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Series Editors’ Foreword 

The topics of control engineering and signal processing continue to flourish and 

develop. In common with general scientific investigation, new ideas, concepts and 

interpretations emerge quite spontaneously and these are then discussed, used, 

discarded or subsumed into the prevailing subject paradigm. Sometimes these 

innovative concepts coalesce into a new sub-discipline within the broad subject 

tapestry of control and signal processing. This preliminary battle between old and 

new usually takes place at conferences, through the Internet and in the journals of 

the discipline. After a little more maturity has been acquired by the new concepts 

then archival publication as a scientific or engineering monograph may occur. 

A new concept in control and signal processing is known to have arrived when 

sufficient material has evolved for the topic to be taught as a specialised tutorial 

workshop or as a course to undergraduate, graduate or industrial engineers. 

Advanced Textbooks in Control and Signal Processing are designed as a vehicle 

for the systematic presentation of course material for both popular and innovative 

topics in the discipline. It is hoped that prospective authors will welcome the 

opportunity to publish a structured and systematic presentation of some of the 

newer emerging control and signal processing technologies in the textbook series.  

There are a considerable number of multivariable industrial processes which 

are controlled by systems designed using single-input, single-output control design 

methodologies. One reason for this is that multivariable systems textbooks often 

incorporate a significant amount of mathematics which tends to obscure the 

potential benefits that can be obtained from exploiting the multivariable structure 

and properties of multi-input, multi-output systems. In this new textbook, Pedro 

Albertos and Antonio Sala have made considerable efforts to discuss and illustrate 

the inherent meaning and interpretation of the principles within multivariable 

control system design. This is reflected in a book structure where after several 

chapters on models and linear system analysis Chapter 4 pauses to review the 

control roadmap ahead in the second part of the book. This roadmap has chapters 

devoted to centralised multivariable control methods, optimisation-based methods, 

robustness and implementation issues. In the presentation there is a clear indication 
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viii Series Editors’ Foreword 

that the authors are very aware of current industrial control system design practice. 

This is seen through the choice of industrial and practical examples chosen to 

illustrate the control system principles presented. These include a paper machine 

head box control system, a (3×3) distillation column problem, a steam-boiler 

system and a really interesting ceramic kiln control system problem. The kiln 

problem is used to show that the industrial multivariable control system design 

problem has a wealth of associated problems which also have to be considered and 

solved. Indeed the ceramic kiln problem is similar to other processes like that of 

plate-glass manufacture, and the reheating of steel slabs in a walking beam furnace 

in the steel industry. 

The discussion of the various issues in multivariable control system design is a 

particularly attractive feature of the book since this helps to put into context and 

perspective some difficult theoretical issues. The chapter on robustness (Chapter 8) 

is a good example of a discussion chapter from which the reader can decide 

whether to delve further into the supporting technical appendix and references. 

The book is suitable for final-year undergraduates, and graduate students who will 

find the valuable insights, and illustrative examples particularly useful to their 

studies of multivariable control system design and implementation. Lecturers and 

professionals in the control field will find the industrial context of the examples 

and discussions a refreshing change from the usual more straightforward academic 

multivariable systems control textbooks. 

M.J. Grimble and M.A. Johnson 

Industrial Control Centre 

Glasgow, Scotland, U.K. 

Summer 2003 
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Preface

“‘Engineering approach’ implies lots of shortcuts and simplifications. Simpli-
fication often means telling the truth but not the whole truth. If it were the
whole truth, it would not be simple!” (Bob Atkins).

Control engineering is a multidisciplinary subject, useful in a variety of
fields. Process control, servosystems, telecommunications, robotics, or social
system dynamics, among others, require the concourse of automatic control
concepts to better understand the behaviour of the respective processes and
to be able to introduce changes in their dynamics or counteract the effect of
disturbances.

Recent industrial trends in the implementation of control systems claim a
wider perspective in the design, not just a collection of single-loop controllers,
coping with a complex system with multiple interrelated variables to be con-
trolled and having the option to manipulate multiple variables. The first step
in this direction is to consider the control of multivariable systems.

The aim

Talking about control problems and moving to wonderful mathematical ab-
stractions is very tempting. The complexity and elegance of many control
problems have attracted the interest of theorists and mathematicians, devel-
oping more or less complex control theories that are not always well connected
to the practical problems. However, in this book, the theory is used as a sup-
port to better understand the reasons and options of some control design
techniques rather than to enter into the details of a given issue, even if this
issue can be the matter of dozens of research papers.

The book presents the fundamental principles and challenges encountered
in the control of multivariable systems, providing practical solutions but keep-
ing an eye on the complexity of the problem to decide on the validity of the
results. We are not interested in control design recipes, although guidelines
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x Preface

are welcome, and always try to analyse the proposed solution and suggest al-
ternatives. The study of some of the control options for multivariable systems,
their physical understanding and reasoning, and their tuning in real applica-
tions is the main aim of the book, devoting also some effort to the available
tools used in their computer-aided design.

The content

The book is structured to cover the main steps in the design of multivariable
control systems, providing a complete view of the multivariable control design
methodology, with case studies, without detailing all aspects of the theory. An
introductory chapter presents in some extent the general issues in designing
control systems, guiding the reader through the subjects to be treated later
on. As most control systems are conceived to be digitally implemented in
a computer-based system, the use of process models is generalised and the
control design approach is based on a model of the process. This is the subject
of Chapter 2, where the representation of linear systems, in continuous and
discrete time, is dealt with in some detail. Although there is an introduction
to the modelling of non-linear processes, approximation techniques move the
problem to the linear “arena”, where the theory is simpler and well known
and the concepts can be acquired more easily.

Chapter 3 deals with the tools for extracting properties from the models,
including models of the process, the controller and the whole controlled sys-
tem. This is a key chapter that provides the basis of analysing the behaviour
of a system and its possibilities of being controlled. Emphasis is placed on the
structural properties of multivariable systems and issues such as directional-
ity and interaction, not relevant in single-input-single-output (SISO) systems,
are discussed. Using the analysis results, model reduction techniques are in-
troduced.

The general options in designing a control system are the subject of Chap-
ter 4, where an analysis of the advantages and drawbacks of different control
structures is presented. This is an introduction to the rest of chapters, where
different design and implementation control techniques are developed. Decen-
tralised and decoupled control is the subject of Chapter 5. Here, most of the
ideas of SISO control system design are useful, being complemented with the
analysis of the loops’ interaction and the crucial issue of variables selection
and pairing. Some guidelines for the setting of a multi-loop control system are
discussed.

Full advantage of the internal representation is taken in Chapter 6 to intro-
duce the centralised control structure. All the ideas presented in the previous
chapters are used here to present a methodology for the integrated design of a
control system with multiple controlled variables. The classical state feedback
strategy, complemented with the use of state observers, provides a solution
that is easily implemented in a digital computer and reduces the cost of instru-
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Preface xi

mentation. Virtual sensors are a step further in the construction of observers
and present an attractive solution from an engineering viewpoint.

One of the characteristics a control user demands is the interpretability of
the tuning parameters of a control system. Cost or performance indices are a
suitable way of expressing some requirements, even using limited options such
as norms of variables, and optimal control provides an effective approach to
controller design. In Chapter 7, the assumption of linear models simplifies the
treatment and allows us to find a closed solution that can be implemented as
a linear controller.

The treatment of uncertainty in the models (and even in the requirements)
is fundamental from an engineering viewpoint, as the models are always partial
representations of the process behaviour. An introduction to robust control
design techniques, as a variation of optimal control, is presented in Chap-
ter 8, complemented with additional readings and material presented in an
appendix.

Implementation of the designed control is a key factor in the success
of a control system. Many issues are application-dependent, but a number
of general guidelines and warnings are the subject of Chapter 9. The inte-
grated treatment of the control design and its implementation, in resource-
constrained environments, is a matter of research interest and should be al-
ways kept in mind by a control design engineer.

The use of the internal representation provides a good framework for re-
viewing the control concepts in a general way, with validity not only for mul-
tivariable systems but also for SISO. The introduction of tools for analysing
and designing robust control systems is also an added value of the book and
a motivation to enter into this control design methodology.

As previously mentioned, all the relevant concepts are illustrated with
examples, and programming code and simulation diagrams are provided to
make the validation of the results easy as well as the grasping of the concepts.
A number of case studies present a joint treatment of a number of issues.
Unfortunately, there is no room to describe in full detail the practical design
and implementation of a complete application. This is something that the
reader could try to carry on in his/her own control problem.

A number of appendices include some reminders and new ideas to help
in the reading of the main body of the book, giving a self-contained feature,
always desirable in a book with a large audience. Of course, the analysis and
representation tools are also developed, but they are always considered as
a way of achieving the final control system design and evaluation. Examples
with high-level simulation packages, mainly Matlab� , are provided. The case
studies and the chapter examples lead the reader into a practical perspective
of the control solution. Usually, a full design completing additional issues of
the case studies could be attempted as an exercise. Additionally, a large list of
references will provide alternative reading to those interested in more rigorous
treatment of the topic or more detailed specific applications.

TLFeBOOK
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The audience

This is not an ambitious book either from the theoretical perspective or from
the end-user viewpoint, but it is trying to bridge the gap between these two
extremes. The main goal is to present in an easy-to-read way the challeng-
ing control problems involving subsystems, interactions and multiple control
objectives, introducing some tools for designing advanced control systems.

There is a wide audience of engineers and engineering students with a
background of basic control ideas grasped in their previous studies or in their
practical experience in designing systems. This is a heterogeneous audience
coming from different fields, such as instrumentation in the process indus-
try, the design of electronic devices, the study of vibrations and dynamics in
mechanical systems or the monitoring of process units.

The book can be helpful in introducing the basic concepts in multivariable
linear control systems to practical engineers. The control problems may be
familiar to them and the presented tools will open their mind to find appro-
priated solutions.

For senior undergraduate students that previously had grounding in SISO
control (PID, root locus, discretisation of regulators), the challenge is to
convey the basic heuristic ideas regarding multivariable control design in a
one-semester course, presenting the necessary mathematical tools as they are
needed and putting emphasis on their use and intuition, leaving the details of
the theory for more advanced texts.

Acknowledgements
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1

Introduction to Multivariable Control

This introductory chapter is devoted to reviewing the fundamental ideas of
control from a multivariable point of view. In some cases, the mathematics
and operations on systems (modelling, pole placement, etc.), as previously
treated in introductory courses and textbooks, convey to the readers an un-
realistic image of systems engineering. The simplifying assumptions, simple
examples and “perfect” model set-up usually used in these scenarios present
the control problem as a pure mathematical problem, sometimes losing the
physical meaning of the involved concepts and operations. We try to empha-
sise the engineering implication of some of these concepts and, before entering
into a detailed treatment of the different topics, a general qualitative overview
is provided in this chapter.

1.1 Introduction

The aim of a control system is to force a given set of process variables to behave
in some desired and prescribed way by either fulfilling some requirements of
the time or frequency domain or achieving the best performances as expressed
by an optimisation index.

The process engineers design the process according to the best of their
knowledge in the field and by assuming some operating conditions. Later
on, the process will run under some other conditions that support external
disturbances usually not well known or determined. Also, the characteristics of
the process will change with time and/or the load. It is the role of the control
system to cope with these changes, also providing a suitable behaviour.

The scope of the control tasks varies widely. The main goal may be to keep
the process running around the nominal conditions. In other cases, the control
purpose will be to transfer the plant from one operating point to another or
to track a given reference signal. In some other cases, the interest lies in
obtaining the best features of the plant achieving, for instance, the maximum
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2 1 Introduction to Multivariable Control

production, minimum energy consumption or pollution, or minimum time in
performing a given task.

In a general way, the following control goals can be targeted [17]:

• regulation (disturbance rejection),
• reference tracking,
• generation of sequential procedures (for start-up or shut-down),
• adaptation (changing some tunable parameters),
• fault detection (to avoid process damage or provide reconfiguration),
• supervision (changing the operating conditions, structure or components),
• coordination (providing the set-points),
• learning (extracting some knowledge from the experience).

All these different activities result in very distinct control approaches and
techniques. From logical and discrete-time controllers to sophisticated intel-
ligent control systems where the artificial intelligence techniques provide the
framework for emulating human behaviour, the multiple available tools for
control systems design are complementary and, in the integral control of a
plant, some of them are used in a cooperative way.

Our interest in this book will be mainly focused on the regulation and
set-point tracking of a plant where a number of manipulated variables allow
joint control of several process variables. In some sense, the coordination is
considered, but with the specific viewpoint of joint control of a multivari-
able system. These problems are basic ones and appear recurrently in some
others, such as batch processes, sequential control or fault tolerant control.
But that means that no specific attention will be paid to the starting-up and
shutting-down phases, although in some cases the tracking concepts could
be applicable. Neither alarm treatment nor learning and adaptation will be
considered, although, as previously mentioned, all these activities are usually
required to automatically run a complex system.

It is interesting to note, at the very beginning, that the controller could be
considered as a subsystem feeding the controlled system with the appropriate
signals to achieve some goals. That is, the controller is selecting, among the
options in some manipulated variables, the signals which are appropriate. With
this perspective, the controller is guiding the process in the desired way, but
the process itself should be capable of performing as required.

Traditionally, the role of the control system was to cope with the defi-
ciencies of the controlled process and the undesirable effect of the external
disturbances. Nowadays, there is a tendency to integrate the design of both
the process and the controller to get the best performance. This may result
in a simpler and more performing global system. For instance, taking into
account the existence of the control system, a reactor or an aircraft can be
designed in such a way that they are open-loop unstable and cannot run with-
out control. But, on the other hand, the controlled system could be cheaper,
faster, more reliable or more productive.
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1.2 Process and Instrumentation 3

In order to illustrate some basic concepts and ideas to better outline the
purpose of the book, let us introduce a process control example. Afterwards,
we will outline basic ideas, further developed in the rest of the chapters.

Example 1.1. Let us consider a typical process unit for refining a chemical product.
First, there is a mixing of two raw materials (reactives) to feed a distillation column
where two final products are obtained, the head and bottom components. In order to
run the unit, we must control the different flows of material, provide adequate tem-
perature to the inlet flows and keep the desired operating conditions in the column
by adjusting its temperature, pressure and composition. Some other complementary
activities are required, such as agitating the content of the mix tank or keeping the
appropriate levels in all vessels, including those of auxiliary or intermediate buffers.
A simple layout of the unit is depicted in Figure 1.1.

steam
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cold
water

pump

distillation
vessel

volatile
product

gas

bottom product

reactive 1

reactive 2

pump

by-pass

condenser

reflux
steam
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steam

e
x
c
h
a
n
g
e
r

Figure 1.1. Distillation unit

The ultimate control goal is to obtain the best distilled products (maximum pu-
rity, less variance in concentration, ... ) under the best conditions (maximum yield,
minimum energy consumption, ... ), also taking into consideration cost and pollu-
tion constraints. But before we begin to get the products, we must startup all the
equipment devices, establish a regular flow of reactives, reach the nominal operat-
ing conditions and then keep the unit stable under production. Also, care should
be taken about faults in any part of the unit: valves, agitator, existence of raw
materials, heating systems, etc.

1.2 Process and Instrumentation

The process to be controlled is an entity of which the complexity can vary
from something as simple as a DC motor or a water tank to a very complex
system such as a mobile platform or an oil refinery.

Independently of its design, carried out taking into account control re-
quirements or not, control design assumes that the equipment modules are
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4 1 Introduction to Multivariable Control

given and are already interconnected according to the guidelines of the pro-
cess experts. Sometimes, analysis of expected performance with a particular
control system may advise changes in the process or instrumentation (sensor
and actuators); for instance, from the control viewpoint, it could be better
to feed the mixed material or the reflux of the head product at a different
column plate, but at this moment it is fixed.

In order to control the process, some manipulated variables should be
available, allowing introduction of control actions in the process to force it
towards evolving in the desired way. In the kind of processes we are going
to deal with, more than one manipulated variable is always available, provid-
ing more richness and options in controlling the process. In an automatically
controlled plant, these manipulated variables will act on the process through
the corresponding actuators. To get information about the process, some in-
ternal variables should be measured, being considered as output variables.
Again, more than one output variable will be considered. The control target
could be these variables themselves or some other directly related to them: to
keep them constant in a regulatory system, to track some references in servo
systems, or to perform in some prescribed way with temporal, harmonic or
stochastic properties.

In the distillation unit, Figure 1.1, there are many input variables. We can
count as many as 14 valves, two pumps and an agitator. All of them can be
used to drive the unit, being considered as manipulated variables, but most
of them will be locally controlled or manually fixed and will not intervene
in the control strategy. Many temperatures, flows, levels or concentrations at
different points inside the unit can provide information about the behaviour
of the plant, but not all of them will be measured. Even less will be controlled.
The set of measurement devices, as well as the instrumentation required to
condition the measurements, constitute the data acquisition system, which
itself can be quite complex involving transducers, communication lines and
converters. These devices will be also fundamental in achieving proper control
[66].

The input variables or signals acting on the process but not being ma-
nipulated to achieve the control goals should be considered as disturbances.
They are usually determined as a result of other processes or, in the simplest
case, they are assumed to be constant. These disturbances can be predictable
(deterministic) or not. For instance, in a rolling mill process, the arrival of a
new block affecting the rolls’ speed is an event that can be predicted but not
avoided. Also, the disturbances can be measurable or not. Even some charac-
teristics of the disturbance may be known in advance if it belongs to a class of
signals. For example, in the distillation column we can get information about
the raw materials’ concentration, but it is fixed somewhere else and cannot be
considered as a manipulated variable. Ambient temperature is also a partially
predictable disturbance.

It is clear that unpredictable, unknown and unmeasurable disturbances
are the worst ones to be counteracted by the control actions.
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Figure 1.2. Process variables

1.3 Process Variables

To study the behaviour of a process is to analyse the involved variables and
their relationship, what is represented by the variable and process models. As
previously mentioned, with respect to the process shown in Figure 1.2, the
variables can be:

• external or inputs, being determined by other processes or the environ-
ment, acting on the process and considered as:
– manipulated or control variables, u, if they are used to influence the

dynamics of the process. Actuators will amplify the control commands
to suitable power levels to modify plant’s behaviour,

– disturbances, d, if they are uncontrollable outputs of other subsys-
tems,

• internal, being dependent on the process inputs, system structure and
parameters. We are interested in evaluating the behaviour of these process
variables. They can be classified as:
– outputs or measured variables, y, if they are sensed and provide in-

formation about the process evolution,
– controlled variables, z, if the control goals are based on them. They

can be outputs or not, depending on the sensors’ availability and place-
ment,

– state variables, x, as later on properly defined, are a minimum set
of internal variables allowing the computation of any other internal
variable if the inputs are known.

¿From an information viewpoint, any process can be considered as an infor-
mation processor, giving some outputs as a result of the processing of inputs
and the effect of disturbances1.
1 As usual in control literature, it will be assumed that no significant amount of

power will be extracted or introduced by the signal processing system (controller)
into the process, i.e., actuators are considered part of the system and sensors are
ideal. Otherwise, energy balance equations in the process do change, and the
model changes accordingly. For details on modelling and system interconnection
relaxing those assumptions, see [102].
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Dynamic physical systems evolve continuously over time. Thus, the in-
volved variables are functions of time, as are real variables, and are repre-
sented by continuous-time (CT) signals, (for instance, u(t), u ∈ R

m, t ∈ R

represents a set of m real CT variables). Nevertheless, for the sake of the anal-
ysis, only some characteristics of the signals could be of interest. For instance,
if only the value of these variables at some given time instant is relevant, the
variables’ model is discrete and they are represented by discrete-time (DT)
signals, time being an integer variable (t ∈ Z). In digital control systems,
signals are quantised (ui ∈ Z), due to the finite word-length of the internal
number representation. Maybe only some levels of the variables are relevant.
In the simplest case, only two options are considered and the corresponding
variable is represented by a logical or binary signal (ui ∈ {0, 1}).

Most of the distillation unit variables are modelled using CT signals, but,
for the sake of control, could be treated digitally or logically. For instance, the
agitator speed could be represented by two options: on and off. Some variables
could be treated as CT signals if they lie inside a prescribed range of values,
being considered as saturated or null if they are out of range. That is, the
same physical variables can be represented by different signals depending on
the purpose of their treatment.

As previously mentioned, in some cases, the value taken by a variable as a
function of time is not relevant and we are interested in some periodic prop-
erties, such as the frequency components, in magnitude or phase. Harmonic
analysis (Fourier transform) is thus appropriate. In some other cases, only the
stochastic properties of the variables are of interest. Consider, for instance,
the concentration of a distillation product. More than the punctual value of
the concentration at a time instant, the interest of the user is in the aver-
age concentration in a reasonable interval, as well as the possible maximum
deviations.

In the case of multivariable systems, it is also mandatory to scale the
variables’ magnitude in order to make them comparable, if different “errors”
need to be used to compute the control actions. Usually, the significant vari-
able ranges are normalised so some performance measures can be said to be
fulfilled if a particular error is lower than 1. This is convenient for quick com-
parative analysis.

1.4 The Process Behaviour

Our main aim is the time response or frequency response of the controlled
process, when subject to some given reference changes or expected distur-
bances (forced response). A related issue is the study of the behaviour of the
autonomous process when it evolves from some non-equilibrium initial condi-
tions (free response).

Systems could be considered as operators mapping a set of functions of
time (inputs) onto another (outputs). We are interested in dynamic systems,

TLFeBOOK



1.4 The Process Behaviour 7

that is, those whose current internal variables depend on their past value and
that of the inputs. Dynamic system analysis tools are applied for that purpose.

To simplify the study, some basic assumptions are made. It is clear that,
once a time scale is selected, some dynamic subprocesses could be considered
either infinitely fast (instantaneous or static) or infinitely slow. In this case,
they are considering as generator of constant signals, without any significant
evolution.

Linearity. This is the most important simplification [11]. A process (as any
operator) is said to be linear if it accomplish the following linearity principles:

1. The response is proportional to the input. That is, if for a given input,
u(t), the response is y(t), for an input αu(t) the response is αy(t), α ∈ R.

2. The effect of various inputs is additive. That is, if for a given input, u1(t),
the response is y1(t), and for an input, u2(t), the response is y2(t), for an
input u(t) = α1u1(t) + α2u2(t) the response is y(t) = α1y1(t) + α2y2(t).

Linearity allows us to “split” the study of the dynamic behaviour; the total
evolution can be computed as the result of external inputs plus the effect of
some initial conditions. It would also allow the study of the different manip-
ulated variables, one by one, and the global behaviour would be determined
by the way the different responses add up altogether. Linear operations with
sets of variables are dealt with by means of vector and matrix algebra, and
some results are direction-dependent, as we will see later on.

Linearisation is an approximation technique allowing the representation
of the non-linear behaviour of a process by an approximate linear model.
The linearisation approach is used to consider the relationship between incre-
mental variables around an equilibrium state, but it requires continuity and
differentiability in the non-linearities. Although this technique is not always
applicable (consider, for instance a switching process), in many cases it pro-
vides good insight into the process behaviour and can be used in the design
of a suitable controller.

Approximate linearisation should not be confused with exact linearisation.
In some processes, with a suitable selection of variables (or a change of vari-
ables in a given model), or some changes in the system structure (for instance,
by feed-backing some variables) the resulting model may have the linearity
properties. Some ideas will be suggested in the final chapter of this book.

Time invariance. This is another practical assumption, implying that pa-
rameters and functions appearing in the process model do not change with
time.

Usually, the process behaviour changes with time because some parame-
ters, assumed to be constant, slowly vary with time. Another cause of “ap-
parent” time-variation is non-linearity: changing the operating point changes
the approximate linear behaviour. Slow, unmodelled, non-linear dynamics also
may manifest that way, even without operating point changes.

TLFeBOOK



8 1 Introduction to Multivariable Control

Lumped parameters. In this case, time is assumed to be the unique inde-
pendent physical variable and the devices’ dynamics are modelled as punctual
phenomena, without taking into consideration the distributed-in-space nature
of most processes: communication lines, three dimensional plants, transporta-
tion systems and so on. In many cases, spatial discretisation (finite elements,
finite differences) allows us to set up approximate models, allowing us to better
accept this assumption.

Example 1.2. The distillation unit is a highly non-linear process, if it is consider
in the full range of operating options. But if we consider its evolution around some
stable production, an approximate linear model can be set up to relate the effects
of input variations on the internal variables.

The distillation plant may also be considered as a typical distributed system.
We can talk about the column temperature, but this temperature varies from point
to point internally, as well as the temperatures of the metallic elements in the ex-
changers. There are transportation delays and, for instance, the instantaneous col-
umn inlet flow concentration and temperature is slightly different from those at the
output of the mixer. Nevertheless, by either averaging values or making a spatial
discretisation, a lumped parameter model will be useful.

1.5 Control Aims

Referring to a multivariable, multiple-input-multiple-output (MIMO) system
where there are p-controlled variables, expressed as a vector y(t), and m-
manipulated variables, u(t), and also considering a d-dimensional disturbance
vector, d(t), the control requirements for following a p-dimensional vector
reference, r(t), can be stated at different levels, as described below.

Ideal control. If the relationship between the process variables can be ex-
pressed by:

y = Gu + Gdd (1.1)

where G and Gd are general operators, the ideal control action, leading to
y = r would be:

u = G−1(r − Gdd) (1.2)

This control could be perfect, but it is ideal and not achievable. There are
many reasons for this, among them:

1. The operator G is usually not invertible.
2. Even if G were invertible, the resulting actions may be physically unfea-

sible.
3. The disturbance, d, may be unmeasurable.
4. The process and disturbance models (G and Gd) are not perfectly known.
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1.6 Modes of Operation 9

Possible control. For the control problem to be feasible, some performance
requirements from the ideal one must be relaxed so that they are compatible
with the constraints in the available actuator powers and measurements. For
instance, high-speed reference tracking and low control action are not simulta-
neously achievable. High attenuation of unmeasurable disturbances and high
tolerance to modelling errors are also incompatible. So, the control design is
a trade-off between conflicting requirements. Introducing additional sensors,
actuators or control variables in a more complex control structure may im-
prove the performance possibilities of the control system. Ideal control would
be achieved under unlimited actuator power and full information sensing.

Optimal control. If the requirements are formulated as the minimisation
of a cost index or the maximisation of a performance index, the resulting
controller is called an “optimal” one. But optimality from a mathematical
viewpoint does not mean the best from a user viewpoint, unless user require-
ments are properly translated into optimisation parameters (see below).

Practical control. The controllers above are theoretical controllers. They
are based on models and ideal performances. Other than the issues above,
practical controllers should consider that:

• the models represent an approximate behaviour of the actual process
(sometimes very coarse) and this behaviour may change,

• formal control design specifications represent user requirements only ap-
proximately and partially,

• the process operation should be robust against moderate changes in the
operating conditions, requirements and disturbances,

• the implementation of the controller is constrained to resources’ availabil-
ity.

Thus, practical controllers should prove to the end-users that they can con-
sistently operate the process in an “automatic” way without the continuous
surveillance of the operator. The complexity of the controller, the ease of pa-
rameter tuning, the interpretability of the different control actions, or its cost
advantages are issues to be considered when selecting a control strategy.

1.6 Modes of Operation

As previously mentioned, the dynamic behaviour of non-linear processes may
be quite different depending on the operating conditions regarding loads, dis-
turbances and references. But any controlled process may operate in a variety
of situations such as starting-up/shutting-down, transferring from some oper-
ating conditions to new ones, under constraints (alarms, emergency) or under
the guidance of the operator. All this means different modes of operation
requiring different control strategies. In some cases, the same controller but
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10 1 Introduction to Multivariable Control

with different parameters will be appropriate, but in some others new control
structures or even no control at all may be needed.

In fact, any automatic control system should have the option of operating
in at least two modes of operation:

• manual control, if the manipulated variables are determined by the op-
erator,

• automatic control, where the manipulated variables are governed by the
controller. This can be done in two basic settings:
– open-loop control. There is no feedback from the process and the

manipulated variables are determined by the control system based on
the information provided by the operator or input measurements,

– closed-loop control. The controller determines the manipulated vari-
able based on the references and goals introduced by the operator and
the measurements from the process.

Of course, mixed strategies do exist.

One interesting practical problem is the transfer between modes of op-
eration. In particular, “closing the loop” (as well as the transfer between
operating conditions) is a difficult action requiring some expertise to avoid
“bumping” and even instability in the process signals.

Example 1.3. The distillation unit will be usually warmed up in manual mode.
The different flows and actions will be updated manually to reach the operating
conditions. Information from the unit will guide the operator (acting as a controller)
to drive the unit close to the desired conditions, in an open-loop operation. Finally, in
a gradual way, the control loops will be closed, starting with those more independent
or less influential on the overall behaviour of the unit.

1.7 The Need for Feedback

The ideas above can be expressed in a general and obvious way: at any mo-
ment, the appropriate control action depends on the situation of the process.
To know the process situation implies getting some information from it: to
close the loop [76].
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Figure 1.3. Basic control loop
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1.7 The Need for Feedback 11

Let us consider a linear SISO system, with a closed-loop control as depicted
in Figure 1.3, where n is a measurement noise. Assuming a sensor system
operator H, and a reference filtering F , the output can be expressed by2:

y =
GK

1 + GKH
Fr +

Gd

1 + GKH
d − GKH

1 + GKH
n (1.3)

Reference tracking, y = Tr, can be achieved in open loop (H = 0) with
K = G−1, if r is such that physical realisability constraints are avoided (F
may be a low-pass filter to achieve that).

However, feedback (H �= 0) is necessary for disturbance rejection. Oth-
erwise, the effect on output will always be Gd. Feedback is also needed to
counteract modelling errors. In open loop, Tol = GK is achieved, and in
closed loop, it is Tcl = FGK/(1 + GKH). In many cases, a controller, K,
can be designed so that T is any user-specified function. Let us depict the
variations on the achieved behaviour with small variations of G:

δTol = KδG ⇒ δTol

Tol
=

δG

G
(1.4)

δTcl =
FK

(1 + GKH)2
δG ⇒ δTcl

Tcl
=

1
1 + GKH

δG

G
(1.5)

so closed loop is advantageous if (1 + GKH) > 1, as it diminishes sensitivity
to modelling error with respect to open-loop control.

Thus, feedback is necessary and appears as a solution for basic con-
trol problems such as disturbance rejection or reference tracking, also under
modelling errors. In a first approach, if we consider a high-gain controller
(K >> 1), the above equation can be simplified to:

y ≈ F

H
r + 0d − n (1.6)

Thus, some interesting conclusions about feedback are:

• it works if the closed-loop system is stable (stable zeros of 1 + GKH),
• the process and disturbance models (G and Gd) are irrelevant (insensitivity

to modelling error),
• it injects sensor noise and its imprecision as additional deviation sources,
• for y to track the reference (F = H), a precise knowledge of the sensor

system (H) is required,
• it (may) cancel the disturbances.

However, high-gain implies a greater chance of instability, and measurement
noise must be filtered. A feedback control system is designed to achieve a
compromise between disturbance rejection, noise filtering and tracking the
2 Sometimes positive feedback is assumed, leading to denominator expressions in

the form 1 − GK (see, for instance, Equation (8.16) on page 242).

TLFeBOOK



12 1 Introduction to Multivariable Control

reference, copying with some uncertainties in the models and guaranteeing
some degree of stability.

Similar concepts are applicable to MIMO processes, although the com-
plexity of the operators requires a more careful treatment.

Feedback control is based on the existence of an error or a discrepancy
between the desired controlled variable and the corresponding measured out-
put. By its conception, if there is no error no control action is produced. Thus,
some kind of error should be always present.

In order to act before an error is detected in the system, if there are
measurable disturbances or planned changes in the references, a feedforward
(anticipatory) control may be useful. A control action is generated to drive
the process in the required way, trying to reject the measurable disturbances
and “filtering” the reference changes. Ideally, if the control given by (1.2) is
applied, no error will appear. But this is not achievable in general. Thus, even
in the case of feedforward control, a final feedback or reaction based on the
knowledge of what is happening in the process is needed.

A more complete solution is to combine both structures to get a so-called
two degree of freedom (2-DoF) control configuration. It is worth pointing
out that the loop controller should take care of both the model uncertainties
and the unmeasurable disturbances. The prefilter can implement a sort of
open-loop control. The idea of reference prefiltering can be also extended to
measurable disturbances, leading to additional feedforward control schemes.

1.8 Model-free vs. Model-based Control

Abstraction is a key feature of control engineering. To realise that the dy-
namic behaviour of an aircraft can be represented with the same tools, and
even equations, as a distillation column provides a platform to conceive con-
trol systems in a generic way. But this common framework for representing the
dynamics of different processes does not mean that the particular character-
istics of any process are included in the generic model. First, remember that
a model is always a partial representation of a process. Second, it is worth re-
membering that the requirements, constraints, operating conditions and many
other circumstances may be very different from one system to another.

There are two basic approaches to getting the model of a process. On
one hand, if the process is physically available and some experiments can be
carried out, its dynamic behaviour can be captured and (partially) represented
by a model, using “identification” and “parameter estimation” techniques [84].
On the other hand, if the operation of the process is fully understood and the
governing principles are known, a first-principle model can be drawn, although
some experiments should be carried out to determine some parameters.

A model-based control may be developed and, in this case, the main steps
in the design will rest upon the mathematical treatment of the global closed-
loop model [41].
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1.9 The Importance of Considering Modelling Errors 13

Model-free control. In some cases, the control design is based on the emu-
lation or repetition of some actions that have been proved to be appropriate.
No model of the process is needed but it is required to deal with processes
with similar behaviour. Also, by some experimental approach (or even by
trial and error), some parameters of a given controller may be tuned to get
the appropriate behaviour.

If many sensors and actuators are cleverly located (in a suitable control
structure), successful on-line tuning of simple regulators may be carried out.
However, a basic model is needed to understand the suitability of the different
instrumentation alternatives.

1.9 The Importance of Considering Modelling Errors

It has been pointed out that a process model (system) is a partial represen-
tation of the process behaviour. The partial concept may refer to:

• some phenomena and/or variables have not been considered or, even if
considered, they have been deemed as irrelevant. This results in a simpler
model, a reduced model involving less variables or less complex equations
(lower order in the differential equations),

• the model has been obtained under some operating conditions not rep-
resenting the process behaviour in other situations where, for instance,
the timescale, the frequency range or the magnitude of some variables is
different or the presence of disturbances was not taken into account.

In this context, it is usual to consider local models (around given set-points
or operating conditions), different timescale models (to analyse the transient
or the steady-state behaviour) or low/high-frequency models.

Thus, a model should have some properties attached, such as its validity
range, the parameters’ accuracy or the uncertainty introduced by the missing
dynamics, in order to be properly used.

It is worth mentioning that the quality of a model is strongly connected
to the purpose of its use [52]. It is not the same to have a good model to fully
design a distillation column, to understand its behaviour at a basic level or
to design a control system for it. For these three different uses, three different
models may be appropriate.

¿From a control viewpoint, some apparently very different process models
may lead to the same controller and, vice versa, two slightly different models
may behave in a totally different way if the same controller is applied to them.
So, the importance of modelling error depends on the conditions of use of the
model.

Example 1.4 ([16]). Let us consider two SISO systems represented by their transfer
function (TF) :

G1(s) =
1

s + 1
; G2(s) =

1

(0.95s + 1)(0.025s + 1)2
(1.7)
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14 1 Introduction to Multivariable Control

The reader can easily check that the open-loop step responses are almost identical.
However, with a proportional regulator, k = 85, the first system exhibits a wonderful,
desirable, closed-loop step transient but the second one is unstable.

If the models to be compared were:

G1(s) =
1

s + 1
; G3(s) =

10(s + 1)

s(10s + 1)
(1.8)

the second one is unstable in open-loop response. However, the behaviour with the
above mentioned proportional regulator yields a very similar response in terms of
settling time and final value.

Thus, in modelling a process, the control purpose should be kept in mind.
Identification for control is the identification approach trying to get the best
process model to design the control and, moreover, to combine the efforts of
modelling and control design in the common endeavour of getting the “best”
controlled system behaviour.

In this framework, the concept of robustness appears as a fundamental
property of a practical control system. It does not matter how good a control
system is if slight changes in the process/controller parameters or in the op-
erating conditions result in a degraded control or even in unstable behaviour.

And it does not matter if the controlled plant behaves properly under many
operating conditions if it fails to be under control or violates some constraints
in some specific (possible) situations.

1.10 Multivariable Systems

If p-independent variables are selected to be controlled, then at least the
same number of independent variables should be manipulated (m ≥ p). Being
independent means that they do not produce similar effects on the controlled
variables, although the concept will be later formalised. If there are more
manipulated than controlled variables, then there are more options to control
the process and it is expected to achieve better performances. In general, the
number of sensors need not be equal to the number of controlled variables p:
as in the case of actuators, the more sensors, the better.

In dealing with multivariable systems, some extra concepts are relevant:

• grouping (subdivision) and pairing. In principle, one or more inputs
may be “attached” to each controlled variable or group of them. The choice
of groups influences:
– interaction. The manipulated variables attached to one controlled

variable may affect the others,
– dominance. If the effect of the corresponding attached manipulated

variable is greater than the others, the coupling presents dominance.
The concepts of “greater” effect is, at this moment, qualitative. Later
on it should be more precisely formulated,
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• conditioning. Refers to the different “gains” a multivariable process may
present according to the combination (direction) of inputs. If they are
significatively different, the process is ill conditioned and it may be difficult
to control.

The magnitude of all these coupling effects is strongly dependent on the mea-
surement units. Thus, an appropriate scaling is always necessary so that all
errors have comparable meaning.

In some cases, the selected manipulated variables and measurements will
not appear to be convenient for control purposes and changes in the number
and/or position of the actuators and sensors will be required.

In a multivariable control problem, the pairing of input/output variables,
the effect of the interactions and the options for decoupling different control
goals are issues to be considered at the earlier stages of the design [119, 46].

1.11 Implementation and Structural Issues

Although there are still many control systems based on pneumatic, hydraulic,
electric or electronic components, most of them are implemented digitally. The
operational amplifier has been the kernel of many control devices, but nowa-
days digital control technology is considered as the general implementation
technology.

Thus, even if the controlled plant is a CT system, the controller is a DT
one. If the sampling period is short enough, most of the CT techniques can be
directly translated into DT implementations, but, if this is not the case, inter-
sampling behaviour and performance degrading should be taken into account.
Otherwise, pure digital control design techniques should be used.

Digital control simplifies the control implementation. At the end, the con-
troller device is implemented as an algorithm, a small part of the application
code. The same computer can be used, without additional cost, to implement
many controllers. This involves not only specific hardware such as reliable
computers and communication networking, but also a real time software to
guarantee the actions delivering time. Also, in the case of MIMO systems,
the dynamics of all the controlled variables is not necessarily the same, thus
requiring different time scheduling. But due to the resources limitation there
are a number of issues to be considered:

• word-length. Both the variables and the coefficients are discretised and
represented by finite-length string of characters. The computation accu-
racy is bounded,

• time constraints. The same CPU must run a number of different tasks and
the time available for each task is limited,

• reliability. The failure of a task may affect the execution of a critical one.

DT control implementation may be centralised or decentralised. In the first
case, all the data are processed by a unique CPU producing the control signals
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16 1 Introduction to Multivariable Control

for all the manipulated variables. Reliability, networking and task scheduling
are the main issues. In decentralised control, each control loop may be allo-
cated to a digital unit, but still a lot of networking and real time scheduling
is required to coordinate the behaviour of the whole system.

One additional feature of digital control is the ability to easily combine
the control tasks at different levels: local regulation, coordination, supervision
and operator interaction. In this setting, binary logic decision systems are
coupled with the lower level controllers, leading to hybrid complex systems.

1.12 Summary of the Chapters

The previous sections have outlined the problems to be solved in designing a
multivariable control system, from the conception, the modelling and simula-
tion phase to the implementation. A deeper understanding of them and their
solutions is the objective of the rest of the book. As described in the Preface,
the book is organised in a set of main chapters covering the main topics and a
set of appendices where revision of concepts or more involved details on some
techniques are placed.

The next chapter discusses the different model types available and the
transformations between them. Chapter 3 details analysis of the system prop-
erties that can be inferred from their models (gain, stability, structure). Chap-
ter 4 describes in more detail the objectives of control and the alternatives
in solving the associated problems briefly outlined in this introductory chap-
ter (closed-loop properties, feedforward control, etc.). Chapter 5 presents the
methodologies for controlling MIMO plants based on SISO ideas by setting
multiple control loops, decoupling and creating hierarchies of cascade control.
Chapter 6 describes some centralised control strategies, where all control sig-
nals and sensors are managed as a whole by means of matrix operations. Pole
placement state feedback and observers are the main result there. Chapter
7 deals with controller synthesis by means of optimisation techniques. The
linear quadratic Gaussian (LQG) framework and an introduction to linear
fractional transformation (LFT) norm-optimisation (mixed-sensitivity) are
covered. Chapter 8 discusses how to guarantee a certain tolerance to mod-
elling errors in the resulting designs. It deals with the robustness issue from
an intuitive framework and presents the basics of robust stability and robust
performance analysis. Mixed sensitivity is introduced as a methodology for
controller synthesis. Lastly, Chapter 9 deals with additional issues regarding
implementation, non-linearity cancellation and supervision.

The appendices are devoted to review basic concepts on SISO, matrix anal-
ysis and signal and system norms, including also some technicalities about op-
timisation (derivation of the linear quadratic regulator equations), stochastic
processes (derivation of the Kalman filter) and providing additional informa-
tion on robust control methods.
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Linear System Representation: Models and
Equivalence

In this chapter, models used for system simulation and model-based control
design are presented. The treatment is focused on linear systems and the lin-
earised approximation of non-linear systems due to the necessary limitation in
space. As disturbance rejection is a key objective in many control applications,
disturbance models are also introduced.

2.1 Introduction: Objectives of Modelling

In the previous chapter, it was shown that the “ideal” control requires the
inversion of the plant model. Thus, any control structure will take advantage
of a good process model to compute the control action, even if the model is
not perfect.

In this book, process models are tools for designing the control system,
for simulating the behaviour of the controlled system, and for analysing its
properties and evaluating the goals’ achievement. Thus, their level of detail,
range of validity and presentation will be determined by their use.

For each application, control goal or design methodology, a given model
will be more or less suitable. Given a process, different models can be attached
to it, some of them being equivalent, but, in any case, all them should be
“coherent” [84].

For instance, for regulatory and tracking purposes, a CT/DT dynamic
model would be required, but for production optimisation or management a
simplified and aggregated model, or even a steady-state model, would be more
appropriate. For alarm treatment, a discrete-event model will represent the
evolution from one operating condition to the next, probably combined with
some regulatory actions.

State-based models will be extensively used in this book, due to their
relationship with first-principle models and their ease of computer implemen-
tation, as well as the availability of computer aided control system design
packages for them.
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Other than processes, signals should be also modelled. They can be consid-
ered as the output of processes (generators) with some particular properties.
In particular, deterministic disturbances (such as steps, ramps or sinusoidal
variations) can be modelled as the output of uncontrollable generators, and
stochastic disturbances will be mainly modelled by their mean and variance
properties.

2.2 Types of Models

As previously mentioned, based on the type of signals involved in the model
we can find models of different natures: CT, DT, discrete-event, hybrid or
stochastic models.

The usual CT and DT signals are functions of time, as defined in Appendix
A.1. Multivariable signals are composed by stacking a set of individual signals
in column vector form.

A binary or logical signal only takes two possible values, being synchronous
if changes are only allowed at predefined time instants or asynchronous if the
changes may happen at any moment.

Random variables and stochastic processes, being characterised by their
statistical properties, will be considered in a later section and in Appendix E.

Although different kinds of models can be defined, unless otherwise stated,
the hypothesis of Section 1.4, namely linearity, time-invariance and lumped
parameters (finite-dimensional system), will be assumed to hold.

A non-linear system is a broader (and more common) representation of
actual processes. The diversity of options and their specific and usually more
difficult mathematical treatment puts the study of non-linear systems out of
the scope of this book. Some simple cases will be outlined in Section 9.5.
non-linearity, time-variation and spatial variation will be accommodated by
control systems that are tolerant enough regarding modelling error.

Locality. The models usually only represent the relationship between incre-
ments of the variables around a given operating point. This is quite usual in
modelling non-linear systems if we are interested in their approximate lin-
earised behaviour around an equilibrium point. In general, non-linear models
are better suited to modelling the global behaviour of a process, relating ab-
solute values of the variables.

Variables. Based on the kind of variables involved, we can define: in-
put/output or external models, and state variables or internal models. In the
case of external models, we can also consider the so-called black-box models,
where only the input and output variables are involved, or white-box models,
where the internal structure of the process is somehow represented.

Methodology. The last distinction can be also related to the approach fol-
lowed to obtain the model. If the basis of the process operation is known,
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its dynamical behaviour can be expressed by balance and fundamental equa-
tions, leading to a first-principle model . If, on the other hand, this fundamental
behaviour is unknown or the resulting equations would be too detailed and
complicated, and it is possible to experiment with the process, its response
to some excitation can be used to get an experimental model representing its
input/output behaviour, without any reference to what happens internally.

2.3 First-principle Models: Components

Let us consider the following illustrative example.

Example 2.1 (First-principle modelling). Let us consider a continuous-flow stirred
tank reactor (CSTR)1, where a first-order exothermic reaction A → B happens, with
a cooling jacket [89]. We have a rough model of the CSTR, knowing that due to the
entrance of a flow rate input stream, Fo, with Cao concentration of component A,
at a temperature To, there is an internal level, h, temperature, T , and component
A concentration, Ca, and there is an outlet flow rate, F , at temperature T and
concentration Ca. This can be represented by the block shown in Figure 2.1, where
the cooling jacket water flow, Fj , enters at temperature Tjo, leaving at temperature
Tj , and the total jacket volume, Vj , is fixed.

Tj0 , Qj0

T0 , C , Q0

LT
TT

VC1

VC2

A B C , Ta

T(t)

Q, T, Ca

Q, Tj j

a0

Figure 2.1. CSTR reactor

If all the processes inside the reactor are known, the following set of equations can
be written:

1. Total mass balance:
dV

dt
= Fo − F (2.1)

2. Mass balance on component A:

d(V Ca)

dt
= FoCao − FCa − αV Cae−

E
RT (2.2)

where R is the perfect gas constant and α is the pre-exponential factor from the
Arrhenius law, and E is an activation energy.

1 The work about this process has been carried out in collaboration with M. Perez
[101].
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3. Energy balance in the reactor:

dT

dt
=

FoTo − FT

V
+

Hα

ρcp
Cae−

E
RT − UA

ρcpV
(T − Tj) (2.3)

where H is the reaction heat, ρ and cp are the density and heat capacity respec-
tively of the inlet and outlet streams, U is the overall heat transfer coefficient
through the jacket, A is the transfer area.

4. Energy balance in the jacket:

dTj

dt
=

Fj

Vj
(Tjo − Tj) +

UA

ρjcpjVj
(T − Tj) (2.4)

where ρj and cpj are the density and heat capacity respectively of the cooling
stream.

In this way, a set of non-linear differential equations represents the CSTR dynamics.

Simplifications. If we were only interested in the reactor components evolution,
or the reaction were isothermal, the energy-balance equations would be missing:

dV

dt
= Fo − F

d(V Ca)

dt
= (FoCao − FCa) − αV Cae−

E
RT (2.5)

Temperature variations, if any, would amount to having time-variance in the pa-
rameters on the reduced model.

If interest were focused on long-term production, only the static relation among
the variables would be relevant. Then, for given input constant values, if the opera-
tion is stable, an equilibrium point will be reached and a set of (algebraic) equations
will model the steady-state behaviour. Steady-state equations are obtained by set-
ting to zero all derivatives (as magnitudes are constant):

F = Fo; Fo(Cao − Ca) − αV Cae−
E

RT = 0

Fo

V
(To − T ) +

Hα

ρcp
Cae−

E
RT − UA

ρcpV
(T − Tj) = 0 (2.6)

Fj

Vj
(Tjo − Tj) +

UA

ρjcpjVj
(T − Tj) = 0

Similar to the reactor equations, basic equations describing the elements’
phenomena can be used. We distinguish between static elements, leading to
algebraic equations, or dynamic elements.

Static elements. Examples of static behaviour are, for instance:

• resistors: V = IR,
• wall heat transmission: Q12 = k(T1 − T2),
• springs: f = K(l − l0),
• outlet flow: F12 = k

√
h,

• pipes: F = k(P1 − P2),
• viscous friction: f = kv,
• balances, such as:

–
∑

fi = 0, the total force applied to a body,
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2.3 First-principle Models: Components 21

–
∑

Fi = 0, the net flow in a pipe junction if there is no storage, or
–
∑

Vi = 0 the total voltage drop in a loop, and so on.

The meaning of the different constants and parameters is clear for those in-
troduced in the respective field. Some of these expressions are approximations
of non-linear relationships (friction, spring, resistor) but some others, like the
tank outlet flow, are explicitly non-linear. Under some circumstances, a linear
approximation will be possible.

Dynamic elements. Dynamic elements are those where the involved vari-
ables are not related instantaneously but in different times or by time incre-
ments. For instance, accummulative or delay components, such as:

• capacitors (dV
dt = 1

C I) and coils (dI
dt = 1

LV ),
• heat storage: dT

dt = 1
MCe

(Qin − Qout),
• mass storage: dV

dt = 1
M (Fin − Fout),

• motion equations: acceleration dv
dt = 1

M Ftot, dω
dt = 1

I Tres, or velocity dx
dt =

v, dφ
dt = ω for linear or angular motions,

• chemical reactions: dx
dt = f(xi, T ), as previously used, where the product

composition evolves with time,
• transportation belt: mout(t) = min(t − τ),
• stack or queue systems: n(k + 1) = n(k) +

∑
ui(k).

We must notice that these relationships (and many others) are similar, leading
to a component behaviour that is common to some of them. These analogies
allow for a unified treatment of any dynamical system without much relevance
of the supporting technology. It should be pointed out that the last dynamic
equation is slightly different, as the time is discrete and the variables are
assumed to be integers. We will see more of that later on.

Basic equations. The equation

dy(t)
dt

= αu(t) (2.7)

represents the storage of u, α being a scaling constant to deal with the ap-
propriate measurement units of y and u. In fact, the same relationship can be
written as:

y(t) = α

∫ t

0

u(τ) dτ + y(0)

The equivalent DT equations would be, respectively:

y(k + 1) − y(k) = αu(k) y(k) = α
k−1∑

i=0

ui + y(0) (2.8)

In DT it is also very easy to represent some delays such as:
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y(k) = u(k − d) (2.9)

where d is the number of time delay intervals in this relationship.
These storage and delay equations are the basic dynamic equations and

will be the kernel in defining the state space model in the next section.

2.4 Internal Representation: State Variables

A process is composed of a number of interconnected elements as described
above. In order to completely define a process model, we must get the same
number of independent equations as internal variables, allowing theoretically
the computation of the internal variables given the external input, u(t).

Some of the equations in the model will be dynamic and some of them will
be algebraic. By substitution, some equations can be removed. A so-called
normalised representation can be obtained by removing the algebraic equa-
tions and manipulating the rest of them to be expressed as storage equations
(2.7) or (2.8).

State equation. If all the dynamic equations are first-order differential equa-
tions, they can be arranged in a normalised way. Denoting by state variables
the storage variables previously defined, the process model could be sum-
marised by the so-called state equation:

dx(t)
dt

= f(x(t), u(t), t) (2.10)

where x ∈ R
n is the state vector, u ∈ R

m is the input vector and f is an n-
dimensional vector of non-linear functions. The argument t explicitly indicates
the possibility of being time-varying functions. This system representation is
denoted as being an n-order system.

Output equation. If the output variables, y ∈ R
p, are not the state vari-

ables, they will be related to them, and possibly also the inputs, by the (al-
gebraic) output equation:

y(t) = g(x(t), u(t), t) (2.11)

where g is a p-dimensional vector of non-linear functions. The set of state and
output equations is denoted as a system realisation or normalised state space
representation.

Example 2.2. Looking at the equations in Example 2.1, let us rewrite the model as
state equations. Only Equation (2.2) should be transformed into:

dCa

dt
=

Fo(Cao − Ca)

V
− αCae−

E
RT

the rest of the equations, (2.1), (2.3) and (2.4), constituting a fourth-order system
with states (V , Ca, T , Tj).
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For DT processes, the state and output equations will be, respectively:

x(k + 1) = f(x(k), u(k), k) (2.12)
y(k) = g(x(k), u(k), k) (2.13)

where the argument k stands for the integer instant of time.
The delay element, (2.9), in CT models requires an infinity of state

variables to be represented (all the past input values), leading to infinite-
dimensional systems. Some approximations are usually done, (2.42).

However, in a DT process, if the time delay is a multiple of the period,
it will admit a simplified treatment introducing as many delayed variables as
delay intervals. For instance, for d = 2, y(k) = u(k − 2) is equivalent to:

x1(k + 1) = x2(k); x2(k + 1) = u(k); y(k) = x1(k) (2.14)

The Concept of State

The previously defined state variables have a number of interesting properties:

• memory. They summarise the past history of the process,
• state as internal variables. They are not directly connected to the

input, but their derivatives (in DT, future values) as well as any other
process variable can be expressed as a function of these and the inputs,

• minimality. There is a minimum number of state variables so that the
process internal model cannot be further reduced by removing any internal
variable; otherwise, the dynamic equations will be of an order higher than
one,

• non-uniqueness. Any set of n-independent internal variables, not directly
connected to the input, represents the system. By independent we mean
each one representing a different storage process.
If the set vector x(t) is a state vector, any variable vector x̄(t) such that

x(t) = T x̄(t) (2.15)

T being an n-square regular matrix, is also a state vector.
Indeed, knowing x(t), the new state can be computed as x̄(t) = T−1x(t)
and viceversa (2.15). The T -matrix represents a linear state transformation
or a similarity transformation. The transformation of Equation 2.10 yields:

dx̄

dt
= T−1f(T x̄(t), u(t), t)

so it is also a normalised representation.
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2.5 Linear Models and Linearisation

As previously mentioned, most of our study is referred to linear, time-invariant
(LTI) systems. For this kind of systems, the state equation (2.10) is simplified:
the time variable is no more an argument (time-invariance) and the functions
f express linear combinations of the state and input variables. Thus:

dx1
dt = a11x1 + a12x2 + · · · + a1nxn + b11u1 + · · · + b1mum

...
dxn

dt = an1x1 + an2x2 + · · · + annxn + bn1u1 + · · · + bnmum

(2.16)

or, in matrix form
ẋ(t) = Ax(t) + Bu(t) (2.17)

Similarly, for the output equation (2.11), it would be:

y1 = c11x1 + c12x2 + · · · + c1nxn + d11u1 + · · · + d1mum

· · ·
yp = cp1x1 + cp2x2 + · · · + cpnxn + dp1u1 + · · · + dpmum

(2.18)

or, in matrix form:
y(t) = Cx(t) + Du(t) (2.19)

The state space model involves the four matrices (A,B,C,D) having the
following dimensions and meaning:

• A, the n×n system matrix, represents the internal interconnection among
state variables,

• B, the n×m input matrix, represents the input-to-state direct connection,
• C, the p × n output matrix, represents the state-to-output direct connec-

tion, and
• D, the p × m coupling matrix, represents the input-to-output direct con-

nection or input/output coupling.

So, in total, the number of parameters is n2 +n×m+p×n+p×m. A system
will be denoted by the 4-tuple shorthand notation Σ := (A,B,C,D).

It is easy to show that under a similarity transformation such as (2.15),
the new equivalent state space model will be (Ā, B̄, C̄, D̄), being:

Ā = T−1AT ; B̄ = T−1B; C̄ = TC; D̄ = D (2.20)

and the new state and output equations:

˙̄x = Āx̄ + B̄u

y = C̄x̄ + Du

Some transformations are of special interest for deriving or emphasising some
properties of the representation, denoted as canonical representations, usually
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reducing the number of significant parameters. For instance, if the eigenvalues
of A are distinct, it is possible to find a matrix T such that Ā = Λ is diagonal
(or, in a general case, a Jordan canonical form). Appendix B details some
essential definitions and properties regarding matrices.

If we want to make a distinction between manipulated and disturbance
inputs, a generalised state space model can be expressed by:

ẋ(t) = Ax(t) + Bu(t) + Bdd(t) (2.21)
y(t) = Cx(t) + Du(t) + Ddd(t) (2.22)

where d ∈ R
q is a q-dimensional vector of disturbances.

Equilibrium points. Under some conditions, the non-linear model (2.10
and 2.11) can be approximated by a linear one, in particular, around an
equilibrium point. For a constant value of the input vector, u0, an equilibrium
point is defined as the state vector (set of variables), x0, solution of:

0 = f(x, u0) (2.23)

It is worth noting that for the same input u0 there may be one, none or
many solutions of (2.23), and thus, there will be the corresponding number
of equilibrium points.

Any other process variable will reach a steady-state value. For instance,
the output vector will be:

y0 = g(x0, u0) (2.24)

Note that the equilibrium point can be stable or unstable. Further detail will
be given later.
Linearisation. If the vector functions in the non-linear model, f and g, are
continuous and derivable at an equilibrium point (x0, u0), a linearised model
can be attached to the process by means of a truncated Taylor series expansion
of these functions.

For small input amplitudes, the second and higher-order terms are negli-
gible, and an approximate linearised process model in the form (2.17)–(2.19)
can be derived:

˙̄x = Ax̄ + Bū; ȳ = Cx̄ + Dū

where x̄ = x − x0 and ū = u − u0 represent the variable increments around
the equilibrium point, and the elements of the corresponding matrices are the
Jacobian components of the non-linear functions:

aij =
∂fi

∂xj
(xo, uo) i, j = 1, . . . , n (2.25)

bij =
∂fi

∂uj
(xo, uo) i = 1, . . . , n j = 1, . . . , m (2.26)

cij =
∂gi

∂xj
(xo, uo) i = 1, . . . , p j = 1, . . . , n (2.27)

dij =
∂gi

∂uj
(xo, uo) i = 1, . . . , p j = 1, . . . , m (2.28)
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Remark 2.3. If the process evolves to another equilibrium point, the linearised
model parameters change. If the variation in the variables is large enough to
invalidate the higher-order terms’ truncation, the linear model is not valid
anymore.

Example 2.4. Let us consider the CSTR of Example 2.1. Assume a constant volume
inside the reactor (Fo = F ), as well as the nominal conditions and parameters in
Table 2.1.

Table 2.1. Reactor notation and steady-state variables.

V ariable Description V alue

Ca0 Input concentration (kmol A/m3) 8

V Reactor volume (m3) 1.36

To Inlet flow temperature (K) 294.7

Vj Jacket volume (m3) 0.085

α Arrhenius exponential factor (h−1) 7.08 × 1010

E Activation energy (kJ/kmol) 69815

U Heat transmission coeff. (kJ/hm2K) 3065

A Heat transmission surface (m2) 23.22

Tjo Cooling water input temperature (K) 294.7

R Perfect gas constant (kJ/kmolK) 8.314

H Reaction heat (kJ/kmol) 69815

cp Thermal capacity (kJ/kg·K) 3.13

cpj Water thermal capacity (kJ/kg·K) 4.18

r Reactive and product density (kg/m3) 800

rj Water density (kg/m3) 1000

Substituting the data in the table into (2.2)–(2.4), the particular model is:

d(Ca)

dt
=

Fo

1.36
(8 − Ca) − 7.08 × 1010Cae−8397.3/T

dT

dt
=

Fo

1.36
(294.7 − T ) + 197.4 × 1010Ca.e−8397.3/T − 20.8987(T − Tj)

dTj

dt
=

Fj

0.085
(294.7 − Tj) + 200.3076(T − Tj)

Thus, the state equation with x = [Ca T Tj ]
′, and u = [F Fj ]

′] would be:

ẋ1 = f1(x, u) = 0.7353u1(8 − x1) − 7.08 × 1010x1e
−8397.3/x2

ẋ2 = f2(x, u) = 0.7353u1(294.7 − x2) + 197.4 × 1010e−8397.3/x2 − 20.90(x2 − x3)

ẋ3 = f3(x, u) = 11.76u2(294.7 − x3) + 200.31(x2 − x3)

The operating point is defined assigning, for instance, the inlet flow Fo = 1.13
m3/h and cooling flow in the jacket Fj = 1.41 m3/h. Thus, the operating point,
denoted by xs, can be computed by solving the above system equation, making the
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left-hand derivative terms null as in (2.6). Due to the non-linearity, in this case there
are three equilibrium points. One of the options is:

xs = [Cas Ts Tjs]
T = [4.031 333.6 331.4]T

The Jacobian elements, aij = ∂fi
∂xj

(xs, us), of the linearised model can be easily

computed. For instance, the first linearised equation is:

dx̄1

dt
= −(0.7353u1s + 7.08 × 1010e−8397.3/x2s)x̄1

+(−7.08 × 1010x1se
−8397.3/x2s

8397.3

x2
2s

)x̄2 + 0.7353(8 − x1s)ū1

Proceeding with all the elements, the following linear model is obtained:

A =




−1.705 −0.2519 0
23.088 −28.71 20.9

0 −200.3 −216.89



 ; B =




2.918 0
−28.6 0

0 −415.29





Using the Matlab� command2 ss, assuming C = I, that is, all the state compo-
nents are measurable, and putting D = 0, the state space representation is created:

sys=ss(A,B,C,D)

The individual matrices can be retrieved as sys.a, sys.b, etc., if needed.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: gradient,diff,ss.

Remark 2.5. A linearised model can also be obtained around a nominal tra-
jectory. If the system input is defined in a time interval, u0(t),∀t ∈ [ti, tf ],
and the nominal state trajectory is given by x0(t), a linearised model can be
attached to this nominal trajectory by relating the variations of the trajectory
with respect to variations of the nominal input. Nevertheless, the linearised
model would be, generally, time-varying, as the linear model will change with
the state3.

A good example of this situation is a web treatment station, quite common
in the plastic, paper, metallurgical and many other industrial sectors. The web
is transferred from a coil to another one through the treatment area. The basic
goal is to control the rotational speed of the leading shaft as well as the position
of the tensional arm to keep a constant web velocity and tension. Under
nominal operating conditions, the diameter and inertia of the leading coil are
increasing with time, thus the nominal values of the parameters change. The
nominal shaft speed is time-varying to keep the web velocity constant, and a
linearised model can be obtained around this reference.
2 All the commands in this book refer to Matlab� version 5.3.
3 In fact, the Jacobian coefficients in (2.25) would be like: aij(t) = ∂fi

∂xj
(xo(t), uo(t)).
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Advantages and drawbacks. The state space representation has the fol-
lowing advantages:

• it may be obtained by the process behaviour description, as realised with
the reactor example, with an immediate physical interpretation, if so de-
rived,

• it presents separately the input effect and the measurement system,
• it is valid for linear and most non-linear systems,
• it can also represent the action of external disturbances (they are just

treated as non manipulated inputs),
• it provides the full (internal) description of the process, allowing the linking

of the model with the internal structure,
• there is a bunch of control system design approaches based on this repre-

sentation,
• it is valid for SISO and MIMO systems, with many common properties.

One key point in the MIMO case is that a complex system of interactions
is described with the minimal set of independent variables.

But also, some drawbacks should be taken into account:

• the model may be over-parameterised with respect to other representa-
tions,

• it is not unique and it may be unnecessarily complicated (i.e., over-
dimensioned), if irrelevant physical phenomena are modelled or a non-
minimal representation is used,

• the frequency response is not easily connected with the parameters of the
model,

• delays cannot be modelled in the normalised representation, only approx-
imately, by (2.43).

Anyway, it will be shown that it is possible to get this representation from
any other, and to transform it to any other as well, at least in the linear case.

Discrete Models

If instead of differential equations the process is defined by difference equa-
tions, a discrete state space model can be used. In this case, the state and
output equations are, respectively:

x(k + 1) = Ax(k) + Bu(k) (2.29)
y(k) = Cx(k) + Du(k) (2.30)

Linearisation. Equilibrium points in non-linear discrete systems are cal-
culated by replacing all instances of a particular variable, x (with different
delays), with an equilibrium value, x0. For time-invariant DT systems, the
equilibrium points are given by the solutions to:

x0 = f(x0, u0); y0 = g(x0, u0) (2.31)
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Once the (non-linear) equilibrium points are calculated, linearisation is
carried out obtaining the Jacobian, as in the CT case.

2.6 Input/Output Representations

In the previous section, we have built up a model by connecting the compo-
nents according to the system structure, but it is also possible to look at the
process as an m-input/p-output information processor. If only these variables
are used, the system representation will be composed of a set of p-differential
equations of order 1 or greater, as an extension of the differential equation
model of a SISO system. An example of this is:

ÿ1 + 2ẏ1 − y2 = 0.3u̇1 + u1 (2.32)
ẏ1 + ÿ2 = 2.5u2

This is a linear time-invariant CT two-input-two-output (TITO) system.
Again, these differential equations could be non-linear and time-variant (even
partial differential equations can be considered to represent distributed pa-
rameter systems or ∞-dimensional systems). For simplicity, we will assume
the above equation system is formed by linear differential equations with con-
stant coefficients.

2.6.1 Polynomial Representation

The Laplace transform (Appendix A) can be applied to the equation system,
(2.32). If the terms involving the initial condition vanish or cancel, that is, if
the initial variable values correspond to an equilibrium point of the system,
an algebraic equation system on the Laplace variable, s, is obtained:

s2y1(s) + 2sy1(s) − y2 = 0.3su1(s) + u1(s)
sy1(s) + s2y2(s) = 2.5u2(s)

If the terms related to the same variable are put together, the model can be
expressed by the following matrix equation:

(
(s2 + 2s) −1

s s2

)(
y1(s)
y2(s)

)

=
(

(0.3s + 1) 0
0 2.5

)(
u1(s)
u2(s)

)

(2.33)

In a generic MIMO system, the model would be:

D(s)y(s) = N(s)u(s) (2.34)

where D(s) and N(s) are polynomial matrices, with dimensions p × p and
p × m respectively, whose elements are polynomials on the s variable. This
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new model, (2.34), is called the differential operator model, as a result of
the use of the s-variable, or polynomial representation. Instead of the four
real matrices (A,B,C,D) needed in the state space representation, only two
matrices (D,N) represent the system, although their elements are polynomials
(see Appendix B.6).

For a given system, the polynomial representation is not unique. In fact,
if P (s) is a square, p × p, regular polynomial matrix, the process may be
modelled by the new pair (D̄, N̄), being:

P (s)D(s) y(s) = P (s)N(s)u(s); ⇒ D̄(s) y(s) = N̄(s)u(s)

Example 2.6. A trivial example would be, in (2.33), to multiply by:

P (s) =

(
1 0
−1 (s + 2)

)

leading to an alternative representation of the same system with:

D̄(s) =

(
(s2 + 2s) −1

0 s2(s + 2) + 1

)

; N̄(s) =

(
(0.3s + 1) 0
−(0.3s + 1) 2.5(s + 2)

)

The polynomial representation of DT models is similar, using the z-
variable.

Advantages and drawbacks. The polynomial representation also presents
some properties. Among the advantages:

• it relates the input and output variables,
• it may be used to describe subsystems,
• it may be obtained by linearisation of a set of non-linear differential equa-

tions,
• there are some ad hoc approaches to designing control systems based on

polynomial operators,
• the number of parameters is lower than in the state space model.

However:

• it is not unique,
• it is not easy to handle (requiring symbolic computation and matrix in-

versions),
• it does not allow for easy autonomous system analysis (free response),
• it is only valid for linear systems.

2.6.2 Transfer Matrix

From (2.34), assuming D(s) is invertible (i.e., the p-differential equations are
independent), the output can be expressed as a function of the input:

y(s) = D−1(s)N(s)u(s) = G(s)u(s) (2.35)
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The rational matrix, G(s) = D−1(s)N(s), dimension p×m, is denoted as
the process transfer matrix , and its elements are quotients of polynomials (see
Section B.6). It is a function of the Laplace variable, s, and can be considered
as an operator analogous to transfer functions in SISO systems. This is one
of the most attractive properties of this representation.

Example 2.7. In the example, (2.32), it is easy to obtain:

(
y1

y2

)

=

(
(s2 + 2s) −1

s s2

)−1 (
(0.3s + 1) 0

0 2.5

)(
u1

u2

)

and, for instance, using the Mathematica� language:

GG=Inverse[{{s^2+2s,-1},{s,s^2}}].{{0.3s+1,0},{0,2.5}}

it yields:
(

y1

y2

)

=

(
s(0.3s+1)

s3+2s2+1
2.5

s4+2s3+s
−(0.3s+1)

s3+2s2+1
2.5s+5

s3+2s2+1

)(
u1

u2

)

(2.36)

In this case, the system is represented by one p × m matrix, G(s), whose
elements are rational functions. For instance:

Gi,j(s) =
yi(s)
uj(s)

∣
∣
∣
∣
u(s)k=0,∀k �=j

(2.37)

is the SISO transfer function between the input, uj , and the output, yi. That
is, the Laplace transform of the i-output over that of the j-input, assuming
that the rest of the inputs as well as the initial condition terms are null.

In general, p ≤ m. That is, the number of output (controlled) variables is
lower than the number of input (manipulated) variables. If p = m, G(s) is a
square matrix and some matrix operations will be allowed.

Again, the internal structure of the process is lost and this representation
only provides information about the effect of the inputs in the outputs. If
disturbances are considered, the model can be extended to become:

y(s) = Gp(s)u(s) + Gd(s)d(s) (2.38)

where d(s) is the Laplace transform of the vector of disturbances. Similarly,
the element Gdi,j(s) is the transfer function between the j-disturbance and
the i-output. Equation (2.38) is equivalent to (2.21) and (2.22).

Discrete case. The discrete transfer matrix representation of a general DT
process, equivalent to (2.38), is expressed by:

y(z) = Gp(z)u(z) + Gd(z)d(z) (2.39)
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Advantages and drawbacks. The transfer matrix representation presents
a number of advantages:

• it relates the input and output variables,
• it may be used as an operator to combine subsystems,
• it is unique (except for common factors in the rational elements, to be

reduced),
• there are some ad hoc approaches to designing control systems based on

this model structure,
• the number of parameters is minimised,
• its elements represent one-input to one-output connections, allowing ex-

perimental identification and partial model validation. Although it is out
of the main scope of this book, its importance should be stressed. Some
options for these tasks are outlined in Appendix A.4),

• in the same way, it shows up the interactions among different inputs and
outputs,

• delays can be considered.

However:

• the elements are rational functions (including exponential terms if delays
are considered),

• some global system properties, easily derived from the state matrix A, do
not appear so clearly,

• it does not allow for the autonomous system analysis,
• it is only valid for linear systems.

Example 2.8. The internal representation of the CSTR, Example 2.4, is converted
into a transfer matrix by the Matlab� command tf (or zpk to get it in factorised
form), as shown in the following example:

sys=ss(A,B,C,D); G=tf(sys); Gp=zpk(sys)

TF from input 1 to output... From input 2 to output...

2.918 (s+57.43)(s+190.6) 2186.3814

#1: ---------------------------- #1: ----------------------------

(s+1.83) (s+54.36) (s+191.1) (s+1.83)(s+54.36)(s+191.1)

-28.6 (s+216.9)(s-0.6506) -8679.561 (s+1.705)

#2: ---------------------------- #2: ----------------------------

(s+1.83)(s+54.36)(s+191.1) (s+1.83)(s+54.36)(s+191.1)

5728.58 (s-0.6506) -415.29(s+28.49)(s+1.922)

#3: ---------------------------- #3: ----------------------------

(s+1.83)(s+54.36)(s+191.1) (s+1.83)(s+54.36)(s+191.1)

Matlab�: Some commands implementing algorithms related to the contents of this
section are: ss,tf,zpk,ss2tf,tf2ss.
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Systems with Time Delay

Transportation phenomena, among others, introduce pure time delays in the
relation between variables. If:

y(t) = u(t − τ) (2.40)

y(t) is a delayed version of signal u(t). In fact, if y(t) is the output and
u(t) is the input of a system, this is a distributed process and the general
mathematical treatment of this kind of system is rather complicated.

On the other hand, the Laplace transform is easy to apply because:

L[y(t)] = e−sτu(s)

In a delayed system, if the delays appear at either the input or output signals,
it is quite common to model it by a transfer matrix.

Example 2.9 (MIMO experimental identification). A mixing process (see Sec-
tion 5.8.2 on page 162 for description and analysis of steady-state behaviour) has
an intermediate buffer tank, a solvent valve and a pure-product valve. Outputs of
interest are concentration (C, %) and flow (F , l/s). The experimental response of
both outputs to a 10% valve opening on each valve is depicted in Figure 2.2.
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Figure 2.2. Mixing process: step response

Applying experimental identification (Section A.4), the following transfer func-
tions can be approximately determined, targeting a widely-used first-order plus delay
type of model:
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F

VA
=

5e−0.08s

0.52s + 1
;

F

VS
=

5e−0.08s

0.52s + 1
;

C

VA
=

1.5e−0.06s

0.17s + 1
;

C

VS
=

−1.45e−0.06s

0.17s + 1

also depicted in the above figure in thicker line. Hence, the experimental transfer
function matrix is:

G(s) =

(
5e−0.08s

0.52s+1
5e−0.08s

0.52s+1
1.5e−0.06s

0.17s+1
−1.45e−0.06s

0.17s+1

)

(2.41)

It is difficult to know if the initial response, heavily masked by noise, includes a delay
or it is caused by high-order dynamics. So, there are fundamental issues regarding
quality of the model, signal-to-noise ratio, etc. that may determine the success of
multivariable control strategies based on this crudely approximate model: Chapter
8 is devoted to them.

Unfortunately, the delays do not always appear in such a neat form as
in the above example because there are internal and crossed delays and the
elements of the transfer matrix can also be complicated4.

A general approach to deal with time delays is to use the Padé approxima-
tion, converting the exponential into an approximated rational form. Based
on the exponential approximation:

e−τs =
e−

τ
2 s

e
τ
2 s

=
1 − τ

2 s + τ2

8 s2 + . . .

1 + τ
2 s + τ2

8 s2 + . . .
(2.42)

the first-order approximation is:

e−τs ≈ 1 − τ
2 s

1 + τ
2 s

(2.43)

Higher-order approximations are more accurate but introduce additional com-
plexity into the model.

For DT representations, (2.9), if the time delay, τ , is a multiple of the time
interval in the elements of the sequence, τ = dT , it can be transformed into a
shift, or, in Z-transform, to multiply by the term z−d, see Appendix A.3.

Transfer Matrix Poles and Zeros

The elements of the transfer matrix are rational functions of the Laplace
variable, s. For a transfer function, g(s) = n(s)

d(s) , poles and zeros are the roots
of n(s) and d(s) respectively (Appendix A.2.1).

The concept of pole and zero can also be defined for MIMO systems.
Given a transfer matrix, extract the common denominator

G(s) =
N(s)
d(s)

4 For instance, the closed-loop sensitivity function (4.5) of a SISO delayed system
G = e−s(s + 1) with proportional control k = 4 is (1 + kG)−1 = s+1

(s+1)+4e−s , so

e−s cannot be extracted as a factor.
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where N(s) is a polynomial matrix and d(s) is a polynomial. Assume for
simplicity that it has only single roots, d(s) =

∏n
i=1(s − pi). These are the

poles of the system. In order to determine the pole’s multiplicity, decompose
G(s) into partial fractions by decomposing each element, nij

d(s) =
∑n

l=1
αij,l

s−pl
.

Thus, by suitably arranging αij , l in matrix form, we can express:

G(s) =
n∑

l=1

Nl

s − pl
; rank(Nl) = nl

Then, the matrix rank nl is the multiplicity of the pole pl.
Assume a square system, m = p for simplicity. In most cases, G(s) is

regular, i.e., rank(G(s)) = m for almost all s. The MIMO system transfer
matrix zeros are the values zi such that rank(G(zi)) < m.

Let us consider the following trivial examples:

Example 2.10.

G(s) =

( −1
s(s+1)

1
s

−1
s

1
s(s+1)

)

=

( −1
s

+ 1
s+1

1
s−1

s
1
s

+ 1
s+1

)

(2.44)

G(s) =
1

s(s + 1)

( −1 s + 1
−(s + 1) 1

)

=
1

s

(−1 1
−1 1

)

+
1

s + 1

(
1 0
0 −1

)

(2.45)

Thus, s = −1 is a double pole and s = 0 is a single one. There are three poles at
p = 0,−1,−1. For s → 0, the transfer matrix

lim
s→0

G(s) = lim
s→0

( −1
s

1
s−1

s
1
s

)

loses the rank in one order. Thus, there is a zero at s = 0.

Example 2.11.

G(s) =

(
s+1

s
−2
s−1

s
1
s

)

=

(
1 0
0 0

)

+

(
1 2
−1 1

)

s

Thus, s = 0 is a double pole; z = −1 is a local zero for g11, but it is not a multi-
variable zero, because rank(G(−1)) = 2. On the other hand, it is easy to check that
there is a multivariable zero at z = 1.

In the next chapter, a more complete treatment of poles and zeros in MIMO
systems, for any representation, is presented.

2.7 Systems and Subsystems: Interconnection

Between a detailed internal representation and a pure black-box one, a system
may be represented by the interconnection of a number of subsystems. If the
model of each element is known, a global model can be obtained.

For example, in a control system, at least, two subsystems will always be
considered: the plant to be controlled and the controller. The structure of each
one may be also decomposed into a number of subsystems.
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Figure 2.3. Series, parallel and feedback interconnection

2.7.1 Series, Parallel and Feedback Connection

Let us consider the basic subsystem interconnections. Let us define two sub-
systems, in state space and transfer matrix form:

Σi :
ẋi = Aixi + Biui

yi = Cixi + Diui
; yi(s) = Gi(s)ui(s) i = 1, 2 (2.46)

Assuming appropriate dimensions in the input and output vectors, ui, yi, a
global system may be arranged with joint state vector, x = [xT

1 xT
2 ]T , and its

equation for each interconnection will be discussed.

Series connection. Also denoted by cascade connection. The input/output
vectors to each subsystem in Figure 2.3(a) are:

y = y2; u = u1; u2 = y1

This results in the global state space system:

ẋ =
(

A1 0
B2C1 A2

)

x +
(

B1

B2D1

)

u (2.47)

y = [D2C1 C2]x + D2D1u (2.48)

and, in transfer matrix form:

y(s) = G2(s)G1(s)u(s) (2.49)

Parallel connection. The interconnection in Figure 2.3(b) is represented
by:

y = y1 + y2; u1 = u2 = u

This results in the global system:

ẋ =
(

A1 0
0 A2

)

+
(

B1

B2

)

u

y = [C1 C2]x + (D1 + D2)u
; y(s) = (G1(s) + G2(s))u(s) (2.50)
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Feedback connection. Figure 2.3(c). In this case, there is a loop and a
summation point. Assuming an external input, v, null input/output coupling
in the forward path (D1 = 0) and negative feedback, the input/output vectors
are:

y = y1; u1 = v − y2; u2 = y1

This results in y(s) = G1(s)e(s) = G1(s)(r − G2(s)y), so the global system
can be written as:

ẋ =
(

A1 − B1D2C1 −B1C2

B2C1 A2

)

+
(

B1

0

)

v

y = (C1 0)x
(2.51)

y(s) = (I + G1(s)G2(s))−1G1(s)v(s) (2.52)

In the last transfer matrix equation, the summation sign would be negative
for positive feedback.

A system may be composed of a number of such interconnections, leading
to a complex model, where also disturbances can be present. In these examples
of interconnection, the ease of use of the transfer matrix as an operator is
clearly illustrated.

Remark 2.12. In this and any other MIMO case, special care must be taken
with block-diagram operations, as the matrix product is not commutative,
contrary to the SISO case.

2.7.2 Generalised Interconnection

G

M

u1

u2

y1

y2

GG

MM

Figure 2.4. General interconnections

The interconnection between subsystems can be expressed in a general
framework by just using two subsystems in a unique loop as in Figure 2.4
(left), where the subsystem in the feedback has a transfer matrix M , and the
one in the upper subsystem is suitably partitioned into four blocks, G11, G12,
G21 and G22. In this framework, the equations are:

u2 = My2 = M(G21u1 + G22u2) ⇒ u2 = (I − MG22)−1MG21u1 (2.53)
y1 = G11u1 + G12u2 =

(
G11 + G12(I − MG22)−1MG21

)
u1 (2.54)
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Example 2.13. If G =

(
0 I

Σ1 0

)

the result is: y1 = MΣ1u1, i.e., the series connec-

tion.

If G =

(
Σ1 I
I 0

)

the result is: y1 = (Σ1 + M)u1, i.e., the parallel connection.

If G =

(
I −I
I −I

)

Σ1 the result is the feedback connection. Indeed, in this case,

(2.54) has as TF matrix Σ1 − Σ1(I + MΣ1)
−1MΣ1. As:

(I + MΣ1)
−1MΣ1 + (I + MΣ1)

−1 = (I + MΣ1)
−1(MΣ1 + I) = I (2.55)

the output transfer matrix can be expressed as Σ1−Σ1(I− (I +MΣ1)
−1) = Σ1(I +

MΣ1)
−1. Applying the push-through rule (B.5), Equation (2.52) is obtained.

