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xix

Overview

This text is intended for a one-semester introductory course in computer
science. It presents a breadth-first overview of the discipline that assumes no
prior background in computer science, programming, or mathematics. It is
appropriate for use in a service course for students not majoring in computer
science. It is also appropriate for schools that implement their introductory
sequence for majors using the breadth-first model described in the ACM/IEEE
Computing Curricula 2001 Report. It would be quite suitable for a high school
computer science course as well. Previous editions of this text have been used
in all these types of courses.

The Non-Majors Course

The introductory computer science service course has undergone many changes
over the years. In the 1970s and early 1980s, it was usually a course in FOR-
TRAN, BASIC, or Pascal. At that time it was felt that the most important skill a
student could acquire was learning to program in a high-level language. In the
mid-to-late ‘80s, a rapid increase in computer use caused the course to evolve
into something called “computer literacy” in which students learned about new
applications of computing in such fields as business, medicine, law, and educa-
tion. With the growth of personal computers and productivity software, a typ-
ical early to mid-1990s version of this course would spend a semester teaching
students to use word processors, databases, spreadsheets, presentation soft-
ware, and electronic mail. The most recent change has been its evolution into a
Web-centric course where students learn to design and implement Web pages
using technology such as HTML, XML, and Java applets.

Most academics feel it is time for the computer science service course to
evolve yet again. There are two reasons for this. First, virtually all students in col-
lege today are familiar with personal computers and productivity software. They
have been using word processors since elementary school and are quite familiar
with social networks, online retailing, e-mail, and chat rooms. Many have written
Web pages and some even have their own Web sites. In this day and age, a course
that focuses on applications of computing will be of little or no interest.

But a more important reason for rethinking the structure of this course, and
the primary reason why we authored this book, is the following observation:

Most computer science service courses do not teach students about the
foundations of computer science!

We believe quite strongly that students in a computer science service course
must receive a solid grounding in the fundamental intellectual concepts of
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computer science in addition to learning about important uses of computing
and information technology. The material in such a course would not be lim-
ited to “fun” applications such as Web page design and interactive graphics
but would also cover issues such as algorithms, hardware design, computer
organization, system software, language models, theory of computation, and
social and ethical issues of computing. An introduction to these core ideas
exposes students to the overall richness and beauty of the field. It allows them
to not only use computers and software effectively but to understand and
appreciate the basic ideas underlying their creation and implementation.

The CS1 Course

The design of a first course for computer science majors has also come in for
a great deal of discussion. Since the emergence of computer science as a dis-
tinct academic discipline in the 1960s, the first course has always been an
introduction to programming—from BASIC to FORTRAN to Pascal, to C��,
Java, and Python today. Related topics have been added to the syllabus
(e.g., object-oriented design), but the central focus has remained high-level
language programming. However, the ACM/IEEE Computing Curriculum 2001
Report suggested a number of alternative models for the first course, includ-
ing a breadth-first overview, an approach that has gained in popularity in
the last couple of years.

A first course for computer science majors using the breadth-first model
emphasizes early exposure to the sub-disciplines of the field rather than plac-
ing exclusive emphasis on programming. This gives new majors a more com-
plete and well-rounded understanding of their chosen field of study. As stated
in the Curriculum 2001 Report, “[introductory] courses that emphasize only
this one aspect [programming] fail to let students experience the many other
areas and styles of thought that are part of computer science as a whole.”

Our book—intended for either majors or non-majors—is organized around
this breadth-first approach, and it presents a wide range of subject matter
drawn from many areas of computer science. However, to avoid drowning stu-
dents in a sea of seemingly unrelated facts and details, a breadth-first presen-
tation must be carefully woven into a fabric, a theme, a “big picture” that ties
together these topics and presents computer science as a unified and inte-
grated discipline. To achieve this we have divided the study of computer sci-
ence into a hierarchy of topics, with each layer in the hierarchy building on
and expanding upon concepts from earlier chapters.

A Hierarchy of Abstractions

The central theme of this book is that computer science is the study of algo-
rithms. Our hierarchy utilizes this definition by first looking at the algorithmic
basis of computer science and then moving upward from this central theme to
higher-level issues such as hardware, software, applications, and ethics. Just as
the chemist starts from protons, neutrons, and electrons and builds up to
atoms, molecules, and compounds, so, too, does our text build from elementary
concepts such as algorithms, binary arithmetic, gates, and circuits to higher-
level ideas such as computer organization, operating systems, high-level lan-
guages, applications, and the social, legal, and ethical problems of information
technology.
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The six levels in our computer science hierarchy are as follows:

Level 1. The Algorithmic Foundations of Computer Science

Level 2. The Hardware World

Level 3. The Virtual Machine

Level 4. The Software World

Level 5. Applications

Level 6. Social Issues in Computing

Following an introductory chapter, Level 1 (Chapters 2–3) introduces “The
Algorithmic Foundations of Computer Science,” the bedrock on which all other
aspects of the discipline are built. It presents important ideas such as the
design of algorithms, algorithmic problem solving, abstraction, pseudocode,
iteration, and efficiency. It illustrates these ideas using well-known examples
such as searching a list, finding maxima and minima, sorting a list, and
matching patterns. It also introduces the concepts of algorithm efficiency and
asymptotic growth and demonstrates that not all algorithms are, at least in
terms of running time, created equal.

The discussions in Level 1 assume that our algorithms are executed by
something called a “computing agent,” an abstract concept for any entity that
can effectively carry out the instructions in our solution. However, in Level 2
(Chapters 4–5), “The Hardware World,” we want our algorithms to be executed
by “real” computers to produce “real” results. Thus begins our discussion of
hardware, logic design, and computer organization. The initial discussion
introduces the basic building blocks of computer systems—binary numbers,
Boolean logic, gates, and circuits. It then shows how these elementary concepts
are used to construct a real computer using the classic Von Neumann architec-
ture, including processors, memory, buses, and input/output. It presents a typ-
ical machine language instruction set and explains how the algorithms of Level
1 can be represented in machine language and run on the Von Neumann hard-
ware of Level 2, conceptually tying together these two areas. It ends with a dis-
cussion of important new directions in hardware design—multicore and
massively parallel machines.

By the end of Level 2 students have been introduced to some basic con-
cepts in logic design and computer organization, and they understand and
appreciate the enormous complexity of these areas. This complexity is the
motivation for Level 3 (Chapters 6–8), “The Virtual Machine.” This section
describes how system software produces a more friendly, user-oriented
problem-solving environment that hides many of the ugly hardware details
just described. Level 3 looks at the same problem discussed in Level 2,
encoding and executing an algorithm, but shows how much easier this is in
a virtual environment containing software tools like editors, translators, and
loaders. This section also discusses the services and responsibilities of oper-
ating systems and how operating systems have evolved. It investigates one
of the most important virtual environments in current use—a network of
computers. It shows how systems such as the Ethernet, Internet, and the
Web are created from computers linked together via transmission media and
communications software. This creates a virtual environment in which we
can seamlessly use not only the computer on our desk but computers
located practically anywhere in the world. Level 3 concludes with a look at
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one of the most important services provided by a virtual machine, informa-
tion security, and describes algorithms for protecting the user and the sys-
tem from accidental or malicious damage.

Once we have created this user-oriented virtual environment, what do we
want to do with it? Most likely we want to write programs to solve interesting
problems. This is the motivation for Level 4 (Chapters 9–12), “The Software
World.” Although this book should not be viewed as a programming text, it
contains an overview of the features found in modern programming lan-
guages. This gives students an appreciation for the interesting and challeng-
ing task of the computer programmer and the power of the problem-solving
environment created by a modern high-level language. There are many differ-
ent programming language models, so this level includes a discussion of other
language types, including special-purpose languages such as SQL, HTML, and
JavaScript, as well as the functional, logic, and parallel language paradigms.
This level also describes the design and construction of a compiler and shows
how high-level languages can be translated into machine language for execu-
tion. This discussion ties together ideas presented in earlier chapters, as we
show how an algorithm (Level 1) is translated into a high-level language
(Level 4), compiled and executed on a typical Von Neumann machine (Level
2), which makes use of the system software tools of Level 3. These “recurring
themes” and frequent references to earlier concepts help reinforce the idea of
computer science as an integrated set of related topics. At the conclusion of
Level 4, we introduce the idea of computability and unsolvability. A formal
model of computing (the Turing machine) is used to prove that there exist
problems for which no general algorithmic solution can be found. It shows
students that there are provable limits to what computers and computer sci-
ence can achieve.

We now have a high-level programming environment in which it is
possible to write programs to solve important problems. In Level 5 
(Chapters 13–16), “Applications,” we take a look at a few important uses of
computers in our modern society. There is no way to cover even a tiny frac-
tion of the many applications of computers and information technology in
a single section. Instead, we focus on a relatively small set that demon-
strates some important concepts, tools, and techniques of computer sci-
ence. This includes applications drawn from the sciences and engineering
(simulation and modeling), business and finance (e-commerce, databases),
the social sciences (artificial intelligence), and everyday life (computer
generated imagery, video gaming, virtual communities). Our goal is not to
provide “encyclopedic coverage” of modern computing usage; instead, it is
to show students that applications packages are not “magic boxes” whose
inner workings are totally unfathomable. Rather, they are the result of uti-
lizing core computer science concepts—e.g., algorithms, hardware, lan-
guages—presented in earlier chapters. We hope that our discussions in this
section will encourage readers to seek out information on applications and
software packages specific to their own areas of interest.

Finally, we reach the highest level of study, Level 6 (Chapter 17), “Social
Issues in Computing,” which addresses the social, ethical, and legal issues
raised by the applications presented in Level 5. This section (written by con-
tributing author Prof. Keith Miller of the University of Illinois at Springfield)
examines such thorny problems as the ownership of intellectual property in
the electronic age, national security concerns aggravated by information
technology, and the erosion of individual privacy caused by the use of online
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databases. This section does not attempt to provide quick solutions to these
complex problems. Instead, it focuses on techniques that students can use to
think about these ethical issues and reach their own conclusions. Our goal in
this final section is to make students aware of the enormous impact that
information technology is having on everyone’s lives and to give them tools
that will allow them to make more informed decisions.

This, then, is the hierarchical structure of our text. It begins with the
algorithmic foundations of the discipline and works its way from low-level
hardware concepts through virtual machine environments, languages, soft-
ware, and applications to the social issues raised by computer technology.
This organizational structure, along with the use of recurring themes,
enables students to view computer science as a unified, integrated, and
coherent field of study. While the social issues material in Chapter 17 can be
presented at any time, the rest of the material is intended to be covered
sequentially.

What’s New

The fifth edition of Invitation to Computer Science represents the single
biggest rewrite of this best-selling text. It includes two new chapters that
address important emerging areas of computer science. In an age where per-
sonal, financial, and medical data is all online, Chapter 8, “Information
Security,” deals with the growing problem of keeping that data safe from
improper access and inappropriate modification. Chapter 16, “Computer
Graphics and Entertainment: Movies, Games, and Virtual Communities,” looks
at how computers, once the domain of the military, government, and business,
are now being used to entertain, amaze, and enthrall. It concludes with a dis-
cussion of how these same visualization algorithms are also used to address
more important problems, such as medical imaging.

In addition to these two chapters, new material and exercises have been
added to existing chapters on Computer Organization (multicore and cluster
computing), Computer Networks (wireless computing), and Artificial Intelligence
(robotics) as well as the addition of new Practice Problems and boxed features.

However, the single biggest change has been to move all programming-
language-specific materials, once placed into their own chapter in the text
itself, to the Cengage Web site. For the first four editions we produced two dis-
tinct versions of the text, one for C�� and the other for Java. As new lan-
guages began to enter the computer science curriculum, e.g., Python, Ada, C#,
it became infeasible to produce a separate chapter and a separate edition
for each one. Instead, Chapter 9, “Introduction to High-Level Language
Programming,” is now a general description of the features common to mod-
ern programming languages. Detailed discussions of a particular language are
available to instructors for distribution to students under the Instructor
Download section of www.cengage.com. (Currently the Cengage Web site
includes online language modules for C��, Java, Python, Ada, and C#, with
additional modules possible in the future.) Using this approach we can
respond much more quickly to new developments in programming language
design as well as proposals for curricular change. In addition, instructors and
students are not limited to exposure to a single language but are invited to
download (or request from instructors) the modules for any and all languages
in which they are interested.
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An Experimental Science

Another important aspect of computer science education is the realization
that, like physics, chemistry, and biology, computer science is an empirical,
laboratory-based discipline in which learning comes not only from watching
and listening but from doing and trying. Many complex ideas in computer sci-
ence cannot be fully understood and appreciated until they are visualized,
manipulated, and tested. Today, most computer science faculty consider formal
laboratories to be an essential part of an introductory course. We concur, and
this development is fully reflected in our approach to the material.

Associated with this text is a laboratory manual and custom-designed labo-
ratory software that enables students to experiment with the concepts we pre-
sent. The manual contains 20 laboratory experiences, closely coordinated with
the main text, that cover all levels except Level 6. These labs give students the
chance to observe, study, analyze, and/or modify an important idea or concept.
For example, associated with Level 1 (the algorithmic foundations of computer
science) are experiments that animate the algorithms in Chapters 2 and 3 and
ask students to observe and discuss what is happening in these animations.
There are also labs that allow students to measure the running time of these
algorithms for different-sized data sets and discuss their observed behavior.
Associated with Level 2 (the hardware world) are projects to design and analyze
logic circuits as well as program a simulated Von Neumann machine that is iden-
tical to the one presented in the text. There are similar labs available for Levels
3, 4, and 5 that highlight and clarify the material presented in the text.

Each of the lab manual experiments includes an explanation of how to use
the software, a description of exactly how to conduct the experiment, and dis-
cussion questions and problems for students to complete and hand in. When
doing these projects, students could work on their own or in teams, and the
course may utilize either a closed-lab (scheduled) or an open-lab (unscheduled)
setting. The manual and software will work well in any of these laboratory mod-
els. The text contains 20 boxes labeled “Laboratory Exercise” that describe each
lab and identify the point where it may be appropriate to assign it; most show a
screen shot of the output that is produced when you run the lab software.

Other Textbook Features

To challenge the more advanced students, each chapter includes, along with a
regular set of exercises, some “Challenge Problems.” These more complex ques-
tions could be used for longer assignments done either individually or by
teams of students. Finally, if a student is interested in a topic and wants more
detail, there is a section at the end of each chapter titled “For Further
Reading” with references to texts and Web sites containing additional mater-
ial on the topics covered in that chapter.

Summary

Computer science is a young and exciting discipline, and we hope that the
material in this text, along with the laboratory projects and online
modules, will convey this feeling of excitement. By presenting the field in all
its richness—algorithms, hardware, software, systems, applications, and
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social issues—we hope to give students a deeper appreciation for the many
diverse and interesting areas of research and study within the discipline of
computer science.

Supplemental Materials

This textbook includes teaching tools to support instructors in the classroom.
The ancillaries that accompany the textbook include an Instructor’s Manual,
Solutions, Test Banks and Test Engine, PowerPoint presentations, and Figure
files. All teaching tools available with this book are provided to the instructor
on a single CD-ROM and are also available on the Web at www.cengage.com/
coursetechnology

The Instructor’s Manual

This manual provides materials to help instructors make their classes more
informative and interesting.

For each chapter, the manual includes lecture and class presentation
ideas, quick quizzes, topics for class discussion, and key term definitions.

Solutions

We provide instructors with solutions to Review Questions and Discussion
Questions as well as for quantitative hands-on work in each chapter. Solutions
may also be found on the Course Technology Web site at www.course.com. The
solutions are password protected.

ExamView®

This objective-based test generator lets the instructor create paper, LAN, or
Web-based tests from test banks designed specifically for this Course
Technology text. Instructors can use the QuickTest Wizard to create tests in
fewer than five minutes by taking advantage of Course Technology’s question
banks—or create customized exams.

PowerPoint Presentations

Microsoft PowerPoint slides are included for each chapter. Instructors might
use the slides in a variety of ways, such as teaching aids during classroom pre-
sentations or as printed handouts for classroom distribution. Instructors can
add their own slides for additional topics introduced to the class.

Figure Files

Figure files allow instructors to create their own presentations using figures
taken directly from the text.
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1.1 Introduction

This text is an invitation to learn about one of the youngest and most excit-
ing of the scientific disciplines—computer science. Almost every day our
newspapers, magazines, and televisions carry reports of advances in comput-
ing, such as high-speed supercomputers that perform one quadrillion (1015)
mathematical operations per second; networks that transmit high-definition
images and movies anywhere in the world in fractions of a second; and minute
computers that can be embedded into our books, watches, clothing, and even
our bodies. The next few years will see technological breakthroughs that,
until a few years ago, existed only in the minds of dreamers and science fic-
tion writers. These are exciting times in computing, and our goal in this text
is to provide you with an understanding of computer science and an apprecia-
tion for the diverse areas of research and study within this important field.

While the average person can produce a reasonably accurate description
of most scientific fields, even if he or she did not study the subject in school,
many people do not have an intuitive understanding of the types of problems
studied by computer science professionals. For example, you probably know
that biology is the study of living organisms and that chemistry deals with the
structure and composition of matter. However, you might not have the same
understanding of the work that goes on in computer science. In fact, many
people harbor one or more of the following common misconceptions about
this field.

MISCONCEPTION 1: Computer science is the study of computers.

This apparently obvious definition is actually incorrect or, to put it more
precisely, incomplete. For example, some of the earliest and most fundamental
theoretical work in computer science took place from 1920 to 1940, years before
the development of the first computer system. (This pioneering work was ini-
tially considered a branch of logic and applied mathematics. Computer science
did not come to be recognized as a separate and independent field of scientific
study until the late 1950s to early 1960s.) Even today, there are branches of
computer science quite distinct from the study of “real” machines. In theoretical
computer science, for example, researchers study the logical and mathematical
properties of problems and their solutions. Frequently, these researchers inves-
tigate problems not with actual computers but rather with formal models of
computation, which are easier to study and analyze mathematically. Their work
involves pencil and paper, not circuit boards and disks.

2 CHAPTER 1: An Introduction to Computer Science



This distinction between computers and computer science is beautifully
expressed by computer scientists Michael R. Fellows and Ian Parberry in an
article in the journal Computing Research News:

Computer science is no more about computers than astronomy is
about telescopes, biology is about microscopes, or chemistry is about
beakers and test tubes. Science is not about tools. It is about how we
use them and what we find out when we do.1

MISCONCEPTION 2: Computer science is the study of how to write computer
programs.

Many people are first introduced to computer science when learning to
write programs in a language such as C++, Python, or Java. This almost uni-
versal use of programming as the entry to the discipline can create the misun-
derstanding that computer science is equivalent to computer programming. 

Programming is extremely important to the discipline—researchers use it
to study new ideas and build and test new solutions—but like the computer
itself it is a tool. When computer scientists design and analyze a new
approach to solving a problem, or create new ways to represent information,
they implement their ideas as programs in order to test them on an actual
computer system. This enables researchers to see how well these new ideas
work and whether they perform better than previous methods.

For example, searching a list is one of the most common applications of
computers, and it is frequently applied to huge problems, such as finding one
name among the approximately 20,000,000 listings in the New York City tele-
phone directory. (We will solve this problem in Chapter 2.) A more efficient
lookup method could significantly reduce the time that customers must wait
for directory assistance. Assume that we have designed what we believe to be
a “new and improved” search technique. After analyzing it theoretically, we
would study it empirically by writing a program to implement our new
method, executing it on our computer, and measuring its performance. These
tests would demonstrate under what conditions our new method is or is not
faster than the directory search procedures currently in use.

In computer science, it is not simply the construction of a high-quality
program that is important but also the methods it embodies, the services it
provides, and the results it produces. It is possible to become so enmeshed in
writing code and getting it to run that we forget that a program is only a
means to an end, not an end in itself.

MISCONCEPTION 3: Computer science is the study of the uses and applications of
computers and software.

If one’s introduction to computer science is not programming, then it may
be a course on the application of computers and software. Such a course typi-
cally teaches the use of a number of popular packages, such as word proces-
sors, presentation software, database systems, imaging software, electronic
mail, and a Web browser.
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These packages are widely used by professionals in all fields. However,
learning to use a software package is no more a part of computer science than
driver’s education is a branch of automotive engineering. A wide range of
people use computer software, but the computer scientist is responsible for
specifying, designing, building, and testing software packages as well as the
computer systems on which they run.

These three misconceptions about computer science are not entirely
wrong; they are just woefully incomplete. Computers, programming languages,
software, and applications are part of the discipline of computer science, but
neither individually nor combined do they capture the richness and diversity
of this field.

We have spent a good deal of time saying what computer science is not.
What, then, is it? What are its basic concepts? What are the fundamental ques-
tions studied by professionals in this field? Is it possible to capture the breadth
and scope of the discipline in a single definition? We answer these fundamen-
tal questions in the next section and, indeed, in the remainder of the text.

4
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There is no single date that marks the beginning of com-
puter science. Indeed, there are many “firsts” that could be
used to mark this event. For example, some of the earliest
theoretical work on the logical foundations of computer sci-
ence occurred in the 1930s. The first general-purpose, elec-
tronic computers appeared during the period 1940–1946.
(We will discuss the history of these early machines in Sec-
tion 1.4.) These first computers were one-of-a-kind experi-
mental systems that never moved outside the research
laboratory. The first commercial machine, the UNIVAC I, did
not make its appearance until March 1951, a date that marks
the real beginning of the computer industry. The first high-
level (i.e., based on natural language) programming lan-
guage was FORTRAN. Some people mark its debut in 1957 as
the beginning of the “software” industry. The appearance
of these new machines and languages created new

occupations, such as programmer, numerical analyst, and
computer engineer. To address the intellectual needs of
these workers, the first professional society for people in the
field of computing, the Association for Computing Machin-
ery (ACM), was established in 1947. (The ACM is still the
largest professional computer science society in the world.
Its Web page is located at www.acm.org.) To help meet the
rapidly growing need for computer professionals, the first
Department of Computer Science was established at Purdue
University in October 1962. It awarded its first M.Sc. degree
in 1964 and its first Ph.D. in computer science in 1966. An
undergraduate program was established in 1968.

Thus, depending on what you consider the most impor-
tant “first,” the field of computer science is somewhere
between 40 and 70 years old. Compared to such classic sci-
entific disciplines as mathematics, physics, chemistry, and
biology, computer science is the new kid on the block.

In the 
Beginning . . .

1.2 The Definition of Computer Science

There are many definitions of computer science, but the one that best cap-
tures the richness and breadth of ideas embodied in this branch of science was
first proposed by professors Norman Gibbs and Allen Tucker.2 According to
their definition, the central concept in computer science is the algorithm. It
is not possible to understand the field without a thorough understanding of
this critically important idea. 
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The Gibbs and Tucker definition says that it is the task of the computer
scientist to design and develop algorithms to solve a range of important prob-
lems. This design process includes the following operations:

• Studying the behavior of algorithms to determine if they are correct
and efficient (their formal and mathematical properties)

• Designing and building computer systems that are able to execute
algorithms (their hardware realizations)

• Designing programming languages and translating algorithms into
these languages so that they can be executed by the hardware (their
linguistic realizations)

• Identifying important problems and designing correct and efficient
software packages to solve these problems (their applications)

Because it is impossible to appreciate this definition fully without know-
ing what an algorithm is, let’s look more closely at this term. 

The dictionary defines the word algorithm as follows:

al • go • rithm n. A procedure for solving a mathematical problem in a
finite number of steps that frequently involves repetition of an operation;
broadly: a step-by-step method for accomplishing some task.

Informally, an algorithm is an ordered sequence of instructions that is guar-
anteed to solve a specific problem. It is a list that looks something like this:

STEP 1: Do something

STEP 2: Do something

STEP 3: Do something

. .

. .

. .

STEP N: Stop, you are finished

If you are handed this list and carefully follow its instructions in the order
specified, when you reach the end you will have solved the task at hand.

All the operations used to construct algorithms belong to one of only
three categories:

1. Sequential operations A sequential instruction carries out a single
well-defined task. When that task is finished, the algorithm moves on
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to the next operation. Sequential operations are usually expressed as
simple declarative sentences.

• Add 1 cup of butter to the mixture in the bowl.

• Subtract the amount of the check from the current account
balance.

• Set the value of x to 1.

2. Conditional operations These are the “question-asking” instructions
of an algorithm. They ask a question, and the next operation is
selected on the basis of the answer to that question.

• If the mixture is too dry, then add one-half cup of water to the bowl.

• If the amount of the check is less than or equal to the current
account balance, then cash the check; otherwise, tell the person
that the account is overdrawn.

• If x is not equal to 0, then set y equal to 1/x; otherwise, print an
error message that says you cannot divide by 0.

3. Iterative operations These are the “looping” instructions of an algo-
rithm. They tell us not to go on to the next instruction but, instead, to
go back and repeat the execution of a previous block of instructions.

• Repeat the previous two operations until the mixture has thickened.

• While there are still more checks to be processed, do the following
five steps.

• Repeat steps 1, 2, and 3 until the value of y is equal to +1.

We use algorithms (although we don’t call them that) all the time—whenever
we follow a set of instructions to assemble a child’s toy, bake a cake, balance a
checkbook, or go through the college registration process. A good example of an
algorithm used in everyday life is the set of instructions shown in Figure 1.1 for
programming a DVR to record a sequence of television shows. Note the three types
of instructions in this algorithm: sequential (steps 2, 4, 5, 6, and 8), conditional
(steps 1 and 7), and iterative (step 3).

Mathematicians use algorithms all the time, and much of the work done by
early Greek, Roman, Persian, and Indian mathematicians involved the discov-
ery of algorithms for important problems in geometry and arithmetic; an exam-
ple is Euclid’s algorithm for finding the greatest common divisor of two positive
integers. (Exercise 7 at the end of the chapter presents this 2,300-year-old
algorithm.) We also studied algorithms in elementary school, even if we didn’t
know it. For example, in the first grade we learned an algorithm for adding two
numbers such as

47
1 25

72

The instructions our teacher gave were as follows: First add the rightmost
column of numbers (7 + 5), getting the value 12. Write down the 2 under the
line and carry the 1 to the next column. Now move left to the next column,
adding (4 + 2) and the previous carry value of 1 to get 7. Write this value
under the line, producing the correct answer 72.
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Programming Your DVR.
An Example of an Algorithm

FIGURE 1.1
Algorithm for Programming Your DVR

Step 1 If the clock and calendar are not correctly set, then go to page 9 of the
instruction manual and follow the instructions there before proceeding to
step 2.

Step 2 Place a blank tape into the DVR disc slot.
Step 3 Repeat steps 4 through 7 for each program that you wish to record.
Step 4 Enter the channel number that you wish to record and press the button

labeled CHAN.
Step 5 Enter the time that you wish recording to start and press the button

labeled TIME-START.
Step 6 Enter the time that you wish recording to stop and press the button

labeled TIME-FINISH. This completes the programming of one show.
Step 7 If you do not wish to record anything else, press the button labeled 

END-PROG.
Step 8 Turn off your DVR.Your DVR is now in TIMER mode, ready to record.

Algorithm for Adding Two m-Digit Numbers

Given: m $ 1 and two positive numbers each containing m digits, am21 am22,. . . a0

and bm21 bm22, . . . b0

Wanted: cmcm21 cm22 . . . c0, where cmcm21 cm22 . . . c0 5 (am21 am22 . . . a0) 1
(bm21 bm22 . . . b0)

Algorithm:
Step 1 Set the value of carry to 0.
Step 2 Set the value of i to 0.
Step 3 While the value of i is less than or equal to m – 1, repeat the instructions in

steps 4 through 6.
Step 4 Add the two digits ai and bi to the current value of carry to get ci.
Step 5 If ci $ 10, then reset ci to (ci – 10) and reset the value of carry to 1;

otherwise, set the new value of carry to 0.
Step 6 Add 1 to i, effectively moving one column to the left.
Step 7 Set cm to the value of carry.
Step 8 Print out the final answer, cm cm-1 cm-2 ... c0.
Step 9 Stop.

Algorithm for Adding 
Two m-digit Numbers

FIGURE 1.2

Although as children we learned this algorithm informally, it can, like
the DVR instructions in Figure 1.1, be written formally as an explicit
sequence of instructions. Figure 1.2 shows an algorithm for adding two posi-
tive m-digit numbers. It expresses formally the operations informally
described previously. Again, note the three types of instructions used to con-
struct the algorithm: sequential (steps 1, 2, 4, 6, 7, 8, and 9), conditional
(step 5), and iterative (step 3).

Even though it may not appear so, this is the same “decimal addition
algorithm” that you learned in grade school; if you follow it rigorously, it is
guaranteed to produce the correct result. Let’s watch it work. 



Add (47 1 25)

m 5 2

a1 5 4 a0 5 7
The input

b1 5 2 b0 5 5

STEP 1: carry = 0.

STEP 2: i = 0.

STEP 3: We now repeat steps 4 through 6 while i is less than or equal
to 1.

First repetition of the loop (i has the value 0)

STEP 4: Add (a0 + b0 + carry), which is 7 + 5 + 0, so c0 = 12.

STEP 5: Because c0 $ 10, we reset c0 to 2 and reset carry to 1.

STEP 6: Reset i to (0 + 1) = 1. Since i is less than or equal to 1, go back
to step 4.

Second repetition of the loop (i has the value 1)

STEP 4: Add (a1 1 b1 1 carry), which is 4 1 2 1 1, so c1 5 7.

STEP 5: Because c1 , 10, we reset carry to 0.

STEP 6: Reset i to (1 + 1) = 2. Because i is greater than 1, do not
repeat the loop but instead go to step 7.

STEP 7: Set c2 = 0.

STEP 8: Print out the answer c2 c1 c0 5 072 (see the boldface values).

STEP 9: Stop.

We have reached the end of the algorithm, and it has correctly produced the
sum of the two numbers 47 and 25, the three-digit result 072. (A more clever
algorithm would omit the unnecessary leading zero at the beginning of the num-
ber if the last carry value is a zero. That modification is an exercise at the end of
the chapter.) Try working through the algorithm shown in Figure 1.2 with
another pair of numbers to be sure that you understand exactly how it functions.
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The word algorithm is derived from the last name of
Muhammad ibn Musa Al-Khowarizmi, a famous Persian
mathematician and author from the eighth and ninth
centuries. Al-Khowarizmi was a teacher at the Mathemat-
ical Institute in Baghdad and the author of the book
Kitab al jabr w’al muqabala, which in English means
“Rules of Restoration and Reduction.” It is one of the ear-
liest mathematical textbooks, and its title gives us the
word algebra (the Arabic word al jabr means “reduction”).

In 825 A.D., Al-Khowarizmi wrote another book
about the base-10 positional numbering system that

had recently been developed in India. In this book he
described formalized, step-by-step procedures for
doing arithmetic operations, such as addition, sub-
traction, and multiplication, on numbers represented
in this new decimal system. In the twelfth century
this book was translated into Latin, introducing the
base-10 Hindu-Arabic numbering system to Europe,
and Al-Khowarizmi’s name became closely associated
with these formal numerical techniques. His last
name was rendered as Algorismus in Latin characters,
and eventually the formalized procedures that he pio-
neered and developed became known as algorithms in
his honor.

Abu Ja‘ far Muhammad ibn Musa
Al-Khowarizmi (a.d. 780–850?)



The addition algorithm shown in Figure 1.2 is a highly formalized repre-
sentation of a technique that most people learned in the first or second grade
and that virtually everyone knows how to do informally. Why would we take
such a simple task as adding two numbers and express it in so complicated a
fashion? Why are formal algorithms so important in computer science?
Because:

If we can specify an algorithm to solve a problem, then we can automate its
solution.

Once we have formally specified an algorithm, we can build a machine (or
write a program or hire a person) to carry out the steps contained in the algo-
rithm. The machine (or program or person) does not need to understand the
concepts or ideas underlying the solution. It merely has to do step 1, step 2,
step 3, . . . exactly as written. In computer science terminology, the machine,
robot, person, or thing carrying out the steps of the algorithm is called a
computing agent.

Thus computer science can also be viewed as the science of algorithmic
problem solving. Much of the research and development work in computer
science involves discovering correct and efficient algorithms for a wide range
of interesting problems, studying their properties, designing programming
languages into which those algorithms can be encoded, and designing and
building computer systems that can automatically execute these algorithms in
an efficient manner.

At first glance, it may seem that every problem can be solved algorithmi-
cally. However, you will learn in Chapter 12 the startling fact (first proved by
the German logician Kurt Gödel in the early 1930s) that there are problems for
which no generalized algorithmic solution can possibly exist. These problems
are, in a sense, unsolvable. No matter how much time and effort is put into
obtaining a solution, none will ever be found. Gödel’s discovery, which stag-
gered the mathematical world, effectively places a limit on the capabilities of
computers and computer scientists.

There are also problems for which it is possible to specify an algorithm but
a computing agent would take so long to execute it that the solution is essen-
tially useless. For example, to get a computer to play winning chess, we could
use a brute force approach. Given a board position as input, the computer
would examine every legal move it could possibly make, then every legal
response an opponent could make to each initial move, then every response it
could select to that move, and so on. This analysis would continue until the
game reached a win, lose, or draw position. With that information the com-
puter would be able to optimally choose its next move. If, for simplicity’s sake,
we assume that there are 40 legal moves from any given position on a chess-
board, and it takes about 30 moves to reach a final conclusion, then the total
number of board positions that our brute force program would need to evalu-
ate in deciding its first move is

40 3 40 3 40 3 . . . 3 40 5 4030, which is roughly 1048

30 times

1.2 The Definition of Computer Science 9



If we could build a supercomputer that evaluates 1 trillion (1012) board
positions per second (which is too high at current levels of technology), it
would take about 30,000,000,000,000,000,000,000,000,000 years for the com-
puter to make its first move! Obviously, a computer could not use a brute force
technique to play a real chess game.

There also exist problems that we do not yet know how to solve algorith-
mically. Many of these involve tasks that require a degree of what we term
“intelligence.” For example, after only a few days a baby recognizes the face of
its mother from among the many faces it sees. In a few months it begins to
develop coordinated sensory and motor control skills and can efficiently plan
how to use them—how to get from the playpen to the toy on the floor with-
out bumping into either the chair or the desk that are in the way. After a few
years the child begins to develop powerful language skills and abstract rea-
soning capabilities.

We take these abilities for granted, but the operations just mentioned—
sophisticated visual discrimination, high-level problem solving, abstract rea-
soning, natural language understanding—cannot be done well (or even at all)
using the computer systems and software packages currently available. The
primary reason is that researchers do not yet know how to specify these oper-
ations algorithmically. That is, they do not yet know how to specify a solution
formally in a detailed step-by-step fashion. As humans, we are able to do them
simply by using the “algorithms” in our heads. To appreciate this problem,
imagine trying to describe algorithmically exactly what steps you follow when
you are painting a picture, composing a poem, or formulating a business plan.

Thus, algorithmic problem solving has many variations. Sometimes solu-
tions do not exist; sometimes a solution is too inefficient to be of any use;
sometimes a solution is not yet known. However, discovering an algorithmic
solution has enormously important consequences. As we noted earlier, if we
can create a correct and efficient algorithm to solve a problem, and if we
encode it into a programming language, then we can take advantage of the
speed and power of a computer system to automate the solution and produce
the desired result. This is what computer science is all about.

1.3 Algorithms

1.3.1 The Formal Definition of an Algorithm

The formal definition of an algorithm is rather imposing and contains a
number of important ideas. Let’s take it apart, piece by piece, and analyze
each of its separate points.

. . . a well-ordered collection . . .
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An algorithm is a collection of operations, and there must be a clear and
unambiguous ordering to these operations. Ordering means that we know
which operation to do first and precisely which operation follows each com-
pleted operation. After all, we cannot expect a computing agent to carry out
our instructions correctly if it is confused about which instruction it should
be carrying out.

Consider the following “algorithm” that was taken from the back of 
a shampoo bottle and is intended to be instructions on how to use the
product.

STEP 1: Wet hair

STEP 2: Lather

STEP 3: Rinse

STEP 4: Repeat

At step 4, what operations should be repeated? If we go back to step 1, we will
be unnecessarily wetting our hair. (It is presumably still wet from the previous
operations.) If we go back to step 3 instead, we will not be getting our hair
any cleaner because we have not reused the shampoo. The Repeat instruction
in step 4 is ambiguous in that it does not clearly specify what to do next.
Therefore, it violates the well-ordered requirement of an algorithm. (It also
has a second and even more serious problem—it never stops! We will have
more to say about this second problem shortly.) Statements such as

• Go back and do it again. (Do what again?)

• Start over. (From where?)

• If you understand this material, you may skip ahead. (How far?)

• Do either part 1 or part 2. (How do I decide which one to do?)

are ambiguous and can leave us confused and unsure about what operation to
do next. We must be extremely precise in specifying the order in which oper-
ations are to be carried out. One possible way is to number the steps of the
algorithm and use these numbers to specify the proper order of execution. For
example, the ambiguous operations shown above could be made more precise
as follows:

• Go back to step 3 and continue execution from that point.

• Start over from step 1.

• If you understand this material, skip ahead to line 21.

• If you are 18 years of age or older, do part 1 beginning with step 9;
otherwise, do part 2 beginning with step 40.

. . . of unambiguous and effectively computable operations . . .

Algorithms are composed of things called “operations,” but what do those
operations look like? What types of building blocks can be used to construct
an algorithm? The answer to these questions is that the operations used in an
algorithm must meet two criteria—they must be unambiguous, and they must
be effectively computable. 
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Here is a possible “algorithm” for making a cherry pie:

STEP 1: Make the crust

STEP 2: Make the cherry filling

STEP 3: Pour the filling into the crust

STEP 4: Bake at 350°F for 45 minutes

For a professional baker, this algorithm would be fine. He or she would under-
stand how to carry out each of the operations listed above. Novice cooks, like
most of us, would probably understand the meaning of steps 3 and 4. However,
we would probably look at steps 1 and 2, throw up our hands in confusion, and
ask for clarification. We might then be given more detailed instructions.

STEP 1: Make the crust

1.1 Take one and one-third cups flour

1.2 Sift the flour

1.3 Mix the sifted flour with one-half cup butter and 
one-fourth cup water

1.4 Roll into two 9-inch pie crusts

STEP 2: Make the cherry filling

2.1 Open a 16-ounce can of cherry pie filling and pour
into bowl

2.2 Add a dash of cinnamon and nutmeg, and stir

With this additional information most people, even inexperienced cooks,
would understand what to do, and they could successfully carry out this bak-
ing algorithm. However, there may be some people, perhaps young children,
who still do not fully understand each and every line. For those people, we
must go through the simplification process again and describe the ambiguous
steps in even more elementary terms.

For example, the computing agent executing the algorithm might not
know the meaning of the instruction “Sift the flour” in step 1.2, and we would
have to explain it further.

1.2 Sift the flour

1.2.1 Get out the sifter, which is the device shown on page A-9
of your cookbook, and place it directly on top of a 
2-quart bowl

1.2.2 Pour the flour into the top of the sifter and turn the crank in
a counterclockwise direction

1.2.3 Let all the flour fall through the sifter into the bowl

Now, even a child should be able to carry out these operations. But if that
were not the case, then we would go through the simplification process yet
one more time, until every operation, every sentence, every word was clearly
understood.

An unambiguous operation is one that can be understood and carried out
directly by the computing agent without further simplification or explanation.
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When an operation is unambiguous, we call it a primitive operation, or sim-
ply a primitive of the computing agent carrying out the algorithm. An algo-
rithm must be composed entirely of primitives. Naturally, the primitive
operations of different individuals (or machines) vary depending on their
sophistication, experience, and intelligence, as is the case with the cherry pie
recipe, which varies with the baking experience of the person following the
instructions. Hence, an algorithm for one computing agent may not be an algo-
rithm for another.

One of the most important questions we will answer in this text is, What
are the primitive operations of a typical modern computer system? What oper-
ations can a hardware processor “understand” in the sense of being able to
carry out directly, and what operations must be further refined and simplified? 

However, it is not enough for an operation to be understandable. It must
also be doable by the computing agent. If an algorithm tells me to flap my
arms really quickly and fly, I understand perfectly well what it is asking me to
do. However, I am incapable of doing it. “Doable” means there exists a compu-
tational process that allows the computing agent to complete that operation
successfully. The formal term for “doable” is effectively computable.

For example, the following is an incorrect technique for finding and print-
ing the 100th prime number. (A prime number is a whole number not evenly
divisible by any numbers other than 1 and itself, such as 2, 3, 5, 7, 11, 13, . . ..)

STEP 1: Generate a list L of all the prime numbers: L1, L2, L3, . . .

STEP 2: Sort the list L in ascending order

STEP 3: Print out the 100th element in the list, L100

STEP 4: Stop

The problem with these instructions is in step 1, “Generate a list L of all the
prime numbers. . . .” That operation cannot be completed. There are an infi-
nite number of prime numbers, and it is not possible in a finite amount of
time to generate the desired list L. No such computational process exists, and
the operation described in step 1 is not effectively computable. Here are some
other examples of operations that may not be effectively computable:

Write out the exact decimal value of p. (p cannot be represented exactly.)
Set average to (sum ÷ number). (If number = 0, division is undefined.)
Set the value of result to . (If N < 0, then result is undefined if you are

using real numbers.)
Add 1 to the current value of x. (What if x currently has no value?)

This last example explains why we had to initialize the value of the variable
called carry to 0 in step 1 of Figure 1.2. In step 4 the algorithm says, “Add the
two digits ai and bi to the current value of carry to get ci.” If carry has no current
value, then when the computing agent tries to perform the instruction in step 4,
it will not know what to do, and this operation is not effectively computable.

. . . that produces a result . . .

Algorithms solve problems. In order to know whether a solution is correct,
an algorithm must produce a result that is observable to a user, such as a
numerical answer, a new object, or a change to its environment. Without some

"N
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observable result, we would not be able to say whether the algorithm is right or
wrong. In the case of the DVR algorithm (Figure 1.1), the result will be a disc
containing recorded TV programs. The addition algorithm (Figure 1.2) produces
an m-digit sum.

Note that we use the word result rather than answer. Sometimes it is not
possible for an algorithm to produce the correct answer because for a given set
of input, a correct answer does not exist. In those cases the algorithm may
produce something else, such as an error message, a red warning light, or an
approximation to the correct answer. Error messages, lights, and approxima-
tions, though not necessarily what we wanted, are all observable results.

. . . and halts in a finite amount of time.

Another important characteristic of algorithms is that the result must be
produced after the execution of a finite number of operations, and we must
guarantee that the algorithm eventually reaches a statement that says, “Stop,
you are done” or something equivalent. We have already pointed out that the
shampooing algorithm was not well ordered because we did not know which
statements to repeat in step 4. However, even if we knew which block of state-
ments to repeat, the algorithm would still be incorrect because it makes no
provision to terminate. It will essentially run forever, or until we run out of
hot water, soap, or patience. This is called an infinite loop, and it is a com-
mon error in the design of algorithms.

Figure 1.3(a) shows an algorithmic solution to the shampooing problem
that meets all the criteria discussed in this section if we assume that you want
to wash your hair twice. The algorithm of Figure 1.3(a) is well ordered. Each
step is numbered, and the execution of the algorithm unfolds sequentially,
beginning at step 1 and proceeding from instruction i to instruction i + 1,
unless the operation specifies otherwise. (For example, the iterative instruc-
tion in step 3 says that after completing step 6, you should go back and start
again at step 4 until the value of WashCount equals 2.) The intent of each
operation is (we assume) clear, unambiguous, and doable by the person wash-
ing his or her hair. Finally, the algorithm will halt. This is confirmed by
observing that WashCount is initially set to 0 in step 2. Step 6 says to add 1 to
WashCount each time we lather and rinse our hair, so it will take on the values
0, 1, 2, . . . . However, the iterative statement in step 3 says stop lathering
and rinsing when the value of WashCount reaches 2. At that point, the algo-
rithm goes to step 7 and terminates execution with the desired result: clean
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A Correct Solution to the
Shampooing Problem

FIGURE 1.3(a)
Algorithm for Shampooing Your Hair

STEP OPERATION

1 Wet your hair
2 Set the value of WashCount to 0
3 Repeat steps 4 through 6 until the value of WashCount equals 2
4 Lather your hair
5 Rinse your hair
6 Add 1 to the value of WashCount
7 Stop, you have finished shampooing your hair



hair. (Although it is correct, do not expect to see this algorithm on the back
of a shampoo bottle in the near future.)

As is true for any recipe or set of instructions, there is always more than a
single way to write a correct solution. For example, the algorithm of Figure 1.3(a)
could also be written as shown in Figure 1.3(b). Both of these are correct solu-
tions to the shampooing problem. (Although they are both correct, they are not
necessarily equally elegant. This point is addressed in Exercise 6 at the end of the
chapter.)

1.3.2 The Importance of Algorithmic Problem Solving

The instruction sequences in Figures 1.1, 1.2, 1.3(a), and 1.3(b) are examples
of the types of algorithmic solutions designed, analyzed, implemented, and
tested by computer scientists, although they are much shorter and simpler.
The operations shown in these figures could be encoded into some appropriate
language and given to a computing agent (such as a personal computer or a
robot) to execute. The device would mechanically follow these instructions
and successfully complete the task. This device could do this without having
to understand the creative processes that went into the discovery of the solu-
tion and without knowing the principles and concepts that underlie the prob-
lem. The robot simply follows the steps in the specified order (a required
characteristic of algorithms), successfully completing each operation (another
required characteristic), and ultimately producing the desired result after a
finite amount of time (also required).

Just as the Industrial Revolution of the nineteenth century allowed
machines to take over the drudgery of repetitive physical tasks, the “com-
puter revolution” of the twentieth and twenty-first centuries has enabled us
to implement algorithms that mechanize and automate the drudgery of
repetitive mental tasks, such as adding long columns of numbers, finding
names in a telephone book, sorting student records by course number, and
retrieving hotel or airline reservations from a file containing hundreds of
thousands of pieces of data. This mechanization process offers the prospect
of enormous increases in productivity. It also frees people to do those things
that humans do much better than computers, such as creating new ideas, set-
ting policy, doing high-level planning, and determining the significance of
the results produced by a computer. Certainly, these operations are a much
more effective use of that unique computing agent called the human brain.
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Another Correct Solution to the
Shampooing Problem

FIGURE 1.3(b)
Another Algorithm for Shampooing Your Hair

STEP OPERATION

1 Wet your hair
2 Lather your hair
3 Rinse your hair
4 Lather your hair
5 Rinse your hair
6 Stop, you have finished shampooing your hair



1.4 A Brief History of Computing

Although computer science is not simply a study of computers, there is no
doubt that the field was formed and grew in popularity as a direct response to
their creation and widespread use. This section takes a brief look at the his-
torical development of computer systems.

The appearance of some technologies, such as the telephone, the light
bulb, and the first heavier-than-air flight, can be traced directly to a single
place, a specific individual, and an exact instant in time. Examples include the
flight of Orville and Wilbur Wright on December 17, 1903, in Kitty Hawk, North
Carolina; and the famous phrase “Mr. Watson, come here, I want to see you.”
uttered by Alexander Graham Bell over the first telephone on March 12, 1876.

Computers are not like that. They did not appear in a specific room on a given
day as the creation of some individual genius. The ideas that led to the design of
the first computers evolved over hundreds of years, with contributions coming
from many people, each building on and extending the work of earlier discoverers. 

1.4.1 The Early Period: Up to 1940

If this were a discussion of the history of mathematics and arithmetic instead of
computer science, it would begin 3,000 years ago with the early work of the
Greeks, Egyptians, Babylonians, Indians, Chinese, and Persians. All these cul-
tures were interested in and made important contributions to the fields of
mathematics, logic, and numerical computation. For example, the Greeks devel-
oped the fields of geometry and logic; the Babylonians and Egyptians developed
numerical methods for generating square roots, multiplication tables, and
trigonometric tables used by early sailors; Indian mathematicians developed
both the base-10 decimal numbering system and the concept of zero; and in the
ninth century the Persians developed algorithmic problem solving.

The first half of the seventeenth century saw a number of important
developments related to automating and simplifying the drudgery of
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Get a copy of the instructions that describe how to

1. register for classes at the beginning of the semester.

2. use the online computer catalog to see what is available in the col-
lege library on a given subject.

3. use the copying machine in your building.

4. log on to the World Wide Web.

Look over the instructions and decide whether they meet the definition
of an algorithm given in this section. If not, explain why, and rewrite
each set of instructions so that it constitutes a valid algorithm. Also
state whether each instruction is a sequential, conditional, or iterative
operation.

PRACTICE PROBLEMS



arithmetic computation. (The motivation for this work appears to be the sud-
den increase in scientific research during the sixteenth and seventeenth cen-
turies in the areas of astronomy, chemistry, and medicine. This work required
the solution of larger and more complex mathematical problems.) In 1614, the
Scotsman John Napier invented logarithms as a way to simplify difficult
mathematical computations. The early seventeenth century also witnessed
the development of a number of new and quite powerful mechanical devices
designed to help reduce the burden of arithmetic. The first slide rule
appeared around 1622. In 1672, the French philosopher and mathematician
Blaise Pascal designed and built one of the first mechanical calculators
(named the Pascaline) that could do addition and subtraction. A model of
this early calculating device is shown in Figure 1.4.

The famous German mathematician Gottfried Leibnitz (who, along with Isaac
Newton, was one of the inventors of the calculus) was also excited by the idea of
automatic computation. He studied the work of Pascal and others, and in 1674,
he constructed a mechanical calculator called Leibnitz’s Wheel that could do
not only addition and subtraction but multiplication and division as well. Both
Pascal’s and Leibnitz’s machines used interlocking mechanical cogs and gears to
store numbers and perform basic arithmetic operations. Considering the state of
technology available to Pascal, Leibnitz, and others in the seventeenth century,
these first calculating machines were truly mechanical wonders.

These early developments in mathematics and arithmetic were important
milestones because they demonstrated how mechanization could simplify and
speed up numerical computation. For example, Leibnitz’s Wheel enabled
seventeenth-century mathematicians to generate tables of mathematical
functions many times faster than was possible by hand. (It is hard to believe
in our modern high-tech society, but in the seventeenth century the genera-
tion of a table of logarithms could represent a lifetime’s effort of one person!)
However, the slide rule and mechanical calculators of Pascal and Leibnitz, 
though certainly impressive devices, were not computers. Specifically, they
lacked two fundamental characteristics:

• They did not have a memory where information could be stored in
machine-readable form.

• They were not programmable. A person could not provide in advance a
sequence of instructions that could be executed by the device without
manual intervention.
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The Pascaline. One of the 
Earliest Mechanical Calculators
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Surprisingly, the first actual “computing device” to include both of these
features was not created for the purposes of mathematical computations.
Rather, it was a loom used for the manufacture of rugs and clothing. It was
developed in 1801 by the Frenchman Joseph Jacquard. Jacquard wanted to
automate the weaving process, at the time a painfully slow and cumbersome
task in which each separate row of the pattern had to be set up by the weaver
and an apprentice. Because of this, anything but the most basic style of cloth-
ing was beyond the means of most people.

Jacquard designed an automated loom that used punched cards to create
the desired pattern. If there was a hole in the card in a particular location,
then a hook could pass through the card, grasp a warp thread, and raise it to
allow a second thread to pass underneath. If there was no hole in the card,
then the hook could not pass through, and the thread would pass over the
warp. Depending on whether the thread passed above or below the warp, a
specific design was created. Each punched card described one row of the pat-
tern. Jacquard connected the cards and fed them through his loom, and it
automatically sequenced from card to card, weaving the desired pattern. A
drawing of the Jacquard loom is shown in Figure 1.5. The rows of connected
punched cards can be seen at the top of the device.

Jacquard’s loom represented an enormously important stage in the devel-
opment of computers. Not only was it the first programmable device, but it
also showed how the knowledge of a human expert (in this case, a master
weaver) could be captured in machine-readable form and used to control a
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Drawing of the Jacquard Loom
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machine that accomplished the same task automatically. Once the program
was created, the expert was no longer needed. The lowliest apprentice could
load the cards into the loom, turn it on, and produce a finished, high-quality
product over and over again.
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The development of the automated Jacquard loom and
other technological advances in the weaving industry was
so frightening to the craft guilds of the early nineteenth
century that in 1811 it led to the formation of a group
called the Luddites. The Luddites, named after their leader
Ned Ludd of Nottingham, England, were violently opposed

to this new manufacturing technology, and they burned
down factories that attempted to use it. The movement
lasted only a few years and its leaders were all jailed, but
their name lives on today as a pejorative term for any
group that is frightened and angered by the latest devel-
opments in any branch of science and technology, includ-
ing computers.

The Original 
“Technophobia”

These pioneers had enormous influence on the designers and inventors who
came after them, among them a mathematics professor at Cambridge University
named Charles Babbage. Babbage was interested in automatic computation. In
1823, he extended the ideas of Pascal and Leibnitz and constructed a working
model of the largest and most sophisticated mechanical calculator of its time. This
machine, called the Difference Engine, could do addition, subtraction, multipli-
cation, and division to 6 significant digits, and it could solve polynomial equa-
tions and other complex mathematical problems as well. Babbage tried to
construct a larger model of the Difference Engine that would be capable of work-
ing to an accuracy of 20 significant digits, but after 12 years of work he had to
give up his quest. The technology available in the 1820s and 1830s was not suffi-
ciently advanced to manufacture cogs and gears to the precise tolerances his
design required. Like Galileo’s helicopter or Jules Verne’s atomic submarine, Bab-
bage’s ideas were fundamentally sound but years ahead of their time. (In 1991 the
London Museum of Science, using Babbage’s original plans, built an actual work-
ing model of the Difference Engine. It was 7 feet high, 11 feet wide, weighed
3 tons, and had 4,000 moving parts. It worked exactly as Babbage had planned.)

Babbage did not stop his investigations with the Difference Engine. In the
1830s, he designed a more powerful and general-purpose computational
machine that could be configured to solve a much wider range of numerical
problems. His machine had four basic components: a mill to perform the arith-
metic manipulation of data, a store to hold the data, an operator to process
the instructions contained on punched cards, and an output unit to put the
results onto separate punched cards. Although it would be about 110 years
before a “real” computer would be built, Babbage’s proposed machine, called
the Analytic Engine, is amazingly similar in design to a modern computer. The
four components of the Analytic Engine are virtually identical in function to
the four major components of today’s computer systems:

Babbage’s Term Modern Terminology

mill arithmetic/logic unit
store memory
operator processor
output input/output



Babbage died before a working steam-powered model of his Analytic
Engine could be completed, but his ideas lived on to influence others, and
many computer scientists consider the Analytic Engine the first “true” com-
puter system, even if it existed only on paper and in Babbage’s dreams.

Another person influenced by the work of Pascal, Jacquard, and Babbage
was a young statistician at the U.S. Census Bureau named Herman Hollerith.
Because of the rapid increase in immigration to America at the end of the
nineteenth century, officials estimated that doing the 1890 enumeration man-
ually would take from 10 to 12 years. The 1900 census would begin before the
previous one was finished. Something had to be done.

Hollerith designed and built programmable card-processing machines that
could automatically read, tally, and sort data entered on punched cards. Cen-
sus data were coded onto cards using a machine called a keypunch. The cards
were taken either to a tabulator for counting and tallying or to a sorter for
ordering alphabetically or numerically. Both of these machines were program-
mable (via wires and plugs) so that the user could specify such things as
which card columns should be tallied and in what order the cards should be
sorted. In addition, the machines had a small amount of memory to store
results. Thus, they had all four components of Babbage’s Analytic Engine.

Hollerith’s machines were enormously successful, and they were one of
the first examples of the use of automated information processing to solve
large-scale “real-world” problems. Whereas the 1880 census required 8 years to
be completed, the 1890 census was finished in about 2 years, even though
there was a 30% increase in the U.S. population during that decade.

Although they were not really general-purpose computers, Hollerith’s card
machines were a very clear and very successful demonstration of the enormous
advantages of automated information processing. This fact was not lost on
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Charles Babbage, the son of a banker, was born into a life of
wealth and comfort in eighteenth-century England. He
attended Cambridge University and displayed an aptitude
for mathematics and science. He was also an inventor and
“tinkerer” who loved to build all sorts of devices. Among the
devices he constructed were unpickable locks, skeleton keys,
speedometers, and even the first cow catcher for trains. His
first and greatest love, though, was mathematics, and he
spent the better part of his life creating machines to do
automatic computation. Babbage was enormously impressed
by the work of Jacquard in France. (In fact, Babbage had on
the wall of his home a woven portrait of Jacquard that was
woven using 24,000 punched cards.) He spent the last 30 to
40 years of his life trying to build a computing device, the
Analytic Engine, based on Jacquard’s ideas.

In that quest, he was helped by Countess Ada Augusta
Byron, daughter of the famous English poet, Lord Byron.

The countess was introduced to Babbage and was enor-
mously impressed by his ideas about the Analytic Engine.
As she put it, “We may say most aptly that the Analytic
Engine weaves algebraic patterns just as the Jacquard Loom
weaves flowers and leaves.” Lady Lovelace worked closely
with Babbage to specify how to organize instructions for
the Analytic Engine to solve a particular mathematical
problem. Because of that pioneering work, she is generally
regarded as history’s first computer programmer.

Babbage died in 1871 without realizing his dream.
He also died quite poor because the Analytic Engine ate
up virtually all of his personal fortune. His work was gen-
erally forgotten until the twentieth century when it
became instrumental in moving the world into the com-
puter age.

Charles Babbage (1791–1871)
Ada Augusta Byron, Countess of Lovelace (1815–1852)



Hollerith, who left the Census Bureau in 1902 to found the Computer Tabulat-
ing Recording Company to build and sell these machines. He planned to mar-
ket his new product to a country that was just entering the Industrial
Revolution and that, like the Census Bureau, would be generating and pro-
cessing enormous volumes of inventory, production, accounting, and sales
data. His punched card machines became the dominant form of data process-
ing equipment during the first half of the twentieth century, well into the
1950s and 1960s. During this period, virtually every major U.S. corporation
had data processing rooms filled with keypunches, sorters, and tabulators, as
well as drawer upon drawer of punched cards. In 1924, Hollerith’s tabulating
machine company changed its name to IBM, and it eventually evolved into the
largest computing company in the world.

We have come a long way from the 1640s and the Pascaline, the early
adding machine constructed by Pascal. We have seen the development of more
powerful mechanical calculators (Leibnitz), automated programmable manu-
facturing devices (Jacquard), a design for the first computing device (Bab-
bage), and the initial applications of information processing on a massive
scale (Hollerith). However, we still have not yet entered the “computer age.”
That did not happen until about 1940, and it was motivated by an event that,
unfortunately, has fueled many of the important technological advances in
human history—the outbreak of war.

1.4.2 The Birth of Computers: 1940–1950

World War II created another, quite different set of information-based prob-
lems. Instead of inventory, sales, and payroll, the concerns became ballistics
tables, troop deployment data, and secret codes. A number of research projects
were started, funded largely by the military, to build automatic computing
machines to perform these tasks and assist the Allies in the war effort.

Beginning in 1931, the U.S. Navy and IBM jointly funded a project at Har-
vard University under Professor Howard Aiken to build a computing device
called Mark I. This was a general-purpose, electromechanical programmable
computer that used a mix of relays, magnets, and gears to process and store
data. The Mark I was the first computing device to use the base-2 binary num-
bering system, which we will discuss in Chapter 4. It used vacuum tubes and
electric current to represent the two binary values, off for 0, on for 1. Until
then computing machines had used decimal representation, typically using a
10-toothed gear, each tooth representing a digit from 0 to 9. The Mark I was
completed in 1944, about 110 years after Babbage’s dream of the Analytic
Engine, and is generally considered one of the first working general-purpose
computers. The Mark I had a memory capacity of 72 numbers, and it could be
programmed to perform a 23-digit multiplication in the lightning-like time of
4 seconds. Although laughably slow by modern standards, the Mark I was
operational for almost 15 years, and it carried out a good deal of important
and useful mathematical work for the U.S. Navy during the war.

At about the same time, a much more powerful machine was taking shape
at the University of Pennsylvania in conjunction with the U.S. Army. During
the early days of World War II, the Army was producing many new artillery
pieces, but it found that it could not produce the firing tables equally as fast.
These tables told the gunner how to aim the gun on the basis of such input as
distance to the target and current temperature, wind, and elevation. Because
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of the enormous number of variables and the complexity of the computations
(which use both trigonometry and calculus), these firing tables were taking
more time to construct than the gun itself.

To help solve this problem, in 1943 the Army initiated a research project
with J. Presper Eckert and John Mauchly of the University of Pennsylvania to
build a completely electronic computing device. The machine, dubbed the
ENIAC (Electronic Numerical Integrator and Calculator), was completed in 1946
and was the first fully electronic general-purpose programmable computer.
This pioneering machine is shown in Figure 1.6.

ENIAC contained 18,000 vacuum tubes and nearly filled a building; it was
100 feet long, 10 feet high, and weighed 30 tons. Because it was fully elec-
tronic, it did not contain any of the slow mechanical components found in
Mark I, and it executed instructions much more rapidly. The ENIAC could add
two 10-digit numbers in about 1/5,000 of a second and could multiply two
numbers in 1/300 of a second, a thousand times faster than the Mark I.

The Mark I and ENIAC are two well-known examples of early computers, but
they are by no means the only ones of that era. For example, the ABC system
(Atanasoff-Berry Computer), designed and built by Professor John Atanasoff
and his graduate student Clifford Berry at Iowa State University, was actually
the first electronic computer, constructed during the period 1939–1942. How-
ever, it never received equal recognition because it was useful for only one
task, solving systems of simultaneous linear equations. In England, a computer
called Colossus was built in 1943 under the direction of Alan Turing, a famous
mathematician and computer scientist whom we will meet again in Chapter 12.
This machine, one of the first computers built outside the United States, was
used to crack the famous German Enigma code that the Nazis believed to be
unbreakable. Colossus has also not received as much recognition as ENIAC
because of the secrecy that shrouded the Enigma project. Its very existence was
not widely known until many years after the end of the war.

At about the same time that Colossus was taking form in England, a German
engineer named Konrad Zuse was working on a computing device for the German
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Photograph of the ENIAC
Computer
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army. The machine, code named Z1, was similar in design to the ENIAC—a pro-
grammable, general-purpose, fully electronic computing device. Fortunately for
the allied forces, the Z1 project was not completed before the end of World War II.

Although the machines just described—ABC, Mark I, ENIAC, Colossus, and
Z1—were computers in the fullest sense of the word (they had memory and
were programmable), they did not yet look like modern computer systems.
One more step was necessary, and that step was taken in 1946 by the individ-
ual who was most instrumental in creating the computer as we know it today,
John Von Neumann.

Von Neumann was not only one of the most brilliant mathematicians who
ever lived, but was a genius in many other areas as well, including experimen-
tal physics, chemistry, economics, and computer science. Von Neumann, who
taught at Princeton University, had worked with Eckert and Mauchly on the
ENIAC project at the University of Pennsylvania. Even though that project was 
successful, he recognized a number of fundamental shortcomings in ENIAC. In
1946, he proposed a radically different computer design based on a model
called the stored program computer. Until then, all computers were pro-
grammed externally using wires, connectors, and plugboards. The memory unit
stored only data, not instructions. For each different problem, users had to
rewire virtually the entire computer. For example, the plugboards on the
ENIAC contained 6,000 separate switches, and reprogramming the ENIAC
involved specifying the new settings for all these switches—not a trivial task.

Von Neumann proposed that the instructions that control the operation
of the computer be encoded as binary values and stored internally in the

1.4 A Brief History of Computing 23

John Von Neumann was born in Budapest, Hungary. He was
a child prodigy who could divide 8-digit numbers in his
head by the age of 6. He was a genius in virtually every
field that he studied, including physics, economics, engi-
neering, and mathematics. At 18 he received an award as
the best mathematician in Hungary, a country known for
excellence in the field, and he received his Ph.D., summa
cum laude, at 21. He came to the United States in 1930 as
a guest lecturer at Princeton University and taught there
for three years. Then, in 1933 he became one of the found-
ing members (along with Albert Einstein) of the Institute
for Advanced Studies, where he worked for 20 years.

He was one of the most brilliant minds of the twenti-
eth century, a true genius in every sense, both good and
bad. He could do prodigious mental feats in his head, and
his thought processes usually raced way ahead of “ordi-
nary” mortals who found him quite difficult to work with.
One of his colleagues joked that “Johnny wasn’t really
human, but after living among them for so long, he
learned to do a remarkably good imitation of one.”

Von Neumann was a brilliant theoretician who did
pioneering work in pure mathematics, operations research,
game theory, and theoretical physics. He was also an engi-
neer, concerned about practicalities and real-world prob-
lems, and it was this interest in applied issues that led Von
Neumann to design and construct the first stored program
computer. One of the early computers built by the RAND
Corp. in 1953 was affectionately called “Johnniac” in his
honor, although Von Neumann detested that name. Like
the UNIVAC I, it has a place of honor at the Smithsonian
Institution.

John Von Neumann 
(1903–1957)



memory unit along with the data. To solve a new problem, instead of rewiring
the machine, you would rewrite the sequence of instructions—that is, create
a new program. Von Neumann invented programming as it is known today.

The model of computing proposed by Von Neumann included many other
important features found on all modern computing systems, and to honor him
this model of computation has come to be known as the Von Neumann
architecture. We will study this architecture in great detail in Chapters 4 and 5.

Von Neumann’s research group at the University of Pennsylvania imple-
mented his ideas, and they built one of the first stored program computers,
called EDVAC (with a V), in 1951. At about the same time, a stored program
computer called EDSAC (with an S) was built at Cambridge University in
England under the direction of Professor Maurice Wilkes. The appearance of
these machines and others like them ushered in the modern computer age.
Even though they were much slower, bulkier, and less powerful than our
current machines, EDVAC and EDSAC executed programs in a fashion surpris-
ingly similar to the miniaturized and immensely more powerful computers of
the twenty-first century. A commercial model of the EDVAC, called UNIVAC I—
the first computer actually sold—was built by Eckert and Mauchly and deliv-
ered to the U.S. Bureau of the Census on March 31, 1951. (It ran for 12 years
before it was retired, shut off for the last time, and moved to the Smithsonian
Institution.) This date marks the true beginning of the “computer age.”

The importance of Von Neumann’s contributions to computer systems
development cannot be overstated. Although his original proposals are at
least 60 years old, virtually every computer built today is a Von Neumann
machine in its basic design. A lot has changed in computing, and a powerful
high-resolution graphics workstation and the EDVAC would appear to have
little in common. However, the basic principles on which these machines are
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Our discussion of what was happening in computing from
1939 to 1946 showed that many groups were involved in
designing and building the first computers. Therefore, it
would seem that no single individual can be credited with
the title Inventor of the Electronic Digital Computer.

Surprisingly, that is not true. In February 1964, the
Sperry Rand Corp. (now UNISYS) was granted a U.S. patent
on the ENIAC computer as the first fully electronic comput-
ing device, J. Presper Eckert and John Mauchly being its
designers and builders. However, in 1967 a suit was filed in
U.S. District Court in Minneapolis, Minnesota, to overturn
that patent. The suit, Honeywell v. Sperry Rand, was heard
before U.S. Federal Judge Earl Larson, and on October 19,
1973, his verdict was handed down. (This enormously impor-
tant verdict was never given the media coverage it deserved
because it happened in the middle of the Watergate hearings
and on the very day that Vice President Spiro Agnew resigned

in disgrace for tax fraud.) Judge Larson overturned the ENIAC
patent on the basis that Eckert and Mauchly had been signif-
icantly influenced in their 1943–1944 work on ENIAC by ear-
lier research and development work by John Atanasoff at
Iowa State University. During the period 1939–1943,
Mauchly had communicated extensively with Atanasoff and
had even traveled to Iowa to see the ABC machine in person.
In a sense, the verdict declared that Atanasoff is really the
inventor of the first computer. This decision was never
appealed. Therefore, the official honor of having designed
and built the first electronic computer, at least in U.S. Dis-
trict Court, goes to Professor John Vincent Atanasoff.

On November 13, 1990, in a formal ceremony at the
White House, Professor Atanasoff was awarded the National
Medal of Technology by President George H.W. Bush for
his pioneering contributions to the development of the
computer.

And the 
Verdict Is . . .



constructed are virtually identical, and the same theoretical model underlies
their operation. There is an old saying in computer science that “There is
nothing new since Von Neumann!” This saying is certainly not true (much has
happened), but it demonstrates the importance and amazing staying power of
Von Neumann’s original design.

1.4.3 The Modern Era: 1950 to the Present

The last 60 or so years of computer development have involved taking the Von
Neumann architecture and improving it in terms of hardware and software.
Since 1950, computer systems development has been primarily an evolutionary
process, not a revolutionary one. The enormous number of changes in com-
puters in recent decades have made them faster, smaller, cheaper, more reli-
able, and easier to use, but have not drastically altered their basic underlying
structure.

The period 1950–1957 (these dates are rough approximations) is often
called the first generation of computing. This era saw the appearance of
UNIVAC I, the first computer built for sale, and the IBM 701, the first com-
puter built by the company that would soon become a leader in this new
field. These early systems were similar in design to EDVAC, and they were
bulky, expensive, slow, and unreliable. They used vacuum tubes for process-
ing and storage, and they were extremely difficult to maintain. The act of
turning the machine on alone could blow out a dozen tubes! For this reason,
first-generation machines were used only by trained personnel and only in
specialized locations such as large corporations, government and university
research labs, and military installations, which could provide this expensive
support environment.

The second generation of computing, roughly 1957–1965, heralded a
major change in the size and complexity of computers. In the late 1950s, the
bulky vacuum tube was replaced by a single transistor only a few millimeters in
size, and memory was now constructed using tiny magnetic cores only 1/50 of
an inch in diameter. (We will introduce and describe both of these devices in
Chapter 4.) These technologies not only dramatically reduced the size of com-
puters but also increased their reliability and reduced costs. Suddenly, buying
and using a computer became a real possibility for some small and medium-
sized businesses, colleges, and government agencies. This was also the era of
the appearance of FORTRAN and COBOL, the first high-level (English-like)
programming languages. (We will study this type of programming language
in Chapters 9 and 10.) Now it was no longer necessary to be an electrical engi-
neer to solve a problem on a computer. One simply needed to learn how to
write commands in a high-level language. The occupation called programmer
was born.

