and by not interpreting the quaternion units i, j , and k as ro-
tations through a right angle about the x, y, and z axes, respectively, as is
commonly done (Porteous, 1969; Rooney, 1978a; Altmann, 1989). This new
three-term biquaternion operation allows any motor to be screw displaced into
another position and orientation and not just those motors whose axes are or-
thogonal to and intersect the biquaternion axis. By way of comparison the
equivalent operation for quaternions rotates any vector and not just those or-
thogonal to the axis of the quaternion (Brand, 1947, Rooney, 1977; Hestenes,
1986).

A second problem arising from Clifford’s work on biquaternions relates
to the use in dynamics of his operator ω, with the property ω2 = 0. Since its
introduction it has taken on a wider life of its own and is now studied (inde-
pendently of its roots in mechanics) as an abstract algebraic entity (Dickson,
1923, 1930). Currently, it is referred to as a dual number, and is designated by
the symbol ε, where ε2 = 0 (Yaglom, 1968). It was introduced, , essentially
in the contexts of geometry, statics and kinematics and has been employed
very successfully there. In the realm of mechanics in general it has spawned
a range of dual-number and other dual-quantity techniques applicable in the
analysis and synthesis of mechanisms, machines and robots (Denavit, 1958;
Keler, 1958; Yang, 1963, 1969; Yang and Freudenstein, 1964; Dimentberg,
1965; Yuan, 1970, 1971; Rooney, 1974, 1975b). However, although these
techniques generally work well in geometry, statics and kinematics, where
spatial relationships, rotational velocities, forces and torques are the focus,
they are often of more limited use in dynamics, where accelerations, and iner-
tias are additionally involved. Here again there is some difficulty of interpret-
ation but perhaps more importantly the algebraic structure of the dual number
and other dual quantities do not appear properly to represent the nature of the
underlying dynamical structures (von Mises, 1924a,b; Kislitzin, 1938; Sho-
ham and Brodsky, 1993; Baker and Wohlhart, 1996).
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Dual Numbers, Dual Angles, Dual Vectors and Unit Dual Quaternions

When considering the geometry or motion of objects in 3D space the most
common transformations in use are those that operate on points. These are
referred to as point transformations and the familiar 4 × 4 real matrix, op-
erating on the homogeneous coordinates of any point, falls into this class
(Maxwell, 1951; Rooney, 1977). However, the modern use of Clifford’s op-
erator ω and his biquaternion, together with quantities derived from them,
essentially rests on a consideration of 3D space as a collection of (straight)
lines as well as points, because lines occur (as rotation and screw axes) in
any discussion of motion and the forces that cause motion. A line has four
degrees of freedom of position and orientation and requires four independent
coordinates for its specification (Semple and Roth, 1949), whereas a point
needs only three coordinates. The transformations required for lines are nat-
urally referred to as line transformations. One type of representation of lines,
and also of transformations of lines, involves dual numbers (the modern ver-
sion of Clifford’s operator ω). Lines may be represented using dual vectors,
whereas transformations are represented using dual quaternions (the modern
version of Clifford’s biquaternions).

It has proved convenient to use six so-called Plücker coordinates in the
mathematical description of a line (Plücker, 1865; Brand, 1947). These are
analogous to the four homogeneous coordinates used to represent a point
(Maxwell, 1951).

The six Plücker coordinates arise as the components of two vectors (Fig-
ure 4). The first vector, L, with three components, L, M and N , defines the
direction of the given line. The second vector, L0, with components, L0,
M0 and N0, is the moment of the line about the origin. So, r × L = L0,
where r is the position vector of any point on the line. Now, it is clear
from contemporary standard vector algebra (Gibbs, 1901; Brand, 1947) that
L · L0 = L0 · L = (r × L) · L = 0, and so the two vectors L and
L0 are always orthogonal. The six Plücker coordinates satisfy the relation-
ship L · L0 = LL0 + MM0 + NN0 = 0. Additionally, the vectors,
µL = (µL,µM,µN) and µL0 = (µL0, µM0, µN0) for arbitrary non-zero
µ, give the same line as before. It is usual to choose L as a unit vector and
hence to choose L, M and N such that L2+M2+N2 = 1, so that they repres-
ent the direction cosines of the line. There are hence two conditions imposed
on the six Plücker coordinates and only four independent coordinates remain,
as expected for a line in 3D space.
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Fig. 4. The six Plücker coordinates (L, M ,
N ; L0, M0, N0) of a straight line in 3D
space, represented by a unit dual vector L̂,
where L defines the direction of L̂ and L0 is
the moment of L̂ about the origin. (Source:
J. Rooney, 1978a, p. 46)

Fig. 5. A general dual vector L̂ (a motor),
representing a screw in 3D space, where L
defines the magnitude and direction of L̂,
where L′

0 is the moment of L̂ about the ori-
gin, and where |L′′

0 |/|L| defines the pitch of
the screw. (Source: J. Rooney, 1978a, p. 50)

If the line passes through the origin, its moment, L0, is zero, it is specified
by a single vector L, and it has only two degrees of freedom. Lines through
the origin may therefore be put into one-one correspondence with the points
on the surface of a unit sphere centred on the origin, and this forms part of the
basis of the relationship between spherical (2D curved) geometry and spatial
(3D flat) geometry.

The new location of a specific point under a line transformation is ob-
tained by operating separately on any two lines which intersect in the point at
its initial position, and then determining their new point of intersection after
the transformation. This is analogous to the method used to find the new loc-
ation of a line under a point transformation. In this case the procedure is to
transform any two points lying on the initial line and then to determine the
line joining their new positions.

The six Plücker coordinates (L,M,N;L0,M0, N0) of a line, define the
position and orientation of the line with respect to a point O, the origin. To
describe the relative orientation of two directed skew straight lines in space
a unique twist angle, α and a unique common perpendicular distance, d, are
defined, although these two variables do not completely specify the config-
uration since the common perpendicular line itself must also be given. The
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situation is analogous to the case of two intersecting lines (Rooney, 1977).
There the lines define a unique angle at which they intersect, but the normal
line to the plane in which they lie is needed for a complete specification of the
relative orientation. It is advantageous to combine the two real variables (scal-
ars), α and d, into a type of ‘complex number’, known as a dual number. It
is not widely known that the usual complex number may be generalised, and
there are a further two essentially different types (Yaglom, 1968). All three
are considered in (Rooney, 1978b) in the context of geometry and kinematics.
These are:

the complex number a + ib, where i2 = −1

the dual number a + εb, where ε2 = 0

the double number a + jb, where j 2 = +1

Fig. 6. Dual angles in 3D space: (a) the dual angle, α + εd , between two skew lines; (b) the
dual angular displacement, θ + εS, of a rigid body. (Source: J. Rooney, 1978a, p. 47)

Algebraically, each of the three different types of complex number is just
an ordered pair (a, b) of real numbers with a different multiplication rule for
the product of two such ordered pairs. The symbol ε in the dual number is es-
sentially the operator originally introduced by Clifford, (1873), although here
it is an abstract algebraic quantity rather than an operator in mechanics. The
usefulness of this type of abstract number derives from the work of (Study,
1901) who showed how the twist angle, α and common perpendicular dis-
tance, d, between two skew lines may be combined into a dual number of the
form α + εd (where ε2 = 0). This is referred to as the dual angle between the
lines (Figure 6a).

Dual angles also occur in the description of a general rigid-body spatial
displacement, which involves a real angle and a real distance (Figure 6b).
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Fig. 7. The dual direction cosines, cos(αx + εdx), cos(αy + εdy), and cos(αz + εdz) of a
directed line in space. (Source: J. Rooney, 1978a, p. 48)

It was Chasles (1830) who proved that such a displacement was equivalent
to a combination of a rotation about and a translation along some straight
line. Later Ball (1900) referred to this as a screw displacement about a screw
axis. The motion thus defines a unique screw axis, a unique real angle θ (the
rotation), and a unique real distance S (the translation). The variables θ and
S may be combined into a dual number of the form θ + εS. This dual number
is essentially a dual angle since the screw displacement may be specified by
the initial and final positions of a line perpendicular to the screw axis, and
these positions form a pair of skew lines (Figure 6b). Thus a spatial screw
displacement can be considered to be a dual angular displacement about a
general line (the screw axis) in space.

A given line in space, which does not pass through the origin, has three
dual angles associated with it and they define it completely. These are the
dual angles αx + εdx , αy + εdy , and αz + εdz, that it makes with the three
coordinate axes (Figure 7). These three dual angles may be related to the
six Plücker coordinates (L,M,N;L0,M0, N0), using rules for the expansion
of (trigonometric) functions of a dual variable, and it is shown in Rooney
(1978a) that the relationships are:

cos(αx + εdx) = L + εL0,

cos(αy + εdy) = M + εM0,

cos(αz + εdz) = N + εN0.
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The three dual numbers L + εL0, M + εM0 and N + εN0 are referred
to as the dual direction cosines of the line and they may be considered to be
the three components of a unit dual vector, L̂ in the same way that (L,M,N)

forms a unit real vector, L whose components are three real direction cosines.
The dual vector describing any line in space is written:

L̂ = L+εL0 = (L,M,N)+ε(L0,M0, N0) = (L+εL0,M+εM0, N+εN0).

Here the circumflex over a quantity does not indicate a unit quantity. It is
referred to as the dual symbol and it is used always to signify a dual quantity
(a dual number, dual vector, dual matrix, or dual quaternion). Thus, α + εd

would be written as α̂, and θ + εS as θ̂ . Similarly L̂ would be L + εL0. The
first component of the dual quantity (L, α, θ , L, etc.) is referred to as the
real or primary part and the second component (L0, d, S, L0, etc.) is the dual
or secondary part. Geometrically, the relationship between a real quantity,
say α, and its corresponding dual quantity α̂ (= α + εd) is essentially the
relationship between the geometry of intersecting lines (spherical geometry)
and the geometry of skew lines (spatial geometry).

Spherical geometry is partly concerned with subsets of points on the sur-
face of a unit sphere. For example, three great-circle arcs define a spherical
triangle (Todhunter and Leathem, 1932). But, since any point on the surface
defines a unique (radial) line joining it to the centre, O, of the sphere, spher-
ical geometry is also concerned with sets of intersecting straight lines in space
(Figure 8a). The two viewpoints are equivalent and the length of a great-circle
arc on the surface corresponds to the angle between the two intersecting lines
defining the arc’s endpoints. Three intersecting lines determine a spherical
triangle.

Spatial geometry is partly concerned with the more general situation of
non-intersecting or skew straight lines in space. For example, three skew lines
define a spatial triangle (Yang, 1963), and Figure 8b illustrates these lines
and their three common perpendiculars. For spatial rotations about a fixed
point, O, the rotation axes all intersect in O and the geometry is spherical
(Rooney, 1977). For screw displacements about skew lines the geometry is
spatial (Rooney, 1978a).

The relationship between spherical geometry and spatial geometry was
formalised by Kotelnikov (1895) in his Principle of Transference. The ori-
ginal reference is very difficult to obtain and consequently the precise
statement of the principle and its original proof are not generally avail-
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Fig. 8. The relationship between spherical geometry and spatial geometry: (a) a spherical
triangle; (b) a spatial triangle. (Source: J. Rooney, 1978a, p. 51)

able (Rooney, 1975a). The one-many relationship may be expressed as
α ↔ α + εd and θ ↔ θ + εS. One version of the principle states that

all laws and formulae relating to a spherical configuration (involving
intersecting lines and real angles) are also valid when applied to an
equivalent spatial configuration of skew lines if each real angle, α

or θ , in the spherical formulae is replaced by the corresponding dual
angle, α + εd or θ + εS.

The real direction cosines, L, M and N , of a line through the origin in-
volve the real angles αx , αy , and αz, and the dual direction cosines, L + εL0,
M + εM0 and N + εN0, of a general line involve the dual angles αx + εdx ,
αy + εdy , and αz + εdz. Thus, in applying the principle, real angles and real
direction cosines must be replaced with dual angles and dual direction cosines
respectively.

The dual vector L̂ = L + εL0 representing a line, as in Figure 4, not
passing through the origin is not the most general type of dual vector that
may occur since, in Figure 4, L and L0 are orthogonal and L is a unit vector,
so there L̂ = L + εL0 is a unit dual vector. In the general case L need
not be a unit vector and need not be orthogonal to L0, which is then not the
moment of L̂ about the origin. What is obtained is a dual vector with six
independent real components (L, M, N , L0, M0 and N0), which is referred
to as a motor (Clifford, 1873; Brand, 1947). This describes a line in space (as
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before) but with two extra magnitudes. The situation is illustrated by Figure 5,
and the two extra magnitudes are the magnitude of L (this was previously a
unit vector in Figure 4) and the component of L0 along L, namely L′′

0 (this
was previously zero in Figure 4). The direction of the line is still given by L,
and the component of L0 perpendicular to L, namely L′

0, now represents the
moment of L about the origin, O.

A dot product and a cross product may be defined for general dual vectors
in the style of Gibbs (1901). Thus, given two dual vectors Â and B̂, where
Â = A + εA0 and B̂ = B + εB0, the dot product, or scalar product (Brand,
1947), is defined as:

Â · B̂ = (A + εA0) · (B + εB0) = A · B + ε(A · B0 + A0 · B).

This is a dual number in general and is independent of the location of O, the
origin. It can be shown that if Â and B̂ are unit dual vectors defining two lines
in space and if the dual angle between the lines is α̂ = α + εd then

Â · B̂ = cos α̂ = cos(α + εd) = cos α − εd sin α.

This is in complete analogy with the relationship between two unit real vec-
tors and the real angle between them: A · B = cos α. If the scalar product of
two non-parallel unit dual vectors is real (that is, if the dual part is zero) then
the lines intersect. In addition if the scalar product is zero (that is, if both real
and dual parts are zero) then the lines intersect at right angles (Brand, 1947).

In a similar way the cross product, or motor product (Brand, 1947) of two
dual vectors in the style of Gibbs (1901) is defined as:

Â × B̂ = (A + εA0) × (B × εB0) = A × B + ε(A × B0 + A0 × B).

This is a motor in general and the line it defines is the common perpendicular
line to Â and B̂ (Figure 6a). If Ê = E + εE0 is a unit line vector representing
this common perpendicular, if α̂ = α + εd is the dual angle between Â and
B̂, and if Â and B̂ are unit dual vectors then it can be shown that

Â × B̂ = sin α̂Ê = (sin α + εd cos α)Ê.

Again this is in complete analogy with the real vector case: A × B = sin αE.
If the motor product of two unit dual vectors is a pure dual vector (that is,
if the real or primary part is zero) then the lines are parallel. In addition if
the dual part is also zero then the lines are collinear (Brand, 1947). Finally it
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is possible to define scalar triple products and motor triple products for dual
vectors in complete analogy with the usual real vector case.

Now, because the general spatial screw displacement (Figure 6b) of a rigid
body consists of a rotation through an angle θ about and a translation through
a distance S along an axis in space (Chasles, 1830; Ball, 1900), a total of six
parameters are necessary to define the displacement completely. Four para-
meters specify the axis (a line in 3D space), one parameter specifies θ , and
one parameter specifies S. It thus appears that a single finite screw displace-
ment may be represented by a general dual vector or motor (Clifford, 1873;
Brand, 1947) since two magnitudes (θ and S) and a line having both direction
and position are involved.

However, although this relatively simple representation is possible, it is
not a very satisfactory one. The disadvantages arise in attempting to obtain the
resultant of two successive screw displacements (this should itself be a screw
displacement). One problem is that two screw displacements do not commute
and the order in which they occur must first be specified. The resultant mo-
tor cannot therefore just be given by the sum (which is commutative) of the
two individual motors, as it should be, if the screw displacements behaved as
true motors. This situation is analogous to that encountered in attempting to
use a simple vector representation for the sum of two finite rotations about a
fixed point (Rooney, 1977). In that case the parallelogram addition law fails
to give the resultant of two such rotations. As a consequence it is not pos-
sible to use a simple motor representation for screw displacements. Instead,
a line transformation is used for the representation (Rooney, 1978a). The line
transformation (representing a screw) is derived from a point transformation
(representing a rotation) by replacing real angles and real direction cosines
with dual angles and dual direction cosines in accordance with the Principle
of Transference. The line transformation approach leads to the modern equiv-
alent of Clifford’s biquaternion, namely the unit dual quaternion representa-
tion, involving a combination of quaternions and dual numbers. The unit dual
quaternion derives from a unit quaternion by replacing the four real compon-
ents of the latter with four dual number components. Alternatively two real
quaternions are combined as the primary and secondary parts of the resulting
unit dual quaternion.

The concept of a quaternion, as introduced and developed by Hamilton
(1844, 1899, 1901), was invented to enable the ratio of two vectors to be
defined and thus could be used to stretch-rotate one vector, r, into another,
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r′, by premultiplying the first with a suitable quaternion. In this case r would
be premultiplied by the product r′r−1. The latter ‘quotient’ of vectors is a
quaternion if the inverse r−1 of r is given an appropriate definition. The op-
eration of premultiplying r by the quaternion r′r−1 may be viewed as a point
transformation operating on the point represented by the position vector r.

The equivalent operation for line transformations requires an operator
capable of operating on a line, and screw displacing it. A point transform-
ation operates on the position vector, r, of a point to give another position
vector, r′. A line is represented by a unit dual vector L̂ = L + εL0, where
L · L = 1, and L · L0 = 0, so by analogy the problem is essentially one of
transforming one unit dual vector L̂1 into another, L̂2. As with the quaternion
ratio of two vectors, r′r−1, this may be achieved if an appropriate ratio or

quotient B̂Â
−1

of two general dual vectors Â and B̂ can be defined. It was an
analogous problem that led Clifford to invent the biquaternion as the ratio of
two motors (Clifford, 1873). It transpires that the ratio of two general dual
vectors is an operator formed from a combination of a quaternion and a dual
number. Nowadays this is referred to as a unit dual quaternion, although it is
essentially a biquaternion.

The relative spatial relationship of two general dual vectors Â and B̂ re-
quires eight parameters for its specification. Four of these define the common
perpendicular line between the axes of the motors; two more specify the dual
angle between these axes; and finally two parameters are required to repres-
ent the ratios of the two magnitudes associated with the second motor to those
associated with the first. So an operator to transform Â into B̂ must also have
at least eight parameters in its specification.

A dual quaternion q̂ is a 4-tuple of dual numbers of the form
q̂ = (q1 +εq01, q2 +εq02, q3 +εq03, q4 +εq4), where ε2 = 0, and hence it has
eight real components, q1, q2, q3, q4, q01, q02, q03 and q04. It may be written
alternatively, as with all dual quantities, in terms of primary and secondary
parts as

q̂ = (q1, q2, q3, q4) + ε(q01, q02, q03, q04) = q + εq0,

where q and q0 are real quaternions. This looks just like Clifford’s biqua-
ternion q +ωr where ω2 = 0. The operator for screw displacement is formed
from a dual quaternion by providing the latter with an appropriate consistent
algebra.
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An algebra is imposed on dual quaternions by defining a suitable multi-
plication rule (addition and subtraction are performed componentwise). The
rule that corresponds with that of Clifford (1873), for his biquaternions, is
essentially equivalent to that for the real quaternions (Hamilton, 1844, 1899,
1901; Rooney, 1977) but with each real component replaced by the corres-
ponding dual component. So, write two dual quaternions, p̂ and q̂, in the
form

p̂ = (p1 + εp01) + (p2 + εp02)i + (p3 + εp03)j + (p4 + εp04)k,

q̂ = (q1 + εq01) + (q2 + εq02)i + (q3 + εq03)j + (q4 + εq04)k.

Then the dual quaternion product of p̂ and q̂ is defined by expanding the
expression p̂q̂ using the standard rules of algebra together with the multi-
plication rules for products of quaternions, i2 = j 2 = k2 = ijk = −1 and
ij = k = −ji, jk = i = −kj , ki = j = −ik, and finally using the rule
ε2 = 0, to give:

p̂q̂ = [(p1q1 − p2q2 − p3q3 − p4q4)

+ ε(p1q01 − p2q02 − p3q03 − p4q04 + p01q1 − p02q2 − p03q3 − p04q4)]
+ [(p1q2 + p2q1 + p3q4 − p4q3)

+ ε(p1q02 + p2q01 + p3q04 − p4q03 + p01q2 + p02q1 + p03q4 − p04q3)]i
+ [(p1q3 − p2q4 + p3q1 + p4q2)

+ ε(p1q03 − p2q04 + p3q01 + p4q02 + p01q3 − p02q4 + p03q1 + p04q2)]j
+ [(p1q4 + p2q3 − p3q2 + p4q1)

+ ε(p1q04 + p2q03 − p3q02 + p4q01 + p01q4 + p02q3 − p03q2 + p04q1)]k.

Division is defined (as an inverse of multiplication) for dual quaternions in
terms of a conjugate and a norm. This is analogous to the division process for
quaternions. The conjugate of q̂ is defined as

q̂ = (q1 + εq01) − (q2 + εq02)i − (q3 + εq03)j − (q4 + εq04)k

and the norm of q̂ is defined as the dual number

|q̂| = (q1 + εq01)
2 + (q2 + εq02)

2 + (q3 + εq03)
2 + (q4 + εq04)

2

= (q2
1 + q2

2 + q2
3 + q2

4 ) + 2ε(q1q01 + q2q02 + q3q03 + q4q0).
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The inverse or reciprocal of q̂ is then

q̂−1 = q̂

|q̂| .

This is not defined if the primary part, q, of q̂ is zero (that is, if q1 = q2 =
q3 = q4 = 0) since the norm is then zero. It is easily checked that, for a
non-zero norm, q̂q̂−1 = q̂−1q̂ = 1. If |q̂| = 1 the dual quaternion is a unit
dual quaternion.

In complete analogy with the real quaternions and real vectors considered
in Rooney (1977), it is possible to use a dual quaternion to provide a dual
vector algebra (Brand, 1947; Yang, 1963; Rooney, 1977). Thus a dual vector
is identified with a dual quaternion having a zero first (dual number) compon-
ent. Given two such dual vectors

Â = (A1 + εA01)i + (A2 + εA02)j + (A3 + εA03)k,

B̂ = (B1 + εB01)i + (B2 + εB02)j + (B3 + εB03)k,

their dual quaternion product is

ÂB̂ = −[(A1 + εA01)(B1 + εB01)

+ (A2 + εA02)(B2 + εB02) + (A3 + εA03)(B3 + εB03)]
+ [(A2 + εA02)(B3 + εB03) − (A3 + εA03)(B2 + εB02)]i
+ [(A3 + εA03)(B1 + εB01) − (A1 + εA01)(B3 + εB03)]j
+ [(A1 + εA01)(B2 + εB02) − (A2 + εA02)(B1 + εB01)]k.

This is expressed more concisely in terms of the scalar and motor products
already defined earlier for dual vectors (Brand, 1947). It is then easily shown
that the dual quaternion product of Â and B̂ is

ÂB̂ = −Â · B̂ + Â × B̂.

This product is in general a dual quaternion since the first component (the
scalar product) is non-zero unless the lines associated with Â and B̂ intersect
at right angles.

The ‘ratio’ of any two dual vectors B̂ and Â can now be formed as
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B̂Â
−1 = − B̂Â

|Â| ,

where Â
−1

is the (dual quaternion) inverse of Â. This product B̂Â
−1

is a dual
quaternion and it will operate on the dual vector Â to give the dual vector B̂

since (B̂Â
−1

)Â = B̂. It is the modern form of Clifford’s biquaternion. There
are of course two ratios since dual quaternions do not commute, and it is

equally possible to consider the ‘ratio’ Â
−1

B̂ in the above.

The operator B̂Â
−1

operates on Â to produce B̂. But an operation is re-
quired which will screw displace any dual vector along a given line, and not
just those intersecting the line orthogonally. For this reason, and by use of
arguments similar to those considered in Rooney (1977), the following type
of three-term product operation is needed to operate on any dual vector Â to

screw displace it into Â
′
:

Â
′ = q̂−1

n̂ (θ̂)Âq̂n̂(θ̂).

Here

q̂n̂(θ̂) = cos
θ̂

2
+ sin

θ̂

2
n̂

is a unit dual quaternion, and q̂−1
n̂ (θ̂) is its inverse (equal to its conjugate

since its norm is unity). The dual angle θ̂ = θ + εS combines the screw
displacement angle θ , and distance S, along the screw axis n̂, where

n̂ = (l + εl0)i + (m + εm0)j + (n + εn0)k

represents the line of the screw axis, with direction cosines (l,m, n) and mo-
ment (l0,m0, n0) about the origin, and where

(l + εl0)
2 + (m + εm0)

2 + (n + εn0)
2 = 1.

The trigonometric functions of the dual variable θ̂ are evaluated using the
rules for expanding functions of a dual variable, namely:

cos(θ + εS) = cos θ − εS sin θ,

sin(θ + εS) = sin θ + εS cos θ.

The above operation, Â
′ = q̂−1

n̂ (θ̂)Âq̂n̂(θ̂), achieves the desired general screw

transformation of any Â into a new position Â
′
. It is equivalent to Clifford’s
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Fig. 9. The general spatial screw displacement of a coordinate system about a screw axis
through angle θ and distance S. (Source: J. Rooney, 1984, p. 237)

tensor-twist, since it does not change the pitch of Â. Although the operation
is expressed in terms of the half dual angle

θ̂

2
= θ

2
+ ε

S

2
,

it actually screw transforms Â into Â
′
through the full dual angle θ̂ = θ + εS.

The necessity for introducing the half dual angle into the unit dual quaternion
echoes the situation that occurs with the representation of rotations about a
fixed point using unit quaternions (Rooney, 1977). It was Rodrigues (1840)
who first recognised this need when several rotations are performed consecut-
ively (Baker and Parkin, 2003). It transfers naturally into the screw displace-
ment situation. Because of the half dual angle the representation is double
valued since q̂n̂(θ̂ + 2π) = −q̂n̂(θ̂).

The form of the unit dual quaternion q̂n̂(θ̂) representing a general screw
displacement of the xyz Cartesian coordinate system about a line with dir-
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ection cosines (l,m, n) and moment (l0,m0, n0) about the origin, through an
angle θ and a distance S (see Figure 9), is expanded as:

q̂n̂(θ̂) = cos
θ̂

2
+ sin

θ̂

2
n̂

= cos
θ + εS

2
+ sin

θ + εS

2
[(l + εl0)i + (m + εm0)j + (n + εn0)k]

=
[

cos
θ

2
− ε

S

2
sin

θ

2

]

+
[
l sin

θ

2
+ ε

(
l
S

2
cos

θ

2
+ l0 sin

θ

2

)]
i

+
[
m sin

θ

2
+ ε

(
m

S

2
cos

θ

2
+ m0 sin

θ

2

)]
j

+
[
n sin

θ

2
+ ε

(
n
S

2
cos

θ

2
+ n0 sin

θ

2

)]
k.

A unit dual quaternion q̂n̂(θ̂) is specified by only six (rather than eight)
independent parameters because it has a unit norm, and so the operation
Â

′ = q̂−1
n̂ (θ̂)Âq̂n̂(θ̂) screw transforms the dual vector Â without stretching

it (its two magnitudes remain unchanged). It also transforms unit dual vec-
tors L̂ into unit dual vectors.

The unit dual quaternion representation (the modern equivalent of
Clifford’s biquaternion, specifically his tensor-twist) for a screw displacement
is elegant and economical compared with other representations. It is particu-
larly useful when performing multiple screw displacements in succession, as
is frequently required in the field of Mechanism and Machine Science. The
representation is of course double- valued, so care must be taken in its use.
It is considered to be one of the best representations of line transformations
since it is so concise and is perhaps the most easily visualised of all the screw
representations because the screw axis, n̂, and the dual angular displacement,
θ + εS , enter so directly into its specification.
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Abstract. Nicolaus Copernicus was an astronomer who provided the first modern formu-
lation of a heliocentric (sun-centered) model of the solar system. Using logical arguments,
available theory, and showing the weaknesses of the prevailing geocentric description of the
universe, he elaborated a revolutionary model of the motion of the planets. His work is consid-
ered to be the most fundamental contribution ever made to the mechanics of celestial bodies.
The paper introduces Copernicus’ life, the history of his most important works, and some less
well-known facts about his impact on the practice of general mechanics.

Biographical Notes

Nicolaus Copernicus in Latin, Mikołaj Kopernik in Polish, was born on the
19th of February 1473 in Poland in the town of Toruń. In the early XV century
Toruń was part of the Prussian Confederation. With the Second Treaty of
Toruń in 1466, Toruń and Prussia’s western part, called “Royal Prussia”, were
connected to the Kingdom of Poland, while the eastern part remained under
the administration of the Teutonic Order, later to become “Ducal Prussia”.

Copernicus’ father was probably a Germanised Slav, and a citizen of
Cracow, then the capital of Poland. He was a trader, who in 1460 had mi-
grated to Toruń and at the age of 40 married Barbara Watzenrode, daughter
of a wealthy merchant. Copernicus with one brother and two sisters was the
youngest child.

When Nicolaus Copernicus was a young boy of the age of ten his fa-
ther died. Hence his uncle Lukas Watzenrode, the canon of the cathedral
of Frombork (Frauenburg), who later held the position of Bishop of Varmia
(Ermland), brought him up. Copernicus attended St. John’s School in Toruń.

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 117–134.
© 2007 Springer. Printed in the Netherlands.
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From 1491 to 1495 he studied the so-called “free arts”, including mathemat-
ics with Euclidean geometry and astronomy taught by Albert Brudzewski
(astronomer, mathematician and prominent professor), and canon law at the
Cracow Academy (today the Jagiellonian University). At that time, Cracow
Academy had already 100 years of history and was the best place to study
astronomy in the northern part of Europe. Copernicus’ uncle Watzenrode fi-
nanced his education in Cracow and wished him to become a bishop. Despite
this expectation, after return to Frombork – at the age of 24 – Nicolaus was
not sure what to choose for his future career.

In 1496, Lukas Watzenrode sent Copernicus to Bologna to study canon
and civil law. While Nicolaus was in Bologna his uncle became in 1497 the
Bishop of Warmia, and he proposed to Copernicus the position of a canon of
Frombork Cathedral. Nicolaus refused to return and got permission to stay
in Italy until 1500. With the end of his studies in Bologna he did not take
his final exams and did not return to Frombork. Instead, together with his
older brother, he went to Rome where the big celebrations of fifteen cen-
turies of Christianity were organized. With a short return to Frombork in
1501, Copernicus got permission to continue his education for two more years
under the condition that he would study medical science. In the years 1501–
1503, he studied medicine at the University of Padua. The people believed
that the zodiac symbols influenced different parts of the human body. Be-
cause of that, astronomy professors instructed medical students in predicting
planet positions.

In 1502 Nicolaus was obliged to return, but two years study in a three
years programme did not entitle him to the medical degree. To show to his
uncle that the time and funds spent for his education were not lost, in May
1503, he passed doctoral exams in canon law at the University of Ferrara.

In 1503, he returned to Frombork where he first worked as a medical ad-
visor and secretary to his uncle. Later his duties were extended by adminis-
tration of the diocese of Frombork. In 1510, Nicolaus gave up the position of
assistant to his uncle and kept only the responsibility as the canon of From-
bork Cathedral. That ended his career as a high Church official, but offered
more time for astronomical research.

In the years 1511–1513 he supervised financial transactions in the From-
bork Church chapter and, as its representative, was involved in supervision of
town taxes, the treasury system and judicial matters. In the summer of 1517,
Nicolaus wrote a short work about a good monetary system. He formulated
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Fig. 1. Portrait of Nicolaus Copernicus from the museum of Toruń – the town near Frombork
(beginning of XVI c., unknown artist).

the opinion that the “bad” money replaces “good” money. Good money is
money that has little difference between its exchange value and its commod-
ity value. Currently this rule is known as Thomas Gresham’s law (“When
there is a legal tender currency, bad money drives good money out of circula-
tion”) described 30 years after Copernicus.

Royal Prussia where Copernicus lived was an autonomous part of the
Polish Crown land, but it had a separate monetary system and treasury.
Nicolaus suggested that the king must supervise the minting of coins, and
then their quality and quantity would be controlled. He proposed financial
reforms preventing currency devaluation and elaborated a safe method of re-
placing the devaluated currency. Rules proposed by him assuring a “healthy”
monetary system, were accepted in 1522 during the meeting of the Polish
King’s Prussian States. The reforms were introduced over the next six years
and “healthy” coins minted by the Polish King Sigismundus the Old had a
silver parity equal to its value.

From 1514 Copernicus started the description of his new astronomical
theory. His main work De Revolutionibus Orbium Coelestium (“On the Rev-
olutions of the Heavenly Spheres”) explains the fundamentals of the theory
that the Earth revolves around the Sun, contrary to the general belief that the
Sun revolves around the Earth.
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In 1543, Nicolas Copernicus suddenly became sick with a brain haemor-
rhage and after a short illness, he died on the 24th of May. The legend says
that he received the first printed copy of his book on his deathbed.

Nicolaus Copernicus was buried in Frombork Cathedral. Archaeologists
searched for his remains until on 3 November of 2005 it was announced that
a few months earlier Copernicus’ skull had been discovered. His face was
reconstructed. The image of the elderly Copernicus shows a strong similarity
to the XVI c. portrait of the younger astronomer, which possibly was painted
from nature (Figure 1).

Copernicus spent most of his working life in Royal Prussia and his main
language for written communication was Latin.

Astronomical Studies and Observations

While studying in Cracow (1491–1495), Copernicus read Euclid’s book on
geometry, which was first printed in 1482, moreover, he read the Latin trans-
lation of an Arabic text on astronomy. The students were taught e astrology,
which required the interpretation of astronomical tables. The position of plan-
ets at the moment of birth was the basic information needed for a horoscope.
Nicolaus obtained two sets of printed astronomical tables and, on the blank
pages, put more details concerning the planet positions. This fact suggests
that at that time he was already showing an interest in astronomy. Continu-
ing his education in Bologna, Copernicus rented a room at the house of the
famous astronomer Domenico Maria Novara. He attended Novara’s lectures
and became his assistant, helping him in astronomical observations. The first
observations made together with Novara were later recorded in Copernicus’
epochal book. At that time he read the astronomical works by Ptolemy (II
c. AD) and started to compare this text with the theory of “ideal motion of
celestial bodies” by Aristotle (IV c. BC).

Beginning in 1504 Copernicus began collecting observations and ideas
pertinent to his famous theory. In 1504, Mars, Jupiter and Saturn were
grouped in the Cancer constellation (big conjunction) which happens only
each 20 years. Copernicus compared the observed and calculated positions
and noticed the differences. Mars preceded the calculated position and Saturn
lagged behind. Trying to explain this, he studied in more detail the works of
Ptolemy. In 1515 Pope Leo X conceived the idea of modifying the Julian cal-
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endar, and asked Copernicus to become one of the experts proposing calendar
modification. Unfortunately this correspondence was lost.

Copernicus spent at least 29 years (1514–1543) of his life on the descrip-
tions and improvements of his theory. In those years Copernicus was focusing
only on astronomy. He was mainly involved in observations, calculations and
descriptions. The hand-written text of his famous manuscript consists of 212
double sided pages.

Review of Fundamental Manuscripts

In 1514 Copernicus wrote for his friends a short manuscript entitled Com-
mentariolus (“Little Commentary”) where he described his idea of the he-
liocentric system. Nicolaus continued gathering data for a more detailed de-
scription, which he started around the year 1529.

The major work De Revolutionibus Orbium Coelestium (usually translated
as “On the Revolutions of the Heavenly Spheres”, a more exact translation is
“About Revolutions of Celestial Bodies”) consists of six books called Book
One, Book Two, etc. Book One includes 14 chapters. It presents the gen-
eral vision of the heliocentric theory, and summarizes Copernicus’ idea of
the “universe”. Book Two, also containing 14 chapters, is mainly theoreti-
cal; it presents the principles of spherical astronomy and introduces funda-
mentals for the arguments developed in the subsequent parts. Book Three,
with 26 chapters, explains the apparent motion of the Sun and phenomena
related to it. Book Four consists of 22 chapters and presents the description
of the Moon’s orbital motions. Book Five, in 36 chapters, contains concrete
exposition of the new system explaining the planets’ motion. Book Six, in
9 chapters, continues and summarizes the new heliocentric theory. Histori-
ans analysing Copernicus’ manuscript noticed paper marks (water mark –
philigran) – Figure 2, and changes in the color of ink. From this they con-
cluded that the subsequencial pages were not written chronologically.

It is possible that the work was first written as a whole on the paper with
philigrans C; then Copernicus improved and replaced selected parts. Paper
with philigrans A and B was used only for manuscript packing. Philigrans D
and E mark the pages which were replaced by Copernicus. Those philigrans
appeared in the middle of Book Three and only the end of Book Six is marked
again by philigrans C.
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Fig. 2. Philigrans identified in Copernicus’ manuscript (Birkenmajer, 1900).

Historians (Birkenmajer, 1900) suggest that the manuscript was revised
two times and changes were written first on paper with philigrans D and the
on paper with philigrans E. Less elaborated philigrans F, on thicker, worse
quality paper, are only on pages 24 and 25 (Book One); the opinion is that
those pages were added and are the last modification.

The main part of that manuscript was ready by the year 1530. In 1533,
in the presence of several Catholic cardinals and Pope Clement VII, Johan
Albrecht Widmannstetter delivered in Rome a series of lectures presenting a
summary of Copernicus’ theory. In 1536, Copernicus’ manuscript describing
the heliocentric theory was ready.

Despite urgings from many parts of Europe, he delayed publication, possi-
bly worrying about criticism. In 1539 George Joachim Rheticus, a great math-
ematician from Wittenberg, arrived in Frombork and stayed with Copernicus
for two years. During that time, he wrote a book Narratio prima outlining the
Copernicus theory.

In 1542 Rheticus published a treatise on trigonometry elaborated by
Copernicus (it was later included in the second book of De Revolution-
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Fig. 3. Title page of De Revolutionibus (1st edition), which is the only one with the note
“Nicolai Copernici Torunensis . . . ” (Birkenmajer, 1900).

ibus). Under strong pressure from Rheticus, Copernicus finally agreed to give
him his own manuscript; Rheticus then arranged with Johannes Petreius in
Nuremberg to carry out the printing. The first printing (Figure 3) was finished
in 1543 just before Copernicus’ death, and a second edition was printed in
1566 ( in Basel). Originally the manuscript had an anonymous preface written
by Andreas Osiander, a theologian and a friend of Copernicus. It is interest-
ing that Osiander underscored that the theory presented and the trigonometric
methods allow simpler and more accurate calculations of planet motions, but
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did not necessarily present the truth and did not have implications outside
astronomy.

The title of the work was changed from the original “On the Revolutions
of the Spheres of the World” to the “Six Books Concerning the Revolutions of
the Heavenly Spheres” (De Revolutionibus Orbium Coelestium) – it appeared
to mitigate the author’s claim to describe the real universe.

As of our time Copernicus’ work has had many editions. The manuscript
is kept in the Library of Jagiellonian University in Cracow. The pages were
scanned and the pictures can be seen on the Internet.

Copernicus’ Contribution to Mechanics of Celestial Bodies
Compared to the Existing Theories

Copernicus studied the ancient works on astronomy. One of the oldest texts
that he obtained was written by Aristotle (IV c. BC). Aristotle wrote that the
heavenly bodies are the most perfect realities, whose motions are ruled by
simple principles. Their motions are perfect, which meant to him circular tra-
jectories. Aristotle believed that the planets move with constant speed follow-
ing ideal circles with the Earth being in the centre. Copernicus studied also
the works of Ptolemy (II c. AD) who noticed that the motion of Mars differs
much from Aristotle’s ideal model. Trying to explain it, Ptolemy concluded
that Mars moved with variable speed along a more complex than circular tra-
jectory. Upon learning this conjecture, Nicolaus started careful observations
of Mars and made a serious effort to find the rules governing its displace-
ment. His famous De Revolutionibus is in great part dedicated to the model
of Mars’ revolutions. Copernicus studied the texts by Philolaus (V c. BC) and
Aristarchus (III c. BC).

Philolaus defined a hypothetical astronomical object which he called the
Central Fire. He claimed that the other celestial bodies including the Sun
move around it. Two hundred year later Aristachus, impressed by this idea,
proposed the first serious model of a heliocentric solar system. Unfortunately
his description has not survived, possibly it was destroyed by the author him-
self who was afraid of objections. Luckily, several of his contemporaries man-
aged to read the text and later cited it. Archimedes (III c. BC) wrote: “His
(Aristarchus’) hypotheses are that the fixed stars and the Sun remain motion-
less, that the Earth revolves around the Sun on the circumference of a circle,
the Sun lying in the center of the orbit”. Copernicus cited Aristarchus and
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Philolaus in an earlier version of his famous work. He wrote: “Philolaus be-
lieved in the Earth’s motion . . . Aristarchus from Samos too held the same
view . . . ” (deleted and not printed in the first edition, but incorporated in the
later printings). The question arises why in the first print those references
disappeared. One of the explanations is that, before publication, some the-
ologian read the manuscript and he introduced the corrections with the aim
of weakening a possible conflict with the Church supporting the geocentric
theory. The theologian tried to convince the future reader that the heliocentric
model is only a mathematical hypothesis and no references to philosophers
were needed. The real inspiration for Copernicus were firstly the readings,
but he also noticed the weakness of geocentric theory considering the ob-
servations. He explained his model using mathematics as well the results of
long years of observations. Till the times of Copernicus the geocentric theory
dominated in the version created by Ptolemy in his Almagest (about 150 AD).
The Ptolemaic system dominated over many earlier theories considering the
Earth being a stationary center of the universe. Stars were placed on the outer
sphere rotating fast, the planets had smaller spheres, each planet with its own
sphere. To explain the anomalies, such as the retrograde motion (appearing to
move on the sphere opposite than that expected) observed in several planets,
a system of epicycles was invented. It meant that a planet moves on a small
circle, the centre of which moves around the circumference of the larger cir-
cle (with the Earth in the centre). The astronomers explained the anomalies
using also the term of eccentrics – this meant that the orbit deviates from the
circular and usually it was assumed to be elliptic. Ptolemy’s unique contribu-
tion to the geocentric theory was the idea of an equant – a complex addition
to motion description which resulted in the rotation of the Sun sometimes de-
scribed using the central axis of the universe, but sometimes a different axis.
This introduced a kind of “wobbling orbits”, a fact that was seriusly confus-
ing Copernicus – not all astronomers could get observations that conformed
with the above theory.

De Revolutionibus Orbium Coelestium used a very advanced (for that
time) trigonometry and geometry. Till now it has not been proved whether
the geometric methods were invented by Copernicus himself or originated
with Johannes Regimontanus (1426–1476). The fundamentals of trigonom-
etry by Regimontanus were printed after his death in 1533 in Nuremberg,
by which time the main part of Copernicus manuscript was already com-
plete. One of the hypotheses says that Rheticus, when he came to Copernicus
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(1539), brought some texts, and among them was the manuscript of Epilomat
– the trigonometry by Regimontanus. However Copernicus claimed that only
Ptolemy’s work inspired him “Hoc autem sex theorematibus explicabimus
et uno problemate, Ptolemeum fere secuti” (original text from De Revolu-
tionibus). The researchers of Copernicus’ life believed that the trigonometric
methods used by the astronomer were of his own invention. His Commen-
tariolus, written much earlier (in 1514) than De Revolutionibus, already used
those methods. At that time there was no chance of learning Regimontanus’
methods.

Ptolemy’s equants were replaced by Copernicus with epicycles; he put
the Sun near to the middle of the celestial spheres, but not exactly at the
point which was considered an exact centre of the universe. Copernicus’ sys-
tem was not better confirmed experimentally than Ptolemy’s. He was well
aware of that. Until the XVIII c. only few astronomers were convinced by the
Copernican system. It was important that his model attracted the attention of
Galileo Galilei (1564–1642) and Johannes Keppler (1571–1630). Galileo’s
observation of the phases of Venus resulted in the first experimental evidence
for the correctness of Copernicus’ theory. Keppler expanded and improved
the Copernicus’ model.

Modern Interpretation of Copernicus’ Contribution to General
Mechanics and Mechanism Design

In his epochal book Copernicus underscored that basic technical disciplines
are strongly related. He wrote “Arithmetica, Geometrica, Optice, Geodesia,
Mechanica et si quae sint aliae: omnes ad illam sese conferant” (De Revolu-
tionibus). Copernicus’ contribution to mechanics is recognised as a contribu-
tion to the mechanics of celestial bodies; however reading his famous book
one can notice that he focused not only on fundamentals of astronomy, but
also developed methods of motion description and discussed the effects of
motion superposition, which required an intutive feeling for the role of refer-
ence frames. He payed attention to the motion properties describing different
motion trajectories and tried to explain the role of mass (gravity) center.

The term gravity center is introduced at the beginning of his famous
manuscript. The most representative sentence says “Nec audenti sunt pari-
pateticorum quitan, qui universam aquam decides tota terra maiorem pro-
diderunt atque aliud esse centrum gravitatis, aliud magiutudinis” (“land and
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water press upon a single center of gravity, the Earth has no other center of
magnitude” – Book One, Chapter 2: Moreover, the Earth is spherical). Next
he stated “. . . gravity is nothing but a certain natural desire. This impulse
is present, we may suppose, also in the Sun, the Moon, and the other bril-
liant planets, so that through its operation they remain in that spherical shape
which they display. Nerethless, they swing round their circuits in diverse
ways” (Rosen, 2006). This suggests that Copernicus intuitively felt properly
the essence of gravity. In Book One, Chapter 3: How Earth forms a single
sphere with water?, he concludes that the Earth has the shape of a ball. He
supports his opinion by referring to the observations of travellers and saying
that Earth has its centre of gravity which attracts the soil and water. After re-
marks on the large size of oceans covering the Earth, he says that the Earth is
round and “location of America compels us to believe that it is diametrically
opposite to the Ganges district in India. From all these facts, finally, I think it
is clear that land and water press upon a single center of gravity . . . ” (Rosen,
2006).

Copernicus noticed that falling bodies are accelerating: “. . . Praeterea
quae sursum et dorsum aguntur . . . non faciunt motum simplicem unifarem
et aequalem. Levitate enim vel sui ponderis impetu neqeunt temperari. Et
quaecumque decidunt, a principio lentum facientia motum, velocitatem au-
gent cadendo” (“Whatever falls moves slowly at first but increases its speed
as it drops” – Book One, Chapter 8: The inadequacy of the previous . . . ). It
must be pointed out that the principles of motion of falling objects were de-
scribed by Galileo Galilei, and published about 100 years after Copernicus’
work.

Copernicus gave also an inuitive explanation of relative motion. He was
the first person to distinquish “apparent” motion leading to the concept of
relativity of motion. He claimed that apparent movement can be caused by
a motion of the object itself, or the motion of observer or both. This is dis-
cussed in Book One, Chapter 5: Does the circular motion suit the Earth? and
in Chapter 9: Can several motions be attributed to the Earth? The center of
the universe. His considerations on relative motions resulted in proper un-
derstanding of the concept of reference frame “Such in particular is the daily
rotation, since it seems to involve the entire universe except the Earth and
what is around it. However, if you grant that the heavens have no part in this
motion, but the Earth rotates from west to east, upon earliest consideration
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Fig. 4. Illustration of epicyclic movement: left – trajectories, right – coordinates of point P.

you will find that this is the actual situation considering the apparent rising
and setting of the Sun, Moon, stars and the planets” (Rosen, 2006).

Nobody before Copernicus noticed the neccessity to introduce the “third
movement of the Earth” – Earth’s axis precession. Copernicus was in doubt
how to explain the seasons. He explained in detail the “three motions” of the
Earth. The first motion (Book One, Chapter 11: Proof of the Earth’s triple
motion) of the Earth is rotation causing the day and night. The second motion
is the ecliptic motion around the Sun causing the seasons. The third motion
is the change of inclination of Earth’s axis of rotations – its precession.

Explaining the movements of the planets Copernicus focused on the de-
scriptions of different harmonic motions. He was aware that the orbital motion
of the Earth must cause apparent periodic oscillations of the stars. Epicycles
visible in the motion of the other planets were the reflection of the Earth’s
orbital motion. First he analysed the periodic motion of suspended body due
to the gravity force. This is in the part of Book Four where he describes the
motion of Mercury.

Copernicus noticed that oscillations can be generated by superposition
of two circular movements. This happens when one point having a circular
trajectory C2 moves on an eplicycle, i.e. that the center of circle C2 moves on
the circumference of another circle C1 (Figure 4).

Copernicus analysed the following: on the circle C1 (with radius r1) moves
the center of another circle C2 (having radius r2), with the constant angular
velocity dφ1/dt . On the circle C2 moves the point P with angular velocity
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dφ2/dt . Nicolaus evaluated the coordinates of point P . Let t be the time mea-
sured from the moment when the point P is at the farthest distance from the
centre O of circle C1. If γ denotes the angle between axis OX and OP , then
coordinates of point P are expressed by:

x = r cos γ = r1 cos(t · dφ1/dt) + r2 cos(t · (dφ1/dt + dφ2/dt)),

y = r sin γ = r1 sin(t · dφ1/dt) + r2 sin(t · (dφ1/dt + dφ2/dt)). (1)

Assuming dφ2/dt = −2dφ1/dt , Copernicus obtained:

x = r cos γ = (r1 + r2) cos(t · dφ1/dt),

y = r sin γ = (r1 − r2) sin(t · φ1/dt). (2)

With r1 = r2 he obtained:

x = 2r1 cos(t · dφ1/dt),

y = 0. (3)

Relations (3) describe the harmonic motion along axis OX with magnitude
2r1. Simplifying relations (2), the formula for an ellipsoid is obtained. For
example, computing cos(t · dφ1/dt) from the first equality and substituting it
into the second (r1 �= r2), the ellipsoid formula is obtained:

x2/(r1 + r2)
2 + y2/(r1 − r2)

2 = 1. (4)

Copernicus provided the above considerations and concluded that an ellipsoid
describes the trajectory of periodic motion, which is a combination of two
epicyclic movements (Birkenmajer, 1900).