In this way, by including in G not only the system equations but also the
interconnection structure, many control problems of engineering significance
can be cast as the block-diagram in Figure 2.4 (left). G is then called the
generalised plant , one of its subsystems being the actual plant. Indeed, this
formulation allows us to deal with open-loop, closed-loop and other set-ups
in a unified way, including performance specifications, and also allowed a
significant theoretical breakthrough in the 1980s (see Sections 4.5.3 and 7.4).
This block-diagram and Equation (2.54), where the block-diagram has been
simplified by ellimination of u2 and y2, are denoted as a lower linear fractional
transformation (LFT), and the transfer matrix in (2.54) is usually represented
in shorthand form as FL(G,M).

The diagrams at the right of the referred figure present an even more gen-
eral form of interconnection denoted as Redheffer star product, where each
block has two input and two output vectors. It is easy to verify the correspon-
dence to the previous models if appropriate elements of their transfer matrices
are chosen. For instance, for

G =
(

0 G2

I 0

)

; M =
(

G1 0
0 0

)

the serial connection, (2.47), is also obtained. And similarly, the parallel and
feedback connections can be represented. The LFT diagram is a particular
case of the star product, if only M11 �= 0, such as the M above.

The Matlab� command lft allows us to compute transfer matrices of
systems described in an LFT or star-product structure. In particular, the
expression sys=lft(P,K,nu,ny) connects the first “nu” outputs of K to the
last “nu” inputs of P , and the last “ny” outputs of P to the first “ny” inputs
of K. The resulting system model, sys, maps the remaining inputs to the
remaining outputs. If nu and ny are omitted, the system with lower input and
output vector dimensions is assumed to be M in the LFT block-diagram.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: lft,feedback,connect,starp,series,parallel.
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2.8 Discretised Models

Discretised (sampled) signals. Although the physical variables involved
in a process are mainly CT, in order to process them on a computer, to
simulate the process behaviour or to design a digital controller, approximate
DT models are required. In general, attached to a CT signal, a DT sequence
can be defined by just taking the sampled values at some given time instants.
For a regular sampling period, T , the elements of the sequence are yk =
y(kT ), k = 0, 1, 2, . . . . If the unit time delay is expressed by the delay
operator, z−1, these sampled-data (SD) signals are represented by using the
Z-transform (Appendix A).

These sampled-data signals, under a fast enough sampling pattern, keep
most of the information carried by the CT signal. Shannon sampling theorem
[95] states that the sampling frequency must be twice the frequency up to
which significant content is present in the CT signal.

DT process models. Similarly, a DT model of the CT process (or a sampled-
data model) can be derived. It will approximate the process behaviour relating
the involved variables. However, some warnings should be needed in this case:

• the attached DT model is an approximation of the CT process behaviour.
Depending on the approximation criteria, the following situations may
appear:
– the CT model and the SD model have a similar time-response to a

given input signal (impulse, step, ramp, ... ),
– the CT model and the SD model have a similar frequency-response in

a range of frequencies,
– the CT model and the SD model have a similar mathematical ap-

pearance (by substituting the time derivative by increments ratio, for
instance).

• the intersampling behaviour may be rather different. Caution should be
taken about the information lost from the input signal,

• the DT model parameters will change if the sampling period is changed.

The most usual and common discretisation is based on the use of a digital
computer, leading to regular sampling characterised by a period T , together
with a constant holding of the input during the same period. To get an SD-
equivalent model of the process, the simplest discretisation approaches are
based on the approximation of the derivative operator. There are many options
to implement this approximation:

• Euler. For each derivative term, the following approximation is imple-
mented:

ẋ ≈ ∆x

∆t
≈ xk+1 − xk

T
(2.56)

provided T is small enough. This approach can be also applied to non-
linear systems. The equation (2.10) is transformed into:
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dx(t)
dt

= f(x(t), u(t), t) → xk+1 = xk + Tf(xk, uk, k) (2.57)

The DT model will relate the DT signals. For this purpose, dealing with
linear systems, the sequences are represented by their Z-transform. To get
the Euler-discretisation of a CT transfer matrix, the Laplace variable, s,
is replaced by:

s =
1 − z−1

T

• forward operator. In a similar way, a CT transfer matrix can be ap-
proximated by replacing the Laplace variable, s, by:

s =
z − 1

T

• bilinear transformation. Among the possible variations of the previous
approximations, if the Laplace variable is replaced by:

s =
2
T

1 − z−1

1 + z−1
(2.58)

the transformed DT model will be stable if and only if the source CT model
is so, which is indeed of interest. This is a useful discretisation approach,
although it is only valid for linear systems5.

In the next chapter, for LTI systems and based on the solution of the state
equation, exact (step response) SD models will be also derived. Non-regular
sampling may be considered, leading to more complex DT representations
(Section 9.4).

2.9 Equivalence of Representations

All the representations of the same process should be coherent. If they re-
late to the same variables, they should be equivalent. Thus, given the state
space model or the polynomial operator, the transfer matrix should be eas-
ily obtained. In fact, by applying the Laplace transform to Equations (2.17)
and (2.19), assuming that the initial condition terms are null, the following
equivalence is obtained:

sx(s) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s)

5 For computer simulation of non-linear systems, an approximate equivalent is the
mid-point discretisation formula:

xk+1 = xk + Tf(xk + T/2f(xk, uk),
uk + uk+1

2
)
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y(s) = [C(sI − A)−1B + D]u(s) = G(s)u(s)

Thus:
G(s) = [C(sI − A)−1B + D] (2.59)

Based on this equivalence, as

(sI − A)−1 =
adj(sI − A)
det(sI − A)

the poles of G(s) are the eigenvalues of A (solution of the characteristic equa-
tion det(sI − A) = 0).

An interesting representation for (sI −A)−1 can be derived if this matrix
is expanded in series I + As + As2 + . . . :

G(s) = D + CBs−1 + CABs−2 + CA2Bs−3 + . . . =
∞∑

i=0

His
−i (2.60)

Also, for DT systems:

G(z) = D+C(zI−A)−1B = D+CBz−1+CABz−2+. . . =
∞∑

i=0

Hiz
−i (2.61)

Hi are denoted as Haenkel parameters or coefficients. In this DT representa-
tion, Hi is the impulse response at time i, because y(z) = G(z) if u(z) = 1.

The reverse transformation is not so easy. First, the state representa-
tion is not unique, thus there will be many internal representations for the
same input/output model. Second, some of these representations may be over-
dimensioned and so useless, spurious, internal variables will be included. One
option would be to use the concept of memory or accumulation attached to
the state variables and try to define them in this way. Another alternative is
to attach a state variable to each process pole.

To properly deal with this issue, some knowledge about the process struc-
ture and properties should be available. This is the subject of the next chapter
(Section 3.7.5), and thus the reverse transformation is postponed, with only
a very simple example being presented now.

Example 2.14. Let us consider the 2×2 transfer matrix of Example 2.10. Based on
the partial fraction decomposition, let us assign the state variable, x1, to the pole at
the origin and the variables x2 and x3 to those related to the pole at −1. A possible
state space representation would be:

ẋ1 = −u1 + u2; ẋ2 = −x2 + u1; ẋ3 = −x3 − u2

y1 = x1 + x2; y2 = x1 + x3

That is:

A =




0 0 0
0 −1 0
0 0 −1



 ; B =




−1 1
1 0
0 1



 ; C =

(
1 1 0
1 0 1

)
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Also, the transfer matrix may be extended to become:

G(s) =

(
0 1
−1 2

)

s−1 +

(−1 0
0 −1

)

s−2 +

(
1 0
0 1

)

s−3 + . . .

From (2.35), the relationship between the transfer matrix and the polyno-
mial representations is clear:

G(s) = D−1(s)N(s)

Again, the reverse is not unique and many options are possible.

2.10 Disturbance Models

Disturbances are non-manipulated inputs to the process. They are generated
elsewhere but affect the process behaviour and are signals coming from an-
other processes.

2.10.1 Deterministic Signals

If the structure of these processes, denoted as generators, is known, the distur-
bances are said to be deterministic. For instance, polynomial disturbances can
be considered as being generated by a chain of integrators. The initial condi-
tion of each integrator will determine one of the parameters of the polynomial
signal. For instance:

• constant signals, y = a1, are generated by:

ẋ1 = 0; x1(0) = a1; y(t) = x1(t)

• ramp signals, such as y(t) = a1 + a2t, by:

ẋ1 = x2; ẋ2 = 0; x1(0) = a1; x2(0) = a2; y(t) = x1(t)

and, in general, polynomial signals, such as

y(t) =
i=n∑

i=1

ai

(i − 1)!
ti−1

are generated by:

ẋ1 = x2; ẋ2 = x3; . . . ; ẋn = 0
y = x1

where ai = xi(0), and n! denotes the factorial of n.
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Discrete disturbances. If the generators are built up with accumulators
instead of integrators, DT signals can be generated. For instance, with:

x1(k + 1) = x1(k) + x2(k); x2(k + 1) = x2(k) + x3(k); . . .

xn(k + 1) = xn(k); y(k) = x1(k)

the output is given by:

y(k) = x1(0) + kx2(0) +
k(k − 1)

2
x3(0) + . . . =

n∑

i=1

(
k

i − 1

)

xi(0)

Similar expressions can be obtained for exponential or sinusoidal signals.
The most common deterministic signals are summarised in Table 2.2. Dis-

turbance randomness can be inserted if random impulse inputs, ψ, are as-
sumed at time t.

Table 2.2. Generation of deterministic disturbances

CT DT

Steps d(t)
def
= A dk

def
= A

ḋ = ψ dk+1 = dk + ψk

Ramps d
def
= at + b dk

def
= ak + b

ẋ =

(
0 1
0 0

)

x + ψ xk+1 =

(
1 1
0 1

)

xk + ψk

d = [1 0]x d = [1 0]x

Sinusoidal d
def
= A sin(ωt + B) dk

def
= A sin(ωTk + B)

ẋ =

(
0 1

−ω2 0

)

x + ψ xk+1 =

(
cos ωT sin ωT
− sin ωT cos ωT

)

xk + ψk

d = [1 0]x d = [1 0]x

Example 2.15. It is easy to show that, with the system defined by:

ẋ = a.x; x(0) = x0; y = x

the signal y(t) = x0e
at is generated. Similarly, by:

ẋ1 = x2; ẋ2 = w2x1; x1(0) = A sin(ϕ); x2(0) = A cos(ϕ)

y = x1

the signal y(t) = A sin(wt + ϕ) is generated.

2.10.2 Randomness in the Signals

It frequently happens that the model of the process generating the external
signals is very complex or unknown. In this case, it is easier to characterise
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the signals by their stochastic properties. They can also be considered as
the output of stochastic generators or as the filtered response of an original
stochastic signal. These disturbances may appear at the output (as measure-
ment noise), at the input or at the state level. Let us briefly describe these
types of variables:

• measurement noise. The output of the sensor system is affected by a
number of random variables from which no information is available, such
as device drifts or interference from other devices. The main goal would be
to filter, reduce or cancel the noise, getting a clean measurement to feed
the monitoring or control system,

• stochastic inputs. They affect the process behaviour as external variables
and they are unavoidable. If we consider the positioning of an antenna,
the force of the wind will present such a characteristic,

• internal noise. These are the most complicated disturbances and, in some
cases, they can be modelled by assuming stochastic parameters in the
process models. A way of dealing with this situation is by considering
uncertainties in the model or in the variables. An introduction to the
available tools is presented in Chapter 8.

In a general sense, the control goals under stochastic disturbances will be: to
filter the measurement noise or output disturbances, to attenuate or cancel
the input disturbances, probably by measuring them if it is possible, and to
assure some performances under process noise, due to uncertainties in models
or disturbances.

In order to characterise the stochastic signals, some basic statistic concepts
and measurements about random variables should be remembered. Some of
them are random variables, distribution and density functions, mean, variance,
covariance, correlation, statistical independence and linear regression, among
others. A short review of these concepts is included in Appendix E, where
special attention is paid to the multivariable case.

2.10.3 Discrete Stochastic Processes

A signal, of which the value at any time instant is a random variable, is called
a stochastic process. A discrete stochastic process is a sequence of random
variables and can also be obtained as a result of sampling a CT stochastic
process.

In the following, only discrete stochastic processes are considered. Their
main properties are related to those of the random variables in the sequence, as
well as their interaction. Let us review the most common (simplified) models
of stochastic processes.

White noise. White noise (WN) is the simplest stochastic process, {εk}.
The discrete random variables in the sequence are zero-mean (E(εk) = 0),
and independent of each other. If their variance is E(ε2

k) = σ2
k, the covariance

between samples j and k is:
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σjk =

{
σ2

k j = k

0 j �= k
(2.62)

Due to the independence among variables, the knowledge of the current or
past values in a sequence is useless for determining the future values. In this
sense, WN cannot be compensated for or predicted.

If there is some kind of relationship among the variables, that is, if the
random variables in the sequence are not independent, some additional infor-
mation is available and the “noise” treatment may be easier. The rest of the
stochastic processes are denoted as coloured noise. Some of them are easily
modelled.

Random walk (drift). This can be considered as an accumulated white
noise:

vk+1 = vk + εk; εk is WN (2.63)

Thus, the difference between two consecutive variables is WN. Their covari-
ance can be expressed by:

σ2
k(k+1) = E(vkvk+1) = E(vk(vk + εk)) = E(v2

k) + E(vkεk) = σ2
k

Coloured noise (general model). A general model of coloured noise can
be represented as the output of a dynamic (DT) process:

xk+1 = Axk + εk

vk = Cxk
(2.64)

where εk is a WN. Thus, based on the past and current values of the {v(k)}
sequence, some information about the future values can be estimated.

Similarly, if the noise is disturbing a DT process which has, in addition,
manipulated inputs, the equations equivalent to (2.21) and (2.22) would be:

xk+1 = Axk + Buk + Bdvk

yk = Cxk + Duk + Ddwk
(2.65)

where vk and wk are white noises with covariance matrices V and W respec-
tively. Usually, D = 0 and Dd = I, wk being the measurement noise and vk

the process noise.

Input/output models

Other than the internal representation above, a monovariable stochastic pro-
cess may be represented by a difference equation or, alternatively, using the
general concept of the Z-transform of a sequence, it can be also expressed by
an input/output model such as:

v(z) = Gn(z)ε(z) εk is WN (2.66)

It is worth mentioning some typical representations that are rather com-
mon in literature [30, 84]:
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• Moving-Average (MA). The signal is obtained as a weighted sum of current
and past inputs:

y(k) =
n∑

i=0

biε(k − i)

• Auto-Regressive (AR). The weighted sum of the signal is a random noise:

y(k) +
n∑

i=1

aiy(k − i) = ε(k)

• Auto-Regressive-Moving-Average (ARMA). This is a combination of the
two above,

y(k) +
n∑

i=1

aiy(k − i) =
n∑

i=0

biε(k − i)

• External-Auto-Regressive-Moving-Average (ARMAX). In this case, there
is also a manipulated input, u(k), leading to:

y(k) +
n∑

i=1

aiy(k − i) =
n∑

i=0

biu(k − i) +
n∑

i=0

ciε(k − i) (2.67)

However, the state space representation will be pursued in this book for
disturbance rejection control designs, as all the above models can be expressed
in a form similar to (2.64) or (2.65).

2.11 Key Issues in Modelling

As has been emphasised in this chapter, the model of a process is a partial
representation of its behaviour. In this sense, the model we are interested in
is a model suitable for designing the control system. Thus, the selection of the
model and the modelling approach depends on the final goal:

• the details of the model are determined by the control goals. Static, low-
frequency range, autonomous, DT or hybrid models are examples of op-
tions,

• the variables and relationships selected to build the model will depend on
the effects we are interested in in our study. Some variables can be deleted
or treated as disturbances if they are not so relevant, or they can become
crucial if their particular effect has to be modelled,

• the control design methodology will recommend, or even determine, the
type of representation,

• the knowledge and/or availability of the process to get actual data will
allow for theoretical or experimental modelling techniques,

• the accuracy and complexity of the model will depend on the control re-
quirements.

TLFeBOOK



2.12 Case Study: The Paper Machine Headbox 47

How do we obtain a model? As a summary, two main approaches can be
followed:

• first-principle (internal) model. Leading to (detailed) non-linear mod-
els, with physical insight into the variables and equations, and a number
of parameters to be determined. Techniques of model reduction may need
to be applied,

• experimental modelling (Appendix A.4). By comparing the behaviour
of the plant to that of some predefined models and structures, the models’
parameters can be estimated, leading to (simple) approximate linearised
models, being usually input/output representations. This approach is suit-
able for modelling disturbances if historical records of them are available.

According to the model purpose and the analysis of its properties, a change
in the representation frame, its complexity, its range of validity or the number
of involved variables may be suggested. Thus, the modelling phase should be
revisited in the control design process, to enhance the available model to better
fulfill the control requirements, the final goal in our study.

2.12 Case Study: The Paper Machine Headbox

The purpose of the headbox is to deliver a uniform and stable jet velocity
profile in both cross and machine directions to form the paper sheet, Figure
2.5. The stock flows into the headbox chamber controlled by a valve. The top

q

p

h

v

Figure 2.5. Headbox simple schema

of this chamber is filled with compressed air to dampen pressure pulsations.
The airflow is also controlled by an input valve. The stock is homogenised in
this chamber and it flows through the slice channel to the wire.

2.12.1 Simplified Models

First-principle. A very simple first-principle model can be derived by mass
balances.

Stock balance in the headbox:

A(h)
dh(t)

dt
= q(t) − S(t)v(t)
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where h is the stock level, in m, A is the headbox section, in m2, q is the stock
inflow, in kg/s, S is the slice lip section, in m2, and v is the stock exit speed,
in m/s.

The stock exit speed due to the total “head pressure” H, in m, is: v(t) =√
2gH(t); H(t) = h(t) + p(t)
The air compression is assumed to be isothermal, thus p(t)Va(t) = const,

where p is the air pressure, in equivalent stock height (m) and Va is the volume
of air in m3.

Air pressure variations are due to air net inlet flow and volume reduction,
thus:

dp(t)
dt

= λ(Pa(t) − p(t)) − κ
dh

dt

where λ is the chamber dynamics inverse time constant, in s−1, Pa is the
source air pressure, in equivalent stock height, in m, and κ is a compression
adimensional constant.

The slice lip exit area is manipulated by an external motor. In this sim-
plified model, it is assumed constant or slowly-varying.

In this simple model, the head and pressure can be chosen as state vari-
ables, whereas the manipulated variables could be the stock inlet flow and the
source pressure, leading to the state model:

ḣ = −S

A

√
2g(h + p) +

1
A

q

ṗ = κ
S

A

√
2g(h + p) − λp − κ

1
A

q + λPa

Experimental. By applying steps at the inputs at an operating point, the
elements of an approximate transfer matrix may be estimated. Additional
transportation flow delays between the stock valve and the headbox chamber
input may be realised. This can be done on the real plant or on a simulated
model. This could result in a transfer matrix model obtained as in Example
2.9:

[
h
v

]

=






e−s

1 + s
−1

1 + 0.5s
e−s

(1 + s) (1 + 2s)
0.2 + s

(1 + 0.5s) (1 + 2s)






[
q
Pa

]

Discrete model

From the first-principle non-linear state space representation, a simple DT
model may be obtained by the Euler approximation of the two state variable
derivatives.

Alternatively, from the experimental model above, the following discreti-
sation approximations can be obtained:
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1) Discrete transfer matrix. To get a discrete model, it could be easy
to discretise each element of the transfer matrix, assuming a zero-order hold
(ZOH) device in the input and a regular sampling period, T , at the output. If
this period is assumed to be T = 0.5 s, the time delay of 1 s, will be equivalent
to two delay units, z−1. That is, Z[e−s] = z−2.

Taking care of the delays, the Matlab� command Gd=c2d(G,.5,’zoh’)
returns the DT transfer matrix:

G(z) =






0.3935
z2(z − 0.6065)

−0.6321
z − 0.3679

0.0489z + 0.0381
z2(z − 0.6065)(z − 0.7788)

0.2908z − 0.2628
(z − 0.3679)(z − 0.7788)




 (2.68)

2) State representation based on physical variables. From this DT
transfer matrix, grouping the common poles by rows or columns, the block-
diagram in Figure 2.6 can be drawn.

x1 x2 x3

x4

x5

v

h

Sum1

Sum

Gain1

Gain

Fdt3

Fdt2

Fdt1

FdtDelay1Delay

Pa

q

Figure 2.6. DT Block-diagram of the headbox (where F ≡ q)

Then, a state variable can be directly assigned to each first-order block
(Fdt2 and Fdt3 share the same one), leading to the internal representation:

x1(z) =
1

z
q(z) → x1(k + 1) = q(k)

x2(z) =
1

z
x1(z) → x2(k + 1) = x1(k)

x3(z) =
1

z − 0.6065
x2(z) → x3(k + 1) = x2(k) + 0.6065x3(k)

x4(z) =
1

z − 0.3679
Pa(z) → x4(k + 1) = 0.3679x4(k) + Pa(k)

x5(z) = 0.0489z + 0.0381
z − 0.7788 x3(z) + 0.2908z − 0.2628

z − 0.7788 x4(z)

(z − 0.7788) x5(z) = (0.0489z + 0.0381) x3(z) + (0.2908z − 0.2628) x4(z)

x5(k + 1) = 0.7788x5(k) + 0.0489x3(k + 1) + 0.0381x3(k)

+0.2908x4(k + 1) − 0.2628x4(k)
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and rearranging the last equation:

x5(k + 1) = 0.7788x5(k) + 0.0489 [x2(k) + 0.6065x3(k)] + 0.0381x3(k)

+0.2908 [0.3679x4(k) + Pa(k)] − 0.2628x4(k)

x5(k + 1) = 0.7788x5(k) + 0.0489x2(k) + 0.0678x3(k) − 0.1559x4(k) + 0.2908Pa(k)

The output equation would be:

h(k) = 0.3935x3(k) − 0.6321x4(k)

v(k) = x5(k)

Altogether, the state representation is:
{

x(k + 1) = Afx(k) + Bfu(k)
y(k) = Cfx(k) + Dfu(k)

Af =









0 0 0 0 0
1 0 0 0 0
0 1 0.6065 0 0
0 0 0 0.3679 0
0 0.0489 0.0678 −0.1559 0.7788









; Bf =









1 0
0 0
0 0
0 1
0 0.2908









; (2.69)

Cf =

[
0 0 0.3935 −0.6321 0
0 0 0 0 1

]

; Df =

[
0 0
0 0

]

2.12.2 Elaborated Models

An in-depth model has been developed at the Pulp and Paper Centre (Univer-
sity of British Columbia, Vancouver, Canada), reported in [127]. To express
the dynamics of the upper chamber, the interconnected liquid and gas-flow
systems are considered. A mass-balance equation for the stock and the stock
flow out of the headbox can be obtained by applying:

dh

dt
= q − CsS

√
2ghj − 2So

√

2
(p − p0)

ρw
A (2.70)

where hj is the head at the slice lip, in m, Cs is the valve-sizing coefficient, So

is the area of overflow valve opening, in m2, p0 is the atmospheric pressure,
in m, and ρw is the density of stock, in Kg/m−3.

A mass-balance equation for the air using the pressure density relationship
gives the following equation in terms of pressure:

dp

dt
=

kp0

ρ0

(
p

p0

) (k−1)
k

[
qi − qe

Va
+

ρ0A( p
p0

)
1
k

dh
dt

Va

]

(2.71)
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where ρ0 is the air density, in kg/m−3, κ is the specific heat ratio, qi and qe

are the air inflow into the upper chamber and outflow through the bleed valve,
in kg/s.

To write the equation which governs the rate of change of the head at the
slice lip, hj , the headbox inlet head, hi, and the friction head loss, hf , are
considered. The following equation is obtained:

dhj

dt
=

√
2ghj

L
[H − hj − hf ] (2.72)

where L is the constant of the slice channel, in meters, and hf is the friction
head loss.

The stock level, h, in the headbox, the airpad pressure, p, and the head at
the slice lip, hj , are chosen as the state variables.

The stock inflow, q, the gas flow, qe, defining the net air inflow and the
slice lip area, S, are treated as inputs.

The headbox dynamics can thus be represented by a third-order non-linear
dynamical system. The model is characterised by a number of construction-
dependent parameters (A, Va, So, hf and Cds) as well as some fundamental
physical parameters (k, p0, ρ0, ρw and g). The values of q, qi−qe or Sj depend
upon the operating point. Knowing the design details of the headbox and the
operating point, all these variables could be calculated quite easily.

The three equations are highly coupled. Equation (2.70) shows that if the
input stock flowrate increases, the liquid level increases. This in turn increases
the airpad pressure and the total head. This increases the outgoing stock flow.
There is thus a self-regulating effect in the system.

Equation (2.71) shows that the airpad pressure will return to its original
value when the equilibrium point is reached. Any deviation in the level will
thus be contributing to the total head.

Changing the air output area changes the air outflow, affecting both the
level and the pressure inside the airpad. An increase in the slice opening will
produce a decrease in the level, airpad pressure and the total head.

The most important control problem for a headbox is to maintain constant
jet velocity and to have a good dynamic behaviour when changing the grades.
We must consider as disturbances the external pressure of air and flow inlet,
as well as the consistency of the stock or physical characteristics of the flow
resistance.

In spite of the model complexity due to non-linearities, the model order is
reduced to 3, which is even lower than the experimental one obtained in the
last chapter.

Linearisation. The previous non-linear model is useful for simulating and
studying the dynamic behaviour of the headbox. To design control strate-
gies, it is always convenient to have linearised models which approximate the
non-linear dynamics for small disturbances around a steady-state point. In
[127], the following linearised model is obtained for some given parameters
and operating conditions, using the Matlab� command linmod.
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A =




0 −0.00083 −0.03
0 −0.08849 −1.041610

9.1371 9.1371 −8.883063



 ; C =




1 0 0
0 1 0
0 0 1



 (2.73)

B =




0.47597 0 −0.048587
14.03999 −0.00162 −1.433194

0 0 −57.9134



 ; D =




0 0 0
0 0 0
0 0 0





The eigenvalues of the system matrix A are (−0.0005,−10.3254,−0.9950).
Thus, the system has a very slow mode with a time constant of about 512 s
and two fast modes with time constants of less than a second.
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Linear Systems Analysis

This chapter covers the study of the dynamic behaviour of linear models. Dif-
ferential equations and operations with the Laplace transform and its inverse
are assumed to be the subject of introductory courses ([78, 49, 94] and basic
outline in Appendix A). State space approach will be presented in some detail,
with emphasis placed on obtaining reduced order models that are suitable for
control purpose design. Important concepts in theory and practice (such as
gain, poles, ... ) will be presented as well, paying attention to the issues that
are mainly related to multivariable systems, such as the system structure and
the interactions.

3.1 Introduction

Most of the concepts and ideas developed in this book are based on process
models. If the model is accurate enough, the analysis of its properties will
provide an estimation of those from the actual process. If analysis is carried
out previous to the controller design, it is denoted as open-loop analysis. The
study of specific properties of a plant–controller combination is denoted as
closed-loop analysis.

By this analysis a number of characteristics should be determined:

• stability. It is the basic feature of any controlled system. Related to this
concept are issues such as degree of stability and, in a general way, the
characterisation of the dynamic behaviour,

• accuracy. The system gains in steady-state, instantaneously, and as a
function of the frequency. One major issue in MIMO systems is the concept
of directionality : the gains depend on the input direction, that is, in the
combination of inputs under study,

• structure. Interactions/independence among sets of variables, subsystem
division,

• robustness. Availability for maintaining the above properties under
changes or uncertainties in model parameters or disturbances.
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All these properties are also present in the analysis of SISO systems, but the
richness and complexity are by far larger in MIMO systems. In fact, provided
that there is more than one manipulated variable, issues such as the selection
of inputs and their purpose, or the study of interactions, cancellations or
complementary effects, will condition the success of a control system.

Most of the concepts will be presented using the state space representation,
introducing their interpretability and use with other representations.

3.2 Linear System Time-response

Continuous-time systems. Given a CT linear system, as defined in (2.17)
(2.19):

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t) + Du(t) (3.1)

with initial conditions, x(t0) = x0, the state and the output may be computed
at any time, t ≥ 0, by solving this differential equation. The solution of a scalar
first-order differential equation, ẋ(t) = ax(t) + bu(t), is given by:

x(t) = ea(t−t0)x(t0) +
∫ t

t0

ea(t−τ)b u(τ)dτ

where the first term is the solution of the homogeneous equation, ẋ(t) = ax(t),
and the second one corresponds to a particular solution for the input u(t). In
the same way, for the first-order differential state vector equation in (3.1), it
is (see Appendix B.5):

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)Bu(τ)dτ ; (3.2)

y(t) = CeA(t−t0)x(t0) + C

∫ t

t0

eA(t−τ)Bu(τ)dτ + Du(t) (3.3)

Autonomous (free)-response. If the initial state is x(0) = x0 and the
input is null, u(t) = 0; ∀t, the state and output response is:

x(t) = eAtx0 = φ(t)x0; y(t) = Cφ(t)x0 (3.4)

where φ(t) = eAt is the transition matrix. Observe that by applying the
Laplace transform to the state equation, with null input, it yields:

sx(s) − x0 = Ax(s) −→ x(s) = (sI − A)−1x0

The Laplace transform of the transition matrix, φ(t), is denoted as the resol-
vent matrix, φ(s) = (sI − A)−1.
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Forced response. If the initial condition term vanishes (the system is at an
equilibrium point), the forced response due to a specific input is obtained:

x(t) =
∫ t

t0

eA(t−τ)Bu(τ) dτ ; (3.5)

y(t) = C

∫ t

t0

eA(t−τ)Bu(τ) dτ + Du(t) (3.6)

Impulse response. Being at equilibrium, if input ui is a unitary impulse,
δ(t), the response is:

y(t) = CeAtbi + Dδ(t)

where bi denotes the ith column of B. If D = 0,

G(t) = CeAtB =

is denoted as the impulse-response matrix. The forced output may be ex-
pressed by a generalisation of the convolution formula (A.15):

y(t) = G(t) ∗ u(t) =
∫ t

t0

G(t − τ)u(τ)dτ)

For details on the above issues, the reader is referred to [11].

Discrete-time systems. For DT systems

xk+1 = Axk + Buk (3.7)
yk = Cxk + Duk (3.8)

the solution of the state equation yields:

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1 = A2x0 + ABu0 + Bu1

x3 = A3x0 + A2Bu0 + ABu1 + Bu2

. . .

xk = Akx0 +
k−1∑

j=0

Ak−j−1Buj (3.9)

yk = Cxk + Duk (3.10)

From the above expression, the output can be also expressed by a discrete
convolution:

yk =
j=k∑

j=0

H(k − j)uj (3.11)

yk =
j=k−1∑

j=0

CAk−jBuj + Duk (3.12)
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where the Haenkel parameters are as defined in Equation (2.61):

H(j) = CAjB j ≥ 1 (3.13)
H(0) = D (3.14)

3.3 Stability Conditions

A general definition of stability should be applicable to any dynamic system
and it would appear as: a system is stable if it presents bounded outputs for
bounded inputs. Stability as such, in a general non-linear case, may be cum-
bersome to assess. In general, the stability of a (non-linear) process is studied
around an equilibrium point or a nominal trajectory and, in this case, the pro-
cess behaviour can be most of the time approximated by a linear model. This
is called local stability, applying the term of global stability if this property is
analysed for any input or initial condition of the process. In-depth analysis
can be consulted in [74].

In the case of linear systems, stability is a more concrete property that
can be unequivocally characterised.

Continuous-time. Matrix exponentials determine the time-response of CT
systems. The reader is referred to Appendix B.5 for details. Particularly, if the
state representation is in diagonalised canonical form (A = Λ = diag{λi(A)}),
the transition matrix will also be diagonal:

eΛt = diag{eλi(A)t} (3.15)

and (3.2), as well as the system output, will be composed of a sum of these
diagonal terms, denoted as modes. Thus, the system acts as a generator of
signals represented by the modes.

As argued in (B.6), page 288, the exponential terms arising in the solution
of (3.1) are the eigenvalues of A. For each exponential, the usual analysis in
Section A.2.1 can be carried out regarding stability and approximate settling
time.

As a conclusion, the stability condition for a CT linear system, such as
(3.1), is:

Re{λi(A)} < 0, ∀i (3.16)

where Re{·} stands for the real part.

A CT linear system is stable if there are not eigenvalues of the system
matrix A (poles of the transfer matrix) in the right-half-plane (RHP)
of the complex plant.
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Discrete-Time. With a similar reasoning, the stability condition for a DT
linear system is:

|λi(A)| < 1, ∀i (3.17)

A DT linear system is stable if there are not eigenvalues of the system
matrix A (poles of the transfer matrix) outside the unit circle in the
complex plane.

3.3.1 Relative Degree of Stability

The stability condition, (3.16), allows the comparison of the relative degree
of stability among CT systems. If

Re{λi(A)} < −α < 0, ∀i (3.18)

then any state has a trajectory bounded by |xi(t)| < Me−αt for some constant
M or, equivalently

lim
t→∞ e+αteA(t−t0)x(t0) = 0

This provides a measure for estimating the settling time. Nevertheless, for the
output signal, matrix C may hide some modes (see Section 3.7).

A similar relative degree of stability can be defined for DT systems.

3.4 Discretisation

Although CT models better approximate the behaviour of actual systems,
their control is usually implemented in a digital system, so the overall system
is hybrid. To simplify its treatment, there are two common approaches:

1. Designing a CT controller, and trying to find an “equivalent” DT con-
troller

2. Assuming a DT “equivalent” model of the process, and designing a DT
controller.

This equivalence can be established using different criteria:

• matching the response to an equivalent input (step, impulse, ramp, ... ),
• keeping a similar structure: substituting the derivative by a DT approx-

imation (Euler, bilinear, ... ), as seen in Section 2.8. This is the natural
approach to discretise polynomial representations,

• preserving some properties, like stability (matching of poles and zeros).

In a control environment, the output is usually sampled periodically and,
with the same frequency, the input is updated through a hold device (see
Chapter 9 for implementation issues).
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In a first approach, discretisation strategy will be based on the following
assumptions1:

• assume synchronous and instantaneous sampling/updating processes, at a
regular sampling period, T ,

• replace any CT signal, y(t), by its sequence, y(kT ). Usually, the Z-
transform of this DT signal, y(z), is handled,

• assume the process inputs, u(t), to be constant between sampling times
(ZOH device). That is, u(t) = u(kT );∀ t kT ≤ t < (k + 1)T . Thus, the
input is a sequence of steps.

Following this strategy for a SISO with transfer function, g(s), the DT
equivalent transfer function is obtained [21] by computing:

g(z) = (1 − z−1)ZT (L−1(
g(s)
s

)) (3.19)

Thus, the samples every T seconds of the step response of the CT system will
match that of the DT system.

Discretisation of transfer matrices. Each element of the matrix can be
discretised following the above approach. The result will be a DT transfer
matrix, G(z), matching the input step-response of the CT system. For each
element gij(s) of the matrix, (3.19) is applied, obtaining the corresponding
gij(z).

The Matlab� command c2d, with arguments the CT transfer matrix, the
sampling period and the discretisation method, gives as a result a DT transfer
matrix.

Example 3.1. The DT model of the CSTR, Example 2.1, can be easily obtained,
using:

GD=c2d(Gp,.01,’zoh’);zpk(GD)

TF from input 1 to output... from input 2 to output...

0.029249 (z-0.1489)(z-0.5626) 0.00020763 (z+2.16)(z+0.1357)

#1:------------------------------ #1: ------------------------------

(z-0.1479)(z-0.5807)(z-0.9819) (z-0.1479) (z-0.5807)(z-0.9819)

-0.23504 (z-0.1044)(z-1.007) -0.20653 (z+0.4445) (z-0.9831)

#2:------------------------------- #2: ------------------------------

(z-0.1479)(z-0.5807)(z-0.9819) (z-0.1479)(z-0.5807)(z-0.9819)

0.13503 (z+0.4411) (z-1.007) -1.5969 (z-0.745) (z-0.981)

#3: ------------------------------ #3: -----------------------------

(z-0.1479)(z-0.5807)(z-0.9819) (z-0.1479)(z-0.5807)(z-0.9819)

1 The use of other sampling strategies, hold devices or the analysis of the inter-
sampling behaviour of the CT signals is beyond the primary goal of this book.
In [1, 2], a detailed exposition of these topics is presented. Section 9.4 outlines
control under dual-rate sampling.
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where a T = 0.01 s sampling period is selected and a step-response-equivalent DT
model is defined by ’zoh’. Note the different pole position if a different sampling
period (for instance T = 0.1 s) is selected.

Discretisation of State Space Representations

Applying (3.2) to a sampling period, the hold device behaviour involves keep-
ing constant the input in the inter-sampling interval:

x((k + 1)T ) = eAT x(kT ) +
∫ (k+1)T

kT

eA((k+1)T )−τ)dτBu(kT ) (3.20)

that is:
xk+1 = Āxk + B̄uk (3.21)

where it is clear that these matrices can be obtained by:

Ā = eAT ; B̄ =
∫ T

0

eAτ dτB (3.22)

An alternative approach can be followed to compute these matrices, avoid-
ing the integral involved in B̄.

Consider an augmented “state” vector, including the equation u̇ = 0:

xe =
(

x
u

)

; ẋe =
(

A B
0 0

)(
x
u

)

= Aexe (3.23)

the intersample response can be interpreted as a “free response” of the aug-
mented system. By (3.4), for kT ≤ t < (k + 1)T :

xe(t) =
(

x(t)
u(t)

)

= eAe(t−kT )xe(kT ) (3.24)

so, partitioning the matrix exponential, the matrices in (3.22) are:
(

Ā B̄
0 I

)

= eAeT (3.25)

Matlab�: Some commands implementing algorithms related to the contents of this
section are: expm, c2d, c2dm, d2c.

Example 3.2. The Matlab� code for discretising a system is (Abar=Ā, Bbar=B̄):

s = expm([[a b]*t; zeros(nb,n+nent)]);

Abar = s(1:n,1:n); Bbar = s(1:n,n+1:n+nent);
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3.5 Gain

The concept of gain is very useful for characterising the behaviour of a system,
usually assuming stable behaviour. It refers to the relation between the output
and input “magnitude”. But it can be defined as relating to the time behaviour
(static, instantaneous), the frequency of the input and, in the case of MIMO
systems, the direction of the input (the input vector components).

Scaling. It is clear that in order to compare magnitudes the measurement
units are critical. Thus, to determine the gain or ratio between the magnitude
of variables, even more so in a MIMO system, their measurement should be
normalised so that they are comparable. The recommended scaling is:

• scale-manipulated variables so that the actuator range is mapped to
[−1, 1],

• scale disturbances so that its maximum estimated value is mapped to 1,
• scale-controlled variables so that one unit in the new scaling is equivalent

to the maximum admissible errors.

In this way, individual units and limits for dozens of variables in a com-
plex MIMO model can be forgotten and the gains that are discussed below
can be compared with unity for controller validation. Scaling has no deep
mathematical roots, but it is useful in practice. Also, it may avoid errors in
determining how well-conditioned a problem is (see page 292). In some cases,
measurements (may be different to controlled variables) should be scaled so
that measurement noise is of a similar size (to help in variables’ selection,
Section 4.3).

3.5.1 Static Gain

Given a stable system, assume a constant input vector, u(t) = ū, the output
reaching the value y(t) = ȳ. The static gain (also denoted as DC gain) is Ḡ
such that:

ȳ = Ḡū

From (2.17) and (2.19), letting ẋ = 0, the static gain is:

0 = Ax̄ + Bū; ȳ = [−CA−1B + D]ū (3.26)

which requires A to be regular.

Other representations. Applying the final value theorem of the Laplace
transform:

ȳ = lim
t→∞ y(t) = lim

s→0
sy(s) = lim

s→0
sG(s)u(s) (3.27)

Thus, as u(s) = ū
s :

Ḡ = lim
s→0

G(s) = G(0) (3.28)
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Again, recalling (2.59), Ḡ = −CA−1B + D is also obtained.
For DT systems, the static gain is:

Ḡ = lim
z→1

G(z) = G(1) = C(I − A)−1B + D (3.29)

The static gain for polynomial representations is obtained by solving the
system equation after deleting all the derivative terms.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: dcgain,ddcgain.

3.5.2 Instantaneous Gain

In a similar way, the immediate response of a system to a step change in the
input can be computed by applying:

y(0+) = lim
t←0

y(t) = lim
s→∞ sy(s) = lim

s→0
sG(s)u(s) (3.30)

and:
G∞ = lim

s→∞G(s) (3.31)

Recalling (2.59),
G∞ = D (3.32)

That is, the input/output coupling matrix. For DT systems, the instantaneous
gain is also given by D.

The coupling matrix, D, is usually null in physical systems: there is no
“immediate” response to an external action, also in sampled-data systems
where a minimum delay of one sampling period is included. On the other
hand, it is normally non-zero in the controller subsystems: for example, the
proportional gain is an instantaneous one.

3.5.3 Directional Gain

To evaluate how big a gain is, some measurements about the size (norm) of a
matrix should be used. A summary of matrix norms is included in Appendix
C. The spectral radius of a matrix, as defined by

ρ(G) = max
i

|λi| (3.33)

is a useful measure of the matrix size. However, the eigenvalues are only de-
fined for square matrices. Furthermore, they refer to a “gain” where the output
vector and input vector have the same direction. Relaxing this assumption,
other directions with higher gain may be found.
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Given an input vector with constant magnitude, |u(t)| = u0, the output
magnitude depends on the input direction. It is interesting to know in which
directions the extreme gains (maximum and minimum) are obtained. This
could be relevant in determining how to act or what to measure in a controlled
plant. For this purpose, we recall the singular value decomposition (SVD) of
a matrix (Appendix B).

Given the matrix G ∈ R
p×m, (y = Gu), its singular values are

σi =
√

λi{GGT }; σi ≥ 0 (3.34)

In the appendix, it is shown that there is an SVD of G expressed by G =
UΣV T , where Σ is a diagonal matrix. The number of non-zero entries in
Σ is equal to the rank of G, and it is at most min(p,m). U ∈ R

p×p and
V ∈ R

m×m are unitary matrices with orthonormal column vectors, ui and vi

respectively, denoted by “input” (V ) and “output” (U) coupling matrices. If
complex matrices (such as those in the frequency-response) are considered,
then G = UΣV H , and U and V are complex matrices; Σ, however, is still
real diagonal.

The physical meaning is as follows. Assume a unitary input, u = vi. The
output is y = σiui, that is, a vector of magnitude σi and direction ui. So, the
action of G is a combination of scaling and rotations, and its directional gain
is a sort of ellipsoid with extreme gains:

max. gain: σ̄ = max
i

σi = σ1; min. gain: σ = min
i

σi = σs (3.35)

If there is a big difference between the extreme gains, the matrix is said to be
ill-conditioned . This is characterised by the condition number defined by:

γ(G) =
σ̄(G)
σ(G)

(3.36)

Ill-conditioned plants will be difficult to control because the response is very
different depending on the direction of the input (B.14), with high sensitivity
to actuator modelling errors.

Example 3.3. Let us assume the matrix

G =




45 −72 −5
0.3 1.5 −0.2
27 −45 9





The SVD gives (Matlab� , [U,S,V]=svd(G)):

U =
(
u1 u2 u3

)
=




0.8503 −0.5262 0.0047
−0.0112 −0.0270 −0.9996
0.5261 0.8499 −0.0289



 ; S =




99.819 0 0

0 10.32 0
0 0 1.025
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V =
(
v1 v2 v3

)
=




0.5256 −0.0717 −0.8477
−0.8507 −0.0386 −0.5242
0.0049 0.9967 −0.0813





For an input vector: u ≈ v3, the gain is gmin ≈ σ3 and the output is in the direction
of y ≈ u3:

y = G ∗ [−0.85 − 0.52 0]T = [−0.81 − 1.03 0.45]T ; | y |= 1.39

If the sign of the second input is changed, the output dramatically changes:

y = G ∗ [−0.85 0.52 0]T = [−75.69 0.52 − 46.35]T ; | y |= 88.7

In this case, the maximum gain gmax ≈ σ1 would be for an input u ≈ v1, and
the output is in the direction of y ≈ u1:

y = G ∗ [0.5 − 0.8 0]T = [80.1 − 1.05 49.5]T ; | y |≈ 94.2

Diagonal dominance. From the control viewpoint, a particularly interest-
ing condition of a gain matrix is the so-called diagonal dominance. For a
square-gain matrix G = {gi,j}, if ∀i, ∃ji such that ji �= jk if i �= k and

gi,ji
>
∑

j �=ji

|gi,j |; �i =

∑
j �=ji

|gi,j |
gi,ji

< 1 (3.37)

there is a diagonal dominance in the sense that by a suitable raw and column
sorting, the matrix gain will appear almost as a diagonal matrix, and G will be
non-singular. The ratio �i is denoted as the Gershgorin radius. The dominance
can be analysed either by rows (as in the above definition) or by columns (see
Appendix, page 288).

Example 3.4. Given a gain matrix, y = Gu,

G =




6 40 0
6 0.3 0

0.23 0.12 8.25





there is a clear dominant effect (or coupling) between y1 ↔ u2, y2 ↔ u1 and y3 ↔ u3.
The Gersghorin radii are �1 = 0.15, �2 = 0.05, �3 = 0.042. Observe that the column
Gersghorin radii do not show any dominance.

The diagonal dominance concept may be used to analyse the possibility of
matching (pairing) input/output variables in decentralised control (Section
5.2.3).

3.6 Frequency response

Frequency-response techniques have been extensively applied in the study of
SISO systems. We recall that the steady-state output of a linear system under
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a sinusoidal input is also sinusoidal with the same frequency, the gain and the
phase shift being determined by the frequency response (see Appendix A).

For MIMO systems, the frequency response, G(jω), is a matrix and, as
previously seen, its “gain” depends not only on the frequency but also on the
input direction, that is, on the input combination. Thus, it will be interesting
to determine the properties of the gain matrix for each frequency, G(jw) =
G(s)|s=jw:

• the rank of the gain matrix, to determine the existence of an imaginary
zero if it decreases at a given frequency,

• the extreme gains, σ̄G(jw) and σG(jw), and the condition number, in
particular, around critical frequencies (bandwidth, cut-off, resonance, ... ),
as they are used in input/output controllability analysis and closed-loop
performance and robustness analysis (see Section 8.5),

• the diagonal dominance, to evaluate the possible effects of interactions if
a control is applied. The computation of the Gersghorin radii (3.37), in
particular at the critical frequencies, allows us to determine a sufficient
condition that guarantees the system’s closed-loop stability (5.13).

This kind of analysis for a general frequency response of a MIMO system will
point out the maximum and minimum reachable gains for a given input direc-
tion and at a given frequency. The Matlab� command sigma computes these
gains. Similarly, diagonal dominance can be also determined as a function of
the frequency .

Example 3.5. The following Matlab� code

A=[-2 1 2 .4;1 -2 1 .6;-.5 .25 .1 -.05;0.2 .1 .1 -.45];

B=[1.7 -.1;.11 1.4;0 0;0 0.01]; C=[1 -0.2 0 0;-0.3 1.5 0 0];

pt=ss(A,B,C,0);

simulates a TITO fourth-order system. Assume two separate output feedback pro-
portional controllers of gain kp = 4, controlling y1 by u1 and y2 by u2. By using
(2.51) or the following Matlab� code:

K=[4 0;0 4]; errclsedloop=feedback(eye(2),pt*K,-1);

eig(errclsedloop);

a stable controlled system is obtained with closed-loop poles located at {-12.27,-
6.88,-0.26,-0.4}, the closed-loop error, (r − y), being represented by the function
errclsedloop. If we compute the extreme error gains as a function of the frequency,
by means of

sigma(errclsedloop);

the result being plotted in Figure 3.1, it can be realised that at low frequencies, for
a given combination of inputs, the error “gain” can reach the value of +14 dB. The
error gain is reduced below −6 dB in the range of frequencies between 0.3 and 4
rad, and the controller will be safely efficient only in this range, in the sense that
it will follow both references with less than 50% error. In fact, the closed-loop error
static gain is:
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G0 = [I − CA−1BK]−1 =

(
4.4808 −0.6622
2.8926 −0.2726

)

with σ̄ = 5.38 and σ = 0.13, showing a possibly inappropriate steady-state behaviour
unless the desired references always lie in the low-error direction.
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Figure 3.1. Max/min singular value of the error gain matrix

Matlab�: Some commands implementing algorithms related to the contents of this
section are: sigma,dsigma.

System norm. Evaluating the maximum gain, σ̄(G(jω)), and its maximum
over all the frequency range, the worst-case amplification for any input signal
is obtained. The value:

‖G‖∞ = sup
w

σ̄(G(jω)) (3.38)

is denoted as the ∞-norm of the system. Further details are available in Ap-
pendix C.

Example 3.6. The above closed-loop error function has a worst-case maximum gain
given by: norm(errclsedloop,inf) = 5.38, so there exists one reference signal for
which error “power” is more than five times the set-point. If details on it are needed,
then the sigma plot provides additional information.

3.7 System Internal Structure

After the study of the stability and gain issues, the next part of this chapter
is devoted to the analysis of the structural properties of a system. That is,
the connection between input, state, output and disturbance variables.

Singular V alues
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From a control point of view, the final goal is to determine the effect
of external inputs on the controlled variables, but, in order to design the
control and to better understand the global behaviour of the system, all the
interconnections will be relevant. Thus, we will consider the connection of:

• input-to-state,
• state-to-output,
• input-to-output,
• disturbances as special inputs.

Although the main interest, from a control viewpoint, is the input/output con-
nection, the analysis of the interactions with the state is relevant for selecting
an adequate internal representation for:

• system implementation,
• model reduction,
• appropriate control design method.

3.7.1 Reachability (State Controllability)

State controllability is the system property of it being possible to find a con-
trol input signal to drive the state of the system from one arbitrary state to
another. The physical interpretation is that directly or indirectly, the input
vector independently reaches all the system states. To derive a reachability
test, we will refer to a DT linear time-invariant system and its solution (3.9).

In particular, after n iterations:

xn = Anx0 + An−1Bu0 + An−2Bu1 + · · · + ABun−2 + Bun−1

Thus, any targeted state x∗ = xn will be reachable from x0 if there is at
least one solution of the equation system:

x∗ − Anx0 =
(
An−1B An−2B . . . AB B

)






u0

...
un−1




 (3.39)

If the reachability2 matrix is defined by:

C =
(
An−1B An−2B . . . AB B

)
(3.40)

we can establish the following:
2 In many references it is called the “controllability” matrix.
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Reachability test. The system (3.7) is reachable if its reachability matrix,
C, is full rank. The control sequence could be obtained from:






u0

...
un−1




 = C†(x∗ − Anx0) (3.41)

where ()† stands for the right pseudoinverse matrix.
In this case, x∗ − Anx0 is a linear combination of the columns of C. If

the rank were n1 < n, additional time (additional actions) will not improve
the result3. In the following, unless otherwise stated, it will be assumed that
x0 = 0.

Relative degree of reachability

Looking at the reachability test, (rank(C) = n or n-linearly independent
columns of C), this is a mathematical test and a number of variations and
approximations can be considered, leading to different concepts of partial
reachability.

If rank(C) = nc < n, only a subspace of dimension nc is reachable. That
is, under a suitable state representation, the input will not be able to modify
the value of n − nc state variables. To find a state transformation to make
explicit which state variables are controlled and which are not, we know that
the independent columns of C determine a base of the reachable subspace.
The unreachable subspace will be defined by the n−nc vectors orthogonal to
the columns of C, that is, the solutions of:

CT x = 0 (3.42)

This can be computed, for instance, by the Matlab� command null(C’), or
by singular value decomposition (Section B.4.1).
Reachable subsystem. To find the similarity transformation to make ex-
plicit the reachable state variables, take into account the complementary and
orthogonal character of both subsystems. Thus, given (A,B), with reachabil-
ity matrix, C = c, compute:

T1=subnc=null[c’]; T2=subc=null[subnc’]; T=[T2 T1]

The T -state transformation will result in:

x̄k+1 =
(

Ā11 Ā12

0 Ā22

)

x̄k +
(

B̄1

0

)

uk (3.43)

showing that the first part of the state vector is reachable and the second
one is not. If the unreachable subspace is stable, the system is said to be
stabilisable.
3 This matrix construction stops at An−1 because, by the Cayley-Hamilton the-

orem, it is well known that An can be expressed as a linear combination of
Ai, i = 0, 1, ..., n − 1 (see Appendix B).
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Single-input reachability. Instead of considering the full input vector, the
reachability from a single-input variable can be determined. If the input ma-
trix B is expressed by B = (b1 b2 . . . bn):

rank(Ci) = rank(
(
An−1bi An−2bi . . . Abi bi

)
) = n(i) (3.44)

will show the dimension, n(i), of the subspace reachable with input ui. If
n(i) = n, the whole system is reachable by this input and the pair (A, bi) is
said to be cyclic.

Example 3.7. Given the fourth-order two-input system defined by:

A =







0 1 0 0
0 0 1 0
−2 −1 −1 0
−2 −1 0 0





 B =







0 0
.1 0
0 1
.1 1







the following properties can be computed:

• the reachable subspace dimension: rank(ctrb(A,B)) = 3,
• the explicit unreachable state variables:

nc=null((ctrb(A,B))’); c=null(nc’);

T=[c nc]; A1=inv(T)*A*T, B1= inv(T)*B

A1 = B1 =

0.0000 0.5774 -0.5774 -0.5774 0 0

2.0000 -0.5000 -0.8660 -1.3660 -0.0366 1.0000

2.0000 0.8660 -0.5000 -0.3660 0.1366 1.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

showing that the new fourth state variable

x̄ = T−1x; x̄4 = [0 0.2113 0.7887 − 0.5774]x

is not reachable. If the uncontrollable mode were unstable, the system would be
non-stabilisable (there is a “disconnected” unstable state). This would be the
case if these matrices were from a CT system,

• the single-input reachability (for u1): b1=B(:,1); rank(ctrb(A,b1)) =3.

Minimum reaching time. Looking at the m × n columns of C, (3.40), let
us find the first n-independent ones, and form a modified n × n reachability
matrix as:

C̄ =
(
b1 Ab1 . . . Aµ1−1b1 b2 Ab2 . . . Aµ2−1b2 . . . bm Abm . . . Aµm−1bm

)

(3.45)
This arrangement shows that we can use a set of sequences of length µi of
actions in the input ui, i = 1, . . . m, to drive the system between two states4.
Thus, if

µ = max
i

µi

a sequence of µ (the system reachability index) inputs will be required to reach
an arbitrary state: the reachability index is the fastest time any arbitrary state
can be reached.
4 µi is called the reachability index of input i.
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Reachability effort. Rank computation, in theory, involves the evaluation
of determinants. If the rank of a matrix is n, that means the determinant
of an n × n submatrix of this matrix is different from zero. However, that
procedure is numerically unreliable, and rank determination based on the
SVD decomposition is advised (see Appendix B.4.1).

The control sequence to drive the state is obtained by multiplying C† by
the factor related to the desired state (x∗ − Anx0). Thus, a norm of this
matrix will determine the control effort required to reach an arbitrary final
state or, equivalently, the minimum gain of the reachability matrix (it will be
the maximum gain of the pseudoinverse).

The reachability effort is defined as:

Eρ = σ̄(C†) =
1

σ(C)
(3.46)

These measurements of the degree of reachability can be used to compare
different control alternatives for the same or different processes. They may be
also used to determine the suitability of choosing the actuators’ placement.

Example 3.8. Let us consider the reachable part of the system considered in Ex-
ample 3.7, and compute some properties:

A11= B1=

0.0000 0.5774 -0.5774 0.0000 0

2.0000 -0.5000 -0.8660 -0.0366 1.0000

2.0000 0.8660 -0.5000 0.1366 1.0000

• for the two inputs: rank([B11 A11*B11])=3 thus, the reachability time is two
periods, 2T ,

• the reachability effort

svd(ctrb(A11,B11))={1.9486,1.7402,0.5336}

svd([B11 A11*B11])={1.7364,1.0124,0.0995}

is much lower if three periods are used (0.0995/0.5336),
• the subsystem is reachable with any of the inputs:

rank(ctrb(A11,B1(:,1))) =3

svd(ctrb(A11,B1(:,1))) ={0.3031,0.1270,0.0450}

rank(ctrb(A11,B1(:,2))) =3

svd(ctrb(A11,B1(:,2))) ={1.9319,1.7321,0.5176}

but the control effort will be much larger for some targets with the first input
(σ1 = 0.045), compared with the second one (σ2 = 0.5176).
On the other hand, there is not much benefit in using the first input, as two
inputs have σ = 0.534 and the subsystem could only be controlled by the second
input (σ ≈ σ2 = 0.518).
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3.7.2 Observability

State observability is a dual property of reachability, but relates state and
output vectors. The information we get from the system state is through the
output vector (the sensors). Thus, state observability is a system property
related to it being possible to compute the state of the system from the output
observations. The physical interpretation is that, directly or indirectly, all the
state variables should influence the output in one way or another. To derive
an observability test, we will refer again to a DT linear time-invariant system
(3.7).

Assume an initial state, x0 �= 0, and, to simplify the notation, a free
evolution (uk = 0,∀k). The sequence of measurements would be:

y0 = Cx0

y1 = Cx1 = CAx0

y2 = CA2x0

. . .

yn−1 = CAn−1x0

or, in matrix form:

Y =










y0

y1

y2

...
yn−1










=










C
CA
CA2

...
CAn−1










x0 = Ox0; O =










C
CA
CA2

...
CAn−1










(3.47)

where O is denoted as the observability matrix5. Dually, we can establish the
following:

Observability test. The system, (3.7), is observable if the observability ma-
trix, O, is full rank. The initial state can be computed as:

x0 = †OY

where †() stands for left pseudoinverse.

Relative degree of observability

Similar to the analysis of the relative reachability, we can define:

• partial observability. If rank(O) = no < n, the whole state space is not
observable, and there is a subspace of dimension n−no without any effect
on the output. This subspace is formed by the non-trivial solutions of:

5 A similar concept is sometimes called the reconstructivity matrix.
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0 = Ox∗

i.e., the null space of O. The observable subspace is orthogonal to it,
generated by the rows of O. If the unobservable subspace has unstable
dynamics, even if the output trajectories are acceptable, the system will
sooner or later “blow up” due to the hidden instability. If there is no
unobservable unstable dynamics, the system is said to be detectable.

• single output observability. If the observability matrix Oi constructed
with only the i-th row of C (denoted by iC) (Matlab� , obsv(A,C(i,:)) is
full rank, the system is fully observable by yi. Otherwise, rank(Oi) = no(i)
shows the dimension of the observable subspace for this output.

• observation time. Observability indices (νi) can be attached to the out-
puts by sorting the first n-independent rows of the observability matrix:

Ō =










1C

1CA

1CAν1−1

...
pCAνp−1










The observability time will be ν = maxi{νi}.
• detectability degree. Based on (3.47), if the lowest gain of the observ-

ability matrix is small, changes in the state will not be easily detectable.
Thus, the detectability degree will be expressed as σ(O).

3.7.3 Output Reachability

The reachability concept can be also applied to the output instead of the
state. A system is output-reachable if there is a sequence of control actions
driving the output from an initial value to a final one. It is easy to derive an
output reachability test by just looking at the DT convolution (3.11), such as:

A system is output-reachable if:

rank([D CB CAB . . . CAn−1B]) = p (3.48)

The output reachability time will be the lowest i such that:

rank([D CB . . . CAi−1B]) = p

(It will be instantaneous if rank(D) = p).
Observe that if a system fulfills this property it does not mean that a given

output can be maintained at a set-point. It only means that this output value
can be reached at a given time instant.

All these measurements of the degree of observability can be used to com-
pare different measurement alternatives and may be also used to determine
the suitability of choosing the sensors’ placement.
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3.7.4 Remarks on Reachability and Observability

It should be emphasised that these concepts are related to the system structure
and connectivity. No regulation properties can be, in rigour, inferred.

That is, if a system is fully reachable (output-reachable), it does not mean
that the system can be regulated around any reachable state (output). Fur-
thermore, reachability implies bringing the system to an arbitrary state in a
very short time, and the control effort, (3.46), is a worst-case measure. In reg-
ulation tasks, the target state is an equilibrium one, and the desired settling
time is usually substantially larger than the system order. So, the guidelines
on page 69 are only orientative and must be confronted with other method-
ologies of actuator selection. Similar remarks can be made about the degree
of observability, σ(O). In this sense, the concept of input/output controllabil-
ity, introduced in Section 3.9.1, gives a complementary understanding of the
control possibilities of a process.

Partial input (output) vector reachability (observability) is also a mea-
surement of a controlled system integrity, that is, it allows us to determine if
a system remains reachable (observable) if there is a failure in some actuators
(sensors). Fault handling is discussed in Section 9.6.

Although the development has been justified for DT systems, the following
remarks are appropriate:

• continuous-time systems. For CT systems, the reachability and ob-
servability matrices are the same, although their derivation is a bit more
complicated. Also applicable are the concepts of degree of fulfillment of
these properties, although the reachability time has no sense if the control
input is not bounded,

• sampled-data systems. If a reachable (observable) CT system is sam-
pled with sampling period T , the resulting SD system keeps the same
properties. The only exceptional situation of losing these properties hap-
pens if the sampling frequency (ws = 2π/T ) is a multiple of any internal
resonant frequency.

R1
U 1

U 2

R2

R3

C3

C2C1

A

+

+

Figure 3.2. Example electric circuit
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Example 3.9. For the electric circuit in Figure 3.2, where the state variables are
the capacitor voltages, Vi, and the outputs are sensed by the current meter shown
in the figure and a voltmeter in capacitor 3, it is easy to derive the following state
and output equations:

d

dt




V1

V2

V3



 =





−1
R1C1

0 0

0 −1
R2C2

0

0 0 −1
R3C3








V1

V2

V3



 +





1
R1C1

0
1

R2C2

1
R2C2

0 1
R3C3



 u

y =

(
0 −1

R2
0

0 0 1

)

x +

( 1
R2

1
R2

0 0

)

u

By simple inspection of the reachability and observability matrices (do that as an
exercise), the following conclusions are easy to derive:

• the circuit is unobservable (x1 is not observable). Only x2 is observed by y1, and
x3 by y2,

• the system is fully reachable with two inputs. Input 1 controls two state direc-
tions, except if R1C1 = R2C2, when it only controls one (two identical circuits
in parallel). Input 2 controls, in any case, 2 directions (V2 and V3)

6.

3.7.5 Canonical Forms

A reachable (observable) system can be transformed to canonical representa-
tions pointing out this property. These representations will be also useful in
illustrating some control properties, as shown later on in the control design
chapters.

Let us assume a SISO system with transfer function:

G(s) =
b1 + b2s + . . . + bnsn−1

a1 + a2s + . . . + ansn−1 + sn

It can be represented by the state model in the so-called reachable canonical
form:

Ac =










0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1

−a1 −a2 −a3 . . . −an










; Bc =










0
0
...
0
1










; CT
c =










b1

b2

...
bn−1

bn










(3.49)

It is easy to verify that this model is reachable and the state variables are the
derivatives of the first one:
6 Note that the above conclusions have been obtained under the condition that

eliminating one input means setting ui = 0, i.e., short-circuiting, and not opening
the circuit.
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xi+1 =
dxi

dt
=

dix1

dti
, i = 1, . . . , n − 1 (3.50)

dxn

dt
=

dnx1

dtn
= −

n−1∑

i=0

aixi + u (3.51)

dnx1

dtn
+ an−1

dn−1x1

dtn−1
+ · · · + a1

dx1

dt
+ a0x1 = u (3.52)

x1(s) =
1

a1 + a2s + . . . + ansn−1 + sn
(3.53)

That is, the system can be represented by a chain of n-integrators, the output
being a combination (bi) of the states.

In the DT setting, the canonical form implies:

xi+1,k = xi,k+1 = x1,k+i, i = 1, . . . , n − 1

leading to a chain of pure delays instead of integrators.
For any other state representation, (A,B,C), it is easy to find the simi-

larity transformation, Tc, to obtain the canonical reachable form. First, the
coefficients ai are those of the characteristic polynomial, det(sI − A). Tak-
ing into account the special form of Ac and Bc, by (2.20), the columns of
Tc = [t1 t2 . . . tn] are recursively computed:

TcBc = B ⇒ tn = B (3.54)
TcAc = ATc; tn−1 − antn = Atn ⇒ tn−1 = (A − anI)tn (3.55)

. . . (3.56)
t1 = At2 − a2tn (3.57)

with the final check that −a1tn = At1.
In a dual way, an observable canonical form may be defined, taking the

output as the first state variable if the transfer function is proper (see, for
instance, [94] for details).

MIMO Systems

Transfer matrix to SS description. By repeating the above realisation for
a MIMO plant, and stacking all elements together, a state space representation
(non-minimal, see next section) can be obtained.

Example 3.10. For a TITO transfer matrix given by G(s) =

(
G1G2

G3G4

)

, the above

technique for each of the elements yields a realisation (Ai, Bi, Ci, Di). The overall
system can be expressed as:
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ẋ =







A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4





 x +







B1 0
0 B2

B3 0
0 B4





 u (3.58)

y =

(
C1 C2 0 0
0 0 C3 C4

)

x +

(
D1 D2

D3 D4

)

u (3.59)

MIMO canonical forms. For MIMO systems there is the possibility of
defining some canonical forms. The most well known is the Luenberger canon-
ical form. It can be shown that any reachable system can be transformed into
a state representation where there is a chain of µi-integrators attached to each
input component. The procedure can be easily derived [67] and it is illustrated
in the following example.

Example 3.11. Let us consider the DT headbox model7 (2.69) in page 50. The
reachability matrix is full rank and the reachability indices are µ1 = 3 and µ2 = 2.
The first five columns of the reordered reachability matrix, (3.45), are:

C̄ =
(
bf,1 Afbf,1 A2

f bf,1 bf,2 Afbf,2

)

where bf,i stands for the ith column of matrix Bf .

1. Compute the inverse, C̄−1 =









υ1

υ2

υ3

υ4

υ5









.

2. Take the µ1-th and (µ1 + µ2)-th rows (denoted as v3 and v5 respectively).

3. Use the similarity transformation, TL, composed as: TL =









υ3

υ3Af

υ3A
2
f

υ5

υ5Af









.

4. Compute the canonical form:

AL = TLAfT−1
L =









0 1 0 0 0
0 0 1 0 0
0 0 0.6065 0 0
0 0 0 0 1

0.7711 −2.0961 0 −0.2865 1.1467









BL = TLBf =









0 0
0 0
1 0
0 0
0 1









; CL = CfT−1
L =

[−0.9315 0 0 0.4923 −0.6321
0.6585 0 0 −0.2628 0.2908

]

In this case, two chains of pure delays appear, ended by the state variables x3 and
x5.

7 Part of this example as well as the case study in this chapter and Chapter 6 have
been worked out in collaboration with J.V. Roig [4].
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3.8 Block System Structure (Kalman Form)

Now, we are in a position to analyse some structural properties of the system.

c no

yu
co

nc o

nc no

Figure 3.3. Block decomposition

Similar to the transformation of an internal representation to make explicit
the reachable and unreachable parts, (3.43), in the general case, the state
vector may be split into four subvectors involving the four possible combina-
tions about reachability and observability properties. This canonical structure,
known as the Kalman form, is composed of blocks, as depicted in Figure 3.3:

unreachable and unobservable (ncno),
reachable and unobservable (cno),
observable and unreachable (nco), and
reachable and observable (co).

Example 3.12. Let us consider a two-input-one-output system defined by:

A =

-0.0450 -0.4592 -0.1223 0.3892

0.4659 -2.2628 0.3591 0.7119

1.1125 0.4726 -1.3667 0.0886

-0.8736 -0.2277 1.1511 -0.4256

B =

0.4513 0.1423

0.3791 0.5195

0.5774 0.0000

0.5650 1.3076

C =

0.4513 0.3791 0.5774 0.5650

The system is unreachable and unobservable as the “practical” controllability and
observability ranks are 2:

c=ctrb(A,B); svd(ctrb(A,B))=2.1210 1.2338 0.0007 0.0001

o=obsv(A,C); svd(obsv(A,C))=4.8097 1.0047 0.0000 0.0000

Moreover, as rank([c’;o])= 3, there is a subspace (dimension 1) which is ncno.
The system decomposition is obtained as follows8:

8 Those commands were typed for a system whose state-space model had more
precision in the coefficients. Copying the above matrices (A, B, C) yields rank
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ncno=null([c’;o]); ncno’ = -0.7604 -0.2387 0.5774 0.1776

nco=null([c’;ncno’]); nco’ = -0.3502 0.8830 0.0000 -0.3127

cno=null([o;ncno’]); cno’ = -0.3090 0.1404 -0.5774 0.7426

co=null([ncno’;nco’;cno’]); co’ = 0.4513 0.3791 0.5774 0.5650

By the similarity transformation T , T=[co cno nco ncno];:

Ad=inv(T)*A*T =

-0.1000 0.0000 -1.0000 0.0000

0.0000 -1.0000 0.0000 2.0000

0 0.0000 -2.0000 0.0000

0.0000 0.0000 1.0000 -1.0000

Bd=inv(T)*B=

1.0000 1.0000

0.0000 1.0000

0.0000 0.0000

0.0000 0.0000

Cd=C*T=

1.0000 0.0000 0.0000 0.0000

a block decomposition is achieved. By this decomposition, the reachability and ob-
servability properties are derived by inspection. In this case: x2 and x4 are unob-
servable and x3 and x4 are unreachable. Thus, only the state x1 links the input and
output of the system.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: ctrb, ctrbf, obsv, obsvf, null, rank,svd.

3.8.1 Minimal Realisation

If we compute the transfer matrix of a state space representation, only the
reachable and observable subsystems will appear. Thus, in a Kalman form
representation, only the co subsystem is required to implement the trans-
fer matrix. State space representations without unreachable or unobservable
modes are denoted as minimal realisations.

Example 3.13. Let us consider again Example 3.12. The transfer matrix is:

4 for controllability and observability matrices (!), but there is no error in the
procedure. This is one of the reasons that justifies the need for SVD in practical
cases with imprecision (as in this case, “only” four significant digits). The numer-
ically reliable way of obtaining ncno is typing [u s v]=svd([c’;o]), realising
how low the last diagonal element in s is, and, assuming it to be zero, taking the
last column of v as a basis for ncno.
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g=tf(S); gf=zpk(g)

Transfer function from input 1 to output:

s^3+4s^2+5s+2 (s+2) (s+1.009) (s+0.991)

---------------------------- = ----------------------------------

s^4+4.1s^3+5.4s^2+2.5s+0.1999 (s+2)(s+1.009)(s+0.991)(s+0.09996)

Transfer function from input 2 to output:

s^3+4s^2+5s+2 (s+2) (s+1.009) (s+0.991)

---------------------------- = ----------------------------------

s^4+4.1s^3+5.4s^2+2.5s+0.1999 (s+2)(s+1.009)(s+0.991)(s+0.09996)

So, both elements are identical and some terms cancel. Thus, the transfer matrix
will be:

y(s) =
1

s + 0.1

(
1 1
)
u(s)

This result could be extracted directly from the Kalman form, just considering the
first-order co-subsystem. The number of states in the minimal realisation can be
evaluated by the rank of the product of the observability and controllability matrices.

As previously seen, the concept of “minimal realisation” is connected to
cancelling terms in the state representation, but it also has the same meaning
dealing when with transfer matrices.

Let us consider this reduction, for the sake of clarity, in a SISO case.

Example 3.14. Given the transfer function, in factorised form:

g(s) =
(s + 3.02)(s + 1.04)(0.00071s + 1)

(s + 4)(s + 2.994)(s + 1.012)

some pole-zero cancellations clearly appear. Let us look for a state representation
of g(s) and its properties,

n =[0.0007 1.0029 4.0622 3.1408];

d =[1.0000 8.0060 19.0539 12.1197];

g=tf(n,d);

[A,B,C,D]=tf2ss(n,d)

rank(ctrb(A,B))= 3

rank(obsv(A,C))= 3

svd(ctrb(A,B)) = {46.4732,0.4762,0.0452}

svd(obsv(A,C)) = {83.1521,0.0672,0.0015}

svd(obsv(A,C)*ctrb(A,B))={265.1,0.03,0.001}

pointing out that there is only one mode that matters for controllability and observ-
ability. Proceeding as before, but giving greater tolerance to the reachability and
observability computation, only one state will remain. For example:

rank(obsv(A,C),0.1))=1

A more systematic approach to model reduction is presented later on in Sec-
tion 3.10.
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Example 3.15 (Headbox system). Let us now consider again the simple model of
the headbox, and look for a mathematical internal representation without looking
at the physical interpretation of the state variables.

Taking the DT transfer function in (2.68) (including the delays), and using the
Matlab� command:

[A11, B11, C11, D11] = ssdata(G(1,1))

a realisation of the first TF element is obtained. To get the full realisation we can
proceed in different ways:

a) Repeating the sequence above for each element of the DT transfer matrix.
This will lead to an augmented state representation, surely unreachable and
unobservable.
b) Reducing to a common denominator the elements of G(z) by columns and
realising with the same state variables all these transfer functions. Attached to
each input (column) a reachable subsystem will be realised. In this case, the
global system could be unobservable.
c) Doing the same by rows, to get a set of p observable subsystems. The global
system could be unreachable.

Let us illustrate the first option, obtaining (Aij , Bij ,Cij):

A11 =




0.6065 0 0

1 0 0
0 1 0



 ; B11 =




1
0
0



 ; C11 =
[
0 0 0.3935

]
; D11 = 0

A12 =
[
0.3679

]
; B12 =

[
1
]
; C12 =

[−0.6321
]
; D12 = 0

A21 =







1.385 −0.472 0 0
1 0 0 0
0 1 0 0
0 0 1 0





 ; B21 =







1
0
0
0





 ; C21 =

[
0 0 0.049 0.038

]
; D21 = 0

A22 =

[
1.1467 −0.2865

1 0

]

; B22 =

[
1
0

]

; C22 =
[
0.2908 −0.2628

]
; D22 = 0

The global system would be:

A =







A11 0 0 0
0 A12 0 0
0 0 A21 0
0 0 0 A22





 ; B =







B11 0
0 B12

B21 0
0 B22





 ;

C =

[
C11 C12 0 0
0 0 C21 C22

]

; D =

[
D11 D12

D21 D22

]

We know that this is a fifth-order system, but we obtained a 10-dimension state
vector. This means that there are five extra states which are unreachable, unob-
servable or both. We can check that the system is unreachable and unobservable by
computing the rank of the reachability and observability matrices. To reduce the
model, the Matlab� command

[Am, Bm, Cm, Dm] = minreal(A, B, C, D, tol)
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will provide a minimal realisation, such as:

Am =









0.9755 −0.0237 −0.0864 −0.0658 −0.0521
0.0352 0.5262 −0.0956 −0.4850 0.5282
1.0630 −0.0770 0.0364 −0.0374 −0.1158

0 −0.0145 0.9184 −0.0161 0.0007
0 −0.0349 −0.3802 0.2921 0.2312









Bm =









−1.4057 0.0593
0 −0.5369
0 0.1122
0 −0.3741
0 −1.1259









; Cm =

[
0 0 0 −0.0471 0.5771
0 0 0 −0.1256 −0.2165

]

The argument ’tol’ allows for defining the tolerance in admitting a matrix as singu-
lar9.

Of course, the Matlab� command

Gd=tf(ss(Am,Bm,Cm,0))

will return the original transfer matrix. The Matlab� command ss, applied to the
full matrix G also yields a state space representation in one step.

3.8.2 Balanced Realisation

A balanced realisation is a minimal realisation where each mode has the same
relative degree of reachability and observability. In particular, as a very special
case, a realisation with the same reachability and observability matrices is
balanced.

Example 3.16. Let us consider again Example 3.14, where the system has a third-
order model (A, B, C, D). The transfer function is:

g(s) =
0.00071s3 + 1.003s2 + 4.062s + 3.141

s3 + 8.006s2 + 19.05s + 12.12

or, pointing out the related factors (poles and zeros):

g(s) =
(s + 3.02)(s + 1.04)(0.00071s + 1)

(s + 4)(s + 2.994)(s + 1.012)

g(s) = 0.2591
1 + 0.3311s

1 + 0.334s

1 + 0.9615s

1 + 0.9981s

1 + 0.00071s

1 + 0.25s

Compute a similarity transformation to get the Jordan canonical form:

[T,J]=jordan(A);

T= J=

0.1729 5.3225 -4.4954 -1.012 0 0

-0.1709 -1.3306 1.5015 0 -4. 0

9 In fact, the minreal command uses the argument ’tol’ to delete the modes attached
to the lowest singular value of C or O, as outlined in Example 3.12.
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Example 3.17. Consider the transfer matrix:

Y (s) =

( 1
s+1

1
s+2

2s+0.5
s+1

2
s+1

)

U(s)

We realise that there are poles at s = −1 and s = −2. If a state representation of
each element is carried out, the total system would be:

ẋ =







−1 0 0 0
0 −2 0 0
0 0 −1 0
0 0 0 −1





 x +







1 0
0 1

−1.5 0
0 2





 u

y =

(
1 1 0 0
0 0 1 1

)

x +

(
0 0
2 0

)

u

It is easy to check that this fourth-order system is not a minimal realisation. Either
by looking at the minimal realisation or proceeding like in Section 2.6.2, a double
pole in s = −1 and a single one at s = −2 are obtained. The third pole in s = −1
does not belong to the co-subsystem.

y(s) =

((
0 0
2 0

)

+

(
1 0

−1.5 2

)
1

(s+1)
+

(
0 1
0 0

)
1

(s+2)

)

where the first term of the right-hand side is the direct input/output coupling matrix
(D), the instantaneous gain matrix, and the rank of the numerator matrix of pole
in −1 is 2, and that of −2 is 1.

Regarding the determinant-based methodology, the first-order minors are the
elements of the matrix, with poles in −1 and −2. If we compute the second-order
minor, that is, the determinant of the transfer matrix, it would be:

In[17]:= G={{1/(s+1),1/(s+2)},{(2s+.5)/(s+1),2/(s+1)}}

In[18]:= Simplify[Det[G]]

yields:
−2 (−1.20377 + s) (1.45377 + s)

(1 + s)2 (2 + s)

so the least common multiple is indeed (1 + s)2(2 + s).

Matlab�: Some commands implementing algorithms related to the contents of this
section are: eig, pole, mpole, damp, ss2zp, tf2zp.

Zeros

Dually to the poles, the zeros can be considered as signal sinks (notch or
blocking filters). If a SISO system presenting a zero at s = z is excited by
an input, u(t) = ezt, the output only contains components from the system
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modes (poles), and the components Aezt are “blocked”. In this case, the zeros
are the roots of the transfer function numerator polynomial.

In MIMO systems, it was pointed out in Section 2.6.2 that the zeros are the
values of s reducing the rank of G(s). This means that the previous blocking
effect appears if the exciting signal is applied in a given direction, so the
concept may be refined with directionality issues.

Zeros can be computed as the values of s such that, replacing below y(s) =
0, the matrix equation

(
sI − A −B

C D

)(
x(s)
u(s)

)

=
(

0
y(s)

)

(3.60)

has a non-trivial solution for x, u, i.e., the determinant of the left-hand side
matrix vanishes. In this way, non-zero input would be “blocked” from appear-
ing at the output.

Transfer matrix. They can be also computed as the roots of the numera-
tor of the transfer matrix determinant if all the poles, with their respective
multiplicity, appear at the denominator.

Example 3.18. In the previous example, the zeros may be computed using the G(s)-
determinant. It was: −2 (−1.20377 + s) (1.45377 + s)

(1 + s)2 (2 + s)

all the poles appearing in the denominator.
Alternatively, using the internal representation (3.60) and Mathematica�:

In[36]:= PP={{s+1,0,0,-1,0},{0,s+2,0,0,-1},

{0,0,s+1,0,-1},{1,1,0,0,0},{-1.5,0,2,2,0}}

Factor[Det[PP]]

Out[36]= -2(s-1.20377)(s+1.45377)

Matlab�: Some commands implementing algorithms related to the contents of this
section are: ss2zp,tf2zp,zero,tzero.

If a state representation, a system realisation, is not a minimal one, that
means that some modes or poles are unreachable or unobservable. Thus, the
corresponding system matrix eigenvalues will not appear as transfer matrix
poles. In this case, we will consider that there are cancellation or decoupling
zeros.

For instance, if a system is expressed in the Kalman form:

A =







A11 0 A13 0
A21 A22 A23 A24
0 0 A33 0
0 0 A34 A44





 ; B =







B1
B2
0
0





 ; CT =







C1
0

C3
0
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the eigenvalues of A22 are output decoupling zeros and those of A33 are input
decoupling zeros. The eigenvalues of A44 could be considered in both classes.
The input/output poles are the eigenvalues of A11, and the “true” transmis-
sion zeros are those from (A11, B1, C1, D).

As is well known, the right-half-plane (RHP) zeros, introduce additional
difficulty in controlling a system. Systems with RHP zeroes are denoted as
non-minimum-phase ones (NMP). They produce what it is called an inverse
response. That is, for instance, if a step input is applied, the response goes in a
sense (positive or negative) and the final value is of opposite sign. Dealing with
MIMO systems, the multivariable zeros are not correlated with the zeros of the
SISO transfer functions relating each pair input/output. Thus non-minimum-
phase multivariable zeros may appear even in the case that no single transfer
function has such a kind of zero. Further issues with RHP zeros are discussed
in Sections 5.3 and 8.3.2.