This miniaturization process continued into the third generation of
computing, which lasted from about 1965 to 1975. This was the era of the
integrated circuit. Rather than using discrete electronic components, inte-
grated circuits with transistors, resistors, and capacitors were photographi-
cally etched onto a piece of silicon, which further reduced the size and cost
of computers. From building-sized to room-sized, computers now became
desk-sized, and this period saw the birth of the first minicomputer—the
PDP-1 manufactured by the Digital Equipment Corp. It also saw the birth of
the software industry, as companies sprang up to provide programs such as
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accounting packages and statistical programs to the ever-increasing numbers
of computer users. By the mid–1970s, computers were no longer a rarity.
They were being widely used throughout industry, government, the military,
and education.

The fourth generation, 1975–1985, saw the appearance of the first micro-
computer. Integrated circuit technology had advanced to the point that a com-
plete computer system could be contained on a single circuit board that you
could hold in your hand. The desk-sized machine of the early 1970s now became
a desktop machine, shrinking to the size of a typewriter. Figure 1.7 shows the
Altair 8800, the world’s first microcomputer, which appeared in January 1975.

It soon became unusual not to see a computer on someone’s desk. The
software industry poured forth all types of new packages—spreadsheets,
databases, and drawing programs—to meet the needs of the burgeoning user
population. This era saw the appearance of the first computer networks, as
users realized that much of the power of computers lies in their facilitation of
communication  with other users. (We will look at networking in great detail in
Chapter 7.) Electronic mail became an important application. Because so many
users were computer novices, the concept of user-friendly systems emerged.
This included new graphical user interfaces with pull-down menus, icons, and
other visual aids to make computing easier and more fun. Embedded
systems—devices that contain a computer to control their internal operation—
first appeared during this generation. Computers were becoming small enough
to be placed inside cars, thermostats, microwave ovens, and wristwatches.

The fifth generation, 1985–?, is where we are today. However, so much is
changing so fast that most computer scientists believe that the concept of
distinct generations has outlived its usefulness. In computer science, change
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In the earliest days of computing (1951–1952), few people
knew what a computer was, and even fewer had seen or
worked with one. Computers were the tool of a very small
group of highly trained technical specialists in such fields as
mathematics, physics, and engineering. In those days, the
general public’s knowledge of computer science was limited
to the robots and alien computers of science fiction movies.

This all changed in November 1952, when millions of
Americans turned on their television sets (also a relatively
new technology) to watch returns from the 1952 presiden-
tial election between Dwight D. Eisenhower and Adlai
Stevenson. In addition to seeing Walter Cronkite and TV
reporters and analysts, viewers were treated to an unex-
pected member of the news staff—a UNIVAC I. CBS execu-
tives had rented a computer and installed it in the very
center of their set, where it sat, lights blinking and tape
drives spinning. They planned to use UNIVAC to produce
election predictions quickly and scoop rival stations that
did their analyses by hand. Ironically, UNIVAC correctly

predicted early that evening, on the basis of well-known
statistical sampling techniques, that Eisenhower would
win the election, but nervous CBS executives were so skep-
tical about this new technology that they did not go on
the air with the computer’s prediction until it had been
confirmed by old-fashioned manual methods.

It was the first time that millions of TV viewers had
actually seen this thing called an electronic digital com-
puter. The CBS staff, who were also quite inexperienced in
computer technology, treated the computer as though it
were human. They would turn toward the computer console
and utter phrases like “UNIVAC, can you tell me who is cur-
rently ahead in Ohio?” or “UNIVAC, do you have any pre-
diction on the final electoral vote total?” In actuality, the
statistical algorithms had been programmed in, days ear-
lier, by the Remington Rand staff, but it looked great on
TV! This first public appearance of a computer was so well
received that computers were used many more times in the
early days of TV, primarily on quiz shows, where they rein-
forced the public’s image of the computer as a “giant elec-
tronic brain.”

Good Evening, This 
Is Walter Cronkite
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is now a constant companion. Some of the recent developments in computer
systems include:

• Massively parallel processors capable of quadrillions (1015) of computa-
tions per second

• Handheld digital devices and other types of personal digital assistants
(PDAs)

• High-resolution graphics for imaging, animation, movie making, and
virtual reality

The Altair 8800, the World’s
First Microcomputer

FIGURE 1.7

The Altair 8800, shown in Figure 1.7, was the first micro-
computer and made its debut on the cover of Popular
Electronics in January 1975. Its developer, Ed Roberts,
owned a tiny electronics store in Albuquerque, New Mex-
ico. His company was in desperate financial shape when he
read about a new microprocessor from Intel, the Intel
8080. Roberts reasoned that this new chip could be used
to sell a complete personal computer in kit form. He
bought these new chips from Intel at the bargain base-
ment price of $75 each and packaged them in a kit called
the Altair 8800 (named after a location in the TV series
Star Trek), which he offered to hobbyists for $397. Roberts
figured he might sell a few hundred kits a year, enough to
keep his company afloat temporarily. He ended up selling
hundreds of them a day! The Altair microcomputer kits
were so popular that he could not keep them in stock, and

legend has it that people even drove to New Mexico and
camped out in the parking lot to buy their computers.

This is particularly amazing in view of the fact that
the original Altair was difficult to assemble and had only
256 memory cells, no I/O devices, and no software sup-
port. To program it, the user had to enter binary machine
language instructions directly from the console switches.
But even though it could do very little, people loved it
because it was a real computer, and it was theirs.

The Intel 8080 chip did have the capability of run-
ning programs written in the language called BASIC that
had been developed at Dartmouth in the early 1960s. A
small software company located in Washington state wrote
Ed Roberts a letter telling him that it had a BASIC compiler
that could run on his Altair, making it much easier to use.
That company was called Microsoft—and the rest, as they
say, is history.

The World’s First 
Microcomputer



• Powerful multimedia user interfaces incorporating sound, voice recog-
nition, touch, photography, video, and television

• Integrated digital communication devices incorporating data, televi-
sion, telephone, fax, the Internet, and the World Wide Web

• Wireless data communications

• Massive storage devices capable of holding one hundred terabytes (1014)
of data

• Ubiquitous computing, in which miniature computers are embedded
into our cars, cameras, kitchen appliances, home heating systems, and
even our clothing

In only a few decades, computers have progressed from the UNIVAC I,
which cost millions of dollars, had a few thousand memory locations, and was
capable of only a few thousand operations per second, to today’s top-of-the-
line workstation with a high-resolution flat panel monitor, billions of memory
cells, massive amounts of external storage, and enough processing power to
execute billions of instructions per second, all for about $1,000. Changes of
this magnitude have never occurred so quickly in any other technology. If the
same rate of change had occurred in the auto industry, beginning with the
1909 Model-T, today’s cars would be capable of traveling at a speed of 20,000
miles per hour, would get about a million miles per gallon, and would cost
about $1.00!

Figure 1.8 summarizes the major developments that occurred during each
of the five generations of computer development discussed in this section.
And underlying all of these amazing improvements, the theoretical model
describing the design and construction of computers has not changed signifi-
cantly in the last 60 years.

However, many people feel that significant and important structural
changes are on the way. At the end of Chapter 5 we will introduce models of
computing that are fundamentally quite different from the Von Neumann
architecture in use today. These totally new approaches (e.g., quantum com-
puting) may be the models used in the twenty-second century and beyond.

1.5 Organization of the Text

This book is divided into six separate sections, called levels, each of which
addresses one aspect of the definition of computer science that appears at the
beginning of this chapter. Let’s repeat the definition and see how it maps into
the sequence of topics to be presented.
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DEFINITION

Computer science the study of algorithms, including

1. Their formal and mathematical properties
2. Their hardware realizations
3. Their linguistic realizations
4. Their applications



Computer science is the study of algorithms, including

1. Their formal and mathematical properties Level 1 of the text (Chapters 2
and 3) is titled “The Algorithmic Foundations of Computer Science.” It continues
the discussion of algorithmic problem solving begun in Sections 1.2 and 1.3 by
introducing important mathematical and logical properties of algorithms. Chap-
ter 2 presents the development of a number of algorithms that solve important
technical problems—certainly more “technical” than shampooing your hair. It
also looks at concepts related to the problem-solving process, such as how we
discover and create good algorithms, what notation we can use to express our
solutions, and how we can check to see whether our proposed algorithm cor-
rectly solves the desired problem.
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GENERATION APPROXIMATE DATES MAJOR ADVANCES

First 1950–1957 First commercial computers
First symbolic programming languages
Use of binary arithmetic, vacuum tubes for
storage
Punched card input/output

Second 1957–1965 Transistors and core memories
First disks for mass storage
Size reduction, increased reliability, lower costs 
First high-level programming languages
First operating systems

Third 1965–1975 Integrated circuits
Further reduction in size and cost, increased
reliability
First minicomputers
Time-shared operating systems
Appearance of the software industry
First set of computing standards for compati-
bility between systems

Fourth 1975–1985 Large-scale and very-large-scale integrated
circuits
Further reduction in size and cost, increased
reliability
First microcomputers
Growth of new types of software and of the
software industry
Computer networks
Graphical user interfaces

Fifth 1985–? Ultra-large-scale integrated circuits
Supercomputers and parallel processors
Laptops and handheld computers
Wireless computing
Massive external data storage devices
Ubiquitous computing
High-resolution graphics, visualization, virtual
reality
Worldwide networks
Multimedia user interfaces
Widespread use of digitized sound, images,
and movies

Some of the Major Advance-
ments in Computing

FIGURE 1.8
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Our brute force chess example illustrates that it is not enough simply to
develop a correct algorithm; we also want a solution that is efficient and that
produces the desired result in a reasonable amount of time. (Would you want to
market a chess-playing program that takes 1048 years to make its first move?)
Chapter 3 describes ways to compare the efficiency of different algorithms and
select the best one to solve a given problem. The material in Level 1 provides
the necessary foundation for a study of the discipline of computer science.

2. Their hardware realizations Although our initial look at computer sci-
ence investigated how an algorithm behaved when executed by some abstract
“computing agent,” we ultimately want to execute our algorithms on “real”
machines to get “real” answers. Level 2 of the text (Chapters 4 and 5) is titled
“The Hardware World,” and it looks at how to design and construct computer
systems. It approaches this topic from two quite different viewpoints.

Chapter 4 presents a detailed discussion of the underlying hardware. It
introduces the basic building blocks of computers—binary numbers, transis-
tors, logic gates, and circuits—and shows how these elementary electronic
devices can be used to construct components to perform arithmetic and logic
functions such as addition, subtraction, comparison, and sequencing.
Although it is both interesting and important, this perspective produces a
rather low-level view of a computer system. It is difficult to understand how a
computer works by studying only these elementary components, just as it
would be difficult to understand human behavior by investigating the behav-
ior of individual cells. Therefore, Chapter 5 takes a higher-level view of com-
puter hardware. It looks at computers not as a bunch of wires and circuits but
as an integrated collection of subsystems called memory, processor, storage,
input/output, and communications. It will explain in great detail the princi-
ples of the Von Neumann architecture introduced in Section 1.4.

A study of computer systems can be done at an even higher level. To
understand how a computer works, we do not need to examine the functioning
of every one of the thousands of components inside a machine. Instead, we
need only be aware of a few critical pieces that are essential to our work. From
the user’s perspective, everything else is superfluous. This “user-oriented” view
of a computer system and its resources is called a virtual machine or a virtual
environment. A virtual machine is composed only of the resources that the
user perceives rather than of all the hardware resources that actually exist.

This viewpoint is analogous to our level of understanding of what happens
under the hood of our car. There may be thousands of mechanical components
inside an automobile engine, but most of us concern ourselves only with the
items reported on the dashboard—oil pressure, fuel level, engine temperature.
This is our “virtual engine,” and that is all we need or want to know. We are
all too happy to leave the remaining details about engine design to our
friendly neighborhood mechanic.

Level 3 (Chapters 6, 7, and 8), titled “The Virtual Machine,” describes how
a virtual environment is created using a component called system software.
Chapter 6 takes a look at the most important and widely used piece of system
software on a modern computer system, the operating system, which controls
the overall operation of a computer and makes it easier for users to access.
Chapter 7 then goes on to describe how this virtual environment can extend
beyond the boundaries of a single system as it examines how to interconnect
individual machines into computer networks and distributed systems that
provide users with access to a huge collection of computer systems and infor-
mation as well as an enormous number of other users. It is the system software,



and the virtual machine it creates, that makes computer hardware manageable
and usable. Finally, Chapter 8 discusses a critically important component of a
virtual machine—the security system that validates who you are and ensures
that you are not attempting to carry out an improper, illegal, or unsafe opera-
tion. As computers become central to the management of such sensitive data as
medical records, military information, and financial data, this aspect of sys-
tem software is taking on even greater importance.

3. Their linguistic realizations After studying hardware design, computer
organization, and virtual machines, you will have a good idea of the tech-
niques used to design and build computers. In the next section of the text, we
ask the question, How can this hardware be used to solve important and inter-
esting problems? Level 4, titled “The Software World” (Chapters 9–12), takes a
look at what is involved in designing and implementing computer software. It
investigates the programs and instruction sequences executed by the hard-
ware, rather than the hardware itself.

Chapter 9 compares several high-level programming languages and intro-
duces fundamental concepts related to the topic of computer programming
regardless of the particular language being studied. This single chapter is cer-
tainly not intended to make you a proficient programmer. Instead, its purpose
is to illustrate some basic features of modern programming languages and give
you an appreciation for the interesting and challenging task of the computer
programmer. Rather than print a separate version of this text for each pro-
gramming language, the textual material specific to each language can be
found on the Web site for this text, and you can download the pages for the
language specified by your instructor and used in your class. See the Preface of
this text for instructions on accessing these Web pages.

There are many programming languages such as C++, Python, Java, and Perl
that can be used to encode algorithms. Chapter 10 provides an overview of a
number of different languages and language models in current use, including the
functional and parallel models. Chapter 11 describes how a program written in a
high-level programming language can be translated into the low-level machine
language codes first described in Chapter 5. Finally, Chapter 12 shows that, even
when we marshal all the powerful hardware and software ideas described in the
first 11 chapters, problems exist that cannot be solved algorithmically. Chapter 12
demonstrates that there are, indeed, limits to computing.

4. Their applications Most people are concerned not with creating pro-
grams but with using programs, just as there are few automotive engineers but
many, many drivers. Level 5, titled “Applications” (Chapters 13–16), moves on
from how to write a program to what these programs can do.

Chapters 13 through 16 explore just a few of the many important and
rapidly growing applications of computers, such as simulation, visualization,
e-commerce, databases, artificial intelligence, and computer graphics and
entertainment. This section cannot possibly survey all the ways in which com-
puters are being used today or will be used in the future. Indeed, there is
hardly an area in our modern, complex society that is not affected in some
important way by information technology. Readers interested in applications
not discussed should seek readings specific to their own areas of interest.

Some computer science professionals are not concerned with building
computers, creating programs, or using any of the applications just described.
Instead, they are interested in the social and cultural impact—both positive and
negative—of this ever-changing technology. The sixth level of this text addresses
this important perspective on computer science. This is not part of the original
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definition of computer science but has become an important area of study. In
Level 6, titled “Social Issues” (Chapter 17), we move to the highest level of
abstraction—the view furthest removed from the computer itself—to discuss
social, ethical, legal, and professional issues related to computer and information
technology. These issues are critically important, because even individuals not
directly involved in developing or using computers are deeply affected by them,
just as society has been drastically and permanently altered by such technological
developments as the telephone, television, and automobile. This last chapter takes
a look at such thorny and difficult topics as computer crime, information privacy,
and intellectual property. Because it’s impossible to resolve the complex questions
that arise in these areas, our intent is simply to raise your awareness and provide
some decision-making tools to help you reach your own conclusions.

The overall six-layer hierarchy of this text is summarized in Figure 1.9.
The organizational structure diagrammed in Figure 1.9 is one of the most
important aspects of this text. To describe a field of study, it is not enough to
present a mass of facts and explanations. For learners to absorb, understand,
and integrate this information, there must be a theme, a relationship, a
thread that ties together the various parts of the narrative—in essence, a “big
picture.” Our big picture is Figure 1.9.

We first lay out the basic foundations of computer science (Level 1). We
then proceed upward through five distinct layers of abstraction, from
extremely low-level machine details such as electronic circuits and computer
hardware (Level 2), through intermediate levels that address virtual machines
(Level 3), programming languages and software development (Level 4), to
higher levels that investigate computer applications (Level 5), and address the
use and misuse of information technology (Level 6). The material in each level
provides a foundation to reveal the beauty and complexity of a higher and
more abstract view of the discipline of computer science.
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Associated with this text is a laboratory manual that
includes software packages and a collection of formal lab-
oratory exercises. These laboratory experiences are
designed to give you a chance to build on, modify, and
experiment with the ideas discussed in the text. You are 

strongly encouraged to carry out these laboratories to gain
a deeper understanding of the concepts presented in the
chapters. Learning computer science involves not just
reading and listening but also doing and trying. Our labo-
ratory exercises will give you that chance. (In addition, we
hope that you will find them fun.)

Laboratory Experience 1, titled “A Glossary and Web
Browsing,” introduces the fundamental operations that you
will need in all future labs—operations such as using menus,
buttons, and windows and accessing pages on the Web. (In
the text, you will find a number of pointers to Web pages con-
taining a wealth of information that complements our discus-
sions.) In addition, the lab provides a useful tool that you
may use during your study of computer science and in other
courses as well. You will learn how to use a computer to build
a glossary of important technical terms along with their defi-
nitions and locations in the text.  Not only will the lab intro-
duce you to some essential skills, but it will also allow you to
create your own glossary of important terms and definitions
as shown in this screen shot from the lab.

Please turn to Laboratory Experience 1 in the labora-
tory manual and try it now.

LABORATORY
EXPERIENCE 1



1. Identify some algorithms, apart from DVR instructions and
cooking recipes, that you encounter in your everyday life. Write
them out in any convenient notation, and explain how they
meet all of the criteria for algorithms presented in this chapter.

2. In the DVR instructions in Figure 1.1, step 4 says, “Enter the
channel number that you wish to record and press the but-
ton labeled CHAN.” Is that an unambiguous and well-defined
operation? Explain why or why not.

3. Trace through the decimal addition algorithm of Figure 1.2
using the following input values:

m 5 3 a2 5 1 a1 5 4 a0 5 9

b2 5 0 b1 5 2 b0 5 9

At each step, show the values for c3, c2, c1, c0, and carry.

4. Modify the decimal addition algorithm of Figure 1.2 so that it
does not print out nonsignificant leading zeroes; that is, the
answer to question 3 would appear as 178 rather than 0178.

5. Under what conditions would the well-known quadratic 
formula

not be effectively computable? (Assume that you are work-
ing with real numbers.)

6. Compare the two solutions to the shampooing algorithm
shown in Figures 1.3(a) and 1.3(b). Which do you think is a
better general-purpose solution? Why? (Hint: What if you
wanted to wash your hair 1,000 times?)

7. The following is Euclid’s 2,300-year-old algorithm for finding the
greatest common divisor of two positive integers I and J.

Step Operation

1 Get two positive integers as input. Call the larger
value I and the smaller value J.

2 Divide I by J, and call the remainder R.

3 If R is not 0, then reset I to the value of J, reset J to
the value of R, and go back to step 2.

4 Print out the answer, which is the value of J.

5 Stop.

a. Go through this algorithm using the input values 20 and 32.
After each step of the algorithm is completed, give the 
values of I, J, and R. Determine the final output of the 
algorithm.

b. Does the algorithm work correctly when the two inputs are 
0 and 32? Describe exactly what happens, and modify the
algorithm so that it gives an appropriate error message.

8. A salesperson wants to visit 25 cities while minimizing the
total number of miles she has to drive. Because she has
studied computer science, she decides to design an algo-
rithm to determine the optimal order in which to visit the
cities to (1) keep her driving distance to a minimum, and

(2) visit each city exactly once. The algorithm that she has
devised is the following:

The computer first lists all possible ways to visit the
25 cities and then, for each one, determines the total
mileage associated with that particular ordering.
(Assume that the computer has access to a road map
that provides the distances between all cities.) After
determining the total mileage for each possible trip,
the computer searches for the ordering with the mini-
mum mileage and prints out the list of cities on that
optimal route, that is, the order in which the sales-
person should visit her destinations.

If a computer could analyze 10,000,000 separate paths per
second, how long would it take to determine the optimal route
for visiting these 25 cities? On the basis of your answer, do you
think this is a feasible algorithm? If it is not, can you think of
a way to obtain a reasonable solution to this problem?

9. One way to do multiplication is by repeated addition. For
example, 47 3 25 can be evaluated as 47 + 47 + 47 + . . . 
+ 47 (25 times). Sketch out an algorithm for multiplying two
positive numbers a and b using this technique.

10. Read about one of the early pioneers mentioned in this
chapter—Pascal, Liebnitz, Jacquard, Babbage, Lovelace,
Hollerith, Eckert, Mauchly, Aiken, Zuse, Atanasoff, Turing, or
Von Neumann. Write a paper describing in detail that 
person’s contribution to computing and computer science.

11. Get the technical specifications of the computer on which
you are working (either from a technical manual or from your
computer center staff). Determine its cost, its processing
speed (in MIPS, millions of instructions per second), its
computational speed (in MFlops, millions of floating point
operations per second), and the size of its primary memory.

Compare those values with what was typically available
on first-, second-, and third-generation computer systems, and
calculate the percentage improvement between your computer
and the first commercial machines of the early 1950s.

12. A new and growing area of computer science is ubiquitous
computing, in which a number of computers automatically
provide services for a user without that user’s knowledge or
awareness. For example, a computer located in your car
contacts the garage door opener and tells it to open the
garage door when the car is close to home. Read about this
new model of computing and write a paper describing some
of its applications. What are some of the possible problems
that could be created?

13. A standard computer CD holds approximately 700 million
characters.  Estimate how many linear feet of shelf space are
required to store 700 million characters encoded as text
(i.e., printed, bound books) rather than as electronic media.
Assume there are 5 characters per word, 300 words per page,
and 300 pages/inch of shelf.  

Roots 5
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For Further Reading 35

1. Assume we have a “computing agent” that knows how to do
one-digit subtraction where the first digit is at least as large as
the second (i.e., we do not end up with a negative number).
Thus, our computing agent can do such operations as 7 – 3 = 4,
9 – 1 = 8, and 5 – 5 = 0. It can also subtract a one-digit value
from a two-digit value in the range 10–18 as long as the final
result has only a single digit. This capability enables it to do
such operations as 13 – 7 = 6, 10 – 2 = 8, and 18 – 9 = 9.

Using these primitive capabilities, design an algorithm
to do decimal subtraction on two m-digit numbers, where 
m $ 1. You will be given two unsigned whole numbers am-1
am-2. . . a0 and bm-1 bm-2. . . b0. Your algorithm must compute
the value cm-1 cm-2. . . c0, the difference of these two values.

am-1 am-2. . . a0

–bm-1 bm-2. . . b0

cm-1 cm-2. . . c0

You may assume that the top number (am-1 am-2 . . . a0)
is greater than or equal to the bottom number (bm-1
bm-2. . . b0) so that the result is not a negative value. However,

do not assume that each individual digit ai is greater than or
equal to bi. If the digit on the bottom is larger than the
digit on the top, then you must implement a borrowing
scheme to allow the subtraction to continue. (Caution: It
may have been easy to learn subtraction as a first grader,
but it is devilishly difficult to tell a computer how to do it!)

2. Our definition of the field of computer science is only one of
many that have been proposed. Because it is so young, people
working in the field are still debating how best to define exactly
what they do. Review the literature of computer science (per-
haps some of the books listed in the next section) and browse
the Web to locate other definitions of computer science. Com-
pare these definitions with the one presented in this chapter
and discuss the differences among them. Discuss how different
definitions may give you a vastly different perspective on the
field and what people in this field do. [Note: A very well-known
and widely used definition of computer science was presented
in “Report of the ACM Task Force on the Core of Computer 
Science,” reprinted in the journal Communications of the ACM,
vol. 32, no. 1 (January 1989).]

C H A L L E N G E  WO R K

The following books provide a good introduction to and overview of the field of computer 
science. Like this text, they survey many different aspects of the discipline.

Biermann, A. W. Great Ideas in Computer Science, 2nd ed. Cambridge, MA: MIT Press, 1997.

Brookshear, J. G. Computer Science: An Overview, 10th ed. Reading, MA: Addison Wesley, 2008.

Decker, R., and Hirshfield, S. The Analytical Engine: An Introduction to Computer Science Using the
Internet, Boston, MA: Course Technology, 2004.

Dewdney, A. K. The New Turing Omnibus. New York: Freeman, 2001.

Dewdney, A. K. Introductory Computer Science: Bits of Theory, Bytes of Practice. Boston, MA: W.H.
Freeman & Company, 1996.

Snyder, Lawrence, Fluency with Information Technology, 3rd ed. Prentice Hall, 2008.

The following books provide an excellent overview of the historical development of both com-
puters and software.

Broy, M., and Denert, E. Software Pioneers. Amsterdam: Springer-Verlag, 2002.

Cambell-Kelly, M., and Asprey, W. Computers: A History of the Information Machine. New York: Basic
Books, 1997.

Ceruzzi, P. A History of Modern Computing. 2nd Edition, Cambridge, MA: MIT Press, 2003.

Ifrah, George. The Universal History of Computing: From the Abacus to Quantum Computer. New York:
Wiley, 2002.

Rojas, Ral, Hashagen, Ulf, Rojas, Raul, The First Computers—Their History and Architecture, Cam-
bridge, MA: MIT Press, 2002.

Wurster, C. The Computer: An Illustrated History. Cologne, Germany: Taschen, 2002

In addition, the Charles Babbage Institute at the University of Minnesota is an outstanding
resource for information about the history of information technology and its impact on society.
Its Web site is at www.cbi.umn.edu.

F O R  F U R T H E R  R E A D I N G

www.cbi.umn.edu


T h e  H a r d w a r e  W o r l d

Chapters 4,5

T h e  V i r t u a l  M a c h i n e

Chapters 6,7,8

T h e  S o f t w a r e  W o r l d

Chapters 9,10,11,12

A p p l i c a t i o n s

Chapters 13,14,15,16

S o c i a l  I s s u e s
Chapter 17

T h e  A l g o r i t h m i c  F o u n d a t i o n s  o f  C o m p u t e r  S c i e n c e

Chapters 2,3

L
E
V
E
L
1

The Algorithmic Foundations
of Computer Science
The Algorithmic Foundations
of Computer Science



37

LEVEL 1

Level 1 of the text continues our exploration of algo-
rithms and algorithmic problem solving—essential mater-
ial for studying any branch of computer science. It first
introduces methods for designing and representing algo-
rithms. It then uses these ideas to develop solutions to
some real-world problems, including an important appli-
cation in medicine and biology.

When judging the quality of an essay or book report,
we do not look only at sentence structure, spelling, and
punctuation. Although grammatical issues are important,
we also evaluate the work’s style, for it is a combination
of correctness and expressiveness that produces a written
document of high quality. So, too, for algorithms: cor-
rectness is not the only measure of excellence. This sec-
tion will present criteria for evaluating the quality and
elegance of the algorithmic solutions that you develop.
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2.1 Introduction

Chapter 1 introduced algorithms and algorithmic problem solving, two of the
most fundamental concepts in computer science. Our introduction used exam-
ples drawn from everyday life, such as programming a DVR (Figure 1.1) and
washing your hair (Figure 1.3). While these are perfectly valid examples of
algorithms, they are not of much interest to computer scientists. This chapter
develops more fully the notions of algorithm and algorithmic problem solving
and applies these ideas to problems that are of interest to computer scientists:
searching lists, finding maxima and minima, and matching patterns. 

2.2 Representing Algorithms

2.2.1 Pseudocode

Before presenting any algorithms, we must first make an important decision.
How should we represent them? What notation should we use to express our
algorithms so that they are clear, precise, and unambiguous?

One possibility is natural language, the language we speak and write in
our everyday lives. (This could be English, Spanish, Arabic, Japanese, Swahili,
or any language.) This is an obvious choice because it is the language with
which we are most familiar. If we use natural language, then our algorithms
read much the same as a term paper or an essay. For example, when expressed
in natural language, the addition algorithm in Figure 1.2 might look something
like the paragraph shown in Figure 2.1.

Comparing Figure 1.2 with Figure 2.1 illustrates the problems of using nat-
ural language to represent algorithms. Natural language can be extremely ver-
bose, causing the resulting algorithms to be rambling, unstructured, and hard
to follow. (Imagine reading 5, 10, or even 100 pages of text like Figure 2.1.) An
unstructured, “free-flowing” writing style may be wonderful for essays, but it
is horrible for algorithms. The lack of structure makes it difficult for the reader
to locate specific sections of the algorithm, because they are buried inside the
text. For example, on the eighth line of Figure 2.1 is the phrase, 
“ . . . and begin the loop all over again.” To what part of the algorithm does
this refer? Without any clues to guide us, such as indentation, line numbering,
or highlighting, locating the beginning of that loop can be a daunting and
time-consuming task. (For the record, the beginning of the loop corresponds to
the sentence on the second line that starts, “When these initializations have
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been completed . . . .”  It is certainly not easy to determine this from a casual
reading of the text.)

A second problem is that natural language is too “rich” in interpretation
and meaning. Natural language frequently relies on either context or a reader’s
experiences to give precise meaning to a word or phrase. This permits different
readers to interpret the same sentence in totally different ways. This may be
acceptable, even desirable, when writing poetry or fiction, but is disastrous
when writing algorithms that must always execute in the same way and pro-
duce identical results. We can see an example of this problem in the sentence
on lines 7 and 8 of Figure 2.1 that starts with “When you are finished with that
operation . . . .”  When we are finished with which operation? It is not at all
clear from the text, and individuals may interpret the phrase that operation in
different ways, producing radically different behavior. Similarly, the statement
“Determine the shortest path between the source and destination” is ambigu-
ous until we know the precise meaning of the phrase “shortest path.” Does it
mean shortest in terms of travel time, distance, or something else?  

Because natural languages are not sufficiently precise to represent algo-
rithms, we might be tempted to go to the other extreme. If we are ultimately
going to execute our algorithm on a computer, why not write it out as a com-
puter program using a high-level programming language such as C++ or
Java? If we adopt that approach, the addition algorithm of Figure 1.2 might
start out looking like the program fragment shown in Figure 2.2.

As an algorithmic design language, this notation is also seriously flawed.
During the initial phases of design, we should be thinking and writing at a
highly abstract level. Using a programming language to express our design
forces us to deal immediately with detailed language issues such as punctua-
tion, grammar, and syntax. For example, the algorithm in Figure 1.2 contains
an operation that says, “Set the value of carry to 0.” This is an easy statement
to understand. However, when translated into a language like C++ or Java,
that statement becomes

carry = 0;

Is this operation setting carry to 0 or asking if carry is equal to 0? Why does a
semicolon appear at the end of the line? Would the statement 

Carry = 0; 

mean the same thing?  Similarly, what is meant by the cryptic statement
“int[] a = new int[100];”?  These technical details clutter our thoughts, and at
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Initially, set the value of the variable carry to 0 and the value of the variable i to 0.
When these initializations have been completed, begin looping as long as the value
of the variable i is less than or equal to (m – 1). First, add together the values of the
two digits ai and bi and the current value of the carry digit to get the result called ci.
Now check the value of ci to see whether it is greater than or equal to 10. If ci is
greater than or equal to 10, then reset the value of carry to 1 and reduce the value of
ci by 10; otherwise, set the value of carry to zero. When you are finished with that
operation, add 1 to i and begin the loop all over again. When the loop has completed
execution, set the leftmost digit of the result cm to the value of carry and print out the
final result, which consists of the digits cm cm-1 . . . c0. After printing the result, the
algorithm is finished, and it terminates.

The Addition Algorithm of
Figure 1.2 Expressed in Natural
Language

FIGURE 2.1 



this point in the solution process are totally out of place. When creating
algorithms, a programmer should no more worry about semicolons and capital-
ization than a novelist should worry about typography and cover design when
writing the first draft!

If the two extremes of natural languages and high-level programming
languages are both less than ideal, what notation should we use? What is
the best way to represent the solutions shown in this chapter and the rest of
the book?

Most computer scientists use a notation called pseudocode to design
and represent algorithms. This is a set of English language constructs
designed to resemble statements in a programming language but that do not
actually run on a computer.  Pseudocode represents a compromise between
the two extremes of natural and formal languages. It is simple, highly read-
able, and has virtually no grammatical rules. (In fact, pseudocode is some-
times called a programming language without any details.) However, because
it contains only statements that have a well-defined structure, it is easier to
visualize the organization of a pseudocode algorithm than one represented as
long, rambling natural-language paragraphs. In addition, because pseudocode
closely resembles many popular programming languages, the subsequent
translation of the algorithm into a computer program is relatively simple. The
algorithms shown in Figures 1.1, 1.2, and 1.3(a) and (b) are all written in
pseudocode.

In the following sections we will introduce a set of popular and easy-to-
understand constructs for the three types of algorithmic operations intro-
duced in Chapter 1:  sequential, conditional, and iterative. Keep in mind, 
however, that pseudocode is not a formal language with rigidly standardized
syntactic and semantic rules and regulations. On the contrary, it is an infor-
mal design notation used solely to express algorithms. If you do not like the
constructs presented in the next two sections, feel free to modify them or
select others that are more helpful to you. One of the nice features of
pseudocode is that you can adapt it to your own personal way of thinking and
problem solving.
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{
Scanner inp = new Scanner(System.in);
int i, m, carry;
int[] a = new int[100];
int[] b = new int[100];
int[] c = new int[100];
m = inp.nextInt();
for (int j = 0;j <= m-1;j++)  {

a[j] = inp.nextInt();
b[j] = inp.nextInt();

}
carry = 0;
i = 0;
while (i < m)   {

c[i] = a[i] + b[i] + carry;
if (c[i] >= 10)

.

.

.

The Beginning of the Addition
Algorithm of Figure 1.2
Expressed in a High-Level
Programming Language

FIGURE 2.2 



2.2.2 Sequential Operations

Our pseudocode must include instructions to carry out the three basic sequen-
tial operations called computation, input, and output.

The instruction for performing a computation and saving the result looks
like the following. (Words and phrases inside quotation marks represent spe-
cific elements that you must insert when writing an algorithm.)

Set the value of “variable” to “arithmetic expression”

This operation evaluates the “arithmetic expression,” gets a result, and stores that
result in the “variable.” A variable is simply a named storage location that can
hold a data value. A variable is often compared to a mailbox into which one can
place a value and from which one can retrieve a value. Let’s look at an example.

Set the value of carry to 0

First, evaluate the arithmetic expression, which in this case is the constant
value 0. Then store that result in the variable called carry. If carry had a pre-
vious value, say 1, it is discarded and replaced by the new value 0.  You can
visualize the result of this operation as follows:

carry

Here is another example:

Set the value of Area to (π r2)

Assuming that the variable r has been given a value by a previous instruction
in the algorithm, this statement evaluates the arithmetic expression π r2 to
produce a numerical result. This result is then stored in the variable called
Area. If r does not have a value, an error condition occurs, because this
instruction is not effectively computable, and it cannot be completed.

We can see additional examples of computational operations in steps 4, 6,
and 7 of the addition algorithm of Figure 1.2:

Step 4: Add the two digits ai and bi to the current value of carry to
get ci

Step 6: Add 1 to i, effectively moving one column to the left

Step 7: Set cm to the value of carry

Note that these three steps are not written in exactly the format just
described. If we had used that notation, they would have looked like this:

Step 4: Set the value of ci to (ai + bi + carry)

Step 6: Set the value of i to (i + 1)

Step 7: Set the value of cm to carry

However, in pseudocode it doesn’t matter exactly how you choose to write
your instructions as long as the intent is clear, effectively computable, and

0

2.2 Representing Algorithms LEVEL 1 43



unambiguous. At this point in the design of a solution, we do not really care
about the minor language differences between

Add a and b to get c

and

Set the value of c to (a + b)

Remember that pseudocode is not a precise set of notational rules to be mem-
orized and rigidly followed. It is a flexible notation that can be adjusted to fit
your own view about how best to express ideas and algorithms.

When writing arithmetic expressions, you can assume that the computing
agent executing your algorithm has all the capabilities of a typical calculator.
Therefore, it “knows” how to do all basic arithmetic operations such as , ,

, , , absolute value, sine, cosine, and tangent. It also knows the value of
important constants such as π.

The remaining two sequential operations enable our computing agent to
communicate with “the outside world,” which means everything other than
the computing agent itself:

�  ��
��
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Computing
agent

Outside
world

Output

Input

Input operations submit to the computing agent data values from the outside
world that it may then use in later instructions. Output operations send results
from the computing agent to the outside world. When the computing agent is a
computer, communications with the outside world are done via the input/output
equipment available on a typical system (e.g., keyboard, screen, mouse, printer,
hard drive, CD/DVD, USB drive). However, when designing algorithms, we
generally do not concern ourselves with such details. We care only that data is
provided when we request it and that results are issued for presentation.

Our pseudocode instructions for input and output are expressed as follows:

Input: Get values for “variable”, “variable”, . . .

Output: Print the values of “variable”, “variable”, . . .

For example,

Get a value for r, the radius of the circle

When the algorithm reaches this input operation, it waits until someone or
something provides it with a value for the variable r. (In a computer, this may
be done by entering a value at the keyboard.) When the algorithm has
received and stored a value for r, it continues on to the next instruction.

Here is an example of an output operation:

Print the value of Area



Assuming that the algorithm has already computed the area of the circle, this
instruction says to display that value to the outside world. This display may
be on a screen or printed on paper by a printer. 

Sometimes we use an output instruction to display a message in place of
the desired results. If, for example, the computing agent cannot complete a
computation because of an error condition, we might have it execute some-
thing like the following operation. (We will use ‘single quotes’ to enclose mes-
sages so as to distinguish them from such pseudocode constructs as “variable”
and “arithmetic expression,” which are enclosed in double quotes.)

Print the message ‘Sorry, no answers were computed.’

Using the three sequential operations—computation, input, and output—
we can now write some simple but useful algorithms. Figure 2.3 presents an
algorithm to compute the average miles per gallon on a trip, when given as
input the number of gallons used and the starting and ending mileage readings
on the odometer.
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Write pseudocode versions of: 

1. An algorithm that gets three data values x, y, and z as input and
outputs the average of those three values.

2. An algorithm that gets the radius r of a circle as input. Its output is
both the circumference and the area of a circle of radius r.

3. An algorithm that gets the amount of electricity used in kilowatt-
hours and the cost of electricity per kilowatt-hour. Its output is the
total amount of the electric bill, including an 8% sales tax.

4. An algorithm that inputs your current credit card balance, the total
dollar amount of new purchases, and the total dollar amount of all
payments. The algorithm computes the new balance, which includes
a 12% interest charge on any unpaid balance.

5. An algorithm that is given the length and width, in feet, of a rec-
tangular carpet and determines its total cost given that the mater-
ial cost is $23/square yard.  

PRACTICE PROBLEMS

Algorithm for Computing
Average Miles per Gallon

FIGURE 2.3
Average Miles per Gallon Algorithm (Version 1)

STEP OPERATION

1 Get values for gallons used, starting mileage, ending mileage
2 Set value of distance driven to (ending mileage – starting mileage) 
3 Set value of average miles per gallon to (distance driven ÷ gallons used )    
4 Print the value of average miles per gallon
5 Stop



2.2.3 Conditional and Iterative Operations

The average miles per gallon algorithm in Figure 2.3 performs a set of opera-
tions once and then stops. It cannot select among alternative operations or
perform a block of instructions more than once. A purely sequential
algorithm of the type shown in Figure 2.3 is sometimes termed a straight-
line algorithm because it executes its instructions in a straight line from top
to bottom and then stops. Unfortunately, most real-world problems are not
straight-line. They involve nonsequential operations such as branching and
repetition.

To allow us to address these more interesting problems, our pseudocode
needs two additional statements to implement conditional and iterative oper-
ations. Together, these two types of operations are called control operations;
they allow us to alter the normal sequential flow of control in an algorithm. As
we saw in Chapter 1, control operations are an essential part of all but the very
simplest of algorithms.

Conditional statements are the “question-asking” operations of an algo-
rithm. They allow an algorithm to ask a question and to select the next oper-
ation to perform on the basis of the answer to that question. There are a
number of ways to phrase a question, but the most common conditional state-
ment is the if/then/else, which has the following format:

If “a true/false condition” is true then

first set of algorithmic operations

Else (or otherwise)

second set of algorithmic operations

The meaning of this statement is as follows:

1. Evaluate the true/false condition on the first line to determine
whether it is true or false.

2. If the condition is true, then do the first set of algorithmic operations
and skip the second set entirely.

3. If the condition is false, then skip the first set of operations and do
the second set.

4. Once the appropriate set of operations has been completed, continue
executing the algorithm with the operation that follows the
if/then/else instruction.

Figure 2.4 is a visual model of the execution of the if/then/else statement.
We evaluate the condition shown in the diamond. If the condition is true we
execute the sequence of operations labeled T1, T2, T3, . . . . If the condition is
false we execute the sequence labeled F1, F2, F3, . . . . In either case, however,
execution continues with statement S, which is the one that immediately fol-
lows the if/then/else.  

Basically, the if/then/else statement allows you to select exactly one of
two alternatives—either/or, this or that. We saw an example of this state-
ment in step 5 of the addition algorithm of Figure 1.2. (The statement has
been reformatted slightly to highlight the two alternatives clearly, but it has
not been changed.)
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If (ci ≥ 10) then

Set the value of ci to (ci - 10)

Set the value of carry to 1

Else

Set the value of carry to 0

The condition (ci ≥ 10) can be only true or false. If it is true, then there is
a carry into the next column, and we must do the first set of instructions—
subtracting 10 from ci and setting carry to 1. If the condition is false, then
there is no carry —we skip over these two operations, and perform the second
block of operations, which simply sets the value of carry to 0.
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The If/Then/Else Pseudocode
Statement

FIGURE 2.4

T1

T2

T3

F1

F2

F3

S

Boolean
condition

?

true false



Figure 2.5 shows another example of the if/then/else statement. It
extends the miles per gallon algorithm of Figure 2.3 to include a second line
of output stating whether you are getting good gas mileage. Good gas mileage
is defined as a value for average miles per gallon greater than 25.0 mpg.

The last algorithmic statement to be introduced allows us to implement a
loop—the repetition of a block of instructions. The real power of a computer
comes not from doing a calculation once but from doing it many, many times.
If, for example, we need to compute a single value of average miles per gallon,
it would be foolish to convert an algorithm like Figure 2.5 into a computer
program and execute it on a computer—it would be far faster to use a calcu-
lator, which could complete the job in a few seconds. However, if we need to
do the same computation 1,000,000 times, the power of a computer to repeti-
tively execute a block of statements becomes quite apparent. If each compu-
tation of average miles per gallon takes 5 seconds on a hand calculator, then
1 million of them would require about 2 months, not allowing for such luxu-
ries as sleeping and eating. Once the algorithm is developed and the program
written, a computer can carry out that same task in less than 1 second!

The first algorithmic statement that we will use to express the idea of
iteration, also called looping, is the while statement:

While (“a true/false condition”) do step i to step j

step i:         operation

step i + 1:  operation

.

.

.

step j:         operation

This instruction initially evaluates the “true/false condition”—called the
continuation condition—to determine if it is true or false. If the condition is
true, all operations from step i to step j, inclusive, are executed. This block of
operations is called the loop body. (Operations within the loop body should be
indented so that it is clear to the reader of the algorithm which operations
belong inside the loop.)  When the entire loop body has finished executing, the
algorithm again evaluates the continuation condition. If it is still true, then the
algorithm executes the entire loop body, statements i through j, again. This
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Average Miles per Gallon Algorithm (Version 2)

STEP OPERATION

1 Get values for gallons used, starting mileage, ending mileage
2 Set value of distance driven to (ending mileage – starting mileage)
3 Set value of average miles per gallon to (distance driven ÷ gallons used )
4 Print the value of average miles per gallon
5 If average miles per gallon is greater than 25.0 then
6 Print the message ‘You are getting good gas mileage’

Else
7 Print the message ‘You are NOT getting good gas mileage’
8 Stop

Second Version of the Average
Miles per Gallon Algorithm

FIGURE 2.5 



looping process continues until the continuation condition evaluates to false, at
which point execution of the loop body terminates and the algorithm proceeds
to the statement immediately following the loop—step j+1 in the previous dia-
gram. If for some reason the continuation condition never becomes false, then
we have violated one of the fundamental properties of an algorithm, and we
have the error, first mentioned in Chapter 1, called an infinite loop.

Figure 2.6 is a visual model of the execution of a while loop.  The algo-
rithm first evaluates the continuation condition inside the diamond-shaped
symbol. If it is true then it executes the sequence of operations labeled S1, S2,
S3, . . ., which are the operations of the loop body.  Then the algorithm
returns to the top of the loop and reevaluates the condition.  If the condition
is false, then the loop has ended, and the algorithm continues executing with
the statement after the loop, the one labeled Sn in Figure 2.6.  
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Execution of the While Loop

FIGURE 2.6 
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Here is a simple example of a loop:

Step Operation

1 Set the value of count to 1 
2 While (count ≤ 100) do step 3 to step 5
3 Set square to (count x count) 
4 Print the values of count and square
5 Add 1 to count

Step 1 initializes count to 1, the next operation determines that (count ≤
100), and then the loop body is executed, which in this case includes the
three statements in steps 3, 4, and 5. Those statements compute the value of
count squared (step 3) and print the value of both count and square (step 4).
The last operation inside the loop body (step 5) adds 1 to count so that it now
has the value 2. At the end of the loop the algorithm must determine whether
it should be executed again. Because count is 2, the continuation condition is
true, and the algorithm must perform the loop body again. Looking at the
entire loop, we can see that it will execute 100 times, producing the following
output, which is a table of numbers and their squares from 1 to 100.

1 1

2 4 

3 9
.
.
.

100 10,000 

At the end of the 100th pass through the loop, the value of count is incre-
mented in step 5 to 101. When the continuation condition is evaluated, 
it is false (because 101 is not less than or equal to 100), and the loop 
terminates.

We can see additional examples of loop structures in steps 3 through 6
of Figure 1.2 and in steps 3 through 6 of Figure 1.3(a). Another example 
is shown in Figure 2.7, which is yet another variation of the average 
miles per gallon algorithm of Figures 2.3 and 2.5. In this modification,
after finishing one computation, the algorithm asks the user whether 
to repeat this calculation again. It waits until it gets a Yes or No response
and repeats the entire algorithm until the response provided by the user 
is No. (Note that the algorithm must initialize the value of response to 
Yes, since the very first thing that the loop does is test the value of this
quantity.)

There are many variations of this particular looping construct in addition
to the while statement just described. For example, it is common to omit the
line numbers from algorithms and simply execute them in order, from top to
bottom. In that case we could use an End of Loop construct (or something
similar) to mark the end of the loop rather than explicitly stating which steps
are contained in the loop body. Using this approach, our loops would be writ-
ten something like this:
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While (“a true/false condition”) do

operation

.

.

.

operation

End of the loop

In this case, the loop body is delimited not by explicit step numbers but by
the two lines that read, “While . . .” and “End of the loop”.

This type of loop is called a pretest loop because the continuation condi-
tion is tested at the beginning of each pass through the loop, and therefore it is
possible for the loop body never to be executed. (This would happen if the con-
tinuation condition were initially false.) Sometimes this can be inconvenient, as
we see in Figure 2.7. In that algorithm we ask the user if they want to solve the
problem again, but we ask that at the very end of execution of the loop body.
Therefore, we had to give the variable called response a “dummy” value of Yes so
that the test would be meaningful when the loop was first entered.

Another variation of the looping structure is the posttest loop, which
also uses a true/false continuation condition to control execution of the loop.
However, the test is done at the end of the loop body, not the beginning. The
loop is typically expressed using the do/while statement, which is usually
written as follows:

Do

operation

operation

.

.

.

While (“a true/false condition”)
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Average Miles per Gallon Algorithm (Version 3)

STEP OPERATION

1 response = Yes
2 While (response = Yes) do steps 3 through 11
3 Get values for gallons used, starting mileage, ending mileage
4 Set value of distance driven to (ending mileage – starting mileage) 
5 Set value of average miles per gallon to (distance driven ÷ gallons used )
6 Print the value of average miles per gallon
7 If average miles per gallon > 25.0 then
8 Print the message ‘You are getting good gas mileage’

Else
9 Print the message ‘You are NOT getting good gas mileage’

10 Print the message ‘Do you want to do this again? Enter Yes or No’
11 Get a new value for response from the user
12 Stop

Third Version of the Average
Miles per Gallon Algorithm

FIGURE 2.7



This type of iteration performs all the algorithmic operations contained in
the loop body before it evaluates the true/false condition specified at the end
of the loop. If this condition is false, the loop is terminated and execution
continues with the operation following the loop. If it is true, then the entire
loop body is executed again. Note that in the Do/While variation, the loop
body is always executed at least once, while the While loop can execute 0, 1,
or more times. Figure 2.8 diagrams the execution of the posttest Do/While
looping structure.

Figure 2.9 summarizes the algorithmic operations introduced in this sec-
tion. These operations represent the primitives of our computing agent.
These are the instructions that we assume our computing agent understands
and is capable of executing without further explanation or simplification. In
the next section we will use these operations to design algorithms that solve
some interesting and important problems.

52 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Execution of the Do/While
Posttest Loop

FIGURE 2.8
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Although the set of algorithmic primitives shown in 
Figure 2.9 may seem quite puny, it is anything but! In fact,
an important theorem in theoretical computer science
proves that the operations shown in Figure 2.9 are sufficient
to represent any valid algorithm. No matter how compli-
cated it may be, if a problem can be solved algorithmically,
it can be expressed using only the sequential, conditional,
and iterative operations just discussed. This includes not
only the simple addition algorithm of Figure 1.2 but also the

exceedingly complex algorithms needed to fly NASA’s space
shuttles, run the international telephone switching system,
and describe all the Internal Revenue Service’s tax rules and
regulations.

In many ways, building algorithms is akin to con-
structing essays or novels using only the 26 letters of the
English alphabet, plus a few punctuation symbols. Expres-
sive power does not always come from a huge set of prim-
itives. It can also arise from a small number of simple
building blocks combined in interesting ways. This is the
real secret of building algorithms.

From Little Primitives Mighty
Algorithms Do Grow

Summary of Pseudocode
Language Instructions

FIGURE 2.9
COMPUTATION:

Set the value of “variable” to “arithmetic expression”

INPUT/OUTPUT:

Get a value for “variable”, “variable”. . .
Print the value of “variable”, “variable”, . . .
Print the message ‘message’

CONDITIONAL:

If “a true/false condition” is true then 
first set of algorithmic operations 

Else 
second set of algorithmic operations

ITERATIVE:

While (“a true/false condition”) do step i through step j
Step i: operation 
.
.
.
Step j: operation 

While (“a true/false condition”) do 
operation
.
.
.
operation 

End of the loop

Do
operation
operation
.
.
.

While (“a true/false condition”)
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1. Write an if/then/else statement that sets the variable y to the
value 1 if x ≥ 0. If x < 0, then the statement should set y to the
value 2. (Assume x already has a value.)

2. Write an algorithm that gets as input three data values x, y, and z
and outputs the average of these values if the value of x is positive.
If the value of x is either zero or negative, your algorithm should
not compute the average but should print the error message ‘Bad
Data’ instead.

3. Write an algorithm that gets as input your current credit card bal-
ance, the total dollar amount of new purchases, and the total dollar
amount of all payments. The algorithm computes the new balance,
which this time includes an 8% interest charge on any unpaid bal-
ance below $100, 12% interest on any unpaid balance between $100
and $500, inclusive, and 16% on any unpaid balance above $500.

4. Write an algorithm that gets as input a single data value x and out-
puts the three values x2, sin x, and 1/x. This process is repeated
until the input value for x is equal to 999, at which time the algo-
rithm terminates.

5. Write an algorithm that inputs the length and width, in feet, of a
rectangular carpet and the price of the carpet in $/square yard.  It
then determines if we can afford to purchase this carpet, given that
our total budget for carpeting is $500.

PRACTICE PROBLEMS

2.3 Examples of Algorithmic Problem Solving

2.3.1 Example 1:  Go Forth and Multiply

Our first example of algorithmic problem solving addresses a problem origi-
nally posed in Chapter 1 (Exercise 9).  That problem asked you to implement
an algorithm to multiply two numbers using repeated addition.  This problem
can be formally expressed as follows:

Given 2 nonnegative integer values, a ≥ 0, b ≥ 0, compute and output
the product (a 3 b) using the technique of repeated addition.  That
is, determine the value of the sum a + a + a + . . . + a  (b times).  

Obviously, we need to create a loop that executes exactly b times, with
each execution of the loop adding the value of a to a running total.  These
operations will not make any sense (that is, they will not be effectively com-
putatable) until we have explicit values for a and b. So one of the first opera-
tions in our algorithm must be to input these two values 

Get values for a and b
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To create a loop that executes exactly b times, we create a counter, let’s
call it count, initialized to 0 and incremented by (increased by) 1 after each
pass through the loop.  This means that when we have completed the loop
once the value of count is 1; when we have completed the loop twice the
value of count is 2, and so forth. Since we want to stop when we have com-
pleted the loop b times, we want to stop when (count = b). Therefore, the
condition for continuing execution of the loop is (count < b). Putting all
these pieces together produces the following algorithmic structure, which is
a loop that executes exactly b times as the variable count ranges from 0 up
to (b – 1).

Get values for a and b

Set the value of count to 0

While (count < b) do

… the rest of the loop body will go here …

Set the value of count to (count + 1)

End of loop

The purpose of the loop body is to add the value of a to a running total,
which we will call product.  We express that operation in the following manner:

Set the value of product to (product + a)

This statement says the new value of product is to be reset to the current
value of product added to a.  

What is the current value of product the first time this operation is
encountered?  Unless we initialize it, it has no value, and this operation is not
effectively computable. Before starting the loop we must be sure to include
the following step:

Set the value of product to 0

Now our solution is starting to take shape.  Here is what we have devel-
oped so far:

Get values for a and b

Set the value of count to 0

Set the value of product to 0

While (count < b) do

Set the value of product to (product + a)

Set the value of count to (count+1)

End of loop

There are only a few minor “tweaks” left to make this a correct solution to
our problem.  

When the while loop completes we have computed the desired result,
namely (a 3 b), and stored it in product.  However, we have not displayed that
result, and as it stands this algorithm produces no output. Remember from



Chapter 1 that one of the fundamental characteristics of an algorithm is that
it produces an observable result. In this case the desired result is the final
value of product, which we can display using our output primitive:

Print the value of product

The original statement of the problem said that the two inputs a and b
must satisfy the following conditions: a ≥ 0 and b ≥ 0.  The above algorithm
works for positive values of a and b, but what happens when either a = 0 or
b = 0?  Does it still function correctly? 

If b = 0 there is no problem.  If you look at the while loop, you see that it
continues executing so long as (count < b).  The variable count is initialized to
0. If the input variable b also has the value 0 then the test (0 < 0) is initially
false, and the loop is never executed. The variable product keeps its initial
value of 0, and that is the output that is printed, which is the correct answer. 

Now let’s look at what happens when a = 0 and b is any non-zero value,
say 5,386. Of course we know immediately that the correct result is 0, but the
algorithm does not. Instead, the loop will execute 5,386 times, the value of b,
each time adding the value of a, which is 0, to product.  Since adding 0 to any-
thing has no effect, product remains at 0, and that is the output that is
printed. In this case we do get the right answer, and our algorithm does work
correctly. However, it gets that correct answer only after doing 5,386 unnec-
essary and time-wasting repetitions of the loop.  

In Chapter 1 we stated that it is not only algorithmic correctness we are
after but efficiency and elegance as well.  The algorithms designed and imple-
mented by computer scientists are intended to solve important real-world
problems, and they must accomplish that task in a correct and reasonably effi-
cient manner.  Otherwise they are not of much use to their intended audience.  

In this case we can eliminate those needless repetitions of the loop by
using our if/then/else conditional primitive. Right at the start of the algo-
rithm we ask if either a or b is equal to 0. If the answer is yes, we can imme-
diately set the result to 0 without requiring any further computations:

If (either a = 0 or b = 0) then

Set the value of product to 0

Else

… solve the problem as described above … 

We will have much more to say about the critically important concepts of
algorithmic efficiency and elegance in Chapter 3.

This completes the development of our multiplication algorithm, and the
finished solution is shown in Figure 2.10.

This first example needed only two integer values, a and b, as input.  That
is a bit unrealistic, as most interesting computational problems deal not with a
few numbers but with huge collections of data, such as lists of names,
sequences of characters, or sets of experimental data.  In the following sections
we will show examples of the types of processing—searching, reordering,
comparing—often done on these large collections of information.
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2.3.2 Example 2: Looking, Looking, Looking

Finding a solution to a given problem is called algorithm discovery, and it is
the most challenging and creative part of the problem-solving process. We
developed an algorithm for a fairly simple problem (multiplication by repeated
addition) in Example 1. Discovering a correct and efficient algorithm to solve
a complicated problem can be difficult and can involve equal parts of intelli-
gence, hard work, past experience, technical skill, and plain good luck. In the
remaining examples, we will develop solutions to a range of problems to give
you more experience in working with algorithms. Studying these examples,
together with lots of practice, is by far the best way to learn creative problem
solving, just as experience and practice are the best ways to learn how to write
essays, hit a golf ball, or repair cars.
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Multiplication of Non-negative Values via Repeated Addition

Get values for a and b
If (either a = 0 or b = 0) then

Set the value of product to 0
Else

Set the value of count to 0
Set the value of product to 0
While (count < b) do

Set the value of product to (product + a)
Set the value of count to (count+1)

End of loop
Print the value of product
Stop

Algorithm for Multiplication of
Non-negative Values via
Repeated Addition

FIGURE 2.10

1. Manually work through the algorithm in Figure 2.10 using the input
values a = 2, b = 4.  After each completed pass through the loop,
write down the current value of the four variables a, b, count, and
product.  

2. Describe exactly what would be output by the algorithm in Figure 2.10
for each of the following two cases, and state whether that output is
or is not correct:

case 1:  a = –2, b = 4
case 2:  a = 2, b = –4

3. If the algorithm of Figure 2.10 produced the wrong answer for either
case 1 or case 2 of question 2, explain exactly how you could fix the
algorithm so it works correctly and produces the correct answer.

PRACTICE PROBLEMS



The next problem we will solve was also mentioned in Chapter 1—locating
a particular person’s name in a telephone book. This is just the type of simple
and rather uninteresting repetitive task so well suited to computerization.
(Many large telephone companies have implemented such an application.
Most of us have dialed directory assistance and heard the desired telephone
number spoken in a computer-generated voice.)

Assume that we have a list of 10,000 names that we define as N1, N2, N3,
. . .  , N10,000, along with the 10,000 telephone numbers of those individuals,
denoted as T1, T2, T3,  . . .  , T10,000. To simplify the problem, we initially
assume that all names in the book are unique and that the names need not be
in alphabetical order. Essentially what we have described is a nonalphabetized
telephone book of the following form:

Name Telephone Number 

N1 T1

N2 T2

N3 T3

. .

. .

. .
N10,000 T10,000

Let’s create an algorithm that allows us to input the name of a specific
person, which we will denote as NAME. The algorithm will check to see if
NAME matches any of the 10,000 names contained in our telephone book. If
NAME matches the value Nj, where j is a value between 1 and 10,000, then the
output of our algorithm will be the telephone number of that person: the
value Tj. If NAME is not contained in our telephone book, then the output of
our algorithm will be the message “I am sorry but this name is not in the
directory.” This type of lookup algorithm has many additional uses. For exam-
ple, it could be used to locate the zip code of a particular city, the seat num-
ber of a specific airline passenger, or the room number of a hotel guest.

Because the names in our telephone book are not in alphabetical order,
there is no clever way to speed up the search. With a random collection of
names, there is no method more efficient than starting at the beginning and
looking at each name in the list, one at a time, until we either find the one we
are looking for or come to the end of the list. This rather simple and straight-
forward technique is called sequential search, and it is the standard algo-
rithm for searching an unordered list of values. For example, this is how we
would search a telephone book to see who lives at 123 Elm Street, because a
telephone book is not sorted by address. It is also the way that we look
through a shuffled deck of cards trying to locate one particular card. A first
attempt at designing a sequential search algorithm to solve our search prob-
lem might look something like Figure 2.11.

The solution shown in Figure 2.11 is extremely long. At 66 lines per page,
it would require about 150 pages to write out the 10,002 steps in the com-
pleted solution. It would also be unnecessarily slow. If we are lucky enough to
find NAME in the very first position of the telephone book, N1, then we get
the answer T1 almost immediately. However, the algorithm does not stop at
that point. Even though it has already found the correct answer, it foolishly
asks 9,999 more questions looking for NAME in positions N2, . . . , N10,000. Of
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course, humans have enough “common sense” to know that when they find
the answer they are searching for, they can stop. However, we cannot assume
common sense in a computer system. On the contrary, a computer will
mechanically execute the entire algorithm from the first step to the last.

Not only is the algorithm excessively long and highly inefficient, it is also
wrong. If the desired NAME is not in the list, this algorithm simply stops (at
step 10,002) rather than providing the desired result, a message that the
name you requested is not in the directory. An algorithm is deemed correct
only when it produces the correct result for all possible cases.

The problem with this first attempt is that it does not use the powerful
algorithmic concept called iteration. Instead of writing an instruction 10,000
separate times, it is far better to write it only once and indicate that it is to
be repetitively executed 10,000 times, or however many times it takes to
obtain the answer. As you learned in the previous section, much of the power
of a computer comes from being able to perform a loop—the repetitive execu-
tion of a block of statements a large number of times. Virtually every algo-
rithm developed in this text contains at least one loop and most contain
many. (This is the difference between the two shampooing algorithms shown
in Figures 1.3(a) and (b). The algorithm in the former contains a loop; that in
the latter does not.)

The algorithm in Figure 2.12 shows how we might write a loop to imple-
ment the sequential search technique. It uses a variable called i as an index,
or pointer, into the list of all names. That is, Ni refers to the ith name in the
list. The algorithm then repeatedly executes a group of statements using dif-
ferent values of i. The variable i can be thought of as a “moving finger” scan-
ning the list of names and pointing to the one on which the algorithm is
currently working.
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First Attempt at Designing a
Sequential Search Algorithm

FIGURE 2.11
STEP OPERATION

1 Get values for NAME, N1,  . . . , N10,000, and T1, . . . , T10,000

2 If NAME = N1 then print the value of T1

3 If NAME = N2 then print the value of T2

4 If NAME = N3 then print the value of T3

. .

. .

. .
10,000 If NAME = N9,999 then print the value of T9,999

10,001 If NAME = N10,000 then print the value of T10,000

10,002 Stop

Second Attempt at Designing a
Sequential Search Algorithm

FIGURE 2.12
STEP OPERATION

1 Get values for NAME, N1, . . . , N10,000, and T1, . . . ,T10,000

2 Set the value of i to 1 and set the value of Found to NO 
3 While (Found = NO) do steps 4 through 7 
4 If NAME is equal to the i th name on the list Ni then 
5 Print the telephone number of that person, Ti

6 Set the value of Found to YES 
Else (NAME is not equal to Ni) 

7 Add 1 to the value of i
8 Stop



The first time through the loop, the value of the index i is 1, so the algo-
rithm checks to see whether NAME is equal to N1, the first name on the list. If
it is, then the algorithm writes out the result and sets Found to YES, which
causes the loop in steps 4 through 7 to terminate. If it is not the desired
NAME, then i is incremented by 1 (in step 7) so that it now has the value 2,
and the loop is executed again. The algorithm now checks (in step 4) to see
whether NAME is equal to N2, the second name on the list. In this way, the
algorithm uses the single conditional statement “If NAME is equal to the ith
name on the list . . .” to check up to 10,000 names. It executes that one line
over and over, each time with a different value of i. This is the advantage of
using iteration.

However, the attempt shown in Figure 2.12 is not yet a complete and cor-
rect algorithm because it still does not work correctly when the desired NAME
does not appear anywhere on the list. This final problem can be solved by ter-
minating the loop when the desired name is found or the end of the list is
reached. The algorithm can determine exactly what happened by checking the
value of Found when the loop terminates. If the value of Found is NO, then
the loop terminated because the index i exceeded 10,000, and we searched the
entire list without finding the desired NAME. The algorithm should then pro-
duce an appropriate message.

An iterative solution to the sequential search algorithm that incorporates
this feature is shown in Figure 2.13. The sequential search algorithm shown in
Figure 2.13 is a correct solution to our telephone book look up problem. It
meets all the requirements listed in Section 1.3.1: It is well ordered, each of the
operations is clearly defined and effectively computable, and it is certain to halt
with the desired result after a finite number of operations. (In Exercise 12 at the
end of this chapter you will develop a formal argument that proves that this
algorithm will always halt.) Furthermore, this algorithm requires only 10 steps
to write out fully, rather than the 10,002 steps of the first attempt in Figure
2.11. As you can see, not all algorithms are created equal.

Looking at the algorithm in Figure 2.13, our first thought may be that
this is not at all how people manually search a telephone book. When looking
for a particular telephone number, we would never turn to page 1, column 1,
and scan all names beginning with Aardvark, Alan. Certainly, a telephone
company in New York City would not be satisfied with the performance of a

60 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Sequential Search Algorithm

STEP OPERATION

1 Get values for NAME,  N1, . . . , N10,000, and T1, . . . , T10,000

2 Set the value of i to 1 and set the value of Found to NO 
3 While both (Found = NO) and (i 10,000) do steps 4 through 7 
4 If NAME is equal to the i th name on the list Ni then 
5 Print the telephone number of that person, Ti

6 Set the value of Found to YES 
Else (NAME is not equal to Ni) 

7 Add 1 to the value of i
8 If (Found = NO) then
9 Print the message ‘Sorry, this name is not in the directory’

10 Stop

≤

The Sequential Search
Algorithm

FIGURE 2.13



directory search algorithm that always began on page 1 of its 2,000-page tele-
phone book.

Because our telephone book was not alphabetized, we really had no
choice in the design of a search algorithm. However, in real life we can do
much better than sequential search, because telephone books are alphabet-
ized, and we can exploit this fact during the search process. For example, we
know that M is about halfway through the alphabet, so when looking for the
name Samuel Miller, we open the telephone book somewhere in the middle
rather than to the first page. We then see exactly where we are by looking at
the first letter of the names on the current page, and then we move forward or
backward toward names beginning with M. This approach allows us to find the
desired name much more quickly than searching sequentially beginning with
the letter A.

This use of different search techniques points out a very important con-
cept in the design of algorithms:

The selection of an algorithm to solve a problem is greatly influenced by the
way the data for that problem are organized.

An algorithm is a method for processing some data to produce a result, and the
way the data are organized has an enormous influence both on the algorithm
we select and on how speedily that algorithm can produce the desired result.

In Chapter 3 we will expand on the concept of the efficiency and quality
of algorithms, and we will present an algorithm for searching alphabetized
telephone books that is far superior to the one shown in Figure 2.13.
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Computer science is an empirical discipline as well as a
theoretical one. Learning comes not just from reading
about concepts like algorithms, but manipulating and
observing them as well. The laboratory manual for this text
includes laboratory exercises that enable you to engage
the ideas and concepts presented on these pages.
Laboratory Experience 2 introduces the concept of algo-
rithm animation, in which you can observe an algorithm
being executed and watch as data values are dynamically
transformed into final results. Here is an example of the
type of output produced by this Laboratory Experience. 

Bringing an algorithm to life in this way can help you
understand what the algorithm does and how it works. The
first animation that you will work with is the sequential
search algorithm shown in Figure 2.13. The laboratory
software allows you to create a list of data values, and to
watch as the algorithm searches this list to determine
whether a special target value occurs.  

We strongly encourage you to work through these lab-
oratory experiences to deepen your understanding of the
ideas presented in this and following chapters.

LABORATORY
EXPERIENCE 2



2.3.3 Example 3: Big, Bigger, Biggest

The third algorithm we will develop is similar to the sequential search in
Figure 2.13 in that it also searches a list of values. However, this time the
algorithm will search not for a particular value supplied by the user but for
the numerically largest value in a list of numbers. This type of “find largest”
algorithm could be used to answer a number of important questions. (With
only a single trivial change, the same algorithm also finds the smallest value,
so a better name for it might be “find extreme values.”) For example, given a
list of examinations, which student received the highest (or lowest) score?
Given a list of annual salaries, which employee earns the most (or least)
money? Given a list of grocery prices from different stores, where should I
shop to find the lowest price? All these questions could be answered by exe-
cuting this type of algorithm.

In addition to being important in its own right, such an algorithm can
also be used as a “building block” for the construction of solutions to other
problems. For example, the Find Largest algorithm that we will develop could
be used to implement a sorting algorithm that puts an unordered list of num-
bers in ascending order. (Find and remove the largest item in list A and move
it to the last position of list B. Now repeat these operations, each time moving
the largest remaining number in A to the last unfilled slot of list B. We will
develop and write this algorithm in Chapter 3.)

The use of a “building-block” component is a very important concept in
computer science. The examples in this chapter might lead you to believe that
every algorithm you write must be built from only the most elementary and
basic of primitives—the sequential, conditional, and iterative operations
shown in Figure 2.9. However, once an algorithm has been developed, it may
itself be used in the construction of other, more complex algorithms, just as
we will use “find largest” in the design of a sorting algorithm. This is similar
to what a builder does when constructing a home from prefabricated units
rather than bricks and boards. Our problem-solving task need not always
begin at the beginning but can instead build on ideas and results that have
come before. Every algorithm that we create becomes, in a sense, a primitive
operation of our computing agent and can be used as part of the solution to
other problems. That is why a collection of useful algorithms, called a library,
is such an important tool in the design and development of algorithms.

Formally, the problem we will be solving in this section is defined as follows:

Given a value n ≥ 1 and a list containing exactly n unique numbers
called A1, A2, . . . , An, find and print out both the largest value in the
list and the position in the list where that largest value occurred.