Discussing precession in Book Six, Copernicus considered the result of
superposition of two harmonic motions having different frequencies and ob-
tained the formula for a 4-th degree curve which is of a Lissajous type.

Lissajoux curves, called also Bowditch curves, are produced by the com-
position of two sinusoidal motions at right angles. First studied by the Ameri-
can mathematician Nathaniel Bowditch in 1815, the curves were investigated
independently by the French mathematician Jules-Antoine Lissajous in 1857–
1858. The fact that Copernicus discovered the Lissajoux curve is not gener-
ally known. Copernicus gave the 4-th order formula describing the trajectory
of equinox precession (Birkenmajer, 1900):
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Fig. 5. Left: the copy of the picture illustrating precession (N. Copernicus – manuscript)
(Birkenmajer, 1900). Right: motion trajectory of double spherical pendulum.

4a2y2(b2 − y2) = b4x2. (5)

In the first edition, in Book Three, one can find a low quality diagram (pro-
duced by wood-print), where in its middle a figure resembling the number
8 can be noticed (Figure 5). This is followed by an explanation of the pre-
cession movement. In the Copernicus’ manuscript (p. 74) this characteristic
shape is even more visible.

In later editions the shape in this picture was printed differently and
wrongly. Looking at this shape one can conclude that it represents a Lissajous
curve. Let us assume that oscillations x have amplitude a and oscillations y

have amplitude b and the phase shift between them is equal to φ:

x = a sin(ω1t + φ),

y = b sin(ω2t).

Assuming ω1 = 0.5ω2, ω2 = ω, and φ = nπ (n = 0, 1, 2, . . .):

x = ±a sin(2ωt), y = b sin(ωt), (6)

we fulfill relation (5).
It is interesting how Copernicus deducted the shape and obtained formula

(5). One possible explanation is that he observed the motion of a double pen-
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dulum excited in two perpendicular directions. This is suggested by his re-
peated remarks on pendulum motion but does not explain the logic behind
it.

If two mathematical pendulums OP1 and P1P2 are attached one to the
other, and the length l2 of the lower pendulum (P1P2) is equal to one quarter
of the length l1 of the upper one (l2 = l1/4), and if pendulum ends are ex-
cited in perpendicular directions (spherical pendulum), the trajectory of the
lower pendulum will move along a Lissajous curve (Figure 5). The period of
oscillations of each pendulum is equal to:

T = 2π(l/g)0.5. (7)

For pendulums OP1 and P1P2 the periods of oscillations are equal to T2 =
T1/2, and ω1 = 0.5ω2 as is the discussed case described by the equations
(5) and (6). It is quite possible that Copernicus used for experiments some
church lamps suspended by long ropes (chains) to which he attached shorter
pendulums.

In mechanism design the analysis of movements and its proper descrip-
tion in appropriate reference frames is very important. Copernicus created
the fundamentals for complex motion analysis and illustrated it considering
non-trivial examples of combination of periodic movements. In the design of
specific machines (i.e. walking machines) the analysis of possible positions
of center of mass (center of “gravity”) is important for postural stability eval-
uation. Copernicus had an intuitive feeling that the center of gravity plays a
role in stable movements: “. . . so that through its (center of gravity) operation
they (planets) remain in that spherical shape which they display. Nevertheless,
they swing round their circuits . . . ”.

Summary

From his works Copernicus emerges a methodic and brilliant scientist. He
presented his ideas clearly. Nobody before Copernicus felt the need to in-
troduce the Earth’s “third movement” – precession. The explanation of what
causes the precession was incorrect, but it was logically and well summa-
rized, referring to the need to balance all motions (“Cuius causam nemo for-
sitam meliorem afferet: quam axis terrae et polorum circuli aequinoctialis
deflecxum quemdam . . . Quoniam si motus axis terrae simpliciter et exacte
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Fig. 6. Selection of postage stamps dedicated to Copernicus (courtesy of Dr. R. Babut – private
collection).

convenirent cum motu centri, nulla penitus (ut diximus) appareret aequinoc-
tiorum conversionumquae praeventio” – Book Three, Chapter 3: Hypotheses
by which the shift of equinoxes as well as the obliquity of the ecliptic and
equator may be demonstrated). The idea of three motions resulted in much
more accurate than earlier evaluation of planet positions and their displace-
ments. Currently the precession is explained using the law of gravitation.

The whole Copernicus theory was simple from the point of view of calcu-
lations and formal descriptions, but definitely was not simple as a complete
model of the solar system.

Both his name and his contribution to the understanding of the cosmos
surrounding us is known all over the world. Many countries commemo-
rated him with postal stamps. Figure 6 shows three stamps, the first two
of which were issued in Poland. The first was issued for the 500th anniver-
sary of Copernicus’ birthday, the second is a monochromatic copy of a fa-
mous oil paint showing Copernicus in his observatory. The big, color paint-
ing was made by a well-known Polish painter of historical events – Jan
Matejko (1838–1893). The third stamp commemorating the 410th years after
Copernicus death was issued in China.
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Abstract. Alexander Yershov was one of the founders of the Moscow Science School of
Mechanisms and Machines. His book Foundation of Kinematics or Elementary Theory about
Motion in General and about Mechanisms of Machines Especially was written for the Imper-
ial Moscow University and the Imperial Moscow Technical Supreme School (IMTSS). It was
the first Russian textbook on kinematics. The curriculum of the Moscow Educational Indus-
trial School (MEIS and later IMTSS) which was one of the first higher engineering schools in
Russia, is significantly connected with the name of Alexander Yershov. He began his career
in 1845 at the institute as a teacher of practical mechanics, and then became a Professor, a
Class Inspector and finally the Director. As a result of his activity as a Professor of Applied
Mechanics and the Director of MEIS, the theoretical education curriculum was widened, the
number of courses in practical mechanics was increased and standards were raised for quali-
fication of teachers. Yershov orchestrated the reorganization of IMTSS and achieved equality
of status between teachers and pupils at the St. Petersburg Institute of Technology. He also es-
tablished the Mechanisms Collection of the Theory of Machines and Mechanisms Department
at IMTSS.

Biographical Notes

Alexander Yershov (Figure 1) was born on the 2nd of July in 1818 in the
village of Ivachevo, in Ryazan province, to the family of a poor nobleman
Stepan L. Yershov.

When he finished gymnasia in Ryazan in 1835, Yershov entered the
Physico-Mathematical Department of the Emperor’s Moscow University and
graduated with honors as a candidate of science in 1839.

The same year Alexander Yershov was sent to St. Petersburg’s practical
Technological Institute and Institute of Corps of Engineers of Routes, where

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 135–149.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. Alexander Yershov (1818–1867).

he studied process metallurgy, resistance of materials, technical drawing, de-
scriptive geometry and other engineering disciplines.

At the same time he studied hard for his master’s degree examinations and,
after passing them in 1841, was granted a trip abroad to gather materials for
scientific research. He left the country on the 13th of September. On his way
to Paris, where he was offered the opportunity to take fundamental courses
in practical mechanics, he learned about educational organization and gained
necessary teaching skills at the Berlin Craft Institute, the Dresden Technical
School and Freiberg Technical Educational Institutions.

The rest of 1841 and part of 1842 Yershov spent in Paris, where he
attended courses on practical mechanics of Ponselet at the Paris Physico-
Mathematical Faculty, listened to Morin’s lectures at the School of Bridges
and Roads, and studied with Bellange, who taught applied mechanics and
hydraulics. He learned descriptive geometry from Olivier at the Conserva-
toire of Arts and Crafts. He visited machine works and factories in Paris and
neighbouring towns on the summer and autumn vacations in 1842. He learnt
the organization and methods of teaching at technical school in Zurich and
visited engineering plants in Mulhouse.
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After that Alexander Yershov went to England, where he acquainted him-
self with Leeds and Manchester textile factories in details.

Yershov returned home in July, 1843 and taught practical mechanics and
descriptive geometry from 1843 till 1853 in a senior technical class of the 3rd
Moscow gymnasium, which had been opened in 1839. He quickly organized
an excellent laboratory of machine models and tools.

He also continued working on his dissertation on the subject of water as
an engine, which he had begun while abroad. He defended his thesis on the
26th of August in 1844 at Moscow University and won the master’s degree in
fundamental and applied mathematics, after which he began his educational
work. Yershov’s course on practical mechanics involved kinematics, dynam-
ics, theory of engines, dynamical theory of machines, and studies of materials
resistance.

In 1844 Yershov was confirmed in his position as adjunct professor, and
in 1853 was given the acting post of extraordinary professor of the Physico-
Mathematical Department of the University.

From 1845 on he taught practical mechanics and descriptive geometry
at the MEIS; he was dedicated for the rest of his life to these topics and
to teaching them. In 1855 the post of Class Inspector was established and
Yershov was appointed to it.

On the 5th of July in 1859 Yershov was confirmed in his position as direc-
tor of MEIS. It was impossible to combine the duties of director of a first-rate
technical educational institution and those of a professor at the University, so
Yershov chose to leave the University. As the director of MEIS he proposed to
transform it into a Technical Secondary School, organized as a technical in-
stitute – Moscow Technical Secondary School. The first draft of the IMTSS’s
regulations was composed by Yershov in 1857. In 1861 he presented to the
Moscow board of trustees a detailed proposal for the envisioned reformation.
A long drawn-out struggle with the board of trustees followed and the new
regulations were approved only in 1868.

By that time, the years of hard work and struggle with the Board of
Trustees, as well as family miseries such as his son’s death and financial
problems, had undermined his health. Alexander Yershov died on the 21st
of February in 1867.
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List of Main Works

1. “About Water as the Engine”, 1844.
2. The program of practical mechanics with Chebyshev’s response.
3. Foundation of Kinematics or Elementary Theory about Motion in General

and about Mechanisms of Machines Especially, 1854.
4. About Higher Technical Education in Western Europe, 1857.
5. Regulations’ project of the IMTSS, 1867.

Review of Main Works on Mechanism Design

About Water as the Engine

The argument “About Water as the Engine”, being A. Yershov’s master’s dis-
sertation, was published in 1844. It was the first work in Russia on the theory
of water engines. The work is basically devoted to theoretical consideration
of work of bulk wheels and turbines. It is possible to judge the contents of
this work in Figure 2.

The work of wheels and turbines is divided into three parts. In the first
part, bases of a hydromechanics are considered. In the second part power
parameters of hydromechanical systems are considered. In the third part, var-
ious types of hydraulic machines are considered and their comparative analy-
sis is given.

The value of this work is that each theoretical thought is accompanied
with the experimental data. In this work, the unity of theory and practice is
discussed and the advantage is given to geometrical and skilled investiga-
tion in the mechanics. The scientific and practical work of question theory
and construction of turbines has completely confirmed the justice of these
thoughts. This was the first work in Russia to present the theory of water en-
gines. However it was not widely popular at first; its recognition came only
later. References to it can be found in the modern literature.

About the Program of Practical Mechanics

This first course in practical mechanics was based on achievements of schools
of Germany, France, England, and on features of the Russian mentality and
traditions of the Russian technical and classical universities.
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Fig. 2. “About water as the engine”.

The course of practical mechanics consists of five sections: (1) movements
and the machines considered (examined) irrespective of forces; (2) dynamic
theory of machines; (3) engines and the machines acceptable movement;
(4) construction of machines; (5) mechanical technology.

In the first section, preliminary concepts about movement are given
and the geometrical description of the mechanisms serving for transfer and
change of movement is given.

In the second section, methods of definition and calculation of work of
constants and variable forces are stated; experiences for definition of laws of
friction are described; research of loss of work on an example of friction of
cogwheels and friction of a belt is discussed

In the third section, the theory of engines is given. “Alive” engines are
considered; the theory of windmills; construction of water wheels (in research
on water as the engine); definition of work of the steam machine by Ponselet’s
method.

In the fourth section, the properties of the most common materials in ma-
chines and methods of their processing are considered.
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In the fifth section, two manufactures are considered: mechanical spinning
and weaving. At the end of the course, results were given of Moraine’s ex-
periment – calculation of work of the moving force for the working of other
machines in spinning and weaving mills.

The course of Practical Mechanics was reviewed P. Chebyshev. He offered
to make the following additions.

The first section: to the mechanisms serving for transfer and change of
movement to add a wedge, the block, rack-wheel and the infinite screw; to
consider cylindrical and conic wheels; to state the theory of the infinite screw.

The second section: to consider: (1) friction of a wedge; (2) friction of
axes; (3) friction of ordinary screw; (4) friction of sliding body. Except for
friction Chebyshev offered to include in the program loss of work from rigid-
ity of cords and belts, loss of “alive” force at impact and absorption of work
by friction at the moment of impact.

The third section: to include the theory of construction of wings, with
an explanation of their benefits and inconveniences, constructions of water
wheels, methods of calculation of work of the water, delivered by any source.
To exclude definition of work of the steam machine based on erroneous theory
of Ponselet.

The fifth section: Chebyshev suggested mentioning articles of the third
section.

Chebyshev’s remarks have concrete character. As a whole, Chebyshev ap-
proved Yershov’s installations concerning tasks and purposes of the course
and the program as a whole.

About the Program of the Course in Descriptive Geometry

The course is divided into two parts: the first part contains all material relating
to a point, to a direct line and to a plane; in the second – data on curves and
on surfaces are considered. Except for these two general parts, construction
of a sundial and mechanical drawing are taught.

Foundation of Kinematics or Elementary Theory about Motion in General
and about Mechanisms of Machines Especially

Yershov’s textbook (Figure 3) was the first standard Russian textbook of
TMM. The work was issued in 1854 by the printing-house of the Moscow
University for students of the Imperial Moscow University and IMTSS. The
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Fig. 3. Foundation of Kinematics or Elementary Theory about Motion in General and about
Mechanisms of Machines Especially, 1854.

textbook could be used in conjunction with the newest practical mechanics
manuals of that time. In structure it reminds one very much of a course of
Poncelet: “Mecanique physique et experimentale” (1841), a monograph of E.
Bur, Cours mecanique et machine (1862), and Traite de cinematique (1849).

Yershov’s work contains 292 pages; 10 pages are devoted to the foreword,
50 pages to kinematics; the remainder of the volume addresses the question
of transformation and transfer of movement by means of various mechanisms
(the theory of mechanisms and machines).

It is possible to judge the scientific predilections of Yershov by the epi-
graph to his work:

“Un Traite ou l’on considererait tous les mouvements,
independamment des forces,

serait d’une extreme utilite dans l’instruction.”
Ampere
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In the foreword Yershov gives a brief historical review, and expresses ap-
preciation to his predecessors: to Ampere, Poncelet, Monge, Willis, etc.

Classification of mechanisms of machines in Yershov’s textbook is based
on concepts of Monge, i.e. on distinction of kinds of movements by form and
direction, and representations of Ampere about independence of geometrical
and kinematic properties of the mechanism of forces. In Willis’s classifica-
tion, Yershov sees weaknesses of various parts of a mechanism, depending
on comparative speeds.

Yershov mainly uses geometrical constructions by means of which he
managed to simplify the theory of relative movement of two cylinders (§27),
rod and crank (§27, §129), sliding of cogs (§88), etc.

In the part “Preliminary concepts”. Yershov defines as a basic subject in
mechanics the study of laws and the reasons of movement of bodies, and
gives basic kinematic and some dynamic definitions. Further he investigates
a question about inertia. He refers to Euler’s letters “Lettres à une princesse
d’Allemagne” (Paris, 1843), to Carnot’s work “Principes fondamentaux de
l’equilibre et du mouvement” in which inertia is nothing else than “the re-
sistance arising by change of a condition of bodies”. He notes that Laplace
and D’Alembert’ rejected the concept about inertia as against Ostrogradsky,
Ponselet, Morin, etc.

The first part discusses elementary mechanics and, particularly, kinemat-
ics of a point and a body. Moreover , it contains information about refer-
ence sources for machining for different materials, making it appropriate for
a book addressed to students of the “Educational Industrial Institution”.

The second part contains citations to Monge and Ampere and gives a gen-
eral plan of the book.

Chapter 1. “Moving transmission” (pp. 54–179): rectilinear continuous
moving, wobbling rectilinear moving, circular continuous moving, circular
wobbling moving.

Chapter 2. “Moving transformation” (pp. 180–256): rectilinear continu-
ous to circular continuous and vice versa, circular continuous to wobbling
rectilinear and vice versa, wobbling rectilinear to circular wobbling and vice
versa, circular continuous to circular wobbling and vice versa.

Chapter 3. “Moving differential and combined” (pp. 257–266).
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Moving transmission (Figure 4)

1. Rectilinear continuous moving. Moving transmission by means of flex-
ible and liquid substances. Moving transmission through direct contact
(blocks and polyspasts, wedge, hydrotransmission).

2. Wobbling rectilinear moving. Guides, rails, connecting slider with cou-
pler, poppet heads including those for steam, Watt’s straightlines mecha-
nism, Evanse’s straightlines mechanism.

3. Circular continuous moving. Endless cords, straps, chains. Transmis-
sion between parallel and nonparallel axes. Gear ratio. Pulley with vari-
able diameter. Joint’s parallelogram. Gears. Cycloid and evolvent cogs.
Clearance in gearing. Internal gearing. Pin gearing. Bevel gearing. Gear-
ing with skew axes. Worm-gearing. Hooke’s joint. Coupler and friction
clutch. Compound gearing (with fixed axes, planetary, clockwork).

4. Circular wobbling moving. Linkages and gearing-linkages.

Fig. 4. Examples of Moving transmission.
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Fig. 5. Examples of moving transformation.

Moving transformation (Figure 5)

1. Transformation moving circular to rectilinear continuous. Capstans sim-
ple and complex, screw and nut.

2. Transformation moving circular to wobbling rectilinear. Coupler and
crank, eccentric, double eccentric of Stefenson. Planetary train of Lagire.
Cams planar and space. Friction hummer. Rack-and-gear drive, differen-
tial rack-and-gear drive.



Alexander Yershov 145

3. Transformation moving circular to circular wobbling. Crank-slider and
crank-coulisse mechanisms. Moving transmission from contact (cams for
hammer head lift). Ratchet mechanism.

4. Transformation moving circular wobbling to wobbling rectilinear. Mov-
ing differential and composite.

Moving differential and combined

In these chapters, planetary mechanisms and, in particular, differentials are
considered. The examples taken from practice well illustrate the theoretical
beginnings of planetary mechanisms.

Thus, this textbook carries a strongly pronounced, highly applied charac-
ter, not relying on a formal definition of theoretical mechanics as a whole.
Yershov was appraised for his work as an alphabet on “. . . TMM without it
we could not understand nor composition nor how the machines work and
also it is in the number of the elementary work based on elementary mathe-
matics . . . ”.

Foundation of Collection of Mechanisms in IMTSS

It is possible to assume that Yershov was the founder of the collection of
mechanisms in IMTSS. At present we know only two models of mechanisms
that were created during Yershov’s epoch. The first model is the original or-
thogonal spatial gear transmission. The input wheel of the transfer is a flat
wheel on the front of which is only one tooth, made like Archimedes’s spiral
(Figure 6a). The inscription “Ivan Naumov 1861 year” was engraved on the
model. The second model is a centrifugal regulator with inertial element as
a massive ring. On the base of the model a tablet with the inscription “Pavel
Ivanov, 1862 year” was fixed (Figure 6b). These models with small differ-
ences agree visually with the drawings in Redtenbacher’s catalogue.

About Higher Technical Education in Western Europe

In 1857 Alexander Yershov wrote a scientific work Higher Technical Edu-
cation in Western Europe. In this work he analyzed and compared higher
educational technical institutions in France, Germany and England. Yershov
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Fig. 6a. Orthogonal spatial gear transmission (1861).

Fig. 6b. Centrifugal regulator (1862).

drew a conclusion that there was a necessity for the development of technical
education and forming a technical intelligentsia in Russia.

In the 1830s–1850s there were great changes in Russia: hand work was
replaced by machines, manufactory turned into factory, and industrial revolu-
tion began. However the development of the industrial society was moving on
very slowly. This fact became clearly visible during the Crimean war (1853–
1856). The supremacy in technical equipment of one of the warring sides won
the victory in this battle, not the armies or generals. It is possible to assume
that it was a consequence of lack of technically competent experts for devel-
opment of industry, industrial engineering and, hence, military engineering.

Development of an industrial society demanded not only abolishing serf
slavery and developing industry, but also providing elementary education to
the population of the country, and increasing the number of educated people.
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Alexander Yershov understood that it was very difficult to prepare the
necessary number of specialists for the country. He stood for the organization
of technical schools and paid a lot of attention to this question in his work.
Yershov thought that secondary technical education should not aim only at
preparation for entering higher educational technical institutions, because in-
dustry had a necessity for specialists with secondary education too.

Yershov attached a lot of importance to general education that was given
in gymnasiums. In his opinion, this education was enough for entering the
Universities, but not enough for entering higher educational technical insti-
tutions. He wanted gymnasiums to give students knowledge that would be
enough for entering the technical educational institutions too. Yershov sug-
gested organizing some special courses, such as technical drawing and me-
chanics, and decreasing teaching of ancient languages.

Yershov represented two different systems of education to readers –
French and German.

In the first one there were identical rules for entering schools and attending
lectures; on the contrary, the second one had variety in both.

The French considered rather general education for students of special
schools. Furthermore, they considered all applied sciences as parts of the
whole that was compulsory for every technical specialist. The difference
would be only in practical studies.

On the contrary, the Germans accepted students without sufficient prepa-
ration and rather often divided subjects superfluously. They even mixed high
and general school.

Alexander Yershov valued French technical school very highly because its
graduates had excellent theoretical and practical knowledge. However his fol-
lower F. Orlov (1872–1892) took many ideas from his experience of German
schools, especially schools of F. Reuleaux.

Yershov thought that special technical educational institutions should be
organized in Russia. He did not rule out the possibility of preparing techni-
cal specialists at the Physico-Mathematical Faculties of the Universities after
general education during the first and second courses. But he considered a
wide perspective to be creation of special open technical institutions.

He pointed out the importance of organization and subsidizing of scien-
tific journeys for teachers of higher technical schools in order to liberalize
their experience in science, technique and educational systems.
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Regulations’ Project of Imperial Moscow Technical Supreme
School

Alexander Yershov undertook the project of formulating the first regulations
of IMTSS in common with the leading professorate of the IMTSS.

In 1868, a year after Yershov’s death, MEIS was officially reorganized
into a high educational technical school. The general aim of the school was to
“educate civil-engineers and mechanical engineers”. The whole educational
course lasted six years. There were changes in the plan of education. New
subjects like botany, zoology, mineralogy, applied physics, science of railway
and etc. were entered.

Scientific studies of the educational institution were based on a combina-
tion of theory and practice. It was a fitting tribute to Yershov and his foresight.

The graduates were given some rights, such as: educated foremen were ex-
cused from a recruiting obligation, mechanics-builders, engineers- mechanics
and engineers-technologists were ranked among the estate of personal hon-
orary citizens and had all the rights of this estate. All students were excused
from recruiting obligations during the time of their education.

At the time of graduation all of the publicly supported students were given
books, necessary tools and clothes.

IMTSS had several advantages. It was excused from some taxes. The
buildings that belonged to the IMTSS were excused from billeting and du-
ties. IMTSS had the right to order different books abroad and they could be
imported without any duty or checking on the source. An essential achieve-
ment was that professors and teachers were equated to nobility. The profes-
sors were hereditary nobility, teachers were personal gentry nobility.

Modern Interpretation of Main Contributions to Mechanism
Design

A summary of Yershov’s two basic contributions to development of a techni-
cal education:

1. He prepared a plan for transformation of MEIS to a technical educational
institution of a higher level.

2. He was one of founders of the Moscow school of the theory of mecha-
nisms. The further development and perfection of this school was carried
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out by such scientists as P. Chebyshev, F. Orlov, N. Mertsalov, L. Smirnov,
I. Artobolevsky, L. Reshetov, and V. Gavrilenko.
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Abstract. Ferdinand Freudenstein is considered the father of modern kinematics in America.
He made his mark early with his seminal PhD dissertation in which he developed what is
known as Freudenstein’s Equation. During a long career at Columbia University, he and his
students produced outstanding research results in every area of modern kinematics. At the
time of his death there were over 500 academic descendents belonging to the Freudenstein
family tree. His progeny are teachers in many different countries, and his research results have
shaped the teaching and practice of mechanism and machine theory throughout the world.

Biographical Notes

Ferdinand Freudenstein (Figure 1), was born into a Jewish family, on May 12,
1926, in Frankfurt am Main, Germany. He was the son of George Freuden-
stein, an imaginative and successful merchant, and Charlotte Rosenberg, a
beautiful and wise woman whose family included prominent art historians.

When Ferdinand was ten years old, he, his parents and two sisters fled
the Nazis for safety in Holland. In the spring of 1937, after six months in
Amsterdam, the family moved to England where they joined his brother who
was studying there. They lived in London during the blitz, moved briefly to
Cambridge, and then spent several years in Llandudno, North Wales. During
this period his father and brother were sent into exile in Australia, since the
British Government regarded all adult male German citizens, even victims of
Nazi anti-Semitism, as enemy aliens.

In 1942, when he was 16 years old, Ferdinand, his mother and his two
sisters sailed on an old British cargo boat from England to Trinidad. They
remained there for six weeks until a distant cousin, Walter Kahn, arranged
for their visas to the United States.

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 151–181.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. Ferdinand Freudenstein in his office at Columbia University.

They arrived in New York harbor in March of 1942. Ferdinand had a high
school equivalency certificate from Wales and was able to enter college at
New York University (NYU). He spent two years studying there and then, at
age 18, joined the U.S. Army.

He was in the Army for about a year and a half, during which time he
was able to graduate from the Army Specialized Training Program in En-
gineering, at Texas A&M (1945). After the Army, with financial assistance
from the GI-Bill, he went to Harvard University and earned an M.S. Degree
in Mechanical Engineering in 1948.

As a young man, Ferdinand was a fine pianist and an accomplished player
of the xylophone. He also was a good tennis player and enjoyed athletics.
He had unusual powers of concentration that allowed him to concentrate on
his studies even under the adverse conditions that accompanied the family’s
transition from Frankfurt to New York. Ferdinand’s father had wanted his son
to join him in business, but Ferdinand had a desire to be a pure mathematician;
mechanical engineer was a family compromise.

After receiving his M.S., he worked as a Development Engineer in the In-
strument Division of the American Optical Company in Buffalo, New York.
He was there for approximately two years, and then left to study for his PhD
at Columbia University. He had always had an interest in mechanisms, and
his work experience furthered his interest. This was also stimulated by sum-
mer jobs as a development engineer at Ford Instrument (1951) and American
Machine and Foundry (1952), and as a Member Technical Staff, at Bell Lab-
oratories (1954).
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At Columbia he had one major problem: there was no faculty member who
did research in kinematics of mechanisms. Fortunately, Professor H. Dean
Baker, a specialist in combustion, agreed to be Freudenstein’s thesis supervi-
sor, and to allow him to work on mechanism kinematics, even though Baker
himself knew very little about the subject. For the rest of his life, Freudenstein
was extremely grateful for what he considered as an act of great kindness and
generosity on Baker’s part.

Freudenstein was awarded financial support through the Du Pont Fellow-
ship in Mechanical Engineering for the 1951–1952 and 1952–1953 academic
years. In 1954 he received his PhD and was appointed to an assistant profes-
sorship in Columbia University’s Mechanical Engineering Department. His
career up the academic ladder in the Department was meteoric. In less than
three years he was promoted to Associate Professor (1957). Then one year
later he became the Chairman of the Department of Mechanical Engineering
(1958), a post he held for six years (1958–1964). After only two years as an
associate professor, he was promoted to the rank of Professor (1959).

In the same year, at the age of 33, he married Leah Schwartzchild. Their
first child, David, was born on February 3, 1961, and their second child, Joan,
was born on February 6, 1964. The young family took up residence in the
Riverdale section of the Bronx where they purchased a comfortable three
story brick house on a quiet residential street. Ferdinand lived in that house
for the rest of his life, and he died in it on March 30, 2006.

At the end of the 1950s and the beginning of the 1960s, Freudenstein’s
Kinematics program at Columbia started to get world-wide recognition. He
brought Rudolf Beyer, from Munich, to Columbia to offer a special graduate
course on spatial mechanisms.

Following that, there was a highly publicized visit of a three person cul-
tural delegation from the Soviet Union. This was a “first” in the troubled Cold
War relations between the Soviet Union and the United States. One of the
three was the head of the All-Union Society “Znanie.” He was Academician
Ivan Ivanovich Artobolevskii, who was a member of the Supreme Soviet of
the U.S.S.R. and the foremost figure in mechanisms research in the U.S.S.R.
Artobolevskii visited Freudenstein, and an important connection was made
with the mechanisms establishment in the Soviet Union.

The mathematician Oene Bottema, from Delft, visited while returning
from a workshop at Yale where he had introduced the groundbreaking work,
of his student Veldkamp, on instantaneous invariants. Then Freudenstein in-
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vited the British mathematician Eric Primrose, first to work on studying the
coupler curves of geared five-bar mechanisms, and then for a visit of several
weeks to join in collaborative research on the algebraic geometry of six-bar
coupler curves.

In the midst of all Freudenstein’s professional success, tragedy struck
when his wife died in May 1970. This created a huge challenge for Ferdinand
who had not had any real experience with domestic details such as cooking
and running a household. Fortunately he was a quick learner. For the next
ten years, he ran the household and was both mother and father to his chil-
dren. At the same time he remained a highly productive and world-renowned
Columbia professor.

In May 1980, ten years after the death of his first wife, Ferdinand married
Lydia Gersten. Lydia was a teacher who was widowed, had grown children
and was caring for her elderly mother. Lydia and her mother moved into the
house in Riverdale. Lydia took over the domestic management of the house-
hold, and became a close and loving partner in Ferdinand’s life. Over the
next years, Ferdinand’s children grew up, Lydia’s mother died, and Lydia and
Ferdinand became the sole occupants of the house. Their marriage flourished
for nearly twenty-six years, until Ferdinand’s death, and was the greatest gift
in the last half of his life.

Two years after he remarried, Ferdinand was made Stevens Professor of
Mechanical Engineering. He held this chair for two years (1982–1884), and
then in 1985 was made Higgins Professor, a chair which he held until his
retirement. In addition to these honors, he was elected as a member of the
National Academy of Engineering, an Honorary Member of IFToMM and a
Fellow of the New York Academy of Sciences; he became an Honorary Life
Fellow of the ASME. He accumulated the following list of awards:

ASME Junior Award, 1955, for the paper “Approximate Synthesis for
Four-bar Linkages”; Guggenheim Fellow for “Studies in the Kinematics
of Mechanisms”, 1961–1962, 1967–1968; Great Teacher Award of Soci-
ety for Older Graduates of Columbia University, 1966; ASME Machine
Design Award, 1972; Mechanisms Committee Award, ASME, 1978; OSU
South Pointing Chariot Rotating Trophy (for contributions to mechanisms),
1980–1981; Best Paper Award, ASME Mechanisms Conference, 1970, 1980,
1982, 1984, 1986; ASME Charles Russ Richards Award, 1984; Applied
Mechanisms Conference Award for “A Lifetime of Contributions to Mech-
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anisms”, 1989; The Egleston Medal for distinguished engineering achieve-
ment, Columbia University, 1992.

Freudenstein held membership in the Harvard Engineering Society, the
Columbia Engineering Society, Sigma Xi, Pi Mu Epsilon and the VDI
(Verein Deutscher Ingenieure). He was active within the American Society
of Mechanical Engineers and held the following elected positions: Chair-
man, Mechanisms Committee (1964–1965); Chairman, Mechanisms Con-
ference (1964); Executive Committee Design Engineering Division (1972–
1977); Chairman, Design Engineering Division (1976-1977). In addition he
served on advisory panels for the National Science Foundation and the Army
Research Office.

Throughout his career he was involved as an industrial consultant. He
very much valued these contacts and the insights they afforded into “real-
world” engineering problems. His main consulting activities were with Bell
Telephone Laboratories, Designatronics, IBM, The Singer Company, Foster
Wheeler, Gulf and Western and General Motors. The General Motors consult-
ing activities went on for over fifteen years. Several of his consulting activities
led to technical publications in the open literature. In addition he served as an
expert witness on several cases involving engineering issues.

The Mechanical Engineering Department at Columbia University relied
heavily on a part-time student body many of whom were not born in Amer-
ica. Most of the graduate courses started at about 4PM or 5PM, since many
students held part-time or full-time jobs in one of the many colleges or in-
dustrial firms in the vicinity of New York City. So, for example, his first PhD
student was George Sandor, a Hungarian refugee, who was Chief Engineer
for Time, Inc. His second student, Bernard Roth, a native New Yorker whose
parents had emigrated from Eastern Europe, was employed as a lecturer at the
City College of New York. His third and fourth students were Ronald Philipp,
who was an Army Captain stationed at West Point, and An Tzu (Andy) Yang,
a refugee from China, who worked at American Machine and Foundry, Inc.

After graduation, many of his PhD students went on to academic positions
at other universities. His academic family grew rapidly, and by the time of his
death there were over 500 descendants belonging to the Freudenstein acad-
emic family tree. The tree is reproduced at the end of this section. It gives the
name of each of Freudenstein’s PhD students and the names of each of their
PhD students, and then subsequent generations. The year and school of each
person’s PhD is included. Certainly some names have been missed.
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The sheer size of the “tree” does not fully reveal Freudenstein’s immense
influence. He was always available to advise anyone on a research prob-
lem. Through his advice, his frequent guest lectures at other universities,
and his dedication and example, he influenced all the leading figures in the
United States mechanism research community. Ultimately his influence be-
came world-wide.

Starting in 1960 and continuing over his long career, he was able to ob-
tain financial support for his research on an almost continuing basis. He never
applied for large grants, nor did he generally have a large research group of
students. He tended to have several students at a time, often spaced about one
or two years apart in their progress over the various stages in the PhD process.
Due to special circumstances, there were several periods where three or more
students graduated in the same year, but these were deviations from his nor-
mal pattern. His principle supporters were the National Science Foundation,
the Army Research Office and to a lesser degree the General Motors Corpo-
ration.

The National Science Foundation funded grants with the titles: Burmester
theory in the kinematics of mechanisms; Kinematic analysis and synthesis
of six-link chains; Kinematic analysis of spatial linkages; Surface generation
in plane and spatial mechanisms; Gross-motion kinematic characteristics of
mechanisms; Determination and Minimization of Forces in Statically Indeter-
minate High-Speed Linkage Mechanisms; Kinematics and dynamics of high-
speed mechanical components; Kinematics and Dynamics of Basic Mechan-
ical Components; On the Kinematics, Dynamics and Design Optimization of
Basic mechanical components and systems.

The Army Research Office funded: Combinatory topological analysis of
kinematic structure; Computational kinematics; Optimization in the kine-
matic and functional design of mechanisms and mechanical systems; An in-
tegrated approach to the optimization of high-speed cam-follower systems;
Creation of mechanisms according to the separation of kinematic structure
and function; Development of an Expert System for the Creative Design of
Mechanisms; Instrumentation for . . . (the previous contract); The further de-
velopment and refinement of an expert system approach to the creative design
of mechanisms and mechanical systems.

The General Motors Corp. funded work titled “Research on high-speed
mechanisms and robotic mechanisms” and “Conceptual design of optimum
mechanism configurations.”
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Through his career he was in demand as a lecturer. He lectured at compa-
nies, government laboratories, universities and at academic conferences and
workshops. He presented a plenary lecture at the Fourth World Congress on
Theory of Machines and Mechanisms, in Newcastle-upon-Tyne.

Ferdinand Freudenstein was a kind and soft spoken individual. He was
extremely modest. He avoided controversy and academic politics. He admired
mathematics and mathematicians. Yet, he also had a strong interest in applied
engineering, and producing analytical models of machines and devices. He
was an accessible professor, and was always pleased to assist his professional
colleagues at Columbia and throughout the world. He was rather informal,
and often signed his letters F.F. or F2, and suggested his PhD students call
him F2 (pronounced ef-square).

His benevolent influence was felt, both directly and indirectly, by practi-
cally everyone who taught or did research in the field of kinematics or ma-
chines and mechanisms. Over his career, he wrote a great number of evalua-
tion letters for his many students and their academic descendants, as well as
for individuals whom he knew primarily through their research publications.
This was a great chore, but he felt it to be his duty to the profession and he
undertook it without complaint.

In 1991, in recognition of Freudenstein’s 65th birthday, Professor Arthur
Erdman, a Freudenstein academic grandchild, organized a conference in
Brainard, Minnesota. The event produced an exceptional book titled: Mod-
ern Kinematics: Developments in the Last Forty Years. The conference was
an academic family reunion, filled with excellent science and engineering.
Ferdinand and Lydia enjoyed it tremendously (Figure 2).

The following year Ferdinand was awarded the coveted Egleston Medal
for distinguished engineering achievement from Columbia University. How-
ever, somewhere in his brain the amyloid protein plaque that is suggestive of
Alzheimer’s disease was starting to build up. The once brilliant and incisive
mind was starting to forget, and in normal conversation he often repeated him-
self without realizing he had done so. Ferdinand was able to keep up his work
and teaching at a reduced scale until in 1996, at the age of 70, Freudenstein
retired from his position at Columbia University with the title of Higgens
Professor Emeritus.

At the time of his retirement, he typed a letter to his former students,
which he never sent, apparently defeated by the task of tracking down all
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Fig. 2. Ferdinand and Lydia Freudenstein with academic family and friends at his 65th Birth-
day.

the addresses. After his death, Lydia found the letter (Figure 3) among his
possessions.

As he mentions in this letter, Freudenstein had considered writing a book
after he retired from teaching. This pleasure was denied to him by his ill-
ness. However, he was able to maintain his family life for several years after
retirement. Inexorably, however, his difficulties became progressively more
debilitating. Throughout his illness he was cared for at home by his wife Ly-
dia, who devoted her entire attention to his care and comfort. He passed away
peacefully in his Riverdale home on March 30, 2006.

Five months after Freudenstein’s death, Professor Pierre Larochelle, of
the Florida Institute of Technical, compiled a list of Freudenstein’s academic
descendents. The family tree he generated reached into the fifth generation
and contained 500 names. A slightly modified version of the “tree” is
presented below, in Table 1. The school and year for the award of the PhD
degree follow each name. The names of Freudenstein’s students are in the
left-most part of each column. Subsequent generations have their names
offset to the right, each name is offset two spaces from the thesis advisor’s
name. The table runs continously, so all names in the first column preceed
the names in the second column.
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Fig. 3. Letter by Freudenstein to his former students.
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Table 1. The Freudenstein family tree.
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Table 1. (Continued)
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Table 1. (Continued)
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Table 1. (Continued)
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Table 1. (Continued)

Freudenstein, F., 1954. An Analytical Approach to the Design of Four-Link Mechanisms,
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Freudenstein, F., 1955. Approximate Synthesis of Four-Bar Linkages, ASME Trans., 77(8),
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Freudenstein, F. and P. Calcaterra, 1955. Tracer-Type Instrument for Changing Scales in Two
Mutually Perpendicular Directions, The Review of Scientific Instruments, 26(9), Septem-
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Freudenstein, F., 1956. On the Maximum and Minimum Velocities and the Accelerations in
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Freudenstein, F., 1957a. Five-Line Construction for a Computing Linkage Satisfying Five
Precision Requirements, J. Appl. Mech., 24, December, pp. 621–622.

Freudenstein, F., 1957b. Erzeugung Ungleichfoermiger Umlaufbewegungen, VDI Forschungs-
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Freudenstein, F., K. L. Wartham, and A. B. Watrous, 1957. Designing Gear-Train Limit Stops,
Machine Design, 29, May, pp. 84–86.

List of  (Main)   Works
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Series E, 28, March, pp. 41–49; Discussion, September, pp. 373–375.
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Commensurate Gear Ratio, ASME Trans., J. Appl. Mech., 30E, June, pp. 170–175; Dis-
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Springer-Verlag, pp. 420–428.

Philipp, R. E. and F. Freudenstein, 1966. Kinematic Synthesis of Two-Degree-of-Freedom
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Lee, T. W. and F. Freudenstein, 1976. Heuristic Combinatorial Optimization in the Kinematic
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Patents and Invention Disclosures:

Adjustable Velocity-Control Mechanisms, U.S. Pat. # 2,590,692; 1952.
Intermittent-Motion Mechanism Employing Noncircular Gears, U.S. Pat. # 3,424,021; 1969.
Intermittent-Motion Chain Mechanism, U.S. Pat. # 3,440,891; with C. W. McLarnan; 1969.
Anatomical Knee Joint, with L. S. Woo, IBM Technical Disclosure Bulletin, 11(1), 1968,

pp. 35–36.
Spherical Variable-Speed Transmission, with L. S. Woo, IBM Technical Disclosure Bulletin,

13(12), 1971, pp. 3597–3598.
Variable-Displacement Piston Engine, with E. R. Maki, U.S. Pat. #4,270,495, 1981.
Cyclic Phase-Change Mechanism, with E. R. Maki, U.S. Pat. # 4,332, 148, 1982.
Rolling Contact Rocker Arm and Pivot, with E. R. Maki, R. L. Richard, Jr., and M. S. Chew,

U.S. Pat. # 4,393,820, 1983.
Swashplate Drive Mechanism, with E. R. Maki, U.S. Pat. # 4,418,586, 1983.
Swing-Beam Internal Combustion Engine, U. S. Pat. #4821695, 1989.
Non Circular Drive, U.S. Pat. # 4,865,577, 1989.

Review of Main Works on Mechanism Design

Freudenstein’s initial publications (Freudenstein, 1954, 1955) stemmed from
his PhD research. In the second of these papers he developed the equation
which later bore his name. The Freudenstein Equation is an elegantly simple
scalar equation representing the closure constraint on a planar four-bar chain;
it is based on figure 1 of his paper, shown here as Figure 4.

In his paper, the length of the fixed link is normalized to unity, the input
crank length is b, the coupler length is c, the output link’s length is d, and the
input and output angles, measured from the line of the fixed link, are φ and
ϕ, respectfully.

Using:

R1 = 1/d, R2 = 1/b, R3 = (1 + b2 − c2 + d2)/(2bd).
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Fig. 4. The figure used to derive Freudenstein’s Equation.

Freudenstein obtained his equation in the form:

R1 cos φ − R2 cos ϕ + R3 = cos(φ − ϕ).

It is useful for designing and analyzing planar four-bar function generating
mechanisms.

If three input angles and their corresponding output angles are specified,
writing this equation once for each input-output angle pair yields three linear
equations for the R’s. Once R1, R2 and R3 are known, the link lengths b, c and
d are easily determined. The resulting four-bar chain, with the calculated link
lengths b, c, d, will be a closed loop when the input link is placed in any one
of the three specified positions (φ) and the output link is at the corresponding
output angle (ϕ). This is the so-called three precision-point design.

Furthermore, by measuring the angles from unspecified arbitrary starting
positions, φs and ϕs , two additional design variables can be introduced. This
is done by setting φ = φs + pi and ϕ = ϕs + qi , where pi and qi are the
angular rotations for, respectively, the input and output links measured from
their starting positions. With these substitutions Freudenstein’s equation can
be used as the basis for a four or five precision-point design. For this case, the
equation takes the form:

R1 cos(φs + pi) − R2 cos(ϕs + qi) + R3 = cos[(φs + pi) − (ϕs + qi)],
i = 1, 2, 3, 4, 5.

Of course, now it is necessary to solve non-linear equations. In his paper,
Freudenstein develops a detailed solution for four and five precision-position
designs.
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Finally, by introducing scale factors rφ and rϕ for the conversion of the
crank angles to some functional variables, such as x and y, in y = f (x),
pi and qi can be replaced in Freudenstein’s equation by pi = rφ(xi − xs)

and qi = rϕ(yt − ys). By leaving the scale factors unspecified, Freudenstein
added two new design variables, and was able to achieve seven precision-
point designs. In addition to the finitely separated precision points, this paper
also treats order approximations, i.e., the type of approximation where there
is only one precision point but there are a number of derivatives specified at
this precision point.

He later followed up his great success with this function generation paper
by publishing a paper incorporating the point-position reduction method into
function generation (Freudenstein, 1957a, 1957b) and a tabulation of opti-
mized function-generation solutions (Freudenstein, 1958b).

In the same year as his landmark function generation paper, he described
the design and construction of a novel pantograph type mechanism for use
in an instrumentation laboratory at Columbia University (Freudenstein and
Calcaterra, 1955).

This was the first of many papers describing mechanisms he de-
signed and/or analyzed. The list includes: recording mechanisms (Freuden-
stein, 1965b), chain type mechanisms (McLarnan and Freudenstein, 1966;
Freudenstein and Chen, 1986; Chen and Freudenstein, 1988; Bucknor and
Freudenstein, 1992, 1994; Veikos and Freudenstein, 1992), tone arm mech-
anisms (Freudenstein and Soylemez, 1973), track mechanisms (Freuden-
stein and McLarnan, 1973), roller mechanisms (Freudenstein and Soyle-
mez, 1975), lifting rigs (Freudenstein and Longman, 1975; Fabien, Long-
man and Freudenstein, 1991), multiport levers (Freudenstein and Soylemez,
1977), locks (Soylemez and Freudenstein, 1980), spatial cranks and rockers
(Freudenstein and Soares, 1980), variable stroke engines (Freudenstein and
Maki, 1983, 1984; Freudenstein, Maki and Tsai, 1988), variable motion cam
shaft drives (Freudenstein, Tsai and Maki, 1983), Cardan type universal joints
(Fischer and Freudenstein, 1984), wrench grips (Freudenstein, 1985, 1986),
scissors (Freudenstein, 1990), paper cutters (Freudenstein and Chen, 1992)
and cassette loaders (Freudenstein, McCandless and Mawhirt, 1993). The list
of Freudenstein’s patents and patent disclosures at the end of the previous
section includes the fruits of some of these studies.

Another of his early contributions was an elegant paper on the extreme
values of velocity and acceleration in four-bar output cranks. In this paper
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he showed that, in a four-bar, at an extreme value of the velocity ratio the
collineation axis is perpendicular to the coupler link (Freudenstein, 1956).
Twenty years later he published a broader study on this same topic where he
and his co-authors considered the velocity variations in various mechanisms
(Freudenstein, Primrose, Ray and Laks, 1976).

In his early years, he published two articles on gear design and accuracy
(Freudenstein, Wartham and Watrous, 1957; Freudenstein, 1958a). These
were the forerunners of several research studies on gear design and analysis.
His topics included the study of epicyclic gear trains (Freudenstein, 1971;
Freudenstein and Yang, 1972; Yang and Freudenstein, 1973; Bernard and
Freudenstein, 1990), noncircular gears (Freudenstein and Primrose, 1975),
gear train inertia (Freudenstein and Mayourian, 1982) and force and power-
flow in gear trains (Freudenstein, Longman and Chen, 1984; Pennestri and
Freudenstein, 1990a, 1990b, 1993a, 1993b).

In 1959 Freudenstein published three additional landmark papers. The
first (Freudenstein, 1959a) considered the effect of precision-point spacing
on the resulting error curves for function generating mechanisms. In this pa-
per he developed a method to choose precision points, based on Chebyshev
polynomial concepts, that lead to minimum maximum-errors. (A related pa-
per (Freudenstein, 1961c), on interval interpolation, was published two years
later.)

The second was a paper on the synthesis of path-generating mechanisms
(Freudenstein and Sandor, 1959). This paper marked two big beginnings for
Freudenstein: it was the first paper he co-authored with one of his PhD stu-
dents, and it marked his transition away from the function generation synthe-
sis problem into the area of path generation. In this new paper he reinforces
the utility of complex numbers and introduced the important concept of using
a virtual linkage named the “compatibility four-bar” to determine the ranges
of real points on the circle- and center-point curves.

This paper was the starting point for the important series of papers he
published on the vector-loop methods in synthesis and the modern develop-
ment of classical Burmester theory (Freudenstein and Sandor, 1961; Freuden-
stein, 1961a; Roth, Freudenstein and Sandor, 1962; Primrose, Freudenstein
and Sandor, 1964; Freudenstein, Bottema and Koetsier, 1969; Freudenstein
and Primrose, 1981).

The third work of 1959 (Freudenstein, 1959c) marked his first foray into
the dynamic aspects of mechanisms; he derived the harmonic analysis of four-
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bar crank-and-rocker mechanisms. This paper is now regarded as a classic
work. In it he used his analytic results to find crank-and-rocker length ratios
that minimize the higher harmonics while optimizing the transmission angle.

This was then followed by another paper on harmonic analysis (Freuden-
stein and Mohan, 1961) and on papers on the dynamics of springs and cams
(Freudenstein, 1960a, 1960b). In this latter paper he observed that cam dy-
namics could be improved by minimizing the harmonic content of the driving
function, and he developed a family of curves with low harmonic content in
order to minimize the peak acceleration in the system.