Also it is worth realising that a MIMO system may have individual zeros
in the same position as MIMO poles, without cancelling, as the example below
shows.

Example 3.19. The system:

G(s) =

(
1

(s+1)
0

0 (s+1)
(s+2)

)

has poles in {−1,−2} as well as one zero at {−1}, but they do not cancel: they
belong to different internal variables. In general, they will act in different directions.

Another interesting property is that, for square plants, its poles are the zeros of
the inverse and vice versa.

3.9 Input/Output Properties

Knowledge about the internal structure of a system provides criteria for: 1)
selecting the placement of actuators and sensors to reach all the interesting
parts of the system to be controlled and 2) pruning the irrelevant internal
variables or the spurious variables appearing in the process of transforming
the model representation. The partial degree of reachability and observability
also helps in understanding its dynamic behaviour, as previously mentioned.

But once these properties have been verified, nothing is said about a num-
ber of issues that matter for control purposes:

• is it possible to keep the outputs (or the controlled variables) of the system
at the set-points?

• is it possible to drive the outputs (or the controlled variables) tracking
some references?

• how large control actions are required?
• is there any risk for hidden instability to appear?
• are the theoretically required controllers feasible?
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• are there numerical problems in computing the system properties?
• is it possible to reject the disturbances?
• which uncertainty in the process model or in the disturbance knowledge is

tolerable to keep some control properties?

All these properties are better connected to input/output process character-
istics and should be analysed once the structural properties are fixed.

3.9.1 Input/Output Controllability

Most of these properties are summarised in the so-called input/output con-
trollability. Unfortunately, there are not so clear criteria for evaluating the
input/output controllability of a process, and even the definition of the con-
cept is not unanimous in the literature. We will accept the following definition:

A system is input/output controllable if it is possible to implement a
control system suitable for matching the control requirements in ref-
erence tracking and disturbance rejection, in spite of uncertainties in
the process model.

In rigour, to assess I/O controllability, based on the above definition, the
only way to prove it is by designing a suitable controller. However, to assess the
“possibility” of finding such a controller before investing effort in its design,
some elementary tests can be carried out, based on the same ideas as those
illustrated in Example 3.5.

Perfect controller. Given a plant model, y = Gu + Gdd, and a set-point,
r, an “ideal” controller would apply u = G−1(r − Gdd). As commented in
Section 3.5, input scaling is assumed to map [−1,+1] onto the operational
actuator range. Then:

• an obvious condition is that the number of control inputs should be equal
to or larger than the number of controlled variables (m ≥ p) if arbitrary
set-points on them must be pursued,

• for disturbance rejection, scaling so that the maximum expected dis-
turbance has unit magnitude, the ideal controller might be feasible if
σ(G−1Gd) ≤ 1, i.e., the worst-case disturbance to ideal input gain does
not imply actuator saturation,

• for reference tracking, scaling outputs so their desired range is mapped
onto [−1, 1], the condition is σ(G−1) = σ(G) > 1,

• for tolerance to uncertainty and reasonable “invertibility”, the condition
number of G should be “small”.

These conditions may be evaluated at different frequencies to assess at
which frequencies ideal control is possible. However, if the zero-error target is
relaxed, allowing for certain admissible deviations, the above conditions can be
relaxed a bit, but get more complex. The reader is referred to [119] for details.
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These conditions can be used as a guide for actuator placement, complement-
ing reachability-based ones, or as a guide for determining the maximum level
of performance achievable on a particular configuration.

Limitations on achievable performance

Feasible controller. Note that the above analysis refers to an ideal control
and not to a “practical” control. The possibility of practical implementation
implies some constraints in the control, in addition to the already (approxi-
mately) considered saturation bounds:

• the controller should be realisable (finite high-frequency gain10). The high-
frequency gain limitation is also needed to avoid amplification of measuring
noise and to tolerate modelling errors (see Chapter 8),

• unstable poles or zeros cannot be cancelled,
• delays cannot be inverted,
• enough and appropriate control actions should be available (related to the

conditioning and minimum-gain issues commented on above).

Based on these constraints, it is clear that there may be lots of additional
issues to discuss apart from those related to the controller: there are process,
or model, limitations to achievable performances. If an assessment of these
limitations is carried out in the starting phase of controller design, then, if
they are unacceptable, a process redesign or model re-identification might be
advised.

Some of these issues will be discussed in future chapters, as more notions
on different solutions to the control problem are presented. However, they are
summarised below, as it is important to point out that:

limitations must be considered as process-model properties, indepen-
dent of the to-be-designed controller.

First, ideal control (involving matrix inversion) is not achievable, as some
of the above considerations regarding feasible controllers usually apply. How-
ever, there is a bunch of subtle limitations, only appearing when a detailed
analysis of the frequency domain behaviour of the process is carried out. Just
to mention the more apparent ones:

• the disturbances acting on a range of frequencies over the bandwidth of
the actuators cannot be cancelled,

• the measurement noise frequency range may be within the desired band-
width,

• the achievable bandwidth is limited if there are RHP zeros (for high gain
the system becomes unstable),

10 The process is invertible with finite high-frequency gain only if the direct in-
put/output coupling matrix D is full rank. However, that situation is unusual.
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• open-loop unstable plants have lower bounds in bandwidth (feedback is
needed to stabilise the plant but bandwidth, in general, increases with
loop gain),

• combining both previous reasons, open-loop unstable plants with RHP
zeros are difficult to stabilise,

• uncertainty in the model limits achievable performance targets to ensure
that simulated results are consistent with practical implementation.

As previously mentioned, details on these aspects will be discussed in
Chapters 7 and 8.

3.10 Model Reduction

It is rather common to represent a dynamic system with a model whose order
is higher than required to fulfill a control purpose. In the case of a process,
a state model derived from an input/output representation may present un-
reachable and unobservable modes that must be pruned. Also, as seen in other
examples, there are modes with small influence, due to either an approximate
cancellation with poles or because their timescale is out of our range of inter-
est.

There are control design techniques leading to high-order complex con-
trollers. This is the case in cancellation controllers and in many of the model-
based control design approaches.

In many cases, to achieve some controlled process performances, it suffices
to use or to implement a simplified, reduced order, dynamic system. Reduction
means approximation. Thus, in a reduced order model, some properties of the
original system are captured but some other may be lost. Let us consider
two typical approaches: approximating the dynamic behaviour keeping the
same static gain, and approximating the behaviour at some critical range of
frequencies, without taking care of the steady-state.

3.10.1 Time Scale Decomposition

Given a dynamic system (A,B,C,D), if there are two different time scales of
behaviour, it can be decomposed into two subsystems such as:

(
ẋ1

εẋ2

)

=
[

A11 A12

A21 A22

](
x1

x2

)

+
[

B1

B2

]

u; y =
(

C1

C2

)[
x1

x2

]

where ε is very small.

• slow behaviour. If, in the limit, it is considered that ε → 0, the derivative
term of the second state subvector vanishes. Thus, the solution of

0 = A21x1 + A22x2 + B2u
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will determine the value of x2:

x2 = −A−1
22 (A21x1 + B2u)

The reduced order system will be:

ẋ1 = (A11 − A12A
−1
22 A21)x1 + (B1 − A12A

−1
22 B2)u

and the fast behaviour, characterised by the state subvector x2 is consid-
ered as instantaneous. This approximation is called residualisation,

• truncation. Assume a similarity transformation, T , in such a way that
A12 = A21 = 0 and A11 and A22 are block-diagonal (Jordan canonical
form), being λ(A11) � λ(A22). The dynamics of the state subvector x2

components is much faster and they can be deleted.
Keeping the model (A11, B1, C1), the contribution of the fast modes has
been removed. This simplest reduction does not keep the same static gain
of the model,

• fast behaviour. Alternatively, to analyse the transient behaviour or the
fast mode response, a timescale change such as t = ετ will lead to the new
state equation: (

1
ε

dx1
dτ

dx2
dτ

)

= Ax + Bu

Proceeding as before, ε → 0, the derivative of the first state subvector
vanishes, that is, x1(τ) = x̄1 remains constant, and the system dynamics
is characterised by:

dx2

dτ
= A22x2 + A21x̄1 + B2u

Example 3.20. Let us consider the manipulation of a tank level, h, by means of a
valve, whose dynamics is characterised by a time constant of τ = 40 ms. The partial
transfer functions are:

gt(s) =
10

(s + 1)
; gv =

2

(1 + 0.04s)

so the global model is G(s) = gv(s)gt(s). A state space model could be:

ẋv = −25xv + 50u

ẋt = −xt + 10xv

It can be written (with ε = 0.04) as:

[
εẋv

ẋt

]

=

[
0 −1
−1 10

]

.

[
xv

xt

]

+

[
2
0

]

u

If ε → 0, xv ≈ 2u and the approximate model becomes ẋt = −xt +20u. It will allow
us to study the dynamics of filling the tank, assuming an instantaneous behaviour
of the valve.
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On the other hand, if the model is rewritten assuming a timescale of 10 ms,
taking ε = 0.01, the state representation would be:

[
ẋv
1
ε
ẋt

]

=

[
0 −2.5
−1 10

]

.

[
xv

xt

]

+

[
5
0

]

.u

For ε → 0, ẋt → 0, that is, xt = const. and the reduced model will be ẋv =
−2.5xv + 5u, allowing for the simulation of the valve dynamics.

3.10.2 Balanced Reduction

Reducing the model order, other than the timescale, the input/output rele-
vance of each mode may be directly considered. In a balance realisation, the
less reachable (and observable) modes are candidates to be deleted.

Example 3.21. Let us consider again Example 3.14, where the system was repre-
sented in a balance realisation by:

Ab = diag[−1.012 − 4 − 2.994]; BbT = Cb = [
√

0.0095
√

0.9626
√

0.0252]

It appears clear that the second pole is the one contributing more to the in-
put/output relationship. Again, to get a reduced (first) order model we can truncate
or residualise the system (Ab, Bb, Cb).

Example 3.22. Let us consider the SISO system:

g(s) =
1

(s + 0.1)(s + 1)(s + 10)
=

0.1

s + 0.1

1

s + 1

10

s + 10
=

0.1122

s + 0.1

−0.1235

s + 1

0.0112

s + 10

The following reductions can be obtained:

• by deleting the factor 10
s+10

≈ 1 (residualisation):

g1(s) =
0.1

(s + 0.1)(s + 1)

• by deleting the term 0.0112
s+10

≈ 0 (truncation):

g2(s) =
−0.0113s + 0.0998

(s + 0.1)(s + 1)

• by reducing the term 0.0112
s+10

≈ 0.00112 (residualisation):

g3(s) = 0.00112 +
−0.0113s + 0.0998

(s + 0.1)(s + 1)

Alternatively, getting a balanced state space realisation (Ab, Bb, Cb, Db)

[A,B,C,D]=tf2ss(1,[1 11.1 11.1 1]);

s=ss(A,B,C,D);

sb=balreal(s);

[Ab,Bb,Cb,Db]=ssdata(sb)
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and applying a balanced truncation (modred(sb,3,’del’)) or, alternatively, resid-
ualisation (modred(sb,3)):

rsb=modred(sb,3);

gb1=tf(rsb)

0.0007249 s^2 - 0.009611 s + 0.09962

gb1= ------------------------------------

s^2 + 1.096 s + 0.09962

rsb2=modred(sb,3,’del’);

gb2=tf(rsb2)

-0.007277 s + 0.09648

gb2= -----------------------

s^2 + 1.062 s + 0.09655

The behaviour of all the models is rather similar, but differences may be detected at
given frequencies, in particular the static and instantaneous gains. For comparison,
the norm (maximum difference in frequency-response) of the modelling error can be
calculated:

norm(s-g1,inf)=0.0091, norm(s-g2,inf)=0.002

norm(s-g3,inf)=0.0011, norm(s-gb1,inf)=norm(s-gb2,inf)=7.25e-04

Example 3.23. Let us now consider a simple academic MIMO system, to illustrate
the reduction of “common” poles hidden by the approximation implied in an experi-
mental identification. In the example below, everything is clear by just looking at the
transfer matrix, but the approach could be applied with similar success to models
not so evident, as the balanced reduction detects that situation autonomously.

Assume an experimental model, G(s), and its approximation:

G(s) =

[ 1
s+1

2
s+2

2.1
s+1.1

4
s+2.1

]

; Ga(s) =

[ 1
s+1

2
s+2

2.1
s+1

4
s+2

]

≈ G(s)

pointing out that the system could be, in fact, approximated by a second-order
system, the two outputs being proportional.

If we type in Matlab� an immediate realisation of G (A,B,C,D):

A=[-1 0 0 0;0 -2 0 0;0 0 -1.1 0;0 0 0 -2.1];

B=[1 0;0 2;2.1 0;0 4];C=[1 1 0 0;0 0 1 1];

and apply the following sequence of commands:

s=ss(A,B,C,0);

g=tf(s);

sb=balreal(s);

drsb=modred(sb,[3 4],’del’); drg=zpk(drsb)

the second-order reduced model is:

TF from input 1 to output ... from input 2 to output ...

1.038 (s+2.075) 2.0383 (s+1.077)

#1: ------------------- #1: ------------------

(s+2.077)(s+1.078) (s+2.077)(s+1.078)
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2.0796 (s+2.075) 3.979 (s+1.077)

#2: ------------------- #2: ------------------

(s+2.077)(s+1.078) (s+2.077)(s+1.078)

This model keeps the high-frequency behaviour of the original plant (check it by
plotting sigma(g-drg)), but not the DC gain. Note that, as an alternative, we may
keep the DC gain assuming instantaneous behaviour of the to-be-deleted subsys-
tem (residualisation), yielding in this case a nonzero D matrix in the state space
representation. The approximated model would be then more complicated, with an
additional zero at each element of the transfer matrix:

rsb=modred(sb,[3 4]); rg=zpk(rsb)

TF from input 1 to output... from input 2 to output...

-0.037152 (s+2.073)(s-29.01) -0.018918 (s+1.076)(s-109.8)

#1: ----------------------------- #1: ----------------------------

(s+2.076)(s+1.076) (s+2.076)(s+1.076)

0.019995 (s+2.073)(s+102.9) 0.010401 (s+1.076)(s+380.4)

#2: ---------------------------- #2: ---------------------------

(s+2.076)(s+1.076) (s+2.076)(s+1.076)

The norm of the modelling error is 0.047. The DC gain has maximum gain 3 and
minimum gain 0.001, so if the modelling error were in the direction of the lower DC
gain associated vectors, the simplification might not be appropriate (the plant is
severely ill-conditioned at steady-state). Residualisation (keeping DC gain) in this
case seems more appropriate, as the first truncated model has 10 times more gain
in the lowest direction than that of the real plant G11.

3.11 Key Issues in MIMO Systems Analysis

In order to characterise the behaviour of a controlled plant, as well as to
initially validate a control system design, a bunch of analysis tools should be
available. The goal of these tools should be not only to evaluate a given system
but also to provide rules of thumb about how to improve some desired perfor-
mances or to avoid some constraints’ violation. A key concept introduced at
the very beginning is that the control system cannot make “miracles”: in the
end, the control system is selecting the best action among the possible ones
to reach some goals. If the process is not capable of performing in the desired
way, no controller will do the job.

Thus, a crucial part of the analysis of a controlled system is the per-
formance limitations. This could recommend us to think about process
11 In most cases, keeping the DC gain is not necessary to get a good approximate

model for closed-loop control, as low-frequency errors may be easily compensated
for by integral action. Other frequency ranges are indeed more important, as
discussed in Chapter 8.
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changes before the control design is initiated, including the integrated process-
controller design. This is nowadays a hot topic, being an active subject of
control research and process design.

Structure evaluation. Structural properties are among the main factors in
limiting the achievable performances. This has a lot to do with the selection
of variables. The addition of a sensor or actuator or the appropriated pairing
of variables, a matter to be discussed in the next chapter, may improve the
structure of the process, allowing for better controlled performances.

We must consider the process structure and model from the control view-
point. It is worth recalling that a good model for control does not mean a
good model for other purposes, for instance, to predict the process output.

Gains. Directionality is also a fundamental issue in MIMO systems. It is
sometimes surprising that systems behaving properly when a single loop is
analysed present an unacceptable behaviour under simultaneous changes in
the whole system. The advantages and drawback of the interaction should be
taken into account to look for the appropriated control structure.

Performance evaluation. The worst-case condition should be considered
to evaluate the performances of a MIMO system. Even without uncertainty
in the model, unexpected behaviour may appear for some input combination.

3.12 Case Study: Simple Distillation Column

In the column shown in Figure 3.4, with lateral extractions, the concentration
of the extracted flows (D, D1 and D2) is controlled by manipulating their
flows, the concentration of the (constant) inlet flow, dF , acting as a distur-
bance.

This process, with the particular selection of input and output variables,
presents an interesting triangular structure. Note that if the bottom product
extraction flow is also manipulated, strong interaction will appear.

Based on an experimental modelling run, the following transfer matrices
have been approximated:

• output concentration increments versus extracting flows changes (transfer
matrix G(s)):

∆Y (s) =









0.7e−3s

18.5s + 1 0 0

5e−1.23s

14.6s + 1
0.58

10.3s + 1 0

0.25
9.4s + 1

3.65
14.25s + 1

1.65
9.8s + 1









(−∆U(s))

• concentration increments of outlet flows vs. that of inlet flow:
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Feed

EXCHANGER

REFLUX

CONDENSER

Steam

d

Figure 3.4. Distillation column

Gd(s) =
∆Y (s)

∆dF (s)
=









0.6e−1.6s

18.3s + 1

5.2
15s + 1

20
9.5s + 1









a) Reduced minimal DT realisation. For control purposes, we would like
to get a DT reduced-order model, but it should be validated comparing the
time-responses. Thus, the following actions are taken:

1. Reduce the transfer matrix elements, using the following time constants
for the approximate transfer functions: τ = 10, 14.6, 18.4 s.

2. Use a sampling period T = 1.5 s, and get the ZOH equivalent DT transfer
matrix, G(z).

3. Obtain a minimal realisation (A,B,C,D) using as many physical variables
as possible.

4. Compare the CT full model step response with that of (A,B,C,D).

1. Model reduction

This rough approximation, also considering delays that are multiple of the
applied sampling period, will lead to:

G̃(s) =









0.7e−3s

18.4s + 1 0 0

5e−1.5s

14.6s + 1
0.58

10s + 1 0

0.25
10s + 1

3.65
14.6s + 1

1.65
10s + 1









; G̃d(s) =









0.6e−1.5s

18.4s + 1

5.2
14.6s + 1

20
10s + 1
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2. Discretisation

Element-by-element discretisation using, for instance, the Matlab� command
c2dm with the zoh method, yields the transfer matrices:

G(z) =










0.0548
z2 (z − 0.9217)

0 0

0.4882
z (z − 0.9217)

0.0808
z − 0.8607 0

0.0348
z − 0.8607

0.3564
z − 0.9024

0.2298
z − 0.8607










; Gd(z) =









0.0470
z (z − 0.9217)

0.5077
z − 0.9024

2.7858
z − 0.8607









3. Minimal (physical) realisation

To get a realisation we can basically follow two different approaches:

i) To analyse the system’s structure and detect row (column) common modes
to be attached to the same output (input) variable.

ii) To get a partial realisation of each element, add altogether and reduced
afterwards.

We will follow the first approach, to keep an eye on the physical meaning of the
variables. In this way, the block-diagram depicted in Figure 3.5 is obtained.
We have considered a common pole at (z − 0.8607) attached to output y3, as
well as a delay on input u1 dealing with y1 and y2.

From this diagram, Figure 3.5, a state variable may be assigned to each
first-order block, leading to a seventh-order model. Using the notation xk =
x(k), it yields :

x(k) =
[
x1(k) x2(k) x3(k) x4(k) x5(k) x6(k) x7(k)

]T

The full model, including the disturbance, can be expressed by the following
state equations:





x1(k) = u1(k − 1)

x2(k) = x1(k − 1) + 0.8571dF (k − 1)

x3(k) = 0.0548x2(k − 1) + 0.9217x3(k − 1)

x4(k) = 0.4882x1(k − 1) + 0.9024x4(k − 1) + 1.0400dF (k − 1)

x5(k) = 0.8607x5(k − 1) + 0.0348u1(k − 1) + 0.2298u3(k − 1) + 2.7858DF (k − 1)

x6(k) = 0.8607x6(k − 1) + 0.0808u2(k − 1)

x7(k) = 0.9024x7(k − 1) + 0.3564u2(k − 1)

the output equations being:





y1(k) = x3(k)

y2(k) = x4(k) + x6(k)

y3(k) = x5(k) + x7(k)
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x1(k)
x2(k)

x4(k)

x5(k)

x3(k)

x6(k)

x7(k)

y3(k)

y2(k)

y1(k)

fdt4

fdt3

fdt2

fdt1

fdtUnit Delay1
Unit Delay

Gain4

Gain1

Gain

0.5077/0.4882

0.047/0.0548
d
F

( k )

u3(k)

u2(k)

u1(k)

Figure 3.5. Approximate DT model

The disturbed model, Σd, is xk+1 = Axk + Buk + FdF , yk = Cxk, with:

; A =













0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0.0548 0.9217 0 0 0 0

0.4882 0 0 0.9024 0 0 0
0 0 0 0 0.8607 0 0
0 0 0 0 0 0.8607 0
0 0 0 0 0 0 0.9024













B =













1 0 0
0 0 0
0 0 0
0 0 0

0.0348 0 0.2298
0 0.0808 0
0 0.3564 0













; F =













0
0.8571

0
1.0400
2.7858

0
0













; C =




0 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1





4. Open-loop model validation

In order to check the model approximation, the step response of the “real”
plant, that is, the model G(s), and the DT approximate model are compared.
In Figure 3.6, the output responses to a simultaneous unit step change in the
three inputs are plotted for both systems, assuming no disturbances. Although
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the ZOH discretisation preserves the step response, the small acceptable dif-
ferences shown in the plots are due to the assumed approximations in the
model parameters.

Figure 3.6. Step response of the CT and the approximate DT column model

b) Structural analysis. Mainly as a matter of training and analysis, we can
study the reachability and observability conditions for the Σd model. As an
example, let us consider the following options:

1. Determine the lower number of concentration sensors and their placement
to detect the three controlled variables.
If we compute the observability matrix rank for each of the output vector
components, that is, the observability of the pairs (A,i C), we will realise
that no output can observe the full state, and thus, we need more than one
output to observe the three controlled variables. In fact, this can be easily
deduced by just looking at the block-diagram in Figure 3.5, concluding
that we need three sensors.

2. To counteract a disturbance, ∆dF (unitary step), compute the control
sequence (extraction flows) to get back to the initial conditions:
i) In the shortest time.
ii) With the lower variation in the control flows, and a sequence of n

(system order) actions.

Let us discuss in some detail these two disturbance-rejection alternatives.
i) For the first requirement, the reachability index should be computed:
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Build up the reachability matrix of the pair (A, B):

Co =
[
B AB A2B A3B A4B A5B A6B

]

=
[
b1 b2 b3 Ab1 Ab2 Ab3 A2b1 · · · A6b1 A6b2 A6b3

]

with m × n = 3 × 7 = 21 columns.
As its rank is 7, let us form a partial matrix taken the first 7-independent
columns:

Co1 =
[
b1 b2 b3 Ab1 Ab2 A2b1 A3b1

]

which yields the following conclusions:
• u1-reachability index: µ1 = 3,
• u2-reachability index: µ2 = 2,
• u3-reachability index: µ3 = 1,
• system reachability index: µCo = max (µ1, µ2, µ3) = 3.
Thus, the state reachability time is 4, and the control actions to be applied
are:

UTmin =
[
u1(3) u2(3) u3(3) u1(2) u2(2) u1(1) u1(0)

]T

Assuming an initial state x0 at the time the step disturbance is applied,
the control sequence to drive the state to the equilibrium (origin) will be
computed by12:

UTmin = Co−1
1









x(4) − A4x(0) − [F AF A2F A3F
]









dF (3)
dF (2)
dF (1)
dF (0)

















In particular, if (dF (k) = 1), and (x(0) = x(4) = 0), the control will be:

UTmin = −Co−1
1

[
F AF A2F A3F

]







1
1
1
1





 =
















0
0

−37.1775
− 0.8571

0
− 232.0935
249.2297
















=
















u1(3)
u2(3)
u3(3)
u1(2)
u2(2)
u1(1)
u1(0)
















the control effort being:

ETmin =
3∑

k=0

3∑

i=1

(ui(k))2 = 1.17365 × 105

12 Equation (3.41) must be suitably modified by moving the effect of disturbances
(non-manipulated inputs) to the right-hand side.
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ii) Minimum control effort (in n = 7 intervals)
In this case, the system evolution is given by:

x(7) = A7x(0) +
[
B AB · · · A6B

]









u(6)
...

u(1)
u(0)









+
[
F AF · · · A6F

]









dF (6)
...

dF (1)
dF (0)









The pseudoinverse (Co†) provides the minimum norm solution for the
control sequence. Thus, for x(0) = 0:

UEmin = Co†





x(7) − A7x(0) − [F AF · · · A6F

]







1
...
1













UEmin =
















u1(0) u2(0) u3(0)
u1(1) u2(1) u3(1)
u1(2) u2(2) u3(2)
u1(3) u2(3) u3(3)
u1(4) u2(4) u3(4)
u1(5) u2(5) u3(5)
u1(6) u2(6) u3(6)
















=
















82.6985 0 −6.4345
51.5983 0 −7.4758
13.7274 0 −8.6857
− 31.9367 0 −10.0913
−86.5520 0 −11.7244
− 0.8571 0 −13.6218

0 0 −15.8263
















the control effort (much lower than before) being:

EEmin =
6∑

k=0

3∑

i=1

(ui(k))2 = 1.9049 × 104

Note that the second input is not used at all.

Gains. It is clear that the instantaneous gain is null and the static gain is
given by

Ḡ =




0.7 0 0
5 0.58 0

0.25 3.65 1.65
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Solutions to the Control Problem

This chapter deals with a description of the solutions to the control problem
available to the designer. Most of these possibilities will be detailed in subse-
quent chapters, but the objective of the chapter is to outline the context and
the practical possibilities.

4.1 The Control Design Problem

A basic and obvious idea, key conclusion from the previous chapter, should
be clarified from the beginning, if a control system is designed to control a
given process:

The process should be capable of behaving in the required way. The
best control subsystem will just provide the most suitable inputs to the
process to fulfill the goals.

This has two main consequences:

1. If capabilities required to meet some goals are not built into the process,
the control cannot achieve them.

2. The control system is “selecting” the best input, among the possible ones,
to fulfill the goals.

Based on this evidence, there is a tendency nowadays to integrate the design
of the process and its control.

For instance, in designing the control of a multiple-stage reactor process,
the integral design of the control of the whole system, as well as forcing the
interaction among stages, may reduce the control effort and achieve much
better performances. A good example of this can be seen in [116].

Usually, a control system should be designed to work together with an
already existing process. The control design problem can be stated at local,
supervisory or even plant-wide level. Some ideas about the higher levels will
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be discussed in the last chapter. If we consider the local level, the usual steps
in designing the control are:

1. Define which are the components of the process to be controlled, which
equipment parts are manipulable and which are fixed. Also define which
are the variables of interest.

2. Define the user control goals.
3. Get a draft model of the process and the attached signals.
4. Select which will be the manipulated and measured variables.
5. Choose a suitable control structure.
6. Translate into a control language (also appropriate for the selected control

structure) the user requirements.
7. Apply the controller design methodology based on the decisions taken in

the previous steps (variables, models, goals).
8. Validate (by simulation or experimentally) the design, and tune the con-

troller parameters.
9. Define the controller implementation. In the case of digital controllers,

select the hardware and software to fulfill the control requirements.
10. Install the control in the process.
11. Evaluate the controlled system performances.

Most of these activities should be done iteratively. For instance, if the designed
controller does not match the requirements, either the control structure or the
variables selection should be revisited. If the implementation of the controller
introduces additional constraints (time delays, computation time, resources
availability, etc.), the design should be reconsidered, taking into account the
new requirements. If the controlled system is driven out of the region of valid-
ity of the model, a new model should be obtained or the uncertainties should
be reduced.

In the previous chapters, the modelling and analysis issues have been de-
tailed. This can be done with a rough idea about the control goals. Neverthe-
less, once the user control goals have been stated, some decisions should be
made to design the controller.

• which variables are selected as controlled, measured and manipulated and
which ones are going to be treated as disturbances?

• based on this selection, which are the achievable performances?
• to meet the control requirements, which is the most suitable control design

approach?

4.2 Control Goals

From a set of usually ambiguous “user” control goals, mainly based on quali-
tative and economical requirements as well as operational constraints, the de-
sirable controlled plant performances for “control design” should be derived.
They may concern different properties, such as:
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• reference tracking, to follow changes in the set-points or references,
• control decoupling, to better understand and tune the different subpro-

cesses or control variables,
• disturbance rejection, to cope with non-manipulated external variables,
• measurement noise rejection, to be able to use “imperfect” sensor and

transmission systems,
• robustness against changes in the plant (model) or expected disturbances.

Some of these goals may be contradictory so this is a multi-criteria decision
problem. A suitable trade-off is the most we can achieve.

Tracking performance. The classical performance measures in reference
tracking, such as overshoot, settling time, bandwidth, cut-off frequency or
resonance peaks, among many others (see the classical books of Franklin [49],
Kuo [78], etc.), should be taken with caution in MIMO systems. The main con-
cern is the gain directionality . An adequate response of a controlled variable if
two inputs are acting sequentially can become unacceptable (for instance, ex-
hibiting significant inverse response) if both are applied simultaneously. This
is the effect of the process interactions.

Also, the usual conclusions given by the pole location, the basis of the
pole assignment control design technique, should be treated carefully because,
as we have seen, the system poles and zeros are not the poles of a given
input/output relationship.

Control decoupling. The previous concerns ask for some kind of decoupling
if generalisations of SISO criteria are to be applied. If the process is rearranged
in such a way that each input (or block of inputs) only influences one output,
the controlled process structure is simplified and it can be analysed as com-
posed by m subprocesses. This is the main advantage, as the controllers can
be designed and tuned independently. We will see in the next chapter some
techniques to achieve this decoupling.

But the interactions are natural in many processes and they can work in
the right way to control the process. In a general case, it seems wasteful to use
some control effort in decoupling the process and then requiring an additional
effort to control the subprocesses if it is in the opposite direction.

Diagonal dominance was a concept introduced for gain matrices, but it
can also be extended to transfer matrices. In this case, the dominance can be
established from different points of view. Other than the gain (in steady-state
or at a critical frequency), it is interesting to consider the delays and/or the
controllability of each output/input pair, as analysed in the next section.

Triangularity of transfer matrices is also a convenient property allowing the
design of the controllers in sequence, considering the former ones as generators
of disturbances for the later ones.

Disturbance rejection. We should consider two different types of distur-
bances:
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Process disturbances are those modifying the internal process variables.
These should be counteracted by modifying the manipulated control inputs.
Thus, it would be convenient to know them in advance (in some cases, the
reference can be considered as such a disturbance, being known by the user).
Otherwise, we will be interested in measuring them or, at least, in estimating
their current value. This will allow us to generate the extra control signals.
Input disturbances are a particular case, acting at the process input. They are
the easiest to be cancelled once their value has been measured or estimated.

Measurement noise is a disturbance which only has effect on the process if
it is fed back by a controller. Thus, in this case, the best option is to filter it
to avoid it acting as a disturbing input to the controlled process. Inferential
control (Section 5.5.1) is a modern control technique generating the control
action from estimated “noise-free” measurements. Of course, they cannot cope
with the other kind of disturbances or model uncertainty.

Robustness. Model uncertainty has been the big issue in modern control
design techniques. A good model-based control system could become useless
if the plant behaviour strongly differs from that of the model. Thus, model
uncertainty should be assessed and the designed loop should behave appro-
priately, taking into account the uncertainty when designing the controller.

Again, in the MIMO systems, interactions should be taken into account.
A control loop may be robust to uncertainties in the elements of different
subprocesses, if they appear separately, but drastically losing its properties
if the uncertainties appear simultaneously in different parts of the process.
Robust control issues will be the subject of a later chapter.

4.3 Variables Selection

In developing a model of a process, we may consider a very large number of
external and internal variables, all of them related to the partial phenomena
we are interested in: hydraulic, thermal, concentration, movement, energy and
so on. But, certainly, we do not need to control all of these and we do not
need either to measure or to manipulate every one. That means, a selection
of variables should be done.

Three selections must be carried out:

• selection of controlled variables,
• selection of measurements,
• selection of manipulated variables.

System analysis knowledge may help in some cases to take decisions based
on a full-size model. However, its usefulness is limited, and these selections
should be also guided by experience and common sense.
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Controlled variables. Ideally, the controlled variables must verify the fol-
lowing requirements:

1. They must relate to the primary user goals.
2. Primary goals should not be excessively dependent on small deviations of

them (otherwise, small controller errors will unacceptably degrade overall
objectives).

3. Its optimal set-point must not depend on the value of exogenous dis-
turbances (to avoid designing a “good” controller following a “wrong”
set-point).

4. Disturbances must cause small deviations on them (so low control “inten-
sity” is needed).

5. Process state and input/output controllability are sufficient to actually
design satisfactory controllers for them.

Some of the ideas in Section 5.5.1 are based on the above issues. If a set of
variables fulfilling these requirements cannot be found, the process is “difficult
to control” and redesign may be the wisest choice.

Example 4.1. [119] In an oven, setting the heating power as controlled variable
(manipulating the supply voltage) is not a wise choice, as its optimal set-point is
heavily dependent on factors such as heat loss, oven size, etc., whereas the oven
temperature is a much better choice.

State Representation

Let us assume a state space description of the plant to be controlled. As we
have seen in the last chapter, some internal variables may be deleted by reduc-
ing the model order. The order may have been reduced to achieve a minimal
realisation and to eliminate the state variables with reduced relevance into
the (input)-to-(controlled variables) dynamics. In the following, it is assumed
that fundamental control objectives may be approximately cast as objectives
on the state variables.

Measurements. Note that controlled variables and measured variables are
not the same thing. The issue now is to consider which of the available sensors
(combinations of state variables) should be used.

This requires an analysis of the output equation, (2.11) or (2.19). Of course,
the pair (A,C) should be observable. The best would be to measure all of the
state (C = I), but this can be unfeasible (there is no sensing device for some
variables or they are not reachable) or too costly. From this viewpoint, the
best sensing option would be the set of outputs so that the degree of observ-
ability is maximum. This means minimum observation time and maximum
detectability. This will come out from an analysis of the observability matrix.
The measurement conditions and, as a result, the measurement noise, could
be an issue to include or delete a given sensor. For the above results to be
significant, matrix C should be scaled so that all sensors have comparable
noise amplitude.
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Actuators. For simplicity and economical reasons, the number of manipu-
lated variables should be as low as possible. This requires us to analyse the
state equation and, particularly, the reachability of the pair (A,B). Again,
the maximum degree of reachability would be required, with the minimum
number of control inputs. But, in this case, we must keep in mind that these
control inputs should be also able to counteract the rest of external variables,
that is, the disturbances. Thus, the generalised state model (2.21) should be
taken into account.

Input/output properties

As a further consideration, not all the states could be equally relevant in
our control goal. Thus, other than the input-state-output relationship, the
direct input/output relation should be considered. Based on the analysis of
the transfer matrix, we can deduce the more or less close connection of the
outputs to the inputs. And we must consider two issues: time and gain.

Desirable input/output relationships must have simple dynamics. A con-
trol action (or a measurement) will be less interesting as far as the delay it
introduces increases. For that purpose, let us define the output reachability-
time matrix

R =








r11 r12 · · · r1m

r21 r22 · · · r2m

...
...

...
...

rp1 rp2 · · · rpm








; iC ∗ Ar ∗ Bj
�= 0 r = rij + 1
= 0 r ≤ rij

(4.1)

This matrix represents the input/output distance, in time. It is also denoted
as the relative degree matrix , because its elements are the relative degree of
the transfer function elements of the transfer matrix.

In order to consider the magnitude, other than the static and instantaneous
gains, the characteristic matrix defined by:

J =








γ11 γ12 · · · γ1m

γ21 γ22 · · · γ2m

...
...

...
...

γp1 γp2 · · · γpm








; γij =i C ∗ Arij+1 ∗ Bj (4.2)

represents the first action for each input/output pair. These ideas are helpful
mainly in decentralised control and decoupling (Section 5.3).

Feedforward disturbance rejection. As previously mentioned, distur-
bance variables are also candidates to be measured, if possible, to allow the
fast generation of the counteracting control actions.
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Transfer Matrix: Extreme Gains and Variables Relevance

The I/O indicators just presented (characteristic and relative order matri-
ces) only provide partial information, related to high-frequency behaviour. To
decide about the selection of variables, the frequency-dependent directional
gains give interesting and complementary information. Again, these gains are
sensitive to scaling. The variables should be normalised, according to scaling
remarks in Section 3.5, to get comparable and relevant information.

Recall that the SVD of a matrix, Section 3.5.3, provides the maximum,
(σ̄), and minimum, (σ), gains, and its ratio (the condition number, (3.36),
γ = σ̄/σ). From the frequency response matrix of a process, these gains may
be computed as a function of the frequency.

Let us assume a process with over-dimensioned input and output vectors
so that a selection of a subset of them must be carried out.

Actuators. First, let us consider the transfer matrix in z = Gzu, where z
are pz controlled variables and u is a candidate actuator set. Carrying out the
SVD, Gz = UΣV H , the first pz columns of matrix V are the combinations of
manipulations with highest effect on the control objectives, so if a particular
actuator uk has no significant components vik on them, it may be discarded.
Note that as V may be frequency-dependent, there exists the possibility of
needing one set of actuators for control in one frequency range and a different
set for a different frequency range. That possibility is, indeed, not unusual in
practice, as cascade control examples in Section 5.4.2 point out.

Measurements. In sensor selection, the key issue is how measurement noise
and disturbances corrupt a, perhaps indirect, measurement of the controlled
variables. A detailed treatment of some of the issues involved appears in Sec-
tion 5.5.1. Assuming all sensors have been scaled so that measurement noise
is similar, as y = Gu = GG−1

z z, the SVD decomposition of GG−1
z = UΣV H ,

will point out which sensors (G over-dimensioned) better “measure” the con-
trolled variables: those will be the first columns of U . Note that this is a coarse
criterion as the effect of process disturbances is not accounted for (for further
details, see Section 5.5.1). The frequency-dependent nature of U may advise
different sensors for different frequency ranges. Again, this is usual in practice,
and it is behind some cascade-control strategies as well (Section 5.4.1).

Of course, the more sensors and actuators the better, but the more ex-
pensive the instrumentation is. A comparison with the magnitude of the un-
avoidable noise in the process will also indicate the uselessness of variables
attached to lower singular values (low-gain actuators or sensors).

In many cases, it is wished that controlled variables and measured ones are
the same. So, the issue is selecting a “good” subset of p inputs and outputs
on the “big” G so that the “underlying” process is under control. This has
close resemblance with the state space analysis previously discussed.
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Conditioning. Apart from the issues of “gain” just discussed, sensitivity to
uncertainty is also an issue: conditioning should be reasonable if high perfor-
mance needs to be achieved. So, if the SVD is carried out for subsets of inputs
and outputs, the selection of variables can be based on getting the minimum
condition number (closer to 1), indicating a similar behaviour, and hence, dif-
ficulty to control, in any direction. And this can be done for static gains as
well as for gains at some critical frequencies.

Based on the SVD techniques, the following guidelines can help in deter-
mining a good selection of variables:

• given a process with m0 possible manipulated variables and p0 measurable
internal variables, carry out SVD of the gain matrix (it could be the static
gain or that at a critical frequency) after a suitable scaling,

• determine the condition number, γ0, and the lowest singular value, σ0. A
high value for γ0 indicates poor conditioning, and a low value of σ0 points
out poor action in some directions,

• analyse the columns of U (V ) and assign each one of them to the most
weighted output (input) vector component. Any key output (input) com-
ponent should be in this group,

• to compare different sets of input/output choices, γ (the lower the better)
and σ (the higher the better) can be assessed.

This decomposition can be also used for system decoupling, as detailed in the
next chapter. However, in a general system, there may be many (hundreds) of
I/O combinations to check. Another useful variable selection tool, the relative
gain array (RGA), is based on the interactions among variables and will be
detailed in the next chapter. It can be used for a global preliminary screening,
avoiding most of the unsuitable combinations [119].

Apart from the above considerations, the presence of RHP zeros, delays,
etc. should be taken into account. Of course, the cost of the sensor/actuator
alternative is an important factor. A wrong variable selection will limit the
achievable performance and robustness of the final control scheme.

4.4 Control Structures

The selection of the variables to be used as control variables as well as the
information used to generate the control actions will determine the control
system structure. We must consider, at least, the following structures:

Open loop vs. closed loop. In an open-loop control structure, the control
actions are generated based on external information: set-points or objectives,
initial conditions, disturbances, operator data, and so on. A good model of the
process is required and there is no option to cope with unexpected changes in
the plant (either disturbances or plant changes). On the other hand, closed-
loop control uses the information from the plant to generate the control. There
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are many options for dealing with disturbances, reference tracking and uncer-
tainties, but the big issue is the controlled plant stability (and performances).
One obvious drawback of closed-loop control is the requirement of the exis-
tence of errors to act. Thus, a combination of both structures may allow better
results.

Single/multiple loop. In feedback controlled MIMO systems, the vector of
input actions may be computed altogether from the full set of measurements
and available data or, alternatively, the information is split into blocks to de-
termine each of the control actions. In this case, for each input, the remaining
blocks of information can be considered as disturbances. This structure could
be also denoted as centralised/decentralised control.

Two degree of freedom. The control action may be computed in two
phases. First, the control error is evaluated and the control is based on the er-
ror. This is a feedback control action. Afterwards, an additional control action
is computed based on the external inputs. There are two degrees of freedom
to design the controller, and the design can be split to achieve tracking (ref-
erences) and regulation (output feedback) performances.

Multi-level control. Groups of input (output) variables can be treated
jointly to control a process variable. They will act locally, receiving com-
mands (set-points) from higher decision levels and sending information back
to these upper coordination levels.

4.5 Feedback Control

As previously mentioned, the main problem in closed-loop control is to design
the elements of the controller to achieve the required closed-loop performances
and, in any case, to assure the stability of the controlled plant.

In order to analyse the fulfillment of these properties, the relationship
between different variables should be taken into account. For this purpose,
with reference to Figure 1.3 on page 10 (assuming, for simplicity, F = I), the
output of the controlled plant, under negative feedback, can be expressed by:

y = G(s) (u + du) + Gd(s) d

u = K(s) e

e = r − H(s) (y + n)

where ud is an input disturbance vector, K is the controller transfer matrix, n
is a measurement noise and H is the measurement device dynamics, the mea-
surement noise filter or the feedback controller (in a 2-DoF control structure
with F �= I, Section 4.7). Carrying out suitable matrix operations, the output
vector can be expressed by:
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y = (I + GKH)−1(GKr + Gdu + Gdd − GKHn)

or, equivalently, by suitable definitions of M , T and S (see below):

y = Mr + SGdu + SGdd + Tn (4.3)

The control action is:

u = (I + KHG)−1(Kr − KHGdu − KHGdd − KHn)

so, applying the push-through rule (B.5):

u = (I + KHG)−1Kr − KHS(Gdu + Gdd + n) (4.4)

Thus, the following matrices are relevant:

1. Loop transfer matrix: L = GKH, which determines the loop stability if
there are no pole-zero cancellations in the three factors (see next section).

2. Sensitivity matrix

S = (I + L)−1 = (I + GKH)−1 (4.5)

which defines the effect of the feedback on the general disturbances, d.
3. Complementary sensitivity matrix

T = (I + GKH)−1GKH (4.6)

defining the effect of the feedback in the noise rejection. It is denoted as
complementary sensitivity because, from (2.55):

T (s) + S(s) = I (4.7)

4. Reference tracking matrix: M = (I + GKH)−1GK, allowing to analyse
the output/reference properties.

5. Input-gain matrix: KHS, expressing the effect of disturbances and mea-
surement noise on the control action.

In the following, H = 1 is assumed, the matrices above being simplified to:

L = GK; S = (I + GK)−1; T = M = (I + GK)−1GK S + T = I (4.8)

4.5.1 Closed-loop Stability Analysis

Internal stability. From (4.3) and (4.4), the stability of the closed-loop
system requires that the four transfer matrices: S, SG, KS and KSG have
no RHP poles1 (assuming, of course, no unstable uncontrollable/unobservable
modes in K or G). In that way, y and u are bounded for bounded d, du, n, r.
If this property holds, the loop is said to be internally stable.
1 Note that Gd is stable (from the assumption of bounded disturbances) and, as

S + T = 1, T is stable if and only if S is stable. Furthermore, regarding the
reference term in (4.4), from (B.5), (I + KG)−1K = KS.
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State space representation. Assume a plant G := (A,B,C) without in-
put/output direct coupling, D = 0, in feedback connection with a controller
K := (Ac, Bc, Cc, Dc). The closed-loop system model is given by (2.51). So,
its stability will be determined by the poles of the closed loop system matrix

Ā =
(

A − BDcC BCc

BcC Ac

)

Alternatively, the open-loop L is the series connection GK, with a state
space representation (AL, BL, CL, DL = 0) given by (2.47). Connecting by
negative feedback, it is easy to show that:

Ā = AL − BLCL

To calculate the eigenvalues, using Schur’s formula (B.4) twice, we can
express:

det(sI−AL+BLCL) = det

(
I −CL

BL sI − AL

)

= det(sI−AL) det(I+CL(sI−AL)−1B)

Thus, the following interesting property is derived:

det(sI − Ā)
det(sI − AL)

= det(I + L(s)) (4.9)

So, if there are no common poles in open and closed loop, the closed-loop
poles are determined by the solution of

det(I + L(s)) = 0

I +L(s) is denoted as the return difference operator: it must have no RHP
zeros for loop stability.

RHP cancellations. It can be shown, based on the above results, that the
closed loop is internally stable if and only if there are no RHP pole-zero
cancellations between G and K and S = (I + L(s))−1 is stable. In this way,
only one closed-loop transfer matrix must be checked, instead of four.

Frequency Domain

Nyquist criterion. In control, frequency domain techniques are mainly valu-
able because they allow us to determine closed-loop stability properties based
on the analysis of the open-loop frequency response. The stability of a MIMO
system can be analysed by the Nyquist plot of det(I + L(jw)). In a simple
way, we can say that if L(s) is stable, the closed-loop system is stable if the
Nyquist plot of det(I + L(s)) does not encircle the origin. To use the same
analysis as in SISO systems, we may plot the scalar function

l∗(jw) = det(I + L(jw)) − 1

and check for encirclements of the point (−1, 0).
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The small-gain theorem. An intuitive result, quite useful in frequency
domain stability analysis, is the small-gain theorem. If L(s) is stable, the
closed loop system is stable if

‖L(jw)‖ < 1 ∀w

For linear systems, the result is easily obtained from the Nyquist criterion. It
is very conservative but it can be used to ensure the stability of some special
closed-loop configurations (see Chapter 8). A detailed discussion is available
in Appendix C.4.

High-gain control. Note that for those frequencies with very high gain in
the direct path, |G(jw)K(jw)| � 1, the sensitivity, (4.5), vanishes and the
complementary sensitivity, (4.6), reaches unity, being M(s) ≈ H−1(s). This
implies, from (1.6):

• process model uncertainties are not so relevant with high-gain feedback
control (G(s) “disappears”),

• the reference tracking matrix is the inverse of the sensing matrix. That, is,
it emphasises the relevance of the data acquisition system: without quality
sensors good control is not possible,

• measurement noise fully affects output,
• the effect of the disturbances also vanishes.

So, it seems that high-gain controllers are a viable solution with good sensors
available. However, apart from obvious saturation issues, the above argument
is not totally right, and high gain is not a viable solution in most applications.
In Section 8.2.2, the issue is discussed in more detail.

Remark 4.2. A rule of thumb dealing with SISO closed-loop systems is that
the stability is degraded if the loop gain is increased or additional delay is
introduced in the loop. This is true for almost any system, except for those
called conditionally stable systems, which are only stable for a range of gain or
phase lag2. Caution should be taken with these concepts in MIMO systems.

4.5.2 Interactions

Assume a SISO system with a well-designed closed-loop control, u1-y1, having
other inputs and measured variables but not yet used for control. Now, another
input is generated (by a second controller, u2-y2) to control one extra output,
closing a second loop and forming a TITO system. If performance of the first
loop remained unchanged, i.e., if closing the second loop did not affect the
input/output behaviour of the initial control pair, then there would be no
interaction between these loops.

Unfortunately, this is not the usual case because the transfer matrix is not
diagonal. If some variables of a process are independently controlled there is
2 These are the so-called gain and phase conditionally stable systems, see [6].
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an interaction among the different loops and the performances may be severely
degraded.

Let us consider the simple case in a TITO feedback loop such as the one
in Figure 1.3 on page 10 where the feedback controller is a diagonal one. If
the diagonal elements, K1 and K2, are designed such that

T1 =
G11K1

1 + G11K1
; T2 =

G22K2

1 + G22K2

meet some requirements, the actual behaviour will be determined by:

T = [I + GK]−1GK; K = diag[K1 K2]

In particular, the stability would be defined by the roots of:

det(I + GK) = (1 + G11K1)(1 + G22K2) − G12G21K1K2

It is clear that, only in the case G12 = 0 or G21 = 0 (triangular plant), this
condition is reduced to det(I +GK) = (1+G11K1)(1+G22K2) and the global
stability is as designed for the single loops. In Section 5.2, this issue is further
discussed.

4.5.3 Generalised Plant

In the 1980s, a general solution [44, 133] for a wide variety of control problems
was found via the linear fractional transformation formalism, by formulating
them in the generalised interconnection form in Section 2.7.2.

To achieve this, a controller can be connected to the plant via a set of
sensed variables (either outputs or direct measuring of some of the distur-
bances) so that a transfer matrix K calculates a set of manipulated inputs to
the process. Figure 4.1 depicts the idea in block-diagram form, where the ac-
tual plant and the control structure (information flow) and control objectives
conform the generalised plant, P .

Generalised
Plant

Control
System

Disturbances,
set-point commands

Deviations in controlled
variables, actuators

Available measurements
(output and disturbance sensors,

set-point commands)

Manipulated variables
(actuators)

Figure 4.1. A general configuration of a control loop

If some of the regulator inputs are measurable disturbances or user-defined
set-points, then the direct input/output coupling D12 of the generalised plant
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is non-zero. This block-diagram is named in the literature as a lower linear
fractional transformation. Note the similarity with Figure 1.2.

Some examples will help in grasping the ideas involved in the procedure of
generating the generalised plant. Sections 7.4 and 8.6.1 detail some approaches
to solving the control synthesis problem in this framework.

Example 4.3 (Open-loop control). The block-diagram in Figure 4.2 shows a MIMO
open-loop reference tracking problem cast into the general configuration. From the
figure, it is clear that the generalised plant has a transfer function matrix given by:

(
errors

controller input

)

=

(
I −G
I 0

)(
r
u

)

(4.10)

Generalised
Plant

Control
System

G

r e+

-

Figure 4.2. Open-loop control

Example 4.4 (Disturbance rejection: closed-loop control). The block-diagram in
Figure 4.3 shows a MIMO disturbance-rejection problem with sensors measuring the
disturbed output. The generalised plant has a transfer function matrix given by:

(
errors

controller input

)

=

(
I G
I G

)(
d
u

)

(4.11)

Generalised
Plant

Control
System

G

d e+

+

Figure 4.3. Closed-loop disturbance rejection.
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4.5.4 Performance Analysis

There are several criteria for defining “good nominal performance” in terms of
the closed-loop transfer matrices defined in this section, to be discussed below.
In addition to that, tolerance of the solution to modelling errors should be
assessed (see Chapter 8).

Settling time. It is a direct generalisation of the concept of SISO systems.
In MIMO plants, the settling time for different input/output pairs may be
different. It is related to the position of the system poles (see Appendix A)
and its internal structure (controllability and observability).

Overshoot. This common SISO requirement is cumbersome when gener-
alised to MIMO systems, as interactions cause deviations in all variables when
subject to set-point changes or disturbances. Although it can be checked for
particular input/output combinations, it is not usually used during the design
phase, in favour of more tractable integral-squared-error criteria (Chapter 7).

Steady-state gain. Position errors for reference tracking are determined, in
most loops, by the DC gain of the sensitivity function (4.5). For disturbance
rejection, the steady-state gain of SGd in (4.3) may be determined. To sum-
marise all combinations, if the worst-case gain σ(S) (or σ(SGd)) is below a
suitable bound, steady-state performance conditions are deemed satisfactory.

Bandwidth. Many control requirements can be cast in the frequency do-
main, in particular, ability to track references varying up to a maximum rate
and ability to reject disturbances whose frequency components are mainly
concentrated on a particular band. In particular, the effective control band
is defined as the frequency band where the worst-case sensitivity σ(S) is be-
low −6 dB, indicating a minimum attenuation of 50% of output disturbances
or tracking with stationary error less than 50% (see Example 3.5). In many
cases, good performance is required at zero frequency (DC position error), so
reduced sensitivity is achieved from zero to a particular frequency ωB : the
closed-loop bandwidth is defined as the frequency where σ(S) crosses −6 dB.

For disturbance rejection, comparison of the worst-case open-loop re-
sponse, σ(Gd), and the closed-loop one, σ(SGd), will determine how effective
control design has been3. Figure 7.4 on page 217 depicts such a situation in
the context of a distillation case study.

Optimality. As previously commented, the different possibilities on allowed
amplitude of actuator commands, allowable errors, amplitude of disturbances
and set-points to be tracked, etc. pose a difficult problem if all of these require-
ments must be individually accounted for in the design process. However, they
3 With a suitable scaling of the variables involved, approximate determination of

satisfactory performance can be conveniently assessed by comparing a particular
worst-case gain with 1. Details will be given in Section 8.6.1, after introducing
many additional concepts needed.
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may be approximately expressed as a cost index (sum of squares) so that opti-
misation can be carried out. Optimisation-based control is a powerful strategy
with significant impact in practice. Chapter 7 is fully devoted to this issue.

4.6 Feedforward Control

Feedback control can compensate for disturbances and modelling errors if
suitably designed. Furthermore, by interpreting the set-point changes as dis-
turbances (see Section 6.1.2), with a suitable high-gain feedback, satisfactory
reference tracking can be also achieved. In fact, the feedback-only solution is
widely used in most control applications.

However, there might be circumstances where:

• the most significant disturbances are measurable, and
• non-measurable disturbances are small, and
• the plant is stable and a reasonably accurate model is available (perhaps

even non-linear), and
• high performance is desired in either reference tracking or measurable dis-

turbance rejection (or both),
• a particular key sensor (or group of them) is unavailable but a model to

compute this variable is available.

In these circumstances, feedforward control can be a valid solution. In fact,
the addition of feedforward strategies (see Section 4.7) in a closed-loop control
is key to ensuring high-performance reference tracking as well as sufficient
robustness to modelling errors (see Section 8.4.3).

Example 4.5. In process industry, pH control can have a strongly non-linear char-
acteristic under common circumstances, due to the logarithmic nature of the mea-
surement and valve non-linearities. Handling the problem by pure (linear) feedback
control meets with many difficulties. In many cases in practice, the only way to
achieve satisfactory disturbance rejection (with a reasonable buffer tank size, where
the acid + base mixing is carried out) is to implement non-linear feedforward strate-
gies based on measurements of the incoming flow and pH, perhaps as a part of a
more complex structure incorporating feedback, such as gradual control (Section
5.5.4) and cascade control (Section 5.4).

4.6.1 Manual Control

The most elementary control problem is how to place the actuators to achieve
a particular desired operating point in a set of output variables, yd, for a
stable plant4.
4 Errors in these calculations have to be compensated for (if sensors are available)

by integral action in feedback controllers. Note that if set-point changes seldom
occur, then the transient of the integral action (usually slow) will be irrelevant in
practical terms. However, if set-point changes are frequent, then a slow correction
of offsets might be a significant performance drain.

TLFeBOOK



4.6 Feedforward Control 115

If a model (2.10) is available, reaching the desired output means solving
for u the steady-state equations (derivatives equal to zero).

In the case of linear state space CT equations, the result is the DC gain,
(2.59), Ḡ = −CA−1B + D, so yd = Ḡu∗ = −(CA−1B + D)u∗ and hence:

u∗ = Ḡ−1yd = (−CA−1B + D)−1yd (4.12)

if the DC gain matrix is invertible5.
If the plant is non-square and there are more sensors than actuators, then

the desired point might be non-reachable (if yd is not a combination of the
columns of the DC gain matrix). Then, only a subset of the outputs must
be selected, or the whole solution must be solved by least squares, using
the left pseudoinverse in Appendix B.2, so u∗ = (ḠT Ḡ)−1ḠT yd. If there are
more actuators than outputs, the problem has infinite solutions so a subset
of the actuators can be fixed or the configuration with minimum squared
deviations can be also solved by least squares, using the right pseudoinverse:
u∗ = ḠT (ḠḠT )−1yd.

The most improvement in achievable performance appears when inversion
of non-linear DC characteristics is implemented directly on the control soft-
ware. In fact, its generalisation means inversion of dynamic non-linearities. In
Section 9.5, simple illustrative examples of these techniques will be discussed.

Experimental determination of the DC gain. Even if a model is not
available, performance gains can be achieved if, let us say, PID controllers are
“helped” by suitably incrementing inputs when changing set-points, see (8.5).
The needed increments can be obtained by using as DC gain the result of a
step-response identification experiment. If the plant is non-linear, the output
increments depend on the starting point. Eventually, its evaluation at different
operating points gives a hint on the plant’s degree of non-linearity.

Model-free manual control

Using manual control, by positioning the actuators in a constant setting a
desired value appears at the process outputs of interest (of course, only in
the absence of disturbances). Experimental determination of the DC gain
matrix via step response will allow us, starting at a certain operating point,
to determine the increments in actuator values to achieve the desired output
increments. If the plant is non-linear, the output after the change in actuators
will not be the desired one, but reasonably near, if the non-linearity is not
very severe. In this case, the same DC gain matrix can be used to iterate a
couple of steps to approximate the plant’s output to its desired values.

Example 4.6. A mixing tank has two outputs (height y, concentration x), and two
valves (VA, VS) acting as inputs. If, starting from an initial situation where both

5 Note that, for instance, if A is singular, the DC gain does not even exist (the
plant is unstable as singular A implies eigenvalues at s = 0).
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valves are opened 30%, the outputs are (0.7 m, 50%), opening valve VA to 40%
gives, in steady-state, (1 m, 62%). Then, opening valve VB to reach (40%, 45%)
yields (1.35 m, 41%). In this case, a coarse approximation to the DC gain is:

(
y
x

)

=

(
0.3
0.1

0.35
0.15

0.12
0.1

−0.21
0.15

)(
VA

VS

)

(4.13)

So, a valve increment from the last situation to achieve a set-point (1.5 m,47%) can
be calculated: ∆V = G−1 (0.15, 0.06)T . If, due to non-linearity, the set-point is not
achieved, a second increment may be calculated with the same approximate gain.

4.6.2 Open-loop Inversion and Trajectory Tracking

The problem of obtaining a desired output can be formulated for a whole
trajectory. In DT, if the desired output of a process with model G(z) is yd(z),
using the Z-transform, the feedforward action, uff (z), must verify:

yd(z) = G(z)uff (z) ⇒ uff (z) = G(z)−1yd(z) (4.14)

which is, for an arbitrary yd, unfeasible as G(z) contains delays. If yd(z) is
the output of a reference model, M(z), to an external input, i.e., yd(z) =
M(z)r(z), the open-loop regulator would be:

u(z) = G(z)−1M(z)r(z) (4.15)

where M(z) must be selected to make G−1M feasible (proper, with reasonable
maximum gain in all frequency ranges) and stable. Usually, G−1 should be
obtained by means of symbolic computation software. If the original plant is
non-minimum-phase, then G−1 will be unstable, unless M cancels the model’s
RHP zeros. An analogous derivation can be carried out for CT systems.

If the model is in state space form, its inverse realisation is given by:

x̄k+1 = (A − BD−1C)x̄k − BD−1yk; uk = D−1Cx̄k + D−1yk

Note that it cannot be inverted if D is singular.

Remark 4.7. The exact tracking of an arbitrary trajectory or reference model
in discrete-time systems usually causes oscillations in the control variable.
To avoid undesirable effects, in practical implementations, the control action
should be filtered with a low-pass filter (including it in M), rejecting higher-
frequency components that otherwise would excite high-frequency ranges of
the plant (usually poorly modelled). It is also common to add a notch-filter
at the Nyquist frequency ωs/2, such as the factor 0.5(1 + z−1).

4.6.3 Feedforward Rejection of Measurable Disturbances

In some cases, disturbances are measurable and a model of their effect is
available, either from experimental data or from first-principle equations.
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Example 4.8. Let us consider some common cases:

• in a tank level-control, feed pressures or flows of the incoming fluids can be
measured and their effect determined from simple balance equations,

• in a neutralisation process (pH control), the incoming pH and flow can be mea-
sured,

• temperature control: measuring ambient temperature, solar radiation, detecting
door/window openings, etc.,

• position control: knowing beforehand the mass of an object to be moved.

Availability of that information can contribute to improving the performance
of a control system.

Let us have a model of the disturbance effect, for example by linearising
first-principle equations, as (2.21):

ẋ = Ax + Bu + Bdd; y = Cx (4.16)

No direct coupling between the outputs and the inputs (d and u) is assumed,
for simplicity, at this moment.

The simplest case is when the disturbances enter on the input channel
(i.e., there exists a matrix M such that Bd = BM). In this case, applying the
control action:

u = −Md (4.17)

the disturbances are cancelled, as ẋ = Ax + B(−Md) + (BM)d = Ax is now
independent of d.

To check if the input channel condition is fulfilled, the system of equations

Bu = −Bdd

should be solved for u. The usual situation is the order of the system, n,
being greater than the number of inputs, m, so there are n equations with m
unknowns. The least squares solution is:

u = −(BT B)−1BT Bdd

Perfect disturbance rejection is possible if:

Bd = B(BT B)−1BT Bd (4.18)

and if this is the case, the above formula also yields M . In other case, if
(I − B(BT B)−1BT )Bd is small compared to Bd, then approximate rejection
can be carried out6.

If the disturbance does not enter on the input channel or, also, if the
disturbances directly affect the output to be controlled so y = Cx+Ddd, Dd �=
0, then this proportional feedforward does not work well. Two alternatives
appear:
6 B(BT B)−1BT is a projection matrix, in the sense that it yields the orthogonal

projection of any set of vectors (at its right side) onto the column space of B.
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• achieve rejection at steady-state,
• achieve rejection in some frequency range (or at a particular frequency,

not necessarily DC, for example, when a system is subject to measurable
sinusoidal disturbances) by dynamic feedforward.

Steady-state rejection. The steady-state rejection implies choosing uff

such that, in steady-state, with a CT model:

0 = Ax + Buff + Bdd ⇒ x = −A−1(Buff + Bdd)
y = Cx + Ddd = −CA−1(Buff + Bdd) + Ddd

a solution to y = 0 can be found if the following system of equations can be
solved for uff :

−(CA−1Bd + Dd)d = CA−1Buff (4.19)

Depending on the number of sensors, actuators, disturbances and the system
properties, the problem can have an exact unique solution (if CA−1B is square
and invertible) or it might need to be solved in a least-squares sense.

Dynamic rejection: transfer matrix models. The second alternative,
with more complex implementation, involves calculating the transfer function
matrix from disturbances to outputs7. Let us call it Gd(s) = C(sI−A)−1Bd+
Dd. Then, by applying the control action:

uff = −G−1Gdd

it is straightforward to verify that the overall effect of d is zero. However,
G−1Gd might be non-realisable so further low-pass filters, F , should be added
to achieve a feasible implementation:

uff = −G−1FGdd (4.20)

discarding the goal of compensating for high-frequency disturbances. As usual,
caution is needed with RHP zeros in plant model G.

Steady-state rejection in TF representation amounts to just calculating
the DC gain of the above formulae:

uff = −G(0)−1Gd(0) (4.21)

In some cases, the disturbance measurement itself contains some dynamics
dm = Gmd, where dm stands for disturbance measurement. If this is the case,
the compensation should be replaced by uff = −G−1FGdG

−1
m dm.

There are other cases of disturbance effects that have not been considered:
7 In some cases, if the record of the effect of a sudden disturbance is available,

step-response experimental identification methods (Appendix A.4) can directly
determine this transfer function.
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• the effect of the disturbance is measured through a sensor z = Cdx +
Ddd, combining direct measurement plus state information. For exam-
ple, an outflow in a system that is directly affected by known connec-
tion/disconnection of one downstream pump (d), as well as upstream tank
levels (x),

• unmeasurable disturbances.

Typically, feedback control needs to be applied in these cases, trying to reduce
the effect of the disturbance. But it can be complemented with a “feedforward”
control based on (feedback) estimations of the disturbances, as discussed in
Section 6.3.2.

4.7 Two Degree of Freedom Controller

With the combination of feedforward and feedback control, better control
performances may be achieved. Feedback control is constrained by:

• stability issues in the face of uncertainty,
• tracking/regulation vs. measurement noise filtering performance trade-off,

and feedforward control, only applicable to stable systems, is limited by:

• sensor availability (not a problem for references, but for disturbance-
rejection tasks),

• performance degrading in the face of modelling error.

Thus, a so-called 2-DoF control structure can be designed as shown in Fig-
ure 4.4. In this case, the control action is generated by

K G

d

e u y

n

r

Gd

Hd

Kd

-

+ ++

+

+H

F

Figure 4.4. Two-degree of Freedom control structure

u = K[Fr − H(y + n)] + KdHdd

where F and Kd are feedforward controllers attached to the reference and
measurable disturbances, respectively, K is a forward path controller, H is a
feedback controller (and/or a measurement noise filter) and Hd is the distur-
bance sensor dynamics. The output is expressed by:
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y = (I + GKH)−1 (GKFr + (Gd + GKdHd)d − GKHn)

So, F can be designed with only tracking in mind, Kd for measurable distur-
bance rejection, as in (4.20), H for high-frequency noise filtering and K will
try to carry out rejection of unmeasurable disturbances and modelling error.

Elementary forms of 2-DoF control appear in industrial PID regulators.
Applying the methodologies presented in Section 7.4, a general 2-DoF opti-
misation framework is able to solve many disturbance rejection problems of
engineering significance. A general MIMO 2-DoF structure is further analysed
in Section 8.4.3.

4.8 Hierarchical Control

There are many control goals requiring different algorithms and kinds of infor-
mation from the process, as mentioned at the beginning of this chapter: from
the level closest to the process to the plant-wide control. All these activities
should be connected and some kind of hierarchy is natural.

Local control. Uses information directly gathered from the process, as fast
as possible, to generate the reaction of the control to process changes in
order to fulfill the tracking or regulatory control goals. It also includes
logic control to handle automata.

Supervisory control. Evaluates the behaviour of the local controls and com-
mands change in parameters, structure or components. It may include
adaptation, as well as emergency actions.

Coordinating control. Evaluates the performances of the process and deter-
mines objectives (set-points) for the lower level controls. It may include
optimisation routines to compute the best operating conditions.

Plant-wide control. Considers the constraints among interconnected processes
to optimise the whole plant behaviour. It may include management and
policy criteria to define goals for the lower controls.

In digital control, the control algorithm only takes a minimum part of the
control code, with a lot of activities around the control to ensure its correct
operation. From an algorithmic viewpoint we must consider, among others:

– the control algorithm itself,
– output and state filtering (observers and virtual sensors),
– scaling and monitoring,
– connection with starting up and shouting down procedures,
– alarm treatment,
– data storage and recovery,
and from an instrumental viewpoint, also issues related to:
– data and variables’ representation,
– timing, sampling and scheduling of tasks,
– data acquisition systems,
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Monitoring, Integration with
management databases

Optimisation layer (static)

Coordination, supervision /
centralised (Master PC, PLC)

Local/decentralised
control

PROCESS

Solvent

A
Va

Vs

Flow,
concentr.

…
PLC, PID,

...

PLC, PID,
...

Figure 4.5. Plant-wide control schema

– communication channels and possible delays,
– human/machine interface,

shall be considered for the success of the designed control solution.

4.9 Key Issues in Control Design

Control goals, variable selection and control structure are key decisions in
the design of a control system. In any case, once a control system has been
designed, a validation process is required to determine:

• the range of validity of the proposed control structure,
• its robustness to modelling errors,
• the limitations in achieving some performances due to the process,
• the limitations in achievable performance due to implementation con-

straints,
• the need of use of multiple controllers or adaptation,
• the tasks to be allocated to a supervisory control level design.

Some of these issues are introduced in the last chapter of the book, and there
is a lot of research to develop new approaches related to:

• integrated design of the process and the controller,
• iterative modelling and control design,
• integrated control algorithm and implementation system design,
• learning controllers.

Given the control goals, and taking into account the limitations above, a
suitable control design approach should be followed. This is the matter of the
next chapters.
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4.10 Case Study: Ceramic Kiln

The production process of ceramic tiles involves a number of operations and
subprocesses. Four main activities should be considered: raw materials grind-
ing and milling, pressing and compacting the biscuit, glazing, and firing at the
kiln. Most of the final characteristics of the tiles depend on the firing process.
The kiln is, therefore, the core of the whole production plant. This case study
presents some comments about the definition of the control system, in the
way we proceeded in the framework of a practical implementation8.

Users’ goals. The main goal of the production engineers is to get high pro-
duction of tiles with a high quality, this being defined by the dimensional,
tonality and resistance characteristics of the tiles. Direct measurement of some
of these variables is not easy. Thus, control objectives should be oriented to
control some accessible process variables so as to (indirectly) keep the tiles’
properties within some specified bounds (see Section 5.5.1). We will concen-
trate on the kiln.

After an analysis of the firing process, the main control goal should be to
apply a pre-defined temperature firing profile to each single tile. That means
not only control of the temperature and time of exposure of each tile during
its travel within the kiln, but also to keep adequate ventilation conditions,
strongly affecting the surface properties of the tile, maximising the number of
tiles per hour.

The process. A kiln is a long tunnel (70–100 m) with a useful section of
approximately 1.7m × 0.5m, thus, it is a distributed process, where the in-
ternal temperature and pressure depends on time and position. To simplify
the model, it is divided into sections. Tiles are transported by rollers in one
direction and ventilation air is flowing in the opposite direction. In some in-
ternal sections, combustion units will heat the tiles whereas in some other
sections external air will cool the tiles. We must also distinguish between the
upper and lower part of the section (above and below the tiles). The sec-
tions are functionally grouped in different zones: pre-kiln, pre-heating, firing,
forced rapid cooling, normal slow cooling and final cooling zone, Figure 4.6.
The construction of the kiln (number of sections, distribution of burners and
fans, rollers, and many mechanical properties) will determine the potential
production possibilities, as well as the final product quality. The goal of the
control would be to apply the best actions, constrained to the existing kiln
hardware.

Process variables. There are many internal variables in the kiln and inside
the tiles. The common sensing devices are thermocouples, and pressure, flow
and speed meters. The actuators are motors (to manipulate the tiles and fan
speed) and valves (to modify the flow of gas and air). At the kiln exit, some
tile properties can be measured: calibre, planarity, out-of-square and colour
8 European ESPRIT project “MARCK”, 1997.
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Figure 4.6. Kiln diagram

properties. Mechanical resistance can only be measured out of line and with
a great time delay, not being suitable for on-line control of the kiln.

A large number of variables can be considered and measured for monitor-
ing purposes. But from the control viewpoint, the measured variables used
to generate the control actions are defined by the number of manipulated
variables and their placement. SVD techniques can be used to determine the
suitable number of control variables, leaving the remaining inputs as constant
or, at least, only used in changes of the operating conditions. It can also
provide some hints to select the most relevant temperatures related to each
burner (up, down, in the same or contiguous cell, ... ).

Setting up a model. As already described, the kiln can be considered as a
series of sections (or cells). From the point of view of the thermal behaviour
inside it, we may consider the kiln scheme shown in Figure 4.7. The post-
combustion gases flow from right to left, while the tiles advance from left to
right. A simplified model of the thermal process would be based on first-order
TF from:

• a heating burner power to the temperature in the corresponding cell, Gi,i,
• the temperature of a cell to that of the previous one (due to convection),

Gi,i+1,
• the presence of masses being heated in a cell (tiles, etc.).

Experimental identification (Section A.4) could be carried out by introducing
pseudo-random binary signals (PRBS). The kiln should be operating under
normal conditions, with local PID flow control of the burners. Three kinds of
experiments are foreseen:

Qi

Ti

Pq i Pq(i+1)Pq1 Pq(i-1) Pqn

Figure 4.7. Kiln diagram (II)
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124 4 Solutions to the Control Problem

1. Keeping the temperature in a section (i + 1) as steady as possible, intro-
duce a PRBS-like set-point at the local PID of section i. This allows for
identifying Gi,i using a regular RLS algorithm.

2. Keeping the output of the PID at section i constant, force temperature
changes at section (i + 1), thus allowing for the identification of Gi,i+1.

3. a RLS algorithm with two inputs and one output can also be used. In
this case, changes both at the i-th control action and at the (i + 1)-th
temperature should be forced.

In Figure 4.8, some of the results on a typical kiln are shown.

0 100 200 300 400 500 600 700 800
−10

0

10
Temperature variations at section  M012
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10
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Figure 4.8. Identification of the kiln model. Input/output experimental data

Control structure. A hierarchical control structure seems to be appropri-
ate.

• changes in production will determine the set-point of the roller speed. It
will also provide a feedforward to the gas burners’ flow, as well as changes
in the kiln internal pressure and ventilation airflow,

• The final goal, quality control, is based on measurements at the exit of the
kiln, and the fine-tuning of the temperature profile (and vertical distribu-
tion) is defined in a qualitative and heuristic way,

• coordinating control to achieve an actual temperature that is equal to the
desired reference at each section, Ti = ri. To reach this goal, a decou-
pling control with decentralised feedback (Section 5.3) was implemented,
keeping the controlled variables at their desired value.

• local PIDs installed at the burners will provide a lower-level slave control
trying to assure the demanded gas flows (Section 5.4.1).
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5

Decentralised and Decoupled Control

In many industrial plants, the basic extension of classical PID controller de-
sign, implementation and tuning is the decentralised approach, where struc-
tural concepts are used to decouple the interaction between variables. The
use of standard equipment and the ease of hand-tuning or understanding by
non-specialist technicians are the main advantages of this approach. Never-
theless, the control effort is decomposed into two stages: first to decouple the
different subsystems and then to control them. The extra effort rewards con-
sist in simpler subsequent design, implementation and tuning. This chapter
addresses some of these issues.

5.1 Introduction

In Section 4.3, selection of suitable inputs and outputs was discussed. Those
inputs had significant effect on key internal process variables and the sensors
allowed for its determination with acceptable noise sensitivity.

Decentralised (distributed) control tries to control multivariable plants by
a suitable decomposition into SISO control loops. It has the advantage of easy
implementation and tuning if a sufficient number of sensors and actuators is
available. However, with a limited number of them, a centralised controller
carrying out matrix operations will be able to squeeze better performance out
of processes with strong couplings or conditioning problems.

The key issue behind the use of a centralised strategy is, however, the
availability of a precise enough model. If it is not available, then lower per-
formance can be targeted with enough guarantees of success, as discussed in
Chapter 8. In this case, a wise combination of standard SISO regulators may
solve the problem with comparable results, with implementation advantages.

Let us assume that a first selection of controlled variables, actuators and
measurements is available and let us discuss some possibilities to try to solve
the problem by use of multiple SISO controllers, first on an independent basis
and then on a coordinated structure.
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126 5 Decentralised and Decoupled Control

The design of independent loops may have, if the sensor and actuator
configuration is adequate, a significative advantage regarding reliability: in the
event of a fault in another regulator or actuator, the “independent” controller
will still try to drive its associated variable to its set-point. Note that in
a system heavily dependent on the coordination of all loops, the failure of
one component may lead to failure of the overall structure. This may be,
particularly, the case with the centralised control approach. The reliability
advantage is one of the multiple appeals to practitioners regarding the use of
separate SISO loops instead of centralised or heavily coordinated approaches.
However, this advantage does not apply to all possible plants and sensor–
actuator choices.

5.1.1 Plant Decomposition, Grouping of Variables

In many industrial cases, a complex process can be divided into subprocesses
so variables can be grouped into several sets corresponding to each subsystem.
This division corresponds in many cases to actually engineered subsystems
and, in other cases, it is just a “conceptual” framework for control design.
Figure 5.1 depicts the basic idea.

Subsystem
1

MIMO system

Subsystem
2

Subsystem
3

coupling

interference

+

+

u1

u2

y1

y2g22

g12

g21

g11

Figure 5.1. A MIMO system as a set of coupled simpler subsystems

The subsystems, however, have some interaction (in the trivial case of totally
isolated subsystems, they can be handled independently of the rest). There
are two types of interaction:

• interference (feedforward interaction). Some variables of a subsystem in-
fluence other subsystems. However, these subsystems do not influence vari-
ables of the first one.The key characteristic of this type of interaction is
that there is no return path to the system originating the interference.
In the linear case, they can be considered as (additive) disturbances, and
they have the form of triangular transfer function submatrices. This is the
typical case of cascaded stages in an industrial facility,

• coupling. In this interaction, there exists a path of cross-influence so that
there is a hidden “feedback” loop. Ignoring it in multi-loop strategies can
lead to instability.
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Example 5.1. In the TITO plant in Figure 5.1 (right), u1 and y1 are related by the
transfer function g11.

However, using a feedback controller, K22, with u2–y2 would inadvertently cre-
ate an additional feedback path g21–(loop 2)–g12, changing the “apparent” transfer
function from u1 to y1 to:

y1 = (g11 + g12 ∗ K22 ∗ (1 + K22g22)
−1g21)u1

def
= g̃11u1 (5.1)

By g̃, we will denote the apparent transfer function produced by coupling. Note that
this is a case of the general LFT interconnection in (2.53).

From the background of SISO techniques, two basic approaches can be pur-
sued, depending on the basic requirements:

• decentralised control tries to divide the plant and design independent
controllers for each of the subsystems as a way to handle the control of
the overall plant. In this case, two alternatives arise:
– neglect the coupling. To minimise the risk of bad performance, variables

should be grouped so that the strength of the coupling is small. This
is the so-called pairing problem, and the resulting strategy is called
multi-loop control. It can be guided by common sense if the system is
built to achieve a structure such as the one in Figure 5.1, but there are
some approximate model-based tools to help the selection,

– prior to control design, carry out a decoupling operation (“cancelling”
coupling by transforming the system into a diagonal or triangular struc-
ture via a transformation matrix).

• cascade control, adding extra sensors and actuators to improve closed-
loop performance of a basic control loop.

Although the grouping can result in MIMO subsystems, for simplicity, the
extreme cases will be studied in this chapter: on one hand, decomposing a
MIMO plant into SISO subsystems and, on the other, analysing enhancements
to a SISO control loop (one set-point) via MIMO techniques.

Many industrial control systems in electrical, chemical plants, etc. are ac-
tually designed from these ideas and its combination. A steam boiler and
distillation column case studies at the end of the chapter will show the appli-
cation of some of them in a realistic situation.

Of course, apart from these ideas, there always exists the possibility of
a centralised matrix-based control calculation, to be discussed in Chapters 6
and 7.

5.2 Multi-loop Control, Pairing Selection

The historically first approach to multivariable control in industry was di-
viding the sensors and actuators into m subsets and designing control loops
using one of the sensor sets and one of the actuator sets (selecting those sets is
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128 5 Decentralised and Decoupled Control

usually denoted as input/output pairing). In this way, a complex control prob-
lem is divided into m supposedly simpler ones, with no information exchange
between those controllers. This strategy is called multi-loop control.

Multi-loop control usually addresses control of a plant with m sensors
and actuators with m SISO loops, although some of the ideas might apply
to block-pairing (if centralised control is used for those blocks). For reasons
of industrial applicability, only the SISO multi-loop case will be considered,
although block-decomposition of a complex plant is indeed done in the project
phase, usually based on experience and knowledge of the internals of the
process (dividing into independent subsystems to be controlled). Some tools
for the block multi-loop control can be found in [88].

In an ideal case, multi-loop control would have the advantages of:

• flexibility and fault tolerance, as independent loops can be turned on and
off, due to operator decision or faults, without excessive degradation on
the performance of the rest of loops,

• simplicity, allowing independent design of SISO regulators, with easier on-
line tuning.

The multi-loop idea is appealing but it may not work in strongly coupled
systems. Only in truly diagonal or block-diagonal transfer function matri-
ces can success be guaranteed (and, under some assumptions, in triangular
plants). In any other case, the loops will be interacting due to coupling, even
to the point of compromising stability.

In this case, the objective is to achieve a reasonable level of performance
in a plant with m SISO controllers, each of them trying to keep under control
a particular output yj by means of manipulating one actuator ui (from a total
of m inputs and m outputs). The number of combinations is m! (factorial of
m) so some criteria should be used in deciding the configuration.

In many cases, coupling is neglected, being considered as a “modelling er-
ror” when independently designing each of the loops. This fact limits achiev-
able performance for reasonable robustness (see Section 5.2.3 and Chapter
8): “detuning” of some of the SISO regulators (aiming for lower performance
objectives) can mask unacceptable interactions.