For example, if our list contained the five values

19, 41, 12, 63, 22 (n = 5) 

then our algorithm should locate the largest value, 63, and print that value
together with the fact that it occurred in the fourth position of the list. (Note:
Our definition of the problem states that all numbers in the list are unique, so
there can be only a single occurrence of the largest number. Exercise 15 at the
end of the chapter asks how our algorithm would behave if the numbers in the
list were not unique and the largest number could occur two or more times.)
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When faced with a problem statement like the one just given, how do we
go about creating a solution? What strategies can we employ to discover a cor-
rect and efficient answer to the problem? One way to begin is to ask ourselves
how the same problem might be solved by hand. If we can understand and
explain how we would approach the problem manually, we might be able to
express that solution as a formal algorithm.

For example, suppose we were given a pile of papers, each of which con-
tains a single number, and were asked to locate the largest number in the pile?
(The following diagrams assume the papers contain the five values 19, 41, 12,
63, and 22.)
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19

The pile

We might start off by saying that the first number in the pile (the top
one) is the largest one that we have seen so far, and then putting it off to the
side where we are keeping the largest value.

19
41

The pile The largest so far

Now we compare the top number in the pile with the one that we have called
the largest one so far. In this case, the top number in the pile, 41, is larger than
our current largest, 19, so we make it the new largest. To do this, we throw the
value 19 into the wastebasket (or, better, into the recycle bin) and put the
number 41 off to the side, because it is the largest value encountered so far.

41 The previous largest so far12

The pile The largest so far

We now repeat this comparison operation, asking whether the number on top
of the pile is larger than the largest value seen so far, now 41. This time the
value on top of the pile, 12, is not larger, so we do not want to save it. We sim-
ply throw it away and move on to the next number in the pile.



This compare-and-save-or-discard process continues until our original pile of
numbers is empty, at which time the largest so far is the largest value in the
entire list.

Let’s see how we can convert this informal, pictorial solution into a for-
mal algorithm that is built from the primitive operations shown in Figure 2.9.

We certainly cannot begin to search a list for a largest value until we have
a list to search. Therefore, our first operation must be to get a value for n, the
size of the list, followed by values for the n-element list A1, A2, . . . , An. This
can be done using our input primitive:

Get a value for n, the size of the list

Get values for A1, A2, . . . , An, the list to be searched

Now that we have the data, we can begin to implement a solution.
Our informal description of the algorithm stated that we should begin by

calling the first item in the list, A1, the largest value so far. (We know that
this operation is meaningful since we stated that the list must always have at
least one element.) We can express this formally as

Set the value of largest so far to A1

Our solution must also determine where that largest value occurs. To remem-
ber this value, let’s create a variable called location to keep track of the posi-
tion in the list where the largest value occurs. Because we have initialized
largest so far to the first element in the list, we should initialize location to 1.

Set the value of location to 1

We are now ready to begin looking through the remaining items in list A
to find the largest one. However, if we write something like the following
instruction:

If the second item in the list is greater than largest so far then . . .

we will have made exactly the same mistake that occurred in the initial ver-
sion of the sequential search algorithm shown in Figure 2.11. This instruction
explicitly checks only the second item of the list. We would need to rewrite
that statement to check the third item, the fourth item, and so on. Again, we
are failing to use the idea of iteration, where we repetitively execute a loop as
many times as it takes to produce the desired result.

To solve this problem let’s use the same technique used in the sequential
search algorithm. Let’s not talk about the second, third, fourth, . . . item in
the list but about the ith item in the list, where i is a variable that takes on
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The value 12,
which was not used63

The pile The largest so far



different values during the execution of the algorithm. Using this idea, a
statement such as

If Ai > largest so far then . . .

can be executed with different values for i. This allows us to check all n values
in the list with a single statement. Initially, i should be given the value 2,
because the first item in the list was automatically set to the largest value.
Therefore, we want to begin our search with the second item in the list.

.

.

.

Set the value of i to 2 
.
.
.

If Ai > largest so far then . . .

What operations should appear after the word then? A check of our earlier dia-
grams shows that the algorithm must reset the values of both largest so far
and location.

If Ai > largest so far then

Set largest so far to Ai

Set location to i

If Ai is not larger than largest so far, then we do not want the algorithm
to do anything. To indicate this, the if/then instruction can include an else
clause that looks something like

Else 

Don’t do anything at all to largest so far and location

This is certainly correct, but instructions that tell us not to do anything are
usually omitted from an algorithm because they do not carry any meaningful
information.

Whether the algorithm resets the values of largest so far and location, it
needs to move on to the next item in the list. Our algorithm refers to Ai, the
ith item in the list, so it can move to the next item by simply adding 1 to the
value of i and repeating the if/then statement. The outline of this iteration
can be sketched as follows:

If Ai > largest so far then 

Set largest so far to Ai

Set location to i

Add 1 to the value of i
.
.
.

2.3 Examples of Algorithmic Problem Solving LEVEL 1 65



However, we do not want the loop to repeat forever. (Remember that one of
the properties of an algorithm is that it must eventually halt.) What stops this
iterative process? When does the algorithm display an answer and terminate
execution?

The conditional operation “If Ai > largest so far then . . .” is meaningful
only if Ai represents an actual element of list A. Because A contains n elements
numbered 1 to n, the value of i must be in the range 1 to n. If i > n, then the
loop has searched the entire list, and it is finished. The algorithm can now
print the values of both largest so far and location. Using our looping primi-
tive, we can describe this iteration as follows:

While (i ≤ n) do

If Ai > largest so far then 

Set largest so far to Ai

Set location to i

Add 1 to the value of i

End of the loop 

We have now developed all the pieces of the algorithm and can finally put
them together. Figure 2.14 shows the completed Find Largest algorithm. Note
that the steps are not numbered. This omission is quite common, especially as
algorithms get larger and more complex.
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Find Largest Algorithm

Get a value for n, the size of the list 
Get values for A1, A2, . . . , An, the list to be searched
Set the value of largest so far to A1

Set the value of location to 1 
Set the value of i to 2 
While (i n) do

If Ai > largest so far then 
Set largest so far to Ai

Set location to i
Add 1 to the value of i

End of the loop 
Print out the values of largest so far and location
Stop

≤

Algorithm to Find the Largest
Value in a List

FIGURE 2.14

1. Modify the algorithm of Figure 2.14 so that it finds the smallest
value in a list rather than the largest. Describe exactly what
changes were necessary.

2. Describe exactly what would happen to the algorithm in Figure 2.14
if you tried to apply it to an empty list of length n = 0. Describe
exactly how you could fix this problem.

3. Describe exactly what happens to the algorithm in Figure 2.14 when
it is presented with a list with exactly one item, i.e., n = 1.

PRACTICE PROBLEMS
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Like Laboratory Experience 2, this laboratory also uses ani-
mation to help you better understand the concept of algo-
rithm design and execution.  It presents an animation of
the Find Largest algorithm discussed in the text and shown
in Figure 2.14. An example of what you will see on the
screen when you run this lab is shown here.

This laboratory experience allows you to create a list
of data and watch as the algorithm attempts to determine
the largest numerical value contained in that list. You will
be able to observe dynamic changes to the variables index,
location, and maximum, and will be able to see how values
are set and discarded as the algorithm executes. Like the
previous laboratory experience, it is intended to give you a
deeper understanding of how this algorithm works by
allowing you to observe its behavior.

LABORATORY
EXPERIENCE 3

2.3.4 Example 4: Meeting Your Match

The last algorithm we develop in this chapter solves a common problem in
computer science called pattern matching. For example, imagine that you
have a collection of Civil War data files that you wish to use as resource mate-
rial for an article on Abraham Lincoln. Your first step would probably be to
search these files to locate every occurrence of the text patterns “Abraham
Lincoln,” “A. Lincoln,” and “Lincoln.” The process of searching for a special
pattern of symbols within a larger collection of information is called pattern
matching. Most good word processors provide this service as a menu item
called Find or something similar. Furthermore, most Web search engines try to
match your search keys to the keywords that appear on a Web page.

Pattern matching can be applied to almost any kind of information, includ-
ing graphics, sound, and pictures. For example, an important medical application
of pattern matching is to input an X-ray or CT scan image into a computer and
then have the computer search for special patterns, such as dark spots, which
represent conditions that should be brought to the attention of a physician. This
can help speed up the interpretation of X-rays and avoid the problem of human
error caused by fatigue or oversight. (Computers do not get tired or bored!)

One of the most interesting and exciting applications of pattern matching
is assisting microbiologists and geneticists studying and mapping the human
genome, the basis for all human life. The human genome is composed of a



sequence of approximately 3.5 billion nucleotides, each of which can be one of
only four different chemical compounds. These compounds (adenine, cytosine,
thymine, guanine), are usually referred to by the first letter of their chemical
names: A, C, T, and G. Thus, the basis for our existence can be rendered in a
very large “text file” written in a four-letter alphabet.

. . . T C G G A C T A A C A T C G G G A T C G A G A T G . . .

Sequences of these nucleotides are called genes. There are about 25,000 genes
in the human genome, and they determine virtually all of our physical
characteristics—sex, race, eye color, hair color, and height, to name just a few.
Genes are also an important factor in the occurrence of certain diseases. A
missing or flawed nucleotide can result in one of a number of serious genetic
disorders, such as Down syndrome or Tay-Sachs disease. To help find a cure for
these diseases, researchers are attempting to map the entire human genome—
to locate individual genes that, when exhibiting a certain defect, cause a spe-
cific malady. A gene is typically composed of thousands of nucleotides, and
researchers generally do not know the entire sequence. However, they may
know what a small portion of the gene—say, a few hundred nucleotides—
looks like. Therefore, to search for one particular gene, they must match the
sequence of nucleotides that they do know, called a probe, against the entire
3.5 billion-element genome to locate every occurrence of that probe. From this
matching information, researchers hope to be able to isolate specific genes.
For example,

Genome: . . . T C A G G C T A A T C G T A G G . . .

Probe: T A A T C a match

When a match is found, researchers examine the nucleotides located before
and after the probe to see whether they have located the desired gene and, if
so, to see whether the gene is defective. Physicians hope someday to be able
to “clip out” a bad sequence and insert in its place a correct sequence.

This application of pattern matching dispels any notion that the algorithms
discussed here—sequential search (Figure 2.13), Find Largest (Figure 2.14), and
pattern matching—are nothing more than academic exercises that serve as
examples for introductory classes but have absolutely no role in solving real-
world problems. The algorithms that we have presented (or will present) are
important, either in their own right or as building blocks for algorithms used by
physical scientists, mathematicians, engineers, and social scientists.

Let’s formally define the pattern-matching problem as follows:

You will be given some text composed of n characters that will be
referred to as T1 T2 . . . Tn. You will also be given a pattern of m char-
acters, m ≤ n, that will be represented as P1 P2 . . . Pm. The algorithm
must locate every occurrence of the pattern within the text. The out-
put of the algorithm is the location in the text where each match
occurred. For this problem, the location of a match is defined to be
the index position in the text where the match begins.

For example, if our text is the phrase “to be or not to be, that is the question”
and the pattern for which we are searching is the word to, then our algorithm
produces the following output:
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Text: to be or not to be, that is the question

Pattern: to 

Output: Match starting at position 1.

Text: to be or not to be, that is the question

Pattern: to

Output: Match starting at position 14. (The t is in position 14, 
including blanks.)

The pattern-matching algorithm that we will implement is composed of
two parts. In the first part, the pattern is aligned under a specific position of
the text, and the algorithm determines whether there is a match at that given
position. The second part of the algorithm “slides” the entire pattern ahead
one character position. Assuming that we have not gone beyond the end of
the text, the algorithm returns to the first part to check for a match at this
new position. Pictorially, this algorithm can be represented as follows:

Repeat the following two steps.

STEP 1: The matching process: T1 T2 T3 T4 T5 …

P1 P2 P3

STEP 2: The slide forward: T1 T2 T3 T4 T5 …

1-character slide � P1 P2 P3

The algorithm involves repetition of these two steps beginning at position 1
of the text and continuing until the pattern has slid off the right hand end of
the text.

A first draft of an algorithm that implements these ideas is shown in
Figure 2.15, in which not all of the operations are expressed in terms of the
basic algorithmic primitives of Figure 2.9. While statements like “Set k,
the starting location for the attempted match, to 1” and “Print the value of
k, the starting location of the match” are just fine, the instructions “Attempt
to match every character in the pattern beginning at position k of the text”
and, “Keep going until we have fallen off the end of the text” are certainly not
primitives. On the contrary, they are both high-level operations that, if writ-
ten out using only the operations in Figure 2.9, would expand into many
instructions.

Is it okay to use high-level statements like this in our algorithm?
Wouldn’t their use violate the requirement stated in Chapter 1 that algorithms
be constructed only from unambiguous operations that can be directly exe-
cuted by our computing agent?

In fact it is perfectly acceptable, and quite useful, to use high-level state-
ments like this during the initial phase of the algorithm design process. When
starting to design an algorithm, we may not want to think only in terms of ele-
mentary operations such as input, computation, output, conditional, and itera-
tion. Instead, we may want to express our proposed solution in terms of high-level
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and broadly defined operations that represent dozens or even hundreds of primi-
tive instructions. Here are some examples of these higher-level constructs:

• Sort the entire list into ascending order.

• Attempt to match the entire pattern against the text.

• Find a root of the equation.

Using instructions like these in an algorithm allows us to postpone worrying about
how to implement that operation and lets us focus instead on other aspects of the
problem. Eventually, we will come back to these statements and either express
them in terms of our available primitives or use existing “building block” algo-
rithms taken from a program library. However, we can do this at our convenience.

The use of high-level instructions during the design process is an example of
one of the most important intellectual tools in computer science—abstraction.
Abstraction refers to the separation of the high-level view of an entity or an oper-
ation from the low-level details of its implementation. It is abstraction that allows
us to understand and intellectually manage any large, complex system, whether it
is a mammoth corporation, a complex piece of machinery, or an intricate and very
detailed algorithm. For example, the president of General Motors views the com-
pany in terms of its major corporate divisions and very high-level policy issues,
not in terms of every worker, every supplier, and every car. Attempting to manage
the company at that level of detail would drown the president in a sea of detail.

In computer science we frequently use abstraction because of the com-
plexity of hardware and software. For example, abstraction allows us to view
the hardware component called “memory” as a single, indivisible high-level
entity without paying heed to the billions of electronic devices that go into
constructing a memory unit. (Chapter 4 examines how computer memories are
built, and it makes extensive use of abstraction.) In algorithm design and
software development, we use abstraction whenever we think of an operation
at a high level, and temporarily ignore how we might actually implement that
operation. This allows us to decide which details to address now and which to
postpone. Viewing an operation at a high level of abstraction and fleshing out
the details of its implementation at a later time constitute an important com-
puter science problem-solving strategy called top-down design.

Ultimately, however, we have to describe how each of these high-level
abstractions can be represented using the available algorithmic primitives.
The fifth line of the first draft of the pattern-matching algorithm shown in
Figure 2.15 reads:
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Get values for n and m, the size of the text and the pattern, respectively 
Get values for both the text T1 T2 . . . Tn and the pattern P1 P2 . . . Pm

Set k, the starting location for the attempted match, to 1 
Keep going until we have fallen off the end of the text 

Attempt to match every character in the pattern beginning at 
position k of the text (this is step 1 from the previous page) 

If there was a match then 
Print the value of k, the starting location of the match 

Add 1 to k, which slides the pattern forward one position (this is step 2)
End of the loop 
Stop

First Draft of the Pattern-
Matching Algorithm

FIGURE 2.15



Attempt to match every character in the pattern beginning at position k of
the text.

When this statement is reached, the pattern is aligned under the text begin-
ning with the kth character. Pictorially, we are in the following situation:

Text: T1 T2 T3 . . . Tk Tk+1Tk+2 . . . Tk+(m-1) . . .

Pattern: P1 P2 P3 . . . Pm

The algorithm must now perform the following comparisons:

Compare P1 to Tk

Compare P2 to Tk+1

Compare P3 to Tk+2
.
.
.

Compare Pm to Tk+(m-1)

If the members of every single one of these pairs are equal, then there is a
match. However, if even one pair is not equal, then there is no match, and the
algorithm can immediately cease making comparisons at this location. Thus,
we must construct a loop that executes until one of two things happens—it
has either completed m successful comparisons (i.e., we have matched the
entire pattern) or it has detected a mismatch. When either of these conditions
occurs the algorithm stops; however, if neither condition has occurred, the
algorithm must keep going. Algorithmically, this iteration can be expressed in
the following way. (Remember that k is the starting location in the text.)

Set the value of i to 1 

Set the value of Mismatch to NO 

While both (i ≤ m) and (Mismatch = NO) 

If  Pi ≠ Tk+(i-1) then

Set Mismatch to YES 

Else 

Increment i by 1 (to move to the next character) 

End of the loop

When the loop has finished, we can determine whether there has been a
match by examining the current value of the variable Mismatch. If Mismatch is
YES, then there was not a match because at least one of the characters was out
of place. If Mismatch is NO, then every character in the pattern matched its
corresponding character in the text, and there is a match.

If Mismatch = NO then 

Print the message ‘There is a match at position’ 

Print the value of k
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Regardless of whether there was a match at position k, we must add 1 to k to
begin searching for a match at the next position. This is the “sliding forward”
step diagrammed earlier.

The final high-level statement in Figure 2.15 that needs to be expanded is
the loop on line 4.

Keep going until we have fallen off the end of the text

What does it mean to “fall off the end of the text”? Where is the last possible
place that a match can occur? To answer these questions, let’s draw a diagram
in which the last character of the pattern, Pm, lines up directly under Tn, the
last character of the text.

Text: T1 T2 T3 . . . Tn-m+1 …  Tn-2 Tn-1 Tn

Pattern: P1 …  Pm-2 Pm-1 Pm

This diagram illustrates that the last possible place a match could occur is
when the first character of the pattern is aligned under the character at posi-
tion Tn-m+1 of the text, because  Pm is aligned under Tn, Pm-1 is under Tn-1, Pm-2
is aligned under Tn-2, etc. Thus, P1, which can be written as Pm-(m-1), is aligned
under Tn-(m-1), which is Tn-m+1. If we tried to slide the pattern forward any fur-
ther, we would truly “fall off” the right hand end of the text. Therefore, our
loop must terminate when k, the starting point for the match, strictly exceeds
the value of n-m+1. We can express this as follows:

While (k ≤ (n - m+1)) do

Now we have all the pieces of our algorithm in place. We have expressed
every statement in Figure 2.15 in terms of our basic algorithmic primitives and
are ready to put it all together. The final draft of the pattern-matching algo-
rithm is shown in Figure 2.16.
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Pattern-Matching Algorithm

Get values for n and m, the size of the text and the pattern, respectively 
Get values for both the text T1 T2 … Tn and the pattern P1 P2 … Pm

Set k, the starting location for the attempted match, to 1 
While (k (n - m +1)) do

Set the value of i to 1 
Set the value of Mismatch to NO 
While both (i m) and (Mismatch = NO) do

If  Pi Tk+(i-1) then
Set Mismatch to YES 

Else 
Increment i by 1 (to move to the next character) 

End of the loop
If Mismatch = NO then 

Print the message ‘There is a match at position’
Print the value of k

Increment k by 1
End of the loop
Stop, we are finished

�

≤

≤

Final Draft of the Pattern-
Matching Algorithm

FIGURE 2.16 
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1. Consider the following “telephone book.”

Name Number

Smith 555-1212 
Jones 834-6543 
Adams 921-5281 
Doe 327-8900 

Trace the sequential search algorithm of Figure 2.13 using each of
the following NAMEs and show the output produced.

a. Adams
b. Schneider

2. Consider the following list of seven data values.

22, 18, 23, 17, 25, 30, 2

Trace the Find Largest algorithm of Figure 2.14 and show the output
produced.

3. Consider the following text.

Text: A man and a woman

Trace the pattern-matching algorithm of Figure 2.16 using the 
2-character pattern ‘an’ and show the output produced.

4. Explain exactly what would happen to the algorithm of Figure 2.16
if m, the length of the pattern, were greater than n, the length of
the text.

PRACTICE PROBLEMS

2.4 Conclusion

You have now had a chance to see the step-by-step design and development of
some interesting, nontrivial algorithms. You have also been introduced to a
number of important concepts related to problem solving, including algorithm
design and discovery, pseudocode, control statements, iteration, libraries,
abstraction, and top-down design. However, this by no means marks the end
of our discussion of algorithms. The development of a correct solution to a
problem is only the first step in creating a useful solution.

Designing a technically correct algorithm to solve a given problem is only
part of what computer scientists do. They must also ensure that they have created
an efficient algorithm that generates results quickly enough for its intended users.
Chapter 1 described a brute force chess algorithm that would, at least theoreti-
cally, play perfect chess but that would be unusable because it would take millions
of centuries to make its first move. Similarly, a directory assistance program that
takes 10 minutes to locate a telephone number would be of little or no use. A
caller would surely hang up long before the answer was found. This practical



concern for efficiency and usefulness, in addition to correctness, is one of the
hallmarks of computer science.

Therefore, after developing a correct algorithm, we must analyze it thor-
oughly and study its efficiency properties and operating characteristics. We
must ask ourselves how quickly it will give us the desired results and whether
it is better than other algorithms that solve the same problem. This analysis,
which is the central topic of Chapter 3, enables us to create algorithms that
are not only correct, but elegant, efficient, and useful as well.
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1. Write pseudocode instructions to carry out each of the
following computational operations.
a. Determine the area of a triangle given values for the

base b and the height h.
b. Compute the interest earned in 1 year given the start-

ing account balance B and the annual interest rate I
and assuming simple interest, that is, no compounding.
Also determine the final balance at the end of the year.

c. Determine the flying time between two cities given
the mileage M between them and the average speed of
the airplane.

2. Using only the sequential operations described in
Section 2.2.2, write an algorithm that gets values for
the starting account balance B, annual interest rate I,
and annual service charge S. Your algorithm should out-
put the amount of interest earned during the year and
the final account balance at the end of the year. Assume
that interest is compounded monthly and the service
charge is deducted once, at the end of the year.

3. Using only the sequential operations described in 
Section 2.2.2, write an algorithm that gets four numbers
corresponding to scores received on three semester tests
and a final examination. Your algorithm should compute
and display the average of all four tests, weighting the
final exam twice as heavily as a regular test.

4. Write an algorithm that gets the price for item A plus the
quantity purchased. The algorithm prints the total cost,
including a 6% sales tax. 

5. Write an if/then/else primitive to do each of the follow-
ing operations.
a. Compute and display the value x ÷ y if the value of y is

not 0. If y does have the value 0, then display the
message ‘Unable to perform the division.’

b. Compute the area and circumference of a circle given
the radius r if the radius is greater than or equal to 1.0;
otherwise, you should compute only the circumference.

6. Modify the algorithm of Exercise 2 to include the annual
service charge only if the starting account balance at the
beginning of the year is less than $1,000. If it is greater
than or equal to $1,000, then there is no annual service
charge.

7. Write an algorithm that uses a loop (1) to input 10 pairs
of numbers, where each pair represents the score of a foot-
ball game with the Computer State University (CSU) score
listed first, and (2) for each pair of numbers, determine
whether CSU won or lost. After reading in these 10 pairs of
values, print out the won/lost/tie record of CSU. In
addition, if this record is a perfect 10-0, then print out the
message ‘Congratulations on your undefeated season.’

8. Modify the test-averaging algorithm of Exercise 3 so that it
reads in 15 test scores rather than 4. There are 14 regular
tests and a final examination, which counts twice as much
as a regular test. Use a loop to input and sum the scores.

9. Modify the sales computation algorithm of Exercise 4 so
that after finishing the computation for one item, it
starts on the computation for the next. This iterative
process is repeated until the total cost exceeds $1000.

10. Write an algorithm that is given your electric meter read-
ings (in kilowatt-hours) at the beginning and end of each
month of the year. The algorithm determines your annual
cost of electricity on the basis of a charge of 6 cents per
kilowatt-hour for the first 1,000 kilowatt-hours of each
month and 8 cents per kilowatt-hour beyond 1,000. After
printing out your total annual charge, the algorithm also
determines whether you used less than 500 kilowatt-
hours for the entire year and, if so, prints out a message
thanking you for conserving electricity.

11. Develop an algorithm to compute gross pay. The inputs
to your algorithm are the hours worked per week and the
hourly pay rate. The rule for determining gross pay is to
pay the regular pay rate for all hours worked up to 40,
time-and-a-half for all hours over 40 up to 54, and dou-
ble time for all hours over 54. Compute and display the
value for gross pay using this rule. After displaying one
value, ask the user whether he or she wants to do
another computation. Repeat the entire set of operations
until the user says no.

12. Develop a formal argument that “proves” that the
sequential search algorithm shown in Figure 2.13 cannot
have an infinite loop; that is, prove that it will always
stop after a finite number of operations.

13. Modify the sequential search algorithm of Figure 2.13 so
that it works correctly even if the names in the directory
are not unique, that is, if the desired name occurs more
than once. Your modified algorithm should find every
occurrence of NAME in the directory and print out the tele-
phone number corresponding to every match. In addition,
after all the numbers have been displayed, your algorithm
should print out how many occurrences of NAME were
located. For example, if NAME occurred three times, the
output of the algorithm might look something like this:

528-5638

922-7874

488-2020

A total of three occurrences were located.
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14. Use the Find Largest algorithm of Figure 2.14 to help you
develop an algorithm to find the median value in a list
containing N unique numbers. The median of N numbers
is defined as the value in the list in which approximately
half the values are larger than it and half the values are
smaller than it. For example, consider the following list
of seven numbers.

26, 50, 83, 44, 91, 20, 55

The median value is 50 because three values (20, 26, and
44) are smaller and three values (55, 83, and 91) are
larger. If N is an even value, then the number of values
larger than the median will be one greater than the num-
ber of values smaller than the median.

15. With regard to the Find Largest algorithm of Figure 2.14,
if the numbers in our list were not unique and therefore
the largest number could occur more than once, would
the algorithm find the first occurrence? The last occur-
rence? Every occurrence? Explain precisely how this algo-
rithm would behave when presented with this new
condition.

16. On the sixth line of the Find Largest algorithm of
Figure 2.14 there is an instruction that reads,

While (i ≤ n) do

Explain exactly what would happen if we changed that
instruction to read as follows:
a. While (i ≥ n) do
b. While (i < n) do
c. While (i = n) do

17. On the seventh line of the Find Largest algorithm of
Figure 2.14 is an instruction that reads,

If Ai > largest so far then . . .

Explain exactly what would happen if we changed that
instruction to read as follows:
a. If Ai ≥ largest so far then . . .
b. If Ai < largest so far then . . .

Looking back over your answers to the previous two
questions, what do they say about the importance of 
using the correct relational operation (<, =, >, ≥ , ≤, ≠)
when writing out either an iterative or conditional algo-
rithmic primitive?

18. a. Refer to the pattern-matching algorithm in Figure 2.16.
What is the output of the algorithm as it currently
stands if our text is

Text: We must band together and handle adversity
and we search for the pattern “and”?

b. How could we modify the algorithm so that it finds
only the complete word and rather than the occur-
rence of the character sequence a, n, and d that are
contained within another word, such as band?

19. Refer to the pattern-matching algorithm in Figure 2.16.
Explain how the algorithm would behave if we acciden-
tally omitted the statement on line 16 that says,

Increment k by 1

20. Design an algorithm that is given a positive integer N
and determines whether N is a prime number, that is,
not evenly divisible by any value other than 1 and
itself. The output of your algorithm is either the mes-
sage “not prime,” along with a factor of N, or the 
message “prime.”  

21. Write an algorithm that generates a Caesar cipher—a
secret message in which each letter is replaced by the
one that is k letters ahead of it in the alphabet, in a
circular fashion.  For example, if k = 5, then the letter a
would be replaced by the letter f, and the letter x would
be replaced by the letter c.  (We’ll talk more about
the Caesar cipher and other encryption algorithms in
Chapter 8.) The input to your algorithm is the text to
be encoded, ending with the special symbol “$”, and
the value k. (You may assume that, except for the spe-
cial ending character, the text contains only the 26 let-
ters a . . . z.) The output of your algorithm is the
encoded text. 

22. Design and implement an algorithm that is given as input
an integer value k ≥ 0 and a list of k numbers N1, N2, . . . ,
Nk.  Your algorithm should reverse the order of the numbers
in the list.  That is, if the original list contained:

N1 = 5,  N2 = 13,  N3 = 8,  N4 = 27,  N5 = 10  (k = 5)

then when your algorithm has completed, the values
stored in the list will be:

N1 = 10,  N2 = 27,  N3 = 8,  N4 = 13,  N5 = 5

23. Design and implement an algorithm that gets as input a
list of k integer values N1, N2, . . . , Nk as well as a spe-
cial value SUM.  Your algorithm must locate a pair of val-
ues in the list N that sum to the value SUM.  For example,
if your list of values is 3, 8, 13, 2, 17, 18, 10, and the
value of SUM is 20, then your algorithm would output
either the two values (2, 18) or (3, 17).  If your algo-
rithm cannot find any pair of values that sum to the
value SUM, then it should print out the message ‘Sorry,
there is no such pair of values.’
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1. Design an algorithm to find the root of a function f(x),
where the root is defined as a point x such that f(x) = 0.
Pictorially, the root of a function is the point where the
graph of that function crosses the x-axis.

Your algorithm should operate as follows. Initially it will
be given three values:

1. A starting point for the search 
2. A step size 
3. The accuracy desired 

Your algorithm should begin at the specified starting point
and begin to “walk up” the x-axis in units of step size. After
taking a step, it should ask the question “Have I passed a
root?”  It can determine the answer to this question by see-
ing whether the sign of the function has changed from the
previous point to the current point. (Note that below the
axis the sign of f(x) is negative; above the axis it is positive.
If it crosses the x-axis, it must change sign.) If the algo-
rithm has not passed a root, it should keep walking up the
x-axis until it does. This is expressed pictorially as:

When the algorithm passes a root, it must do two
things. First, it changes the sign of step size so that it
starts walking in the reverse direction, because it is now
past the root. Second, it multiplies step size by 0.1, so
our steps are 1/10 as big as they were before. We now
repeat the operation described above, walking down the
x-axis until we pass the root.

Again, the algorithm changes the sign of step size
to reverse direction and reduces it to 1/10 its previous
size. As the diagrams show, we are slowly zeroing in on
the root—going past it, turning around, going past it,
turning around, and so forth. This iterative process stops
when the algorithm passes a root and the step size is
smaller than the desired accuracy. It has now bracketed
the root within an interval that is smaller than the accu-
racy we want. At this point it should print out the mid-
point of the interval and terminate.

There are many special cases that this algorithm
must deal with, but in your solution you may disregard
them. Assume that you will always encounter a root in
your “travels” along the x-axis. After creating a solution,
you may wish to look at some of these special cases,
such as a function that has no real roots, a starting point
that is to the right of all the roots, and two roots so
close together that they fall within the same step.

2. One of the most important and widely used classes of algo-
rithms in computer science is sorting, the process of
putting a list of elements into a predefined order, usually
numeric or alphabetic. There are many different sorting
algorithms, and we will look at some of them in Chapter 3.
One of the simplest sorting algorithms is called selection
sort, and it can be implemented using the tools that you
have learned in this chapter. It is also one of the easiest
to understand as it mimics how we often sort collections
of values when we must do it by hand.

Assume that we are given a list named A, containing
eight values that we want to sort into ascending order,
from smallest to largest:

A: 23 18 66 9 21 90 32 4

Position: 1 2 3 4 5 6 7 8

We first look for the largest value contained in positions
1 to 8 of list A. We can do this using something like the
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Find Largest algorithm that appears in Figure 2.14. In
this case the largest value is 90, and it appears in posi-
tion 6. Since this is the largest value in A, we swap it
with the value in position 8 so that it is in its correct
place at the back of the list. The list is now partially
sorted from position 8 to position 8:

A: 23 18 66 9 21 4 32 90

Position: 1 2 3 4 5 6 7 8

We now search the array for the second largest value.
Since we know that the largest value is contained in
position 8, we need to search only positions 1 to 7 of list
A to find the second largest value. In this case the sec-
ond largest value is 66, and it appears in position 3. We
now swap the value in position 3 with the value in posi-
tion 7 to get the second largest value into its correct
location. This produces the following:

A: 23 18 32 9 21 4 66 90

Position: 1 2 3 4 5 6 7 8

The list is now partially sorted from position 7 to position 8,
with those two locations holding the two largest values. The
next search goes from position 1 to position 6 of list A, this
time trying to locate the third largest value, and we swap
that value with the number in position 6. After repeating

this process 7 times, the list is completely sorted. (That is
because if the last 7 items are in their correct place, the
item in position 1 must also be in its correct place.)

Using the Find Largest algorithm shown in Figure 2.14
(which may have to be slightly modified) and the primitive
pseudocode operations listed in Figure 2.9, implement the
selection sort algorithm that we have just described.
Assume that n, the size of the list, and the n-element list A
are input to your algorithm. The output of your algorithm
should be the sorted list.

3. Most people are familiar with the work of the great math-
ematicians of ancient Greece and Rome, such as
Archimedes, Euclid, Pythagoras, and Plato. However, a
great deal of important work in arithmetic, geometry,
algebra, number theory, and logic was carried out by
scholars working in Egypt, Persia, India, and China. For
example, the concept of zero was first developed in
India, and positional numbering systems (like our own
decimal system) were developed and used in China,
India, and the Middle East long before they made their
way to Europe. Read about the work of some mathemati-
cian (such as Al-Khowarizmi) from these or other places,
and write a paper describing his or her contributions to
mathematics, logic, and (ultimately) computer science.
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3.1 Introduction

Finding algorithms to solve problems of interest is an important part of com-
puter science. Any algorithm that is developed to solve a specific problem has,
by definition, certain required characteristics (see the formal definition in
Chapter 1, Section 1.3.1), but are some algorithms better than others?  That
is, are there other desirable but non-essential characteristics of algorithms?

Consider the automobile: there are certain features that are part of the “defi-
nition” of a car, such as four wheels and an engine. These are the basics. However,
when purchasing a car, we almost certainly take into account other things, such
as ease of handling, style, and fuel efficiency. This analogy is not as superficial as
it seems—the properties that make better algorithms are in fact very similar.

3.2 Attributes of Algorithms

First and foremost, we expect correctness from our algorithms. An algorithm
intended to solve a problem must, again by formal definition, give a result and
then halt. But this is not enough; we also demand that the result be a correct
solution to the problem. One could consider this an inherent property of the
definition of an algorithm (like a car being capable of transporting us where
we want to go), but it bears emphasizing. An elegant and efficient algorithm
that gives wrong results for the problem at hand is worse than useless. It can
lead to mistakes that are enormously expensive or even fatal.

Determining that an algorithm gives correct results may not be as straight-
forward as it seems. For one thing, our algorithm may indeed be providing correct
results—but to the wrong problem. This can happen when we design an algorithm
without a thorough understanding of the real problem we are trying to solve, and
it is one of the most common causes of “incorrect” algorithms.  Also, once we
understand the problem, the algorithm must provide correct results for all possible
input values, not just for those values that are the most likely to occur. Do we
know what all those correct results are? Probably not, or we would not be writing
an algorithm to solve this problem. But there may be a certain standard against
which we can check the result for reasonableness, thus giving us a way to deter-
mine when a result is obviously incorrect. In some cases, as noted in Chapter 1,
the correct result may be an error message saying that there is no correct answer.
There may also be an issue of the accuracy of the result we are willing to accept as
correct. If the “real” answer is π, for example, then we can only approximate its
decimal value. Is 3.14159 close enough to “correct?” Is 3.1416 close enough? What
about 3.14? Computer scientists often summarize these two views of correctness
by asking, Are we solving the right problem? Are we solving the problem right?



If an algorithm to solve a problem exists and has been determined, after
all the considerations of the previous paragraph, to give correct results, what
more can we ask? To many mathematicians, this would be the end of the mat-
ter. After all, once a solution has been obtained and shown to be correct, it is
no longer of interest (except possibly for use in obtaining solutions to other
problems). This is where computer science differs significantly from theoreti-
cal disciplines such as pure mathematics and begins to take on an “applied”
character more closely related to engineering or applied mathematics. The
algorithms developed by computer scientists are not merely of academic inter-
est. They are also intended to be used.

Suppose, for example, that a road to the top of a mountain is to be built.
An algorithmic solution exists that gives a correct answer for this problem in
the sense that a road is produced: Just build the road straight up the moun-
tain. Problem solved. But the highway engineer knows that the road must be
usable by real traffic and that this constraint limits the grade of the road. The
existence and correctness of the algorithm is not enough; there are practical
considerations as well.

The practical considerations for computer science arise because the algo-
rithms developed are executed in the form of computer programs running on real
computers to solve problems of interest to real people. Let’s consider the “people
aspect” first. A computer program is seldom written to be used only once to solve
a single instance of a problem. It is written to solve many instances of that prob-
lem with many different input values, just as the sequential search algorithm of
Chapter 2 would be used many times with different lists of names and different
target NAME values. Furthermore, the problem itself does not usually “stand
still.” If the program is successful, people will want to use it for slightly different
versions of the problem, which means they will want the program slightly
enhanced to do more things. After a program is written, it therefore needs to be
maintained, both to fix any errors that are uncovered through repeated usage
with different input values, and to extend the program to meet new require-
ments. Much time and much money are devoted to program maintenance. The
person who has to modify a program, either to correct errors or to expand its
functionality, often is not the person who wrote the original program. To make
program maintenance as easy as possible, the algorithm the program uses should
be easy to understand. Ease of understanding, clarity, “ease of handling”—
whatever you want to call it—is a desirable characteristic of an algorithm.

On the other hand, there is a certain satisfaction in having an “elegant”
solution to a problem. Elegance is the algorithmic equivalent of style. The
classic example, in mathematical folklore, is the story of the German mathe-
matician Karl Frederick Gauss (1777–1855) who was asked as a schoolchild
to add up the numbers from 1 to 100. The straightforward algorithm of
adding 1 + 2 + 3 + 4 + . . . + 100 by adding one number at a time can be
expressed in pseudocode as

1. Set the value of sum to 0

2. Set the value of x to 1

3. While x is less than or equal to 100 do steps 4 and 5

4. Add x to sum

5. Add 1 to the value of x

6. Print the value of sum

7. Stop
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This algorithm can be executed to find that the sum has the value 5,050. It is
fairly easy to read this pseudocode and understand how the algorithm works.
It is also fairly clear that if we want to change this algorithm to one that adds
the numbers from 1 to 1,000, we only have to change the loop condition to

3. While x is less than or equal to 1,000 do steps 4 and 5

However, Gauss noticed that the numbers from 1 to 100 could be grouped into
50 pairs of the form

1 + 100 = 101
2 + 99 = 101
.
.
.
50 + 51 = 101

so that the sum equals 50 3 101 = 5,050. This is certainly an elegant and
clever solution, but is it easy to understand? If a computer program just said
to multiply

with no further explanation, we might guess how to modify the program to add
up the first 1,000 numbers, but would we really grasp what was happening
enough to be sure the modification would work? (The Practice Problems at the
end of this section discuss this.) Sometimes elegance and ease of understand-
ing work at cross-purposes; the more elegant the solution, the more difficult it
may be to understand. Do we win or lose if we have to trade ease of under-
standing for elegance?  Of course, if an algorithm has both characteristics—
ease of understanding and elegance—that’s a plus.  

Now let’s consider the real computers on which programs run. Although
these computers can execute instructions very rapidly and have some memory
in which to store information, time and space are not unlimited resources. The
computer scientist must be conscious of the resources consumed by a given
algorithm, and if there is a choice between two (correct) algorithms that per-
form the same task, the one that uses fewer resources is preferable. Efficiency
is the term used to describe an algorithm’s careful use of resources. In addi-
tion to correctness, ease of understanding, and elegance, efficiency is an
extremely desirable attribute of an algorithm.

Because of the rapid advances in computer technology, today’s computers
have much more memory capacity and execute instructions much more rapidly
than computers of just a few years ago. Efficiency in algorithms may seem to
be a moot point; we can just wait for the next generation of technology and it
won’t matter how much time or space is required. There is some truth to this,
but as computer memory capacity and processing speed increase, people find
more complex problems to be solved, so the boundaries of the computer’s
resources continue to be pushed. Furthermore, we will see in this chapter that
there are algorithms that consume so many resources that they will never be
practical, no matter what advances in computer technology occur.

a
100
2

b101
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How shall we measure the time and space consumed by an algorithm to
determine whether it is efficient? Space efficiency can be judged by the
amount of information the algorithm must store in the computer’s memory to
do its job, in addition to the initial data on which the algorithm is operating.
If it uses only a few extra memory locations while processing the input data,
the algorithm is relatively space efficient. If the algorithm requires almost as
much additional storage as the input data itself takes up, or even more, then
it is relatively space-inefficient.

How can we measure the time efficiency of an algorithm? Consider the
sequential search algorithm shown in Figure 2.13, which looks up a name in a
telephone directory where the names are not arranged in alphabetical order.
How about running the algorithm on a real computer and timing it to see how
many seconds (or maybe what small fraction of a second) it takes to find a
name or announce that the name is not present? The difficulty with this
approach is that there are three factors involved, each of which can affect the
answer to such a degree as to make whatever number of seconds we come up
with rather meaningless.

1. On what computer will we run the algorithm? Shall we use a modest
laptop or a supercomputer capable of doing many trillions of calcula-
tions per second?

2. What telephone book (list of names) will we use: New York City or
Yeehaw Junction, Florida?

3. What name will we try to find? What if we pick a name that happens
to be first in the list? What if it happens to be last in the list?

Simply timing the running of an algorithm is more likely to reflect machine
speed or variations in input data than the efficiency (or lack thereof) of the
algorithm itself.

This is not to say that you can’t obtain meaningful information by timing
an algorithm. For example, using the same input data (searching for Karlenski,
say, in the New York City phone book) and timing the algorithm on different
machines gives a comparison of machine speeds, because the task is identical.
Using the same machine and the same list of names, but searching for differ-
ent names, gives an indication of how the choice of NAME affects the algo-
rithm’s running time on that particular machine. This type of comparative
timing is called benchmarking. Benchmarks are useful for rating one machine
against another and for rating how sensitive a particular algorithm is with
respect to variations in input on one particular machine.

However, what we mean by an algorithm’s time efficiency is an indication
of the amount of “work” required by the algorithm itself. It is a measure of the
inherent efficiency of the method, independent of the speed of the machine
on which it executes or the specific input data being processed. Is the amount
of work an algorithm does the same as the number of instructions it executes?
Not all instructions do the same things, so perhaps they should not all be
“counted” equally. Some instructions are carrying out work that is fundamen-
tal to the way the algorithm operates, whereas other instructions are carrying
out peripheral tasks that must be done in support of the fundamental work.
To measure time efficiency, we identify the fundamental unit (or units) of
work of an algorithm and count how many times the work unit is executed.
Later in this chapter we will see why we can ignore peripheral tasks.  
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1. Use Gauss’s approach to find a formula for the sum of the numbers
from 1 to n,

1 + 2 + 3 + . . . + n

where n is an even number. Your formula will be an expression
involving n.

2. Test your formula from Problem 1 for the following sums.

a. 1 + 2
b. 1 + 2 + . . . + 6
c. 1 + 2 + . . . + 10
d. 1 + 2 + . . . + 100
e. 1 + 2 + . . . + 1000

3. Now see if the same formula from Problem 1 works when n is odd;
try it on

a. 1 + 2 + 3
b. 1 + 2 + . . . + 5
c. 1 + 2 + . . . + 9

PRACTICE PROBLEMS

1. Get values for NAME, n, N1, . . . ,Nn and T1, . . . ,Tn

2. Set the value of i to 1 and set the value of Found to NO
3. While (Found 5 NO) and (i # n) do steps 4 through 7
4. If NAME is equal to the i th name on the list, Ni, then
5. Print the telephone number of that person, Ti

6. Set the value of Found to YES
Else (NAME is not equal to Ni)

7. Add 1 to the value of i
8. If (Found 5 NO) then
9. Print the message ‘Sorry, this name is not in the directory’

10. Stop

Sequential Search Algorithm

FIGURE 3.1

3.3 Measuring Efficiency

The study of the efficiency of algorithms is called the analysis of algorithms,
and it is an important part of computer science. As a first example of the
analysis of an algorithm, we’ll look at the sequential search algorithm.

3.3.1 Sequential Search

The pseudocode description of the sequential search algorithm from Chapter 2
appears in Figure 3.1, where we have assumed that the list contains n entries
instead of 10,000 entries.



The central unit of work is the comparison of the NAME being searched for
against a name in the list. The essence of the algorithm is the repetition of
this task against successive names in the list until NAME is found or the list is
exhausted. The comparison takes place at step 4, within the loop composed of
steps 4 through 7. Peripheral tasks include setting the initial value of the
index i, writing the output, adjusting Found, and moving the index forward in
the list of names. Why are these considered peripheral tasks?

Setting the initial value of the index and the initial value of Found requires
executing a single instruction, done at step 2. Writing output requires executing
a single instruction, either at step 5 if NAME is in the list, or at step 9 if NAME
is not in the list. Note that instruction 5, although it is part of the loop, writes
output at most once (if NAME equals Ni). Similarly, setting Found to YES occurs
at most once (if NAME equals Ni) at step 6. We can ignore the small contribution
of these single-instruction executions to the total work done by the algorithm.

Moving the index forward is done once for each comparison, at step 7. We
can get a good idea of the total amount of work the algorithm does by simply
counting the number of comparisons and then multiplying by some constant
factor to account for the index-moving task. The constant factor could be 2
because we do one index move for each comparison, so we would double the
work. It could be less because it is less work to add 1 to i than it is to compare
NAME letter by letter against Ni. As we will see later, the precise value of this
constant factor is not very important.

So again, the basic unit of work in this algorithm is the comparison of
NAME against a list element. One comparison is done at each pass through the
loop in steps 4 through 7, so we must ask how many times the loop is exe-
cuted. Of course, this depends on when, or if, we find NAME in the list.

The minimum amount of work is done if NAME is the very first name in the
list. This requires only one comparison, because NAME has then been found and
the algorithm exits the loop after only one pass. This is the best case, requiring
the least work. The worst case, requiring the maximum amount of work, occurs
if NAME is the very last name in the list, or is absent.  In either of these situa-
tions, NAME must be compared against all n names in the list before the loop
terminates because FOUND gets set to YES (if NAME is the last name on the list)
or because the value of the index i exceeds n (if NAME is not in the list).

When NAME occurs somewhere in the middle of the list, it requires some-
where between 1 (the best case) and n (the worst case) comparisons. If we were
to run the sequential search algorithm many times with random NAMEs occur-
ring at various places in the list and count the number of comparisons done
each time, we would find that the average number of comparisons done is
about n/2. (The exact average is actually slightly higher than n/2; see Exercise
4 at the end of the chapter.) It is not hard to explain why an average of approx-
imately n/2 comparisons are done (or the loop is executed approximately n/2
times) when NAME is in the list. If NAME occurs halfway down the list, then
roughly n/2 comparisons are required; random NAMEs in the list occur before
the halfway point about half the time and after the halfway point about half
the time, and these cases of less work and more work balance out.

This means that the average number of comparisons needed to find a
NAME that occurs in a 10-element list is about 5, in a 100-element list about
50, and in a 1,000-element list about 500. On small values of n—say, a few
hundred or a few thousand names—the values of n/2 (the average case) or n
(the worst case) are small enough that a computer could execute the
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algorithm quickly and get the desired answer in a fraction of a second. However,
computers are generally used to solve not tiny problems but very large ones.
Therefore, we are usually interested in the behavior of an algorithm as the size
of a problem (n) gets very, very large. For example, in the New York City tele-
phone directory, n may be as large as 20,000,000. If the sequential search algo-
rithm were executed on a computer that could do 50,000 comparisons per
second, it would require on the average about

or 3 1/3 minutes just to do the comparisons necessary to locate a specific
name. Including the constant factor for advancing the index, the actual time
needed would be even greater. It would require almost 7 minutes just to do
the comparisons required to determine that a name was not in the directory!
Sequential search is not sufficiently time-efficient for large values of n to be
useful as a telephone directory lookup algorithm.

Information about the number of comparisons required to perform the
sequential search algorithm on a list of n names is summarized in Figure 3.2.
Note that the values for both the worst case and the average case depend on
n, the number of names in the list. The bigger the list, the more work must be
done to search it.  Few algorithms do the same amount of work on large inputs
as on small inputs, simply because most algorithms process the input data,
and more data to process means more work. The work an algorithm does can
usually be expressed in terms of a formula that depends on the size of the
problem input. In the case of searching a list of names, the input size is the
length of the list. 

Let’s say a word about the space efficiency of sequential search. The algo-
rithm stores the list of names and the target NAME as part of the input. The
only additional memory required is storage for the index value i and the Found
indicator. Two single additional memory locations are insignificant compared
to the size of the list of names, just as executing a single instruction to ini-
tialize the value of i and Found is insignificant beside the repetitive compari-
son task. Therefore, sequential search uses essentially no more memory
storage than the original input requires, so it is very space-efficient.

3.3.2 Order of Magnitude—Order n

When we analyzed the time efficiency of the sequential search algorithm, we
glossed over the contribution of the constant factor for the peripheral work.
To see why this constant factor doesn’t particularly matter, we need to under-
stand a concept called order of magnitude.

The worst-case behavior of the sequential search algorithm on a list of n
names requires n comparisons, and if c is a constant factor representing the

20,000,000
2

 comparisons 3
1

50,000
 seconds>comparison 5 200 seconds

86 LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

Number of Comparisons to Find
NAME in a List of n Names
Using Sequential Search

FIGURE 3.2
BEST CASE WORST CASE AVERAGE CASE

1 n n/2



peripheral work, it requires cn total work. Suppose that c has the value 2.
Then the values of n and 2n are

n 2n

1 2
2 4
3 6

and so on

These values are shown in Figure 3.3, which illustrates how the value of 2n,
which is the total work, changes as n changes. We can add to this graph to show
how the value of cn changes as n changes, where c = 1 or c = 1/2 as well as c = 2
(see Figure 3.4; these values of c are completely arbitrary). Figure 3.5 presents a
different view of the growth rate of cn as n changes for these three values of c.

Both Figure 3.4 and Figure 3.5 show that the amount of work cn increases
as n increases, but at different rates. The work grows at the same rate as n when
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c = 1, at twice the rate of n when c = 2, and at half the rate of n when c = 1/2.
However, Figure 3.4 also shows that all of these graphs follow the same basic
straight-line shape of n. Anything that varies as a constant times n (and whose
graph follows the basic shape of n) is said to be of order of magnitude n, writ-
ten Θ(n). We will classify algorithms according to the order of magnitude of
their time efficiency.  Sequential search is therefore an Θ(n) algorithm (an
order-n algorithm) in both the worst case and the average case.
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A problem posed in the American Mathematical Monthly in
1975 by Jacob Goodman concerned a waiter in a café
where the cook produced a stack of pancakes of varying
sizes. The waiter, on the way to delivering the stack to the
customer, attempted to arrange the pancakes in order by
size, with the largest on the bottom. The only action
available was to stick a spatula into the stack at some
point and flip the entire stack above that point. The ques-
tion is: What is the maximum number of flips ever needed
for any stack of n pancakes? This number, Pn , is known as
the nth pancake number. 

Here’s a fairly simple algorithm to arrange the pan-
cakes. Put the spatula under the largest pancake, as
shown in (a) in the figure, and flip. This puts the largest
pancake on top [(b) in the figure]. Put the spatula at the
bottom of the unordered section (in this case at the bot-
tom) and flip. This puts the largest pancake on the
bottom [(c) in the figure], where it belongs. Repeat with
the rest of the pancakes. Each pancake therefore requires
two flips, which would give a total of 2n flips required.
But the last two pancakes require at most one flip; if they
are already in order, no flips are needed, and if they are
out of order, only one flip is needed. So this algorithm
requires at most 2(n – 2) + 1 = 2n – 3 flips in the worst
case, which means that Pn ≤ 2n – 3. Are there other algo-
rithms that require fewer flips in the worst case?

A faculty member at Harvard University posed this
question to his class; several days later, a sophomore from
the class came to his office with a better algorithm. This
algorithm, which requires at most (5n + 5)/3 flips, was pub-
lished in the journal Discrete Mathematics in 1979.  The
authors were William Gates (the student) and Christos
Papadimitriou.  

Yes, THAT William Gates!

Flipping 
Pancakes

(a) (b)

(c)



3.3.3 Selection Sort

The sequential search algorithm solves a very common problem: searching a list
of items (such as the names in a telephone directory) for a particular item.
Another very common problem is that of sorting a list of items into order—
either alphabetical or numerical order. The registrar at your institution sorts stu-
dents in a class by name, a mail-order business sorts its customer list by name,
and the IRS sorts its tax records by Social Security number. In this section we’ll
examine a sorting algorithm and analyze its efficiency.

Suppose we have a list of numbers to sort into ascending order—for example,
5, 7, 2, 8, 3. The result of sorting this list is the new list 2, 3, 5, 7, 8. The selec-
tion sort algorithm performs this task. The selection sort “grows” a sorted sub-
section of the list from the back to the front. We can look at “snapshots” of the
progress of the algorithm on our example list, using a vertical line as the marker
between the unsorted section at the front of the list and the sorted section at the
back of the list in each case. At first the sorted subsection is empty; that is, the
entire list is unsorted. This is how the list looks when the algorithm begins.

5, 7, 2, 8, 3 |

Unsorted subsection (entire list) Sorted subsection (empty)

Later, the sorted subsection of the list has grown from the back so that some
of the list members are in the right place.

5, 3, 2, | 7, 8

Unsorted subsection Sorted subsection

Finally, the sorted subsection of the list contains the entire list; there are no
unsorted numbers, and the algorithm stops.

| 2, 3, 5, 7, 8

Unsorted subsection (empty) Sorted subsection (entire list)

At any point, then, there is both a sorted and an unsorted section of the list.
A pseudocode version of the algorithm is shown in Figure 3.6.
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Using the information in Figure 3.2, fill in the following table for the
number of comparisons required in the sequential search algorithm.

PRACTICE PROBLEM

n Best Case Worst Case Average Case
10

50

100

1,000

10,000

100,000
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{{

{{

1. Get values for n and the n list items
2. Set the marker for the unsorted section at the end of the list
3. While the unsorted section of the list is not empty, do steps 4 through 6
4. Select the largest number in the unsorted section of the list
5. Exchange this number with the last number in the unsorted section of the list
6. Move the marker for the unsorted section left one position
7. Stop

Selection Sort Algorithm

FIGURE 3.6

Before we illustrate this algorithm at work, take a look at step 4, which
finds the largest number in some list of numbers. We developed an algorithm
for this task in Chapter 2 (Figure 2.14).  A detailed version of the selection sort
algorithm would replace step 4 with the instructions from this existing algo-
rithm. New algorithms can be built up from “parts” consisting of previous
algorithms, just as a recipe for pumpkin pie might begin with the instruction,
“Prepare crust for a one-crust pie.” The recipe for pie crust is a previous algo-
rithm that is now being used as one of the steps in the pumpkin pie algorithm.

Let’s follow the selection sort algorithm. Initially, the unsorted section is
the entire list, so step 2 sets the marker at the end of the list.

5, 7, 2, 8, 3 |

Step 4 says to select the largest number in the unsorted section—that is, in
the entire list. This number is 8. Step 5 says to exchange 8 with the last num-
ber in the unsorted section (the whole list). To accomplish this exchange, the
algorithm must determine not only that 8 is the largest value but also the
location in the list where 8 occurs. The Find Largest algorithm from Chapter 2
provides both these pieces of information. The exchange to be done is 

5, 7, 2, 8, 3 |

After this exchange and after the marker is moved left as instructed in step 6,
the list looks like

5, 7, 2, 3 | 8

The number 8 is now in its correct position at the end of the list. It becomes the
sorted section of the list, and the first four numbers are the unsorted section.

The unsorted section is not empty, so the algorithm repeats step 4 (find
the largest number in the unsorted section); it is 7. Step 5 exchanges 7 with
the last number in the unsorted section, which is 3. 

5, 7, 2, 3 | 8

After the marker is moved, the result is

5, 3, 2 | 7, 8

The sorted section is now 7, 8 and the unsorted section is 5, 3, 2.
Repeating the loop of steps 4 through 6 again, the algorithm determines

that the largest number in the unsorted section is 5, and exchanges it with 2,
the last number in the unsorted section. 

5, 3, 2 | 7, 8
{{



After the marker is moved, we get

2, 3 | 5, 7, 8

Now the unsorted section (as far as the algorithm knows) is 2, 3. The largest
number here is 3. Exchanging 3 with the last number of the unsorted section
(that is, with itself) produces no change in the list ordering. The marker is
moved, giving

2 | 3, 5, 7, 8

When the only part of the list that is unsorted is the single number 2, there is
also no change in the list ordering produced by carrying out the exchange. The
marker is moved, giving

| 2, 3, 5, 7, 8

The unsorted section of the list is empty, and the algorithm terminates.
To analyze the amount of work the selection sort algorithm does, we

must first decide on the unit of work to count. When we analyzed sequen-
tial search, the unit of work that we measured was the comparison between
the name being searched for and the names in the list. At first glance there
seem to be no comparisons of any kind going on in the selection sort.
Remember, however, that there is a subtask within the selection sort: the
task of finding the largest number in a list. The algorithm from Chapter 2
for finding the largest value in a list begins by taking the first number in
the list as the largest so far. The largest-so-far value is compared against
successive numbers in the list; if a larger value is found, it becomes the
largest so far.

When the selection sort algorithm begins, the largest-so-far value,
initially the first number, must be compared to all the other numbers in the
list. If there are n numbers in the list, n – 1 comparisons must be done. The
next time through the loop, the last number is already in its proper place, so
it is never involved in a comparison. The largest-so-far value, again initially
the first number, must be compared to all the other numbers in the unsorted
part of the list, which will require n – 2 comparisons. The number of com-
parisons keeps decreasing as the length of the unsorted section of the list
gets smaller, until finally only one comparison is needed. The total number
of comparisons is

(n – 1) + (n – 2) + (n – 3) + . . . + 3 + 2 + 1

Reviewing our example problem, we can see that the following comparisons
are done.

• To put 8 in place in the list 5, 7, 2, 8, 3 |

Compare 5 (largest so far) to 7

7 becomes largest so far

Compare 7 (largest so far) to 2

Compare 7 (largest so far) to 8

8 becomes largest so far

Compare 8 to 3
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8 is the largest

Total number of comparisons: 4 (which is 5 – 1)

• To put 7 in place in the list 5, 7, 2, 3 | 8

Compare 5 (largest so far) to 7

7 becomes largest so far

Compare 7 to 2

Compare 7 to 3

7 is the largest

Total number of comparisons: 3 (which is 5 – 2)

• To put 5 in place in the list 5, 3, 2 | 7, 8

Compare 5 (largest so far) to 3

Compare 5 to 2

5 is the largest

Total number of comparisons: 2 (which is 5 – 3)

• To put 3 in place in the list 2, 3 | 5, 7, 8

Compare 2 (largest so far) to 3

3 is the largest

Total number of comparisons: 1 (which is 5 – 4)

To put 2 in place requires no comparisons; there is only one number in the
unsorted section of the list, so it is of course the largest number. It gets
exchanged with itself, which produces no effect. The total number of compar-
isons is 4 + 3 + 2 + 1 = 10.

The sum

(n – 1) + (n – 2) + (n – 3) + . . . + 3 + 2 + 1

turns out to be equal to

(Recall from earlier in this chapter how Gauss computed a similar sum.) For
our example with five numbers, this formula says that the total number of
comparisons is (using the first version of the formula):

which is the number of comparisons we had counted.
Figure 3.7 uses this same formula
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to compute the comparisons required for larger values of n. Remember that n
is the size of the list we are sorting. If the list becomes 10 times longer, the
work increases by much more than a factor of 10; it increases by a factor closer
to 100, which is 102.

The selection sort algorithm not only does comparisons, it does exchanges.
Even if the largest number in the unsorted section of the list is already at the
end of the unsorted section, the algorithm exchanges this number with itself.
Therefore, the algorithm does n exchanges, one for each position in the list to
put the correct value in that position. With every exchange the marker gets
moved. However, the work contributed by exchanges and marker moving is so
much less than the amount contributed by comparisons that it can be ignored.

We haven’t talked here about a best case, a worst case, or an average case
for the selection sort. This algorithm does the same amount of work no matter
how the numbers are initially arranged. It has no way to recognize, for exam-
ple, that the list might already be sorted at the outset.

A word about the space efficiency of the selection sort: The original list
occupies n memory locations, and this is the major space requirement. Some
storage is needed for the marker between the unsorted and sorted sections
and for keeping track of the largest-so-far value and its location in the list,
used in step 4. Surprisingly, the process of exchanging two values at step 5
also requires an extra storage location. Here’s why. If the two numbers to be
exchanged are at position X and position Y in the list, we might think the fol-
lowing two steps will exchange these values:

1. Copy the current value at position Y into position X

2. Copy the current value at position X into position Y

The problem is that after step 1, the value at position X is the same as that at
position Y. Step 2 does not put the original value of X into position Y. In fact,
we don’t even have the original value of position X anymore. In Figure 3.8(a)
we see the original X and Y values. At Figure 3.8(b), after execution of step 1,
the current value of position Y has been copied into position X, writing over
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Comparisons Required by
Selection Sort

FIGURE 3.7
LENGTH n OF LIST TO SORT n2 NUMBER OF COMPARISONS REQUIRED
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100 10,000 4,950
1,000 1,000,000 499,500

An Attempt to Exchange the
Values at X and Y
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what was there originally. At Figure 3.8(c), after execution of step 2, the
current value at position X (which is the original Y value) has been copied into
position Y, but the picture looks the same as Figure 3.8(b).

Here’s the correct algorithm, which makes use of one extra temporary storage
location that we’ll call T.

1. Copy the current value at position X into location T

2. Copy the current value at position Y into position X

3. Copy the current value at location T into position Y

Figure 3.9 illustrates that this algorithm does the job. In Figure 3.9(a), the
temporary location contains an unknown value. After execution of step 1
(Figure 3.9b), it holds the current value of X. When Y ’s current value is put
into X at step 2 (Figure 3.9c), T still holds the original X value. After step 3
(Figure 3.9d), the current value of T goes into position Y, and the original val-
ues of X and Y have been exchanged. (Step 5 of the selection sort algorithm is
thus performed by another algorithm, just as step 4 is.)

All in all, the extra storage required for the selection sort, over and above
that required to store the original list, is slight. Selection sort is space-efficient.
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Exchanging the Values at X
and Y
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1. For each of the following lists, perform a selection sort and show
the list after each exchange that has an effect on the list ordering.  

a. 4, 8, 2, 6
b. 12, 3, 6, 8, 2, 5, 7
c. D, B, G, F, A, C, E

PRACTICE PROBLEM
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3.3.4 Order of Magnitude—Order n2

We saw that the number of comparisons done by the selection sort algorithm
does not grow at the same rate as the problem size n; it grows at approxi-
mately the square of that rate. An algorithm that does cn2 work for any con-
stant c is order of magnitude n2, or Θ(n2). Figure 3.10 shows how cn2

changes as n changes, where c = 1, 2, and 1/2. The work grows at the same
rate as n2 when c = 1, at twice that rate when c = 2, and at half that rate when
c = 1/2. But all three graphs in Figure 3.10 follow the basic shape of n2, which
is different from all of the straight-line graphs that are of Θ(n). Thus, we have
come up with two different “shape classifications”: one including all graphs
that are Θ(n), and the other including all graphs that are Θ(n2). 

If it is not important to distinguish among the various graphs that make
up a given order of magnitude, why is it important to distinguish between the
two different orders of magnitude n and n2? We can find the answer by com-
paring the two basic shapes n and n2, as is done in Figure 3.11.

Figure 3.11 illustrates that n2 grows at a much faster rate than n. The two
curves cross at the point (1,1), and for any value of n larger than 1, n2 has a
value increasingly greater than n. Furthermore, anything that is order of magni-
tude n2 eventually has larger values than anything that is of order n, no matter
what the constant factors are. For example, Figure 3.12 shows that if we choose a
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graph that is Θ(n2) but has a small constant factor (to keep the values low), say
0.25n2, and a graph that is Θ(n) but has a larger constant factor (to pump the
values up), say 10n, it is still true that the Θ(n2) graph eventually has larger val-
ues. (Note that the vertical scale and the horizontal scale are different.)

Selection sort is an Θ(n2) algorithm (in all cases) and sequential search is
an Θ(n) algorithm (in the worst case), so these two algorithms are different
orders of magnitude. Because these algorithms solve two different problems,
this is somewhat like comparing apples and oranges—what does it mean?  But
suppose we have two different algorithms that solve the same problem and
count the same units of work, but have different orders of magnitude. Suppose
that algorithm A does 0.0001n2 units of work to solve a problem with input size
n and that algorithm B does 100n of the same units of work to solve the same
problem. Here algorithm B’s factor of 100 is 1 million times larger than algorithm
A’s factor of 0.0001. Nonetheless, when the problem gets large enough the
inherent inefficiency of algorithm A causes it to do more work than algorithm B.
Figure 3.13 shows that the “cross-over” point occurs at a value of 1,000,000 for
n. At this point, the two algorithms do the same amount of work and therefore
take the same amount of time to run. For larger values of n, the order-n2 algo-
rithm A runs increasingly slower than the order-n algorithm B. (Input sizes of
1,000,000 are not that uncommon—think of the New York City telephone list.)

As we have seen, if an Θ(n2) algorithm and an Θ(n) algorithm exist for
the same task, then for large enough n, the Θ(n2) algorithm does more work
and takes longer to execute, regardless of the constant factors for peripheral
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A Comparison of Two Extreme
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FIGURE 3.13
NUMBER OF WORK UNITS REQUIRED

ALGORITHM A ALGORITHM B
n 0.0001n2 100n

1,000 100 100,000
10,000 10,000 1,000,000

100,000 1,000,000 10,000,000
1,000,000 100,000,000 100,000,000

10,000,000 10,000,000,000 1,000,000,000

W
or

k

600

500

400

300

200

100

0

0 25 50 75

(40,400)

100

n

10n0.25n2For Large Enough n, 0.25n2 Has
Larger Values Than 10n

FIGURE 3.12

LEVEL 1 CHAPTER 3: The Efficiency of Algorithms



work. This is the rationale for ignoring constant factors and concentrating on
the basic order of magnitude of algorithms.

As an analogy, the two shape classifications Θ(n2) and Θ(n) may be thought
of as two different classes of transportation, the “walking” class and the “dri-
ving” class, respectively. The walking class is fundamentally more time-consum-
ing than the driving class. Walking can include jogging, running, and leisurely
strolling (which correspond to different values for c), but compared to any form
of driving, these all proceed at roughly the same speed. The driving class can
include driving a MINI Cooper and driving a Ferrari (which correspond to differ-
ent values for c), but compared to any form of walking, these proceed at roughly
the same speed. In other words, varying c can make modest changes within a
class, but changing to a different class is a quantum leap.

Given two algorithms for the same task, we should usually choose the algo-
rithm of the lesser order of magnitude, because for large enough n it always
“wins out.” It is for large values of n that we need to be concerned about the
time resources being used and, as we noted earlier, it is often for large values
of n that we are seeking a computerized solution in the first place.
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One way to compare performance among different makes of
automobiles is to give the number of seconds it takes each
car to go from 0 to 60 miles per hour. One way to compare
performance among different makes of computers is to give
the number of arithmetic operations, such as additions
or subtractions of real numbers, that each one can do in
1 second. These operations are called “floating-point opera-
tions,” and computers are often compared in terms of the
number of flops (floating-point operations per second) they
can crank out. This is only one measure of a computer’s
performance, primarily related to processing power for
“number-crunching” applications. Whereas this is the mea-
sure we use here, other measures include the ability of the
machine to handle multimedia, graphics, or multitasking.
(For example, how well can the machine run a virus checker
in the background while you are playing a video game?)

A laptop based on the Intel Core 2 Duo processor runs
at about 20 gigaflops (20 billion floating-point operations
per second). In 2008, an IBM supercomputer developed for
the Los Alamos National Laboratory in New Mexico captured
the top speed record at the time of over a petaflop (1,000
trillion floating-point operations per second). This
machine, known as Roadrunner (named for the state bird of
New Mexico), is a “parallel processor computing system”
containing almost 19,000 processor chips, and it has the
computing power equivalent of 50,000 laptops. The stage
is set for the race between the tortoise and the hare.

Not fair, you say? We’ll see. Let’s suppose the laptop is
assigned to run an Θ(n) algorithm, whereas the Roadrunner

gets an Θ(n2) algorithm for the same task. The work units
are floating-point operations, and for simplicity, we’ll take
the constant factor to be 1 in each case. Here are the timing
results:

n Core 2 Duo Roadrunner

100,000 0.000005 sec 0.000000001 sec

10,000,000 0.0005 sec 0.00001 sec

1,000,000,000 0.05 sec 0.1 sec

1,000,000,000,000 50 sec 100,000 sec = 1.16 days

100,000,000,000,000 5000 sec = 1.39 hr 1,000,000,000 = 31.7 years

Out of the gate—that is, for relatively small values of n
such as 100,000 or even 10 million—Roadrunner has a head
start and takes less time. When n reaches 1 billion, however,
Roadrunner is falling a bit behind, taking 0.1 sec as opposed
to the laptop’s 0.05 sec.  And for larger values of n, the lap-
top has left Roadrunner in the dust. The difference in order
of magnitude between the algorithms was enough to slow
down the mighty Roadrunner and let the laptop creep past,
chugging along doing its more efficient Θ(n) algorithm.
Where would one need to perform 100,000,000,000,000
operations? Complex problems involving weather simula-
tions, biomedical research, and economic modeling might
utilize such number-crunching applications.

The point of this little tale is not to say that super-
computers will be readily replaced by laptops! It is to
demonstrate that the order of magnitude of the algorithm
being executed can play a more important role than the raw
speed of the computer.