Throughout his career he returned to the dynamic analysis and design of
mechanical components, cams and linkage systems. A brief outline of this
extensive body of work is given below.

In Freudenstein, Vitaglio et al. (1969) he considered the dynamic response
of mechanical systems. In Freudenstein (1970) he modelled shock absorbers
in freight cars. In Woo and Freudenstein (1971) he introduced the use of screw
coordinates as a tool in the dynamic analysis of spatial mechanisms.

In Dubowsky and Freudenstein (1971) he and his PhD student modelled a
pin joint with clearance as a spring-damper system. They studied the contact
forces in the joint and the behaviour of what they termed an impact pair. In
Freudenstein (1971, 1972) he presented tutorials for practicing engineers on
the issue of vibrations in machines. In Freudenstein (1973b) he studied the ef-
fect of dynamic models where machine elements are represented by a combi-
nation of lumped and distributed parameters. In Funabashi and Freudenstein
(1979) he, and a visiting professor from the Tokyo Institute of Technology,
synthesized planar and spherical four-bar linkages for quality high-speed op-
erations. In Berzak and Freudenstein (1979) he and his student determined
important properties of polynomial cam curves.

In Freudenstein, Macey and Maki (1981), he and two engineers at GM,
studied optimal balancing in high speed machinery. In Gill and Freudenstein
(1983) he and his PhD student studied the minimization of inertia forces in
spherical four-bars. In Chew, Freudenstein and Longman (1983) they applied
optimal control theory to cam design, and showed that it is not possible to
optimize simultaneously for all significant design criteria.

In Pisano and Freudenstein (1983), with his PhD student, he developed
new models for automotive valve trains. These models, combined with exper-
imental investigations, yielded increased understanding of the significance of
friction, spring dynamics and hydraulic tappets in automotive valve trains. In
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Freudenstein, Maki and Mayourian (1983) he developed criteria for energy
efficient cam follower systems.

In Freudenstein (1984) he outlined his thoughts on possible research ini-
tiatives for the area of machine dynamics. In Chen and Freudenstein (1986)
they presented a dynamic analysis of a universal joint, and included manufac-
turing tolerances in their model. In Hanachi and Freudenstein (1986) they de-
veloped a predictive model for the optimization of high-speed cam-follower
systems. In Freudenstein and Macy (1990) they derived the inertia torques
in a Hooks joint. In Fabien, Longman and Freudenstein (1990) they studied
the control of an electromagnetic suspension and in Fabien, Longman and
Freudenstein (1994) they studied the design of high-speed cams using opti-
mal control theory.

Another topic he returned to several times was the determination and opti-
mization of the transmission angle as a means of improving static force trans-
mission and kinematic performance. He considered planar four-bars (Roth,
Freudenstein and Sandor, 1962; Freudenstein and Chew, 1979), geared five-
bars (Lee and Freudenstein, 1978), spherical four-bars (Freudenstein and
Primrose, 1972) and spatial four-bars (Soylemez and Freudenstein, 1982).

With his second PhD student, he worked on obtaining numerical solutions
to the sets of nonlinear algebraic equations that arise in the synthesis of link-
ages. In the course of solving the nine-precision point synthesis for four-bar
coupler curves, they developed a method they named the “Bootstrap” method
(Roth and Freudenstein, 1963). This was the earliest versions of what is now
known as polynomial continuation.

In a follow up paper they called their method the parameter-perturbation
procedure (Freudenstein and Roth, 1963) and they invented a numerical ex-
ample to illustrate that it could converge to a solution without starting from a
good initial guess. This example led to the development of a widely used test
function for nonlinear equation solvers and optimization routines known as
the Freudenstein–Roth function.

An application of numerical methods to two-degree-of-freedom linkages
followed four years later (Philipp and Freudenstein, 1966). Freudenstein later
went on to consider the path generation synthesis of spatial mechanisms (Al-
izade, Freudenstein and Pamidi, 1976; Alizade, Novruzebekov, Freudenstein
and Sandor, 1980). In two subsequent PhD theses he and his students in-
troduced the idea of using heuristics to perform mechanism synthesis (Lee
and Freudenstein, 1976; Datseris and Freudenstein, 1979). This is an itera-
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tive approach that improves a set of arbitrarily selected feasible solutions.
The advantage of this method is that it is not dependent on the mathematical
properties of either the objective or constraint functions.

With his fourth PhD student, he showed how to apply dual-number quater-
nions to the analysis of spatial linkages (Yang and Freudenstein, 1964). The
success with this work had continued benefits in two areas: it awakened an
interest in the kinematics community in the use of dual numbers, dual vec-
tors and dual quaternions, and it furthered Freudenstein’s interest in the posi-
tion analysis of multi-link closed-loop spatial chains. This increased interest
led to a series of advances in the analysis of spatial and spherical mecha-
nisms (Freudenstein, 1968; Wallace and Freudenstein, 1970, 1975; Woo and
Freudenstein, 1970; Yuan and Freudenstein, 1971; Pamidi and Freudenstein,
1975; Freudenstein and Primrose, 1976).

Freudenstein had a special interest in the algebraic geometry and differen-
tial geometry of coupler curves. He was interested in knowing what a mech-
anism could or could not do. He published a study which showed that linked
mechanisms could not generate transcendental curves (Freudenstein, 1963)
and in it also studied their singularity conditions. He also enlisted the collab-
oration of Eric Primrose, a Senior Lecturer in the Department of Mathematics
at the University Leicester in England, who was an expert on classical alge-
braic geometry. Together they analyzed the coupler curves of planar geared
five-bar linkages (Freudenstein and Primrose, 1963; Primrose and Freuden-
stein, 1963), planar six-bar linkages (Primrose, Freudenstein, and Roth, 1967)
and simple spatial linkages (Freudenstein and Primrose, 1969).

Freudenstein’s first publication on curvature theory was a short pedagog-
ical redevelopment of R. Mueller’s work on finding Burmester points with
higher order approximations to straight line (Freudenstein, 1961a). This was
followed by what is arguably the classic modern paper on the subject of cou-
pler curve curvature (Freudenstein, 1965). In this paper he shows how to
study any coupler curve’s curvature as well as first, second and nth change
of curvature, all in a systematic manner related to the kinematics of a pla-
nar motion. He then co-authored a paper showing how to extend the classical
instantaneous, positions of a plane, Burmester theory to conics (Sandor and
Freudenstein, 1967). Freudenstein later presented a very elegant treatment of
the curves associated with the synthesis of the instantaneous kinematics of
planar motions (Woo and Freudenstein, 1969).
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With his sixth PhD student, Freudenstein entered the area of graph theory
and pioneered its application to type synthesis (Dobrjanskyj and Freuden-
stein, 1967; Freudenstein, 1967b, 1977). From this time forward, the topic
of type synthesis and its elaborations became one of the major themes of his
research, and he continued to work on this topic until his retirement

With Frank Buchsbaum, his seventh student, in what was a major break-
through in the study of gear trains, he introduced graphs and so-called col-
ored graphs to represent planetary gear trains (Buchsbaum and Freudenstein,
1970). These deduced fundamental rules and provided a definition for graph
isomorphism. Freudenstein (1971) further extended graph theory to include
definitions such as rotation and displacement graphs, and the corresponding
concepts of isomorphism for graph rotation and displacement. Furthermore,
he showed that the displacement equation for any epicyclic gear train can be
obtained by inspection from the kinematic structure. These techniques were
elaborated on, using dual numbers, dual vectors and dual transformations, so
as to extend the fundamental epicyclic circuit theory to gear trains with bevel
gears and hypoid gears (Yang and Freudenstein, 1973; Freudenstein and Woo,
1974). In Freudenstein and Maki (1979) he introduced the concept of obtain-
ing new devices by studying the structure. In Mayourian and Freudenstein
(1984) he used his graph theory developments to show how to create an atlas
of the kinematic structure of mechanisms.

In a prize winning paper he and his PhD student Wayne Sohn intro-
duced the concept of dual graphs, and showed how to use them to deal with
contracted graphs (Sohn and Freudenstein, 1984). In Fang and Freudenstein
(1986, 1990) he introduced the concepts of a stratified representation and a
hierarchical representation, respectively, to facilitate the automatic computer
generation of mechanisms. In Vucina and Freudenstein (1991) he showed
how to do synthesis using a combination of graph theory and nonlinear pro-
gramming.

In addition to the above mentioned topics, Freudenstein published im-
portant works on the analysis and design of robot arms (Freudenstein and
Primrose, 1984; Lin and Freudenstein, 1986; Tsai and Freudenstein, 1989),
on classical Cardonic motion and its generalizations (Freudenstein, 1960,
1975; Freudenstein, Primrose and Chen, 1994), on type determination of
spherical (Freudenstein, 1964c) and skew four-bars (Freudenstein and Kiss,
1969), on the kinematic analysis of the human knee joint (Freudenstein and
Woo, 1969), on cam design and analysis (Freudenstein, 1960b; Freudenstein
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and Buchsbaum, 1973; Barzak and Freudenstein, 1979; Pisano and Freuden-
stein, 1983; Freudenstein, Tsai and Maki, 1983; Hanachi and Freudenstein,
1986; Fabien, Longman and Freudenstein, 1994), on general constraints
(Freudenstein and Alizade, 1975) and on Chebyshev polynomials in synthesis
(Freudenstein, 1976b).

Modern Interpretation of Main Contributions to Mechanism
Design

In North America, Freudenstein is regarded as the father of modern kine-
matics. He is credited with leading the study and practice of the kinematics
of mechanisms into the digital computer age. Freudenstein brought a sci-
entific approach to the subject and introduced mathematical tools that had
not heretofore been used in kinematics. He was among the first to utilize
the power of digital computation in solving kinematics problems. Through
his exemplary research and teaching, he created a large family of engineers,
teachers and researchers that carried his ideas and methods to universities and
corporations throughout North America and many other parts of the world.
These Freudenstein disciples were both his own students and the countless
others with whom Freudenstein and his students had various forms of profes-
sional interactions.

Freudenstein’s work has had a lasting impact on many areas of the theory
and practice of machines and mechanisms. It is impossible to overstate his in-
fluence on university education and research. The list of 500 PhD descendants
in Table 1 gives only a partial indication of the vast spread of Freudenstein’s
influence.

In July of 1991, in celebration of Ferdinand Freudenstein’s 65th birth-
day, a special meeting was held near Minneapolis, Minnesota to honor him.
In connection with this event, in 1993 a book was published titled Modern
Kinematics: Developments in the Last Forty Years (edited by Arthur G. Erd-
man; published by John Wiley & Sons, Inc., New York). This book is a re-
view of the significant developments in the 40 years since the influence of
the digital computer was first felt on the field. It contains over 600 pages,
and was the work of 13 chapter editors and 60 authors, all organized by a
Freudenstein academic grandchild, Professor Arthur Erdman of the Univer-
sity of Minnesota. This book gives a thorough assessment of the state of the
art in the early 1990s. Since it covers a period that coincides essentially with
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all of Freudenstein’s professional life, it is an excellent and unique resource
to help assess the impact of Freudenstein’s work and personality on the broad
field of kinematics and mechanism design.

What is clear, when one looks at the full scope of the development pre-
sented in Modern Kinematics: Developments in the Last Forty Years, is that
Freudenstein’s work was at the starting point of many of the big problems
that have been dealt with in the course of the field’s development during the
period that started in the early 1950s and has continued through the 1990s
into the present day.
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Abstract. Dr.-Ing. E. h. Kurt Hain was a pioneer of Applied Kinematics in Germany. He
started his scientific career in his native town Leipzig. Between 1936 and 1994 he wrote 13
books and 380 scientific papers and designed 176 mechanism models. He worked in nearly
all subfields of kinematics and machinery. There are notions, procedures and methods that are
strongly connected with his name. His kinematic heritage for future generations of mechanical
engineers is now preserved in the framework of a national research project in Germany, named
“DMG-Lib”.

Biographical Notes

Kurt Hain (Figure 1) was born in Leipzig (Saxony), Germany, on May 24,
1908. After having finished his apprenticeship as a mechanic and turner
he studied mechanical engineering at the “Höhere Maschinenbauschule”
(Higher School of Mechanical Engineering) in his native town.

Fig. 1. Dr.-Ing. E. h. Kurt Hain.
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The then very well-known expert in kinematics Paul Knechtel taught him
and evoked in him an interest in mechanism theory as basic knowledge for
the fast developing mechanization period. This was a key experience for Kurt
Hain and fixed his future professional career. After his studies he worked
from 1931 on with different industrial companies in Leipzig, Dresden and
Dessau until he moved in 1939 together with his family to Braunschweig
where he started to work as a research and test engineer in the “Luftfahrt-
Forschungsanstalt” (Aviation Research Institution). This institution changed
after World War II into the “Forschungsanstalt für Landwirtschaft” (FAL)
(Research Institution of Agriculture). In 1948 Kurt Hain became group leader
and in 1961 departmental leader of kinematics in the “Institut für land-
technische Grundlagenforschung” (Institute of Agro-Technical Basic Re-
search) where he first made major improvements in the design of tractor-
drawn farm implements. He retired in 1973.

In summarizing Hain’s list of publications, we note that he presented
his first paper in 1938 to the community of mechanism theory at the age
of 30. It was titled “Geschwindigkeitsverhältnisse sämtlicher Koppelpunkte
eines gegebenen Gelenkvierecks” (Velocity ratios of all coupler points of
a given four-bar) and appeared in the German journal Maschinenbau –
Reuleaux-Mitteilungen/Archiv für Getriebetechnik (RM-AfG) (Hain, 1938c).
This journal was edited by the “Reuleaux-Gesellschaft” (Reuleaux Society)
being part of the “Fachgruppe Getriebetechnik” (Expert Group Kinematics)
within the “Verein Deutscher Ingenieure” (VDI) (Association of German En-
gineers). Editor-in-chief was Rudolf Beyer from Zwickau (Saxony), at that
time spokesman of the German kinematicians. So it was a great honour for
Kurt Hain, who had not received a university education, to be given this
chance for prominent publication. Actually, Kurt Hain had written and pub-
lished four papers before (Hain, 1936, 1937, 1938a, 1938b), but he never in-
cluded them in his list of publications. Nevertheless – in the author’s opinion
– they are interesting enough to be mentioned and discussed here later.

To Hain’s last publication in 1994 titled “Getriebe für die Massenfertigung
– Getriebe-Bewertungen durch einfache und eindeutige Kennwerte” (Mech-
anisms in Mass Production – Assessments of Mechanisms by Simple and
Clear Characteristics) (Hain, 1994) he assigned his own number 361; but
there are more, because he omitted reviews of lecture notes and books from
colleagues and of conferences as well as papers for teaching courses. So,
looking back at his lifework (Kerle et al., 2006) we have 380 papers, 13 books,
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Table 1. List of books written by Kurt Hain.

No. Title Publisher Year
1 Angewandte Getriebelehre Schroedel-Verlag, Hannover 1952
2 Die Feinwerktechnik Fachbuchverlag Pfanneberg,

Gießen
1953

3 Angewandte Getriebelehre, 2. Aufl. VDI-Verlag, Düsseldorf 1961
4 Getriebelehre – Grundlagen und Anwen-

dungen, Teil I: Getriebe-Analyse
Hanser-Verlag, München 1963

5 Applied Kinematics, 2nd ed. McGraw-Hill Company, New
York

1967

6 Getriebe-Atlas für verstellbare Schwing-
Dreh-Bewegungen

Vieweg-Verlag, Braunschweig 1967

7 Einflüsse von Gelenkspiel und Reibung auf
die im Getriebe wirkenden Kräfte (Fort-
schritt-Berichte VDI-Z, Reihe 1, Nr. 17)

VDI-Verlag, Düsseldorf 1969

8 Atlas für Getriebe-Konstruktionen Vieweg-Verlag, Braunschweig 1972
9 Getriebebeispiel-Atlas – Getriebebeispiele

für den Konstrukteur
VDI-Verlag, Düsseldorf 1973

10 Getriebetechnik – Kinematik für AOS- und
UPN-Rechner

Vieweg-Verlag, Braunschweig 1981

11 Gelenkgetriebe-Konstruktion mit HP Serie
40 und 80 (together with H. Schumny)

Vieweg-Verlag, Braunschweig 1984

12 Gelenkgetriebe für die Handhabungs- und
Robotertechnik

Vieweg-Verlag, Braunschweig 1984

13 Getriebeberechnungen für hohe An-
sprüche mit Ausnutzung der Koppelkurven-
Krümmungen (Fortschritt-Berichte VDI-Z,
Reihe 1, Nr. 155)

VDI-Verlag, Düsseldorf 1987

2 contributions to handbooks, 164 reports or summaries and at least 23 sets
of lecture courses in kinematics that he had written or composed. The list of
his books is given in Table 1.

Two lists of Hain’s publications are found in the German literature of
mechanism theory (Hain, 1979; Kerle, 1988) from which we can conclude
that Kurt Hain did research work on almost every field of kinematics: planar
and spatial linkages and cam mechanisms, systematics, kinematic and dy-
namic analysis and synthesis of mechanisms. His fields of research can be
broadly classified into some 26 special categories according to Table 2.

Moreover, starting in 1959 and ending in 1973 with his retirement, he
designed 176 mechanism models. Most of them were actually built, but not
all of them could be kept or saved. The number of models still existing and
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Table 2. Categories of research activities of Kurt Hain.

General category Special category/method
A. Systematics (type and number 1. Mechanisms with more or less than

synthesis) one degree of freedom (d.o.f.)
2. Band or belt mechanisms
3. Equivalent mechanisms
4. Sliding-pair mechanisms
5. Screw mechanisms

B. Kinematic analysis 6. Mechanisms with gears
7. Ratchet mechanisms and index mechanisms
8. Radius of translation
9. Following-the-drawing-calculation method

C. Dynamic analysis 10. Mechanisms with springs
11. Pole force method
12. Transmission angle
13. Effects of joint backlash

D. Kinematic synthesis 14. Point position reduction
15. Dwell and pilgrim-step linkages
16. Point-dwell mechanisms
17. Cognates
18. Drag-link mechanisms

E. Cam mechanisms 19. Cam-linkage design
20. Cams with pure rolling contact

F. Applications (applied kinematics) 21. Computing mechanisms
22. Mechanisms for use in agricultural

machines and transport devices
23. Mechanisms for use in machine tools
24. Mechanisms for use in clamping and

handling devices and robots
G. Catalogues and models 25. Design charts, mechanism catalogues

and atlases
26. Mechanism model collection

preserved now at the Professorship of Kinematics of the Technical University
of Dresden runs up to 76.

There are notions and methods that originate from Kurt Hain, for ex-
ample the Drehschubstrecke (radius of translation), a Punktrastgetriebe
(point-dwell mechanism), the Polkraftverfahren (pole force method), the
Punktlagenreduktion (point position reduction) and the Zeichnungsfolge-
Rechenmethode (following-the-drawing-calculation-method). In 1965 during
the course of development of Konrad Zuse’s invention, large mainframe com-
puters were introduced in Germany and Kurt Hain seized the opportunity to
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prepare the publication of his first “Getriebeatlas” (mechanism atlas) (Hain,
1967a) in cooperation with some of his institute research employees. This first
catalogue concentrates on the possibilities of the well-known four-bar link-
age. Two atlases followed (Hain, 1972, 1973). In 1969 Hain himself bought
a desk micro-computer of the type “Tektronix 31”, put it on the desk in his
home and started to write simple programs for the analysis and synthesis of
mechanisms. The Tektronix machine could repeat steps that had been pre-
programmed, using the alphanumeric and functional buttons of the keyboard.
The programs could be stored on a magnetic card and data could be printed
out and read on a small paper roll printer. In 1975 Hain replaced the Tektronix
machine by the pocket computers HP 67 and HP 97 from Hewlett-Packard
and TI 59 from Texas Instruments with the possibility to plug in ROM-
modules for programs. Again five years later Hain bought the top pocket
computer product of Hewlett-Packard, the HP 41C, which were soon fol-
lowed by the upgraded HP 41CV and HP 41CX. All these pocket computers
could be upgraded by plugging in memory or ROM-program modules. The
types HP 41CV and HP 41CX additionally could be connected with a small
magnetic tape device.

The micro- and pocket computers formed the geometrical base for Kurt
Hain to demonstrate the efficiency of his Zeichnungsfolge-Rechenmethode
and to improve it, which he used for the analysis (Hain, 1975) as well as for
the synthesis of mechanisms (Hain, 1983). On this basis, Hain could check
his numerical results from time to time by simply using pencil, ruler and
set square and thus going back to his early years of research. An interest-
ing historic overview of the development from purely graphical methods to
the Zeichnungsfolge-Rechenmethode is partly written and explained by Hain
himself in one of his papers (Hain, 1988).

In spite of being convinced of the efficiency of numerical methods in
mechanism theory Kurt Hain refused to deal with the latest computer gen-
eration, the personal computers (PCs). This is due on the one hand to the
necessity of writing long and tedious program lines in a proper language – at
least at that time; on the other hand he distrusted the PC which in his opinion
executed too many uncontrollable operations beyond handling mathematical
algorithms. In his book Applied Kinematics (Hain, 1967b) we read his state-
ments of the matter on page 379:

1. Computer programmers, while well-versed in the capabilities of the com-
puter, cannot be expected to comprehend the complexities of other fields;
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the problem must be defined and formulated by the designer before it can
be handed to the programmer.

2. There is a common misconception that the introduction of computers will
reduce the need for specialists. This is not the case, particularly in the
field of mechanisms, since it is not yet possible to express the best design
in theoretical terms for the computer’s use; there is still a need for the
practical consideration.

The first statement is still valid today; the second statement is not in its en-
tirety, because for example there are powerful optimization procedures today
which help to find among many possible solutions a mechanism to be adapted
in the best way to a given kinematic task.

On October 6, 1957 Kurt Hain left Braunschweig, starting by plane in
Hamburg and arriving in New York City via London, following an invit-
ation of some of his American professional colleagues, the professors Al-
len S. Hall from Purdue University, Lafayette (IN), Ferdinand Freudenstein
from Columbia University, New York City (NY), Richard S. Hartenberg from
Northwestern University, Evanston/Chicago (IL) and Joseph S. Beggs from
University of California, Los Angeles (CA) (Crossley, 1988). Hain made
a coast-to-coast tour, gave lectures at several American universities, visited
many industrial companies and discussed with technical executives and de-
velopment engineers problems where solutions could be found on the basis of
mechanisms. On this occasion Kurt Hain also participated in the 4th Confer-
ence on Mechanisms at Purdue University and presented two papers (Hain,
1957a, 1957b), the latter one being a report on German research activities on
mechanism theory since 1945, the end of World War II. This report contains
a list of 520 items (books and papers) from kinematicians in both former east
and west parts of Germany. Hain returned to Braunschweig on January 10,
1958. An overview of the stations of his first travel to the USA is given in
Figure 2.

Three further stays in the USA as visiting professor followed: 1961 at
Yale University, New Haven (CT), 1965 and 1966 at Massachusetts Institute
of Technology (MIT) in Cambridge (MA). With the already mentioned book
Applied Kinematics, the English version of the German 2nd edition (Hain,
1961), Kurt Hain became very well-known in the USA. The book with 2412
reference items was edited by McGraw-Hill Corporation and Hain could rely
on the help of his American colleagues and friends Douglas P. Adams from
MIT, Thomas P. Goodman from Northwestern University, Frank E. Crossley,
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Fig. 2. Kurt Hain’s itinerary of his visit to the USA in 1957/58.

Georgia Institute of Technology (GIT), Ferdinand Freudenstein again, Bruce
L. Harding (Livermore Corporation) and Daniel R. Raichel (Maxson Elec-
tronics Corporation).

In addition, Hain temporarily gave guest lectures at the universities in
Bologna (Italy), Delft and Eindhoven (Netherlands) and at the International
Centre for Mechanical Sciences (CISM) in Udine (Italy). From 1967 till 1977
he belonged to the permanent teaching staff in Mechanical Engineering of the
Technical University of Braunschweig.

Kurt Hain received many honours and awards. In 1963 the “Max-Eyth-
Gesellschaft zur Förderung der Landtechnik” (Max-Eyth-Society for the Pro-
motion of Agro-Technique) gave him the Max Eyth commemorative coin.
The VDI paid tribute to Hain’s merits in the field of kinematics and to his
activities in promoting the VDI goals as regards the transfer of knowledge
between universities and industrial companies: “VDI-Ehrenzeichen in Gold”
(Golden Medal of Honour) in 1964, “VDI-Ehrenplakette” (Badge of Hon-
our) in 1967, and “VDI-Ehrenmitglied” (Honorary Member) in 1981. The
most important national awards were the Honorary Doctorate (Dr.-Ing. E. h.)
of the Darmstadt Polytechnic in 1970 and the Cross of Merit 1st Class of the
Federal Republic of Germany in 1971. In 1979 Kurt Hain became Honor-
ary Member of the International Federation for the Theory of Machines and
Mechanisms (IFToMM).
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Review of Main Works on Mechanism Design

Kurt Hain’s books can be regarded as summaries of his previous work, results
and discoveries. So, one possible way to review his main works (on the base
of his main ideas) is by grouping them under the following headings:

• On the truly first published papers.
• Methods originating from Kurt Hain.
• Design charts, catalogues and atlases.
• Mechanism model collection.
• Three examples of selected highlights in research activities.

On the Truly First Published Papers

After Kurt Hain’s death in 1995, four papers were found in his private archive.
They were published in the FTV-Nachrichten (FTV News) of the “Freie
Technische Vereinigung” (FTV) (Free Technical Union) at the “Höhere
Maschinenbauschule” in Leipzig where Hain started his scientific education
(Figure 3).

Today we can take these four papers as some exercise work for Hain as
a newcomer before entering the expert group of kinematics of the famous
Reuleaux-Society of the VDI. The papers are most probably unknown to the
mechanism community of either yesterday or today.

First example (Hain, 1936). A simple four-bar linkage with link lengths
a, b, c, d (fixed link d) is driven by a tangential input force Pa at (joint) point
2 (Figure 4).

This point as well as the points 3 and 5 belong to the coupler triangle
with lengths b, e, f . The question is for the tangential output forces Pc ≡ P3

and P5 that act at points 3 and 5, respectively, and can be balanced by Pa ≡
P2. Hain gives two different solutions, both are based on graphical versions
(similar to the Joukowsky-lever-method) of the power theorem
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Fig. 3. Header of the FTV-Nachrichten in Leipzig presenting Kurt Hain’s first publication.

Fig. 4. Two possible graphical solutions of the power theorem.

∑
i

= ( �Pi · �vi) = 0, (1a)

as a sum of vector scalar products coupling forces Pi and velocities vi . This
product can be expressed as a sum of vector cross products

∑
i

= (
¬
�vi × �Pi) = �0, (1b)

(Figure 4a), if instead of the velocities �vi of the force acting points the perpen-

dicular velocities
¬
�vi are considered – the perpendicular velocities now appear

as distances of the points in question to the common instantaneous velocity
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Fig. 5. Five-bar linkage with two gear-coupled cranks: (a) Five turning pairs, (b) four turning
pairs, one sliding pair.

centre P of the coupler triangle 2-3-5. On the other hand, the power theorem
may be written and treated as

∑
i

(

¬
�Pi ·

¬
�vi) = 0, (1c)

which leads to an alternative graphical solution (Figure 4b).
Second example (Hain, 1938a, 1938b). A five-bar linkage with link

lengths a1, b, c, a2, d (fixed link d) is driven by the two cranks a1 and a2 with
constant angular velocities ωa1 and ωa2 , respectively (Figure 5). The cranks
are connected by gear wheels with pitch radii R1 and R2, respectively, thus
we have a constant ratio i = ωa1/ωa2 = R2/R1 of the two angular velocities,
and the linkage has only one d.o.f. Link b belongs to the coupler triangle with
lengths b, e, f . The question is for the linear velocities of the points 3 and 6.

Hain now investigates the following cases and discusses different pos-
sible solutions for (α) i = +1, ωa1 = 1 rad/s, (β) i = −1, ωa1 = 1 rad/s and
(γ ) i < 0, but �= −1, ωa1 = 1 rad/s on the basis of the superposition theorem,
paying respect to the fact that two points of a rigid plane have the same velo-
city in direction of the connecting line of the two points regarded as the first
component; the second component is perpendicular to the first (Figure 5a). In
a second step Hain replaces the link c by a slider and thus introduces a sliding
pair between links b and a2 (Figure 5b) and presents and explains solutions
for the cases (α), (β), (γ ).

We must keep in mind that kinematicians in the past had to be able to
do good and clear drawings, because the solutions of kinematic problems



Kurt Hain 195

Fig. 6. Determination of the radius of translation m with a four-link slider-crank (a) and a
six-link mechanism of the Watt chain type (b).

were essentially based on graphical methods and it must be emphasized again
that especially Kurt Hain in his further scientific career never really left the
graphical world because of his characteristic imaginative power. With his eyes
closed he could see a mechanism running!

Methods Originating from Kurt Hain

Radius of translation. The radius of translation m – Drehschubstrecke in Ger-
man – is given as a unit of length and is a special form of the transmission
ratio between two moving links of a mechanism, in case one of the two links
performs rotary motion with angular velocity ω and the other one transla-
tional motion with linear velocity v. Additionally, if we assign a torque M

to the rotating link and a force P to the sliding link, we can derive from the
power theorem

m = v

ω
= M

P
. (2)

A simple example is given with the slider-crank mechanism of Figure 6a
(Hain, 1967b). Symbols S21 and D41 correspond to the motions of the links 2
(slider) and 4 (crank) with reference to the fixed link 1 (frame) of the mech-
anism. These symbols may be arranged as follows:

S21

D41

]
24.

The vertical order of the index subscripts yields pole Q ≡ 24, the (ideal)
instantaneous centre of rotation of link 2 relative to link 4. The pole Q serves
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to find the radius of translation m ≡ m21−41 being the (directed) distance
14-24 of the two poles 14 and 24.

Far more interesting and useful for analytic purposes is the determina-
tion of the radius of translation in cases where there are relative velocities
between moving links. In the six-link mechanism of Figure 6b, translation
S32 of input piston 3 relative to cylinder 2 is executed with rotation D61 of
output link 6 relative to frame 1. The vertical arrangement of the index sub-
scripts yields

S32

D61

]
36-12

which defines a so-called collineation axis 36-12 that must be located fol-
lowing the Kennedy–Aronhold theorem of three corresponding poles all ly-
ing on a straight line. One possible solution is drawn in Figure 6b: the col-
lineation axis 36-12 intersects with another one ∞23-16 given by S32 and
D61 in point R; the distance 16-R is the (directed) radius of translation
m ≡ m32−61 = v32/ω61 = M61/P32, according to equation (2). The radius of
translation may also profitably be applied with the determination of angular
accelerations in mechanisms and for synthesis purposes of four-bar linkages
(Hain, 1963b, 1966a).

Pole force method. The graphical pole force method is also based on the
power theorem and relates input and output forces or torques in a mechanism
with one d.o.f. The method results in a very compact diagram of forces, nor-
mally makes use of the Culmann intermediate resultant and can lead in steps
thereafter to an easier and faster determination of joint forces.

To begin with, the six-link mechanism in Figure 7a is loaded by a weight
force G0 on link 6; on the other hand we have an opposing force P on link
4 (Hain, 1967b). Because G0 acts from link 1 (frame) to link 6, it is written
as G0/16 and P is written as P14. Now, the force notations are arranged as
follows:

G0/16

P14

]
46.

The vertical order of the different subscript digits results in pole 46
through which an arbitrarily positioned “K-axis” k46 is drawn. Pole 46 oc-
curs as the instantaneous centre of links 4 and 6. Pole 14 about which force
P generates a torque MP = P · r is the fixed pivot of link 4. Weight force
G0 produces a torque MG = G0 · h about the instantaneous pole 16. A force
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Fig. 7. Two six-link mechanisms (Watt chain types) loaded by external forces and their cor-
responding force polygons: with turning pairs only (a) and with one output slider (b).

transmitted from link 6 to link 4 through pole 46 must be resisted by an equal
and opposite force transmitted from link 4 to link 6. This is the reason why
we can draw an arbitrary axis k46 through 46 and resolve G0 into a force K

through 46 along k46 and a force E16 through pole 16. The desired force P is
then the resultant of −K (equal and opposite to K) and a force E14 through
pole 14. The direction line of force G0 intersects axis k46 at point S1; the dir-
ection line of the desired force P intersects axis k46 at point S2; forces P and
E14 can now be determined from K in the force polygon, in which E14 runs
parallel to line S2-14. The four forces G0, E16, P and E14 must form a closed
polygon, where K assumes the role of a Culmann intermediate or auxiliary
line. Forces E14 and E16 are therefore auxiliary forces which are assumed
to produce a state of equilibrium between G0 and P at poles 16 and 14. It
should be noted that these auxiliary forces do not correspond to the actual
joint forces; for example E14 does not denote the real pivot force G14; this is
due to the arbitrary choice of the K-axis k46 through pole 46.

The counter force P may also be determined from G0 by making use of
moment relations. In conformity with pole notations of forces – G0/16 and
P14 – torques about poles 16 and 14, respectively, can be expressed as

MG

MP

= G0 · h

P · r
= 16 − 46

14 − 46
. (3)

This equation can easily be solved for P .
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Another example is given in Figure 7b with a slider as output link 6. Force
Q, specified in magnitude and direction, is exerted by frame 1 on input crank
3, and the opposing force P16, exerted by frame 1 on slider 6, is to be determ-
ined. The two forces may be arranged as follows:

Q13

P16

]
36.

The vertical order of the differing subscript digits yields the pole 36. An
arbitrary line k36 is drawn through this pole, intersecting at point S the direc-
tion line of force Q. A force triangle is then constructed with sides Q, a force
+K in the direction of k36, and a third force E13 with direction parallel to
line segment S-13. Then a second force triangle is constructed from −K and
forces E16 and P16 (the latter two normal to each other); the direction line of
P16 runs parallel to the linear path of link 6, and the direction line of E16 is
towards pole 16 which is at infinity. Thus the magnitude of P16 is obtained.

Because of the fact that the pole force method locates almost all possible
instantaneous centres of velocity at the beginning, it is a very convenient
method in case more than one external forces are acting on a given mech-
anism and their effects must be superimposed (Hain, 1964a). Intermediate
forces in the mechanism normally need not be considered. The pole force
method can also be used to determine the dimensions of a mechanism for a
prescribed state of force.

Point position reduction. In earlier treatments of dimensional synthesis,
quantitative requirements clearly were rather restricted. The point position
reduction method is a tool for the dimensional synthesis of four-bar linkages
A0ABB0. We know from the Burmester theory that by means of the centre
point and circle point curves it is possible to control four desired positions
of the coupler and, depending upon the intersection of two of these curves,
sometimes five positions. But it takes a considerable amount of pains to make
the Burmester theory practicable.

Already in 1943 Hain found a far simpler graphical method making use
of the idea to let coincide two or more points of the given linkage positions
in one and the same point (Hain, 1943). The point position reduction method
requires us to draw circles only for the link end points A or B, respectively,
through three points, which is always a definite task. The goal of the method
is therefore to be able to pass a circle through three of four points where these
few points correspond to a considerably greater number of positions. Later
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Fig. 8. Point position reduction with a four-bar linkage for four (a) and five point positions (b).

on, Hain extended his method by writing programs for pocket computers up
to six given coupler points (Hain, 1980). In special cases it is possible to give
even eight coupler points. The highest theoretical number of point positions
that the four-bar linkage can be made to correspond to is nine.

In Figure 8a four point positions E1, E2, E3, E4 are given which are to
be traversed by coupler point E of a four-bar linkage (Hain, 1967b). We let
fixed point B0, the centre for rocker B0B, be assumed anywhere on the per-
pendicular bisector of line E1E4. Now, if the two crank positions A0A1 and
A0A4 are made symmetric to fixed link A0B0, with A1 and A4 on a circu-
lar arc around B0, then B0 represents the (finite) turning pole P14 of the two
coupler positions A1B1 and A4B4. All correlated points of the two positions
of the coupler plane, for example E1 and E4, A1 and A4, B1 and B4, lie on a
circular arc, respectively, around B0 and enclose with this point an angle ψ14.

Hence, a four-bar linkage for the given points E1 to E4 can be construc-
ted in the following way: B0 is assumed to be a point on anyone of the six
possible perpendicular bisectors of these points. The intersection of a circu-
lar arc of any size (B0A1 = B0A4) around B0 with a circular arc of any size
(A1E1 = A4E4) around E1 and E4 yields points A1 and A4. Point A0 can
be assumed as any point on the perpendicular bisector of A1A4, and thus ra-
dius A0A is established. Points A2 and A3 are determined as intersections of
the crank circle and circular arcs around E2 and E3 with radius A1E1. Fur-
ther, the triangle E1A1B02 is made congruent to the triangle E2A2B01, and
the triangle E1A1B03 congruent to the triangle E3A3B01. Points B01 and B04

coincide because triangles E1A1B04 and E4A4B01 are congruent due to the
special choice of B0 as P14. The centre of the circular arc through the three
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points B01 = B04, B02, B03 gives point B1 on the rocker B0B. Because of
the many assumptions in the described method, there is an infinite number of
four-bar linkages of the required kind from which the most favourable can be
selected.

For five given point positions E1, E2, E3, E4, E5, an infinite number of
four-bar linkages can be derived in an equally simple way, say, by choosing
B0 as the intersection point of two perpendicular bisectors of line segments
joining two given point pairs. If the order of the points is given (Figure 8b)
in which the positions of coupler point E will be traversed in the plane, there
are five possibilities for point B0 as the intersection point of two perpendic-
ular bisectors, namely of E1E5 and E2E3, E1E5 and E2E4, E1E5 and E3E4,
E1E4 and E2E3, E2E5 and E3E4. In Figure 8b, B0 has been chosen as the
intersection of the perpendicular bisectors e15 and e23; thus, B0 is simultan-
eously pole P15 of coupler positions 1 and 5 and pole P23 of coupler positions
2 and 3. All correlated points of positions 1 and 5 of the coupler plane, for
example, E1 and E5, A1 and A5, B1 and B5, enclose the angle ψ15 with B0.
All correlated points of the coupler positions 2 and 3 enclose the angle ψ23

with B0. Any bundle of rays B0X0, B0X1, B0X2 is drawn through B0 such
that angle X0B0X1 = ψ15/2 and angle X0B0X2 = ψ23/2. These angles are
described in the same sense as angle E5B0E1 and E3B0E2, respectively. We
now strike circular arcs of any radius A1E1 = A2E2 = AE around E1 and
E2 cutting rays B0X1 and B0X2 in A1 and A2. The perpendicular bisector to
A1A2 cuts B0X0 in A0. The radius A0A1 = A0A2 thus defines crank length
A0A. We find A3, A4, A5 on the crank circle as was shown above. The crank
positions A1 and A5 as well as A2 and A3 lie symmetrically to position A0B0

according to the choice of point B0. Now, if the triangle E1A1B05 is made
congruent to the triangle E5A5B01, the triangle E1A1B02 congruent to the tri-
angle E2A2B01, the triangle E1A1B03 congruent to the triangle E3A3B01 and
the triangle E1A1B04 congruent to the triangle E4A4B01, then B01 coincides
with B05, and B02 coincides with B03. The point B1 on the rocker B0B is
again the centre of a circle through the three points B01 = B05, B02 = B03,
B04. An infinite number of four-bar linkages result here also through the arbit-
rary choice of the bundle of rays B0X0, B0X1, B0X2 and the arbitrary choice
of length AE.

Point-dwell mechanism. Following Kurt Hain a point-dwell mechanism
is a six-link mechanism in which a point of a special coupler plane stands
approximately still for a finite period during continued motion of the mech-
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Fig. 9. Design of a six-link point-dwell mechanism: (a) points and curvature circle segments,
(b) practical form, (c) possible structures.

anism. In Hain (1967b), he states that this condition is only possible with the
mechanism shown in Figure 9a: a six-bar linkage of the Watt chain type based
on a four-bar A0ABB0 with frame link A0B0 and a point E on the coupler link
AB is driven by the crank A0A. Links EG and B ′G are then added, where B ′
is a point on link B0B. Choosing proper dimensions one can make a point D

on the coupler plane EG be at rest for a while. The coupler plane EG is not
connected to any link which has a fixed pivot; thus, it is possible that point D

at position D2 can be the centre of a curvature circle ke to the coupler curve
α of point E and, simultaneously, the centre of another curvature circle kg to
coupler curve γ of point G. If an arbitrary coupler link DF is connected at
point D and then to output crank F0F , these links will remain at rest when
point D is at position D2. Because of the arbitrary lengths of links DF and
F0F an infinite number of point-dwell mechanisms are possible, all driven
by point D. The mechanism as a whole has eight links and subsequently one
d.o.f. A practical form of it is shown in Figure 9b.

In 1981 Kurt Hain completed the structure of the special six-bar linkage
with two fixed pivots for use as a point-dwell mechanism by differing between
binary input links (cranks) (linkages A and B in Figure 9c) and ternary input
links (linkages C and D in Figure 9c) on the one hand and, on the other hand,
between revolving and only swinging turning pairs, marked by double circles
and single circles in Figure 9c, respectively (Hain, 1981b).

Design Charts, Catalogues and Atlases

In 1951 J. A. Hrones and G. L. Nelson published their voluminous design
chart book Analysis of the Four-bar Linkage with Wiley & Sons, Inc. in New
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York City. The look at the pages of this book with dash-drawn coupler curves
of four-bars having different dimensions was not exciting, but for Kurt Hain
it was a key experience and meant the beginning of his development of design
charts and thus helped the designer to find optimal mechanism solutions. Ten
years before, Hermann Alt from Dresden had already shown the usefulness
of the transmission angle as a criterion for the transmission of power from the
input to the output link. Alt transformed his results to design chart curves for
easy and overview use.

Hain’s first design charts were for use with tractors and single axle trailers
connected to them by one-point-couplings. Hain called the curves traversed
by points of the tractor or the trailer “Schleppkurven” (tracking curves) (Hain,
1952b). Two years before, he had elaborated the (non-holonomic) theory of
tracking curves on the base of two centrodes, the fixed and the moving one,
rolling on each other (Hain, 1950). Ten years later Kurt Hain and his col-
league and friend Johannes Volmer from Chemnitz (at that time Karl-Marx-
Stadt in the former German Democratic Republic, DDR) followed the ideas
of Hermann Alt and cooperated under the roof of the VDI in Düsseldorf to
produce a series of design charts concerning adapted input/output motion
for all kinds of four-bar linkages. The results were presented in several VDI
guidelines for mechanical engineers. In the focus of interest is the transmis-
sion angle µ as the best value for characterizing the power transmission from
the input to the output link.

A most interesting overview over design charts for four-bar linkages and
their authors in Germany up to 1960 is given in Hain (1960a). Here, also
some other respectable names occur, like Willibald Lichtenheldt, Kurt Luck,
Walther Meyer zur Capellen, Helmut Rankers and Gerd Kiper, for example.

Again ten years later the digital computer with a corresponding plotter for
digital data processing became an important tool for mechanism design in
Germany (and worldwide). Hain and his young collaborator Michael Graef
worked night and day to produce various design charts, especially concern-
ing relative angles between links in four-bars. But in 1968, on the occasion of
the 10th ASME Mechanisms Conference in Atlanta (GA), USA, Kurt Hain
showed convincingly that his charts for simple four-bars could be combined
in such a way that also six-bar linkages on the base of four-bars (of the Watt
chain type, for example) were optimally designed for a given task (Hain,
1968). An example to demonstrate this is given in Figure 10. On the left
side (A) we have the notions of links and angles in a four-bar linkage moving
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Fig. 10. Notions of links and angles in a four-bar (A), use of β-angle curves of two different
four-bars to create a six-bar dwell mechanism (B).

as a crank-and-rocker (a). There are six different angles, namely ϕ (input),
β, µ (transmission angle), ψ (output), δ and γ defining five relative motions.
Arranging the same links in other sequences as in (b) and (c), we recognize
that all angles between same links remain unchanged. On the right side (B)
two four-bars A0A1B1B0 and A0A1E1F with the same crank A0A and the
coupler plane A1E1B1 = AEB can be moved as long as their relative angles
βI between links A0A1 and A1B1 and βII between links A0A1 and A1E1,
respectively, coincide, say, there is no relative angular motion between the
corresponding links (a). This can be controlled by the proper β-curves of the
two four-bars (b); these curves may be shifted, but the coordinate axes must
be kept parallel one to another. The length E1F = EF is now chosen as
the radius of curvature of the coupler curve of point E, and a double-lever
EFF0 is connected by rotary joints to point E. The result is a six-bar dwell
mechanism (c). The duration of the dwell is given with ϕ12, the angle of the
coupler triangle AEB runs �β = βII − βI , the angle of the base triangle
�ϕ = ϕII −ϕI . The quality of motion/force transmission is characterized by
the minimum values µmin and µ′

min, as indicated (b).
Kurt Hain especially did pioneer work in the field of planar mechanism

systematics. The famous Franz Reuleaux (1829–1905) was his example, and
Hain wanted to follow Reuleaux’s footsteps concerning the classification fea-
tures of mechanisms and their elements. Hain’s recipe to develop mechanisms
and to present them in the form of catalogues may be summarized as follows:

1. One single kinematic chain can be the origin of a series of mechanisms
by simply fixing one link to the base, one after another.

2. Turning pairs can be replaced by sliding pairs (one d.o.f.).
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Fig. 11. Mechanisms with two cam joints derived from the Watt chain and application example
(pick-up component of a hay press with fixed cam).

3. Single joint distances can be set to zero, thus double and triple joints are
generated and the number of links is reduced.

4. A cam joint with two d.o.f. can be replaced by a binary link with two
turning or sliding pairs (one d.o.f.) at its ends, and vice versa.

Based on these rules of design it becomes possible to create varieties of mech-
anisms that can be listed in mechanism catalogues. Sometimes it is necessary
to pay attention to consequences, as for example with mobility restrictions.

In 1955 Kurt Hain published his first paper on systematics; it was fo-
cused on eight-link mechanisms and several examples, mainly for use in ag-
ricultural machines, were included (Hain, 1955). Wonderful catalogues about
cam-linkage combinations are given in Hain (1960b) from which an example
is presented in Figure 11: starting from the Watt chain, 18 mechanisms with
2 cam joints are derived; the mechanism no. is exploited for use as a pick-
up component of a hay press with fixed cam and two roller paths (right side,
below).

Also very interesting and unique at the time of origin is Hain’s catalogue
about four-, five- and six-link (pure) sliding-pair mechanisms (Hain, 1966b).
An example: Figure 12 shows a series of sliding-pair mechanisms with four
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Fig. 12. A number of four-link sliding-pair mechanisms developed from two different kin-
ematic chains A and B.

links and five joints. The normal one-joint versions are drawn above (A), the
mechanisms with a double sliding pair below (B). General remarks about the
transition from systematics to kinematics of mechanisms can be read in Hain
(1976a).

A combination of design charts, catalogues and application examples is
called “Getriebeatlas” (mechanism atlas) by Kurt Hain. It is his highest level
of compact and summarized knowledge of a mechanism or a special group
of mechanisms, a step being just before the construction of a mechanism
model. Hain published three atlases; the first two dealt with four-bar link-
ages and with combinations of four-bar linkages, respectively (Hain, 1967a;
1972). The last one from 1973, the Getriebebeispiel-Atlas (mechanism ex-
ample atlas) is the best (in the author’s opinion) as regards the variety, types
and number of application examples (Hain, 1973a). Hain finished this atlas
just before his retirement. At the same time this atlas is an overview of almost
all mechanism models that Kurt Hain designed since 1959.

According to the headings of the ten chapters the contents of the
Getriebebeispiel-Atlas are as follows:

1. Mechanisms for oscillation-rotary and oscillation-linear motions
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Fig. 13. Two pages from Kurt Hain’s Getriebebeispiel-Atlas (1973): (a) Geared four-bar link-
age, (b) tractor with front- and rear-forklift.

2. Mechanisms with revolving output link
3. Mechanisms representing coupler curves, cycloidal trajectories or po-

lodes
4. Guidance mechanisms
5. Oscillating dwell mechanisms
6. Revolving dwell mechanisms (indexing mechanisms)
7. Spatial mechanisms
8. Adjustable mechanisms (with more than one d.o.f.)
9. Spring-loaded mechanisms

10. Examples of application

In Figure 13a the page no. 8.1.3 (Beispiel 1) of Hain’s last atlas is shown,
with a geared four-bar linkage A0ABB0. The rotation of the triangle crank
(input shaft centre A0) leads to a general motion of the coupler AB, but only
the rotation of it is transmitted via gear wheels ra and rz to the output wheel
rA. So input and output link rotate around the same shaft centre A0. By choos-
ing proper dimensions it is possible to generate dwell or even pilgrim-step
output motion. Above we see some characteristic functions of the linkage.
Additionally, the dimensions of the drawn linkage are given, together with
some important definitions.
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In Figure 13b we look at page no. 10.3.4 of the atlas where a tractor with
front- and rear-forklift is shown. The front-forklift is a six-link mechanism
based on the double-rocker four-bar A0ABB0 and a second four-bar BB ′EF

whose link BE is part of the coupler AB and whose link BB ′ is part of the
rocker BB0 of the first four-bar. By means of the functional curves in Hain
(1972) and the Roberts’ theorem, the dimensions of the two four-bars are
chosen in such a way that points E and F move on an approximately straight
line kE = kF = kE′ from the ground to the maximal height of the front-
forklift. A hydraulic input cylinder works between point B ′′ on the rocker
BB0 and point C on the coupler AB. The hydraulic cylinder extends the
number of links from six to eight. Similar considerations and calculations
are valid also for the rear-forklift with a so-called “triple suspension” of the
forklift to the tractor via the points A0, B0 and H0. The input link (crank)
H0H is now turned by the hydraulic drive unit of the tractor.