To successfully apply multi-loop control, a methodology to assess the de-
gree of interaction between the loops is needed. Apart from, of course, trial
and error procedures on plant prototypes or fine-tuning and optimising on
simulations, some conclusions can be drawn if a plant model is available, even
a rudimentary one, such as an approximation to the DC gain matrix.

In fact, as high-performance multi-loop control can be difficult to achieve,
the most popular results on stability and pairing are usually referred to very-
low-bandwith closed-loops with integral action. In this way, some conclusions
based on the DC gain matrix can be drawn. Once this low-performance set-
up has been achieved, specifications can be sequentially increased (see Section
5.6).
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Niederlinski Criterion

The most immediate result on pairing selection is the Niederlinski criterion
[93].

Given a stable multivariable system Gm×m (row and column transposition
have been done to locate the selected pairings on the diagonal) and a diagonal
controller with integral action K/s, the closed loop will be unstable if L =
G(0)K(0) verifies the sign condition1:

sign(det(L)) �= sign(Πm
i=1Lii) (5.2)

The Niederlinski criterion can exclude many candidate pairings, assuming
that the sign of the integral gain in kii is the same as that of the DC gain of gii

(as expected in a decentralised design). In this case, Lii has positive gain so
the criterion reduces to det(L(0)) < 0 as a sufficient condition for instability.

5.2.1 The Relative Gain Array Methodology

The relative gain array methodology is a widely used screening tool to help
determine if a particular input/output pair (say, yi and uj) is a wise choice for
implementing a SISO control loop, in the sense that coupling and interaction
with other loops will be small, refining the Niederlinski result.

Let us detail the basic ideas behind the approach, by considering the TITO
system in Figure 5.1 (right), analysed in Example 5.1.

Example 5.2. In the referred example, coupling transforms the relation between u1

and y1 from g11 to ĝ11 in (5.1). If g11 and ĝ11 were similar, a controller designed on
the open-loop characteristic, g11, would also work when loop 2 is closed. However,
we would like to know this possibility before actually spending time in designing the
controllers, and ĝ11 depends on K22 for which a similar analysis should be made
with ĝ22.

An approximation may assume that output 2 will be “well controlled”, this
implying (1+g22K22)

−1 ≈ 0, i.e., K22 having a big gain. In this case, with K22 → ∞,
(5.1) becomes:

g̃11 ≈ g11 + g12g
−1
22 g21 (5.3)

So, if a controller is designed on g̃11, dependence with the to-be-designed controller
for loop 2 is not significant as long as loop 2 performs well.

Let us discuss the general case. In open loop, the transfer function between
output yi and input uj is gij , as:

y = G(s)u ⇒ yi =
n∑

k=1

gikuk (5.4)

1 It is a generalisation of the well-known SISO criteria: “a process with negative
DC gain and positive integral action gain KI is unstable”.

TLFeBOOK



130 5 Decentralised and Decoupled Control

then experiments with all inputs except uj equal to zero will produce output
yi = gijuj . It will be assumed that G(0) is non-singular2.

Now, let us think on the extreme case in which all outputs except yi are
under “perfect” control, i.e., very close to its operating point (zero in linearised
coordinates), by using all actuators except uj (left for a not-yet-implemented
SISO control jointly with sensor yi). The configuration is depicted in Figure
5.2.

Plant Plant

m - 1
controller

… …

…
… …

uj

uj
yi

yi
≈ 0

Figure 5.2. Multi-loop control: all loops open (left), all except one closed (right)

Obviously, if a “step” or any other prescribed input were applied to uj , the
control system would try to counteract the effect of this input on the controlled
outputs (because, due to coupling, it will act as a “disturbance” on them).
So, the control actions {u1, . . . , uj−1, uj+1, . . . , un} will not be zero, and the
outputs {y1, . . . , yi−1, yi+1, . . . , yn} will be approximately zero if the control
is well designed.

Let us consider the mathematical inverse relation to that in (5.4),

u = G−1(s)y ⇒ ul =
n∑

k=1

tlkyk (5.5)

where tlk is the corresponding element of the inverse transfer function matrix
G−1. Particularising for uj and replacing all controlled outputs by zero, and
inverting the result to have the correct causality, we have:

uj = tjiyi ⇒ yi =
1
tji

uj ≡ g̃ijuj

The transfer function g̃ij = 1/tji is an apparent transfer function (it is a
closed-loop transfer function with a perfect controller).

So, if gij is “similar” to g̃ij , the presence of the rest of the controllers will
not influence the behaviour of a SISO loop designed on the model gij , and
it will be a “good” candidate for an independent loop. A way of measuring
“similitude” between g̃ij and gij is checking if its quotient is near 1:
2 Otherwise, the system would have a zero at s = 0 and some combination of

outputs would not be controllable in steady-state. An SISO example would be
s/(s+1), unable to be driven to a non-zero set-point without an unbounded ramp
input.
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gij

g̃ij
=

gij

1/tji
≈ 1 ⇒ λij

def= gijtji ≈ 1 (5.6)

Evaluating λij for all possible pairings yields the so-called relative gain
array Λ(s). It is straightforward to realise that it is evaluated by element-by-
element multiplication (×) of G and its inverse transpose:

Λ(s) = G(s) × (G(s)T
)−1

The RGA is scaling-independent and controller-independent.
The RGA was introduced in [33] and, for ease of computation and model

availability, it is usually evaluated at zero frequency3 (DC gain). The ideas ob-
viously apply only to regulators without significant gain at higher frequencies
(regulators with only integral action).

These coefficients can be interpreted as the ratio between the open-loop
SISO static gain and the gain with “perfect” control on the rest of the loops,
using the other input variables.

In Matlab� , the element-by-element product uses notation .*, so:

g0=dcgain(sys); rga=g0.*inv(g0’)

Triangular plants. Triangular plants have the identity matrix as the RGA,
and they are easier to control. Without loss of generality, let us assume an
upper triangular plant. In this case, the deviations in loop j act as disturbances
gij to the upper ones (i < j), but the reciprocal does not hold (gji = 0). So,
there is only one-way interference. Sequential design from i = m to 1 of the
control loops will ensure success.

Rules for Pairing Selection

Some rules of thumb from the previous arguments can be stated as [119]:

• λij ≈ 1: the pairing yj–ui is a good candidate for an independent SISO
loop,

• λij < 0: the apparent transfer function has a different sign to the open-
loop one, so there is a chance of a miscalculation of the sign of feedback,
leading to instability. It can be shown [119] that, with integral action
controllers, using a negative-RGA pairing will lead to at least one of these
three situations: (a) unstable all-closed loop, (b) unstable stand-alone loop
(referring to the one with negative RGA), (c) unstable m-minus-one loop
(if the loop with the negative relative gain is opened, due to faults or
saturation).

3 In processes with integrators in open loop (infinite DC gain), if integrators can
be “pulled out” in such a way that they can be considered part of a regulator (if
they appear before a particular input or after a particular output), they can be
removed from the plant model and the RGA methodology can still be used.
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• λij small (positive): The apparent closed-loop “gain” is much higher than
that of the open loop. This can cause performance degradation or even
instability when closing the loop. It pinpoints an input that has little
effect on a particular output in open loop but with significant effect in
closed loop due to coupling and feedback. Probably not a good pairing
candidate,

• λij big (positive): the open-loop gain is higher than that of the closed
loop, so control may become ineffective when closing the rest of the loops.
Furthermore, large RGA elements may indicate difficulties in control due
to uncertainty (see Remark 5.6), irrespective of the chosen pairing.

Pairings decided by these rules should be compared against other options from
common sense or insights into the process internal mechanisms.

Example 5.3. A system has a DC gain matrix given by:

G(0) =




−1 1.5 2.8
4 1.6 4

0.15 2 −0.1





Evaluating its RGA,

g=[-1 1.5 2.8;4 1.6 4;.15 2 -.1]; rga=g.*inv(g’)

rga = 0.2600 0.0478 0.6922

0.7328 -0.0163 0.2835

0.0073 0.9685 0.0242

the recommended pairings would be y2–u1, y3–u2 and y1–u3 if SISO PI controllers
are used in first place. For example, the apparent all-loops closed transfer function
for y1–u2 has a gain of: 31.4 (1/t21), 21 times higher than the open-loop one of 1.5!

RGA with full frequency response. The previous considerations have
been taken on the basis of the DC gain matrix, and only apply to low-gain
integral action. However, for more demanding control specifications, depend-
ing on actuator bandwidth and directionality variations with frequency, the
full Bode diagram of Λ should be drawn.

In this case, at frequencies important for control stability robustness, i.e.,
around the peak of sensitivity (4.5) or complementary sensitivity (4.6) (see
Section 8.5, in particular Equations (8.11), (F.2)), if Λ(jω) approaches the
identity matrix, indicating that the plant is triangular, stability problems are
avoided in multi-loop control [119]. Note that the matrix in this case has
complex numbers as elements.

The condition may be a hard one to meet, but, in some cases, it might
point out alternative pairings to those from only steady-state considerations if
higher performance (with decentralised control) must be attained. As another
tool, the achievable bandwidth for different pairings may be assessed using
(5.13).
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Remark 5.4. Note also that if the process is unstable or non-minimum-phase,
G−1 will have RHP zeros or poles respectively so the apparent transfer func-
tions may suffer substantial changes with respect to the open-loop ones. In this
case, the RGA indications at steady-state will not reflect the whole situation.

Example 5.5 (TITO system). In the 2 × 2 case (Figure 5.1), the RGA matrix is:

Λ =

(
λ11 1 − λ11

1 − λ11 λ11

)

λ11 =
1

1 − G12G21
G11G22

(5.7)

and, with a diagonal controller (K1, K2), the closed-loop characteristic equation is:

CE(s) = 1 + K1G11 + K2G22 +
K1K2G11G22

λ11
(5.8)

This shows the relationship between relative gain and closed-loop stability. If
λ11 ≈ 1, the characteristic equation reduces to (1 + K1G1)(1 + K2G2).

Remark 5.6. Incidentally, the RGA helps in evaluating the maximum size of
perturbations on a particular matrix element so that the matrix does not
become singular. In particular, a matrix A becomes singular if a single element
aij is perturbed to a′

ij = aij(1 − λ−1
ij ). The result is meaningful in analysing

sensitivity to element-by-element uncertainty in experimental identification
of ill-conditioned processes. Also, the sum of the absolute value of all RGA
matrix elements is, orientatively, close to the minimised condition number
(page 292): plants with large RGA elements are usually difficult to control
(due to sensitivity to uncertainty). For example, the RGA of the plant in
Example B.6 is identity, i.e., probably indicating that the chosen configuration
will not pose significant control problems.

Disturbances: RDG

To try to account for possible amplification or attenuation of the disturbance
response for a particular candidate pairing, if a rough disturbance model is
available, the relative disturbance gain (RDG) βi for a disturbance d can be
defined [121] as the ratio between the change in control effort required to
counteract d on loop i when the rest of loops are closed vs. the case they are
open. The pairing is assumed already selected.

In the 2 × 2 TITO case, for a process with steady-state gain
(

y1

y2

)

=
(

g11 g12

g21 g22

)(
u1

u2

)

+
(

hD1

hD2

)

d (5.9)

the RDG gains are:

β1 = λ11

(

1 − hD2g12

hD1g22

)

; β2 = λ11

(

1 − hD1g21

hD2g11

)

(5.10)

where λ11 is the (1, 1) element of the RGA matrix.
Values of |β| < 1 indicate a beneficial interaction (the loops cooperate) and

values bigger than 1 indicate that closing one loop exacerbates disturbance
effects on the other (at low frequencies).
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5.2.2 Integrity (Fault Tolerance)

As previously commented, an interesting feature of multi-loop control is that
in the event of failure of one of the loops, the rest will keep trying to achieve
their target set-points. In this way, multi-loop structures might be more fault-
tolerant than centralised or decoupled ones.

A multi-loop controlled system has integrity if the closed-loop system re-
mains stable as subsystem controllers are arbitrarily brought in and out of
service [35].

Integrity allows for any arbitrary order in the connection and disconnec-
tion of individual loops. A system not verifying the integrity property may
yield instability in intermediate configurations if loops are connected or dis-
connected in a particular order. It may also have stability problems if some
manipulated variables are driven to saturation.

As the failure of one of the loops changes the “apparent” transfer functions
calculated above, fault tolerance is not guaranteed unless specifically checked.

Usually, conditions on the DC gain allow for checking integrity with a
set of very-low-bandwidth integral-action regulators. This is named integral
controllability with integrity (ICI).

A necessary condition for ICI is that the RGA elements of the selected
pairing are positive [35, 119]. This is one of the main practical reasons for
avoiding negative RGA pairings. The condition is not sufficient, however. Ad-
ditional considerations appear in [35].

In particular, a more restrictive necessary condition, assuming the selected
pairings are diagonal (yi–ui) (there is no loss of generality as G(0) can be
transformed to verify that by straightforward input or output reordering), the
RGA of any submatrix of G(0) obtained by elimination of any combination
of loops (eliminating the j-th row and column from G(0)) must also have
positive diagonal terms.

Example 5.7. For a system with DC gain:

G(0) =







56 66 75 97
75 54 82 28
18 66 25 38
9 51 8 11







the RGA matrix is:

rga = 6.1559 -0.6948 -7.9390 3.4779

-1.7718 0.1018 3.1578 -0.4877

-6.5985 1.7353 8.5538 -2.6906

3.2144 -0.1422 -2.7726 0.7004

so the pairings y1−u4, y2−u3, y3−u2, y4−u1 are selected (other three combinations
are possible with positive RGA elements). Reordering inputs, the transformed G is:

g2 = 97 75 66 56

28 82 54 75
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38 25 66 18

11 8 51 9

Eliminating the column and row corresponding to loop 2, the remaining 3×3 matrix
has an RGA calculated by:

sel=[1 3 4]; g2=g2(sel,sel); rga=g2.*inv(g2’)

with diagonal terms {−1.167(1), 0.629(3), 1.301(4)}. So, loop 1 would not be a desir-
able pairing if only loops 1–3–4 were working: a fault on loop 2 will leave the system
in an undesirable state, either because the loops are already unstable or because
disconnection or saturation of loop 1 will cause instability.

So, this configuration does not have the ICI property. It can be checked, by
inspection, that any other pairing combination also has these problems. There are
the following engineering alternatives:

• a redesign of the actuator and sensor locations,
• coping with the possibility of transient instability in start-up and close-down

or under a particular combination of faults (maybe establishing a suggested
sequencing of the start-up, close-down and fault-handling procedures),

• pursuing a centralised strategy, given that the fault tolerance and flexibility of
the decentralised one may not be satisfactory enough,

• try multi-loop control on some combinations of inputs and outputs with lower
coupling (however, that may lose the physical interpretation of the signals). This
strategy is outlined in Section 5.3.3.

As an exercise, it is left to the reader the simulation of the connection and discon-
nection of multi-loop controllers with a system such as G ∗ 1/(s + 1) and controllers
0.05(s + 1)/s in Simulink� , checking that 1–2–3–4 is a suitable start-up sequence
avoiding instability, but loops 3–4 alone are unstable.

Some remarks on pairing selection

As real plants are non-linear, the best pairing selection may depend on the
operating point, as the linearised models do change. For an example, see the
mixing process case study (Section 5.8.2).

The best performing multi-loop control system is not always the one giving
the least steady-state RGA interaction. This issue arises from possible changes
in interaction direction at higher frequencies and also due to directionality
effects on the action of disturbances: the best performing pairing may depend
on the disturbance being considered, as discussed in Section 5.2.1.

So, the numerical methods of pairing selection are far from conclusive and
many other considerations might need to be made by the control engineer.
Good designs with negative RGA pairings occur very infrequently but ap-
plications are reported where those ones might be the best choice [12, 89],
although losing integrity.
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5.2.3 Diagonal Dominance (Stability Analysis)

Given a transfer function G, let us denote by G̃ the one formed by its diagonal
elements. These diagonal elements are used for tuning a multi-loop regulator
K, if suitable pairings are found, to obtain a diagonal T̃ closed-loop function.
When the regulator is put into the real loop, denoting the relative error:

E = (G − G̃)G̃−1 (5.11)

it can be shown that:

(I + GK) = (I + ET̃ )(I + G̃K) (5.12)

so “multi-loop behaviour” = “interaction analysis” * “nominal individual
loops”. As the nominal loops will be stable, the overall loop will be stable
if (I + ET̃ ) does not have RHP zeros. If the plant is diagonal-dominant, then
E is small. To be more precise, Gershgorin’s theorem (Section B.3) enables
us to derive the following limitation on the designed-for performance T̃ [119]
from the Gershgorin radius �i in (3.37):

|t̃i(jω)| ≤ |gii(jω)|
∑

j �=i |gij(jω)| =
1

�i(ω)
∀i, ∀ω (5.13)

These conditions refers to row sums. Substituting gij for gji results in a differ-
ent condition based on column sums. This is a sufficient condition for closed-
loop stability. If gij , j �= i are small (diagonal-dominant plant), the above
bound is a large number, indicating that good control can be achieved at that
frequency.

The frequency for which �i ≈ 0.5 can be considered as an orientative
designed bandwidth limit for multi-loop control4. If it is too low for a prac-
tical application, decoupling may be considered, at least at low frequencies
(discussed in next section).

Note that (5.13) guarantees multi-loop stability but, as it is a conservative
bound, stabilising regulators yielding faster loops may exist. Other sufficient,
less conservative conditions can be derived from structured-uncertainty anal-
ysis (Section 8.5.4) [119], but they are beyond this book’s scope.

5.3 Decoupling

In cases when multi-loop control is not effective in reaching the desired speci-
fications, a possible strategy for tackling the MIMO control could be to trans-
form the transfer function matrix into a diagonal one. This strategy is called
decoupling.
4 Assuming the usual SISO criteria (for second- and higher-order plants) regarding

design of t̃i so its peak is less than 6 dB.
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If the resulting transfer function matrix were diagonal (or, approximately,
diagonal-dominant, (5.13)), then MIMO control would be equivalent to a set
of independent control loops. Decoupling can be achieved in two ways:

• feedforward cancellation of the cross-coupling terms,
• based on state measurements, via a feedback law. The advantage of this

second approach is that the decoupler can be cast as a gain matrix (static
system).

5.3.1 Feedforward Decoupling

As seen in Section 4.6.2, adding a pre-compensator transforms the open-loop
characteristic into M(s), at the will of the designer (except RHP pole-zero can-
cellations and realisability considerations). Then, any SISO design methodol-
ogy will finish the overall design if M is chosen to be diagonal.

Once a KD = G−1M open-loop controller is available, it can be used as a
decoupler in an enclosing feedback loop (see Figure 5.3).

Plant

(pretended) set of SISO systemsm

decoupler

Figure 5.3. Decoupler pre-compensator block-diagram

Example 5.8. A transfer function matrix such as:

G(s) =

( 6
s+7

5
s+14

3
s+7

−0.25
s+4

)

can be expressed, converting rows to a common denominator as:

G(s) = M(s)N(s) =

(
1

(s+7)(s+14)
0

0 1
(s+7)(s+4)

)(
6(s + 14) 5(s + 7)
3(s + 4) −0.25(s + 7)

)

Hence, inverting the N(s) matrix containing the numerators:

N(s)−1 =
1

16.5s2 + 196.5s + 567

(−0.25(s + 7) −5(s + 7)
−3(s + 4) 6(s + 14)

)

if the process is multiplied by N(s)−1, a diagonal regulator, K(s), can be designed
for the “transformed” plant M(s) (note that the regulator to be implemented would
be a non-diagonal N(s)−1K(s), contrary to the multi-loop case).

If G were non-minimum-phase, N−1 would be an unstable system so this
simple strategy would not work. In this case, the desired transfer function
M must include the model RHP zeros for internal stability of the resulting
decoupled loop. Let us show this idea with an example:
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Example 5.9. Given a plant and its inverse:

G(s) =
1

(s + 1)(s + 2)

(
s + 2 4
−2 −1

)

; G−1(s) =
(s + 1)(s + 2)

6 − s

(−1 −4
2 s + 2

)

the target decoupled dynamics must have the factor (6 − s) in all numerators in
the diagonal so the decoupler G−1M is stable and RHP cancellations are avoided:
spreading RHP zeros into several channels is a trade-off inherent to most decoupling
cases5: the decoupled plant must have two RHP zeros (at the same value of s, but
with different directions).

However, non-diagonal target models allow avoiding duplication of the zero and,
furthermore, assigning it to a particular output.

In the case under consideration,

G(6) =
1

56

(
8 4
−2 −1

)

effectively loses rank: the output zero direction, yT
z = (1, 4), is “unaffected” by input

components of the form e6t. So, the zero at s = +6 is “near” output 2.
To avoid cancellation, the target behaviour M(s) must keep this “zero-gain”

mode, i.e., it must also fulfill yT
z M(6) = 0. The diagonal factor Ma below indeed

fulfills the restriction, but Mb and Mc do as well (controller G−1Mc shown as an
example):

Ma =

( 6−s
6+s

0

0 6−s
6+s

)

; Mb =

( 6−s
6+s

−8s
(6+s)

0 1

)

; Mc =

(
1 0

−0.5s
6+s

6+s
6+s

)

(5.14)

G−1Mc =
(s + 2)(s + 1)

s + 6

( −1 −4
0.5(s + 4) (s + 2)

)

So, with a bit of additional straightforward work, a feasible M can be built so that
decoupling is achieved only at low frequency (Ma(0) = Mb(0) = Mc(0) = I), but
the RHP zero manifests on only one of the outputs. As the zero direction is more
“aligned” with output 2, the dynamic interaction is lower with Mc (compare the
numerators in the off-diagonal terms in Mb and Mc). The resulting triangular plant
is easier to control than the original one.

The procedure in the example can be easily extended to systems with more
than two outputs [119]. The RHP-related ideas here discussed apply to de-
coupling, feedforward control and also to achievable performance in feedback
control. Similar issues would arise when decoupling unstable systems, regard-
ing the spreading of the unstable dynamics to several channels.

Approximate decoupling. To design low-bandwidth loops, insertion of the
inverse DC-gain before the loop ensures decoupling at least at steady-state.
In some cases, a simple DC decoupling may significatively increase the band-
width limit determined by (5.13) for a subsequent multi-loop design. If further
bandwidth extension is desired, an approximation of G−1 valid in low frequen-
cies can be used (such as inversion of slow-timescale reduced-order models,
Section 3.10).
5 In the case when the RHP factor does not appear in all factors in the inverse,

spread to all channels can be avoided. Those plants are said to have pinned zeros.
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5.3.2 Feedback Decoupling

Some decoupling strategies can be built for linear systems (and some non-
linear ones, see Section 9.5.3) if the state is measurable.

Let us assume a system with m inputs and m outputs to be decoupled,
whose equations are in the usual form :

ẋ = Ax + Bu; y = Cx + Du

Let us consider a particular output yi, to obtain the “shortest” direct
relation to input u. Perhaps yi does not depend on u if the i-th row of D,
denoted as iD, is zero. In this case, its time derivative, by applying the chain
rule, can be shown to have the form ( iC denotes i-th row of C):

ẏi = iCẋ = iCAx + iCBu (5.15)

If iCBu = 0, the second (ÿi = iCA2x + iCABu) and successive derivatives
will be taken until there exists an ri so that u appears on its expression
(CAri−1B �= 0). This ri is denoted as the output relative degree, and in CT
linear systems it is the minimum pole-zero excess, so:

driyi

dtri
= iCArix + iCAri−1Bu (5.16)

By carrying out the same operation for all outputs, and stacking all output
derivatives into one vector, the result is:

ỹ =






dr1y1
dtr1

...
drm ym

dtrm




 =






1CAr1

...
mCArm




x +






1CAr1−1B
...

mCArm−1B




u = H̃x + Q̃u (5.17)

where H̃ and Q̃ are constant matrices that can be easily calculated. Then, if
x is measurable and the control action applied is the state feedback:

u = Q̃−1
(
v − H̃x

)
= −KDx + Fv (5.18)

KD = Q̃−1H̃; F = Q̃−1 (5.19)

where v is, at this moment, an arbitrary auxiliary input, the process equations
get transformed into:

ỹ = v

and, explicitly writing the components of ỹ, the result is:

driyi

dti
= vi ⇒ y(s) =








1
sr1 0 · · · 0
0 1

sr2 · · · 0
...

...
. . .

...
0 0 · · · 1

srm








v(s) (5.20)

So, the system is transformed into a diagonal one in terms of the auxiliary
variable.
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Example 5.10. Let us have a TITO linear system ẋ = Ax + Bu, y = Cx with:

A =




1 1 0
0 2 0
0 1 3



 ; B =




1 1
−1 1
0 0



 ; C =

(
1 0 0
0 0 1

)

Let us consider output y1 = x1. As it does not directly depend on u (D = 0),
its first derivative will be taken:

dy1

dt
= 1Cẋ = ẋ1 = x1 + x2 + u1 + u2 (5.21)

so the relative degree of y1 is r1 = 1 as inputs directly affect its derivative.
Let us now consider y2 = x3 (not depending on u). Its derivative is:

dy2

dt
= ẋ3 = x2 + 3x3

still not depending on u, so further derivatives must be taken:

d2y2

dt2
= ẋ2 + 3ẋ3 = 5x2 + 9x3 − u1 + u2 (5.22)

Finding that the relative degree is r2 = 2, joining (5.21) and (5.22), the resulting
expression for (5.17) is:

(
dy1
dt

d2y2
d2

t

)

=

(
1 1 0
0 5 9

)



x1

x2

x3



 +

(
1 1
−1 1

)(
u1

u2

)

(5.23)

so, as Q̃ is invertible, the state feedback law (5.18) is:

u =

(
1 1
−1 1

)−1



(

v1

v2

)

−
(

1 1 0
0 5 9

)



x1

x2

x3









and the system is transformed to a new state space realisation:

Ā = A − BQ̃−1H̃ =




0 0 0
0 −3 9
0 1 3



 B̄ = BQ̃−1 =




1 0
0 1
0 0



 (5.24)

C̄ = C D̄ = D (5.25)

with, indeed, a third-order transfer function:
(

y1

y2

)

=

(
1
s

0
0 1

s2

)(
u1

u2

)

(5.26)

State feedback changes the position of the poles of the system (see Section
6.1.1). Looking at (5.20), the zeros of the system, if any, are cancelled. The
most important condition for feedback decoupling is that the system must
be minimum-phase. Otherwise, unobservable “cancelled” dynamics will be
unstable6.
6 In the example above, the original system had no transmission zeros, so there is

no cancelled dynamics (the decoupled system is still third-order).
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Remark 5.11. Decoupling transforms the system into independent integrator
transfer functions. However, as well as in SISO control, integrators in the plant
do not guarantee offset-free disturbance rejection in all cases. Furthermore,
regarding offset-free tracking, it is (ideally) guaranteed, but the integrators
will “disappear” under modelling errors. So, integral action in the controller
may still be needed for the decoupled loops.

Discrete systems. The above procedure must be implemented in continuous-
time to achieve a decoupled regulator. Otherwise, discretisation errors do oc-
cur. So, to implement this strategy, fast sampling must be used.

The procedure can be applied directly to discrete models if, instead of
derivation of y, the magnitudes yk+1, etc. are calculated until uk appears. In
the linear case: yk = Cxk, yk+1 = CAxk + CBuk, if CB = 0 then yk+2 =
CA2xk +CABuk. By an analogous methodology, a diagonal transfer function
with elements z−ri can be built7.

Some Remarks on Decoupling

Although at first glance, decoupling seems an appealing idea, there are some
drawbacks:

• as decoupling is achieved via the coordination of sensors and actuators
to achieve an “apparent” diagonal behaviour, the failure of one of the
actuators (stuck valve, saturation) may heavily affect all loops. In contrast
to this, multi-loop control (Section 5.2) might have a certain degree of fault
tolerance as each loop will try to keep its operating point irrespective of
other actuator or sensor failures,

• decoupling cannot be, in general, achieved with standard industrial reg-
ulators so the advantage over centralised control is only the ease that
separation provides in design: decoupling is usually a design strategy for
centralised, computer-controlled implementations,

• a decoupling design (inverse-based controller) may not be desirable for all
disturbance-rejection tasks, unless the disturbances enter independently
at each output as well. With other disturbance models, a consideration of
the correlation (coupling) in the disturbance channel could lead to better
designs, achieving similar levels of disturbance rejection with lower input
usage [119],

• many MIMO non-minimum-phase systems, when feedforward decoupled,
increase the RHP-zeros multiplicity so performance limitations due to its
presence are exacerbated. Feedback decoupling does not work in that case,

7 In most sampled-data systems with no pure delay, the first sample already de-
pends on uk. However, if the underlying continuous system has a high relative
degree or sampling time is small, matrix Q̃ will be ill-conditioned, so decoupling
will lead to large control actions and sensitivity to model errors. Note also that
minimum-phase continuous systems may exhibit zeros outside the unit circle when
discretised.
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• decoupling may be very sensitive to modelling errors, specially for ill-
conditioned plants (although that kind of plant is difficult to control by
any method, due to its big sensitivity to actuator imprecision),

• feedback decoupling needs full state measurements. Full state feedback
has good robustness properties but stability and performance robustness
margins of decoupling-based loops using estimated states (Section 6.2)
must be explicitly checked (see Chapter 8).

5.3.3 SVD Decoupling

A matrix M can be expressed, using the singular value decomposition as
M = UΣV T , where U and V are orthogonal matrices and Σ is diagonal.

The SVD can be used to obtain decoupled equations between linear combi-
nations of sensors and linear combinations of actuators, given by the columns
of U and V , respectively. In this way, although losing part of its intuitive
sense, a decoupled design can be carried out even for non-square plants!

Plant

Controller

KD

V T U

V UT

Σ

Figure 5.4. SVD decoupling: KD is a diagonal controller designed for Σ.

If sensors are multiplied by UT and control actions are multiplied by V ,
as in Figure 5.4, then the loop, in the transformed variables, is decoupled,
so a diagonal controller KD (such as a set of PIDs) can be used. Note that
set-points must also be multiplied by UT to be expressed in the same units
as the transformed outputs. Usually, the sensor and actuator transformations
are obtained using the DC gain, or a real approximation of G(jω), where ω is
around the desired closed-loop bandwidth.

The transformed sensor–actuator pair corresponding to the maximum sin-
gular value is the direction with biggest “gain” on the plant, that is, the
combination of variables being “easiest to control”. The lowest singular value
is the most difficult combination to control.

In ill-conditioned plants, the ratio between the biggest and lowest singular
value is large (for reference, greater than 20). They are very sensitive to input
uncertainty as some “input directions” have much bigger gain than other
ones. If actuators are imprecise, when trying to control the “low-gain” output
combinations, high actuator amplitudes are needed, so actuator imprecision
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causes big disturbances in the “high-gain” ones. An exception to this is if V
(or a reordering of it) is diagonal-dominant.

If the “difficult” combinations (at crossover frequencies) do not have a
high-gain regulator, this design gives reasonable controllers in terms of ro-
bustness [59, 119]. On the contrary, if the same requirements are posed for
all directions, sensitivity to actuator uncertainty may be high. For reasonable
robustness, it is advisable to have similar controller gains in all the loops.

SVD and the pairing selection

SVD decoupling produces the most suitable combinations for independent
“multi-loop” control in the transformed variables, so its performance may
be better than RGA-based designs (at the expense of losing physical inter-
pretability).

If some of the vectors in V (input directions) have a significant component
on a particular input, and the corresponding output direction is also signifi-
cantly pointing to a particular output, that combination is a good candidate
for an independent multi-loop control, so SVD decomposition may also help
in the pairing selection problem for multi-loop control.

If, as usual, SVD and RGA are only evaluated at steady-state (zero fre-
quency), the conclusions will apply only to low-gain proportional or integral-
action regulators.

5.4 Enhancing SISO Loops with MIMO Techniques:
Cascade Control

Cascade control refers to the design of a control loop for one primary variable
by means of multiple sensors and/or actuators and, in its basic configuration,
it consists of two cooperative SISO control loops with different time constants.
This difference allows for separate design using conventional techniques. It is
widely used in practice, sometimes in a transparent way (embedded into the
electronics of a servoactuator, controlled power supply, etc.).

There exist two basic configurations:

• the output from a regulator is the reference to another one,
• the output from a regulator is the “sensor” to another one.

These configurations can be freely combined in a general situation. Their
importance lies in the fact that they allow handling control of non-square
systems with SISO techniques or, as an alternative interpretation, they allow
improving performance by adding extra sensors and actuators while still using
SISO techniques.

If there is not a substantial difference in time constants, although this
strategy can still be pursued, the loop design cannot be made independent and
based on SISO techniques, so tuning is not intuitive: centralised configurations
might be preferable.
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5.4.1 Case I: Extra Measurements

In many cases, a faster extra measurement of a secondary output is available.
This is the case in speed measurements in mechanical systems, current mea-
surements in switched power supplies, flows in process control, or readings of
the actual position of an electro-pneumatic valve.

An example of that situation and the cascade-control loop appears in Fig-
ure 5.5, where a flow meter outputs a reading, q, and this flow fills a tank.
The tank level, h, is the primary variable for which a reference exists.

Kh Kq valve

q
u

ref_h ref_q

h

Process

tank

Figure 5.5. Two-sensor, one actuator, cascade control

On a first trial, a SISO control could be pursued by using a regulator for
the whole valve + tank plant. However, as valves are significantly non-linear
and feed pressure can vary depending on upstream connection–disconnection
of additional equipment, the performance with this first controller structure
may be far from optimal.

Of course, if a non-linear model of the valve (and its hysteresis, etc.) were
available, a non-linear controller could try to invert it. If the valve were linear,
all the state variables from the plant could be observed with one sensor and
then control could act by reconstructing the flow measurement, if needed,
from the observer. However, the approach has two significant drawbacks:

• the need of a model of the valve (possibly non-linear),
• the sensitivity to measurement noise of the estimations of internal variables

based on the readings of h: estimates need to be filtered for a significant
time and by then, the effect of pressure drops becomes significant so that
higher control actions are needed. This issues will be discussed further in
Chapter 8.

In practice, these drawbacks are solved by adding a flow sensor and using
cascade control.

The best way to improve performance in practice and reduce sensitivity
to modelling errors is to use additional sensors and/or actuators.

This extra measurement will provide disturbance and modelling error re-
jection before its effects are manifested on the “slow” subsystems. In this way,
the use of the extra sensor can provide significant performance improvement
over any alternative using only one sensor, as well as reducing sensitivity to
modelling errors on the valve (both regulators, for simple systems, can be
tuned using model-free techniques). Furthermore, dividing into two “tasks”
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the control action, each of the transfer functions may have a lower order than
one overall controller: PIDs can be successfully used for high-order uncertain
plants.

Cascade control in this configuration is especially useful if the inner loop
is significantly faster than the outer one. The outer controller is named as the
master controller, and the inner one is the slave controller. The equations are:

u = Kslave ∗ (rslave − yinner); rslave = Kmaster ∗ (router − youter) (5.27)

If time constants are similar then a centralised implementation and joint
calculation can be given:

u = K1yinner + K2youter

where K1 and K2 must be calculated together (for example with the observer
+ state feedback methodologies in Section 6.2). No master–slave interpreta-
tion can be given in this case. However, performance or robustness improve-
ment can be achieved with two sensors.

After presenting the basic ideas for robustness analysis in Chapter 8, Case
Study 8.8.1 on page 244 outlines a simple justification on why cascade control
does work. Example F.6 on page 329 also presents another case of improving
robustness margins by addition of an extra sensor.

5.4.2 Case II: Extra Actuators

In some cases, there are more manipulated variables (actuators) than inputs
to the controller and those actuators have different bandwidth and saturation
limits.

In Figure 5.6, a schematic block-diagram of the cascade structure is shown.
In the diagram, u1 is a fast actuator, able to achieve tight control on the
primary variable measured by the sensor. However, it is either limited in
amplitude or it is too costly in terms of efficiency for long-term control at
high deviations: as fast, powerful actuators are expensive, cascade control
can solve some practical problems with two cheaper actuators (one slow but
powerful, another fast but with limited amplitude).

Fast
loop

Slow
loop y

u2

Main
set-point

u1 set-point

u1

Process

Figure 5.6. Cascade control with 2 actuators and 1 sensor

The cascade controller structure allows a fast disturbance rejection due to
the fast actuator with a gradual return of it to a desired “actuator set-point”
when the slower one takes charge.
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Vs

V
R1

R2

T (measurement)

T (set-point)

V (set-point)

b

b

V0

Cold inflow Warm outflow

Exchanger

Steam inflow

Figure 5.7. Heat exchanger

Example 5.12. A typical example is a heat exchanger with a valve Vs regulating
steam flow, whose primary reference is outflow temperature (Figure 5.7). It has a
high-order, slow dynamics (time constant of about several minutes plus maybe a
significant delay). Let us assume that experimental modelling fits a model such as:

G1(s) =
60

(120s + 1)4

where output units are degrees celsius and input units are valve opening [−0.5, +0.5]
around a nominal 50% set-point.

From the Bode diagram, for target time constants below 120 s, achieving a
tenfold increase in speed would require a control effort roughly 104 times that of
the step response. Achieving that control bandwidth is impossible in practical terms
whichever control design methodology is used (a 104 times more powerful actuator
cannot even be considered). However, the DC gain is reasonable in the sense that
operating the valve can cause temperature variations of ±30 units, and this is deemed
enough for compensating for the expected disturbances.

A bypass valve Vb (in a pipe having a reasonably small section), on the contrary,
has a fast action (a time constant of seconds), such as, roughly:

G2(s) =
30(0.2s + 1)

(s + 1)

and, furthermore, the smaller valve can be operated with more precision. However,
it can only compensate temperature variations of ±15 units, and operating it at
wide apertures is inefficient (as the exchanger is heating fluid only to mix it with
cool water afterwards).

A cascade controller will successfully combine the advantages of each of the
actuators. The bypass valve will be in charge of the fast dynamics (quickly cancelling
disturbances or achieving set-point changes with controller R1) and a slow loop (R2)
will drive the bypass valve to a reasonably efficient operating point at 50% opening
of valve Vs, for example, by adjusting the steam valve. As there exists an additional
actuator (the main inflow valve V0) the proposed cascade structure may be used as
a part of a multi-loop control strategy, if so wished, to follow temperature and an
additional flow rate set-points (although some coupling does occur between flow and
temperature). Combined strategies are discussed in Section 5.6.1.
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5.5 Other Possibilities

Several additional alternatives (and combinations of them) are widely used
in industrial multivariable control structures. Some of these will be briefly
outlined.

5.5.1 Indirect and Inferential Control

Indirect control refers to controlling a set of variables, z, by controlling other
secondary ones, y, with best dynamic characteristics and/or cheaper sensors.
Set-points for the secondary variables are obtained by means of a suitable
model relating y with the primary variables z, for which control objectives
are fixed.

Of course, the viability of the indirect approach will depend on the quality
of the model and the influence on it of unmeasurable disturbances and plant
variations.

Indeed, indirect control is implicitly used in practically all control systems,
as the controller is trying to regulate the electrical signals coming from the
sensors, on the basis that they are closely and disturbance-free related with
the actual plant outputs. However, by realising that fact, the control designer
can use the same idea in more general situations. Figure 5.8 depicts the set-up.

P
la

n
t

zr
GG−1

z

ey

K
u

d

y

z

Figure 5.8. Indirect control: use y to control z

If a model is available, some tests [119] can be carried out to determine if
y is a good indirect measurement to control z. Let us express the open-loop
equations as:

y = Gu + Gdd (5.28)
z = Gzu + Gzdd (5.29)

where d is an unmeasurable disturbance vector. If a desired zr should be
achieved, the ideal control action would be u∗ = G−1

z (zr−Gzdd). Substituting
into the first equation, one gets as an ideal target output:

y∗ = GG−1
z zr + (Gd − GG−1

z Gzd)d (5.30)

However, as d is unmeasurable, the set-point should be yr = GG−1
z zr and

G∗
d = Gd − GG−1

z Gzd should be small enough (evidently, this is not needed
for the measurable components in d, if any).
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Furthermore, the controller may not perfectly follow the above set-point yr,
due to disturbances, modelling errors, stationary errors, measurement noise,
etc. So, the output y should also be chosen in such a way that the loop error,
e = yr −y, does not have an important effect on the achieved z. In particular,
if the achieved y were y = yr − e, the control action would be, by (5.28),
u = G−1(GG−1

z zr −e−Gdd), so, replacing it in (5.29), the resulting deviation
on the achieved z would be:

z − zr = (Gzd − GzG
−1Gd)d − GzG

−1e = −GzG
−1(e + G∗

dd) (5.31)

So, indirect control will be successful if both control error in y is small and
GzG

−1G∗
d = GzG

−1Gd − Gzd is small enough in the frequency ranges of
interest8. Different choices of measurements will lead to different achievable
loop precision (e) and disturbance effects (G∗

d).

Example 5.13. A controlled variable z = u + d is in itself inaccessible, and two
candidate measurements y1 = 6u + 2d + p, y2 = u + 1.1d + q must be evaluated for
indirect control. Disturbance d has an expected worst-case size of 1 unit. p and q
are other perturbations, sensor non-linearities and measurement noise. Experience
of the control designer assesses that controlling y1 would achieve an error of about 5
units, and controlling y2 the loop error would be about 3 units. Evaluating GzG−1

yields 1/6 and 1 respectively, and G∗
d yields −4 and +0.1. Hence, the worst case

error in z may, approximately, be calculated as: ez1 ≈ −1/6 ∗ (5 + 4 ∗ 1) = 1.3 and
ez2 ≈ 1 ∗ (3 + 0.1 ∗ 1) = 3.1. Hence, measurement y1 seems a better choice.

A variation of the idea is the so-called inferential control [123], where
measurements of y and the model are used to reconstruct an estimation of z
as sensor input to the regulators. So, in Figure 5.8 after measurement of y, a
block with equation ẑ = GzG

−1y is inserted and a regulator is designed for
the Gz subsystem, with no set-point transformation. Note that in this case,
the correction is inside the feedback loop, contrary to the indirect control
framework, where the correction is applied to the set-point in a feedforward
operation.

In many cases in practice, the availability of these transfer functions is
difficult. Most cases of indirect control are decided on the basis of engineering
common sense and estimates of the DC gain values of GzG

−1 and GzG
−1Gd−

Gzd.

Remark 5.14. If the DC gain characteristics of G, Gz, Gdd or Gzd are not cor-
rectly estimated, there will be a DC offset on the indirectly controlled vari-
able z. Zero steady-state on that variable is possible if it is measured, perhaps
infrequently, and the deviations are used to correct the set-point of the mea-
sured variable. Indeed, this is the case in many composition measurements in
chemical processes, where on-line control is carried out on an easily available
physical property (light absorption, conductivity, density) and its set-point is
8 GzG−1 will not usually be “small”: for example, an ideal case would have G = Gz.
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updated based on more precise product analysis (taken with an interval of min-
utes to hours) in a sort of outer integral-action loop (perhaps manual). Gen-
eralisation of these ideas gives rise to the so-called non-conventional-sampling
control (Section 9.4).

Example 5.15. Indirectly controlling the concentration of a particular compound
or microorganism via measurement (and feedback control) of light absorption in a
particular spectrum is common practice in some chemical, pharmaceutical and food
industries. This strategy needs careful calibration of the sensors so that a (in most
cases, non-linear) static function relating absorbances and concentrations can be
used to set absorbance set-points. However, that model may be affected by distur-
bances such as ambient temperature (affecting the photodetector sensitivity), accu-
mulation of dirt on the pipes, impurities, etc. so either a cleaning and maintenance
schedule or a re-calibration one should be carefully followed.

Example 5.16. A flash separator heats light hydrocarbons (mainly methane, ethane,
butane plus three other components), lowers the pressure and separates liquid and
vapour phases inside a vessel, and the primary controlled variable is the ethane
concentration in the product liquid phase.

The product composition is a function of the feed composition, pressure and
temperature in the vessel. If on-line analysis of ethane concentration is discarded,
temperature and pressure set-points are calculated based on suitable liquid-vapour
thermodynamic tables.

To assess the validity of, for example, temperature (assuming good control on
pressure) as an “inferential” variable, experiments or calculations are carried out to
determine, at least at steady-state:

1. How temperature variations relate to composition variations. This, multiplied by
the expected temperature loop error, will indicate composition errors (GzG−1e).

2. How expected variations in feed composition (d) would influence the desired
temperature set-point (G∗

d = Gd − GG−1
z Gzd).

If any of these quantities is deemed excessive for a desired ethane concentration
precision, there would be a need for an on-stream analyser. Matrix (singular value)
analysis would be required if both temperature and pressure errors were considered.

Anyway, the temperature set-point must be corrected to achieve zero ethane
concentration offset. This can be done either manually by an operator, after results
from laboratory analysis, or automatically if a downstream analyser (operating at a
lower latency than the control loop due, for example, to delays or to being a shared
sensor also used in distillation control) is used.

These ideas are closely tied to the problem of secondary sensor and actuator
selection for achieving primary objectives, being relevant even in the project
phase.

5.5.2 Override, Selectors

In some situations there are several outputs to be controlled with only one
available actuator. Of course, there is the option of controlling, in a SISO
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set-up, a weighted sum of them or any other combination, but in many cases
the control objectives on these outputs can be “prioritised” in some way.

A typical example of this case is given by a combination of performance
and fault-tolerance objectives. For example, a central heating system where
not only is a particular water temperature desired as a primary reference but
also the requirement to keep pressure under a maximum safe value.

These issues are dealt with by using selector blocks in the control structure,
usually carrying out maximum and minimum operations on a set of signals.
There are two basic configurations:

• Output selectors. The sensor to the control loop is the maximum or min-
imum of a set of similar variables (able to be controlled with the same
regulator).
For example, this would be the case in a fired heater if a main heating
power input, u, is used to keep the maximum temperature of a set of
sensors at a prescribed value. This block is sometimes named as the “auc-
tioneer selector”.

• Input selectors. In this configuration, several controllers compute a control
action value for individual sensors and set-points. Afterwards, the selector
chooses the minimum or maximum value to be actually applied to the plant
via a single actuator. This configuration is usually denoted as override
selector.
An example of this case is using the heat input, u, attached to a temper-
ature loop in normal conditions except when the pressure is too large and
a pressure controller outputs a lower heating power command, overriding
the temperature controller. In this case, the selector would carry out a
minimum operation. Similar situations arise, for example, in mixing tanks
with a primary concentration reference and an override level control for
tolerance to unexpected disturbances or faults, to avoid tank overflow.

Override selectors are indeed a common configuration in complex plants
with strong safety requirements. In fact, most control systems incorporate
operator override (manual control) for direct actuation under unexpected cir-
cumstances. The issue of automatic/manual bumpless transfer is further dis-
cussed in Section 9.3.

Although these issues have been discussed in the framework of decen-
tralised control, the control engineer may need to enforce these requirements
also into centralised control subsystems.

5.5.3 Split-range Control

In some cases, actuator constraints or non-linearity make it necessary to add
an extra input. These configurations are denoted as split-range control. In this
case, the selectors act as logic-switches, carrying out other operations than the
minimum and maximum previously discussed.
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For example, amplitude constraints can be overcome by using an extra
second actuator if the control command is above a particular limit (if the use
of two individual actuators is justified with respect to the use of a single but
more powerful unit in terms of achieved precision and price).

Other non-linearities apart from saturation may force the use of split-range
actuators or sensors:

• different sensors may be advisable for measuring a particular variable with
improved precision in different operating regimes. This would also be the
case if the linearised state space model becomes weakly observable for a
particular sensor configuration, C, in a certain operating point but an
alternative C ′ is available.

• different actuators may be needed in different operating regimes. For ex-
ample, if a particular configuration of manipulated variables B on the lin-
earised model yields a nearly uncontrollable system (and different actuator
locations or physical phenomena B′ can provide a more efficient strategy).
Also, precision of the actuator at different power levels can drive towards
this kind of decision.

The implementation of this scheme can be based on ON/OFF switching be-
tween different sensors, actuators and controllers or interpolated in a more
smooth way in a gain-scheduling framework (see Section 9.5.2).

The most straightforward and widely used example of this strategy is the
use of different actuators for heating/cooling in temperature control systems,
but the idea may apply to other kinds of processes.

5.5.4 Gradual Control, Local Feedback

In some kind of manufacturing processes, several processing stages can be set
up to gradually improve specifications over the same variable, using actuators
with different power and precision and sensors with different precision and
range.

Example 5.17. Neutralising a significant flow of liquid with precision is not easy.
A first neutralisation mixing tank may achieve a pH in the interval (5.5,8.5) for its
outflow product (coarse control), and then a second stage with smaller pipes and
more precise valves could achieve a final pH in the range (6.5,7.5). This could be
a solution with cost advantages with respect to a unique neutralisation stage with
high flow rate, high-precision valves.

The issue in this case is, of course, the trade-off between the performance
improvement against the cost of the extra equipment.

5.6 Sequential–Hierarchical Design and Tuning

In cascade and some multi-loop structures, loops are designed sequentially,
giving rise to hierarchical control designs.
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First, a lower-layer (local, inner) control system is designed for controlling
a set of outputs, y2. Next, with this inner control in place, the design is
continued to achieve control of other outputs, y1. Table 5.1 summarises some
of the previously discussed possibilities (y2 is assumed to be measured) [119].

Table 5.1. Summary of decentralised alternatives. Primary variables (y1, with con-
trol objectives), secondary variables (y2, always measured)

Measurement of y1 Control objectives for y2

Sequential multi-loop control Yes Yes
Cascade control Yes No
Partial control No Yes
Indirect Control No No

Some simplifying assumptions in hierarchical decompositions are usually
made:

• use simple regulators for the inner loop,
• use longer sampling intervals for master loops (see Section 9.4),
• use simple models to design the outer loops (assuming the inner loop is in

control, its deviations from the reference model – the simplest one would
be a gain – are small, if the inner loop bandwidth is higher than the outer
one),

• use inner loops to stabilise or diminish some particular disturbances on
internal variables (local disturbance rejection) and leave outer loops to
open-loop or manual control (true “partial” control),

• variables in y2 and actuators must be chosen so once under good control
they do not impose unnecessary control limitations (RHP poles and zeros,
ill-conditioning) on the remaining problem.

The considerations here have been restricted to a two-layer set-up but exten-
sions on similar grounds can be made in a multi-layer hierarchical structure.

Cascade control. In cascade control, y2 usually denotes secondary outputs,
and y1 denotes primary variables for which there is a set-point and whose
regulators provide set-points for y2.

Multiloop control (sequential loop closing). In sequential multi-loop
control, there are control objectives for both sets of variables.

Of course, if a model is available, sequential loop closing (SLC) method is
one well-known method for tuning multi-loop control systems for multivari-
able processes: each controller is designed sequentially with SISO methods by
finding the transfer function for the paired input and output after former loops
have been closed [39, 60]. As further loops are closed, the transfer function
of the previous ones changes, so the tuning sequence must be repeated until
convergence is reached [60].
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Ideally, in a triangular plant, the variables to be first tuned would be those
not influenced by the rest, and sequentially, the loops on upper variables will
be closed one by one. If a triangular structure exists, control errors on lower-
hierarchy loops will affect the current one as disturbances. In a general case,
as a rule of thumb, faster loops are tuned first9. To reduce the effect of later
loops, in the tuning of the lower ones approximate transfer functions of the
to-be-closed loops may be included [39].

If the system exhibits integral controllability with integrity (ICI), then the
order in the sequence will not affect the final result for slow target bandwidth.
In that case, the controllers can be iteratively tuned, even on-line: first, all
regulators are tuned to slow specifications (low-gain PI) and subsequently,
specifications are increased in the loops, one at a time, until coupling effects
start to appear, hindering further improvement. If the system does not exhibit
integrity, then the order of start-up and tuning of the several loops is indeed
relevant.

In a general case, the final performance achieved depends on the se-
quence of loop closing and the suitability of the selected pairings, and there
is no integrity guarantee. This will not happen if the plant is approximately
diagonally-dominant.

Example 5.18 (2× 2 tuning.). Based on (5.8), if the bandwidth of loop 1 is much
faster than that of loop 2, K2G22 will be small at crossover for loop 1. So, CE(s)
will approximate to 1 + K1G11 if λ11 is not small either. So, the faster loop can be
closed first, disregarding interaction.

If loop 1 is much slower, then K2G22 will still be “big” at the loop 1 crossover
frequency (as, for example, integral controllers have high gain at low frequencies).
In this case,

CE(s) ≈ 1 + K1G11
1

λ11

so the slower loop must be designed taking into account the change of dynamics (at
least, approximating by the gain λ11(0)) given by closing loop 2.

Example 5.19. The idea in the above example is implicitly applied in the combined
multi-loop level and pressure control in the steam boiler case study: strong coupling
and RHP zeros do not easily allow fast control on both loops, so a decision is made
aiming for a fast control on the pressure loop and a slow, sluggish loop on the level
control. See details in Section 5.8.1 on page 159.

5.6.1 Combined Strategies for Complex Plants

Note that mixed strategies, incorporating several of the possibilities discussed
in previous sections, are possible. They are, in fact, necessarily implemented
in the overall design of a complex control structure. The division on subsys-
tems and subtasks, jointly with supervision, diagnosis and communications
constitute the basis of the so-called plant-wide control [46].
9 If no model is available, the Ziegler-Nichols ultimate frequency (stability limit

with proportional control) may be used for ranking.
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Example 5.20. In the heat exchanger in Example 5.12, if performance needs to be
improved, a good solution would be to control the two exchanger valves with an ad-
ditional slave cascade loop, by adding mass-flow sensors, for instance. If the heated
fluid needs to be stored in an insulated tank, this control system would be a decen-
tralised subsystem that would control temperature simultaneously with another flow
control system governing a main valve, in a multi-loop structure. Flow commands
will come from a master cascade controller carrying out level measurements in a
downstream tank.

In a general situation, for a complex production facility, these subsystems are also
a slave cascade control of other chemical process that requires different temperatures
of a fluid to compensate for purity/flow/temperature variations of other materials
in a downstream reactor.

The expansion is endless, and a whole plant can be controlled with multiloop
+ cascade + decoupling structures given the sufficient amount of sensors and
actuators is available. This is, in fact, the de facto way of designing control
systems in process industry, and only some subsystems (if any) are “upgraded”
to predictive control or other (robust-control) centralised techniques.

Example 5.21. A typical boiling water reactor nuclear power plant has a large num-
ber of sensors (operators like to be informed about what is happening), and the
operators in the control room are the “masters” of about a dozen “key” loops that
themselves are masters of more than 120 “important” regulators controlling flows,
temperatures, voltages, flow levels, etc. embedded into multi-loop, cascade and feed-
forward structures, conformed into several main subsystems: nuclear reaction con-
trol, steam quality control, control of output electrical magnitudes, etc. Operators
are also in charge of multitude of diagnostic and supervision tasks, of course. A
wise design on the plant-wide level enables coordination of hundreds of elementary
regulatory loops towards the overall objectives.

5.7 Key Conclusions

In this chapter, the control of systems with multiple inputs and outputs is
discussed using SISO-based tools, either directly (such as in multi-loop or
cascade control) or after some multivariable decoupling transformation.

Multi-loop strategies, if suitable, may present the advantages of integrity
(fault tolerance), as well as striking simplicity. However, in some cases, tuning
may be difficult and coupling may severely limit their performance.

Decoupling is based on mathematical transformations of the system mod-
els into diagonal form. Feedforward decoupling can be used in many cases.
Feedback decoupling achieves its objective if state is measurable and system
is minimum-phase. However, decoupling may be very sensitive to modelling
errors and it is not the optimal strategy for disturbance rejection tasks.

Cascade control is widely used in industry to improve the behaviour of
basic SISO loops via the addition of extra sensors and actuators. However,
ease of tuning requires that different time constants are involved in different
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subsystems. In general, addition of extra sensors and actuators in a SISO
or MIMO loop, even if no primary set-point needs to be fixed in principle
for them, will improve achievable performance and/or tolerance to modelling
errors (see Chapter 8). The level of improvement must be traded off against
the cost of additional instrumentation.

Combining the above strategies, plus override selectors, split-range etc. is
usually required in most real-world, industrial-scale projects. Division in sub-
systems with independent control for them is key to the success of a large-scale
design. Each subsystem can itself be controlled in a decentralised or a cen-
tralised way, depending on the suitability of the above techniques and the
availability/price of the instrumentation.

5.8 Case Studies

In this section, some case studies on the topics of the chapter will be presented.
The interested reader can find further control-structure selection case studies
in, for example, [119, 126, 38, 129, 105], mostly in the chemical engineering
framework. Feedback decoupling is illustrated in the case study in Section 6.5.

5.8.1 Steam Boiler

A case study on a decentralised control structure for a steam boiler will now be
discussed. The implemented structure combines multi-loop, cascade, override
and ratio control set-ups.

Steam has been, over two centuries, the most widely used heat transport
fluid. It is used for power generation and process operations. Power gener-
ation requires high-temperature, superheated steam for optimum efficiency.
Process applications require lower steam temperature, closer to saturation.
If several steam characteristics are needed from a single boiler, downstream
superheating/desuperheating stations may be needed.

Burner

VESSEL

Fuel inflow

Exhaust gases

Air inflow

Liquid water

Recirculation pump

Steam

Figure 5.9. Process to be controlled
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In industry, control instrumentation in boilers must provide efficient, reli-
able and safe operation for long periods of time. A possible schematic repre-
sentation of a typical steam boiler is depicted in Figure 5.9. The objective is to
design a low-cost control system ensuring suitable quality (temperature and
pressure) of the produced steam, with the basic energy source of a propane or
fuel burner to bring to boil the water inside the main vessel. A recirculation
pump is used to achieve higher heat-transfer constants. More complex systems
can have several take-off lines operating at different pressures.

The control system must act in open or closed loop on a series of pumps and
valves to attenuate the effect of perturbations caused by changing demands
on the outflow steam characteristics (mass flow, set-point temperatures, pres-
sures) and changes in fuel composition or pressure, etc.

Preliminary study. A detailed analysis of drum boiler dynamics and models
is made in [18]. Some basic ideas will be discussed below, mainly from the
referred source.

The burner provides the heating power to heat the drum boiler. The mass
and thermal capacity of the metallic elements is indeed comparable (even
bigger) to that of the water stored in the vessel (typically from one to four
times). Some low-order models can be devised under reasonable engineering
assumptions with satisfactory results [18, 19]. More detailed models exist,
based in finite-element heat transfer equations.

Pursuing a model-based approach will require a significant cost in the
modelling and experimental parameter identification phases: a MIMO model
with second- or third-order temperature dynamics, plus valve dynamics, non-
linearities, radiation, level dynamics (complex, non-minimum-phase due to
the steam bubbles inside the liquid phase) etc. make a hard task in achieving
a faithful model from first-principle knowledge.

Of course, a model-based design could be pursued anyway and, indeed,
even with the decentralised PID-like controller to be designed, extensive sim-
ulation studies with a good non-linear model are advantageous, if possible,
before actual implementation. However, the decentralised structure design
will be based on the main characteristics and physical insight instead.

Steam inside the vessel is approximately saturated, as there is liquid–steam
equilibrium at least in steady-state. The main heat transfer phenomenon is
the use of the heating power to supply the needed latent vaporisation heat
to transform liquid into steam, and also to store energy in the form of gas
pressure and temperature. The expansion after the outflow valve yields a su-
perheated steam so a certain amount of energy loss during steam transport
can be tolerated without condensate deposits on horizontal pipe segments;
these are able to cause significant perturbations and damage to the instal-
lation. Condensate in steam lines and cavitation in condensate liquid return
lines require a careful piping design.

Besides issues relating to outflow steam quality, there are safety-related
specifications regarding allowable pressures and liquid level inside the boiler
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vessel. The reasons for pressure limits are clear. Regarding level control, a
too-high level may drag liquid into the outgoing stream line, and a too-low
one may cause overheating of some boiler parts. Some studies (see [18] for
reference) report that 30% of the emergency shutdowns in French pressurised
water nuclear reactors are caused by poor level control.

Selection of Variables to Control

In the boiler in Figure 5.9 there are several possible sensors: outflow pressure
and temperature, vessel pressure and temperature, liquid level, mass inflow
and outflow, etc. Actuators are a set of valves and pumps regarding air, fuel
and cold water feed, recirculation pumps, output steam line, etc. The problem
of sensor selection will be discussed simultaneously to the selection of the
control structure, as the regulators used will be mainly SISO ones. Different
sensors and actuators could be needed depending on precision and efficiency
requirements.

In practice, besides choosing which variables to measure and manipulate, a
specific manufacturer should be chosen based on its reported instruments char-
acteristics: price and linearity, calibration requirements, bandwidth, physical
operating principle, reliability and maintenance, operating range, and possi-
bilities of on-line signal processing, communications and self-test for faults.

Main Steam Control Set-up

The basic structure will be based on a multi-loop approach, depicted in Figure
5.10, on the following pairings:

• outflow pressure loop: outflow stream pressure, governing the outflow
valve,

• level loop: level sensor, governing inflow valve (see below for details),
• heat loop: outflow enthalpy (from one or several candidate readings of

mass flow, pressure and temperature), governing heating power command.

Outflow pressureOutflow valve

Inflow valve

Heat power

Liquid level

Controller

STEAM BOILER

Controller

Controller

Steam enthalpy

Figure 5.10. Basic multi-loop control structure
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The basic structure has been selected, among other possibilities, on the basis
of physical insight as no model is available: we are “forced” to pair the outflow
pressure to its valve for a quick response and, then, level to liquid inflow. Note,
however, that pressure and temperature are expected to be significantly cou-
pled (P–V –T relationships in steam equations), and level will also be deeply
influenced by pressure changes (see below). The structure needs to be further
refined, as discussed next.

Heat Loop

If outgoing steam pressure is controlled by the output valve, a fully decen-
tralised approach would only need a temperature or outgoing steam mass-flow
reading to govern heat power command towards the combustion subsystem
for successful control.

To improve performance, however, mass-flow, temperature and pressure
readings could be combined to calculate an enthalpy balance to produce a
more correct heat command. This heat command (to the water) should be
initially overshooted to approximate invert the metallic plant dynamics.

Of course, a simpler approach using a set of adjustable linear gains to
approximate the basic idea could be used. For example, in Figure 5.11 a
combination of temperature and mass-flow reading is used as a candidate
structure using linear regulators.

The mass-flow reading is multiplied by the vaporisation latent heat to
obtain the needed increment of heat power. Dividing by the fuel calorific power
(joules per burnt kilogram), a conversion to a flow command is achieved.

A PID temperature controller would try to achieve a reasonable profile for
desired temperature changes, but it is expected to have a slow response. The
proposed structure might not be the optimal one.

Vessel Pressure Control

As the outflow valve governs outgoing steam pressure, nothing prevents at this
stage an internal pressure build-up if, for example, downstream machinery is
disconnected and outflow is suddenly substantially reduced.

The important safety requirements regarding vessel pressure strongly ad-
vise the presence of a pressure regulator (with a vessel pressure sensor), which
will command a reduction of heat power if pressure is above a user-defined safe
limit. However, it is desired that the controller should not operate if pressure
is below the limit.

So, both the steam condition and pressure controllers must be suitably
combined by means of a minimum selector : the final heat power command to
the combustion system will be the minimum of that from the pressure loop
and the one from the outgoing steam temperature (enthalpy) controller. If
pressure is well below the limit, the pressure loop will command a saturated
control action, so heating to just achieve the desired steam conditions will be
selected.
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Level Control

The main problem in boiler level control is that the presence of steam bub-
bles below the liquid level causes shrink-and-swell phenomena. For example,
addition of cold water produces a momentary lowering of the level reading,
although, of course, in the long term the water level must increase: the level
dynamics is non-minimum-phase.

Changes of internal pressure also affect level, so there is a significant cou-
pling between those variables: a pressure decrease (opening the outflow valve)
produces swelling of the bubbles, yielding rising level readings. However, as
liquid is then in an overheated state, the steam production rate quickly in-
creases, so in the long term, the level diminishes if no control is applied.

Due to the coupling and non-minimum-phase behaviour, plus the non-
linearities from valves and steam tables, the specifications that can be obtained
in practice are very poor indeed, further worsened by the high amount of noise
present in sensor readings (caused, again, by the bubbles and turbulence).

Noise forbids derivative action, and non-minimum-phase limits bandwidth.
A common choice is a low-gain feedback PI controller. Any improvement would
need a substantial modelling effort, non-linearity cancellation, etc. and will
also meet with the noise and non-minimum-phase fundamental limitations
(see Sections 8.3.1 and 8.3.2) so the model-based approach will not, in many
cases, significantly improve the achieved results in practice.

To, at least, overcome cold water feed valve non-linearity, a cascade con-
troller can be used (so the level controller provides a master inflow reference)
if a flow sensor is placed at the input pipe.

However, in this way, disturbances are poorly cancelled. As level control is
usually carried out mainly for safety reasons, level specifications are not strict
and significant transient deviations are allowed.

To improve overall performance, requiring lower PI gains, a 2-DoF struc-
ture may be used, by adding a feedforward control measuring output steam
mass flow, and directly incrementing the inflow reference to the cascade regu-
lator by the same amount. In this way, disturbances are cancelled in the long
term with very low feedback gains.

With the presented “final” configuration, depicted in Figure 5.11, the fast
shrink-and-swell dynamics is intentionally, not controlled (anyway, even if it
were modelled, the actuator bandwidths might not be enough).

Control of the Combustion Subsystem

The combustion subsystem will implement a common structure usually de-
noted as ratio control. The objective is to control both the fuel flow and the
air-fuel ratio. Similar ratio-control situations arise in mixing processes (such
as addition of colourants or reactives).

In the boiler case, the characteristics of the produced steam will in principle
point out the need to increase or decrease fuel flow.
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The optimal air-fuel ratio can be calculated from stequiometric calcula-
tions. For example, for every litre of propane, 5 litres of oxygen (25 of air)
are needed for perfect combustion. However, as the mixing and combustion
processes are not ideal, the desired air–fuel ratio is slightly incremented to di-
minish the percentage of unburnt combustible feed and increasing efficiency.
If the air–fuel ratio is excessive, however, the combustion is inefficient as well,
as the temperature achieved will be lower and part of the heating power is
being used to heat air that will be discarded on the exhaust outlets (unless
some kind of hot-air management is set up for energy saving).

The maximum efficiency point is thus determined by striking a balance
between the percentage of unburnt products and the percentage of energy not
transferred to the vessel. In fuel burners, unburnt components also produce
significant soot depositions.

The fuel subsystem could be designed on the basis of one sensor (temper-
ature or pressure of the steam in some location) and two actuators (airflow,
fuel flow). However, that would have two significant drawbacks:

• the efficiency will not be guaranteed in “closed loop” as there is no mea-
surement of the combustion parameters. As in large-scale installations,
fuel properties (mainly in oil or coal burners) vary significantly, so does
the maximum efficiency ratio.

• The effect of disturbances on the fuel subsystem (regarding air and fuel
temperature, pressure and composition) would be apparent only when,
after a significant delay, they affect the steam characteristics. In that way,
they will be difficult to compensate for.

So, based on these considerations, results improve significantly if additional
sensors on the fuel subsystem are put into operation. Control structures that
handle them will be:

• cascade control: steam quality will determine the heat power needed (di-
rectly translated into fuel flow), and subordinate regulators will determine
the rest of the combustion subsystem actions. In particular, a fuel flow
sensor will be used for cascade control in the fuel valve,

• Ratio control: the achieved fuel flow (sensor reading) will entail, given a
pre-fixed ratio, following an airflow reference by a subordinate cascade
controller using an inlet airflow sensor.

If efficiency is a concern, as fuel characteristics produce significant varia-
tions on the optimal air–fuel ratio, an additional oxygen sensor may be put in
place: efficient combustion implies that the burnt air should contain around
4–5% oxygen left10. So, the ratio reference (and, subsequently, the air inflow
set-point) is increased or decreased in closed loop based on the oxygen read-
ing. As an alternative, a sensor for carbon monoxide (CO) can be set up to
serve essentially the same purpose.
10 Ideally, it should be zero, but inefficient mixing produces significant soot and

carbon monoxide if exhaust oxygen is below the above stated rate.
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As a cheaper variation, an exhaust gas temperature sensor could serve
determining the correct combustion point. However, as its set-point is deter-
mined by the inlet air temperature and humidity, and also depends on fuel
composition, its capability for improving combustion efficiency is quite lim-
ited, but it could marginally improve rejection of some disturbances. A similar
function to the oxygen sensor could be achieved by an smoke opacity sensor
(opacity increases with the amount of soot and unburnt compounds). Insert-
ing several of these sensors will help in detecting faults on the system (see
Section 9.6).

So, to achieve a heat power command from a hierarchically higher main
control loop, a moderately sophisticated combustion control subsystem uses
two flow sensors (air, fuel), two servovalves (air, fuel), and one oxygen or
carbon monoxide sensor on exhaust gases, in a mixed cascade and ratio-control
setup.

Other Subsystems and Conclusions

Large-scale boilers have additional subsystems to be controlled, further com-
plicating the overall control structure. These subsystems are, for instance:

• fuel pre-processing in oil burners. Variations in fuel viscosity, humidity,
etc. may need to set up a control system for:
– pressure in the fuel supply line,
– fuel temperature, using the residual heat of the exhaust gases,
– water/fuel ratio (mixing and emulsion control). Addition of a small

quantity of water makes viscosity and the spraying and atomisation
characteristics uniform (better flame quality),

• feed water treatment, in two lines:
– to avoid impurities that, deposited on the exchanger pipes, will dimin-

ish heat transfer rate, causing overheating and deformations on metallic
components. Obstructions due to impurities may entail damage to the
system and safety risk for operators. The treatment is carried out by
filtering and monitoring water resistance to divert water, if needed, to
decalcification or demineralisation units,

– pre-heating the incoming water causes much lower disturbances on the
level loops, so a further temperature control can be put in place.

So, to conclude, a decentralised control structure has been proposed based
on physical insight into the underlying process, using cascade, feedforward,
feedback and ratio control blocks, to achieve reasonable disturbance rejection
and robustness as well as minimum selectors on heat power for safety. The
overall control system is depicted in Figure 5.11.
The final design uses:

• eight sensors: (outgoing steam temperature, pressure and mass flow), oxy-
gen in exhaust gas, flow sensors for air, fuel and feed-in liquid water and
a vessel pressure sensor,
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Figure 5.11. Proposed control structure

• four actuators: valves or pumps governing fuel, steam, liquid and air flows.

Further sensors in the additional subsystems could be needed for large-
scale plants. Furthermore, additional sensors such as temperature of critical
metallic parts or exhaust gas, etc. could be installed for safety and monitoring
reasons or to further refine the control structure. Reliability issues would also
advise incorporation of redundant sensors or actuators.

A wise choice of sensors, actuators and control structure allows easy com-
prehension of the overall regulation strategies by operators, significant reliabil-
ity and the use of standard equipment. A centralised regulator (an 8×4 trans-
fer function matrix) tuned with a methodology such as the ones in Chapters
6 and 8 would have the proposed structure as a “particular case”. However,
improving performance with reasonable model error tolerance would require,
in most cases, a substantial effort.

5.8.2 Mixing Process

Now, a pairing selection and decoupling problem will be illustrated for a mix-
ing process [89].

A solvent and a pure component A are mixed in two converging pipes.
Actuators are a valve on each flow (Vs, VA). Outflow q and concentration xA

sensors are in place (Figure 5.12).
The basic equations at steady-state, and its linearisation around a desired

operating point (xa0, q0) are:
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q = m1Vs + m2VA;
xa = m2Va

m1Vs+m2VA
;

q̄ = m1V̄s + m2V̄A

x̄a = −xa0
q0

V̄s + (1−xa0)m2
q0

V̄a
(5.32)

We will assume m1 = m2 = 1. For a first model, dynamics of the valves
have been neglected, as well as conditions regarding pressure drops (q is a
non-linear function of the valve openings).

Pairing

If the set-point is at low concentrations of A, then VA to control composition
and Vs for total flow are advisable, as composition varies greatly with the
amount of flow of pure A. For example xa0 = 0.05, q0 = 1 leads to a DC gain
and RGA given by:

G =

(
1 1

−0.05 0.95

)

; Λ =

(
0.95 0.05
0.05 0.95

)

(5.33)

confirming the intuition. On the other hand, if the set-point is at high concen-
trations of A, the roles are reversed and now strong influence on composition
changes is exerted by valve Vs. In this case, the gain and RGA matrices are:

G =

(
1 1

−0.95 0.05

)

; Λ =

(
0.05 0.95
0.95 0.05

)

(5.34)

confirming the suitability of the alternative pairing. If a wide range of set-
points must be attained, maybe multi-loop control is not the optimum choice.

Decoupling

To achieve approximate decoupling at steady-state, the inverse DC gain is
(with m1 = m2 = 1):

(
V̄s

V̄A

)

=
(

1 − xa0 −q0

xa0 q0

)(
q̄
x̄a

)

(5.35)

So, that is the matrix that should be used to achieve decoupling. Intuitively,
if flow needs to be increased, both valves must be opened proportionally to
the composition, to keep it unchanged. If composition needs to be increased,
VA should be increased and VS decreased, to keep flow unchanged.
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If wide set-point variations are expected, two alternatives are possible11:
setting a fixed decoupler for an intermediate point (xa0 ≈ 0.5, for example) or
changing the decoupling matrix as a function of the known operating points.
In this way, a partially non-linear controller is designed (linear in the sensors,
non-linear – gain-scheduled, see Section 9.5.2– in set-point processing).

11 Another alternative is to directly invert the non-linear equations in (5.32). Indeed,
with VS = (1 − xa)q and VA = xaq, suitable mixing does occur. This achieves
decoupling in all operating ranges, but the product is not a linear operation. This
is an example of straightforward non-linearity cancellation (see Section 9.5).
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Fundamentals of Centralised Closed-loop
Control

In this chapter, some now-classical centralised state and output feedback
strategies are described, referring to dedicated books for further information.

Centralised control is implemented via computer code, having as inputs
all the available sensors and producing signals for all available actuators in
the system. This is the most powerful strategy, at least in theory, capable
of extracting “optimal” performance (for some definitions of optimality). In
practice, however, it requires non-standard equipment (industrial computer,
data acquisition cards, communications), its tuning is usually non-intuitive
(involves matrix computations) and in case of a fault the whole system may
break down. This is one of the reasons why it is not widely used in indus-
try. However, for complex strongly coupled plants, this one may be the only
solution with a limited set of actuators and sensors.

Centralised control can be implemented either in open or closed loop. As
the open-loop case (set-point tracking) has been considered in previous chap-
ters, in this chapter emphasis will be placed on the solution of the regulation
problem. Combined set-point tracking and regulation will be dealt with in
Section 6.3 (1-DoF configuration) and Chapter 8 (2-DoF configuration).

Let us analyse the feedback loop using the state space representation, first
in a simplifying framework and afterwards in a more general case.

6.1 State Feedback

The first case to be studied will be the one in which the number of independent
sensors is equal to the order of the system. This is denoted as state feedback
or full-information control. The system is described by (2.17):

ẋ = Ax + Bu (6.1)

where x is assumed accessible (via n independent sensors so that matrix C
in y = Cx is invertible) and, without loss of generality, we will assume that
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C = I. In Section 6.2, other alternatives will be considered, under the name of
output feedback, when the number of sensors or deficient signal-to-noise ratio
do not allow for a full-information implementation.

Linear time-invariant state feedback control is expressed1 as:

u
def= −Kx + r = −






k11 k12 . . . k1n

...
...

...
km1 km2 . . . kmn











x1

...
xn




+ v (6.2)

where v is an additional m×1 input term to be used, for example, to position
the system around a nominal set-point where the linearisation is valid (if v is
a constant v = G(0)−1r, being r a set-point vector) or to carry out additional
feedforward control tasks (Section 4.6).

Remark 6.1. State feedback is the natural generalisation of conventional pro-
portional and proportional-derivative control for low-order SISO systems. In-
deed, under particular assumptions (see Section 3.7.5), there is a canonical
representation where a state vector can be constructed as the reading of a
certain sensor and its successive derivatives (generalising, for example, the
position + speed feedback in a 2nd-order mechanical system). In many cases,
a PD u = KP e + KD ė can be immediately cast as a state feedback law for a
dominantly second-order process.

Note that, by sheer definition of state, any state or output derivative can
be expressed as a (static) function of the present state: the state con-
tains all past information relevant to the future so a static u = K(x)
full-information controller has the same capabilities than a dynamic one,
u = K′(x, ẋ, y, ẏ, ẍ, . . . , ...), as the latter can be cast into a form u = K(x). In
the linear framework, there is no advantage in further complicating2 expres-
sion (6.2).

Applying the control law, (6.2), to (6.1), the following closed-loop equation
results:

ẋ = Ax + B(−Kx + v) = (A − BK)x + Bv (6.3)

So that, by suitable selection of K, a prescribed set of properties for (6.3) can
be achieved. Note that disturbances have not been considered at this moment.

For discrete-time systems, using the same control strategy (6.2), uk =
−Kxk + vk, leads to a closed-loop equation:

xk+1 = Axk + B(−Kxk + vk) = (A − BK)xk + Bvk (6.4)

1 As usual, negative feedback is assumed.
2 In an ideal, perturbation-free and model-error free environment.

TLFeBOOK



6.1 State Feedback 167

6.1.1 Stabilisation and Pole-placement

Assuming v = 0, state feedback changes the open-loop initial dynamics, ẋ =
Ax, into ẋ = (A − BK)x. As stability and settling time are associated with
the eigenvalues of the system matrix, Acl = A−BK, these characteristics can
be changed with state feedback control. In fact, the following powerful result
[11] does hold:

emphIf a system is fully reachable, the closed-loop eigenvalues can be
assigned to any arbitrary desired position by appropriately selecting
K.

The pole-placement problem consists in assigning all reachable eigenval-
ues to prescribed values inside the stable region of the complex plane. If the
unreachable modes of the system already lie there, i.e., the system is stabil-
isable, this is a stabilisation problem. The prescribed pole positions can be
used to specify the settling time by means of the approximate expressions in
Appendix A.2.1 or, in general, to target a particular closed-loop dynamics.

This casts in a general framework the design of stable loops with a pre-
scribed settling time that, for first and second-order SISO loops, can be shown
to be equivalent to P and PD controllers, respectively.

There are several methods for accomplishing the pole-placement task. The
use of canonical forms allows for a simple demonstration, although efficient
algorithms can be derived and proved for the general case. An example of a
so-called direct method will now be given.

Direct Method

The direct method refers to symbolic calculation of the polynomial:

det(sI − Acl) = det(sI − (A − BK))

whose zeros are the closed-loop eigenvalues, and calculating the coefficients
of K so the referred polynomial is identically equal to a desired one. Let us
illustrate the procedure by means of a couple of examples.

Example 6.2. Let us have a third-order process, with two inputs, with a normalised
state-space representation given by matrices

A =




1 2 3
4 5 6
7 8 9



 ; B =




1 0
2 0
0 1





Availability of three sensors for the state variables is also assumed. The desired
settling time is about 1 second (poles about −3 or −4) so the desired closed-loop
characteristic polynomial could be (s+3)(s+4)2 = s3 +11s2 +40s+48. The control
strategy (6.2), written as
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u1 = −k1x1 − k2x2 − k3x3 (6.5)

u2 = −k4x1 − k5x2 − k6x3 (6.6)

without considering an extra signal, v, will allow a closed loop ẋ = (A−BK)x whose
eigenvalues will be the roots of det(sI − (A − BK)) = 0. In this case,

Γ = det(sI − (A − BK)) = det








s − (1 − k1) −2 + k2 −3 + k3

−4 + 2k1 s − (5 − 2k2) −6 + 2k3

−7 + k4 −8 + k5 s − (9 − k6)









Γ = s3 + (k6 + 2k2 + k1 − 15) s2

+ ((k1 − 6 + 2k2)k6 + (6 − 2k3)k5 + (3 − k3)k4 + 23k3 − 10k1 − 16k2 − 18) s

+ (−3 + 2k2 − k1)k6 + (6 − 2k3)k5 + (−3 + k3)k4 + 9k1 + 9k3 − 18k2

So, equating polynomial coefficients, there are three equations and six unknowns3.
Three of these can be arbitrarily fixed, for example k4 = k5 = k6 = 0 (deciding not
to use input 2, quite counter-intuitive indeed and only possible because the system
is fully reachable by the first control variable, otherwise, this assumption will not
work). The remaining equations are:

k1 + 2k2 − 15 = 11

−10k1 − 16k2 + 23k3 − 18 = 40 (6.7)

9k1 − 18k2 + 9k3 + 0 = 48

whose resolution results in the controller gains (k1 = 9.47, k2 = 8.26, k3 = 12.39).

Example 6.3. Let us now consider the headbox canonical representation (AL, BL)
obtained in Example 3.11 on page 75. Due to the special structure of the matrices
it appears clear that a control law (6.2) with feedback matrix

K =

(
k11 k12 k13 + 0.6065 0 0

0.7711 −2.0961 0 k24 − 0.2865 k25 + 1.1467

)

leads to the closed-loop system matrix

AL − KBL =









0 1 0 0 0
0 0 1 0 0

−k11 −k12 −k13 0 0
0 0 0 0 1
0 0 0 −k24 −k25









and the characteristic polynomial is (z3+k13z
2+k12z+k11)(z

2+k25z+k24), showing
the possibility of straightforward pole assignment.