The Tortoise and 
the Hare



Note, however, that for smaller values of n, the size of the constant factor is
significant. In Figure 3.12, the 10n line stayed above the 0.25n2 curve up to the
cross-over point of n = 40 because it had a large constant factor relative to the
factor for n2. Varying the factors changes the cross-over point. If 10n and 0.25n2

represented the work of two different algorithms for the same task, and if we
are sure that the size of the input is never going to exceed 40, then the 0.25n2

algorithm is preferable in terms of time resources used. (To continue the trans-
portation analogy, for traveling short distances—say, to the end of the
driveway—walking is faster than driving because of the overhead of getting
the car started, and so on. But for longer distances, driving is faster.)

However, making assumptions about the size of the input on which an algo-
rithm will run can be dangerous. A program that runs quickly on small input
size may at some point be selected (perhaps because it seems efficient) to solve
instances of the problem with large input size, at which point the efficiency
may go down the drain! Sequential search may serve for directory assistance in
Yeehaw Junction, Florida, but it won’t translate satisfactorily to New York City.
Part of the job of program documentation is to make clear any assumptions or
restrictions about the input size the program was designed to handle. 

Comparing algorithm efficiency only makes sense if there is a choice of
algorithms for the task at hand. Are there any tasks for which a choice of algo-
rithms exists? Yes; because sorting a list is such a common task, a lot of
research has gone into finding good sorting algorithms. Selection sort is one
sorting algorithm, but there are many others, including the bubble sort,
described in Exercises 8–10 at the end of this chapter. You may wonder why
people don’t simply use the one “best” sorting algorithm. It’s not that simple.
Some algorithms (unlike the selection sort) are sensitive to what the original
input looks like. One algorithm may work well if the input is already close to
being sorted, whereas another algorithm works better if the input is random.
An algorithm like selection sort has the advantage of being relatively easy to
understand. If the size of the list, n, is fairly small, then an easy-to-understand
algorithm may be preferable to one that is more efficient but more obscure.
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This laboratory experience allows you to step through ani-
mations of various sorting algorithms to understand how
they work. The sorting algorithms available in the labora-
tory software include selection sort and bubble sort—
which are described in this text—as well as insertion sort
and quicksort, which are described in the laboratory man-
ual. You’ll be able to see values being switched around
according to the various algorithms, and see how lists
eventually settle into sorted order. The screen shot shown
here displays the selection sort at work, where the last
(largest) element in the list, 99, has been put in place and
the algorithm is searching for the largest value in the cur-
rent unsorted section of the list.  

You’ll also do some experiments to measure the
amount of work the various algorithms perform.  

LABORATORY
EXPERIENCE 4
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1. An algorithm does 14n2 1 5n 1 1 units of work on input of size n.
Explain why this is considered an Θ(n2) algorithm even though
there is a term that involves just n.

PRACTICE PROBLEM

3.4 Analysis of Algorithms

3.4.1 Data Cleanup Algorithms

In this section we look at three different algorithms that solve the same
problem—the data cleanup problem—and then do an analysis of each. Sup-
pose a survey includes a question about the age of the person filling out
the survey, and that some people choose not to answer this question. When
data from the survey are entered into the computer, an entry of 0 is used to
denote “no response,” because a legitimate value for age would have to be
a positive number. For example, assume that the age data from 10 people
who completed the survey are stored in the computer as the following 10-
entry list, where the positions in the list range from 1 (far left) to 10 (far
right). 

0 24 16 0 36 42 23 21 0 27
1 2 3 4 5 6 7 8 9 10

Eventually, the average age of the survey respondents is to be com-
puted. Because the 0 values are not legitimate data—including them in the
average would produce too low a value—we want to perform a “data
cleanup” and remove them from the list before the average is computed. In
our example, the cleaned data could consist of a 10-element list, where the
seven legitimate elements are the first seven entries of the list, and some
quantity—let’s call it legit—has the value 7 to indicate that only the first
seven entries are legitimate. An alternative acceptable result would be a 7-
element list consisting of the 7 legitimate data items, in which case there is
no need for a legit quantity.

THE SHUFFLE-LEFT ALGORITHM. Algorithm 1 to solve the data cleanup
problem works in the way we might solve this problem using a pencil and
paper (and an eraser) to modify the list. We proceed through the list from left
to right, pointing with a finger on the left hand to keep our place, and pass-
ing over non-zero values. Every time we encounter a 0 value, we squeeze it
out of the list by copying each remaining data item in the list one cell to the
left. We could use a finger on the right hand to move along the list and point
at what to copy next. The value of legit, originally set to the length of the list,
is reduced by 1 every time a 0 is encountered. (Sounds complicated, but you’ll
see that it is easy.)



The original configuration is 

legit 5 10

0 24 16 0 36 42 23 21 0 27

Because the first cell on the left contains a 0, the value of legit is reduced by
1, and all of the items to the right of the 0 must be copied one cell left. After
the first such copy (of the 24), the scenario looks like

legit 5 9

24 24 16 0 36 42 23 21 0 27

After the second copy (of the 16), we get 

legit 5 9

24 16 16 0 36 42 23 21 0 27

And after the third copy (of the 0),

legit 5 9

24 16 0 0 36 42 23 21 0 27

Proceeding in this fashion, we find that after we copy the last item (the 27),
the result is 

legit 5 9

24 16 0 36 42 23 21 0 27 27

Because the right hand finger has moved past the end of the list, one entire
shuffle-left process has been completed. It required copying nine items. We
reset the right hand finger to start again.

legit 5 9

24 16 0 36 42 23 21 0 27 27vv

v

vv

vv

vv

(finger of
right hand
points to
cell 2)

(finger of
left hand
points to
cell 1)

vv
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We must again examine position 1 for a 0 value, because if the original list
contained 0 in position 2, it would have been copied into position 1. If the
value is not 0, as is the case here, both the left hand finger and the right hand
finger move forward. 

legit 5 9

24 16 0 36 42 23 21 0 27 27

Moving along, we pass over the 16.

legit 5 9

24 16 0 36 42 23 21 0 27 27

Another cycle of seven copies takes place to squeeze out the 0; the result is 

legit 5 8

24 16 36 42 23 21 0 27 27 27

The 36, 42, 23, and 21 are passed over, which results in 

legit 5 8

24 16 36 42 23 21 0 27 27 27

and then copying three items to squeeze out the final 0 gives 

legit 5 7

24 16 36 42 23 21 27 27 27 27

The left hand finger is pointing at a non-zero element, so another advance of
both fingers gives

legit 5 7

24 16 36 42 23 21 27 27 27 27

At this point we can stop because the left hand finger is past the number of
legitimate data items (legit = 7). In total, this algorithm (on this list) examined
all 10 data items, to see which ones were 0, and copied 9 + 7 + 3 = 19 items.

A pseudocode version of the shuffle-left algorithm to act on a list of n
items appears in Figure 3.14. The quantities left and right correspond to the
positions where the left hand and right hand fingers point, respectively. You

vv

vv

vv

vv

vv

vv
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should trace through this algorithm for the preceding example to see that it
does what we described.

To analyze the time efficiency of an algorithm, you begin by identifying
the fundamental units of work the algorithm performs. For the data cleanup
problem, any algorithm must examine each of the n elements in the list to see
whether they are 0. This gives a base of at least Θ(n) work units.

The other unit of work in the shuffle-left algorithm is copying numbers. The
best case occurs when the list has no 0 values because no copying is required.
The worst case occurs when the list has all 0 values. Because the first element is
0, the remaining n – 1 elements are copied one cell left and legit is reduced
from n to n – 1. After the 0 in position 2 gets copied into position 1, the first ele-
ment is again 0, which again requires n – 1 copies and reduces legit from n – 1 to
n – 2. This repeats until legit is reduced to 0, a total of n times. Thus there are n
passes, during each of which n – 1 copies are done. The algorithm does

n(n – 1) = n2 – n

copies. If we were to draw a graph of n2 – n, we would see that for large n, the
curve follows the shape of n2. The second term can be disregarded, because as
n increases, the n2 term grows much larger than the n term; the n2 term dom-
inates and determines the shape of the curve. The shuffle-left algorithm is
thus an Θ(n2) algorithm in the worst case.

The shuffle-left algorithm is space-efficient because it only requires four
memory locations to store the quantities n, legit, left, and right in addition to
the memory required to store the list itself.

THE COPY-OVER ALGORITHM. The second algorithm for solving the data
cleanup problem also works as we might using a pencil and paper if we decided to
write a new list. It scans the list from left to right, copying every legitimate (non-
zero) value into a new list that it creates. After this algorithm is finished the
original list still exists, but so does a new list that contains only non-zero values.

For our example, the result would be

0 24 16 0 36 42 23 21 0 27

24 16 36 42 23 21 27
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1. Get values for n and the n data items
2. Set the value of legit to n
3. Set the value of left to 1
4. Set the value of right to 2
5. While left is less than or equal to legit do steps 6 through 14
6. If the item at position left is not 0 then do steps 7 and 8
7. Increase left by 1
8. Increase right by 1
9. Else (the item at position left is 0) do steps 10 through 14

10. Reduce legit by 1
11. While right is less than or equal to n do steps 12 and 13
12. Copy the item at position right into position (right 2 1)
13. Increase right by 1
14. Set the value of right to (left 1 1)
15. Stop

The Shuffle-Left Algorithm for
Data Cleanup

FIGURE 3.14



Every list entry is examined to see whether it is 0 (as in the shuffle-left
algorithm), and every non-zero list entry is copied once (into the new list), so
a total of seven copies are done for this example. This is fewer copies than the
shuffle-left algorithm requires, but a lot of extra memory space is required
because an almost complete second copy of the list is stored. Figure 3.15
shows the pseudocode for this copy-over algorithm.

The best case for this algorithm occurs if all elements are 0; no copies are
done so the work is just the Θ(n) work to examine each list element and see
that it is 0. No extra space is used. The worst case occurs if there are no 0 val-
ues in the list. The algorithm copies all n non-zero elements into the new list,
and doubles the space required. Combining the two types of work units, we
find that the copy-over algorithm is only Θ(n) in time efficiency even in the
worst case, because Θ(n) examinations and Θ(n) copies still equal Θ(n) steps.

Comparing the shuffle-left algorithm and the copy-over algorithm, we see
that no 0 elements is the best case of the first algorithm and the worst case of
the second, whereas all 0 elements is the worst case of the first and the best
case of the second. The second algorithm is more time efficient and less space-
efficient. This choice is called the time/space tradeoff—you gain something
by giving up something else. Seldom is it possible to improve both dimensions
at once, but our next algorithm accomplishes just that.

THE CONVERGING-POINTERS ALGORITHM. For the third algorithm, imag-
ine that we move one finger along the list from left to right and another fin-
ger from right to left. The left finger slides to the right over non-zero values.
Whenever the left finger encounters a 0 item, we reduce the value of legit by
1, copy whatever item is at the right finger into the left-finger position, and
slide the right finger one cell left. Initially in our example 

legit 5 10

0 24 16 0 36 42 23 21 0 27

And because a 0 is encountered at position left, the item at position right is
copied into its place, and both legit and right are reduced by 1. This results in 

legit 5 9

27 24 16 0 36 42 23 21 0 27vv

vv
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The Copy-Over Algorithm for
Data Cleanup

FIGURE 3.15
1. Get values for n and the n data items
2. Set the value of left to 1
3. Set the value of newposition to 1
4. While left is less than or equal to n do steps 5 through 9
5. If the item at position left is not 0 then do steps 6 through 8
6. Copy the item at position left into position newposition in new list
7. Increase left by 1
8. Increase newposition by 1
9. Else (the item at position left is 0) increase left by 1

10. Stop



The value of left increases until the next 0 is reached. 

legit 5 9

27 24 16 0 36 42 23 21 0 27

Again, the item at position right is copied into position left, and legit and
right are reduced by 1.

legit 5 8

27 24 16 0 36 42 23 21 0 27

The item at position left is still 0, so another copy takes place. 

legit 5 7

27 24 16 21 36 42 23 21 0 27

From this point, the left finger advances until it meets the right finger, which
is pointing to a non-zero element, and the algorithm stops. Once again, each
element is examined to see whether it equals 0. For this example,  only three
copies are needed—fewer even than for algorithm 2, but this algorithm
requires no more memory space than algorithm 1. The pseudocode version of
the converging-pointers algorithm is given in Figure 3.16.

The best case for this algorithm, as for the shuffle-left algorithm, is a list
containing no 0 elements. The worst case, as for the shuffle-left algorithm, is a
list of all 0 entries. With such a list, the converging-pointers algorithm repeat-
edly copies the element at position right into the first position, each time
reducing the value of right. Right goes from n to 1, with one copy done at each
step, resulting in n – 1 copies. This algorithm is Θ(n) in the worst case. Like
the shuffle-left algorithm, it is space-efficient. It is possible in this case to beat
the time space tradeoff, in part because the data cleanup problem requires no
particular ordering of the nonzero elements in the “clean” list; the converging-
pointers algorithm moves these elements out of their original order.

vv

vv

vv
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The Converging-Pointers
Algorithm for Data Cleanup

FIGURE 3.16
1. Get values for n and the n data items
2. Set the value of legit to n
3. Set the value of left to 1
4. Set the value of right to n
5. While left is less than right do steps 6 through 10
6. If the item at position left is not 0 then increase left by 1
7. Else (the item at position left is 0) do steps 8 through 10
8. Reduce legit by 1
9. Copy the item at position right into position left

10. Reduce right by 1
11. If the item at position left is 0, then reduce legit by 1
12. Stop



It is hard to define what an “average” case is for any of these algorithms;
the amount of work done depends on how many 0 values there are in the list
and perhaps on where in the list they occur. If we assume, however, that the
number of 0 values is some percentage of n and that these values are scattered
throughout the list, then it can be shown that the shuffle-left algorithm will
still do Θ(n2) work, whereas the converging pointers algorithm will do Θ(n).
Figure 3.17 summarizes our analysis, although it doesn’t reflect the three or
four extra memory cells needed to store other quantities used in the algo-
rithms, such as legit, left, and right.

Let’s emphasize again the difference between an algorithm that is Θ(n) in
the amount of work it does and one that is Θ(n2). In an Θ(n) algorithm, the
work is proportional to n. Hence if you double n, you double the amount of
work; if you multiply n by 10, you multiply the work by 10. But in an Θ(n2)
algorithm, the work is proportional to the square of n. Hence if you double n,
you multiply the amount of work by 4; if you multiply n by 10, you multiply
the work by 100.

This is probably a good place to explain why the distinction between n
and 2n is important when we are talking about space, but we simply classify n
and 8000n as Θ(n) when we are talking about units of work. Units of work
translate into time when the algorithm is executed, and time is a much more
elastic resource than space. Whereas we want an algorithm to run in the short-
est possible time, in many cases there is no fixed limit to the amount of time
that can be expended. There is, however, always a fixed upper bound on the
amount of memory that the computer has available to use while executing an
algorithm, so we track space consumption more closely.
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Analysis of Three Data Cleanup
Algorithms

FIGURE 3.17
1. SHUFFLE-LEFT 2. COPY-OVER 3. CONVERGING-POINTERS

Time Space Time Space Time Space
Best case Q(n) n Q(n) n Q(n) n
Worst case Q(n2) n Q(n) 2n Q(n) n
Average case Q(n2) n Q(n) n # x # 2n Q(n) n

In the data cleanup problem, suppose the original data are

2 0 4 1

1. Write the data list after completion of algorithm 1, the shuffle-left
algorithm.

2. Write the two data lists after completion of algorithm 2, the copy-
over algorithm.

3. Write the data list after completion of algorithm 3, the converging-
pointers algorithm.

4. Make up a data list such that step 11 of the converging-pointers
algorithm (Figure 3.16) is needed.

PRACTICE PROBLEMS



3.4.2 Binary Search

The sequential search algorithm searches a list of n items for a particular item;
it is an Θ(n) algorithm. Another algorithm, the binary search algorithm, is
more efficient but it works only when the search list is already sorted.

To understand how binary search operates, let us go back to the problem
of searching for NAME in a telephone directory. When you look up the name
Miranda in the telephone book, you do not do a sequential search beginning
with the very first name in the directory and looking at each name in succes-
sion until you come to Miranda or the end of the directory! Instead you make
use of the fact that the names in the directory have already been sorted into
ascending order. You open the phone book in a place somewhere near the mid-
dle. If the name you see is Miranda, your search is over. If the name you see
begins with P, you look closer to the front of the book; if the name you see
begins with L, you move farther toward the back of the book.

The binary search algorithm works in a similar fashion on a sorted list. It
first looks for NAME at roughly the halfway point in the list. If the name there
equals NAME, the search is over. If NAME comes alphabetically before the name
at the halfway point, then the search is narrowed to the front half of the list,
and the process begins again on this smaller list. If NAME comes alphabeti-
cally after the name at the halfway point, then the search is narrowed to the
back half of the list, and the process begins again on this smaller list. The
algorithm halts when NAME is found or when the sublist becomes empty.

Figure 3.18 gives a pseudocode version of the binary search algorithm on a
sorted n-element list. Here beginning and end mark the beginning and end of
the section of the list under consideration. Initially the whole list is consid-
ered, so at first beginning is 1 and end is n. If NAME is not found at the mid-
point m of the current section of the list, then setting end equal to one less
than the midpoint (step 9) means that at the next pass through the loop, the
front half of the current section is searched. Setting beginning equal to one
more than the midpoint (step 10) means that at the next pass through the
loop, the back half of the current section is searched. Thus, as the algorithm
proceeds, the beginning marker can move toward the back of the list, and the
end marker can move toward the front of the list. If the beginning marker and
the end marker cross over—that is, end becomes less than beginning—then the
current section of the list is empty and the search terminates. Of course it also
terminates if the name is found.
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1. Get values for NAME, n, N1, . . . , Nn and T1, . . . , Tn

2. Set the value of beginning to 1 and set the value of Found to NO
3. Set the value of end to n
4. While Found 5 NO and beginning is less than or equal to end do steps 5 through 10
5. Set the value of m to the middle value between beginning and end
6. If NAME is equal to Nm, the name found at the midpoint between beginning

and end, then do steps 7 and 8
7. Print the telephone number of that person, Tm

8. Set the value of Found to YES
9. Else if NAME precedes Nm alphabetically, then set end 5 m 2 1

10. Else (NAME follows Nm alphabetically) set beginning 5 m 1 1
11. If (Found 5 NO) then print the message ‘I am sorry but that name is not in the

directory’
12. Stop

Binary Search Algorithm 
(list must be sorted)

FIGURE 3.18



Let’s do an example, using seven names sorted into ascending order. The fol-
lowing list shows not only the names in the list but also their locations in the list.

Ann Bob Cora Devi Grant Nathan Sue
1 2 3 4 5 6 7

Suppose we search this list for the name Cora. We set beginning to 1 and end to
7; the midpoint between 1 and 7 is 4. We compare the name at position number
4, Devi, with Cora. Cora precedes Devi alphabetically, so the algorithm sets end
to 4 – 1 = 3 (step 9) to continue the search on the front half of the list,

Ann Bob Cora
1 2 3

The midpoint between beginning = 1 and end = 3 is 2, so we compare the name
at position number 2, Bob, with Cora. Cora follows Bob alphabetically, so the
algorithm sets beginning to 2 + 1 = 3 (step 10) in order to continue the search
on the back half of this list, namely

Cora
3

At the next pass through the loop, the midpoint between beginning = 3 and
end = 3 is 3, so we compare the name at position number 3, Cora, with the tar-
get name, Cora. We have found the name; the appropriate telephone number
can be printed and Found changed to YES. The loop terminates, and then the
algorithm terminates.

Now suppose we search this same list for the name Maria. As before, the
first midpoint is 4, so Devi is compared with Maria. Maria follows Devi, so the
search continues with beginning = 5, end = 7 on the back half:

Grant Nathan Sue
5 6 7

The midpoint is 6, so Nathan is compared with Maria. Maria precedes Nathan,
so the search continues with beginning = 5, end = 5 on the front half:

Grant
5

The midpoint is 5, so Grant is compared with Maria. Maria follows Grant, so
beginning is set to 6 to continue the search on the back half of this list. The
algorithm checks the condition at step 4 to see whether to repeat the loop
again and finds that end is less than beginning (end = 5, beginning = 6). The
loop is abandoned, and the algorithm moves on to step 11 and indicates that
Maria is not in the list.

It is easier to see how the binary search algorithm operates if we list 
the locations of the names checked in a “tree-like” structure. The tree in 
Figure 3.19 shows the possible search locations in a 7-element list. The
search starts at the top of the tree, at location 4, the middle of the original
list. If the name at location 4 is NAME, the search halts. If NAME comes after
the name at location 4 (as Maria does in our example), the right branch is
taken and the next location searched is location 6. If NAME comes before the
name at location 4 (as Cora does in our example), the left branch is taken and
the next location searched is location 2. If NAME is not found at location 2,

3.4 Analysis of Algorithms LEVEL 1 107



the next location searched is either 1 or 3. Similarly, if NAME is not found at
location 6, the next location searched is either 5 or 7.

In Figure 3.18, the binary search algorithm, we assume in step 5 that
there is a middle position between beginning and end. This happens only
when there is an odd number of elements in the list. Let us agree to define the
“middle” of an even number of entries as the end of the first half of the list.
With eight elements, for example, the midpoint position is location 4.

1 2 3 4 5 6 7 8

With this understanding, the binary search algorithm can be used on lists of
any size.

Like the sequential search algorithm, the binary search algorithm relies on
comparisons, so to analyze the algorithm we count the number of comparisons
as an indication of the work done. The best case, as in sequential search,
requires only one comparison—NAME is located on the first try. The worst case,
as in sequential search, occurs when NAME is not in the list. However, we learn
this much sooner in binary search than in sequential search. In our list of seven
names, only three comparisons are needed to determine that Maria is not in the
list. The number of comparisons needed is the number of circles in some branch
from the top to the bottom of the tree in Figure 3.19. These circles represent
searches at the midpoints of the whole list, half the list, one quarter of the list,
and so on. This process continues as long as the sublists can be cut in half.

Let’s do a minor mathematical digression here. The number of times a
number n can be cut in half and not go below 1 is called the logarithm of n
to the base 2, which is abbreviated lg n (also written in some texts as log2 n).
For example, if n is 16, then we can do four such divisions by 2:

16/2 = 8
8/2 = 4
4/2 = 2
2/2 = 1

so lg 16 = 4. This is another way of saying that 24 = 16. In general,

lg n =m is equivalent to 2m = n
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1 3 5 7

2 6

4

NAME before name 4 NAME after name 4

Before name 2 After name 2 After name 6Before name 6

Binary Search Tree for a 
7-Element List

FIGURE 3.19
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Figure 3.20 shows a few values of n and lg n. From these, we can see that as n
doubles, lg n increases by only 1, so lg n grows much more slowly than n.
Figure 3.21 shows the two basic shapes of n and lg n and again conveys that
lg n grows much more slowly than n.

Remember the analogy we suggested earlier about the difference in time
consumed between Θ(n2) algorithms, equivalent to various modes of walking,
and Θ(n) algorithms, equivalent to various modes of driving? We carry that
analogy further by saying that algorithms of Θ(lg n) are like various modes of
flying. Changing the coefficients of lg n can mean that we go from a Piper cub
to an F-14, but flying, in any form, is still a fundamentally different—and
much faster—mode of travel than walking or driving.

Suppose we are doing a binary search on n names. In the worst case, as we
have seen, the number of comparisons is related to the number of times the
list of length n can be halved. Binary search does Θ(lg n) comparisons in the
worst case (see Exercise 23 at the end of the chapter for an exact formula for
the worst case). As a matter of fact, it also does Θ(lg n) comparisons in the
average case (although the exact value is a smaller number than in the worst
case). This is because most of the names in the list occur at or near the bot-
tom of the tree, where the maximum amount of work must be done; recall that
it also took three comparisons to find that Cora was in the list. As Figure 3.19
shows, relatively few locations (where NAME might be found and the algo-
rithm terminate sooner) are higher in the tree.

Both binary search and sequential search solve the telephone book
search problem, but these algorithms differ in the order of magnitude of the
work they do. Binary search is an Θ(lg n) algorithm, whereas sequential
search is an Θ(n) algorithm, in both the worst case and the average case. To
compare the binary search algorithm with the sequential search algorithm,
suppose there are 100 elements in the list. In the worst case, sequential
search requires 100 comparisons, and binary search 7 (27 = 128). In the aver-
age case, sequential search requires about 50 comparisons, and binary search
6 or 7 (still much less work). The improvement in binary search becomes even
more apparent as the search list t gets longer. For example, if n = 100,000,
then in the worst case sequential search requires 100,000 comparisons,
whereas binary search requires 17 (217 = 131,072). If we wrote two programs,
one using sequential search and one using binary search, and ran them on a
computer that can do 1000 name comparisons per second, then to determine
that a name is not in the list (the worst case) the sequential search program
would use

100,000 comparisons 3
1

1,000
 seconds>comparison 5 100 seconds
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Values for n and lg n

FIGURE 3.20
n lg n

8 3
16 4
32 5
64 6

128 7



or 1.67 minutes, just to do the necessary comparisons, disregarding the con-
stant factor for advancing the index. The binary search program would use

to do the comparisons, disregarding a constant factor for updating the values
of beginning and end. This is quite a difference.

Suppose our two programs are used with the 20,000,000 names we assume
are in the New York City phone book. On the average, the sequential search
program needs about

(about 2.78 hours!) just to do the comparisons to find a name in the list,
whereas the binary search program needs (because 225 L 33,000,000) about

This is an even more impressive difference. Furthermore, it’s a difference due
to the inherent inefficiency of an Θ(n) algorithm compared to an Θ(lg n)
algorithm; the difference can be mitigated but not eliminated by using a
faster computer. If our computer does 50,000 comparisons per second, then
the average times become about

or 3.33 minutes for sequential search and about

for binary search. The sequential search alternative is simply not acceptable.
That is why analyzing algorithms and choosing the best one can be so important.

25 comparisons 3
1

50,000
 seconds>comparison 5 0.0005 seconds

20,000,000
2

 comparisons 3
1

50,000
 seconds>comparison 5 200 seconds

25 comparisons 3
1

1,000
 seconds>comparison 5 0.025 seconds

20,000,000
2

 comparisons 3
1

1,000
 seconds>comparison 5 10,000 seconds

17 comparisons 3
1

1,000
 seconds>comparison 5 0.017 seconds
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A Comparison of n and lg n
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We also see, as we noted in Chapter 2, that the way the problem data are orga-
nized can greatly affect the best choice of algorithm.

The binary search algorithm works only on a list that has already been
sorted. An unsorted list could be sorted before using a binary search, but sort-
ing also takes a lot of work, as we have seen. If a list is to be searched only a
few times for a few particular names, then it is more efficient to do sequential
search on the unsorted list (a few Θ(n) tasks). But if the list is to be searched
repeatedly—as in the daily use of an automated telephone directory for the
foreseeable future—it is more efficient to sort it and then use binary search:
one Θ(n2) task and many Θ(lg n) tasks, as opposed to many Θ(n) tasks.

As to space efficiency, binary search, like sequential search, requires only
a small amount of additional storage to keep track of beginning, end, and
midpoint positions in the list. Thus, it is space-efficient; in this case, we did
not have to sacrifice space efficiency to gain time efficiency. But we did have
to sacrifice generality—binary search works only on a sorted list whereas
sequential search works on any list.
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1. Suppose that, using the list of seven names from this section, we
try binary search to decide whether Grant is in the list. What names
would be compared to Grant?

2. Suppose that, using the list of seven names from this section, we
try binary search to decide whether Vernon is in the list.  What
names would be compared to Vernon?

PRACTICE PROBLEMS

In this laboratory experience, you will be able to run ani-
mations of the shuffle-left algorithm and the converging-
pointers algorithm for the data cleanup problem. You’ll be
able to see the left and right pointers take on different
values, which represent changing positions in the data
list. Shown here is the converging pointers algorithm
about to move the element at the right pointer to the
position of the left pointer to eliminate the first 0 element
in the list. As the algorithms run on various lists, you can
count the number of copies of data elements that are
required and see how they relate to the original positions
of any 0 items in the list. You will also work with an ani-
mation of the binary search algorithm and see how the
work done compares with the theoretical results we discov-
ered in this section.

5LABORATORY
EXPERIENCE



3.4.3 Pattern Matching

The pattern-matching algorithm in Chapter 2 involves finding all occurrences of
a pattern of the form P1P2 . . . Pm within text of the form T1T2 . . . Tn. Recall that
the algorithm simply does a “forward march” through the text, at each position
attempting to match each pattern character against the text characters. The
process stops only after text position n – m + 1, when the remaining text is not
as long as the pattern so that there could not possibly be a match. This algo-
rithm is interesting to analyze because it involves two measures of input size: n,
the length of the text string, and m, the length of the pattern string. The unit
of work is comparison of a pattern character with a text character.

Surprisingly, both the best case and the worst case of this algorithm can
occur when the pattern is not in the text at all. The difference hinges on exactly
how the pattern fails to be in the text. The best case occurs if the first 
character of the pattern is nowhere in the text, as in

Text: KLMNPQRSTX

Pattern: ABC

In this case n – m + 1 comparisons are required, trying (unsuccessfully) to
match P1 with T1,T2, . . . , Tn - m + 1 in turn. Each comparison fails, and the algo-
rithm slides the pattern forward to try again at the next position in the text.

The maximum amount of work is done if the pattern almost occurs every-
where in the text. Consider, for example, the following case:

Text: AAAAAAAAA

Pattern: AAAB

Starting with T1, the first text character, the match with the first pattern
character is successful. The match with the second text character and the sec-
ond pattern character is also successful. Indeed m – 1 characters of the pat-
tern match with the text before the mth comparison proves a failure. The
process starts over from the second text character, T2. Once again, m compar-
isons are required to find a mismatch. Altogether, m comparisons are required
for each of the n - m + 1 starting positions in the text.

Another version of the worst case occurs when the pattern is found at
each location in the text, as in

Text: AAAAAAAAA

Pattern: AAAA

This results in the same comparisons as are done for the other worst case, the
only difference being that the comparison of the last pattern character is
successful.

Unlike our simple examples, pattern matching usually involves a pattern
length that is short compared to the text length, that is, when m is much less
than n. In such cases, n – m + 1 is essentially n. The pattern-matching algo-
rithm is therefore Θ(n) in the best case and Θ(m 3 n) in the worst case.

It requires somewhat improbable situations to create the worst cases we
have described. In general, the forward-march algorithm performs quite well on
text and patterns consisting of ordinary words. Other pattern-matching algo-
rithms are conceptually more complex but require less work in the worst case.
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3.4.4 Summary

Figure 3.22 shows an order-of-magnitude summary of the time efficiency for
the algorithms we have analyzed.
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Order-of-Magnitude Time 
Efficiency Summary

FIGURE 3.22
PROBLEM UNIT OF WORK ALGORITHM BEST CASE WORST CASE AVERAGE CASE

Searching Comparisons Sequential 
search 1 Θ(n) Θ(n)

Binary search 1 Θ(lg n) Θ(lg n)

Sorting Comparisons Selection
and exchanges sort Θ(n2) Θ(n2) Θ(n2)

Data Examinations Shuffle-left Θ(n) Θ(n2) Θ(n2)
cleanup and copies Copy-over Θ(n) Θ(n) Θ(n)

Converging- Θ(n) Θ(n) Θ(n)
pointers

Pattern Character Forward Θ(n) Θ(m 3 n)
matching comparisons march

1. Use the first example pattern and text given in Section 3.4.3 for the
worst case of the pattern-matching algorithm. What is m? What is
n? What is m 3 n? This algorithm is Θ(m 3 n) in the worst case,
but what is the exact number of comparisons done?

PRACTICE PROBLEM

3.5 When Things Get Out of Hand

We have so far found examples of algorithms that are Θ(lg n), Θ(n), and Θ(n2)
in time efficiency. Order of magnitude determines how quickly the values grow
as n increases. An algorithm of order lg n does less work as n increases than
does an algorithm of order n, which in turn does less work than one of order
n2. The work done by any of these algorithms is no worse than a constant
multiple of n2, which is a polynomial in n. Therefore, these algorithms are
polynomially bounded in the amount of work they do as n increases.

Some algorithms must do work that is not polynomially bounded. Consider
four cities, A, B, C, and D, that are connected as shown in Figure 3.23, and ask
the following question: Is it possible to start at city A, go through every other
city exactly once, and end up back at A? Of course, we as humans can immedi-
ately see in this small problem that the answer is Yes and that there are two
such paths: A-B-D-C-A and A-C-D-B-A. However, an algorithm doesn’t get to
“see” the entire picture at once, as we can; it has available to it only isolated
facts such as “A is connected to B and to C,” “B is connected to A and to D,”



and so on. If the number of nodes and connecting edges is large, humans also
might not “see” the solution immediately. A collection of nodes and connect-
ing edges is called a graph. A path through a graph that begins and ends at
the same node and goes through all other nodes exactly once is called a
Hamiltonian circuit, named for the Irish mathematician William Rowan
Hamilton (1805–1865). If there are n nodes in the graph, then a Hamiltonian
circuit, if it exists, must have exactly n links. In the case of the four cities, for
instance, if the path must go through exactly A, B, C, D, and A (in some order),
then there are five nodes on the path (counting A twice) and four links.

Our problem is to determine whether an arbitrary graph has a Hamilton-
ian circuit. An algorithm to solve this problem examines all possible paths
through the graph that are the appropriate length to see whether any of them
are Hamiltonian circuits. The algorithm can trace all paths by beginning at the
starting node and choosing at each node where to go next. Without going into
the details of such an algorithm, let’s represent the possible paths with
four links in the graph of Figure 3.23. Again, we use a tree structure. In 
Figure 3.24, A is the tree “root,” and at each node in the tree, the nodes
directly below it are the choices for the next node. Thus, any time B appears
in the tree, it has the two nodes A and D below it, because edges exist from B
to A and from B to D. The “branches” of the tree are all the possible paths
from A with four links. Once the tree has been built, an examination of the
paths shows that only the two dark paths in the figure represent Hamiltonian
circuits.

The number of paths that must be examined is the number of nodes at the
bottom level of the tree. There is one node at the top of the tree; we’ll call the top
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of the tree level 0. The number of nodes is multiplied by 2 for each level down in
the tree. At level 1 there are 2 nodes, at level 2 there are 22 nodes, at level 3 there
are 23 nodes, and at level 4, the bottom of the tree, there are 24 = 16 nodes.

Suppose we are looking for a Hamiltonian circuit in a graph with n nodes
and two choices at each node. The bottom of the corresponding tree is at level n,
and there are 2n paths to examine. If we take the examination of a single path as
a unit of work, then this algorithm must do 2n units of work. This is more work
than any polynomial in n. An Θ(2n) algorithm is called an exponential
algorithm. Hence the trial-and-error approach to solving the Hamiltonian circuit
problem is an exponential algorithm. (We could improve on this algorithm by let-
ting it stop tracing a path whenever a repeated node different from the starting
node is encountered, but it is still exponential. If there are more than two
choices at a node, the amount of work is even greater.)

Figure 3.25 shows the four curves lg n, n, n2, and 2n. The rapid growth of
2n is not really apparent here, however, because that curve is off the scale for
values of n above 5. Figure 3.26 compares these four curves for values of n that
are still small, but even so, 2n is already far outdistancing the other values.

To appreciate fully why the order of magnitude of an algorithm is impor-
tant, let’s again imagine that we are running various algorithms as programs on
a computer that can perform a single operation (unit of work) in 0.0001 second.
Figure 3.27 shows the amount of time it takes for algorithms of Θ(lg n), Θ(n),
Θ(n2), and Θ(2n) to complete their work for various values of n.

The expression 2n grows unbelievably fast. An algorithm of Θ(2n) can take
so long to solve even a small problem that it is of no practical value. Even if we
greatly increase the speed of the computer, the results are much the same. We
now see more than ever why we added efficiency as a desirable feature for an
algorithm and why future advances in computer technology won’t change this.
No matter how fast computers get, they will not be able to solve a problem of
size n = 100 using an algorithm of Θ(2n) in any reasonable period of time.

The algorithm we have described here for testing an arbitrary graph for
Hamiltonian circuits is an example of a brute force algorithm—one that beats
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the problem into submission by trying all possibilities. In Chapter 1 we described
a brute force algorithm for winning a chess game; it consisted of looking at all
possible game scenarios from any given point on and then picking a winning
one. This is also an exponential algorithm. Some very practical problems have
exponential solution algorithms. For example, an e-mail message that you send
over the Internet is routed along the shortest possible path through intermedi-
ate computers from your mail server computer to the destination mail server
computer. An exponential algorithm to solve this problem would examine all pos-
sible paths to the destination and then use the shortest one. As you can imagine,
the Internet uses a better (more efficient) algorithm than this one!

For some problems, however, no polynomially bounded algorithm exists.
Such problems are called intractable; they are solvable, but the solution algo-
rithms all require so much work as to be virtually useless. The Hamiltonian
circuit problem is suspected  to be such a problem, but we don’t really know
for sure! No one has yet found a solution algorithm that works in polynomial
time, but neither has anyone proved that such an algorithm does not exist.
This is a problem of great interest in computer science. A surprising number of
problems fall into this “suspected intractable” category. Here’s another one,
called the bin-packing problem: Given an unlimited number of bins of vol-
ume 1 unit and given n objects, all of volume between 0.0 and 1.0, find the
minimum number of bins needed to store the n objects. An algorithm that
solves this problem would be of interest to any manufacturer who ships sets of
various items in standard-sized cartons or to anyone who wants to store image
files on a set of CDs in the most efficient way.

Problems for which no known polynomial solution algorithm exists are
sometimes approached via approximation algorithms. These algorithms
don’t solve the problem, but they provide a close approximation to a solution.
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ORDER 10 50 100 1,000

lg n 0.0003 sec 0.0006 sec 0.0007 sec 0.001 sec
n 0.001 sec 0.005 sec 0.01 sec 0.1 sec
n2 0.01 sec 0.25 sec 1 sec 1.67 min
2n 0.1024 sec 3,570 years 4 x 1016 centuries Too big to compute!!



For example, an approximation algorithm to solve the bin-packing problem
is to take the objects in order, put the first one into bin 1, and stuff each
remaining object into the first bin that can hold it. This (reasonable) approach
may not give the absolute minimum number of bins needed, but it gives a first
cut at the answer. (Anyone who has watched passengers stowing carry-on bag-
gage in an airplane has seen this approximation algorithm at work.)

For example, suppose a sequence of four objects with volumes of 0.3, 0.4,
0.5, and 0.6 are stored using the “first-fit” algorithm described above. The result
requires three bins, which would be packed as shown in Figure 3.28. However,
this is not the optimal solution (see Exercise 29 at the end of the chapter).

In Chapter 12, we will learn that there are problems that cannot be solved
algorithmically, even if we are willing to accept an extremely inefficient solution.

117

0.4

0.3
0.5 0.6

Empty
Empty EmptyA First-Fit Solution to a 

Bin-Packing Problem

FIGURE 3.28

1. Consider the following graph:

Draw a tree similar to Figure 3.24 showing all paths from A and
highlighting those that are Hamiltonian circuits (these are the same
two circuits as before). How many paths have to be examined?

2. The following tree shows all paths with two links that begin at node
A in some graph. Draw the graph.

PRACTICE PROBLEMS

A B

C D

A

B C D

A C D A B D A B C
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The various sorting algorithms examined in Laboratory
Experience 4 (selection sort, quicksort, etc.) do different
amounts of work on the same data sets. But how do these
various workloads affect the actual running time of the
algorithms? In this laboratory experience, you can run
these sorting algorithms and find their wall-clock running
time on different sizes of input. In addition, because you
can see the patterns of values falling into place in a large
list while an algorithm runs, you will get a much better
understanding of how each sorting algorithm moves values
around to accomplish its task. Here we see a picture of the
quicksort algorithm that has run for 3.71 seconds and is
about halfway through its task of sorting numerical values
in increasing order.

LABORATORY
EXPERIENCE 6

3.6 Summary of Level 1

We defined computer science as the study of algorithms, so it is appropriate
that Level 1 was devoted to exploring algorithms in more detail. In Chapter 2
we discussed how to represent algorithms using pseudocode. Pseudocode pro-
vides us with a flexible language for expressing the building blocks from
which algorithms can be constructed. These building blocks include assigning
a particular value to a quantity, choosing one of two next steps on the basis
of some condition, or repeating steps in a loop.

We developed algorithmic solutions to three very practical problems:
searching for a name in a list of names, finding the largest number in a list of
numbers, and searching for a particular pattern of characters within a seg-
ment of text. In Chapter 3 we noted that computer scientists develop algo-
rithms to be used and thus there is a set of desirable properties for algorithms,
including ease of understanding, elegance, and efficiency, in addition to cor-
rectness. Of these, efficiency—which may be either time efficiency or space
efficiency—is the most easily quantifiable.

A convenient way to classify the time efficiency of algorithms is by examin-
ing the order of magnitude of the work they do. Algorithms that are of differing
orders of magnitude do fundamentally different amounts of work. Regardless of
the constant factor that reflects peripheral work or how fast the computer on
which these algorithms execute, for problems with sufficiently large input, the
algorithm of the lowest order of magnitude requires the least time.

We analyzed the time efficiency of the sequential search algorithm and
discovered that it is an Θ(n) algorithm in both the worst case and the average



case. We found a selection sort algorithm that is Θ(n2), we found a binary
search algorithm that is Θ(lg n), and we analyzed the pattern-matching algo-
rithm from Chapter 2. By examining the data cleanup problem, we learned
that algorithms that solve the same task can indeed differ in the order of mag-
nitude of the work they do, sometimes by employing a time/space tradeoff.
We also learned that there are algorithms that require more than polynomially
bounded time to complete their work and that such algorithms may take so
long to execute, regardless of the speed of the computer on which they are
run, that they provide no practical solution. Some important problems may be
intractable—that is, have no polynomially bounded solution algorithms.

Some computer scientists work on deciding whether a particular problem
is intractable. Some work on finding more efficient algorithms for problems—
such as searching and sorting—that are so common that a more efficient algo-
rithm would greatly improve productivity. Still others seek to discover
algorithms for new problems. Thus, as we said, the study of algorithms under-
lies much of computer science. But everything we have done so far has been a
pencil-and-paper exercise. In terms of the definition of computer science that
we gave in Chapter 1, we have been looking at the formal and mathematical
properties of algorithms. It is time to move on to the next part of that defini-
tion: the hardware realizations of algorithms. When we execute real algo-
rithms on real computers, those computers are electronic devices. How does
an electronic device “understand” an algorithm and carry out its instructions?
We begin to explore these questions in Chapter 4.
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1. a. Use Gauss’s approach to find the sum

2 + 4 + 6 + . . . + 100
b. Use Gauss’s approach to find a formula for the sum of

the even numbers from 2 to 2n,

2 + 4 + 6 + . . . + 2n
Your formula will be an expression involving n.

2. The Fibonacci sequence of numbers is defined as fol-
lows: The first and second numbers are both 1. After
that, each number in the sequence is the sum of the two
preceding numbers. Thus, the Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, . . .

If F(n) stands for the nth value in the sequence, then
this definition can be expressed as

F(1) = 1

F(2) = 1

F(n) = F(n - 1) + F(n - 2) for n > 2
a. Using the definition of the Fibonacci sequence, com-

pute the value of F(20).
b. A formula for F(n) is

Using the formula (and a calculator), compute the
value of F(20).

c. What are your opinions on the relative clarity, ele-
gance, and efficiency of the two algorithms (using the
definition and using the formula) to compute F(20)?
Would your answer change if you considered F(100)?

3. A tennis tournament has 342 players. A single match
involves 2 players. The winner of a match will play the
winner of a match in the next round, whereas losers are
eliminated from the tournament. The 2 players who have
won all previous rounds play in the final game, and the
winner wins the tournament. What is the total number of
matches needed to determine the winner?

a. Here is one algorithm to answer this question. Compute
342 / 2 = 171 to get the number of pairs (matches) in
the first round, which results in 171 winners to go on to
the second round. Compute 171 / 2 = 85 with 1 left

over, which results in 85 matches in the second round
and 85 winners, plus the 1 left over, to go on to the
third round. For the third round compute 86 / 2 = 43, so
the third round has 43 matches, and so on. The total
number of matches is 171 + 85 + 43 + . . . . Finish this
process to find the total number of matches.

b. Here is another algorithm to solve this problem. Each
match results in exactly one loser, so there must
be the same number of matches as losers in the 
tournament. Compute the total number of losers in
the entire tournament. (Hint: This isn’t really a com-
putation; it is a one-sentence argument.)

c. What are your opinions on the relative clarity, ele-
gance, and efficiency of the two algorithms?

4. We have said that the average number of comparisons
needed to find a name in an n-element list using sequen-
tial search is slightly higher than n/2. In this problem we
find an exact expression for this average.

a. Suppose a list of names has an odd number of names,
say 15. At what position is the middle name? Using
sequential search, how many comparisons are required
to find the middle name? Repeat this exercise with a
few more odd numbers until you can do the following:
If there are n names in the list and n is an odd num-
ber, write an expression for the number of compar-
isons required to find the middle name.

b. Suppose a list of names has an even number of names,
say 16. At what positions are the two “middle” names?
Using sequential search, how many comparisons are
required to find each of these? What is the average of
these two numbers? Repeat this exercise with a few
more even numbers until you can do the following: If
there are n names in the list and n is an even number,
write an expression for the average number of compar-
isons required to find the two middle names.

c. Noting that half the names in a list fall before the
midpoint and half after the midpoint, use your answer
to parts (a) and (b) to write an exact expression for
the average number of comparisons done using
sequential search to find a name that occurs in an 
n-element list.

F(n) 5
"5
5

a
1 1 "5

2
b

n

2
"5
5

a
1 2 "5

2
b

n
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5. Here is a list of seven names:

Sherman, Jane, Ted, Elise, Raul, Maki, John

Search this list for each name in turn, using sequential
search and counting the number of comparisons for each
name. Now take the seven comparison counts and find their
average. Did you get a number that you expected? Why?

6. Perform a selection sort on the list 7, 4, 2, 9, 6. Show the
list after each exchange that has an effect on the list
ordering.

7. The selection sort algorithm could be modified to stop
when the unsorted section of the list contains only one
number, because that one number must be in the correct
position. Show that this modification would have no
effect on the number of comparisons required to sort an
n-element list.

Exercises 8-10 refer to another algorithm, called bubble sort,
that sorts an n-element list. Bubble sort makes multiple
passes through the list from front to back, each time
exchanging pairs of entries that are out of order. Here is a
pseudocode version:

1. Get values for n and the n list items
2. Set the marker U for the unsorted section at the end of

the list
3. While the unsorted section has more than one element

do steps 4 through 8
4. Set the current element marker C at the second ele-

ment of the list
5. While C is has not passed U do steps 6 and 7
6. If the item at position C is less than the item to

its left then exchange these two items
7. Move C to the right one position
8. Move U left one position
9. Stop

8. For each of the following lists, perform a bubble sort,
and show the list after each exchange. Compare the num-
ber of exchanges done here and in the Practice Problem
at the end of Section 3.3.3.
a. 4, 8, 2, 6
b. 12, 3, 6, 8, 2, 5, 7
c. D, B, G, F, A, C, E

9. Explain why the bubble sort algorithm above does Θ(n2)
comparisons on an n-element list.

10. Suppose selection sort and bubble sort are both per-
formed on a list that is already sorted. Does bubble sort
do fewer exchanges than selection sort? Explain.

11. Algorithms A and B perform the same task. On input of
size n, algorithm A executes 0.003n2 instructions, and
algorithm B executes 243n instructions. Find the approx-
imate value of n above which algorithm B is more effi-
cient. (You may use a calculator or spreadsheet.)

12. Suppose a metropolitan area is divided into 4 telephone
calling districts: 1, 2, 3, 4. The telephone company
keeps track of the number of calls placed from one dis-
trict to another and the number of calls placed within a
district. This information is recorded each month in a
4 3 4 table as shown here. The entry in row 1, column 3
(314), for example, shows the number of calls placed
from district 1 to district 3 for the month. The entry in
row 1, column 1 (243) shows the number of calls placed
from district 1 to district 1.

1 2 3 4

1 243 187 314 244
2 215 420 345 172
3 197 352 385 261
4 340 135 217 344

Suppose the telephone company serves n telephone dis-
tricts, and maintains an n 3 n table.

a. Write a pseudocode algorithm to print out the table,
that is, to print each of the entries in the table. Write
an expression for the number of print statements the
algorithm executes.

b. Write a pseudocode algorithm to print n copies of the
table, one to give to each of the n district managers.
Write an expression for the number of print state-
ments the algorithm executes.

c. What is the order of magnitude of the work done by
the algorithm in Part b if the unit of work is printing a
table element?

13. Write the data list that results from running the shuffle-
left algorithm to clean up the following data. Find the
exact number of copies done. 

3 0 0 2 6 7 0 0 5 1

14. Write the resulting data list and find the exact number of
copies done by the converging-pointers algorithm when
it is executed on the data in Exercise 13.
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15. Explain in words how to modify the shuffle-left data
cleanup algorithm to slightly reduce the number of
copies it makes. (Hint: Must item n always be copied?) If
this modified algorithm is run on the data list of Exercise
13, exactly how many copies are done?

16. The shuffle-left algorithm for data cleanup is supposed
to perform n(n – 1) copies on a list consisting of n 0s
(zeros). Confirm this result for the following list:

0 0 0 0 0 0

17. Consider the following list of names.

Arturo, Elsa, JoAnn, John, Jose, Lee, Snyder, Tracy
a. Use binary search to decide whether Elsa is in this list.

What names will be compared to Elsa?
b. Use binary search to decide whether Tracy is in this

list. What names will be compared to Tracy?
c. Use binary search to decide whether Emile is in this

list. What names will be compared to Emile?

18. Use the binary search algorithm to decide whether 35 is
in the following list:

3, 6, 7, 9, 12, 14, 18, 21, 22, 31, 43

What numbers will be compared to 35?

19. If a list is already sorted in ascending order, a modified
sequential search algorithm can be used that compares
against each element in turn, stopping if a list element
exceeds the target value. Write a pseudocode version of
this short sequential search algorithm.

20. This exercise refers to short sequential search (see
Exercise 19).

a. What is the worst-case number of comparisons of
short sequential search on a sorted n-element list?

b. What is the approximate average number of compar-
isons to find an element that is in a sorted list using
short sequential search?

c. Is short sequential search ever more efficient than
regular sequential search? Explain.

21. Draw the tree structure that describes binary search on
the 8-element list in Exercise 17. What is the number of
comparisons in the worst case? Give an example of a
name to search for that requires that many comparisons.

22. Draw the tree structure that describes binary search on a
list with 16 elements. What is the number of comparisons
in the worst case?

23. We want to find an exact formula for the number of com-
parisons that binary search requires in the worst case on
an n-element list. (We already know the formula is
Θ(lg n).)

a. If x is a number that is not an integer, then :x;, called
the floor function of x, is defined to be the largest
integer less than or equal to x. For example, :3.7; 5 3
and :5; 5 5. Find the following values: :1.2;, :2.3;,
:8.9;, :-4.6;.

b. If n is not a power of 2, then lg n is not  an integer. If
n is between 8 and 16, for example, then lg n is
between 3 and 4 (because lg 8 = 3 and lg 16 = 4).
Complete the following table of values: 

n :lg n;

2 1
3
4 2
5
6
7
8 3

c. For n = 2, 3, 4, 5, 6, 7, 8, draw a tree structure similar
to Figure 3.19 to describe the positions searched by
binary search. For each value of n, use the tree struc-
ture to find the number of comparisons in the worst
case, and complete the following table: 

n Number of compares, worst case

2
3
4 3
5
6
7 3
8

d. Comparing the tables of Parts b and c, find a formula
involving :lg n; for the number of comparisons binary
search requires in the worst case on an n-element list.
Test your formula by drawing trees for other values of n.
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24. Using the tree in Figure 3.19, find the number of com-
parisons to find each of items 1–7 in a seven element list
using binary search. Then find the average. Compare this
with the worst case.

25. At the end of Section 3.4.2, we talked about the tradeoff
between using sequential search on an unsorted list as
opposed to sorting the list and then using binary search.
If the list size is n = 100,000, about how many worst-
case searches must be done before the second alternative
is better in terms of number of comparisons? (Hint: Let p
represent the number of searches done.)

26. Suppose the pattern-matching problem is changed to
require locating only the first instance, if any, of the pat-
tern within the text.

a. Describe the worst case, give an example, and give the
exact number of comparisons (of a pattern character
with a text character) required.

b. Describe the best case, give an example, and give the
exact number of comparisons required.

27. At about what value of n does an algorithm that does 100n2

instructions become more efficient than one that does
0.01(2n) instructions? (Use a calculator or spreadsheet.)

28. a. An algorithm that is Θ(n) takes 10 seconds to execute
on a particular computer when n = 100. How long
would you expect it to take when n = 500?

b. An algorithm that is Θ(n2) takes 10 seconds to exe-
cute on a particular computer when n = 100. How long
would you expect it to take when n = 500?

29. Find an optimal solution to the bin-packing problem
described in Section 3.5.

30. In the data cleanup problem, we assumed that the items
were stored in a list with a fixed number of positions.
Each item could be examined by giving its position in
the list. This arrangement of data is called an array. Here
is an array of four items: 

43 13 55 39

1 2 3 4

Another way to arrange items is to have a way to locate
the first item and then have each item “point to” the

next item. This arrangement of data is called a linked
list. Here are the same four items in a linked list
arrangement:

h h h

To examine any item in a linked list, one must start
with the first item and follow the pointers to the
desired item.

Unlike arrays, which are fixed in size, linked lists
can shrink and grow. An item can be eliminated from a
linked list by changing the pointer to that item so that it
points to the next item instead.

a. Draw the linked list that results when item 13 is elim-
inated from the foregoing linked list.

b. Draw the linked list that results when data cleanup is
performed on the following linked list. 

h h h h h

c. Describe (informally) an algorithm to do data cleanup
on a linked list. You may assume that neither the first
item nor the last item has a value of 0, and you may
assume the existence of operations such as “follow
pointer” and “change pointer.” If these operations
are the unit of work used, show that your algorithm is
an Q(n) algorithm, where n is the number of items in
the list.

31. Below is a pseudocode algorithm that prints a set of out-
put values.
1. Get value for n
2. Set the value of k to 1
3. While k is less than or equal to n, do steps 4 through 8
4. Set the value of j to one-half n
5. While j is greater than or equal to 1, do steps 6

through 7
6. Print the value of j
7. Set the value of j to one-half its former value
8. Increase k by 1
9. Stop

a. Let n have the value 4.  Write the values printed out
by this algorithm.

b. Let n have the value 8.  Write the values printed out
by this algorithm.

3302853019

39551343
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1. You are probably familiar with the children’s song “Old
MacDonald Had a Farm.” The first verse is

Old MacDonald had a farm, eee-eye, eee-eye, oh.
And on that farm he had a cow, eee-eye, 

eee-eye, oh.
With a moo-moo here and a moo-moo there,
Here a moo, there a moo,
Everywhere a moo-moo,

Old MacDonald had a farm, eee-eye, eee-eye, oh.

In successive verses, more animals are added, and the
middle refrain gets longer and longer. For example, the
second verse is

Old MacDonald had a farm, eee-eye, eee-eye, oh.
And on that farm he had a pig, eee-eye, 

eee-eye, oh.
With an oink-oink here and an oink-oink there,
Here an oink, there an oink,
Everywhere an oink-oink,
With a moo-moo here and a moo-moo there,
Here a moo, there a moo,
Everywhere a moo-moo,

Old MacDonald had a farm, eee-eye, eee-eye, oh.
a. Show that after n verses of this song have been sung,

the total number of syllables sung would be given by
the expression 22n(n + 1)/2 + 37n

(You may assume that all animal names and all animal
sounds consist of one syllable, as in cow, pig, moo,
oink, and so on.)

b. If singing this song is the algorithm, and the work
unit is singing one syllable, what is the order of mag-
nitude of the algorithm?1

2. Linear programming involves selecting values for a large
number of quantities so that they satisfy a set of inequal-
ities (such as x + y + z # 100) while at the same time
maximizing (or minimizing) some particular function of
these variables. Linear programming has many applica-
tions in communications and manufacturing. A trial-and-
error approach to a linear programming problem would
involve guessing at values for these variables until all of
the inequalities are satisfied, but this may not produce
the desired maximum (or minimum) value. In addition,
real-world problems may involve hundreds or thousands of
variables. A common algorithm to solve linear program-
ming problems is called the simplex method. Although
the simplex method works well for many common applica-
tions, including those that involve thousands of variables,
its worst-case order of magnitude is exponential. Find
information on the work of N. Karmarkar of Bell Labs, who
discovered another algorithm for linear programming that
is of polynomial order in the worst case and is faster than
the simplex method in average cases.

C H A L L E N G E  WO R K

1 This exercise is based on work found in Chavey, D., “Songs and the Analysis of Algorithms,”
Proceedings of the Twenty-Seventh SIGCSE Technical Symposium (1996), pp. 4–8.

c. Which of the following best describes the efficiency of
this algorithm, where the “work unit” is printing a value?

Θ(n2)   Θ(n lg n)     Θ(n)  Θ(lg n)

d. How many work units would you expect this algorithm
to do if n = 16?

32. Chapter 2 contains an algorithm that finds the largest
value in a list of n values.  
a. What is the order-of-magnitude of the largest-value

algorithm, where the work unit is comparisons of val-
ues from the list?

b. Suppose that you want to find the second-largest value in
the list. Find the order of magnitude of the work done if
you use the following algorithm: Sort the list, using selec-
tion sort, then directly get the second-largest value.

c. Suppose that you want to find the second-largest value
in the list. Find the order of magnitude of the work
done if you use the following algorithm: Run the
largest-value algorithm twice, first to find (and elimi-
nate from the list) the largest value, then to find the
second-largest value.
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LEVEL 2

Some computer scientists are interested only in the
logical and mathematical properties of algorithms—the
material presented in Level 1. Others are interested in
discovering and studying a solution and using that
solution to produce results more efficiently than was
previously possible. They want to execute algorithms
on real computers. 

Level 2 of the text takes us into a fascinating region of
computer science, the hardware world. Chapter 4 examines
the fundamental building blocks used to construct comput-
ers. It discusses how to represent and store information
inside a computer, how to use the principles of symbolic
logic to design gates, and how to use gates to construct
circuits that perform operations such as adding numbers,
comparing numbers, and fetching instructions. These ideas
are part of the branch of computer science known as
hardware design, also called logic design. The second part
of Level 2, Chapter 5, investigates computer hardware from
a higher-level perspective called computer organization.
This chapter introduces the four major subsystems of a
modern computer (memory, input/output, arithmetic/logic
unit, and control unit), demonstrates how they are built
from the elementary building blocks described in Chapter 4,
and shows how these subsystems can be organized
into a complete, functioning computer system. 
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4.1 Introduction

Level 1 of the text investigated the algorithmic foundations of computer sci-
ence. It developed algorithms for searching tables, finding largest and smallest
values, locating patterns, sorting lists, and cleaning up bad data. It also
showed how to analyze and evaluate algorithms to demonstrate that they are
not only correct but efficient and useful as well.

Our discussion assumed that these algorithms would be executed by
something called a computing agent, an abstract concept representing any
object capable of understanding and executing our instructions. We didn’t care
what that computing agent was—person, mathematical model, computer, or
robot. However, in this section of the text we do care what our computing
agent looks like and how it is able to execute instructions and produce results.

In this chapter we introduce the fundamental building blocks of all com-
puter systems—binary representation, Boolean logic, gates, and circuits.

4.2 The Binary Numbering System

Our first concern with learning how to build computers is understanding how
computers represent information. Their internal storage techniques are quite
different from the way you and I represent information in our notebooks,
desks, and filing cabinets.

4.2.1 Binary Representation of Numeric and Textual
Information

People generally represent numeric and textual information (language differ-
ences aside) by using the following notational conventions:

a. The 10 decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for numeric values such
as 459.

b. Sign/magnitude notation for signed numbers—that is, a + or – sign
placed immediately to the left of the digits; +31 and –789 are examples.

c. Decimal notation for real numbers, with a decimal point separating the
whole number part from the fractional part; an example is 12.34.

d. The 26 letters A, B, C, . . . , Z for textual information (as well as lower-
case letters and a few special symbols for punctuation).



You might suppose that these well-known schemes are the same conven-
tions that computers use to store information in memory. Surprisingly, this is
not true.

There are two types of information representation: The external
representation of information is the way information is represented by
humans and the way it is entered at a keyboard or displayed on a printer or
screen. The internal representation of information is the way it is stored in
the memory of a computer. This difference is diagrammed in Figure 4.1.

Externally, computers do use decimal digits, sign/magnitude notation,
and the 26-character alphabet. However, virtually every computer ever built
stores data—numbers, letters, graphics, images, sound—internally using the
binary numbering system.

Binary is a base-2 positional numbering system not unlike the more
familiar decimal, or base-10, system used in everyday life. In these systems,
the value or “worth” of a digit depends not only on its absolute value but also
on its specific position within a number. In the decimal system there are 10
unique digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9), and the value of the positions in
a decimal number is based on powers of 10. Moving from right to left in a
number, the positions represent ones (100), tens (101), hundreds (102), thou-
sands (103), and so on. Therefore, the decimal number 2,359 is evaluated as
follows:

(2 3 103) + (3 3 102) + (5 3 101) + (9 3 100)
= 2,000 + 300 + 50 + 9
= 2,359

The same concepts apply to binary numbers except that there are only two
digits, 0 and 1, and the value of the positions in a binary number is based on
powers of 2. Moving from right to left, the positions represent ones (20), twos
(21), fours (22), eights (23), sixteens (24), and so on. The two digits, 0 and 1,
are frequently referred to as bits, a contraction of the two words binary digits.
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For example, the 6-digit binary number 111001 is evaluated as follows:

111001 5 (1 3 25) 1 (1 3 24) 1 (1 3 23) 1 (0 3 22) 1 (0 3 21) 1 (1 3 20)
5 32 1 16 1 8 1 0 1 0 1 1
5 57

The 5-digit binary quantity 10111 is evaluated in the following manner:

10111 5 (1 3 24) 1 (0 3 23) 1 (1 3 22) 1 (1 3 21) 1 (1 3 20)
5 16 1 0 1 4 1 2 1 1
5 23

Evaluating a binary number is quite easy, because 1 times any value is simply
that value, and 0 times any value is always 0. Thus, when evaluating a binary
number, use the following binary-to-decimal algorithm: Whenever there is a
1 in a column, add the positional value of that column to a running sum, and
whenever there is a 0 in a column, add nothing. The final sum is the decimal
value of this binary number. This is the procedure we followed in the previous
two examples.

A binary-to-decimal conversion table for the values 0–31 is shown in
Figure 4.2. You may want to evaluate a few of the binary values using this
algorithm to confirm their decimal equivalents.

Any whole number that can be represented in base 10 can also be repre-
sented in base 2, although it may take more digits because a single decimal
digit contains more information than a single binary digit. Note that in the
first example shown above it takes only 2 decimal digits (5 and 7) to represent
the quantity 57 in base 10, but it takes 6 binary digits (1, 1, 1, 0, 0, and 1) to
express the same value in base 2.

To go in the reverse direction—that is, to convert a decimal value into its
binary equivalent—we use the decimal-to-binary algorithm, which is based
on successive divisions by 2. Dividing the original decimal value by 2 produces
a quotient and a remainder, which must be either a 0 or a 1. Record the remain-
der digit and then divide the quotient by 2, getting a new quotient and a
second remainder digit.  The process of dividing by 2, saving the quotient, and
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BINARY DECIMAL BINARY DECIMAL

0 0 10000 16
1 1 10001 17
10 2 10010 18
11 3 10011 19
100 4 10100 20
101 5 10101 21
110 6 10110 22
111 7 10111 23
1000 8 11000 24
1001 9 11001 25
1010 10 11010 26
1011 11 11011 27
1100 12 11100 28
1101 13 11101 29
1110 14 11110 30
1111 15 11111 31

Binary-to-Decimal
Conversion Table

FIGURE 4.2
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writing down the remainder is repeated until the quotient equals 0.  The
sequence of remainder digits, when written left to right from the last remain-
der digit to the first, is the binary representation of the original decimal value.
For example, here is the conversion of the decimal value 19 into binary:

Convert the value 19 to binary:
19 ÷ 2 quotient = 9 remainder = 1
9 ÷ 2 quotient = 4  remainder = 1            order for 
4 ÷ 2 quotient = 2 remainder = 0            reading the
2 ÷ 2 quotient = 1 remainder = 0            remainder 
1 ÷ 2 quotient = 0 remainder = 1            digits

Stop, since the quotient is now 0.

In this example, the remainder digits, when written left-to-right from
the last one to the first, are 10011.  This is the binary form of the decimal
value 19.  To confirm this, we can convert this value back to decimal form
using the binary-to-decimal algorithm. 

10011 = (1 3 24) + (0 3 23) + (0 3 22) + (1 3 21) + (1 3 20)
= 16 + 0 + 0 + 2 + 1
= 19

In every computer there is a maximum number of binary digits that can
be used to store an integer. Typically, this value is 16, 32, or 64 bits. Once we
have fixed this maximum number of bits (as part of the design of the com-
puter), we also have fixed the largest unsigned whole number that can be rep-
resented in this computer. For example, Figure 4.2 used at most 5 bits to
represent binary numbers. The largest value that could be represented is
11111, not unlike the number 99999, which is the maximum mileage value
that can be represented on a 5-digit decimal odometer. 11111 is the binary
representation for the decimal integer 31. If there were 16 bits available,
rather than 5, then the largest integer that could be represented is

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The decimal system has been in use for so long that most
people cannot imagine using a number system other than
base 10. Tradition says it was chosen because we have
10 fingers and 10 toes. However, the discussion of the
past few pages should convince you that there is nothing
unique or special about decimal numbering, and the basic
operations of arithmetic (addition, subtraction, multipli-
cation, and division) work just fine in other bases, such as
base 2. In addition to binary, computer science makes

frequent use of octal (base 8) and hexadecimal (base 16).
Furthermore, it is not only computers that utilize non-
decimal bases. For example, the Native American Yuki
tribe of Northern California reportedly used base 4, or
quaternary numbers, counting using the spaces between
fingers rather than on the fingers themselves. The pre-
Columbian Mayans of Mexico and Central America used a
vigesimal system, or base 20, while ancient Babylonians
employed sexagesimal, or base 60 (and we are quite sure
that members of  both cultures had the same number of
fingers and toes as twenty-first-century human beings!).

A Not So Basic Base
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This quantity is 215 + 214 + . . . + 22 + 21 + 20 = 65,535. Unsigned integers
larger than this cannot be represented with 16 binary digits. Any operation on
this computer that produces an unsigned value greater than 65,535 results in
the error condition called arithmetic overflow. This is an attempt to repre-
sent an integer that exceeds the maximum allowable value. The computer
could be designed to use more than 16 bits to represent integers, but no mat-
ter how many bits are ultimately used, there is always a maximum value
beyond which the computer cannot correctly represent any integer. This char-
acteristic is one of the major differences between the disciplines of mathe-
matics and computer science. In mathematics a quantity may usually take on
any value, no matter how large. Computer science must deal with a finite—
and sometimes quite limited—set of possible representations, and it must
handle the errors that occur when those limits are exceeded.

Arithmetic in binary is quite easy because we have only 2 digits to deal
with rather than 10.  Therefore, the rules that define arithmetic operations
such as addition and subtraction have only 2 3 2 = 4 entries, rather than the
10 3 10 = 100 entries for decimal digits.  For example, here are the four rules
that define binary addition:

0 0 1 1
+ 0 +  1 +  0 +  1

0 1 1 10  (that is, 0 with a carry of 1.) 

The last rule says that 1 + 1 = 10, which has the decimal value 2.

To add two binary numbers you use the same technique first learned in grade
school. Add each column one at a time from right to left, using the binary
addition rules shown above.  In the column being added you write the sum
digit under the line and any carry digit produced is written above the next
column to the left.  For example, addition of the two binary values 7 (00111)
and 14 (01110) proceeds as follows:

00111 (the binary value 7)
+ 01110 (the binary value 14)

Start by adding the two digits in the rightmost column—the 1 and 0.  This
produces a sum of 1 and a carry digit of 0; the carry digit gets “carried” to the
second column.

0 ← carry digit
00111

+ 01110
1

Now add the carry digit from the previous column to the two digits in the
second column, which gives 0 + 1 + 1.  From the rules above, we see that the
(0 + 1) produces a 1.  When this is added to the value 1 it produces a sum of 0
and a new carry digit of 1.

1        ← carry digit
00111

+ 01110
01



Adding the two digits in the third column plus the carry digit from the second
column produces 1 + 1 + 1, which is 11, or a sum of 1 and a new carry digit of 1.

1      ← carry digit
00111

+ 01110
101

Continuing in this right-to-left manner until we reach the leftmost column
produces the final result, 10101 in binary, or 21 in decimal.

00111
+ 01110

10101    (the value 21 = 16 + 4 + 1)

SIGNED NUMBERS. Binary digits can represent not only whole numbers but
also other forms of data, including signed integers, decimal numbers, and
characters. For example, to represent signed integers, we can use the leftmost
bit of a number to represent the sign, with 0 meaning positive (+) and 1
meaning negative (–). The remaining bits are used to represent the magnitude
of the value. This form of signed integer representation is termed sign/
magnitude notation, and it is one of a number of different techniques for
representing positive and negative whole numbers. For example, to represent
the quantity –49 in sign/magnitude, we could use seven binary digits with
one bit for the sign and six bits for the magnitude:

1 1 1 0 0 0 1

2       49 (25 1 24 1 20 5 32 1 16 1 1 5 49)

The value +3 would be stored like this:

0 0 0 0 0 1 1

1 3 (21 1 20 5 2 1 1 5 3)

You may wonder how a computer knows that the 7-digit binary number
1110001 in the first example above represents the signed integer value –49
rather than the unsigned whole number 113.