Mechanism Model Collection

In 1959, eleven years after starting his job in the Institute of Agro-Technical
Basic Research of the FAL in Braunschweig, Kurt Hain began to establish a
collection of mechanism models. These models were to close the gap between
the scientific state of the art and the constructive practice in kinematics. Mod-
els, especially when driven manually, give an idea of how a mechanism runs
and can even reveal or make directly felt the kinematic and dynamic weak
points during operation. Almost without exception the links in Hain’s models
were made of plastic material. Dependent on the task definition of the link, the
colour of the material was chosen; for example input links were red, output
links light green or white. As for the joints, metal parts were used, and there
was a unit construction system containing equal or similar elements to facil-
itate the assembly of the models. Until 1962 the Hain collection comprised
around 130 models; at that time most of them were models of mechanisms for
use in agricultural machines (Hain, 1962). Today, we have 176 genuine Hain
models, but not all of them could be preserved for posterity. An impression
of the variety of the Hain models is given in Figures 14 to 16.

Three Examples of Selected Highlights in Research Activities

Mechanisms with minus one d.o.f. Mechanisms have one fixed or reference
link and at least one d.o.f. (F = 1), say, one drive is necessary and sufficient
to make the mechanism work.
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Fig. 14. Mechanism models nos. 5, 11, 14 and 16 of the Hain collection.

Fig. 15. Mechanism models nos. 42, 47, 111 and 119 of the Hain collection.

Normally, a planar mechanism is derived from a planar kinematic chain
with one arbitrary link fixed and drawn with turning or sliding pairs only, and
thus the Grübler formula
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Fig. 16. Mechanism models nos. 153, 167, 169 and 148 of the Hain collection.

F = 3 · (n − 1) − 2 · g (4)

(n: number of links, g: number of pairs) holds for the number F of d.o.f.
of the mechanism. Mechanisms with F = 0 represent rigid frameworks,
immovable, but nevertheless important intermediate structures for force ana-
lysis. But, who thinks of mechanisms with F = −1? Hain did, and developed
clamping devices, for example, for workpieces on machine tools, with one or
even more than one clamping contact location pairs. His idea is based on the
replacement of binary links (bars) by input or output forces. In Figure 17,
seven clamping devices are drawn (n = 8, g = 11) with one sliding pair
between workpiece 3 and frame 1 and with the ability to centre the work-
piece (rectangle between horizontal forces 6-6 or 7-7, respectively) (Hain,
1964b).

Planetary cam mechanism. In 1973 Kurt Hain invented a planetary cam
mechanism (Figure 18 and model no. 167), very compact and stiff (Hain,
1973b).

Two conjugate cams are fixed to two planetary gear wheels each. Cams
and gear wheels in centre points A and A′ on the input bar rotate around A0

with input angle ϕ. While the gear wheels mesh with the fixed sun wheel, the
angle ϕ is transmitted with ratio 1:1 to the two gear wheels, i.e. β = β ′ = ϕ.
Dependent on the contours of the cams the output triangle F ′F0F rotates with
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Fig. 17. Clamping devices derived from eight-link kinematic chains with −1 d.o.f. (F = −1).

angle ψ around F0 = A0, say, input and output axes coincide (Figure 18a).
The motion law chosen is drawn in Figure 18b, it is a combination of an
inclined sine curve with an intermediate straight line, thus leading to a dwell
(standstill) of “length” ϕ = 50◦ and a constant angular output velocity ωout ≡
dψ/dt of “length” ϕ = 230◦ within the motion period of ϕ = 360◦ (ωa ≡
ωin ≡ dϕ/dt , i = ωout/ωin = dψ/dϕ, αf /ω2

a ≡ di/dϕ).



Kurt Hain 211

Fig. 18. Planetary cam mechanism (a) and assigned motion law with corresponding derivatives
versus input angle ϕ (b).

Constraint handling devices. Planetary gears were also in the focus of at-
tention when Kurt Hain presented some mechanisms for constraint handling
devices, designed for the oriented guidance of workpieces in a plane. In com-
bination with belts or chains his prototypes can move workpieces on circle
segment paths and at the same time make them rotate by an angle dependent
on the transmission ratio of the used gear wheels. Because of constraint mo-
tion condition, Hain’s handling devices are fast machines in automated pro-
duction processes, with exact positioning of the workpieces in a plane. Three
examples of such handling devices are given in Figure 19 (Hain, 1976b); the
sun wheels are always fixed in the frame and centred in A0, while the in-
put crank a = A0A with the belt-connected planet wheel and the workpiece
holder fixed to the latter rotates around A0. It was Hain’s intention at the be-
ginning of the industrial robot era to demonstrate that a lot of simple robotic
trajectory tasks could be performed also by properly designed mechanisms.

Modern Interpretation of Main Contributions to Mechanism
Design

Kurt Hain was Germany’s leading practitioner of (planar) kinematics after
World War II for at least forty years. He was educated in kinematics in a
booming period of mechanization. The ideas and methods of some famous
protagonists, for example Franz Reuleaux (1829–1905), Ludwig Burmester
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Fig. 19. Three examples of constraint handling devices for moving and orienting workpieces
in a plane.

(1840–1927), Martin Grübler (1851–1935), Wilhelm Hartmann (1853–1922),
Reinhold Müller (1857–1939), Rudolf Mehmke (1857–1944), Karl Kutzbach
(1875–1942) and Hermann Alt (1889–1954), formed milestones and gave
standards in mechanism theory. But, theory and practice are two completely
different things. To be candid, not every professor named above was able
to explain complicated theoretical coherences conceivable to the mechanical
engineer who worked in an industrial company and tried to find a solution
for his mechanical task. Kurt Hain, being somewhat of an autodidact, was al-
ways aware of the problem of transferring knowledge between the two worlds
“theory” and “application”. He developed his own illustrative and compre-
hensible way of knowledge transfer: He normally started with a systematic
approach, used mainly graphical methods or numerical methods strongly
based on graphical methods, his Zeichnungsfolge-Rechenmethode, and finally
proved the efficiency of his procedures by a number of application examples
in different fields of mechanical engineering. Due to the strong dependence
on graphical methods, Kurt Hain was especially most successful with planar
kinematics.

The rough overview in Table 2 of the categories of Kurt Hain’s research
activities comprises all the items in kinematics he dealt with in the course of
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his life. Systematics stands at the beginning, and Hain was a juggler of ideas
in this field in developing new astonishing solutions with mechanisms from
simple kinematic chains by variation of links and joints. For example, we owe
him for insight into the usefulness of mechanisms with zero or less than zero
d.o.f., with only swinging links, and for the world of equivalent mechanisms
with simplified structures.

The Zeichnungsfolge-Rechenmethode created and cultivated by Kurt Hain
is a mixture of Descriptive and Analytic Geometry. Kurt Hain alone was able
to make the best of it. When following (and/or believing) only numerical res-
ults, it is often difficult to find correct line and vector orientations or to make
the correct choice between two possible signs of an ambiguous mathematical
expression. Close as he was to his drawings, Kurt Hain could avoid mistakes
of this kind. It was his major tool when dealing with kinematic analysis for
all types of mechanisms.

In the field of kinematic synthesis two Hain methods must be emphas-
ized: the point position reduction and the generation of point-dwell mech-
anisms. At a time when digital computers were not yet known or in gen-
eral use, Hain presented his solutions with a strongly reduced geometric-
mathematical background. So, it was possible on the one hand to avoid the
complex Burmester curves in many cases of application, and on the other
hand to develop a new class of six-link mechanisms with a temporary stand-
still of one (output) link of a mechanism or linkage while the input link was
running continuously.

The broadness of Kurt Hain’s field of application examples is indeed over-
whelming; on one side there are sensitive and precise computing mechan-
isms, on the other side there are big and robust mechanisms for use in trans-
port devices and agricultural machines. Kurt Hain’s retirement in 1973 sig-
nified by no means a transition into a more contemplative life: Free from
professional constraints he could work all the more effectively and could oc-
cupy himself with the rising computer technology to study kinematic prob-
lems more basically and to solve them more precisely. During the last twenty
years of his life Kurt Hain especially dealt also with mechanisms for handling
devices and simple robots and their components, for example grippers (Hain,
1976b, 1982, 1984b, 1985, 1989).

Kurt Hain left a collection of 176 mechanism models to the posterity of
kinematicians. Not all of the models could be saved, but it is still possible to
rebuild them. He described most of the models in his publications, and his
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Fig. 20. Homepage of the DFG project DMG-Lib.

Getriebebeispiel-Atlas also contains the dimensions of the links, model by
model and page by page.

The complete lifework of Kurt Hain with all his books, papers and models
is, at this time, about to be digitized in order to allow access to students, ex-
perts and interested people all over the world via internet. There is a German
national preserve activity named “Digitale Mechanismen- und Getriebebib-
liothek” (DMG-Lib) (Digital Mechanism and Gear Library). The project is
financed by the “Deutsche Forschungsgemeinschaft” (DFG) (German Re-
search Foundation) and is essentially performed by three German Technical
Universities, the TU Ilmenau, the RWTH Aachen and the TU Dresden. The
first German kinematician whose complete lifework will be gathered in di-
gital form is Kurt Hain. Access to the homepage of the DMG-Lib is by the
address http://www.dmg-lib.org (Figure 20).



Kurt Hain 215

References

Crossley, F. R. E., 1988. Recollections from Forty Years of Teaching Mechanisms, Trans.
ASME: Journal of Mechanisms, Transmissions, and Automation in Design, 110, pp. 232–
242.

Crossley, F. R. E., 1996. Postscript Obituary Kurt Hain, Mechanism and Machine Theory, 31,
p. V.
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Abstract. Heron of Alexandria was a mathematician, physicist and engineer who lived
around 10–85 AD. He taught at Alexandria’s Musaeum and wrote many books on Mathemat-
ics, Geometry and Engineering, which were in use till the medieval times. His most important
invention was the Aeolipile, the first steam turbine. Other inventions include automated ma-
chines for temples and theaters, surveying instruments, and military machines and weapons.

Introduction

The ancient Greek technology developed mostly in the period 300 BC to 150
AD and was in use for more than one thousand years. It had a profound im-
pact both on Western and Muslim civilization. Notable inventions include
cranes, screws, gears, organs, odometer, dial and pointer devices, wheelbar-
rows, diving bells, parchment, crossbows, torsion catapults, rutways, show-
ers, roof tiles, breakwaters, and many more. Greek engineers were pioneers
in three of the first four means of non-human propulsion known prior to the
Industrial Age: watermills, windmills, and steam engines, although only wa-
ter power was used extensively (Lahanas, Web). Among the Ancient Greek
Engineers, the most prominent include Archimedes, Ktesibios, Heron, and
Pappos.

Heron (or Hero) of Alexandria (in Greek ′Hρων o Aλεξανδρεύς), see
Figure 1, was a mathematician, physicist and engineer who lived in the Hel-
lenistic times in Alexandria, Egypt, at that time part of the Roman empire. He
was made famous for documenting the first steam turbine, the aelolipile. He
also invented many mechanisms for temples and theaters while he advanced
or improved inventions by others, for example the hydraulis, originally in-

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 217–245.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. Heron of Alexandria (O’Connor, 1999).

vented by Ktesibius. Heron was also called Michanikos (Mηχανικóς), the
Greek word for Engineer.

It is important to stress that in the Ancient World, technology was not
considered as very important for the growth of philosophy and science. The
dominant motive in philosophy was understanding or wisdom, while the con-
nection between science and technology was not as extensive as it is today.
In this context, Heron, as well as the other engineers, were on the exception
side (Lloyd, 1991).

Biographical Notes

The chronology of Heron’s works is disputed and not absolutely certain to
date. Many contradictory references on Heron exist, partly because the name
was quite common. However, historians cite that he came after Apollonius,
whom he quotes, and before Pappos, who cites him. This suggests that he
must have lived between 150 BC and 250 AD (Thomas, 2005). In 1938,
Neugebauer, based on a reference in Heron’s Dioptra book of a moon eclipse,
he found that this must have happened on March 13, 62 AD, (Neugebauer,
1938). Since the reference was made to readers who could easily remember
the eclipse, this suggests that Heron flourished in the late first century AD.
According to Lewis (2001), and assuming that Cheirobalistra, a powerful
catapult, is genuinely his, Heron should have been alive at least till 84 AD,
the year in which the Cheirobalistra, was introduced.

Because most of his writings appear as lecture notes for courses in math-
ematics, mechanics, physics and pneumatics, it is almost certain that Heron
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taught at the Musaeum of Alexandria, an institution for literary and scientific
scholars supported by the Ptolemies, which included the famous Library of
Alexandria. Many scholars believe that not only he taught at the Musaeum,
but that in addition he served as its Director and that he developed it as the
first Polytechnic School, or Technical Institute. He is the last recorded mem-
ber of the School, and the best known (Lewis, 2001).

According to Drachmann (1963), Heron was a man who knew his busi-
ness thoroughly, who was a skillful mathematician, astronomer, engineer and
inventor of his time. Based on the content of the book Pneumatica, a number
of researchers expressed doubts about his capabilities. However, this book
appears to be an unfinished collection of notes and may have been altered
through the years.

An important characteristic of Heron’s work was clarity in expressing
his ideas, something not common in ancient writings. As Drachmann (1963)
states, “a man who is always able to present his subject in such a way that is
readily understood, is a man who understands it himself, and he is certainly
not a fool or a bungler.”

Mahoney notes the following about Heron, “In the light of recent schol-
arship, he now appears as a well-educated and often ingenious applied math-
ematician, as well as a vital link in a continuous tradition of practical math-
ematics from the Babylonians, through the Arabs, to Renaissance Europe”
(Drachmann and Mahoney, 1970). Furthermore, Heath writes that, “The prac-
tical utility of Heron’s manuals being so great, it was natural that they should
have great vogue, and equally natural that the most popular of them at any rate
should be re-edited, altered and added to by later writers; this was inevitable
with books which, like the Elements of Euclid, were in regular use in Greek,
Byzantine, Roman, and Arabian education for centuries” (Heath, 1931).

In many of his works, Heron would start by reviewing past works. How-
ever, he would not always give credit to previous inventors and would tend to
dismiss easily the work of others, before presenting his own solutions.

Heron recognized the value of experimental work. The example passage,
taken from Lloyd (1973), attacks first those (like Aristotle) who denied ab-
solutely that a void can exist, accusing them of following their faith as op-
posed to evidence:

Those then who assert generally that there is no vacuum are satisfied
with inventing many arguments for this and perhaps seeming plausi-
ble with their theory in the absence of sensible proof. If, however, by
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referring to the appearances and to what is accessible to sensation,
it is shown that there is a continuous vacuum, but only one produced
contrary to nature; that there is a natural vacuum, but one scattered in
tiny quantities; and that bodies fill up these scattered vacua by com-
pression; then those who put forward plausible arguments on these
matters will no longer have any loop-hole.

Following this statement, Heron described an apparatus designed to show the
existence of vacuum. This is basically a metal hollow sphere with a small
hole and a thin tube of bronze attached to the hole. Heron argued that if one
blows air into the sphere, then air enters it and therefore it must be compress-
ible. This compressibility was attributed to the existence of small pockets of
vacuum. He also continued his argument by saying that one can also draw
air out of the sphere by inhaling air. Once this is done, then the sphere must
contain more vacuum than before.

Although arguments of this sort may be commonplace today, they were
not necessarily the norm two thousand years before, and therefore, this atti-
tude towards experiments is considered to be very important.

List of Main Works

The main works of Heron are published in five volumes in the Teubner Series,
(Heiberg, 1912; Schmidt, 1899). Among them, the most well-known books
related to engineering include

• Pneumatica (Pneumatics), a treatise on the use of air, water, or steam, in
Greek.

• Automatopoietica (Gr. �ερί αυτoµατoπoιητικής, i.e. about making au-
tomatic devices), a description of automated machines using mechanical
or pneumatical means, most for temples, in Greek.

• Belopoeica (from the Greek βέλoς, meaning arrow, and πoιώ, meaning to
make), on the constructions of machines of war, in Greek.

• Mechanics, which covers mechanisms and simple machines and has sur-
vived in Arabic, with a few fragments in Greek preserved by Pappos.

• Barulkos (Gr. Bαρoύλκoς from βαρύς, meaning heavy and έλκω, mean-
ing to pull), that discusses methods of lifting heavy weights. Perhaps this
is the same as Mechanics.
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• Dioptra, which describes a theodolite-like instrument used in surveying
and methods to measure length, in Greek and Arabic.

• Catoptrica (Catoptrics), on light propagation and reflection, and on the
use of mirrors.

• Cheirobalistra (On Catapults), about catapults, in Greek.

Heron has also contributed to Mathematics and Geometry. Although some of
them are of disputed authorship, his works in this area include

• Metrica, describes how to calculate surfaces and volumes of diverse ob-
jects, in Arabic.

• Geometrica (Geometria), a collection of equations based on the first chap-
ter of Metrica, in Greek.

• Stereometrica (i. and ii.), examples of three-dimensional calculations
based on the second chapter of Metrica, in Greek.

• Geodaesia, surveying analysis, in Greek.
• Mensurae, tools which can be used to conduct measurements based on

Stereometrica and Metrica (disputed authorship), in Greek.
• Definitiones (Definitions), containing definitions of terms for geometry, in

Greek, (disputed authorship).

Unlike other ancient works in Greek, the language in Heron’s book is quite
easy to be read by non-scholars, even today. Except the Definitiones, these
books mostly consist of methods for obtaining the areas and volumes, of plane
or solid figures. In these, Heron gave methods for computing very close ap-
proximations to the square roots of numbers, which are not complete squares
and even cubic roots of numbers, which are not complete cubes. Heron also
provided expressions for computing the areas of regular polygons of five to
twelve sides in terms of the squares of the sides that lead to important trigono-
metrical ratio approximations. In general, it is believed that these books were
based on Heron’s works, but also that they were altered by people after him.
Heron’s most important work on geometry, Metrica, was missing until it was
discovered in Constantinople in 1896 by R. Schöne. This work is the closest
to its original form.
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Review of Main Works on Mechanism Design

Mechanics

Heron wrote important books on mechanics that describe simple mechanical
machines and methods for lifting weights. His Mechanics are divided in three
books. The first is an introduction and describes the theory of motion, statics,
balance, and how to construct three-dimensional shapes in proportion to a
given shape (pantographs). The second contains an exposition of the theory of
the five “powers”: the windlass, the lever, the pulley, the wedge, and the screw
(incl. the worm gear) and examines methods of lifting heavy objects with their
help. It also deals with finding of the center of mass of planar bodies. The third
book presents applications of the five powers, i.e. methods of moving objects
by means of sledges, cranes, etc. He also discusses wine presses. Mechanics
is written for architects and contractors, and except for some chapters that
appear to be out of place, the work is well arranged (Drachmann, 1963). The
contents of this book have a lot of overlap with Barulkos, so many believe
that these are not separate books.

Dioptra

Dioptra is a book on surveying and instruments for it. It begins with an in-
troduction to “the science of dioptrics” and gives a description of the dioptra
(Gr. διóπτρα), a combined theodolite and water-level. Heron here presents all
previous works on the subjects and quickly dismisses them. Later, he gives
instructions on how to construct a dioptra instrument, and how to use it. The
book also contains a description of a hodometer (Gr. oδóµετρoν), a device
for measuring displacements. The book starts to degenerate after chapter 35,
while the next chapter is missing. Chapter 37 describes the barulkos, a device
designed for lifting weights, while the next one and proposes a hodometer for
ships. The book ends with an appendix on other surveying methods (Drach-
mann, 1963; Lewis, 2001). The contents of Dioptra up to chapter 34 are listed
in the Appendix and can give a good idea of the issues discussed in the book.

Automatopoietica

Automatopoietica is the oldest text that describes automatic machines and de-
vices. Heron’s automatic devices were based on water, fire, and compressed
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air. Among these, the most well-known include an automatic system to open
the doors of a Temple when a fire was started at the altar, a coin-operated
machine that was providing water, and toy-like motions of puppets, such as
bird automata. Another device, called the Hercules and the Dragon, has Her-
cules hitting the head of the dragon, while the dragon shoots water on his
face. Heron is also credited with the construction of the first analog com-
puter, a computing device based on gears and pins. Many of the “automata”
of Heron’s were constructed around 1589 by Giovanni Battista Aleoti.

Belopoeica and Cheirobalistra

The Belopoeica deals with the construction of war machines. It has some sim-
ilarities with works written by Philon and Vitruvius, and perhaps was based
on the work of Ktesibios.

The Cheirobalistra deals with catapults and serves as a lexicon (dictio-
nary) of their parts. However, it is not certain that it was written by Heron.

Pneumatica

The Pneumatica is a controversial work in two books, with 43 chapters in the
first and 37 in the second. The book starts with an analysis on fluid pressure,
which at some parts is correct and elsewhere is not. It also describes me-
chanical toys, singing birds, sounding trumpets, etc. In total, more than one
hundred machines and devices are described in its chapters. Although most
of them work with steam or water, they all include mechanisms, either for
transmitting power, or motion and signals.

The most famous device is the aeolipile, a steam turbine device, which
is described in more detail later. The aeolipile was not used to produce me-
chanical work, perhaps because at that time, the need to use machines for
producing mechanical work was not so crucial and, hence, it was not driving
the process of building such devices.

This observation is more general. Researchers agree that most of these
toys and devices were not designed to perform particular tasks, but rather to
teach physics to students, i.e. Heron was demonstrating what can be done
with physics, but not how to solve particular engineering problems.

Pneumatics stirred great interest among Renaissance scholars. The works
were translated and published for the first time by Giovanni Battista Aleotti
in 1589 under the title Gli Artificiosi et Curiosi Moti Spiritali dit Herrone,
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Fig. 2. Multi-link lever (Drachmann, 1963).

where the translator added some of his own ideas. Other translations were
provided by Alessandro Giorgi da Urbino in 1592 and 1595 (Lahanas, Web).

The contents of Pneumatica are listed in the Appendix. They provide a
good picture of the devices and methods discussed therein.

Modern Interpretation of Main Contributions to Mechanism
Design

It is quite interesting to examine some of the machines and devices described
by Heron from a modern standpoint. In particular, we will attempt to do this,
focusing in a number of characteristic devices, which are of interest regarding
the included mechanisms and/or their design. To this end, we will present and
discuss (a) mechanisms such as levers, gears, weight-lifting devices, presses,
pantographs, and hodometers, (b) automatic devices such as automatic li-
bations and automatic opening of temple doors, (c) engines of war such as
the cheirobalistra and the palintonon, and (d) important devices, such as the
dioptra, the aeolipile, and the hydraulis.

(a) Mechanisms

Levers
In Heron’s Mechanics, one can find many types of levers, some simple, some
more complex. Figure 2 shows a multi-link lever system with many fulcra.
The figure also shows the multiplication of force at various points. A force
equal to five talents (one talent is about 26 kg), is multiplied by two hundred
to become one thousand talents after fulcrum D. The original text, translated
into English reads (Drachmann, 1963)
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<25> As for the lever, the same weight is moved by the same power
by this arrangement: Let the weight be at point A, and let the lever
be BG, and let the stone that is under the lever be at point D, and let
the moving of the weight by the lever take place while it is parallel to
the ground, and let GD be five times DB; then the power that is at G,
which balances the thousand talents, is two hundred talents. Let there
now be another lever, which is HZ, and let point H be the point be the
one at the head of the lever, engaging point G, so that G is moved by
the moving of H, and let the stone that is under the lever be at point
H, and let it be moved towards D, and let ZH be five times H′H; then
the power that is at Z will be forty talents. Let there be another lever,
which is T′K, and let us place the point T′ on the point Z, and let it be
moved in the opposite direction of H. And let the stone that is under
the lever be at the point L, and let it be moved the way in which the
point H is not moved, and let KL be eight times LT′; then the power
that is at K will be five talents, and it will balance the weight. And
if we want the power to overcome the weight, we shall have to make
KL more than eight times LT′; but if KL is eight times LT′ and ZD five
times H′H and GD more than five times DB, the power will overcome
the weight.

Reading the above passage, one finds that it is quite descriptive and quan-
titative and predicts the force (power) multiplication correctly. In the next
paragraph, the text also recognizes that this force multiplication is done at the
expense of a large delay (large displacement), which is of the same proportion
as the force magnification.

One may note that the figure itself is drawn in a singular configuration
in which actually the mechanism will not work as described. However, this
particular configuration is not inferred from the text. Perhaps this was done
either to save paper, or this figure was drafted by someone who was not
aware of the exact workings of levers.

Gears
Heron used gears extensively. In general, unlike today’s gears, these tend to
be triangular in shape. The spur gears are more common, but Heron also used
other types, like the worm gear in conjunction with a worm, see Figure 3.

Again, the text is quite descriptive and explains how to calculate the ve-
locity (gear) ratio as follows (Drachmann, 1963):
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Fig. 3. Endless screw (worm gear) and driven gear (worm). Inscriptions in Arabic (Drach-
mann, 1963). The figure is used to calculate the velocity ratio of the gears.

<18> When it is the case that a wheel with teeth engages the screw
furrow, then for every one turn the screw is turned, it will move one
tooth of the wheel. And we can prove this in the following way . . .

It is worth noting that Heron used the worm gear and worm transmission
in many of his mechanisms, possibly because this combination is not
backdriveable, a characteristic very handy in the case of lifting ways. In such
cases, the worm is connected to a handle and the operator of the mechanism
can stop applying torque on it without having the weight fall.

Weight-lifting devices
Weight-lifting devices were very important in the ancient times. Tradition-
ally, this was done with the use of enormous man-power, for example with
many people pulling or lifting weights against their own. The mechanisms
discussed by Heron allowed the lifting of big weights used in construction,
by a single person.

Figure 4a shows an axle supported on its two ends and connected to a
wheel with handles (handspakes). A rope is wound around the axle and lifts
a weight. Again, this is a force multiplying device, and works best when the
wheel has a large diameter R and the axle has a small one, r, since the mul-
tiplication of the force is proportional to R/r. As one can see in Figure 4a,
someone who read the book with the figure was aware of this, and therefore
designed the part of the axle around which the rope winds with a smaller
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Fig. 4. Lifting mechanisms. (a) Small force maltiplication. (b) Compound pulley mechanism
(Drachmann, 1963).

Fig. 5. Complex lifting mechanism showing force amplification (Drachmann, 1963).

diameter than that of the rest of the axle. Here, too, a “delay” is present, as
many wheel rotations are needed to lift the weight.

Figure 4b shows a compound pulley system that is used to lift a weight.
One end of the rope is attached to the solid cross-beam, while the other end
is pulled by a person. Heron recognized that levers, lifting axles and pulleys,
all work similarly in that they multiply forces by a factor and require at the
same time displacements also multiplied by the same factor.

Figure 5 shows a complex lifting mechanism that contains a lever, a com-
pound pulley system, an axle, and a worm gear with a worm. From its ap-
pearance, it seems that this mechanism is provided as a teaching example
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and not as the description of a particular lifting device. The figure also shows
the force multiplication from the hand lever to the weight. It also shows the
bearings of the axle, and the lever (wedge) fulcrum. The base of the entire
mechanism is not shown in the figure. However, Heron mentioned that

<29> . . . And this support like a chest should be in a firm place, in
a place strong in its foundation, solidly built. When the handspake is
turned, the weight is lifted.

From the above passage, one can notice that not only a strong supportive base
is required, but also Heron recognizes the importance of estimating correctly
the need for taking into account strength calculations.

Heron also provides the description of a weight lifting device, based en-
tirely on gears, see Figure 6.

Fig. 6. Weight lifting compound gearbox. (a) Original drawing (Drachmann, 1963). (b) 3D
drawing (Thomas, 2005).

The device is called the barulkos, and includes a non-backdriveable worm
gear and a compound gear train with four parallel axes. It allows one to
lift a large weight with a small effort, by turning the crank. The description
of this device is found in Heron’s Dioptra, chapter 37. In this, the author
describes in detail the gearbox and recognizes that all axles must be able to
rotate freely. This means of course that first the axles should be rotating, but
also that they must not be subject to large frictional torques. This is impor-
tant, as gear trains with many stages, like the barulkos were not very efficient.

Presses
In ancient times, presses were used to produce oil from olives or wine from
grapes. In Heron’s Mechanics, the author describes a two-screw press that is
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Fig. 7. Double-screw press (Drachmann, 1963).

used for pressing olives, see Figure 7. Unlike the single screw press, which
may be backdriveable, the double screw press is not backdriveable, and there-
fore can hold its pressure without the need to apply force on the hand wheels.
According to Drachmann (1963), Heron introduces the press as follows:

<19> These instruments, whose construction we shall now describe,
serve for pressing of oil, and they are easy to work, they can be moved
and put up in any place we want, and there is no need in them for a
long, straight beam of a hard nature, nor for a very heavy stone, nor
for strong ropes, and there is in them no hindrance from the stiffness
of the ropes, but they are free from all that, and press with a strong
pressure and the juices come out altogether. And their construction is
what we now are going to describe.

Passages like the above illustrate the clarity and compactness of Heron’s writ-
ings. In this, he recognizes that the press works due to internal forces, and
therefore, no long levers, pulleys, or mere weights are necessary to produce
a large force (pressure). Despite the fact that large forces are produced, the
press itself can be relatively lightweight and mobile; it does not even need a
permanent base.

Figure 7 was drawn by Drachmann (1963), based on size information
given in the original text. Since people at Heron’s times had lathes, it seems
that the screws were made with the help of one. However, it is Heron in
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Dioptra, who presents the first extant description of a machine for cutting
screws (Lloyd, 1973).

Pantograph
In his Mechanics, Heron described pantographs, i.e. mechanisms used for
copying figures at a different size from the original. As explained in chap-
ter 15, see (Drachmann, 1963):

<15> And let us now prove how to make a figure similar to the known
plane figure in the given ratio by means of an instrument. We make
two wheels on the same centre, fixed to it, and provided with teeth,
moving on a single axle in the plane where is the figure we want to
copy; and the ratio of one wheel to the other should be the given ratio
. . .

Fig. 8. Pantograph (Drachmann, 1963).

Figure 8 shows a pantograph taken from a copy of the book at the British
Museum. It shows the two teethed wheels and the teethed copying rods,
and mostly illustrates the principle and not the exact construction of the
pantograph. The two wheels rotate at the same angular speed. When one of
the rods is displaced in a given direction, the corresponding wheel rotates
and since this is connected to the other one, this rotates and carries with it the
other rod. Obviously, the two rods then have velocities and displacements
proportional to their distance from the center of rotation, and therefore, their
path is similar, too. If one of the rods is rotated, as opposed to be translated,
then the other rod must remain parallel to the rotated one.

Hodometer
A hodometer (or odometer, Gr. oδóµετρoν) is a device that indicates the dis-
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Fig. 9. (a) A reconstruction of Heron’s hodometer, (b) mechanism geartrains (Lahanas, Web).

tance traveled by a vehicle. Hodometers have been described by others before
Heron, including Vitruvius (c. 25 AD), and even Archimedes (c. 287 BC–
c. 212 BC). However, it seems that none of these had ever worked or even
that they were built. The same is probably true for his hodometer. Leonardo
da Vinci tried to build it according to the given description, but did not suc-
ceed.

Heron describes the construction of his hodometer in chapter 34 of the
Dioptra as a mechanism made of wheels and axles and housed in a small
wooden box, see Figure 9. Heron observes that chariots with wheels of four
feet diameter turn exactly four hundred times when the chariot covers one
Roman mile, or about 1500 m.

Therefore he proposed a mechanism in which a pin on the chariots axle en-
gages a fourhundred tooth cogwheel, that makes a complete rotation per mile.
Then, a transmission of five axles and four worm gear and worm geartrains,
drive an index showing the miles traveled. Alternatively, they engage a disk
with holes along the circumference, where pebbles are located, that drop one
by one into a box. In this case, the number of miles traveled is given simply
by counting the number of pebbles (Lahanas, Web).

In chapter 38 of Dioptra, a naval hodometer is mentioned. Here, an ex-
ternal to a vessel paddlewheel is connected to a mechanism like that of the
hodometer, which is located inside the vessel. The last wheel in the series
made a full revolution every Roman mile. The naval log was replicated by K.
N. Rados in wood and brass and exhibited at the International Exhibition in
Bordeaux in 1907. The odometer was reconstructed recently by Dutch engi-
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Fig. 10. Five axle hodometer described by Heron in Dioptra, chapter 34. (A) Aspect from
above, (B) from the side, (C) from one end (Drachmann, 1963).

neer Andre Sleeswyk, who presented it at a special congress on technology
held in Athens in 1987 (Thessaloniki Technology Museum, Web).

(b) Automatic Devices

Automatic libations
In Pneumatics, Heron describes several devices that operate on hot air or
steam and are designed to produce astonishment and wonder (Lloyd, 1973).
One such device is described in Pneumatics I, chapter 12, and is shown in
Figure 11. The figures standing next to a hollow altar pour libations when a
fire is lit on the altar.

The way this works is the following. When a fire is lit, the air in the
hollow altar expands and drives out the liquid contained in the altarŠs
pedestal. Then, the liquid passes through tubes in the figure bodies and
appears to be poured by the figures.

Automatic opening of temple doors Another device designed by Heron, allows
the doors of a temple to open when a fire is lit at the altar, see Figure 12.
The doors are connected though a set of axles, pulleys, and ropes to a large
bucket. Initially, the system is statically neutral and the weight of the bucket
is balanced with counterweights. When a fire is lit, the air in the altar is heated
and, as it expands, it enters a hollow sphere full of water. Due to the rising
pressure in the sphere, some of the water is displaced into the bucket. As the
bucket becomes more heavy, it is lowered, opening the doors of the temple
(Figure 12). When the fire at the altar was put out, the pressure inside the
altar would drop, and water would go back to the hollow sphere, pushed by
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Fig. 11. Altar libations produced by fire (Lloyd, 1973).

Fig. 12. The doors of the temple open automatically when a fire is started at the altar (Lloyd,
1973).

atmospheric pressure. Then, the counterweights would force the doors of the
temple to close.

(c) Engines of War

Cheirobalistra
The Cheirobalistra (Gr. xειρoβαλίστρα from χείρ which means hand and
βάλλω which means to throw) is a device that hurls arrows over a large
distance. In this device, the springs made of twisted hair or tendons, are
stretched in two separate metal casings. A metal stud is attached at the top of
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Fig. 13. The cheirobalistra as reconstructed by E. W. Marsden (Lahanas, Web).

each of the field frames, to hold them together. Another stud was attached to
the bottom of the field frames and the base of the engine, to hold the spring
casings in place (Marsden, 1971). A small handle wheel at the back of the
base was used to load the springs. The cheirobalistra must have had a quick
release mechanism for throwing the arrow. Heron’s cheirobalistra was the
most advanced two-armed torsion engine used by the Roman army (Lahanas,
Web). The cheirobalistra was probably introduced around 84 AD and was
definitely in service in 101–102 AD, as attested on Trajan’s Column (Lewis,
2001).

Palintonon
A device similar to the cheirobalistra, but much bigger and powerful
was the Palintonon (Gr. παλίτoνoν, from πάλιν meaning backwards, and
τóνoς/τείνω, meaning force, stress. It translates to a V-spring (see Figure 14).

This device is described in chapter 3 of Belopoeica and was made for
throwing stones. It appears that it could fire an 8-pound stone over 300 yards.
A similar but smaller device to throw arrows was called Euthytonon (Gr.
ευθύτoνoν from ευθύς, meaning straight, and τóνoς/τείνω, meaning force,
stress. It translates to a straight-spring).

(d) Important Devices

Dioptra
A simple dioptra consists of a long rectangular rod with two sights. One of
them has a pin-point aperture and is fixed on the rod, while the other one is
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Fig. 14. Heron’s palintonon (stone-thrower) (Lahanas, Web).

movable along the rod and is aligned with a target (see Figure 15a). Heron
dismissed all previous dioptra designs as inadequate stating that they were all
good for limited uses only. Some of them could be only mounted vertically,
while others only horizontally.

Heron claimed to have constructed one that was able to perform all
the tasks of his predecessors, and more (Lewis, 2001). Indeed, his dioptra
could be used. It could be used as a level, a distance-measuring device, or
an angle-measuring instrument. The dioptra, see Figure 15b, was probably
based on a tripod and was designed such that the dioptra could attain any
attitude. This was done with a 3R mechanism, with all three axes passing
through the same point. This design is employed today in robot wrists, and
one could describe easily its attitude with a Z-Y-Z type of Euler angles. The
first two degrees of freedom were based on his favorite worm gear and worm
transmission, driven by a small crank, while the last one was carrying the
dioptra and was simply rotated by hand. The instrument could be leveled, but
it was quite expensive to built and to many difficult to operate.

Aeolipile
Although there are indications that Archimedes and Philo made some simple
use of steam, scholars agree that the discovery of the steam engine belongs
to Heron. Heron’s aeolipile is described in his Pneumatics 2.11. The name
aeolipile is derived from Aeolos (Gr. Aίoλoς, the Greek god of the winds)
and the Greek word pilos (Gr. πίλoς, meaning sphere), and translates to “the
sphere of Aeolos”.
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Fig. 15. (a) Simple dioptra, (b) Heron’s dioptra (Drachmann, 1963).

The aeolipile (see Figure 16), is a device consisting of an air-tight sphere
that receives steam through tubing along one of its major diameters. This
piping also serves as an axis of rotation for the sphere. The steam is produced
in a cauldron that also serves as the base of the device. The sphere is equipped
with two L-shaped bent tubes, which allow the steam accumulated in the
sphere to exit in such a way as to create a reaction torque around the axis
of rotation of the device. This torque makes the sphere rotate at high speeds
(1500 rpm).

The device can be described as a reaction turbine, since it makes use of the
reaction force that appears due to the momentum change in the jet of steam
which is applied to the bent pipe.

At the time the aeolipile was invented, the device was thought of as a toy.
It was only much later that the device gained recognition and accumulated
interest.

According to Landels (2000), who made a working reconstruction of the
device, due to the device’s high rotational speed, a high gear ratio would
be needed to make it useful (i.e. develop a high torque at low speeds). The
worst engineering problem of the device was the sleeve joint, where the pipe
from the cauldron enters the sphere. If this joint is too loose, steam escapes
and the device becomes inefficient; if it is too tight, there is a lot of friction
increasing the power losses. Therefore, due to the technology level of the
time, this jet engine, “to do the work of one man, it would have required the
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Fig. 16. (a) Heron’s aeolipile, and (b) a modern replica photographed by Katie Crisalli
(Wikipedia).

input of several men. In other words, it would have been a labor-using device
rather than a labor-saving one” (Landels, 2000).

Hydraulis
Hydraulis (Gr. ύδραυλις from ύδωρ, meaning water, and αυλóς, meaning
pipe), was invented by Ktesibios of Alexandria (285–222 BC) and was a wa-
ter organ with keyboard, see Figure 17a. It is generally considered to be the
precursor of the modern pipe organ. Hydraulis works by forcing air coming
from an air pump to reach a large copper chamber with water, which also
contains a hemispherical or funnel-like copper “wind chest”. The air is in the
wind chest and its pressure is kept constant by water rising in it. The com-
pressed air is driven continuously at constant pressure upwards, to blow the
organ pipes.

To improve keyboard air valve of the organ, Heron designed a spool-type
mechanism that would slide to open the air stream when a keyboard key was
depressed, and would be restored to it original position by a spring force, see
Figure 17b.

Heron describes the organ in Pneumatics, without referring to Ktesibios.
However, it is believed that this was due to the fact that the inventor was well
known. Since the organ requires an operator to drive the air pump, Heron
designed a wind turbine (see Figure 18), and a mechanism for converting
rotary motion to a periodic motion lifting the piston of the air pump. There is
no other mention of wind power in Ancient works.
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Fig. 17. (a) Hydraulis was initially designed by Ktesibios and improved by Heron. The detail
shows the air pump valve. (b) The organ air valve mechanism (Schmidt, 1899).

Fig. 18. Hydraulis connected to a wind turbine through a cam-like mechanism (Lazos, 1999).

As seen in this figure, the wind turbine axle included had radial rods, act-
ing as primitive cams, that were forcing a lever connected to the air piston to
move downwards, pushing the piston up. When the cam-like rod had rotated
away from the lever, the lever was returning to its original position due to
the weight of the piston. One could say that this is similar to the cam-driven
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automobile valve mechanism, where of course the weight restoring force is
replaced by a spring force.

Professor Pantermalis of the Aristotelian University of Thessaloniki,
recreated the organ recently which played during the Athens Olympics in
2004.

Conclusions

In this chapter, we presented a short introduction to Heron of Alexandria and
his works. As many of the ancient scientists, Heron was a mathematician, a
physicist and an engineer who wrote many books on Mathematics, Geome-
try and Engineering, in use till the medieval times. His devices were pow-
ered by single humans, water, steam or the wind, and contained many simple
mechanisms. His major inventions include the Aeolipile, the first steam tur-
bine, automated machines for temples and theaters, surveying instruments,
and military machines and weapons.

Appendix

In detail, the first thirty-four Dioptra chapters include (Lahanas, Web):

1. & 2. Introduction to “the science of dioptrics”.
3. & 4. Instructions on how to construct a dioptra instrument.
5. Instructions on how to produce a stave for measurement.
6. To observe the difference in height between two points or if their height

is the same.
7. To draw a straight line by dioptra from a given point to another invisible

point, whatever the distance between them.
8. To find the horizontal (pros diabeten) interval between two given points,

one near us, the other distant, without approaching the distant one.
9. To find the minimum width of a river while staying on the same bank.

10. To find the horizontal interval between two visible but distant points, and
their direction.

11. To find a line at right angles at the end of a given line, without approach-
ing either the line or its end.

12. To find the perpendicular height of a visible point above the horizontal
plane drawn through our position, without approaching the point.
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13. (a) To find the perpendicular height of one visible point above another,
without approaching either point. (b) To find the direction of a line con-
necting two points, without approaching them.

14. To find the depth of a ditch, that is the perpendicular height from its floor
to the horizontal plane either through our position or through any other
point.

15. To tunnel through a hill in a straight line, where the mouths of the tunnel
are given.

16. To sink shafts for a tunnel under a hill, perpendicular to the tunnel.
17. To lay out a harbour wall on a given segment of a circle between given

ends.
18. To mound up the ground in a given segment of a spherical surface.
19. To grade the ground at a given angle, so that on a level site with the shape

of an equal-sided parallelogram its gradient slopes to a single point.
20. To find a point on the surface above a tunnel so that a auxiliary shaft can

be sunk.
21. To lay out with the dioptra a given distance in a given direction from us.
22. To lay out with the dioptra a given distance from another point, parallel

to a given line, without approaching the point having the line on which to
lay it out.

23. –30. The first five chapters refer to the dioptra setting out irregular shaped
plots of land, while the remaining three explain how to determine the
areas from those figures.

31. To measure the discharge or outflow of a spring.
32. & 33. Describes how to utilize the dioptra in a vertical mode for the pur-

poses of astronomical observations.
34. This chapter informs the reader about the usage of another measuring

instrument called the odometer, which has a device fitted to the wheels of
a carriage such that the horizontal distance is evaluated in a very similar
fashion in which a modern-day perambulator gives distance.

A good idea of the particular contents of the Pneumatica can be taken by
listing the chapters of the books, as translated by Woodcroft (1851):

A Treatise on Pneumatics

1. The bent siphon.
2. Concentric or enclosed siphon.
3. Uniform discharge siphon.
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4. Siphon which is capable of discharging a greater or less quantity of liquid
with uniformity.

5. A vessel for withdrawing air from a siphon.
6. A vessel for retaining or discharging a liquid at pleasure.
7. A vessel for discharging liquids of different temperatures at pleasure.
8. A vessel for discharging liquids in varying proportions.
9. A water jet produced by mechanically compressed air.

10. A valve for a pump.
11. Libations on an altar produced by fire.
12. A vessel from which the contents flow when filled to a certain height.
13. Two vessels from which the contents flow, by a liquid being poured into

one only.
14. A bird made to whistle by flowing water.
15. Birds made to sing and be silent alternately by flowing water.
16. Trumpets sounded by flowing water.
17. Sounds produced on the opening of a temple door.
18. Drinking horn from which either wine or water will flow.
19. A vessel containing a liquid of uniform height, although a stream flows

from it.
20. A vessel which remains full, although vater be drawn from it.
21. Sacrificial vessel which flows only when money is introduced.
22. A vessel from which a variety of liquids may be made to flow through

one pipe.
23. A flow of wine from one vessel, produced by water being poured into

another.
24. A pipe from which flows wine and water in varying proportions.
25. A vessel from which wine flows in proportion as water is withdrawn.
26. A vessel from which wine flows in proportion as water is poured into

another.
27. The fire-engine.
28. An automaton which drinks at certain times only, on a liquid being pre-

sented to it.
29. An automaton which may be made to drink at any time, on a liquid being

presented to it.
30. An automaton which will drink any quantity that may he presented to it.
31. A wheel in a temple, which, on being turned liberates purifying water.
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32. A vessel containing different wines, any one of which may be liberated
by placing a certain weight in a cup.

33. A self-trimming lamp.
34. A vessel from which liquid may be made to flow, on any portion of water

being poured into it.
35. A vessel which will hold a certain quantity of liquid when the supply

is continuous, will only receive a portion of such liquid if the supply is
intermittent.

36. A satyr pouring water from a wine-skin into a full washing-basin, without
making the contents overflow.

37. Temple doors opened by fire on an altar.
38. Other intermediate means of opening temple doors by bire on an altar.
39. Wine flowing from a vessel may be arrested on the introduction of water,

but, when the supply of water ceases, the wine flows again.
40. On an apple being lifted, Hercules shoots a dragon which then hisses.
41. A vessel from which uniform quantities only of liquid can be poured.
42. A water-jet actuated by compressed air from the lungs.
43. Notes from a bird produced at intervals by an intermittent stream of water.
44. Notes produced from several birds in succession, by a stream of water.
45. A jet of steam supporting a sphere.
46. The world represented in the centre of the universe.
47. A fountain which trickles by the action of the Sun’s rays.
48. A thyrsus made to whistle by being submerged in water.
49. A trumpet, in the hands of an automaton, sounded by compressed air.
50. The steam-engine.
51. A vessel from which flowing water may be stopped at pleasure.
52. A drinking-horn in which a peculiarly formed siphon is fixed.
53. A vessel in which water and air ascend and descend alternately.
54. Water driven from the mouth of a wine-skin in the hands of a satyr, by

means of compressed air.
55. A vessel, out of which water flows as it is poured in but if the supply is

withheld, water will not flow again, until the vessel is half filled and on
the supply. Being stopped again, it will then not flow until the vessel is
filled.

56. A cupping-glass, to which is attached, an air exhausted compartment.
57. Description of a syringe.
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58. A vessel from which a flow of wine can be stopped, by pouring into it a
small measure of water.

59. A vessel from which wine or water may be made to flow, separately or
mixed.

60. Libations poured on an altar, and a serpent made to hiss, by the action of
fire.

61. Water flowing from a siphon ceases on surrounding the end of its longer
side with water.

62. A vessel which emits a sound when a liquor is poured from it.
63. A water-clock, made to govern the quantities of liquid flowing from a

vessel.
64. A drinking-horn from which a mixture of wine and water, or pure water

may be made to flow alternately or together, at pleasure.
65. A vessel from which wine or water may be made to flow separately or

mixed.
66. Wine discharged into a cup in any required quantity.
67. A goblet into which as much wine flows as is taken out.
68. A shrine over which a bird may be made to revolve and sing by worship-

pers turning a wheel.
69. A siphon fixed in a vessel from which the discharge shall cease at will.
70. Figures made to dance by fire on an altar.
71. A lamp in which the oil can be raised by water contained within its stand.
72. A lamp in which the oil is raised by blowing air into it.
73. A lamp in which the oil is raised by water as required.
74. A steam-boiler from which a hot-air blast, or hot-air mixed with steam is

blown into the fire, and from which hot water flows on the introduction
of cold.

75. A steam-boiler from which either a hot blast may be driven into the fire,
a blackbird made to sing, or a triton to blow a horn.

76. An altar organ blown by manual labour.
77. An altar organ blown by the agency of a wind-mill.
78. An automaton, the head of which continues attached to the body, after a

knife has entered the neck at one side, passed completely through it, and
out at the other; which animal will drink immediately after the operation.
Appendix.
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WILLIBALD LICHTENHELDT
(1901–1980)

Kurt Luck

IFToMM TC Linkages & Cams, Honorary Member,
Lukasplatz 9, D-01069 Dresden, Germany
E-mail: luck@mfk.mw.tu-dresden.de

Abstract. Professor Lichtenheldt was the Nestor of Mechanisms and Machine Theory after
the 2nd World War at TU Dresden, Germany. He became an honorary member of IFToMM
in Zakopane 1969. He was an excellent teacher and educated a new generation of students in
mechanism design. He also wrote several textbooks and numerous reports and papers on his
research.