It has been shown that, in the general case, there are many solutions to the
pole assignment problem in MIMO systems. To get a canonical form and use
the procedure above is rather tedious if carried out manually. Software tools
can ease the work.
3 In the SISO case, we would have had only one column in B and three constants

(k1, k2, k3) so the solution would have been unique. SISO pole-placement has a
unique solution (if it exists).
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Example 6.4. Matlab� code to carry out the symbolic determinant in Example
6.2 would be:

a=[1 2 3;4 5 6;7 8 9]; b=[1 0;2 0;0 1]; syms k1 k2 k3 k4 k5 k6 s

k=[k1 k2 k3;k4 k5 k6]; acl=a-b*k; de=det(s*eye(3)-acl);

de2=collect(de,s)

However, the Matlab� command ‘place’ directly implements the pole-placement
solution:

kk=place(a,b,[-3 -4 -4])

kk = -1.0000 7.0000 3.0000

7.0000 8.0000 13.0000

providing a different feedback gain (same eigenvalues, different eigenvectors) to the
one in Example 6.2. Obviously, choosing the “best” one depends on geometric con-
siderations or optimality criteria (Chapter 7). However, they will not be pursued
any further in this context. The reader is referred to [11] for detailed analysis.

The importance of the state feedback results in engineering terms is that:

the more independent sensors are available, the less sophisticated the
control strategy is for a given desired specification: with enough num-
ber of sensors, transient specifications can be achieved using several
“proportional” controllers.

Discrete controllers. For the DT case, the pole-placement problem is to-
tally analogous, except that the desired positions for the poles now lie inside
the unit disk.

Minimum-time Control

In DT control, there is an interesting option, at least from a conceptual view-
point. If the poles are all assigned to the origin, the controlled system can reach
the equilibrium point in the minimum reaching time, (3.45). These controllers
are denoted as deadbeat controllers. However, when this strategy is applied
to a sampled-data controlled system, caution should be taken with the be-
haviour of the signals in the intersampling period, because hidden oscillations
may appear.

Example 6.5. In Example 6.3, for k13 = k12 = k11 = k25 = k24 = 0 in the feedback
matrix K, the closed-loop system transfer matrix from v to y is:

M(z) =

( −0.9315
z3

−0.6321z+0.4923
z2

0.6585
z3

0.2908z−0.2628
z2

)

It is worth noting that the CT model response to some initial conditions will not
reach and stay at the equilibrium in three sampling periods, as the DT model step
response suggests, and some intersample oscillations will occur.
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Matlab�: Some commands implementing algorithms related to the contents of this
section are: place,acker.

Remark 6.6. Pole assignment strategy implies applying a control signal to
move the poles from the open-loop positions to the closed-loop ones. In this
framework, the concept of control effort, related with this pole shifting [3],
points out the magnitude of the control action to achieving this placement. In
DT systems, as the control is open loop in between the sampling times, large
control efforts will warn for unexpected delays and, in any case, CT or DT,
for model uncertainties.

6.1.2 State Feedback PI Control

As already mentioned, the state feedback control law allows us to place the
reachable poles in any desired position, assuring a closed-loop dynamic be-
haviour, but nothing is said about the input/output behaviour. In particular,
in servosystems, a common requirement is to be able to follow changes in
the references and the classical solution is to introduce the integral action.
Another option is to apply a feedforward action, to drive the system in the
desired direction.

Let us consider the introduction of an integral action based on the track-
ing error. Assume that the controlled variables are the system output vector
components, y(t). To achieve zero steady-state error for constant or ramp-like
disturbances, a number of integrators should be added. For step changes in
the references, the control action will be:

u = −Kx − KI

∫

(y − r) dt (6.8)

where KI = γG(0)−1, G(0) being the plant’s DC gain and γ a small scalar
(or a diagonal matrix in case different “integral gains” are wished for differ-
ent inputs). This is a straightforward way of generalising SISO PID control.
However, if KI is not very small, it may significantly distort the closed-loop
dynamics.

Plant augmentation. A wiser alternative is the addition of integrators at
the process output and then designing a controller for the augmented process:

[
ẋ
v̇

]

=
[

A 0
−C 0

] [
x
v

]

+
[

B
0

]

u +
[

0
I

]

yd;
[

y
v

]

=
[

C 0
0 I

] [
x
v

]

where the additional auxiliary state variables, v act as “accumulated errors”
generalising the concept of the basic control action (KI

∫
e dt).
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A stabilising controller for the augmented plant must be designed, for
instance, by pole assignment, as before. But again the interpretability of the
result is not clear because we can define a set of closed-loop poles, but not
to assign them to some specific state variables. There is no simple way, at
this moment, to specify that the integral action may have a “slow” pole as in
SISO PID control if the regulator is intended to compensate for very slowly-
varying drifts. The pole-placement design may assign the slow pole to any of
the process modes and not to those exclusively associated to e. In the next
chapter, in the context of Kalman filtering, the idea will be further developed.

6.2 Output Feedback

In a general situation, the number of sensors is not necessarily equal to the
number of state variables, and there is a presence of disturbances (process and
measurement noise) so that an accurate enough reconstruction of the state by
numeric derivation is not possible. In this section, a framework to deal with
closed-loop control in this case will be presented. It is based on a two-step
procedure: first obtaining an estimation of the plant state and then using this
estimate in state feedback laws. A fundamental result (separation theorem)
will show that the combination of these two stages yields a stable closed loop.

Estimation of the state from a set of output sensors will now be discussed.
Let us start with the discrete-time implementations.

Indirect state measurement. The most elemental form of state estimation
is to set up a state representation where the outputs and some of their incre-
ments (numerical derivatives) conform the state vector. This requires a fine
model and sensors allowing the computation of numerical derivatives and/or
filtering. However, numerical derivation amplifies quantisation errors (due to
finite word-length) and high-frequency measurement noise effects (see exam-
ple E.1), as (yk −yk−1) is small if sampled at a high frequency, so it is masked
by noise.

Subsequent low-pass filtering is usually needed to avoid high-frequency
actuator activity. As the filter introduces some poles and delays, the dynamics
of the overall system becomes more complex and hence there is a greater
risk of instability. Furthermore, filtering introduces delays in the detection of
disturbances affecting the real unfiltered variables.

Hence, the approach is usually valid only with enough sensors. For ex-
ample, assuming that only one derivative can be safely taken4, to implement
4 Taking numerical derivatives of a sensor reading leads to unacceptable measure-

ment noise amplification when second and further derivatives are calculated. Fur-
ther derivatives might be taken if the signal-to-noise ratio were very good and
the desired specifications were slow enough so that the dynamics of noise filters
are still “fast” compared to that of the closed-loop plant. This situation is rare
in practice: sometimes even taking just one derivative is impractical.

TLFeBOOK
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“pure” state feedback, in practice, a number of sensors greater than half the
order of the system is needed. In essence, constant state feedback from these
estimates is equivalent to setting up a combination of PD controllers with
noise-filtering. This is an appealing solution, related to decentralised control
structures.

Other model-based solutions will now be presented for the case where the
number of sensors (or its signal-to-noise ratio) is low, so “tuning” of the low-
pass filtering is adapted to the process characteristics in a “transparent” way.
These solutions, however, require a reasonably accurate model.

State reconstruction. The definition of observability (Section 3.7.2) im-
plies the ability to compute the process state from a finite amount of past
measurements, by taking the inverse of the observability matrix. However,
this calculation may be ill-conditioned (see Appendix B.4.1). Extending the
dimension of the so-formed observability matrix (3.47) beyond the system or-
der, stacking C, CA, CA2, . . . , CAN , with N > n, an old state at x(k − N)
can be computed. Conditioning always improves as more information (larger
N) is gathered. Afterwards, the current state should be computed based on
the process model, (6.1). This is a sort of “averaging” over a user-defined num-
ber of past samples, leading to a model-based finite impulse response (FIR)
filtering.

The number of past samples for a particular noise amplification depends on
the sampling time, T (as A itself depends on T for a discrete model). However,
averaging over a significant number of past samples to filter measurement noise
increases data corruption by process noise and modelling errors, so there is
a trade-off. It can be shown that the faster the sampling rate the better
the estimations are for a particular time interval, NTs, to be averaged, as
intuitively expected.

A drawback of the approach is that matrix dimensions increase with the
number of averaged samples. To take advantage of some of the features above
without increasing computational load, a recurrent (infinite-memory) estima-
tor will now be developed.

6.2.1 Model-based Recurrent Observer

Let us have a DT system modelled by:

xk+1 = Axk + Buk; yk = Cxk (6.9)

so that if an initial accurate state estimate, x̂k, were available, the next state
should be:

x̂k+1 = Ax̂k + Buk; ŷk = Cx̂k (6.10)

Signal symbols with a hat will denote estimations, and those variables without
it will denote the trajectories on the actual plant. The pair (A,C) is assumed
to be observable (Section 3.7.2), otherwise the unobservable states will not

TLFeBOOK



6.2 Output Feedback 173

affect the output vector so estimating them from output readings would not
be feasible.

Note that even if x̂k is accurate, process noise and modelling errors will
decrease the reliability of x̂k+1 unless on-line corrections are made, based
on incoming measurements. This is the idea behind the so-called observer
equation:

x̂k+1 = Ax̂k + Buk + L(yk − ŷk) (6.11)

where ŷk denotes the current estimation of the output based on the knowledge
of x̂k and L is a constant matrix (dimension n×p) usually denoted as observer
gain whose calculation will be discussed next, weighting the output estimation
error, eyk

= yk − ŷk. In fact, yk is our actual information from the process
and ŷk is our estimate. Thus, the observer basic equation can be written as:

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k) (6.12)
x̂k+1 = (A − LC)x̂k + Buk + Lyk (6.13)

Subtracting the last equation from (6.9) yields:

(xk+1 − x̂k+1) = (A − LC)(xk − x̂k) (6.14)
ek+1 = (A − LC)ek (6.15)

where ek is the state estimation error. By calculating L so that the eigenvalues
of (A−LC) lie in a prescribed location inside the unit circle, the designer can
ensure that an initial estimation error will converge to zero in a prescribed
time5.

System
( , , )A B C

State estimator

( , , )A B C � L
u

y

x̂

Figure 6.1. Observer structure

Approximately, the longer the prescribed time is, the less sensitivity to mea-
surement noise the estimate will have but the sensitivity to process noise will
be higher. With a perturbed model xk+1 = Axk + Buk + vk, yk = Cxk + wk

where vk is the process noise and wk is the measurement one, Equation (6.15)
is transformed into:

ek+1 = (A − LC)ek + (I − LC)vk − Lwk (6.16)

5 The settling time associated with the dynamics of these observer poles is, approx-
imately, an indication of the number of past samples that the observer averages
to obtain the current estimate, to compare with the previously described non-
recurrent approach.
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Remark 6.7. Note that the lowest effect of measurement noise is achieved with
L = 0 (open-loop estimation, error dynamics given by (A − 0 ∗ C) = A) and,
ideally, the lowest effect of process noise is achieved with L = AC−1, i.e.,
full state measurement (error dynamics A − AC−1 ∗ C = 0 with poles at the
origin6). In this case, the observer would be better considered as a state filter,
as all the state variables are available.

In practice, an intermediate set-up would be used. The designer would decide
the position of the poles depending on the ratio between process noise and
measurement noise, and the number of sensors. Under certain assumptions, an
“optimal” observer can be constructed (see Section 7.2). Usually, a reasonable
settling time for tuning the observer poles could be in the range 33–66% of the
target closed-loop settling time (when a controller is finally put into effect),
assuming it is “reasonably” decided considering the magnitude of modelling
errors and sensor signal-to-noise ratios.

The observer general layout is depicted in Figure 6.1.

Remark 6.8. Note that there is a duality between the pole assignment prob-
lems in control and estimation. In the first case, (6.3), we looked for the matrix
K to place the eigenvalues of A − BK. Now, L should be computed to place
the eigenvalues of A − LC, (6.15). As the eigenvalues of a matrix and its
transpose are the same, the second problem is equivalent to computing L to
assign the poles of (A − LC)T = AT − CT LT .

Example 6.9. Observer design in Matlab� is carried out with:

L=place(A’,C’,p);L=L’

Transposition is carried out as Matlab� places the eigenvalues of A − BK where
the unknown K is at the right-hand side.

Continuous-time observers. In the CT case, for a model

ẋ = Ax + bu; y = Cx (6.17)

an observer equation such as:

˙̂x = Ax̂ + Bu + L(y − ŷ); ŷ = Cx̂ (6.18)

leads to ˙̂x = Ax̂ + Bu + L(Cx − Cx̂). So, as before, subtracting from (6.17)

d

dt
(x − x̂) = A(x − x̂) − LC(x − x̂)

and the state estimation error dynamics is given by:
6 The observer such that the eigenvalues of A − LC are at the origin is called the

minimum-time observer : it is the best one for detecting sudden perturbations
in process state, at the expense of high measurement noise amplification if the
sampling period is small.
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de

dt
= (A − LC)e (6.19)

so that assigning the eigenvalues of A − LC in the location specified by the
designer can be used as a criteria to obtain a suitable value for the gain matrix
L.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: place, estim, destim.

6.2.2 Current Observer

In the basic setting, the output estimation error, eyk
, is used to correct the

next state estimation, x̂k+1, (6.11). In order to improve the current state
estimate, using the current output measurement, the following strategy can
be used:

Using the predicted value of the output, the observer equation, (6.11), is
written as:

x̂k+1 = Ax̂k + Buk + L(yk+1 − ŷk+1|k) (6.20)

where ŷk+1|k denotes the estimation of yk+1 with the information available
before measuring it, i.e., with knowledge of x̂k and input uk, based on the
process model:

ŷk+1|k = C(Ax̂k + Buk)

So, operating as before, the final observer equation is:

(xk+1 − x̂k+1) = A(xk − x̂k) − LCA(x − x̂) (6.21)
ek+1 = (A − LCA)ek (6.22)

An alternative, conceptually different but leading to exactly the same re-
sult, is to predict the current state, x̂k|k−1 = Ax̂k−1|k−1 + Buk−1, and then
update it with the measurement error, x̂k|k = x̂k|k−1 + L(yk −Cxk|k−1). Op-
erating on these expressions, (6.22) is also obtained, taking x̂k|k as x̂k.

Remark 6.10. For pole-placement, the computation algorithm requires the ob-
servability of the pair (A,C), in the basic setting, but in the current observer,
the observability of the pair (A,CA) is needed.

6.2.3 Reduced-order Observer

It may be argued that some state variables are directly measured and thus
they do not need to be estimated. Nevertheless, as previously mentioned, even
in the case of full state measurement, the estimator may be also considered as
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a measurement-noise filter in such a way that better information can be used
for control purposes.

If the measurement noise is not relevant and there is a limitation on com-
puting resources, a reduced-order observer can be pursued. To better follow
the reduced-order observer design, let us take a similarity transformation T ,
(2.15), to have the output as the first part of the state vector, completing it
with any F(n−m)×n matrix so T is invertible and applying (2.20):

T =
(

C
F

)

; A = T AT−1; B = T B; C = C T−1

leading, in the CT case, to the equations
[

ẋ1

ẋ2

]

=

[
A11 A12

A21 A22

] [
x1

x2

]

+

[
B1

B2

]

u; y = x1 (6.23)

Thus, we must get an estimate of x̄2, based on the subsystem equation:

˙̄x2 = A22x̄2 + A21x̄1 + B2u = A22x̄2 + A21y + B2u (6.24)

The information about this subsystem that we can indirectly measure, as
provided by the first subsystem equation, is:

y̆2 = A12x̄2 = ˙̄x1 − A11x̄1 − B1u = ẏ − A11y − B1u (6.25)

where y̆2 = A12x̄2 is a fictitious output that can be “measured” to be used in
an observer equation (6.18) for (6.24):

˙̂x2 = A22x̂2 +
(
A21 B2

)
(

y
u

)

+ L(y̆2 − A12x̂2) (6.26)

So, replacing y̆2 by its value in (6.25):

˙̂x2 =
(
A22 − LA12

)
x̂2 +

(
B2 − LB1

)
u +

(
A21 − LA11

)
y + Lẏ (6.27)

In fact, the term Lẏ must be forwarded to the left-hand side, giving:

d(x̂2 − Ly)

dt
=
(
A22 − LA12

)
x̂2 +

(
B2 − LB1

)
u +

(
A21 − LA11

)
y

And, making the change of variable w = x̂2 −Ly, after straightforward oper-
ations, the result is:

dw
dt

= (Ā22 − LĀ12)w +
(
(Ā22 − LĀ12)L + Ā21 − LĀ11 B̄2 − LB̄1

)
(

y
u

)

x̂2 = w + Ly
(6.28)

Undoing the state transformation T , going back to the original state variables,
and stacking the first set of measured states, the output equation would be
replaced by:
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x̂ = T−1

(
0
I

)

w + T−1

(
I 0
L 0

)(
y
u

)

(6.29)

A similar equation can be derived for a DT reduced-order observer.
The observer dynamics is determined by the eigenvalues of:

A22 − LA12 (6.30)

Note that this reduced-order observer is a “current” observer, as the current
output measurement is used to estimate the partial state (D �= 0).

6.2.4 Separation Principle

A two-stage algorithm applying pole-placement techniques to observer and
state feedback controller design yields a closed-loop system with poles located
at the union of those from each of the designs (under the assumption of
negligible model error). The proof will be presented for the CT case, although
an analogous one can be provided for the DT case.

Let us connect a plant with equations (ẋ = Ax+Bu, y = Cx) in feedback
with a controller (observer + state feedback replacing state by its estimation):

˙̂x = (A − LC)x̂ + Bu + Ly (6.31)
u = −Kx̂ (6.32)

The normalised state space representation of the controller, including the
observer7, is the n-order system:

˙̂x = (A − LC − BK)x̂ + Ly (6.33)
u = −Kx̂

The overall closed-loop system is 2n-order, with a state vector xc: {x, x̂},
whose dynamics is given by:

d

dt

(
x
x̂

)

=
(

A −BK
LC (A − BK − LC)

)(
x
x̂

)

(6.34)

Defining a new state vector xn
c : {x, x − x̂} by the similarity transformation

xn
c =

(
I 0
I −I

)

xc

applying (2.20), it results

dxn
c

dt
=
(

A − BK BK
0 A − LC

)

xn
c (6.35)

7 Note that it is a system whose outputs are the control actions and the inputs are
the sensor readings, so it is a usual feedback controller, anyway.

TLFeBOOK



178 6 Fundamentals of Centralised Closed-loop Control

Thus, due to the upper block triangular structure, the eigenvalues of the plant
+ controller are those of A−BK and A−LC. This justifies the independent
design of observer and controller gain matrices, and (6.35) is termed the sepa-
ration principle. As previously commented, a usual rule of thumb is to design
observer poles to be somehow faster than controller ones. The suitability of
the approach depends on having a good signal-to-noise ratio.

This is also applicable to the DT observer, as well as to the current and
reduced-order observers, with the appropriate change of state vector.

Instead of (6.33), the normalised state representation of a controller using
a current observer is, denoting ψk = x̂k−1:

ψk+1 = (I − LC)(A − BK)ψk + Lyk

uk = −K(I − LC)(A − BK)ψk − KLyk (6.36)

Design code. The Matlab� command Kss=reg(sys,k,l) sets up the con-
troller in (6.33). An example of CT design, given a plant, gs, and a desired
pole location, pd, is:

k=place(gs.a,gs.b,pd); l=place(gs.a’,gs.c’,pd);
rg=reg(gs,k,l’);

the last line being equivalent to: rg=ss(gs.a-l’*gs.c-gs.b*k,l’,-k,0).
The same commands carry out the DT design (including the sampling time,
Ts, as a last argument to ss, as done below).

The command dreg does the same with the current discrete observer. For
a DT plant gsd and desired poles pdd, the code synthesising the regulator is:

kd=place(gsd.a,gsd.b,pdd); ld=place(gsd.a’,gsd.c’,pdd);ld=ld’;
[a2 b2 c2 d2]=dreg(gsd.a,gsd.b,gsd.c,gsd.d,kd,ldc);
rgd2=ss(a2,b2,c2,d2,Ts);

or, alternatively, carrying out (6.36) directly:

pp=(eye(2)-ldc*gsd.c)*(gsd.a-gsd.b*kd);
rgd2=ss(pp,ldc,-kd*pp,-kd*ldc,Ts);

Computer code for real-time control will be discussed in Chapter 9.

6.3 Rejection of Deterministic Unmeasurable
Disturbances

The present observer + state feedback equations are designed to modify the
system dynamics, but they do not explicitly solve the “disturbance rejection”
problem: the methodology only provides tools to ensure that, departing from
an off-equilibrium situation, equilibrium will be approximately reached in a
specified time (given by the prescribed poles).

Enhancements to the approach will be presented in this section that are
specially focused to tackle the deterministic disturbance problem.
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6.3.1 Augmented Plants: Process and Disturbance Models

As discussed in Section 2.10.1, in some cases a deterministic disturbance can
be expressed as the output of an autonomous generator system. In engineering
practice, constant, ramp and sinusoidal disturbances can be expressed as the
output of a marginally unstable unexcited linear system with non-zero initial
conditions:

ẋd = Adxd; d = Cdxd

Process disturbance. In most cases, the disturbance, d, generated in an-
other subsystem, is not directly measurable. Instead, its effects modify the
process state

ẋ = Ax + Bu + Bdd

and these modifications are measured by the sensors measuring the output
variables of interest (y = Cx + Du).

Output disturbance. If, on the contrary, the disturbance is pure measure-
ment noise, it is added to the sensor readings and does not modify the plant
state:

z = Cx + Du + d

However, the output variable which has to be controlled is still y.
Of course, mixed situations can be thought of (ẋ = Ax+Bu+Bdd and z =

Cx + Du + Ddd). Writing the disturbance and plant equations in normalised
form, the result is an augmented plant model:

d

dt

(
x
xd

)

=
(

ẋ
ẋd

)

=
(

A BdCd

0 Ad

)(
x
xd

)

+
(

B
0

)

u (6.37)

z =
(
C DdCd

)
(

x
xd

)

+ Du (6.38)

where, for process disturbance Dd = 0 and Bd �= 0 and for output disturbance
Dd �= 0 and Bd = 0. In any case, it can be easily checked that the disturbance
state is unreachable by input u, as intuitively expected.

Disturbance estimation. Let us consider how to cancel the effect of the
disturbances on the true output y = Cx+Du. In the following, for simplicity,
D = 0 will be assumed.

The first assumption is that the whole augmented state (x, xd) must be
observable8. Then, an observer can be designed to estimate the process and
disturbance states. Thus, (x̂, x̂d) tends to its actual value on the real plant
(in the absence of additional sources of perturbations and modelling errors)
so that the designer can specify the time for convergence.
8 This algebraic requirement has a clear engineering interpretation: the disturbance

must, somehow, affect the outputs (if it does not, there is no need to deal with
it). Thus, the assumption holds in most practically relevant cases, with at least
as many sensors as actuators.
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6.3.2 Disturbance rejection

Once the estimate x̂d is available, the state feedback has to be extended so
that:

u = −Kext

(
x̂
x̂d

)

= − (K Kd

)
(

x̂
x̂d

)

= −Kx̂ − Kdx̂d

At first sight, this is another state feedback problem that can be solved by,
for example, pole-placement as in Section 6.1.1. However, the disturbance
state is unreachable so the poles corresponding to Ad cannot be changed. The
procedure to be followed is:

• first, a state feedback law, u = −Kx, is calculated for the non-augmented
plant, ẋ = Ax + Bu,

• second, Kd is calculated to cancel the perturbation effect.

Let us discuss the second step of the procedure.

Output disturbance. If the disturbance is pure measurement noise, then
Kd = 0 as the observer, thanks to the perturbation model, is able to discrim-
inate between signal and deterministic noise and the right control action is
u = −Kx̂, discarding x̂d.

Process disturbance. If the disturbance is acting on the process, the basic
ideas are the same as in the measurable disturbance case discussed in Section
4.6.3, replacing measured values by the estimated ones:

• if there exists a matrix M so that BdCd = BM , it is said that disturbances
enter by the input channels. After convergence of the observer9, a setting

Kd = M ; u = −Kx̂ − Mx̂d

produces a closed loop cancelling d as Bdd = BdCdxd ≈ BMx̂d.
• if the input channel condition does not hold, a matrix Kd could be sought

so that Bd − BKd is small in a suitable sense.

Example 6.11. Linearising and discretising a first-order plant, and adding an input
disturbance, the following model is obtained:

xk+1 = 0.97xk + 0.06(uk + dk)
yk = 2xk

The augmented plant will be formed by adding a disturbance model assuming a
constant d, i.e., dk+1 = dk, so the augmented state space representation is:

mk+1 =

(
0.97 0.06
0 1

)

mk +

(
0.06
0

)

uk

y =
(
2 0
)
mk

(6.39)

9 Proof of the joint convergence of controller + observer would need a procedure
analogous to that in Section 6.2.4.
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where mk is the augmented state vector (xk, dk). If the “true” d does not behave as
a constant, the above representation will have a modelling error.

A regulator (for the non-augmented plant) achieving a settling time of 16 samples

will be designed, i.e., with regulator poles at pd = 0.05
1
16 ≈ 0.83. The result is

K1 = 2.333.
Let us design an observer for the augmented plant so that the overall design can

cope with constant disturbances achieving zero steady-state error. Observer poles

will be placed at pd = 0.05
1
11 ≈ 0.76 (45% faster than the controller one), by solving

the equations of eigenvalue placement for Aext − LCextAext. After operation, the
result is L = (0.2023 0.48)T . So, as disturbances enter by the input channel (Bd = B,
so M = 1), the overall regulator gain matrix is K = (2.333 1) and the joint observer
+ regulator have equations (6.36):

ψk+1 =

(
0.4942 0
−0.7968 1

)

ψk +

(
0.2023
0.48

)

yk

uk =
(−0.3565 −1

)
ψk − 0.9519yk

and the resulting regulator transfer function (SISO) is:

K(z) =
u(z)

y(z)
= −0.9519z(z − 0.9143)

(z − 1)(z − 0.4942)

As expected, it includes an integrator. It is left to the reader to check that the SISO
transfer function from the disturbance to the output is:

y(z)

d(z)
=

G

1 − GK
=

0.12(z − 0.4942)(z − 1)

(z − 0.76)2(z − 0.83)

with zero DC gain and poles at the required positions.
The use of a reduced-order observer could have allowed the design of a closed

loop of order 2, with a first-order controller.

Disturbance models in practice. Note that, in many cases in practice,
the true physical source of all disturbances and their mechanism of action is
unknown so that first-principle equations cannot yield a determination of Bd.
Anyway, as disturbances must be cancelled by manipulation of the available
inputs, it is reasonable to assume that disturbances are input disturbances,
Bd = B and Dd = 0, and “invent” one source of disturbance for each actuator
to implement the observer (M = I). In this way, the observer will calculate
which value of “input disturbance” explains the deviations in sensor readings
(irrespective of the true disturbances being applied at the input or at any
other location in the plant). In this case, the control action is, directly:

u = −Kx̂ − Cdx̂d

Indeed, for input disturbances (Bd = B in (6.37)) the regulator state
matrix is given by (6.33), i.e.:

Areg =
(

A BCd

0 Ad

)

−
(

B
0

)
(
K Cd

)−
(

L1

L2

)
(
C 0
)

=
(

A − BK − L1C 0
−L2C Ad

)
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and, as it is a triangular matrix, the poles of the disturbance generator Ad

are poles of the regulator.
If constant disturbances are assumed, that is Ad = 0, it is interesting to

realise that the estimator involves the addition of integrators. This is in accor-
dance with the classical PI control technique to cancel constant disturbances.
The previous example also illustrates these ideas.

6.4 Summary and Key Issues

State space representation allows for an easy extension of PD control laws to
systems of arbitrary order via state feedback. If not enough sensors are avail-
able, state estimation needs to be carried out. Combination of both approaches
leads to the so-called “output feedback control” whose analysis constituted a
major theoretical and practical breakthrough in the 1950’s and 1960’s.

Regarding practical implementation, it allows the design of controllers with
a prescribed settling time. The key issue is the existence of multiple solutions
in the MIMO case so some may be the best with regards to some criteria,
posing the optimisation problems to be solved in next chapter. Criteria that
should be considered in practice are I/O pairing, sensitivity to measurement
noise and limited control action. At this moment, the only available guideline
is that positioning the poles near their open-loop position results in low-gain
controllers and low-gain observers having reasonable applicability. In Chapter
9, implementation issues are discussed.

Integral action and, in general, deterministic disturbance cancellation can
be easily cast into the state feedback + observer framework.

6.5 Case Study: Magnetic Suspension

A floating platform is controlled by magnetic drives acting on the three ex-
treme positions by means of electromagnets. In Figure 6.2, a schema of the
system is depicted [50], where:

• xv: vertical displacement of the centre of gravity (G) of the platform,
• xp: pitch angle,
• xr: roll angle,
• ri: distance of the i-extreme to the corresponding actuator.

The non-linear electromagnetic forces acting on the platform are:

Fj = kj

(
uj

rj

)2

with j = 1, 2, 3

where uj is the voltage applied to the powerful j-electromagnet, and kj is a
magnetic constant.
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Figure 6.2. Magnetic suspension system

To complete the model, force and torque balances are applied to the plat-
form10, leading to the mechanical equations:






M ẍv = Mg − (F1 + F2 + F3)
Jp ẍp = l1gF1 − l2g (F2 + F3)
Jr ẍr = l3g (F2 − F3)

The distance from each platform extreme to the corresponding electromagnet,
ri, is geometrically related to the position variables previously defined, xv, xr,
xp. The full model involves nine equations with nine internal variables.

In order to derive a linear internal model, the position (xv, xp, xr) and
their derivatives (ẋv, ẋp, ẋr) are taken as state variables and the force and
geometrical equations, which do not involve dynamics, are linearised around
an operating point, usually defined by the positions without movement. The
input vector is composed of the voltages (or the currents) applied to the
corresponding coils. The extreme positions are taken as components of the
output vector, also requiring the linearisation of the output equations.

x =
[
xv xp xr ẋv ẋp ẋr

]T ; u =
[
u1 u2 u3

]T ; y =
[
r1 r2 r3

]T

Linear model. A laboratory platform has been modelled and linearised,
leading to the model:

∆ẋ = A ∆x + B ∆u; ∆x = x − x∗ → x = ∆x + x∗; . . .

denoting with ()∗ the steady-state variables:

x∗ =
[
x∗

v 0 0 0 0 0
]T

; u∗ =
[
u∗

1 u∗
2 u∗

3

]T
; y∗ =

[
r∗1 r∗2 r∗3

]T
=
[
x∗

v x∗
v x∗

v

]T

and
10 Assuming small deviations over the main inertia axes.
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A =











0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1089.71 −16.4811 −0.0424 0 0 0
−494.935 2029.55 −0.2332 0 0 0
−4.4942 −0.8224 1016.34 0 0 0











; B =











0 0 0
0 0 0
0 0 0

−2.4038 −1.9050 −1.9718
23.605 −10.4689 −10.8362

0 24.2115 −25.0619











C =




1 −0.327 0 0 0 0
1 0.183 −0.12 0 0 0
1 0.183 0.12 0 0 0





Structural properties. It is easy to apply the analysis techniques developed
in Chapter 3 and check that:

– the system is open-loop unstable:

eig(A) =
[−45.1459 45.1459 32.8804 −32.8804 31.8801 −31.8801

]

– the system is state- and output-reachable. [u s v]=svd(ctrb(A,B))
points out that xp and ẋp are the most controllable direction, xr and ẋr the
second ones (3 times less), and the vertical position is 27 times less control-
lable,

– The system is state observable,
– With [u s v]=svd(ctrb(A,B(:,1))), etc. each input only reaches four

state variables, and with a bound on condition number of 105, only two,
– The observability space is dimension 4, for any single output,
– The relative degree matrix has 2 in all elements.

Centralised control design. Let us go for a multivariable control system
with the following requirements:

1. No steady-state error in position.
2. Poles around −100.
3. Output feedback, using a reduced-order observer.

A centralised optimal control strategy for this system is reported in [51].
1. To fulfill the first requirement, an integrator should be added to each output
(controlled variable):

vi =
1
s

(yd,i − yi) → v̇i = yd,i − yi, i = 1, 2, 3

Thus, the resulting augmented system (dimension 9) will be (6.1.2) with aug-
mented matrices:

Aa =
[

A 0
−C 0

]

, Ba =
[

B
0

]

, Ca =
[

C 0
0 I

]

Any stabilising state feedback will match the first requirement.
2. To fulfill the second requirement, a pole-placement problem (using the
Matlab� command place, for instance) will give the state feedback matrix:
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K = place(Aa, Ba, [-100, -100, -100, -102, -102, -102, -104, -104, -104])

according to the desired pole position. It yields:

K = 105




−0.048 0.009 −0.000 −0.0005 0.0001 −0.0000 1.133 0.225 0.225
−0.054 −0.006 0.007 −0.0005 −0.0001 0.0001 0.284 1.663 −0.162
−0.052 −0.005 −0.006 −0.0005 −0.0001 −0.0001 0.274 −0.157 1.607





The Simulink� diagram is shown in Figure 6.3, assuming all of the state vector
is measurable. Block F is in charge of generating feedforward (2-DoF) actions,
if so desired, to modify the tracking response, i.e., v = F (s)r in (6.2).

x

v

u

ref3

ref2

ref1
Sum1

Sum

System

Mux1

Integrator

Demux

F

Figure 6.3. Integral control by augmented state feedback

3. To implement output feedback, velocities should be estimated. Note that
the incremented state variables, the integrators, are obtained from the outputs
and so they are accessible. Let us concentrate on the non-augmented system.

To better follow the reduced-order observer design, let us take a similar-
ity trasformation as proposed in (6.2.3). In this case, with F = 03×3 I3×3 ,
Equations (6.23) result in:

[
ẋ1

ẋ2

]

=

[
03×3 A12

A21 03×3

] [
x1

x2

]

+
[

03×3

B2

]

u; y = x1

A12 =




1 −0.327 0
1 0.183 −0.12
1 0.183 0.12



 ; A21 =




423.3 333.4 333
−4157 1832 1830

0 −4237 4233



 ; B2 =




−2.403 −1.905 −1.972
23.6 −10.47 −10.84
0 24.21 −25.06





Remember that the reduced-order observer equation is (6.27), and the ob-
server dynamics is determined by the eigenvalues of A22 − K0A12. To com-
pute the observer gain, its poles should be faster than those of the controlled
system. Again, using the Matlab� command place:

KT
0 = place(A

T

22, A
T

12, [-150, -150, -150])

it yields:
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K0 =




53.8235 48.0882 48.0882

−294.1176 147.0588 147.0588
0 −625 625





The original state vector is obtained by the inverse transformation:

x̂ = T−1xest = T−1

[
y

x2,est

]

x_est

y

T^-1

Sum1

Sum

System

Observer

Mux

K0

IntegratorB2-K0*B1

A22-K0*A12

A21-K0*A11

u

Figure 6.4. Reduced-order observer

The Simulink� diagram of the observer is shown in Figure 6.4. The Mat-

lab� code that yields a normalised internal representation, (6.28)–(6.29), is:

Aro=A22-K0*A12; Bro=[(A22-K0*A12)*K0+A21-K0*A11 B2-K0*B1];
Cro=inv(T)*[zeros(3,3);eye(3)];
Dro=inv(T)*[eye(3) zeros(3,3);K0 zeros(3,3)];
rdobs=ss(Aro,Bro,Cro,Dro);

The observer has six outputs (six states, in original coordinates), six inputs
(three plant outputs + three plant inputs) and three internal states. Alto-
gether, the output-feedback integral control is implemented as shown in Fig-
ure 6.5. The controlled plant behaviour, under step changes in the references
(F = I), can be seen in Figure 6.6, where a settling time of 0.06 s can be
realised.
In order to show the performance degrading due to the observer, in Fig-
ure 6.7 the free response (output 1) of the controlled system with observer
and with direct state access can be compared. An initial condition vector
x0 =

[
1 1 1 0 0 0

]
is assumed. Similar responses occur in the other output

variables. A faster observer could have been designed to achieve less difference
in the nominal responses.
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y

x_est

v

u
ref3

ref2

ref1
Sum1

Sum

System

Observer

Mux1

State feedback

Integrator

F

Figure 6.5. Output-integral feedback control
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Figure 6.6. Step response: integral-output feedback

State-feedback

Output-feedback

Figure 6.7. Free response of the controlled plant with and without observer (y1)

Decoupled multi-loop control design. Another control option, as devel-
oped in the previous chapter, is to decouple the three subsystems (attached to
each position and its derivative) and to implement a multi-loop control on the
decoupled system, by designing a PID control, for instance. The decoupling
may be achieved by a feedforward transfer matrix or by state feedback. As-
suming the state is accessible for measurement (otherwise using the observer),
the state feedback solution in Section 5.3.2 on page 139 can be implemented,
as the plant has no zeros (check). In particular, it can be checked that all
three relative degrees, r1, r2, r3, are equal to 2, and the matrices Q̃ and H̃ in
(5.17) are:
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Q̃ =




−10.1226 1.5184 1.5716
1.9159 −6.7261 −0.9475
1.9159 −0.9154 −6.9621



 ; H̃ =




1251.558 −680.143 0.0338 0 0 0
999.681 355.025 −122.046 0 0 0
998.602 354.827 121.876 0 0 0





so, the decoupling feedback and feedforward terms in (5.19) are:

KD =




176.1111 −57.5883 0.0000 0 0 0
175.0000 32.0250 −21.0000 0 0 0
168.8889 30.9067 20.2667 0 0 0



 , F =




−0.1068 −0.0212 −0.0212
−0.0268 −0.1568 0.0153
−0.0259 0.0148 −0.1515





It can be checked that the decoupled transfer matrix of the system is:

Gdec(s) = C(sI − A − BKD)−1BF =







1
s2 0 0

0 1
s2 0

0 0 1
s2







so, three straightforward PD control loops will now suffice for decoupled pole-
placement. Indeed, with a controller with transfer function GR = Kds + Kp,
each loop will have a characteristic equation s2 + Kds + Kp = 0, so to place
the poles at −100, the gains Kd = 200, Kp = 1002, will suffice.

The decoupled control schema can be seen in Figure 6.8.

y Scope

u

ref3

ref2

ref1

Sum2

Sum1
System

PID 3

PID 2

PID 1

Observer

Feedback-decoupled system

Mux1

Mux

K_J

F

Demux

Figure 6.8. PD decoupled control

Remark 6.12. The solution in Figure 6.8 can be improved. Indeed, if the state
is accessible (or a state observer is implemented) the output derivative can be
directly estimated from the observer output (ẏi = iCAx̂), not depending on
u as the relative degrees are ri = 2. So, the PD controller can be implemented
as an outer static state feedback, without carrying out additional numerical
derivatives. Remark 5.11 about steady-state errors applies here.
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Optimisation-based Control

The objective of this chapter is to present various controller design techniques
based on the optimisation of a (scalar) cost index. First, an optimality-based
approach to state feedback and observer design will be presented. Then, the
popular multivariable predictive control will be briefly discussed. The chapter
will end with a norm-optimisation framework that is able to include some of
the previous methodologies as particular cases.

Motivation. The pole-placement framework discussed in the previous chap-
ter accounts for settling-time specifications, but in multivariable systems there
is no way of specifying overshoot requirements usual in SISO cases; in fact, it
is difficult to even define them. Furthermore, the poles are, from an engineer-
ing view, a result from the roots of a determinant that has an obscure relation
to practical requirements such as:

• tighter control of output y1 is desired, either because variable y2 is unim-
portant and its deviations can be much larger or because disturbances
happen to show a minor effect on y2,

• with a particular configuration, actuator u1 often saturates whereas u2

seldom does: a redistribution of the control authority is desired.

Indeed, in MIMO systems there are multiple solutions to the pole assign-
ment problem, and different actuator amplitudes and precision requirements
for each controlled variable: it is difficult for a pole-placement design to be
modified to improve control on a particular output or to force lower com-
mands to a particular actuator. Furthermore, some of the states may have no
clear physical meaning and may not be quite controllable or observable, so
using high gains to assign those poles may not yield a significant input/output
improvement.

To account for these situations, a new design paradigm was developed in
the 1950s that was based on optimisation of a cost index, flexible enough to
deal with the above-mentioned situations. It was conceived as a generalisation
of least-squares problems. Optimisation-based control of dynamical systems
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reaches significance after the works by Bellmann [24], Pontryagin [103] and
Kalman [70], originated by an earlier paradigm shift from transfer functions
and frequency response to state space formulations. A general framework, able
to accommodate robustness considerations, was developed in the 1980s [44].

7.1 Optimal State Feedback

Many control problems can be expressed, in plain terms, as minimising the
“deviation” of the controlled variables, y, from their prescribed set-points,
r. The meaning of deviation can be formalised as, for example, (y − r)2. In
this way, squaring the deviations indicates that positive and negative ones
are equally undesirable. Initially, r = 0 will be assumed, as it denotes any
constant equilibrium point on a linearised model.

The Cost Index

To define the optimisation problem, a cost index reflecting the engineering
specifications must be set up. As signals change over time, the control objec-
tive should be oriented to minimise the “accumulated deviation”:

Jc =
∫ ∞

0

y2 dt; Jd =
∞∑

k=0

y2
k

where Jc refers to CT designs and Jd to DT ones.
These measures are a common performance indicator in SISO control (ISE,

integral of squared error). Indeed, they are also of extraordinary importance
to general control theory. This accumulated deviation is named as the 2-norm1

of the signal and is usually denoted by ‖y‖2.
Transient deviations may originate from two sources: (a) off-equilibrium

initial state, (b) disturbances. The problem to be addressed at this moment
will regard the first one: the objective will be reaching a desired operating
point with minimal accumulated deviation. The second one will be the objec-
tive of the next section.

Control cost. Large amplitudes of the manipulated actuators also imply a
“cost”: risk of saturation, energy consumption, etc. Indeed, a “too-aggressive”
controller would make the output norm small by injecting control signals with
large amplitude to quickly drive the system to equilibrium.

To avoid saturation and extend actuator life (and to decrease sensitivity
to modelling errors, see Chapter 8), the “optimal” regulator must take into
account penalties on u as well. To achieve that, the term

∫
u2 is usually

included in the index to be minimised; otherwise, the problem is ill-posed.
1 There are another possibilities for measuring the “size” of a signal, such as the

integral of the absolute value. In Appendix C, formal definitions and a summary
of other choices for signal and system norms is given.
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Weights. In MIMO settings, there will be different relative importance be-
tween the variables involved: some form of relative weighting must be set up.

In principle, minimising a weighted sum of the 2-norm of inputs and out-
puts (such as

∑p
i=1

∫∞
0

qiyi(t)2 dt +
∑m

i=1 ri

∫∞
0

ui(t)2 dt,) might be a better
approach to obtaining a good-performance regulator, with low energy usage
and greater ease of tuning than a pole-placement approach.

Example 7.1. Let us consider the simplified headbox model, 2.12.1, presented in
Chapter 2. If a sudden disturbance causes the process to depart from its prescribed
set-point, there may be different practical requirements regarding the transient devi-
ations of each of the outputs, and the use of each actuator. Let us think on allowing
four times less deviation to the stock exit speed, v, than in the stock level, h, and
desiring to use three times less the stock flow, q, than the air pressure, p. Those re-
quirements can be approximately expressed as the following optimisation problem:
given a starting state x(0) �= 0, minimise:

J =

∫ ∞

0

(4v(t))2 + h(t)2 + ρ(p(t)2 + (3q(t))2) dt (7.1)

where ρ is a user-defined small number limiting control activity. In this way, to make
a particular variable smaller, its weighting in the control cost index is increased. By
denoting process variables with the usual notation (y, u), taking into account that:

16y2
1 + y2

2 + ρ(u1(t)
2 + 9u2(t)

2) = (y1 y2)

(
16 0
0 1

)(
y1

y2

)

+ ρ (u1 u2)

(
1 0
0 9

)(
u1

u2

)

the index can be cast into a matrix form (W1 and W2 are weighting matrices):

J =

∫ ∞

0

(yT W1y + ρuT W2u)dt

and, replacing the output by its expression y = Cx, index J is an expression de-
pending on future states and inputs:

J =

∫ ∞

0

(xT CT W1Cx + ρuT W2u)dt

General linear quadratic regulator problem statement. From the pre-
vious example, in a general case, the optimisation problem can be formulated
as follows:

Given the process defined by (2.17), (or (2.29) in DT), with initial state
x(0) = x0, find the control input minimising the index:

Jc =
1
2

∫ tf

t=0

(x(t)T Qx(t) + u(t)T Ru(t)) dt +
1
2
x(tf )T SNx(tf ) (7.2)

Jd =
1
2

N−1∑

k=0

(xT
k Qxk + uT

k Ruk) +
1
2
xT

NSNxN (7.3)
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where Q, and SN are positive semi-definite n × n matrices, R is a positive
definite m × m matrix2 and tf (N in the DT case) is a user-defined “control
horizon”.

Note that, as we are working on linearised models, the variables are incre-
mental, i.e., the index refers to deviations or transient errors when trying to
achieve a desired set-point: Q is the cost of the transient path, and SN is the
“final” cost of not “hitting” the target state3.

The previous index refers to control tasks lasting a fixed time (such as po-
sitioning a robotic arm). In process control, running continuously, the indexes
are usually defined with an infinite final time, as in the previous example:

J =
1
2

∫ ∞

0

[x(t)T Qx(t) + u(t)T Ru(t)]dt (7.4)

J =
1
2

∞∑

k=0

(xT
k Qxk + uT

k Ruk) (7.5)

In this way, the control engineer casts the specifications into suitable ma-
trices Q and R, as it was done in the example.

7.1.1 Linear Regulators

It can be shown (see a detailed problem statement in Appendix D) that the
solution to the minimisation of the cost index (7.4), where x(t) is the trajectory
of the CT system ẋ = Ax+Bu, is a linear time-invariant state feedback, similar
to the solution of the pole-placement problem, (6.2), being:

uopt(t) = −R−1BT S x(t) = −Kx(t) (7.6)

Matrix S is the positive definite solution of the Riccati equation [133]:

0 = AT S + SA − SBR−1S + Q (7.7)

Similarly, for a DT system xk+1 = Axk + Buk, the minimisation of the
cost index (7.5) leads to the linear state feedback

uk,opt = −R−1BT S xk = −Kxk (7.8)

where matrix S is the solution of the DT Riccati equation:

S = Q + AT SA − AT SB(BT SB + R)−1BT SA (7.9)
2 Otherwise there will be a non-penalised control direction so the optimal controller

would have infinite gain on it: the problem would be ill-posed.
3 Other optimisation problems with significance in control engineering are the fixed

final state (SN tending to infinity), and the CT minimum-time control (in which
a fixed final state must be reached in a minimum time with a particular actuator
saturation limit). The reader is referred to [81, 122] for details on these.
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A simplified derivation of the optimal controller, for the DT case, is briefly
presented in Appendix D.2. The reader is referred to [122, 81] for ample dis-
cussion. As the cost index is quadratic and the system model is linear, the
resulting regulator is named in the literature as linear quadratic regulator .

In the LQR design approach, the only design parameters are the weighting
matrices, Q and R, and some other properties, like closed loop bandwidth,
pole position or response speed and damping, are not directly pursued. As a
result, achieving a particular settling time (pole positions) must be made by
trial and error on these matrices. In any case, the LQR solution has a number
of properties and options that are rather interesting from the control user
viewpoint.

Matlab� implements the CT optimisation routines in its command lqr,
with the syntax: [K,S,E]=lqr(A,B,Q,R). It returns the optimal state feed-
back gain, K, the Riccati matrix, S, and the eigenvalues, E, of the closed-loop
system (A − BK). The command dlqr is used for the DT regulator.

Once the LQR controller is obtained, the dynamic behaviour of each con-
trolled variable can be checked and the closed-loop poles can be evaluated.
If we want to modify the system behaviour, the tuning parameters are the
weighting matrices, Q and R, and some basic interpretation and rules of thumb
are available. The following example outlines the procedure.

Example 7.2. Let us have a third-order system with state space representation:

dx

dt
=




−2 1 0
0 −3 0
0 0 −4



 x +




1 0
1 −0.5
1 0.2



 u

y =

(−17 4 −10
5 8 −6

)

x

where y1 must have control four times tighter than y2 and actuator u2 may have
three times more deviation than actuator u1, when an initial off-equilibrium situation
caused by a sudden disturbance or set-point change is corrected.

The solution for the problem in Matlab� language is:

[K,S,E]=lqr(A,B,C’*[16 0;0 1]*C,rho*[9 0;0 1]); (7.10)

where ρ can be adjusted (by trial and error) to achieve a particular settling time. For
example, a controller achieving the desired input and output deviation objectives
and a settling time of 0.4 s can be found with ρ ≈ 2. Figure 7.1 plots the result of
the simulation code below (lines labelled as (a)), where the output vector has been
augmented to include u = −Kx:

sscl=ss(A-B*K,B,[C;-K],0); [y t x]=initial(sscl,[1 1 1]’,0.59);

figure(1), plot(t,y(:,1:2)), figure(2), plot(t,y(:,3:4))

Note that the settling time for y1 is faster than that for y2, as designed. However,
in spite of our decision to “punish” deviations in u1, the optimiser still uses u1

quite a lot. That occurs because u1 has more than double the “gain” in terms
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Output Control Action
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Figure 7.1. Non-zero initial condition response of optimal controller (3 designs).

of input/output controllability4, so to achieve the required performance in y the
optimal seems to be using actuator u1. Based on these results, matrices Q and
R can be fine-tuned to suit the engineer’s needs. For example, to increase control
requirements on y2, Q(2, 2) can be changed to 3. To decrease amplitude of u1, R(1, 1)
is changed to 15. To make the loop faster, ρ is decreased to 0.1. Figure 7.1 plots the
output of this second case, labelled as (b). Control actions (not plotted, to avoid
messing up the figure) are five times bigger: the approximate starting value of u1 is
−60, and that of u2 is −120. Further refinements can be made if so wished.

Example 7.3. If a pole assignment solution is searched using Matlab� commands
and having the same poles as those resulting from the LQR design (vector E in
(7.10)), a different feedback law will be obtained and a different dynamics will relate
the input/output variables in a MIMO case: assigning the poles at the same place
than the LQR design (a) in the previous example yields, for example, the outputs
labelled as (pp) in the above figure. Control amplitudes (not plotted) are one third
of those in the LQR design.

Note that the individual adjusting of input and output deviations from an ini-
tial non-zero state (by trial and error, however) is usually more related to “real
engineering” MIMO specifications than pole-placement methodologies.

Stability. The (infinite time horizon) LQR controller always yields stable
closed-loop systems if some conditions are satisfied:

• the system (A,B) is controllable or at least stabilisable (i.e., the uncon-
trollable modes, if any, are stable)

• Q is positive definite so there does not exist a non-penalised direction in
state space. A softer condition requires all the state variables (at least the
unstable modes) to be weighted in the cost index, in such a way that if
Q = NT N (i.e., a “fictitious” output, y̌ = Nx, appears as y̌T y̌ in the
index), the pair (A,N) is observable.

Indeed, in this case, a controller K exists so that all closed-loop poles of
A−BK can be placed in a prescribed stable location. This controller will have
4 As an exercise, check the three singular value plots of the open-loop transfer

matrix with one and two actuators, to verify that input 1 is responsible of almost
all the “maximum gain” all over the frequency range.

TLFeBOOK



7.1 Optimal State Feedback 195

a finite value of the index (as its response will be exponential and
∫∞
0

(meat)2

converges for a < 0). Hence, as the optimal regulator must have a cost below
or equal to any of the pole-placement ones and all unstable loops would attain
an infinite cost, necessarily the LQR controller must be stable5.

It can be also proved (see, for instance [9]) that the LQR design presents
good robustness against uncertainties in gain and delays6. Nevertheless, spe-
cific design techniques have been developed to deal with model uncertainty,
as discussed in next chapter.

Settling-time Specifications: Combined LQR + Pole-region
Specification

Settling-time specifications cannot be directly reflected in values for the design
matrices. The usual procedure is a trial and error one over parameter ρ in (7.1):
the smaller the value of ρ is made the faster the transient will be. In that way,
a kind of regulation achieving a desired settling time with minimum control
effort is achieved. For nearly-uncontrollable modes, changing its dynamics
would require a very large control energy (low ρ).

Anyway, if a desired minimum exponential stability e−αt (α > 0) is desired,
the cost index (7.4) can be modified to:

J =
1
2

∫ ∞

t=0

e2αt[x(t)T Qx(t) + u(t)T Ru(t)]dt (7.11)

In this way, for the index to be finite, a solution must be obtained so that x
and u are bounded in norm by Me−αt (M an unknown constant), as specified.

These index modifications amount to setting time-varying Q and R but do
not change the fundamental assumptions about the problem. To transform the
problem to the original setting, let us define the new state and input vectors:

x̄ = eαtx(t); ū = eαtu(t)

Using (2.17), the new state equation is

˙̄x(t) = αeαtx(t) + eαtẋ(t) = (αI + A)x̄(t) + Bū(t)

Thus, the new LQR problem can be solved with data: (Ā, B,Q,R), being
Ā = αI + A. Other changes of variables can be applied to specify a circular
region in the s-plane for the poles, if settling time and damping specifications
are to be approximately enforced [54].
5 Formal proofs are based on “energy” considerations (Lyapunov functions), prov-

ing that dxT Sx
dt

< 0 so xT Sx decreases (to zero).
6 If all sensors are available. Observers may drastically reduce stability margins,

see Chapter 8.
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Discrete-time case. In the DT case, if the system’s response should be
bounded by Mβk (β < 1), the index must be changed to:

J =
1
2

∞∑

k=0

α2k(xT
k Qxk + uT

k Ruk) α =
1
β

> 1 (7.12)

Now, with the change of variable:

Ā = αA; B̄ = αB

designing an optimal controller for the modified syste (Ā, B̄), and keeping the
same Q and R, will solve the optimisation of (7.12) for the original one (2.29).

Matlab�: Some commands implementing algorithms related to the contents of this
section are: lqr,dlqr,lqry.

Remark 7.4. In some applications, frequency-weighted cost indexes are useful for
stressing, for example, that strong controller gain is desired in a particular frequency
range (low frequency, disturbance-dominated frequencies, etc.) but there is no need
for such a high gain in other frequencies where disturbances or set-point changes
are not present. Indeed, the remarkable interest of this idea led to the development
of a generalised framework, described in Section 7.4.

Sampled-data systems. The proposed cost index for a discrete system does
not take into account inter-sample behaviour. An alternate setup for optimal
control of sampled-data systems is minimising the continuous integral cost
index (7.4) with a discrete regulator (assuming ZOH discretisation). This
problem can be cast as a discrete LQR one with a mixed cost index in the form
(D.22). For details, see [48]. The resulting regulators, however, do not exhibit
significant differences with optimisation of (7.5) if sampling time selection is
adequate, if Q and R in the discrete case are equal to the continuous ones
multiplied by the sampling period, Ts.

The Matlab� command K= lqrd(A,B,Q,R,Ts) gives the DT feedback law
under discussion.

7.2 Optimal Output Feedback

Problem statement. LQR control requires the system state accessibility
to compute the current action, as indicated by (7.6) or (7.8). If the set of
measured variables is p < n, an observer could be implemented, as shown in
Section 6.2. But an optimal approach can be also followed to design the esti-
mator, mainly if there are noisy measurements or disturbing inputs (coloured
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noise) in the system. In this section, the problem of achieving minimal devia-
tions on the variables of interest, when subject to random disturbances, will
be presented.

In this case, the least squares indexes to be minimised may be expressed
in terms of variances, such as E(y2) or E(e2), giving rise to a family of design
methodologies under the name of minimum-variance estimation and control.
For a SISO approach, the reader is referred to, for example, [63]. The MIMO
approach is usually denoted as linear stochastic control [14], and its basic
ideas will be outlined in this section.

For simplicity, the discussion will be restricted to discrete-time random
disturbances. The performance objectives, in the MIMO case, will be to min-
imise a cost index similar to (7.3). However, the presence of random distur-
bances makes J a random variable and repeating experiments will result in a
variety of cost index values. The stochastic control problem deals with min-
imising its expected value, so the mathematical expectation notation should be
introduced7.

The cost index (7.3), in a stochastic setting, will be:

J = E[
1
2

N∑

k=0

(xT
k Qxk + uT

k Ruk) + xT
NSNxN ] (7.13)

The solution to this problem can also be decomposed in two steps: “optimal
observer” design and state feedback LQR control.

7.2.1 Kalman Observer

In the following, the design of the above-mentioned optimal observer or filter
will be pursued, as a first step towards the solution of the full control problem
(minimisation of (7.13)).

Optimal observer. The main idea is designing a convergent observer8 of
the system state, xk, with minimum sensitivity to disturbances, given a model
with p outputs and defined by:

xk+1 = Axk + Buk + Gvk (7.14)
yk = Cxk + wk

where the “size” of process noise, vk, and measurement noise, wk, is specified
in terms of their variance matrices, V = E(vvT ) and W = E(wwT ), with
dimensions n × n and p × p, which are assumed to be known. Process and
measurement noise are also assumed to be uncorrelated, (E(vT w) = 0).
7 The basic ideas on discrete multivariable random processes are outlined in Ap-

pendix E. The reader may need to browse through this appendix to better com-
prehend some of the ideas below.

8 i.e., stable so that under no disturbances, the true state is estimated.
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For the optimal observer (or filter), different assumptions can be taken, as
seen in the previous chapter, the final goal being to compute an observer gain
L, (6.12). In Section 6.2.1, this matrix was computed based on the location
of the observer poles and, as a result, it influenced the behaviour regarding
measurement noise and process noise (see (6.16)).

If a model of the disturbances is available, as for instance (7.14), for an
observer like

x̂k|k = x̂k|k−1 + L(yk − Cx̂k|k−1) (7.15)

there exists an “optimal” observer gain, leading to a particular pole location,
to achieve the least noise effect on the estimated state, that is, to minimise

J = E[(xk − x̂k|k)T (xk − x̂k|k)] (7.16)

This observer is denoted as the Kalman filter, introduced in [68, 69]. It
minimises the size of the estimation error, ek = xk − x̂k, and x̂k is the best
prediction of xk in a statistical sense9, with the information available in sam-
pling instant k (x̂k

def= x̂k|k).
As with the LQR problem, the optimal observer is time-variant (L depends

on k).This is intuitively expected, as initial measurements (with no “past
information”) cannot use the state equation and the optimal is to “totally
believe” the sensor readings. As past readings are gathered, the optimal is a
weighted average of current and past data. The averaging coefficients change
with time as the number of past data changes. In the observer approach,
all past data are averaged onto the state vector, xk, and current and past
data are averaged in the observer equation. After a few samples, a reasonable
state estimate is available, so the model equations start to be significant.
Although the optimal observer is time-varying, in practice, the so-called time-
invariant stationary observer, obtained after convergence of the observer gain
to a constant value, is the one used in most cases. It is optimal once it has
been in operation for some time (in particular, the settling time according to
the observer poles). It is suboptimal in the first handful of samples, but that
fact is irrelevant in continuously-operating process control.

In Section E.4.2, the full development for obtention of the observer gain
is detailed. The stationary solution also involves computing the solution to a
Riccati equation.

The stationary observer is the result, for example, of the dlqe command
in Matlab� , with the syntax [L,P,Z,λ]=dlqe(A,G,C,V,W);, where P =
E(xk|k−1 − xk)(xk|k−1 − xk)T , and Z = E(xk|k − xk)(xk|) − xk)T is the error
covariance matrix. λ yields the observer eigenvalues and L is the observer gain.
9 This means that x̂ is equal to x in average, and that the residual error xk − x̂k

is uncorrelated with the past measurements. In linear systems, uncorrelation is
equivalent to statistical independence (no prediction improvement possible).
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Design Rules

In this section, the implications in practical designs will be discussed, leaving
the details in Appendix E for the interested reader.

Depending on the relation between the sizes of V and W (signal-to-noise
ratio), the number of samples averaged (settling time) and the final stationary
“gain”, L, are variable.

The variance matrices must be known. However, this is a difficult issue in
practice, specially regarding the “process noise” variance. Usually, observer
design is based on guesswork or trial and error on matrix V .

Sensor noise matrix. A diagonal covariance matrix W for outputs is usually
constructed, placing in the diagonal elements the noise variance for each of
the sensors, experimentally measured10, neglecting any cross-talk.

Process noise matrix. Regarding construction of V , if a particular source
of random disturbances ψk is known to affect the process state via G in (7.14),
the dlqe command can be directly applied. If several disturbance sources are
known (vk = G0v0 + G1v1 + . . . ), then G is set to the identity matrix and
matrix V can be built as V =

∑
Gi ∗ Λi ∗ GT

i + εI where Λi are scalars or
matrices with the variances of the known disturbance sources and ε is a small
number accounting for disturbances with unknown directionality. A typical
model is, for example, input noise where G = B and Λ contains the variances
of each of the noisy actuators. If nothing is reasonably known, an identity
matrix in G and a diagonal V will do.

Eigenvalues. In any case, once a stationary value of L is calculated, the
settling-time formulae with the eigenvalues of A−LCA provide a hint on how
many samples are being averaged to provide the filtered state measurement.
If that is considered excessive or excessively low for the particular application,
then a scaling on V allows the designer to change the observer’s settling time
so that a reasonable one is achieved. Lower values of V produce a slower filter
with lower measurement noise amplification (smaller L), as lower process noise
is associated with more confidence on the model’s state equation.

Design code. Once the observer gain, L, is calculated, it is handled as any
observer gain as discussed in the previous chapter, Section 6.2.1.

With the augmented models (Section 6.3), the Kalman filtering can be eas-
ily extended to mixed random + deterministic disturbances, and indeed that
is often the case, at least with integral action. The following example shows
the main concepts, combining the observer with a pole-placement regulator.

Example 7.5. Let us design an optimal observer for the system in Example 6.11 on
page 180, whose augmented model (6.39) is repeated here for easier reference:

10 Assuming Gaussian distribution, standard deviation is one third of the interval
where 99% of sensor measurement noise values are into. It can be estimated from
experiment or from the sensor data sheets provided by its manufacturer.
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)
(

x
xd

)

k

+ wk

Sensor variance, W , is fixed to one unit, for reference. The regulator is designed
to place one closed-loop pole at 0.8. Let us discuss the optimisation-based alternative
to a pole-placement observer. As previously discussed, process noise variance is rarely
known. Let us show the result of the Kalman observer design process for different
values of V .

Case 1: V=diag([1e5,1e5]). Large values of V mean that the equation xk+1 =
Axk + Bu is totally unreliable, so there is no way of using past information: the
result will be similar to a minimum-time observer.

Indeed, the optimal observer is L=[0.5;0.485], with observer poles placed at 0
(for x1) and at 0.942 (for the integral action). State variance11 x1 is 0.25, and for xd,
it is 106. It is essentially PI control. To obtain the controller transfer function, the
observer equation (6.36) is typed into Matlab� , and converted to transfer function
form:

Ao=Ae-L*Ce*Ae-(eye(2)-L*Ce)*Be*K; Bo=L; Co=-K*Ao; Do=-K*Bo;

controller=ss(Ao,Bo,Co,Do,Ts);tf(controller)

The result is u(z) = −1.902(z − 0.949)/(z − 1) y(z).

Case 2: Model fully reliable, noise-free, sensor extremely noisy in comparison.
V=diag(1e-5,1e-5); yields L =[0.0055; 0.0031], with observer poles placed at 0.98
and 0.97 (very similar to the open-loop response). Many sensor samples are needed
for a modification of the model variable. The resulting regulator is a very low-gain
one: u(z) = −0.018991z(z − 0.9669)/(z − 0.7911)/(z − 1).

Case 3: V=diag(0.2 0.05) depicts an intermediate case. Then, L=[0.30; 0.15],
the estimated error variance is 0.14 for x1 and 1.7 for the disturbance. The resulting
regulator is: −0.973z(z − 0.97)/(z − 1)/(z − 0.33), adding a higher-frequency filter
to the previous ones. Note that the state x1 variance is reduced compared to the
model-free 0.25, as several measurements are “averaged” using the model.

Of course, the power of the Kalman filter is that the previous ideas in SISO
regulators get transparently translated into MIMO systems, via suitable vari-
ations of matrices V and W . Another elementary example will show some
ideas, and a MIMO case study will be discussed at the end of the chapter.

Example 7.6 (Sensor fusion). The Kalman observer allows improvement of the
precision of hardware sensors by implementing an optimal sensor fusion jointly
with the use of past information (via a dynamic model). The more information
sources are available, the smaller is the estimation error variance. Sensor fusion can
be carried out with sensors of different quality, at different locations and even at

11 The state variance of 0.25 = 1/22 means that this approach is essentially equiva-
lent to forgetting the model equation. In this case, with only Y = CX + W , the
variance figure can be obtained from (E.24).
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different sampling rates (for introduction to non-conventional sampling, see Section
9.4).

For example, two identical sensors for the process in the above example (Case 3)
yield a 2 × 2 L matrix, and estimated x1 state variance of: 0.08, half of than using
only one sensor.

Ce=[Ce;Ce]; [L P Z E]=dlqe(Ae,eye(2),Ce,diag([0.2 0.05]),eye(2))

The obtained regulator:

1.16652z(z − 0.9704)

(z − 0.2388)(z − 1)
0.5(ya + yb)

averages the measurements, as intuitively expected, and as measurement noise will
be less of a problem, the pole is faster than in Case 3 above, and gain is slightly
increased as well.

The Kalman filter is a powerful approach used in advanced estimation
applications in control and filtering. In some applications, Kalman estimators
are used as such, and not as an intermediate for state feedback. By means
of the Matlab� expression [KEST,L,P] = KALMAN(SYS,V,W), over a system
’SYS’ as defined by (7.14), with disturbance covariance matrices W and V ,
gives a dynamic system, ’KEST’, according to (7.15).

Matlab�: Some commands implementing algorithms related to the contents of this
section are: dlqe,destim,kalman,dkalman,kalmd.

7.2.2 Linear Quadratic Gaussian Control

It can be proved [14, 122] that in linear MIMO minimum-variance control, a
separation principle analogous to that in Section 6.2.4 does hold, in the sense
that the optimal rejection of white noise disturbances in vk and wk is achieved
by combining a Kalman observer and a LQR regulator. That is, under some
assumptions,

– linear system, exact model,
– Gaussian disturbances or deterministic known disturbances,
– quadratic optimisation indices,

the optimal control problem can be decomposed into calculating the state-
feedback LQR regulator minimising (7.3) and an optimal observer so that the
estimation error, E(xk− x̂k), is minimised.This combination is usually termed
the linear quadratic Gaussian regulator. For an infinite time optimisation
horizon, the control law is a linear state feedback and the optimal filter is
a full order linear state observer. A MIMO application is described in Case
Study 7.6.
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Note 7.7. Optimality as discussed in this section does not imply optimality
on a real plant under modelling errors [42]. The singular value plot of the
resulting regulators (see Chapter 8) will help on deciding whether the high-
frequency noise amplification and robustness to modelling errors are under
reasonable bounds or if redesign needs to be carried out (even changing the
sensor quality or location).

Design code. The LQR controller gain, K, and the Kalman observer, L, are
handled in the same way as in Chapter 6 and Example 7.5. However, there are
some additional Matlab� commands. By means of the Matlab� expression
lqgr = lqgreg(KEST,K), a dynamic system composed of an optimal filter,
’KEST’ (designed by Matlab� command kalman), followed by an LQR linear
feedback control, ’K’ (designed by Matlab� command lqr), is formed ac-
cording to u = −Kx̂ and x̂ = KEST (u, y). It is worth noting that the LQG
regulator has the same dimension as the original system, as in pole-placement.
In some cases, model reduction techniques (Section 3.10) will allow for a lower-
order controller.

7.3 Predictive Control

Predictive control [40] has become popular in industry, mainly because of the
simplicity of the required underlying models (in some cases, a non-parametric
step response approximation can be used), the ability to incorporate future
set-points and the availability of commercial software packages [106], able to
solve the optimisation problems with constraints that conform the core of
the methodology. Let us detail now the basics of one of the approaches. For
detailed reference and alternative solutions, the reader is referred to [107, 34].
Some details and implementation issues are available in [46].

The core of the procedure lies in the ability to separate the future be-
haviour of the plant into two components:

• the behaviour to be accomplished if no input changes are applied (free
response, predictor),

• the modifications to that basic behaviour if input changes are effected
(forced response). Input changes in discrete-time control can be envisaged
as steps that the regulator should apply to correct the first behaviour if
not acceptable. In this way, calculation of the effect can be derived from
step-response experiments (or simulations).

Indeed, due to the linearity assumption, the process output can be expressed
as a sum of the output of the predictor plus the forced response. The calcula-
tion of the control actions leading to a desired output profile is the objective
of the regulator.

For simplicity and coherence with the previous framework, a state space
approach will be presented first. Afterwards, an outline of alternative method-
ologies and simplifications will be sketched.
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7.3.1 Calculating Predictions

Prediction vector, free response. Let us assume a process with p outputs
and m inputs, for which a state space model, (2.17)-(2.19), is available. If an
observer (pole-placement or Kalman filter) is in place, then an estimate of the
current plant state, x̂k, is available.

In predictive control, before calculation of the control action, uk, a predic-
tion of future output if no changes were effected is carried out, for determining
control moves if the prediction does not meet the prescribed objectives.

Let us, for simplicity, assume that the current time is k = 0, and the last
action, u−1, is kept constant. The predictions will be given by:

x̂1 = Ax̂0 + Bu−1; x̂2 = Ax̂1 + Bu−1 . . .
(

xk+1

u−1

)

=
(

A B
0 I

)(
xk

u−1

)

ŷN = Cx̂N =
(
C 0
)
(

A B
0 I

)N (
x̂0

u−1

)

(7.17)

In the algorithm implementation, predictions are usually stacked in a pre-
diction vector, from a minimum prediction horizon, N1, to a maximum one,
N2:

F (x0, u−1) =








ŷN1

ŷN1+1

...
ŷN2








(7.18)

so the dimensions of F are (N2 − N1)p × 1.

Effect of input changes. The system response to zero initial conditions
(equilibrium) and a change in input is, actually, the step response. Of course,
for additional input changes in future instants, the overall effect will be
the sum of the step responses suitably scaled and delayed, resulting in a
convolution-like formula:

If {Sk} = {s0, s1, s2, . . . } is the step response of the process under con-
sideration, the response to an input change of amplitude ∆u0 is ∆u0 · {Sk}.
If, in sample k = 1, a further input change ∆u1 is applied, the overall re-
sponse will be ∆u0{Sk} + ∆u1{Sk−1} where {Sk−1} denotes the delayed re-
sponse {0, s0, s1, s2, . . . }. In general, for a sequence of input step increments,
{∆u0,∆u1, . . . }, the response is: {Yk} =

∑k
i=0{Sk−i}∆ui.

Example 7.8. The system with step response {0, 0.2, 0.4, 0.5, 0.6, 0.6, 0.6, . . . }, sub-
ject to input {2, 2, 3, 4.5, 4.5, 4.5, . . . } has an output given by:

{0, 0.2, 0.4, 0.5, 0.6, . . . } ∗ 2 + {0, 0, 0, 0.2, 0.4, 0.5, 0.6, . . . } ∗ 1+

{0, 0, 0, 0, 0.2, 0.4, 0.5, 0.6, 0.6, 0.6, . . . } ∗ 1.5 (7.19)
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In practice, to limit the size of the summations, the number of allowed future
input moves is usually limited to a user-defined control horizon, NU .

As shown in the next examples, using the same stacking as in (7.18), the
forced response can be expressed in matrix form as:

Y = G∆U (7.20)

Example 7.9. Check that the output of the system in the last example subject to
arbitrary step input changes, ∆uk, can be expressed by:










y1

y2

y3

y4

...










=










0.2 0 0 0
0.4 0.2 0 0
0.5 0.4 0.2 0
0.6 0.5 0.4 0.2
...

...
...

...
















∆u0

∆u1

∆u2

∆u3







MIMO systems. In multivariable systems, each of the terms sk is a matrix
whose element sk(i, j) is the response at time k for output i, when a step is
applied to input j, and yk, uk are column vectors.

With that notation, the response equation can be also expressed as:







y1

y2

y3

...








=








s1 0 0 0
s2 s1 0 0
s3 s2 s1 0
...

...
...

...














∆u0

∆u1

∆u2

∆u3





 (7.21)

Where the matrix dimensions are (p (N2−N1))×(mNU). These matrices are
usually set up by a computer. They have a close relationship to the Haenkel
parameters in (2.61).

Example 7.10. Let us consider the Wood and Berry distillation column [128], with
an approximate model, scaled in engineering units [46], given by:

(
XD(s)
XB(s)

)

=

(
2.56e−s

16.7s+1
−5.67e−3s

21s+1
1.32e−7s

10.9s+1
−5.82e−3s

14.4s+1

)(
FR(s)
FS(s)

)

+

(
38e−8s

14.9s+1
49e−7s

13.2s+1

)

F (s) (7.22)

where XD and XB refer to distillate and bottom concentrations of a volatile com-
pound, FR and FS are the reflux and steam flows, F refers to inflow disturbances.
Time units are in minutes.

To set up a predictive controller, a constant-input predictor, (7.17), should be
set up (obtaining the current state via an observer). Then, for NU = 3, N1 = 4 and
N2 = 7, the prediction equation would be completed by the step response matrix12.
Discretising the response at Ts = 1 min, the result is given by:

12 To keep matrix dimensions small, the values of the design parameters are not
following the design guidelines to be later discussed.
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0.29 0 0 0 0 0
0 0 0 0 0 0

0.42 0 0.29 0 0 0
−0.26 −0.39 0 0 0 0
0.55 0 0.42 0 0.29 0
−0.52 −0.75 −0.26 −0.39 0 0
0.66 0 0.55 0 0.42 0
−0.75 −1.09 −0.52 −0.75 −0.26 −0.39
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(7.23)

Superposition. Finally, The overall prediction equation is the addition of
the predictor and the to-be-calculated forced response:

Y = G∆U + F (x0, u−1) (7.24)

7.3.2 Objective Function

The objective function in predictive control is (assuming current sample is
k = 0) a least squares criterion:

J =
N2∑

k=N1

eT
k Qek +

NU−1∑

k=0

∆uT
k R∆uk (7.25)

where ek is the vector of loop errors (so eT
k Qek is a weighted norm of the error)

and ∆uk is a vector with the control moves on each manipulated variable. The
errors are calculated as

ek = yk − rk

where rk is a sequence of vectors formed with future references to be tracked
by each of the controlled process variables.

It is similar to the LQR cost (7.3), but incorporates future set-points
and penalises the control moves instead of the actual control actions13. Note
also that only a limited number of control moves, NU , is allowed to achieve
the control objective. For example, NU = 1 produces something similar to
“steady-state control” where a single step is calculated to provide average zero
deviation during the prediction window (closely related to DC gain if N2 is
big enough).

The approximate interpretation of the index parameters is:

• Q, R are (usually diagonal) matrices weighting individual outputs and
control moves. Their meaning is similar to those in the discrete LQR index,
(7.3),

13 To pose a similar problem in an LQR set-up, it is only needed to add an inte-
grator at the plant inputs and design a controller for the augmented plant, with
straightforward weight modifications.
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• N1: minimum time elapsed until reduced error is desired. Usual value is 1
or the plant’s dead time, if any. If the plant is non-minimum-phase, this
parameter allows elimination of the first samples of inverse response from
the control objectives14,

• N2: the future time over which the predictions are evaluated. Usual value
is around the desired closed-loop settling time (with a correctly chosen
sampling time, N2 should range between 15–40 samples),

• NU is the number of input moves considered in the calculation. Usually, it
may range from 1 to 0.2-0.3 times N2. The lower its value is, the smoother
the resulting controllers are (if NU is greater than the plant order, with
reduced R the predictive controller computes nearly minimum-time con-
trollers).

Solution. The unconstrained solution to the optimisation is:

∆U = (GT Q∗G + R∗)−1GT Q∗(w − F (x0, u−1)) (7.26)

where:

• G and F are obtained from the process model (7.24) and estimated state,
• Q∗ is a block-diagonal square matrix with size p(N2 −N1 + 1), each block

being built by matrix Q in the cost index,
• R∗ is a square matrix (size mNU), formed by block-diagonal stacking of

R,
• w is the vector of future set-points, arranged in the same way as the

outputs are in (7.18).

Receding horizon policy. Only the first of the optimal actions is applied
to the plant. At the next sampling instant, recalculation of a whole batch of
control moves is done based on new state estimations, the subsequent predic-
tions and future references15. This is called receding-horizon optimisation, as
the cost index acts like a window on the near future, displaced as time goes
on: uk+1 with the information at time k will not be the same as uk+1 with
the information available at time k + 1.

7.3.3 Constraints

If the unconstrained solution (7.26) is directly implemented, with constant
set-points, the resulting regulator can be cast into a state feedback form (all
future predictions depend on current state so ∆u will depend linearly on it:
∆uk = −Kx̂k). With non-constant references, the result is a two degree of
14 See Section 8.3.2 for limitations regarding required speed of response in non-

minimum-phase plants
15 For computational reasons, only the first move is actually calculated, if possible,

as the rest of them are not going to be applied.
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freedom controller ∆uk = −Kx̂k+Lρk, where ρk is a vector of future set-point
values16.

However, the practical interest of predictive control lies in the possibility
of constrained optimisation that many commercial solutions allow: efficient
operation of a process often compels operating points lying near technological
limits (process constraints).

Constraints may be specified as hard (bounds whose violation is not tol-
erated at any time) or soft (bounds that, under certain circumstances, can
be violated but incur substantial cost penalties – the cost function becomes
non-quadratic but still convex).

Usual constraints are:

• bounds for manipulated variables, u, and process outputs, y,
• slew-rate saturation in actuators,
• forcing monotonic behaviour in outputs,
• overshoot constraints.

A general explicit solution like (7.26) does not exist in the presence of
constraints, and usually numeric optimisation algorithms are used, such as
quadratic programming (QP), ellipsoid methods, etc. The use of generic non-
linear optimisation routines allows for non-linear models to be used17 [8].
For further detail on constrained predictive control calculation, the reader is
referred to [90, 130] and the already-mentioned books and reviews.

7.3.4 Disturbance rejection

Note that, in vector F , the effect of disturbances is accounted for if the state
space representation of the plant is augmented to include their partially de-
terministic behaviour (Table 2.2). The most usual disturbance model is a
constant, dk+1 = dk.

To implement feedforward total rejection of measurable disturbances, their
effect into the process state must be known, integrating deterministic, random,
measurable and unmeasurable disturbances into a Kalman filter setup for a
suitably augmented plant. However, the availability of complex disturbance
models is uncommon, and MIMO plant augmentation may be cumbersome.
So, some simplified approaches are used in commercial controllers.
16 The optimisation has also the beneficial side-effect of smoothing the reference tra-

jectories in some processes, by taking into account the control action limitations
in the cost index.

17 Although its complexity hinders real-time implementation in many cases, non-
linear models can be used for prediction and then a linearisation around the
trajectory can be used to generate the control actions. Those actions can be
further refined by taking new linearisations, in an iterative set-up.
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Simplifications

The most usual simplification (assuming a constant disturbance) is, by know-
ing the approximate step response ({0, g1, . . . , gN , gN}, with settling time N
and DC gain gN ) to carry out the predictions as:

yk = gNuk−n + gn−1∆uk−(n−1) + · · · + g1∆uk−1 + dk

or, by using a finite approximation to the impulse response (increments of
step response hi = gi − gi−1) and absolute values of manipulated variable:

yk = h1uk−1 + · · · + hNuk−N + dk

so that the disturbance, dk, can be estimated from input/output measure-
ments at instant k:

dk ≈ yk − (gNuk−n + gn−1∆uk−(n−1) + · · · + g1∆uk−1)

The prediction vector is calculated by using the same equations for future
yk+p, assuming dk will be constant in future samples (i.e., dk+p = dk).

In multivariable predictors, each of the gk is a matrix where gk (i,j) is the
k-th term of the step response in input j of output i, and dk is a column
vector.

Remark 7.11. With these simplifying assumptions, step-response experiments
are the only experiments needed to put into operation a centralised multi-
variable predictive control. This is particularly appealing and many industrial
implementations are based on variations of this scheme. Some other simplifi-
cations are also widely used. The interested reader is referred to the previously
cited references for detailed development, examples and applications.

7.4 A Generalised Optimal Disturbance-rejection
Problem

Problem statement. In Section 4.5.3, it was shown that many open-loop,
closed-loop, 2-DoF and disturbance-rejection tasks can be depicted in block-
diagram form as a lower linear fractional transformation (a generalised inter-
connection, discussed in Section 2.7.2). Figure 4.1 is here repeated as Figure
7.2 for convenience.
Under that framework, the global closed-loop transfer matrix has the set-point
commands and disturbances as inputs, and the errors (deviations) of a set of
controlled variables as outputs. The generalised plant becomes:

(
deviations

controller input

)

=
(

P11 P12

P21 P22

)(
set-pt. and dist.

u

)

(7.27)
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Generalised
Plant

Control
System

Disturbances,
set-point commands

Deviations in controlled
variables, actuators

Available measurements
(output and disturbance sensors,

set-point commands)

Manipulated variables
(actuators)

Figure 7.2. A general configuration of a control loop

where Pij are themselves transfer function matrices expressing the process
model, the interconnection structure and some frequency weights expressing
control specifications (see later).