1110001 5 (1 3 26) 1 (1 3 25) 1 (1 3 24) 1 (1 3 20)
5 64 1 32 1 16 1 1
5 113

The answer to this question is that a computer does not know. A sequence of
binary digits can have many different interpretations, and there is no fixed,
predetermined interpretation given to any binary value. A binary number
stored in the memory of a computer takes on meaning only because it is
used in a certain way. If we use the value 1110001 as though it were a
signed integer, then it will be interpreted that way and will take on the
value –49. If it is used, instead, as an unsigned whole number, then that is
what it will become, and it will be interpreted as the value 113. The mean-
ing of a binary number stored in memory is based solely on the context in
which it is used.
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Initially this may seem strange, but we deal with this type of ambiguity
all the time in natural languages. For example, in the Hebrew language, let-
ters of the alphabet are also used as numbers. Thus the Hebrew character
aleph (�)  can stand for either the letter A or the number 1. The only way to
tell which meaning is appropriate is to consider the context in which the
character is used. Similarly, in English the word ball can mean either a round
object used to play games or an elegant formal party. Which interpretation is
correct? We cannot say without knowing the context in which the word is
used. The same is true for values stored in the memory of a computer system.
It is the context that determines the meaning of a binary string.

Sign/magnitude notation is quite easy for people to work with and under-
stand, but, surprisingly, it is used rather infrequently in real computer sys-
tems. The reason is the existence of the very “messy” and unwanted signed
number: 10000 . . . 0000. Because the leftmost bit is a 1, this value is treated
as negative. The magnitude is 0000 . . . 0000. Thus this bit pattern represents
the numerical quantity “negative zero,” a value that has no real mathematical
meaning and should not be distinguished from the other representation for
zero, 00000 . . . 0000. The existence of two distinct bit patterns for a single
numerical quantity causes some significant problems for computer designers.  

For example, assume we are executing the following algorithmic operation
on two signed numbers a and b

if (a = b)
do operation 1

else
do operation 2

when a has the value 0000 . . . 0 and b has the value 1000 . . . 0.  Should they
be considered equal to each other? Numerically the value –0 does equal +0, so
maybe we should do operation 1. However, the two bit patterns are not iden-
tical, so maybe these two values are not equal, and we should do operation 2.
This situation can result in programs that execute in different ways on differ-
ent machines.

Therefore, computer designers tend to favor signed integer representa-
tions that do not suffer from the problem of two zeros. One of the most widely
used is called two’s complement representation.  To understand how this
method works you need to write down, in circular form, all binary patterns
from 000 . . . 0 to 111 . . . 1 in increasing order.  Here is what that circle might
look like using 3-digit numbers:
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In this diagram the positive numbers begin at 000 and proceed in order
around the circle to the right.  Negative numbers begin at 111 and proceed in
order around the circle to the left.  The leftmost digit specifies whether the
number is to be given a positive interpretation (leftmost bit = 0) or a negative
interpretation (leftmost bit = 1).

Bit pattern Decimal value
000 0
001 +1
010 +2
011 +3
100 -4
101 -3
110 -2
111 -1

In this representation if we add, for example, 3 + (–3), we get 0, as
expected:

11 ← carry digits
011
101
000 (Note: The 1 that carries into column 4 can be discarded.)

Note that in the two’s complement representation there is only a single
zero, the binary number 000 . . . 0.  However, the existence of a single
pattern for zero leads to another unusual situation.  The total number of
values that can be represented with n bits is 2n, which is always an even
number.  In the previous example n = 3, so there were 23 = 8 possible
values. One of these is used for 0, leaving seven remaining values, which is
an odd number.  It is impossible to divide these seven patterns equally
between the positive and negative numbers, and in this example we ended
up with four negative values but only three positive ones.  The pattern that
was previously “negative zero” (100) now represents the value –4, but there
is no equivalent number on the positive side, that is, there is no binary
pattern that represents +4.  In the two’s complement representation of
signed integers you can always represent one more negative number than
positive.  This is not as severe a problem as having two zeros, though, and
two’s complement is widely used for representing signed numbers inside a
computer.

This has been only a brief introduction to the two’s complement repre-
sentation.  A Challenge Work problem at the end of this chapter invites you to
investigate further the underlying mathematical foundations of this interest-
ing representational technique. 

FRACTIONAL NUMBERS. Fractional numbers, such as 12.34 and –0.001275,
can also be represented in binary by using the signed-integer techniques we
have just described. To do that, however, we must first convert the number to
scientific notation:

±M 3 B±E
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where M is the mantissa, B is the exponent base (usually 2), and E is the
exponent. For example, assume we want to represent the decimal quantity
+5.75. In addition, assume that we will use 16 bits to represent the number,
with 10 bits allocated for representing the mantissa and 6 bits for the expo-
nent. (The exponent base B is assumed to be 2 and is not explicitly stored.)
Both the mantissa and the exponent are signed integer numbers, so we can
use either the sign/magnitude or two’s complement notations that we just
learned to represent each of these two fields. (In all the following examples
we have chosen to use sign/magnitude notation.)

In binary, the value 5 is 101. To represent the fractional quantity 0.75, we
need to remember that the bits to the right of the decimal point (or binary
point in our case) have the positional values r-1, r-2, r-3, and so on, where r is
the base of the numbering system used to represent the number. When using
decimal these position values are the tenths (10-1), hundredths (10-2), thou-
sandths (10-3), and so on.  Because r is 2 in our case, the positional values of
the digits to the right of the binary point are halves (2-1), quarters (2-2),
eighths (2-3), sixteenths (2-4), and so on. Thus,

0.75 = 1/2 + 1/4 = 2-1 + 2-2 (which in binary is 0.11)

Therefore, in binary 5.75 = 101.11. Using scientific notation, and an exponent
base B = 2, we can write this value as

5.75 = 101.11 3 20

Next, we must normalize the number so that its first significant digit is
immediately to the right of the binary point. As we move the binary point,
we adjust the value of the exponent so that the overall value of the number
remains unchanged. If we move the binary point to the left one place
(which makes the value smaller by a factor of 2), then we add 1 to the
exponent (which makes it larger by a factor of 2). We do the reverse when
we move the binary point to the right.

5.75 5 101.11 3 20

5 10.111 3 21

5 1.0111 3 22

5 .10111 3 23

(which is (1/2 + 1/8 + 1/16 + 1/32) 3 8 = 5.75)

We now have the number in the desired format and can put all the
pieces together. We separately store the mantissa (excluding the binary
point, which is assumed to be to the left of the first significant digit) and
the exponent, both of which are signed integers and can be represented in
sign/magnitude notation. The mantissa is stored with its sign—namely, 0,
because it is a positive quantity—followed by the assumed binary point,
followed by the magnitude of the mantissa, which in this case is 10111.
Next we store the exponent, which is +3, or 000011 in sign/magnitude. The
overall representation, using 16 bits, is
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For another example, let’s determine the internal representation of the frac-
tion –5/16.

–5/16 5 –(1/4 + 1/16)
5 –.0101 3 20 (this is the value –5/16 in scientific

notation)
5 –.101 3 2–1 (after normalization)

TEXTUAL INFORMATION. To represent textual material in binary, the system
assigns to each printable letter or symbol in our alphabet a unique number
(this assignment is called a code mapping), and then it stores that symbol
internally using the binary equivalent of that number. For example, here is
one possible mapping of characters to numbers, which uses 8 bits to represent
each character.

Symbol Decimal Value Binary (Using 8 Binary Digits)

A 1 00000001
B 2 00000010
C 3 00000011
D 4 00000100
� � �

Z 26 00011010
� � �

@ 128 10000000
! 129 10000001
� � �
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To store the 4-character string “BAD!” in memory, the computer would store the
binary representation of each individual character using the above 8-bit code. 

BAD! 5 00000010 00000001 00000100 10000001

B A D !

We have indicated above that the 8-bit numeric quantity 10000001 is
interpreted as the character “!”. However, as we mentioned earlier, the only
way a computer knows that the 8-bit value 10000001 represents the symbol “!”
and not the unsigned integer value 129 (128 + 1) or the signed integer value –1
(sign bit = negative, magnitude is 1) is by the context in which it is used. If
these 8 bits are sent to a display device that expects to be given characters,
then this value will be interpreted as an “!”. If, on the other hand, this 8-bit
value is sent to an arithmetic unit that adds unsigned numbers, then it will be
interpreted as a 129 in order to make the addition operation meaningful.

To facilitate the exchange of textual information, such as word processing
documents and electronic mail, between computer systems, it would be
most helpful if everyone used the same code mapping. Fortunately, this is
pretty much the case. Currently the most widely used code for representing
characters internally in a computer system is called ASCII, an acronym for the
American Standard Code for Information Interchange. ASCII is an interna-
tional standard for representing textual information in the majority of com-
puters. It uses 8 bits to represent each character, so it is able to encode a total
of 28 = 256 different characters. These are assigned the integer values 0 to
255. However, only the numbers 32 to 126 have been assigned so far to print-
able characters. The remainder either are unassigned or are used for nonprint-
ing control characters such as tab, form feed, and return. Figure 4.3 shows the
ASCII conversion table for the numerical values 32–126.

However, a new code set called UNICODE is rapidly gaining popularity
because it uses a 16-bit representation for characters rather than the 8-bit format
of ASCII. This means that it is able to represent 216 = 65,536 unique characters
instead of the 28 = 256 of ASCII. It may seem like 256 characters are more than
enough to represent all the textual symbols that we would ever need—for exam-
ple, 26 uppercase letters, 26 lowercase letters, 10 digits, and a few dozen special
symbols, such as +=–{}][\:”?><.,;%$#@. Add that all together and it still totals
only about 100 symbols, far less than the 256 that can be represented in ASCII.
However, that is true only if we limit our work to Arabic numerals and the Roman
alphabet. The world grows more connected all the time—helped along by com-
puters, networks, and the Web—and it is critically important that computers
represent and exchange textual information using alphabets in addition to these
26 letters and 10 digits. When we start assigning codes to symbols drawn from
alphabets such as Russian, Arabic, Chinese, Hebrew, Greek, Thai, Bengali, and
Braille, as well as mathematical symbols and special linguistic marks such as
tilde, umlaut, and accent grave, it becomes clear that ASCII does not have nearly
enough room to represent them all. However, UNICODE, with space for over
65,000 symbols, is large enough to accommodate all these symbols and many
more to come. In fact, UNICODE has defined standard code mappings for more
than 50,000 symbols from literally hundreds of alphabets, and it is a way for
users around the world to share textual information regardless of the language in
which they are writing. The UNICODE home page, which gives all the current
standard mappings, is located at www.unicode.org.
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KEYBOARD BINARY ASCII INTEGER KEYBOARD BINARY ASCII INTEGER

CHARACTER CODE EQUIVALENT CHARACTER CODE EQUIVALENT

(blank) 00100000 32 P 01010000 80
! 00100001 33 Q 01010001 81
“ 00100010 34 R 01010010 82
# 00100011 35 S 01010011 83
$ 00100100 36 T 01010100 84
% 00100101 37 U 01010101 85
& 00100110 38 V 01010110 86
‘ 00100111 39 W 01010111 87
( 00101000 40 X 01011000 88
) 00101001 41 Y 01011001 89
* 00101010 42 Z 01011010 90
+ 00101011 43 [ 01011011 91
´ 00101100 44 \ 01011100 92
– 00101101 45 ] 01011101 93
. 00101110 46 ^ 01011110 94
/ 00101111 47 _ 01011111 95
0 00110000 48 ` 01100000 96
1 00110001 49 a 01100001 97
2 00110010 50 b 01100010 98
3 00110011 51 c 01100011 99
4 00110100 52 d 01100100 100
5 00110101 53 e 01100101 101
6 00110110 54 f 01100110 102
7 00110111 55 g 01100111 103
8 00111000 56 h 01101000 104
9 00111001 57 i 01101001 105
: 00111010 58 j 01101010 106
; 00111011 59 k 01101011 107
< 00111100 60 l 01101100 108
= 00111101 61 m 01101101 109
> 00111110 62 n 01101110 110
? 00111111 63 o 01101111 111
@ 01000000 64 p 01110000 112
A 01000001 65 q 01110001 113
B 01000010 66 r 01110010 114
C 01000011 67 s 01110011 115
D 01000100 68 t 01110100 116
E 01000101 69 u 01110101 117
F 01000110 70 v 01110110 118
G 01000111 71 w 01110111 119
H 01001000 72 x 01111000 120
I 01001001 73 y 01111001 121
J 01001010 74 z 01111010 122
K 01001011 75 { 01111011 123
L 01001100 76 : 01111100 124
M 01001101 77 ] 01111101 125
N 01001110 78 ~ 01111110 126
O 01001111 79

ASCII Conversion Table

FIGURE 4.3



4.2.2 Binary Representation of Sound and Images

During the first 30 to 40 years of computing, the overwhelming majority of
applications, such as word processing and spreadsheets, were text-based and
limited to the manipulation of characters, words, and numbers. However,
sound and images are now as important a form of representation as text and
numbers because of the rapid growth of the Web, the popularity of digitally
encoded music, the emergence of digital photography, and the almost univer-
sal availability of digital CD and DVD movies. Most of us, whether computer
specialists or not, have probably had the experience of playing MP3 files or 
e-mailing vacation pictures to friends and family. In this section we take a
brief look at how sounds and images are represented in computers, using the
same binary numbering system that we have been discussing.
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1. What is the value of the 8-bit binary quantity 10101000 if it is
interpreted (a) as an unsigned integer, and (b) as a signed integer
represented in sign/magnitude notation?

2. What does the unsigned decimal value 99 look like in binary using
8 bits?

3. What do the signed integers –300 and +254 look like in binary using
10 bits and signed magnitude integer representation?

4. Using 4 bits and two’s complement representation, what is the
binary representation of the following signed decimal values:  

a. +6
b. –3

5. Perform the following 5-bit binary addition showing the carry bit
that propagates to each column.  Assume the numbers are unsigned
binary quantities:

01110
+   01011

6. What does the 3-character string “X+Y” look like internally using
the 8-bit ASCII code given in Figure 4.3? What does it look like in
16-bit UNICODE? (Go to www.unicode.org to find the specific code
mappings for these three characters.)

7. Using 10 bits to represent the mantissa (sign/magnitude) and 6 bits
for the exponent (also sign/magnitude), show the internal repre-
sentation of the following two values:

a. +0.25
b. –32 1/16

8. Explain exactly what happens when you add a 1 to the following 
5-bit, two’s complement value: 01111

PRACTICE PROBLEMS

www.unicode.org


Sound is analog information, unlike the digital format used to represent
text and numbers discussed in the previous section. In a digital representation,
the values for a given object are drawn from a finite set, such as letters
{A, B, C, . . . , Z} or a subset of integers {0, 1, 2, 3, . . . , MAX }. In an analog
representation, objects can take on any value. For example, in the case of
sound, a tone is a continuous sinusoidal waveform that varies in a regular peri-
odic fashion over time, as shown in Figure 4.4. (Note: This diagram shows only a
single tone. Complex sounds, such as symphonic music, are composed of multi-
ple overlapping waveforms. However, the basic ideas are the same.)

The amplitude (height) of the wave is a measure of its loudness—the
greater the amplitude the louder the sound. The period of the wave, desig-
nated as T, is the time it takes for the wave to make one complete cycle. The
frequency f is the total number of cycles per unit time measured in
cycles/second, also called hertz, and defined as f = 1/T. The frequency is a
measure of the pitch, the highness or lowness of a sound. The higher the fre-
quency the higher the perceived tone. A human ear can generally detect
sounds in the range of 20 to 20,000 hertz.

To store a waveform (such as the one in Figure 4.4) in a computer, the
analog signal must first be digitized, that is, converted to a digital represen-
tation. This can be done using a technique known as sampling. At fixed time
intervals, the amplitude of the signal is measured and stored as an integer
value. The wave is thus represented in the computer in digital form as a
sequence of sampled numerical amplitudes. For example, Figure 4.5(a) shows
the sampling of the waveform of Figure 4.4.

This signal can now be stored inside the computer as the series of signed
integer values 3, 7, 7, 5, 0, –3, –6, –6, . . . , where each numerical value is
encoded in binary using the techniques described in the previous section.
From these stored digitized values the computer can recreate an approxima-
tion to the original analog wave. It would first generate an amplitude level of
3, then an amplitude level of 7, then an amplitude level of 7, and so on, as
shown in Figure 4.5(b). These values would be sent to a sound-generating
device, like stereo speakers, which would produce the actual sounds based on
the numerical values received.

The accuracy with which the original sound can be reproduced is dependent
on two key parameters—the sampling rate and the bit depth. The sampling rate
measures how many times per second we sample the amplitude of the sound
wave. Obviously, the more often we sample, the more accurate the reproduction.
Note, for example, that the sampling shown in Figure 4.5(a) appears to have
missed the peak value of the wave because the peak occurred between two sam-
pling intervals. Furthermore, the more often we sample, the greater the range of
frequencies that can be captured; if the frequency of a wave is greater than or
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Period, T

Time

Amplitude
Example of Sound Represented
as a Waveform

FIGURE 4.4



equal to the sampling rate, we may not sample any points whatsoever on an
entire waveform. For example, look at the following sampling interval t which is
exactly equal to the period T of the wave being measured:

This rate of sampling produces a constant amplitude value, totally distorting
the original sound. In general, a sampling rate of R samples/second allows you
to reproduce all frequencies up to about R/2 hertz. Because the human ear can
normally detect sound up to about 20,000 hertz, a sampling rate of at least
40,000 samples per second is necessary to capture all audible frequencies.

The bit depth is the number of bits used to encode each sample. In the
previous section you learned that ASCII is an 8-bit character code, allowing for
256 unique symbols. UNICODE uses 16 bits, allowing for more than 65,000 symbols
and greatly increasing the number of symbols that can be represented. The same
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trend can be seen in sound reproduction. Initially, 8 bits per sample was the stan-
dard, but the 256 levels of amplitude that could be represented turned out to be
insufficient for the sophisticated high-end sound systems produced and marketed
today. Most audio encoding schemes today use either 16 or 24 bits per sample
level, allowing for either 65,000 or 16,000,000 distinct amplitude levels.

There are many audio-encoding formats in use today, including WAV, AU,
Quicktime, and RealAudio. Probably the most popular and widely used digital
audio format is MP3, an acronym for MPEG-1, Audio Level 3 Encoding. This is a
digital audio encoding standard established by the Motion Picture Experts Group
(MPEG), a committee of the International Organization for Standardization
(ISO) of the United Nations. MP3 samples sound signals at the rate of 44,100
samples/second, using 16 bits per sample. This produces high-quality sound
reproduction, which is why MP3 is the most widely used format for rock, opera,
and classical music.

An image, such as a photograph, is also analog data but can also be stored
using binary representation. An image is a continuous set of intensity and
color values that can be digitized by sampling the analog information, just as
is done for sound. The sampling process, often called scanning, consists of
measuring the intensity values of distinct points located at regular intervals
across the image’s surface. These points are called pixels, for picture elements,
and the more pixels used, the more accurate the encoding of the image. The
average human eye cannot accurately discern components closer together
than about 0.05–0.1 mm, so if the pixels, or dots, are sufficiently dense, they
appear to the human eye as a single contiguous image. For example, a high-
quality digital camera stores about 5–10 million pixels per photograph. For a
3 in. 3 5 in. image, this is about 500,000 pixels/in.2, or 700 pixels per linear
inch. This means the individual pixels are separated by about 1/700th of an
inch, or 0.03 mm—too close together to be individually visualized. Figure 4.6
enlarges a small section of a digitized photograph to better show how it is
stored internally as a set of discrete picture elements.

One of the key questions we need to answer is how much information
is stored for each pixel. Suppose we want to store a representation of a
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black-and-white image. The easiest and most space-efficient approach is to
mark each pixel as either white, stored as a binary 0, or black, stored as a
binary 1. The only problem is that this produces a stark black/white image,
with a highly sharp and unpleasant visual contrast. A much better way,
though it takes more storage, is to represent black and white images using a
gray scale of varying intensity. For example, if we use 3 bits per pixel, we
can represent 23 = 8 shades of intensity from level 0, pure white, to level 7,
pure black. An example of this eight level gray scale is shown in Figure 4.7.
If we wanted more detail than is shown there, we could use 8 bits per pixel,
giving us 28 = 256 distinct shades of gray.

We now can encode our image as a sequence of numerical pixel values,
storing each row of pixels completely, from left to right, before moving down
to store the next row. Each pixel is encoded as an unsigned binary value rep-
resenting its gray scale intensity. This form of image representation is called
raster graphics, and it is used by such well-known graphics standards as JPEG
(Joint Photographer Experts Group), GIF (Graphics Interchange Format), and
BMP (bitmap).

Today, most images are not black and white, but are in color. To digitize
color images, we still measure the intensity value of the image at a discrete
set of points, but we need to store more information about each pixel. The
most common format for storing color images is the RGB encoding scheme,
RGB being an acronym for Red-Green-Blue. This technique describes a specific
color by capturing the individual contribution to a pixel’s color of each of the
three colors, red, green, and blue. It uses one byte, or 8 bits, for each color,
allowing us to represent an intensity range of 0 to 255. The value 0 means that
there is no contribution from this color, whereas the value 255 means a full
contribution of this color.

For example, the color magenta is an equal mix of pure red and blue,
which would be RGB encoded as (255, 0, 255):

Red Green Blue
255 0 255

The color “hot pink” is produced by setting the three RGB values to 

Red Green Blue
255 105 180

and “harvest gold” is rendered as 

Red Green Blue
218 165     32
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FIGURE 4.7



Using three bytes of information per pixel—24 bits—allows us to repre-
sent 224 distinct colors, about 16.7 million.  This 24-bit color-encoding scheme
is often referred to as True Color, and it provides an enormous range of shades
and an extremely accurate color image reproduction. That is why it is the
encoding scheme used in the JPEG Color Imaging format. However, represent-
ing 16+ million colors requires a huge amount of memory space, and some
image representation techniques reduce that value by using what is called a
color palette. While theoretically supporting 16+ million different colors,
they only allow you to use 256 (or some other small number) at any one time,
just as a painter may have a lot of colors in his or her studio but puts only a
few on the palette at a time. With a palette size of 256, we can encode each
pixel using only 8 bits rather than 24, because 28 = 256, thus reducing storage
space demands by almost 67%. Each of these 256 values does not represent an
explicit RGB color value but rather an index into a palette, or a color table.
This index specifies which color on the palette is to be used to draw this pixel.
This is the technique used, for example, in the Graphics Interchange Format
(GIF), which uses a palette that can hold as few as 2 colors or as many as 256.

Sound and image data typically require huge amounts of storage, far more
than is required for the numbers and text discussed in Section 4.2.1. For
example, a 300-page novel contains about 100,000 words. Each word has on
average about 5 characters and, as discussed in the previous section, each
character can be encoded into the ASCII code set using 8 bits. Thus, the total
number of bits needed to represent this book is roughly

100,000 words 3 5 char/word 3 8 bits/char 5 4 million bits

By comparison, 1 minute of sound recording encoded using the MP3 standard,
which samples 44,100 times per second using a bit depth of 16 bits per sam-
ple, requires

44,100 samples/sec 3 16 bits/sample 3 60 sec/minute 5 42 million bits

It takes 10 times as much space to store the information in 1 minute of music
as it does to store an entire 300-page book! Similarly, to store a single photo-
graph taken using a digital camera with 5 million pixels using 24-bit True-
Color raster graphics requires:

5,000,000 pixels/photograph 3 24 bits/pixel 5 120 million bits

A single photograph could require as much as 30 times more storage than an
entire novel.

As these examples clearly show, the storage of analog information, such as
sound, images, voice, and video, is enormously space-intensive, and an impor-
tant area of computer science research—data compression—is directed at
addressing just this issue. Data compression algorithms attempt to represent
information in ways that preserve accuracy while using significantly less space.

For example, a simple compression technique that can be used on almost
any form of data is run-length encoding. This method replaces a sequence of
identical values v1, v2, . . ., vn by a pair of values (v, n) which indicates that
the value v is replicated n times. If both v and n require 1 byte of storage,
then we have reduced the total number of bytes required to store this
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sequence from n down to 2. Using this method, we could encode the following
5 3 3 image of the letter E, where 0 = white, 255 = black:

255 255 255
255 0 0
255 255 255
255 0 0
255 255 255

like this:

(255, 4) (0, 2) (255, 4) (0, 2) (255, 3)

Run-length encoding reduces the number of bytes needed to store this image
from 15, using the raster graphics representation, to the 10 bytes shown above.
Compression schemes are usually evaluated by their compression ratio, which
measures how much they reduce the storage requirements of the data: 

For the example shown above, this ratio is

ratio 5 15/10 5 1.5

meaning the scheme reduces the amount of space needed to store the image by
33%. Applied to a larger image, this might mean that a 4-million-bit represen-
tation could be reduced to about 2.7 million bits, a significant savings.

Another popular compression technique is variable length code sets,
which are often used to compress text but can also be used with other forms
of data. In Section 4.2.1 we showed that textual symbols, such as ‘A’, ‘z’, and
‘#’ are represented internally by a code mapping that uses exactly the same
number of bits for every symbol, either 8 (ASCII) or 16 (UNICODE). That is a
wasteful approach as some symbols occur much more frequently than others.
(For example, in English the letters E and A are much more common than J, Q,
X, and Z.) If the codes representing commonly used symbols were shorter than
the codes representing the less common symbols, this could result in a signif-
icant saving of space.

Assume that we want to encode the Hawaiian alphabet, which only contains
the 5 vowels A, E, I, O, and U, and the 7 consonants H, K, L, M, N, P, and W. If we
were to store these characters using a fixed length code set, we would need at
least 4 bits/symbol, because 24 = 16. Figure 4.8(a) shows one possible encoding
of these 12 letters using a fixed length, 4-bit encoding. However, if we know that
A and I are the most commonly used letters in the Hawaiian alphabet, with H and
W next, we could represent A and I using two bits, H and W using 3 bits, and the
remaining letters using either 4, 5, 6, or 7 bits, depending on their frequency.
However, we must be sure that if the 2-bit sequence s1s2 is used to represent an
A, for example, then no other symbol representation can start with the same 2-
bit sequence. Otherwise, if we saw the sequence s1s2 we would not know if it was
an A or the beginning of another character.

One possible variable-length encoding for the Hawaiian alphabet is shown
in Figure 4.8(b).

compression ration 5
size of the uncompressed data
size of the compressed data
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Representing the 6-character word HAWAII using the fixed length 4-bit
encoding scheme of Figure 4.8(a) requires 6 3 4 = 24 bits. Representing it with
the variable length encoding shown in Figure 4.8(b) produces the following:

H A W A I I
010 00 110 00 10 10

This is a total of 14 bits, producing a compression ratio of 24/14 = 1.71, a
reduction in storage demands of about 42%.

These two techniques are examples of what are called lossless
compression schemes. This means that no information is lost in the com-
pression, and it is possible to exactly reproduce the original data. Lossy
compression schemes compress data in a way that does not guarantee that
all of the information in the original data can be fully and completely re-
created. They trade a possible loss of accuracy for a higher compression
ratio because the small inaccuracies in sounds or images are often unde-
tectable to the human ear or eye. Many of the compression schemes in

4.2 The Binary Numbering System LEVEL 2 149

Using Variable Length Code Sets

(a) Fixed Length 
(b) Variable Length

FIGURE 4.8 LETTER 4-BIT ENCODING VARIABLE LENGTH ENCODING

A 0000 00
I 0001 10
H 0010 010
W 0011 110
E 0100 0110
O 0101 0111
M 0110 11100
K 0111 11101
U 1000 11110
N 1001 111110
P 1010 1111110
L 1011 1111111

(a) (b)

1. Using MP3, how many bits are required to store a 3-minute song in
uncompressed format? If the information is compressed with a ratio
of 4:1, how many bits are required?

2. How many bits are needed to store a single uncompressed RGB
image from a 2.1 megapixel digital camera? How many bytes of
memory is this?

3. If we want the image in Exercise 2 to fit into 1 megabyte of mem-
ory, what compression ratio is needed? If we want it to fit into
256 kilobytes of memory, what compression ratio is needed?

4. How much space is saved by representing the Hawaiian word
ALOHA in the variable length code of Figure 4.8(b) as compared
to the fixed length representation of Figure 4.8(a)?  What is the
compression ratio?

PRACTICE PROBLEMS



widespread use today, including MP3 and JPEG, use lossy techniques, which
permit significantly greater compression ratios than would otherwise be
possible. Using lossy JPEG, for example, it is possible to achieve compres-
sion ratios of 10:1, 20:1, or more, depending on how much loss of detail we
are willing to tolerate. This compares with the values of 1.5 and 1.7 in the
above described lossless schemes. Using these lossy compression schemes,
that 120-megabit, high-resolution image mentioned earlier could be
reduced to only 6 or 12 megabits, certainly a much more manageable value.
Data compression schemes are an essential component in allowing us to
represent multimedia information in a concise and manageable way.

4.2.3 The Reliability of Binary Representation

At this point you might be wondering: Why are we bothering to use binary?
Because we use a decimal numerical system for every day tasks, wouldn’t it be
more convenient to use a base-10 representation for both the external and the
internal representation of information? Then there would be no need to go
through the time-consuming conversions diagrammed in Figure 4.1, or to learn
the binary representation techniques discussed in the previous two sections.

As we stated in the boxed text entitled, “The Not So Basic Base,“ there is
absolutely no theoretical reason why one could not build a “decimal” computer
or, indeed, a computer that stored numbers using base 3 (ternary), base 8
(octal), or base 16 (hexadecimal). The techniques described in the previous two
sections apply to information represented in any base of a positional numbering
system, including base 10.

Computers use binary representation not for any theoretical reasons but
for reasons of reliability. As we shall see shortly, computers store informa-
tion using electronic devices, and the internal representation of information
must be implemented in terms of electronic quantities such as currents and
voltage levels.

Building a base-10 “decimal computer” requires finding a device with
10 distinct and stable energy states that can be used to represent the 10 unique
digits (0, 1, . . . , 9) of the decimal system. For example, assume there exists a
device that can store electrical charges in the range 0 to +45 volts. We could use
it to build a decimal computer by letting certain voltage levels correspond to
specific decimal digits:

Voltage Level Corresponds to this Decimal Digit

10 0
15 1
110 2
115 3
120 4
125 5
130 6
135 7
140 8
145 9
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Storing the 2-digit decimal number 28 requires two of these devices, one for each
of the digits in the number. The first device would be set to +10 volts to represent
the digit 2, and the second would be set to +40 volts to represent the digit 8.

Although this is theoretically feasible, it is certainly not recommended.
As electrical devices age they become unreliable, and they may drift, or
change their energy state, over time. What if the device representing the
value 8 (the one set to +40 volts) lost 6% of its voltage (not a huge amount
for an old, well-used piece of equipment)? The voltage would drop from +40
volts to about +37.5 volts. The question is whether the value +37.5 repre-
sents the digit 7 (+35) or the digit 8 (+40). It is impossible to say. If that
same device lost another 6% of its voltage, it would drop from +37.5 volts to
about +35 volts. Our 8 has now become a 7, and the original value of 28 has
unexpectedly changed to 27. Building a reliable decimal machine would be an
engineering nightmare.

The problem with a base-10 representation is that it needs to store 10 unique
symbols, and therefore it needs devices that have 10 stable states. Such
devices are extremely rare. Electrical systems tend to operate best in a bistable
environment, in which there are only two (rather than 10) stable states sepa-
rated by a huge energy barrier. Examples of these bistable states include

• full on/full off

• fully charged/fully discharged

• charged positively/charged negatively

• magnetized/nonmagnetized

• magnetized clockwise/magnetized counterclockwise

In the binary numbering system there are only two symbols (0 and 1), so
we can let one of the two stable states of our bistable device represent a 0 and
the other a 1. This is a much more reliable way to represent information inside
a computer.

For example, if we use binary rather than decimal to store data in our
hypothetical electronic device that stores voltages in the range 0 to +45 volts,
the representational scheme becomes much simpler:

0 volts = 0  (full off )
+45 volts = 1  (full on)

Now a 6% or even a 12% drift doesn’t affect the interpretation of the value
being represented. In fact, it takes an almost 50% change in voltage level to
create a problem in interpreting a stored value. The use of binary for the inter-
nal representation of data significantly increases the inherent reliability of a
computer. This single advantage is worth all the time it takes to convert from
decimal to binary for internal storage and from binary to decimal for the
external display of results.

4.2.4 Binary Storage Devices

As you learned in the previous section, binary computers can be built out of
any bistable device. This idea can be expressed more formally by saying that it
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is possible to construct a binary computer and its internal components using
any hardware device that meets the following four criteria:

1. The device has two stable energy states (one for a 0, one for a 1).

2. These two states are separated by a large energy barrier (so that a 0
does not accidentally become a 1, or vice versa).

3. It is possible to sense which state the device is in (to see whether it is
storing a 0 or a 1) without permanently destroying the stored value.

4. It is possible to switch the state from a 0 to a 1, or vice versa, by
applying a sufficient amount of energy.

There are many devices that meet these conditions, including some sur-
prising ones such as a light switch. A typical light switch has two stable states
(ON and OFF). These two states are separated by a large energy barrier so that
a switch that is in one state will not accidentally change to the other. We can
determine what state the switch is in by looking to see whether the label says
ON or OFF (or just by looking at the light), and we can change the state of the
switch by applying a sufficient amount of energy via our fingertips. Thus it
would be possible to build a reliable (albeit very slow and bulky) binary com-
puting device out of ordinary light switches and fingertips!

As you might imagine, computer systems are not built from light
switches, but they have been built using a wide range of devices. This section
describes two of these devices.

Magnetic cores were used to construct computer memories for about
20 years. From roughly 1955 to 1975, this was by far the most popular storage
technology—even today, the memory unit of a computer is sometimes
referred to as core memory even though it has been decades since magnetic
cores have been used.

A core is a small, magnetizable, iron oxide-coated “doughnut,” about
1/50 of an inch in inner diameter, with wires strung through its center hole.
The two states used to represent the binary values 0 and 1 are based on the
direction of the magnetic field of the core. When electric current is sent
through the wire in one specific direction, say left to right, the core is mag-
netized in a counterclockwise direction.1 This state could represent the binary
value 0. Current sent in the opposite direction produces a clockwise magnetic
field that could represent the binary value 1. These scenarios are diagrammed
in Figure 4.9. Because magnetic fields do not change much over time, these
two states are highly stable, and they form the basis for the construction of
memory devices that store binary numbers.

In the early 1970s, core memories were replaced by smaller, cheaper tech-
nologies that required less power and were easier to manufacture. One-fiftieth
of an inch in diameter and a few grams of weight may not seem like much, but
it can produce a bulky and unworkable structure when memory units must con-
tain millions or billions of bits. For example, a typical core memory from the
1950s or 1960s had about 500 cores/in2. The memory in a modern computer
typically has at least 1 GB (1 gigabyte = 1 billion bytes), which is more than
8 billion bits. At the bit density of core memory, the memory unit would
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need about 16 million in2, which is a square about 4,000 inches, or
330 feet, on a side. Built from cores, the memory unit would stand more
than 30 stories high!

Today, the elementary building block for all modern computer systems is
no longer the core but the transistor. A transistor is much like the light
switch mentioned earlier. It can be in an OFF state, which does not allow elec-
tricity to flow, or in an ON state, in which electricity can pass unimpeded.
However, unlike the light switch, a transistor is a solid-state device that has
no mechanical or moving parts. The switching of a transistor from the OFF to
the ON state, and vice versa, is done electronically rather than mechanically.
This allows the transistor to be fast as well as extremely small. A typical tran-
sistor can switch states in a billionth of a second, and at current technology
levels, 100 million to 1 billion transistors can fit into a space only 1 cm2.
Furthermore, hardware technology is changing so rapidly that both these
numbers may be out of date by the time you read these words.

Transistors are constructed from special materials called semiconductors,
such as silicon and gallium arsenide. A large number of transistors, as well as the
electrical conducting paths that connect them, can be printed photographically
on a wafer of silicon to produce a device known as an integrated circuit or, more
commonly, a chip. The chip is mounted on a circuit board, which interconnects
all the different chips (e.g., memory, processor, communications) needed to run
a computer system. This circuit board is then plugged into the computer using a
set of connectors located on the end of the board. The relationships among tran-
sistors, chips, and circuit boards is diagrammed in Figure 4.10. The use of photo-
graphic rather than mechanical production techniques has numerous
advantages. Because light can be focused very sharply, these integrated circuits
can be manufactured in very high densities—high numbers of transistors per
square centimeter—and with a very high degree of accuracy. The more transis-
tors that can be packed into a fixed amount of space, the greater the processing
power of the computer and the greater the amount of information that can be
stored in memory.
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Another advantage of photographic production techniques is that it is
possible to make a standard template, called a mask, which describes the cir-
cuit. This mask can be used to produce a virtually unlimited number of copies
of that chip, much as a photographic negative can be used to produce an
unlimited number of prints.

Together, these characteristics can result in very small and very inexpen-
sive high-speed circuits. Whereas the first computers of the early 1940s (as
seen in Figure 1.6) filled huge rooms and cost millions of dollars, the proces-
sor inside a modern workstation contains hundreds of millions of transistors
on a tiny chip just a few centimeters square, is thousands of times more pow-
erful than those early machines, and costs just a few hundred dollars.

The theoretical concepts underlying the physical behavior of semiconduc-
tors and transistors, as well as the details of chip manufacture, are well beyond
the scope of this book. They are usually discussed in courses in physics or
electrical engineering. Instead, we will examine a transistor in terms of the
simplified model shown in Figure 4.11 and then use this model to explain its
behavior. (Here is another example of the importance of abstraction in com-
puter science.) 
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In the model shown in Figure 4.11, each transistor contains three lines—
two input lines and one output line, with each line either in the 1-state, with
a high positive voltage, or in the 0-state, with a voltage close to 0. The first
input line, called the control or the base, is used to open or close the switch
inside the transistor. If we set the input on the control line to a 1 by applying
a sufficiently high positive voltage, the switch closes and the transistor enters
the ON state. In this state, current coming from the In line, called the
Collector, can flow directly to the Out line, called the Emitter, and the associ-
ated voltage can be detected by a measuring device. This ON state could be
used to represent the binary value 1. If instead we set the input value of the
control line to a 0 by applying a voltage close to zero, the switch opens, and
the transistor enters the OFF state. In this state the flow of current through the
transistor is blocked and no voltage is detected on the Out line. The OFF state
could be used to represent the binary value 0. This is diagrammed as follows:

4.2 The Binary Numbering System LEVEL 2 155

(Base)
Control

In

Out

(Collector)

(Emitter)

Transistor

Switch

Simplified Model of a Transistor

FIGURE 4.11

0 5 0 5

Power supply (+5 V)

Measuring device Measuring device

Power supply (+5 V)

1 0

(switch
closed)

(switch
open)

OFF state
Binary 0

ON state
Binary 1



156 LEVEL 2 CHAPTER 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

This type of solid-state switching device forms the basis for the construc-
tion of virtually all computers built today, and it is the fundamental building
block for all high-level components described in the upcoming chapters.
Remember, however, that there is no theoretical reason why we must use tran-
sistors as our “elementary particles” when designing computer systems. Just
as cores were replaced by transistors, transistors may ultimately be replaced
by some newer (perhaps molecular or biological) technology that is faster,
smaller, and cheaper. The only requirements for our building blocks are those
given in the beginning of this section—that they be able to represent reliably
the two binary values 0 and 1. 

Since the development of the first integrated circuits in
the 1950s, the number of transistors on a circuit board has
been doubling roughly every 24 months. This observation
was first reported in a 1965 paper by Gordon E. Moore, the
co-founder of Intel, and is now universally referred to as
“Moore’s Law.” This doubling has continued unabated for
the last 40 years, and represents a rate of improvement
unequaled in any other technical field. More transistors on
a chip means more speed and more power, and is the rea-
son for the enormous increase in performance (and
decrease in size) of computers in the last 40–50 years. The
following table details this growth from 1971, when chips
held just a few thousand transistors, to today’s micro-
processors that hold well over a billion.

Processor Transistor Date
Count

Intel 404 2,300 1971

Intel 8080 4,500 1974

Intel 8088 29,000 1979

Intel 80286 134,000 1982

Intel 80386 275,000 1985

Intel 80486 1,200,000 1989

Pentium 3,100,000 1993

Pentium II 7,500,000 1997

Pentium 4 42,000,000 2000

Itanium 2 220,000,000 2003

Dual-Core Itanium 2 1,400,000,000 2006

Quad-Core Itanium Tukwila 2,000,000,000 2008

It is impossible to maintain this type of exponential growth
for an indefinitely extended period of time, and industry
analysts have been predicting the demise of Moore's Law for
the last 10–15 years. However, the ongoing development of
new materials and new manufacturing technologies has
allowed the industry to continue this phenomenal rate of
improvement. But there is a physical limit looming on the
horizon that will be the most difficult hurdle yet. As more
and more transistors are packed onto a single chip, dis-
tances between them get smaller and smaller, and experts
estimate that in about 10–20 years inter-transistor dis-
tances will approach the space between individual atoms.
For example, transistors on today’s chips are separated by
50–100 nanometers (1 nanometer = 10�9 meter), only
about 500–1000 times greater than the diameter of a sin-
gle atom of silicon, which is about 10�10 meters. In a few
generations, these atomic distances will be reached, and a
totally new approach to computer design will be required,
perhaps one based on the emerging fields of nanotechnol-
ogy and quantum computing. 

Moore's Law and the Limits
of Chip Design



4.3 Boolean Logic and Gates

4.3.1 Boolean Logic

The construction of computer circuits is based on the branch of mathematics
and symbolic logic called Boolean logic. This area of mathematics deals with
rules for manipulating the two logical values true and false. It is easy to see
the relationship between Boolean logic and computer design: the truth value
true could represent the binary value 1, and the truth value false could repre-
sent the binary value 0. Thus anything stored internally as a sequence of
binary digits (which, as we saw in earlier sections, is everything stored inside
a computer) can also be viewed as a sequence of the logical values true and
false, and these values can be manipulated by the operations of Boolean logic.

Let us define a Boolean expression as any expression that evaluates to
either true or false. For example, the expression (x = 1) is a Boolean expression
because it is true if x is 1, and it is false if x has any other value. Similarly,
both (a Z b) and (c > 5.23) are Boolean expressions.

In “traditional” mathematics (the mathematics of real numbers), the
operations used to construct arithmetic expressions are +, 2, 3 , ÷, and ab,
which map real numbers into real numbers. In Boolean logic, the operations
used to construct Boolean expressions are AND, OR, and NOT, and they map a
set of (true, false) values into a single (true, false) result.

The rule for performing the AND operation is as follows: If a and b are
Boolean expressions, then the value of the expression (a AND b), also written
as (a · b), is true if and only if both a and b have the value true; otherwise,
the expression (a AND b) has the value false. Informally, this rule says that
the AND operation produces the value true if and only if both of its compo-
nents are true. This idea can be expressed using a structure called a truth
table, shown in Figure 4.12.

The two columns labeled Inputs in the truth table of Figure 4.12 list the
four possible combinations of true/false values of a and b. The column labeled
Output specifies the value of the expression (a AND b) for the corresponding
values of a and b.

To illustrate the AND operation, imagine that we want to check whether a
test score S is in the range 90 to 100 inclusive. We wish to develop a Boolean
expression that is true if the score is in the desired range and false otherwise.
We cannot do this with a single comparison. If we test only that (S $ 90), then
a score of 105, which is greater than or equal to 90, will produce the result
true, even though it is out of range. Similarly, if we test only that (S # 100),
then a score of 85, which is less than or equal to 100, will also produce a true,
even though it too is not in the range 90 to 100.
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INPUTS OUTPUT

a AND b
a b (ALSO WRITTEN a ? b)

False False False
False True False
True False False
True True True

Truth Table for the AND
Operation

FIGURE 4.12



Instead, we need to determine whether the score S is greater than or
equal to 90 and whether it is less than or equal to 100. Only if both conditions
are true can we say that S is in the desired range. We can express this idea
using the following Boolean expression:

(S $ 90) AND (S # 100)

Each of the two expressions in parentheses can be either true or false depending
on the value of S. However, only if both conditions are true does the expression
evaluate to true. For example, a score of S = 70 causes the first expression to be
false (70 is not greater than or equal to 90), whereas the second expression is
true (70 is less than or equal to 100). The truth table in Figure 4.12 shows that
the result of evaluating (false AND true) is false. Thus, the overall expression is
false, indicating (as expected) that 70 is not in the range 90 to 100. 

The second Boolean operation is OR. The rule for performing the OR oper-
ation is as follows: If a and b are Boolean expressions, then the value of the
Boolean expression (a OR b), also written as (a + b), is true if a is true, if b is
true, or if both are true. Otherwise, (a OR b) has the value false. The truth
table for OR is shown in Figure 4.13.

To see the OR operation at work, imagine that a variable called major
specifies a student’s college major. If we want to know whether a student is
majoring in either math or computer science, we cannot accomplish this with
a single comparison. The test (major = math) omits computer science majors,
whereas the test (major = computer science) leaves out the mathematicians.
Instead, we need to determine whether the student is majoring in either math
or computer science (or perhaps in both). This can be expressed as follows:

(major 5 math) OR (major 5 computer science)

If the student is majoring in either one or both of the two disciplines, then one
or both of the two terms in the expression is true. Referring to the truth table
in Figure 4.13, we see that (true OR false), (false OR true), and (true OR true)
all produce the value true, which indicates that the student is majoring in at
least one of these two fields. However, if the student is majoring in English,
both conditions are false. As Figure 4.13 illustrates, the value of the expression
(false OR false) is false, meaning that the student is not majoring in either
math or computer science.

The final Boolean operator that we examine here is NOT. Unlike AND and
OR, which require two operands and are therefore called binary operators,
NOT requires only one operand and is called a unary operator, like the square
root operation in arithmetic. The rule for evaluating the NOT operation is as
follows: If a is a Boolean expression, then the value of the expression (NOT a),
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INPUTS OUTPUT

a OR b
a b (ALSO WRITTEN a 1 b)

False False False
False True True
True False True
True True True

Truth Table for the OR Operation

FIGURE 4.13



also written as , is true if a has the value false, and it is false if a has the
value true. The truth table for NOT is shown in Figure 4.14.

Informally, we say that the NOT operation reverses, or complements, the
value of a Boolean expression, making it true if currently false, and vice versa. For
example, the expression (GPA > 3.5) is true if your grade point average is greater
then 3.5, and the expression NOT (GPA > 3.5) is true only under the reverse con-
ditions, that is when your grade point average is less than or equal to 3.5.

AND, OR, and NOT are the three operations of Boolean logic that we use in
this chapter. (Note: We will briefly mention other Boolean operators such as XOR,
NOR, and NAND.) Why have we introduced these Boolean operations in the first
place? The previous section discussed hardware concepts such as energy states,
electrical currents, transistors, and integrated circuits. Now it appears that we
have changed directions and are discussing highly abstract ideas drawn from the
discipline of symbolic logic. However, as we hinted earlier and will see in detail in
the next section, there is a very close relationship between the hardware con-
cepts of Section 4.2.4 and the operations of Boolean logic. In fact, the funda-
mental building blocks of a modern computer system (the objects with which
engineers actually design) are not the transistors introduced in Section 4.2.4 but
the gates that implement the Boolean operations AND, OR, and NOT. Surprisingly,
it is the rules of logic—a discipline developed by the Greeks 2,300 years ago and
expanded by George Boole (see the box feature on page 162) 150 years ago—that
provide the theoretical foundation for constructing modern computer hardware.

a
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1. Assuming that x = 1 and y = 2, determine the value of each of the
following Boolean expressions:

a. (x =1) AND (y = 3)
b. (x < y) OR (x > 1)
c. NOT [(x = 1) AND (y = 2)]

2. What is the value of the following Boolean expression:

(x = 5) AND (y = 11) OR ([x + y] = z)

if x = 5, y =10, and z =15? Did you have to make some assumptions
when you evaluated this expression?

3. Write a Boolean expression that is true if and only if x and y are
both in the range 0 to 100 but x is not equal to y.

4. Write a Boolean expression that is true if and only if the variable
score is not in the range 200–800, inclusive.  

PRACTICE PROBLEMS

INPUT OUTPUT

NOT a
a (ALSO WRITTEN -a)

False True
True False

Truth Table for the NOT
Operation

FIGURE 4.14



4.3.2 Gates

A gate is an electronic device that operates on a collection of binary inputs to
produce a binary output. That is, it transforms a set of (0,1) input values into
a single (0,1) output value according to a specific transformation rule.
Although gates can implement a wide range of different transformation rules,
the ones we are concerned with in this section are those that implement the
Boolean operations AND, OR, and NOT introduced in the previous section. As
shown in Figure 4.15, these gates can be represented symbolically, along with
the truth tables that define their transformation rules.

Comparing Figures 4.12-4.14 with Figure 4.15 shows that if the value 1 is
equivalent to true and the value 0 is equivalent to false, then these three elec-
tronic gates directly implement the corresponding Boolean operation. For
example, an AND gate has its output line set to 1 (set to some level of voltage
that represents a binary 1) if and only if both of its inputs are 1. Otherwise,
the output line is set to 0 (set to some level of voltage that represents a binary
0). This is functionally identical to the rule that says the result of (a AND b)
is true if and only if both a and b are true; otherwise, (a AND b) is false.
Similar arguments hold for the OR and NOT.

A NOT gate can be constructed from a single transistor, as shown in 
Figure 4.16, in which the collector is connected to the power supply (logical-1)
and the emitter is connected to the ground (logical-0). If the input to the
transistor is set to 1, then the transistor is in the ON state, and it passes
current through to the ground. In this case the output voltage of the gate is 0.
However, if the input is set to 0, the transistor is in the OFF state, and it blocks
passage of current to the ground. Instead, the current is transmitted to the
output line, producing an output of 1. Thus, the value appearing on the output
line of Figure 4.16 is the complement—the NOT—of the value appearing on the
collector, or input line.

To construct an AND gate, we connect two transistors in series, as
shown in Figure 4.17(a), with the collector line of transistor 1 connected to
the power supply (logical-1) and the emitter line of transistor 2 connected
to ground (logical-0). If both input lines, called Input-1 and Input-2 in
Figure 4.17(a), are set to 1, then both transistors are in the ON state, and
the output will be connected to ground, resulting in a value of 0 on the out-
put line. If either (or both) Input-1 or Input-2 is 0, then the corresponding
transistor is in the OFF state and does not allow current to pass, resulting in
a 1 on the output line. Thus, the output of the gate in Figure 4.17(a) is a 0
if and only if both inputs are a 1; otherwise, it is a 1. This is the exact
opposite of the definition of AND, and Figure 4.17(a) represents a gate called
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NAND, an acronym for NOT AND. It produces the complement of the AND
operation, and it is an important and widely used gate in hardware design.

If, however, we want to build an AND gate, then all we have to do is add a
NOT gate (of the type shown in Figure 4.16) to the output line. This comple-
ments the NAND output and produces the AND truth table of Figure 4.12. This
gate is shown in Figure 4.17(b). Note that the NAND of Figure 4.17(a) requires
two transistors, whereas the AND of Figure 4.17(b) requires three. This is one
reason why NAND gates are widely used to build computer circuits.

To construct an OR gate, we again start with two transistors. However,
this time they are connected in parallel rather than in series, as shown in
Figure 4.18(a).
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In Figure 4.18(a) if either, or both, of the lines Input-1 and Input-2 are set
to 1, then the corresponding transistor is in the ON state, and the output is
connected to the ground, producing an output value of 0. Only if both input
lines are 0, effectively shutting off both transistors, will the output line con-
tain a 1. Again, this is the exact opposite to the definition of OR given in
Figure 4.13. Figure 4.18(a) is an implementation of a NOR gate, an acronym for
NOT OR. To convert this to an OR gate, we do the same thing we did earlier—
add a NOT gate to the output line. This gate is diagrammed in Figure 4.18(b).

Gates of the type shown in Figures 4.16 through 4.18 are not abstract
entities that exist only in textbooks and classroom discussions. They are
actual electronic devices that serve as the building blocks in the design and
construction of modern computer systems. The reason for using gates rather
than transistors is that a transistor is too elementary a device to act as the
fundamental design component. It requires a designer to deal with such low-
level issues as currents, voltages, and the laws of physics. Transistors, grouped
together to form more powerful building blocks called gates, allow us to think
and design at a higher level. Instead of dealing with the complex physical
rules associated with discrete electrical devices, we can use the power and
expressiveness of mathematics and logic to build computers.

This seemingly minor shift (from transistors to gates) has a profound
effect on how computer hardware is designed and built. From this point on in
our discussion of hardware design, we no longer need deal with anything elec-
trical. Instead, our building blocks are AND, OR, and NOT gates, and our circuit
construction rules are the rules of Boolean logic. This is another example of
the importance of abstraction in computer science.

George Boole was a mid-nineteenth-century English math-
ematician and logician. He was the son of a shoemaker
and had little formal education, having dropped out of
school in the third grade. He taught himself mathematics
and logic and mastered French, German, Italian, Latin,
and Greek. He avidly studied the works of the great Greek
and Roman philosophers such as Aristotle, Plato, and
Euclid. He built on their work in logic, argumentation, and
reasoning and, in 1854, produced a book titled Introduc-
tion into the Laws of Thought. This seminal work
attempted to apply the formal laws of algebra and arith-
metic to the principles of logic. That is, it treated reason-
ing as simply another branch of mathematics containing
operators, variables, and transformation rules. He created
a new form of logic containing the values true and false

and the operators AND, OR, and NOT. He also developed a
set of rules describing how to interpret and manipulate
expressions that contain these values.

At the time of its development, the importance of this
work was not apparent, and it languished in relative obscu-
rity. However, 100 years later, Boole’s ideas became the
theoretical framework underlying the design of all computer
systems. In his honor, these true/false expressions became
known as Boolean expressions, and this branch of mathe-
matics is called Boolean logic or Boolean algebra.

Even though he had very little formal schooling,
Boole was eventually appointed Professor of Mathematics
at Queens College in Cork, Ireland, and he received a gold
medal from the Royal Mathematical Society. He is now uni-
versally recognized as one of the greatest mathematicians
of the nineteenth century.

George Boole 
(1815–1864)
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4.4 Building Computer Circuits

4.4.1 Introduction

A circuit is a collection of logic gates that transforms a set of binary inputs
into a set of binary outputs and in which the values of the outputs depend
only on the current values of the inputs. (Actually, this type of circuit is more



properly called a combinational circuit. We use the simpler term circuit in
this discussion.) A circuit C with m binary inputs and n binary outputs is rep-
resented as shown in Figure 4.19.

Internally, the circuit shown in Figure 4.19 is constructed from the AND,
OR, and NOT gates introduced in the previous section. (Note: We do not use the
NAND and NOR gates diagrammed in Figure 4.17(a) and 4.18(a).) These gates
can be interconnected in any way so long as the connections do not violate the
constraints on the proper number of inputs and outputs for each gate. Each AND
and OR gate must have exactly two inputs and one output. (Multiple-input AND
and OR gates do exist, but we do not use them in our examples.) Each NOT gate
must have exactly one input and one output. For example, the following is the
diagram of a circuit with two inputs labeled a and b and two outputs labeled c
and d. It contains one AND gate, one OR gate, and two NOT gates.

There is a direct relationship between Boolean expressions and circuit
diagrams of this type. Every Boolean expression can be represented pictorially
as a circuit diagram, and every output value in a circuit diagram can be written
as a Boolean expression. For example, in the diagram shown, the two output
values labeled c and d are equivalent to the following two Boolean expressions:

c = (a OR b)
d = NOT ( (a OR b) AND (NOT b) )

The choice of which representation to use depends on what we want to do. The
pictorial view better allows us to visualize the overall structure of the circuit,
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and is often used during the design stage. A Boolean expression may be better
for performing mathematical or logical operations, such as verification and opti-
mization, on the circuit. We use both representations in the following sections.

The value appearing on any output line of a circuit can be determined if we
know the current input values and the transformations produced by each logic
gate. (Note: There are circuits, called sequential circuits, that contain feedback
loops in which the output of a gate is fed back as input to an earlier gate. The out-
put of these circuits depends not only on the current input values but also on pre-
vious inputs. These circuits are typically used to build memory units because, in a
sense, they can “remember” inputs. We do not discuss sequential circuits here.)

In the previous example, if a = 1 and b = 0, then the value on the c out-
put line is 1, and the value on the d output line is 0. These values can be
determined as follows:

Note that it is perfectly permissible to “split” or “tap” a line and send its value
to two different gates. Here the input value b was split and sent to two sepa-
rate gates.

The next section presents an algorithm for designing and building circuits
from the three fundamental gate types AND, OR, and NOT. This enables us to
move to yet a higher level of abstraction. Instead of thinking in terms of tran-
sistors and electrical voltages (as in Section 4.2.4) or in terms of logic gates
and truth values (Section 4.3.2), we can think and design in terms of circuits
for high-level operations such as addition and comparison. This makes under-
standing computer hardware much more manageable.

4.4.2 A Circuit Construction Algorithm

The circuit shown at the end of the previous section is simply an example, and
is not meant to carry out any meaningful operation. To create circuits that
perform useful arithmetic and logical functions, we need a way to convert a
description of a circuit’s desired behavior into a circuit diagram, composed of
AND, OR, and NOT gates, that does exactly what we want it to do.

There are a number of circuit construction algorithms to accomplish
this task, and the remainder of this section describes one such technique,
called the sum-of-products algorithm, that allows us to design circuits.
Section 4.4.3 demonstrates how this algorithm works by constructing actual
circuits that all computer systems need. 
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STEP 1: TRUTH TABLE CONSTRUCTION. First, determine how the circuit
should behave under all possible circumstances. That is, determine the binary
value that should appear on each output line of the circuit for every possible
combination of inputs. This information can be organized as a truth table. If
a circuit has N input lines, and if each input line can be either a 0 or a 1, then
there are 2N combinations of input values, and the truth table has 2N rows. For
each output of the circuit, we must specify the desired output value for every
row in the truth table.

For example, if a circuit has three inputs and two outputs, then a truth
table for that circuit has 23 = 8 input combinations and may look something like
the following. (In this example, the output values are completely arbitrary.)

This circuit has two outputs labeled Output-1 and Output-2. The truth table
specifies the value of each of these two output lines for every one of the eight
possible combinations of inputs. We will use this example to illustrate the sub-
sequent steps in the algorithm.

STEP 2: SUBEXPRESSION CONSTRUCTION USING AND AND NOT GATES.
Choose any one output column of the truth table built in step 1 and scan down
that column. Every place that you find a 1 in that output column, you build a
Boolean subexpression that produces the value 1 (i.e., is true) for exactly that
combination of input values and no other. To build this subexpression, you
examine the value of each input for this specific case. If the input is a 1, use
that input value directly in your subexpression. If the input is a 0, first take
the NOT of that input, changing it from a 0 to a 1, and then use that comple-
mented input value in your subexpression. You now have an input sequence of
all 1s, and if all of these modified inputs are ANDed together (two at a time, of
course), then the output value is a 1. For example, let’s look at the output col-
umn labeled Output-1 from the previous truth table.
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INPUTS OUTPUTS

a b c OUTPUT-1 OUTPUT-2

0 0 0 0 1
0 0 1 0 0
0 1 0 1 1
0 1 1 0 1 23 5 8 input
1 0 0 0 0 combinations
1 0 1 0 0
1 1 0 1 1
1 1 1 0 0

∂

INPUTS

a b c OUTPUT-1

0 0 0 0
0 0 1 0
0 1 0 1 v case 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1 v case 2
1 1 1 0



There are two 1s in the column labeled Output-1; they are referred to as case 1
and case 2. We thus need to construct two subexpressions, one for each of
these two cases.

In case 1, the inputs a and c have the value 0 and the input b has the value
1. Thus we apply the NOT operator to both a and c, changing them from 0 to 1.
Because the value of b is 1, we can use b directly. We now have three modified
input values, all of which have the value 1. ANDing these three values together
yields the Boolean expression . This expression produces a 1 only
when the input is exactly a = 0, b = 1, c = 0. In any other case, at least one of
the three terms in the expression is 0, and when the AND operation is carried
out, it produces a 0. (Check this yourself by trying some other input values and
seeing what is produced.) Thus the desired subexpression for case 1 is

The subexpression for case 2 is developed in an identical manner, and it
results in

This subexpression produces a 1 only when the input is exactly a = 1, b = 1, c= 0.

STEP 3: SUBEXPRESSION COMBINATION USING OR GATES. Take each of
the subexpressions produced in step 2 and combine them, two at a time, using
OR gates. Each of the individual subexpressions produces a 1 for exactly one
particular case where the truth table output is a 1, so the OR of the output of
all of them produces a 1 in each case where the truth table has a 1 and in no
other case. Consequently, the Boolean expression produced in step 3 imple-
ments exactly the function described in the output column of the truth table
on which we are working. In the example above, the final Boolean expression
produced during step 3 is

STEP 4: CIRCUIT DIAGRAM PRODUCTION. Construct the final circuit
diagram. To do this, convert the Boolean expression produced at the end of
step 3 into a circuit diagram, using AND, OR, and NOT gates to implement the
AND, OR, and NOT operators appearing in the Boolean expression. This circuit
diagram produces the output described in the corresponding column of the
truth table created in step 1. The circuit diagram for the Boolean expression
developed in step 3 is shown in Figure 4.20.

We have successfully built the part of the circuit that produces the output
for the column labeled Output-1 in the truth table shown in step 1. We now
repeat steps 2, 3, and 4 for any additional output columns contained in the
truth table. (In this example there is a second column labeled Output-2. We
leave the construction of that circuit as a practice exercise.) When we have
constructed a circuit diagram for every output of the circuit, we are finished.
The sum-of-products algorithm is summarized in Figure 4.21.

This has been a formal introduction to one particular circuit construc-
tion algorithm. The algorithm is not easy to comprehend in an abstract

(a ? b ? c) 1 (a ? b ? c)

(a ? b ? c)

(a ? b ? c)

(a ? b ? c)
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Output -1

a

b

c

++

FIGURE 4.20
Circuit Diagram for the Output
Labeled Output-1

a

b

c

Output

(not used)

FIGURE 4.21
The Sum-of-Products Circuit
Construction Algorithm

Sum-of-Products Algorithm for Constructing Circuits

1. Construct the truth table describing the behavior of the desired circuit
2. While there is still an output column in the truth table, do steps 3 through 6
3. Select an output column
4. Subexpression construction using AND and NOT gates
5. Subexpression combination using OR gates
6. Circuit diagram production
7. Done

sense. The next section clarifies this technique by using it to design two cir-
cuits that perform the operations of comparison and addition. Seeing it used
to design actual circuits will make the steps of the algorithm easier to
understand and follow.

We end this section by noting that the circuit construction algorithm just
described does not always produce an optimal circuit, where optimal means
that the circuit accomplishes its desired function using the smallest number of
logic gates. For example, using the truth table shown on the bottom of page
166, our sum-of-products algorithm produced the seven-gate circuit shown in
Figure 4.20. This is a correct answer in the sense that the circuit does produce
the correct values for Output-1 for all combinations of inputs. However, it is
possible to do much better.



The preceding circuit also produces the correct result using only two gates
instead of seven. This difference is very important because each AND, OR, and
NOT gate is a physical entity that costs real money, takes up space on the
chip, requires power to operate, and generates heat that must be dissipated.
Eliminating five unnecessary gates produces a real savings. The fewer gates we
use, the cheaper, more efficient, and more compact are our circuits and hence
the resulting computer. Algorithms for circuit optimization—that is, for
reducing the number of gates needed to implement a circuit—are an impor-
tant part of hardware design. Challenge Work problem 1 at the end of the
chapter invites you to investigate this interesting topic in more detail.

4.4 Building Computer Circuits LEVEL 2 169

1. Design the circuit to implement the output described in the column
labeled Output-2 in the truth table on page 166.

2. Design a circuit using AND, OR, and NOT gates to implement the fol-
lowing truth table.

This is the exclusive-OR operation. It is true if and only if a is 1 or
b is 1, but not both.

3. Build a circuit using AND, OR, and NOT gates to implement the fol-
lowing truth table.

This is called a full-ON/full-OFF circuit. It is true if and only if all
three of its inputs are OFF (0) or all three are ON (1).

PRACTICE PROBLEMS

a b Output
0 0 0

0 1 1

1 0 1

1 1 0

a b c Output
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
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To give you hands-on experience working with logic cir-
cuits, the first laboratory experience in this chapter intro-
duces you to a software package called a circuit
simulator. This is a program that enables you to construct
logic circuits from the AND, OR, and NOT gates just
described, and then test them by observing the outputs of
the circuits using any desired inputs.  To the left is a sim-
ple example of the type of circuits that can be created—a
circuit with one NOT gate, one AND gate, and two input
switches (currently set to the values 1 and 0).

Note that the output of each gate is displayed on the
screen, which allows you to determine if your circuit is or
is not behaving correctly.  

LABORATORY
EXPERIENCE 7

4.4.3 Examples of Circuit Design and Construction

Let’s use the algorithm described in Section 4.4.2 to construct two circuits
important to the operation of any real-world computer: a compare-for-equality
circuit and an addition circuit.

A COMPARE-FOR-EQUALITY CIRCUIT. The first circuit we will construct is a
compare-for-equality circuit, or CE circuit, which tests two unsigned binary
numbers for exact equality. The circuit produces the value 1 (true) if the two
numbers are equal and the value 0 ( false) if they are not. Such a circuit could
be used in many situations. For example, in the shampooing algorithm in Fig-
ure 1.3(a), there is an instruction that says,

Repeat steps 4 through 6 until the value of WashCount equals 2

Our CE circuit could accomplish the comparison between WashCount and 2 and
return a true or false, depending on whether these two values were equal or
not equal.

Let’s start by using the sum-of-products algorithm in Figure 4.21 to
construct a simpler circuit called 1-CE, short for 1-bit compare for equality.
A 1-CE circuit compares two 1-bit values a and b for equality. That is, the
circuit 1-CE produces a 1 as output if both its inputs are 0 or both its
inputs are 1. Otherwise, 1-CE produces a 0. After designing 1-CE, we will use
it to create a “full-blown” comparison circuit that can handle numbers of
any size.



Step 1 of the algorithm says to construct the truth table that describes
the behavior of the desired circuit. The truth table for the 1-CE circuit is

a b Output

0 0 1 v case 1 (both numbers equal to 0)
0 1 0
1 0 0
1 1 1 v case 2 (both numbers equal to 1)

In the output column of the truth table, there are two 1 values, labeled case 1
and case 2, so step 2 of the algorithm is to construct two subexpressions, one
for each of these two cases. The subexpression for case 1 is because
this produces the value 1 only when a = 0 and b = 0. The subexpression for
case 2 is (a · b), which produces a 1 only when a = 1 and b = 1.

We now combine the outputs of these two subexpressions with an OR
gate, as described in step 3, to produce the Boolean expression

Finally, in step 4, we convert this expression to a circuit diagram, which is
shown in Figure 4.22. The circuit shown in Figure 4.22 correctly compares two
1-bit quantities and determines if they are equal. If they are equal, it outputs
a 1. If they are unequal, it outputs a 0.

The numbers compared for equality by a computer are usually much larger
than a single binary digit. We want a circuit that correctly compares two numbers
that contain N binary digits. To build this “N-bit compare-for-equality” circuit, we
use N of the 1-CE circuits shown in Figure 4.22, one for each bit position in the
numbers to be compared. Each 1-CE circuit produces a 1 if the two binary digits in
its specific location are identical and produces a 0 if they are not. If every circuit
produces a 1, then the two numbers are identical in every bit position, and they
are equal. To check whether all our 1-CE circuits produce a 1, we simply AND
together (two at a time) the outputs of all N 1-CE circuits. Remember that an AND
gate produces a 1 if and only if both of its inputs are a 1. Thus the final output of
the N-bit compare circuit is a 1 if and only if every pair of bits in the correspond-
ing location of the two numbers is identical—that is, the two numbers are equal.

Figure 4.23 shows the design of a complete N-bit compare-for-equality
circuit called CE. Each of the two numbers being compared, a and b, contains
N bits, and they are labeled aN-1 aN-2 . . . a0 and bN-1 bN-2 . . . b0. The box labeled 
1-CE in Figure 4.23 is the 1-bit compare-for-equality circuit shown in Figure 4.22.
Looking at these figures, you can see that we have designed a very complex

(a ? b) 1 (a ? b)

(a ? b)
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Output

a

b

1-CE Circuit

+

FIGURE 4.22
One-Bit Compare for
Equality Circuit



electrical circuit without the specification of a single electrical device. The only
“devices” in those diagrams are gates to implement the logical operations AND,
OR, and NOT, and the only “rules” we need to know in order to understand the
diagrams are the transformation rules of Boolean logic. George Boole’s “not very
important” work is the starting point for the design of every circuit found inside
a modern computer.

AN ADDITION CIRCUIT. Our second example of circuit construction is an
addition circuit called ADD that performs binary addition on two unsigned 
N-bit integers. Typically, this type of circuit is called a full adder. For example,
assuming N = 6, our ADD circuit would be able to perform the following 6-bit
addition operation:

1 1 (v the carry bit)
0 0 1 1 0 1 (the binary value 13)

+ 0 0 1 1 1 0 (the binary value 14)
0 1 1 0 1 1 (the binary value 27, which is the correct sum)

Just as we did with the CE circuit, we carry out the design of the ADD circuit
in two stages. First, we use the circuit construction algorithm of Figure 4.21 to
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1
1
0
1
0
0
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0
0
0
1
0
1
1
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Inputs Outputs

Inputs OutputsFIGURE 4.24
The 1-ADD Circuit and
Truth Table

build a circuit called 1-ADD that adds a single pair of binary digits, along with
a carry digit. We then interconnect N of these 1-ADD circuits to produce the
complete N-bit full adder circuit ADD.

Looking at the addition example just shown, we see that summing the
values in column i requires us to add three binary values—the two binary dig-
its in that column, ai and bi, and the carry digit from the previous column,
called ci. Furthermore, the circuit must produce two binary outputs: a sum
digit si and a new carry digit ci+1 that propagates to the next column. The pic-
torial representation of the 1-bit adder circuit 1-ADD and its accompanying
truth table are shown in Figure 4.24.