Biographical Notes

Willibald Lichtenheldt, Figure 1, was born on 30 October 1901, the son of a
painter in Werdau (Saxony), where he received his early education and train-
ing.

Fig. 1. Willibald Lichtenheldt (1901–1980).
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He completed his pre-college schooling and Abitur in 1918 at the
Realschule in the city of Werdau. His continuation school training as pro-
bationer in fine-mechanics was done at MASS-Industrie GmbH Werdau
(MASSI). Then he studied at the Ingenieurschule Zwickau for three years.
One of his teachers was Dr. Curt Beyer, who later became famous at the Os-
kar v. Miller Polytechnikum Munich. Lichtenheldt earned his Ing. Degree in
1922 and went directly to textile industry for practical work. For several years
he worked as a designer of weaving machines in the Maschinenfabrik Oscar
Moeschler, Meerane (Saxony).

The topic “weaving machine” encouraged him to study the analysis and
synthesis of mechanisms more deeply. He came into contact with the sci-
entific work of Burmester [1], Krause [2] and Alt and transferred the results
directly to practical applications. His first papers [3–5] in this field were pub-
lished in connection with the VDI-Mechanism Conferences, which were held
in Germany from 1926 every two years. He became also a member of the
VDI in 1931 and was continuously active in VDI-Conferences [6–8].

It is remarkable that Lichtenheldt after ten years practical work in industry
started in 1934 his study at TU Dresden to improve his scientific founda-
tions. He attended basic lectures by Lagally in mathematics, by Kutzbach
in machine elements, by Alt in mechanisms theory, etc. After achieving the
Vordiplom he concentrated especially on analysis and synthesis of mechan-
isms and textile machines. He graduated in 1938 as Diplom-Ingenieur at TU
Dresden (Figure 2), and was appointed a scientific assistant at TU Berlin-
Charlottenburg by his former teacher Professor Hermann Alt.

His active scientific work in Berlin culminated in his doctor disserta-
tion “Einfache Konstruktionsverfahren zur Ermittlung der Abmessungen von
Kurbelgetrieben” in 1940 [9]. This paper is still important today for finding
good approximate solutions which can be improved with modern computer
technology. Lichtenheldt was very active in teaching and research work at
TU Berlin. His second Dissertation (Habilitation) on the topic “Kinematische
und dynamische Untersuchung der Webladen-antriebe” was finished in 1943
[10] and he was awarded at TU Berlin the academic degree Dr.-Ing. habil.

In 1943 he became Professor at TU Dresden in the theory of field mech-
anisms and started his lectures in the difficult atmosphere of wartime. On 13
February 1945 the TU Dresden was almost destroyed by intensive bombing.
Lichtenheldt was one of the active Professors who worked very hard to re-
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Fig. 2. Diplom-Certificate of W. Lichtenheldt.

construct the campus. During the following five years Lichtenheldt was once
more active in industry, ending this period of his career at Carl Zeiss Jena. On
4 August 1950 he was appointed once more as full Professor at TU Dresden
for mechanisms theory and fine mechanics and as director of the same insti-
tute in the framework of the faculty of mechanical engineering.

His lectures included the following topics:

• Projektionslehre und Kinematik (Technical drawing and kinematics)
• Getriebelehre I, II, III (Mechanisms theory, three courses I, II, III)
• Feinmechanik (Fine mechanics)
• Textilmaschinenkonstruktion (Design and construction of textile ma-

chines).

He encouraged his students with his excellent pedagogical talent; his
drawings at the blackboard trained the eye to look for the details in design.
The students enjoyed watching the development of his sketches and appre-
ciated the clarity of his presentation of the engineering principles. On the
basis of these lectures he wrote his textbook Konstruktionslehre der Getriebe,
which has been published in five editions [20] (Figure 3). The first edition was
translated into the Russian language. The fifth edition has been extended by
Professor Kurt Luck. Moreover he wrote many outstanding scientific papers
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Fig. 3. Textbook of Willibald Lichtenheldt.

[11–19] and excellent material for self-study corresponding to his lectures
[21, 22, 23].

He was elected as Dean of the Faculty of Mechanical Engineering for the
period 1952–1955. In his welcome address to the new students, matriculated
in 1954, he characterized the important work of the designer with the follow-
ing words:

The designer is very important for realizing the technical progress at
all. The efficiency of the industrial production is determined by the
technical standard of the used machines as well as by the standard of
the produced machines. The basis for realizing this fact is the creativ-
ity of design engineers. The standard of life in our country is based
upon the efficiency of such experts in engineering sciences.

For improving effectiveness in the design process he supported the cre-
ation of diagrams for mechanism design. Such diagrams are very useful in
finding optimal solutions for realizing special transfer functions by mechan-
isms. The scientific work of his team was presented at a number of mechan-
ism conferences in Germany, especially at TU Dresden in 1953, 1956, 1958,
1960, 1962 and 1966. The last event was the 25th mechanism conference in
Germany with around 500 participants and represented the coronation of his
career. Many scientists took part in this important conference, among others
Academician Professor I.I. Artobolevsky from Moscow, Professor M. Kon-
stantinov from Sofia, Professor I. Salyi from Hungary, Professor J. Oderfeld
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Fig. 4. Mechanism Conference in Germany at TU Dresden in 1966; 1st row, left to right:
B. Dizioglu, M. Konstantinov, K. Hain, W. Rehwald, W. Lichtenheldt; 2nd row, left to right
Kohler, Nina & Professor I.I. Artobolevsky, Moscow, W. Rössner, A. Bock.

and Professor A. Morecki from Warsaw, Professor B. Dizioglu and Dr. K.
Hain from Braunschweig, Professor W. Rehwald from Stuttgart (Figure 4).

His teaching as Ordinarius in the field of mechanism theory was excellent
and particularly significant after the 2nd World War to the new generation of
engineers at TU Dresden. During his lectures in the Auditorium Maximum
(which could hold 500 students) it was absolutely silent, no noise, you could
hear a pin falling. Many students remember these years with great fondness.

The results of the scientific work inspired by Lichtenheldt in mechanisms
theory, produced by undergraduate students in joint projects and diplom-
theses and by postgraduate students in doctor-theses, found direct applic-
ations in several branches of industry, e.g. in textile machinery, food ma-
chinery, packing machinery, printing machinery, earthmoving machinery, ag-
ricultural machinery, precision machinery.

For his meritorious work Lichtenheldt was honoured in 1961 by the
“Vaterländischen Verdienstorden in Silber”, in 1962 by the “Nationalpreis
III. Klasse”, and in 1978 by “Hervorragender Wissenschaftler des Volkes”.
He was appointed as a member of the Berlin Academy of Sciences in 1959.
The TU Magdeburg granted to him the “Doctor Degree Ehrenhalber, Dr.-Ing.
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Fig. 5. II. IFToMM Congress 1969 in Zakopane (Poland), organized by Professor. J. Oderfeld,
left to right Professor W. Lichtenheldt, Nina & Professor I.I. Artobolevsky, Moscow, Professor
Muster, USA.

Eh.” in 1976. During the Inaugural Assembly of the II. IFToMM Congress in
1969 in Zakopane (Figure 5), Lichtenheldt was recommended as a member of
the Honorary Roll of the International Federation for the Theory of Machines
and Mechanisms.

Today “Mechanism and Machine Science” is an important part in the
education-curriculum of students in the field of mechanical engineering. The
work and life of Willibald Lichtenheldt was always directed to this aim.

List of (Main) Works

• Zur Getriebetechnik der Webstühle (Analysis of mechanisms in weaving
machines), Zeitschrift VDI 75 (1931) 904–908.

• Koppelgetriebe für den Webstuhl (Mechanism design for a weaving
loom), Zeitschrift VDI 78 (1934) 352–354.
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• Zur Synthese der Webstulgetriebe (Synthesis of mechanisms in a weaving
loom), Meliand Textilberichte 16 (1935) 477–480.

• Über den Schlagmechanismus des mechanischen Webstuhls (Remarks on
the impact-mechanism of a weaving loom), Masch.-Bau Betrieb 15 (1936)
405–407.

• Die Koppelkurvenfräsmaschine (The coupler curve-cutting machine),
Masch.-Bau Betrieb 17 (1938) 145–147.

• Reguliergetriebe für Wasserturbinen (Adjustable mechanism for water-
turbines), Masch.-Bau Betrieb 17 (1938) 596–597.

• Einfache Konstruktionsverfahren zur Ermittlung der Abmessungen von
Kurbelgetrieben (Simple drawing methods for determination of the geo-
metrical dimensions of linkages), VDI Forschungsheft Nr. 408, VDI-
Verlag, Berlin, 1941.

• Kinematische und dynamische Untersuchung der Webladenantriebe (Kin-
ematical and dynamical investigation of mechanisms in weaving ma-
chines), Faserforschung und Textiltechnik 2 (1951) 89–104 and 141–153.

• Zur Konstrukion von Gelenkgetrieben (General remarks on the design of
mechanisms), Wiss. Zeit. der TH Dresden 1 (1951/1952) 71–76.

• Die Bedeutung der Konstruktionslehre für die Feinmechanik (The import-
ance of mechanisms theory to fine-mechanics), Wiss. Zeitschrift der TH
Dresden 3 (1953/1954) 211–214.

• Rationalisierung der Konstruktionsarbeit (Rationalization of designing
work), Wiss. Zeitschrift der TH Dresden 3 (1953/1954) 423–426.

• Zur Geometrie des Wippkranes (Remarks on the geometry of the luffing
crane), Wiss. Zeitschrift der TH Dresden 3 (1953/1954) 555–558.

• Lenkergeradführungen im Feingerätebau (Straightline-mechanisms in
precision mechanics), Feingerätetechnik 4 (1955) 447–450.

• Die Methode der Partialsynthese (The partial-synthesis – A new method
in mechanism synthesis), Wiss. Zeitschrift der TH Dresden 5 (1955/1956)
79–82.

• Konstruktionstafeln für Geradführungsmechanismen (Diagrams for the
design of straightline-mechanisms), Maschinenbautechnik 7 (1958) 609–
611.

• Die Anwendung der Geometrie bei Getriebekonstruktionen (The import-
ance of Geometry for linkage-design), Wiss. Zeitschrift der TH Dresden 8
(1958/1959) 341–346.
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• Zur Krümmung der Bahnen von Koppelpunkten (Remarks on the
curvature of coupler curves), Wiss. Zeitschrift der TU Dresden 10 (1961)
1411–1416.

• Konstruktionslehre der Getriebe (Theory and Design of Mechanisms
and Linkages), 1st edition, Akademie-Verlag, Berlin (1961), 2nd edi-
tion (1965), 3rd edition (1967), 4th edition (1970), 5th extended edition
(1977).

Review of Main Works on Mechanism Design

Several main works of Professor W. Lichtenheldt will be discussed below.

(1) His doctor dissertation “Einfache Konstruktionsverfahren zur Ermittlung
der Abmessungen von Kurbelgetrieben” (Simple drawing methods for de-
termination of the geometrical dimensions of linkages), which was published
in VDI Forschungsheft Nr. 408, VDI-Verlag, Berlin 1941 (Figure 6).

He deepened the investigation of the Burmester theory, especially the use-
ful application of special cases of Burmester curves, e.g. circle and straight-
line, equilateral-hyperbola and infinite-straight-line, two perpendicular-

Fig. 6. VDI-Forschungsheft 408, Dissertation of W. Lichtenheldt.
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Fig. 7. (a) Linkage Type I, (b) Linkage Type II.

straight-lines and infinite-straight-line. Both types of Burmester curves,
centre-point curves and circle-point curves, are taken into consideration to
find simple graphical methods for the design of mechanisms with respect to
special transfer functions.

On the basis of these graphical methods in the 50th and 60th decades of
the 20th century many diagrams were developed for rationalization of the
designing process.

Example: Graphical method to design a six-bar linkage for a good rest-
ing period of the output, correspondent to a given input angle [20, 24, 25].
Figure 7 demonstrates the graphical construction.

The construction of linkage type I is the following: Starting from the ex-
ternal dead-centre position of the slider crank mechanism the angle ϕR/2,
drawn symmetrically to the line, in the points A1 and A4 on the circle with
radius r around A0. The quarter of the resting-angle ϕR results in the points
A2 and A3 The coupler-length l = 2.5 · r delivers C1 ≡ C4 and C2 ≡ C3. The
middle-perpendicular lines through A1A2 and C1C2 result in the pole P12; the
angle ∠A0P12A1 = δ put at BP12 in P12 in the same sense results in K1 on
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Fig. 8. Diagram for linkage type I.

the line C1A1. Point B is chosen on the sliding line according to the distance
“n” in the positive direction. A circle with radius p = BK1 approximates
the coupler curve of point K1 corresponding to the resting-angle ϕR, there-
fore point B is nearly resting in this moving branch. The slider in B can be
compensated by an oscillating link with given swinging angle. The slider in
C also can be compensated by a long link (length > 6r). The corresponding
diagram is demonstrated in Figure 8.

This diagram has been created for the basic slider crank mechanism with
r : l = 1 : 2.5; it is constant for all six-bar linkages of type I; and the radius
is r = 1. The diagram includes the following parameters; all parameters for
length are connected to the radius r.
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• r = A0A1 → radius of the input link,
• n → distance of the resting point B from the middle perpendicular line

m′, rectangular to C1C2,
• b → distance between the coupler point K and the sliding point C,
• p → link-length between the points K and B,
• ϕR → resting angle,
• µmin → transmission angle, see Figures 7a and 7b,
• ς → criterion for the quality of resting period.

Practical example. Given parameters: ϕR = 60◦, r = 10 mm, l = 2.5 · r =
AC = 25 mm,

n/r = 10 → n = 10 · r = 100 mm.

Solution: According to the diagram in Figure 8, we get the following para-
meters:

p/r = 5.3 → p = 53 mm, b/r = 4.7 → b = 47 mm,

ς/r = 0.002 → ς = 0.002 mm, µmin = 67◦.

Analogous to linkage type I we can find the parameters for linkage type II by
using the diagram in Figure 9.

(2) His textbook Konstruktionslehre der Getriebe (Theory and Design of
Mechanisms and Linkages) was published in five editions from 1961 through
1977 [20]. It includes the basics of analysis and synthesis of mechanisms.
The special topics are listed in the following chapters:

• Type synthesis
• Scientific foundations of kinematics
• Synthesis of plane mechanisms – Burmester theory
• Design methods for exact synthesis of four-bar linkages and its numerical

solution
• Cam mechanisms, e.g. type-synthesis, transfer functions, design
• Stepping mechanisms, e.g. geneva drive mechanisms, geared linkages
• Force analysis in linkages and cam mechanisms
• Spatial linkages, e.g. type-synthesis, analysis and synthesis
• Diagrams for rationalization of the design work.
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Fig. 9. Diagram for linkage type II.

A special topic of the last chapter is the so-called dead-position con-
struction of the crank-rocker mechanism according to Professor Alt (Alt’sche
Totlagen-Konstruktion). This graphical method gives a possibility of find-
ing good solutions by respecting special restrictions, e.g. input-output angle,
transmission angle etc. This dead-position construction of Professor Alt is
demonstrated in Figure 10.

The angles ϕ0 and ψ0 are the corresponding input-output angles of the
crank and rocker mechanism. A dead centre position is characterized by two
infinitely separated positions of the crank A0A1, which are correspondent to
two identical positions of the output link B0B1. In this position the output link
changes its direction. The oscillating angle ψ0 is limited by two dead posi-
tions of the output. On the basis of the dead-position construction of Professor
Alt, the diagram in Figure 10 has been created.
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Fig. 10. Alt’sche Totlagenkonstruktion (Dead-position construction of Alt).

The diagram (Figure 10) includes the following parameters:

• ϕ0 and ψ0 input-output angles of the crank-rocker mechanism
• < β =< B0A0B1, see Figure 10
• max µmin, maximal transmission angle.

Given parameters: input angle ϕ0 = 160◦, output angle ψ0 = 40◦.
Solution: According to the diagram in Figure 11, we get the following

parameters: < β = 50◦, max µmin = 33◦.
Angle β crosses the circles k1 and m0 in A1 and B1 according to Figure 10.

In this graphical way the length of crank A0A1, coupler A1B1 and output link
B0B1 are determined. A chosen length of the frame A0B0 = 150 mm results
in the following length of crank A0A1 = 38 mm, coupler A1B1 = 80 mm,
and oscillating link B0B1 = 117 mm.

Modern Interpretation of Main Contributions to Mechanism
Design

The most important achievements of Professor Willibald Lichtenheldt exist
in research work and education of the new generation (after the 2nd World
War) in the field of mechanism theory and design. He was a master of inter-
pretation of geometrical connections for the design process by linkages. On
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Fig. 11. Diagram for crank-rocker mechanisms with input-output angles ϕ0-ψ0 and optimal
transmission angle max µmin.

the basis of Burmester’s theory [1] he investigated simple graphical methods
to improve the design process, to raise the level of efficiency, analogous to the
modern CAD – Computer Aided Design. The TU Magdeburg granted to him
the Doctor Degree Ehrenhalber; during the ceremony on behalf of this event
he gave an excellent speech on the topic “Integration of CAD – Computer-
Aided-Design in Mechanisms Theory”.

The last decades starting from 1970 have exhibited great progress in the
field of machine and mechanism science by using modern CAD equipment.
The diagrams for mechanism design have been improved by numerical cal-
culations by using CAD computer techniques.

Most mechanisms of the modern day, as well as those developed in the last
century, have become increasingly complex. Common examples are automo-
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biles, tractors, bulldozers, carpet sweepers and concrete mixers. Computer
Aided Analysis is now considered essential in the design of such complex
mechanical systems as well as to respond to the market trends by developing
new products in a shorter time. Coupled with dynamic analysis, the field of
mechanisms has reached a high perfection and reliability. Mechanisms is the
foundation for ultimate machine design. During the last 15 years Rehwald and
Luck investigated the topic “Computer Aided Linkage Simulation” [26–32].

Several software packages are available on the market today for analysis
and simulation of mechanisms, which makes these analyses and incorporation
of multi-system concepts much easier. It must, however, be emphasized that
such software is no substitute for human ingenuity and imagination.

A variety of machinery used in critical operations such as packaging,
conveying and off-shore handling, still consists of several types of two-
dimensional kinematic chains and their respective inversions. Most soft-
ware currently available on the market does not address the analysis of
two-dimensional kinematic chains using mathematical and graphical tech-
niques, such as coupler curves and hodographs, developed over the past dec-
ades, but instead encourage the designer to work from a clean slate in three-
dimensional space. The software KOSIM developed by Rehwald and adapted
by Luck to various applications differs in this aspect.

The KOSIM software [30] focuses on the design and analysis of planar
mechanisms. The simplicity and elegance of the software and the short time
required for mastering it, make it attractive for designers of several types
of machinery. The authors of KOSIM have conceived an ingenious nomen-
clature for designating planar mechanisms and the constituent kinematic
chains based on terminology evolved by the International Federation for the
Promotion of Mechanism and Machine Science (IFToMM).

The book KOSIM – Computer Aided Linkage Simulation, which is based
on the original version in the German language by the authors, is an excel-
lent description of the novel methodology used in the KOSIM software [31].
The book also describes in vivid detail the theory of kinematic and dynamic
analysis of mechanisms. Numerous practical examples and graphical illus-
trations make the book one of the most useful texts for designers, practicing
engineers, software developers, academicians and students. Figures 12–14
demonstrate some applications of this modern software.
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Fig. 12. Animation of an eight-bar linkage.

Fig. 13. Hodograph of the force-vector of an eight-bar linkage.
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Fig. 14. Coupler-curve of another eight-bar linkage.
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Abstract. Liu Xian-Zhou was a pioneer Chinese scientist who studied the history of ancient
Chinese mechanisms and the first to write, in Chinese, systematic descriptions of the machines
and their functions. He was truly China’s leading pioneer in mechanical engineering. In ad-
dition to his scholarly publications, he was the first author to write textbooks in Chinese for
students entering the fields of mechanisms and machines.

Biographical Notes

Liu Xian-Zhou was born on January 27, 1890 at Wan County in He-Bei
Province, China (Figure 1). He passed away in 1975 at the age of 86.

Fig. 1. Liu Xian-Zhou (1890–1975) (Dong and Li, 1990).

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 267–278.
© 2007 Springer. Printed in the Netherlands.
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When Liu was a child, he directly experienced the hard labor of agri-
culture by working with his father on the family farm. When Liu was 8 to 16
years old (1897–1905), he studied in an old-style private school for traditional
Chinese and classical literature. With such a basic training, he had a solid
background to study ancient Chinese historical records. Between 17 to 23
years old (1906–1912), Liu was a middle-school student in He-Bei Province,
graduating with an excellent academic grade of 96.4. In 1914, Liu enrolled in
the Department of Engineering at Hong Kong University, at government ex-
pense. He graduated in 1918 with a B.S. degree and received the “First Class
Honor”.

During 1918 to 1921, Liu was a teacher at a vocational school in He-
Bei Province. He emphasized that theory and experiment should be equally
important, and set up a practical training factory for the school. At age 34
(1924), Liu accepted an invitation to become President of the oldest Chi-
nese engineering university, Bei Yang University, now Tianjin University. He
set out to upgrade the academic excellence of the University to become the
“Massachusetts Institute of Technology of China”.

During 1928 to 1931, he was Chairman of the Department of Engineer-
ing at Northeastern University and offered courses such as Theory of Ma-
chines and Thermodynamics. In 1932, he joined the Department of Mechan-
ical Engineering at Tsinghua University. He studied numerous ancient Chi-
nese books and literature relating to mechanical technology and engineering,
and he proposed standard Chinese terminology in mechanical engineering.
During 1938 to 1946, Liu was a member of the faculty of the Department
of Engineering at South-West Associated University and a Vice-Chairman in
the Chinese Society of Mechanical Engineers.

During 1946 to 1947, Liu visited the USA to investigate and study agri-
culture machinery. After returning to China, he started to write teaching ma-
terials in agriculture machinery and taught the subject at Tsinghua University.
After 1949, Liu was a Vice-President at Tsinghua University, and the Chair-
man of the Chinese Society of Mechanical Engineers and the Chinese Society
of Agriculture Machinery.

Liu devoted his life to the development of a mechanical engineering cur-
riculum, especially mechanism and machine science. He supervised many
students and played an important role in early Chinese engineering education
in the first half of the 20th century. Liu Xian-Zhou had two major academic
achievements: writing Chinese teaching materials in mechanical engineering
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and studying the history and inventions of ancient Chinese mechanisms and
machines. During 1918 to 1948, he wrote fifteen books. He was the first pro-
fessor to write college textbooks in modern science and technology in Chi-
nese. Furthermore, Liu was the first Chinese to study and present the inven-
tions of ancient Chinese mechanisms and machines systematically. He wrote
eighteen papers and two books regarding ancient Chinese mechanisms and
machines.

Works on Mechanism and Machine Theory

Contributions to Textbooks and Education in Chinese

In the early 20th century, almost all teachers in higher education in China
adapted foreign materials and conducted classes in foreign languages. Liu
insisted on using Chinese teaching materials for engineering and technology,
and he wrote Chinese textbooks by himself. From 1918 to 1948, he completed
a series of Chinese textbooks relating to mechanical engineering, such as En-
gineering Drawings, Principles of Machinery, Dynamics of Machinery, Agri-
cultural Machinery, Thermodynamics, Heat Engines, Steam Engines, Internal
Combustion Engines, Gas and Valve Sensors, and Physics. Thus Liu became
the first scholar to edit foreign teaching materials in engineering and technol-
ogy and translate them into Chinese, which was a truly important contribution
to the development of the curriculum of modern mechanical engineering in
China.

From the end of the 19th century to the beginning of the 20th century,
the Chinese translation of terminology in mechanical engineering was not
unified and was confusing. Liu accepted an assignment from the Chinese In-
stitute of Engineers to compile “English-Chinese Terminology of Mechanical
Engineering”. He extensively reviewed relative books and literature relating
to engineering and technology since the Ming Dynasty (1368–1644). Then,
he identified suitable words as the Chinese translation according to the fol-
lowing four points: should be feasible, should be simple, should be general,
and should be familiar. This book was published in 1934 with around 11,000
words. Two later versions were published in 1936 and 1945, respectively,
with about 20,000 words.
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Fig. 2. Animal and water-driven mechanisms of piston bellows (Liu, 1962).

Achievements in Agricultural Machinery

In 1920, Liu designed two types of waterwheels to improve the efficiency of
water supply for farmers. One type was designed for manpower input and
another was for use of animal power. Not only was the manufacturing of the
two designs simple, but also the efficiency of the water supply process was
improved. During 1937–1945, Liu also studied and modified other machines
such as the plow, waterwheel, and water pump. And, he published a paper
entitled “Problems Regarding the Improvement of Chinese Agricultural Ma-
chinery”.

In 1946, Liu went to the USA and for one and a half years investigated
and studied American agricultural machinery. He collected over 500 related
books and documents. After the trip, Liu realized that agriculture was the
foundation of every development in China. Since the major powers of agricul-
tural machinery at the time were manpower and animal power, he suggested
a temporary hold on importing heavy machines from abroad. Instead, he fo-
cused on the modification of existing manpower and animal power machines.
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Fig. 3. A windmill (Liu, 1962).

And, he suggested a long-term plan for the development of agricultural ma-
chines with other types of power.

Liu’s improved designs of waterwheels were soon adopted by many farm-
ers and this key technology of agricultural machinery continued to be devel-
oped. A schedule for applying electrical power was also planned. Truly this
was the time of the birth of technological development in Chinese agriculture.

In 1963, Liu authored a book entitled History of Inventions of Ancient
Chinese Agricultural Machinery. In the book, Liu provided his comments and
introduced many designs in agricultural machinery over the past several thou-
sand years in China, including the following areas of agriculture machines:
soil preparation, seeding, weeding, irrigation, harvesting and threshing, man-
ufacture, and transportation. Reconstructions of the water-driven mechanism
of piston bellows (Figure 2) and a windmill (Figure 3) were demonstrated and
displayed at the National Museum of China in Beijing.
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Research in Ancient Chinese Mechanisms and Machines

Liu studied extensive literature regarding the inventions of Ancient Chinese
mechanisms and machines. In 1933, he wrote a book entitled Introduction
to Ancient Chinese Engineering Books. In 1935, he presented a book entitled
Historical Records of Mechanical Engineering in China including hand tools,
transportation machines, agriculture machines, irrigating machines, weaving
machines, an armory, potential fuels, printing on hard materials, a timekeeper,
and foreign-import machinery. Liu studied over 2,000 ancient books and ar-
ticles, and he produced about 16,000 files on cards. Furthermore, based on
historical records and archaeological excavation, he thoroughly analyzed the
development of ancient Chinese mechanical technology and commented ex-
tensively on them.

In 1962, Liu completed a classical book entitled Chronology of Inven-
tions of Ancient Chinese Mechanical Engineering, Volume 1. In the book,
the development and inventions of ancient Chinese mechanisms and ma-
chines was systematically introduced, including simple labor-saving devices
and various types of mechanisms and machines. This book became an im-
portant publication regarding the history of ancient Chinese technology and
deeply influenced later researchers in this topic. Many inventions introduced
in this book, such as a water-driven device for astronomical observation, the
south-pointing chariot, the hodometer, and five-wheel sand-clocks, were re-
constructed and displayed at the National Museum of China in Beijing.

As to the device for water-driven astronomical observation, Liu studied
and designed a gear mechanism and he reconstructed a prototype (Figure 4).
Regarding the south-pointing chariot, Liu studied the designs by Wu De-Ren

Fig. 4. Reconstruction of the gear mechanism of the device for water-driven astronomical
observation (Liu, 1962).
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Fig. 5. Reconstruction of the mechanism of the south- pointing chariot (Liu, 1962).

Fig. 6. Mechanism of the sand-driven wheel-clocks (Liu, 1962).

and George Lanchester. Furthermore, he cooperated with Wang Zhen-Duo to
reconstruct a prototype (Figure 5). Regarding the five-wheel sand-clock, Liu
reconstructed the mechanism of one of the sand-driven wheel-clocks (Fig-
ure 6). The five wheels are the driving-wheel (with scoops) below the feed,
three large gear-wheels, and one middle wheel fitted with audible signal trip-
lugs and borne on the shaft of the pointer (which made the rounds of the
dial-face). On this design, the markings for the twelve double-hours can be
seen. And, four small gear-wheels were connected below the main gears to
transmit the motion.

Based on long-term study of literature regarding the development of an-
cient Chinese mechanisms and machines, Liu identified many unfamiliar de-
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signs to the western world, in addition to the four well-known inventions: pa-
per, print, compass, and gunpowder. With regard to wind power, Liu pointed
out that Chinese invented the sail 3,000 years ago, and the windmill was in-
vented 900 years ago. As for water power, the water-driven mill was invented
2,000 years ago. The water-driven wind box was invented 1,900 years ago.
The water-driven large spinner was invented 600 years ago. With regard to
heat power, the prototype of a steam engine was invented 1,200 years ago.
A rocket driven by gunpowder was invented 700 years ago. The prototype
of a rocket was invented in the 14th century and the prototype of a two-
stage rocket was invented in the beginning of the 17th century. With regard
to gear transmissions, the hodometer and the south-pointing chariot, trans-
mitted by gear trains, were invented at least 1,000 years ago. In the East-
ern Hang Dynasty (25–220 AD), Zhang Heng invented the armillary sphere,
which automatically indicated the date, 1,800 years ago. Monk Yi-Xin and
Liang Lin-Chan invented a complicated astronomical and time-counting in-
strument 1,200 years ago. Zhan Xi-Yuan invented a timekeeper similar to the
modern western clocks about 600 years ago.

Liu included these materials as part of his class notes in mechanical engi-
neering. This greatly motivated young Chinese students’ interest in learning
and studying ancient inventions. His efforts also attracted scholars and stu-
dents to study history of ancient Chinese mechanisms and machines in ad-
dition to popular areas such as histories of physics, chemistry, architecture,
agriculture, and medicine.

These great echoes of history created an unforgettable image for students
who had previously been educated in the ideas of Euclid, the ancient Egypt
mathematician and his geometry, and Archimedes with his rules. They had
no knowledge about ancient Chinese scientists and inventors in engineering
and technology (Figure 7).

Liu’s research efforts on ancient Chinese mechanisms and machines also
attracted the attention of western scholars. He was invited to attend the Eighth
International Conference on History of Science held in Florence in 1965
(Figure 8). He addressed the topic entitled “On Chinese Inventions of Time-
Keeping Apparatus” (Liu, 1965). And, he indicated that the earliest time-
counting device was designed on Zhang Heng’s armillary sphere, driven by
water power and transmitted by gear trains around 130 AD in China.
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Fig. 7. Liu taught his student at museum (You, 2006).

Fig. 8. Group photo in the 8th International Conference on History of Science in 1965, X.Z.
Liu (second from the left) and J. Needham (third from the left) (You, 2006).

Methodology on Studying Ancient Chinese Machines

Liu devoted most of his career to studying the development of ancient Chi-
nese mechanical inventions. His methodology was scientific and effective.
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In the process of research and writing, Liu studied as many original
records and reports as possible. He compared documents and archaeological
excavations to prove historical facts and to reveal the pattern of development.
He also paid attention to new discoveries in archaeology, and he always tried
his best to visit the sites. If he could not visit the excavation, he always asked
for photos or copies of reports as part of the records.

An additional dimension to Liu’s research was his comparison of ancient
Chinese machines with Western designs and his studies of the social systems
that affected the development of ancient science and technology.

Liu also devoted his efforts to the practical aspects of reconstruction of
ancient machines. In 1959, he presented a paper entitled “Intensive Appli-
cations of Gear Trains in Ancient China”. And, he built a facsimile of the
transmission mechanism of Zhang Heng’s armillary sphere. Liu further co-
operated with Wang Zhen-Duo at the National Museum of China, and they
reconstructed a wooden prototype to display to the public.

Modern Interpretation of Main Contributions to Mechanism
Design

Liu was a pioneer in developing Chinese terminology in mechanical engi-
neering. This work required familiarity with modern English and traditional
Chinese, even local culture, including different Chinese spoken languages re-
garding mechanical terminology in the factories. Liu’s efforts received a pos-
itive response in academia and industry. The “English-Chinese Terminology
of Mechanical Engineering” published by the Chinese Academy of Sciences
was based on the results of Liu’s study. Furthermore, the Chinese terminology
of mechanism and machine science was based on this publication.

In Liu’s three books, he analyzed, organized and summarized historical
literature, mechanical inventions, and agricultural machines in ancient China.
This work needed tremendous manpower and long hours to review large num-
bers of documents from ancient literature. Liu never stopped his work of lit-
erature survey during his lifetime. He studied numerous ancient records and
books, and he filed various ancient inventions on cards which became a very
valuable database for other researchers to follow up in the future.

Liu’s achievements in ancient Chinese mechanisms and machines also in-
fluenced the field of history of technology in the world. At the time, people
thought that the astronomical clocks driven by mechanical gear transmissions
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were invented by the Europeans in the 14th century. After Liu’s intensive
study for about twenty years, he pointed out that there was a mechanical
timekeeper in Zhang Heng’s water-driven armillary sphere in the East Hang
Dynasty around 130 AD. According to Liu’s paper, the applications of gear
transmissions in ancient China were already highly developed in the second
century and the timekeeper by Zhang Heng was designed with gear transmis-
sions.

Although Liu did not complete his work, many scholars followed his re-
search approach and spirit. During the thirty years after Liu died, four schol-
ars at Tsinghua University, Zhang Chun-Hui, You Zhan-Hong, Wu Zong-Ze,
and Liu Yuan-Liang, continued and completed Liu’s unfinished work. They
edited a book entitled Chronology of Inventions of Ancient Chinese Mechan-
ical Engineering – Vol. 2 in 2004. They led the study in history of ancient
Chinese mechanisms and machines to another landmark. The study of ancient
mechanisms and machines is the key that links ancient history and modern
history of mechanical engineering. With today’s ever developing technology
and requirements for better and newer products, reflection on and understand-
ing of the past is crucial to drawing on that knowledge and generating new
ideas. The birth of any new academic subject is difficult and arduous, but it re-
quires the work of many followers of the pioneers in the field. Liu Xian-Zhou
was such a pioneer.
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Abstract. Giulio Mozzi was the first to attack the study of the general helicoidal motion of
a rigid body in a completely rigorous way. He outlined a Screw Theory with a mathematical
formulation in a Treatise that was published in 1763 but had a limited circulation.

Biographical Notes

Giulio Giuseppe Mozzi del Garbo (known as Giulio Mozzi), see Figure 1,
was born in Florence on February 23, 1730 to an aristocratic family.

He received a humanistic education that motivated him to become a poet.
In 1756 he wrote the short poems “Inno al Sole” and “Ode alla Noia”.

Later he was attracted to “mathematical studies” and he joined Paolo Frisi
at the University of Pisa. Frisi was quite famous for his works on Astronomy
and Mathematics, and he was a member of several European Academies.
According to Marcolongo (1906), Frisi is believed to have first formulated
correctly the composition of instantaneous rotations, as pointed out also in
Ceccarelli (2000a).

During a period of home studies, he wrote the “Discorso matematico sopra
il rotamento momentaneo dei corpi” (which can be translated as “A Mathe-
matical Treatise on the Instantaneous Rotation of Bodies”), Figure 2, that
was published in 1763 (Mozzi, 1763). Then, Mozzi travelled around Europe
to learn about new developments in the scientific and political world.

Curiously, Giulio Mozzi wrote his book during an isolated period of sick-
ness, to keep himself occupied. He thought that the Treatise would be of very
limited interest or could be completely unnoticed (he mentioned this remark
in introductory notes). In fact, he did not continue to study and work on the

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 279–293.
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Fig. 1. A marble bust of Giulio Mozzi (1730–1813) from the archive of the Bartolini Salimbeni
family in Florence.1

subject of his book, although he was recognised to be “a gentleman with de-
lightful mind and nice knowledge” as indicated in De Tipaldo (1837).

After his return to Florence, he married Luisa Bartolini Salimbeni, who
gave him two sons.

Giulio Mozzi was elected Academician in the “Accademia della Crusca”
on September 7, 1754. He was so active that he was also elected in 1784
and again in 1808 as President of the new “Accademia Fiorentina” which had
merged with the “Accademia della Crusca” in 1783.

Although during the political changes in that time he suffered some mis-
fortune, his character was publicly recognised and he was elected senator
in 1785. In 1801 he was appointed as Minister for Foreign Relations of
Etruria during the reign of Ludovico I di Borbone. Subsequently Maria Teresa
d’Austria confirmed him in this position until 1807. He was also appointed

1 Marchesa Clementina Bartolini Salimbeni is gratefully acknowledged for the picture (Fig-
ure 1) she provided to the author. The picture was identified also by Dr. Arch. Lorenzo
Bartolini Salimbeni. Unfortunately the marble statue has been stolen in the 1990s and only
a picture remained in the archive of family Bartolini Salimbeni in Florence. No other im-
ages of Giulio Mozzi have been found although the research has been extended to sev-
eral historical archives in Italy and in particular in Florence. In particular Academia della
Crusca, Galleria degli Uffizi, Cimitero Monumentale di Firenze, Archivio di Stato per i
Beni Culturali in Florence are gratefully acknowledged.
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Fig. 2. Title page of the Treatise by Giulio Mozzi published in 1763.

by Napoleon in 1812 as a member of the re- established the “Accademia della
Crusca” and he received the “Gran Croce della Riunione”.

Giulio Mozzi died in Florence on April 16, 1813.
These biographical notes are outlined in agreement with an anonymous

publication (1813), De Tipaldo (1837), Zobi (1850) and Marcolongo (1905),
and are meant to portray a significant memory of him in the Italian tradition.
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A Review of the Treatise by Giulio Mozzi

The book by Giulio Mozzi (Figure 2) can be considered of great importance
not only for its fundamental contribution to kinematics, but also from a gen-
eral Mechanics viewpoint.

In fact, the Treatise approaches Statics and Dynamics of rigid bodies
with respect to impulsive forces and consequent motions. Indeed, the Treatise
deals with several cases of determining the helicoidal motion for given forces
and vice versa.

The screw axis was introduced by Giulio Mozzi in his Treatise on page 5
in Corollary IV:

Quindi ancora si potrà dedurre, che i suddetti due movimenti si
riducono a due altri, uno de’ quali sarà rettilineo e comune a tutte
le parti del corpo, e parallelo all’asse di rotazione, che passa per il
centro di gravità, e l’altro pure di rotamento, che avrà un asse di ro-
tazione parallelo all’asse mentovato.

This Corollary can be translated as:

Therefore you can deduce that the above mentioned movements be-
come two others. A first one is linear and common to all the points of
a body; it is parallel to the axis of rotation which crosses the center
of gravity. The latter is a rotation motion whose axis of rotation is
parallel to the above mentioned axis.

At the end of the demonstration the screw axis is defined on page 6 as “asse
spontaneo di rotazione” (spontaneous axis of rotation) “Accademia della
Crusca”. Both the definition and proof refer to figure 2.a of table 1 in the Trea-
tise, which has been reproduced in Figure 3a. A modern interpretation has
been reported in the drawing in Figure 3b, as proposed in Ceccarelli (2000b).

The proof by Giulio Mozzi is as follows, referring to Figures 3a and 3b.
Let us consider point C as the center of gravity of a rigid body, CS as the
line of a rotation axis through C and CD as a displacement of C. Then CD

can be solved into a component PD along a line parallel to CS axis and a
component CP lying on a plane π orthogonal to CS. The displacement can
be considered common for all the points of the rigid body and particularly the
component CP for all points of the plane π , since it is considered referring
to the center of gravity. In addition, assuming a rotation about the line CS,
if we consider a line CH orthogonal to CP , we may determine a point H
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Fig. 3. A schematic drawing to prove the existence of a screw axis: (a) by Giulio Mozzi as HE
line; (b) a modern view of Mozzi’s description.

for which the rotational displacement HI with respect to C can be equal but
opposite to CP , so that point H does not rotate in the plane π . Thus point C

will have CP as a rotational displacement about a line HE, that is parallel
to CS; point P will have a displacement which can be also considered as a
vector sum of CP and a rotational displacement about CS again. This will
result in a rotational displacement, which is orthogonal to HP and propor-
tional to HP , which is the case because HE is a rotation axis. Consequently,
point H individuates a screw axis, about and along which a general helicoidal
motion can be determined through a translation component given by DP and
a rotational component given by CP .

The demonstration proves the existence of a screw axis by means of a
descriptive geometric reasoning based on Figure 3, and it was considered
“chiara ed esatta” (clear and correct) in 1830 by Giorgini (1836) and in 1905
by Marcolongo (1905). Therefore, the screw axis has been also called Mozzi’s
axis because of this geometrical definition and following the Italian tradition,
as pointed out in Levi-Civita and Amaldi (1950).

In addition, a very first concept of a force couple can be defined and has
been used throughout the Treatise, starting with Lemmas II and III on pages 6
and 10, and Corollary VII on pages 10 and 11. In the next corollaries Mozzi
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analyzed several different cases to give computational results for composi-
tions of forces and couples of forces as based on geometrical interpretation
of physical situations.

Moreover, Mozzi approached the problem of solving a given system of
forces into an equivalent set of two forces, one orthogonal to a given plane
and the latter parallel to the plane itself.

Then, a general problem of determining the instantaneous helicoidal mo-
tion of a rigid body for a given impulsive force is formulated in Problem 1
on page 22. Thus, dynamics equations are formulated analytically in page 30
(Figure 4), in the form of the Theorem of Impulsive Forces for a given force
acting on the body, and the consequent instantaneous helicoidal motion is de-
termined. In Figure 4 the dynamic equations are reported in the original form
that Mozzi had formulated by geometrical expressions following the custom
of the time. In particular, main terms are indicated in the figure as PRp,
which is the screw axis passing through an unknown point; G, which is the
center point of the mass M of the body; MU , which is the applied force FL

in the screw axis direction; GE and M� which are the resultants of inertial
translational forces. By using geometrical reasoning, Mozzi deduced the ex-
pressions in Figure 4 to compute the dynamic equilibrium as a function of six
unknowns that will represent the screw motion by identifying the screw axis
and the rotational and translational velocity components of the motion due
to the action of an external force FL. Therefore, the equations in Figure 4
can be recognized as an early expression of dynamic equations for a general
screw motion.

Mozzi discussed the obtained formulas with some examples, also with
the aim to better illustrate the kinematic and dynamical feasibility of the con-
cept of instantaneous helicoidal motion. He also compared his results with
some criticism with respect to previous uncompleted results by Bernoulli
(1742). He mentioned as fundamental the works cited in Euler (1736) and
D’Alembert (1749, 1796) with the aim to review the recent interest on the
topic and to acknowledge advances due to Frisi (1765) and Perelli (the works
of Perelli on this subject are lost).

In Problems II to V, Mozzi proposed a generalisation of the obtained re-
sults for the case with two acting forces to the case with a system of several
acting forces by using an equivalence to two suitable forces that are normal to
each other. The result was verified in the Treatise by computing the instanta-
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Fig. 4. Dynamic equations for a general helicoidal motion on page 30 of the Treatise by Giulio
Mozzi.

neous motion for each force and then resolving them into a unique helicoidal
motion.

Then, a reverse problem was formulated in Problems VI and VIII and
corresponding corollaries, from pages 50 to 59, to compute a force that must
act to give a prescribed motion or to change it from a given motion to another
one.

Mozzi approached also the problem for the case of constrained rigid bod-
ies. Particularly, the cases with a fixed point or a fixed axis of the body, or
a fixed plane in contact with the body, are discussed in the last part of the
Treatise. An interesting note is a first application of the D’Alembert Princi-
ple in terms of instantaneous forces, in Lemma VII on page 64. Mozzi used
it to determine the instantaneous motion in Problems IX to XI for a free or
constrained body, and when it occurs also as a helicoidal motion. Finally he
approached the case of anelastic collision in Problems XII to XIV for a single
contact and multiple contacts.



286 Marco Ceccarelli

On the Circulation of the Treatise

In 1763, Mozzi’s Treatise approached geometrically and analytically the
problem of general motion for rigid bodies, a long-time famous problem that
had been widely studied at the beginning of the 19th century. The definition
of “screw axis” can be attributed to Mozzi as an important contribution to
kinematics, and in the Italian tradition called “Mozzi’s Axis”. Unfortunately,
the book by Mozzi passed almost unnoticed (as he had feared) and nowadays
is sometimes forgotten.

One reason for the unsuccessful circulation of “Discorso matematico so-
pra il rotamento dei corpi” was surely the great changes during the Period of
the French Revolution, but perhaps the most telling lay in the fact that Mozzi,
who was not a University professor, did not continue to work and publish on
the topic.

In his Treatise, Mozzi referenced works on astronomical studies
(Bernoulli, 1742; Euler, 1736; D’Alembert, 1749; Frisi, 1765) and by
D’Alembert, Bernoulli, Euler, Frisi, and Perelli (1704–1783) (whose works
on the topics are lost, respectively, to give a fuller account of previous studies
on the problem of general motion.

In 1836 Gaetano Giorgini (1795–1874) referenced the definition by Mozzi
in a postscript appendix (written in 1832) of his paper (Giorgini 1836), in
which he claimed to be contemporaneous first with Michel Chasles (1793–
1880), who wrote the famous short note (Chasles, 1830), in formulating a
theorem for general helicoidal motion of a rigid body, as pointed out in
Ceccarelli (2000b). Although he recognised the validity of Mozzi’s theorem,
he did not appreciate the necessary rigor in Mozzi’s Treatise and he claimed
an analytical proof of the theorem for himself.

However, in that time also Cauchy (1789–1857), Poisson (1781–1834),
Poinsot (1777–1859), and Rodrigues (1794–1851) approached the problem
in Cauchy (1827), Poisson (1834), Poinsot (1834), and Rodrigues (1840),
respectively. Also they did not refer to Mozzi’s book. Indeed, neither did
Poinsot or Poisson reference Chasles’ paper or Giorgini’s paper. The lack of
reference to early studies seems to have recurred over time.

Once the general theorem was discovered and proved, it was thought to be
obvious, as it is today. For example, Poisson himself did even not reference
his own work (Poisson, 1834) in his treatise on Mechanics (Poisson, 1838).
In Italy, in 1870 G. Battaglini wrote a paper with an analytical formulation
for infinitesimal motion of a rigid body in which he declared and analytically
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proved once again the general theorem (Battaglini, 1870). However, he did
not reference his paper in his Treatise on Mechanics in the section dealing
with general motion (Battaglini, 1873). At the same time in France, De Saint
Venant wrote a specific text on Kinematics (De Saint Venant, 1850), in which
he discussed the general motion of a rigid body and he cited neither Mozzi
nor Chasles.

Frisi also reported a first version of the theorem in his textbook (Frisi,
1777), without referencing his friend and pupil Mozzi. Again, Cayley (1821–
1895) in a list of interesting papers on the basic kinematics of rigid body
seems not to be aware of all the works on the topic (Cayley, 1891), and
even he did not reference any Italian author. Indeed, the difficulties for Ital-
ian works can be clearly understood when it is observed that Giorgini’s work
was ignored also in his country, as for example was the work by Chelini
(1862), who referred to general motion as Chasles’ theorem, although he cited
Giorgini too. Frisi was a famous Professor and, by acknowledging Mozzi’s
work, he helped the circulation of the main results, one of which he recog-
nised to be the definition of a general helicoidal motion. As an illustrative
example we can cite the reference (Frisi, 1768) in which Frisi clearly men-
tioned Mozzi’s Treatise in the introduction.

Moreover, it is probable that Giulio Mozzi brought the book with him
whilst travelling around Europe and discussed the topic with other scien-
tists. His position as President of the Accademia Fiorentina should have con-
tributed to a distribution of his work. Probably, the repute of his personality
also helped circulation of the Treatise.

Therefore, it is quite curious that, although the book by Mozzi obtained
some distribution and success in the academic world, not only in Italy, nev-
ertheless it was forgotten quite early or even was not noticed. Some letters
between Paolo Frisi and Roger Boscovich (1711–1787) of Milano University,
reported in Costa (1967), illustrate the intention of Frisi to help the circulation
of Mozzi’s work in a formal way. The letters report also an appreciation of
the study by Boscovich. Moreover, Frisi was in contact with D’Alembert and
indeed they were good friends, as pointed out in Frisi (1786) and Grimsley
(1963). They had frequent correspondence, with exchange also of works by
friends and pupils of each other, as indicated in Grimsley (1963). Therefore, it
seems likely that Frisi sent a copy of Mozzi’s Treatise to D’Alembert. But to-
day there is no evidence of a previous presence of Mozzi’s book in academic
libraries in Paris.
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The fact that Mozzi’s Treatise was soon ignored is probably (as mentioned
above) due both to the turbulence in the French Revolution period and to the
theoretical approach with neither practical nor astronomical applications. The
great theoretical aspect of the subject can be appreciated when it is observed
that for example in the Encyclopédie (D’Alembert and Diderot, 1785), in the
item “mouvement”, spatial motion was not even mentioned.

Indeed, general motion had no technical applications as the work by
L.M.N. Carnot (1753-1823) illustrates (Carnot, 1803), since it deals with Me-
chanics applied to machines by using a theoretical approach but without men-
tioning spatial motion.

Symptomatic of failure to cite sources is the Treatise (Francouer, 1807)
published in 1807 by L.B. Francouer, professor at the Ecole Polytechnique,
who stated the theorem of helicoidal motion on page 376 with no reference to
previous works, treating it as if it was an obvious and well-known assertion.