The closed-loop transfer matrix depends on the generalised plant, P , and
the controller, K. A good controller is one that makes the closed-loop transfer
matrix (2.53) small. Note that for different generalised plants, a number of
control problems can be considered, as examples in Section 4.5.3 show.

The objective of optimisation-based solutions to the above problem is clear:
it is to make the closed-loop transfer matrix the smallest possible.

Of course, a precise meaning for “small” depends on the used system norm
(Appendix C).

The solution. In the 1980s, a solution [44] for some optimal control problems
in the above framework was found. It encompassed, among others, the LQG
paradigm presented in previous sections.

In particular, a state space solution exists for the case of minimising the
∞-norm, (3.38), and the 2-norm of the closed-loop transfer function matrix18.

From a user’s point of view, there may be some confusion regarding which
norm should be selected. The next chapter and Appendix F, in particular
Remark F.1, will clarify the question. For the moment being:

• H2 optimal control is the generalisation of the LQR + Kalman filter into
the LFT framework, admitting frequency weights. It regards minimising
the variance subject to white-noise input,

• the H∞ optimal regulator has deep connections with robustness to mod-
elling errors so it is the recommended choice when combining performance-
robustness trade-off criteria.

The resulting controller order is equal to that of the generalised plant. How-
ever, the H∞-regulator state space realisation, (A,B,C,D), is not inter-
pretable as an observer + state feedback in a general case, but as an observer
plus a “worst-case” term [119, 133].

The details of the solution require a mathematical development out of the
scope of this work and, anyway, it is not needed for grasping the fundamen-
tal ideas regarding its application to engineering problems, thinking of them
18 Theoretical developments in the 1990s also consider some cases of the 1-norm

[113].
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as a general framework where the now-classical LQR and LQG approaches
can be embedded, with a similar interpretation regarding basic features. The
interested reader can consult [133] for an in-depth analysis. Some solutions
are implemented in the Robust Control Toolbox and µ-Synthesis Toolbox of
Matlab� , so they can be used by a practising engineer.

For the control problems in the framework under discussion to be well-
posed, some of the outputs of the generalised plant must be the control actions :
if no restrictions on the size of the control actions were put in place, the
“optimal” regulators would have infinite gain: the block-diagrams in Section
4.5.3 have to be slightly modified (see below).

7.4.1 Design Guidelines: Frequency Weights

The examples in Section 2.7.2 illustrate the block-diagram operations for ob-
taining the generalised plant in some frequent cases. However, a key issue
for applicability is being able to introduce engineering specifications (settling
time, bandwidth, etc.) in this framework. This is done by means of “weights”
in the generalised plant, generalising the state and input weights (Q, R) in
LQR control and the disturbance sizes (V , W ) in Kalman filtering. Those
weights may be full transfer function matrices and its behaviour on all fre-
quencies must be designed. Let us discuss that issue.

In the design of feedback control systems there are, in many occasions,
conflicting requirements. For example, the fast detection of process noise vs.
the insensitivity to measurement noise, as discussed on page 173. Another
conflicting requirement is the need for limited control activity (due to satu-
ration and finite actuator bandwidth) vs. the desire for fast, tight control of
the outputs.

Fortunately, some of these requirements may be thought of as applying to
different frequency bands:

• usually, the control objectives refer to low-frequency signal components,
as high-frequency ones are assumed to be wide-band measurement noise.
Control must act at low frequencies and filtering must concentrate on
higher ones,

• tight control is desired at frequencies dominated by the disturbance effects
(usually low-frequency process noise) and, on the other hand, a reasonable
limitation on high-frequency actuator activity is desired (i.e., the loop
should be “opened” at high frequencies).

Based on these ideas, sensible frequency weights to the different exogenous
inputs and outputs of the generalised plant can be designed to pose meaningful
control problems in practice. The basic building blocks are the low-pass, high-
pass and band-pass filters described in Appendix A.2.2.

The following examples will show the fundamentals of the procedure. Full
details on weight selection and design methodologies can be consulted in [119].
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Example 7.12. The disturbance-rejection problem in example 4.4 will now be en-
hanced to include a requirement of small errors at lower frequencies, including a
low-pass filter We, amplifying the lower frequencies to make them more significant,
as well as a limitation, ρ, on the control activity. Figure 7.3 shows the block-diagram,
detailing the generalised plant structure, leading to the equation:

(
errorsh×1

sensors

)

=




0 ρ

We WeG
I G




(

d
u

)

(7.28)

where h = m + p is the total number of inputs + outputs.

Generalised
Plant

Control
System

G

d e+

+

ρ

We

Figure 7.3. Weighted closed-loop disturbance rejection

A possible transfer matrix for We is a diagonal one with low-pass filters in it,
such as:

We = diag

(
qi

1
λi

s + 1

)

where a larger qi forces the low-frequency errors in output yi to be smaller, and λi is a
target “bandwidth” in which disturbance rejection should be effective in each output
(the weight generalises the Q matrix in LQG cost (7.13)). Input weight ρ can be a
diagonal matrix specifying different penalisation for each of the available actuators,
equivalent to the R matrix in (7.13). If ρ is a high-pass diagonal transfer matrix, it
will force control activity at high frequency to be smaller. So, the selection of qi, λi

and ρi will translate the engineering requirements into the optimisation framework.
The case study at the end of this chapter presents an example of weight selection
in a distillation process.

The generalised plant framework is a recasting (in block-diagram and LFT
language) of the optimisation problems in Sections 7.1 and 7.2 (stationary
case). The greater generality of the approach now discussed is due to:

• the ability to incorporate feedback and feedforward (and mixed two degree
of freedom cases) control in a unified framework,

• The ability to specify desired loop behaviour in frequency response, gener-
alising classical frequency-response design (Bode diagrams, lead-lag com-
pensators,. . . ),
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• the ability to chose which transfer matrix norm has to be minimised by
feedback (least squares LQG is a particular case of a 2-norm minimisation
problem), and its relationship to robustness to modelling errors (see next
chapter).

Frequency weights can be inserted into the generalised plant or, to separate
information flow and interconnection from control specifications, set up so that
if P is the unweighted plant, the weighted one is:

Pw = WOPWI (7.29)

where WO are the weights penalising size of the generalised outputs, and
WI are weights denoting the relative size of the generalised inputs (set-
points, disturbances, measurement noise). WO and WI are usually set up
as diagonal transfer matrices, its lower components being equal to 1 (the
actual input/output signals connected to the controller must be, of course,
unweighted). An example of this approach is later detailed in the case study.

Remark 7.13. As the resulting regulator order is equal to that of the gener-
alised plant, high-order weights result in a high-order regulator19. Care must
be taken with round-off errors in discretised implementations (see Example
9.1) [73].

The problem, as stated now, does not consider modelling errors, so the result-
ing design refers to the so-called nominal performance.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: lftf,h2lqg,dh2lqg,hinf,dhinf,hinfsyn,h2syn.

Mixed sensitivity. Let us correctly pose the closed-loop disturbance rejec-
tion problem whose generalised plant was set up in (7.28). The partitioning
of the generalised plant in (7.27) results in:

P11 =
(

0
We

)

; P12 =
(

ρ
WeG

)

; P21 = I; P22 = G

so, using (2.53), the function whose norm should be minimised is:

Fl(P,K) =
(

ρK(I − GK)−1

We(I + GK(I − GK)−1)

)

Denoting as S = I + GK(I − GK)−1 = (I − GK)(I − GK)−1 + GK(I −
GK)−1 = (I−GK)−1, i.e., the closed-loop sensitivity (Section 4.5, unweighted
19 Note that the order of a diagonal weight is the sum of orders of each transfer

function!
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transfer function (4.5) between disturbance and output), the objective is to
minimise:

‖
(

ρKS
WeS

)

‖ (7.30)

This control problem is named in the literature [119] as the mixed sensitivity
problem, where a weighted combination of the disturbance rejection perfor-
mance, S, and the transfer function from disturbance to control action, KS,
must be made small enough. The effect of the stacked term ρKS is beneficial
regarding robustness to modelling errors, and necessary for the problem to be
well-posed and meaningful in practice.

7.5 Summary and Key Issues

Optimisation-based control is an appealing approach, as it obtains the “op-
timal” controller on a particular setting. The issue is how to translate engi-
neering specifications into a single cost index to be minimised.

The signal-based approach (LQG) optimal disturbance rejection requires
disturbance models that are difficult to obtain in practice.

The frequency-based approach (norm optimisation) uses as disturbance
models some frequency weights approximating the disturbance spectrum, if
known, and control specifications are also translated as some prototypical
filters.

Once a first controller is obtained, fine-tuning it and changing the design
parameters is easier than in the pole-placement framework. Some trial and
error is carried out to balance disturbance rejection, settling time and actu-
ator usage. These issues are closer to MIMO practical requirements than the
abstract concept of “pole”.

7.6 Case Study: Distillation Column

Let us consider the Wood and Berry distillation column [128], with an ap-
proximate model given in (7.22), where XD and XB refer to distillate and
bottom concentrations of a volatile compound, FR and FS are the reflux and
steam flows and F refers to inflow disturbances and time units are in minutes.

Let us compare the LQG and optimal disturbance rejection with gener-
alised plant set-ups, solved using Matlab� toolboxes. Furthermore, in the
next chapter, the standard mixed-sensitivity procedure is pursued for this
plant on page 247, in the context of robustness analysis.

Design 1: Discrete LQG Approach

The model is built by forming the suitable transfer matrix and setting up the
delays (ioDelayMatrix) in Matlab� language, then discretising (c2d) and
incorporating the delays into the state space representation (delay2z):
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s=tf(’s’); Ts=1; g11=2.56/(16.7*s+1); ...

g=[g11 g12;g21 g22];g.ioDelayMatrix=[1 3;7 3];gz=c2d(g,1,’zoh’);
gzss=ss(gz); sys=delay2z(gzss);

rendering a 14-state realisation (no approximation is needed as the delay is a
multiple of the sampling period).

Then, integral action is added so no steady-state offset occurs. Fictitious
input disturbances are used to augment the state matrix, according to expres-
sions in Table 2.2:

Abig=[sys.a sys.b;zeros(2,14) eye(2)]; Bbig=[sys.b;zeros(2,2)];
Cbig=[sys.c zeros(2,2)];

Then, a LQR design (dlqr), weighting mainly the squared output devi-
ations, is carried out with the non-augmented system (Q = C ′C + 10−4I,
R = 0.7I):

kl=dlqr(sys.a,sys.b,sys.c’*sys.c+1e-4*eye(14),0.7*eye(2));
abs(eig(sys.a-sys.b*kl))

so the state feedback constant kl is obtained. The dominant pole is located at
z = 0.958, corresponding to about 70 minutes settling time. If the obtained re-
sponse were not satisfactory, scalings of Q and R would enable a faster/slower
loop or reduction on deviations of a particular sensor or actuator.

Afterwards, a Kalman filter is designed, assuming a process-noise to mea-
surement ratio of 5, with the arrangement given by:

l=dlqe(Abig,eye(16),Cbig,eye(16)*5,eye(2)*1);

having a dominant pole at 0.96. As usual, faster observers would have been
obtained with increased “process noise”. If lower “variance” is designed for
the integral action states, the offset-correction dynamics can be made slower
if so wished.

To close the loop, the state feedback constant needs to be enlarged by
appending an identity matrix (to carry out cancellation of the estimated input
disturbance – Section 6.3). The closed-loop regulator (dreg(a,b,c,d,k,l))
is formed and the equations for the overall closed loop (feedback) are built
for evaluation (choosing as input the disturbance entry point after the plant).
As disturbance enters via a transfer function gdz, the resulting feedback must
be multiplied by it:

[Ac,Bc,Cc,Dc]=dreg(sysb.a,sysb.b,sysb.c,sysb.d,[kl eye(2)],l);
re=ss(Ac,Bc,Cc,Dc,1); clp=feedback(eye(2),series(re,sys));
clpd=series(gdz,clp);

The disturbance step response is plotted in Figure 7.5 on page 217. The overall
controller order is 16 (14 states + 2 disturbance integrators). The frequency
response (sigma-plot from d to (y1, y2)) appears in Figure 7.4, jointly with the
next design, for later comparison.
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Design 2: Continuous H∞ Optimisation

In this case, for the sake of comparison, a continuous design will be pursued
(so the resulting regulator must be implemented at a fast-enough sampling
rate) with the generalised plant.

The disturbance model will be also incorporated into the generalised plant.
Furthermore, a first-order Padé approximation (pade) is carried out on all
delays, and transformed to state space (ss) and transfer function (tf) repre-
sentation for later use:

gd1=38/(14.9*s+1); gd2=49/(13.2*s+1); gd=[gd1;gd2];
gd.ioDelayMatrix=[1;0];
gpss=minreal(ss(pade(g,1))); gptf=tf(gpss);
gdpss=minreal(ss(pade(gd,1))); gdptf=tf(gdpss);

Then, the generalised plant is formed. Its inputs are the disturbance, d,
measurement noises, n1, n2 (arranged in a column vector n), and the manip-
ulated plant inputs, u1, u2 (vector u). Its outputs will be the plant outputs,
y = (y1, y2)T , the plant inputs, u (limitations on its size are needed for well-
posedness), and the measurement-noise contaminated output, m1 and m2 (to
be used as controller input, as vector m). So, it will total six outputs and five
inputs: 


y
u
m



 =




Gd 0 G
0 0 I

Gd I G








d
n
u



 (7.31)

and the Matlab� syntax to build it is, for example:

GenPlNoWeight= [gdptf zeros(2,2) gptf;zeros(2,1) zeros(2,2)
eye(2);gdptf eye(2) gptf];

Weights. Some frequency-dependent weights must be set up to include the
control specifications, so the generalised plant to be feeded to the optimiser
will have the form Pw = WOPWI in (7.29).

Regarding WO, it will be built as a diagonal matrix, consisting of: true
output weights (on y), control action weights (on u) and identity (on m, the
signal to be used for closing the loop).

The plant output (first generalised output) size will be penalised by a low-
pass diagonal weight (large penalty for deviations at low frequencies, lower
penalty for deviations at higher frequencies). Input size (second generalised
output) will be penalised by multiplying it by a constant diagonal matrix.

Regarding WI , the sizes of d and n will be left the same, as significant mea-
surement errors are expected in chemical sensors20. This is the “equivalent”
20 Realising that σ(Gd) ≈ 1 at about 5 rad/s amounts to specifying that, above

that frequency, sensor errors would be bigger in size to the disturbance-induced
deviations trying to be rejected, so WI acts as a request for the loop to be opened
from 5 rad/s onwards.
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of deciding a size on the measurement and process noise variances in Kalman
filtering. If another signal-to-noise ratio is estimated, a different WI can be
set up, of course. In this case, WI will be the 5 × 5 identity (d is dimension
1, n is dimension 2 and u (always weighted by 1) is dimension 2). So, the
weighted plant is formed with the following code:

wu=[8 0;0 8]; wy=[50/(100*s+1) 0;0 50/(100*s+1)];

wo=[wy zeros(2,4);zeros(2,2) wu zeros(2,2);zeros(2,4) eye(2)];

wi=eye(5); GenPlWeighted= wo*GenPlNoWeight*wi;

Calling the optimiser hinf(plant,nmeasures,ncontrollers,...) (using
the last two plant outputs, m, and the last two inputs, u, plus some search lim-
its and tolerances, etc. For detail, see the help in Matlab� command prompt.
The regulator k2 is formed, in state space and transfer function form21. It has
order 11:

P2ss=minreal(ss(GenPlWeighted));

Psm=pck(P2ss.a,P2ss.b,P2ss.c,P2ss.d);

[k cl gamf]=hinfsyn(Psm,2,2,0.05,150,0.005);

[at,bt,ct,dt]=unpck(k);

k2ss=ss(at,bt,ct,dt); k2tf=tf(k2ss);

so the closed loop can now be formed and its behaviour analysed. The con-
troller feedback connection (LFT) is done with the unweighted plant:

clnwdesigned=minreal(lft(GenPlNoWeight,k2tf));

The step responses to a disturbance d and the maximum singular value (worst-
case amplification) as a function of frequency are depicted in Figures 7.5 and
7.4 respectively, for both LQR and H∞ designs:

figure(1),step(clpd,clnwdesigned([1 2],1));
figure(2)
sigma(clnwdesigned([1 2],1),clpd,GenPlNoWeight([1 2],1))

Outputs 1 and 2 from the generalised plant are the true plant outputs22.
The unweighted open-loop plant response to the disturbances is also plotted
to help in comparing what controllers have achieved (adding the step and
sigma-plot of gd).

Both designs behave in a similar way. Note that control is effective below
0.2 rad/s (the achieved control bandwidth). If flow disturbances have signif-
icant components beyond that frequency, the controllers will amplify their
effect (waterbed effect, see page 225). That fact might be important in prac-
tical implementation.

Of course, by suitably modifying the design parameters (weights, etc.),
more “aggressive” regulators can be pursued. The issue now is how tolerant
21 The commands pck and unpck carry out irrelevant housekeeping regarding com-

patibility between Matlab� 5.3 and older versions.
22 Outputs 3 and 4 are the plant inputs (control actions) and they have not been

plotted, although they can be if so wished.
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to modelling errors those designs are, and which is the quality of the original
model with respect to the real plant. This is the topic to be discussed in next
chapter.

Remark 7.14. The sensitivity, S = (I + GK)−1, is the closed-loop transfer
matrix assuming unweighted disturbances affecting both output channels. It
can be formed and plotted (left to the reader) with:

sens=minreal(feedback(-eye(2),series(k2ss,gpss)));sigma(sens)

The result is surprising at first glance, as the maximum singular value is
around 1 at all frequencies: there is one direction in which strong disturbance
attenuation does occur (associated with the minimum singular value) and
no attenuation is pursued at all in the orthogonal direction. That happens
because the disturbance transfer matrix has rank one (only one source of
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disturbance). If disturbance attenuation is sought in “all directions”, a full-
rank disturbance model must be used (see the mixed-sensitivity design in page
247).

Order reduction. The eleventh-order regulator can be reduced without sig-
nificant degradation of its response. This is common practice in the norm-
optimisation framework as weights can add up significant order to the result-
ing controller.

A balanced realisation, k2ssb, in decreasing order of observability (= con-
trollability) is obtained by:

[k2ssb g T Ti]=balreal(k2ss);

where additional outputs are g (controllability–observability singular values)
and the balancing transformation, T, and its inverse, Ti.

Afterwards, some states can be eliminated. Simulation shows that, deleting
the last seven states, a fourth-order regulator can be obtained without visible
differences in closed-loop step and frequency response. The following code
carries out the reduction:

k2ssred=modred(k2ssb,[5 6 7 8 9 10 11]);

and the final regulator transfer function matrix is:

k11 = 0.013885(s + 10.92)(s + 1.317)(s − 0.4273)(s − 0.1462)
(s+0.007945)(s+0.003293)(s2+5.114s+10.48)

k21 = −0.040685(s+37.94)(s+0.5355)(s−0.4114)(s+0.05037)
(s+0.007945)(s+0.003293)(s2+5.114s+10.48)

k12 = −0.027318(s+34.25)(s+1.048)(s−0.2045)(s+0.09384)
(s+0.007945)(s+0.003293)(s2+5.114s+10.48)

k22 = 0.011265(s+1020)(s+0.6233)(s2+0.1179s+0.003607)
(s+0.007945)(s+0.003293)(s2+5.114s+10.48)

(7.32)
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Designing for Robustness

In this chapter, an introduction to the fundamental concepts of robust control
design is presented at an intuitive, introductory level. The reader must be
aware that, by dealing with models, a representation inaccuracy is always
present and the control system design must cope with the wider possible
range of actual systems.

Although some qualitative facts about robustness and frequency-response
SISO robustness were known in the 1940s [29], the advent of pole-placement
SISO techniques [47] and “optimal” control in the 1960s disregarded robust-
ness. However, optimal controllers were shown in the 1970s to be sensitive to
arbitrarily small modelling errors in some circumstances [42]. In the 1980s a
generalised theory of linear feedback control robustness allowing analysis and
synthesis reached maturity [131, 43, 44, 86]. Some of the basic ideas will be
discussed in this chapter.

8.1 The Downside of Model-based Control

Model-based control design immediately poses a question to the designer: how
sensitive is the design to modelling errors? The issues related to this are the
subject of this chapter.

The dependence on model quality needs to be analysed in any engineering
optimisation problem. In fact, it applies to a wide variety of problems in
which an “agent” interacts with an “environment”: the more specialised an
agent is to a particular environment, the worse its behaviour can be when the
environment experiences some change.

The point is: optimisation in practice needs additional considerations to
those of model-based optimisation. The more complex a model is, the more
the practical success of optimisations based on it depend on the accuracy of
its parameters.

In uncertain environments, there are “risk management” decisions con-
cerning a compromise between increasing expected performance vs. decreasing
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sensitivity to unpredictable changes. This applies to control design, produc-
tion scheduling, portfolio management, etc.

The “best controller” would be the one that, gathering information from
the environment, can adapt its strategy to changes in it. This is the basic
idea behind adaptive control [22]. Although there are significant theoretical
developments, its large-scale implementation in MIMO industrial processes
is far from being common, as many underlying assumptions are difficult to
verify. There are also wind-up problems with saturations and actuator and
sensor faults.

In industrial applications, sometimes a controller is put in place and, af-
ter gathering information from its closed-loop behaviour, the model can be
updated and a new controller redesigned. This approach is named iterative
identification and control, and some basic ideas on it are outlined later on.

8.1.1 Sources of Uncertainty in Control

Achieving good plant performance in the face of uncertainty is one of the
objectives of control. The sources of uncertainty are twofold.

Unmeasurable perturbations. They produce output deviations. With a
controller in place, the achieved deviations must be below a user-defined
bound.

Modelling errors. They can be also divided in three categories:

• parameter uncertainty, originated by uncertainty in physical parameters.
An example is an interval-uncertain plant described by k/(τs + 1), k ∈
[0.7, 0.9], τ ∈ [1, 1.5]. Parameter uncertainty may be accommodated with
high-gain regulators in some cases,

• unmodelled dynamics (neglected delays and fast time constants): the order
of real plants is infinite (partial differential equations) and lumped param-
eter models are only approximations. These approximations are intention-
ally made in many cases, to keep the problem tractable. For example:
– multi-loop control (Section 5.2) disregards the non-diagonal terms in

tuning of each loop. The cross-coupling is a modelling error that should
be suitably withstood,

– low-order models are often used to avoid modelling cost. For example,
modelling a distillation column with experimental first-order + delay
models, instead of a detailed one based on thermodynamics, etc.

• non-linearity: linear regulators must be at least robust to smooth non-
linearities on the process. In fact, practical requirements often require suit-
able behaviour in the face of non-smooth non-linearities such as hysteresis
or backlash (mainly with valves and other mechanical actuators).

Note that modelling errors can change with time, due to plant aging or com-
ponent replacement: significant modelling errors need to be considered (in the
future) irrespective of the initial effort devoted to modelling.
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8.1.2 Objectives of Robust Control Methodologies

Given the significant practical importance of uncertainty, there is a need for
studying the sensitivity of control systems to it, and ample research in that
direction has been carried out in the last 30 years.

The objective of robust control is to be able to design controllers that
achieve a desired level of performance and, furthermore, they can cope with a
collection of uncertainty structures (with particular “sizes”) specified by the
designer. A usual approach is to try to maximise the tolerated uncertainty
bounds. The detailed analysis of these issues is not under the scope of the
book, and a full course can be devoted to this. However, the theory developed
in the 1980s has significant practical implications.

The methodologies are based on a formal description of the control prob-
lem where the stability and performance objectives must be fulfilled for any
plant, G, belonging to a family G. The family of plants may be described by
parameter variations, as bounds in frequency response, etc.

Two problems are the core of robust control techniques:

• analysis. Determining if a regulator, designed with any methodology, will
withstand a known modelling error structure and size, in terms of:
– robust stability (RS): excluding the possibility of an unstable closed

loop for the available modelling error estimation,
– robust performance (RP): asserting that the performance objectives

will be fulfilled for any plant in the uncertain family,
• synthesis. Determining a regulator that maximises tolerable modelling

error for a given performance level or, conversely, determining the maxi-
mum performance level for a given modelling error description.

After a first analysis of the problem from an “intuitive” point of view,
some ideas on linear robust control will be briefly outlined from Section 8.5
onwards. Additional information can be found in Appendix F.

8.2 Uncertainty and Feedback

Feedback is needed to solve the problem of achieving design specifications in
spite of modelling errors and perturbations: engineers calculate an “optimal”
nominal set-point for the plant’s actuators but then the variables deviate from
their prescribed settings so sensors and feedback control are put in place.
There is the need to guarantee that the controller will behave acceptably in
an uncertain environment.

A very good controller would be one achieving significant reduction of the
effect of disturbances on the plant’s outputs, suitable filtering of sensor noise
and fast tracking of set-point changes.

These criteria are subject to the requirement of “optimal” efficiency in
terms of power consumption or minimal actuator activity. Furthermore, the
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specifications must be achieved even if the actual plant undergoes significant
changes with respect of the one initially modelled.

Of course, the combined fulfillment of all the previous criteria is difficult.
Note that to achieve maximum efficiency and throughput, industrial plants
should operate near their technological limits. However, to improve tolerance
to modelling errors and big disturbances, and to increase the reliability of the
overall process, system operation must be reasonably away from the techno-
logical limits: uncertainty limits achievable performance.

Note that modelling error has two faces (Example 1.4 on page 13, [118]):

• small modelling errors (negligible differences in open-loop responses) can
lead to arbitrarily big differences in closed-loop performance,

• big modelling errors (quantified by the differences in open-loop response)
can be mitigated by feedback.

So, there is a need to formalise which modelling errors can be mitigated by
feedback and which ones cannot.

8.2.1 Model Validity Range

Models are usually obtained either from first-principle models or from black-
box parameter adjustment procedures, or a combination of both. The “per-
fect” model does not exist, and it is only a “convenient” simulation of the
plant for a given set of signals (those used in the model-building experiments)
and goals. Hence, the validity range of a linear model is usually limited to
input signals with the following characteristics:

• signals of low amplitude (as higher-amplitude ones excite non-linearities
unaccounted for in a linearised model). Note that, however, too-low am-
plitude experiments may have a deficient signal-to-noise ratio! So, it is
important to decide on the amplitude of input signals in identification
experiments, to balance noise contamination and non-linearity excitation.

• signals of low frequency, for three reasons:
– The model is often validated with step-response comparison,
– even if experiments with higher frequencies have been carried out (such

as empirical Bode diagram fitting), the signal-to-noise ratio of the ex-
periment degrades as the plant’s response decreases with increasing
frequency. Sensor bandwidth issues come also into consideration,

– to properly fit all data in an experiment, a high-order model might
be needed but maybe that model is capturing spurious artifacts due
to noise: increasing the number of parameters of a model does not al-
ways entail a better quality of its results. Simplified models are usually
calculated for control design.

These limitations in model validity directly translate to limitations in con-
troller performance, to ensure that closed-loop simulations agree reasonably
with future experiments on the “real” plant, and that plant variations in time
will be consistently tolerated.
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8.2.2 High Gain Limitations

There is a fundamental difference between parametric uncertainty and uncer-
tainty coming from unmodelled dynamics. Let us consider the feedback loop
in Figure 1.3 on page 10, with Equations (1.3).

A preliminary analysis of its sensitivity to error in the SISO case was
given by (1.5). Broadly speaking, many cases of parametric uncertainty can
be dealt with by using high-gain controllers. Random disturbances can also be
cancelled by high-gain feedback because the sensitivity (4.5) tends to zero as K
gets larger. Some non-linearities can be cancelled, too, by high-gain feedback
(for example, integral action, with high-gain at zero frequency, cancels static
non-linearities).

However, there is a catch: unmodelled dynamics usually imply gain limi-
tations (see Section F.1), and there is always some amount of this uncertainty
in any real-world application. Furthermore, “waterbed” effects (page 225) as-
sert that lowering S in a particular frequency range increases it in another,
so decreasing sensitivity to errors in one frequency band implies increasing it
in another one.

Example 8.1. A second-order system with interval coefficients:

G(s) =
1

s2 + [−1, 4]s + [1, 10]

can be stabilised using a high-gain PD regulator, u = Kpe + Kdė, regardless of
parameter uncertainty.

Indeed, the characteristic equation for the closed loop is:

0 = NGNK + DGDK = s2 + ([−1, 4] + Kd)s + ([1, 10] + Kp)

where N and D refer to numerator and denominator. In second-order plants, positive
coefficients imply stability, so any Kp > −1, Kd > 1 will stabilise the loop.

For example, with Kd = 100, Kp = 2500 the poles have a real part lower than
−37 (settling time lower than 0.1 s) and an imaginary part with modulus lower than
7.5 (insignificant overshoot) for any parameter combination. This seems to be a good
behaviour but neglected dynamics in the process and noise filtering will make the
design unviable in practice. If the real system were:

G(s) =
1

(s2 + s + 8)(0.011s + 1)2

the proposed regulator would destabilise the loop.

Fortunately, an approximate assessment of robustness to neglected dynamics
can be carried out with the tools in Section 8.5.
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8.3 Limitations in Achievable Performance due to
Uncertainty

The objective of this section is to understand a set of basic engineering
common-sense limitations to achieving a sensible design in the face of sig-
nificant modelling errors.

At this moment, some insight can be acquired by drawing the Bode dia-
grams of all transfer functions in Example 1.4: G1 and G2 are identical at low
frequencies but differ at higher frequency ranges; on the contrary G1 and G3

are very different at low frequencies but similar at high frequency.
The diagrams lead to the following conclusion, true in a general sense in

many situations:

low-frequency uncertainty can be accommodated by intense enough
feedback; however, high-frequency uncertainty may cause severe prob-
lems with high-gain controllers.

8.3.1 Amplitude and Frequency of Actuator Commands

Limitations in control signal amplitude

Simulating the process against likely disturbances or set-point changes must
produce control commands of reduced amplitude. Otherwise, non-linearities
will be excited and the results will not match those from simulations1.
Enforcing smooth set-point transitions. To avoid high-amplitude and
abruptly-changing input signals, smooth set-point transitions are enforced
in control of complex systems (limiting the operator commands with rate-
saturation circuits or algorithms, and sequencing slow start-up and shut-down
operations). Also, abrupt set-point transitions causes great power-demand
changes that act as disturbances to the own process power sources and nearby
equipment (voltage drops, etc.) and even to the utilities’ power grids.

Of course, non-linear control design techniques are less influenced by the
amplitude constraints (with non-linear models, of course). An outline of some
possibilities is presented in Section 9.5.

Limitations in frequency

If the desired behaviour is too different to the open-loop step response, loop
signals have fast, high-frequency components for which simulations are unre-
liable: those components can make the “real” plant exhibit a very different
response to that of the models: modelling errors impose designed bandwidth
limitations. For example, Equation (5.13) entailed a bandwidth limitation in
multi-loop control.
1 The most frequent and apparent non-linearity is actuator saturation, and the

issue of saturation avoidance is key in control of unstable systems as the plant
with saturated actuators behaves similarly to open-loop step response (i.e., in an
unstable way).
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Limitations due to noise amplification

The presence of noise in the sensors when operating under realistic conditions
also limits final closed-loop performance. Even with precise, high-order mod-
els, a reduced number of sensors needs slow observers (or filters) for acceptable
filtering of measurement noise (reconstructing state vectors amounts to a kind
of numerical derivation). So, as slow dynamics is introduced, fast closed loops
cannot be achieved in that case. Not surprisingly, perhaps a simpler model
can suffice to achieve that limited performance.

Example 8.2. With one sensor of “average” quality, no more than two states (y, ẏ)
can be reconstructed in a “short” time with “reasonable” noise filtering. So, even if a
precise high-order model is available, it will not be able to squeeze out “aggressive”
performance (fast rejection of disturbances) on the real plant as the estimates of all
but two states will be too noisy.

Hence, the real improvement to be obtained when compared to using a simplified
second-order model and a PD regulator (even hand-tuned) may not be worth the
modelling effort and the greater software complexity. There will be better guarantee
of performance improvement on the real plant if a second sensor is added2.

Waterbed effects. The “optimal” shape of a regulator would have a high
gain at low frequencies (to counteract drifts, disturbances) and low gain at
high frequencies (to avoid exciting neglected dynamics and amplifying mea-
surement noise). However, an abrupt gain change is not possible with a linear
finite-order controller: high gain changes are always accompanied by consid-
erable phase delays [28]. This delay worsens robustness margins.

Developing this idea [134, 133, 119], the following result (intuitively rea-
sonable) holds: control means making the loop insensitive to disturbances and
modelling errors at certain frequencies (usually aiming for very small sensi-
tivities in the low-frequency band) at the expense of making the closed-loop
more sensitive at medium-high frequencies3. This is called the “waterbed” ef-
fect, pointed out already by Bode in the 1940s. The effect is more “intense”
for unstable and non-minimum-phase plants. An example of the waterbed re-
sult was shown in Figure 7.4 on page 217 and its discussion: the disturbance
effect was diminished by feedback up to a particular frequency and increased
at higher frequencies.

8.3.2 Unstable and Non-minimum-phase Systems

In previous chapters, the observer + state feedback framework has been intro-
duced jointly with other design techniques. At first glance, no special difficulty
2 As discussed in Chapter 5, if a clever place for it is found, it might be possible to

easily hand-tune an additional PD for it in a cascade or multi-loop arrangement.
3 It can be shown [134] that, for any feedback controller so that GK has relative

degree ≥ 2,
∫∞
0

ln | det S(jω)| dω = π
∑

Re(pi) where pi are the unstable poles.
So, small sensitivity (negative ln | det S|) must be compensated for by positive
logarithms (sensitivity greater than 1) at other frequency ranges.
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seems to arise from the presence of particular characteristics such as unsta-
bility or non-minimum phase plants, as closed-loop poles can be moved to
arbitrary positions, and input and output weights can be varied at will.

However, the apparent unimportance of this issue applies only to simu-
lation: unstable and non-minimum-phase systems are difficult to control in
practice with suitable robustness margins. There are some bounds for the
specifications that can be squeezed out from these classes of systems to guar-
antee a minimal tolerance to modelling errors and satisfactory performance in
practice. They can be derived analytically [119, 15] but only an outline with
the ideas of practical interest will be presented, based on intuitive grounds.

Unstable systems. Unstable systems are difficult to control for many prac-
tical reasons:

• experiments on them are difficult to perform, hence quality of models is
lower than in those obtained for stable processes,

• on one hand, the controller must be “aggressive” to be able to stabilise
the process but in that case it is sensitive to modelling errors; on the
other hand, a non-aggressive (low-gain) controller is unable to stabilise
the nominal plant,

• actuator saturation implies the existence of an unrecoverable space. For
example, the process ẋ = x + u, with actuator bound |u| < 1, cannot be
driven to zero if |x| > 1. For a detailed view on this aspect, see [61]. Unsta-
ble processes, even if stabilised around an operating point by a controller,
become unstable for high values of disturbances or set-point variations.

From analytical frequency-response considerations [15, 16, 119], the fol-
lowing rule of thumb is usually asserted: to control an unstable system with
acceptable robustness margins the target bandwidth must be at least double
to the unstable poles’ break-down frequency. This implies, roughly, that the
closed-loop settling time must be, at most, the time the process outputs takes
to multiply by three to four initial deviations.

Non-minimum-phase systems. For internal stability, in SISO plants, the
loop transfer function T = (I +GK)−1GK must have as zeros the RHP zeros
of the plant. This also holds in MIMO systems (see Example 5.9 on page 138),
i.e., it is impossible to avoid an initial inverted response for all outputs of an
NMP MIMO plant. However, MIMO plants have an advantage because in
most cases the NMP response can be directed with relative freedom to the
output of choice, as in the referred example.

The presence of RHP zeros in T bends upwards the frequency-response
diagram (T controls the sensitivity to relative uncertainty (F.2)), so it worsens
the robustness margins.

The rule of thumb in this case [16, 119] is to aim for a bandwidth less than
half of the RHP zero break frequency.
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Simultaneous RHP poles and zeros. Plants with both RHP poles, prhp,
and zeros, zrhp, are difficult to control as RHP zeros impose an upper band-
width (speed of response) limit and stabilisation requires a lower bandwidth
limit: if both limits are close, the robustness margins that can be achieved
are very low. Unacceptable margins may be achieved if zrhp < 6prhp. Similar
difficulties arise with simultaneous RHP poles and delay.

Example 8.3. A system with an RHP zero in +4 should not be controlled requiring
reasonable tracking of references quicker than 2 rad/s. On the other hand, a system
with an RHP pole in +5 should be controlled aiming for a bandwidth greater than
10 rad/s. A real system with both RHP components will be substantially difficult
to model and control (even if simulations work satisfactorily). A famous example is
the “unridable bicycle” in [75], discussed in this context in [16].

As mentioned, the actually achieved robustness margins with the above
mentioned “rules of thumb” for RHP poles and zeroes can be evaluated with
the techniques discussed in Section 8.5. Example 8.9 on page 239 discusses the
robustness of a pole-placement design for a process with an RHP pole close
to an RHP zero.

8.4 Trade-offs and Design Guidelines

To summarise the previous section, to ensure that closed-loop simulations
produce results similar to those to be encountered when the controller is put
into operation on the real plant (robustness), a controller design must aim
for:

• low amplitude of control increments,
• low bandwidth (limited high-frequency components in system inputs).

However, low-gain, low-bandwidth controllers cannot quickly drive the system
to the desired operating point, neither can they compensate correctly for fast-
changing disturbances. Then, an increase of robustness to non-linearity and
undermodelling implies a decrease of the sought performance objectives and
vice-versa. This is termed the performance-robustness trade-off.

8.4.1 Selection of Design Parameters in Controller Synthesis

Without resorting to robust design methodologies, some insight from the pre-
vious considerations can be applied to set up design rules in the methodologies
in previous chapters to achieve reasonably robust results.
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Pole-placement

In pole-placement techniques with stable plants, aiming for a closed-loop be-
haviour closer to that of the open loop usually results in better robustness
margins4.

Regarding observer design, increasing its speed of response entails in-
creased sensitivity of the estimated state to measurement noise (high-frequency
amplification). So, increasing observer settling time will lower high-frequency
components in the control action (filtering out noise) and hence improve ro-
bustness, at the expense of delaying detection of the process-noise (lowering
disturbance rejection performance).

The above discussion does not apply to unstable plants, as open-loop con-
trol for them is not a viable solution. Unstable plants need a minimum control
energy to be stabilised, in line with the comments in Section 8.3.2. The ro-
bust stabilisation problem is defined as obtaining the stabilising regulator that
maximises tolerance to modelling error.

Optimisation-based control

In LQR (discussed in Section 7.1), the performance-robustness tuning knob
is usually the control-action weight, R: the higher R is, the smoother and
lower bandwidth the resulting control actions are and, usually (stable plant),
robustness margins do increase as well. Of course, activity of multiple actua-
tors may be individually tuned by suitably modifying each diagonal term in
R. Furthermore, modifying matrix Q may be used to relax/enhance a desired
performance goal (for example, a particular output or state).

In observer (Kalman filter) design, in order to diminish the high-frequency
gain of the resulting controller, decreasing “process noise” variance, V , yields
a lower observer gain.

If the resulting regulator is simulated on the nominal model, the nomi-
nal output variance (model output cost) decreases as control-action weight
does so, because control becomes more vigorous and disturbances are bet-
ter cancelled. However, if tried in the real plant, increasing control energy
(decreasing ρ from starting high values) first achieves the desired output vari-
ance reduction, but there is a terminal controller so that increasing nominal
performance objectives beyond that point produces an actual reduction in
real-plant achievement. The level of terminal performance achieved depends
on the accuracy of the model used.

Norm-optimisation. There is a deep relationship between robust control
design methodologies and the LFT optimisation problems discussed in Section
7.4, so later sections in this chapter will be devoted to the issue. In principle,
penalising control actions yields more robust controllers.
4 As an extreme case, aiming to place the controller/observer poles at the exact

locations of those of the plant’s open-loop dynamics gives K = 0, L = 0 as
solutions (i.e., an open-loop controller that will never destabilise an open-loop
stable plant) for maximum stability robustness and minimal performance.
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8.4.2 Iterative Identification and Control

The issues in the previous discussion point out the need for interleaved stages
of identification and control to design regulators of increasing performance.

Indeed, on one hand, identification has a cost: setting up models, carrying
out experiments (some of them even destructive on prototypes) to determine
the model parameters, and qualified human-hours to work on model-building,
simulation and validation.

On the other hand, feedback control reduces sensitivity to uncertainty at
certain frequencies (but increases it usually at higher-frequency bands). For
example, integral action provides steady-state error-free tracking with only
knowledge of the sign of the DC gain (or, in a multivariable case, a rough
estimate of the plant’s inverse DC gain).

As feedback reduces sensitivity to errors in certain frequency ranges but
increases them in others, the identification and modelling criteria depend on
the performance objectives.

Iterative identification and control [5, 79] is a collection of techniques based
on the above ideas, exploiting the interplay between modelling, identification
and control: as more stringent controllers are put in place and the model’s
weaknesses start to surface, new identification experiments suitably tailored
try to extract information on the relevant frequency ranges critical for ro-
bustness to modelling errors. These ideas can also help in building low-order
models, as there is no need to fit certain model characteristics that will be
made irrelevant by feedback [112].

Reaching terminal performance may be caused by two generic situations:

• fundamental limitations have been hit, in particular due to actuator
saturation, sensor quality (precision, signal-to-noise ratio) or other non-
linearities. To increase performance, additional sensors and actuators
would be needed (or replacing the current ones with more precise, linear
or powerful devices),

• the model is no longer useful. To increase performance, a new model must
be obtained, preferably from the data gathered from past closed-loop ex-
periments, stressing their limitations. If limitations from non-linearity are
suspected, non-linear models and design techniques could be needed.

To summarise, in many practical control engineering problems, reach-
ing terminal performance triggers changes in instrumentation configuration
and/or plant models to further improve performance, in an iterative process
interleaved with controller design and validation stages.

8.4.3 Generalised 2-DoF Control Structure

The previous discussions on performance-robustness trade-off assert that the
“gain” on the feedback path must be limited under modelling errors. Hence,
the disturbance-rejection performance is limited by uncertainty. Note also that

TLFeBOOK



230 8 Designing for Robustness

high gain on the feedback path exacerbates the effect of measurement noise on
actuators and plant output, so it is another gain-limiting factor. The issue now
is trying to achieve the best possible performance in both set-point tracking
and disturbance rejection tasks.

Let us analyse a general control loop depicted in Figure 8.1. A set of con-
trolled outputs, z, is to be kept at a set of desired values, r, using manipulated
variables u and measurements y (in many cases coincident with some or all
variables in z). Let us first assume linearity in all equations and that the loop
is governed by:

(
z
y

)

=
(

Gz Gdz

G Gdy

)(
u
d

)

; ufb = −Kyfb;
(
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Figure 8.1. General 2-DoF controller configuration

In this case, the achieved output is:

z = Gz(I + KG)−1 (K(Fyr − Gdyd) + Fur) + Gdzd (8.1)

If measurements and controlled outputs (y ≡ z) coincide,

y = (I + GK)−1 (Gdyd + (GFu + GKFy)r) (8.2)

Let us analyse some common cases, starting from the simplest ones, de-
noting S = (I + GK)−1.

Case 1. y ≡ z and modelling error is reasonably small. In this case, a high-
gain regulator K can be designed, and feedforward can be trivial Fu = 0,
Fy = I. This situation is called error-based controller (Section 4.5), as control
actions are taken based on the deviation from a desired set-point (yff = r).
Then, (4.3) is obtained (n and du have not been included for simplicity):

y = (I + GK)−1 (Gdyd + GKr)
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If the gain is high enough5 over a wide-enough frequency band, then
the deviations from the nominal operating point, y − r, will be small (as
(I + GK)−1Gdy will be small in a reasonable range of frequencies and
(I + GK)−1GK ≈ I). So, the resulting regulator will satisfy to an accept-
able level both tracking and disturbance rejection specifications. This config-
uration is the usual one in SISO PID controller settings, and also in MIMO
decentralised and cascade configurations.

In many cases, an inaccurate model hinders gain increase, so tracking per-
formance may be unacceptable, but disturbance rejection may be satisfactory
(if disturbances are small or concentrated in a frequency range where robust-
ness constraints are not stringent; otherwise, a better model is needed).

Case 2. In the previous case, to improve steady-state tracking with less re-
quirements for integral action, steady-state calculation of Uff can be carried
out. In a linear CT case, setting up Fu = G−1(0), Fy = I, yields:

y = S
(
Gdyd + (G(s)G−1(0) + GK)r

)

so, in steady-state, with a constant disturbance dss:

y = (I + G(0)K(0))−1 (Gdy(0)dss + (I + G(0)K(0))r) = r + SGD(0)dss

Hence, integral action is not needed for tracking tasks. Some industrial PIDs
have this option or a more limited version that provides a user-defined constant
uff (see later in this section).

Case 3: 2-DoF set-up. If feedback gain needs to be limited, and z ≡ y, and
accurate tracking is desired, the procedure is the following:

1. Design a feedback controller optimising disturbance rejection perfor-
mance, with reasonable robustness.

2. State a desired reference model for set-point changes, M(s). Use Fu =
G−1M , Fy = M , as in open-loop tracking (see Section 4.6.2).

Then, output will be given by:

y = S
(
Gdyd + (GG−1M + GKM)r

)

= S(Gdyd + (I + GK)Mr) = SGDY d + Mr (8.3)

so feedforward achieves the reference model, M , irrespective of the actual
value of K (if model G is accurate enough). The input to the controller K,
under exact modelling assumptions, can be shown to be:

yfb = y − Mr = SGdyd

so feedback only acts on disturbance-rejection tasks. Of course, any modelling
error makes the above equations inaccurate, so the feedback regulator K acts
to compensate for both disturbances and modelling errors.

This set-up has two key advantages:
5 For example, infinite at DC frequency by adding integrators.
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• disturbance-rejection and tracking design can be done independently,
• the system inversion in Fu (determining the control actions that would

yield the desired response if model is approximately correct) can actually
be carried out on a more complex (even non-linear) model if available
(in some cases), thus diminishing the strength of feedback in significantly
non-linear loops (for tracking tasks).

Case 4: Generalised-plant framework. The generalised-plant framework
allows norm-optimisation of the (disturbance, set-points) to (controlled out-
puts) transfer function matrix via designing a controller based on a mea-
surement vector including any known set-point or disturbance. With suitable
weights defining the specifications, optimisation-based 2-DoF design for z �= y
can be carried out, so optimal disturbance-rejection and tracking design are
carried out simultaneously. This set-up is more general than the ones consid-
ered before. The problem under consideration would be cast as:
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where e = z − r is the loop error to be minimised, in dm = Hd, H is the
identity or a submatrix of it, denoting which perturbations in the full vector d
are actually measurable in dm, available as controller inputs. If the perturba-
tion sensor had significant dynamics, matrix H should change accordingly to
incorporate it. Inputs to the controller are (r, dm, y) and the resulting 2-DoF
control action vector u will be the last of the inputs to the generalised plant.
The techniques in Section 7.4 can be directly applied.

2-DoF in Industrial Regulators

The above schemes, as such, are not usually available in industrial regulators,
and must be implemented in a customised code for a MIMO case. However,
the basic ideas are key in achieving a suitable balance in the performance-
robustness trade-off and some simpler implementations are actually widely
used: The importance of 2-DoF designs in industrial practice must be stressed.
In particular, the implementation of 2-DoF in PIDs will be briefly discussed
as they are the building blocks of many multivariable decentralised control
systems in practice. Let us discuss two alternatives:

• Feedforward input set-point (constant or linear with r):

u = Kpe − Kd
dy

dt
+ Ki

∫

e dt + (Kf1 + Kf2r) (8.5)

The linear transformation of the set-point r can be used to amplify or
attenuate the steady-state step to compensate position errors.
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• Set-point pre-filtering: replacing r above by a modified set-point, r∗,
result of some kind of (dynamic) pre-processing of the true set-point r.

Regarding the second option, the most usual pre-filtering is rate saturation.
For instance, a discrete-time implementation can be:

r∗k = r∗k−1 + satβ(rk − r∗k−1) (8.6)

where satβ(·) stands for identity inside [−β,+β] and saturation outside. This
is useful in two situations:

• to enforce smooth set-point transitions in processes with significant non-
linearity, for robustness,

• to diminish overshoot in step set-point changes (without resorting to de-
crease the feedback gains from those decided for disturbance rejection).

More complex pre-filterings can be put in place, such as (α < 1):

r∗k = r∗k−1 + α(rk − r∗k−1) + (1 − α)satβ(rk − r∗k−1) (8.7)

where a step change is initially partially applied and the full step is later
reached in a rate-saturated ramp. The use of this set-up is the same as (8.6).

If the speed of the tracking response must be accelerated without chang-
ing the disturbance rejection characteristics, the above equation can be im-
plemented with α > 1. In that way, the step change is initially amplified and
in the nex samples it is gradually reduced to the final value.

A similar effect of initial attenuation/amplification can be achieved using
a dynamic pre-filter with α < β or α > β respectively, such as:

r∗(s) = Ke
αs + 1
βs + 1

r(s) (8.8)

8.5 Robustness Analysis Methodologies

After devoting some time to discussing modelling errors and control limita-
tions in an “intuitive” way, the basics of modern robust control techniques will
be introduced. These techniques use not only a model but also a “model error”
bound. Apart from the issues to be now discussed, ill-conditioned plants are
difficult to control, as they are sensitive to model and actuator uncertainty,
as discussed in Section B.4.1, and also on page 324. RGA evaluation is also
related to that issue (see Remark 5.6).

Let us discuss in this section the analysis of an already designed loop. The
next section will discuss the controller synthesis.

8.5.1 Sources and Types of Uncertainty

The concept of “modelling error” or “uncertainty” needs to be refined before
a formal treatment of the sensitivity to it can be defined. Uncertain subsys-
tems are often drawn in block-diagrams as blocks with a dynamic system ∆,
representing linear and non-linear mismodelling and time-variations.
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Uncertain Models

Additive uncertainty. Unstructured additive uncertainty, ∆, is defined as
any dynamic system (linear, non-linear, distributed, time-variant) adding its
effect to that of the nominal model G:

Gtrue = G + ∆ (8.9)

where Gtrue represents the elusive true plant, and only a measure of the
“size” (norm) of ∆ is assumed known. Figure 8.2 (left) depicts the idea in
block-diagram form.

Output-multiplicative uncertainty. Another usual representation of un-
certainty is the relative error:

Gtrue = G(I + ∆) (8.10)

The expression assumes modelling error at some output subsystems. Figure
8.2 (right) depicts output-multiplicative uncertainty in block-diagram form.

LTI uncertainty. Unstructured LTI additive uncertainty represent mismod-
elling due to neglected linear dynamics (the true plant G+∆ is assumed LTI).
Only in LTI uncertainty, ∆ can be considered a transfer function matrix.

Remark 8.4. Uncertainty occurring in real systems belongs to the non-linear, time-
variant description as usual models ignore plant non-linearities and plant variations
with time. However, the results assuming this uncertainty may be conservative in the
sense that linear time-invariant uncertainty is able to explain linear undermodelling
(for example, due to the use of finite-order lumped-parameter equations to approx-
imate infinite-dimensional partial differential equations). Furthermore, if only small
deviations from the set-point are expected, non-linearities do not become very sig-
nificant, and also plant variations are assumed to be very slow compared to the
closed-loop dynamics. This is the reason because of which, in many cases, a less
cautious analysis assuming LTI uncertainty is carried out.

Structured uncertainty. Structured uncertainty is used to denote a de-
scription of uncertainty with a more refined detail. The usual form of describ-
ing this structured uncertainty is with:

• parametric uncertainty: uncertainty in the values of the coefficients of the
matrices in the state space description or the coefficients in the transfer
function matrix,

G

�

++ G

�

++

Figure 8.2. Unstructured uncertainty: additive (left), output-multiplicative (right)
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• knowledge of the internal structure of the system. The most important
cases are:
– diagonal actuator and sensor uncertainty: a reasonable engineering as-

sumption is (usually) the non-existence of couplings between differ-
ent actuators, and a similar consideration for sensors. So, actuators
have a diagonal transfer function matrix with a diagonal uncertainty
description. Diagonal input uncertainty is particularly significant in
valve-actuated plants,

– known interconnections and subsystems: for example, existence of in-
ternal cascade-control loops, amplifiers, etc., each of these contributing
to the overall modelling error in a particular, specialised way.

One advantage of frequency-domain uncertainty descriptions over the para-
metric approach to robust control [25] is that one can choose to work with
a simple model and represent neglected dynamics as an unstructured mod-
elling error. However, in a general case, the pure-parametric case may obtain
less conservative solutions (better performance for the same modelling error
tolerance) if this is the main source of uncertainty. However pure parametric
approaches may obtain unsuitable high-gain regulators, as in Example 8.1.

Real life has a mixture of parameter uncertainty and neglected dynamics.
Some structured-uncertainty descriptions are able to handle approximations
to this case (see Appendix F.2 for an outline of basic ideas).

8.5.2 Determination of Uncertainty Bounds

The applicability of robust analysis and design techniques depends on the
availability of a modelling error bound for a particular control problem. Two
approaches can be pursued, depending on the nature of the modelling process.

Black-box models. There exist identification methods that provide an es-
timated model and an estimated error bound. For details on process identi-
fication, the reader is referred to [84], and for details on model error bound
identification to [113, 36, 56, 77], and also the literature on iterative identifi-
cation and control [5].

Grey-box and physical modelling. In this case, the model can be repre-
sented as an uncertain physical-parameter one. Random variations of these
parameters provide plants whose difference with the nominal one may be
bounded by a particular weight. Of course, random variations may skip the
“worst case” model. To obtain the worst case model, interval arithmetic can
be used [65], or interval-uncertainty design methods can be directly applied
[25].

Example 8.5. In multi-loop control, neglecting off-diagonal elements can be con-
sidered as a modelling error. Indeed, that was discussed in (5.11) in page 136. The
sigma-plot of E will determine a modelling error bound, to apply small-gain inequal-
ities to be discussed next. However, as off-diagonal uncertainty is, in a certain sense,
structured, other conditions can be derived, such as (5.13).
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A further example, dealing with an uncertain-parameter model, is dis-
cussed in Example 8.8 on page 238.

8.5.3 Unstructured Robust Stability Analysis

In Appendix F, analysis of the allowed “size” of the unstructured modelling
error tolerated by a particular closed-loop controller is carried out: if the actual
model error is known to be below a bound to be calculated, the system is said
to be robustly stable.

The bounds on modelling error are calculated as a function of the nominal
plant, G, and the controller in place, K, applying the small-gain theorem. See
the referred appendix for details. The main results are summarised below.

G

K

�

++
uδ yδ

Σ1

Σ2

G

K

�

++

uδ yδ

Σ1

Σ2

Figure 8.3. Feedback loops with additive and output-multiplicative uncertainty,
with small-gain interpretation (cf. Figure C.1).

Additive uncertainty. The nominally stable closed loop (positive feedback,
by convention) in Figure 8.3 (left), with plant G and controller K, will be
stable for a modified plant G + ∆ if the modelling error size, ‖∆‖, satisfies:

‖∆‖‖K(I − GK)−1‖ < 1 (8.11)

So, robust stability is ensured if nominal stability holds and the above
modelling error bound is satisfied. The condition of nominal stability is ob-
vious, as control design must provide a stable loop at least for the model at
hand. In the sequel, it will be implicitly assumed.

The previous condition is conservative in the sense that there are un-
certainty sources that do not destabilise the feedback loop with a partic-
ular plant even if its norm is arbitrarily greater than 1/‖K(I − GK)−1‖.
However, it can be shown [133] that there exists a particular system with
‖∆‖ = 1/‖K(I − GK)−1‖ so the closed-loop is unstable, so the condition
is necessary and sufficient if all possible unstructured uncertainties below a
particular size must be withstood as a design requirement.
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As ∆ is, by definition, unknown, the usual approach in robust stability
analysis is to plot the Bode diagram (singular value plot in MIMO systems)
of:

σ̄
(
K(jω)(I − G(jω)K(jω))−1

)
= σ̄ (KS) (8.12)

so that its peak value (∞-norm) is the inverse size limit for any neglected
dynamics, non-linearity or time-variation (Theorem C.6), and its frequency-
by-frequency value is the bound to be satisfied by any neglected linear time-
invariant dynamics, following (C.19).

In this way, alternative designs can be compared in terms of nominal per-
formance and robust stability under modelling errors.

Remark 8.6. Note that from Example 7.12, the ρKS term in the transfer ma-
trix whose norm had to be minimised, (7.30), translates directly on enforcing
a greater tolerance to unstructured modelling errors as ρ is increased, at the
expense of a decreased capability of disturbance rejection (emphasising KS
in the cost index results in a bigger value for WeS, i.e., worse nominal per-
formance). This is one of the reasons the mixed-sensitivity approach is so
popular: it directly presents the performance-robustness trade-off as a “tun-
ing knob” in the design methodology. In the next section, a more detailed
discussion and a refined procedure will be presented.

Multiplicative uncertainty. Stability under relative error uncertainty (Fig-
ure 8.3 (right)), described by Gtrue = G(I +∆∗), is guaranteed if ∆∗ satisfies:

‖∆∗‖‖GK(I + GK)−1‖ < 1 (8.13)

As usual, as ∆∗ is unknown, sensitivity to relative error is analysed by
plotting:

σ̄
(
G(jω)K(jω)(I − G(jω)K(jω))−1

)
= σ̄ (T ) (8.14)

i.e., the complementary sensitivity function, (4.6), is the inverse of the mod-
elling error limit size. The expression can be evaluated on a frequency-by-
frequency basis for neglected LTI dynamics.

From an engineering aspect, relative error descriptions are “reasonable” for
low frequencies and smaller additive ones are suited for broadband uncertainty
(see Example 8.9 on page 239).

Remark 8.7. The uncertain block ∆ needs to be stable. This poses fundamental
problems for robust control of uncertain unstable processes: note that for a
nominal plant G = 1/(s − 1), and a real one Gtrue = 1/(s − 1.001), ∆ =
Gtrue − G is an unstable function so the discussion above does not allow
for analyzing such a simple case (see Example F.2 on page 324). There is
the need of more sophisticated uncertainty descriptions in unstable plants or
for plants whose uncertain models should allow for poles and zeros crossing
the stability boundaries. The required refinements are discussed before the
referred example.
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Nominal Performance and Robust Stability Analysis

Whatever the controller design method used, the achieved performance and
robustness margins may be analysed with the techniques just discussed:

• to analyse the disturbance-rejection performance of a feedback control
system (that is what closed-loop is mainly for, anyway) a singular value
plot of the sensitivity, (4.5), must be lower than a target diagram,

• to analyse the robustness to unstructured relative error at the output, a
sigma-plot of T (of its inverse) should be drawn,

• to analyse the robustness to additive error, the relevant plot is that of KS,
• to analyse the sensitivity to modelling errors at other locations the block-

diagram procedures in Appendix F.1 can be easily adapted, as long as
there is only one uncertainty block.

Example 8.8. A SISO system can be described as:

G(s) =
Ke−ds

(τs + 1)(τ2s + 1)

K ∈ [1.9, 2.1] d ∈ [0, 0.2]
τ ∈ [0.9, 1.1] τ2 ∈ [0, 0.05]

with the “nominal plant” being 2/(s + 1).
Plotting the sigma plot of several random plants (using third-order Padé for the

delays), the relative modelling error as a function of frequency can be bounded by
W (s) = 0.06(5s + 1)/(0.1s + 1), drawn in a thick line in Figure 8.4 below.
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Figure 8.4. Bounding parametric and neglected dynamics errors

So, if a controller is designed, it will be later shown that (F.2) can be applied to
ensure that robust stability for these plants will be achieved if |KG/(1 + GK) ∗
W | < 1, where G is the nominal plant. For instance, using a proportional controller,
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K = 2.75 is the maximum tolerable gain to stabilise all possible plants, as the graph
resulting from sigma(k*gn/(1+gn*k)*w) confirms6.

Example 8.9. Recalling Section 8.3.2, the reader is left to check that, using the tech-
niques above, when designing a second-order pole-placement controller + observer
for the process G(s) = s−4

(s−4.5)(s+10)
so that poles are placed in −4:

k=place(gs.a,gs.b,[-4 -4.1]); l=place(gs.a’,gs.c’,[-4 -4.1]);

rg=reg(gs,k,l’); ks=feedback(-rg,gs);

T=feedback(series(rg,gs),-1); sens=1-T;

it will be guaranteed to be successful if the relative modelling error (Bode diagram
of T) is, at low frequencies, less than 0.9%. This is extremely difficult to achieve
in practice so the design will not stabilise the real plant and, even if it did, it
would heavily amplify disturbances, if any (Bode diagram of the sensitivity, sens).
Plotting the Bode diagram of ks will show the sensitivity to additive uncertainty.
These diagrams show that process with close RHP poles and zeros are difficult to
control, as discussed in Section 8.3.2: in this case, process redesign might be the
wisest decision.

Note that the regions where the peaks of T and KS do occur are the ones in
which the modelling effort should be concentrated. In this way, larger errors
can be tolerated at other frequencies (see Section 8.4.2).

8.5.4 Structured Uncertainty

As previously commented, structured uncertainty arises when more than one
uncertain block is present in the system or some of them are not full-complex
uncertain blocks7. The robustness analysis with structured uncertainty is
based on “pulling up” all uncertainty sources on a control system so a block-
diagram such as the one in Figure 8.5 can be drawn and ∆ can be considered
to be block-diagonal.

If M and ∆i are linear operators, the characteristic closed-loop equation
is:

det(I − M∆) = 0

Usually, the size of ‖∆‖ is normalised to 1 including, if necessary, the known
scaling matrices in M .

A conservative approach would be to consider all uncertainties being a
particular case of a full ∆, and apply unstructured analysis (so stability would
be guaranteed if σ(M) < 1). However, less conservative techniques have been
developed [133, 43, 97]. These techniques are based on the so-called structured
singular value, usually denoted by µ.
6 Note that the uncertainty has been assumed linear time-invariant so (F.2) can be

applied on a frequency-by-frequency basis (see (C.19) on page 302).
7 i.e., apart from knowing its maximum size, some characteristics about its phase

lag are known. The most common case is a real uncertain parameter: phase lag
is equal to zero.
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Figure 8.5. Structured uncertainty

The basic idea of the approach is trying to find the maximum scaling
factor, α, so that there exists no matrix so that det(I − αM∆) = 0; its
inverse is defined as the structured singular value, µ∆. If it is greater than 1,
robust stability is ensured. If ∆ is not a “full” matrix, perhaps the scaling α
may be made substantially bigger than in the unstructured case, where αmax

can be shown to be σ̄(M)−1. In Appendix F.2, suitable definitions and one
elementary example on the use of µ are given.

Robust performance. Note that, up to now, only nominal and robust sta-
bility have been discussed. One important application of the structured sta-
bility analysis setup is robust performance analysis, i.e., how modelling errors
will affect performance objectives, this one being the actual problem the en-
gineer wishes to solve: even if maintaining stability, the resulting loop may be
unacceptable in terms of tracking of disturbance-rejection behaviour.

The structured-uncertainty framework enables some robust performance
analysis problems to be cast as robust stability ones, in particular those based
in norm-optimisation discussed in Section 7.4. Section F.2.1 briefly outlines
the procedure.

Other methodologies. Structured uncertainty can be studied under other
frameworks. In particular, interval-uncertain systems and the implications in
control design are analysed in [25, 65]. Basic techniques are based in the
Kharitonov theorem which asserts that robust stability of a full family of
interval-uncertain polynomials can be determined by checking stability of a
finite number of them (see the above references for details).

8.6 Controller Synthesis

As mentioned in Section 8.1.2, one of the main objectives of robust synthesis
is obtaining the “best” regulators according to some optimality criteria re-
garding maximising performance (given an uncertainty structure and size), or
maximising tolerance to modelling errors (given a target performance level).
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There are various synthesis methodologies, of different degrees of complex-
ity. Detailed descriptions of them are out of the intended scope of this book.
However, an outline and usage guidelines for some of them will be given.

In the remaining of this section, the mixed-sensitivity optimisation in-
troduced in Section 7.4 will be adapted for robust control synthesis under
unstructured additive and multiplicative uncertainty bounds. Due to the re-
quirement of stability of ∆ (Remark 8.7), the techniques have limited appli-
cation in directly guaranteeing robustness of unstable systems. Other widely
used techniques, based on coprime-factor uncertainty, without this restriction,
are briefly outlined in Appendix F.3.

The synthesis methodologies for the general case of RS and RP constraints
with structured uncertainty is termed µ-synthesis, with the aim of minimising
the structured singular value, µ∆, of a particular closed-loop transfer function.
The problem is not yet fully solved and approximate methodologies are used,
with very high-order final controllers. The interested reader can consult details
in [119, 133].

8.6.1 Mixed Sensitivity

In previous sections and Appendix F, it has been shown that achieving RS
amounts to having a reduced gain (norm) of a particular closed-loop transfer
function. Note also that in Section 7.4, optimisation-based controllers were
also cast in a norm-minimisation framework to solve an optimal nominal per-
formance problem. Thus, both problems are quite related and, in many cases,
H∞ norm-optimisation can be used to pose robust control problems with en-
gineering significance towards the objective of designing the best performing
controller for a particular uncertainty bound.

Indeed, at this point, we are in conditions of a deeper analysis of Ex-
ample 7.12 on page 211 and Figure 7.3. The conclusion of the example was
that control problems with practical significance can be formulated as the
minimisation of the norm of a transfer function matrix such as:

‖
(

ρKS
WeS

)

‖ (8.15)

where ρ is a weight on the control action size needed to carry out disturbance
rejection, and We is a frequency weight on the loop error.

As commented in Remark 8.6, on one hand, large values for We will drive
the optimiser towards minimising the size of the error (at the expense of higher
control activity, of course). On the other hand, KS is exactly the expression
derived in (8.11) for RS to additive model uncertainty. Hence, a large value
of ρ will force the optimiser to minimise the size of KS, achieving a better
robustness margin, formalising the intuition, already discussed, asserting that
less performing regulators must be designed to improve robustness. The key
conclusion is that weight selection in (8.15) enables the designer to explicitly
select its desired position in the performance-robustness tradeoff.
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For stable plants, maximum robustness (We → 0) will yield K = 0 and, on
the contrary, maximum disturbance rejection performance (ρ → 0) would yield
an ill-posed infinite-gain controller tolerating only extremely small amounts
of modelling error.

Note, however, that we are trading off robust stability against nominal
performance. Robust performance (how the index to be optimised degrades
with modelling error) is not being considered for the moment. The problem
of robust performance will imply considering the allowed modelling error so
that the worst-case disturbance gain is below an acceptable (finite) value for
any possible plant, and not only considering S with the nominal model.

Although RP is not guaranteed by this design, RS + NP usually yields
“acceptable” controllers from an engineering point of view in many plants (in
particular, all SISO ones and well-conditioned MIMO ones as well). Further
discussion on robust performance may be found in Section F.2.1.

The usefulness in practice of the scheme proposed in Figure 7.3 admits an
easy generalisation to also include robustness to multiplicative error by using
(8.13). Figure 8.6 presents the augmented generalised plant.

Generalised
Plant

Control
System

G

K

d e

u

y

+

+

Wt

Wu

We

Figure 8.6. Mixed sensitivity problem setup

It can be easily shown with block-diagram operations that the transfer
function matrix from d to the three fictitious outputs in Figure 8.6 is:




WtT

WuKS
WeS



 =




WtGK(I − GK)−1

WuK(I − GK)−1

We(I − GK)−1



 (8.16)

so that increasing weight Wt increases robustness to multiplicative error, in-
creasing Wu increases robustness to additive error and decreases control ac-
tivity, and increasing We reduces the loop error. These three weights are the
tuning knobs of the control engineer to balance disturbance rejection and
tolerance to low-frequency and high-frequency modelling errors.
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Weight selection. A widely used, convenient weight selection methodology
involves setting the weights to the inverse of a desired limit for a particular
transfer function (matrix):

• Performance. If it is desired ‖S‖ < ‖Smax‖, then ‖S−1
maxS‖ < 1. Smax is

thus a performance limit, and considering We = S−1
max, performance goals

are satisfied if ‖WeS‖ < 1. As control implies reducing sensitivity in one
frequency range to increase them in others (waterbed effect), ‖Smax‖ must
be above 1 at high frequencies. A usual choice is a high-pass filter:

Smax =
γ(αs + 1)n

(βs + 1)n
γ

αn

βn
> 1, α > β, γ ∈ [0.01, 0.1]

• Robustness. Modelling error bounds determine the maximum sizes for T
and KS (denoted as Tmax and (KS)max respectively) and the equations
to be satisfied are ‖T−1

maxT‖ < 1 and ‖(KS)maxKS‖ < 1 for each of the
following types of uncertainty:
– relative error. User must specify Tmax based on relative-error bounds.

As S + T = 1, to achieve small sensitivities, T must be around 1. As
T is the usual “reference-to-output” transfer function, generalising the
SISO concepts on the closed-loop resonance peak, bounds in T with
engineering sense have a peak in the range 6–10 dB. Also, from SISO
insights, T should have a reasonable roll-off at high frequencies to avoid
measurement noise amplification and increase robustness. A common
choice for usual plants is a bound in the form of a low-pass filter:

Tmax =
α

( 1
ωt

s + 1)n
α ∈ [1.5, 7]

or a diagonal matrix with these bounds in the MIMO case.ωt is a guess
of the frequency beyond which relative modelling errors increase above
100%, or the approximate upper frequency up to which the model is
thought to be roughly correct,

– additive error. To set up (KS)max, a constant diagonal matrix may be
reasonable, expressing the maximum high-frequency gain of the result-
ing controller, as S should tend to I for high frequencies.

Once the limits for S, KS and T have been set up, the corresponding weights
are the inverses of Smax, Tmax and (KS)max, and the norm-minimisation
routines are called. If a solution is found so that the norm of the overall
transfer function is less than 1, as the maximum gain of a matrix is greater
than or equal to that of any of its submatrices, all closed-loop functions are
below the desired bounds. So, bounds on performance and robustness can, in
the above context, be cast as obtaining a regulator K so that ‖Fl(P,K)‖ < 1.
If no solution with a norm less than 1 is found, one (or several) of the design
bounds have been exceeded: the design must be carried out again with more
relaxed performance or robustness specifications.
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8.7 Conclusions and Key Issues

Tolerance to modelling error (robustness) is mandatory in industrial control
implementations, as large errors are present in many applications.

Some intuitive design guidelines can be thought of, mainly limiting per-
formance objectives to limit input usage, in amplitude and frequency.

The importance of the issues led to significant research effort in the 1970s
and 1980s. Robustness analysis can be carried out for an already-designed
regulator (singular value plots) or some H∞ optimality problems can be posed
to maximise the allowed modelling error. The theory is complex but software
exists for advanced applications.

8.8 Case Studies

8.8.1 Cascade Control

In this example, a two-sensor/one-actuator cascade-control configuration will
be compared to an equivalent SISO one in terms of tolerance to modelling
error in the plant being controlled.

q

q

u
11

1

2

2 1

e -1

2

2

2

u

ref_h

ref_h

ref_q

ref_q

h

h

Process

GGK

K

K

K G G

G

Figure 8.7. Cascade control (top) vs. equivalent SISO control (bottom)

In the top diagram in Figure 8.7, a cascade-control structure with two sensors
is used. G1 is controlled via a fast slave loop and output of G2 is the main
variable to control. In the bottom diagram, the missing sensor is estimated
via inversion of the main plant, G2. Straightforward block-diagram operations
show that the transfer function from the main set-point to output h is identical
in both cases so there would be no difference in nominal tracking performance.

To check for robustness to mismodelling, it is left to the reader as an
exercise to check that if an unstructured additive-uncertainty block is added
in parallel to G2 the transfer functions needed to apply the small-gain theorem
for robust stability (note that set-point inputs are not needed for RS analysis),
with negative feedback, are:
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W2 =
G1K1K2

1 + G1K1 + G2G1K1K2
; W1 =

G1K1(K2 + G−1
2 )

1 + G1K1 + G2G1K1K2
(8.17)

for the two-sensor and one-sensor set-ups respectively, where K1 and K2 are
usual error-based (1-DoF) regulators. For a particular simple case:

G1 =
9

s + 1
; K1 = 0.25; G2 =

4

(10s + 1)(0.4s + 1)
; K2 = 5 + 0.6s +

0.6

s

where the P and PID regulators have been hand-tuned for a target settling
time of 3 s and 15% overshoot, the resulting amplitude Bode diagrams for W1

and W2 are plotted in Figure 8.8.
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Figure 8.8. Inverse model error bounds

The diagrams show that the one-sensor set-up is more sensitive to additive
uncertainty than the two-sensor one, as intuitively expected8.

8.8.2 Distillation Column

Let us analyse the sensitivity to additive modelling error of the distillation
control designs in the case study in the previous chapter.

The lower feedback loop in Figure 8.3 (left) can be built with the code:

ks=feedback(k2ss,gpss); sigma(ks)

The singular value plot (maximum gain) depicts the inverse worst-case
unstructured uncertainty that the small-gain theorem guarantees for stability.
It will be compared with an alternative “aggressive” design, with 40 times less
weighting on the control-action magnitude: wu=[0.2 0;0 0.2];.

Regarding nominal performance, the second design achieves a significantly
faster loop, with 40% less peak effect under a step disturbance (Figure 8.9).

The sigma plots of ks in both cases are depicted in Figure 8.10 (minimum
gains are irrelevant). The more aggressive design tolerates three times lower
worst-case error bounds (-17 dB (0.14), -6.9 dB (0.45) in the original design).
8 Further advantages of the cascade loop can be derived if measurement noise am-

plification is considered (G−1
2 is a high-pass filter), not being discussed here.
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Figure 8.9. A design with higher nominal performance

Figure 8.10. Inverse model error bounds (additive uncertainty)

To determine realistic uncertainty bounds, a methodology such as the one in
Example 8.8 can be applied. In this case, the additive error is G∗ − G where
G∗ refers to the perturbed plant and G is the nominal one.

Indeed, by setting gpss2 to be a fifth-order Padé approximation of the
delayed plant and gpss the nominal one, plotting sigma((gpss2-gpss)*ks)
for the second aggressive design pinpoints possible stability problems, as at
frequencies around 5 rad/s the σ̄-plot is above 0 dB. The conservative design is
5 dB below the limit, leaving room for additional uncertainty before instability
onset.

In fact, simulation on the higher-order Padé plant approximation renders
an unstable loop with the aggressive controller: the new design is useless.

Conservative design. As the peak singular value of ks is 6.94 dB = 2.22
(by inspection on Figure 8.10, or evaluating norm(ks,inf)), if the differ-
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ence between the real plant and the nominal one is any (even dynamic) non-
linearity with gain less than 1/2.22 ≈ 0.45, stability is guaranteed. Indeed,
very small differences appear between the higher-order plant approximation
and the nominal responses.

However, if parameter changes were also put in place, margins would have
been reduced. Depending on the expected modelling errors, perhaps even this
design would be risky to implement in practice in a real column, and further
increase of Wu might be advisable. If the modelling error bound is not known
a priori, the usual methodology is to start with very conservative controllers
and progressively decrease Wu until a terminal controller is found.

Standard Mixed-sensitivity Design

As disturbance models may not be readily available, the mixed-sensitivity
design considers deviations caused by a “unit-size” disturbance, y = Gu + d
(Figure 4.3 on page 112), leading to the generalised weighted plant in (7.28):




uw

yw

y



 =




0 ρ

We WeG
I G




(

d
u

)

(8.18)

The objective is to make sensitivity lower at frequencies where disturbances
act with more intensity. Lower frequencies are usually the ones where tight
control is required, aiming, for example, to reduce the disturbance effect by 20
times. So, We = diag(20/(λs+1)). The objective is to determine the maximum
performance attainable (in the sense that SWe < 1) tolerating an additive
modelling error of, say, 0.8 units (to account for Padé approximation, etc.).
In this case, the weight to the transfer function from d to u will account for
robustness constraints (with ρ = 0.8I, if ‖KSρ‖ < 1 then (8.11) is satisfied).
If the closed-loop transfer matrix between d and (uw, yw) has a norm less than
1, the design will be accomplished (as its two sub-components will themselves
be less than 1). The maximum performance will be carried out iterating on λ
(progressively decreasing values, indicating higher desired bandwidth).

The design now is:

rho=[0.8 0;0 0.8]; we=[20/(lambda*s+1) 0;0 20/(lambda*s+1)];
Pw=[zeros(2,2) rho; we we*gptf; eye(2) gptf];
P2ss=minreal(ss(Pw)); Psm=pck(P2ss.a,P2ss.b,P2ss.c,P2ss.d);
[k cl gamf]=hinfsyn(Psm,2,2,0.05,150,0.005);

and the hinfsyn command informs us about the achieved norm value. Trying
with several values of λ (λ = 1000, norm = 0.933; λ = 500, norm = 0.965;
. . . ) the maximum performance achieved is λ ≈ 350, i.e., strongly attenuating
slow disturbances, and progressively decreasing control effectiveness up to 0.06
rad/s where the weight reaches 0 dB. Figures are not drawn for brevity, but
this design responds to a disturbance step allowing a maximum transient
deviation of 15 units and with a settling time of 45 minutes. That would be
the best performance attainable for 0.8 units estimated model error bound.
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Alternative design. If the modelling error bound is lowered so comparable
performance to design (7.32) is achieved (regarding peak value of closed-loop
disturbance step):

l=250; rho=[0.35 0;0 0.35]; we=[80/(l*s+1) 0;0 70/(l*s+1)];

the resulting regulator has similar step response, but lower tolerance to mod-
elling error. If the only significant disturbance source is flow F in model (7.22),
a specialised design such as (7.32) will beat (regarding robustness) designs
trying to minimise disturbances in all channels (for the same nominal perfor-
mance levels). Figure 8.11 depicts the comparison results.
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Figure 8.11. Comparison mixed-sensitivity / specialised rejection.

The reason for this result is, as commented on Remark 7.14, that the spe-
cialised design only minimises sensitivity in one direction, squeezing out ad-
ditional robustness at the expense of no rejection performance at all in the
other direction.
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Implementation and Other Issues

This chapter discusses implementation of multivariable controllers, basically
on computer platforms as well as some practical issues such as non-liniearities,
non-conventional sampling, fault handling and changes in operating modes.
As most techniques are model-based, a model of the plant should be available.
Estimation and refinements of the model must be carried out in the imple-
mentation stage. Also, limitations on the instrumentation should be analysed
to assure it is working in the nominal conditions. Otherwise, supplementary
control activities should be included.

9.1 Control Implementation: Centralised vs.
Decentralised

The previous chapters discussed several options in control design, grouped
into two broad categories: on one hand, decentralised, decoupled, cascade,
etc. strategies and, on the other hand, centralised, optimisation-based control.

The issue here is to discuss critically the advantages and drawbacks of the
implementation in practice of these structures, and the technologies involved.

The information flow when implementing the first alternative (“decom-
posed” control structures) in a complex plant easily becomes complex and
difficult to maintain and understand, with lots of nested loops, block-diagrams,
etc. and dozens of individual regulators to tune. In fact, in many cases, 80%
of the PIDs in a large facility are left to factory defaults or with the result of
the “autotune” command if available or, in any case, they are never re-tuned
when plant characteristics change over time.

So, it appears that, in terms of simplicity and performance, setting up the
control problems as optimisations and letting computers obtain the “optimal”
solution seems the wisest strategy. However, the results of the optimisation
in practice depend on the quality of the model used, and accurate models of
large plants are not readily available in many cases.
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A fundamental reason to use cascade and decentralised control in most
practical applications is because they require less modelling effort.

Other advantages of cascade and decentralised control are:

• its behaviour can be understood by low-qualification operators and tech-
nicians, with obvious advantages in maintenance and repairs,

• standard equipment (such as PIDs) is used, so, jointly with the previous
consideration, it often results in cost-effective solutions,

• their “localised” and “decoupled” behaviour enables easier tuning, often
on-line, with very few parameters to be tuned (e.g., a gain and an integral
action), with model-free strategies (such as PID tuning charts),

• the extra sensors and actuators in cascade configurations yield less sensi-
tivity to uncertainty, in particular, actuator uncertainty1.

• decentralised implementation tends to be more fault-tolerant, as individ-
ual loops will try to keep their set-points even in the case some other
components have failed (if coupling does not destabilise the overall com-
bination). Fault tolerance further increases when implementing override
selectors (Section 5.5.2). On the other hand, if a “centralised” controller
fails, this may often result in a catastrophic fault and significant down-
time.

Depending on the design philosophy, two main implementation variants can
be conceived:

• decentralised implementation (of decentralised control designs),
• centralised implementation (all operations carried out on a single loca-

tion). Centralised designs obviously need a centralised implementation,
but decentralised ones can also be implemented on only one processing
unit (computer).

By far, in present-day industrial processes, the most popular choice is de-
centralised PID implementation, with industrial PIDs, sensors and actuators
connected to a communication network based on an industry-wide standard.
Sometimes PLCs act as middleware between PIDs and the network, and also
provide the necessary set-point scheduling. Some PLCs do incorporate AD,
DA and PID calculations, sparing the need for some local regulator hardware.