Because the 1-ADD circuit being constructed has two outputs, si and ci+1,
we must use steps 2, 3, and 4 of the circuit construction algorithm twice, once
for each output. Let’s work on the sum output si first.

The si output column of Figure 4.24 contains four 1s, so we need to con-
struct four subexpressions. In accordance with the guidelines given in step 2
of the construction algorithm, these four subexpressions are

Case 1:

Case 2:

Case 3:

Case 4: ai ? bi ? ci

Step 3 says to combine the outputs of these four subexpressions using three
OR gates to produce the output labeled si in the truth table of Figure 4.24. The
final Boolean expression for the sum output is

The logic circuit to produce the output whose expression is given above is
shown in Figure 4.25. (This circuit diagram has been labeled to highlight the
four separate subexpressions created during step 2, as well as the combining
of the subexpressions in step 3 of the construction algorithm.)

si 5 (ai ? bi ? ci) 1 (ai ? bi ? ci) 1 (ai ? bi ? ci) 1 (ai ? bi ? ci)

ai ? bi ? ci

ai ? bi ? ci

ai ? bi ? ci
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We are not yet finished, because the 1-ADD circuit in Figure 4.24 has a second
output—the carry into the next column. That means the circuit construction
algorithm must be repeated for the second output column, labeled ci+1.

The ci+1 column also contains four 1s, so we again need to build four separate
subcircuits, just as for the sum output, and combine them using OR gates. The
construction proceeds in a fashion similar to the first part, so we leave the details
as an exercise for the reader. The Boolean expression describing the carry output
ci+1 of the 1-ADD circuit is

We have now built the two parts of the 1-ADD circuit that produce the
sum and the carry outputs. The complete 1-ADD circuit is constructed by sim-
ply putting these two pieces together. Figure 4.26 shows the complete (and
admittedly quite complex) 1-ADD circuit to implement 1-bit addition. To keep
the diagram from becoming an incomprehensible tangle of lines, we have
drawn it in a slightly different orientation from Figures 4.22 and 4.25. Every-
thing else is exactly the same.

When looking at this rather imposing diagram, do not become overly
concerned with the details of every gate, every connection, and every opera-
tion. Figure 4.26 more importantly illustrates the process by which we design
such a complex and intricate circuit: by transforming the idea of 1-bit binary

ci11 5 (ai ? bi ? ci) 1 (ai ? bi ? ci) 1 (ai ? bi ? ci) 1 (ai ? bi ? ci)
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Step 3. Combining subexpression
outputs using OR gates

Output
Step 2. Construction of four separate subexpressions

using AND and NOT gates

Inputs

Case 4
a · b · c

Case 3
a · b · c

Case 2
a · b · c

Case 1
a · b · c

+

+

+

FIGURE 4.25
Sum Output for the 
1-ADD Circuit
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addition into an electrical circuit using the tools of algorithmic problem
solving and symbolic logic.

How is the 1-ADD circuit shown in Figure 4.26 used to add numbers that
contain N binary digits rather than just one? The answer is simple if we think
about the way numbers are added by hand. (We discussed exactly this topic
when developing the addition algorithm of Figure 1.2.) We add numbers one
column at a time, moving from right to left, generating the sum digit, writing
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Complete 1-ADD Circuit for
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it down, and sending any carry to the next column. The same thing can be
done in hardware. We use N of the 1-ADD circuits shown in Figure 4.26, one for
each column. Starting with the rightmost circuit, each 1-ADD circuit adds a
single column of digits, generates a sum digit that is part of the final answer,
and sends its carry digit to the 1-ADD circuit on its left, which replicates this
process. After N repetitions of this process, all sum digits have been gener-
ated, and the N circuits have correctly added the two numbers.

The complete full adder circuit called ADD is shown in Figure 4.27. It
adds the two N-bit numbers aN-1 aN-2 . . . a0 and bN-1 bN-2 . . . b0 to produce the
(N + 1) - bit sum sN sN-1 sN-2 . . . s0. Because addition is one of the most common
arithmetic operations, the circuit shown in Figure 4.27 (or something equiva-
lent) is one of the most important and most frequently used arithmetic com-
ponents. Addition circuits are found in every computer, workstation, and
handheld calculator in the marketplace. They are even found in computer-
controlled thermostats, clocks, and microwave ovens, where they enable us,
for example, to add 30 minutes to the cooking time.
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Figure 4.27 is, in a sense, the direct hardware implementation of the
addition algorithm shown in Figure 1.2. Although Figure 1.2 and Figure 4.27
are quite different, both represent essentially the same algorithm: the
column-by-column addition of two N-bit numerical values. This demonstrates
quite clearly that there are many different ways to express the same
algorithm—in this case, pseudocode (Figure 1.2) and hardware circuits
(Figure 4.27). Later chapters show additional ways to represent algorithms,
such as machine language programs and high-level language programs.
However, regardless of whether we use English, pseudocode, mathematics, or
transistors to describe an algorithm, its fundamental properties are the same,
and the central purpose of computer science—algorithmic problem solving—
remains the same.

It may also be instructive to study the size and complexity of the ADD cir-
cuit just designed. Figure 4.27 shows that the addition of two N-bit integer
values requires N separate 1-ADD circuits. Let’s assume that N = 32, a typical
value for modern computers. Referring to Figure 4.26, we see that each 
1-ADD circuit uses 3 NOT gates, 16 AND gates, and 6 OR gates, a total of
25 logic gates. Thus the total number of logic gates used to implement 32-bit
binary addition is 32 3 25 = 800 gates. Figures 4.16, 4.17(b), and 4.18(b)
show that each AND and OR gate requires three transistors and each NOT gate
requires one. Therefore, more than 2,200 transistors are needed to build a 
32-bit adder circuit:

NOT: 32 3 3 5 96  NOT gates 3 1 transistor/gate 5 96
AND: 32 3 16 5 512 AND gates 3 3 transistors/gate5 1,536
OR: 32 3 6 5 192 OR   gates 3 3 transistors/gate 5 576

Total 5 2,208

(Note: Optimized 32-bit addition circuits can be constructed using as few as
500 to 600 transistors. However, this does not change the fact that it takes
many, many transistors to accomplish this addition task.)

This computation emphasizes the importance of the continuing
research into the miniaturization of electrical components. (See the box
feature on Moore’s Law earlier in this chapter.) If vacuum tubes were used
instead of transistors, as was done in computers from about 1940 to 1955,
the adder circuit shown in Figure 4.27 would be extraordinarily bulky;
2,208 vacuum tubes would occupy a space about the size of a large refriger-
ator. It would also generate huge amounts of heat, necessitating sophisti-
cated cooling systems, and it would be very difficult to maintain. (Imagine
the time it would take to locate a single burned-out vacuum tube from a
cluster of 2,000.) Using something on the scale of the magnetic core tech-
nology described in Section 4.2.4 and shown in Figure 4.4, the adder circuit
would fit into an area a few inches square. However, modern circuit tech-
nology can now achieve transistor densities greater than 1 billion
transistors/cm2. At this level, the entire ADD circuit of Figure 4.27 would
easily fit in an area much, much smaller than the size of the period at the
end of this sentence. That is why it is now possible to put powerful com-
puter processing facilities not only in a room or on a desk but also inside a
watch, a thermostat, or even inside the human body.
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1. Design a circuit that implements a 1-bit compare-for-greater-than
(1-GT) operation. This circuit is given two 1-bit values, a and b. It
outputs a 1 if a > b, and outputs a 0 otherwise.

2. Use the circuit construction algorithm just described to implement
the NOR operation shown in Figure 4.18(a). Remember that the
truth table for the NOR operation is: 

3. Use the circuit construction algorithm to implement the NXOR, the
Not of the Exclusive OR operation, whose truth table is the following:

PRACTICE PROBLEMS

a b (a NOR b)
0 0 1

0 1 0

1 0 0

1 1 0

a b (a NXOR b)
0 0 1

0 1 0

1 0 0

1 1 1

In the second laboratory experience of this chapter, you
again use the circuit simulator software package. This time
you construct circuits using the sum-of-products algorithm
discussed in this section and shown in Figure 4.21. Using
the simulator to design, build, and test actual circuits will
give you a deeper understanding of how to use the sum-of-
products algorithm to create circuits that solve specific
problems.  Here is an example of the implementation of
the NXOR circuit described in Question 3 of the previous
set of Practice Problems.

LABORATORY
EXPERIENCE 8
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4.5 Control Circuits

The previous section described the design of circuits for implementing arith-
metic and logical operations. However, there are other, quite different, types
of circuits that are also essential to the proper functioning of a computer sys-
tem. This section briefly describes one of these important circuit types,
control circuits, which are used not to implement arithmetic operations but
to determine the order in which operations are carried out and to select the
correct data values to be processed. In a sense, they are the sequencing and
decision-making circuits inside a computer. These circuits are essential to the
proper function of a computer because, as we noted in Chapter 1, algorithms
and programs must be well ordered and must always know which operation to
do next. The two major types of control circuits are called multiplexors and
decoders, and, like everything else described in this chapter, they can be
completely described in terms of gates and the rules of logic.

A multiplexor is a circuit that has 2N input lines and 1 output line. Its
function is to select exactly one of its 2N input lines and copy the binary value
on that input line onto its single output line. A multiplexor chooses one spe-
cific input by using an additional set of N lines called selector lines. (Thus the
total number of inputs to the multiplexor circuit is 2N + N.) The 2N input lines
of a multiplexor are numbered 0, 1, 2, 3, . . . , 2N 2 1. Each of the N selector
lines can be set to either a 0 or a 1, so we can use the N selector lines to repre-
sent all binary values from 000 . . . 0 (N zeros) to 111 . . . 1 (N ones), which
represent all integer values from 0 to 2N – 1. These numbers correspond exactly
to the numbers of the input lines. Thus the binary number that appears on the
selector lines can be interpreted as the identification number of the input line
that is to be selected. Pictorially, a multiplexor looks like this:

Dr. William Shockley was the inventor (along with John
Bardeen and Walter Brattain) of the transistor. His discov-
ery has probably done as much to shape our modern world
as any scientific advancement of the 20th century. He
received the 1956 Nobel Prize in Physics and, at his death,
was a distinguished professor at Stanford University.

Shockley and his team developed the transistor in
1947 while working at Bell Laboratories. He left there
in 1954 to set up the Shockley Semiconductor Laboratory in
California—a company that was instrumental in the birth of
the high-technology region called Silicon Valley. The
employees of this company eventually went on to develop
other fundamental advances in computing, such as the inte-
grated circuit and the microprocessor.

Although Shockley’s work has been compared to that

of Pasteur, Salk, and Einstein in importance, his reputation
and place in history have been forever tarnished by his out-
rageous and controversial racial theories. His education and
training were in physics and electrical engineering, but
Shockley spent the last years of his life trying to convince
people of the genetic inferiority of blacks. He became
obsessed with these ideas, even though he was ridiculed
and shunned by colleagues who abandoned all contact with
him. Although his work on the design of the transistor was
of seminal importance, Shockley himself felt that his
genetic theory on race and intelligence would ultimately be
viewed as his most important contribution to science. By
the time of his death in 1989, his intense racial bigotry
prevented him from receiving the recognition that would
otherwise have been his for monumental contributions in
physics, engineering, and computer science.

Dr. William Shockley
(1910–1989)



For example, if we had four (22) input lines (i.e., N = 2) coming into our
multiplexor, numbered 0, 1, 2, and 3, then we would need two selector lines.
The four binary combinations that can appear on this pair of selector lines are
00, 01, 10, and 11, which correspond to the decimal values 0, 1, 2, and 3,
respectively (refer to Figure 4.2). The multiplexor selects the one input line
whose identification number corresponds to the value appearing on the selec-
tor lines and copies the value on that input line to the output line. If, for
example, the two selector lines were set to 1 and 0, then a multiplexor circuit
would pick input line 2 because 10 in binary is 2 in decimal notation.

Implementing a multiplexor using logic gates is not difficult. Figure 4.28
shows a simple multiplexor circuit with N = 1. This is a multiplexor with two
(21) input lines and a single selector line.

In Figure 4.28 if the value on the selector line is 0, then the bottom input
line to AND gate 2 is always 0, so its output is always 0. Looking at AND gate 1,
we see that the NOT gate changes its bottom input value to a 1. Because 
(1 AND a) is always a, the output of the top AND gate is equal to the value of
a, which is the value of the input from line 0. Thus the two inputs to the OR
gate are 0 and a. Because the value of the expression (0 OR a) is identical to a,
by setting the selector line to 0 we have, in effect, selected as our output the
value that appears on line 0. You should confirm that if the selector line has
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the value 1, then the output of the circuit in Figure 4.28 is b, the value
appearing on line 1. We can design multiplexors with more than two inputs in
a similar fashion, although they rapidly become more complex.

The second type of control circuit is called a decoder and it operates in
the opposite way from a multiplexor. A decoder has N input lines numbered 0,
1, 2, . . . , N 2 1 and 2N output lines numbered 0, 1, 2, 3, . . . , 2N 2 1.

Each of the N input lines of the decoder can be set to either a 0 or a 1, and when
these N values are interpreted as a single binary number, they can represent all
integer values from 0 to 2N – 1. It is the job of the decoder to determine the value
represented on its N input lines and then send a signal (i.e., a 1) on the single out-
put line that has that identification number. All other output lines are set to 0.

For example, if our decoder has three input lines, it has eight (23) output
lines numbered 0 to 7. These three input lines can represent all binary values
from 000 to 111, which is from 0 to 7 in decimal notation. If, for example,
the binary values on the three input lines are 101, which is a 5, then a signal
(a binary 1) would be sent out by the decoder on output line 5. All other out-
put lines would contain a 0.

Figure 4.29 shows the design of a 2-to-4 decoder circuit with two input lines
and four (22) output lines. These four output lines are labeled 0, 1, 2, and 3, and
the only output line that carries a signal value of 1 is the line whose identifica-
tion number is identical to the value appearing on the two input lines. For exam-
ple, if the two inputs are 11, then line 3 should be set to a 1 (11 in binary is 3 in
decimal). This is, in fact, what happens because the AND gate connected to line
3 is the only one whose two inputs are equal to a 1. You should confirm that this
circuit behaves properly when it receives the inputs 00, 01, and 10 as well.

Together, decoder and multiplexor circuits enable us to build computer
systems that execute the correct instructions using the correct data values.
For example, assume we have a computer that can carry out four different
types of arithmetic operations—add, subtract, multiply, and divide. Further-
more, assume that these four instructions have code numbers 0, 1, 2, and 3,
respectively. We could use a decoder circuit to ensure that the computer per-
forms the correct instruction. We need a decoder circuit with two input lines.
It receives as input the 2-digit code number (in binary) of the instruction that
we want to perform: 00 (add), 01 (subtract), 10 (multiply), or 11 (divide). The
decoder interprets this value and sends out a signal on the correct output
line. This signal is used to select the proper  arithmetic circuit and cause it to
perform the desired operation. This behavior is diagrammed in Figure 4.30.

Whereas a decoder circuit can be used to select the correct instruction, a
multiplexor can help ensure that the computer executes this instruction using
the correct data. For example, suppose our computer has four special registers
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Decoder circuit

Input lines

Operation code:
00 = add
01 = subtract
10 = multiply
11 = divide

Output lines

0

1

2

3

Subtract circuit

Add circuit

Multiply circuit

Divide circuit

(see Figure 4.29)

FIGURE 4.30
Example of the Use of a
Decoder Circuit

called R0, R1, R2, and R3. (For now, just consider a register to be a place to store
a data value. We describe registers in more detail in the next chapter.) Assume
that we have built a circuit called test-if-zero that can test whether any of these
four registers contains the value 0. (This is actually quite similar to the CE circuit
of Figure 4.23.) We can use a multiplexor circuit to select the register that we
wish to send to the test-if-zero circuit. This is shown in Figure 4.31. If we want
to test if register R2 in Figure 4.31 is 0, we simply put the binary value 10 (2 in
decimal notation) on the two selector lines. This selects register R2, and only its
value passes through the multiplexor and is sent to the test circuit.

There are many more examples of the use of control circuits in Chapter 5,
which examines the execution of programs and the overall organization of a
computer system.

Input 1
(left digit)

Input 2
(right digit)

3

2

1

0

FIGURE 4.29
A 2-to-4 Decoder Circuit



4.6 Conclusion

We began our discussion on the representation of information and the design
of computer circuits with the most elementary component, bistable electronic
devices such as transistors. We showed how they can be used to construct logic
gates that in turn can be used to implement circuits to carry out useful func-
tions. Our purpose here was not to make you an expert in specifying and
designing computer circuits but to demonstrate how it is possible to imple-
ment high-level arithmetic operations using only low-level electronic compo-
nents such as transistors. We also demonstrated how it is possible to reorient
our viewpoint and raise our level of abstraction. We changed the level of dis-
cussion from electricity to arithmetic, from hardware devices to mathematical
behavior, from form to function. This is one of the first steps up the hierarchy
of abstractions introduced in Figure 1.9. 

Chapter 5 continues this “upward climb” to yet higher levels of abstrac-
tion. It shows how arithmetic circuits, such as compare for equality and addi-
tion (Section 4.4.3), and control circuits, such as multiplexors and decoders
(Section 4.5), can be used to construct entire computer systems.

After reading this chapter, you may have the feeling that although you
understand the individual concepts that are covered, you still don’t under-
stand, in the grand sense, what computers are or how they work. You may feel
that you can follow the details but can’t see the “big picture.” One possible
reason is that this chapter looks at computers from a very elementary view-
point, by studying different types of specialized circuits. This is analogous to
studying the human body as a collection of millions of cells of different
types—blood cells, brain cells, skin cells, and so on. Cytology is certainly an
important part of the field of biology, but understanding only the cellular
structure of the human body provides no intuitive understanding of what peo-
ple are and how we do such characteristic things as walk, eat, and breathe.
Understanding these complex actions derives not from a study of molecules,
genes, or cells, but from a study of higher-level organs, such as lungs, stom-
ach, and muscles, and their interactions.

That is exactly what happens in Chapter 5, in which we examine higher-
level computer components such as processors, memory, and instructions and
begin our study of the topic of computer organization.
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1. Given our discussion of positional numbering systems in
Section 4.2.1, see whether you can determine the deci-
mal value of the following number:
a. 133 (base 4)
b. 367 (base 8, also called octal)
c. 1BA (base 16, also called hexadecimal. B is the digit

that represents 11; A is the digit that represents 10.)

2. In Exercise 1(c), we use the letters A and B as digits of
the base-16 number. Explain why that is necessary.

3. Determine the decimal value of the following unsigned
binary numbers:
a. 11000 c. 1111111
b. 110001 d. 1000000000

4. Using 8 bits, what is the unsigned binary representation
of each of the following values:
a. 23
b. 55
c. 275

Did anything “unusual” happen when determining the
correct answer to part (c)?

5. Assume that the following 10-bit numbers represent
signed integers using sign/magnitude notation. The sign
is the leftmost bit and the remaining 9 bits represent the
magnitude. What is the decimal value of each?
a. 1000110001 c. 1000000001
b. 0110011000 d. 1000000000

6. Assume that we use 10 bits to represent signed integers,
using sign/magnitude notation. What are the largest (in
absolute value) positive and negative numbers that can
be represented on our system?

7. Show the step-by-step addition of the following two 
10-bit unsigned binary values, including showing the
carry bit to each successive column:
0011100011

+ 0001101110

8. Assume that our computer stores decimal numbers using
16 bits—10 bits for a sign/magnitude mantissa and 6 bits
for a sign/magnitude base-2 exponent. (This is exactly the
same representation used in the text.) Show the internal
representation of the following decimal quantities.
a. +7.5    b. –20.25    c. –1/64

9. Using the ASCII code set given in Figure 4.3, show the
internal binary representation for the following character
strings:
a. AbC c. $25.00
b. Mike d. (a+b)

10. How many binary digits would it take to represent the
following phrase in ASCII code? In UNICODE? (Do not
include the “ ” marks.)

“Invitation to Computer Science”

11. a. How many bits does it take to store a 3-minute song
using an audio encoding method that samples at the
rate of 40,000 bits/second, has a bit depth of 16, and
does not use compression? What if it uses a compres-
sion scheme with a compression ratio of 5:1?

b. How many bits does it take to store an uncompressed
1,200 3 800 RGB color image? If we found out that
the image actually takes only 2.4 Mbits, what is the
compression ratio?

12. Show how run-length encoding can be used to compress
the following text stream:

xxxyyyyyyzzzzAAxxxx

What is the compression ratio? (Assume each digit and
letter requires 8 bits.)

13. Using the variable length code shown in Figure 4.8, give
the internal coding of the following Hawaiian words
along with the amount of savings over the standard
fixed-length four bit representation:

a. KAI

b. MAUI

c. MOLOKAI

Explain the problem that occurred with part (c).

14. The primary advantage of using the binary numbering
system rather than the decimal system to represent data
is reliability, as noted in Section 4.2.3. Describe two dis-
advantages of using binary rather than decimal notation
for the internal representation of information.

15. Assume that a = 1, b = 2, and c = 2. What is the value of
each of the following Boolean expressions?

a. (a > 1) OR (b = c)

b. [(a + b) > c] AND (b # c)

c. NOT (a = 1)

d. NOT [(a = b) OR (b = c)]

16. Assume that a = 5, b = 2, and c= 3. What problem do you
encounter when attempting to evaluate the following
Boolean expression?

(a = 1) AND (b = 2) OR (c = 3)

How can this problem be solved?

17. Using the circuit construction algorithm of Section 4.4.2,
design a circuit using only AND, OR, and NOT gates to
implement the following truth table:
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a b Output

0 0 1
0 1 1
1 0 1
1 1 0

This operation is termed NAND, for Not AND, and it can be
constructed as a single gate, as shown in Figure 4.17(a).
Assume that you do not have access to a NAND gate and
must construct it from AND, OR, and NOT.

18. Using the circuit construction algorithm of Section 4.4.2,
design a circuit using only AND, OR, and NOT gates to
implement the following truth table.

a b Output

0 0 1
0 1 1
1 0 0
1 1 1

This operation is termed logical implication, and it is an
important operator in symbolic logic.

19. Build a majority-rules circuit. This is a circuit that has
three inputs and one output. The value of its output is 1
if and only if two or more of its inputs are 1; otherwise,
the output of the circuit is 0. For example, if the three
inputs are 0, 1, 1, your circuit should output a 1. If
its three inputs are 0, 1, 0, it should output a 0. This cir-
cuit is frequently used in fault-tolerant computing—
environments where a computer must keep working
correctly no matter what, for example as on a deep-space

vehicle where making repairs is impossible. In these
conditions, we might choose to put three computers on
board and have all three do every computation; if two or
more of the systems produce the same answer, we accept
it. Thus, one of the machines could fail and the system
would still work properly.

20. Design an odd-parity circuit. This is a circuit that has
three inputs and one output. The circuit outputs a 1 if
and only if an even number (0 or 2) of its inputs are a 1.
Otherwise, the circuit outputs a 0. Thus the sum of the
number of 1 bits in the input and the output is always an
odd number. (This circuit is used in error checking. By
adding up the number of 1 bits, we can determine
whether any single input bit was accidentally changed. If
it was, the total number of 1s is an even number when
we know it should be an odd value.)

21. Design a 1-bit subtraction circuit. This circuit takes
three inputs—two binary digits a and b and a borrow digit
from the previous column. The circuit has two outputs—
the difference (a – b), including the borrow, and a new
borrow digit that propagates to the next column. Create
the truth table and build the circuit. This circuit can be
used to build N-bit subtraction circuits.

22. How many selector lines would be needed on a four-input
multiplexor? On an eight-input multiplexor?

23. Design a four-input multiplexor circuit. Use the design of
the two-input multiplexor shown in Figure 4.28 as a guide.

24. Design a 3-to-8 decoder circuit. Use the design of the
2-to-4 decoder circuit shown in Figure 4.29 as a guide.

1. Circuit optimization is a very important area of hard-
ware design. As we mentioned earlier in the chapter,
each gate in the circuit represents a real hardware device
that takes up space on the chip, generates heat that
must be dissipated, and increases costs. Therefore, the
elimination of unneeded gates can represent a real sav-
ings. Circuit optimization investigates techniques to
construct a new circuit that behaves identically to the
original one but with fewer gates. The basis for circuit
optimization is the transformation rules of symbolic
logic. These rules allow you to transform one Boolean
expression into an equivalent one that entails fewer
operations. For example, the distributive law of logic says
that (a · b) + (a · c) = a · (b + c). The expressions on
either side of the = sign are functionally identical, but
the one on the right determines its value using one less
gate (one AND gate and one OR gate instead of two AND
gates and one OR gate).

Read about the transformation rules of binary logic and
techniques of circuit optimization. Using these rules,
improve the full adder circuit of Figure 4.27 so that it
requires fewer than 2,208 transistors. Explain your
improvements and determine exactly how many fewer
transistors are required for your “new and improved” full
adder circuit.

2. This chapter briefly described an alternative signed inte-
ger representation technique called two’s complement
representation. This popular method is based on the
concepts of modular arithmetic, and it does not suffer
from the problem of two different representations for the
quantity 0. Read more about two’s complement and write
a report describing how this method works, as well as
algorithms for adding and subtracting numbers repre-
sented in two’s complement notation. In your report give
the 16-bit, two’s complement representation for the
signed integer values +45, –68, –1, and 0. Then show
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how to carry out the arithmetic operations 45 + 45, 45 +
(–68), and 45 – (–1).

3. In Section 4.2.2 we describe lossless compression
schemes, such as run-length encoding and variable length
codes. However, most compression schemes in use today
are lossy and only achieve extremely high rates of com-
pression at the expense of losing some of the detail con-
tained in the sound or image. Often they base their
compression techniques on specific knowledge of the

characteristics of the human ear or eye. For example, it is
well known that the eye is much more sensitive to changes
in brightness (luminance) than to changes in color
(chrominance). The JPEG compression algorithm exploits
this fact when it is compressing a photographic image.

Read about the JPEG image compression algorithm to
learn how it is able to achieve compression ratios of 10:1
or even 20:1. A good place to start would be the JPEG
home page, located at www.jpeg.org.
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The following book offers an excellent discussion of the major topics covered in this
chapter—the representation of information, logic gates, and circuit design. It is one of
the most widely used texts in the field of hardware and logic design.

Patterson, D., and Hennessey, J. Computer Organization and Design: The Hardware Software
Interface, 3rd ed. revised, San Francisco: Morgan Kaufman, 2007.

Chapter 4: “Arithmetic for Computers.” This is an excellent introduction to the representa-
tion of information inside a computer.

Appendix B: “The Basics of Logic Design.”

Among the other excellent books about gates, circuits, hardware, and logic design are

Mano, M., Kime, C. Logic and Computer Design Fundamentals, 4th ed. Englewood Cliffs, NJ: Prentice-
Hall, 2007.

Reid, T. R. The Chip: How Two Americans Invented the Microchip and Launched a Revolution. New
York: Random House, 2001. 

Wakerly, J.F. Digital Design, 4th ed. Englewood Cliffs, NJ: Prentice-Hall, 2005.

Finally, a good reference text on the internal representation of numeric information and
arithmetic algorithms is

Koren, I. Computer Arithmetic Algorithms, 2nd ed. Natick, MA: A.K. Peters, 2001. 
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5.1 Introduction

Chapter 4 introduced the elementary building blocks of computer systems—tran-
sistors, gates, and logic circuits. Though this information is essential to under-
standing computer hardware—just as knowledge of atoms and molecules is
necessary for any serious study of chemistry—it produces a very low-level view
of computer systems. Even students who have mastered the material may still
ask, “OK, but how do computers really work?” Gates and circuits operate on the
most elemental of data items, binary 0s and 1s, whereas people reason and work
with more complex units of information, such as decimal numbers, character
strings, and instructions. To understand how computers process this kind of
information, we must look at higher-level components than gates and circuits.
We must study computers as collections of functional units or subsystems that
perform tasks such as instruction processing, information storage, computation,
and data transfer. The branch of computer science that studies computers in
terms of their major functional units and how they work is computer organiza-
tion, and that is the subject of this chapter. This higher-level viewpoint will give
us a much better understanding of how a computer really works.

All of the functional units introduced in this chapter are built from the
gates and circuits of Chapter 4. However, those elementary components will
no longer be visible because we will adopt a different viewpoint, a different
perspective, a different level of abstraction. This is an extremely important
point; as we have said, the concept of abstraction is used throughout com-
puter science. Without it, it would be virtually impossible to study computer
design or any other large, complex system. 

For example, suppose that system S is composed of a large number of ele-
mentary components a1, a2, a3, . . . interconnected in very intricate ways, as
shown in Figure 5.1(a). This is equivalent to viewing a computer system as thou-
sands or millions of individual gates. For some purposes it may be necessary to
view system S at this level of detail, but for other applications the details could
be overwhelming. To deal with this problem, we can redefine the primitives of
system S by grouping the elementary components a1, a2, a3, . . ., as shown in
Figure 5.1(b), and calling these larger units (A, B, C) the basic building blocks of
system S. A, B, and C are treated as nondecomposable elements whose internal
construction is hidden from view. We care only about what functions these com-
ponents perform and how they interact. This leads to the higher-level system
view shown in Figure 5.1(c), which is certainly a great deal simpler than the one
shown in Figure 5.1(a), and this is how this chapter approaches the topic of com-
puter hardware. Our primitives are much larger components, similar to A, B, and
C, but internally they are still made up of the gates and circuits of Chapter 4.



This “abstracting away” of unnecessary detail can be done more than
once. For example, at a later point in the study of system S, we may no longer
care about the behavior of individual components A, B, and C. We may now
wish to treat the entire system as a single primitive, nondecomposable entity
whose inner workings are no longer important. This leads to the extremely
simple system view shown in Figure 5.1(d), a view that we will adopt in later
chapters.
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Figures 5.1(a), (c), and (d) form what is called a hierarchy of abstractions.
A hierarchy of abstractions of computer science forms the central theme of this
text, and it was initially diagrammed in Figure 1.9. We have already seen
this idea in action in Chapter 4, where transistors are grouped into gates and
gates into circuits:

This process continues into Chapter 5, where we use the addition and compar-
ison circuits of Section 4.4.3 to build an arithmetic unit and use the multi-
plexor and decoder circuits of Section 4.5 to construct a processor. These
higher-level components become our building blocks in all future discussions.

5.2 The Components of a Computer System

There are a huge number of computer systems on the market, manufactured
by dozens of different vendors. There are $50 million supercomputers, 
$1 million mainframes, midsize systems, workstations, laptops, tiny handheld
“personal digital assistants,” and smart phones that cost only a few hundred
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dollars. In addition to size and cost, computers also differ in speed, memory
capacity, input/output capabilities, and available software. The hardware mar-
ketplace is diverse, multifaceted, and ever changing.

However, in spite of all these differences, virtually every computer in use
today is based on a single design. Although a $1 million mainframe and a
$1,000 laptop may not seem to have much in common, they are both based on
the same fundamental principles.

The same thing is true of automotive technology. Although a pickup truck,
family sedan, and Ferrari racing car do not seem very similar, “under the hood”
they are all constructed from the same basic technology: a gasoline-powered
internal combustion engine turning an axle that turns the wheels. Differences
among various models of trucks and cars are not basic theoretical differences
but simply variations on a theme, such as a bigger engine, a larger carrying
capacity, or a more luxurious interior.

The structure and organization of virtually all modern computers are based
on a single theoretical model of computer design called the Von Neumann
architecture, named after the brilliant mathematician John Von Neumann who
proposed it in 1946. (You read about Von Neumann and his enormous contribu-
tions to computer science in the historical overview in Section 1.4.)

The Von Neumann architecture is based on the following three
characteristics:

• Four major subsystems called memory, input/output, the arithmetic/
logic unit (ALU), and the control unit. These four subsystems are dia-
grammed in Figure 5.2.

• The stored program concept, in which the instructions to be exe-
cuted by the computer are represented as binary values and stored in
memory.

• The sequential execution of instructions, in which one instruction
at a time is fetched from memory and passed to the control unit,
where it is decoded and executed.

This section looks individually at each of the four subsystems that make up
the Von Neumann architecture and describes their design and operation.
In the following section we put all these pieces together to show the opera-
tion of the overall Von Neumann model.
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5.2.1 Memory and Cache

Memory is the functional unit of a computer that stores and retrieves the instruc-
tions and the data being executed. All information stored in memory is repre-
sented internally using the binary numbering system described in Section 4.2.

Computer memory uses an access technique called random access, and
the acronym RAM (random access memory) is frequently used to refer to the
memory unit. Random access memory has the following three characteristics:

• Memory is divided into fixed-size units called cells, and each cell is
associated with a unique identifier called an address. These addresses
are the unsigned integers 0, 1, 2, . . . , MAX.

• All accesses to memory are to a specified address, and we must always
fetch or store a complete cell—that is, all the bits in that cell. The cell
is the minimum unit of access.

• The time it takes to fetch or store the contents of a cell is the same for
all the cells in memory.

A model of a random access memory unit is shown in Figure 5.3. (Note:
Read-only memory, abbreviated ROM, is random access memory into which
information has been prerecorded during manufacture.  This information can-
not be modified or removed, only fetched. ROM is used to hold important sys-
tem instructions and data in a place where a user cannot accidentally or
intentionally overwrite them.) 

As shown in Figure 5.3, the memory unit is made up of cells that contain
a fixed number of binary digits. The number of bits per cell is called the cell
size or the memory width, and it is usually denoted as W.

Earlier generations of computers had no standardized value for cell size,
and computers were built with values of W = 6, 8, 12, 16, 24, 30, 32, 36, 48,
and 60 bits. However, computer manufacturers now use a standard cell size of
8 bits, and this 8-bit unit is universally called a byte. Thus, the generic term
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cell has become relatively obsolete, and it is more common now to refer to
memory bytes as the basic unit. However, keep in mind that this is not a
generic term but rather refers to a cell that contains exactly 8 binary digits.

With a cell size of 8 bits, the largest unsigned integer value that can be
stored in a single cell is 11111111, which equals 255—not a very large number.
Therefore, computers with a cell size of W = 8 often use multiple memory cells
to store a single data value. For example, many computers use 2 or 4 bytes
(16 or 32 bits) to store one integer, and either 4 or 8 bytes (32 or 64 bits) to
store a single real number. This gives the range needed, but at a price. It may
take several trips to memory, rather than one, to fetch a single data item.

Each memory cell in RAM is identified by a unique unsigned integer
address 0, 1, 2, 3, . . . . If there are N bits available to represent the address of
a cell, then the smallest address is 0 and the largest address is a string of N 1s: 

1111 . . . 11

N digits

which is equal to the value 2N – 1. Thus the range of addresses available on a
computer is [0 . . (2N – 1)], where N is the number of binary digits used to
represent an address. This is a total of 2N memory cells. The value 2N is called
the maximum memory size or the address space of the computer. Typical val-
ues of N in the 1960s and 1970s were 16, 20, 22, and 24. Today all computers
have at least 32 address bits allowing for up to 232, or about 4 billion, memory
bytes. However, 2N represents the maximum theoretical memory size; a computer
with N address bits does not necessarily come equipped with 2N memory cells. It
simply means that its memory can be expanded to 2N. Figure 5.4 gives the value
of 2N for a number of values of N.

Because numbers like 65,536 (216) and 1,048,576 (220) are hard to remem-
ber, computer scientists use a convenient shorthand to refer to memory sizes
(and other values that are powers of 2). It is based on the fact that the values
210, 220, 230, 240, and 250 are quite close in magnitude to one thousand, one
million, one billion, one trillion, and one quadrillion, respectively. Therefore,
the letters K (kilo, or thousand), M (mega, or million), G (giga, or billion), T
(tera, or trillion), and P (peta, or quadrillion) are used to refer to these units.

210 5 1K ( 5 1,024) 1 KB 5 1 kilobyte
220 5 1M( 5 1,048,576) 1 MB5 1 megabyte
230 5 1G ( 5 1,073,741,824) 1 GB 5 1 gigabyte
240 5 1T ( 5 1,099,511,627,776) 1 TB 5 1 terabyte
250 5 1P ( 5 1,125,899,906,842,624) 1 PB 5 1 petabyte

Thus, a computer with a 16-bit address and 216 = 65,536 bytes of storage would
have 64 KB of memory, because 216 = 26 3 210 = 64 3 210 = 64 KB. This was a
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popular size for computers of the 1960s and early 1970s. Most computers today
contain at least 1 GB of memory, and 2-4 GB is quite common. The 32-bit
address, common in the 1980s, 1990s, and 2000s, and which supports an
address space of 232 = 4 GB, has reached its limits. Therefore, most processors
today provide 40-, 48-, or even 64-bit addresses. A 64-bit address would allow,
at least theoretically, an address space of 264 bytes, or 17 billion gigabytes!

When dealing with memory, it is important to keep in mind the distinc-
tion between an address and the contents of that address.

Address Contents

42

The address of this memory cell is 42. The content of cell 42 is the integer
value 1. As you will soon see, some instructions operate on addresses, whereas
others operate on the contents of an address. A failure to distinguish between
these two values can cause confusion about how some instructions behave.

The two basic memory operations are fetching and storing, and they can
be described formally as follows:

• value = Fetch(address)

Meaning: Fetch a copy of the contents of the memory cell with the
specified address and return those contents as the result of the opera-
tion. The original contents of the memory cell that was accessed are
unchanged. This is termed a nondestructive fetch. Given the preced-
ing diagram, the operation Fetch(42) returns the number 1. The value
1 remains in address 42.

• Store(address, value)

Meaning: Store the specified value into the memory cell specified by
address. The previous contents of the cell are lost. This is termed a
destructive store. The operation Store(42, 2) stores a 2 in cell 42,
overwriting the previous value 1.

One of the characteristics of random access memory is that the
time to carry out either a fetch or a store operation is the same for all
2N addresses. At current levels of technology, this time, called the memory
access time, is typically about 5–10 nsec (nanosecond = 1 nsec = 10–9

sec = 1 billionth of a second). Also note that fetching and storing are allowed
only to an entire cell. If we wish, for example, to modify a single bit of memory,
we first need to fetch the entire cell containing that bit, change the one bit, and
then store the entire cell. The cell is the minimum accessible unit of memory.

There is one component of the memory unit shown in Figure 5.3 that we
have not yet discussed, the memory registers. These two registers are used to
implement the fetch and store operations. Both operations require two
operands: the address of the cell being accessed, and value, either the value
stored by the store operation or the value returned by the fetch operation.

The memory unit contains two special registers whose purpose is to hold
these two operands. The Memory Address Register (MAR) holds the address
of the cell to be fetched or stored. Because the MAR must be capable of hold-
ing any address, it must be at least N bits wide, where 2N is the address space
of the computer.

1
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The Memory Data Register (MDR) contains the data value being fetched or
stored. We might be tempted to say that the MDR should be W bits wide, where
W is the cell size. However, as mentioned earlier, on most computers the cell size
is only 8 bits, and most data values occupy multiple cells. Thus the size of the
MDR is usually a multiple of 8. Typical values of MDR width are 32 and 64 bits,
which would allow us to fetch, in a single step, either an integer or a real value.

Given these two registers, we can describe a little more formally what
happens during the fetch and store operations in a random access memory.

• Fetch(address)

1. Load the address into the MAR.

2. Decode the address in the MAR.

3. Copy the contents of that memory location into the MDR.

• Store(address, value)

1. Load the address into the MAR.

2. Load the value into the MDR.

3. Decode the address in the MAR.

4. Store the contents of the MDR into that memory location.

For example, to retrieve the contents of cell 123, we would load the value
123 (in binary, of course) into the MAR and perform a fetch operation. When
the operation is done, a copy of the contents of cell 123 would be in the MDR.
To store the value 98 into cell 4, we load a 4 into the MAR and a 98 into the
MDR and perform a store. When the operation is completed the contents of
cell 4 will have been set to 98, discarding whatever was there previously.

The operation “Decode the address in the MAR” means that the memory unit
must translate the N-bit address stored in the MAR into the set of signals needed
to access that one specific memory cell. That is, the memory unit must be able to
convert the integer value 4 in the MAR into the electronic signals needed to access
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When we talk about volumes of information such as
megabytes, gigabytes, and terabytes, it is hard to fathom
exactly what those massive numbers mean. Here are some
rough approximations (say, to within an order of magni-
tude) of how much textual information corresponds to
each of the storage quantities just introduced, as well as
the next few on the scale.

Quantity Base-10 Amount of 
In Bytes Value Textual Information

1 byte 100 One character

1 kilobyte 103 One typed page

1 megabyte 106 Two or three novels

1 gigabyte 109 A departmental library or a

large personal library

1 terabyte 1012 The library of a major acade-

mic research  university

1 petabyte 1015 All printed material in all

libraries in North America

1 exabyte 1018 All words ever printed

throughout human history

1 zettabyte 1021 —

1 yottabyte 1024 —    

Powers of 10



only address 4 from all 2N addresses in the memory unit. This may seem like
magic, but it is actually a relatively easy task that applies ideas presented in the
previous chapter. We can decode the address in the MAR using a decoder circuit
of the type described in Section 4.5 and shown in Figure 4.29. (Remember that a
decoder circuit has N inputs and 2N outputs numbered 0, 1, 2, . . . , 2N – 1. The cir-
cuit puts the signal 1 on the output line whose number equals the numeric value
on the N input lines.) We simply copy the N bits in the MAR to the N input lines
of a decoder circuit. Exactly one of its 2N output lines is ON, and this line’s identi-
fication number corresponds to the address value in the MAR.

For example, if N = 4 (the MAR contains 4 bits), then we have 16 address-
able cells in our memory, numbered 0000 to 1111 (that is, 0 to 15). We could use
a 4-to-16 decoder whose inputs are the 4 bits of the MAR. Each of the 16 output
lines is associated with the one memory cell whose address is in the MAR, and
enables us to fetch or store its contents. This situation is shown in Figure 5.5.

If the MAR contains the 4-bit address 0010 (decimal 2), then only the
output line labeled 0010 in Figure 5.5 is ON (that is, carries a value of 1). All
others are OFF. The output line 0010 is associated with the unique memory cell
that has memory address 2, and the appearance of an ON signal on this line
causes the memory hardware to copy the contents of location 2 to the MDR if it
is doing a fetch, or to load its contents from the MDR if it is doing a store.

The only problem with the memory organization shown in Figure 5.5 is
that it does not scale very well. That is, it cannot be used to build a large
memory unit. In modern computers a typical value for N, the number of bits
used to represent an address, is 32. A decoder circuit with 32 input lines
would have 232, or more than 4 billion, output lines.

To solve this problem, memories are physically organized into a two-
dimensional rather than a one-dimensional organization. In this structure,
the 16-byte memory of Figure 5.5 would be organized into a two-dimensional
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4 3 4 structure, rather than the one-dimensional 16 3 1 organization shown
earlier. This two-dimensional layout is shown in Figure 5.6.

The memory locations are stored in row major order, with bytes 0–3 in row
0, bytes 4–7 in row 1 (01 in binary), bytes 8–11 in row 2 (10 in binary), and bytes
12–15 in row 3 (11 in binary). Each memory cell is connected to two selection
lines, one called the row selection line and the other called the column selec-
tion line. When we send a signal down a single row selection line and a single
column selection line, only the memory cell located at the intersection of these
two selection lines carries out a memory fetch or a memory store operation.

How do we choose the correct row and column selection lines to access the
proper memory cell? Instead of using one decoder circuit, we use two. The first
two binary digits of the addresses in Figure 5.6 are identical to the row number.
Similarly, the last two binary digits of the addresses are identical to the column
number. Thus, we should no longer view the MAR as being composed of a single
4-bit address, but as a 4-bit address made up of two distinct parts—the
leftmost 2 bits, which specify the number of the row containing this cell, and
the rightmost 2 bits, which specify the number of the column containing this
cell. Each of these 2-bit fields is input to a separate decoder circuit that pulses
the correct row and column lines to access the desired memory cell.

For example, if the MAR contains the 4-bit value 1101 (a decimal 13),
then the two high-order (leftmost) bits 11 are sent to the row decoder,
whereas the two low-order (rightmost) bits 01 are sent to the column
decoder. The row decoder sends a signal on the line labeled 11 (row 3), and
the column decoder sends a signal on the line labeled 01 (column 1). Only the
single memory cell in row 3, column 1 becomes active and performs the fetch
or store operation. Figure 5.6 shows that the memory cell in row 3, column 1
is the correct one—the cell with memory address 1101.
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The two-dimensional organization of Figure 5.6 is far superior to the
one-dimensional structure in Figure 5.5, because it can accommodate a
much larger number of cells. For example, a memory unit containing 256 MB
(228 bytes) is organized into a 16,384 3 16,384 two-dimensional array. To
select any one row or column requires a decoder with 14 input lines (214 =
16,384) and 16,384 output lines. This is a large number of output lines, but
it is certainly more feasible to build two 14-to-16,384 decoders than a single
28-to-256 million decoder required for a one-dimensional organization. If
necessary, we can go to a three-dimensional memory organization, in which
the address is broken up into three parts and sent to three separate
decoders.

To control whether memory does a fetch or a store operation, our
memory unit needs one additional device called a fetch/store controller.
This unit determines whether we put the contents of a memory cell into
the MDR (a fetch operation) or put the contents of the MDR into a memory
cell (a store operation). The fetch/store controller is like a traffic officer
controlling the direction in which traffic can flow on a two-way street.
This memory controller must determine in which direction information
flows on the two-way link connecting memory and the MDR. In order to
know what to do, this controller receives a signal telling it whether it is to
perform a fetch operation (an F signal) or a store operation (an S signal).
On the basis of the value of that signal, the controller causes information
to flow in the proper direction and the correct memory operation to take
place.

A complete model of the organization of a typical random access memory
in a Von Neumann architecture is shown in Figure 5.7.

Let’s complete this discussion by considering how complex it would be to
study the memory unit of Figure 5.7, not at the abstraction level presented in
that diagram, but at the gate and circuit level presented in Chapter 4. Let’s
assume that our memory unit contains 230 cells (1 GB), each byte containing
8 bits. There is a total of about 8 billion bits of storage in this memory unit.
A typical memory circuit used to store a single bit generally requires about 3
gates (1 AND, 1 OR, and 1 NOT) containing 7 transistors (3 per AND, 3 per OR,
and 1 per NOT). Thus, our 1 GB memory unit (which is actually quite modest
by today’s standards) would contain roughly 24 billion gates and 56 billion
transistors, and this does not even include the circuitry required to construct
the decoder circuits, the controller, and the MAR and MDR registers! These
numbers should help you appreciate the power and advantages of abstrac-
tion. Without it, studying a memory unit like the one in Figure 5.7 is a much
more formidable task.

CACHE MEMORY. When Von Neumann created his idealized model of a
computer, he described only a single type of memory. Whenever the
computer needed an instruction or a piece of data, Von Neumann
simply assumed it would get it from RAM using the fetch operation just
described. However, as computers became faster, designers noticed that,
more and more, the processor was sitting idle waiting for data or instruc-
tions to arrive. Processors were executing instructions so quickly that
memory access was becoming a bottleneck. (It is hard to believe that a
memory that can fetch a piece of data in a few billionths of a second can
slow anything down, but it does.) As the following graph shows, during
the period from 1980 to 2000, processors increased in performance by a
factor of about 3,000, whereas memories became faster by a factor of only
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about 10.1 This led to a huge imbalance between the capabilities of the
processor and the capabilities of memory.

To solve this problem, designers needed to decrease memory access time
to make it comparable with the time needed to carry out an instruction. It is
possible to build extremely fast memory, but it is also quite expensive, and
providing a few billion bytes or so of ultra–high-speed memory would make a
computer prohibitively expensive.
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However, computer designers discovered that it is not necessary to con-
struct all of memory from expensive, high-speed cells to obtain a significant
increase in speed. They observed that when a program fetches a piece of data
or an instruction, there is a high likelihood that

1. It will access that same instruction or piece of data in the very near future.

2. It will likely access the instructions or data that are located near that
piece of data, where “near” means an address whose numerical value is
close to this one.

Simply stated, this observation, called the Principle of Locality, says
that when the computer uses something, it will probably use it again very
soon, and it will probably use the “neighbors” of this item very soon. (Think
about a loop in an algorithm that keeps repeating the same instruction
sequence over and over.) To exploit this observation, the first time that the
computer references a piece of data, it should move that data from regular
RAM memory to a special, high-speed memory unit called cache memory
(pronounced “cash,” from the French word cacher, meaning “to hide”). It
should also move the memory cells located near this item into the cache.
A cache is typically 5 to 10 times faster than RAM but much smaller—on the
order of a few megabytes rather than a few gigabytes. This limited size is not
a problem because the computer does not keep all of the data there, just
those items that were accessed most recently and that, presumably, will be
needed again immediately. The organization of the “two-level memory
hierarchy” is as follows:
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When the computer needs a piece of information, it does not immediately do
the memory fetch operation described earlier. Instead, it carries out the fol-
lowing three steps:

1. Look first in cache memory to see whether the information is there. If
it is, then the computer can access it at the higher speed of the cache.

2. If the desired information is not in the cache, then access it from RAM
at the slower speed, using the fetch operation described earlier.

3. Copy the data just fetched into the cache along with the k immediately
following memory locations. If the cache is full, then discard some of
the older items that have not recently been accessed. (The assumption
is that we will not need them again for a while.)

This algorithm significantly reduces the average time to access information.
For example, assume that the average access time of our RAM is 10 nsec, whereas
the average access time of the cache is 2 nsec. Furthermore, assume that the
information we need is in the cache 70% of the time, a value called the cache hit
rate. In this situation, 70% of the time we get what we need in 2 nsec, and
30% of the time we have wasted that 2 nsec because the information is not in the
cache and must be obtained from RAM, which will take 10 nsec. Our overall aver-
age access time will now be

Average access time = (0.70 3 2) + 0.30 3 (2 + 10) = 5.0 nsec

which is a 50% reduction in access time from the original value of 10 nsec. A
higher cache hit rate can lead to even greater savings.

A good analogy to cache memory is a home refrigerator. Without one we
would have to go to the grocery store every time we needed an item; this corre-
sponds to slow, regular memory access. Instead, when we go to the store we buy
not only what we need now but also what we think we will need in the near
future, and we put those items into our refrigerator. Now, when we need some-
thing, we first check the refrigerator. If it is there, we can get it at a much
higher rate of speed. We only need to go to the store when the food item we
want is not there.

Caches are found on every modern computer system, and they are a sig-
nificant contributor to the higher computational speeds achieved by new
machines. Even though the formal Von Neumann model contained only a sin-
gle memory unit, most computers built today have a multilevel hierarchy of
random access memory.
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Assume that our memory unit is organized as a 1,024 3 1,024 two-
dimensional array.

1. How big does the MAR register have to be?

2. How many bits of the MAR must be sent to the row decoder? To the
column decoder?

PRACTICE PROBLEMS



5.2.2 Input/Output and Mass Storage

The input/output (I/O) units are the devices that allow a computer system to
communicate and interact with the outside world as well as store information. The
random access memory described in the previous section is volatile memory—
the information disappears when the power is turned off. Without some type of
long-term, nonvolatile archival storage, information could not be saved between
shutdowns of the machine. Nonvolatile storage is the role of mass storage
devices such as disks and tapes.

Of all the components of a Von Neumann machine, the I/O and mass storage
subsystems are the most ad hoc and the most variable. Unlike the memory unit,
I/O does not adhere to a single well-defined theoretical model. On the contrary,
there are dozens of different I/O and mass storage devices manufactured by
dozens of different companies and exhibiting many alternative organizations,
making generalizations difficult. However, two important principles transcend
the device-specific characteristics of particular vendors—I/O access methods
and I/O controllers.

Input/output devices come in two basic types: those that represent
information in human-readable form for human consumption, and those that
store information in machine-readable form for access by a computer system. The
former includes such well-known I/O devices as keyboards, screens, and printers.
The latter group of devices, usually referred to as mass storage systems,
includes floppy disks, flash memory, hard disks, CDs, DVDs, and streaming tapes.
Mass storage devices themselves come in two distinct forms, direct access
storage devices (DASDs) and sequential access storage devices (SASDs).

Our discussion on random access memory in Section 5.2.1 described the
fundamental characteristics of random access:

1. Every memory cell has a unique address.

2. It takes the same amount of time to access every cell.

A direct access storage device is one in which requirement number 2, equal
access time, has been eliminated. That is, in a direct access storage device,
every unit of information still has a unique address, but the time needed to
access that information depends on its physical location and the current state
of the device.

The best examples of DASDs are the types of disks listed earlier: hard
disks, floppy disks, CDs, DVDs, and so on. A disk stores information in units
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3. If the average access time of this memory is 25 nsec and the average
access time for cache memory is 10 nsec, what is the overall average
access time if our cache hit rate is 80%?

4. In the previous problem, what would the cache hit rate have to be
to reduce the average access time to 12.0 nsec?

5. Do you think that human memory is or is not a random access
memory?  Give an argument why or why not.



called sectors, each of which contains an address and a data block containing
a fixed number of bytes:

A fixed number of these sectors are placed in a concentric circle on the surface
of the disk, called a track:

Finally, the surface of the disk contains many tracks, and there is a single
read/write head that can be moved in or out to be positioned over any track
on the disk surface. The entire disk rotates at high speed under the read/write
head. The overall organization of a typical disk is shown in Figure 5.8.
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The access time to any individual sector of the disk is made up of three com-
ponents: seek time, latency, and transfer time. Seek time is the time needed to
position the read/write head over the correct track; latency is the time for the
beginning of the desired sector to rotate under the read/write head; and
transfer time is the time for the entire sector to pass under the read/write head
and have its contents read into or written from memory. These values depend on
the specific sector being accessed and the current position of the read/write
head. Let’s assume a disk drive with the following physical characteristics:

Rotation speed = 7,200 rev/min = 120 rev/sec = 8.33 msec/rev 
(1 msec = 0.001 sec)

Arm movement time = 0.02 msec to move to an adjacent track (i.e.,
moving from track i to either track i+1 or i-1)

Number of tracks/surface = 1,000 (numbered 0 to 999)

Number of sectors/track = 64

Number of bytes/sector = 1,024

The access time for this disk can be determined as follows.

1. Seek Time Best case  = 0 msec (no arm movement)

Worst case = 999 3 0.02 = 19.98 msec (move from track
0 to track 999)

Average case = 300 3 0.02 = 6 msec (assume that on aver-
age, the read/write head must move about 300 tracks)

2. Latency Best case = 0 msec (sector is just about to come under
the read/write head)

Worst case = 8.33 msec (we just missed the sector and
must wait one full revolution)

Average case = 4.17 msec (one-half a revolution)

3. Transfer 1/64 3 8.33 msec = 0.13 msec (the time for one sector,
or 1/64th of a track, to pass under the read/write head;
this time will be the same for all sectors)

The following table summarizes these access time computations (all values are
in milliseconds).

BEST WORST AVERAGE

Seek Time 0 19.98 6
Latency 0 8.33 4.17
Transfer 0.13 0.13 0.13
Total 0.13 28.44 10.3

The best-case time and the worst-case time to fetch or store a sector on the
disk differ by a factor of more than 200, that is, 0.13 msec versus 28.44 msec.
The average access time is about 10 msec, a typical value for current disk drive
technology. This table clearly demonstrates the fundamental characteristic of all
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direct access storage devices, not just disks: They enable us to specify the
address of the desired unit of data and go directly to that data item, but they
cannot provide a uniform access time. Today, there is an enormous range of
direct access storage devices in the marketplace, from small flash memory sticks
that hold a few gigabytes, to hard disks, CDs, and DVDs that can store hundreds
of gigabytes, to massive online storage devices that are capable of recording and
accessing terabytes or even petabytes of data. (See the “Powers of Ten” box
feature in this chapter for a definition of the metric prefix peta-).

The second type of mass storage device uses the old access technique
called sequential access. A sequential access storage device (SASD) does not
require that all units of data be identifiable via unique addresses. To find any
given data item, we must search all data sequentially, repeatedly asking the
question, “Is this what I’m looking for?” If not, we move on to the next unit
of data and ask the question again. Eventually we find what we are looking for
or come to the end of the data.

A sequential access storage device behaves just like the old audio cassette
tapes of the 1980s and 1990s. To locate a specific song, we run the tape for a
while and then stop and listen. This process is repeated until we find the
desired song or come to the end of the tape. In contrast, a direct access stor-
age device behaves like a CD or DVD that numbers all the songs and allows you
to select any one. (The song number is the address.) Direct access storage
devices are generally much faster at accessing individual pieces of informa-
tion, and that is why they are much more widely used for mass storage. How-
ever, sequential access storage devices can be useful in specific situations,
such as sequentially copying the entire contents of memory or of a disk drive.
This backup operation fits the SASD model well, and streaming tape backup
units are common storage devices on computer systems.

One of the fundamental characteristics of many (though not all) I/O
devices is that they are very, very slow when compared to other components of
a computer. For example, a typical memory access time is about 10 nsec. The
time to complete the I/O operation “locate and read one disk sector” was
shown in the previous example to be about 10 msec.

Units such as nsec (billionths of a second), μsec (millionths of a second),
and msec (thousandths of a second) are so small compared to human time
scales that it is sometimes difficult to appreciate the immense difference
between values like 10 nsec and 10 msec. The difference between these two
quantities is a factor of 1,000,000, that is, 6 orders of magnitude. Consider that
this is the same order of magnitude difference as between 1 mile and 40 com-
plete revolutions of the earth’s equator, or between 1 day and 30 centuries!

It is not uncommon for I/O operations such as displaying an image on a
monitor or printing a page on a printer to be 3, 4, 5, or even 6 orders of mag-
nitude slower than any other aspect of computer operation. If there isn’t
something in the design of a computer to account for this difference, compo-
nents that operate on totally incompatible time scales will be trying to talk to
each other, which will produce enormous inefficiencies. The high-speed com-
ponents will sit idle for long stretches of time while they wait for the slow I/O
unit to accept or deliver the desired character. It would be like talking at the
normal human rate of 240 words/min (4 words/sec) to someone who could
respond only at the rate of 1 word every 8 hours—a difference of 5 orders of
magnitude. You wouldn’t get much useful work done!

The solution to this problem is to use a device called an I/O controller. An
I/O controller is like a special-purpose computer whose responsibility is to
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handle the details of input/output and to compensate for any speed
differences between I/O devices and other parts of the computer. It has a small
amount of memory, called an I/O buffer, and enough I/O control and logic
processing capability to handle the mechanical functions of the I/O device,
such as the read/write head, paper feed mechanism, and screen display. It is
also able to transmit to the processor a special hardware signal, called an
interrupt signal, when an I/O operation is done. The organization of a typical
I/O controller is shown in Figure 5.9.

Let’s assume that we want to display one line (80 characters) of text on a
screen. First the 80 characters are transferred from their current location in
memory to the I/O buffer storage within the I/O controller. This operation
takes place at the high-speed data transfer rates of most computer
components—hundreds of millions of characters per second. Once this infor-
mation is in the I/O buffer, the processor can instruct the I/O controller to
begin the output operation. The control logic of the I/O controller handles the
actual transfer and display of these 80 characters to the screen. This transfer
may be at a much slower rate—perhaps only hundreds or thousands of char-
acters per second. However, the processor does not sit idle during this output
operation. It is free to do something else, perhaps work on another program.
The slowness of the I/O operation now affects only the I/O controller. When
all 80 characters have been displayed, the I/O controller sends an interrupt
signal to the processor. The appearance of this special signal indicates to the
processor that the I/O operation is finished.
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5.2.3 The Arithmetic/Logic Unit

The arithmetic/logic unit (referred to by the abbreviation ALU) is the subsys-
tem that performs such mathematical and logical operations as addition, sub-
traction, and comparison for equality. Although they can be conceptually viewed
as separate components, in all modern machines the ALU and the control unit
(discussed in the next section) have become fully integrated into a single com-
ponent called the processor. However, for reasons of clarity and convenience, we
will describe the functions of the ALU and the control unit separately.

The ALU is made up of three parts: the registers, the interconnections
between components, and the ALU circuitry. Together these components are
called the data path.

A register is a storage cell that holds the operands of an arithmetic oper-
ation and that, when the operation is complete, holds its result. Registers are
quite similar to the random access memory cells described in the previous sec-
tion, with the following minor differences:

• They do not have a numeric memory address but are accessed by a spe-
cial register designator such as A, X, or R0.

• They can be accessed much more quickly than regular memory cells.
Because there are few registers (typically, a few dozen up to a hun-
dred), it is reasonable to utilize the expensive circuitry needed to
make the fetch and store operations 5 to 10 times faster than regular
memory cells, of which there will be hundreds of millions or billions.

• They are not used for general-purpose storage but for specific purposes
such as holding the operands for an upcoming arithmetic computation.
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Assume a disk with the following characteristics:
Number of sectors per track = 20
Number of tracks per surface = 50
Number of surfaces = 2 (called a double-sided disk)
Number of characters per sector = 1,024
Arm movement time = 0.4 msec to move 1 track in any direction
Rotation speed = 2,400 rev/min

1. How many characters can be stored on this disk?

2. What are the best-case, worst-case, and average-case access times
for this disk? (Assume that the average seek operation must move
20 tracks.)

3. What would be the average case access time if we could increase the
rotation speed from 2,400 rev/min to 7,200 rev/min?

4. Defragmenting a disk means to reorganize files on the disk so that
as many pieces of the file as possible are stored in sectors on the
same track, regardless of the surface it is on. Explain why defrag-
mentation can be beneficial.  

PRACTICE PROBLEMS



For example, an ALU might have three special registers called A, B, and C.
Registers A and B hold the two input operands, and register C holds the result.
This organization is diagrammed in Figure 5.10.

In most cases, however, three registers are not nearly enough to hold all
the values that we might need. A typical ALU has 16, 32, or 64 registers. To
see why this many ALU registers are needed, let’s take a look at what happens
during the evaluation of the expression (a / b) 3 (c – d). After we compute
the expression (a / b), it would be nice to keep this result temporarily in a
high-speed ALU register while evaluating the second expression (c – d). Of
course, we could always store the result of (a / b) in a memory cell, but keep-
ing it in a register allows the computer to fetch it more quickly when it is
ready to complete the computation. In general, the more registers available in
the ALU, the faster programs run.

A more typical ALU organization is illustrated in Figure 5.11, which shows an
ALU data path containing 16 registers designated R0 to R15. Any of the 16 ALU
registers in Figure 5.11 could be used to hold the operands of the computation,
and any register could be used to store the result.

To perform an arithmetic operation with the ALU of Figure 5.11, we first
move the operands from memory to the ALU registers. Then we specify which
register holds the left operand by connecting that register to the communica-
tion path called “Left.” In computer science terminology, a path for electrical
signals (think of this as a wire) is termed a bus. We then specify which regis-
ter to use for the right operand by connecting it to the bus labeled “Right.”
(Like RAM, registers also use nondestructive fetch so that when it is needed,
the value is only copied to the ALU. It is still in the register.) The ALU is
enabled to perform the desired operation, and the answer is sent to any of the
16 registers along the bus labeled “Result.” (The destructive store principle
says that the previous contents of the destination register will be lost.) The
result can be moved from an ALU register back into memory for longer-term
storage.
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The final component of the ALU is the ALU circuitry itself. These are the
circuits that carry out such operations as

a + b (Figure 4.27)

a = b (Figure 4.23)

a – b

a 3 b

a / b

a < b

a > b

a AND b

Chapter 4 showed how circuits for these operations can be constructed from
the three basic logic gates AND, OR, and NOT, and it showed the construction of
logic circuits to perform the operations a + b and a = b. The primary issue now
is how to select the desired operation from among all the possibilities for a
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given ALU. For example, how do we tell an ALU that can perform the preceding
eight operations that we want only the results of one operation, say a – b?

One possibility is to use the multiplexor control circuit introduced in 
Chapter 4 and shown in Figure 4.28. Remember that a multiplexor is a circuit with
2N input lines numbered 0 to 2N – 1, N selector lines, and 1 output line. The selec-
tor lines are interpreted as a single binary number from 0 to 2N – 1, and the input
line corresponding to this number has its value placed on the single output line.

Let’s imagine for simplicity that we have an ALU that can perform four func-
tions instead of eight. The four functions are a + b, a – b, a = b, and a AND b, and
these operations are numbered 0, 1, 2, and 3, respectively (00, 01, 10, and 11 in
binary). Finally, let’s assume that every time the ALU is enabled and given values
for a and b, it automatically performs all four possible operations rather than just
the desired one. These four outputs can be input to a multiplexor circuit, as
shown in Figure 5.12.

Now place on the selector lines the identification number of the operation
whose output we want to keep. The result of the desired operation appears on
the output line, and the other three answers are discarded. For example, to
select the output of the subtraction operation, we input the binary value 01
(decimal 1) on the selector lines. This places the output of the subtraction cir-
cuit on the output line of the multiplexor. The outputs of the addition, com-
parison, and AND circuits are discarded.

Thus, the design philosophy behind an ALU is not to have it perform only
the correct operation. Instead, it is to have every ALU circuit “do its thing”
but then keep only the one desired answer.

Putting Figures 5.11 and 5.12 together produces the overall organization of
the ALU of the Von Neumann architecture. This model is shown in Figure 5.13.
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5.2.4 The Control Unit
The most fundamental characteristic of the Von Neumann architecture is the
stored program—a sequence of machine language instructions stored as
binary values in memory. It is the task of the control unit to (1) fetch from
memory the next instruction to be executed, (2) decode it—that is, deter-
mine what is to be done, and (3) execute it by issuing the appropriate com-
mand to the ALU, memory, or I/O controllers. These three steps are repeated
over and over until we reach the last instruction in the program, typically
something called HALT, STOP, or QUIT.

To understand the behavior of the control unit, we must first investigate
the characteristics of machine language instructions.
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MACHINE LANGUAGE INSTRUCTIONS. The instructions that can be
decoded and executed by the control unit of a computer are represented in
machine language. Instructions in this language are expressed in binary, and
a typical format is shown in Figure 5.14.

The operation code field (referred to by the shorthand phrase op code) is
a unique unsigned integer code assigned to each machine language operation
recognized by the hardware. For example, 0 could be an ADD, 1 could be a
COMPARE, and so on. If the operation code field contains k bits, then the max-
imum number of machine language operation codes is 2k.

The address field(s) are the memory addresses of the values on which this
operation will work. If our computer has a maximum of 2N memory cells, then
each address field must be N bits wide to enable us to address every cell, because
it takes N binary digits to represent all addresses in the range 0 to 2N – 1. The
number of address fields in an instruction typically ranges from 0 to about 3,
depending on what the operation is and how many operands it needs to do its
work. For example, an instruction to add the contents of memory cell X to mem-
ory cell Y requires at least two addresses, X and Y. It could require three if the
result were stored in a location different from either operand. In contrast, an
instruction that tests the contents of memory cell X to see whether it is nega-
tive needs only a single address field, the location of cell X.

To see what this might produce in terms of machine language instruc-
tions, let’s see what the following hypothetical instruction would actually
look like when stored in memory.

OPERATION MEANING

ADD X, Y Add contents of addresses X and Y and put the sum back into Y

Let’s assume that the op code for ADD is a decimal 9, X and Y correspond to
memory addresses 99 and 100 (decimal), and the format of instructions is

A decimal 9, in 8-bit binary, is 00001001. Address 99, when converted to an
unsigned 16-bit binary value, is 0000000001100011. Address 100 is 1 greater:
0000000001100100. Putting these values together produces the instruction
ADD X, Y as it would appear in memory:

00001001 0000000001100011 0000000001100100

op code address 1 address 2

Somewhat cryptic to a person, but easily understood by a control unit.
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Instruction Format

FIGURE 5.14
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The set of all operations that can be executed by a processor is called its
instruction set, and the choice of exactly what operations to include or
exclude from the instruction set is one of the most important and difficult
decisions in the design of a new computer. There is no universal agreement on
this issue, and the instruction sets of processors from different vendors
may be completely different. This is one reason why a computer that uses a
Macintosh Power Mac G5 processor cannot directly execute programs written
for a system that contains an Intel Pentium 4 Dual Core. The operation codes
and address fields that these two processors recognize are different and
completely incompatible.

The machine language operations on most machines are quite elementary,
and each operation typically performs a very simple task. The power of a
processor comes not from the sophistication of the operations in its instruc-
tion set, but from the fact that it can execute each instruction very quickly,
typically in a few billionths of a second.

One approach to designing instruction sets is to make them as small and
as simple as possible, with as few as 30–50 instructions. Machines with this
sort of instruction set are called reduced instruction set computers or RISC
machines. This approach minimizes the amount of hardware circuitry (gates
and transistors) needed to build a processor. The extra space on the chip
can be used to optimize the speed of the instructions and allow them to
execute very quickly. A RISC processor may require more instructions to
solve a problem (because the instructions are so simple), but this is compen-
sated for by the fact that each instruction runs much faster so the overall
running time is less. The opposite philosophy is to include a much larger
number, say 300–500, of very powerful instructions in the instruction set.
These types of processors are called complex instruction set computers, or
CISC machines, and they are designed to directly provide a wide range of
powerful features so that finished programs for these processors are shorter.
Of course, CISC machines are more complex, more expensive, and more diffi-
cult to build. As is often the case in life, it turns out that compromise is the
best path—most modern processors use a mix of the two design philosophies.

A little later in this chapter we will present an instruction set for a hypo-
thetical computer to examine how machine language instructions are
executed by a control unit. For clarity, we will not show these instructions
in binary, as we did earlier. Instead, we will write out the operation code in
English (for example, ADD, COMPARE, MOVE), use the capital letters X, Y, and
Z to symbolically represent binary memory addresses, and use the letter R to
represent an ALU register. Remember, however, that this notation is just for
convenience. All machine language instructions are stored internally using
binary representation.

Machine language instructions can be grouped into four basic classes
called data transfer, arithmetic, compare, and branch.

1. Data Transfer These operations move information between or within
the different components of the computer—for example:

Memory cell S ALU register

ALU register S memory cell

One memory cell S another memory cell

One ALU register S another ALU register
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All data transfer instructions follow the nondestructive fetch/destruc-
tive store principle described earlier. That is, the contents of the
source cell (where it is now) are never destroyed, only copied. The
contents of the destination cell (where it is going) are overwritten,
and its previous contents are lost.