In addition, it is notable that most scientific works in the 18th century
were written in Latin, not in Italian. Therefore the Treatise by Mozzi could
be not well accepted in the scientific community or at least it could not be
easily understood because of the language barrier.

In addition, the previously mentioned turbulence of events during the
French Revolution combined with consequent changes in Italian politics, may
have contributed to the obscuring of scientific achievements and particularly
to impeding circulation of Mozzi’s Treatise. Indeed, the fragmentation of
Italy into many small kingdoms could have contributed, due to his political
positions in several circumstances as outlined in the biographical notes.

Modern Interpretation of Main Contributions to Mechanism
Design

A modern interpretation of Mozzi’s Treatise cannot be identified directly,
since the work has been forgotten for a long time and even when rediscovered
it has not been considered as a background for developing the today so-called
Screw Theory. In fact, the main contribution of Mozzi’s work can be recog-
nized in the definition and use of the screw axis as a useful means to describe
and deal with the general motion of rigid bodies. Indeed, the developments
by Mozzi are not directed to any practical purposes, including mechanism de-
sign, but the Treatise can be considered a theoretical work that is fundamental
for an elaboration of a mathematization that is, in turn, useful for applied me-
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Fig. 5. A model of Screw Triangle for synthesis of spatial mechanisms: (a) by Bricard in
(1927); (b) by Bottema and Roth in (1990).

chanics even for mechanism design as it developed in the 18-th century and
later.

However, the modernity of Mozzi’s approach can be appreciated by look-
ing at the historical development of the Screw Theory from the first successful
work (Ball, 1876) to a very recent book (Davidson and Hunt, 2004). In ad-
dition, today there is a wide use of the Screw Theory for studying mainly
spatial mechanisms and particular robotic manipulators, attested to by a mas-
sive production of publications both in Journals and conference proceedings.

A few examples are outlined in this section with the main aim to show the
modernity of Mozzi’s work in terms of conceptual contributions, since his
formalism in the Treatise has been already determined to be not suitable for
a current practical implementation (see for example Figure 4).

In the introduction to the 1900 edition of his Treatise, Ball emphasized
the character of the book as a comprehensive account and summary of his
previous works and developments by others and as dealing with a general
theory of the study of the motion of rigid bodies. Thus, the Treatise is not
directed to any particular application and it is rather theoretical in the field of
Rational Mechanics (likewise Mozzi’s Treatise) but with an advanced modern
formalism.

In 1927 in the books by Bricard, Screw Theory is considered as a part
of Kinematics that can find application in practical problems for mechanical
systems. In addition, formulation of screws is outlined as useful for graphical



290 Marco Ceccarelli

Fig. 6. A scheme of Screw Triangle for Three-revolute manipulators.

representations, such as in the example of Figure 5a). In Figure 5 a successful
use of the screw axis (Mozzi’s Axis) is reported in two examples for a study
of a sequence of motions through the so-called Screw Triangle. Figure 5b is a
modern representation as proposed by Bottema and Roth (1990) emphasizing
the geometrical parameters. Indeed a modern systematization of the Screw
Theory has been presented in the work by Bottema and Roth (1990), which
is specifically dedicated to Kinematics with an approach that, although not
directed to mechanism design, can be a source for it.

Such an orientation of the Screw Theory to mechanism design has been
evolving since the 1960s and today is widely used mainly for robotic ma-
nipulators. Recently, the Screw Theory has been developed specifically for
applications to robots, for example the book by Davidson and Hunt (2004).
In fact, specific models are elaborated with great details and accurate formu-
lation both for analysis and design, such as in the example of Figure 6 which
refers to a general three-revolute open chain manipulator.

Indeed, today the Screw Theory is even considered as a fundamental ap-
proach for the study of three-dimensional design and operation of mecha-
nisms.
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Summarizing, the identification and formulation of the screw axis
(Mozzi’s Axis) are fundamental bases for achievements both in the theory
and practice of mechanical systems. Although Mozzi’s work seems not have
been adequately recognized, his ideas have been successfully developed, even
independently.

Acknowledgements

The author wishes to thank the Vatican Library at the Vatican, the Library
of Ecole Polytechnique in Paris, the National Library in Napoli, the National
Library in Rome, the National Library in Firenze, the University Library of
Pisa, the University Library of Padova, the Library of Mathematical Institute
“Castelnuovo” at University “La Sapienza” of Rome, the Library “Boaga” of
the School of Engineering of University “La Sapienza” of Rome, the Library
of the Department of Mechanics and Aeronautics at University “La Sapienza”
of Rome, the Library of Technical University of Torino, and the Library of
Montecassino Abbey in Cassino.

References

Anonymus (1813), Necrologia, Giornale del Dipartimento dell’Arno, 50, p. 4.
Ball, R.S. (1876), A Treatise on the Theory of Screws, Hodges, Dublin (2nd Edition, University

Press, Cambridge, 1900).
Battaglini, G. (1870), Sul movimento geometrico infinitesimo di un sistema rigido, Rendiconto

dell’Accademia delle Scienze, Napoli, IX, pp. 89-100.
Battaglini, G. (1873), Trattato Elementare sulla Meccanica Razionale, Libreria Pellerano,

Napoli.
Bernoulli, J. (1742), Opera Omnia, Lausannae.
Bottema, O. and Roth, B. (1990), Theoretical Kinematics, Dover, New York (1st Edition in

1979).
Bricard, R. (1927), Leçons de Cinématique, Gauthier-Villars, Paris, 2 Vols.
Carnot, L.N.M. (1803), Principes Fondamentaux de l’Equilibre et du Mouvement, Chez De-

terville, Paris.
Cauchy, A.L. (1827), Sur les mouvements que peut prendre un systeme invariable, libre, ou

assujetti a certaines conditions, Exercices de mathematiques, Chez de Bure Freres, Paris,
pp. 95–120.

Cayley, A. (1891), Kinematics of a Solid Body, in The Collected Mathematical Papers, Vol. IV,
Cambridge Press, Cambridge, pp. 580–593.



292 Marco Ceccarelli

Ceccarelli, M. (2000a), Preliminary Studies to Screw Theory in XVIIth Century, in Ball Con-
ference, CD Rom Proceedings, Cambridge, July, Paper No. 41.

Ceccarelli, M. (2000b), Screw Axis Defined by Giulio Mozzi in 1763 and Early Studies on
Helicoidal Motion, Mechanism and Machine Theory, 35, pp. 761–770.

Chasles, M. (1830), Note sur les proprietes generales du systeme de deux corps semblables
entr’eux, Bulletin de Sciences Mathematiques, Astronomiques Physiques et Chimiques,
Baron de Ferussac, Paris, pp. 321–326.

Chelini, D. (1862), Dei moti geometrici e loro leggi nello spostamento di una figura di forma
invariabile, Tipografia Gamberini e Parmeggiani, Bologna.

Costa, G. (1967), Il rapporto Frisi-Boscovich alla luce di lettere inedite di Frisi, Boscovich,
Mozzi, Lalande e Pietro Verri, Edizioni Scientifiche Italiane, Napoli.

D’Alembert, J.B. (1749), Recherches sur la precession des equinoxes, et sur la nutation de
l’axe de la terre, dans le systeme newtonien, Chez David, Paris.

D’Alembert, J.B. (1796), Traite de dynamique, Chez Fuchs, Paris.
D’Alembert, J.B. and Diderot, D. (1785), Encyclopedie Methodique, Paris (reedition du Bi-

centeneire, Paris, 1987), Vol. 2, Mouvement, pp. 423–437.
Davidson, J.K. and Hunt, K.H. (2004), Robots and Screw Theory, Oxford University Press,

Oxford.
De Sant Venant (1850), Principes de mecanique fonde sur la cinematique, Bachelier, Paris.
De Tipaldo, E. (1837), Biografia degli Italiani Illustri, Venezia.
Euler, L. (1736), Mechanica sive motus scientia, Ex Typografia Academiae Scientiarum,

Petropoli.
Francoeur, L.B. (1807), Traite elementaire de mecanique, 4th ed., Chez Bernard, Paris.
Frisi, P. (1765), Cosmographiae Physicae, et Mathematicae, Ex Tipografia Marelli, Medi-

olanum.
Frisi, P. (1768), Del Modo di Regolare i Fiumi, e i Torrenti, Milano.
Frisi, P. (1777), Instituzioni di Meccanica, d’Idrostatica, d’Idrometria e dell’Architettura Sta-

tica, e Idraulica, Galeazzi Regio Stampatore, Milano.
Frisi, P. (1786), Elogio del Signor D’Alembert, Galeazzi Regio Stampatore, Milano.
Ghigliazza, R. and Galletti, C.U. (1986), Meccanica applicata alle macchine, UTET, Torino.
Giorgini, G. (1836), Intorno alle proprietà geometriche dei movimenti di un sistema di punti di

forma invariabile, in Memorie di Matematica e Fisica della Societá Italiana delle Scienze,
Tipografia Camerale, Modena, Tomo XXI, pp. 1–54.

Grimsley, R. (1963), Jean D’Alembert, Clarendon Press, Oxford.
Hunt, K.H. (1978), Kinematic Geometry of Mechanisms, Oxford University Press, Oxford.
Levi-Civita, T. and Amaldi, U. (1950), Lezioni di meccanica razionale, Vol. 1, Zanichelli,

Bologna, p. 187.
Marcolongo, R. (1905), Notizie sul Discorso Matematico e sulla vita di Giulio Mozzi, Bollet-

tino di Bibliografia e Storia delle Scienze Matematiche, VIII(1), pp. 1–8.
Marcolongo, R. (1906), Sul Teorema della composizione delle rotazioni istantanee – Appunti

per la storia della meccanica nel secolo XVIII, Bollettino di Bibliografia e Storia delle
Scienze Matematiche, IX(1), pp. 1–12.

Mozzi G., (1763), Discorso matematico sopra il rotamento momentaneo dei corpi, Stamperia
di Donato Campo, Napoli.

Phillips, J. (1984), Freedom in Machinery I – Introducing Screw Theory, Cambridge Press,
New York.



Giulio Mozzi 293

Poinsot, L. (1851), Theorie Nouvelle de la Rotation des Corps, Bachelier, Paris (presented at
the Institut et Bureau des Longitudes on May 19th 1834).

Poisson, S.D. (1938), Memoire sur le Mouvement d’un Corps Solide, in Memoires de
l’Academie Royale des Sciences de l’Institut de France, XIV, pp. 275–432 (presented
at the Academy on August 18th and October 13th 1834).

Poisson, S.D. (1838), Trait de Mecanique, 3rd ed., Bruxelles.
Rodrigues, O. (1840), Des lois geometriques qui regissent les desplacements d’un systeme

solide dans l’espace, et de la variation des coordonnees provenant de ces desplacements
consideres independamment des causes qui peuvent les produire, Journal de Mathema-
tiques Pures et Appliquees, 5, pp. 380–440.

Zobi, A. (1850), Storia civile della Toscana dal 1737 al 1848, Luigi Molini Ed., Firenze, Tomo
secondo.



THÉODORE OLIVIER
(1793–1853)

J.M. Hervé

Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry, France
E-mail: jherve@ecp.fr

Abstract. Théodore Olivier is mainly known as being, in 1829, one of the four founders
of Ecole Centrale des Arts et Manufactures also named today Ecole Centrale Paris. He was
a former student of Gaspard Monge and he taught descriptive geometry. He highly contrib-
uted to the science of ruled surfaces and to the theory of gearing. He designed many self-
explanatory models; most of them are movable. In rigid-body kinematics the locus of the
instantaneous axes of any time-dependent motion is a ruled surface. That way, Olivier pion-
eered Julius Plücker’s work about straight-line geometry and, consequently, disclosed basic
tools for the “screw theory” devised by Robert Ball. Moreover, with his book about the gen-
eral skew arrangement of two gear wheels together with his models of gears, Olivier is one
of the scientific ancestors of Jack Phillips with his book issued in 2003 on General Spatial
Involute Gearing.

Biographical Notes

Théodore Olivier was born at Lyon (France) on the 21st of January 1793.
He was admitted at Ecole Polytechnique in 1810, and because of his weak
health, he spent four years in the famous school. There, he was a disciple of
Gaspard Monge who is regarded as the inventor of descriptive geometry. This
subject deals with projection, perspective and cross section but, in particular,
it is concerned with the representation of three-dimensional objects on a two-
dimensional plane. This problem is of interest not only to mathematicians and
engineers but also to artists. In fact, the pioneer of descriptive geometry is the
great German artist Albrecht Dürer (1471–1528).

Several historians have noticed that Olivier looks much like the Emperor
Napoléon 1rst even though nobody could prove that Olivier was secretly a son
of Napoléon Bonaparte. However, amazingly, Olivier suffered from a severe
prostration in 1821 when the Emperor died at Sainte-Hélène. After that, he

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 295–318.
© 2007 Springer. Printed in the Netherlands.



296 J.M. Hervé

Fig. 1. Olivier portrait (Courtesy of Ecole Centrale Paris, France).

went to Sweden where the former Napoleonian Maréchal Bernadotte was
still the king Charles XIV of Sweden. There, he taught descriptive geometry
at the royal school of Morienberg. He became private tutor of the Prince; he
organized schools for the engineer corps and artillery, too. He returned to
France at the end of 1828.

In 1829, Olivier helped to found the Ecole Centrale des Arts et Manufac-
tures. The scientific discoveries around that time were having a major impact
on French industry. However, to fully benefit, a new type of engineer had
to be trained with a broad knowledge of science and mathematics. Alphonse
Lavallée, who was a lawyer and a businessman from Nantes, put most of his
capital into the foundation of the Ecole Centrale des Arts et Manufactures.
He obtained the help of three top scientists, one being Théodore Olivier,
the other two being Jean-Baptiste Dumas and Eugène Péclet. They set up
the school with the stated aim of training the doctors of factories and mills.
Olivier became a professor at the Ecole Centrale des Arts et Manufactures
when it opened in the Hôtel de Juigné in the Marais district of Paris in 1829.
The two other scientists, Dumas and Péclet, who had joined with Lavallée,
also became professors. In his role as professor, Olivier lectured on descript-
ive geometry and mechanics. From 1838, he also lectured on these topics at
the Conservatoire National des Arts et Métiers in Paris. Moreover, during the
period (1830–1844), Olivier was a lecturer at Ecole Polytechnique, too.
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It is worth mentioning that, today, the Ecole Centrale des Arts et Manu-
factures is located at Chatenay-Malabry in the south suburb of Paris and is
generally called Ecole Centrale Paris. The Hôtel de Juigné, which lodged the
famous school from 1929 till 1884 still exists and is now devoted to the exhib-
ition of important art works of Pablo Picasso. Some mementos of the former
school are shown in one of the rooms of the present-day Picasso museum.
The ancient monument was built in 1656 for a lord collecting the former tax
on the salt, and, therefore, it is named also Hôtel Salé that means salty hotel.

At about the time of the foundation of the Ecole Centrale, Olivier be-
came interested in making models of ruled surfaces. He made also models
of various types of gearing. They are what we know today as the “Olivier
Models”. Olivier wrote also textbooks but his fame, however, is mainly the
result of these models, which he created to assist in his teaching of geometry
and mechanics. In fact, Olivier and his wife earned quite a good income from
selling these models, particularly in the United States.

Almost all Olivier models are movable. One can differentiate two main
categories of models, namely models of ruled surfaces with the only purpose
of illustrating geometric properties and models of technical systems of gears
for transmitting motion. Some of the models of surfaces with moving parts
are done to show to students how the ruled surfaces are generated. Others
were designed to show the curves of intersection of certain surfaces.

The models with gears bring forth by their material achievements the vari-
ous kinds of gear coupling; moreover, Olivier proposed machines for manu-
facturing gears. Actually, Olivier is a great pioneer in the science of gearing.

The ruled surfaces exemplified by the Olivier models have attracted atten-
tion because of their beauty rather than for their scientific interest. They can
be considered as “abstract sculpture”. Nevertheless, the locus of the screw
axes in any time-dependent rigid-body motion is a ruled surface. Hence, the
Olivier models of ruled surfaces have some interest for kinematics.

Olivier was awarded by the French honor of Chevalier de la Légion
d’Honneur and by Swedish fellowship of the Royal Order of the Swedish
Pole-Star.

When Olivier died in 1853, his wife kept his personal collection of models
numbering nearly fifty. Some years before his death, Olivier had given to the
Conservatoire National des Arts et Métiers a collection of models. This set
was almost a complete duplicate of his own. Olivier’s widow sold most of the
models that she had to US professors. That way, the US Military Academy of
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West Point has about 24 models, Union College in Schenectady has 41 mod-
els, and also Columbia University has some. Maybe some Olivier models are
possessed by Harvard University and also by other unidentified institutions.

List of Works

Main Papers and Textbooks

The Olivier publications are listed below.

[1] Olivier, Th., Mémoire de Géométrie descriptive sur la construction des
tangentes en un point multiple d’une courbe plane ou à double courbure
et dont l’équation n’est pas connue, Journal de l’Ecole Polytechnique,
13, 1832, pp. 303–305.

[2] Olivier, Th., Rapport sur la balance de précision de M. Bockholtz. Ex-
cerpt from Bulletin de la Société d’encouragement pour l’industrie na-
tionale, 3 pp., 1833 [in the file on Olivier at Ecole Centrale Paris].

[3] Olivier, Th., Construction des centres de courbure des épicycloïdes
planes et sphériques, Journal de l’Ecole Polytechnique, 14, 1934,
pp. 85–152.

[4] Olivier, Th., De la courbure et de la flexion d’une courbe à double cour-
bure, Journal de l’Ecole Polytechnique, 15, 61–91, 1835, pp. 252–263.

[5] Olivier Th., Mémoire sur le système des courbes à petits rayons des
chemins de fer de M. Laignel, 64 pp.: pl., errata, Paris: impr. de Mme
Huzard, 1836.

[6] Olivier, Th., Des indications des divers ordres de contact entre deux
surfaces, et des conditions géométriques auxquelles doivent satisfaire
deux surfaces ayant un point de contact pour qu’elles aient un contact
du nième ordre autour de ce point, Journal de l’Ecole Polytechnique,
15, 1837, pp. 123–150.

[7] Olivier, Th., Sur les paraboloïdes osculateurs, Journal de l’Ecole Poly-
technique, 15, 1837, pp. 230–243.

[8] Olivier, Th., Note de Géométrie. – Sur quelques propriétés de
l’ellipsoïde à trois axes inégaux, Journal Math. Pures et Appliquées,
Sér. I, 3, 1838, pp. 145–160.

[9] Olivier, Th., Sur une propriété du paraboloïde osculateur par son som-
met en un point d’une surface du second degré, Journal Math. Pures et
Appliquées, Sér. I, 3, 1838, pp. 249–254.
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[10] Olivier, Th., Addition au Mémoire de M. Théodore Olivier, inséré dans
le cahier de mai, Journal Math. Pures et Appliquées, Sér. I, 3, 1838,
pp. 335–336.

[11] Olivier, Th., Recherches géométriques sur les engrenages de With (With
is a misspelling of White). (This memoir is followed by what was
presented at the French Academy of Sciences on the same topic in 1825,
pp. 304–316). Journal Math. Pures et Appliquées, 4, 1839, pp. 281–
303.

[12] Olivier, Th., Note sur les engrenages de White, Journal Math. Pures et
Appliquées, 5, 1840, 146–153.

[13] Olivier, Th., Des propriétés osculatrices de deux surfaces en contact par
un point, Journal Math. Pures et Appliquées, Sér. I, 6, 1841, pp. 297–
308.

[14] Olivier, Th., Théorie géométrique des engrenages destinés à trans-
mettre le mouvement de rotation entre deux axes situés dans un même
plan, Bachelier, Paris, 1842, 126 pp.

[15] Olivier, Th., Théorie géométrique des engrenages destinés à trans-
mettre le mouvement de rotation entre deux axes situés ou non dans
un même plan, Bachelier, Paris; Michelsen, Leipzig; Dulau, London,
1842, 118 pp.

[16] Olivier, Th., Développements de géométrie descriptive [atlas],
Carilian-Goeury et V. Dalmont, Paris, 2 vols., pl., 1843.

[17] Olivier, Th., Rapport sur un abaque ou compteur universel par Léon
Lalanne, Mme Vve Bouchard-Huzard, C., Paris, 1846, ECP 3483,
12 pp.

[18] Olivier, Th., De la cause du déraillement des wagons sur les courbes
des chemins de fer, L. Mathias, Paris, 1846, 92 pp.

[19] Olivier, Th., Histoire de la fondation de la Société d’encouragement
pour l’industrie nationale, B. Huzard, Paris, 1850.

[20] Olivier, Th., Mémoire de géométrie descriptive théorique et appliquée
[atlas], Carilian, Goeury et V. Dalmont, Paris, 2 vols., pl., 1851.

Models

The Olivier models can be regarded as being a kind of publication. Unfortu-
nately, some of the Olivier models were lost.
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Fig. 2. Front page of Olivier textbook [15].

An important collection of Olivier models is exhibited in the French
“Musée des Arts et Métiers”, 60, rue Réaumur, 75003 Paris; http://www.arts-
et-metiers.net/. These models are listed below with their inventory numbers
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(Inv.) at the museum. Their precise dates of construction are not always
known, but, because of the Olivier death in 1853, one can guess that the
models were made between 1929 and 1853. As far as the author is aware,
the Olivier models of gears, which are indicated in the list by the sign � are
not exhibited in another museum.

[AM1] Conoïde à cône directeur; Inv. 04452- Date of construction: 1830-
[AM2] Conoïde à plan directeur; Inv. 04451- Date of construction : 1830-
[AM3] Conoïde et son paraboloïde hyperbolique tangent; Inv. 04464- Date

of construction 1830
[AM4] � Crémaillère circulaire à fuseaux; Inv. 04426-
[AM5] � Crémaillère circulaire, la roue est une lanterne; Inv. 04427-
[AM6] � Crémaillère rectiline; Inv. 05464-
[AM7] � Crémaillère rectiligne à chevrons; Inv. 05454-
[AM8] � Crémaillère rectiligne, dent carrée; Inv. 05448-
[AM9] � Crémaillère rectiligne, les dents sont des prismes rectangulaires

obliques; Inv. 05452-
[AM10] � Crémaillère rectiligne, les dents sont des prismes rectangulaires

obliques; Inv. 05451-
[AM11] Cylindre et plan se transformant, par un mouvement de rotation,

l’un en hyperboloïde . . . ; Inv. 04471-
[AM12] Cylindres primitifs d’une engrenage gauche; Inv. 05463-
[AM13] � Dent hélicoïdale; Inv. 05462-
[AM14] � Dessins de mécanique: engrenages et crémaillères; Inv. 36270-

Date of construction: 1840-
[AM15] Deux cercles égaux situés dans des plans parallèles sont divisés en

un même nombre de parties égales; Inv. 04448- Date of construc-
tion: 1830-

[AM16] Deux cônes se coupant suivant une courbe plane; Inv. 04537-
[AM17] Deux cylindres quelconques se transformant, par un mouvement de

rotation, en deux cônes; Inv. 04472-
[AM18] Deux cylindres se transformant par un mouvement de rotation en

deux hyperboloïdes; Inv. 04469- Date of construction: 1830-
[AM19] Deux plans se transformant, par un mouvement de rotation, d’abord

en deux paraboloïdes . . . ; Inv. 04470-
[AM20] � Elément de crémaillère rectiligne; Inv. 05468-
[AM21] � Elément de l’engrenage No. 3431; Inv. 04583-
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[AM22] � Elément lisse d’engrenage cylindrique hélicoïdal à contact ex-
térieur; Inv. 05466-

[AM23] � Elément lisse de crémaillère rectiligne; Inv. 05469-
[AM24] � Engrenage; Inv. 05459-
[AM25] � Engrenage à crémaillère; Inv. 05449-
[AM26] � Engrenage à cremaillère: les dents sont à profil carré; Inv. 05456-
[AM27] � Engrenage à crémaillère à lanterne, les dents de la crémaillère sont

des fuseaux; Inv. 04431-
[AM28] � Engrenage à crémaillère et pignon à lanterne, les dents du pignon

sont des fuseaux; Inv. 04432-
[AM29] � Engrenage à crémaillère, dents à profil en épicycloïde; Inv. 04430-
[AM30] � Engrenage à crémaillère, dents à profil triangulaire; Inv. 05457-
[AM31] � Engrenage à vis creuse dite vis tangente; Inv. 04437-
[AM32] � Engrenage conique à crémaillère; Inv. 04425-
[AM33] � Engrenage conique droit extérieur, angle aigu (profil de la dent:

épicycloïde sphérique); Inv. 04421-
[AM34] � Engrenage conique droit extérieur à lanterne: les dents du pignon

sont des fuseaux coniques; Inv. 04424-
[AM35] � Engrenage conique, angle aigu; Inv. 04422-
[AM36] � Engrenage cylindrique droit à contact extérieur, Profil des dents

en développante de cercle; Inv. 04428-
[AM37] � Engrenage cylindrique droit à contact extérieur; Inv. 04429-
[AM38] � Engrenage cylindrique extérieur, à épicycloïde et à flanc . . . ; Inv.

04433-
[AM39] � Engrenage cylindrique extérieur, à épicycloïde et à flanc; Inv.

04434-
[AM40] � Engrenage extérieur; Inv. 04435-
[AM41] � Engrenage extérieur; Inv. 05467-
[AM42] � Engrenage extérieur, le pignon est une lanterne; Inv. 04423-
[AM43] � Engrenage gauche extérieur; Inv. 05455-
[AM44] � Engrenage hélicoïdal à cremaillère; Inv. 05453-
[AM45] � Engrenage intérieur; Inv. 05465-
[AM46] � Engrenage intérieur, la roue est une lanterne; Inv. 05450-
[AM47] � Engrenage intérieur, la surface de la dent de la roue conduite étant

convexe; Inv. 05458-
[AM48] � Engrenage intérieur, le pignon est une lanterne; Inv. 04436-0000-
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[AM49] � Equipage composé d’une roue et de trois pignons satellites; Inv.
02669-0000-

[AM50] Hyperboloïde à une nappe; Inv. 04443- Date of construction: 1830-
[AM51] Hyperboloïde à une nappe et son cône asymptote; Inv. 04444- Date

of construction: 1830-
[AM52] Hyperboloïde à une nappe et son cône asymptote: le plan tangent au

cone est l’un des deux plans: . . . ; Inv. 04560- Date of construction:
1830-

[AM53] Hyperboloïde à une nappe et son cône asymptote, plan tangent au
cône . . . ; Inv. 04559- Date of construction: 1830-

[AM54] Hyperboloïde à une nappe et son paraboloïde tangent; Inv. 04882-
Date of construction: 1830-

[AM55] Hyperboloïde à une nappe, ou à deux cercles, situés dans des plans
parallèles et divisés; Inv. 04442- Date of construction: 1830-

[AM56] Intersection de deux cônes qui ont deux plans tangents communs;
Inv. 04445-

[AM57] Intersection de deux surfaces du genre de la douelle de la vis Saint
Gilles; Inv. 04473- Date of construction: 1830-

[AM58] � Machine de Théodore Olivier pour tailler les engrenages; Inv.
02668-

[AM59] � Machine de Théodore Olivier pour tailler les engrenages (Com-
plementing Inv. 2668-0001): onze accessoires; Inv. 02668-0002-

[AM60] Matrice pour le centimètre et le millimètre; Inv. 05308-
[AM61] � Modèle d’engrenage constitué par un système de conoïdes; Inv.

04447-0002- Date of construction: 1830-
[AM62] Modèle montrant les arêtes de douelle en hélices des voûtes biaises

(English apparatus); Inv. 04454-
[AM63] Modèle offrant deux systèmes de conoïdes; Inv. 04447-0001- Date

of construction: 1830-
[AM64] Modèle servant à démontrer les propriétés de la surface règlée

(douelle de la vis Saint-Gilles carrée); Inv. 04460- Date of construc-
tion: 1850-

[AM65] Modèle servant à transformer deux cylindres en deux conoïdes ou
en deux surfaces gauches; Inv. 04462-

[AM66] Modèle servant à transformer les génératrices droites d’un cylindre
de révolution en hélices rampantes; Inv. 04455-
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[AM67] Modèle servant à transformer un conoïde en un cylindre . . . ; Inv.
04461-

[AM68] Modèle servant à transformer un cylindre en conoïde et vice versa;
Inv. 04446- Date of construction: 1830-

[AM69] Paraboloïde hyperbolique; Inv. 04459- Date of construction: 1830-
[AM70] Paraboloïde hyperbolique; Inv. 04440- Date of construction: 1830-
[AM71] Paraboloïde hyperbolique; Inv. 04450- Date of construction: 1830-
[AM72] Paraboloïde hyperbolique; Inv. 04465- Date of construction: 1830-
[AM73] Paraboloïde hyperbolique Génération rectiligne double; Inv. 04439-

Date of construction: 1830-
[AM74] Paraboloïde hyperbolique Génération rectiligne simple; Inv. 04463-

Date of construction: 1830-
[AM75] Paraboloïde hyperbolique ou quadrilatère gauche dont les quate

cotés sont égaux et . . . ; Inv. 04441-
[AM76] Paraboloïde hyperbolique ou quadrilatère gauche ayant ses quate

cotés égaux projetés en un lozange; Inv. 04457-
[AM77] Paraboloïde hyperbolique, génération rectiligne simple; Inv. 04438-

Date of construction: 1830-
[AM78] � Parallélipipède capable de contenir la dent hélicoïdale; Inv.

05461-
[AM79] � Parallélipipède capable de contenir la dent hélicoïdale; Inv.

05460-
[AM80] Pénétration de deux cylindres Courbe d’arrachement; Inv. 04536-

Date of construction: 1830-
[AM81] Pénétration de deux cylindres. Courbe à points multiples; Inv.

04535- Date of construction: 1830-
[AM82] Pénétration de deux cylindres. Courbes d’entrée et de sortie; Inv.

04534- of construction: 1830-
[AM83] Petit modèle de charrue avec attelage; Inv. 05129-0003-
[AM84] Petit modèle de charrue avec attelage; Inv. 05129-0004-
[AM85] Surface de biais passé; Inv. 04555-
[AM86] Surface de douelle de la voûte d’arête; Inv. 04456-
[AM87] Surface gauche se transformant en une autre surface gauche; Inv.

04556- Date of construction: 1830-
[AM88] Surface hélicoïdale développable; Inv. 04466- Date of construction:

1830-
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[AM89] Surface hélicoïde gauche, problème à résoudre; Inv. 04468- Date of
construction: 1830-

[AM90] Surface hélicoïde gauche, spirale d’Archimède; Inv. 04467-
[AM91] Surface réglée, douelle de la vis Saint Gilles carrée; Inv. 04453-
[AM92] Surfaces réglées passant par deux cercles égaux et parallèles

coupées par un plan parallèle au cercle; Inv. 04449- Date of con-
struction: 1830-

[AM93] Transformation d’un conoïde en cylindre, du paraboloïde tangent
au conoïde en plan tangent; Inv. 04562-

[AM94] Transformation d’un conoïde et d’un cylindre du paraboloïde tan-
gent au conoïde . . . ; Inv. 04561-

Apparently, the Olivier models that are detained in the US seem to be replic-
ates done by Olivier himself for his own interest of some of the models that
Olivier gave to the former galleries of the Conservatoire Royal des Arts et
Métiers.

Review of Main Works on Mechanism Design

Many Olivier models are devoted to the description of ruled surfaces.
For instance, the Olivier model of Figure 3 shows two ruled surfaces that

are tangent along a common straight line. Both geometric surfaces are formed
by sets of stretched strings. The strings are held in place by lead weights
that are concealed by the wooden box of the fixed base. The metal piece at
the bottom (or at the top) is the director curve of the ruled surfaces. In this
example of model, the director curve includes a circle rigidly connected to
a segment of a tangent straight line. The warping of the two ruled surfaces
can be adjusted by the feasible displacements of the metal parts. In a special
position of the metal parts, the two ruled surfaces are a cylinder and a plane
as shown in Figure 4. In Figure 3, the surfaces are a hyperboloid of one sheet
(also called regulus) and a hyperbolic paraboloid.

A conoid is a warped surface, which is generated by a straight line moving
in such a manner as to touch a fixed straight line and a fixed director curve,
and remaining parallel to a fixed plane. In the model of Figure 5, the plane of
the two conoids is the vertical rear wall. The two straight lines or axes of the
conoids are horizontal and parallel; the conoids share the same director curve
that is an ellipse. Both are right conoids; as a matter of fact, the vertical plane
is perpendicular to the two horizontal axes.
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Fig. 3. Hyperboloid of one sheet and a tangent hyperbolic paraboloid (Museum of Arts et
Métiers, No. 04882-).

Through his models, Olivier introduced various types of conoids. It is
possible that he built a special right conoid playing a key role in kinematics;
however, this is not certain. The conoid of Plücker was named cylindroid by
Robert Ball in A Treatise on the Theory of Screws [A2], 1900, reprinted 1998,
and it is sometimes called a skew arch. Ball mentioned in a footnote of his
textbook the prior disclosure of his cylindroid by Julius Plücker in [A1], 1869.

Some surfaces among the Olivier models are various types of ruled helic-
oids that can be used for constituting screw joints. The more interesting hel-
ical surface is the developable helicoid also named involute (or convolute)
helicoid. Such a surface is generated by the tangent lines to an helix drawn
on a revolute cylinder. Moreover, pieces of involute helicoids can be used as
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Fig. 4. The one-sheet hyperboloid and its tangent hyperbolic paraboloid are transformed into
a cylinder and a tangent plane.

flanks of gear teeth. This fact might have been demonstrated by Olivier him-
self or it was not according to further work on the general spatial involute
gearing by Jack Phillips in 2003 [A5].

Gears are one of man’s oldest mechanical devices. The gear has been a
basic element of machinery throughout all time from the earliest beginnings
of machinery. The earliest known relic of gearing from ancient times is the
“South Pointing Chariot” (China, about 2600 BC). However, the mathemat-
ical determination of the shapes of gear teeth is much more recent. The great
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Fig. 5. Two right conoids intersecting along an elliptic curve (US Military Academy of West
Point).

mathematician Leonard Euler in 1754 worked out rules for conjugate action
of teeth in spur gears. Some consider him “the father of involute gearing”.
Nevertheless, Olivier is the first who explored in depth the profiles of gear
teeth for practical application.

At the beginning of his career, Olivier was interested in a special kind of
spur or bevel gear that was claimed in 1810, by an engineer named White
whose biography is unknown, to be frictionless. Such an outcome seems to
contradict Euler’s work on tooth profiles. According to Olivier, who oddly
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Fig. 6. Sketch of a White gearing as depicted in a Bricard book [A3].

misspelt White as With in [12] 1839, White was not a geometer and con-
sequently was unable to prove the astonishing property of this gearing.

It may be worth recalling what is a White gearing. In Figure 6 that is
excerpted from a Bricard book, 1927 [A3], one wheel has the fixed axis X

and the other wheel has the fixed axis X′. Two virtual revolute cylinders with
axes X and X′ keep in touch along the straight line Y . The rotation around
X can be transmitted to the X′ axis through a relative rolling motion of the
virtual cylinders along Y . Hence, one can synthesize conjugate gear teeth that
are in point touch on the line Y . In the example of Figure 6, one wheel is a
screw with a triangular filet and the other one is a screw with a square filet.
The tooth contact is achieved at the point G = G′ belonging to the line Y .
The trajectory of G with respect to the wheel of axis X is a helix drawn on
the cylinder of axis X as well as the trajectory of G′ with respect to the wheel
of axis X′. One has to notice that, in White gearing, the tooth contact is the
common point of two curves lying on the rolling virtual cylinders.

In his papers [11, 12], Olivier showed by geometry that, in White gear,
there is no sliding motion at the point of contact but there is a relative rotation
between the teeth around this point. Therefore, the White gearing is not de-
prived of friction and wear. Actually this gearing cannot transmit high power.
However, it has been fruitfully implemented in mechanical clockworks.

Olivier wrote two treatises on gearing. His first book deals with wheel axes
lying in the same plane [14]. Olivier described all the practical cases of tooth
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Fig. 7. Examples of spur gears among the numerous Olivier models (Museum of “Arts et
Métiers”, Nos 04432 and 04430).

Fig. 8. (a) Model of bevel gears; (b) particular spatial gearing: worm screw gear (Museum of
“Arts et Métiers”, Nos 04424 and 04437).

shapes that are conjugate in both important situations, namely the two fixed
shaft axes are parallel and the axes intersect. Moreover the three-dimensional
embodiment of what Olivier found out by means of planar drawings and geo-
metric reasoning was illustrated by numerous models made of wood. Alas,
some of the models that are mentioned in Olivier books are lost. Fortunately,
in the “Musée des Arts et Métiers” in Paris, an important collection of these
gears remain safe behind glass. For instance, one can still admire a (squirrel-
cage) lantern pinion with its conjugate rack (Figure 7a), the use of cycloidal
teeth (Figure 7b), and the planar involute gearing (fathered by Euler).

In addition to the spur gears, various types of bevel gears were also studied
by Olivier. A bevel gear with a conical lantern pinion is shown in Figure 8a.
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Fig. 9. Lower sized copy of Plate IV in Olivier book [15].

The special arrangement in space of a cogged wheel with a tangent worm
screw is also illustrated by an Olivier model (Figure 8b).

In a second treatise on gears, 1842, [15], Olivier explored the general skew
arrangement of wheels. Two wheel axes do not lie in that same plane and
are not perpendicular. For instance, with Plate IV of [15] (Figure 9), Olivier
showed how to obtain by geometric means, conjugate profiles for the teeth of
a skew system, which can transmit rotation between two axes with an angle
of 30◦. One wheel has 18 teeth and the other one has 24 teeth.

The effectiveness of the design by descriptive geometry is confirmed by
the actual construction of working models of gears. Alas, some of the models
that are mentioned in [15] are lost. However, fortunately, some Olivier models
of screw gearing were saved and they are still exhibited at the Museum of
“Arts et Métiers” at Paris. Figures 10 and 11 show noteworthy models of an
external skew gearing and an internal skew gearing, respectively.

In his book [15] on skew spatial gearing, one may wonder if Olivier
found out general tooth profiles or only special possible surfaces. Despite
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Fig. 10. Two gear wheels with a skew layout of their axes of rotation; external gearing (Musée
des Arts et Métiers, No. 5455-).

the important historical contribution of Olivier, one of the two wheels has
cylindrical teeth while the other wheel has helical teeth as written in table IV
of [15]. This is confirmed by inspection of the corresponding spatial models
(Figure 10). Hence, the conjugation of two helical surfaces was not disclosed
in Olivier’s work, and, therefore, the novelty of the “general spatial involute
gearing” [A6] introduced by Jack Phillips in 2003, more than 160 years after
Olivier, is not questionable.

Modern Interpretation of Main Contributions to Mechanism
Design

Olivier’s work ranks at the top of what can be done by using essentially the
means of descriptive geometry. He described many types of ruled surfaces in a
purely geometric manner almost without using equations. The ruled surfaces



Théodore Olivier 313

Fig. 11. Two gear wheels with a skew layout of their axes of rotation; internal gearing (Musée
des Arts et Métiers, No. 5459-).

play a key role in kinematics and mechanism theory because of the theorem:
any rigid-body motion (or displacement) is a screw motion. This theorem was
stated for the first time by Giulio Mozzi in 1765 and it was found again by
Michel Chasles in 1830. A screw has an axis and, therefore, when a rigid body
moves with respect to another body, the locus of all the screw axes is a ruled
surface that is called axode of the time-dependent movement. Consequently,
Olivier’s work can be considered as being a basic step in the edification of
the Screw Theory, which was achieved by Robert Ball in 1900. Ball’s work
implements the mathematical tools of the geometry of straight lines, which
was devised in 1869 by Julius Plücker. Hence, in a particular way, Olivier
pioneered Plücker’s work.
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Fig. 12. Plücker conoid (or cylindroid) in modern kinematics [A5].

Fig. 13. Cylindroid (Plücker conoid) in recent advancement on gearing theory [A6].

Moreover, when evaluating Olivier’s contribution, one has to be aware
that the birth of vector calculation is contemporaneous with Olivier’s work.

Figure 12 shows the Plücker conoid as presented in a modern book on
robot kinematics (Selig, 2000, [A5]). The resultant screw (twist or wrench)
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Fig. 14. Revolute hyperboloids (a) in a mechanism for transmitting the rotation; spatial gearing
(b).

of two given screws is a third screw whose axis belongs to the cylindroid
determined by the first two screw axes.

In a general skew arrangement of two gear wheels rotating around two
fixed shafts with a given ratio of their angular velocities, the relative motion
of one wheel with respect to the other one is a screw motion. Its screw axis is
called pitch line in Phillips’ book [A6], 2003, and belongs to the cylindroid
of the two gear axes, (Figure 13).

A possible use of two revolute hyperboloids for transmitting rotation
between two shafts with a constant velocity ratio is illustrated by the mech-
anism of Figure 14a that is excerpted from “Les mouvements mécaniques”
by Marcel Nicaise, 1931 [A3]. The physical hyperboloids are in touch along
a straight line. This line belongs necessarily to the set of straight lines consti-
tuting the cylindroid that is derived from the two twists in the fixed axes of
the revolute pairs.

Cutting a slice in each of the two hyperboloids, adding teeth on the ob-
tained revolute disks and thus making up a couple of cogged wheels, one
obtains a rough design of a spatial system of gears (Figure 14b). Further con-
siderations are needed for determining the adequate tooth shapes. Olivier pro-
posed solutions to this complex problem more than 160 years ago. However,
Olivier’s work on spatial gearing was not definitely finished and was supple-
mented in 2003 by Jack Phillips who manifested his respect to Olivier calling
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Fig. 15. Olivier’s line in Phillips’ book on the spatial involute gearing [A6].

Fig. 16. Phillips’gearing as further explained by Stachel.

Olivier’s line the rectilinear trajectory of the contact point in involute gears
(Figure 15).

The general spatial involute gearing devised by Jack Phillips in 2003,
[A6], has attracted the attention of present-day geometers. For instance,
Hellmuth Stachel in 2004, [A7, A8] disclosed further explanations on the
Phillips’ gearing. In the present beginning of the twenty-first century, the fa-
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cilities of electronic computers have replaced the manual drawings and the
wooden models of Théodore Olivier who worked in the first half of the nineti-
eth century. Amazingly, the virtual gears revealed by the use of modern com-
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Abstract. This paper presents a description of some inventions of a talented Russian scientist-
inventor who one hundred years ago suggested new ideas for the development of motors for
airplanes, construction of electrical power stations and more than twenty different technolo-
gical inventions. In particular,Ufimtsev offered an interesting idea for use of an inertia accu-
mulator, which led to the realization of a wind-powered electrical power station.

Biographical Notes

Anatoly Georgievich Ufimtsev was born on the 24th of November, 1880
in Kursk, in the family of a land surveyor; he was a grandson of F. A.
Semyonov (an eminent self-educated scientist, meteorologist-astronomer,
mechanic, honored citizen of Kursk, and a corresponding member of the Rus-
sian Geographical Society). Since childhood he had exhibited the ability to
devise and manufacture various hand-made articles that he had studied in ele-
mentary school. At 16 years of age he designed and built an “electro-copying
pen” for plural copying and a high-speed typewriter.

Having entered into the struggle against the church, in 1898 Ufimtsev in-
vented a bomb with a clock mechanism and blew up a “miraculous ikon” in
Znamensky Cathedral in Kursk. After the explosion Ufimtsev was not found
immediately, but in two years after this business he was arrested and banished
for five years to Akmolinsk (Kazakhstan).

The famous Russian writer Maksim Gorky (1868–1936) became inter-
ested in the history of the icon explosion, found the inventor and provided him
with material aid. On Gorky’s money, Anatoly Ufimtsev equipped, within the
prison of Akmolinsk, a small workshop to repair home appliances. In this
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Fig. 1. Anatoly Georgievich Ufimtsev (24 November 1880–10 July 1936).

workshop he started to make and sell kerosene lamps and oil lanterns with
use of his original ideas in design.

Having returned after amnesty in 1906 to Kursk, he constructed and
equipped, in his own manor on Semenovskaya Street in the centre of Kursk,
a workshop for repair of sewing machines and bicycles, and also continued to
work with kerosene lanterns. Lanterns of Ufimtsev?s design were eventually
installed, and were used for many years, in the streets of Kursk, Sevastopol
and other cities of Russia.

In 1909 Ufimtsev became interested in the design of flying machines. He
constructed an unusual flying machine with a wing in the form of a spherical
surface with a large radius; his UFO (Unknown Flying Object) was called a
“sphereplane”. His sphereplane had an adaptation for ejection catapults, using
compressed air, such as we now find in modern sea-aircraft. A three-wheeled
chassis flying machine with tail wheel was built by Anatoly Ufimtsev for the
first time in Russia at the same time as one was built by the American aircraft
designer Curtis.

In the same year Ufimtsev created a double rotation aviation engine for
the sphereplane. In 1910–1911 he had already constructed two new four-and
six-cylinder birotational (double rotation) engines. Propellers rotated on op-
posite sides of coaxial shafts, one of which was hollow. In 1912 at the Second
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International Aeronautics Exhibition in Moscow, Ufimtsev was awarded the
Greater silver medal for his four-cylinder birotational engine. Unfortunately
on the 11th of July, 1910 a hurricane and a strong storm destroyed the pre-
production model of the flying machine.

In 1910 Ufimtsev improved the design of internal combustion engines and
received a patent for the double rotation oil engine. At the beginning of the
First World War he made serially linked engines for installation on threshers.
In the common opinion of consumers, his engines were the most reliable
among similar devices. During the First World War, Ufimtsev returned to the
manufacture of birotational engines that were needed by military aircraft.

But the most significant technological contribution that Ufimtsev made
after the war was the creation, for the first time in the world, of a reliably
working wind-powered electro power station. He invented an inertial accu-
mulator in 1918 – a flywheel and, in cooperation with the scientist Professor
V. P. Vetchinkin, devised a new and unique wind-wheel with rotary blades
and a variable corner of attack, as is now found in modern helicopters.

Ufimtsev and Vetchinkin identified full blossoming of the Russian energy
industry with full use of wind power. They called it “continuous anemofic-
ation of Russia”. They went so far as to compile statistical calculations on
separate areas of the country which confirmed that all Russian power could
be based on the use of wind power.

In April, 1923 the government of Russia allowed construction of a wind-
driven power station in Kursk. It was built in a courtyard of Ufimtsev manor
and began power production on the 4th of February, 1931. The wind-driven
power station occupied a two-storied house, and also a part of the street, with
the machine tools of the workshop placed in a cellar. Owing to an inertial
flywheel, the power station produced some voltage within several hours even
in windless weather. The design of Ufimtsev’s station with a special wheel
had outperformed the technology of the last hundred years.

On the 10th of July, 1936, in his 56th year and at the peak blossoming of
his creative life, the inventor died.

Ufimtsev patented twenty-two inventions. His inquisitive mind and re-
search talent had allowed him to make contributions in a widely varied range
of technological advances.
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List of Main Inventions

1. The copyright certificate No. 1500. The invention of a device for equi-
libration of one-cylinder engines and pumps. Under the application from
October, 30th 1924. Leningrad, on October, 31st 1932.

2. The copyright certificate No. 11243. The invention of a vertical self-
adjusted (self-regulated) wind engine. Under the application from Au-
gust, 18th 1927. Leningrad, on October, 31st 1932.

3. The copyright certificate No. 3730. The invention of a wind-driven gen-
erator with two blades. Under the application from December, 11th 1925.
Leningrad, on October, 31st 1932.

4. The copyright certificate No. 1457. The invention of a wind-driven elec-
tric generator. Under the application from January, 14th 1924. Leningrad,
on October, 31st 1932.

5. The copyright certificate No. 18334. The invention of a vertical wind-
driven engine. Under the application from October, 24th 1929. Leningrad,
on February, 23rd 1932.

6. The copyright certificate No. 10092. The invention of devices for align-
ment of work of a wind-power plant. Under the application from March,
15th 1927. Leningrad, on October, 31st 1932.

7. The guarding certificate No. 69361. The invention of a boring machine for
dot mass drilling and milling. On May, 13th 1916. The Ministry of Trade
and the industries. Department of the industry. Committee on technical
affairs.

8. The guarding certificate No. 69357. The invention of a lathe. On May,
13th 1916.

9. The patent for the privilege No. 12510
On the invention of a special heated lamp. Under the application submit-
ted on February, 14th 1906. St. Petersburg on October, 31st 1907.

10. The patent for the privilege No. 14971. On the invention of a special
kerosene to heat a torch. Under the application submitted on December,
5th 1906. St. Petersburg on December, 31st 1908.

11. The patent for the privilege No. 14495. On the invention of kerosene
for the heated torch. Under the application submitted on February, 22nd
1907. St. Petersburg on October, 12th 1908.

12. The privilege which has been given out on January, 31st 1909. No. 15007,
declared on December, 5th 1906. The description of kerosene for the
heated lamp in automatic ignition.
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Fig. 2. View of the wind-driven power station built by A. Ufimtsev (current photo).

13. The patent for the privilege No. 28318. On the two-contact oil engine. Un-
der the application submitted on January, 31st 1914. Petrograd on Decem-
ber, 31st 1915.