The advice is to use centralised control as an intermediate-hierarchy part
of a larger cascade and decoupled structure for subsystems where:

• a stronger degree of coupling and the lack of additional sensors and actu-
ators hinder the use of non-centralised structures, and

• an accurate enough model is available.
1 Note that, however, a centralised approach using the extra instrumentation can

also be designed for enhanced robustness, but in many cases, with a significant
modelling cost.
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Many applications of centralised control, such as popular predictive controller
implementations, interact in this way with the overall plant-wide control struc-
ture.

9.2 Implementation Technologies

9.2.1 Analog Implementation

Centralised multivariable controllers are usually implemented on computer
frameworks. However, decentralised implementations (multi-loop, cascade,
etc.) can be realised by means of analog electronics. Based on operational am-
plifiers, basic circuits can be cascade-connected to form more complex transfer
functions.
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Figure 9.1. operational amplifier basic stage

For example, the circuit in Figure 9.1, with transfer function

Vo(s)
e(s)

= − (R1 + R2)Cs + 1
R1(R2C2s + 1)

R3(R4C2s + 1)
(R3 + R4)C2s + 1

(9.1)

can act as a low-pass filter, high-pass filter (approximate derivative), multi-
plication by a constant (no capacitors), P, PI, PD regulator, etc. depending
on the values of its components. The reader is referred to references such as
[99] for additional circuits and implementation-related information.

9.2.2 Digital Implementation

In present-day multivariable plants, the control is carried out by means of
computer implementation of the controller equations. In fact, the computer is
a key element in the overall information flow in plant-wide control, as discussed
in Section 9.7. In this section, the basic skills for implementing a control loop
routine will be outlined.

The control loop consists of a phase of data acquisition (sensor readings),
data processing (control algorithm) and another data output stage (sending

TLFeBOOK



252 9 Implementation and Other Issues

commands to manipulated actuators). These phases should be carried out at
the appropriate sampling latency. Let us discuss in more detail some of these
tasks.

Hardware

Multivariable controllers can be implemented either in a PC-based frame-
work, in a DSP or micro-controller board, or in specially-made chips. Many of
the current platforms have C or C++ compilers available, with 32- or 64-bit
IEEE floating-point support. However, in embedded systems, there might be
occasions where assembly language and fixed-point math must be used.

In industrial control a PC-based solution has the advantage of being a
standard hardware platform, with multiple operating systems and compilers
to choose from. However, with tighter space requirements and/or the need for
high sampling frequencies, an embedded micro-controller system can be the
choice in stand-alone 3-phase inverters, robots, etc. Some programmable logic
controllers (PLC) include PID regulation modules to implement multi-loop
and cascade control, but usually at sampling periods greater than 0.2 s.

Scheduling

The control loop is called from a upper-level routine in charge of scheduling
its execution at regular time intervals. This can be done in various ways:

• inside a real-time multitasking operating system. The control loop is set-
up as a stand-alone task. After execution, the task is suspended until
the next sampling instant. Lower-priority tasks would execute routines
related to the user interface (set-points, graphs) and data transmission (in
a networked environmment) or logging. Pseudocode might look as follows:

task body Controller is
...
begin loop
now=clock;
ControlLoop();
delay until now+period;
exit when EndCondition();
end loop
end Controller

Depending on the operating system and programming language, the delay
until construction might not be available and then a delay(period);
should be inserted instead,

• in a single-tasking environment. A delay loop is needed and also incor-
porating all additional data-logging and communications into the main
control loop,

• using an external timer in the controller hardware. In this case, the con-
troller code would either continuously read (polling) a particular timer
register to determine if it is time to apply a new control action, or a pro-
cessor interrupt could be set up to be triggered by the timer event. The
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second option is best, and it can be considered as an elementary form of
multitasking, available in many hardware configurations.

Data acquisition

Data acquisition is done via specialised I/O cards in PC frameworks, or with
AD converters on a micro-controller board. From the software point of view,
the data can be acquired by reading a particular port number. I/O ports are
used to send and receive information from peripherals.

As data conversion may take a few microseconds to complete, some cards
need to first write to a port an AD conversion triggering command, and
then read another port until a particular bit (flag) is set to signal that con-
version is completed. Then, reading a third port will yield the desired data.
In multiplexed AD converters (using one physical converter for several input
channels), the first operation to be made should be writing to a multiplexer
register which channel should be read. For example, the C code that reads a
12-bit AD channel on a PCL–8112PG data acquisition card is:
double readAD(int ch) {

word counts;
outportb(REGMUX,ch);
outportb(REGTRIGGER,1);
while ((0x10 & inportb(ADHIGH)));
counts = (((word)(inportb(ADHIGH)& 0x0f)<<8) +

(word)(inportb(ADLOW)) & 0x0FFF);
return ((double) counts *(upperlimAD-lowerlimAD)/4095.0) +

lowerlimAD;
}

where REGMUX, REGTRIGGER, ADHIGH, ADLOW refer to I/O ports and have
been initialised to the appropriate addresses from the card manual, and
upperlimAD, lowerlimAD denote the equivalence in true physical units of
212 − 1 = 4095 and 0 (the range of the 12-bit converter) respectively.

Some cards incorporate a specialised framework for counting encoder
pulses to acquire rotational axis positions. Card drivers might provide a
higher-level interface to the user, encapsulating the low-level I/O port pro-
gramming. In modern multitasking operating systems, drivers are mandatory
because in most processes the users have not direct access to hardware ports.
This would also be the case in most of the situations where data come from
a remote component in a networked environment.

The reader is referred to the user manuals of the various cards and to
bibliographies such as [64] for details on data acquisition.

Aliasing. In sampled-data control systems, an analog low-pass filter (Sec-
tion A.2.2) is sometimes required to act as an anti-aliasing filter, as high-
frequency components (higher than the Nyquist frequency ws/2, where ws is
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the sampling frequency) can manifest themselves as low-frequency artifacts2.
The anti-aliasing filter must be placed in the signal path before the AD con-
verter. Low-pass filters can be built using the circuits in Figure 9.1. For details,
see [95].

Control algorithm

The basic implementation of a control system has the following control loop
core:

//control loop
y=ReadSensors(); r=ReadSetpoint();
CalculateControlAction();
WriteCards(u);

DT SISO (for example, PID) controllers are usually implemented by evaluat-
ing a difference equation. For example, to implement a regulator with transfer
function:

G(s) =
u(s)
e(s)

=
0.3 − 0.4z−1 + 0.2z−2

1 − z−1

the needed code for CalculateControlAction() is:

ek=y–r;
uk=uk1+0.3*ek-0.4*ek1+0.2*ek2;
uk1=uk;ek2=ek1;ek1=ek;

However, in multivariable loops, it is better to implement the state space
equations as the state representation, is the one with the minimum number of
“memory” variables needed. In fact, implementing transfer function matrices
as difference equations may lead to non-minimal realisations. This can become
a problem with unstable regulator poles if a “copy” of an unstable mode
becomes uncontrollable or unobservable.

So, in this way, a possible implementation of a controller (control action
calculation) with a DT realisation (Ar, Br, Cr, Dr) would be:

GetOperatingPoint(u0,y0,r)
dy=y–y0;
du=Cr*xr+Dr*dy;
xr=Ar*xr+Br*dy;
u=du+u0;

In the sensor vector appear all possible sensors: tracked outputs, intermediate
variables, measurable disturbances. If a matrix library is not available, the
involved equations should be fully written as a set of scalar equations.

The feedforward operating point calculation can range from:

• a simple y0 = r, u0 = Fr where F is a constant inverse DC gain matrix,
for a situation where the number of actuators equals the number of sensors
and references,

2 For instance, sampling cos(100πt) every 0.04 s yields cos(100π × 0.04k) =
cos(4πk) = 1, i.e., an “aliased” DC signal.
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• more complex steady-state calculations (determining operating point for
intermediate variables, for extra actuators using pseudo-inverses, etc.),

• full 2-DoF implementation, where GetOperatingPoint() itself incorpo-
rates state space equations (Section 8.4.3). For example, if all sensors have
a reference and the plant is square, as in the first case considered above,
equations u0 = G−1(z)M(z)r and y0 = M(z)r should be implemented via
suitable realisations,

• inversion of a steady-state non-linear model (or steady-state optimisation
of a particular cost index),

• inversion or optimisation of a non-linear dynamic model.

When implementing 2-DoF multivariable controllers with varying set-points
for high-order plants, matrix and/or system simulation libraries are indeed
helpful.

Continuous-time designs

If a continuous-time realisation (Ar, Br, Cr, Dr) of a regulator has been cal-
culated, then the core control code would be:

GetOperatingPoint(u0,y0,r);dy=y–y0;
xr=xr+T*(Ar*xr+Br*dy);
du=Cr*xr+Dr*dy; u=du+u0;

and its evaluation must be carried out fast enough : for reasonable approx-
imation, sampling period T should be at most one tenth of the fastest reg-
ulator time constant. Longer sampling times could strongly affect the sys-
tem dynamics. The most elementary rectangle (Euler) numerical integra-
tion procedure, see Section 3.4, is also the most common, being the one
used in the code above. Other methodologies could be implemented [104].
However, apart from the issues related to the integration method used, the
presence of the zero-order hold is an unavoidable source of deviations from
the nominal CT calculations. This is why sophistication of the integration
methodology is, in principle, not recommended and instead the advice is
to use CPU power to increase the sampling frequency. Euler or bilinear
xk = (I − ArT/2)−1 ((I + ArT/2)xk−1 + BrT/2(yk + yk−1)) integration will
suffice for most applications if sampling is reasonably fast.

Depending on particular circumstances regarding operating system be-
haviour, continuous implementation can be advantageous if a wide variation
of the actually achieved sampling time appears due to multitasking, hardware
changes, etc. If a clock() function is available, the controller can determine
the time elapsed between two successive control evaluations and apply the
suitable T in the integration. For example, Pentium TM processors have an
rdtsc assembler opcode that returns the number of clock cycles since the
machine start-up.

Non-conventional sampling patterns and controller design techniques, in-
troduced in Section 9.4, including time delays, multi-rate sampling or the
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treatment of missing data situations, is a practical matter for reducing the
degradation of performance in real-time control implementation (see, for in-
stance [2]).

Numerical precision

High-order regulators need a significant precision in the coefficients in their
DT implementations. Otherwise, position of the controller poles may vary
significantly (perhaps catastrophically) due to round-off.

Example 9.1. The polynomial (z − 0.7)9 evaluated to four-digit precision (approxi-
mately 14 bits) has unstable roots! Check the following Matlab� output, and notice
the unstable root at 1.07:

d=poly(0.7*ones(1,9)); d2=0.0001*round(10^4*d); roots(d2)’

1.0686 !!! 0.9761-0.2419i 0.9761+0.2419i 0.7483-0.3563i

0.7483+0.3563i 0.5148-0.2955i 0.5148+0.2955i 0.3764-0.1129i

0.3764+0.1129i

As another example, [b a]=butter(6,20/22050,’high’) designs a sixth-order
high-pass Butterworth filter for audio signals, but it also yields3 an unstable, useless
result.

In particular, in the generalised-plant framework optimisation problems (Sec-
tions 7.4 and F.3) the resulting controller order is that of the generalised plant,
i.e., including frequency weights. As there are usually specifications (weights)
for each sensor and actuator, the final order can be high. In µ-synthesis there
is no a priori bound on the resulting controller complexity. For success in
practice, implementation of fast-sampled high-order DT controllers should be
carried out with double-precision calculations and using an order reduction
procedure (see Section 3.10) and, of course, using numerically reliable routines
in the controller synthesis steps.

As a (very coarse) rule of thumb, to avoid adding significant error, the
number of mantissa bits (significant binary digits) needed in the regulator
parameters for reliable implementation of a high-order controller should be at
least five times the regulator order (the required digits for a particular pole
error spread grow at least linearly with order [87]). Roughly speaking, for
regulators up to order five, 32-bit IEEE 754 float data representation will
suffice, double-precision being recommended for higher orders.

For further information on these issues, see [87, 73, 82].

Anti-windup. Note that practical implementations must incorporate in
many cases the anti-windup and bumpless-transfer mechanisms discussed in
Section 9.3.
3 Matlab� Signal-processing toolbox, version 4.2, Pentium TM processor.
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Sending actuator commands

Writing to a DA converter is usually straightforward, carried out by writing
to an output port on the I/O address space in the computer. In multitasking
operating systems, however, the need for a device driver might be mandatory.
The same would usually be required to interact with a device on a network.

9.2.3 User Interface

Designing consistent user interfaces for multivariable controllers is a time-
consuming task. Although direct coding of an application in charge of control
action calculation, card I/O and user interface could be conceivable, and it
could even be a reasonable solution at a prototype scale, most large-scale
industrial control software is designed to interact with a cascade-like config-
uration. At the lowest level, servoactuators and decoupled loops receive com-
mands from an intermediate-level layer composed of PLCs and/or industrial
PCs in charge of sequencing tasks and control algorithm implementation. The
intermediate layer interacts in a networked environment with an upper-level
supervision and operator interface software, in charge of data-logging, event
reporting (such as alarms) and graphical representation of the state of the
process. Operators change set-points and trigger tasks at this level but that
user interface application is not usually in charge of real-time control, unless
the required sampling period is large enough.

A multitude of commercial applications for plant-wide control implementa-
tion are available, such as the SCADA/HMI (supervisory control and data ac-
quisition, human/machine interface) tools or CIM (computer-integrated man-
ufacturing) implementation. Many obstacles in these kind of projects usually
arise from conflicting communication standards from different manufactur-
ers. Current trends aim towards integration of SCADA/HMI with the global
enterprise information management system.

The interested reader is referred to books such as [31], or commercial
software information such as LabView DSC (National Instruments), Delta
V (from Emerson Process), FIX (CIM Intellution), Intouch (Wonderware),
Plantscape (Honeywell), Scada-VS (Foxboro), Simatic IT (Siemens), Xfactory
(Usdata) and coordination and management tools offered from PLC, sensor
and actuator manufacturers as well as applications tailored to specific sectors
(oil industry, aerospace, etc.).

9.3 Bumpless Transfer and Anti-windup

Let us analyse two common related implementation issues, occurring when
actual input to the process differs from the one calculated by the controller,
either because of saturation non-linearities or because the controller is discon-
nected from the actuator and manual operation is in place.

TLFeBOOK



258 9 Implementation and Other Issues

Anti-windup (Saturation)

In practice, all actuators saturate sooner or later. Furthermore, a sensible de-
sign must expect actuator saturation occurring with non-negligible frequency:
if no actuator saturation whatsoever occurs then it is quite likely that the ac-
tuator is oversized for the particular application.

Saturation implies that the feedback path is broken. This fact has several
implications:

• unstable processes: the process output (related to a constant step response)
might go out-of-control to an unrecoverable zone. For instance, a commer-
cial jet cannot recover from a nose-down dive, as aerodynamic surfaces
cannot exert the required forces. Hence, actuator saturation is a major
concern with unstable plants and clear specification of the safe operat-
ing regimes and maximum allowed disturbances must be pointed out. In
general, in addition to saturation, any significative non-linearity requires
the designer to specify to the end-user the disturbance sizes and set-point
regions for operation within acceptable performance bounds,

• multi-loop and centralised control: even with stable plants, opening a feed-
back path may cause the overall loop to become unstable if integrity con-
ditions are not satisfied.

• unstable controllers: it is essentially the same phenomenon as above; how-
ever, the instability may affect internal regulator variables so they can be
modified appropriately. These schemes are termed anti-windup configura-
tions. Note that unstable controllers are frequently put in place: integral
actionintegral action is a paradigmatic example.

Let us discuss anti-windup in more detail. The wind-up problem appeared
with integral-action regulators: during significative step changes in the set-
point, the integral of the error keeps accumulating (winding up) and when
reaching the desired set-point the accumulated integral action produces a
significant overshoot increment. If the set-point change is small, the tran-
sient time is also small and linear simulations provide a good approximation
to the expected response; however, for large set-point changes, continuously-
saturating control takes a significantly longer time to reach the desired set-
point... and it will force the process beyond it due to the higher-than-expected
accumulated wind-up! In SISO PID regulators [20], anti-windup schemes are
implemented by either stopping integration if the actuator is saturated or by
implementing equations such as:

u = K(r − y) − KTD
dy

dt
+
∫

KT−1
i (r − y) + T−1

t (um − u) dt (9.2)

where u is the calculated control action and um is the actual control action
applied to the plant (obtained by directly measuring it or by a non-linear
actuator model such as a static saturation). In non-saturated behaviour, u =
um and the equation is the ordinary PID. In saturation, um is a “constant”
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and the resulting equations drive u down towards um dynamically, with time
constant Tt. For further detail, see [20, 100].

The situation becomes simpler in “controller + observer” implementations:
in this case, the observer must be fed with the actual control action, um (either
measured or from an actuator model). Taking care of this, the observer state
will reflect the actual state of the plant being controlled.

Implementation then cannot be a controller realisation such as (6.36), but
a direct implementation of the DT observer concept:

y=ReadSensors()-y0;
yest=C*x;
x=x+L(y-yest); // do not apply with saturating sensors, see below.
u=-K*x+u0;
WriteActuators(u);
um=ActuatorModel(u)-u0;// or measuring it, and transforming to incremental
variables.
x=Ax+B*um;

With saturated sensors or clear outliers, the updating of the state with L(y−
yest) should not be executed: saturating sensors would also imply “opening”
the loop.

In the previous schemes, the actuator model should include rate saturation
if it is known to be significant, and the same applies to other non-invertible ac-
tuator non-linearities, such as quantisation (multi-level actuators). Invertible
non-linearities are discussed in Section 9.5.3.

Note also that anti-windup in cascade control must take into account the
limitations on the actual slave actuator to stop integration if the inner loop
is saturating.

If the controller is not implemented in “observer + state feedback” form
but in a normalised state space realisation (A,B,C,D), anti-windup may take
the form:

ẋ = Ax + By + G(u − um) (9.3)
u = −Cx + Dy

so with u = um ordinary regulator equations arise and, when um is constant
(saturation), the system has stable (non-integrating) dynamics given by A −
GC. Also, the “larger” G is, the more the steady-state gain from um to u
(equal to −C(A − GC)−1G) can be approached to unity. Generalising (9.2),
anti-windup implementations in transfer matrix form implement equations
such as:

u = K1(s)
(

r
y

)

+ K2(s)(u − um) (9.4)

One additional issue arising in multivariable anti-windup design is direc-
tionality effects (in significantly non-diagonal-dominant systems). For tracking
tasks, some anti-windup designs are based on generating a realisable reference
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[57] by solving a constrained optimisation problem when one actuator satu-
rates. The cost index is the (weighted) difference between the current com-
mand, r, and the achievable one, r∗, i.e., J = ‖W (r − r∗)‖. By doing the
calculation every sampling period (or an approximation of it) an “artificial
non-linearity” is inserted in the loop prior to the actual saturation.

Systems with redundant actuators can also implement split-range control
(see Section 5.5.3).

Bumpless Transfer

A related issue is trying to achieve bumpless transfer when switching from
manual to automatic operation mode or under operating mode changes.

On one hand, if the regulation is off when in manual mode, when switch-
ing to automatic, as the state of the controller (or the integrators in PID
regulators) is usually initialised to zero, a transient appears. It is highly un-
desirable to be near the desired steady-state set-point by manual driving and
then switching to automatic to see a significant transient deviation.

On the other hand, if regulation is on when in manual mode, a situation
similar to the wind-up previously discussed appears: integrators (or unstable
regulators) accumulate and internal variables go unstable.

The solution is, then, similar to that of the wind-up phenomenon: the
regulator should be always on, carrying out calculations by using expression
(9.2) with um indicating the actually applied (manual) control. Likewise, in
multivariable state feedback plus observer set-ups, the observer input should
be the actually applied control action.

Controller switching. Similar situations arise when switching between dif-
ferent regulation strategies [96]. This is a frequent case in control structures
such as override and selector ones (see Section 5.5.2) where commutation be-
tween various controllers is put into practice: unstable (integrating) regulators
will wind up unless taken into account in implementation. Some specific issues
may also arise in cascade control.

A related issue is the possibility of controller parameter changes made, on
the fly, by the end-user. In particular, in implementation of (9.2), integration
must be carried out after multiplication by KT−1

i and T−1
t . Otherwise (i.e.,

implementing KT−1
i

∫
(r−y) dt), changing K or Ti would result in a discontin-

uous control action that will drive the process away from its operating point,
producing an undesirable windup-related transient. A similar situation may
be considered with integral gains in MIMO set-ups.

9.4 Non-conventional Sampling

The more samples available in a particular time interval the better the state
estimates can be obtained, in the sense of better filtering of measurement
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noise (less expected variance of the prediction error). On the other hand,
frequent actuator activity can produce vibration in mechanical components,
which causes faults because of fatigue and, anyway, actuator bandwidth is
usually limited. These considerations, jointly with communication latency, etc.
may justify in some cases the need for different sampling periods for sensors
and actuators (non-conventional sampling). This situation is called “multi-
rate output control”. In some other cases, the opposite framework is forced
by the instrumentation: the output sampling latency is slow (image processing
sensors or chemical analysers, for instance) but the control updating can be
done faster to avoid strong variations. The “multirate input control”, or any
combination of situations, claim a flexible sampling/updating pattern.

In fact, some non-conventionally-sampled control loops are transparent to
the user because some so-called smart sensors carry out internal oversampling
and filtering. In addition to that, some actuators use cascade control at a fixed
rate independent of the latency of commands from a master regulator.

In centralised control, the separation principle discussed in Section 6.2.4
can be extended so that sensing (state estimation) and state feedback control
can be carried out at different rates provided that the L and K matrices are
calculated with a common CT model discretised at the two different sampling
periods. Implementation is easily carried out in the case that one of the sam-
pling periods is a multiple of the other, and it is used in practice in some
cases, either implicitly (as in the case of smart sensors) or explicitly in the
computer code.

More general cases with different periods for each sensor and actuator can
be thought of. The reader is referred to [7] for further details.

Example 9.2 (Dual-rate control). The following example illustrates a possible pro-
cedure for implementing a controller actuating with a period Tc = 1 s, with sensing
every Ts = 5 s. The system to be controlled is:

ẋ =

(−0.1 0.06
0.09 −0.3

)

x +

(
0.5
0.5

)

u

y =
(
1 1
)
x

First, the system is discretised at the lowest period (1 s). Let us denote by A1

and B1 the state equation matrices for this discretised system. Then, for the sensing
period, the state equation is:

x((k + 1)Ts) = A5
1x(kTs) + A4

1B1u(kTs) + A3
1B1u(kTs + Tc)

+ A2
1B1u(kTs + 2Tc) + A1B1u(kTs + 3Tc) + Bu(kTs + 4Tc) (9.5)

The output equation is unchanged with sampling. So the higher-period system can
be thought as a multi-input one, with A5 = A5

1 and the same C matrix. Only A5

and C will be needed for observer design at the slow rate.
The system’s open-loop settling time is around 50 s. Pole-placement techniques

will be used to achieve a settling time for both controller and observer around 10 s.
This amounts to a desired pole position of s = −0.4 in the continuous-time complex
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plane. In the discrete plane, for controller design, the pole position is zc = eTs =
e1∗(−0.4) = 0.67. For observer design4, it is zo = e5∗(−0.4) = 0.135. As both process
poles are slower than the desired ones, the calculation is solved as:

K=place(A1,B1,[0.67 0.66]); L=place(A5’,A5’*C’,[0.135 0.13]);

yielding K =
(
0.5773 0.0831

)
and L =

(
0.66897 0.2016

)T
. Simulation of the dual-

rate controller for a starting state (10, 10)T can be carried out by the following
Matlab� code:

contr=[];listx=[];listy=[]; x=[10;10];listx=[listx x];
xm=[0;0];
for n=1:10

y=C*x;
ym=C*xm;
xm=xm+L’*(y-ym);
for l=1:5

u=-K*xm; contr=[contr u];
x=Ad1*x+Bd1*u;
listax=[listax x]; listay=[listay C*x];
xm=Ad1*xm+Bd1*u;

end
end
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Figure 9.2. Control action and output (output samples marked x)

Figure 9.2 plots the control action and output achieved.

The idea of assimilating multi-rate systems to MIMO ones with suitable mul-
tiplication of the number of inputs or outputs as in (9.5) is called lifting.

It is left to the reader to solve and simulate the previous problem with
Ts = 1 and Tc = 5. In this case, the lifted system would have as equations:
4 Usually, observer poles are placed at a faster location than regulator ones. In this

set-up, where few samples are available, if observer settling time were to be made
faster, it would approach the minimum-time observer (poles at the origin, increas-
ing its sensitivity to noise): note that the 10 s target settling time corresponds to
only two measurements. Note also that the same time constant is mapped onto
different Z-plane poles.
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x((k + 1)Tc) = A5
1x(kTc) + +

(
A4

1B1 + A3
1B1 + A2

1B1 + A1B1 + B
)
u(kTc)









y(kTc)
y(kTc + Ts)
y(kTc + 2Ts)
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=
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Figure 9.3 depicts the dual-rate structure.
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Figure 9.3. Dual-rate control system.

The use of other techniques (such as the ones in Chapter 6) poses no
fundamental problems for these simple cases. It is just a question of designing
a controller for the lifted system. In some cases, a ripple may appear in the
control action commands. However, note that the “true” frequency response
and the lifted one are not comparable so consideration of modelling errors and
high-frequency response (around and above the lowest sampling frequency –
largest period – in the system) becomes cumbersome: minimisation of a norm
on the lifted system does not entail the same on the original system. This is a
matter of current research. In a more general situation (for example, when the
greatest common divisor of Ts and Tc is not one of them, i.e., where lifting is
applied to input and output vectors) direct application of the techniques can
lead to causality issues such as generating controllers whose action depends
on future measurements. The reader is referred to [23, 1] for further details
on the issues involved.

9.5 Coping with Non-linearity

Real plants always have non-linearities. So, taking into account its presence,
the likelihood of a simulated design to work in practice will increase. Con-
trollers based on linearised models are guaranteed to work only in some neigh-
bourhood of a single equilibrium point. However, non-linear systems exhibit
a plethora of interesting phenomena without a parallel or approximation in
linear systems [72]. Those phenomena are sub-harmonic oscillations, chaos, bi-
furcations, etc. An example of this is the chaotic behaviour of a PI-controlled
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CSRT, Example 2.1, in [101]. Non-linear control is thus a challenging subject.
Some possibilities and illustrative examples will be briefly discussed in the re-
maining of this section. The interested reader may consult [120, 74] for ample
details on the topic.

9.5.1 Basic Techniques

Ad hoc strategies. By far, the most frequent non-linearity is actuator satu-
ration. Apart from specific design techniques [61], some considerations about
input amplitude constraints have been discussed in Sections 7.3.3 and 8.3.1,
but usually it is disregarded in the design phase or, in the case that unsta-
ble regulators are in place, using any anti-windup mechanism (Section 9.3).
Indeed, if a model is available, anti-windup techniques may mitigate other
actuator non-linearity effects.

Other frequent non-linearities are stiction, dead-zone or hysteresis in me-
chanical actuators. A usual, simple approach to deal with these is dithering
(addition of low-amplitude, medium-to-high frequency zero-mean signals to
actuator commands). With it, small pulses above the dead-zone amplitude
avoid some of the effects (in particular, the ineffectiveness of small control
command increments) and diminish steady-state errors.

Robust linear control. An LTI control system, based on a linearised model,
must be robust to slight non-linearities in a certain range of operation. Essen-
tially, the wider the desired range of operation the lower the nominal perfor-
mance that should be required to increase robustness margins. Note that the
considerations in Section 8.5.3 still apply if ∆ is a smooth non-linearity, but
(8.11) and (8.13) cannot be interpreted on a frequency-by-frequency basis as
we are not under the assumption of LTI uncertainty, (C.19).

Note also that linear integral control can compensate for significant non-
linearities at steady-state. This would not be the case if the sign of the gain
or the determinant of G(0) in the MIMO case change at different operating
points, following (5.2).

Additional sensors and actuators. Cascade control (Section 5.4) may also
be used to compensate for non-linearities if subsystems exist with fast enough
dynamics compared to the overall desired performance level. Note that, how-
ever, cascade control requires extra instrumentation.

In general, adding sensors and actuators usually improves both nominal
performance and robustness margins, so the valid operation region of a lin-
earised controller may be extended. In complex systems, this is a convenient,
widely-used approach if the cost of the additional instrumentation is reason-
able.

Feedforward non-linear control. If available, sometimes a non-linear
model can be used to generate off-line the sequence of control actions to be
fed in open loop to the plant to achieve particular objectives. This can be
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part of a 2-DoF structure where a (possibly linear) robust enough feedback
will try to minimise the effect of disturbances and modelling error. Of course,
the idea only applies to reference tracking problems. For repetitive tasks, the
feedforward sequence can be iteratively learnt [111].

9.5.2 Gain-scheduling

Gain-scheduling encompasses a family of methodologies to interpolate linear
controllers. The basic philosophy involves four steps:

• with a non-linear model, a linearised model can be obtained for differ-
ent desired points of operation. These models can even be identified by
experiments with reasonably small control action amplitudes,

• a finite set of key operation points are usually selected. Afterwards, a linear
controller is designed for each of these points5,

• the controllers are interpolated using as interpolation variable a set of
measurable scheduling variables, σ. These scheduling variables are assumed
to be related to the main cause of non-linearity and, hopefully, being slowly
varying and not too dependent on the plant state,

• the performance of the resulting controller must be evaluated. Usually, the
performance assessment is carried out by extensive simulations and pro-
totype tests, as controller switching, non-linearities and modelling errors
make theoretical stability proofs a hard task in many cases [83].

Example 9.3. In aeronautics, the forces exerted by deflection of aerodynamic sur-
faces depends on the air atmospheric pressure. Autopilots use this measurement as
scheduling variable to calculate and compensate for this effect. As the non-linearity
mainly affects actuator gain, this was the first “gain-scheduling” (literally) applica-
tion from which other refinements took the name. Current designs use as a scheduling
variable a vector containing Mach number, altitude, pressure and angle of attack.

In this approach, a non-linear model:

ẋ = f(x, σ, u)
y = h(x, σ, u) (9.6)

is transformed into a linearised one (now x, u refer to incremental variables):

ẋ = A(σ)x + B(σ)u
y = C(σ)x + D(σ)u (9.7)

so that a controller with transfer matrix K(σ, s) is designed. If the operating
space is divided in disjoint regions centred on a set of selected values σi,
the easiest way to carry out scheduling is switching to controller K(σi, s) if
the distance between σi and the measured σ is the lowest. However, generic
5 Perhaps there exists a common linear controller fulfilling the design requirements.

However, the operating point needs, anyway, to be scheduled.
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controller-switching may be subject to problems regarding bump transfer and
windup-like phenomena and it may yield an overall unstable closed loop even
if each controller Ki stabilised the model with σi.

If the controller is in observer + state feedback form, gain-scheduling gets
easier as all controllers share the same state so bump transfers are mitigated.
An application of gain-scheduled H∞ loop-shaping is reported in [62].

Progressive interpolation between controllers and matrices can be carried
out based, for example, on linear interpolation for a single scheduling variable
or on weighted averages of inverse distance to points σi for multiple scheduling
variables (i.e., σi is itself a vector).

Note that, as linearised models are expressed in incremental variables,
scheduling on the operating points must be also set up. This scheduling can
be actually implemented or taken care of with integral action. Some gain-
scheduling techniques implement this integration by linearising a model on the
derivatives of state variables, under the name of velocity algorithms [71, 80].

Gain-scheduled control is usually intended for slow, smooth transitions
between different operation points (with dynamics of σ and switching signifi-
cantly slower than that of the desired “local” closed loops). Simulations may
work for these kind of changes, but become unstable for sudden jumps in set-
points. So, 2-DoF implementations with set-point rate saturation (see Section
8.4.3) are indeed advisable.

The reader is referred to [109, 74, 62, 124] for further details.

Example 9.4. An elementary example of gain-scheduling in decoupling is described
in the case study in Section 5.8.2.

9.5.3 Global Linearisation

Sometimes, in control system design, invertible non-linearities are found, such
as valve characteristics, dead-zones or Coulomb friction. Including the “in-
verse” of the non-linearity (or an approximation of it) in the control action
can substantially widen the acceptable operating range of a controller designed
by linear methods. These methodologies are denoted as global linearisation.

The following example illustrates feedforward linearisation (no sensor
needed) inverting a static non-linearity. Another simple example was given
in the footnote on page 164.

Example 9.5 (Actuator non-linearity). Let us have a control system with actua-
tors with known invertible non-linear characteristics, u = f(v), where u is the actual
input received by the plant, v is the input command from the controller and f is a
(usually diagonal) non-linearity.

If the plant is modelled by a linear model and a linear controller is designed for
it, producing a desired control action, u, the controller must output v = f−1(u).

For instance, an actuator dead-zone or Coulomb friction can be modelled as:
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u =






v − δ v > δ

0 −δ ≤ v ≤ δ

−(v − δ)v < −δ

Its inversion amounts to inserting a line of code such as:

WriteActuators(u+sign(u)*delta);

Feedback Linearisation

Sensor readings can take part in the non-linearity inversion. The methodology
is then denoted as feedback linearisation.

Example 9.6 (Invertible plant non-linearity). Let us have a tank system with
equation:

A
dh

dt
= u − b

√
2gh

where u is the inflow command achieved by opening a servovalve.
By defining an auxiliary variable v = u − b

√
2gh, the system equation in this

variable is:

A
dh

dt
= v

so a linear, proportional controller can be designed in terms of the auxiliary variable
if v is assumed to act as an input: v = −kh, to fulfill the desired specifications. So,
the control input to the tank system would be, reversing the change of variable:

u = v + b
√

2gh = −kh + b
√

2gh

In coupled MIMO systems, auxiliary variables usually need to be defined in
a more complex way, generalising the methodology in Section 5.3.

Let us have a non-linear system which can be expressed in the form:

ẋ = f(x) + g(x)u; y = h(x) + q(x)u (9.8)

Considering output yi, perhaps it does not depend directly on u. Then, its
derivative can be calculated in a similar way as in the linear case in (5.15) or
in Example 5.10 on page 140, yielding:

ẏ = h1
i (x) + q1

i (x)u (9.9)

where h1 and q1 are new functions. If it does not depend on u (q1
i (x) = 0),

further derivatives are taken until u appears. This derivative index is, as usual,
the relative degree, ri. Carrying out the same operation for all outputs, the
result, generalising (5.17), is:

ỹ =







dr1y1
dtr1

...
drm ym
dtrm





 =






hr1
1 (x)

...
hrm

m (x)




 +






qr1
1 (x)

...
qrm

m (x)




 u = H̃(x) + Q̃(x)u (9.10)
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So, if x is measurable, H̃ and Q̃ can be calculated and so the non-linear
state feedback:

u = Q̃−1(x)
(
v − H̃(x)

)
(9.11)

transforms the process equations, as in (5.18), into linear, decoupled chains
of integrators6:

ỹ = v

Example 9.7 (Robot control). Robot arms, with a torque or force exerted by a
motor on each joint (rotational or linear) can be modelled [115] by equations such
as:

I(q)
d2q

dt2
= τ + G(q) + H(q,

dq

dt
) (9.12)

where q is a vector formed by suitable angular θi and linear zj coordinates describing
robot position, I(q) is an inertia matrix (depending on the joint positions), τ is a
vector with the joint inputs (torques and forces), G(q) is a vector of gravitational
effects (depending on the joint position) and H(q, q̇) encompasses friction models
and Coriolis-effect terms. Trigonometric expressions form the elements of I, G and
H. The above reference gives full details on robot-arm modelling.

In this class of systems, rewriting equation7 (9.12) as:

d2q

dt2
= I(q)−1

(

τ + G(q) + H(q,
dq

dt
)

)

and defining the auxiliary variable as:

v = I(q)−1

(

τ + G(q) + H(q,
dq

dt
)

)

(9.13)

the system has a decoupled, diagonal, double-integrator transfer function matrix:

d2q

dt2
= v

so a set of linear controllers for each component of q can be easily designed (in fact
decentralised PD-like ones, vi = Ki

P qi +Ki
D q̇i, would suffice). The control forces and

torques, τ , to be applied to the actual plant are, reversing the change of variable:

τ = I(q)v − G(q) − H(q,
dq

dt
) (9.14)

The final control law is centralised, non-linear and requires real-time computation
of I, G and H with measurements of all positions and speeds and actuators at all
joints. This robot control strategy is called computed torque control.

6 These operations may require significant computational load on MIMO non-linear
systems as fast sampling is required (most of the remarks on page 141 extend to
the non-linear case).

7 The inertia matrix is always invertible (and positive definite) for any realistic
mechanical system.
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Notice that this technique achieves, in non-linear MIMO systems, both lin-
earisation and decoupling. Of course, some technical conditions need to apply
in the case of general non-linear systems for the existence, smoothness, finite
relative degree and invertibility of the derivatives involved in the calculations.
The reader is referred to [120, 74] for further details. In some cases, insight
into the physics of the system (such as in the previous examples) can help
the control engineer in finding a suitable linearising transformation. In other
cases, differential geometry tools are needed.

The importance of these results is that linearisation is achieved not only
“around” a “small” neighbourhood of an operating point, as in a Taylor-series
based one (Section 2.5), but in a much wider region of the state space (nec-
essary conditions are that inverse matrices do exist and the relative degrees
do not change). For example, in many fully-actuated mechanical systems (one
drive for each degree of freedom) such as the previous example, this feedback
linearisation is global.

9.5.4 Other Approaches

Non-linear control is a vast topic and a wealth of techniques are being devel-
oped, aiming for non-linear objectives without any conversion or use of linear
techniques. Some of the techniques address adaptation and robustness as well.

Adaptive control. Based on error signals, the controller itself can mod-
ify its underlying process model and/or its parameters reacting to operating
point changes. It is the subject of intense theoretical research but with limited
practical applications. The reader is referred to [27, 22, 45, 79] for details.

Non-linear optimal control. The optimisation cost indexes and procedures
in Chapter 7 can be generalised to some non-linear models using dynamic pro-
gramming and calculus of variations [122, 81]. The robustness-related norm-
optimisation is also being studied [58]. As optimisation yields stable controllers
in most cases (under full-information state feedback), in the chemical indus-
try some packages incorporate non-linear optimisation of PID parameters or
non-linear models in predictive control (Section 7.3).

Energy-based control. With some models, stabilisation with non-linear
controllers can be carried out if a controller is designed so that the total
energy is decreasing (dissipative systems). Physical insight into mechanical
systems, electrical power grids, etc. can help in finding a globally stabilising
controller. For arbitrary non-linear systems, advanced geometrical methods
may be needed. The reader is referred to [74, 13] for details.

9.6 Reliability and Fault Detection

The main objective of control is reducing the effect of uncertainty on the
process outcome. Apart from modelling errors and disturbances, faults are
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sources of significant deviations of the controlled magnitudes, so reliability
can be considered as one of the objectives of control [108].

A reliable control system implementation must:

• detect faults as soon as possible to minimise the loss due to off-specification
product,

• compensate for the fault effects changing the control configuration, if pos-
sible, to avoid plant down-time,

• avoid damaging key process components.

High reliability is the main goal of automatic (or human) supervision systems.
Reliability requirements are very strict in human life-related situations or
in those activities where failure can lead to important economic loss (many
aerospace, automotive, nuclear and chemical industries).

Instrumentation faults. In closed-loop control, the possibility of sensor
faults must be considered. A typical scenario involves integral controllers: a
sensor fault will drive the corresponding actuators to saturation, so a loose
wire may produce significant product loss or plant damage!

• unstable regulators (such as integral-action ones) may destabilise the pro-
cess due to sensor faults. In MIMO multi-loop control, integrity-related
issues arise (see Section 5.2.2),

• unstable processes may become out of control due to any actuator or sensor
fault, or under the presence of large disturbances,

• stable processes with high-gain stable regulators may become unstable on
the loss of a particular sensor or actuator.

Instrumentation design should aim to minimise the effect of its own faults
on the process. For example, in integrating regulators, anti-windup schemes
are implemented and, in some cases, integration is carried out only if the error
is below a certain value, protecting from the above sensor fault.

Redundancy. The key to enhancing reliability is the addition of redundant
elements. Redundancy may be set up by a combination of:

• physical redundancy, with several identical sensors or actuators,
• analytical redundancy, using mathematical models to reconfigure the sys-

tem. For example, if multiple (not necessarily identical) sensors and ac-
tuators are available, a sensor loss can be handled by recalculating the
observer gain, an actuator loss can be handled by recalculating the state
feedback gain (performance decrease can be expected).

Fault Detection

Faults are usually detected when significant deviations of particular variables
occur. Fault detection has a significant relationship and parallelism in some
methodologies from industrial quality control [92]. Fault detection is usually
based on setting thresholds over particular magnitudes:
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• thresholds over directly measured variables, for example, pressure or tem-
perature alarms. In many industrial plants, a significant percentage of the
available sensors are devoted to this mission,

• Thresholds over calculated quantities, on the basis of measurements:
– evaluating mean, variance or correlations on a batch of samples. Most

applications compare deviations with respect to a nominal mean. How-
ever, in some cases, faults may be detected because the variability
(variance) of a measurement significantly changes,

– setting thresholds on a linear combination of measured variables (cal-
culating variance ellipsoids),

– monitoring model-based static algebraic relations between variables.
For example, detecting pipe obstruction by comparing flow-meter read-
ings with pressure-drop sensor readings,

– evaluating relations on variables after a dynamic processing. Typical
examples are:
· Model-free processing, evaluating low-pass filtered variables, “ten-

dencies” (filtered derivatives s/(λs + 1)), to remove measurement
noise and irrelevant short-term dynamics,

· evaluating Fourier transform (frequency response) of signals, look-
ing for presence of information on a particular frequency band. This
is a widely-used tool in diagnosing rotating machinery and combus-
tion engines,

· using dynamic plant models. For example, by comparing the mea-
sured output with a model’s output G(s)u(s),

• Parameter estimation. Using identification algorithms to monitor the val-
ues of a set of physical parameters related to faults being identified.

Threshold setting must balance a trade-off between false positives gen-
erated by transient higher-than-expected disturbances and false negatives
caused by a too-high threshold. High thresholds diminish sensitivity to dis-
turbances but also faults take longer to be detected or they can even remain
undetected.

For a better compromise, sometimes additional processing on thresholds
is carried out (for instance, triggering a fault if a threshold has been reached
for a particular number of times over a set of recent past samples), or even
on-line modifications of them based on past data records.

Fault Isolation

Once a fault has been detected by a particular threshold being triggered, the
cause of the fault must be isolated. The first issue is to distinguish a process
fault from an instrumentation one. This can be done, in some cases, by means
of voting:

• voting between several identical sensors, using physical redundancy. If all
or most of them yield abnormal measurement, the fault is on the process.
Otherwise, the fault is probably in the discrepant sensor,
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• voting between related variables, using analytical redundancy. If all are
out of bounds, an actuator or process fault can be detected, otherwise a
sensor fault must be suspected.

If the fault is suspected to lie in the process itself, isolating which particular
component is responsible for the deviation may not be an easy task in some
circumstances, due to:

• similar fault modes (fault in component A yields signal variations that are
very similar to fault in component B),

• cascade faults: fault in one component entails defective operation on others
(or even overload and subsequent failure),

• effect of closed-loop control: regulators, trying to keep variables around
their set-points, often hide the fault effects or they appear in secondary,
less tightly controlled, variables. So, closed-loop operation may modify the
failure mode.

Fault isolation may require, on many occasions, plant down-time to carry out
special experiments and inspections.

Fault Quantification and Reconfiguration

After isolating the fault cause and determining its severity, one of these three
actions must be decided on:

• maintenance, with likely need of plant close-down,
• continue operation with degraded specifications (for example, switching

to open-loop control after a confirmed sensor failure), until a scheduled
maintenance stop,

• continue operation with no degrading in specifications due to redundance
in sensors, actuators or power sources, updating some parameters.

The concepts of controllability and observability (and the SVD decomposi-
tion of the related matrices) are quite related to the ability of reconfiguration
after actuator and sensor faults respectively.

Not all of these fault-management tasks can be carried out automatically
in a general situation. Some of these need human intervention. There are some
diagnostic tools based on rule-based expert systems [10, 132].

As a conclusion, the topic of reliability and fault detection needs consider-
able attention in practical engineering process design. The reader is referred
to [37, 17] and references therein for in-depth treatment.

9.7 Supervision, Integrated Automation, Plant-wide
Control

Modern control tasks in plant-wide control designs involve many objectives,
and not only set-point tracking and regulation. So, a control engineer must
integrate all designs into a unified framework that is able to provide:
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• process control (set-point tracking, regulation against disturbances),
• start-up and close-down phases,
• report plant performance to the plant information systems,
• report possible fault sources,
• provide a user interface for these tasks.

So, over a basic layer of process control interface (sensor and actuator manage-
ment), several coordinated tasks must be set up in a working control system.
The coordination of these tasks is in charge of the supervision system. Some
of these are:

• basic regulation (the main topic of this book),
• scheduling of procedures if the task comprises several stages, establishing

a suitable sequence of set-point settings for all variables,
• coordination in distributed decentralised and cascade strategies,
• management of shared resources,
• handling of unexpected alarms and exceptions (scheduling of recovery pro-

cedures when an abnormal situation is met, informing the operator about
the events),

• recording the different signals, events, performance measures, etc. onto a
database, for further analysis to determine the need of readjustment or
improvement based on long-term histories.

To achieve these roles, the control system cannot be one all-powerful routine,
but it should be made up of components operating in a coordinated fashion.
These components not only refer to physical ones (valves, connections, PLCs)
but also to software components, i.e., modules and tasks acting on the same
or different computers coordinated via a communication network. In fact, it
should be noted that in a distributed process control computer package, the
code involving the control or regulatory activities is a minor part (sometimes
just a few lines of code) of the global software. Nevertheless, we can say that
the rest of the code makes the system work and the control code determines
a “good” or “optimal” behaviour.

In this setting, issues relating to real-time operating systems, standard
object architectures (CORBA, ... ) should also be taken into account. So, in
this way, the need for integrated information systems for plant-wide automa-
tion quickly arises: the computer has become the main technology in modern
industrial process control, and all control devices, operator stations, remote
access points, etc. are part of a networked environment.

These issues are out of the intended scope of this work, but are critical in
the implementation of large-scale control systems. The reader is referred to
[114, 46, 31] and the references therein for an overview of these issues.
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A

Summary of SISO System Analysis

In this brief appendix, some basic results on SISO control are summarised to
ease reading of some of the main chapters without resorting to other sources.

A.1 Signals

A continuous-time signal is expressed as a function of a real (positive) time
variable y(t) : R

+ → R. It can be also represented by its Laplace transform

y(s) = L[y(t)] =
∫ ∞

0

e−sty(t)dt (A.1)

the symbol s being an undeterminate complex variable. Under some con-
straints, it can be also represented by its frequency content as expressed by
its Fourier transform and, by extension, computing the Laplace transform for
s = jω:

y(jω) = y(s)|s=jω

A discrete-time signal is expressed by a sequence of data, usually repre-
senting the signal value at discrete instants of time:

{yk} = {y0, y1, y2, . . . , yn, . . .}

If the data are taken at regularly spaced instants of time, using the unit delay
operator, z−1, the DT signal can be represented by its Z-transform:

y(z) = Z[yk] =
∞∑

k=0

ykz−k (A.2)
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A.2 Continuous Systems

Linear time-invariant continuous SISO systems are described by an ordinary
differential equation in the form:

any(n)(t) + · · · + a0y(t) = bmu(m)(t) + · · · + b0u(t) (A.3)

With u ≡ 0, the solution to these equations is denoted as free response
and has the form:

y(t) =
n∑

i=1

Pi(t)eλit (A.4)

Pi(t) = mi0 + mi1t + . . . (A.5)

where λi are the zeros of the characteristic polynomial :

ansn + an−1s
n−1 + · · · + a1s + a0 (A.6)

For a particular set of initial conditions y(0), y′(0), . . . , y(n−1)(0), the
solution is unique (initial conditions determine the coefficients mij).

With u �= 0, the solution can be decomposed into two components, y(t) =
yh(t)+yp(t), where yh(t) has the form (A.4) and corresponds to the transient
response and yp(t) is denoted as the particular, or input-related, solution. If
u(t) is a constant, there exists a constant particular solution, called steady-
state or equilibrium point.

Laplace transform. The Laplace transform, (A.1), can be used to solve
ordinary linear differential equations. The inverse Laplace transform is:

f(t) =
1

2πj
p.v.

∫ c+j∞

c−j∞
F (s)estds

where c ∈ R has a real part bigger than that of any singularity in F (s). The
inverse Laplace transform can also be evaluated by partial fraction expansion
and table look-up in many cases. Tables for the most common cases appear
in Section A.5.

Among the essential properties of the transform are:

• linearity: L(αf + βg) = αL(f) + βL(g),
• derivative: f(0) being the initial condition,

L
(

df

dt

)

= sL(f) − f(0)

• successive derivative:

L
(

dn

dtn
f(t)
)

= snL(f) −
(
sn−1f(0) + · · · + f (n−1)(0)

)
(A.7)
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• time delay: given f(t), defining:

f∗(t) =

{
0 t < T

f(t − T ) t ≥ T

then:
L(f∗) = L(f)e−Ts (A.8)

• final value theorem. If the left limit in the expression below exists, then:

lim
t→∞ f(t) = lim

s→0
sf(s) (A.9)

• initial value theorem. If the left limit in the expression below exists, then:

lim
0←t

f(t) = lim
s→∞ sf(s) (A.10)

Using the above properties, the Laplace transform of the differential equa-
tion (A.3) is:

an

(
sny(s) − (sn−1y(0) + · · · + y(n−1)(0))

)
+ · · · + a0y(s)

= bm

(
smu(s) − (sm−1u(0) + · · · + u(m−1)(0))

)
+ · · · + b0u(s) (A.11)

so the output is given by:

y(s) =
bmsm + bm−1s

m−1 + · · · + b0

ansn + an−1sn−1 + · · · + a0
u(s) +

Ψ(y(0), . . . , y(n−1)(0))
ansn + an−1sn−1 + · · · + a0

(A.12)
where the rational function multiplying u(s) is denoted as the transfer func-
tion, G(s). Note that its denominator is the characteristic polynomial (A.6).
In Laplace transform, for zero initial conditions, the output of a SISO linear
system can be expressed as:

y(s) = G(s)u(s) =
n(s)
d(s)

u(s) (A.13)

Once y(s) is found by replacing the actual value of the input u(s), the
inverse Laplace transform obtains the solution in the time domain. For details,
see classical textbooks such as [94, 78].

A.2.1 System Analysis

Poles and zeros. The roots zi of n(s) = 0 are named zeros of the system,
so G(zi) = 0. Under some conditions, the system’s response to ezit is null.

The roots of d(s) = 0 are the poles, pi, of the system, and they are the
coefficients of the exponentials of the free response, and G(pi) = ∞. There
are a finite number of poles and zeros.

Complex poles yield the time-response e(a±bj)t, that can be cast in the
form eat(M sin bt+N cos bt), M,N ∈ R. A pair of complex poles are the roots
of the factor (s2 + 2ξωns + ω2

n), where −1 < ξ < 1 is denoted as damping
ratio, and ωn is the natural frequency.
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Stability. If all the poles have a strictly negative real part, the system is
said to be stable. Otherwise, it is said to be unstable. Unstable systems with
no poles in the open positive half-plane are said to be marginally unstable.

Gain. When a stable system with transfer function G(s) is subject to a con-
stant input, U , the final value achieved is Y = G(0)U .

Settling time. The exponential e−αt diminishes to 5% of its initial value in
3
α time units. It diminishes to 2% in 4

α units. These figures are denoted as the
settling time of a first-order system. The value τ = 1/α is usually denoted as
the time constant.

The settling time of a higher-order system can be approximated by the
settling time associated with the slower pole (dominant pole) in some cases.
Multiple poles have a settling time coarsely given by (1 + m)/2 times the
settling time of the single pole, where m is the root multiplicity.

Impulse response. If a system with transfer function G(s) is subject to an
impulse input, u(t) = δ(t), where δ(t) is Dirac’s delta function (i.e., δ(t) = 0
for all t �= 0, and

∫∞
−∞ δ(t) dt = 1, δ(s) = 1), its output is given by:

y(s) = G(s); y(t) = L−1[G(s)] = g(t) (A.14)

Convolution. A system with impulse response g(t), with null initial condi-
tions and input u(t), has a time-response given by:

y(t) =
∫ t

0

g(t − τ)u(τ) dτ (A.15)

A.2.2 Frequency response

The stationary output of a linear system, with transfer function G(s), subject
to a sinusoidal input, u(t) = sinωt, is given by:

y(t) = |G(jω)| sin (ωt + arg G(jω)) (A.16)

i.e., the formal argument in G(s) is substituted by the complex frequency jω,
and its modulus and argument are evaluated. The complex number G(jω) is
denoted as the frequency response.

Frequency response is usually plotted in a Bode diagram. The amplitude
diagram represents y = 20 log10 |G(jω)| as a function of x = log10 ω. The
phase diagram represents arg G(jω) as a function of log10 ω. There are tech-
niques for fast drawing of the amplitude diagram. In particular, a pole in
±a “bends” downwards the diagram at ω = a, denoted as the break-down
frequency, with a slope of −20 units. A zero bends the diagram upwards.
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Figure A.1. Typical frequency response shapes (low-, high- and band-pass)

Filters. In filtering and frequency weighting, some standard shapes in fre-
quency are widely used. These are the following:

Low-pass filter High-pass filter Band-pass filter
A

( 1
ωc

s+1)n
Asn

(s+ωc)n
Asn

( 1
ωl

s+1)n(s+ωu)n

where ωc, ωl and ωu are the cut-off frequencies.
In Figure A.1, a frequency-response diagram of the above filters is plotted. The
cut-off frequencies are 100 rad/s for the low- and high-pass filters, and 10−1

and 101 for the band-pass one. There are many other filter design alternatives.
The reader is referred to basic references for details.

Usually, closed-loop transfer functions (sensitivity, (4.5), and complemen-
tary sensitivity, (4.6)) have approximate high-pass and low-pass behaviour
respectively. The cut-off frequencies of those functions is denoted as the closed-
loop bandwidth.

A.3 Discrete Systems

Linear time-invariant discrete-time systems are defined by difference equations
of the form:

anyk+n + an−1yk+n−1 + · · · + a1yk+1 + a0yk = b0uk + · · · + bmuk+q (A.17)

If the sequence of inputs and outputs is obtained by sampling the actual
sequence fed to a CT system, the system is said to be a sampled-data system,
and each k corresponds to time KTs, Ts being the sampling period.

With u = 0 and non-zero initial conditions, the free response is a set of
geometrical progressions:

y(k) =
n∑

i=1

Pi(k)λi
k (A.18)

Pi(k) = mi0 + mi1k + . . . (A.19)

where λi are the roots of the characteristic polynomial :

anzn + an−1z
n−1 + · · · + a1z + a0 (A.20)
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Z-transform. The Z-transform can be used to solve linear difference equa-
tions. The inverse transform can be evaluated as an integral formula or, equiv-
alently, by partial fraction expansion and table look-up.

Among its essential properties are:

• linearity: Z(fk + gk) = Z(fk) + Z(gk)
• advance: f0, f1, . . . being initial conditions,

Z(fk+1) = z(Z(fk) − f0) (A.21)

Z(fk+n) = zn(Z(fk) −
n−1∑

i=0

zn−1−ifi) (A.22)

• final value theorem. If the left limit in the expression below exists, then:

lim
k→∞

fk = lim
z→1

(z − 1)f(z) (A.23)

The Z-transform of the difference equation (A.17) can be shown to be:

y(z) =
bmzm + bm−1z

m−1 + · · · + b0

anzn + an−1zn−1 + · · · + a0
u(z) + M(y0, y1, . . . , yn−1) (A.24)

where M is an initial condition term. Applying partial fraction expansion, a
solution in the discrete time domain is obtained. Analogous to the CT case,
the expression multiplying u(z) is denoted as the discrete transfer function,
G(z) = n(z)/d(z).

A.3.1 System Analysis

Similar to the CT case, an analysis of the discrete transfer function properties
can be carried out.

Poles and zeros. The roots, zi, of n(z) = 0 are named the zeros of the
system. Under some conditions, the system’s response to zi

k is null.
The roots of d(z) = 0 are the poles of the system, and they are the co-

efficients λi of the progressions of the free response. Complex poles of mod-
ule α and argument φ yield a time-response that can be cast in the form
αk(M sin φk + N cos φk).

Stability. If all the poles have a module strictly less than 1, the system is
said to be stable. Otherwise it is said to be unstable. Unstable systems with
all poles in the closed unity circle are said to be marginally unstable.

Gain. When a stable system with discrete transfer function G(z) is subject
to a constant input, U , the final value achieved is Y = G(1)U .

Settling time. To define the settling time, again, we realise that the sequence
αk diminishes to 5% of its initial value in −3

log α time units, and it diminishes
to 2% in −4

log α units. If the system is a sampled-data one, the figures should be
multiplied by the sampling period to obtain a settling time in the appropriate
units.
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Impulse response. The impulse response sequence of a DT system, {gk}, is
the output to sequence δk = {1, 0, 0, . . . }. As in the CT case, as the sequence’s
Z-transform is 1, the impulse response is the inverse transform of the transfer
function. There is also a DT convolution formula:

yk =
k∑

i=0

gk−iui (A.25)

Frequency response. In sampled-data systems, frequency response is eval-
uated as G(ejωTs), i.e., replacing the formal argument in the transfer function
by ejωTs . Similar conclusions to CT systems can be made. For details, see [95].

A.4 Experimental Modelling

Once we know how to characterise the behaviour of a model, we are in a
position to estimate approximate models of our process by comparing its
behaviour with that of prototype models. Experimental modelling relies on
the data gathered from the process. Thus, if the experiments are not run
adequately the data will be useless and the models will not represent the
process behaviour.

Experimental modelling (system identification and parameter estimation)
is a crucial part of control system design and there is a natural interplay be-
tween the modelling and the control design stages. There is a lot of literature
(and many good books and references) on this wide subject. The basic ap-
proaches are just mentioned, their detailed treatment being out of the scope
of this book.

Matching of the Temporal Response

In process control, most processes behave in an overdamped way, and their
step response (reaction curve) has the shape shown in Figure A.2. First pro-
posed by Strej and later on with many variations (see, for instance, [89]), this
kind of response can be approximated by a four-parameters model such as:

G(s) = k
e−Ts

(1 + τs)n

where:
– k is the static gain,
– T is the time delay,
– n and τ being the order and time constant of the undelayed part respec-

tively, selected from the following table:
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n Ta/τ Tu/τ Tu/Ta

1 1 0 0
2 12.7 0.28 0.104
3 3.7 0.8 0.22
4 4.46 1.42 0.32
5 5.12 2.1 0.41
6 5.7 2.8 0.49
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K

Figure A.2. Overdamped unit-step response (reaction curve)

Based on the measurement of Tu/Ta, the time constant order is approximated
and the delay is tuned to match the second and third columns.

In a MIMO system, this experiment can be done for each input, keeping the
rest constant. Small step increments are used to guarantee a linear behaviour,
however, too-small ones will have a reduced signal-to-noise ratio.

If the process is underdamped, other higher-order models should be con-
sidered [89].

Matching the Frequency Response

Data gathered from a frequency analysis, carried out by entering at each
input a sinusoidal signal, will allow us to plot the frequency response (Bode
diagram) of each element of the frequency response matrix. By approximation
of the cut-off frequencies and the time delay, a model similar to the previous
one can be estimated. This technique is suitable for faster processes (electro-
mechanical systems, for instance).

Parameter Estimation

From input/output data taken under arbitrary (in many cases, purposely ran-
dom) inputs, least square parameter estimation approaches are quite popular.
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An academic example will illustrate some ideas in one of the simplest cases.
The reader is referred to [84] for in-depth coverage of this important topic.
Example A.1. A record of open-loop operation of a particular plant showed the
following input/output sequences (uk = yk = 0 for k < 0):

{uk} = {1,−1, 0, 2,−2,−1,−1, 0, . . . }
{yk} = {0, 0.05, 0.13,−0.037,−0.19,−0.51, . . . }

A so-called ARX process model, in the form

yk = a1yk−1 + a2yk−1 + b1uk−1 + b2uk−2 + εk (A.26)

where ε is assumed to be zero-mean white noise, will be fitted to the data. The
criteria would be minimising the average squared difference between the model pre-
diction and the actual output measurement yk. So, the following equations need to
be solved in a least-squares sense:

0.05 = 0a1 + 0a2 + 1b1 + 0b2

0.13 = 0.05a1 + 0a2 − 1b1 + 1b2

−0.037 = 0.13a1 + 0.05a2 − 0b1 − 1b2

−0.19 = −0.037a1 + 0.13a2 − 2b1 − 0b2

...

Expressing the equations in matrix form and using the pseudoinverse, the procedure
is straightforward. For higher quantities of data, Matlab� System Identification
toolbox provides the commands to automatically carry out the above operations. In
this case, being u and y column vectors with the data sequences, the code returning
the model would be:

th=arx([y u],[2 2 1]); present(th);

where two denominator parameters (ai), two numerator ones (bi) are to be es-
timated, and one sample pure delay is assumed in the model. The result is:
a1 = −0.925, a2 = 0.289, b1 = 0.0591 and b2 = 0.143. Other Matlab� com-
mands carry out the identification of the input-output models discussed in page 46,
in particular: armax, oe, bj.

An important issue is, of course, how to determine the distubance model
(model class), order and delay of the underlying process, a priori. Of course,
the more parameters the model has the better the fit to the training data is.
However, too many parameters will also fit spurious noise, yielding an useless
model. With real data, several combinations are tried and the number of
parameters involved is traded off against the accuracy achieved on a second,
independent data set, denoted as the test set, striking a suitable compromise.

Data preparation [26, 84] is also an important issue for applicability of
these algorithms in practice: using suitable band-pass filtered input signals
(and/or also pre-filtering the input and output sequences prior to application
of the ID algorithms) maximises signal-to-noise ratio at the key frequencies
regarding robustness [112], ensuring a better fit there and thus improving the
likelihood of success of the final controller on the real plant.
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A.5 Tables of Transforms

f(t) Laplace Transf. f(t) Laplace Transf.

δ(t) 1 sin ωt ω
s2+ω2

1 1
s cos ωt s

s2+ω2

t 1
s2 e−at sin ωt ω

(s+a)2+ω2

e−at 1
s+a e−at cos ωt s+a

(s+a)2+ω2

1
(n−1)! t

n−1e−at 1
(s+a)n

Sequence fn Z-Transform fn Z-Transform

{1, 0, 0, . . .} 1 cos(Bn) 1−z−1 cos(B)
1−2z−1 cos(B)+z−2

{0, . . . , 0, 1, 0, . . .} z−k sin(Bn) z−1 sin(B)
1−2z−1 cos(B)+z−2

{1, 1, 1, 1, . . .} 1
1−z−1 an cos(Bn) 1−z−1a cos(B)

1−2az−1 cos(B)+a2z−2

{0, T, 2T, 3T, 4T, . . .} Tz−1

(1−z−1)2
an sin(Bn) az−1 sin(B)

1−2az−1 cos(B)+a2z−2

{
1, a, a2, a3, . . .

}
1

1−az−1
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B

Matrices

In this appendix, some definitions and properties regarding matrices are out-
lined. For in-depth analysis, the reader is referred to textbook algebra sources
such as [91, 125].

B.1 Column, Row and Null Spaces

Definition B.1 (Column space C(A)). The column space of a matrix
Am×n is the set of all linear combinations of its columns, i.e., the set of all
y ∈ R

m expressed as y = Ax where x is a vector of n arbitrary coefficients.
The column space is a subspace of R

m.

Definition B.2 (Row Space). The set of linear combinations of the rows
of Am×n is a subspace of R

n, and it is isomorph to the column space of AT ,
i.e., C(AT ).

Definition B.3 (Null Space N(A)). It is defined as the set of y such that
(Am×n)yn×1 = 0.

Note that the null space is the set of vectors orthogonal to all rows of A
(columns of AT ): N(A) ⊥ C(AT ). Also C(A) ∪ N(AT ) = R

m.

Systems of equations. Solutions to Ax = b, for b ∈ C(A), are in the form
x0 + xH , where x0 is a particular solution and xH is any vector in N(A)
(solution of Ax = 0). If b �∈ C(A) the system of equations has no solution.

Definition B.4 (Rank). The dimension of the subspace C(A) is denoted as
rank of matrix A. It is equal to the dimension of the row space and to the
dimension of the biggest nonzero1 minor (determinant of square submatrix).
1 This definition is not useful for numeric calculations. See Section B.4.1 for a

computational definition.
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Matlab�: Some commands implementing algorithms related to the contents of this
section are: null,orth,rank,det.

B.2 Matrix Inversion

Inverse. A square matrix A with nonzero determinant allows the calculation
of its inverse, A−1:

A−1 =
1

det A
adjA (adjA)ij = (−1)i+j det Aji (B.1)

where Aji is a submatrix formed by deleting the row j and the column i from
A. The determinant of A−1 is 1/det(A). These matrices are called invertible
or regular, and AA−1 = A−1A = I.

Unitary (orthogonal) matrices. A matrix, U , is unitary if it verifies:

UH = U−1

where superscript H stands for complex conjugate transpose (transpose in the
real case). In that case, all rows have norm 1 and are orthogonal to the rest2.

Pseudoinverse

Left pseudoinverse. If a matrix Am×n with m ≥ n has rank n (full column
rank), the matrix:

†A = (AT A)−1AT (B.2)

fulfills:
†AA = In×n

Matrix †A, of dimensions n × m, is denoted as the left pseudoinverse of A.
Given a system of equations, Ax = y, under full-column rank assumptions,

the value of x minimising the least squares error criteria J = ‖Ax − y‖2 (see
norm definitions in Appendix C) with more equations than unknowns is:

xopt = †Ay

as shown in Example D.2 on page 304.
2 In the following, mostly matrices with real elements will be considered. To extend

the results to the complex case, any transposition must be replaced by conjugate-
transpose.
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Right pseudoinverse. If a matrix Am×n with m ≤ n has rank m (full row
rank), matrix:

A† = AT (AAT )−1 (B.3)

fulfills:
AA† = Im×m

So matrix A†, with dimensions n × m, is denoted as right pseudoinverse.
In this case, a system, Ax = y, has more unknowns than equations thus

existing infinite solutions. The solution with minimum norm is:

xopt = A†y

If Am×n has rank less than min(m,n), no pseudoinverse exists.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: inv,pinv.

Schur formula. The following formula is useful in calculating determinants
of partitioned matrices:

det
(

A1 A2

A3 A4

)

= det(A1) det(A4 − A3A
−1
1 A2) = det(A4) det(A1 − A2A

−1
4 A3)

(B.4)

Push-through rule. For matrices of appropriate dimensions:

G1(I − G2G1)−1 = (I − G1G2)−1G1 (B.5)

B.3 Eigenvalues and Eigenvectors

The eigenvalues of a square matrix An×n are the solutions of the equation:

det (A − λI) = 0

where the left-hand side is a polynomial in λ, denoted as the characteristic
polynomial of A, and the equation above is named characteristic equation
of A. There exist n (possibly repeated) eigenvalues. Diagonal and triangular
matrices have the diagonal entries as eigenvalues.

Eigenvectors, vi, corresponding to eigenvalue λi verify Avi = λivi. Eigen-
vectors for different eigenvalues are linearly independent. That may not be the
case for repeated eigenvalues. If there are n linearly independent eigenvectors,
a matrix, T , can be formed by juxtaposing them in column form so that:

AT = TΛ
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where Λ is a diagonal matrix, so Λ = T−1AT . In that case, it is said that A is
diagonalisable. If matrix T cannot be formed with independent eigenvalues,
the so-called Jordan upper triangular canonical form can be obtained.

A matrix A is positive-definite if all its eigenvalues are real and positive
(then xT Ax > 0 for all x �= 0), and positive semi-definite if they are ≥ 0.

Similarity transform. B = T−1AT has the same eigenvalues as A, for any
invertible T . Indeed:

det(λI − T−1AT ) = det(T−1(λI − A)T ) = det(λI − A)

Cayley-Hamilton theorem. A square n × n matrix satisfies its own char-
acteristic equation, replacing powers of λ by powers of A, i.e., if det(sI−A) =∑n

i=0 αis
i, then

∑n
i=0 αiA

i = 0.
From this expression, An = α−1

n

∑n−1
i=1 αiA

i. So, by induction, Ap for any
p ≥ n can be expressed as a linear combination of I, A,A2, An−1.

Other Properties

• the product of the eigenvalues is equal to the determinant,
• the sum of the eigenvalues is the trace of A (sum of diagonal elements),
• the matrix A + cI, c being a real or complex scalar, has as eigenvalues

λi + c, and the same eigenvectors.

Gershgorin’s theorem. The eigenvalues of an n×n matrix lie, in the com-
plex plane, in the union of the closed disks with centre aii (diagonal element)
and radius

∑
j �=i |aij | (absolute row sum). Also, they lie in the union of closed

disks with same centre and radius
∑

j �=i |aji| (absolute column sum). The
Gershgorin theorem gives numerical indexes of diagonal dominance (3.37)
(see also Section 5.2.3).

Eigenvalues and differential equations. Let us consider a system of or-
dinary linear differential equations:

dx

dt
= Ax (B.6)

If we look for an exponential component in the response, as in scalar
ordinary equations, x(t) = eλtv, then ẋ = eλtλv, hence, as eλt is a non-zero
scalar for every t:

eλtλv = Aeλtv ⇒ λv = Av

so λ must be an eigenvalue of A and v must be an eigenvector3 : the exponential
terms in solutions of (B.6) are the eigenvalues of A.
3 The same happens for a DT system, xk+1 = Axk, and a solution in the form

xk = λkv.
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B.4 Singular Values and Matrix Gains

The problem of determining the maximum and minimum “gain” of a matrix is
related to an eigenvalue problem, when working with Euclidean vector norms
(see Appendix C).

Given y = Ax, to determine the maximum and minimum gains, and the
directions in which they occur, ‖x‖ = 1 will be assumed (as the effect of the
matrix for any x will be proportional to that on its unit vector x/‖x‖). So,
the problem is stated as follows:

• maximise ‖y‖2 = ‖Ax‖2 = xT AT Ax, for x ∈ R
n,

• subject to the restriction xT x = 1

The constrained optimisation problem (see Section D.1) can be transformed
into an unconstrained one by using one Lagrange multiplier λ:

J = xT AT Ax + λ(1 − xT x) (B.7)

So, differentiating with respect to x (using the notation in (D.1)), the
result is the eigenvalue problem:

AT Ax = λx (B.8)

So the maximum and minimum gains occur at some of the eigenvectors of
AT A, and the eigenvalues are the associated Lagrange multipliers. As AT A is
symmetric, positive semi-definite (‖Ax‖ = xT AT Ax ≥ 0), all its eigenvalues
are real, non-negative and the eigenvectors can be chosen to be an orthonormal
basis4.

It can be shown that for any eigenvector xi, i = 1, . . . , n of (AT A), the
output norm ‖yi‖ = ‖Axi‖ attained is

√
xT

i λixi=
√

λi‖xi‖. So, the maximum
gain corresponds to the eigenvector associated to the maximum eigenvalue,
and the analogue for the minimum one. Let us denote as λ1 ≥ λ2 ≥ λn the
eigenvalues in decreasing sequence, so x1 is the most amplified input direction
and xn is the least.

The intermediate vectors are saddle points on the optimisation problem.
Furthermore, λ2 maximises the gain of A subject to xT x = 1 and xT x1 =
0 (the maximum gain on directions orthogonal to the x1). Carrying on, λi

maximises the gain of the matrix in directions orthogonal to all xj for j < i.
As the eigenvectors form an orthonormal basis, also the outputs yi = Axi

and yj = Axj are orthogonal as yT
i yj = xT

i AT Axj = xiλjxj = 0.
So, the action of A on an arbitrary x can be decomposed as:

1. Decompose (project) x on the basis formed by the eigenvectors xi. Let us
denote as V the matrix whose rows are xi.

2. Scale each component by
√

λi. If λi = 0, the component is irrelevant.
4 Multiplication by an orthonormal matrix can be considered as a change of basis

by rotation.
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3. Rotate the result to be aligned with yi and add up all components.

The result is that matrix A can be written as:

A = UΣV T (B.9)

where U and V are orthonormal rotation matrices and Σ is diagonal. Further-
more, if A is m×n, the columns of V (n×n) are the eigenvectors of AT A, Σ
(m × n) contains the (positive) square root of the eigenvalues (σi =

√
λi are

denoted as singular values) in the diagonal, and columns of U (m × m) are
the eigenvectors of AAT (by a similar argument with AT = V ΣUT ). As the
determinants of U and V are 1, det(A) = det(Σ).

Equation (B.9) is denoted as the singular value decomposition (SVD).
Usually, the maximum and minimum singular values are written as:

σ(A) = λ1; σ(A) = λn

so the following inequalities hold:

σ(A)‖x‖ ≤ ‖Ax‖ ≤ σ(A)‖x‖ (B.10)

As an orthogonal (rotation) matrix has its transpose as the inverse, the
inverse of a matrix A can be expressed as:

A−1 = V Σ−1UT (B.11)

so its singular values are the inverse of those of A. In particular:

σ(A−1) = 1/σ(A) (B.12)

so a matrix is invertible if all its singular values are non-zero. Left and right
pseudoinverses can also be expressed in terms of the SVD of A.

The maximum singular value is a matrix norm, in the sense of the defini-
tions of Section C.2. It satisfies some norm properties, in particular:

σ(AB) ≤ σ(A)σ(B) (B.13)

so, unless otherwise stated, the following notation will be assumed:

‖A‖ = σ(A)

The minimum gain, σ(), satisfies σ(A)σ(B) ≤ σ(AB).

B.4.1 Condition number

Based on the results above, the condition number of a matrix A is defined as:

γ(A) =
σ(A)
σ(A)

≥ 1

From (B.12), it is straightforward to prove that γ(A−1) = γ(A).
Let us now analyse some important singular value applications.
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Noise amplification. In a system Ax = y, where A is a regular matrix and
y are noise-corrupted experimental data, an estimate on the relative accuracy
of x = A−1y can be obtained.

Let us denote as δy the “error” (noise) present on the experimental data.
Then, δx = A−1δy and, based on (B.10):

‖δx‖ ≤ σ̄(A−1)‖δy‖; ‖x‖ ≥ σ(A−1)‖y‖

so dividing the first inequality by ‖x‖:
‖δx‖
‖x‖ ≤ σ̄(A−1)‖δy‖

‖x‖ ≤ σ(A−1)
σ(A−1)

‖δy‖
‖y‖ = γ(A−1)

‖δy‖
‖y‖ (B.14)

The interpretation of this formula is that the relative error on the experimental
data may have a worst-case amplification given by the condition number.
A similar argument would prove that relative error in x may appear in y
amplified by the factor γ(A).

Modelling error. In this case, the issue to be considered is the difference
in solutions for u from a nominal model, y = Gu, and a perturbed one,
y = (G+δG)u∗, denoting as δu the difference between solutions, u∗ = (u+δu).
Subtracting these expressions, 0 = Gu − (G + δG)(u + δu), results in:

δu = −G−1δG(u + δu)

so, using (B.13) and (B.12):

‖δu‖ ≤ σ(G−1)σ(δG)‖u + δu‖ =
σ(δG)
σ(G)

‖u + δu‖ =
σ(G)
σ(G)

σ(δG)
σ(G)

‖u + δu‖

so relative modelling error also may get amplified in the results by γ(G):

δu

‖u + δu‖ ≤ γ(G)
‖δG‖
‖G‖ (B.15)

Rank determination. One application of the above result is that, in ma-
trices obtained from noisy or unaccurate experimental data (even round-off
errors), no matrix has “exactly” zero determinant or zero singular values.

To determine in practice the reliability of a matrix inversion, the condition
number is calculated. If it is very large, it implies that the matrix inversion is
unreliable (very high error figures may be expected, from (B.14) and (B.15)).

It can be easily shown that the rank of a matrix is the number of non-zero
singular values. This is an operational definition where a tolerance can be
specified, on the minimum singular value or on the condition number.

Example B.5. This is an example to show that the value of the determinant, by
itself, is not a good indicative of how close the matrix is to being singular:
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A = -38.8843 44.4703 92.1813

1.8504 61.5432 73.8207

82.1407 79.1937 17.6266

det(A) = 857.5811

svd(A) = 153.2032 105.2887 0.0532

Condition number is around 3000, i.e., in some directions, the gain is almost three
thousand times larger than in other ones so, depending on the reliability of the
data, the “practical” rank might be 2. Any control design philosophy relying on that
matrix having rank 3 will be quite sensitive to modelling errors. If element A(1, 1)
were -38.7042, the matrix would become singular: the allowable relative error for
singularity is 0.003 in some elements. This matrix is “singular” (rank 2) if data do
not have more than three precise significant figures.

Matlab�: Some commands implementing algorithms related to the contents of this
section are: svd,cond,condeig.

For further detail on these topics, the reader is referred to [125, 53, 91].
Minimised condition number. In MIMO transfer function matrices, as
diagonal scalings represent changes of units in physical magnitudes, unless all
variables are suitably scaled to have the same practical meaning, the condition
number by itself may be a misleading indicator of the “difficulty” of the matrix
inversion problem. This is the reason why it is important in some applications
to calculate the minimised condition number:

γ∗(G) = min
DI ,DO

γ(DOGDI) (B.16)

where DO and DI are output and input diagonal scalings respectively. It
indicates the practical conditioning for a particular optimal set of measure-
ment units. Its determination requires convex optimisation routines, related
to µ-analysis (structured uncertainty robust control) [32]. In a practical case,
evaluation of the condition number of a plant must be carried out once it has
been suitably scaled (see Section 3.5).

Example B.6. A plant with a diagonal transfer matrix is indeed easy to control, as
there is no coupling. However, the condition number of G=diag([1,1000]), equal to
1000, unacceptably overestimates the sensitivity to uncertainty in (B.14) and (B.15):
a trivial change of units yields a plant with γ = 1, i.e., γ∗(G) = 1.

Column and Null spaces. If all singular values below a tolerance limit are
assumed to be zero, then the matrix SVD can be understood as:

[U1U2]
(

Σ1 0
0 0

)

[V1V2]T

where Σ1 contains the non-zero singular values. In this case, V2 is a basis of
the null space, and U1 is a basis of the column space. This is a numerically
reliable way of calculating such spaces, used in Matlab� .
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B.5 Matrix Exponential

The definition of a matrix exponential is the same as in the exponential of an
scalar:

exp (A) = eA def=
∞∑

n=0

An

n!
= I + A +

A2

2
+

A3

6
+ · · · (B.17)

In solving linear differential equations, matrices are multiplied by a time
scalar:

exp (At) = eAt =
∞∑

n=0

Antn

n!
= I + At +

A2t2

2
+

A3t3

6
+ · · · (B.18)

Properties. The matrix exponential has the following properties:

• e0n×n = In×n

• eAt1eAt2 = eA(t1+t2)

• (
eAt
)−1 = e−At

• deAt

dt = AeAt = eAtA
Indeed,

deAt

dt
=

∞∑

n=1

An ntn−1

n!
= A +

A2 2t

2
+ · · · = A(I +

A2 t

1
+

A3 t2

2
+ · · · )

=
∞∑

n=1

An tn−1

(n − 1)!
= A

∞∑

n=0

Antn

n!
= (

∞∑

n=0

Antn

n!
)A = AeAt = eAtA (B.19)

• based on the previous property, if A is non-singular,
∫ t

0
eAτ dτ = A−1(eAt−

I). The integral also exists for singular A, but it must be carried out with
the power series.

Differential equations. The solution of the equation:

ẋ = Ax + Bu (B.20)

can be expressed in terms of a matrix exponential, as:

d

dt
(e−Atx) = e−Atẋ − e−AtAx = e−AtBu

e−Atx(t) − e−A0x(0) =
∫ t

0

e−AτBudτ

so, as e0 = I, multiplying by eAt the result is:

x(t) = eAtx(0) + eAt

∫ t

0

e−AτBudτ = eAtx(0) +
∫ t

0

eA(t−τ)Budτ (B.21)
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Calculation. If the matrix is diagonal, the exponential is just the exponential
of the diagonal elements:

exp
[(

c1 0
0 c2

)]

=
(

ec1 0
0 ec2

)

(B.22)

If the matrix is diagonalisable, A = V −1ΛV , as:

A2 = V −1ΛV V −1ΛV = V −1Λ2V ; . . . An = V −1ΛnV (B.23)

it can be shown that:
eAt = V −1eΛtV (B.24)

If the matrix is not diagonalisable, it admits a canonical Jordan form. It
can be shown that a Jordan block of dimension m has a matrix exponential
given by:

exp(







λ 1 0 . . .
0 λ 1 . . .
0 . . . λ 1
0 . . . 0 λ





) = eλt ×









1 t . . . tm−1

(m−1)!

0 1 . . . tm−2

(m−2)!

...
...

. . .
...

0 0 · · · 1









(B.25)

Computer calculation. Calculation of matrix exponentials via a computer
must be made by taking a few terms of the power series defining the matrix
exponential. However, the Padé approximation, eAt = eAt/2

(
e−At/2

)−1
, from

(2.42), gives better results, evaluating eAt/2 and e−At/2 by a truncated Taylor
series expansion. Furthermore, as the series accuracy decreases for large values
of t, the matrices are scaled down by a power of 2 until its maximum singular
value is less than a prefixed amount. After calculation, repeated multiplication
renders the final result (for example, eAt = (eAt/8)8).