Examples of data transfer operations include
OPERATION MEANING

LOAD X Load register R with the contents of memory cell X.
STORE X Store the contents of register R into memory cell X.
MOVE X,Y Copy the contents of memory cell X into memory cell Y.

2. Arithmetic These operations cause the arithmetic/logic unit to per-
form a computation. Typically, they include arithmetic operations like
+ , –, 3, and /, as well as logical operations such as AND, OR, and NOT.
Depending on the instruction set, the operands may reside in memory
or they may be in an ALU register.

Possible formats for arithmetic operations include the following
examples. (Note: The notation CON(X) means the contents of memory
address X.)
OPERATION MEANING

ADD X,Y, Z Add the contents of memory cell X to the contents of memory
cell Y and put the result into memory cell Z. This is called a
three-address instruction, and it performs the operation CON(Z)
= CON(X) + CON(Y)

ADD X,Y Add the contents of memory cell X to the contents of memory
cell Y. Put the result back into memory cell Y. This is called a
two-address instruction, and it performs the operation CON(Y) =
CON(X) + CON(Y)

ADD X Add the contents of memory cell X to the contents of register R.
Put the result back into register R. This is called a one-address
instruction, and it performs the operation R = CON(X) + R. (Of
course, R must be loaded with the proper value before execut-
ing the instruction.)

Other arithmetic operations such as SUBTRACT, MULTIPLY, DIVIDE,
AND, and OR would be structured in a similar fashion.

3. Compare These operations compare two values and set an indicator on
the basis of the results of the compare. Most Von Neumann machines
have a special set of bits inside the processor called condition codes
(or a special register called a status register or condition register);
these bits are set by the compare operations. For example, assume there
are three 1-bit condition codes called GT, EQ, and LT that stand for
greater than, equal to, and less than, respectively. The operation 
OPERATION MEANING

COMPARE X,Y Compare the contents of memory cell X to the contents of
memory cell Y and set the condition codes accordingly.

would set these three condition codes in the following way:
CONDITION HOW THE CONDITION CODES ARE SET

CON (X) > CON (Y) GT = 1 EQ = 0 LT = 0
CON (X) = CON (Y) GT = 0 EQ = 1 LT = 0
CON (X) < CON (Y) GT = 0 EQ = 0 LT = 1
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4. Branch These operations alter the normal sequential flow of control.
The normal mode of operation of a Von Neumann machine is sequential.
After completing the instruction in address i, the control unit executes
the instruction in address i + 1. (Note: If each instruction occupies
k memory cells rather than 1, then after finishing the instruction start-
ing in address i, the control unit executes the instruction starting in
address i + k. In the following discussions, we assume for simplicity that
each instruction occupies one memory cell.) The branch instructions
disrupt this sequential mode.

Typically, determining whether to branch is based on the current
settings of the condition codes. Thus, a branch instruction is almost
always preceded by either a compare instruction or some other instruc-
tion that sets the condition codes. Typical branch instructions include

OPERATION MEANING

JUMP X Take the next instruction unconditionally from memory cell X.
JUMPGT X If the GT indicator is a 1, take the next instruction from memory

cell X. Otherwise, take the next instruction from the next
sequential location.

(JUMPEQ and JUMPLT would work similarly on the other two condition codes.)
JUMPGE X If either the GT or the EQ indicator is a 1, take the next instruc-

tion from memory location X. Otherwise, take the next instruc-
tion from the next sequential location.

(JUMPLE and JUMPNEQ would work in a similar fashion.)
HALT Stop program execution. Don’t go on to the next instruction.

These are some of the typical instructions that a Von Neumann computer
can decode and execute. The second challenge question at the end of this
chapter asks you to investigate the instruction set of a real processor found
inside a modern computer and compare it with what we have described here.

The instructions presented here are quite simple and easy to understand.
The power of a Von Neumann computer comes not from having thousands of
complex built-in instructions but from the ability to combine a great number
of simple instructions into large, complex programs that can be executed
extremely quickly. Figure 5.15 shows examples of how these simple machine
language instructions can be combined to carry out some of the high-level
algorithmic operations first introduced in Level 1 and shown in Figure 2.9.
(The examples assume that the variables a, b, and c are stored in memory loca-
tions 100, 101, and 102, respectively, and that the instructions occupy one
cell each and are located in memory locations 50, 51, 52, . . . .)

Don’t worry if these “mini-programs” are a little confusing. We treat the
topic of machine language programming in more detail in the next chapter. For
now, we simply want you to know what machine language instructions look
like so that we can see how to build a control unit to carry out their functions.
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Assume that the variables a, b, c, and d are stored in memory locations
100, 101, 102, and 103, respectively. Using any of the sample machine
language instructions given in this section, translate the following
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CONTROL UNIT REGISTERS AND CIRCUITS. It is the task of the control
unit to fetch and execute instructions of the type shown in Figures 5.14 and
5.15. To accomplish this task, the control unit relies on two special registers
called the program counter (PC) and the instruction register (IR) and on
an instruction decoder circuit. The organization of these three components
is shown in Figure 5.16.

The program counter holds the address of the next instruction to be exe-
cuted. It is like a “pointer” specifying which address in memory the control
unit must go to in order to get the next instruction. To get that instruction,
the control unit sends the contents of the PC to the MAR in memory and exe-
cutes the Fetch(address) operation described in Section 5.2.1. For example, if
the PC holds the value 73 (in binary, of course), then when the current
instruction is finished, the control unit sends the value 73 to the MAR and
fetches the instruction contained in cell 73. The PC gets incremented by 1
after each fetch, because the normal mode of execution in a Von Neumann
machine is sequential. (Again, we are assuming that each instruction occupies
one cell. If an instruction occupied k cells, then the PC would be incremented
by k.) Therefore, the PC frequently has its own incrementor (+1) circuit to
allow this operation to be done quickly and efficiently.

The instruction register (IR) holds a copy of the instruction fetched from
memory. The IR holds both the op code portion of the instruction, abbreviated
IRop, and the address(es), abbreviated IRaddr.

To determine what instruction is in the IR, the op code portion of the IR
must be decoded using an instruction decoder. This is the same type of
decoder circuit discussed in Section 4.5 and used in the construction of the
memory unit (Figure 5.7). The k bits of the op code field of the IR are sent
to the instruction decoder, which interprets them as a numerical value
between 0 and 2k – 1. Exactly one of the 2k output lines of the decoder is set
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pseudocode operations into machine language instruction sequences.
Have your instruction sequences begin in memory location 50.

1. Set a to the value b + c + d

2. Set a to the value (b 3 d) – (c / d)

3. If (a = b) then set c to the value of d

4. If (a # b) then

Set c to the value of d

Else

Set c to the value of 2d (that is, d + d)

5. Initialize a to the value d

While a # c

Set a to the value (a + b)

End of the loop
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Compare a and b
and set condition 
codes.
Go to location 54
if a > b.

Get here if a ≤ b,
so move b into c

and skip the next
instruction.

Move a into c.

Next statement
begins here.

50

51

52

53

54

55

Put the value of b 
into register R.

Add c to register R.
It now holds b + c.

Store the contents 
of register R into a.

1.  Set a to the value b + c 50

51

52

2.  If a > b then

      set c to the value a

    Else

      set c to the value b

Contents (Commentary)Address

Machine Language Instruction SequencesAlgorithmic notation

COMPARE 100, 101

JUMPGT 54

MOVE 101, 102

JUMP 55

MOVE 100, 102

LOAD 101

ADD 102

STORE 100

100

101

102

ContentsAddress

Value of a

Value of b

Value of c

Examples of Simple Machine
Language Instruction Sequences

FIGURE 5.15

to a 1—specifically, the output line whose identification number matches
the operation code of this instruction.

Figure 5.17 shows a decoder that accepts a 3-bit op code field and has 23 = 8
output lines, one for each of the eight possible machine language operations.
The three bits of the IRop are fed into the instruction decoder, and they are
interpreted as a value from 000 (0) to 111 (7). If the bits are, for example, 000,
then line 000 in Figure 5.17 is set to a 1. This line enables the ADD operation
because the operation code for ADD is 000. When a 1 appears on this line, the
ADD operation: (1) fetches the two operands of the add and sends them to the
ALU, (2) has the ALU perform all of its possible operations, (3) selects the output
of the adder circuit, discarding all others, and (4) moves the result of the add to
the correct location. 

If the op code bits are 001 instead, then line 001 in Figure 5.17 is set to a 1.
This time the LOAD operation is enabled, because the operation code for LOAD is



the binary value 001. Instead of performing the previous four steps, the hardware
carries out the LOAD operation by: (1) sending the value of IRaddr to the MAR in
the memory unit, (2) fetching the contents of that address and putting it in the
MDR, and (3) copying the contents of the MDR into ALU register R. 

For every one of the 2k machine language operations in our instruction
set, there exists the circuitry needed to carry out, step by step, the function
of that operation. The instruction decoder has 2k output lines, and each out-
put line enables the circuitry that performs the desired operation.
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5.3 Putting All the Pieces Together—the Von Neumann Architecture

We have now described each of the four components that make up the Von
Neumann architecture:

• Memory (Figure 5.7)

• Input/output (Figure 5.9)

• ALU (Figure 5.13)

• Control unit (Figures 5.16, 5.17)

This section puts these pieces together and shows how the entire model
functions. The overall organization of a Von Neumann computer is shown in
Figure 5.18. Although highly simplified, the structure in this diagram is quite
similar to virtually every computer ever built!

To see how the Von Neumann machine of Figure 5.18 executes instruc-
tions, let’s pick a hypothetical instruction set for our system, as shown in
Figure 5.19. We will use the same instruction set in the laboratory experience
for this chapter and again in Chapter 6 when we introduce and study assem-
bly languages. (Reminder: CON(X) means the contents of memory cell X; R
stands for an ALU register; and GT, EQ, and LT are condition codes that have
the value of 1 for ON and 0 for OFF.)

The execution of a program on the computer shown in Figure 5.18
proceeds in three distinct phases: fetch, decode, and execute. These three
steps are repeated for every instruction, and they continue until either the
computer executes a HALT instruction or there is a fatal error that prevents it
from continuing (such as an illegal op code, a nonexistent memory address,
or division by zero). Algorithmically the process can be described as follows:

While we do not have a HALT instruction or a fatal error

Fetch phase

Decode phase

Execute phase

End of the loop

This repetition of the fetch/decode/execute phase is called the Von Neumann
cycle. To describe the behavior of our computer during each of these three
phases, we will use the following notational conventions:

CON(A) The contents of memory cell A. We assume that an instruction
occupies 1 cell.

A S B Send the value stored in register A to register B. The following
abbreviations refer to the special registers and functional units of
the Von Neumann architecture introduced in this chapter:

PC The program counter

MAR The memory address register

MDR The memory data register

IR The instruction register, which is further divided
into IRop and IRaddr



220 LEVEL 2 CHAPTER 5: Computer Systems Organization

PC

Bus

+1 Instruction
decoder
circuit

IRI/O
controller

I/O device

Control
signals

ALU

R0

R1

R2

R3

Selector lines

EQGT LT

Condition code register

MAR

Fetch/Store
controller

MDR

Memory
decoder
circuits

Random access memory

F/S
signal

Memory unit Arithmetic/Logic unit Input/Output Control unit

The Organization of a 
Von Neumann Computer

FIGURE 5.18

ALU The arithmetic/logic unit

R Any ALU register

GT, EQ, LT The condition codes of the ALU

+1 A special increment unit attached to the PC

FETCH Initiate a memory fetch operation (that is, send an F signal on
the F/S control line of Figure 5.18).

STORE Initiate a memory store operation (that is, send an S signal on
the F/S control line of Figure 5.18).

ADD Instruct the ALU to select the output of the adder circuit (that
is, place the code for ADD on the ALU selector lines shown in
Figure 5.18).



SUBTRACT Instruct the ALU to select the output of the subtract circuit
(that is, place the code for SUBTRACT on the ALU selector lines
shown in Figure 5.18).

A. Fetch Phase During the fetch phase, the control unit gets the next
instruction from memory and moves it into the IR. The fetch phase is
the same for every instruction and consists of the following four steps.

1. PC S MAR Send the address in the PC to the MAR register.

2. FETCH Initiate a fetch operation using the address in
the MAR. The contents of that cell are placed in
the MDR.

3. MDR S IR Move the instruction in the MDR to the instruc-
tion register so that we are ready to decode it
during the next phase.

4. PC + 1 S PC Send the contents of the PC to the incrementor
and put it back. This points the PC to the next
instruction.

The control unit now has the current instruction in the IR and
has updated the program counter so that it will correctly fetch the next
instruction when the execution of this instruction is completed. It is
ready to begin decoding and executing the current instruction.

B. Decode Phase Decoding the instruction is simple because all that needs
to be done is to send the op code portion of the IR to the instruction
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BINARY OP CODE OPERATION MEANING

0000 LOAD X CON(X) S R
0001 STORE X R S CON(X)
0010 CLEAR X 0 S CON(X)
0011 ADD X R + CON(X) S R
0100 INCREMENT X CON(X) + 1 S CON(X)
0101 SUBTRACT X R – CON(X) S R
0110 DECREMENT X CON(X) – 1 S CON(X)
0111 COMPARE X if CON(X) > R then GT = 1 else 0

if CON(X) = R then EQ = 1 else 0
if CON(X) < R then LT = 1 else 0

1000 JUMP X Get the next instruction from memory
location X.

1001 JUMPGT X Get the next instruction from memory
location X if GT = 1.

1010 JUMPEQ X Get the next instruction from memory
location X if EQ = 1.

1011 JUMPLT X Get the next instruction from memory
location X if LT = 1.

1100 JUMPNEQ X Get the next instruction from memory
location X if EQ = 0.

1101 IN X Input an integer value from the standard
input device and store into memory cell X.

1110 OUT X Output, in decimal notation, the value
stored in memory cell X.

1111 HALT Stop program execution.

Instruction Set for Our 
Von Neumann Machine

FIGURE 5.19



decoder, which determines its type. The op code is the 4-bit binary
value in the first column of Figure 5.19.

1. IRop S instruction decoder

The instruction decoder generates the proper control signals to acti-
vate the circuitry to carry out the instruction.

C. Execution Phase The specific actions that occur during the execution
phase are different for each instruction in the instruction set. The control
unit circuitry generates the necessary sequence of control signals and
data transfer signals to the other units (ALU, memory, and I/O) to carry
out the instruction. The following examples show what signals and trans-
fers take place during the execution phase of some of the instructions in
Figure 5.19 using the Von Neumann model of Figure 5.18.

a) LOAD X  Meaning: Load register R with the current
contents of  memory cell X.

1. IRaddr S MAR Send address X (currently in IRaddr) to the MAR.

2. FETCH Fetch contents of cell X and place that value in
the MDR.

3. MDR S R Copy the contents of the MDR into register R.

b) STORE X Meaning: Store the current contents of register
R into memory cell X.

1. IRaddr S MAR Send address X (currently in IRaddr ) to the MAR.

2. R S MDR Send the contents of register R to the MDR.

3. STORE Store the value in the MDR into memory cell X.

c) ADD X Meaning: Add the contents of cell X to the
contents of  register R and put the result back
into register R.

1. IRaddr S MAR Send address X (currently in IRaddr ) to the MAR.

2. FETCH Fetch the contents of cell X and place it in the
MDR.

3. MDR S ALU Send the two operands of the ADD to the ALU.

4. R S ALU

5. ADD Activate the ALU and select the output of the
add circuit as the desired result.

6. ALU S R Copy the selected result into the R register.

d) JUMP X Meaning: Jump to the instruction located in
memory location X.

1. IRaddr S PC Send address X to the PC so the instruction stored
there is fetched during the next fetch phase.
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e) COMPARE X Meaning: Determine whether CON(X) < R, CON(X)
= R, or CON(X) > R, and set the condition codes
GT, EQ, and LT to appropriate values. (Assume all
codes are initially 0.)

1. IRaddr S MAR Send address X to the MAR.

2. FETCH Fetch the contents of cell X and place it in the MDR.

3. MDR S ALU Send the contents of address X and register R to
the ALU.

4. R S ALU

5. SUBTRACT Evaluate CON(X) – R. The result is not saved, and
is used only to set the condition codes. If CON(X)
– R > 0, then CON(X) > R and set GT to 1. If CON(X)
– R = 0, then they are equal and set EQ to 1. If
CON(X) – R < 0, then CON(X) < R and set LT to 1.

f) JUMPGT X Meaning: If GT condition code is 1, jump to the
instruction in location X.  We do this by loading
the address field of the IR, which is the address
of location X, into the PC. Otherwise, continue
to the next instruction.

1. IF GT = 1 THEN IRaddr S PC

These are six examples of the sequence of signals and transfers that occur
during the execution phase of the fetch/decode/execute cycle. There is a unique
sequence of actions for each of the 16 instructions in the sample instruction set
of Figure 5.19 and for the 50–300 instructions in the instruction set of a typical
Von Neumann computer. When the execution of one instruction is done, the con-
trol unit fetches the next instruction, starting the cycle all over again. That is
the fundamental sequential behavior of the Von Neumann architecture.

These six examples clearly illustrate the concept of abstraction at work. In
Chapter 4 we built complex arithmetic/logic circuits to do operations like addi-
tion and comparison. Using these circuits, this chapter describes a computer that
can execute machine language instructions such as ADD X and COMPARE X,Y.
A machine language instruction such as ADD X is a complicated concept, but it is
quite a bit easier to understand than the enormously detailed full adder circuit
shown in Figure 4.27, which contains 800 gates and more than 2,000 transistors.

Abstraction has allowed us to replace a complex sequence of gate-level
manipulations with the single machine language command ADD, which does
addition without our having to know how—the very essence of abstraction. Well,
why should we stop here? Machine language commands, though better than
hardware, are hardly user-friendly. (Some might even call them “user-intimidat-
ing.”) Programming in binary and writing sequences of instructions such as

010110100001111010100001

is cumbersome, confusing, and very error prone. Why not take these machine
language instructions and make them more user-oriented and user-friendly? Why
not give them features that allow us to write correct, reliable, and efficient
programs more easily? Why not develop user-oriented programming languages
designed for people, not machines? This is the next level of abstraction in our
hierarchy, and we introduce that important concept in Level 3 of the text.
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It is easy to identify the fastest car, plane, or train—just
compare their top speeds in miles/hour (or km/hr) and pick
the greatest. However, in the computer arena things are not
so simple, and there are many different measures of speed.

The unit you may be most familiar with is clock speed,
measured in either millions of cycles per second, called
megahertz (MHz) or billions of cycles per second, called giga-
hertz (GHz). The actions of every computer are controlled by
a central clock, and the “tick” rate of this clock is one possi-
ble speed measure. Processors today have clock rates of up to
5 GHz. However, clock speed can be misleading, because a
machine’s capability depends not only on the tick rate but
also on how much work it can do during each tick. If machine
A has a clock rate twice as fast as machine B, but each
instruction on machine A takes twice as many clock cycles as
machine B to complete, then there is no discernable speed
difference.

Therefore, a more accurate measure of machine speed is
instruction rate, measured in MIPS, an acronym for millions of
instructions per second. The instruction rate measures how
many machine language instructions of the type listed in Fig-
ure 5.19 (e.g., LOAD, STORE, COMPARE, ADD) can be fetched,
decoded, and executed in one second. If a computer com-

pletes one instruction for every clock cycle, then the instruc-
tion rate is identical to the clock rate. However, many
instructions require multiple clock ticks, whereas parallel
computers can often complete multiple instructions in a sin-
gle tick. Thus, MIPS is a better measure of performance
because it tells you how much work is actually being done, in
terms of completed instructions, in a given amount of time.

Finally, some people are only interested in how fast a
computer executes the subset of instructions most impor-
tant to their applications. For example, scientific programs
do an enormous amount of floating-point (i.e., decimal)
arithmetic, so the computers that execute these programs
must be able to execute arithmetic instructions as fast as
possible. For these machines, a better measure of speed
might be the floating-point instruction rate, measured in
GFLOPS—for billions of floating-point operations per sec-
ond. This is like MIPS, except the instructions we focus
most closely on are those for adding, subtracting, multi-
plying, and dividing real numbers. Modern processors can
perform at a rate of about 1-5 GFLOPS.

There is no universal measure of computer speed, and
that is what allows different computer vendors all to stand
up and claim, My machine is the fastest!

An Alphabet Soup of Speed Measures: 
MHz, GHz, MIPS, and GFLOPS

This laboratory experience introduces a software package
that simulates the behavior of a Von Neumann computer.
It will give you a chance to work with and observe the
behavior of a Von Neumann machine quite similar to
the one shown in Figure 5.18. Our simulated computer
contains the same functional units introduced in this sec-
tion, including memory, registers, arithmetic/logic unit,
and control unit, and it uses the instruction set shown in
Figure 5.19. The simulator allows you to observe the step-
by-step execution of machine language instructions and
watch the flow of information that occurs during the
fetch, decode, and execute phases. It also allows you to
write and execute your own machine language programs.
Shown here is a typical example of what you will see when
you run this laboratory.

LABORATORY
EXPERIENCE 9
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5.4 Non–Von Neumann Architectures

The Von Neumann architecture, which is the central theme of this chapter, has
served the field well for almost 60 years, but some computer scientists believe
it may be reaching the end of its useful life.

The problems that computers are being asked to solve have grown
significantly in size and complexity since the appearance of the first-generation
machines in the late 1940s and early 1950s. Designers have been able to keep up
with these larger and larger problems by building faster and faster Von Neumann
machines. Through advances in hardware design, manufacturing methods, and
circuit technology, computer designers have been able to take the basic sequen-
tial architecture described by Von Neumann in 1946 and improve its perfor-
mance by 4 or 5 orders of magnitude. First-generation machines were able to
execute about 10,000 machine language instructions per second. By the second
generation, that had grown to about 1 million instructions per second. Today,
even a small desktop PC can perform about 1 billion instructions per second,
whereas larger and more powerful workstations can execute instructions at the
rate of 2-5 billion instructions per second. Figure 5.20 shows the changes in
computer speeds from the mid-1940s to the present. 
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(Note: The graph shown in Figure 5.20 is logarithmic. Each unit on the ver-
tical axis is 10 times the previous one.) The period from about 1945 to about
1970 is characterized by exponential increases in computation speed. However,
as Figure 5.20 shows, even though computer speeds are still increasing, the rate
of improvement appears to be slowing down.

This slowdown is due to many things. One important limit on increased
processor speed is the inability to place gates any closer together on a chip.
(See the box on “Moore’s Law and the Limits of Chip Design“ in Chapter 4.)
Today’s high-density chips contain tens of billions of transistors separated by
distances of less than 0.000001 cm, and it is becoming exceedingly difficult
(not to mention expensive) to accurately place individual components closer
together. However, the time it takes to send signals between two parts of a
computer separated by a given distance is limited by the fact that electronic
signals cannot travel faster than the speed of light—299,792,458 meters per
second.  That is, when we carry out an operation such as:

PC S MAR

The signals traveling between these two registers cannot exceed 300 million
meters/sec. If, for example, these two components were separated by 1 meter,
it would take signals leaving the PC about 3 nanoseconds to reach the MAR,
and nothing in this universe can reduce that value except a reduction of the
distance separating them.  

Even while the rate of increase in the performance of newer machines is
slowing down, the problems that researchers are attempting to solve are
growing ever larger and more complex. New applications in such areas as
computational modeling, real-time graphics, and bioinformatics are rapidly
increasing the demands placed on new computer systems. (We will look at
some of these applications in Level 5, Chapters 13-16.) For example, to have
a computer generate and display animated images without flicker it must
generate 30 new frames each second. Each frame may contain as many as
3,000 3 3,000 separate picture elements (pixels) whose position, color,
and intensity must be individually recomputed. This means that 30 3 3,000
3 3,000 = 270,000,000 pixel computations need to be completed every sec-
ond. Each of those computations may require the execution of many
instructions. (Where does this point move to in the next frame? How bright
is it? Is it visible or hidden behind something else?) If we assume that it
requires about 100 instructions per pixel to answer these questions (a rea-
sonable approximation), then real-time computer animation requires a
computer capable of executing 270,000,000 3 100 = 27 billion instructions
per second. This is beyond the abilities of current processors, which are
limited to about 1-5 billion instructions per second. The inability of the
sequential one-instruction-at-a-time Von Neumann model to handle today’s
large-scale problems is called the Von Neumann bottleneck, and it is a
major problem in computer organization.

To solve this problem, computer engineers are rethinking many of the
fundamental ideas presented in this chapter, and they are studying nontradi-
tional approaches to computer organization called non–Von Neumann
architectures. They are asking the question, “Is there a different way to
design and build computers that can solve problems 10 or 100 or 1,000 times
larger than what can be handled by today’s computers?” Fortunately, the
answer is a resounding, Yes!
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One of the most important areas of research in these non–Von Neumann
architectures is based on the following fairly obvious principle:

If you cannot build something to work twice as fast, do two things at once.
The results will be identical.

From this truism comes the principle of parallel processing—building computers
not with one processor, as shown in Figure 5.18, but with tens, hundreds, or even
thousands. If we can keep each processor occupied with meaningful work, then it
should be possible to speed up the solution to large problems by 1, 2, or 3 orders of
magnitude and overcome the Von Neumann bottleneck. For example, in the graph-
ical animation example discussed earlier, we determined that we needed a machine
that can execute 27 billion instructions/second, but today’s processors are limited
to about 2-5 billion instructions/second. But if 4 to 14 processors all work together
on this one problem, then we should (in theory!) have a sufficiently powerful sys-
tem to solve our problem. This is the idea behind the new dual-core and quad-core
processors that have two or four separate processors on a single chip.

The approach of placing multiple processors on a single chip is fine for a
small number of processors, say two, four, or eight.  However, we need a com-
pletely different approach to build large-scale parallel systems that contain
hundreds or even thousands of processors.

There are two fundamentally distinct approaches to designing these
massively parallel systems. The first technique is termed SIMD parallel
processing. (SIMD stands for single instruction stream/multiple data
stream.) It is diagrammed in Figure 5.21.

In the SIMD model there is a single program whose instructions are
fetched/decoded/executed in a sequential manner by one control unit, exactly
as described earlier. However, the ALU (circuits and registers) is replicated many
times, and each ALU has its own local memory where it may keep private data.
When the control unit fetches an instruction (such as a LOAD, ADD, or STORE), it
broadcasts that instruction to every ALU, which executes it in parallel on its
own local data. Thus, if we have 100 replicated ALUs, we can perform 100 paral-
lel additions by having every ALU simultaneously execute the instruction
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OPERATION MEANING

ADD X Add memory cell X to the contents of register R

on its own local value of X, using its own personal copy of register R.
A good analogy to SIMD parallel processing is the game of Bingo.

There is one caller (control unit) calling out a single number (the instruc-
tion) to the entire room. In the room listening are many people (ALUs) who
simultaneously cover that number on their own private Bingo cards (local
memories).

This style of parallelism is especially useful in operations on mathematical
structures called vectors and arrays. A vector V is simply an ordered collection
of values. For example, here is a six-element vector V, whose elements are
termed v1, v2, . . . , v6.

Many operations on vectors work quite well under the SIMD parallel model.
For example, to add the constant value +1 to a vector, you add it to every
individual element in the vector; that is, you simultaneously compute v1 + 1,
v2 + 1, . . . . Thus the operation V + 1, when applied to the previous vector,
produces the new vector 2, 9, –12, 71, 10, 1. On a SIMD machine, this vector
addition operation can be implemented in a single step by distributing one
element of the vector to each separate ALU. Then in parallel, each arithmetic
unit executes the following instruction:

OPERATION MEANING

INC v v is an element of the vector V. This instruction increments
the contents of that location by +1.

In one time unit, we can update all six elements of the vector V. In the tradi-
tional Von Neumann machine, we would have to increment each element
separately in a sequential fashion, using six instructions:

INC v1

INC v2

:

INC v6

Our parallel vector addition operator runs six times as fast. Similar speedups
are possible with other vector and array manipulations.

SIMD parallelism was the first type of parallel processing put into
widespread commercial use. It was the technique used to achieve break-
throughs in computational speeds on the first supercomputers of the early
1980s.

A much more interesting and much more widely used form of parallelism
is called MIMD parallel processing (multiple instruction stream/multiple
data stream), also called cluster computing. In MIMD parallelism we replicate
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entire processors rather than just the ALU, and every processor is capable of
executing its own separate program in its own private memory at its own rate.
This model of parallel processing is diagrammed in Figure 5.22.

Each processor/memory pair in Figure 5.22 is a Von Neumann machine of the
type described in this chapter. For example, it could be a processor board of the
type shown in Figure 5.18. Alternately, it could be a complete computer system,
such as a desktop machine in a computer lab or the laptop in your dorm room.
Each system is executing its own program in its own local memory at its own rate.
However, rather than each having to solve the entire problem by itself, the
problem is solved in a parallel fashion by all processors simultaneously. Each of
the processors tackles a small part of the overall problem and then communicates
its result to the other processors via the interconnection network, a communi-
cations system that allows processors to exchange messages and data.

A MIMD parallel processor would be an excellent system to help us speed up
the New York City telephone directory lookup problem discussed in Chapter 2.
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The first computer to achieve a speed of 1 million
floating-point operations per second, 1 megaflop, was
the Control Data 6600 in the mid-1960s. The first
machine to achieve 1 billion floating-point operations
per second, 1 gigaflop, was the Cray X-MP in the early
1980s. Today almost all machines, even small laptops,
can achieve speeds of 1-5 gigaflops. In 1996, the Intel
Corporation announced that its ULTRA computer had
successfully become the world’s first teraflop machine.
This $55 million computer contained 9,072 Pentium Pro
processors, and on December 16, 1996, it achieved a
sustained computational speed of 1 trillion operations
per second.

However, on June 9, 2008, a major milestone in
computer performance was reached. The Roadrunner mas-
sively parallel computer, constructed jointly by Los Alamos
National Laboratories and IBM, achieved a sustained compu-
tational speed of 1,026 trillion floating point operations per
second, or 1 petaflop (see “The Tortoise and the Hare“ box
in Chapter 3). To get an idea of how fast that is, consider
that if all 6 billion people in the world worked together on a
single problem, each person would have to perform 170,000
computations/second to equal the speed of this one
machine.  The system, which contains 18,000 processors and
98 terabytes of memory, cost about $100 million to design
and build. It will be used for basic research in astronomy,
energy, and human genome science.
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In the sequential approach that we described, the single processor doing the
work must search all 20,000,000 entries from beginning to end (or until the
desired name is found). The analysis in Chapter 3 showed that using sequential
search and a computer that can examine 50,000 names per second, this lookup
operation takes an average of 3.5 minutes to find a particular name—much too
long for the typical person to wait.

If we use 100 processors instead of one, however, the problem is easily
solved. We just divide the 20,000,000 names into 100 equal-sized pieces and
assign each piece to a different processor. Now each processor searches in parallel
to see whether the desired name is in its own section. If it finds the name, it
broadcasts that information on the interconnection network to the other 99
processors so that they can stop searching. Each processor needs only to look
through a list of 200,000 names, which is 1/100 the amount of work it had to do
previously. Instead of an average of 3.5 minutes, we now get our answer in 1/100
the time—about 2 seconds. Parallel processing has elegantly solved our problem.

MIMD parallelism is also a scalable architecture. Scalability means that, at
least theoretically, it is possible to match the number of processors to the size of
the problem. If 100 processors are not enough to solve the telephone book
lookup problem, then 200 or 500 can be used instead, assuming the interconnec-
tion network can provide the necessary communications. (Communications can
become a serious bottleneck in a parallel system.) In short, the resources applied
to a problem can be in direct proportion to the amount of work that needs to be
done. Massively parallel MIMD machines containing tens of thousands of inde-
pendent processors have achieved solutions to large problems thousands of times
faster than is possible using a single processor. (For an up-to-date listing of the
fastest parallel computers, check the home page of Top500, a listing of the 500
most powerful computers in the world. Its URL is http://www.top500.org.)

The multiple processors within a MIMD cluster do not have to be identical
or belong to a single administrative organization.  Computer scientists real-
ized that it is possible to address and solve massive problems by utilizing the
resources of idle computers located around the world, regardless of who they
belonged to.  This realization led to an exciting new form of MIMD parallelism
called grid computing.   

Grid computing enables researchers to easily and transparently access
computer facilities without regard for their location. One of the most well-
known grid computing applications is the SETI@home project (Search for
Extraterrestrial Intelligence), which analyzes radio telescope data from dis-
tant stars to look for intelligent life in the universe. Users sign up to allow
their personal computer, when idle, to participate in this massive search pro-
ject.  About 5.5 million people have signed up to be part of the SETI grid, and
on any given day about 1–2 thousand home computers, from Alabama to
Wyoming, from Albania to Zimbabwe, contribute computational resources to
this one task. You can read about the SETI@home project on their home page
at: http://setiathome.ssl.berkeley.edu.

The real key to using massively parallel processors is to design solution
methods that effectively utilize the large number of available processors. It does
no good to have 1,000 processors available if only 1 or 2 are doing useful work
while 998 or 999 are sitting idle. That would be like having a large construction
crew at a building site, where the roofers, painters, and plumbers sit around
waiting for one person to put up the walls. The field of parallel algorithms, the
study of techniques that makes efficient use of parallel architectures, is an
important branch of research in computer science. Advances in this area will go
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a long way toward speeding the development and use of large-scale parallel
systems of the type shown in Figures 5.21 and 5.22. (Challenge Work Exercise 1
asks you to design a parallel addition algorithm.)

To solve the complex problems of the twenty-first century, the computers
of the twenty-first century will probably be organized much more like the
massively parallel processing systems of Figures 5.21 and 5.22 than like the
55-year-old Von Neumann model of Figure 5.18.

5.5 Summary of Level 2

In Chapter 4 we looked at the basic building blocks of computers: binary codes,
transistors, gates, and circuits. This chapter examined the standard model for
computer design, called the Von Neumann architecture. It also discussed some
of the shortcomings of this sequential model of computation and described
briefly how these might be overcome by the use of parallel computers.

At this point in our hierarchy of abstractions, we have created a fully
functional computer system capable of executing an algorithm encoded as
sequences of machine language instructions. The only problem is that the
machine we have created is enormously difficult to use and about as
unfriendly and unforgiving as it could be. It has been designed and engi-
neered from a machine’s perspective, not a person’s. Sequences of binary
encoded machine language instructions such as

1011010000001011

1001101100010111

0000101101011001
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The parallel machines described in this section can
overcome the “Von Neumann bottleneck” by performing
multiple computations in parallel, rather than one at a time
in strict sequential fashion.  However, these systems are
not a fundamental change in the underlying design of com-
puters.  Each machine in the MIMD cluster of Figure 5.22 is
typically a traditional Von Neumann computer.  The only
difference is that we are using multiple machines to solve a
problem rather than one.

However, computer scientists are also researching
totally new designs unrelated to the Von Neumann archi-
tecture.  One of the most unusual, most revolutionary, and
most exciting is called quantum computing, in which com-
puters are designed according to the principles of quantum
mechanics, which describe the behavior of matter at the
atomic and sub-atomic level.  A quantum computer encodes
information using some aspect of quantum-mechanical
state, such as electron spin or photon polarization.

However, unlike “traditional” data bits, which at any
instant of time must be either a 0 or a 1 but not both,
quantum theory says that a quantum bit, or qubit, can be
either a 0 or a 1 or both a 0 and a 1 at the same time.  In
theory, a quantum computer could do multiple computa-
tions on different numbers at the same time.  In fact, with
just 500 qubits of quantum memory, each of which could be
viewed as being both a 0 and a 1, we could theoretically
perform 2500 simultaneous computations—a number larger
than the total number of atoms in the universe.  Now that
is real parallel processing!

There are still a lot of obstacles to overcome before
quantum computers become a reality, but a great deal of
progress has been made in the last few years.  There is
much debate about whether a workable quantum computer
will take 10 years, 25 years, or perhaps another century to
design and construct.  However, the underlying theory of
quantum computing is sound, and a quantum computer will
likely be a reality, even if we are not sure exactly when.

Quantum Computing



give a computer no difficulty, but they cause people to throw up their hands
in despair. We need to create a friendlier environment—to make the computer
and its hardware resources more accessible. Such an environment would be
more conducive to developing correct solutions to problems and satisfying a
user’s computational needs.

The component that creates this kind of friendly, problem-solving
environment is called system software. It is an intermediary between the
user and the hardware components of the Von Neumann machine. Without it,
a Von Neumann machine would be virtually unusable by anyone but the most
technically knowledgable computer experts. We examine system software in
the next level of our investigation of computer science.
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1. What are the advantages and disadvantages of using a
very large memory cell size, say, W = 64 instead of the
standard size W = 8? If each integer occupies one 64-bit
memory cell and is stored using sign/magnitude nota-
tion, what are the largest (in terms of absolute value)
positive and negative integers that can be stored? What
if two cells are used to store integers?

2. At a minimum, how many bits are needed in the MAR
with each of the following memory sizes?
a. 1 million bytes
b. 10 million bytes
c. 100 million bytes
d. 1 billion bytes

3. A memory unit that is said to be 640 KB would actually
contain how many memory cells? What about a memory
of 512 MB? What about a memory of 2 GB?

4. Explain what use a read-only memory (ROM) serves in the
design of a computer system. What type of information is
kept in a ROM, and how does that information originally
get into the memory?

5. Assuming the square two-dimensional memory organiza-
tion shown in Figure 5.6, what are the dimensions of a
memory containing 1 MB (220) bytes of storage? How
large would the MAR be? How many bits are sent to the
row and column decoders? How many output lines would
these decoders have?

6. Assume a 24-bit MAR that is organized as follows:

row select lines column select lines

12 bits 12 bits

What is the maximum size of the memory unit on this
machine? What are the dimensions of the memory,
assuming a square two-dimensional organization?

7. Assume that our MAR contains 20 bits, enabling us to
access up to 220 memory cells, which is 1 MB, but our
computer has 4 MB of memory. Explain how it might be
possible to address all 4 MB memory cells using a MAR
that contains only 20 bits.

8. Assume that a 1 gigaflop machine is connected to a
printer that can print 780 characters per second.  In the
time it takes to print 1 page (65 lines of 60 characters
per line), how many floating-point operations can the
machine perform?

9. Assume that we have an arithmetic/logic unit that can
carry out 20 distinct operations. Describe exactly what
kind of multiplexor circuit would be needed to select
exactly one of those 20 operations.

10. Assume that a hard disk has the following characteristics:

Rotation speed = 7,200 rev/min

Arm movement time = 0.5 msec fixed startup time
+ 0.05 msec for each track crossed. (The startup
time is a constant no matter how far the arm
moves.)

Number of surfaces = 2 (This is a double-sided
disk. A single read/write arm holds both read/
write heads.)

Number of tracks per surface = 500

Number of sectors per track = 20

Number of characters per sector = 1,024
a. How many characters can be stored on this disk?
b. What are the best-case, worst-case, and average-case

access times for this disk?

11. In general, information is stored on a disk not at random
but in specific locations that help to minimize the time
it takes to retrieve that information. Using the specifica-
tions given in Exercise 10, where would you store the
information in a 50 KB file on the disk to speed up sub-
sequent access to that information?

12. Assume that our disk unit has one read/write head per
track instead of only one per surface. (A head-per-track
disk is sometimes referred to as a drum.) Using the
specifications given in Exercise 10, what are the best-
case, worst-case, and average-case access times? How
much have the additional read/write heads helped reduce
access times?

13. Discuss some situations wherein a sequential access stor-
age device such as a tape could be a useful form of mass
storage.

14. Assume that we are receiving a message across a network
using a modem with a rate of 56,000 bits/second. Fur-
thermore, assume that we are working on a workstation
with an instruction rate of 500 MIPS. How many instruc-
tions can the processor execute between the receipt of
each individual bit of the message?

15. Consider the following structure of the instruction register.

op code address-1 address-2

6 bits 18 bits 18 bits

a. What is the maximum number of distinct operation
codes that can be recognized and executed by the
processor on this machine?

b. What is the maximum memory size on this machine?

c. How many bytes are required for each operation?
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16. Assume that the variables v, w, x, y, and z are stored in
memory locations 200, 201, 202, 203, and 204, respec-
tively. Using any of the machine language instructions in
Section 5.2.4, translate the following algorithmic opera-
tions into their machine language equivalents.
a. Set v to the value of x – y + z. (Assume the existence

of the machine language command SUBTRACT X, Y, Z
that computes CON(Z) = CON(X) – CON(Y).)

b. Set v to the value (w + x ) - ( y + z)
c. If (v ≥ w) then

set x to y
Else

set x to z
d. While y < z do

Set y to the value ( y + w + z)
Set z to the value (z + v)

End of the loop

17. Explain why it would be cumbersome to translate the fol-
lowing algorithmic operation into machine language,
given only the instructions introduced in this chapter:

Set x to the value of y + 19

Can you think of a way to solve this problem?

18. Describe the sequence of operations that might go on
inside the computer during the execution phase of the
following machine language instructions. Use the nota-
tion shown in Section 5.2.5.
a. MOVE X, Y Move the contents of memory cell X to

memory cell Y.
b. ADD X, Y Add the contents of memory cells X and Y.

Put the result back into memory cell Y.

1. It is easy to write a sequential algorithm that sums up a
100-element vector:

Sum = a1 + a2 + a3 + . . . + a100

It would look something like
Set i to 1
Set Sum to 0
While i < 101 do the following

Sum = Sum + ai

i = i + 1
End of the loop
Write out the value of Sum
Stop

It is pretty obvious that this algorithm will take about
100 units of time, where a unit of time is equivalent to
the time needed to execute one iteration of the loop.
However, it is less easy to see how we might exploit the
existence of multiple processors to speed up the solution
to this problem.

Assume that instead of having only a single proces-
sor, you have 100. Design a parallel algorithm that uti-
lizes these additional resources to speed up the solution
to the previous computation. Exactly how much faster

would your parallel summation algorithm execute than
the sequential one? Did you need all 100 processors?
Could you have used more than 100?

2. In this chapter we described the Von Neumann architec-
ture in broad, general terms. However, “real” Von Neumann
processors, such as the Pentium 4 Dual-Core and the AMD
Athlon XP, are much more complex than the simple model
shown in Figure 5.18. Pick one of these processors (per-
haps the processor inside the computer you are using for
this class) and take an in-depth look at its design. Specif-
ically, examine such issues as

• Its instruction set and how it compares with the
instruction set shown in Figure 5.19

• The collection of available registers

• The existence of cache memory

• Its computing speed in MIPS and MFLOPS or GFLOPS

• How much primary memory it has and how memory is
addressed in the instructions

• Memory access time

• In what size “chunks” memory can be accessed

Write a report describing the real-world characteristics of
the processor you selected.
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LEVEL 3

Level 3 It has been said that computer science is “the
science of building pretend worlds,” meaning that the
underlying hardware structure of a computer can be so
difficult to work with that we must create more friendly
and more usable “virtual worlds” in which to work and
solve problems. Without that layer of abstraction
between us and the machine, we would have to solve
problems by applying only the ideas and capabilities pre-
sented in Level 2—binary numbers, digital circuits,
absolute memory addresses, and machine language
instructions. 

In Level 3 (Chapters 6, 7, and 8) you will learn how
these user-friendly “microworlds” are created to produce
an environment in which efficient, safe, and productive
problem-solving is possible.
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6.1 Introduction

Chapters 4 and 5 described a computer model, the Von Neumann architecture,
that is capable of executing programs written in machine language. This com-
puter has all the hardware needed to solve important real-world problems, but
it has no “support tools” to make that problem-solving task easy. The com-
puter described in Chapter 5 is known as a naked machine: hardware bereft
of any helpful user-oriented features.

Imagine what it would be like to work on a naked machine. To solve a
problem, you would have to create hundreds or thousands of cryptic machine
language instructions that look like this:

10110100110100011100111100001000

and you would have to do that without making a single mistake because, to
execute properly, a program must be completely error-free. Imagine the like-
lihood of writing a perfectly correct program containing thousands of instruc-
tions like the one shown above. Even worse, imagine trying to locate an error
buried deep inside that incomprehensible mass of 0s and 1s. 

On a naked machine, the data as well as the instructions must be repre-
sented in binary. For example, a program cannot refer to the decimal integer
+9 directly but must express it as

0000000000001001 (the binary representation of +9 using 16 bits)

You cannot use the symbol A to refer to the first letter of the alphabet but
must represent it using its 8-bit ASCII code value, which is decimal 65:

01000001 (the 8-bit ASCII code for A; see Figure 4.3)

As you can imagine, writing programs for a naked machine is very complex.
Even if you write the program correctly, your work is still not done. A pro-

gram for a Von Neumann computer must be stored in memory prior to execu-
tion. Therefore, you must now take the program and store its instructions into
sequential cells in memory. On a naked machine the programmer must perform
this task, one instruction at a time. Assuming that each instruction occupies
one memory cell, the programmer loads the first instruction into address 0,
the second instruction into address 1, the third instruction into address 2, and
so on, until all have been stored.

Finally, what starts the program running? A naked machine does not do
this automatically. (As you are probably coming to realize, a naked machine
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does not do anything automatically, except fetch, decode, and execute
machine language instructions.) The programmer must initiate execution by
storing a 0, the address of the first instruction of the program, in the program
counter (PC) and pressing the START button. This begins the fetch/
decode/execute cycle described in Chapter 5. The control unit fetches from
memory the contents of the address in the PC, currently 0, and executes that
instruction. The program continues sequentially from that point while the
user prays that everything works, because he or she cannot bear to face a
naked machine again!

As this portrayal demonstrates, working directly with the underlying
hardware is practically impossible for a human being. The functional units
described in Chapter 5 are built according to what is easy for hardware to do,
not what is easy for people to do.

To make a Von Neumann computer usable, we must create an interface
between the user and the hardware. This interface does the following things:

• Hides from the user the messy details of the underlying hardware

• Presents information about what is happening in a way that does not
require in-depth knowledge of the internal structure of the system

• Allows easy user access to the resources available on this computer

• Prevents accidental or intentional damage to hardware, programs,
and data

By way of analogy, let’s look at how people use another common tool—an
automobile. The internal combustion engine is a complex piece of technology.
For most of us, the functions of carburetors, distributors, and camshafts are a
total mystery. However, most people find driving a car quite easy. This is
because the driver does not have to lift the hood and interact directly with
the hardware; that is, he or she does not have to drive a “naked automobile.”
Instead, there is an interface, the dashboard, which simplifies things consid-
erably. The dashboard hides the details of engine operation that a driver does
not need to know. The important things—such as oil pressure, fuel level, and
vehicle speed—are presented in a simple, “people-oriented” way: oil indicator
warning light, fuel gauge, and speed in miles or kilometers per hour. Access to
the engine and transmission is achieved by a few simple operations: a key to
start and stop, pedals to speed up or slow down, and a shift lever to go for-
ward or backward.

We need a similar interface for our Von Neumann machine. This “computer
dashboard” would eliminate most of the hassles of working on a naked
machine and let us view the hardware resources of Chapter 5 in a much friend-
lier way. Such an interface does exist, and it is called system software. 

6.2 System Software

6.2.1 The Virtual Machine

System software is a collection of computer programs that manage the
resources of a computer and facilitate access to those resources. It is impor-
tant to remember that we are describing software, not hardware. There are no
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black boxes wired to a computer and labeled “system software.” Software con-
sists of sequences of instructions—namely, programs—that solve a problem.
However, instead of solving user problems, such as looking up names in a tele-
phone book, system software makes a computer and its many resources easier
to access and use.

System software acts as an intermediary between the users and the hard-
ware, as shown in Figure 6.1. System software presents the user with a set of ser-
vices and resources across the interface labeled A in Figure 6.1. These resources
may actually exist, or they may be simulated by the software to give the user the
illusion that they exist. The set of services and resources created by the software
and seen by the user is called a virtual machine or a virtual environment.
The system software, not the user, interacts with the actual hardware (that is,
the naked machine) across the interface labeled B in Figure 6.1.

The system software has the following responsibilities, analogous to those
of the automobile dashboard:

• Hides the complex and unimportant (to the user) details of the inter-
nal structure of the Von Neumann architecture

• Presents important information to the user in a way that is easy to
understand

• Allows the user to access machine resources in a simple and efficient way

• Provides a secure and safe environment in which to operate

For example, to add two numbers, it is much easier to use simple notation
such as a = b + c than to worry about (1) loading ALU registers from memory
cells b and c, (2) activating the ALU, (3) selecting the output of the addition
circuit, and (4) sending the result to memory cell a. The programmer should
not have to know about registers, addition circuits, and memory addresses but
instead should see a virtual machine that “understands” the symbols + and =.

After the program has been written, it should automatically be loaded into
memory without the programmer having to specify where it should be placed
or having to set the program counter. Instead, he or she should be able to issue
one simple command (or one set of mouse clicks) to the virtual machine that
says, Run my program. Finally, when the program is running and generating
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results, the programmer should be able to instruct the virtual machine to send
the program’s output to the printer in Room 105, without reference to the
details related to I/O controllers, interrupt signals, and code sets.

All the useful services just described are provided by the system software
available on any modern computer system. The following sections show how
this friendly, user-oriented environment is created.

6.2.2 Types of System Software

System software is not a single monolithic entity but a collection of many dif-
ferent programs. The types found on a typical computer are shown in Figure 6.2.

The program that controls the overall operation of the computer is the
operating system, and it is the single most important piece of system soft-
ware on a computer. It is the operating system that communicates with users,
determines what they want, and activates other system programs, applications
packages, or user programs to carry out their requests. The software packages
that handle these requests include:

• User interface. All modern operating systems provide a powerful
graphical user interface (GUI) that gives the user an intuitive visual
overview as well as graphical control of the capabilities and services of
the computer.

• Language services. These programs, called assemblers, compilers, and
interpreters, allow you to write programs in a high-level, user-
oriented language rather than the machine language of Chapter 5 and
to execute these programs easily and efficiently. They often include
components such as text editors and debuggers.

• Memory managers. These programs allocate memory space for programs
and data and retrieve this memory space when it is no longer needed.

• Information managers. These programs handle the organization, stor-
age, and retrieval of information on mass storage devices such as the
disks, CDs, DVDs, and tapes described in Section 5.2.2. They allow you
to organize your information in an efficient hierarchical manner, using
directories, folders, and files.
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• I/O systems. These software packages allow you to easily and effi-
ciently use the many different types of input and output devices that
exist on a modern computer system.

• Scheduler. This system program keeps a list of programs ready to run
on the processor, and it selects the one that will execute next. The
scheduler allows you to have a number of different programs active at
a single time, for instance, to surf the Web while you are waiting for a
file to finish printing.

• Utilities. These collections of library routines provide useful services
either to a user or to other system routines. Text editors, online help
routines, drawing programs, and control panels are examples of utility
routines. Sometimes these utilities are organized into collections
called program libraries.

These system routines are used during every phase of problem solving on a
computer, and it would be virtually impossible to get anything done without
them. Let’s go back to the problem described at the beginning of this chapter—
the job of writing a program, loading it into memory, running it, and printing
the results. On a naked machine this job would be formidable. On the virtual
machine created by system software, it is much simpler:

Step Task

1 Use a text editor to create program P written in a high-level, English-
like notation rather than binary.

2 Use the file system to store program P on the hard disk in your home
directory.

3 Use a language translator to translate program P from a high-level lan-
guage into a machine language program M.

4 Use the scheduler to load, schedule, and run program M. The scheduler
itself uses the memory manager to obtain memory space for program M.

5 Use the I/O system to print the output of your program on printer R.

6 If the program did not complete successfully, use a debugger to help
locate the error. Use the text editor to correct the program and the file
system to store the newly modified program.

Furthermore, most of these operations are easily invoked via mouse clicks and
the graphical user interface provided by the operating system.

On a virtual machine, the details of machine operation are no longer visi-
ble, and a user can concentrate on higher-level issues: writing the program,
executing the program, and saving and analyzing results.

There are many types of system software, and it is impossible to cover them
all in this section of the text. Instead, we will investigate two types of system
software, and use these as representatives of the entire group. Section 6.3
examines assemblers, and Section 6.4 looks at the design and construction of
operating systems. These two packages create a friendly and usable virtual
machine. In Chapter 7, we extend that virtual environment from a single com-
puter to a collection of computers by looking at the system software required to
create one of the most important and widely used virtual environments—a
computer network. Finally, in Chapter 8 we investigate one of the most
important services provided by the operating system—system security.  
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6.3 Assemblers and Assembly Language

6.3.1 Assembly Language

One of the first places where we need a more friendly virtual environment is in
our choice of programming language. Machine language, which is designed
from a machine’s point of view, not a person’s, is complicated and difficult to
understand. What specifically are the problems with machine language?

• It uses binary. There are no natural language words, mathematical sym-
bols, or other convenient mnemonics to make the language more readable.

• It allows only numeric memory addresses. A programmer cannot name
an instruction or a piece of data and refer to it by name.

• It is difficult to change. If we insert or delete an instruction, all
memory addresses following that instruction will change. For example,
if we place a new instruction into memory location 503, then the
instruction previously in location 503 is now in 504. All references to
address 503 must be updated to point to 504. There may be hundreds of
such references.

• It is difficult to create data. If a user wishes to store a piece of data in
memory, he or she must compute the internal binary representation
for that data item. These conversion algorithms are complicated and
time consuming.

Programmers working on early first-generation computers quickly realized
the shortcomings of machine language. They developed a new language, called
assembly language, designed for people as well as computers. Assembly
languages created a more productive, user-oriented environment, and assem-
blers were one of the first pieces of system software to be widely used. When
assembly languages first appeared in the early 1950s, they were one of the
most important new developments in programming—so important, in fact,
that they were considered an entirely new generation of language, analogous
to the new generations of hardware described in Section 1.4.3. Assembly
languages were termed second-generation languages to distinguish them
from machine languages, which were viewed as first-generation languages.

Today, assembly languages are more properly called low-level programming
languages, which means they are closely related to the machine language of
Chapter 5. Each symbolic assembly language instruction is translated into exactly
one binary machine language instruction.

This contrasts with languages like C++, Java, and Python, which are high-
level programming languages. High-level languages are more user oriented,
they are not machine specific, and they use both natural language and math-
ematical notation in their design. A single high-level language instruction is
typically translated into many machine language instructions, and the virtual
environment created by a high-level language is much more powerful than the
one produced by an assembly language. We discuss high-level languages in
detail in Chapters 9 and 10.

Figure 6.3 shows a “continuum of programming languages,” from the low-
est level (closest to the hardware) to the highest level (most abstract, farthest
from the hardware).



The machine language of Chapter 5 is the most primitive; it is the lan-
guage of the hardware itself. Assembly language, the topic of this section,
represents the first step along the continuum from machine language. High-
level programming languages like C++, Java, and Python are much closer in
style and structure to natural languages and are quite distinct from assembly
language. Natural languages, such as English, Spanish, and Japanese, are the
highest level; they are totally unrelated to hardware design.

A program written in assembly language is called the source program; it
uses the features and services provided by the language. However, the proces-
sor does not “understand” assembly language instructions, in the sense of
being able to fetch, decode, and execute them as described in Chapter 5. The
source program must be translated into a corresponding machine language
program, called the object program. This translation is carried out by a piece
of system software called an assembler. (Translators for high-level languages
are called compilers. They are discussed in Chapter 11.) Once the object pro-
gram has been produced, its instructions can be loaded into memory and exe-
cuted by the processor exactly as described in Section 5.3. The complete
translation/loading/execution process is diagrammed in Figure 6.4.

There are three major advantages to writing programs in assembly lan-
guage rather than machine language:

• Use of symbolic operation codes rather than numeric (binary) ones

• Use of symbolic memory addresses rather than numeric (binary) ones

• Pseudo-operations that provide useful user-oriented services such as
data generation

This section describes a simple, but realistic, assembly language that demon-
strates these three advantages.

Our hypothetical assembly language is composed of instructions in the
following format:

label:   op code mnemonic   address field   --comment

The comment field, preceded in our notation by a double dash (--), is not
really part of the instruction. It is a helpful explanation added to the instruction
by a programmer and intended for readers of the program. It is ignored during
translation and execution.

Assembly languages allow the programmer to refer to op codes using a sym-
bolic name, called the op code mnemonic, rather than by a number. We can
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write op codes using meaningful words like LOAD, ADD, and STORE rather than
obscure binary codes like 0000, 0011, and 0001. Figure 6.5 shows an assembly
language instruction set for a Von Neumann machine that has a single ALU reg-
ister R and three condition codes GT, EQ, and LT. Each numeric op code, its assem-
bly language mnemonic, and its meaning are listed. This table is identical to
Figure 5.19, which summarizes the language used in Chapter 5 to introduce the
Von Neumann architecture and explains how instructions are executed. (How-
ever, Chapter 5 describes binary machine language and uses symbolic names only
for convenience. In this chapter we are describing assembly language, where
symbolic names such as LOAD and ADD are actually part of the language.)

Another advantage of assembly language is that it lets programmers use
symbolic addresses instead of numeric addresses. In machine language, to
jump to the instruction in location 17, you must refer directly to address 17;
that is, you must write JUMP 17 (in binary, of course). This is cumbersome,
because if a new instruction is inserted anywhere within the first 17 lines of
the program, the jump location changes to 18. The old reference to 17 is
incorrect, and the address field must be changed. This makes modifying pro-
grams very difficult, and even small changes become big efforts. It is not
unlike identifying yourself in a waiting line by position—as, say, the tenth
person in line. As soon as someone in front of you leaves (or someone cuts in
line ahead of you), that number changes. It is far better to identify yourself
using a characteristic that does not change as people enter or exit the line.
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For example, you are the person wearing the green suit with the orange and
pink shirt. Those characteristics won’t change (though maybe they should).

In assembly language we can attach a symbolic label to any instruction or
piece of data in the program. The label becomes a permanent identification for
this instruction or data, regardless of where it appears in the program or
where it may be moved in memory. A label is a name (followed by a colon to
identify it as a label) placed at the beginning of an instruction.

LOOPSTART:      LOAD X

The label LOOPSTART has been attached to the instruction LOAD X. This
means that the name LOOPSTART is equivalent to the address of the memory cell
that holds the instruction LOAD X. If, for example, the LOAD X instruction is
stored in memory cell 62, then the name LOOPSTART is equivalent to address 62.
Any use of the name LOOPSTART in the address field of an instruction is treated
as though the user had written the numeric address 62. For example, to jump to
the load instruction shown above, we do not need to know that it is stored in
location 62. Instead, we need only write the instruction

JUMP LOOPSTART

Symbolic labels have two advantages over numeric addresses. The first is
program clarity. As with the use of mnemonics for op codes, the use of mean-
ingful symbolic names can make a program much more readable. Names like
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BINARY OP CODE OPERATION MEANING

0000 LOAD X CON(X) S R
0001 STORE X R S CON(X)
0010 CLEAR X 0 S CON(X)
0011 ADD X R + CON(X) S R
0100 INCREMENT X CON(X) + 1 S CON(X)
0101 SUBTRACT X R – CON(X) S R
0110 DECREMENT X CON(X) – 1 S CON(X)
0111 COMPARE X if CON(X) > R then GT = 1 else 0

if CON(X) = R then EQ = 1 else 0
if CON(X) < R then LT = 1 else 0

1000 JUMP X Get the next instruction from memory
location X.

1001 JUMPGT X Get the next instruction from memory location
X if GT = 1.

1010 JUMPEQ X Get the next instruction from memory location
X if EQ = 1.

1011 JUMPLT X Get the next instruction from memory location
X if LT = 1.

1100 JUMPNEQ X Get the next instruction from memory location
X if EQ = 0.

1101 IN X Input an integer value from the standard input
device and store into memory cell X.

1110 OUT X Output, in decimal notation, the value stored
in memory cell X.

1111 HALT Stop program execution.

Typical Assembly Language
Instruction Set
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LOOPSTART, COUNT, and ERROR carry a good deal of meaning and help people
to understand what the code is doing. Memory addresses such as 73, 147, and
2001 do not. A second advantage of symbolic labels is maintainability. When
we refer to an instruction via a symbolic label rather than an address, we no
longer need to modify the address field when instructions are added to or
removed from the program. Consider the following example:

JUMP LOOP

: dpoint A

LOOP: LOAD X

Say a new instruction is added to the program at point A. When the mod-
ified program is translated by the assembler into machine language, all
instructions following point A are placed in a memory cell whose address is 1
higher than it was before (assuming that each instruction occupies one mem-
ory cell). However, the JUMP refers to the LOAD instruction only by the name
LOOP, not by the address where it is stored. Therefore, neither the JUMP nor
the LOAD instruction needs to be changed. We need only retranslate the mod-
ified program. The assembler determines the new address of the LOAD X
instruction, makes the label LOOP equivalent to this new address, and places
this new address into the address field of the JUMP LOOP instruction. The
assembler does the messy bookkeeping previously done by the machine lan-
guage programmer. 

The final advantage of assembly language programming is data 
generation. In Section 4.2.1 we showed how to represent in binary data
types such as unsigned and signed integers, floating point values, and
characters. When writing in machine language, the programmer must do
these conversions. In assembly language, however, the programmer can ask
the assembler to do them by using a special type of assembly language op
code called a pseudo-op. 

A pseudo-op (preceded in our notation by a period to indicate its type)
does not generate a machine language instruction like other operation
codes. Instead, it invokes a service of the assembler. One of these services is
generating data in the proper binary representation for this system. There
are typically assembly language pseudo-ops to generate integer, character,
and (if the hardware supports it) real data values. In our example language,
we will limit ourselves to one data generation pseudo-op called .DATA that
builds signed integers. This pseudo-op converts the signed decimal integer
in the address field to the proper binary representation. For example, the
pseudo-op

FIVE: .DATA +5

tells the assembler to generate the binary representation for the integer +5,
puts it into memory, and makes the label “FIVE” equivalent to the address of
that cell. If a memory cell contains 16 bits, and the next available memory cell
is address 53, then this pseudo-op produces

address contents

53 0000000000000101
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and the name FIVE is equivalent to memory address 53. Similarly, the pseudo-op

NEGSEVEN: .DATA     –7

might produce the following 16-bit quantity, assuming sign/magnitude
representation:

address contents

54

and the symbol NEGSEVEN is equivalent to memory address 54.
We can now refer to these data items by their attached label. For example,

to load the value +5 into register R, we can say

LOAD FIVE

This is equivalent to writing LOAD 53, which loads register R with the con-
tents of memory cell 53—that is, the integer +5. Note that if we had incor-
rectly said

LOAD 5

the contents of memory cell 5 would be loaded into register R. This is not what
we intended, and the program would be wrong. This is a good example of why
it is so important to distinguish between the address of a cell and its contents.

To add the value –7 to the current contents of register R, we write

ADD NEGSEVEN

The contents of R (currently +5) and the contents of address NEGSEVEN
(address 54, whose contents are –7) are added together, producing –2. This
becomes the new contents of register R.

When generating data values, we must be careful not to place them in mem-
ory locations where they can be misinterpreted as instructions. In Chapter 4 we
said that the only way a computer can tell that the binary value 01000001 is
the letter A rather than the decimal value 65 is by the context in which it
appears. The same is true for instructions and data. They are indistinguishable
from each other, and the only way a Von Neumann machine can determine
whether a sequence of 0s and 1s is an instruction or a piece of data is by how we
use it. If we attempt to execute a value stored in memory, then that value
becomes an instruction whether we meant it to be or not.

For example, if we incorrectly write the sequence

LOAD X

.DATA +1

then, after executing the LOAD X command, the processor fetches, decodes,

1000000000000111
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and attempts to execute the “instruction” +1. This may sound meaningless,
but to a processor, it is not. The representation of +1, using 16 bits, is

0000000000000001

Because this value is being used as an instruction, some of the bits will be inter-
preted as the op code and some as the address field. If we assume a 16-bit, one-
address instruction format, with the first 4 bits being the op code and the last
12 bits being the address field, then these 16 bits will be interpreted as follows:

0000 000000000001

op code address

The “op code” is 0, which is a LOAD on our hypothetical machine (see Figure 6.5),
and the “address field” contains a 1. Thus, the data value +1 has accidentally
turned into the following instruction:

LOAD 1 --Load the contents of memory cell 1 into register R
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1. Assume that register R and memory cells 80 and 81 contain the fol-
lowing values:

R: 20 memory cell 80: 43 memory cell 81: 97

Using the instruction set shown in Figure 6.5, determine what value
ends up in register R and memory cells 80 and 81 after each of the
following instructions is executed. Assume that each question
begins with the values shown above.

a. LOAD 80 d. ADD 81
b. STORE 81 e. IN 80
c. COMPARE 80 f. OUT 81

2. Assume that memory cell 50 contains a 4 and label L is equivalent
to memory location 50. What value does each of the following LOAD
instructions load into register R?

a. LOAD 50 c. LOAD L
b. LOAD 4 d. LOAD L+1 (Assume that this is legal.)

3. Explain why both the HALT operation code described in Figure 6.5
and the .END pseudo-op mentioned at the end of this section are
needed in an assembly language program and what might happen if
one or both were omitted.  

PRACTICE PROBLEMS



This is obviously incorrect, but how is the problem solved? The easiest
way is to remember to place all data at the end of the program in a section
where they cannot possibly be executed. One convenient place that meets this
criterion is after a HALT instruction, because the HALT prevents any further
execution. The data values can be referenced, but they cannot be executed.

A second service provided by pseudo-ops is program construction. Pseudo-
ops that mark the beginning (.BEGIN) and end (.END) of the assembly language
program specify where to start and stop the translation process, and they do not
generate any instructions or data. Remember that it is the HALT instruction, not
the .END pseudo-op, that terminates execution of the program. The .END
pseudo-op ends the translation process. Figure 6.6, which shows the organiza-
tion of a typical assembly language program, helps explain this distinction.

6.3.2 Examples of Assembly Language Code

This section describes how to use assembly language to translate algorithms
into programs that can be executed on a Von Neumann computer. Today, soft-
ware development is rarely performed in assembly language except for special-
purpose tasks; most programmers use one of the higher-level languages
mentioned in Figure 6.3 and described in Chapters 9 and 10. Our purpose in
offering these examples is to demonstrate how system software, in this case
an assembler, can create a user-oriented virtual environment that supports
effective and productive problem solving. 

One of the most common operations in any algorithm is the evaluation
of arithmetic expressions. For example, the sequential search algorithm of
Figure 2.13 contains the following arithmetic operations:

Set the value of i to 1 (line 2).

:

Add 1 to the value of i (line 7).

These algorithmic operations can be translated quite easily into assembly lan-
guage as follows:

LOAD ONE --Put a 1 into register R.

STORE I --Store the constant 1 into i.

:

INCREMENT I --Add 1 to memory location i.

: --These data should be placed after the HALT.

I: .DATA 0 --The index value. Initially it is 0.

ONE: .DATA 1 --The integer constant 1.

252 LEVEL 3 CHAPTER 6: An Introduction to System Software and Virtual Machines

.BEGIN --This must be the first line of the program.
: --Assembly language instructions like those in Figure 6.5.
HALT --This instruction terminates execution of the program
: --Data generation pseudo-ops such as

--.DATA are placed here, after the HALT.
.END --This must be the last line of the program.

Structure of a Typical Assembly
Language Program

FIGURE 6.6



Note how readable this code is, compared to machine language, because of
such op code mnemonics as LOAD and STORE and the use of descriptive labels
such as I and ONE.

Another example is the following assembly language translation of the
arithmetic expression A = B + C – 7. (Assume that B and C have already been
assigned values.)

LOAD B --Put the value B into register R.

ADD C --R now holds the sum (B + C).

SUBTRACT SEVEN --R now holds (B + C – 7).

STORE A --Store the result into A.

: --These data should be placed after the HALT.

A: .DATA 0

B: .DATA 0

C: .DATA 0

SEVEN: .DATA 7 --The integer constant 7.

Another important algorithmic operation involves testing and comparing
values. The comparison of values and the subsequent use of the outcome to
decide what to do next are termed a conditional operation, which we first
saw in Section 2.2.3. Here is a conditional that outputs the larger of two val-
ues x and y. Algorithmically, it is expressed as follows:

Input the value of x

Input the value of y

If x $ y then

Output the value of x

Else

Output the value of y

In assembly language, this conditional operation can be translated as follows:

IN X --Read the first data value

IN Y --and now the second.

LOAD Y --Load the value of Y into register R.

COMPARE X --Compare X to Y and set the condition codes.

JUMPLT PRINTY --If X is less than Y, jump to PRINTY.

OUT X --We get here only if X $ Y, so print X.

JUMP DONE --Skip over the next instruction and continue.

PRINTY: OUT Y --We get here if X < Y, so print Y.

DONE: : --The program continues here.

:

--The following data go after the HALT.

X: .DATA 0 --Space for the two data values.

Y: .DATA 0

:
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Another important algorithmic primitive is looping, which was also intro-
duced in Section 2.2.3. The following algorithmic example contains a while
loop that executes 10,000 times.

Step Operation Explanation

1 Set i to 0 Start the loop counter at 0.

2 While the value of i < 10,000 do lines 3 through 9.

3–8 : Here is the loop body that is to be
done 10,000 times.

9 Add 1 to the value of i Increment the loop counter.

10 End of the loop

11 Stop

This looping construct is easily translated into assembly language.

LOAD ZERO --Initialize the loop counter to 0.

STORE I --This is step 1 of the algorithm.

LOOP: LOAD MAXVALUE --Put 10,000 into register R.

COMPARE I --Compare I against 10,000.

JUMPEQ DONE --If I = 10,000 we are done (step 2).

: --Here is the loop body (steps 3–8).

INCREMENT I --Add 1 to I (step 9).

JUMP LOOP --End of the loop body (step 10).

DONE: HALT --Stop execution (step 11).

ZERO: .DATA 0 --This is the constant 0.

I: .DATA 0 --The loop counter. It goes to 10,000.

MAXVALUE: .DATA 10000 --Maximum number of executions.

:

As a final example, we will show a complete assembly language program
(including all necessary pseudo-ops) to solve the following problem:

Read in a sequence of nonnegative numbers, one number at a time, and
compute a running sum. When you encounter a negative number, print out
the sum of the nonnegative values and stop.

Thus, if the input is

8

31

7

5

–1

then the program should output the value 51, which is the sum (8 + 31 + 7 + 5).
An algorithm to solve this problem is shown in Figure 6.7, using the pseudocode
notation of Chapter 2. 