Review of Main Works on Mechanism Design

Description of a Birotative Motor for an Airplane

In 1909 Ufimtsev designed a two-cylinders two-cycles rotary engine [1, 2,
14]. The motor today is kept in a permanent display of Ufimtsev’s inventions
in the Moscow Aerospace Centre (see Figures 3 and 4).

The motor was built by Ufimtsev and was tested in a Schetinin factory in
1908–1909 in Moscow Forest University where it registered maximal power
around 30 kW.

This motor is kept in the Aerospace Centre in Moscow in very good con-
dition.

In 1910–1911 he built two four- and six-cylinders birotative engines.
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Fig. 3. General view of a permanent display of Ufimtsev’s inventions in the in Moscow
Aerospace Centre.

Fig. 4. General view of the birotative engine; diameter 1 m, length 0.85 m, weight 50 kg,
average power 18 kW.

The general view of this engine is shown in Figure 2. In 1912 Ufimtsev
was awarded the Silver medal at the Third Russian conference.

Description of the Invention of Ufimtzev’s Airplane

Figure 5 shows the scheme of a Sphereplane No. 1. This picture shows in-
ventor Ufimtzev with colleagues at a test flight of the sphereplane. This air-
plane had an original structure. The wing of the plane had a circular shape
and three wheels, one of which was placed at the front of the airplane. This
apparatus was driven by an engine with power around 15 kW which had been
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Fig. 5. General view of Ufimtzev’s Sphereplane.

Fig. 6. Scheme of a Sphereplane No. 1.

designed by Ufimtzev. This three-wheel chassis was built for the first time in
the world simultaneously with one built by the American researcher Curtis.

The wing was made in the form of a circular frame and had a diameter of
3, 4 m with an area of 9 m2 and had six main frame pivots which provided
durability of the wing. The steering system was maintained behind the screw.
This sphereplane was tested successfully.
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Fig. 7. The scheme of a Sphereplane No. 2.

The scheme and structure of Sphereplane 2 can be seen in Figure 7. The
general scheme of this airplane was similar to the first one, but the dimensions
were two times larger. The area of the wing was 36 m2 and the steering system
in the wing was integrated. This wing had 11 additional frame pivots for
providing of adequate durability of this plane.

Description of a Wind-Driven Generator Invention

Ufimtsev looked into history for ideas about generating energy through wind
power. Wind machines were used for grinding grain in Persia as early as 200
BC. The same type of machine was introduced into the Roman Empire by 250
AD. By the 14th century Dutch windmills were in use to drain areas of the
Rhine River delta. In Denmark by 1900 there were about 2500 windmills for
mechanical loads such as pumps and mills, producing an estimated combined
peak power of about 30 MW.

The first windmill for electricity production was built in Cleveland, Ohio
by Charles F. Brush in 1888, and in 1908 there were 72 wind-driven elec-
tric generators from 5 kW to 25 kW. The largest machines were on 24 m
(79 ft) towers with four-bladed 23 m (75 ft) diameter rotors. Poul La Cour
is considered as Urvater of the modern wind energy. The first wind-powered
device to produce electricity was built in 1891. It used a number of already
existing windmills around the country to capture the wind for conversion into
electricity.

Ufimtsev analyzed this problem pragmatically. He created a unique
device, never before built, called a kinetic inertia accumulator, which released



Ufimtsev Anatoly Georgievich 327

an even flow of electrical energy. The accumulator provided a thousand in-
candescence lamps in the presence of a Special Commission. The invention of
the accumulator created a real possibility for exploitation of wind generators
and thus an economic boon to the country.

Ufimtsev’s wind motor was made with the help of the famous aerodynam-
icist V. P. Vetchinkin. Their motor turned out to be half the weight of any
previously known motor.

The Kursk wind-driven electrical station quickly became known for its
simplicity of service and its outstanding operating qualities.

Patents defending some of Ufimtsev’s basic inventions with respect to a
wind-driven electrical power station are listed above [3–7]. Ufimtsev realized
that full exploitation of wind power could only be achieved with such an
accumulator. His device was represented as an object with a large symmetric
mass rotating at high speed in a rarefied medium that would minimize the
loss of energy due to resistance.

Figure 8 compares various constructions of inertia accumulators. Fig-
ure 8a shows an accumulator with a vertical axle and electrical transmission
of energy. Figure 8b shows an accumulator with a lower fulcrum. Figure 8c
shows the vertical section of a casing with some spring bearings. Figure 8d
shows the chart of the disposition of roller bearings attached to a horizontal
axle. Figure 8e shows the chart of the disposition of disk supports with a ho-
rizontal axle and Figure 8f shows an accumulator with the mechanical trans-
mission of energy.

A rotating wind-wheel is connected with an axle of a dynamo machine.
This machine gives a direct current irrespective of a changing frequency of
revolutions and sends the current to the dynamo motor of the inertia accumu-
lator.

Energy is stored in this accumulator in the form of kinetic energy of the
rotating object. If it is necessary, this energy could be used to create electric
power.

It was very important to decrease losses of energy that were due to resist-
ance of the rotating body contacting with the environment and friction in the
supports of the body axle. A crucial question was how to decrease the vibra-
tion of the rotating body. Solutions of these problems allowed preservation of
energy in the inertia accumulator for long periods of time.

The accumulator of the prolonged operation (Figure 8) consisted of the
rotating object (1) on the vertical or horizontal axle (2). The body was repres-
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Fig. 8. Schemes of inertia accumulator: 1. rotating object; 2. axle of rotation; 3. bearings;
4. spherical fulcrum; 5. case; 6. casing; 7. spring; 8, 9. gearing.

ented as a disk with a constant resistance factor at any point. The vertical axle
(2) of the disk is hung on one or more ball bearings (3) with spiral springs
(7). Springs lean on circular projections of the cylindrical case, in which all
bearings are located.

Bearings decrease the friction owing to the allocation of the weight of the
disk (1) among all bearings. The case (5) is hung on the casing (6) with help
of the universal hinge. The casing (6) contains all parts of the system that exist
in the rarefied medium. The case (5) is separated from the other space with
the help of the hydraulic bolt, because the pressure of oil vapor for bearings
does not give the possibility to rarefy air in the space of the casing (6). The
hydraulic bolt contains either mercury or an alloy of sodium and potassium
and does not hinder the free rotation of the axle (2). The pumping out may be
replaced the filling some light gas, for example a hydrogen, under conditions
of the atmospheric pressure.
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The armature (8, 9) of the dynamo motor is fastened to the axle (2) for the
transmission of energy to the accumulator and from it. The dynamo motor
will keep up the tension on the contact level, as the frequency of revolution
changes over time. This property is attained by turning parts of the electro-
magnets automatically. Reversibility of the dynamo machine enables either
rotation of the disk (accumulation of energy) or forming of the current due to
this accumulation. The motor may be placed outside the casing on the axle
(2), if the axle is put out, or on the other axle, which would have to connect the
gear with the axle (2). The disk (1) of the accumulator may be placed above
(Figure 8e), in which case the axle (2) is the supporting part, and bearings are
placed below. The bearing (1) is fixed to the casing with help of springs for
maintenance of the upper edge of the axle (2).

The bearing (1) is fixed to the casing with help of springs for the mainten-
ance of the upper edge of the axle (2). Disk supports are represented wheels
(8), (9) with sides, on which the end of the axle (2) lies on the internal side.
Wheels are fixed with help of axles of auxiliary wheels.

The inertia accumulator (Figure 8f) has a mechanical transmission. This
transmission is used in accumulation of energy to be used for motion (trams,
cars, airplanes). The vertical axle (2) holds the disk (1), which is attached by
conical gear (8, 9) and the next external gearing. The upper end of the axle
is hung on the box with help of roller bearings (4), which are located in the
casing (6).

After these mechanisms were proved to be possible, Ufimtsev worked on
improving their effectiveness. He established the fact that when energy is
transmitted from a wind generator to a dynamo machine, big problems arise
in consequence of a huge difference between quantities of revolutions of these
two mechanisms.

In transmission of energy, energy for the dynamo is taken on by the small
wind motor, which is fastened to the wing of the wind motor and is connected
with the axle of the dynamo. The small wind motor can take on a larger store
of energy; and it gives a larger angular velocity when the wind motor is the
propeller because the peripheral velocity at the end of the wing is very high.

The suggested wind-driven electrical generator (Figure 9) is a wind motor
with dynamo machine (3) and the propeller (2), that is located on the axle of
the dynamo.

The gear (Figure 9b) in the wind-driven electrical mechanism is modified
because the transmission from the propeller (2) to the dynamo (3) is made
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Fig. 9. Lay-outs of transmission of energy. (a) The dynamo motor is at the end of the wing;
(b) the dynamo motor is at the center of the propeller. 1. propeller; 2. small wind motor;
3. dynamo machine.

with help of the couples of cogwheels, and the electrical generator does not
connect with strokes of the motor.

The mechanism for alignment of work at the wind-driven electrical station
(shown in Figure 10) was suggested by Ufimtsev and was announced in a
patent application on March 15, 1925. The patent was issued on 29 June,
1929.

The development is represented in the following manner: The wind gen-
erator is fastened on the tower and transmits the motion mechanically to the
generator of electrical power. The generator is connected with the buffer in-
ertia accumulator (1), which stores the energy by use of the rapidly rotating
object with a large mass in the rarefied medium that helps decrease loss of en-
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Fig. 10. Scheme of wind-driven electrical station. 1. inertia accumulator; 2. generator; 3. line
of consumption; 4. electrical storage battery; 5. electrolyzer.

ergy from resistance. This part of the mechanism makes it possible to produce
an even output over time.

The generator (2) directs the current to the line of consumption (3) and the
surplus – to the electrical storage battery (4) with whose help the mechanism
aligns temporary overloading.

When the storage battery is charged the current is directed to the electro-
lyzer (5), where water is decomposed into hydrogen and oxygen. The oxygen
is eliminated from the gathering cistern, but the hydrogen is used as a power
supply for the reserve motor. This motor is mechanically connected with the
auxiliary generator, which is turned on parallel to the main generator and
produces electrical energy without the wind.
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Modern Interpretation of Main Contributions to Mechanism
Design

Total analysis of Ufimtsev’s inventions shows that all his creations solved
concrete problems in different fields of technology during the beginning of
the 20th century. Already one hundred years ago he suggested some new
ideas for the development of motors for an airplane, wind-driven electrical
power station and numerous other inventions besides. His creations can be
divided into two categories. One category consists of inventions that had a
direct impact on the early years of the 20th century. These are mainly such
items as a boring machine for drilling and milling [8], a lathe [9], a special
heated lamp [10, 11], a kerosene for the heated torch [12], kerosene of the
heated lamp in automatic ignition [13] and many others[14]. These inventions
had an important significance for that period of economical development in
the world. The second category includes inventions and ideas that have now
been distributed all over the world. First of all we will talk about wind-driven
electrical power stations.

In the course of World War II the Danish company F. L. Smidth built
several two- and three-blade wind-powered devices. Likewise at this time the
two technical designers Smith and Putnam built a wind system north of New
York. The tower height amounted to 33 meters and the whole construction had
a diameter of more than 52 meters. One day a rotor blade flew off resulting
in damages 230 meters away. The potential loss in repairs of such incidents
would have been enormous, therefore the operators decided that this power
station was to be shut down [15].

In the year 1956, J. Juul built a wind system that is considered as a prede-
cessor of today’s wind towers. It was a three-blade system with electromech-
anical wind adjusting. Juul’s construction was the largest and the most reli-
able in the world for a long time.

The oil crisis in 1973 aroused interest in renewable energy in several
countries. Denmark built many large systems, followed shortly by the USA,
Sweden, Germany and Great Britain. The maintenance was however very ex-
pensive and the electricity tariffs were accordingly high. By 1980, sufficient
wind- driven power stations had been designed with a production capacity of
more than 50 kW. This had the consequence that electricity tariffs sank around
approximately 50%. The Americans (especially the Californians) developed
a proper “wind intoxication”. Wind systems shot up like mushrooms from the
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Fig. 11. Wind-driven farm in Neuenkirchen, Dithmarschen, Germany.

soil at this time in California. When however around 1985 the interest sank
again, many wind-driven power stations disappeared overnight.

The tower of a wind-powered device carries the gondola and the rotor.
Usually a high tower is used as with rising height the wind velocity increases.
A modern wind-driven power station has a tower of 40–60 meters height. The
gondola is not fixed in direction by its connection to the tower. It can align
itself and the rotor to follow the wind and thus always profit from its optimal
strength.

At present, the largest “wind market” exists in Germany but also in other
countries the interest in this energy begins to grow again.

Wind-driven power is the conversion of wind energy into more useful
forms, usually electricity using wind turbines. In 2005, worldwide capacity
of wind-powered generators was 58,982 megawatts; although it currently
produces less than 1% of worldwide electricity use, it accounts for 23% of
electricity use in Denmark, 6% in Germany and approximately 8% in Spain.
Globally, wind power generation more than quadrupled between 1999 and
2005.

Most modern wind power is generated in the form of electricity by con-
verting the rotation of turbine blades into electrical current by means of an
electrical generator. In windmills (a much older technology) wind energy is
used to turn mechanical machinery to do physical work, like crushing grain
or pumping water.
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Wind power is used in large scale wind farms for national electrical grids
as well as in small individual turbines for providing electricity to rural resid-
ences or grid-isolated locations.

Wind-driven energy is ample, renewable, widely distributed, clean, and
mitigates the greenhouse effect if used to replace fossil-fuel-derived electri-
city [15].

An estimated 1 to 3% of energy from the Sun that hits the earth is con-
verted into wind energy. This is about 50 to 100 times more energy than is
converted into biomass by all the plants on Earth through photosynthesis.
Most of this wind energy can be found at high altitudes where continuous
wind speeds of over 160 km/h (100 mph) occur. Eventually, the wind energy
is converted through friction into diffuse heat throughout the Earth’s surface
and atmosphere.

The origin of wind is simple. The Earth is unevenly heated by the sun
resulting in the poles receiving less energy from the sun than the equator
does. Also the dry land heats up (and cools down) more quickly than the seas
do. The differential heating powers a global atmospheric convection system
reaching from the Earth’s surface to the stratosphere which acts as a virtual
ceiling.

As the wind-driven turbine extracts energy from the air flow, the air is
slowed down, which causes it to spread out and diverts it around the wind-
driven turbine to some extent. Albert Betz, a German physicist, determined
in 1919 (see Betz’ law) that a wind-driven turbine can extract at most 59% of
the energy that would otherwise flow through the turbine’s cross section. The
Betz limit applies regardless of the design of the turbine.

Because so much power is generated by higher wind speed, much of the
average power available to a windmill comes in short bursts. The 2002 Lee
Ranch sample is telling; half of the energy available arrived in just 15% of
the operating time. The consequence of this is that wind energy is not as
evenly available as in the case of fuel-fired power plants; additional output
cannot be supplied in response to load demand. Since wind speed is not con-
stant, a wind-driven generator’s annual energy production is never as much
as its nameplate rating multiplied by the total hours in a year. The ratio of
actual productivity in a year to this theoretical maximum is called the ca-
pacity factor. A well-sited wind-driven generator will have a capacity factor
of as much as 35%. This compares to typical capacity factors of 90% for
nuclear plants, 70% for coal plants, and 30% for oil plants [8]. When com-
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paring the size of wind-driven turbine plants to fueled power plants, it is im-
portant to note that 1000 kW of wind-driven turbine potential power would
be expected to produce as much energy in a year as approximately 500 kW
of coal-fired generation. Though the short-term (hours or days) output of a
wind-driven plant is not completely predictable, the annual output of energy
tends to vary only a few percent points between years. When storage, such as
with pumped hydroelectric storage, or other forms of generation are used to
“shape” wind power (by assuring constant delivery reliability), commercial
delivery represents a cost increase of about 25%, yielding viable commercial
performance. Electricity consumption can be adapted to production variabil-
ity to some extent with Energy Demand Management and smart meters that
offer variable market pricing over the course of the day. For example, mu-
nicipal water pumps that feed a water tower do not need to operate continu-
ously and can be restricted to times when electricity is plentiful and cheap.
Consumers could choose when to run the dishwasher or charge an electric
vehicle.

Summary

The inventions which were described in this paper allowed construction of the
first wind-driven electrical station. It has been operational in Kursk for a long
time. This station showed that Ufimtsev’s ideas were correct and made a con-
vincing argument for utilization of wind-driven power based on economics
and ecological responsibility.
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Abstract. It is generally accepted that the birth of James Watt was destined to bring about a
revolution in the utilization of power. Watt, see Fig. 1, is regarded by many to be the progen-
itor of the science of thermodynamics. He was not only the inventor of the separate condenser
and many other parts of the steam engine, but he was the first to study the steam engine scien-
tifically. He also made distinguished contributions to the development of workshop practice.
His scientific examination of heat losses in engines led him to recognition of the influence
of latent heat on steam engine economy. Watt was at one and the same time a scientist, an
inventor, and a producer. He put numbers to the concept of horsepower and is credited with
inventing the centrifugal governor for automatic control of the speed of the steam engine, a
rotary motion device for the steam engine, a pressure gauge, a smoke-consuming furnace, and
a letter-copying device based on the link transfer process. Watt also invented an approximate
straight-line mechanism for his famous double-acting steam engine, thereby creating a whole
new family of linkages. This brief article will focus on Watt as the inventor of parallel motion,
the basis of many machines. It is interesting to note that at the age of 72, he wrote to his son
[1]: “Though I am not over-anxious after fame, yet I am more proud of the parallel motion
than of any other mechanical invention I have ever made.” Watt was rightfully proud of the
parallel motion four-bar linkage. This mechanical invention is believed to be the beginning of
an ordered and an advanced synthetic process [2].

Biographical Notes

James Watt was born on the 19th of January 1736, the fourth son to James and
Agnes Watt. He was born near the port of Greenock, on the southern bank of
the River Clyde, not far from where the Clyde turns south into the Firth and
about twenty-five miles west of the City of Glasgow. From a young age Watt
showed signs of the chronic ill-health that was going to torment him through
the greater part of his life. His mother was devoted to him, and, rather than
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Fig. 1. James Watt in later years.

send him to a school where he might not be properly looked after, she kept
him for a time under her own care at home and gave him his first lessons. By
the time he was let out of the family circle into a wider world, his individu-
ality and originality were already well developed, and he never showed any
tendency to adapt himself to the type that was most admired by his school-
fellows. He went his own way and took the consequences, and they must
have been severe. Watt was slow and awkward, and fell below the ordinary
standard demanded by the common routine of school lessons. In fact, Watt
was thought rather dull at his lessons. However, when he adapted to his new
surroundings and found work that was congenial to him, his genius peeped
through the veil of his childishness. His abilities began to appear when, at
the age of about fourteen, he was put into a mathematical class, and made
rapid progress. For a more detailed account of Watt’s schooldays, the reader
is referred to [3–5].

In 1753, when Watt was seventeen, his mother died. It was probably his
mother’s devotion to him that had kept Watt so long at home when other boys
of his age were away earning their living. It is believed her death broke up the
family life at Greenock. In June of the following year he went to Glasgow to
learn the craft of a mathematical instrument maker. It was a profession closely
allied to those of his father and his grandfather, and it gave more scope to
his mechanical dexterity than he would have obtained by following either of
their trades. The prospects, too, were good. It was described, at this date, as a
“very ingenious and profitable business,” and was by no means overstocked
with labor.
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When Watt arrived in Glasgow, however, he found there was no one who
could teach him. He spent a year there, working under a nondescript mechanic
who called himself an “optician,” until he attracted the attention of Dr. Dick,
Professor of Natural Philosophy at the University of Glasgow. Dick realized
that here was a first-class talent going to waste, and advised him to go to Lon-
don and obtain the best training that was available. Watt asked the permission
of his father to go, and it was granted. It was a momentous decision, for this
was surely the first time in the history of the Watt family that a member had
proposed to cross the border from Scotland to England. Also, London was
a long way from Glasgow when traveling on horseback. In addition, there
was the expense to consider. Apparently Watt’s father had either overreached
himself in his speculations or had suffered losses at sea; for, although he had
once been quite well-to-do, he was now obliged to leave his son to make his
own way in the world, giving him only the most meager of allowances while
he was obtaining his training. In spite of all these difficulties the adventure
was accepted, and on June 7th, 1755, Watt set off for London, with a letter of
introduction from Dr. Dick.

It took Watt approximately twelve days to reach London, and immedi-
ately he encountered some difficulties. The city was still clinging to ancient
customs and privileges, chief among which was the right to keep all of its
trade in the hands of the native-born townsmen, and to forbid anyone from
another town to settle down within the city walls to earn a living. The time
was long past when any town could preserve this monopoly intact, or indeed
wanted to, but the right remained in theory, and could be used discreetly to
remove undesirables. The vagrant, who seemed likely to become a pauper,
and the skilled craftsman, who might prove a dangerous competitor for the
custom of the townspeople, were refused admission. However, the wealthy
merchant and the honest, non-enterprising laborer went unmolested. The ini-
tiative in these matters came generally from the Guilds and Companies which
controlled the various trades carried on in the City. They were afraid of com-
petition, and anxious to keep down the number of tradesmen among whom
the available custom had to be divided. The chief principles which the Guilds
had inherited from the Middle Ages were as follows; (i) all regulations affect-
ing the trade were made by the Masters who ruled the Guild; (ii) no person
could set up in business on his own unless he was a Master and had been ad-
mitted as such into the Guild, and (iii) the normal way of becoming a Master
was by serving an apprenticeship of seven years under a Guildsman, and then
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paying the fees for admission to the rank and privileges of Mastership. In this
way, the trade was protected against an influx of inferior and irresponsible
labor which might lower the standard of work, and, by competing for em-
ployment in the restricted market of the town, lower the level of the earnings
of the craftsman.

Society in the reign of George II, however, was anything but medieval.
Little was left of the elaborate system of industry based on the Guild. At the
top of the industrial scale was a class of wealthy men, merchants or employers
of labor, who had no patience with rules of this kind. They ran their business
as they thought best, advanced boldly into any field that looked profitable,
respecting the preserves of nobody, and they had no intention of teaching the
secrets of their trade to any one except their own sons. At the other end of the
scale were the laborers in common trades where the required degree of skill
was small. Such men were not likely to go through a long period of appren-
ticeship when they could learn their job well enough without it, and nothing
awaited them at the end of it but a fight for existence in an overstocked labor
market in which they had no special advantage. Between these two classes
came the highly skilled handicrafts, and there conditions were often quite
different. As a long period of training was essential, apprenticeship had some
meaning, and when it was over the craftsman was ready to start a business on
his own. The Masters, in a trade of this kind, were in a commanding position.
They had no employers over them with power to dictate terms; they had noth-
ing to fear from the competition of upstart unqualified workmen; and they had
a monopoly in training recruits to the craft. Whenever there were enough of
them in a town to have an organization of their own they made strict rules for
the training of novices and their admission to the status of Master, and no one
who had not qualified according to these rules was permitted to open shop
within the town.

The clockmakers of London were a trade of this kind. The company was
not medieval in origin; it had been founded in 1631. But it was by nature
suited to the medieval type of organization. The mathematical instrument
makers were a branch of the Company of Clockmakers and followed the same
rules. Watt, apparently, had not thought of this difficulty. His case was exactly
that for which apprenticeship rules were designed. He wanted to be trained
in order to become a Master and start a business on his own. His only proper
course of action was to bind himself by a legal contract as an apprentice to a
member of the trade. He was in no position, however, to conform to the ordin-
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ary regulations. In the first place he was too old; in the second place he was
a “foreigner” and had no right to work in the City; and in the third place he
could not afford to undertake to serve the full term of seven years. He must
find a Master who was prepared to break the rules. The fact that he was a
foreigner who had no intention of setting up shop in the city was a point in
his favor, for London was not afraid of possible rivals in Glasgow. To teach
such a man the mysteries of the craft was a breach of the letter of the law
only, not of the spirit of the law. It took Watt some three weeks to find Mr.
John Morgan of Cornhill, a man who was willing to take him for a year and
teach him all he wanted to learn. During that time Watt was to give his labor
free, and as the engagement was quite irregular, he had to pay the large sum
of twenty guineas to compensate his master for the trouble he was causing to
his conscience.

Watt settled down to do the seven years of work in a single year. He put
in ten hours of work a day, five days each week, but it was difficult to avoid
wasting time. The workmen in the shop were specialists on some particular
instrument; Watt wanted to learn to make them all, and so he worked with
each in turn. But if the man he wanted happened to be busy, or away for a
time, Watt was interrupted in his course of progress. In six weeks, however, he
had outstripped a fellow-apprentice who had been in the shop for two years;
in nine months he was as skillful as a fully trained and experienced workman,
and could cover a wider field. All this time he hardly ever went out. When he
finished work in the evening he was much too tired to think of amusements,
and anyhow he could not afford them. But he had another reason for staying
indoors. England was enjoying a short interval of peace, recovering from the
strain of fighting with Austria against Prussia, before she embarked on a new
war with Prussia against Austria. Some fifteen years before, to the strains
of the popular new song, “Rule Brittania!” the British fleet had sailed out
to defend their precious monopoly in the slave trade. Now, while the people
of London were still proclaiming that “Britons never, never, never will be
slaves,” the officers of the Press-gang were lurking around the corner ready to
pounce on any young Englishman who had faith in the freedom of his country
as to walk the streets of the capital after dark. This was a serious danger to
Watt, for, as he was a stranger with no rights in the City, he could not claim
the protection of the civil authorities. In the spring of 1756, the Press-gang
became very active. A fleet had to be manned in a hurry for Admiral Byng to
take out, to disgrace itself at Minorca. It is believed that a thousand men were
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taken in one night. “They now press anybody they can get,” Watt wrote to his
father, “landsmen as well as seamen, except it be in the Liberties of the City,
where they are obliged to carry them before my Lord Mayor first; and unless
one be either ’prentice or a creditable tradesman, there is scarce any getting
off again. And if I was carried before my Lord Mayor, I durst not avow that
I wrought in the City, it being against their laws for any unfreeman to work,
even as a journeyman, within the Liberties.” Fortunately, Watt escaped the
clutches of the Press-gang.

All this time, Watt was working much too hard and not getting enough
to eat. He cut his expenditure on food down to eight shillings a week, and
could get it no lower without “pinching his belly.” The strain was too much
for his fragile constitution. When his year was up his health gave way, and
he suffered from violent attacks of rheumatism. He longed to get back to the
fresh air of the Scottish countryside. In August 1756, he found the courage to
face the weary journey, and mounting his horse, he turned his back on Lon-
don. After a short stay at Greenock that restored his health and his spirits, he
traveled on to Glasgow, with the outfit of tools bought in London, to offer his
newly-won skill to the world. Watt, however, met with the same difficulties
in Glasgow as he had faced in London. Here, too, he was a “foreigner,” and
a dangerous “foreigner,” because he did not wish to only study the craft in
the shop of a Master, but had every intention of setting up shop for himself.
His trade came under the jurisdiction of the Incorporation of Hammermen,
and its collection of industrial autocrats, worthy men, no doubt, but intellec-
tually hammers indeed as compared with Watt’s gimlet. They refused him
permission to work within the town in any capacity whatsoever. This was in
spite of the fact that there was not one of them who pretended to understand
the rudiments of his particular craft. Watt was saved by one of those odd co-
incidences that crop up from time to time in the ages of history. Within a
month of his arrival in Glasgow, the University received a present of a case
of astronomical instruments from Alexander Macfarlane, a merchant living
in Jamaica. Classes in physical astronomy had recently commenced, and the
gift was most opportune, but the sea voyage had thrown the delicate instru-
ments out of gear, and they needed overhauling by an expert. Dr. Dick, in
whose charge they were placed, remembered his young friend and asked him
to undertake the work. Watt was delighted to have this chance of proving his
skill, and soon put the whole collection into perfect order, for which service
the University voted him the sum of five pounds. When, shortly afterwards,



James Watt 343

it was learned that he had been refused leave to have a workshop in the town,
the University took him under its protection and gave him a room within the
walls of the College, where the writ of the Hammermen did not have juris-
diction.

This may have been the turning point in the life of James Watt. Watt was
already a brilliant mechanic [6–10], but it is reasonable to assume that he
would never have won fame as an engineer if he had not also become a great
scientist. That side of his genius had hitherto been starved. In the Univer-
sity, he found himself for the first time in the society of men who were his
equals in intellect and his superiors in scientific experience. Also, these men,
being pioneers in an unconquered territory, had none of the pride that makes
the professional refuse to associate with the amateur, nor did they, like some
jealous guardians of accumulated knowledge, feel proprietary about their sci-
ence and resentful against trespassers. It was as the mathematical instrument
maker to the University of Glasgow that Watt gained admission to the pre-
cincts of the College in the summer of 1757, but as soon as his remarkable
gifts were recognized, he was treated by both Professors and students as a
friend and colleague rather than as an employee. The initial steps were made
easy for him by the fact that he was already known personally to some of the
University staff. Professor Muirhead, a relative of his mother, who had first
introduced him to Dr. Dick was still there; and when Dick died, early in 1757,
his successor as Professor of Natural Philosophy was a man named Ander-
son, the brother of one of Watt’s school friends. Anderson was a young man,
not more than eight years senior to Watt, and provided an excellent channel
of approach to the keener scientists both of the older and the younger genera-
tion. Watt’s workshop was in the inner court of the College and connected to
the premises occupied by the Natural Philosophy department. Teachers and
students would come into the workshop, as they were leaving or returning
to their work, to consult him about some piece of apparatus or to give him
an instrument to repair. His friends dropped in to chat with him and brought
their friends. Before long they were discussing with him not only the intrica-
cies of apparatus but the scientific problems on which they were engaged in
research. Watt’s workshop became the regular meeting-place for those who
were doing original work and could accept criticism of the theories sugges-
ted to them by the results of their experiments. More than once a Professor
received a valuable hint from some swift thought hatched in the brain of the
young craftsman.
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Of all the friends that Watt made at this time the two who most deeply
influenced his future were Joseph Black and John Robison. Black was a sci-
entific genius of the first order. He had that rare gift of imaginative insight that
is not afraid to leap into a new world of speculation, finding, as it were by in-
spiration, a fresh significance in facts that have long been known to all. But he
was not one to make wild guesses. “No man,” said Adam Smith, who knew
him well, “has less nonsense in his head than Dr. Black,” and he combined
this freedom of vision with an unrivalled lucidity of exposition and accuracy
of experiment. Lord Brougham had heard him lecture and wrote of him, “I
have heard the greatest understandings of the age giving forth their efforts in
its most eloquent tongues, but I should, without hesitation, prefer, for mere
intellectual gratification, to be once more allowed the privilege which I in
those days enjoyed of being present while the first philosopher of his age was
the historian of his own discoveries.” Black had come across Watt when he
was at work on Macfarlane’s instruments. He would come and stand in the
shop toying with a quadrant and whistling softly to himself. But it was not
until later, when he had Watt make him some apparatus for his experiments,
that he became aware of Watt’s genius. “I found him,” he says, “to be a young
man possessing most uncommon talents for mechanical knowledge and prac-
tice, with an originality, readiness and copiousness of invention which often
surprised and delighted me in our frequent conversations together.” The two
men became close friends, and Black’s affection for Watt lasted to the end of
his life. When he was an old man a friend brought him news of Watt’s triumph
at law over an infringer of his patent. The old scientist, weakened by years of
illness, wept with joy; and then apologized. “It is very foolish, but I can’t help
it, when I hear of anything good to Jamie Watt.” Watt profited immeasurably
from his contact with this inspiring mind, and was also kept in touch with the
most advanced scientific thought of the day. He realized his debt to Black.
“To him I owe,” he said, “in great measure my being what I am; he taught me
to reason and experiment in natural philosophy, and was always a true friend
and adviser.”

Robison was a younger man, who had just graduated when Watt arrived at
the University. Though an able scientist, good enough to be elected Professor
both in Glasgow and in Edinburgh, he was not the same caliber as Black.
But he had great vitality and enthusiasm, qualities which made him an ideal
companion for Watt when his bouts of ill-health made him talk of giving up
work altogether. Robison quickly recognized that Watt was his superior, and
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always generously admitted it. He has described his first conversation with
Watt in his workshop in the College: “I saw a workman, and expected no
more; but was surprised to find a philosopher, as young as myself, and always
ready to instruct me. I had the vanity to think myself a pretty good proficient
in my favorite study, and was rather mortified at finding Mr. Watt so much my
superior.” They became friends, but Robison’s adventurous tastes carried him
away to sea soon afterwards. Several years later he returned, and renewed his
friendship with Watt. He found that, thanks to his more systematic training,
he could help Watt by testing and analyzing “the random suggestions of his
inquisitive and inventive mind.” But Watt was undoubtedly the leader, and
was continually striking out into untrodden paths, where Robison was always
obliged to be a follower. Watt had, by this time, gained a wide reputation.
The young enthusiasts clustered round him. Whenever any puzzle came their
way, they went to Watt. He needed only to be prompted; everything became
to him the beginning of a new and serious study; everything became science
in his hands.

Meanwhile Watt’s business was doing very well. The University, when
granting him quarters, had not stipulated that he should work only for them.
On the contrary, he was provided with a room fronting the street, where he
could offer for sale to the public the instruments he made in his workshop. In
order to develop this side of the business he went into partnership, in 1759,
with a man named Craig, who undertook to provide most of the capital needed
for expansion, and to do all the commercial transactions, which Watt, then as
ever afterwards, detested. They started with stock and cash worth £200, and
about five years later were making gross sales up to £600 a year, and kept a
staff of sixteen men at work.

It was Watt’s reputation as a universal mechanical expert that brought so
much custom to his shop. When anything had to be done and there was no
one in Glasgow who knew how to do it – which was often – it was taken to
Watt. He was always ready to try. If the instrument to be repaired was one
that he had never seen before, he set to work to master its principles with
what help he could find at the library, and was not satisfied until he had put
it to rights. And what he learned he never forgot. In this way he repaired and
afterwards made, fiddles, guitars, and flutes, although he could not tell one
note of music from another. When a Masonic Lodge in Glasgow wanted an
organ, the officers went to Watt. They imagined that Watt could do anything,
and they asked him to build the organ. He sat down to study the theory of
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music, thoroughly examined the mechanism of the best organ he could find,
and devised an exact method by which he could tune the pipes by observing
“the beats of imperfect consonances.” By the time the work was completed,
Watt had made substantial contributions, not only to the mechanics of organ
design, but also to the theory of sound. Soon after he formed his partnership
with Craig, Watt opened a shop in the town, though still living in the College.
In 1763, at the age of 27, Watt became engaged to be married to his cousin,
Margaret Miller, and so took a house, into which he moved in the following
year. He was married in 1765 and had four children. Only two of the children
survived their mother who died in childbirth in the fall of 1773. Watt then
remarried in 1776. His second marriage was to Ann Macgregor, the daughter
of a prosperous Glasgow merchant. There were two children to this marriage,
Gregory and Janet, both of whom predeceased their father. Before both of his
marriages, however, Watt had begun his pioneer work on the improved steam
engine.

Review of Main Work on Mechanism Design

Although Watt had no formal study of mechanisms he became a highly gifted
designer of mechanisms. The windmill flyball governor for regulating the gap
between millstones was adapted by Watt as an engine speed regulator giving
the first closed-loop servomechanism. Watt, instrument maker and engineer,
was concerned with the synthesis of movement. Watt’s rotative engine was
the first engine to produce power directly on a shaft without the intervention
of a water-wheel fed by a reciprocating pumping engine. He took out a patent
in April 1784, which described various methods of converting angular motion
into rectilinear motion. Of the methods described in this patent, the one that
he developed was the parallel motion linkage.

Watt’s linkage was a good solution to the practical problem. However, his
solution did not satisfy mathematicians who knew that all four-bar straight-
line linkages (that have no sliding pairs) can only trace an approximate
straight line. An exact straight-line planar linkage was not known until much
later, about 1864, when the French captain Charles-Nicholas Peaucellier fi-
nally synthesized the exact straight-line linkage that bears his name [11, 12].
The Peaucellier straight-line linkage is a more complex linkage than the four-
bar and has eight members and six joints, four of which are ternary joints.
Four-bar linkages were in widespread use by the sixteenth century, however,
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they probably originated as early as the thirteenth century. Some drawings
of that period indicate that a four-bar linkage was used in an up-and-down
sawmill. Also, Leonardo da Vinci (1452–1519) described a crank and slider
mechanism for a sawmill machine. The conversion of rotary to reciprocating
motion (an oscillation through a small circular arc) using rigid links can be
found in the sixteenth century. Although at that time the conversion of rotary
to reciprocating motion was more frequently accomplished by cams and in-
termittent gearing. Nevertheless, the idea of linkages was a firmly established
part of the repertory of the machine builder before 1600. In 1588, Agostino
Ramelli published his book on machines where linkages were widely used
[13]. The book exhibits more than 200 machines of various degrees of com-
plexity and ingenuity. In reading this book, one might wonder if linkages had
not reached their ultimate stage of development. However, it is important to
note that there is a vast difference, both in conception and execution, between
the linkages of Ramelli and those of Watt some 200 years later.

Designers of the four-bar linkage before Watt had confined their attention
to the motions of the links attached to the frame (or ground). Watt, however,
focused his attention on the motion of a point on the coupler link of the four-
bar linkage. The year was 1784 and the application of this idea allowed Watt
to build a double-acting steam engine. The earlier chain connecting piston
and beam was now replaced by a linkage that was able to transmit force in
two directions instead of only one. Watt had discovered coupler-point mo-
tion, although its definition in these terms lay well in the future. It was a
singular achievement, one could almost say a pivotal point, along the road
to kinematic synthesis. It took Watt several years to design the straight-line
linkage that would change motion from straight-line to circular. In a letter
to Matthew Boulton (a partner and machine builder who built engines in his
works in Soho, a district of Birmingham, England) he wrote [7]: “I have got
a glimpse of a method of causing a piston-rod to move up and down perpen-
dicularly, by only fixing it to a piece of iron upon the beam, without chains,
or perpendicular guides, or untowardly frictions, arch-heads, or other pieces
of clumsiness . . . I have only tried it in a slight model yet, so cannot build
upon it, though I think it a very probable thing to succeed, and one of the
most ingenious simple pieces of mechanisms I have contrived, . . . ” Watt was
responsible for initiating profound changes in mechanical technology, but it
should be recognized that the art of mechanics had, through centuries of slow
development, reached the state where his genius could flourish. The know-



348 Gordon R. Pennock

ledge and ability to provide the materials and tools necessary for Watt’s re-
search were at hand, and through the optimism and patient encouragement of
his partner Boulton at the Soho Works, they were placed at his disposal.

The genius of Watt was nowhere more evident than in his synthesis of
linkages [14]. An essential ingredient in the success of Watt’s linkages, how-
ever, was his partner’s appreciation of the entirely new order of refinement
that the linkages required. Boulton, who had been a successful manufacturer
of buttons and metal novelties long before his partnership with Watt was
formed, had recognized at once the need for care in the building of Watt’s
steam engine. On February 7, 1769, he wrote to Watt, “I presumed that your
engine would require money, very accurate workmanship and extensive cor-
respondence to make it turn out to the best advantage and that the best means
of keeping up the reputation and doing the invention justice would be to keep
the executive part of it out of the hands of the multitude of empirical engin-
eers, who from ignorance, want of experience and want of necessary conveni-
ence, would be very liable to produce bad and inaccurate workmanship; all of
which deficiencies would affect the reputation of the invention.” Boulton ex-
pected to build the engines in his shop “with as great a difference of accuracy
as there is between the blacksmith and the mathematical instrument maker.”
The Soho Works solved the problem of producing the mechanisms (in sizes
large enough to be useful in steam engines) that Watt devised [15]. The con-
tributions of Boulton and Watt to practical mechanics cannot be overestim-
ated. There were, in the eighteenth century, instrument makers and makers of
timekeepers who had produced astonishingly accurate work, but such work
comprised relatively small items, all being within the scope of a bench lathe,
hand tools, and superb handwork. The rapid advancement of machine tools,
which greatly expanded the scope of the machine- building art, began during
the Boulton and Watt partnership from 1775 to 1800.

In April 1775 an event occurred that marked the beginning of a new era
of technological advance. Boulton wrote to his partner and commented upon
receiving the cast-iron steam engine cylinder that had been finished in Wilkin-
son’s new boring mill: “it seems tolerably true, but is an inch thick and weighs
about 10 cwt (approximately 1100 lbs). The diameter is about as much above
18 inches as the tin one was under, and therefore, it has become necessary
to add a brass hoop to the piston, which is made almost two inches broad.”
This cylinder indeed marked the turning point in the discouragingly long de-
velopment of the Watt steam engine, which for 10 years had occupied nearly
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all of Watt’s thoughts and all the time he could spare from the requirements
of earning a living. Although there were many trials ahead for the firm of
Boulton and Watt in further developing and perfecting the steam engine, the
crucial problem of leakage of steam past the piston in the cylinder had now
been solved by the boring mill. This tool was the first large machine tool cap-
able of boring a cylinder both round and straight and the first of a new class
of machine tools that, over the next 50 or 60 years, came to include nearly all
of the basic types of heavy chip-removing tools that are in use today. The de-
velopment of tools was accelerated by the inherent accuracy required of the
linkages that were originated by Watt. Once it had been demonstrated that
a large and complex machine, such as the steam engine, could be built suf-
ficiently accurately so that its operation would be relatively free of trouble,
many outstanding minds became engaged in the development of machines
and tools. It is interesting, however, to see how Watt grappled with the solu-
tions of problems that resulted from the advance of the steam engine.

During the 1770s the demand for continuous, dependable power applied
to a rotating shaft was becoming insistent, and much of the efforts of Boulton
and Watt was directed toward meeting this demand. Mills of all kinds used
water or horses to turn “wheel-work,” but, while these sources of power were
adequate for small operations, the quantity of water available was often lim-
ited, and the use of enormous horse-whims was frequently impracticable. The
only type of steam engine then in existence was the Newcomen beam en-
gine, which had been introduced in 1712 by Thomas Newcomen. This type
of engine was widely used, mostly for pumping water out of mines but oc-
casionally for pumping water into a reservoir to supply a waterwheel. It was
arranged with a vertical steam cylinder located beneath one end of a large
pivoted working beam and a vertical plunger-type pump beneath the other
end. Heavy, flat chains were secured to a sector at each end of the working
beam and to the engine and pump piston rods in such a way that the rods were
always tangent to a circle whose center was at the beam pivot. The weight of
the reciprocating parts pulled the pump end of the beam down; the atmo-
sphere, acting on the open top of the piston in the steam cylinder, caused the
engine end of the beam to be pulled down when the steam beneath the piston
was condensed. The chains would, of course, only transmit force from piston
to beam when in tension.

A connecting rod, a crank, and a sufficiently heavy flywheel could have
been used in a conventional Newcomen engine in order to supply power to a



350 Gordon R. Pennock

rotating shaft, but contemporary evidence suggests that this solution was by
no means obvious to Watt. At the time of his first engine patent, in 1769, Watt
had devised a “steam wheel,” or rotary engine, that used liquid mercury in the
lower part of a toroidal chamber to provide a boundary for steam spaces suc-
cessively formed by flap gates within the chamber. The practical difficulties of
construction ruled out this solution to the problem of a rotating power source,
but not until after considerable effort and money was spent on the idea. In
1777, a speaker before the Royal Society in London observed that in order to
obtain rotary output from a reciprocating steam engine, a crank “naturally oc-
curs in theory,” but that in fact the crank is impractical because of the irregular
rate of running of the engine and its variable length of stroke. He said that on
the first variation of length of stroke the machine would be “either broken to
pieces, or turned back.” John Smeaton, in the front rank of English steam en-
gineers of his time, was asked in 1781 by His Majesty’s Victualling Office for
his opinion as to whether a steam-powered grain mill ought to be driven by
a crank or by a waterwheel supplied by a pump. His conclusion was that the
crank was quite unsuited to a machine in which regularity of operation was
a factor. “I apprehend,” he wrote, “that no motion communicated from the
reciprocating beam of a fire engine can ever act perfectly equal and steady
in producing a circular motion, like the regular efflux of water in turning a
waterwheel.” He recommended, incidentally, that a Boulton and Watt steam
engine be used to pump water to supply the waterwheel. Smeaton had thought
of a flywheel, but he reasoned that a flywheel large enough to smooth out the
halting, jerky operation of the steam engines that he had observed would be
more of an encumbrance than a pump, reservoir, and waterwheel.

The simplicity of the eventual solution of the problem was not clear to
Watt at this time. He was not, as tradition has it, blocked merely by the ex-
istence of a patent for a simple crank and thus forced to invent some other
device as a substitute. Wasbrough, the engineer commonly credited with the
crank patent, made no mention of a crank in his patent specification, but rather
intended to make use of “racks with teeth,” or “one or more pulleys, wheels,
segments of wheels, to which are fastened rotchets and clicks or palls.” He
did, however, propose to “add a fly or flies, in order to render the motion
more regular and uniform.” Unfortunately, he submitted no drawings with
his patent specification. James Pickard, a button maker in Birmingham, pat-
ented a counterweighted crank device in 1780 that was expected to remove
the objection of a crank. The device operated with changing leverage and,
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therefore, irregular power. The counterweighted wheel, revolving twice for
each revolution of the crank, allowed the counterweight to descend while the
crank passed the dead center position and would be raised while the crank
had maximum leverage. No mention of a flywheel was made in this patent.

Wasbrough, finding that his “rotchets and clicks” did not serve, actually
used a crank with a flywheel in 1780. Watt was aware of this, but he remained
unconvinced of the superiority of the crank over other devices and did not im-
mediately appreciate the regulating ability of a flywheel. In April 1781, Watt
wrote to Boulton, “. . . I know from experiment that the other contrivance,
which you saw me try, performs at least as well, and has in fact many advant-
ages over the crank” [10]. The “other contrivance” probably was his swash
wheel which he built and which appeared on his next important patent spe-
cification. Also in this patent were four other devices, one of which was easily
recognizable as a crank, and two of which were eccentrics. The fourth device
was the well-known sun-and-planet gearing. In spite of the similarity of the
simple crank to the several variations devised by Watt, this patent drew no
fire from Wasbrough or Pickard, perhaps because no reasonable person would
contend that the crank itself was a patentable feature, or perhaps because the
similarity was not at that time so obvious. However, Watt steered clear of
directly discernible application of cranks because he preferred to avoid a suit
that might overthrow his or other patents. For example, if the Wasbrough and
Pickard patents had been voided, they would have become public property;
and Watt feared that they might fall into the hands of men more ingenious,
who would give Boulton and Watt more competition than Wasbrough and
Pickard. The sun-and-planet arrangement, with gears of equal size, was ad-
opted by Watt for nearly all the rotative engines that he built during the term
of the “crank patents.” This arrangement had the advantage of turning the fly-
wheel through two revolutions during a single cycle of operation of the piston.
This required a flywheel only one-fourth the size of the flywheel needed if a
simple crank were used.

From the first, the rotative engines were made double-acting; i.e., work
was done by steam alternately in each end of the cylinder. The double-acting
engine, unlike the single-acting pumping engine, required a piston rod that
would push as well as pull. It was in the solution of this problem that Watt’s
originality and sure judgment were most clearly demonstrated. A rack and
sector arrangement was used on some engines. The first one, according to
Watt, “has broke out several teeth of the rack, but works steady.” A little later
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he told a correspondent that his double-acting engine, “acts so powerfully that
it has broken all its tackling repeatedly. We have now tamed it, however.” It
was about a year later that the straight-line linkage was thought out. “I have
started a new hare,” Watt wrote to his partner. “I have got a glimpse of a
method of causing the piston-rod to move up and down perpendicularly, by
only fixing it to a piece of iron upon the beam, without chains, or perpendicu-
lar guides, or untowardly frictions, archheads, or other pieces of clumsiness. I
have only tried it in a slight model yet, so cannot build upon it, though I think
it a very probable thing to succeed, and one of the most ingenious simple
pieces of mechanism I have contrived.”

This section is based on the tribute to James Watt by Eugene S. Ferguson,
1916–2004, a truly outstanding professional historian of technology whose
detailed and insightful monograph [2] encouraged the author to attempt the
writing of this brief article.

On the Circulation of Works

Watt’s marvelously simple straight-line linkage was incorporated into a large
beam engine almost immediately, and the inventor was elated when he told
Boulton: “new central perpendicular motion answers beyond expectation, and
does not make the shadow of a noise.” The parallel motion linkage was in-
cluded in an extensive patent submitted by Watt (British Patent 1321, 1782).
Figure 2a is a drawing of the Watt engine. The engine had a 30-inch diameter
cylinder and a stroke of 8 feet.

Figure 2a is Plate 15 in the book by J.P. Muirhead, The Origin and Pro-
gress of the Mechanical Inventions of James Watt, Vol. 3, London, England,
1854 [7]. A drawing of the Watt double acting steam engine that appeared in
the work of Lardner [16] is reproduced here in Figure 2b.

Watt considered several alternative devices for the conversion of reciproc-
ating motion to rotating motion in the steam engine. The device that he finally
employed in the Watt and Boulton large beam engines is the sun-and-planet
gearing that is shown in Figure 3.

Figure 3 is Plate 7 in the book by J.P. Muirhead, The Origin and Progress
of the Mechanical Inventions of James Watt, Vol. 3, London, England, 1854
[7].