Matlab�: Some commands implementing algorithms related to the contents of this
section are: expm,expm1,expm2,expm3,funm.

B.6 Polynomial Fraction Matrices

Rational transfer function matrices have as elements quotients of polynomials
gij = nij(s)

dij(s)
(polynomial fractions), with dij(s) �= 0, where equality refers to

the identically zero polynomial.
As polynomial fractions form a field (+ and · are commutative, associative,

have neutral element and inverse), many results extend directly from those
from the real matrices (as real numbers are also a field), understanding zero
as the zero polynomial. Polynomial matrices (those with denominator equal
to 1) have polynomials as elements (polynomials are a ring, subset of the
polynomial fractions).
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Inversion. A square matrix, G(s), is invertible if det(G(s)) �= 0, and its
inverse has the same formula as in the real number case.

Equivalently, a polynomial fraction matrix is invertible if its determinant
evaluation is non-zero except at a finite number of points (the roots of a
non-zero polynomial).

Note that s is considered an arbitrary symbolic variable, and not a complex
number where the matrix is evaluated. For example:

G(s) =
( 1

s+1
s

s+4
2

s+1 0.4

)

det(G) =
1.6(1 − s)

(s + 1)(s + 4)

G−1(s) =
(s + 1)(s + 4)

1.6(1 − s)

(
0.4 − s

s+4

− 2
s+1

1
s+1

)

are invertible as polynomial fraction matrices. However, interpreted as a func-
tion, G(s) : C → C is not defined for s = −4 or s = −1.

The rank of a polynomial fraction matrix is defined, as usual, as the size of
the largest non-zero minor (as a polynomial). In this sense, the rank of G(s)
above is 2. Note that, however, the rank of the scalar matrix G(1) is 1, as
det(G(1)) = 0. In this case, it is said that 1 is a zero of G(s).

Unimodular matrices. The inverse of a polynomial matrix is, in general, a
polynomial fraction matrix. From (B.1), only if its determinant is a constant
polynomial (the only polynomials that have inverse) the inverse will also be
a polynomial matrix. In this case, the matrix is said to be unimodular.

Coprime Factorisation

In order to analyse the stability, as well as for dealing with uncertainties and
model reduction, it is interesting to express a transfer matrix by the product
of two stable transfer matrices.

We denote by a right coprime factorisation, the product:

G(s) = Nr(s)M−1
r (s) (B.26)

where Nr(s) and Mr(s) are two coprime stable matrices, that is, there is no
pole-zero cancellation between them, and both are stable, i.e., it is required
that all the RHP zeros of G(s) should be in N(s) and all its RHP poles in
M(s).

It can be proved that two matrices are right coprime if they satisfy the
Bezout identity, i.e., there exist stable X(s) and Y (s) such that:

X(s)N(s) + Y (s)M(s) = I

Similarly, a left coprime factorisation is expressed by the product:

G(s) = M−1
l (s)Nl(s) (B.27)
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Please, note that, instead of the product of two polynomial matrices
(N(s), D(s)), as used in the polynomial representation (2.35), here the factors
are polynomial fraction matrices (transfer matrices).

Note that given any stable and minimum-phase transfer matrix, Q, a nom-
inal plant G = M−1N can also be expressed as G = (QM)−1(QN), so the
factorisation is not unique. The factorisation is called normalised (NCF) if:

M(s)MT (−s) + N(s)NT (s) = 1 (B.28)

In the SISO case, this amounts to forcing the sum of squares of the modulus
of “numerator” N and “denominator” M to 1, and it is a convenient choice
for many problems. The quotes remark that M and N in an NCF are not
polynomials.
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Signal and System Norms

C.1 Normed Spaces

Definition C.1. A norm is a real function ‖ ·‖ : V → R+ where V is a vector
space, satisfying the following conditions:

1. ‖x‖ ≥ 0 ∀x ∈ V.
2. ‖x‖ = 0 ⇔ x is the null vector (x = 0).
3. ‖αx‖ = |α| · ‖x‖ ∀x ∈ V and for any scalar α (real or complex, |α| being

the absolute value or modulus).
4. ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ V (triangle inequality).

Examples of those norms are, in R
n,

‖(a1, . . . , an)‖p =

(
n∑

i=1

|ai|p
) 1

p

p ≥ 1

The norm ‖a‖2 = aT a is usually named the Euclidean norm1.
Another example is the maximum norm:

‖(a1, . . . , an)‖max = max
i

ai

This norm is also usually denoted as ‖a‖∞.

C.2 Function Spaces

Considering two normed vector spaces (Va, ‖ · ‖a) and (Vb, ‖ · ‖b), the set of
applications between V1 and V2 is also a vector space, defining (f1 + f2)(x) =
f1(x) + f2(x) and (αf)(x) = αf(x).
1 Vector a is assumed to be in column form.
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Definition C.2. In a function vector space, the norm of a continuous func-
tion f : Va → Vb such that f(0) = 0 can be defined as:

‖f‖ab = sup
‖v‖a �=0

‖f(v)‖b

‖v‖a
(C.1)

Remark C.3. The norm of a function is a measure of its maximum amplifica-
tion (worst-case gain), as:

‖f(v)‖b ≤ ‖f‖ab ‖v‖a (C.2)

and the norm can be interpreted as the size of the smallest circular “cone”
containing f(v) for all possible v. Non-linearities with finite norm are called
sector-bounded non-linearities.

The above defined norms are also denoted as induced norms.
If f is linear, the norm definition is equivalent to:

‖f‖ab = sup
‖v‖a=1

‖f(v)‖b (C.3)

Example C.4. The norm of function y = u + sin u is 2, as its graph is tangent to
the cone y = ±2u.

√|u| does not have a finite norm.

Example C.5. Consider the set of linear functions between R
m and R

n, both with
the Euclidean norm, ‖·‖2. Note that each linear function can be uniquely represented
by a matrix, A, of dimensions m×n. The norm of the function y = Ax (termed the
norm of matrix A, with a slight abuse of notation) is the maximum singular value
defined in Section B.4:

‖A‖ = sup
‖x‖=1

‖Ax‖ = σ(A) (C.4)

Submultiplicative property. One important property of these norms in
function spaces is the submultiplicative property regarding composition, ◦, of
functions f1 : Vb → Vc, f2 : Va → Vb:

‖f1 ◦ f2‖ac = sup
‖v‖�=0

‖f1(f2(v))‖c

‖v‖a
≤ sup

‖v‖�=0

‖f1‖bc‖f2(v)‖b

‖v‖a
= ‖f1‖bc · ‖f2‖ab

(C.5)
where the inequality comes from (C.2).

The composition of linear functions is equivalent to matrix multiplication.
The above property is useful for evaluating bounds on the maximum gain of
series-connected systems (Figure 2.3).

Matlab�: Some commands implementing algorithms related to the contents of this
section are: norm,lti/norm.
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C.3 Signals and Systems Norms

A particular application of some of the above definitions to signal spaces
(functions of time) and dynamical systems (interpreted as functions between
two signal spaces) allows the following definitions.

C.3.1 Signal Norms

Signals are defined as functions of time f : R → Rn. If a certain norm ‖ ‖ on
R

n is assumed, it can be proved that the following expression constitutes a
norm in the space of signals2:

‖f‖p =
(∫ ∞

−∞
‖f(t)‖p dt

) 1
p

p ≥ 1 (C.6)

For instance, usual signal norms, applied to an error signal vector, e(t),
with components ei(t), are:

1-norm (integral of absolute error IAE):

‖e‖1 =
∫ ∞

−∞

n∑

i=1

|ei(t)| dt (C.7)

2-norm (integral of squared error ISE):

‖e‖1 =

√
√
√
√
∫ ∞

−∞

n∑

i=1

ei(t)2 dt (C.8)

Maximum-norm (∞-norm) :

‖e‖∞ = sup
t

max
i

|ei(t)| (C.9)

Unless otherwise stated, it will be understood that bounded signals are those
with finite maximum norm and bounded-energy ones are those with finite
2-norm.

In most cases, signals are defined only for positive t and the lower time
limits in the above expressions may be changed to zero.
2 To verify property 2 in definition C.1, some technical conditions defining two func-

tions as equal if they differ on a zero-measure set are needed, and also regarding
existence of the defining integral.
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C.3.2 System Norms

Systems are functions from one signal space (input space) to another one
(output space). So, norms of these can be defined according to Definition C.2.

In the particular case of norms of linear systems, these systems can be
characterised by the impulse response, G(t), or frequency response, G(jω),
matrices. Defining:

‖G(s)‖2 =

√
√
√
√

1
2π

∫ +∞

−∞

∑

ij

|Gij(jω)|2 dω (C.10)

‖G(s)‖∞ = maxωσ̄G(jω) (C.11)

‖G(t)‖2 =

√
√
√
√
∫ +∞

0

∑

ij

|Gij(t)|2 dt (C.12)

‖G(t)‖1 =
∫ +∞

0

maxi

∑

j

|Gij(t)| dt (C.13)

Parseval theorem proves that ‖G(t)‖2 = ‖G(s)‖2. The 2-norm of a system
can also be interpreted as the variance to a white noise input.

It can be shown that the worst-case gain (i.e., the system norm in definition
C.2) using specific input and output norms are those in Table C.1.

Table C.1. Induced system norms for specific input and output norms

‖u‖2 ‖u‖∞
‖y‖2 ‖G(s)‖∞ ∞
‖y‖∞ ‖G(s)‖2 ‖G(t)‖1

Matlab�: Some commands implementing algorithms related to the contents of this
section are: norm (lti/norm).

C.4 BIBO Stability and the Small-gain Theorem

Given two signal spaces, U and Y, with a particular norm on them, and a
dynamical system, Σ, relating signals in those spaces by y = Σ(u), the system
is said to be BIBO (bounded input bounded output) stable if Σ has a finite
induced norm, i.e., if a constant C exists so that ‖y‖ ≤ C‖u‖, for zero initial
conditions. It can be shown that the infimum of those constants is the norm
of ‖Σ‖ defined in the sense of Definition C.2.

TLFeBOOK



C.4 BIBO Stability and the Small-gain Theorem 301

As systems are interconnected to conform more complex ones, it is inter-
esting to investigate the stability properties of a system from the stability
properties of its subsystems and its structure.

Series and Parallel Connection

Two systems Σ1 and Σ2 are series-connected if:

y2 = Σ2(y1); y1 = Σ1(u)

Equation (C.5) shows that if two systems are BIBO-stable, its series con-
nection also has that property. The result is also straightforward in parallel
connections, y = Σ1(u) + Σ2(u).

Feedback Connection (Small-gain Theorem)

Let us analyse the feedback loop in Figure C.1 in order to derive a sufficient
stability condition.

+
+

+

+

e1

e2y1

y2u1

u2

Σ1

Σ2

Figure C.1. Feedback interconnection

Let us assume that Σ1 and Σ2 are BIBO-stable (i.e., that a finite norm can be
calculated so that ‖y2‖ ≤ ‖Σ1‖ ·‖e1‖ and ‖y1‖ ≤ ‖Σ2‖ ·‖e2‖). By successively
applying the definition of a norm (maximum gain) and the triangle inequality:

‖y2‖ ≤ ‖Σ1‖ · ‖e1‖ ≤ ‖Σ1‖(‖u1‖ + ‖y1‖) ≤
‖Σ1‖(‖u1‖ + ‖Σ2‖ · ‖e2‖) ≤ ‖Σ1‖(‖u1‖ + ‖Σ2‖(‖u2‖ + ‖y2‖)) (C.14)

solving for ‖y2‖ gives:

(1 − ‖Σ1‖ · ‖Σ2‖)‖y2‖ ≤ ‖Σ1‖ · ‖u1‖ + ‖Σ1‖ · ‖Σ2‖ · ‖u2‖ (C.15)

so, if ‖Σ1‖ · ‖Σ2‖ < 1, any solution y2 verifies that gains from inputs to y2 are
bounded (BIBO stability). Similar expressions can be obtained analogously
for the rest of signals, so the following result can be stated:

Theorem C.6 (Small-gain Theorem). For bounded inputs, all signals in
the closed-loop in Figure C.1 are bounded if Σ1 and Σ2 are stable and:

‖Σ1‖ · ‖Σ2‖ ≤ 1
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The results holds for Σ1, Σ2 being any dynamical system (linear or non-
linear) as long as stability and the system norm can be suitably defined. In
the application of this theorem to robust control, one of the blocks will be
the linear closed-loop system and the other will be the unknown, possibly
non-linear, modelling errors.

Example C.7. In the case of one of the systems (say, Σ2) being a stable LTI one, and
that the signal norm ‖y‖, ‖u‖ to be considered is the Euclidean 2-norm (inducing
the ∞-norm for systems, see Table C.1) a sufficient condition for stability of the
closed-loop system is:

‖Σ1‖ sup
w∈R

σ̄(Σ2(jω)) ≤ 1 (C.16)

If there is knowledge that Σ1 and Σ2 are both linear time-invariant (that
will apply to neglected linear dynamics in robust control), then the previous
calculations can be carried out exactly in Laplace transform, operating with
block-diagram transformations. The result is:

(I − Σ1(s)Σ2(s))y2(s) = Σ1(s)u1(s) + Σ1(s)Σ2(s)u2(s)
y2(s) = (I − Σ1(s)Σ2(s))−1(Σ1(s)u1(s) + Σ1(s)B(s)u2(s)) (C.17)

so that if Σ1 and Σ2 are stable, det(I−Σ1(s)Σ2(s)) evaluated at s = jω should
not encircle the origin to apply the Nyquist criterion (see Section 4.5.1), as a
necessary and sufficient condition.

It can be shown that a (less conservative than (C.16)) sufficient condition
for this particular case is:

sup
w∈R

σ̄(Σ1(jω)Σ2(jω)) < 1 (C.18)

and another one, using the submultiplicative property (C.5), is:

sup
w∈R

σ̄(Σ1(jω))σ̄(Σ2(jω)) < 1 (C.19)

In the SISO case, the last conditions amount to:

|Σ1(jω)Σ2(jω)| < 1

i.e., if the Nyquist diagram of the “open-loop” transfer function is strictly
inside the unit circle, it will never touch the point −1.
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D

Optimisation

In this appendix, the fundamentals on optimisation of multivariable static and
dynamic models are outlined.

D.1 Static Optimisation

First, the problem of obtaining the points where a function attains a maximum
or minimum will be addressed. Argument x can be a single variable or a vector.

Optimisation on one variable. A function y = f(x), f : R → R with
derivative at x0 achieves a local maximum (minimum) at x = x0 if df

dx (x0) = 0
and the order of the first non-zero derivative at x0 is even, and its value is
negative (positive).

Optimisation on multiple variables. Now the case x ∈ R
N will be dis-

cussed, i.e., y = F (x1, x2, . . . xn), y ∈ R, f : R
N → R. Local maxima (minima)

x0 have zero partial derivatives (Jacobian):

∂F

∂xi
(x0) = 0 ∀i

Points with null partial derivatives are denoted as critical points. To verify
if the point is a maximum, minimum or saddle point, the matrix of the second
derivatives at x0 should be calculated:

Hij =
∂2F

∂xi∂xj

so if the matrix is positive (negative) definite, x0 is a local minimum (maxi-
mum), and if it has positive and negative eigenvalues (i.e., if it is indefinite),
x0 is a saddle point. If the matrix is semidefinite, further derivatives would
need to be taken.
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Quadratic Indexes

Quadratic cost indexes are quite common in optimisation problems. To max-
imise or minimise the square of linear matrix equations, the derivatives of the
following factors:

J = xT Px =
∑

xipijxj = p11x
2
1 + p22x

2
2 + · · · + (p12 + p21)x1x2 + . . .

η = aT x =
∑

aixi = a1x1 + . . . + anxn

have to be calculated. These derivatives are easy to calculate:

∂J

∂xi
= 2piixi + (pi1 + p1i)x1 + (pi2 + p2i)x2 + · · · =

n∑

j=1

(pij + pji)xj

∂η

∂xi
= ai

Arranging these derivatives as a column vector, there is a convenient
matrix notation for them, allowing easier bookkeeping in many linear least
squares problems:

∂J(x1, x2, . . . , xn)
∂x

def=








∂J
∂x1
∂J
∂x2
...

∂J
∂xn








(D.1)

∂xT Px

∂x
= (P + PT )x;

∂aT x

∂x
=

∂xT a

∂x
= a (D.2)

Example D.1. Let us calculate the derivative of:

M = x2
1 + 3x1x2 + 2x2

2 + 5x1 + 2x2 = xT

(
1 1.5

1.5 2

)

x + ( 5 2 )x

∂M

∂x1
= 2x1 + 3x2 + 5

∂M

∂x2
= 3x1 + 4x2 + 2

∂M

∂x
=

(
2x1 + 3x2 + 5
3x1 + 4x2 + 2

)

= 2

(
1 1.5

1.5 2

)

x +

(
5
2

)

Example D.2. The value of x minimising the squared error in a system of linear
equations:

yp×1 = Ap×nxn×1 Ep×1 = y − Ax

J1×1 = ET E = (y − Ax)T (y − Ax) = yT y − yT Ax − xT AT y + xT AT Ax =

= yT y − 2yT Ax + xT AT Ax

can be obtained in a straightforward way in matrix notation:

0 =
dJ

dx
= −2AT y + 2(AT A)x; x∗ = (AT A)−1AT y

Matrix (AT A)−1AT is the left pseudoinverse †A in (B.2).
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Constrained Optimisation (equality)

If a cost index J(x1, . . . , xn) must be optimised subject to a set of differentiable
restrictions:

fi(x1, . . . , xn) = 0, i = 1, . . . m, m < n

it has a local minimum or maximum at a point (x0
1, . . . , x

0
n) if the uncon-

strained problem consisting in the minimisation of:

H(x1, . . . , xn, λ1, . . . , λm) = J(x1, . . . , xn) +
m∑

i=1

λifi(x1, . . . , xn) (D.3)

(the scalars λi, being denoted as Lagrange multipliers) has a critical point at
the referred point, i.e., if there exist λ0

i such that:

∂H

∂xi
(x0

i ) = 0;
∂H

∂λi
(λ0

i ) = 0

D.2 Discrete Linear Quadratic Regulator

The discrete linear quadratic regulator is defined as the one yielding control
actions, minimising the following cost index:

J =
1
2

N−1∑

k=0

(xT
k Qxk + uT

k Ruk) +
1
2
xT

NSNxN (D.4)

starting from a non-zero1 initial condition, x0. Q and SN are assumed to be
symmetric, positive semidefinite matrices, and R is assumed to be symmetric
and positive definite.

In Section 7.1, motivation and engineering insight into the above cost index
were discussed. Now, the procedure for solving the problem will be detailed.

For small N and small process order, the optimisation can be carried out
by brute-force derivative calculation, as in the example below.

Example D.3. For a first-order plant, xk+1 = 0.8xk + uk, and a cost index:

J = x2
1 + x2

2 + x2
3 + 0.1u2

0 + 0.1u2
1 + 0.1u2

2

writing down the future states using the model:

x1 = 0.8x0 + u0; x2 = 0.82x0 + 0.8u0 + u1; x3 = 0.83x0 + 0.82u0 + 0.8u1 + u2

the cost, J , is:

(0.8x0+u0)
2+(0.82x0+0.8u0+u1)

2+(0.83x0+0.82u0+0.8u1+u2)
2+0.1(u2

0+u2
1+u2

2)

1 Obviously, “zero” refers to any desired operating point once linearisation and a
change of variables to incremental ones is made (Section 2.5).
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So by equating to zero the derivatives of J with respect to u0, u1 and u2, the optimal
values for them will be obtained (as a function of x0). Indeed:

∂J

∂u2
= 0.2u2 + 2(0.64u0 + 0.8u1 + u2 + 0.512x0)

∂J

∂u1
= 0.2u1 + 1.6(0.64u0 + 0.8u1 + u2 + 0.512x0) + 2(0.8u0 + u1 + 0.64x0)

∂J

∂u0
= 0.2u0 + 1.28(0.64u0 + 0.8u1 + u2 + 0.512x0) + 1.6(0.8u0 + u1 + 0.64x0)

+ 2(u0 + 0.8x0)

Equating to zero and solving the resulting linear system of equations, the optimal
control actions are:

u0 = −0.7309x0; u1 = −0.0505x0; u2 = −0.00347x0

and the optimal state trajectory would be:

x1 = 0.0691x0; x2 = 0.00478x0; x3 = 0.00035x0

However, the procedure gets cumbersome for high N and more complex
plants. Introducing matrix notation for the operations and the derivatives
will allow us to find a practical solution for a general case, with the so-called
dynamic programming approach [24], based on an induction argument.

One-step-ahead optimisation

Let us first solve the optimisation problem for one time step, i.e., the sum
below containing one term:

JN−1 =
1
2

N−1∑

k=N−1

(xT
k Qxk + uT

k Ruk) +
1
2
xT

NSNxN (D.5)

In this case, from a starting (“initial condition”) state xN−1, the only man-
ipulated variable needing to be calculated is uN−1, and the term xT

N−1QxN−1

is irrelevant as it cannot be modified by the control action.
Replacing xN by the model output, xN = AxN−1 + BuN−1, the last term

in the index is xT
NSNxN = 1

2 (AxN−1 + BuN−1)T SN (AxN−1 + BuN−1) so
after straightforward manipulations, the cost index can be written as:

JN−1 =
1
2
(
uT

N−1RuN−1 + xT
N−1(A

T SNA + Q)xN−1

+ 2xT
N−1A

T SNBuN−1 + uT
N−1B

T SNBuN−1

)
(D.6)

a summation consisting, of course, of scalar (1 × 1) terms.
To compute the optimal, and using the notation defined in (D.1):

∂JN−1

∂uN−1
= RuN−1 + BT SNAxN−1 + BT SNBuN−1 = 0
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Solving for u, the result is:

uN−1 = −(BT SNB + R)−1BT SNAxN−1
def= −KN−1xN−1 (D.7)

The minimum value of J can be obtained by replacing the optimal control
action in (D.6):

Jopt
N−1 =

1
2
xT

N−1

(
KT

N−1RKN−1 + Q + AT SNA

−2AT SNBKN−1 + KT
N−1B

T SNBKN−1

)
xN−1 (D.8)

so, replacing K by the expression in (D.7), after some operations, the optimal
index is:

Jopt
N−1 =

1
2
xT

N−1(Q+AT SNA−AT SNB(BT SNB+R)−1BT SNA)xN−1 (D.9)

For convenience, let us denote as SN−1 the matrix:

SN−1 = Q + AT SNA − AT SNB(BT SNB + R)−1BT SNA (D.10)

so the achieved optimal cost is a quadratic function Jopt
N−1 = 1

2xT
N−1SN−1xN−1.

D.2.1 Multi-step Optimisation (Dynamic Programming)

Richard Bellmann [24] stated a Principle of optimality, for sum-over-time
indices, as:

An optimal policy has the property that, whatever the initial state and
past decisions are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decisions2.

In plain terms, once a particular state is reached, the optimal policy is
optimising the “cost-to-go” function ( this cost is being a function of the state
in which the system is left).

Remark D.4. An important engineering consequence is that this dependence
on the state justifies the existence of a state feedback control strategy that
solves the optimisation problem. Note that, in the brute-force solution in
Example D.3, all control actions depended on x0, so there was no simple way
of presenting the problem in a feedback form (u1 depending on x1 and so on).
2 Proof by contradiction: if u∗(t) is the optimal policy for time [0, tf ], let us apply

it on an interval [0, tm], tm < tf , with end system state x(tm), and now calculate
the optimal policy um(t) from that starting state in the interval [tm, tf ]. If it
achieved a different J in that interval to that of u∗(t), applying u∗ on the first
interval and um on the second would achieve, by definition of um, a total cost:

J[0,tm](u
∗) + J[tm,tf ](u

m) < J[0,tm](u
∗) + J[tm,tf ](u

∗)

i.e., lower than that of the optimal, contradicting the assumption.
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In our case, at this moment, the cost to go is JN−1 and the optimality
principle implies that the optimal policy for J will have the state feedback in
(D.7) applied at time N −1. The optimal Jopt

N−1 in (D.9) is a function of xN−1.
Stating the problem now in a two-step horizon:

JN−2 =
1
2

N−1∑

k=N−2

(xT
k Qxk + uT

k Ruk) +
1
2
xT

NSNxN

= (xT
N−1QxN−2 + uT

N−2RuN−2) + JN−1 (D.11)

the optimality principle amounts to using the previous solution, uN−1 =
−KN−1xN−1, as the last control action, and determining uN−2 so that:

J∗
N−2 =

1
2
(xT

N−2QxN−2 + uT
N−2RuN−2) + Jopt

N−1(xN−1)

=
1
2
(xT

N−2QxN−2 + uT
N−2RuN−2) +

1
2
xT

N−1SN−1xN−1 (D.12)

is minimised. Note that the above equation has exactly the same form as
(D.4), but has “advanced” one time step.

So, based on Bellman’s principle, the solution to the two-step optimisation
will be, rewriting the steps in (D.6), (D.7), (D.9):

uN−2 = −(BT SN−1B + R)−1BT SN−1AxN−2
def= −KN−2xN−2

SN−2 = Q + AT SN−1A − AT SN−1B(BT SN−1B + R)−1BT SN−1A

Jopt
N−2 = xT

N−2SN−2xN−2

By reiterated application of the optimality principle, the three-step prob-
lem would imply solving for uN−3 so that:

J∗
N−3 =

1
2
(xT

N−3QxN−3 + uT
N−3RuN−3) +

1
2
xT

N−2SN−2xN−2 (D.13)

and, so on, iterating backwards in time for l = N − 1, . . . , 0 the calculation of
the first optimal control action, u0, is achieved.

ul = −(BT Sl+1B + R)−1BT Sl+1Axl
def= −Klxl (D.14)

Sl = Q + AT Sl+1A − AT Sl+1B(BT Sl+1B + R)−1BT Sl+1A (D.15)

Example D.5. Let us apply the obtained solution to Example D.3. In this case,
Q = 1, R = 0.1, S3 = 1, A = 0.8, B = 1.

The backwards iterations result is:

TLFeBOOK



D.2 Discrete Linear Quadratic Regulator 309

u2 = −(BT S3B + R)−1BT S3Ax2 = −0.7273x2

S2 = Q + AT S3A − AT S3B(BT S3B + R)−1BT S3A = 1.0582

u1 = −(BT S2B + R)−1BT S2Ax1 = −0.7309x1

S1 = Q + AT S2A − AT S2B(BT S2B + R)−1BT S2A = 1.0585

u0 = −(BT S1B + R)−1BT S1Ax0 = −0.7309x0

So, from a starting state x0 = 10, u0 = −7.309 is obtained, and then x1 = 0.6910,
yielding u1 = −0.5051, then x2 = 0.0478 yielding u2 = −0.0348. The results are the
same (except round-off) but now they are expressed in feedback form.

Note that the obtained feedback regulator is linear but time-varying. The
formulae are very similar to those from the Kalman filter ((E.42) and (E.43)
on page 320). They are, in fact, dual results pinpointing hidden common
structures in optimal control and optimal estimation [9].

D.2.2 Stationary Regulator

Time-varying regulators are difficult to implement. Furthermore, many prob-
lems of practical significance can be stated in terms of infinite-horizon cost
indexes (see Section 7.1 for details).

In particular, the solution to:

J =
1
2

∞∑

k=0

xT
k Qxk + uT

k Ruk (D.16)

can be obtained, under some sensible assumptions, taking the limit N → ∞ in
the backward-iteration-based procedure previously presented, i.e., executing
enough iterations of:

Sl = Q + AT Sl+1A − AT Sl+1B(BT Sl+1B + R)−1BT Sl+1A (D.17)

until convergence is achieved, starting from an arbitrary, positive definite SN .
The state feedback, (D.14), then becomes a constant, time-invariant controller.

The final result is independent of the chosen SN seed. It is intuitively
expected as, if Q is positive definite, for long horizons, the optimal policy
is trying to drive the state to zero fairly soon as, in other cases, xT Qx will
accumulate significant penalty during a long time interval. If the state, after a
long horizon, is near zero, the value of xT

NSNxN will be very small (compared
to the accumulated ΣxT Qx), provided SN is not “too large”.

For the iterations to converge and guarantee a stable closed loop, the
system (A,B) must be stabilisable and all states should be “seen” by the cost
function, i.e., (A,

√
Q) must be detectable and R positive definite.

The final value is the positive definite solution, S, to the so-called discrete-
time algebraic Riccati equation:
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S = Q + AT SA − AT SB(BT SB + R)−1BT SA (D.18)

This is a system of n × n = n2 non-linear equations with n2 unknowns (the
elements of S). As the equations are non-linear, the solution is not unique but
it can be shown that, under general assumptions, there is only one positive
definite solution (the sought one).

The solution to infinite-horizon optimisation problems is a time-invariant
state-feedback linear regulator, in the same form as pole-placement ones.

Continuous cost index

The solution to the CT optimal control problem, (7.2), requires posing a dy-
namic programming problem in infinitesimal time steps. The reader is referred
to [81, 122, 134]. The result is that the matrix differential equation:

−Ṡ = AT S + SA − SBR−1S + Q (D.19)

must be evaluated backwards in time for an initial condition, S(tf ) = SN ,
and the control action is linear time-variant:

u(t) = −R−1BT S(t)x(t) (D.20)

A stationary state-feedback linear time-invariant controller for infinite
horizon problems is obtained by solving the Riccati equation:

0 = AT S + SA − SBR−1S + Q (D.21)

Matlab�: Some commands implementing algorithms related to the contents of this
section are: are,dare,lqr,dlqr.

Mixed Indices

The indexes can be generalised to include cross-terms. For example, in the
discrete case:

J =
1
2

∞∑

k=0

(xT
k Qxk + uT

k Ruk + xT
k 2Nuk) (D.22)

a solution for it can be calculated by transforming the index to the form
(D.4) via a change of variable Ā = A − BR−1NT , Q̄ = Q − NR−1NT . An
application of mixed indexes is continuous optimal control with a discrete
(ZOH) regulator (Section 7.1).
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Multivariable Statistics

E.1 Random Variables

The concept of a random variable formalises situations with uncertain out-
come. It takes values in a sample space, Ω, and a probability measure is
defined over the measurable subsets of the sample space, fulfilling particular
axioms. The reader is referred to standard statistics textbooks [98, 14] for
details.

For example, tossing a coin is a random variable with sample space {Heads,
Tails} with the probability {p(Heads) = 0.5, p(Tails) = 0.5, p(∅) = 0, p(Heads
∪ Tails) = 1}. If the sample space is a finite or countable set, the variables
are called discrete random variables. On the other hand, if the sample space
is uncountable (such as real numbers) they are denoted as continuous random
variables.

The basics of probability are intuitively modelled as a limit of the fraction
of occurrence of an event, after infinite repetitions of an experiment. How-
ever, that concept does not apply to all situations. The world population in
01/01/2020 is also a random variable, but there will be only one realisation.
Hence, assigning probabilities to the variable is either subjective or based on
models establishing a relationship between the variable and other ones with
known probability. Note that operating in this general set-up is much more
complex than “coin” problems and the like.

In the following sections, the variables to be considered will be the outputs
from discrete-time linear dynamic systems. These variables take values of the
real line, and probability distributions will be defined by density functions
(under some smoothness requirements).

In most cases, “randomness” is originated by non-linear deterministic sys-
tems exhibiting “chaotic” behaviour. The interested reader may consult [72]
for an introductory overview.

In a real-valued space with a probability defined on it by means of a density
function, f(x), the mathematical expectation, E(·), of a particular expression
h(x) is defined as:
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E[h(x)] =
∫

h(x)f(x)dx (E.1)

This calculates the “weighted average” of h(x) multiplying each possible out-
come by its probability (an infinitesimal f(x)dx). In discrete variables, the
expectation is actually a weighted sum.

The mean and variance of a random variable v is:

v̄ = E(v) =
∫ +∞

−∞
τfv(τ) dτ (E.2)

σ2
v = E((v − v̄)2) =

∫

(τ − v̄)2fv(τ) dτ (E.3)

The square root of the variance is termed the typical deviation, σv.
For a high number of realisations, vj , these figures can be obtained from

sample averages:

lim
N→∞

∑N
j=1 vj

N
= v̄ (E.4)

lim
N→∞

∑N
j=1(v

j − v̄)2

N − 1
= σ2

v (E.5)

Covariance between two variables a and b is defined as:

σ2
ab = E((a − ā)(b − b̄)) (E.6)

Obviously, σ2
ab = σ2

ba. If a joint two-dimensional density function is available
(Section E.2), covariance can be expressed as:

σ2
ab =

∫

(τ − ā)(ψ − b̄)fab(τ, ψ) dτ dψ (E.7)

Alternatively, from experimental data (sample covariance):

lim
N→∞

∑N
j=1(a

j − ā)(bj − b̄)
N − 1

= σ2
ab (E.8)

E.1.1 Linear Operations with Random Variables

The addition of two random variables, x and y, is defined as the random
variable representing the uncertain outcome of the sum of a realisation of x and
another of y. For example, the addition of two dice throws has a probability
for each outcome:

{ p(2) = 1/36, p(3) = 2/36, p(4) = 3/36, p(5) = 4/36, p(6) = 5/36, p(7) = 6/36,

p(8) = 5/36, p(9) = 4/36, p(10) = 3/36, p(11) = 2/36, p(12) = 1/36}
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The product by a scalar, λ, is defined as the result of multiplying the
outcome by λ. For example, multiplying the dice throw by 2 yields: { p(2) =

1/6, p(4) = 1/6, p(6) = 1/6, p(8) = 1/6, p(10) = 1/6, p(12) = 1/6}. Note that
“dice + dice �= 2 × dice”.

Addition and multiplication by scalar verifies that:

E(a + b) = E(a) + E(b) (E.9)
E(αv) = αE(v) (E.10)

and, regarding variance:

E((a + b)2) = E(a2) + E(b2) + 2E(ab) (E.11)
σ2

αv = E((α(v − v̄))2) = α2σ2
v (E.12)

If variables are independent (Section E.2), the variance of the sum is the
sum of variances as E(ab) = 0.

The addition of a constant, non-random, offset, k, yields:

E(a + k) = E(a) + k; σ2
(a+k) = σ2

k (E.13)

Example E.1 (Numerical derivative). Two close measurements of a variable x =
xclean + n, where n is a measurement noise, with zero-mean and variance σn, can
be used to estimate its derivative, ẋk ≈ (xk − xk−1)/T , where T is the sampling
period. In this case:

E(ẋk) = (xclean
k − xclean

k−1 )/T ; σ2(ẋk) =
2

T 2
σ2

n (E.14)

So the typical deviation (square root of variance) of the estimate is
√

2/T that of
the sensor noise. For small sampling periods, where the derivative approximation is
valid, this may imply significant amplification.

E.2 Multi-dimensional Random Variables

Several random variables can be stacked as a random vector :

x =
(

x1

x2

)

; y =






y1

...
yn




 (E.15)

Its outcomes will be vectors in R
n:

x0 =
(

x0
1

x0
2

)

; y0 =






y0
1
...

y0
n




 (E.16)
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This type of variable will represent the signals to be analysed in the mul-
tivariable control context.

The mean of a random vector is the vector of means from each component
variable:

x̄ =






x̄1

...
x̄n




 (E.17)

and its variance is defined as a matrix with all pairwise combinations of
variances and covariances arranged as:

Σxx =








σ2
x1

σ2
x1x2

σ2
x1x3

. . . σ2
x1xn

σ2
x2x1

σ2
x2

σ2
x2x3

. . . σ2
x2xn

...
. . .

...
σ2

xnx1
. . . σ2

xn








(E.18)

This matrix is also usually denoted as a variance-covariance matrix (VC),
and it is always symmetric and positive semidefinite, always diagonalisable.
Shorthand for the VC matrix using vector notation is:

Σxx = E((x − x̄)n×1(x − x̄)T1×n) (E.19)

generalising (E.3). The covariance between two variables, v and z, can be
expressed as a matrix with dimensions nv × nz:

Σvz = E((v − v̄)nv×1(z − z̄)T1×nz
); [Σvz]ij = σ2

vizj
(E.20)

In the sequel, ∆x will denote x − E(x).
A multi-dimensional density function, f : R

n → [0, 1], defines the probabil-
ity distribution, and it can be interpreted as the probability per unit “volume”,
and its integral over its definition domain should be equal to 1.

As an example, in the two-dimensional case, the probability of a particular
rectangle is defined as:

P ((x1, x2) ∈ [a1, b1] × [a2, b2])

= P (x1 ∈ [a1, b1] and x2 ∈ [a2, b2]) =
∫ b1

a1

∫ b2

a2

fx(v1, v2) dv1dv2 (E.21)

The expectation of a function, h(x1, . . . , xn), can be calculated as:

E(g) =
∫

. . .

∫

h(v1, . . . , vn)fx(v1, . . . , vn)dv1 . . . dvn (E.22)

where integration is carried out on all of the domain of definition of f . For
example, the mean of x1 is:

E(x1) =
∫ ∫

v1fx(v1, v2)dv1dv2 (E.23)
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Linear Operations

Linear operations with random variables in R
n are vector addition and prod-

uct of a vector by a constant matrix.
If v is a random vector obtained from another random vector, w, by Aw+B

where A and B are constant matrices, its mean vector and variance matrix
can be obtained as:

v̄ = E(v) = E(Aw + B) = AE(w) + B = Aw̄ + B (E.24)
Σvv = E((v − v̄)(v − v̄)T ) = E((Aw + B − Aw̄ − B)(Aw + B − Aw̄ − B)T )

= E(A(w − w̄)(w − w̄)T AT ) = AE((w − w̄)(w − w̄)T )AT = AΣwwAT

Independent Variables

Two random variables are independent if their joint density function, f(x1, x2),
can be expressed as a product of two single-variable densities:

fx(x1, x2) = fx1(x1) ∗ fx2(x2) (E.25)

In this way,

P ((x1, x2) ∈ [a1, b1] × [a2, b2]) = P (x1 ∈ [a1, b1]) × P (x2 ∈ [a2, b2]) (E.26)

and also, the expectation of any expression, g(x1), is unrelated to x2 as:

E(x1) =
∫ ∫

g(v1)fx(v1, v2)dv1dv2 =
∫ ∫

g(v1)fx1(v1)fx2(v2)dv1dv2

=
∫

g(v1)fx1(v1)dv1

∫

fx2(v2)dv2 =
∫

g(v1)fx1(v1)dv1 (E.27)

Independent variables have null covariance:

E((a − ā)(b − b̄)) =
∫ ∫

(a − ā)(b − b̄)f(a)f(b) da db

=
∫

(a − ā)f(a) da

∫

(b − b̄)f(b) db = 0 × 0 = 0 (E.28)

However, the reciprocal is not true (see Example E.2). Variables with null
covariance are said to be uncorrelated. In this way, a random vector composed
of independent variables has a diagonal covariance matrix.

The variance of the sum of uncorrelated variables is the sum of variances:

E[(a + b)(a + b)T ] = E[aaT ] + E[bbT ] + E[abT ] + E[bAT ] = E[aaT ] + E[bbT ]

Example E.2. A random variable, x, is uniformly distributed in the interval [−1, 1]
(f(x) = 0.5). Another random variable, y, is obtained from x by means of y = 1

3
−x2.

Note that y is a random variable as indeed its outcome, and without knowledge of
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x is uncertain. However, if x is known, the model of y is deterministic, i.e., the
opposite situation to statistical independence1. However, the mean of x is 0 and
that of y is: ∫ 1

−1

y(x)f(x) dx =

∫ 1

−1

(
1

3
− x2) 0.5 dx = 0

Covariance is:

E(xy) =

∫ 1

−1

0.5x(
1

3
− x2)dx = 0

The following relations hold:

• if two uncorrelated variables are known not to be related by a non-linear
expression they are independent, i.e., two uncorrelated variables may be
non-independent (necessarily related by a non-linear model),

• correlated variables are non-independent.

E.3 Linear Predictors (Regression)

There can be several meanings to the concept “prediction”. Let us explicitly
define the one used in this book.

Definition E.3 (Optimal prediction.). The optimal prediction, p, of a ran-
dom variable, v, given a known value, z0, of another random variable, z, is a
function, p(z), such that v − p(z) is a random variable independent of z, with
zero mean.

Example E.4. If z itself is independent of v, a constant p(z) = v̄ is the best predic-
tion in the above sense as v − v̄ is zero-mean.

Definition E.5 (Optimal linear prediction.). The optimal linear predic-
tion p of a random variable v given a known value z0 of another random
variable z is a linear function p(z) such that v − p(z) is a random variable
uncorrelated with z, with zero mean.

In a general multivariable case, assuming the variance matrices for v and z
are known, as well as the covariance (for example by calculating them through
a long data record), the following result holds:

Proposition E.6. The optimal linear prediction of v, given z0, is:

P = v̄ + ΣvzΣ
−1
zz (z0 − z̄) (E.29)

where Σvv, Σzz are the VC matrices of variables v and z and Σvz is the
covariance between v and z.
1 Independence would not entail being able to improve predictions of y given x

(see Section E.3). Determinism can be represented by a density function equal to
Dirac δ(t).
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Indeed, the prediction error is:

Ep = v − [v̄ + ΣvzΣ
−1
zz (z − z̄)

]

so its mean amounts to:

E(Ep) = v̄ − v̄ − ΣvzΣ
−1
zz (z̄ − z̄) = 0 (E.30)

and the covariance with the known variable is:

E((Ep − 0)(z − z̄)T ) = Σvz − ΣvzΣ
−1
zz Σzz = 0 (E.31)

In this way, no further linear expression can be used to approximate v
from z. This does not preclude, however, the possibility of the existence of
additional non-linear relations between v and z (even to the point of being
deterministic as in Example E.2).

The quality of the linear prediction (expected squared error) is given by:

E(EpE
T
p ) = Σvv − ΣvzΣ

−1
zz ΣT

vz (E.32)

The above expression can be interpreted in the sense that the knowledge
of variables with non-zero correlation Σvz with the one trying to be predicted
decreases the uncertainty of its estimation. If any known variable z has Σvz =
0 then (E.29) reduces to P = v̄, with error variance Σvv.

Example E.7. A temperature sensor, z1, reads the true temperature, T , plus an
independent zero-mean noise, n1. Another sensor, z2, has similar characteristics, so:

z =

(
z1

z2

)

=

(
1
1

)

T +

(
η1

η2

)

= CT + η (E.33)

The true temperature for a particular date is known to have an average value of
20oC and a variance of 9(0C)2, by historic records. Sensor noise has variance σ2

n = 1
and each of the channels is independent: E(ηηT ) = σ2

nI2×2.
The mean of z is z̄ = CT̄ equal to the measured temperature as noise means are

zero. The variance matrix of z is E((z − z̄)(z − z̄)T ) and:

(z − z̄)(z − z̄)T = (C(T − T̄ ) + η)(C(T − T̄ ) + η)T

= C(T − T̄ )2CT + C(T − T̄ )η + η(T − T̄ )C + ηηT (E.34)

so, as T and η are, by assumption, independent, E((T − T̄ )η) = E(η(T − T̄ )) = 0
and the variance results:

Σzz = Cσ2
T CT + Σηη = σ2

T

(
1 1
1 1

)

+ σ2
nI

The covariance between sensors and real temperature is:

ΣTz = E((T − T̄ )(z − z̄)T ) = E((T − T̄ )(C(T − T̄ ) + η)T ) = σ2
T CT

also by using the independence hypothesis.
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So, the best prediction of the temperature is:

P = 20 +
(
1 1
)
σ2

T

(
σ2

T + σ2
n σ2

T

σ2
T σ2

T + σ2
n

)−1 ((
z1

z2

)

−
(

20
20

))

Replacing the actual estimated temperature variance, and carrying out opera-
tions:

P = 20 + 0.4737(z1 − 20) + 0.4737(z2 − 20)

and the estimated squared prediction error is:

E(E2
p) = 9 − ( 1 1

)
σ2

T ·
(

σ2
T + 1 σ2

T

σ2
T σ2

T + 1

)−1 (
1
1

)

σ2
T = 0.4737

A quite common situation is sensor fusion without any historic record to extract
estimated variance: the initial assumption on T is that it has mean 20 and infinite
variance. Evaluating the previous expressions, letting σ2

T → ∞, they result in:

P = 0.5z1 + 0.5z2; E(E2
p) = 0.5

as intuitively expected: the best prediction is the average of the readings. The ex-
pected error is about 0.71 times the error using only one sensor (0.71 =

√
0.5).

E.4 Linear Systems

The previous example shows how a static model with disturbances can be
used to carry out sensor fusion to obtain an improved estimate. This section
will extend the result to dynamical models in order to use the model of the
system jointly with sensors in different locations and in different time samples
to obtain the best linear prediction of the internal system state.

E.4.1 Simulation

The expressions (E.24) directly apply to a randomly-perturbed linear system
with equations:

xk+1 = Axk + Buk + vk (E.35)
yk = Cxk + wk (E.36)

Indeed, all the past history of deterministic and random inputs is sum-
marised in a state vector with a particular probability distribution, having a
mean in sample k given by x̄k and a variance matrix Σxk

. If the process noise
variance is V and the measurement noise one is W , and they are independent
of the state, then the linear process equations allow us the determination of
the situation in the current output sample as:

ȳk = Cx̄k Σyk
= CΣxk

CT + W (E.37)
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and the probable situation of the next state:

x̄k+1 = Ax̄k + Buk; Σxk+1 = AΣxk
AT + V (E.38)

These expressions constitute the simulation of a linear stochastic process. Let
us deduce, for instance, the second one.

As the state xk+1 is related to the past state by (E.35), and v is zero-mean,
its expected value will be:

x̄k+1 = Ax̄k + Buk

but the actual value will differ from the expected one. The variance of the
prediction error is given by:

Σxk+1 = E(∆xk+1∆xT
k+1)

= E((A∆xk + B(uk − ūk) + vk)(A∆xk + B(uk − ūk) + vk)T

= AE(∆xk∆xT
k )AT + E(vkvT

k ) = AΣxk
AT + V (E.39)

as uk = ūk because u is not a random variable, and x and v are independent
so the expectation of its products is zero.

E.4.2 Prediction: The Kalman Filter

The dynamic models to be considered are those in Section 2.10.3, in particular
the general linear stochastic process with manipulated input referred above,
(E.35).

Let us consider now the optimal prediction problem. In this set-up, the
optimal predictor for xk is a linear time-varying recurrent system. Let us detail
how this predictor can be built.

Let us assume that we know data from the best prediction of system state
at time k−1 (xk−1), in particular, its expected value, x̄k−1, and the prediction
error variance, Λk−1 = E((xk−1− x̄k−1)(xk−1− x̄k−1)T ). This will be the core
of the recurrence equations, as our predictor will output the best prediction
(mean) and its expected squared error (variance) for time k, and that will be
used for the next sample, etc.

Note that, to start the procedure from a null-information situation, the
initial conditions need to be stated as Λk−1 → ∞, with arbitrary x̄k−1.

In this case, as the state xk is related to the past state by xk = Axk−1 +
Buk−1 + vk−1, its expected value and variance will be, applying (E.38):

x̄k = Ax̄k−1 + Buk−1; Σxk
= AΛk−1A

T + V

The above formulae refer to the estimate with information from sample k −
1 (x̂k|k−1, with the notation in Chapter 6). Incorporating information from
sample yk will modify both x̄k and Σ. So, these x̄k and Σxk

are denoted as
the a priori state estimation.
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Furthermore, as output yk is related to xk by Cxk + wk, it can be easily
shown that ȳk = Cx̄k and:

Σyk
= E(∆yk∆yT

k ) = CΣxk
CT + W (E.40)

Additionally, the sensor entails xk and yk being non-independent and, as
the equation is linear, with non-zero correlation:

Σxy = E(∆xk∆yT
k ) = E(∆xk(C∆xk + wk)T = Σxk

CT (E.41)

where the assumption of wk being independent of xk has been used.
Now we are in the situation analogous to example E.7, ready to incorpo-

rate measurement yk, as we know the expected value and variance of xk, the
expected value and variance of output yk and the actual measurement (with
a slight abuse of notation, denoted equally as yk).

Applying the equation of the best linear prediction (E.29), the best a poste-
riori prediction of xk (x̂k|k) after incorporating a known output measurement,
yk, is:

P = x̄k + ΣxyΣ−1
yk

(yk − ȳk) (E.42)

= A x̄k−1 + Buk−1 + Σxk
CT (CΣxk

CT + W )−1(yk − C(Ax̄k−1 + Buk−1))

So the best prediction is given by a discrete-time current observer with gain:

L = (AΛk−1A
T + V )CT (C(AΛk−1A

T + V )CT + W )−1

The prediction error will have a variance given by (E.32):

Λk = Σxx − ΣxyΣ−1
yk

ΣT
xy = (I − LC)(AΛk−1A

T + V ) (E.43)

Note that expressions (E.42) and (E.43) provide the expected value and
the prediction error variance for xk so they can be used as the basis for
determining xk+1 from measurement yk+1 by applying the procedure above
to increasing the time indexes.

Repeated evaluation of (E.42) and (E.43) constitutes the so-called Kalman
filter, this filter being a time-varying one as the observer gain, L, changes at
each sample. Note that, however, Λk does not depend on yk but only on the
assumed model characteristics so it can be calculated off-line.

To summarise the Kalman filter equations in a compact form:

Σxk
= AΛk−1A

T + V ; Lk = Σxk
CT (CΣxk

CT + W )−1 (E.44)
x̄k = Ax̄k−1 + Buk−1 + Lk(yk − C(Ax̄k−1 + Buk−1)) (E.45)
Λk = (I − LkC)Σxk

(E.46)

Note E.8. If the procedure starts with no information at all, then Λ−1 → ∞.
However, numerical round-off and conditioning problems may arise unless the
first iteration is carried out by symbolic computing.
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Note E.9. If significant correlation between vk and wk exists, the above formu-
lae need to be modified. This is the case when the same physical phenomenon
influences both plant and sensor. Details are available in [9].

Example E.10. Let us apply the Kalman filtering to the elementary case of trying
to estimate a constant variable from a series of noisy measurements of it. This can
be understood as the design of an observer for the process:

xk+1 = xk; yk = xk + wk (E.47)

so, A = 1, C = 1, V = 0 and, without loss of generality, the measurement noise
variance, W , will be assumed to be 1. Starting with no information, from (E.44) and
(E.46):

L0 = lim
Σx0→∞

Σx0

Σx0 + 1
= 1; Λ0 = lim

Σx0→∞
(1 − Σx0

Σx0 + 1
)Σx0 = 1

the best estimation, (E.45), is x̂0 = 1 × y0. For the next sample:

Σx1 = 1; L1 =
1

1 + 1
= 1/2; Λ1 = (1 − 1/2) ∗ 1 = 1/2

so: x̂1 = y0 + 0.5 × (y1 − y0) = (y0 + y1)/2. It can be easily proved that:

Σxk =
1

k
; Lk =

1/k

(1/k) + 1
=

1

k + 1
; Λk = (1 − 1

k + 1
)
1

k
=

1

k + 1

so: x̂2 = (y0 + y1)/2 + 1
3
(y2 − (y0 + y1)/2) = (y0 + y1 + y2)/3 and, indeed, for any k,

the optimal prediction, x̂k, is the sample average. Of course, the Kalman filter can
be applied to processes much more complex than the constant one. If a process noise
xk+1 = xk + vk were added, the Kalman filter would carry out a weighted average,
giving more importance to recent samples. The calculations with V = 0.05 are left
to the reader.

Stationary filter

It can be shown that the sequence Λk converges to Λ∞ for positive-definite
V and W , under general technical conditions. So, in most applications, at the
expense of a larger error in the initial samples, only Λ∞ is calculated, and
the L∞ associated with it. Afterwards, the Kalman filter is implemented as a
time-invariant observer.

See Section 7.2 for further comments regarding practical implementation
and engineering insight.

Example E.11. For a first-order marginally stable plant:

xk+1 = xk + uk + vk; σ2
v = 1

yk = xk + wk; σ2
w = 0.3

the time-varying Kalman observer is given by:

x̂k+1 = x̂k + uk + Lk(yk+1 − (x̂k + uk))
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where the estimated variance (a scalar, as it is a simple one-dimensional system)
starting with no information at all is:

Λ−1 = 106, Λ0 = 0.3, Λ1 = 0.2437, Λ2 = 0.2417, Λ3 = 0.2416, Λ4 = 0.2416, . . .

and the observer gains to correct the estimated stated once measurements y0, y1, . . .
are taken are:

L0 = 1, L1 = 0.8125, L2 = 0.8057, L3 = 0.8054, L4 = 0.8054, . . .

The optimal strategy is believing the first measurement (with L0 = 1, x̂0 = y0),
and, as more information is gathered, rely more on past information via the model.
At stationary state, the optimal strategy drifts towards combining simulation (20%)
and measurements (80%) for a variance 0.2416, better than that from the sensor
alone (i.e., 0.3). The first estimate has the same variance as the sensor (for C = 1).

Example E.12. Let us assume the same process and two measurement devices with
independent measurement noise. The model will be:

xk+1 = xk + uk + vk; σ2
v = 1

y1k = xk + w1k; σ2
w1 = 0.3

y2k = xk + w2k; σ2
w2 = 0.3

The output matrix is C = (1 1)T, and the VC measurement matrix will be
diagonal with entries 0.3.

Redoing the iterations, it yields:

Λ−1 = 104, Λ0 = 0.15, Λ1 = 0.1327, Λ2 = 0.1325, Λ3 = 0.1325, . . .

the filter gain being:

L0 = (0.5 0.5), L1 = (0.442 0.442), L2 = (0.4415 0.4415), L3 = (0.4415 0.4415), . . .

That is, the variance in the state estimation using two identical sensors is reduced
to 0.1325 (once in steady-state).

Note that the first optimal prediction is to evaluate the mean of both readings,
reducing to a half the confidence interval: x̂0 = 0.5y10 + 0.5y20.
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Robust Control Analysis and Synthesis

In Chapter 8, the description of the sources of uncertainty and some intuition
about how to obtain robust designs were detailed. This appendix summarily
details some robust-control related results outlined in the referred chapter.
The interested reader, however, should seek further information in the bibli-
ography [133, 134, 119, 55].

F.1 Small-gain Stability Analysis

In this section, analysis of the allowed “size” of unstructured modelling error
for a particular closed-loop controller will be carried out based on the small-
gain theorem.

The main idea is first to draw the block-diagram of a closed-loop system to
be evaluated, including in it an uncertain transfer function matrix ∆. Then,
it is “pulled-out” from its location to establish a structure to apply the small-
gain theorem.

Additive uncertainty. Considering the feedback loop in Figure 8.3 on
page 236 (left), it depicts a nominal closed loop with plant G and controller
K, but an uncertain block, ∆, is added to the nominal plant to conform the
modified plant, G + ∆. Interpreting uncertainty ∆ as block Σ1 in Figure C.1
and the nominal loop as block Σ2, calculating with the block-diagram the
transfer function matrix between yδ and uδ, the result is:

uδ = K(Guδ + yδ) → uδ = (I − KG)−1Kyδ

and, applying the push-through rule (B.5), uδ = K(I − GK)−1yδ so, by the
small-gain theorem, if the loop is stable for ∆ = 0, Expression (8.11) is proved.

Remark F.1. According to Table C.1, if the same norm is to be used for all
signals in the M–∆ structure, only the ∞-norm and the 1-norm may be used
for robustness analysis, i.e., minimisation of the ∞-norm of K(I − GK)−1
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maximises a modelling error bound. However, minimisation of the 2-norm
of the same expression is not directly related to maximising modelling error
bounds.

Multiplicative uncertainty. Under relative error uncertainty:

∆∗
def= G−1∆ ⇒ Gtrue = G(I + ∆∗) (F.1)

by carrying out similar operations to the previous case, the feedback loop in
Figure 8.3 (right) can be shown to be stable for any ∆∗ satisfying:

‖∆∗‖‖GK(I + GK)−1‖ < 1 (F.2)

Input-multiplicative uncertainty. Input-multiplicative uncertainty, ∆∗i,
is defined as:

Gtrue = (I + ∆∗i)G

Input and output uncertainties are equivalent in SISO systems, but this is
not the case in MIMO ones as arbitrary matrices (even if unknown) do not
commute. The size of the relative unstructured error at “input” should be mul-
tiplied by the plant’s condition number (Appendix B.4.1) to pose an equiv-
alent worst-case problem at the “output” [119]. This is an important issue
in ill-conditioned plants such as distillation columns, regarding unavoidable
amplification of actuator uncertainty (particularly relevant with valves, for
instance).

Coprime factor uncertainty. The so-called coprime factor (CF) (see Ap-
pendix B.6) unstructured-uncertainty description [133, 85] is expressed as:

G = (M + ∆M )−1(N + ∆N ) (F.3)

where ∆M and ∆N are “denominator” and “numerator” uncertainties. For
example, as pointed out in Remark 8.7 on page 237, with the CF represen-
tation ∆M = 0.01 is a stable transfer function. Note that in MIMO systems,
“denominator” and “numerator” are transfer matrices.

Denoting as ∆ = [∆N ∆M ] a stable matrix modelling error, after some
operations [133], the condition for robust stability is:

‖
(

K
I

)

(I − GK)−1M−1‖ × ‖∆‖ ≤ 1 (F.4)

CF uncertainty allows suitable handling of problems regarding uncertainty
in unstable plants, as the following example shows.

Example F.2. Let us analyse the robust stability of a control loop with a nominal
design for a plant model Gmodel = 1/(s − 1), trying to guarantee stability with a
real plant Gtrue = 1/(s − 1.01). Note that, with an additive uncertainty model,

∆ = Gtrue − Gmodel =
0.01

(s − 1.01)(s − 1)
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is unstable so conditions for applying (8.11) do not hold. However, in this case the
normalised coprime factorisation of Gmodel is:

Gmodel =

(
1 − s

1.414 + s

)−1 −1

1.414 + s

so the modelling error is ∆M = 0.01/(s+1.414), stable and (F.4) can be applied if a
nominally stabilising regulator is available. The size of the error (peak of frequency
response) is 0.0071. The command sncfbal renders the above factorisation:

[sysnlcf,sig,sysnrcf] = sncfbal(grsys);

[an,bn,cn,dn]=unpck(sysnlcf);nocf=ss(an,bn,cn,dn);

zpk(nocf);n=nocf(1,1); m=nocf(1,2);

For example, a proportional controller, K = −2, allows an unstructured CF
uncertainty margin of 0.3162, thus guaranteeing stability with Gtrue in this trivial
case. The margin can be calculated with the Matlab� command emargin:

grss=ss(gm); kss=ss(k); grsys=pck(grss.a,grss.b,grss.c,grss.d);

sysk2=pck(kss.a,kss.b,kss.c,kss.d); emargin(grsys,sysk2)

F.2 Structured Uncertainty

As commented in the main text, structured uncertainty arises in cases such
as:

• uncertain real parameters,
• diagonal actuator and sensor uncertainties,
• a general configuration with uncertain models in various independent sub-

systems.

Figure 8.5 on page 240 depicted a system with multiple sources of uncer-
tainty, “pulled up” from its original position in a block-diagram. In this way, a
general configuration for robust stability analysis is built, where M represents
a linear (feedback) system and ∆i are uncertainty blocks. Each of them can
be:

• scalars: (1 × 1 matrices), representing either uncertain parameters (de-
noted as real uncertainty) or uncertain SISO (1 × 1) subsystems and un-
dermodelling (denoted as complex uncertainty). For example, an uncertain
mass varying between 5 and 7 Kg could be represented by a nominal pa-
rameter 6 plus a real uncertainty block with a known bound in norm
‖∆‖ < 1 (∆ pulled away to the structure in Figure 8.5). Neglected actu-
ator dynamics will be represented by an uncertain complex number with
known bound.

• full complex transfer matrices: representing full complex unstructured
uncertainty of a particular subsystem, of generic dimension m × n. The
unstructured uncertainty case is then a particular case of only one full
block.

TLFeBOOK



326 F Robust Control Analysis and Synthesis

Uncertainty blocks can be repeated if, for example, the same physical param-
eter appears in several transfer function coefficients. This issue cannot, in
general, be represented in block-diagram form but some software tools allow
the user to specify that option.

It is easy to see that all uncertainty sources can be thought of forming
part of a bigger block-diagonal ∆ matrix (Figure 8.5). It will be assumed that
a size bound for each of the blocks, ‖∆i‖ < di, is known. In fact, to simplify
developments, without loss of generality, it will be assumed that the di will be
included as error-free scaling factors in M , and ∆ is a block-triangular matrix
with normalised unity maximum size: σ̄(∆) < 1.

If M and all ∆i are linear operators, the characteristic closed-loop equation
(C.17) is:

det(I − M∆) = 0

so, from MIMO Nyquist criterion (Section 4.5.1), in a structured uncertainty
setup (M,∆),we are interested in finding the maximum scaling factor, α, so
that there exists no matrix with the ∆ structure so that det(I − αM∆) = 0.

This comes from expression (C.17): as with α = 0, det(I − 0 · M∆) =
1 evidently does not encircle the origin, instability will not arise until the
possibility of touching the origin is allowed.

Definition F.3 (Structured singular value). In a structured uncertainty
setup (M,∆), assuming σ̄(∆) < 1, denoting as αm the minimum scaling factor
α > 0 so that there exists a matrix with the block-diagonal structure specified
by ∆ and σ̄(∆) = α so det(I −M∆) = 0, the structured singular value µ∆ is
defined as

µ∆ =
1

αm

The notation µ∆ stresses the fact that for the same system, the value
of µ is different for different uncertainty structures. In fact, as M depends
on frequency, µ∆ is itself a function of frequency, µ∆(ω). The concept was
historically introduced in [43, 110].

The overall system will be robustly stable if µ∆(ω) < 1 for all ω, as it
means that uncertainty must be scaled by a factor α greater than 100%. If δ
is a full uncertain matrix, it can be shown that µ∆ = σ̄(∆).

Obviously, the interest of this definition is that there are tools for calcu-
lating µ∆. The available tools are approximate in a general situation, and
calculate a lower and upper bound for µ∆, except for some cases where ex-
act solutions can be found. There are several algorithms for computing these
bounds, with different computational complexity. Further details on proper-
ties and computation of the structured singular value can be found in [133].
The Matlab� µ-toolbox implements some of them in its command mu, called
with two arguments: the plant, M , and an uncertainty structure description
matrix (see the toolbox documentation for details).
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Example F.4. This is an example of how unstructured analysis can be overly con-
servative in some cases. A plant and a controller given by:

G =

(
1

s+1
15

s+1

0 4
(s+2)2

)

; K =

(
10 0
0 10

)

must be analysed against robustness to diagonal multiplicative input uncertainty.
The transfer function to be analysed in the M − ∆ structure in Figure 8.5 is:

g2=minreal(feedback(series(gpss,k2ss),eye(2)));

and the µ-toolbox in Matlab� yields a comparison between its norm (unstructured
uncertainty) and the structured singular value for diagonal complex uncertainty
(unmodelled actuator dynamics).

g2p=pck(g2.a,g2.b,g2.c,g2.d); w=logspace(-1,2); gpf=frsp(g2p,w);

[bd,dv,sss,pv]=mu(gpf,[1 0;1 0]); vplot(’liv,lm’,vnorm(gpf),bd);

where bd is an approximate bound for µ, and vnorm(gpf) is the usual maximum
singular value norm. The result appears in Figure F.1. The plant is triangular, so
actuator uncertainty only affects each of the loops. However, the full uncertainty de-
scription wrongly considers the possibility of a non-existent actuator cross-coupling
exciting the off-diagonal dynamics, giving a much more conservative bound.

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Unstructured input uncertainty

Diagonal input uncertainty

Figure F.1. Comparison between inverse uncertainty bounds with unstructured
and structured uncertainty analysis

F.2.1 Robust Performance

As discussed in Section 8.6.1, a nominal-performance problem can be stated,
with suitable weights incorporated into the generalised plant, as achieving a
particular transfer function norm WeS below 1. The same idea, applied to
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modelling error sizes, can be used to pose RS problems as achieving a norm
less than 1 between output and input of the uncertainty block ∆.

In Section 8.5.4, it was argued that the robust performance (RP) problem
is the actual problem of interest in feedback control design.

Mixed sensitivity combines nominal performance and robust stability in a
single index. However, the design does not guarantee RP in a general case1.
The structured uncertainty framework enables some robust performance anal-
ysis problems to be cast as robust stability ones.

Closed-loop
plant

Loop errorsDisturbances
and setpoints

�

�

1

n

…

…… Closed-loop
plant

Loop errorsDisturbances
and setpoints

�

�

�

1

perf

Augmented uncertainty description

n

…

……

Figure F.2. Robust performance (norm-based criterion) recast as (structured) ro-
bust stability

Robust performance analysis implies, from the block-diagram of Figure F.2
(left), that for any ∆ verifying σ̄(∆) < 1, the norm from disturbances to errors
should be less than 1. Hence, it is equivalent to inserting an additional ficti-
tious ∆perf with norm 1 and checking the robust stability with the augmented
uncertainty structure to the right of the referred figure [133].

F.3 Additional Design Techniques

A detailed description of the available techniques for robust control synthesis
is out of the scope of this book. Mixed sensitivity has been discussed in Section
8.6.1. In this section, an exposition of a widespread loop-shaping procedure,
interesting for both stable and unstable plants, will be now outlined based on
an academic example. The interested reader should consult the references for
further details.
1 Although, fortunately, it is approximately verified in SISO systems and well-

conditioned MIMO ones.
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F.3.1 Robust Stabilisation

Direct norm-optimisation can be used to design the controller that stabilises
a particular plant with maximum uncertainty bounds. An example of this,
with an unstable plant, tolerating the maximum amount of coprime factor
uncertainty is detailed below.

Example F.5 (Robust stabilisation). Maximising the robustness margin to uncer-
tainty in normalised coprime factor form, for a system such as:

(
1

(s−1)(s+2)
s

(s−1)(s+2)

)

modelling an unstable mechanical system with position and speed measurements,
can be carried out with the command ncfsyn, from the Matlab� µ-toolbox:

g1=1/(s-1)/(s+2); g2=s/(s-1)/(s+2);

g=[g1; g2]; g=ss(g);

sys=pck(g.a,g.b,g.c,g.d);

[sysk, emax]=ncfsyn(sys,1.1);

[ka,kb,kc,kd]=unpck(sysk);

k=ss(ka,kb,kc,kd);

In this case, the resulting controller, k, is designed to allow for 1.1 times less error
size than the “optimal” one, for numeric precision reasons. Of course, maximising
robust stability margins does not imply any further performance requirements. An
input disturbance step yields a behaviour depicted in Figure F.3 on the following
page (two-sensor maximum-margin label). The maximum allowed uncertainty size
is 0.197 units.

F.3.2 McFarlane-Glover Loop Shaping

A refinement of the previous methodology [85, 86] to add performance objec-
tives is also a widely used choice. Another example describes the basic steps.

Example F.6. To add performance requirements, the above procedure may be ap-
plied to a shaped plant, Gs = W2GW1, where weights W1 and W2 are designed
so that the loop has high-gain at frequencies where tight control is needed (input
and output weights allow for specific design on a particular actuator or sensor), and
low-gain at frequencies where no control activity is wished. After accomplishing the
design, the final regulator must include the weights (as they are not part of the real
plant), contrary to the mixed-sensitivity design in Section 8.6.1. In our case, adding
a weight for integral action W1 = (s + 6)/s, W2 = I2×2, the code that implements
this design is:

gr=[g1; g2]; g=w2*gr*w1;g=ss(g);

sys=pck(g.a,g.b,g.c,g.d);

[sysk,emax]=ncfsyn(sys,1.1);

[ka,kb,kc,kd]=unpck(sysk);

k=ss(ka,kb,kc,kd);

k=w1*minreal(k)*w2;
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Note that the synthesis designs the optimal regulator assuming uncertainty on
the weighted plant. This is not true in practical terms, so the resulting regulator
tolerates less error than the “optimal” one in the previous example. In this case,the
final allowed unstructured coprime factor error on the unweighted plant, G, is 0.17
(slightly less than 0.19 on the previous design, intuitively expected, as slow integral
action does not usually involve severe additional stability problems). The step re-
sponses for output 1 (position) to a unit input disturbance of both examples are
depicted in Figure F.3. The response of a SISO unweighted maximum stability mar-
gin design using only the first sensor is also depicted for the sake of comparison
(the stability margin is 0.14). Further increases on the weights will improve per-
formance at the expense, as usual, of reducing stability margins. As usual, adding
extra sensors improved the achievable performance and/or robustness margins.

Time (sec.)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1-sensor design

2-sensor (max. margin)

2-sensor (weighted)

Figure F.3. Robust stabilisation of a second-order unstable plant (Examples F.5
and F.6, nominal responses to a step input disturbance)

Interestingly, the resulting regulator with the presented procedure can be
realised as an observer plus state feedback control law [117] (on the weighted
plant). The observer structure is advantageous towards understanding the
configuration in a “classical” language and its ease of implementation in gain-
scheduled configurations (discussed in Section 9.5.2) [62].
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20. K.J. Åström and T. Hägglund. PID Controllers: Theory, Design and Tuning.
Instrument Society of America, North Carolina, USA, second edition, 1995.
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76. P.V. Kokotović. The joy of feedback: Nonlinear and adaptive. IEEE Control

Systems Magazine, June:7–17, 1992.
77. R.L. Kosut, M. Lau and S. Boyd. Set-membership identification of systems with

parametric and nonparametric uncertainty. IEEE Trans. Automatic Control,
37:929–941, July 1992.

78. B. Kuo and F. Golnaraghi. Automatic Control Systems. John Wiley and Sons,
NY, 8th edition, 2002.

79. I.D. Landau. From robust control to adaptive control. Control Engineering
Practice, 7(9):1113–1124, 1999.

80. D.J. Leith and W.E. Leithead. Gain-scheduled and nonlinear systems: dy-
namic analysis by velocity-based linearisation families. International Journal
of Control, 70:289–317, 1998.

81. F.L. Lewis. Optimal Control. Wiley-Interscience, NY, 1986.
82. G. Li. On the structure of digital controllers with finite word length consider-

ations. IEEE Trans. Automatic Control, 43:689–693, 1998.
83. D. Liberzon and A.S. Morse. Basic problems in stability and design of switched

systems. IEEE Control Systems, 19(5):59–70, 1999.
84. L. Ljung. System Identification: Theory for the User. Prentice Hall, Englewood

Cliffs, NJ, second edition, 1999.
85. D.C. MacFarlane and K. Glover. Robust controller design using normalized

coprime factor plant descriptions. Springer, New York, 1990.
86. D.C. MacFarlane and K. Glover. A loop shaping design procedure using H∞-

synthesis. IEEE Trans. Automatic Control, AC-37:759–769, 1992.
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H2, 209
H∞, 209, 216, 241
2-DoF, see two degree of

freedom

adaptive control, 269
anti-windup, 257–260,

264, 270
augmented plant, 59,

171, 179–181, see
generalised

bandwidth, 145, 152, 211,
222, 227

closed-loop, 113, 142,
193, 279

limit, 136, 226
LQR, 228
mixed sensitivity, 247

Bezout identity, 295
bumpless transfer, 260

canonical form, 73
diagonal, 56, 288
Jordan, 80, 288, 294
Kalman, 76
Luenberger, 75
observable, 74
reachable, 73

cascade control, 105, 127,
143–146, 151, 152,
235, 250, 259, 264

robustness, 244

Cayley-Hamilton
theorem, 288

centralised control, 107,
165, 250

characteristic equation,
41, 287, 288

TITO, 133

characteristic matrix, 104

characteristic polynomial,
276, 279

coloured noise, 45, 197

complementary sensitiv-
ity, 108, 110, 132,
237, 279

condition number, 62, 85,
106, 290–292, 324

minimised, 133, 292

conditioning, 15, 86, 106,
125, 152, 172, 290,
320

continuous control

implementation, 251,
255

control

goals, 2, 8, 44, 100

local, 120

model-based, 12

model-free, 12

modes of operation, 9

performance limi-
tations, 86, 222,
224–227, see
bandwidth limit

robust, 219–243, 264,
323–330

control structures,
106–107, 147

controllability, 78, 272,
see reachability

input/output, 85, 103

controller

modes of operation, 10

switching, 260

synthesis, 240

controller implementa-
tion, 249

algorithm, 254

analog, 251

digital, 251

interface, 257

operating point, 254

precision, 256

convolution, 55, 278

discrete, 55

coprime factorisation,
241, 295–296, 329

uncertainty, 324

cost index

derivative, 304

LQG, 197

LQR, 190, 195, 305

mixed, 196

predictive control, 205

CT, see continuous-time

data acquisition, 253
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decentralised control, 63,
107, 125, 250

decoupling, 101, 127, 136,
154, 163, 187

approximate, 138
feedforward, 137
linear feedback, 139
non-linear, 164, 267
SVD, 142

delay, 33, 39, 74, 86, 227
diagonal dominance, 63,

101, 136, 137, 288
difference equation, 28,

279
differential equation, 20,

22, 276, 288, 293
discretisation, 39, 57, 141

Euler, 39, 40, 255
state space, 59
transfer matrix, 58

distillation, 3, 92, 204,
213, 245, 324

disturbance rejection,
101, 141, 178, 180

feedforward, 104, 116
GPC, 207
optimal, 197
scaling, 85
weights, 211

disturbances, 5, 106, 171
decoupling, 141
deterministic, 18, 42
estimation, 179
generalised plant, 111
measurable, 116
model, 31, 42, 179, 181,

318
relative gain, 133
scaling, 60
types, 101

dither signals, 264
DT, see discrete-time

eigenvalues, see matrix
energy-based control, 269
experimental ID, 33, 281

fault detection, 269

feedback linearisation,
see linearisation

feedforward control, 12,
114, 264

forced response, 55
frequency response, 63,

278, 300
frequency weights, 210,

241, 279
full-information con-

troller, 165

gain, 60, 241
directional, 61, 101,

105
extreme, 62, 64, 105,

113, 298, 300
instantaneous, 61
static, 60, 281
worst-case, see extreme

gain-scheduling, 164,
265–266

generalised plant, 38,
111, 208–212

2-DoF, 232
mixed sensitivity, 242

Gershgorin theorem, 63,
136, 288

gradual control, 151

Haenkel parameters, 41,
56, 204

headbox, 47, 51, 75, 168
hierarchical control, 120,

151
high-gain control, 110,

223

ill-conditioned plants, 62,
133, 141, 142, 324

impulse response, 41, 55,
208, 278, 281, 300

indirect control, 147
inferential control, 102,

147
integral control, 170, 264

frequency weight, 329
stability, 129

integrity, 72, 134–135

interaction, 14, 32, 110,
126

interconnection, 35
cascade, see series
feedback, 36, 301
generalised, 37
LFT, 38, 111
parallel, 36
series, 36, 298, 301

Jacobian, 25, 27, 29, 303

Kalman decomposition,
76

Kalman filter, 196, 319
Kharitonov theorem, 240

LFT, see linear fractional
transformation

linear fractional transfor-
mation, 16, 38, 111,
127, 216

linear quadratic control
sampled-data systems,

196
linear quadratic Gaus-

sian, 16, 201
linear quadratic reg-

ulator, 191–193,
305–310

stationary, 309
linear time-invariant, 24
linearisation, 24, 25,

28–30, 51, 166, 207,
305

feedback, 267
global, 266

loop shaping, 329
LQG, see linear quadratic

Gaussian
LQR, see linear quadratic

regulator
LTI, see linear time-

invariant

manual control, 114
matrix

column space, 117, 285
eigenvalues, 41, 56, 61,

109, 199, 287, 289
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placement, 167
eigenvectors, 169, 287
exponential, 56, 59,

293
approximation, see

Padé
gain, 289, see gain,

directional
Jordan form, see

canonical form
modelling error, 291
norm, 61, 290, 298
null space, 285, 292
orthogonal, 286
orthonormal, 290
partitioned, 287
polynomial fraction,

294
positive definite, 288
pseudoinverse, 67, 70,

115, 286, 304
rank, 285, 291, 295
singular values, 289,

see singular value
decomposition

spectral radius, 61
unitary, 62, 286

minimum-time
control, 169
observer, 174

mixed sensitivity, 212,
241

model
black-box, 18
dynamic, 21
first-principle, 19

components, 19
input/output, 18, 29
internal representation,

22
linear, 24
local, 18
non-linear, 7, 18, 21,

22, 39, 263
polynomial, 29
state space, 24
static, 20
validity range, 222
white-box, 18

model reduction, 87–91
modelling error, 13, 119,

128, 142, 220, 222,
233, see uncertainty

multi-loop control, 127,
141, 152, 154, 157

bandwidth limit, 136,
138

diagonal dominance,
136

pairing, 127, 131, 135,
143, 163

multi-rate control, 261

Niederlinski criterion,
129

NMP, see non-minimum
phase

noise sensitivity, 144,
173, 262, 291

non-linear control, 263
linearisation, 29, 266

non-minimum phase, 84,
116, 137, 206, 226

norm, 69, 212, 234, 243,
247, 287, 289, 301

∞-norm, 65, 209, 323
2-norm, 190, 209, 212,

299, 300, 302, 324
Euclidean, see 2-norm
induced, 298, 300
modelling error, 90
optimisation, 218, 228,

232, 241, 269
signal, 297, 299
system, 65, 297, 300
weighted, 205

Nyquist criterion, 109,
302, 326

objective function, see
cost index

observability, 70–71, 76,
80, 103, 172, 272

degree, 71
detectable system, 71
test, 70

observer, 172–178, 197,
203, 225, 259, 320,

330, see Kalman
filter

gain, 173
reduced-order, 175

optimisation
constrained, 305
quadratic index, 304
static, 303

output feedback, 171
override control, 149
overshoot, 113

Padé approximation, 34,
215, 294

Parseval theorem, 300
performance analysis, 113
PID, 125, 166, 170, 232,

249, 250, 252, 258,
269

plant-wide control, 120,
257, 272

PLC, 252
poles, 34, 41, 81, 83, 84,

113, 169, 277, 280
placement, 167–170
RHP, 86, 108, 225–227,

254, 295
predictive control, 202

random variable, 43, 311
linear operations, 312
multi-dimensional, 313
prediction, 316

rate saturation, 207, 233,
259

RDG, see disturbances,
relative gain

reachability, 66–69, 72,
76, 80, 104

effort, 69
minimum-time, 68
output, 71
single-input, 68
stabilisable system, 67
test, 67

realisation, 22, 74, 254
balanced, 80

reduction, 89, 90, 218
inverse system, 116
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minimal, 77
relative degree matrix,

104
relative gain array, 106,

129–133
reliability, 269
representation

external, 29
polynomial, 30
state space, 22, see

realisation
closed-loop, 109

transfer matrix, 31
RGA, see relative gain

array
Riccati equation, 192,

198, 309, 310
robot control, 268
robust control, see

control
robust performance, 221,

240, 327
robust stability, 221, 236,

240, 242, 324, 328
robustness, 14, 102, 106,

128, 195, 209, 213,
233, 323

margin, 145, 225–228,
241, 325, 329

RP, see robust perfor-
mance

RS, see robust stability

sampled-data systems,
39, 72, 141, 169,
196, 279

sampling
aliasing, 253
dual rate, 261
frequency, 72, 116, 252
non-conventional, 40,

260
saturation, 258
scaling, 60
SD, see sampled-data
sensitivity, 34, 108, 110,

132, 213, 217, 238,
247, 248

sensor fusion, 200, 318

separation principle, 177,
201, 261

sequential tuning, 151

settling time, 56, 113,
167, 199, 210, 278,
280

LQR, 193, 195

observer, 174

signal, 18

continuous-time, 6

discrete-time, 6

norm, 297

similarity transform, 23,
24, 67, 74, 176, 177,
288

singular value decompo-
sition, 62, 69, 105,
106, 142, 143, 184,
272, 290, 292

small-gain, 110, 236, 300,
301, 323

split-range control, 150

stabilisation, 167

robust, 329

stability, 56, 57, 108–110,
132, 134, 195, 237,
278, 280, 323, see
small-gain

closed-loop, 64, 108,
136

integral control, 129

internal, 108, 137, 226

LQR, 194

margin, see robustness

marginal, 278, 280

relative, 57

uncontrollable state, 67

unobservable state, 71

star product, 38

state estimation, see
observer

state feedback, 139,
165–171, 177, 180,
261

LQR, 190, 201, 307

non-linear, 268

state variables, 22, 23

state vector, 23

stochastic process, 44–46,
319

structured singular value,
240, 241, 326

supervisory control, 120,
257

SVD, see singular value
decomposition

system
distributed parameter,

29
interconnection, see

interconnection
structure, 65, 72, 76

TF, see transfer function
time response, 54
time scale simplifications,

7, 87
TITO 2-input, 2-output,

29
tracking, 2, 141, 170, 230

open-loop, 116
transfer function, 277,

280
transfer matrix, 30, 31
two degree of freedom,

12, 119, 229

uncertainty, 133, 221
additive, 234, 236
bounds, 235
multiplicative, 234, 237
parametric, 223, 234,

240
sources, 220
structured, 234, 239,

325

white noise, 44

zero-order hold, 49, 58,
255

zeros, 34, 81–84, 277, 280
RHP, 84, 86, 116,

137, 226, 295,
see non-minimum
phase

ZOH, see zero-order hold
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