As brilliant as the conception of the parallel motion linkage was, it was
followed up by a synthesis that is very little short of incredible. In order to
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Fig. 2a. The Watt engine (British Patent 1321, March 12, 1782).
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Fig. 2b. The Watt double acting steam engine.

make the linkage attached to the beam of his engines more compact, Watt
plumbed the depths of his experience for ideas. This experience yielded up the
work that was completed much earlier on a drafting machine that made use
of a pantograph. Watt combined his straight-line linkage with a pantograph,
one link becoming a member of the pantograph. This pantograph mechanism
[16], denoted as ABEG, is shown in Figure 4.

With this design, the length of each oscillating link of the straight-line
linkage was reduced to one-fourth instead of one-half the beam length. The
entire mechanism could then be constructed so that it would not extend bey-
ond the end of the working beam. This arrangement soon came to be known
as Watt’s parallel motion linkage, denoted as O2ABO4 in Figure 5.
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Fig. 3. The sun-and-planet gearing. (British Patent 1306, October 25, 1781).
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Fig. 4. The pantograph mechanism.

Through insight we can detect in this straight-line linkage the birth of a
very ordered and advanced synthetic process. The kinematic analysis of the
Watt four-bar linkage, see Figure 6a, and the geometry of the path of point M

fixed in the coupler link AB (link 3) can be investigated using the method of
kinematic coefficients [17].

The vectors that are required for the kinematic analysis of the Watt four-
bar linkage are shown in Figure 6b.

Modern Interpretation of Main Contribution to Mechanism
Design

The vector loop equation for the four-bar linkage can be written as
√

I

R2 +
√

?

R3 −
√

?

R4 +
√√

R1= 0, (1)
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Fig. 5. The Watt parallel motion linkage.

Fig. 6a. The Watt four-bar linkage.

where the first symbol above each vector indicates its magnitude and the
second symbol indicates its direction. The known quantities are denoted by√

the unknown variables are denoted by ?, and the independent variable is
denoted by I. Without loss in generality, the independent variable is assumed
to be the angular position of link 2 and the unknown variables are the angular
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Fig. 6b. The vectors for the Watt four-bar linkage.

positions of the coupler link 3 and the side link 4. The X and Y components
of Equation (1) are

R2 cos θ2 + R3 cos θ3 − R4 cos θ4 + R1 cos θ1 = 0 (2a)

and
R2 sin θ2 + R3 sin θ3 − R4 sin θ4 + R1 sin θ1 = 0. (2b)

Differentiating Equations (2) with respect to the independent variable θ2

gives
−R2 sin θ2 − R3 sin θ3θ

′
3 + R4 sin θ4θ

′
4 = 0 (3a)

and
R2 cos θ2 + R3 cos θ3θ

′
3 − R4 cos θ4θ

′
4 = 0, (3b)

where θ ′
3 = dθ3/dθ2 and θ ′

4 = dθ4/dθ2 are referred to as the first-order kin-
ematic coefficients of links 3 and link 4, respectively. Then writing Equa-
tions (3) in matrix form gives[

−R3 sin θ3 R4 sin θ4

R3 cos θ3 −R4 cos θ4

] [
θ ′

3

θ ′
4

]
=

[
R2 sin θ2

−R2 cos θ2

]
. (4)

The determinant of the coefficient matrix in Equation (4) can be written as

DET =
∣∣∣∣∣−R3 sin θ3 R4 sin θ4

R3 cos θ3 −R4 cos θ4

∣∣∣∣∣ = R3R4 sin(θ3 − θ4). (5a)

Note that the determinant is zero when

θ3 = θ4 or θ3 = θ4 + 180◦, (5b)
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i.e., the mechanism is in a special position (links 3 and 4 are either aligned or
folded on top of each other). Using Cramer’s Rule, the first-order kinematic
coefficient of link 3, from Equation (4), can be written as

θ ′
3 =

∣∣∣∣∣ R2 sin θ2 R4 sin θ4

−R2 cos θ2 −R4 cos θ4

∣∣∣∣∣
DET

= R2R4 sin(θ4 − θ2)

DET
(6a)

and the first-order kinematic coefficient of link 4 can be written as

θ ′
4 =

∣∣∣∣∣−R3 sin θ3 R2 sin θ2

R3 cos θ3 −R2 cos θ2

∣∣∣∣∣
DET

= R2R3 sin(θ3 − θ2)

DET
, (6b)

where the determinant is given by Equation (5a).
Differentiating Equations (3) with respect to the independent variable θ2

gives

−R2 cos θ2−R3 cos θ3θ
′2
3 −R3 sin θ3θ

′′
3 +R4 cos θ4θ

′2
4 +R4 sin θ4θ

′′
4 = 0 (7a)

and

−R2 sin θ2−R3 sin θ3θ
′2
3 +R3 cos θ3θ

′′
3 +R4 sin θ4θ

′2
4 −R4 cos θ4θ

′′
4 = 0, (7b)

where θ ′′
3 = d2θ3/dθ2

2 and θ ′′
4 = d2θ4/dθ2

2 are referred to as the second-
order kinematic coefficient of links 3 and 4, respectively. Then writing Equa-
tions (7) in matrix form gives

[
−R3 sin θ3 R4 sin θ4

R3 cos θ3 −R4 cos θ4

] [
θ ′

3
θ ′

4

]
=

[
R2 cos θ2 + R3 cos θ3θ

′2
3 − R4 cos θ4θ ′2

4
R2 sin θ2 + R3 sin θ3θ ′2

3 − R4 sin θ4θ ′2
4

]
. (8)

Note that the coefficient matrices in Equations (4) and (8) must be the same,
which is a useful check of the differentiation. Using Cramer’s rule, the
second-order kinematic coefficient of link 3, from Equation (8), is

θ ′′
3 =

∣∣∣∣∣R2 cos θ2 + R3 cos θ3θ
′2
3 − R4 cos θ4θ

′2
4 R4 sin θ4

R2 sin θ2 + R3 sin θ3θ
′2
3 − R4 sin θ4θ

′2
4 −R4 cos θ4

∣∣∣∣∣
DET

(9a)

and the second-order kinematic coefficient of link 4 is
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θ ′′
4 =

∣∣∣∣∣−R3 sin θ3 R2 cos θ2 + R3 cos θ3θ
′2
3 − R4 cos θ4θ

′2
4

R3 cos θ3 R2 sin θ2 + R3 sin θ3θ
′2
3 − R4 sin θ4θ

′2
4

∣∣∣∣∣
DET

, (9b)

where the determinant is given by Equation (5a).
From the definition of the first-order kinematic coefficients, the angular

velocities of links 3 and 4 can be written, respectively, as

ω3 = θ ′
3ω2 and ω4 = θ ′

4ω2. (10)

Differentiating Equations (10) with respect to time, the angular accelerations
of links 3 and 4 can be written, respectively, as

α3 = θ ′′
3 ω2

2 + θ ′
3α2 and α4 = θ ′′

4 ω2
2 + θ ′

4α2. (11)

Now that the kinematic analysis of the linkage is complete, the kinematics of
the coupler point M and the geometry of the path traced by point M can be
investigated. The vectors that are required for the kinematic analysis of point
M are as shown in Figure 7.

Fig. 7. The vectors for the coupler point M .

The vector equation for coupler point M can be written as

R̄M = R̄2 + R̄33. (12)

The X and Y components of this equation are

XM = R2 cos θ2 + R33 cos θ3 (13a)

and
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YM = R2 sin θ2 + R33 sin θ3. (13b)

Differentiating Equations (13) with respect to the independent variable θ2, the
first-order kinematic coefficients of coupler point M are

X′
M = −R2 sin θ2 − R33 sin θ3θ

′
3 (14a)

and
Y ′

M = R2 cos θ2 + R33 cos θ3θ
′
3, (14b)

where θ ′
3 (i.e., the first-order kinematic coefficient of coupler link 3) is known

from the kinematic analysis of the four-bar linkage, see Equation (6a).
Differentiating Equations (14) with respect to the independent variable θ2,

the second-order kinematic coefficients of coupler point M are

X′′
M = −R2 cos θ2 − R33 cos θ3θ

′2
3 − R33 sin θ3θ

′′
3 (15a)

and
Y ′′

M = −R2 sin θ2 − R33 sin θ3θ
′2
3 + R33 sin θ3θ

′′
3 , (15b)

where θ ′′
3 (i.e., the second-order kinematic coefficient of coupler link 3) is

known from the kinematic analysis of the four-bar linkage, see Equation (9a).
The velocity and acceleration of coupler point M can be written, respect-

ively, as
V̄M = (X′

Mî + Y ′
Mĵ)ω2 (16a)

and
ĀM = (X′′

Mî + Y ′′
Mĵ)ω2

2 + (X′
Mî + Y ′

Mĵ)α2. (16b)

The geometry of the path traced by coupler point M can be investigated as
follows. The unit tangent vector and the unit normal vector to the path of
point M can be written, respectively, as

ût = X′
Mî + Y ′

Mĵ

R′
M

(17a)

and

ûn = k̂ × ût = −Y ′
Mî + X′

Mĵ

R′
M

, (17b)

where
R′

M = ±
√

(X′
M)2 + (Y ′

M)2 . (18)
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Sign Convention: The positive sign is used in Equation (18) if the change
in the independent variable is positive (i.e., counterclockwise) and the neg-
ative sign is used if the change in the independent variable is negative (i.e.,
clockwise).

The radius of the curvature of the path traced by coupler point M can be
written as

ρM = V 2
M

An
M

, (19a)

where the normal acceleration of coupler point M can be written as

An
M = ĀM · ûn. (19b)

Substituting Equations (16b) and (17b) into Equation (19b) and performing
the dot product, the normal acceleration of coupler point M can be written as

An
M = (X′

MY ′′
M − Y ′

MX′′
M)ω2

2

R′
M

. (20)

Then substituting Equations (16a) and (20) into Equation (19a), and using
Equation (18), the radius of the curvature of the path traced by the coupler
point M can be written as

ρM = R′3
M

X′
MY ′′

M − Y ′
MX′′

M

. (21)

Finally, the Cartesian coordinates of the center of the curvature of the path
traced by coupler point M can be written as

Xcc = XM + ρM(un)x (22a)

and
Ycc = YM + ρM(un)y. (22a)

Substituting Equation (17b) into Equations (22), the Cartesian coordinates
of the center of the curvature of the path traced by coupler point M can be
written as

Xcc = XM + ρM

[−Y ′
M

R′
M

]
(23a)

and

Ycc = YM + ρM

[
X′

M

R′
M

]
. (23b)
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In general, an arbitrary coupler point of a general four-bar linkage will trace
a curve which is described as a tricircular sextic [18–20]. However, coupler
point M of the Watt four-bar linkage traces a special curve which is best
described as a figure-eight-shaped curve, as shown in Figure 8.

Fig. 8. The curve traced by coupler point M .

This curve is commonly referred to as a lemniscate and has two segments
that approximate straight lines [21]. By means of the pantograph mechanism
(see Figure 4), the path traced by point M ′ (see Figure 5) is similar to the path
traced by coupler point M.

The Watt four-bar linkage was employed some 75 years after its inception
by Richards when, in 1861, he designed his first high-speed engine indic-
ator. The Richards indicator, which was introduced into England the follow-
ing year, was an immediate success, and many thousands were sold over the
next several decades. In considering the order of synthetic ability required to
design the straight-line linkage and to combine it with a pantograph, it should
be kept in mind that this was the first one of a long line of such mechanisms.
Once the idea was abroad, it was only to be expected that many variations and
alternative solutions should appear. One could wonder, however, what direc-
tion the subsequent work would have taken if Watt had not so clearly pointed
the way.

Farey, in an exhaustive study of the steam engine, wrote perhaps the best
contemporary view of Watt’s work in 1827. As a young man, Farey had talked
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several times with the aging Watt, and he had reflected upon the nature of the
intellect that had caused Watt to be recognized as a genius, even within his
own lifetime. In attempting to explain Watt’s genius, Farey set down some
observations that are pertinent not only to kinematic synthesis but to the cur-
rently fashionable term “creativity.” In Farey’s opinion, Watt’s inventive fac-
ulty was far superior to that of any of his contemporaries; but his many and
various ideas would have been of little use if he had not possessed a very
high order of judgment, that “faculty of distinguishing between ideas; de-
composing compound ideas into more simple elements; arranging them into
classes, and comparing them together.” Farey was of the opinion that while a
mind like Watt’s could produce brilliant new ideas, still the “common stock of
ideas which are current amongst communities and professions, will generally
prove to be of a better quality than the average of those new ideas, which can
be produced by any individual from the operation of his own mind, without
assistance from others.” Farey concluded with the observation that “the most
useful additions to that common stock, usually proceed from the individuals
who are well acquainted with the whole series.”

During most of the century after Watt had produced his parallel motion,
the problem of devising a linkage, one point of which would describe a
straight line, was one that engaged the minds of mathematicians, ingenious
mechanics, and of gentlemanly dabblers in ideas. The quest for a straight-line
mechanism more accurate than that of Watt far outlasted the pressing prac-
tical need for such a device. Large metal planning machines were well known
by 1830, and by mid-century crossheads and crosshead guides were used on
both sides of the Atlantic in engines with and without working beams. By
1819, Farey had observed quite accurately that, in England at least, many
other schemes had been tried and found wanting and that “no methods have
been found so good as the original engine; and we accordingly find, that all
the most established and experienced manufacturers make engines which are
not altered in any great feature from Mr. Watt’s original engine.”

Two mechanisms for producing a straight line were introduced before
the Boulton and Watt monopoly ended in 1800. The first was by Cartwright
(1743–1823), who is said to have had the original idea for a power loom. This
geared device was characterized, somewhat patronizingly, by a contemporary
American editor as possessing “as much merit as can possibly be attributed to
a gentleman engaged in the pursuit of mechanical studies for his own amuse-
ment.” However, only a few small engines were made under the patent. The
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properties of a hypocycloid were recognized by White, an English engineer,
in his geared design which employed a pivot located on the pitch circle of a
spur gear revolving inside an internal gear. The diameter of the pitch circle
of the spur gear was one-half that of the internal gear, with the result that
the pivot, to which the piston rod was connected, traced out a diameter of
the large pitch circle. White received a medal from Napoleon Bonaparte in
1801 for this invention when it was exhibited in Paris at an industrial ex-
position. Some steam engines employing White’s mechanism were built, but
without conspicuous commercial success. White himself agreed that while
his invention was “allowed to possess curious properties, and to be a pretty
thing, opinions do not all concur in declaring it, essentially and generally, a
good thing.”

The first of the non-Watt four-bar linkages appeared shortly after 1800.
The origin of the grasshopper beam motion is somewhat obscure, although it
came to be associated with Evans, the American pioneer, in the employment
of high-pressure steam. A similar idea, employing an isosceles linkage, was
patented in 1803 by Freemantle, an English watchmaker. This is the linkage
that was attributed much later to Russell (1808–1882), the prominent naval
architect. An inconclusive hint that Evans had devised his straight-line link-
age by 1805 appeared in a plate illustrating his Abortion of the Young Steam
Engineer’s Guide (Philadelphia, 1805), and it was used on his Columbian en-
gine, which was built before 1813. The Freemantle linkage, in modified form,
appeared in Rees’s Cyclopaedia of 1819, but it is doubtful whether even this
would have been readily recognized as identical with the Evans linkage, be-
cause the connecting rod was at the opposite end of the working beam from
the piston rod, in accordance with established usage, while in the Evans link-
age the crank and connecting rod were at the same end of the beam. It is
possible that Evans obtained his idea from an earlier English periodical, but
concrete evidence appears to be lacking. If the idea did in fact originate with
Evans, it is strange that he did not mention it in his patent claims, or in the
descriptions that he published of his engines.

For more detailed information on the history of the problem to convert
circular motion into straight line motion, the reader is referred to several ref-
erences [see 22–24].
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Concluding Remarks

James Watt died at Heathfield in Staffordshire on August 19th, 1819 and was
buried in the grounds of St. Mary’s Church, Handsworth, in Birmingham. He
had been elected a Fellow of the Royal Society of Edinburgh in 1784, and
a Fellow of the Royal Society of London in 1785. At the age of 70, he was
granted the degree of LL.D. (Honorary Doctor of Law) by the University of
Glasgow in 1806. Watt was made corresponding member of the Institute of
France in 1808, and one of the eight Foreign Associates of the Academie des
Sciences in 1814. He was offered a baronetcy, late in his life, but declined
this honor. Perhaps this was evidence, to support his claim, that he was not
over-anxious for fame. However, in spite of his humility, a marble monument
to Watt was erected in Westminster Abbey, London, in 1824.

Watt, the man, can best be described by recounting the words of the fam-
ous Scottish novelist and poet, Sir Walter Scott (1771–1832) who wrote these
words sometime after Watt’s eightieth birthday: “The alert, kind, benevol-
ent old man had his attention alive to every one’s question. His information
at every one’s command – the man whose genius discovered the means of
multiplying our national resources to a degree perhaps even beyond his own
stupendous powers of calculation and combination. This potent commander
of the elements, this abridger of time and space, this magician, whose cloudy
machinery has produced a change on the world, the effects of which, ex-
traordinary as they are, are perhaps only now beginning to be felt, was not
only the most profound man of science, the most successful combiner of
powers and calculator of numbers as adapted to practical purposes, was not
only one of the most generally well-informed but one of the best and kindest
of human beings.”

To commemorate the bicentenary of the birth of Watt, the Institution of
Mechanical Engineers of Great Britain decided to award every two years a
Gold Medal to an engineer of any nationality who is deemed worthy of the
highest award the Institution can bestow and that a mechanical engineer can
receive. In making this award, the Institution sought the co-operation and
advice of engineering Institutions and Societies in all parts of the world. In
the long list of those who, by the practice of mechanical engineering, have
added to the comfort, well-being and prosperity of mankind there is no man
who holds a higher place in universal estimation than James Watt.

The eighth oldest higher education institution in the United Kingdom is
the Heriot-Watt University. The history of this great university can be traced



James Watt 367

back to the School of Arts of Edinburgh, which was founded in 1821 as the
first mechanics institute in Great Britain. In 1852 the School incorporated
the funds raised by public subscription to erect a monument to the memory
of James Watt and was renamed the Watt Institution and School of Arts. In
1869, in response to a campaign by female subscribers and their supporters,
the Governors took the radical step of allowing women to attend classes on
equal terms with men. This placed the School in the vanguard of Scottish
Higher Education Institutions. It was not until the Universities (Scotland) Act
of 1889 that Universities were empowered to admit women to graduation.

In 1885, the School merged with the trust bequeathed to Edinburgh in
1623 by George Heriot, who had been a goldsmith and financier to King
James VI (James I of England), and was renamed Heriot-Watt College. The
first professors of the new technical college were appointed in 1887. In re-
cognition of the teaching quality, the College became a Central Institution
in 1902, partly funded by the Scottish Education Department. From 1928,
an independent Board of Governors assumed responsibility for the College
but continued to receive financial support from George Heriot’s Trust. The
College continued to enhance its reputation in the fields of science and en-
gineering and, on the recommendation of the Royal Commission on Higher
Education chaired by Lord Robbins, became Heriot-Watt University in 1966.
In 1969, Midlothian Council gifted the University with the Riccarton estate
in southwest Edinburgh. This provided the vital spring-board for Heriot-Watt
University to expand on a new purpose-built campus and to develop leading-
edge strengths in teaching and research. An integral part of the campus is
Europe’s first Research Park, founded in 1971. In 1998, the university merged
with the Scottish College of Textiles to create the Scottish Borders Campus
in Galashiels. Heriot-Watt University has a long tradition of innovative teach-
ing, learning and research, geared to the needs of modern industry, business
and society. The University specializes in the built environment, engineer-
ing and physical sciences, mathematics and informatics, computer science,
business management, finance, languages and textiles. Today, the University
is an internationally renowned center for innovative education, enterprise and
cutting-edge research. With campuses in Scotland and Dubai and over 18,000
students registered on courses from over 153 countries worldwide, Heriot-
Watt University can rightfully claim to be Scotland’s international university.



368 Gordon R. Pennock

Acknowledgements

The author wishes to acknowledge the many outstanding scholars who have
written such fascinating historical accounts of the life and times of James
Watt. Unfortunately, space does not permit the author to name them individu-
ally but their books, treatises, and papers are the basis for this brief article.
The article written by Eugene S. Ferguson [2] on the kinematics of mech-
anisms from the time of Watt was of particular inspiration. The author also
wishes to thank the Institution of Mechanical Engineers, Great Britain, and
Heriot-Watt University, Scotland, for the information they so willing provided
on the significant contributions of James Watt. Surely, he was a profound man
of science.

References

1. Beare, T.H., James Watt, in Proceedings of the Institution of Mechanical Engineers, Lon-
don, England, Vol. 132, Publication 17, January, 1936, pp. 39–55.

2. Ferguson, E.S., Kinematics of Mechanisms from the Time of Watt, United States National
Museum, Bulletin 228, Paper 27, Smithsonian Institution, Washington, DC, 1962, pp.
185–230.

3. Marshall, T.H., James Watt, The Roadmaker Series, Leonard Parsons, London, England,
1925.

4. Jacks, W., James Watt, James Maclehose and Sons, Publishers to the University of Glas-
gow, Scotland, 1901.

5. Muirhead, J.P., The Life of James Watt, with selections from his correspondence, London,
England, 1858.

6. Dickinson, H.W., James Watt, Craftsman and Engineer, Cambridge University Press,
Cambridge, England, 1936.

7. Muirhead, J.P., The Origin and Progress of the Mechanical Inventions of James Watt,
Vols. 1, 2 and 3, London, England, 1854.

8. Cowper, E.A., On the Inventions of James Watt and his models preserved at Handsworth
and South Kensington, in Proceedings of the Institution of Mechanical Engineers, Lon-
don, England, Vol. 34, Publication 1, November, 1883, pp. 599–631.

9. Porter, C.T., Engineering Reminiscences, New York, 1908.
10. White, J., A New Century of Inventions, Manchester, England, 1822.
11. Peaucellier, C.N., Note sur une question de geometrie de compas, Nouvelles Annales de

Mathematiques, Second Series, 12, 1873, pp. 71–81. (Also, a letter in Second Series, Vol.
3, 1864, pp. 414 and 415.)

12. Hopcroft, J., Joseph, D., and Whitesides, S., Movement Problems for 2-Dimensional
Linkages, SIAM Journal of Computing, 13(3), August, 1984, pp. 610–629.

13. Ramelli, A., Le Diverse et Artificiose Machine, Paris, France, 1588.



James Watt 369

14. Reuleaux, F., The Kinematics of Machinery – Outlines of a Theory of Machines, Trans-
lated and Edited by A.B.W. Kennedy, MacMillan and Co., London, England, 1876. Re-
printed in 1963 by Dover Publications, New York (with a new Introduction by E.S. Fer-
guson).

15. Rankine, W.J.M., Manual of Machinery and Millwork, London, England, 1887.
16. Lardner, D., The Steam Engine, Sixth Edition, Taylor and Walton, London, England,

1836.
17. Uicker, J.J. Jr., Pennock, G.R., and Shigley, J.E., Theory of Machines and Mechanisms,

Third Edition, Oxford University Press, New York, 2003.
18. Beyer, R., The Kinematic Synthesis of Mechanisms, Chapman and Hall, London, England,

1963.
19. Hunt, K.H., Kinematic Geometry of Mechanisms, Clarendon Press., Oxford, England,

1978.
20. Pennock, G.R. and Kinzel, E.C., Graphical Technique to Locate the Center of Curvature

of a Coupler Point Trajectory, ASME Journal of Mechanical Design, 126(6), 2004,
pp. 1000–1005.

21. Hartenberg, R.S. and Denavit, J., Kinematic Synthesis of Linkages, McGraw-Hill, New
York, 1964.

22. Taimina, D., How to Draw a Straight Line, http://www.math.cornell.edu/∼dwh/courses/
M451-F02/PL-2.htm, 2003.

23. Cornell University, Introducing a Digital Library of Kinematics, http://www.cornell.edu/
explorecornell/scene.cfm, 2003.

24. Kempe, A.B., How to Draw a Straight Line; A Lecture on Linkages, Macmillan, London,
England, 1877.



WALTER WUNDERLICH
(1910–1998)

Manfred Husty

Institute of Basic Sciences in Engineering, Unit Geometry and CAD,
University of Innsbruck, Technikerstraße 13, Innsbruck, Austria
E-mail: manfred .husty@uibk.ac.at

Abstract. Walter Wunderlich was one of the most influential Austrian kinematicians in the
20th century. He wrote more than 200 scientific papers in the fields of mathematics, geometry
and kinematics. Because of his influence, kinematic geometry is still an important subject in
the curricula of geometry teachers’ education in Austria.

Biographical Notes

Walter Wunderlich was born in Vienna on March 6th, 1910.1 His father was
an engineer. His ancestors came from different parts of the former Austrian
empire. He had relatives in today’s Slovenia, Bohemia and Hungary. These
relatives were very important in his youth. Many of his holidays were spent
in Hungary or in Bohemia, where he learned the Hungarian and Czech lan-
guages, both of which he spoke fluently.

After graduation from the “Realschule” (a natural science oriented high
school) he studied civil engineering, but after finishing the undergraduate
courses he changed to mathematics and descriptive geometry. He wanted to
become a high school teacher in these subjects. At the University of Vienna
he had excellent and famous professors as teachers. In mathematics: P. Furt-
wängler (founder of the Vienna school of number theory), H. Hahn (one of the
founders of functional analysis, “theorem of Hahn–Banach”), K. Mayrhofer
and W. Wirtinger (functional analysis, Wirtinger was the third winner of
the Cayley prize after Cantor and Poincaré) and in descriptive geometry L.
Eckhart, J. Krames, E. Kruppa, Th. Schmid and L. Schrutka. His master’s

1 Biographical notes are taken from Stachel (1999).

M. Ceccarelli (ed.), Distinguished Figures in Mechanism and Machine Science, 371–392.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. Walter Wunderlich in March 1990. (Photo taken from Stachel (1999) with permission
from the author)

thesis (Diplomarbeit) under supervision of E. Kruppa on “Nichteuklidische
Schraubungen” (Non-Euclidean Screw Motions) was finished in 1933 and
already one year later he submitted his PhD. thesis (Doktorarbeit) having the
title “Über eine affine Verallgemeinerungen der Lyon’schen Grenzschraubun-
gen” (An affine generalization of Lyon’s limit screw-motions).

Surrounded by many problems, mainly due to the political situation in
Austria, he started a scientific career, got a part-time position as a tutor and
in 1934 became assistant to L. Eckhart. In 1939 he submitted a habilita-
tion thesis with the title “Darstellende Geometrie nichteuklidischer Schraub-
flächen” (Descriptive geometry of non-Euclidean screw surfaces). Immedi-
ately after the habilitation exam he was conscripted to the army. This fact
is mentioned because it was during the war that he wrote his first scientific
papers. Three of his papers even bear the affiliation “in the battlefield”. In
1942 he was released from military service and went as a private researcher
to a military research institution. He worked in the unit “physics of blasting”
and wrote a book titled Introduction to Under-Water Blasting, which was fin-
ished after the World War under American supervision.2 In 1943 he became
university docent in Berlin, but because of problems due to the war he never
started teaching. After the war he and his wife were in British internment

2 He himself never mentions this book in the list of publications.
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camps, where also their first son was born. In 1946, after coming back to Vi-
enna, he immediately was re-employed at TU Vienna because he never was
politically active. He became associate professor at the Technical University
in Vienna and in 1951 he was appointed full professor. From that time he
always stayed in Vienna, although many universities offered him challenging
positions: Karlsruhe, Aachen and Munich. He was Dean of Natural Sciences
faculty and Rector Magnificus of TU Vienna. He retired in 1980, but wrote
more than 40 high standard scientific papers as a professor emeritus. Ten
years before his death he suffered a retina ablation and died almost blind in
1998.

Walter Wunderlich was a member of the Austrian academy of science and
for more than 25 years honorary editor of the IFToMM journal Mechanism
and Machine Theory.

List of Main Works

Books

Wunderlich, W., Ebene Kinematik.
Wunderlich, W., Darstellende Geometrie I, 1966.
Wunderlich, W., Darstellende Geometrie II, 1967.

Contributions to Non-Euclidean Kinematics

Wunderlich, W., Über eine affine Verallgemeinerung der Grenzschraubung,
1935.
Wunderlich, W., Darstellende Geometrie nichteuklidischer Schraubflächen,
1936.

Contributions to CAM Theory

Wunderlich, W., Contributions to the geometry of cam mechanisms with os-
cillating followers, 1971.
Wunderlich, W., Kurven mit isoptischem Kreis, 1971.
Wunderlich, W., Kurven mit isoptischer Ellipse, 1971.
Wunderlich, W., Single-disk cam mechanisms with oscillating double roller
follower, 1984.
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Contributions to Gearing Theory

Wunderlich, W. and Zenow, P., Contribution to the geometry of elliptic gears,
1975.
Wunderlich, W., Zur Triebstockverzahnung, 1943.
Wunderlich, W., Über abwickelbare Zahnflanken und eine neue Kegelrad-
verzahnung, 1948.

Contributions to Singular Mechanisms

Wunderlich, W., Starre, kippende, wackelige und bewegliche Achtflache,
1965.
Wunderlich, W., Starre, kippende, wackelige und bewegliche Gelenkvierecke
im Raum, 1971.
Wunderlich, W., Fokalkurvenpaare in orthogonalen Ebenen und bewegliche
Stabwerke, 1976.
Wunderlich, W., Über die gefährlichen Örter bei zwei Achtpunktproblemen
und einem Fünfpunktproblem, 1977.
Wunderlich, W., Bewegliche Stabwerke vom Bricardschen Typus, 1977.
Wunderlich, W., Gefährliche Annahmen der Trilateration und bewegliche
Fachwerke I, 1977.
Wunderlich, W., Gefährliche Annahmen der Trilateration und bewegliche
Fachwerke II, 1977.
Wunderlich, W., Über gefährliche Annahmen beim Clausenschen und Lam-
bertschen Achtpunktproblem, 1978.
Wunderlich, W., Eine merkwürdige Familie von beweglichen Stabwerken,
1979. Wunderlich, W., Snapping and shaky antiprismas, 1979.
Wunderlich, W., Neue Wackelikosaeder, 1980.
Wunderlich, W., Wackelige Doppelpyramiden, 1980.
Wunderlich, W., Zur projektiven Invarianz von Wackelstrukturen, 1980.
Wunderlich, W., Wackeldodekaeder, 1980.
Wunderlich, W., Projective invariance of shaky structures. 1982.
Wunderlich, W., Kipp-Ikosaeder I, 1981.
Wunderlich, W., Kipp-Ikosaeder II, 1982.
Wunderlich, W., Ringartige Wackelpolyeder, 1982.
Wunderlich, W., Wackeldodekaeder. 1982.
Wunderlich, W., and Schwabe, Ch., Eine Familie von geschlossenen gleich-
flächigen Polyedern die fast beweglich sind, 1986.
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Wunderlich, W., Fast bewegliche Oktaeder mit zwei Symmetrieebenen, 1987.
Wunderlich, W., Shaky polyhedra of higher connection, 1990.

A Review of Walter Wunderlich’s Scientific Work

Walter Wunderlich’s scientific work comprises 205 papers including three
books. Almost all of the papers are journal papers and single authored. The
main part of his scientific work is devoted to kinematics. More than 60 papers
including one book are from this field. His other interests were in descriptive
geometry, the theory of special curves and surfaces, the classical differential
geometry and the application of geometry in surveying, civil and mechanical
engineering.

It is worth noting that Walter Wunderlich did not develop an outstanding
scientific theory, he contributed self-contained solutions to a large variety of
problems in the above mentioned fields. All the time his unique geometric
intuition was basic to his approach and sometimes the reader of his papers
needs a lot of geometric knowledge to follow his elegant arguments and his
stringent style of proofs. In the following review of Wunderlich’s scientific
achievements we will restrict ourselves to kinematic papers, the other fields
will be mentioned only briefly in one subsection.

The first papers published by Wunderlich are devoted to kinematic prob-
lems in Non-Euclidean geometries. After F. Klein’s Erlangen program from
1872, studies in different Non-Euclidean geometries became very popular. It
was quite natural that also kinematic theory was developed in Non-Euclidean
settings. The most important mathematicians and geometricians contributing
to this field were W. Blaschke, E. Study, and F. von Lindemann. In W. Wun-
derlich’s first scientific papers, essentially coming from his master’s thesis,
his dissertation and his habilitation thesis, he studies screw motions in elliptic
space, hyperbolic space and the isotropic space which can be obtained from
the elliptic space by some limit process.3 Most of the time Wunderlich uses
geometric or descriptive geometric methods to determine invariant properties
of motions. To obtain graphic solutions he uses a Clifford parallel projection,
which is quite natural in these Non-Euclidean Geometries. Most important
for the classical kinematics in the plane are his results on screw surfaces in a

3 This limiting case and the screw motion were also studied later on by Husty (1983) in his
Dissertation.
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Fig. 2. Higher cycloidal motions.

quasi-elliptic space, because this Non-Euclidean space is the kinematic image
space of planar motions.

In 1947 he published a paper dealing with a generalization of cycloidal
motions (Wunderlich, 1947). In this paper he introduced so-called higher cyc-
loidal motions. Cycloidal motions are obtained if both centrodes of a planar
motion are circles. The paths of points are cycloids (epi-cycloids, hypo-
cycloids). The same motion can be obtained by the end-effector of a planar
2R-linkage when both revolute joints rotate with constant angular velocity.
Wunderlich’s generalization is now that he allows n systems. Therefore he
obtains the one-parameter motion of an nR-chain where all links rotate with
constant angular velocity (see Figure 2).

The paths of points of the final system are called cycloids of nth stage. The
analytic representation of the paths is obtained easily when one uses complex
numbers to describe planar motions:

z = x + Iy =
s∑

i=1

ave
Iωvt .

The description of planar motions with complex numbers requires a histor-
ical remark: Although Bereis (1951) is often cited to be the founder of this
method, Wunderlich has used complex numbers (also the so-called isotropic
coordinates) earlier. In private communications he claimed that he was the
one who encouraged Bereis to develop a theory of planar kinematics using
complex numbers. According to Wunderlich it was the Italian geometrician
Bellavitis (1874) who underlined the vectorial interpretation of complex num-
bers using the symbol “ramun” (radice di meno uno) instead of I to describe
the 90◦ rotation. The application of isotropic coordinates was introduced by
Cayley (1868) and Laguerre (1870). The main result of Wunderlich concern-
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ing generalized cycloidal motions is the generalization of Euler’s theorem:
Every cycloid of nth stage can be generated by a 2(n − 1)-chain of circles in
n! different ways. Wunderlich shows that the moving and the fixed centrodes
of the corresponding one-parameter higher cycloidal motions are higher cyc-
loids and discusses a lot of geometric properties of the paths of points and the
envelopes of lines. Wunderlich proves also another generalisation of Euler’s
theorem: Every higher cycloid of nth stage can be generated in n different
ways by rolling of two higher cycloids of stage n − 1. This theorem is visual-
ized in Figure 3: a cycloidal motion is given by the equation:

Fig. 3. Triple generation of a higher cycloidal curve of 3rd stage.

The path of A3 in this motion is a rhodonea (rose-curve; the dotted curve
in the three figures). The motion can be generated in three different ways in

(a) the fixed polhode is an ellipse and the moving polhode is Pascal’s curve;
(b) an epi-cycloid rolls on a Pascal-curve; and
(c) the polhodes are two Steiner-cycloids.

Later on Wunderlich used higher cycloids for curve approximation in the
plane (Wunderlich, 1950).

In 1968 Wunderlich published his book on planar kinematics (Ebene
Kinematik). This book contains all topics of planar kinematics treated from a
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Fig. 4. Coupler curves.

geometric point of view, but it has many links to the applications and some
unusual facets. It starts with the classical basics of planar kinematics but, a
noteworthy point, complex numbers are used continuously to describe the
motions and their properties analytically. The advantage of the method may
be shown in Wunderlich’s derivation of the equation of the coupler curve of
a planar four-bar using isotropic coordinates.

Referring to the notation of Figure 4 he writes the bars LA, AB and BM

of the four-bar in complex numbers. These complex numbers have constant
absolute value (modulus) |u| = a, |v| = c, |w| = b but changing arguments
(angles) and the constant sum

u + v + w = d.

An arbitrary complex number m is then used to describe a point of the coupler
system:

z = u + mv.

Using the relations:

uū = a2, vv̄ = c2, ww̄ = b2

to eliminate u, v, w and their conjugates, he obtains a relation between z and z̄
which is the equation of the coupler curve in minimal (isotropic) coordinates:
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Fig. 5. Focal circle.

[n̄(z − d)P − m̄zQ][n(z̄ − d)P − mz̄Q] + c2R2 = 0,

where P,Q,R are quadratic polynomials in z, and z̄ and n = m − 1. This
concept of minimal coordinates is used in the book consequently up to the
third differential order to derive e.g. the equation of center-point curves and
all the other well-known curves in planar kinematics.

Figures 5 and 6 show typical examples from the book on planar kinemat-
ics. There is no other book in planar kinematics which visualizes the the-
oretical concepts in such a clear way. Figure 5 deals with the focal circle.
At first Wunderlich shows, using the complex representation of the coupler-
curve, that the three points L, M and N forming a triangle similar to the
coupler triangle are exceptional foci of the coupler curve, because they are
intersections of isotropic asymptotes of the coupler curve. A simple sym-
metry argument in the two triangles A1DA2 and B1DB2 yields that D must
be seen from L and M under the angle γ , therefore D must be on the focal
circle f . Because f and the coupler curve, which is of degree six, have 12
points of intersection, from which six are in the circle-points, one can con-
clude immediately that each coupler curve has three double points. Figure 5
now shows clearly Wunderlich’s ability to visualize the whole complexity
of this theorem: in one figure, he displays all the possibilities that can hap-
pen. The double points can be real (D1), complex (D2) or the double point
can be a cusp (D3). Figure 6 presents an example of a symmetrical four-bar
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Fig. 6. Pole curves and coupler curves.

with coupler curve having three real double points and a moving and a fixed
centrode. In a full chapter, applications and special layouts of four-bar mech-
anisms are discussed. Figure 7 shows how Wunderlich has linked in the book
the geometric and kinematic theory with practical applications. On the left-
hand side one can see the electro-mechanical device, namely a high voltage
switch and on the right-hand side there is the kinematic analysis of the device
containing the centrodes of the motion and the coupler curve of the point of
interest P .

An important part of the book is devoted to multi-body mechanisms, fo-
cal mechanisms and singular planar multi-body systems. The investigation of
singular frameworks is one of the main contributions of Walter Wunderlich.
Most the time he provides simple, convincing geometric arguments for the
exceptionality of a linkage. In Figures 8 and 9 two examples are shown. Both
examples show nine-bar frameworks. In the first example two triangles ABC

and LMN are linked by three bars AL, BM and CN and in the second we
see a hexagon ABCDEF with its three diagonals AD, BE and CF .

In both figures, from left to right, rigid, shaky (infinitesimal movable)
and movable designs are shown. Without computations Wunderlich shows
the shakiness in the first case by resorting to an old and well-known theorem
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Fig. 7. High voltage switch.

Fig. 8. Nine-bar framework, first layout.

Fig. 9. Nine-bar framework.

in geometry, namely that the two triangles have to be in a Desarguian con-
figuration and the movability yields the parallel bar mechanism. It should be
noted that this mechanism became famous almost thirty years after Wunder-
lich published his book as the planar analogue of the Stewart–Gough plat-
form, namely the 3-RPR planar parallel manipulator. The second framework
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is in its movable realisation known as Dixon’s mechanism. But the condi-
tion for shakiness is interesting. Wunderlich explains the condition again by
resorting to the old theorem of Pappus–Pascal, which yields that the points
A,B,C,D,E,F have to be on a conic section, when the framework is shaky.
Wunderlich’s early investigations on shakiness culminate in the first proof of
the projective invariance of shaky structures. An earlier proof had been given
by H. Liebmann, but with the restriction that the framework has to contain
at least one triangle. Wunderlich shows that this assumption is not necessary
and gives a relatively simple proof for the theorem (Wunderlich, 1980).

The book Ebene Kinematik also has a full chapter on the geometric theory
of gears and cams. This is due to the fact that Wunderlich made significant
contributions to this theory. Starting with the geometric theory of constructing
gear profiles for constant transmission ratio, he develops the classical theory
of involute gears due to F. Reuleaux, the theory of cycloidal gears due to
Ch.E.L. Camus based on the earlier work of Ph. de la Hire. Remarkable is the
paragraph on the geometry and kinematics of the Wankel motor.

Fig. 10. Wankel motor.

Here one can see clearly Wunderlich’s approach to difficult kinematic
problems. One of the main problems of this motor type is the geometric
form of the moving system (piston, �2 in Figure 9). Wunderlich shows that
this problem can be solved as a gear profile problem. Moreover he uses the
so-called cyclographic mapping which maps circles into points of a three-
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Fig. 11. Geneva wheel.

Fig. 12. Non-circular gears.

dimensional parameter space to investigate the geometric properties of the
design curve of the piston.

In the book he discusses also in detail motion transmission with changing
transmission ratio (non-circular gearing). As examples we take the Geneva
wheel (Figure 11) and the involute gears with ellipses as base curves (Fig-
ure 12). Whereas the Geneva wheel is treated in many of the English text-
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Fig. 13. Curves having an isoptic circle.

books on planar kinematics, the involute gear problem with non-circular base
curves can be found (to the author’s best knowledge) in none of the popular
English textbooks. The elliptic gearing problem is also treated in Wunderlich
and Zenow (1975).

Walter Wunderlich is best known to the community of mechanical engin-
eers for his significant contributions to the theory of cams. Therefore it is not
surprising that a full chapter of Ebene Kinematik is devoted to this problem.
Although two papers (Wunderlich, 1971a, 1984) are published in English,
the important papers dealing with the geometric basics of cams are published
in German. In these papers he shows that the problem of designing single
cams, that steer a flat-faced follower pair, is closely related to the construc-
tion of curves having an isoptic circle.4 In Wunderlich (1971) he gives a com-
plete solution to the problem which had been posed before (Green, 1950) but
incompletely solved, and additionally he shows algebraic examples of such
curves.

To finish the review of Wunderlich’s book Ebene Kinematik, one has to
mention the chapter on curvature theory of planar motions. He gives the first
treatment of curvature theory in isotropic coordinates. But he does not limit to
the mathematical description of all the well-known properties. The inflection
circle (w in Figure 14), the circle point curve (k), the center-point curve (k∗)
and Ball’s point (U ) are visualized for different types of mechanisms.

4 An isoptic curve is the locus of points from which two tangents to the curve subtend a
constant angle ω.
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Fig. 14. Center-point curve, circle-point curve and Ball’s point.

The most important kinematic topic of Wunderlich’s later work are his
contributions to overconstrained and shaky (infinitesimal movable) struc-
tures. He shows many remarkable examples but also develops methods that
can be applied in today’s research in singularity theory of nR-chains and
parallel manipulators. Moreover he exhibits the close relation of shaky and
pathologically movable structures to singularity problems in geodesy (see
Wunderlich 1977, 1978). Already his first paper on “Rigid, snapping, shaky
and movable octahedra”, where he gives geometric conditions for all phenom-
ena mentioned in the title, can be viewed as a complete singularity analysis
of 3-3 Stewart–Gough manipulators (see Merlet, 2000). In the paper “Starre,
kippende, wackelige und bewegliche Gelenkvierecke im Raum” one can find
a complete singularity analysis of closed serial 4R-chains up to the conditions
for movability (Bennett-mechanism). This analysis is of course mathematic-
ally identical to the inverse kinematics problem of serial 4R-manipulators.

In the papers “Fokalkurvenpaare in orthogonalen Ebenen und bewegliche
Stabwerke” and “Bewegliche Stabwerke vom Bricardschen Typus” he cor-
rects and improves an old result of Bricard concerning frameworks of rods
connected by spherical joints: Are m ≥ 4, 5, 6 points Pi located on an ellipse
and n ≥ 6, 5, 4 points Qi located on the corresponding focal hyperbola and
all points Pi are connected to points Qi by rigid rods, then this framework is
movable even when all rods are connected by spherical joints. Bricard claims
that this framework has two degrees of freedom (dof) but Wunderlich proves
that this is not correct: He shows that the correct dof is 3. Moreover he shows
that one can take any pair of focal curves (focal curves of arbitrary degree,
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Fig. 15. Bricard framework.

not only ellipses and hyperbolas) and that the corresponding framework for
arbitrary focal curves has 2 dofs.

In a whole series of papers he discusses the geometric conditions for in-
finitesimal movability or snapping5 of polyhedra (icosahedra, dodecahedra,
pyramids, prisms) and gives examples for each of the different cases. It must
be mentioned that polyhedra having more then three edges in one face are
considered as panel structures having revolute joints in the edges. Due to the
basic theorem of Cauchy, all of these polyhedra have to be non-convex to
allow infinitesimal movability. Therefore for each of such polyhedra there
exists more then one assembly mode.

Figure 15 shows such a three-degrees-of-freedom framework. The knots
are distributed on two focal parabolas.

Four of Wunderlich’s papers on shakiness deserve special attention. In
Wunderlich (1980d, 1982a) he proofs the projective invariance of shakiness
of spatial frameworks. Projective invariance means: if a framework is shaky,
then any linear transformation of its design will not resolve the shakiness.
This includes of course any kind of projections. In his last paper (Wunderlich,
1990), written at the age of more than 80 years, and in Wunderlich (1982c) he
gives examples of shaky polyhedra with genus > 0 (Figure 16). He provides

5 This means that two assembly solutions are very close to each other and can be transformed
into each other because of tolerances in the joints.
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Fig. 16. Shaky structure of genus 3.

a geometric algorithm to generate shaky polyhedra of arbitrary genus. The
existence of such structures had been doubted by all scientists working in the
field.

Short Review of Wunderlich’s Contribution to Other Fields

To show Wunderlich’s versatility, a selection of other significant contribu-
tions will be presented. Through his whole scientific life he was investigating
the geometry of curves and surfaces. This interest was awakened at the begin-
ning of his scientific career when he worked on the descriptive geometry of
non-Euclidean screw surfaces and spiral surfaces. The theory of spiral motion
and the curves and surfaces generated by this motion is treated extensively in
his book Descriptive Geometry II. The spiral motion is a generalization of a
screw motion where instead of a rotation a planar spiral motion is concaten-
ated with a translation along the spiral axis.

The generation of special surfaces with special motions is a traditional
topic in Austrian geometry. Wunderlich especially contributed to this topic
kinematic generations of J. Steiner’s famous Roman surface. But there are
also papers on kinematic generation of cubic ruled surfaces where a parabola
is moved to describe the surface and a developable Möbius strip.

Another main area of Wunderlich’s work is on surfaces with special fall
lines (curves of steepest slope on a surface). Here he investigates surfaces
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with planar fall lines, Roman surfaces with planar fall lines or surfaces with
conic sections as fall lines.

Wunderlich’s contributions to the geometry of special curves would fill
another overview paper. But a short enumeration of some topics where
Wunderlich has made excellent contributions is essential to understand the
breadth of his interests: Pseudo-geodesic lines of cylinders and cones, D-
curves on quadrics, principal tangent curves of special surfaces, loxodromic
curves on different surfaces, irregular curves and functional equations, auto-
involute curves, curves with constant global curvature, Zindler-curves, Ber-
trand curves, spherical curves and auto-polar curves.

Concerning Wunderlich’s versatile interest in geometry one has to men-
tion his papers “On the statics of the rope ladder”, or “Geometric considera-
tions on an apple skin” or “On the geometry of bird eggs”.

Modern Interpretation of Main Contributions to Mechanism
Design

Walter Wunderlich’s work still exerts significant influence in kinematic re-
search. Algebraic manipulation systems allow answering some of the ques-
tions he left open. As a recent example, we mention his work on Dixon’s
mechanisms. Dixon showed in 1899 that a linkage consisting of nine bars
connected by revolute joints is paradoxically mobile when certain geometric
conditions are fulfilled. There are two layouts that yield mobile linkages.

Wunderlich gives an elegant proof for the mobility, but for the number of
assembly modes of the nine-bar linkage he could only conjecture that there
should be eight. Only recently Walter and Husty (2007) proved that he was
right. Moreover, in the same paper it was proven that the two linkage layouts
already known to Dixon (Figures 17 and 18) are the only possible mobile lay-
outs. Further generalisations of Wunderlich’s papers are given by Stachel. In
[Stachel 1997] he shows that Dixon’s mechanisms can be transferred to spher-
ical kinematics and, using the principle of transference, one obtains an over-
constrained spatial mechanism. This mechanism is a two-degree-of-freedom
paradoxical linkage.

Shakiness of polyhedral structures has become an important subject in the
field of combinatorial geometry. Wunderlich’s papers on rigidity have been
reviewed and extended. The recently published second edition of the Hand-
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Fig. 17. Dixon Mechanism Type I.

Fig. 18. Dixon Mechanism type II.

book of Discrete and Computational Geometry mentions 19 of Wunderlich’s
papers.

People working in the field of geodesy have applied Wunderlich’s results
in the theory of GPS navigation systems.

There is virtually no recent Austrian geometrician who has not used one
of Wunderlich’s results for his own scientific work. But of course Wunder-
lich himself was personally known to most of the now active scientists in
kinematics and geometry, either as their teacher or reviewer of their theses
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and papers. Unfortunately, because of language problems the dissemination
of Wunderlich’s results in the Anglophone world is rather small. It is hoped
that this paper may help to advertise his results within this community.
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