Our next task is to convert the algorithmic primitives of Figure 6.7 into
assembly language instructions. A program that does this is shown in Figure 6.8.
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Of all the examples in this chapter, the program in Figure 6.8 demonstrates
best what is meant by the phrase user-oriented virtual environment. Although
it is not as clear as natural language or the pseudocode of Figure 6.7, this pro-
gram can be read and understood by humans as well as computers. Tasks such
as modifying the program and locating an error are significantly easier on the
code of Figure 6.8 than on its machine language equivalent.

The program in Figure 6.8 is an important milestone in that it represents
a culmination of the algorithmic problem-solving process. Earlier chapters
introduced algorithms and problem-solving (Chapters 1, 2, 3), discussed how
to build computers to execute algorithms (Chapters 4, 5), and introduced sys-
tem software that enables us to code algorithms into a language that comput-
ers can translate and execute (Chapter 6). The program in Figure 6.8 is the
end product of this discussion: It can be input to an assembler, translated into
machine language, loaded into a Von Neumann computer, and executed to pro-
duce answers to our problem. This algorithmic problem-solving cycle is one
of the central themes of computer science.
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STEP OPERATION

1 Set the value of Sum to 0
2 Input the first number N
3 While N is not negative do
4 Add the value of N to Sum
5 Input the next data value N
6 End of the loop
7 Print out Sum
8 Stop

Algorithm to Compute the Sum
of Numbers

FIGURE 6.7

.BEGIN --This marks the start of the program.
CLEAR SUM --Set the running sum to 0 (line 1).
IN N --Input the first number N (line 2).

--The next three instructions test whether N is a negative number (line 3).
AGAIN: LOAD ZERO --Put 0 into register R.

COMPARE N --Compare N and 0.
JUMPLT NEG --Go to NEG if N < 0.

--We get here if N ≥ 0. We add N to the running sum (line 4).
LOAD SUM --Put SUM into R.
ADD N --Add N. R now holds (N + SUM).
STORE SUM --Put the result back into SUM.

--Get the next input value (line 5).
IN N

--Now go back and repeat the loop (line 6).
JUMP AGAIN

--We get to this section of the program only when we encounter a negative value.
NEG: OUT SUM --Print the sum (line 7)

HALT --and stop (line 8).
--Here are the data generation pseudo-ops
SUM: .DATA 0 --The running sum goes here.
N: .DATA 0 --The input data are placed here.
ZERO: .DATA 0 --The constant 0.
--Now we mark the end of the entire program.

.END

Assembly Language Program
to Compute the Sum of 
Nonnegative Numbers

FIGURE 6.8
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1. Using the instruction set in Figure 6.5, translate the following algo-
rithmic operations into assembly code. Show all necessary .DATA
pseudo-ops.
a. Add 1 to the value of x
b. Add 50 to the value of x
c. Set x to the value y + z – 2
d. If x > 50 then output the value of x, otherwise input a new value of x
e. sum = 0

I = 0
While I < 50 do

sum = sum + I;
I = I + 1;

End of the loop
2. Using the instruction set in Figure 6.5, write a complete assembly

language program (including all necessary pseudo-ops) that reads in
numbers and counts how many inputs it reads until it encounters
the first negative value. The program then prints out that count and
stops.  For example, if the input data is 42, 108, 99, 60, 1, 42, 3,
–27, then your program outputs the value 7 because there are seven
nonnegative values before the appearance of the negative value –27.

3. Now modify your program from Question 2 above so that if you have
not encountered a negative value after 100 inputs your program
stops and outputs the value 100.

PRACTICE PROBLEMS

This section of Chapter 6 introduced assembly language
instructions and programming techniques. However, as
mentioned before, you do not learn programming and
problem solving by reading and watching but rather by
doing and trying. In this laboratory experience you will
program in an assembly language that is virtually identical
to the one shown in Figure 6.5. You will be able to design
and write programs like the one shown in Figure 6.8 and
execute them on a simulated Von Neumann computer. You
will observe the effect of individual instructions on the
functional units of this machine and produce results. 

This experience should give you a much deeper under-
standing of the concepts of assembly language programming
and the Von Neumann architecture. It will also tie together
the hardware concepts of Level 2 (Chapters 4 and 5) and the
virtual machine system software concepts of Level 3.  This
lab shows how an assembly language program is written,
translated, and loaded into a Von Neumann machine and
executed by that machine using the ideas presented in the
previous chapters.  The figure here shows an example of the
information that will be displayed during this laboratory.

LABORATORY
EXPERIENCE 10



6.3.3 Translation and Loading

What must happen in order for the assembly language program in Figure 6.8 to
be executed on a processor? Figure 6.4 shows that before our source program
can be run, we must invoke two system software packages—an assembler and
a loader.

An assembler translates a symbolic assembly language program, such as
the one in Figure 6.8, into machine language. We usually think of translation
as an extremely difficult task. In fact, if two languages differ greatly in vocab-
ulary, grammar, and syntax, it can be quite formidable. (This is why a transla-
tor for a high-level programming language is a very complex piece of
software.) However, machine language and assembly language are very similar,
and therefore an assembler is a relatively simple piece of system software.

An assembler must perform the following four tasks, none of which is par-
ticularly difficult.

1. Convert symbolic op codes to binary.

2. Convert symbolic addresses to binary.

3. Perform the assembler services requested by the pseudo-ops.

4. Put the translated instructions into a file for future use.

Let’s see how these operations are carried out using the hypothetical assembly
language of Figure 6.5.

The conversion of symbolic op codes such as LOAD, ADD, and SUBTRACT to
binary makes use of a structure called the op code table. This is an alphabet-
ized list of all legal assembly language op codes and their binary equivalents.
An op code table for the instruction set of Figure 6.5 is shown in Figure 6.9.
(The table assumes that the op code field is 4 bits wide.)

The assembler finds the operation code mnemonic in column 1 of the
table and replaces the characters with the 4-bit binary value in column 2. (If
the mnemonic is not found, then the user has written an illegal op code,
which results in an error message.) Thus, for example, if we use the mnemonic
SUBTRACT in our program, the assembler converts it to the binary value 0101.

To look up the code in the op code table, we could use the sequential search
algorithm introduced in Chapter 2 and shown in Figure 2.13. However, using
this algorithm may significantly slow the translation of our program. The analy-
sis of the sequential search algorithm in Chapter 3 showed that locating a single
item in a list of N items takes, on the average, N/2 comparisons if the item is in
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Structure of the Op Code Table

FIGURE 6.9
OPERATION BINARY VALUE

ADD 0011
CLEAR 0010
COMPARE 0111
DECREMENT 0110
HALT 1111
:

STORE 0001
SUBTRACT 0101



the table and N comparisons if it is not. In Chapter 5 we stated that modern
computers may have as many as 500 machine language instructions in their
instruction set, so the size of the op code table of Figure 6.9 could be as large as
N = 500. This means that using sequential search, we perform an average of N/2,
about 250, comparisons for every op code in our program. If our assembly lan-
guage program contains 10,000 instructions (not an unreasonably large num-
ber), the op code translation task requires a total of 10,000 instructions 3
250 comparisons/instruction = 2.5 million comparisons. That is a lot of search-
ing, even for a computer.

Because the op code table of Figure 6.9 is sorted alphabetically, we can
instead use the more efficient binary search algorithm discussed in Section 3.4.2
and shown in Figure 3.18. On the average, the number of comparisons needed to
find an element using binary search is not N/2 but (lg N), the logarithm of N
to the base 2. [Note: (lg N) is the value k such that 2k = N.] For a table of size 
N = 500, N/2 is 250, whereas (lg N) is approximately 9 (29 = 512). This says that
on the average, we find an op code in the table in about 9 comparisons rather
than 250. If our assembly language program contains 10,000 instructions, then
the op code translation task requires only about 10,000 3 9 = 90,000 comparisons
rather than 2.5 million, a reduction of 2,410,000. By selecting a better algorithm,
we achieve an increase in speed of about 96%—quite a significant improvement!

This example demonstrates why algorithm analysis, introduced in Chapter 3,
is such a critically important part of the design and implementation of system
software. Replacing a slow algorithm by a faster one can turn an “insoluble”
problem into a solvable one and a worthless solution into a highly worthwhile
one. Remember that, in computer science, we are looking not just for correct
solutions but for efficient ones as well.

After the op code has been converted into binary, the assembler must per-
form a similar task on the address field. It must convert the address from a sym-
bolic value, such as X or LOOP, into the correct binary address. This task is more
difficult than converting the op code, because the assembler itself must deter-
mine the correct numeric value of all symbols used in the label field. There is no
“built-in” address conversion table equivalent to the op code table of Figure 6.9.

In assembly language a symbol is defined when it appears in the label field
of an instruction or data pseudo-op. Specifically, the symbol is given the value
of the address of the instruction to which it is attached. Assemblers usually
make two passes over the source code, where a pass is defined as the process of
examining and processing every assembly language instruction in the program,
one instruction at a time. During the first pass over the source code, the
assembler looks at every instruction, keeping track of the memory address
where this instruction will be stored when it is translated and loaded into
memory. It does this by knowing where the program begins in memory and
knowing how many memory cells are required to store each machine language
instruction or piece of data. It also determines whether there is a symbol in the
label field of the instruction. If there is, it enters the symbol and the address of
this instruction into a special table that it is building called a symbol table.

We can see this process more clearly in Figure 6.10. The figure assumes
that each instruction and data value occupies one memory cell and that the
first instruction of the program will be placed into address 0.

The assembler looks at the first instruction in the program, IN X, and
determines that when this instruction is loaded into memory, it will go into
memory cell 0. Because the label LOOP is attached to that instruction, the
name LOOP is made equivalent to address 0. The assembler enters the (name,
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value) pair (LOOP, 0) into the symbol table. This process of associating a sym-
bolic name with a physical memory address is called binding, and the two pri-
mary purposes of the first pass of an assembler are (1) to bind all symbolic
names to address values, and (2) to enter those bindings into the symbol
table. Now, any time the programmer uses the name LOOP in the address field,
the assembler can look up that symbol in column 1 of the symbol table and
replace it with the address value in column 2, in this case address 0. (If it is
not found, the programmer has used an undefined symbol, which produces an
error message.)

The next six instructions of Figure 6.10(a), from IN Y to JUMP LOOP, do not
contain labels, so they do not add new entries to the symbol table. However,
the assembler must still update the counter it is using to determine the address
where each instruction will ultimately be stored. The variable used to
determine the address of a given instruction or piece of data is called the
location counter. The location counter values are shown in the third column
of Figure 6.10(a). Using the location counter, the assembler can determine that
the address values of the labels DONE, X, and Y are 7, 9, and 10, respectively. It
binds these symbolic names and addresses and enters them in the symbol table,
as shown in Figure 6.10(b). When the first pass is done, the assembler has con-
structed a symbol table that it can use during pass 2. The algorithm for pass 1
of a typical assembler is shown (using an alternative form of algorithmic nota-
tion called a flowchart) in Figure 6.11.

During the second pass, the assembler translates the source program into
machine language. It has the op code table to translate mnemonic op codes to
binary, and it has the symbol table to translate symbolic addresses to binary.
Therefore, the second pass is relatively simple, involving two table look-ups
and the generation of two binary fields. For example, if we assume that our
instruction format is a 4-bit op code followed by a single 12-bit address, then
given the instruction

SUBTRACT     X

the assembler 

1. Looks up SUBTRACT in the op code table of Figure 6.9 and places the 
4-bit binary value 0101 in the op code field.
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Generation of the Symbol Table

FIGURE 6.10
LABEL CODE LOCATION COUNTER SYMBOL TABLE

LOOP: IN X 0 SYMBOL ADDRESS VALUE

IN Y 1 LOOP 0
LOAD X 2 DONE 7
COMPARE Y 3 X 9
JUMPGT DONE 4 Y 10
OUT X 5
JUMP LOOP 6

DONE: OUT Y 7
HALT 8

X: .DATA 0 9
Y: .DATA 0 10

(a) (b)



2. Looks up the symbol X in the symbol table of Figure 6.10(b) and
places the binary address value 0000 0000 1001 (decimal 9) into the
address field.

After these two steps, the assembler produces the 16-bit instruction

0101 0000 0000 1001

which is the correct machine language equivalent of the assembly language
statement SUBTRACT X.

When it is done with one instruction, the assembler moves on to the next
and translates it in the same fashion. This continues until it sees the pseudo-op
.END, which terminates translation.
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The other responsibilities of pass 2 are also relatively simple: 

• Handling data generation pseudo-ops (only .DATA in our example).

• Producing the object file needed by the loader.

The .DATA pseudo-op asks the assembler to build the proper binary represen-
tation for the signed decimal integer in the address field. To do this, the
assembler must implement the sign/magnitude integer representation algo-
rithms described in Section 4.2.

Finally, after all the fields of an instruction have been translated into
binary, the newly built machine language instruction and the address of where
it is to be loaded are written out to a file called the object file. (On Windows
machines, this is referred to as an .EXE file.) The algorithm for pass 2 of the
assembler is shown in Figure 6.12.

After completion of pass 1 and pass 2, the object file contains the trans-
lated machine language object program, referred to in Figure 6.4. One possible 
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1. Translate the following algorithm into assembly language using the
instructions in Figure 6.5.

2. What is the machine language representation of each of the
following instructions? Assume the symbol table values are as shown
in Figure 6.10(b) and the instruction format is that of Figure 6.13.

a. COMPARE Y
b. JUMPNEQ DONE
c. DECREMENT LOOP

3. What is wrong or inconsistent with the instruction that is shown in
Problem 2(c)?

4. Take the assembly language program that you developed in Problem 1
and determine the physical memory address associated with each
label in the symbol table. (Assume the first instruction is loaded into
address 0 and that each instruction occupies one cell.)

PRACTICE PROBLEMS

Step Operation
1 Set Negative Count to 0

2 Set i to 1

3 While i # 50 do lines 4 through 6

4 Input a number N

5 If N , 0 then increment Negative Count by 1

6 Increment i by 1

7 End of the loop

8 Output the value of Negative Count

9 Stop
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Example of an Object Program

FIGURE 6.13
INSTRUCTION FORMAT: OP CODE ADDRESS

4 bits 12 bits

OBJECT PROGRAM:

Address Machine Language Instruction Meaning
0000 1101 000000001001 IN X
0001 1101 000000001010 IN Y
0010 0000 000000001001 LOAD X
0011 0111 000000001010 COMPARE Y
0100 1001 000000000111 JUMPGT DONE
0101 1110 000000001001 OUT X
0110 1000 000000000000 JUMP LOOP
0111 1110 000000001010 OUT    Y
1000 1111 000000000000 HALT
1001 0000 000000000000 The constant 0
1010 0000 000000000000 The constant 0

6.4 Operating Systems

To carry out the services just described (translate a program, load a program,
and run a program), a user must issue system commands. These commands
may be lines of text typed at a terminal, such as

>assemble MyProg (Invoke the assembler to translate a program called
MyProg.)

>run MyProg (Load the translated MyProg and start execution.)

or they may be represented by icons displayed on the screen and selected with
a mouse and a button, using a technique called point-and-click.

Regardless of how the process is initiated, the important question is:
what program examines these commands? What piece of system software waits
for requests and activates other system programs like a translator or loader to
service these requests? The answer is the operating system, and, as shown in
Figure 6.2, it is the “top-level” system software component on a computer. 

object program for the assembly language program of Figure 6.10(a) is shown
in Figure 6.13. (Note that a real object file contains only the address and
instruction fields. The meaning field is included here for clarity only.)

The object program shown in Figure 6.13 becomes input to yet another
piece of system software called a loader. It is the task of the loader to read
instructions from the object file and store them into memory for execution. To
do this, it reads an address value—column 1 of Figure 6.13—and a machine
language instruction—column 2 of Figure 6.13—and stores that instruction
into the specified memory address. This operation is repeated for every
instruction in the object file. When loading is complete, the loader places the
address of the first instruction (0 in this example) into the program counter
(PC) to initiate execution. The hardware, as we learned in Chapter 5, then
begins the fetch, decode, and execute cycle starting with the instruction
whose address is located in the PC, namely the beginning of this program.



6.4.1 Functions of an Operating System

An operating system is an enormously large and complex piece of software
that has many responsibilities within a computer system. This section exam-
ines five of the most important tasks that it performs.

THE USER INTERFACE. The operating system is executing whenever no other
piece of user or system software is using the processor. Its most important task
is to wait for a user command delivered via the keyboard, mouse, or other input
device. If the command is legal, the operating system activates and schedules
the appropriate software package to process the request. In this sense, the
operating system acts like the computer’s receptionist and dispatcher.

Operating system commands usually request access to hardware resources
(processor, printer, communication lines), software services (translator, loader,
text editor, application program), or information (data files, date, time). Examples
of typical operating system commands are shown in Figure 6.14. Modern operat-
ing systems can execute dozens or even hundreds of different commands.

After a user enters a command, the operating system determines which
software package needs to be loaded and put on the schedule for execution.
When that package completes execution, control returns to the operating sys-
tem, which waits for a user to enter the next command. This user interface
algorithm is diagrammed in Figure 6.15.

The user interfaces on the operating systems of the 1950s, 1960s, and
1970s were text oriented. The system displayed a prompt character on the
screen to indicate that it was waiting for input, and then it waited for some-
thing to happen. The user entered commands in a special, and sometimes
quite complicated, command language. For example, on the UNIX operating
system, widely used on personal computers and workstations, the following
command asks the system to list the names and access privileges of the files
contained in the home directory of a user called mike.

> ls -al /usr/mike/home   (“>”is the prompt character)

As you can see, commands were not always easy to understand, and learning
the command language of the operating system was a major stumbling block
for new users. Unfortunately, without first learning some basic commands, no
useful work could be done.
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Some Typical Operating System
Commands

FIGURE 6.14

• Translate a program
• Run a program
• Save information in a file
• Retrieve a file previously stored
• List all the files for this user
• Print a file on a specified device
• Delete or rename a file
• Copy a file from one I/O device to another
• Let the user set or change a password
• Establish a network connection
• Tell me the current time and date



Because users found text-oriented command languages very cumbersome,
virtually all modern operating systems now include a graphical user interface, or
GUI. To communicate with a user, a GUI supports visual aids and point-
and-click operations, rather than textual commands. The interface uses icons,
pull-down menus, scrolling windows, and other visual elements and graphical
metaphors that make it much easier for a user to formulate requests.

For example, Figure 6.16 shows a window listing the folders on the hard
disk called mike. One of these is a folder called home. To list all the files con-
tained in this folder, a user points-and-clicks on it, and the list of its files
appears in a new window. Compare the clarity of that operation with the pre-
ceding UNIX command that does the same thing.

Graphical interfaces are a good example of the high-level virtual machine
created by the operating system. A GUI hides a great deal of the underlying
hardware and software, and it makes the computer appear very easy to use. In
fact, the computer that produces the elegant windowing environment shown in
Figure 6.16 is the same Von Neumann machine described in Chapters 4 and 5.
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SYSTEM SECURITY AND PROTECTION. In addition to being a receptionist,
the operating system also has the responsibilities of a security guard—con-
trolling access to the computer and its resources. It must prevent unautho-
rized users from accessing the system and prevent authorized users from doing
unauthorized things.

At a minimum, the operating system must not allow people to access the
computer if they have not been granted permission. In the “olden days” of com-
puting (the 1950s and 1960s), security was implemented by physical means—
walls and locked doors around the computer and security guards at the door to
prevent unauthorized access. However, when telecommunications networks
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In January 1984, Apple Computer launched its new line
of Macintosh computers with a great deal of showman-
ship: a TV commercial at the 1984 NFL Superbowl Game.
The company described the Macintosh as a computer
that anyone could understand and use—“a machine for
the rest of us.” People who saw and used it quickly
agreed, and in the early days, its major selling point was
that “a Macintosh is much easier to use than an IBM PC.”
However, the Macintosh and IBM PC were extremely sim-
ilar in terms of hardware, and they both used something
like the architecture of Figure 5.18. Both systems used
Von Neumann–type processors, and these processors
executed similar sets of machine language instructions
exactly as described in Chapter 5. In fact, in 2006 Apple
began using the same type of Intel processors as in the
IBM PC and its clones. It certainly was not the underly-
ing hardware that created these huge differences in ease
of use.

What made the Macintosh easier to use was its rad-
ically new graphical user interface, created by two sys-

tem software packages called the Finder and the System.
They produced a sophisticated visual environment that
most users found much easier to understand than the
text-oriented interface of MS-DOS, the most popular PC-
based operating system of the 1980s and early 1990s.
IBM users quickly realized the importance of having a
powerful user interface, and in the early and mid-1990s
began to switch to Microsoft Windows, which provided a
windowing environment similar to the Macintosh. Newer
versions of these systems, such as Mac OS X, Windows NT,
Windows XP, and Windows Vista all represent attempts at
creating an even more powerful and easy to use virtual
environment.

We can see now that it was wrong for Apple to say
that “a Macintosh is easier to use than a PC.” What they
should have said is that “the virtual machine environment
created by the Macintosh operating system is easier to use
than the virtual machine environment created by the
Windows operating system.” However, maybe that was just
a little too wordy!

A Machine for 
the Rest of Us

mike

 5 items, 45.51 GB available

SimpleText

Home

Graphing Calculator

Internet SimpleSound

Utilities

Example of a Graphical User
Interface

FIGURE 6.16



appeared on the scene in the late 1960s and 1970s (we will discuss them in detail
in Chapter 7), access to computers over telephone lines became possible from
virtually anywhere in the world, and responsibility for access control migrated
from the guard at the door to the operating system inside the machine.

In most operating systems, access control means requiring a user to enter
a legal user name and password before any other requests are accepted. For
example, here is what a user sees when logging on to the network server at
Macalester College:

Welcome to the Macalester College Computing Center.
Please enter your User Name and Password in the appropriate boxes:
User Name:
Password:

If an incorrect user name or password is entered, the operating system does
not allow access to the computer.

It is also the operating system’s responsibility to safeguard the password
file that stores all valid user name/password combinations. It must prevent
this file from being accessed by any unauthorized users, because that would
compromise the security of the entire system. This is analogous to putting a
lock on your door but also making sure that you don’t lose the key. (Of course,
some privileged users, called superusers—usually computer center employees
or system administrators—must be able to access and maintain this file.) To
provide this security, the operating system may choose to encrypt the pass-
word file using an encoding algorithm that is extremely difficult to crack. A
thief must steal not only the encrypted text but also the algorithm to change
the encrypted text back to the original clear text. Without this information the
stolen password file is useless. Operating systems use encryption algorithms
whenever they must provide a high degree of security for sensitive informa-
tion. We will learn more about these encryption algorithms in Chapter 8.

Even when valid users gain access to the system, there are things they should
not be allowed to do. The most obvious is that they should access only their own
personal information. They should not be able to look at the files or records of
other users. Therefore, when the operating system gets a request such as

> open filename (Open a file and allow this user to access it.)

(Or click Open in the File menu.)

it must determine who is the owner of the file—that is, who created it. If the
individual accessing the file is not the owner, then it usually rejects the
request. However, most operating systems allow the owner of a file to provide
a list of additional authorized users or a general class of authorized users,
such as all students or all faculty. Like the password file, these authorization
lists are highly sensitive files, and operating systems generally store them in
an encrypted format.

Most modern operating systems not only determine whether you are
allowed to access a file, they also check what operations you are permitted to
do on that file. The following hierarchically ordered list shows the different
types of operations that users may be permitted to do on a file:

• Read the information in the file but not change it

• Append new information to the end of the file but not change existing
information
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• Change existing information in the file

• Delete the file from the system

For example, the grade file GRADES of a student named Smith could have the
authorization list shown in Figure 6.17.

This authorization list says that Smith, the student whose grades are in the
file, has the right to access his or her own file, but only to read the information.

Jones, a clerk in the administration center, can read the file and can append
new grades to the end of the file at the completion of the term. Adams, the
school’s registrar, can read and append information and is also allowed to change
the student’s grades if an error was made. Doe, the director of the computer cen-
ter, can do all of these operations as well as delete the file and all its information.

Permission to look at information can be given to a number of people.
However, changing information in a file is a sensitive operation (think about
changing a payroll file), and permission to make changes must be limited.
Deleting information is the most powerful and potentially damaging operation
of all, and its use must be restricted to people at the highest level. It is the
operating system’s responsibility to help ensure that individuals are autho-
rized to carry out the operation they request.

Computers today play such a critical role in the storage and management
of economic and personal data that this security responsibility has taken on an
increasingly important role. We investigate this topic in detail in Chapter 8.

EFFICIENT ALLOCATION OF RESOURCES. Section 5.2.2 described the
potentially enormous difference in speed between a processor and an I/O
unit: up to 5 orders of magnitude. A hardware device called an I/O controller
(Figure 5.9) frees the processor to do useful work while the I/O operation is
being completed. What useful work can a processor do in this free time? What
ensures that this valuable resource is used efficiently? Again, it is the operat-
ing system’s responsibility to see that the resources of a computer system are
used efficiently as well as correctly.

To ensure that a processor does not sit idle if there is useful work to do,
the operating system keeps a queue (a waiting line) of programs that are
ready to run. Whenever the processor is idle, the operating system picks one
of these jobs and assigns it to the processor. This guarantees that the proces-
sor always has something to do.

To see how this algorithm might work, let’s define the following three
classes of programs:

Running The one program currently executing on the processor
Ready Programs that are loaded in memory and ready to run but are

not yet executing
Waiting Programs that cannot run because they are waiting for an I/O

operation (or some other time-consuming event) to finish
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File: GRADES

NAME PERMITTED OPERATIONS

Smith R (R = Read only)
Jones RA (A = Append)
Adams RAC (C = Change)
Doe RACD (D = Delete)

Authorization List for the File
GRADES

FIGURE 6.17



Here is how these three lists might look at some instant in time:

Waiting Ready Running

B A
C
D

There are four programs, called A, B, C, and D, in memory. Program A is exe-
cuting on the processor; B, C, and D are ready to run and are in line waiting
their turn. Assume that program A performs the I/O operation “read a sector
from the disk.” (Maybe it is a word processor, and it needs to get another
piece of the document on which you are working.) We saw in Section 5.2.2
that, relative to processing speeds, this operation takes a long time, about
10 msec or so. While it is waiting for this disk I/O operation to finish, the
processor has nothing to do, and system efficiency plummets.

To solve this problem, the operating system can do some shuffling. It first
moves program A to the waiting list, because it must wait for its I/O operation
to finish before it can continue. It then selects one of the ready programs
(say B) and assigns it to the processor, which starts executing it. This leads to
the following situation:

Waiting Ready Running
A C B

D

Instead of sitting idle while A waits for I/O, the processor works on program B
and gets something useful done. This is equivalent to working on another
project while waiting for your secretary to fetch a document, instead of wait-
ing and doing nothing. 

Perhaps B also does an I/O operation. If so, then the operating system
repeats the same steps. It moves B to the waiting list, picks any ready program
(say C) and starts executing it, producing the following situation:

Waiting Ready Running
A D C
B

As long as there is at least one program that is ready to run, the processor
always has something useful to do.

At some point, the I/O operation that A started finishes, and the “I/O
completed interrupt signal” described in Section 5.2.2 is generated. The
appearance of that signal indicates that program A is now ready to run, but it
cannot do so immediately because the processor is currently assigned to C.
Instead, the operating system moves A to the ready list, producing the follow-
ing situation:

Waiting Ready Running
B D C

A

Programs cycle from running to waiting to ready and back to running, each
one using only a portion of the resources of the processor.

In Chapter 5 we stated that the execution of a program is an unbroken
repetition of the fetch/decode/execute cycle from the first instruction of the
program to the HALT. Now we see that this view may not be completely
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accurate. For reasons of efficiency, the running history of a program may be a
sequence of starts and stops—a cycle of execution, waits for I/O operations,
waits for the processor, followed again by execution. By having many programs
loaded in memory and sharing the processor, the operating system can use the
processor to its fullest capability and run the overall system more efficiently.
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Assume that programs spend about 25% of their time waiting for I/O
operations to complete. If there are two programs loaded into mem-
ory, what is the likelihood that both programs will be blocked waiting
for I/O and there will be nothing for the processor to do? What per-
centage of time will the processor be busy? (This value is called
processor utilization.) By how much does processor utilization
improve if we have four programs in memory instead of two?

PRACTICE PROBLEM

THE SAFE USE OF RESOURCES. Not only must resources be used efficiently,
they must also be used safely. That doesn’t mean an operating system must
prevent users from sticking their fingers in the power supply and getting elec-
trocuted! The job of the operating system is to prevent programs or users from
attempting operations that cause the computer system to enter a state where
it is incapable of doing any further work—a “frozen” state where all useful
work comes to a grinding halt.

To see how this can happen, imagine a computer system that has one
laser printer, one data file called D, and two programs A and B. Program A
wants to load data file D and print it on the laser printer. Program B wants to
do the same thing. Each of them makes the following requests to the operat-
ing system:

Program A Program B

Get data file D. Get the laser printer.
Get the laser printer. Get data file D.
Print the file. Print the file.

If the operating system satisfies the first request of each program, then A
“owns” data file D and B has the laser printer. When A requests ownership of
the laser printer, it is told that the printer is being used by B. Similarly, B is
told that it must wait for the data file until A is finished with it. Each program
is waiting for a resource to become available that will never become free. This
situation is called a deadlock. Programs A and B are in a permanent waiting
state, and if there is no other program ready to run, all useful work on the
system ceases.

More formally, deadlock means that there is a set of programs, each of
which is waiting for an event to occur before it may proceed, but that event
can be caused only by another waiting program in the set. Another example is
a telecommunication system in which program A sends messages to program B,
which acknowledges their correct receipt. Program A cannot send another
message to B until it knows that the last one has been correctly received.



Program A Program B

Message S
d Acknowledge

Message S
d Acknowledge

Message S

Suppose B now sends an acknowledgment, but it gets lost. (Perhaps there
was static on the line, or a lightning bolt jumbled the signal.) What happens?
Program A stops and waits for receipt of an acknowledgment from B. Program
B stops and waits for the next message from A. Deadlock! Neither side can
proceed, and unless something is done, all communication between the two
will cease.

How does an operating system handle deadlock conditions? There are
two basic approaches, called deadlock prevention and deadlock recovery.
In deadlock prevention, the operating system uses resource allocation
algorithms that prevent deadlock from occurring in the first place. In the
example of the two programs simultaneously requesting the laser printer
and the data file, the problem is caused by the fact that each program has a
portion of the resources needed to solve its problem, but neither has all that
it requested. To prevent this, the operating system can use the following
algorithm:

If a program cannot get all the resources that it needs, it must give up all the
resources it currently owns and issue a completely new request.

Essentially, this resource allocation algorithm says, If you cannot get every-
thing you need, then you get nothing. If we had used this algorithm, then
after program A acquired the laser printer but not the data file, it would have
had to relinquish ownership of the printer. Now B could get everything it
needed to execute, and no deadlock would occur. (It could also work in the
reverse direction, with B relinquishing ownership of the data file and A get-
ting the needed resources. Which scenario unfolds depends on the exact order
in which requests are made.)

In the telecommunications example, one deadlock prevention algorithm is
to require that messages and acknowledgments never get garbled or lost.
Unfortunately, that is impossible. Real-world communication systems (tele-
phone, microwave, satellite) do make errors, so we are powerless to guarantee
that deadlock conditions can never occur. Instead we must detect them and
recover from them when they do occur. This is typical of the class of methods
called deadlock recovery algorithms.

For example, here is a possible algorithmic solution to our telecommuni-
cations problem:

Sender: Number your messages with the nonnegative integers 0, 1, 2, . . .
and send them in numerical order. If you send message number i and
have not received an acknowledgment for 30 seconds, send message i
again.

Receiver: When you send an acknowledgment, include the number of the
message you received. If you get a duplicate copy of message i, send
another acknowledgment and discard the duplicate.
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Using this algorithm, here is what might happen:

Program A Program B

Message (1) S
d Acknowledge (1)

Message (2) S
d Acknowledge (2) 

(Assume this acknowledgment is lost.)

At this point we have exactly the same deadlock condition described earlier.
However, this time we are able to recover in a relatively short period. For
30 seconds nothing happens. However, after 30 seconds A sends message (2) a
second time. B acknowledges it and discards it (because it already has a copy),
and communication continues:

(Wait 30 seconds.)
Message (2) S (Discard this duplicate copy but acknowledge it.)

d Acknowledge (2)
Message (3) S

We have successfully recovered from the error, and the system is again up and
running.

Regardless of whether we prevent deadlocks from occurring or recover
from those that do occur, it is the responsibility of the operating system to
create a virtual machine in which the user never sees deadlocks and does not
worry about them. The operating system should create the illusion of a
smoothly functioning, highly efficient, error-free environment—even if, as
we know from our glimpse behind the scenes, that is not always the case.

SUMMARY. In this section we have highlighted some of the major responsibil-
ities of the critically important software package called the operating system:

• User interface management (a receptionist)

• Control of access to system and files (a security guard)

• Program scheduling and activation (a dispatcher)

• Efficient resource allocation (an efficiency expert)

• Deadlock detection and error detection (a traffic officer)

These are by no means the operating system’s only responsibilities, which can
also include such areas as input/output processing, allocating priorities to
programs, swapping programs in and out of memory, recovering from power
failures, managing the system clock, and dozens of other tasks, large and
small, essential to keeping the computer system running smoothly.

As you can imagine, given all these responsibilities, an operating system is
an extraordinarily complex piece of software. An operating system for a large
network of computers can require millions of lines of code, take thousands of
person-years to develop, and cost as much to develop as the hardware on which
it runs. Even operating systems for personal computers and workstations (e.g.,
Windows Vista, Linux, Mac OS X) are huge programs developed over periods
of years by teams of dozens of computer scientists. Designing and creating a

272 LEVEL 3 CHAPTER 6: An Introduction to System Software and Virtual Machines



high-level virtual environment is a difficult job, but without it, computers
would not be so widely used nor anywhere near as important as they are today.

6.4.2 Historical Overview of Operating 
Systems Development

Like the hardware on which it runs, system software has gone through a number
of changes since the earliest days of computing. The functions and capabilities of
a modern operating system described in the previous section did not appear all at
once but evolved over many years.

During the first generation of system software (roughly 1945–1955),
there really were no operating systems and there was very little software
support of any kind—typically just the assemblers and loaders described in
Section 6.3. All machine operation was “hands-on.” Programmers would sign
up for a block of time and, at the appointed time, show up in the machine
room carrying their programs on punched cards or tapes. They had the entire
computer to themselves, and they were responsible for all machine operation.
They loaded their assembly language programs into memory along with the
assembler and, by punching some buttons on the console, started the transla-
tion process. Then they loaded their program into memory and started it run-
ning. Working with first-generation software was a lot like working on the
naked machine described at the beginning of the chapter. It was attempted
only by highly trained professionals intimately familiar with the computer
and its operation.

System administrators quickly realized that this was a horribly inefficient
way to use an expensive piece of equipment. (Remember that these early com-
puters cost millions of dollars.) A programmer would sign up for an hour of
computer time, but the majority of that time was spent analyzing results and
trying to figure out what to do next. During this “thinking time,” the system
was idle and doing nothing of value. Eventually, the need to keep machines
busy led to the development of a second generation of system software called
batch operating systems (1955–1965).
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The design and development of an operating system like
Windows Vista or Mac OS X is an enormous undertaking
that can take thousands of person-years to complete. Fur-
thermore, the likelihood of getting everything correct is
quite small. (We have all had the experience of being frus-
trated by the freezes, errors, and crashes of our operating
system.) One of the ways that people are attempting to
address this issue is via the Open Source Movement. This is
a worldwide movement of people who feel that the best
way to develop efficient and bug-free software is to enlist
the cooperation of interested, skilled, and altruistic pro-
grammers who are willing to work for free. They are
inspired simply by the goals of producing high-quality

software and of working cooperatively with like-minded
individuals. The software is distributed to anyone who
wants to use it, and it can be modified, improved, and
changed by any user. This is quite different from the pro-
prietary approach to software development within a corpo-
ration such as IBM or Microsoft, in which the development
process is kept secret, and the source code is not shared
with anyone else.

Essentially, the Open Source Movement encourages con-
tributions to the development process from anyone in the
world, in the belief that the more open the process and the
more eyes examining the code, the more likely it is that
errors or invalid assumptions will be located and corrected.
Both the Linux operating system and the Apache Web server
package were developed using the open source model.

The Open Source 
Movement



In second-generation batch operating systems, rather than operate the
machine directly, a programmer handed the program (typically entered on
punched cards) to a trained computer operator, who grouped it into a
“batch”— hence the name. After a few dozen programs were collected, the
operator carried this batch of cards to a small I/O computer that put these
programs on tape. This tape was carried into the machine room and loaded
onto the “big” computer that actually ran the users’ programs, one at a time,
writing the results to yet another tape. During the last stage, this output tape
was carried back to the I/O computer to be printed and handed to the pro-
grammer. The entire cycle is diagrammed in Figure 6.18.

This cycle may seem cumbersome and, from the programmer’s point of
view, it was. (Every programmer who worked in the late 1950s or early 1960s
has horror stories about waiting many hours—even days—for a program to be
returned, only to discover that there was a missing comma.) From the com-
puter’s point of view, however, this new batch system worked wonderfully, and
system utilization increased dramatically. No longer were there delays while a
programmer was setting up to perform an operation. There were no long peri-
ods of idleness while someone was mulling over what to do next. As soon as
one job was either completed normally or halted because of an error, the com-
puter went to the input tape, loaded the next job, and started execution. As
long as there was work to be done, the computer was kept busy.

Because programmers no longer operated the machine, they needed a way
to communicate to the operating system what had to be done, and these early
batch operating systems were the first to include a command language, also
called a job control language. This was a special-purpose language in which
users wrote commands specifying to the operating system (or the human
operator) what operations to perform on their programs. These commands
were interpreted by the operating system, which initiated the proper action.
The “receptionist/dispatcher” responsibility of the operating system had been
born. A typical batch job was a mix of programs, data, and commands, as
shown in Figure 6.19.

By the mid-1960s, the use of integrated circuits and other new technolo-
gies had boosted computational speeds enormously. The batch operating
system just described kept only a single program in memory at any one time.
If that job paused for a few milliseconds to complete an I/O operation (such as
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The most widely used measure of program size is source
lines of code (abbreviated SLOC).  This is a count of the
total number of non-blank, non-comment lines in a piece of
software.  According to Wikipedia, a well-known Internet
encyclopedia (www.wikipedia.org), the estimated size of
Microsoft’s Windows Vista, one of the most widely used oper-
ating systems in the world, is 50 million SLOC.  If you were
to print out the entire Vista program, at 60 lines per printed

page you would generate about 833,000 pages of output, or
roughly the number of pages in 2,500 novels.  If you were to
store that output on a bookshelf, it would stretch for almost
the length of an American football field.  

It is estimated that the average programmer can pro-
duce about 40 lines of correct code per day.  If that num-
ber is correct, then the Windows Vista operating system
represents 1,250,000 person-days, or (at 240 working days
per year) about 5,200 person years of effort.  

Now That’s Big!

www.wikipedia.org


read a disk sector or print a file on the printer), the processor simply waited.
As computers became faster, designers began to look for ways to use those idle
milliseconds. The answer they came up with led to a third generation of
operating systems called multiprogrammed operating systems (1965–1985).

In a multiprogrammed operating system, many user programs are simulta-
neously loaded into memory, rather than just one:

If the currently executing program pauses for I/O, one of the other ready jobs is
selected for execution so that no time is wasted. As we described earlier, this cycle
of running/waiting/ready states led to significantly higher processor utilization.

To make this all work properly, the operating system had to protect user
programs (and itself) from damage by other programs. When there was a sin-
gle program in memory, the only user program that could be damaged was
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your own. Now, with many programs in memory, an erroneous instruction in
one user’s program could wreak havoc on any of the others. For example, the
seemingly harmless instruction

STORE 1000    --Store the contents of register R into memory cell 1000.

should not be executed if the physical address 1000 is not located within this
user’s program. It could wipe out an instruction or piece of data in someone
else’s program, causing unexpected behavior and (probably) incorrect results.

These third-generation operating systems kept track of the upper and
lower address bounds of each program in memory

and ensured that no program ever attempted a memory reference outside this
range. If it did, then the system ceased execution of that program, produced
an error message, removed that program from memory, and began work on
another ready program.

Similarly, the operating system could no longer permit any program to
execute a HALT instruction, because that would shut down the processor and
prevent it from finishing any other program currently in memory.
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Command to identify the end of the entire job$END

Command to execute the object program$RUN
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These third-generation systems developed the concept of user operation
codes that could be included in any user program, and privileged operation
codes whose use was restricted to the operating system or other system soft-
ware. The HALT instruction became a privileged op code that could be exe-
cuted only by a system program, not by a user program.

These multiprogrammed operating systems were the first to have extensive
protection and error detection capabilities, and the “traffic officer” responsi-
bility began to take on much greater importance than in earlier systems.

During the 1960s and 1970s, computer networks and telecommunications
systems (which are discussed in detail in Chapter 7) developed and grew
rapidly. Another form of third-generation operating system evolved to take
advantage of this new technology. It is called a time-sharing system, and it is
a variation of the multiprogrammed operating system just described.

In a time-sharing system, many programs can be stored in memory rather
than just one. However, instead of requiring the programmer to load all system
commands, programs, and data in advance, a time-sharing system allows them
to be entered online—that is, entered dynamically by users sitting at termi-
nals and communicating interactively with the operating system. This config-
uration is shown in Figure 6.20.

The terminals are connected to the central computer via communication
links and can be located anywhere. This new system design freed users from
the “tyranny of geography.” No longer did they have to go to the computer to
hand in their deck of cards; the services of the computer were delivered
directly to them via their terminal. However, now that the walls and doors of
the computer center no longer provided security and access control, the
“security guard/watchman” responsibility became an extremely important
part of operating system design. (We discuss the topic of computer security at
length in Chapter 8.)

In a time-sharing system, a user would sit down at a terminal, log in, and
initiate a program or make a request by entering a command:

>run MyJob

In this example, the program called MyJob would be loaded into memory and
would compete for the processor with all other ready programs. When the
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program was finished running, the system would again display a prompt (“>”)
and wait for the next command. The user could examine the results of the last
program, think for a while, and decide what to do next, rather than having to
determine the entire sequence of operations in advance. For example, say
there is a mistake in the program and we want to correct it using a text edi-
tor. We can enter the command

>edit MyJob

which loads the text editor into memory, schedules it for execution, and
causes the file system to load the file called MyJob.

However, one minor change was needed to make this new system work effi-
ciently. In a “true” multiprogrammed environment, the only event, other than
termination, that causes a program to be suspended (taken off the processor)
is the execution of a slow I/O operation. What if the program currently execut-
ing is heavily compute-bound? That is, it does mostly computation and little
or no I/O (for example, computing the value of p to a million decimal places).
It could run for minutes or even hours before it is suspended and the processor
is given to another program. During that time, all other programs would have
to sit in the ready queue, waiting their turn. This is analogous to being in line
at a bank behind someone depositing thousands of checks.

In a noninteractive environment this situation may be acceptable because
no one is sitting at a terminal waiting for output. In fact, it may even be desir-
able, because a compute-bound job keeps the processor heavily utilized. In a
time-sharing system, however, this waiting would be disastrous. There are users
sitting at terminals communicating directly with the system and expecting
an immediate response. If they do not get some type of response soon after
entering a command, they may start banging on the keyboard and, eventually,
give up. (Isn’t that what you would do if the party at the other end of a tele-
phone did not respond for several minutes?)

Therefore, to design a time-sharing system, we must make the following
change to the multiprogrammed operating system described earlier. A program
can keep the processor until either of the following two events occurs:

• It initiates an I/O operation.

• It has run for a maximum length of time, called a time slice.

Typically, this time slice is on the order of about a tenth of a second. This
may seem like a minuscule amount of time, but it isn’t. As we saw in Chapter 5,
a typical time to fetch and execute a machine language instruction is about
1 nsec. Thus, in the 0.1-second time slice allocated to a program, a modern
processor could execute roughly 100 million machine language instructions.

The basic idea in a time-sharing system is to service many users in a
circular, round-robin fashion, giving each user a small amount of time and then
moving on to the next. If there are not too many users on the system, the
processor can get back to a user before he or she even notices any delay. For
example, if there are five users on a system and each one gets a time slice of
0.1 second, a user will wait no more than 0.5 second for a response to a com-
mand. This delay would hardly be noticed. However, if 40 or 50 users were
actively working on the system, they might begin to notice a 4- or 5-second
delay and become irritated. (This is an example of the “virtual environment”
created by the operating system not being helpful and supportive!) The number



of simultaneous users that can be serviced by a time-sharing system depends
on (1) the speed of the processor, (2) the time slice given to each user, and
(3) the type of operation each user is doing (i.e., how many use the full time
slice, and how many stop before that).

Time sharing was the dominant form of operating system during the
1970s and 1980s, and time-sharing terminals appeared throughout govern-
ment offices, businesses, and campuses.

The early 1980s saw the appearance of the first personal computers, and
in many business and academic environments the “dumb” terminal began to
be replaced by these newer PCs. Initially, the PC was viewed as simply another
type of terminal, and during its early days it was used primarily to access a
central time-sharing system. However, as PCs became faster and more power-
ful, people soon realized that much of the computing being done on the cen-
tralized machine could be done much more conveniently and cheaply by the
microcomputers sitting on their desktops.

During the late 1980s and the 1990s, computing rapidly changed from the
centralized environment typical of batch, multiprogramming, and timesharing
systems to a distributed environment in which much of the computing was
done remotely in the office, laboratory, classroom, and factory. Computing
moved from the computer center out to where the real work was actually
being done. The operating systems available for early personal computers were
simple single-user operating systems that gave one user total access to the
entire system. Because personal computers were so cheap, there was really no
need for many users to share their resources, and the time-sharing and multi-
programming designs of the third generation became less important.

Although personal computers were relatively cheap (and were becoming
cheaper all the time), many of the peripherals and supporting gear—laser
printers, large disk drives, tape back-up units, and specialized software
packages—were not. In addition, electronic mail was growing in importance,
and standalone PCs were unable to communicate easily with other users and
partake in this important new application. The personal computer era
required a new approach to operating system design. It needed a virtual envi-
ronment that supported both local computation and remote access to other
users and shared resources.

This led to the development of a fourth-generation operating system
called a network operating system (1985–present). A network operating
system manages not only the resources of a single computer, but also the
capabilities of a telecommunications system called a local area network, or
LAN for short. (We will take a much closer look at these types of networks in
Chapter 7.) A LAN is a network that is located in a geographically contiguous
area such as a room, a building, or a campus. It is composed of personal
computers (workstations), and special shared resources called servers, all
interconnected via a high-speed link made of coaxial or fiber-optic cable.
A typical LAN configuration is shown in Figure 6.21.

The users of the individual computers in Figure 6.21, called clients, can
perform local computations without regard to the network. In this mode, the
operating system provides exactly the same services described earlier: loading
and executing programs and managing the resources of this one machine.

However, a user can also access any one of the shared network resources
just as though it were local. These resources are provided by a computer called
a server and can include a special high-quality color printer, a shared file sys-
tem, or access to an international computer network. The system software
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does all the work needed to access those resources, hiding the details of
communication and competition with other nodes for this shared resource. 

Network operating systems create a virtual machine that extends beyond
the boundaries of the local system on which the user is working. They let us
access a huge pool of resources—computers, servers, and users—exactly as
though they were connected to our own computers. This fourth-generation
virtual environment, exemplified by operating systems such as Windows NT,
Windows Vista, Mac OS X, and Linux, is diagrammed in Figure 6.22.

One important variation of the network operating system is called a 
real-time operating system. During the 1980s and 1990s, computers got
smaller and smaller, and it became common to place them inside other pieces of
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equipment to control their operation. These types of computers are called
embedded systems; examples include computers placed inside automobile
engines, microwave ovens, thermostats, assembly lines, airplanes, and watches.

For example, the Boeing 787 Dreamliner jet contains hundreds of embed-
ded computer systems inside its engines, braking system, wings, landing gear,
and cabin. The central computer controlling the overall operation of the air-
plane is connected by a LAN to these embedded computers that monitor sys-
tem functions and send status information. 

In all the operating systems described thus far, we have implied that the
system satisfies requests for services and resources in the order received. In
some systems, however, certain requests are much more important than oth-
ers, and when these important requests arrive, we must drop everything else
to service them. Imagine that the central computer on our Boeing 787
receives two requests. The first request is from a cabin monitoring sensor that
wants the central system to raise the cabin temperature a little for passenger
comfort. The second message comes from the on-board collision detection
system and says that another plane is approaching on the same flight path,
and there is about to be a mid-air collision. It would like the central computer
to take evasive action. Which request should be serviced next? Of course, the
collision detection message, even though it arrived second. 

A real-time operating system manages the resources of embedded com-
puters that are controlling ongoing physical processes and that have requests
that must be serviced within fixed time constraints. This type of operating
system guarantees that it can service these important requests within that
fixed amount of time. For example, it may guarantee that, regardless of what
else it is currently doing, if a collision detection message arrives, the software
implementing collision avoidance will be activated and executed within
50 milliseconds. Typically, the way that this guarantee is implemented is that
all requests to a real-time operating system are prioritized. Instead of being
handled in first-come, first-served order, they are handled in priority
sequence, from most important to least important, where “importance” is
defined in terms of the time-critical nature of the request. A real-time operat-
ing system lets passengers be uncomfortably cool for a few more seconds while
it handles the problem of avoiding a mid-air collision.

6.4.3 The Future

The discussions in this chapter demonstrate that, just as there have been huge
changes in hardware over the last 50 years, there have been equally huge
changes in system software. We have progressed from a first-generation envi-
ronment in which a user personally managed the computing hardware, using a
complicated text-oriented command language, to current fourth-generation
systems in which users can request services from anywhere in a network,
using enormously powerful and easy-to-use graphical user interfaces.

And just as hardware capabilities continue to improve, there is a good
deal of computer science research directed at further improving the high-level
virtual environment created by a modern fourth-generation operating system.
A fifth-generation operating system is certainly not far off.

These next-generation systems will have even more powerful user inter-
faces that incorporate not only text and graphics but photography, touch,
sound, fax, video, and TV. These multimedia user interfaces will interact



with users and solicit requests in a variety of ways. Instead of point-and-click,
a fifth-generation system might allow you to speak the command, “Please dis-
play my meeting schedule for May 6.” The visual display may include separate
windows for a verbal reminder about an important event and a digitally
encoded photograph of the person with whom you are meeting. Just as text-
only systems are now viewed as outmoded, today’s text and graphics system
may be viewed as too limiting for high-quality user/system interaction.

A fifth-generation operating system will typically be a parallel process-
ing operating system that can efficiently manage computer systems contain-
ing tens, hundreds, or even thousands of processors. Such an operating system
will need to recognize opportunities for parallel execution, send the separate
tasks to the appropriate processor, and coordinate their concurrent execution,
all in a way that is transparent to the user. On this virtual machine, a user will
be unaware that multiple processors even exist except that programs run 10,
100, or 1,000 times faster. Without this type of software support, a massively
parallel system would be a “naked parallel processor” just as difficult to work
with as the “naked machine” discussed at the beginning of this chapter.

Finally, new fifth-generation operating systems will create a truly
distributed computing environment in which users do not need to know
the location of a given resource within the network. In current network oper-
ating systems, the details of how the communication is done are hidden, but
the existence of separate nodes in the network are not (see Figure 6.22). The
user is aware that a network exists and must specify the network node where
the work is to be done. In a typical fourth-generation network operating sys-
tem, a user issues the following types of commands:

• Access file F on file server S and copy it to my local system.

• Run program P on machine M.

• Save file F on file server T.

• Print file F on print server Q.

Compare these commands with the instructions the manager of a business gives
to an assistant: “Get this job done. I don’t care how or where. Just do it, and
when you are done, give me the results.” The details of how and where to get the
job done are left to the underling. The manager is concerned only with results.

In a truly distributed operating system, the user is the manager and
the operating system the assistant, and the user does not care where or how
the system satisfies a request as long as it gets done correctly. The users of a
distributed system do not see a network of distinct sites or “local” and
“remote” nodes. Instead, they see a single logical system that provides
resources and services. The individual nodes and the boundaries between
them are no longer visible to the user, who thinks only in terms of what must
be done, not where it will be done or which node will do it. This situation is
diagrammed in Figure 6.23.

In a distributed operating system, the commands shown earlier might be
expressed as follows:

• Access file F wherever it is located.

• Run program P on any machine currently available.

• Save file F wherever there is sufficient room.

• Print file F on any laser printer with 400 dpi resolution that is not in use.
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This is certainly the most powerful virtual environment we have yet
described, and an operating system that creates such an environment would
significantly enhance the productivity of all its users. These “fifth-generation
dashboards” will make using the most powerful and most complex computer
system as easy as driving a car—perhaps even easier. Surfing the Web gives us
a good indication of what it will be like to work on a distributed system. When
we click on a link we have no idea at all where that information is located and,
moreover, we don’t care. We simply want that page to appear on our screen. To
us, the Web behaves like one giant logical system even though it is spread out
across hundreds of countries and hundreds of millions of computers.

Figure 6.24 summarizes the historical evolution of operating systems, much
as Figure 1.8 summarized the historical development of computer hardware.
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GENERATION APPROXIMATE DATES MAJOR ADVANCES

First 1945–1955 No operating system available
Programmers operated the machine themselves

Second 1955–1965 Batch operating systems
Improved system utilization
Development of the first command language

Third 1965–1985 Multiprogrammed operating systems
Time-sharing operating systems
Increasing concern for protecting programs from

damage by other programs
Creation of privileged instructions and user

instructions
Interactive use of computers
Increasing concern for security and access control
First personal computer operating systems

Fourth 1985–present Network operating systems
Client-server computing
Remote access to resources
Graphical user interfaces
Real-time operating systems
Embedded systems

Fifth ?? Multimedia user interfaces
Massively parallel operating systems
Distributed computing environments
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1. Describe the user interface in other high-technology
devices commonly found in the home or office, such as a
DVD player, audio system, television, copier, or microwave
oven. Pick one specific device and discuss how well its
interface is designed and how easy it is to use. Does the
device use the same techniques as computer system
interfaces, such as menus and icons?

2. Can you think of situations where you might want to see
the underlying hardware of the computer system? That is,
you want to interact with the actual machine, not the
virtual machine. How could you accomplish this? (Essen-
tially, how could you bypass the operating system?)

3. Assume that you write a letter in English and have a
friend translate it into Spanish. In this scenario, what is
equivalent to the source program of Figure 6.4? The
object program? The assembler?

4. Assume that memory cells 60 and 61 and register R cur-
rently have the following values:

Register R: 13
60: 472
61: –1

Using the instruction set in Figure 6.5, what is in regis-
ter R and memory cells 60 and 61 after completion of
each of the following operations? Assume that each
instruction starts from the above conditions.
a. LOAD 60 d. COMPARE 61
b. STORE 60 e. IN 61 (Assume that the user enters

a 50.)
c. ADD 60 f. OUT 61

5. Assume that memory cell 79 contains the value +6. In
addition, the symbol Z is equivalent to memory location
79. What is placed in register R by each of the following
load commands?
a. LOAD 79 c. LOAD Z
b. LOAD 6 d. LOAD Z + 1 (Assume that this is

allowed.)

6. Say we accidentally execute the following piece of data:

.DATA 16387

Describe exactly what happens. Assume that the format
of machine language instructions on this system is the
same format shown in Figure 6.13.

7. What is the assembly language equivalent of each of the
following binary machine language instructions? Assume

the format described in Figure 6.13 and the numeric op
code values shown in Figure 6.5.

a. 0101001100001100

b. 0011000000000111

8. Is the following data generation pseudo-op legal or ille-
gal? Why?

THREE: .DATA 2

9. Using the instruction set shown in Figure 6.5, translate
the following algorithmic primitives into assembly lan-
guage code. Show all necessary .DATA pseudo-ops.
a. Add 3 to the value of K
b. Set K to (L + 1) – (M + N)
c. If K >10 then output the value of K
d. If (K > L) then output the value of K and increment

K by 1
otherwise output the value of L and increment L by 1

e. Set K to 1
Repeat the next two lines until K > 100

Output the value of K
Increment K by 1

End of the loop

10. What, if anything, is the difference between the follow-
ing two sets of instructions?

LOAD X INCREMENT X

ADD TWO INCREMENT X
.
.
.

TWO: .DATA 2

11. Look at the assembly language program in Figure 6.8. Is
the statement CLEAR SUM on line 2 necessary? Why or
why not? Is the statement LOAD ZERO on line 4 neces-
sary? Why or why not?

12. Modify the program in Figure 6.8 so that it separately
computes and prints the sum of all positive numbers and
all negative numbers and stops when it sees the value 0.
For example, given the input

12, –2, 14, 1, –7, 0

your program should output the two values 27 (the sum of
the three positive values 12, 14, and 1) and –9 (the sum
of the two negative numbers –2 and –7) and then halt.

E X E R C I S E S
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13. Write a complete assembly language program (including
all necessary pseudo-ops) that reads in a series of inte-
gers, one at a time, and outputs the largest and smallest
values. The input will consist of a list of integer values
containing exactly 100 numbers.

14. Assume that we are using the 16 distinct op codes in
Figure 6.5. If we write an assembly language program
that contains 100 instructions and our processor can do
about 50,000 comparisons per second, what is the maxi-
mum time spent doing operation code translation using:
a. Sequential search (Figure 2.9)
b. Binary search (Figure 3.19)

Which one of these two algorithms would you recom-
mend using? Would your conclusions be significantly dif-
ferent if we were programming in an assembly language
with 300 op codes rather than 16? If our program con-
tained 50,000 instructions rather than 100?

15. What value is entered in the symbol table for the symbols
AGAIN, ANS, X, and ONE in the following program?
(Assume that the program is loaded beginning with
memory location 0.)

.BEGIN

--Here is the program.

IN X

LOAD X

AGAIN: ADD ANS

SUBTRACT ONE

STORE ANS

OUT ANS

JUMP AGAIN

--Here are the data.

ANS: .DATA 0

X: .DATA 0

ONE: .DATA 1

.END

16. Look at the assembly language program in Figure 6.8.
Determine the physical memory address associated with
every label in the symbol table. (Assume that the pro-
gram is loaded beginning with memory location 0.)

17. Is the following pair of statements legal or illegal?
Explain why.

LABEL: .DATA 3

LABEL: .DATA 4

If it is illegal, will the error be detected during pass 1 or
pass 2 of the assembly process?

18. What are some drawbacks in using passwords to limit
access to a computer system? Describe some other possi-
ble ways that an operating system could limit access. In
what type of application might these alternative safe-
guards be appropriate?

19. Why are authorization lists so sensitive that they must
be encrypted and protected from unauthorized change?
What kind of damage can occur if these files are modified
in unexpected or unplanned ways?

20. Assume that any individual program spends about 50% of
its time waiting for I/O operations to be completed. What
percentage of time is the processor doing useful work
(called processor utilization) if there are three programs
loaded into memory? How many programs should we keep in
memory if we want processor utilization to be at least 95%?

21. Here is an algorithm for calling a friend on the telephone:

Step Operation
1. Dial the phone and wait for either an answer or a

busy signal
2. If the line is not busy then do steps 3 and 4
3. Talk as long as you want
4. Hang up the phone, you are done
5. Otherwise (the line is busy)
6. Wait exactly 1 minute
7. Go back to step 1 and try again

During execution this algorithm could get into a situa-
tion where, as in the deadlock problem, no useful work
can ever get done. Describe the problem, explain why it
occurs, and suggest how it could be solved.

22. Explain why a batch operating system would be totally
inadequate to handle such modern applications as airline
reservations and automated teller machines.

23. In a time-sharing operating system, why is system per-
formance so sensitive to the value that is selected for
the time slice? Explain what type of system behavior
would occur if the value selected for the time slice were
too large? Too small?

24. As hardware (processor/memory) costs became signifi-
cantly cheaper during the 1980s and 1990s, time-sharing
became a much less attractive design for operating sys-
tems. Explain why this is the case.

25. Determine whether the computer system on which you
are working is part of a local area network. If it is, deter-
mine what servers are available and how they are used. Is
there a significant difference between the ways you
access local resources and remote resources?

26. The following four requests could come in to an operat-
ing system as it is running on a computer system:
• The clock in the computer has just “ticked,” and we

need to update a seconds counter.
• The program running on processor 2 is trying to per-

form an illegal operation code.
• Someone pulled the plug on the power supply, and the

system will run out of power in 50 msec.
• The disk has just read the character that passed under

the read/write head, and it wants to store it in mem-
ory before the next one arrives.

In what order should the operating system handle these
requests?
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C H A L L E N G E  WO R K

1. In Chapter 2 we wrote a number of algorithms that
worked on a list of values rather than a single value. That
is, our algorithm contained statements such as

Get values for A1, A2, . . . , AN -the list to be searched

In statements like this we are dealing with individual data
items such as A1 and A2, but they are also part of a col-
lection of items, the list called A. A collection of related
data items is called a data structure. High-level program-
ming languages like C++, Java, and Python provide users
with a rich collection of data structures that go by such
names as arrays, sets, and lists. We can program with
these structures just as though they were an inherent part
of the hardware of the computer. However, the discus-
sions in the previous two chapters have shown that data
structures such as lists of numbers do not exist directly in
hardware. There are no machine language instructions
that can carry out the type of algorithmic command
shown in the pseudocode statement above. When you
write an instruction that uses a structure such as a list,
the language translator (that is, the assembler or com-
piler) must map it into what is available on the hard-
ware—the machine language instruction set shown in
Figure 5.19 and the sequential addresses in our memory.

(This is another good example of the virtual environment
created by a piece of system software.)

Write an assembly language program to sum up a list of
50 numbers that are read in and stored in memory. Here
is the algorithm you are to translate:

Read in 50 numbers A1, A2, . . . , A50

Set Sum to 0

Set i to 1

While the value of i is less than or equal to 50

Sum = Sum + Ai

i = i + 1

End of the loop

Write out the value of Sum

Stop

To implement this algorithm, you must simulate the con-
cept of a list of numbers using the assembly language
resources that are available. (Hint: Remember that in the
Von Neumann architecture there is no distinction
between an instruction and a piece of data. Therefore, an
assembly language instruction such as LOAD A can be
treated as data and modified by other instructions.)

F O R  F U R T H E R  R E A D I N G

Here are some excellent introductory texts on the design and implementation of operat-
ing systems. Most of them also include a discussion of some specific modern operating
system such as Linux, Mac OS X, or Windows Vista.
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Prentice-Hall, 2008.
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Reading, MA: Addison Wesley, 2005.
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Hall, 1998.
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7.1 Introduction

Every once in a while there occurs a technological innovation of such importance
that it forever changes a society and the way its people live, work, and commu-
nicate. The invention of the printing press by Johannes Gutenberg in the mid-fif-
teenth century was one such development. The books and manuscripts it
produced helped fuel the renewed interest in science, art, and literature that
came to be called the Renaissance, an era that influenced Western civilization for
more than 500 years. The Industrial Revolution of the eighteenth and early nine-
teenth centuries made consumer goods such as clothing, furniture, and cooking
utensils affordable to the middle class, and changed European and American soci-
eties from rural to urban and from agricultural to industrial. In our own century,
we are certainly aware of the massive social changes, both good and bad,
wrought by inventions like the telephone, automobile, television, and computer.

Many people feel that we are witnessing yet another breakthrough, one
with the potential to make as great a change in our lives as those just men-
tioned. This innovation is the computer network—computers connected
together for the purpose of exchanging resources and information. During the
early stages of network development, the only information exchanged was
text such as e-mail, database records, and technical papers. However, the
material sent across a network today can be just about anything—television
and radio signals, voice, graphics, handwriting, photographs, and movies, to
name just a few. If information can be represented in the 0s and 1s of binary
(as described in Section 4.2), it can be transmitted across a network.

The possibilities created by this free flow of data are enormous. Networks
can equalize access to information and eliminate the concept of “information
haves” and “information have-nots.” Students in a small, poorly funded
school would no longer be handicapped by an out-of-date library collection. A
physician practicing in an emerging economy would be able to transmit med-
ical records, test results, and X-ray images to specialists anywhere in the world
and have immediate access to the online databases and reference works of
major medical centers. Small-business owners could use a network to locate
suppliers and customers on an international scale. Researchers would have the
same ability to communicate with experts in their discipline whether they
were in New York, New Delhi, or New Guinea. 

Networking could also foster the growth of democracy and global under-
standing by providing unrestricted access to newspapers, magazines, radio,
and television, as well as support the unfettered exchange of diverse and
competing thoughts, ideas, and opinions. Because we live in an increasingly
information-oriented society, network technology contains the seeds of
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massive social and economic change. It is no surprise that during civil
uprisings, political leaders who wish to prevent the dissemination of oppos-
ing ideas often move quickly to restrict both Internet and Web access.

In Chapter 6 we saw how system software can create a user-friendly “vir-
tual machine” on top of the raw hardware of a single computer. In today’s
world, computers are seldom used as isolated standalone devices, and the
modern view of a “virtual machine” has expanded into a worldwide collection
of integrated resources. In this chapter we take a detailed look at the tech-
nology of computer networks—what they are, how they work, and the bene-
fits they can bring. We also examine the most widely used network, the
Internet, and its most important application, the World Wide Web.

7.2 Basic Networking Concepts

A computer network is a set of independent computer systems connected by
telecommunication links for the purpose of sharing information and resources.
The individual computers on the network are referred to as nodes, hosts, or end
systems, and they range from PDAs (personal digital assistants) and tiny laptops
to the massively parallel supercomputers introduced in Chapter 5. In this section
we describe some of the basic characteristics of a computer network.

7.2.1 Communication Links

The communication links used to build a network vary widely in physical char-
acteristics, error rate, and transmission speed. In the approximately 40 years
that networks have existed, telecommunications facilities have undergone
enormous change.

One of the most important Web applications is the “blog,”
a contraction of the term Web log.  A blog is a Web-based
publication consisting of virtually any periodic articles
that its writer(s) wish to share with the general public.
Sometimes it contains nothing more than a daily journal—
what I did today. More commonly the articles are political,
social, or cultural essays that reflect the opinions and
biases of the blog author(s).  Whereas some blogs are pro-
duced by a community of like-minded people sharing
responsibility for writing and posting articles, the majority
are simply the thoughts and feelings of individuals with a
computer and the necessary “blogware”—software for
editing, organizing, and publishing on the Web. (Accord-
ing to Technorati, a blog rating and tracking Web site, as
of mid-2008 there were about 112 million blogs worldwide
with about 175,000 new sites coming online daily!) 

Our history is filled with stories of individual crusaders
who published fiery newsletters supporting or decrying
some government policy.  For example, the Federalist Papers
by Alexander Hamilton and James Madison were written in
support of the proposed U.S. Constitution.  The Liberator
was a fervent anti-slavery newsletter published in Boston by
William Lloyd Garrison, a Quaker abolitionist.  However,
there was a limit to the audience that these early crusaders
could reach, set by the cost of printing and the time
required to distribute these newsletters to readers.  (At the
peak of its influence, The Liberator had a circulation of fewer
than 3,000.)  The Web has changed all that.  It costs virtu-
ally nothing to write and post your thoughts on a Web page,
and if your ideas become widely discussed (perhaps by
being mentioned on TV, radio, or in the newspaper) a blog
might be accessed and read by millions of readers. 

Blogs



In the early days of networking, the most common way to transmit data
was via switched, dial-up telephone lines. The term “switched, dial-up”
means that when you dial a telephone number, a circuit (i.e., a path) is tem-
porarily established between the caller and callee. This circuit lasts for the
duration of the call, and when you hang up it is terminated.

The voice-oriented dial-up telephone network was originally a totally
analog medium. As we first explained in Chapter 4, this means that the physi-
cal quantity used to represent information, usually voltage level, is continuous
and can take on any value. An example of this is shown in Figure 7.1(a).
Although analog is fine for transmitting the human voice, which varies contin-
uously in pitch and volume, a computer produces digital information—specifi-
cally, a sequence of 0s and 1s, as shown in Figure 7.1(b).

For the binary signals of Figure 7.1(b) to be transmitted via a switched,
dial-up telephone line, the signal must be restructured into the analog repre-
sentation of Figure 7.1(a). The device that accomplishes this is a modem,
which modulates, or alters, a standard analog signal called a carrier so that it
encodes binary information. The modem modifies the physical characteristics
of the carrier wave, such as amplitude or frequency, so that it is in one of two
distinct states, one state representing 0 and the other state representing 1.
Figure 7.2 shows how a modem can modulate the amplitude (height) of a car-
rier wave to encode the binary signal 1010.

At the other end of the transmission line, a modem performs the inverse
operation, which is called demodulation. (Modem is a contraction of the two
terms modulation and demodulation.) It takes the received waveform, sepa-
rates the carrier from the encoded digital signal, and passes the digital data
on to the computer.
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Initially, these analog encoding and decoding operations could not be done
very quickly because of the high error rate and low capacity, or bandwidth, of
a switched telephone line. In the early days of telecommunications—the 1970s
and 1980s—the rate at which information could be sent and received via a
phone line was limited to about 1,200–9,600 bits per second (bps). Advances
in modem design have produced devices that now transmit at 56,000 bps, or
56 Kbps, an order-of-magnitude increase. However, this is still considered too
slow to handle the transmission of multimedia-based documents such as Web
pages, MP3 files, and streaming video.

The dial-up telephone system is still used occasionally for remote access
to networks, and many computers are equipped with a built-in 56 Kbps
modem. However, their limited speed makes dial-up phone links inconvenient
for applications where speed is vital or we are sending large volumes of data.

A technology called broadband has rapidly been replacing modems and
analog phone lines for data communications to and from our homes, schools,
and offices. The term broadband generally refers to any communication link
with a transmission rate exceeding 256,000 bps. In the case of home users,
there are currently two widely available broadband options—digital subscriber
line (DSL) and cable modem.

A digital subscriber line uses the same wires that carry regular tele-
phone signals into your home, and therefore is provided by either your local
telephone company or someone certified to act as their intermediary.
Although it uses the same wires, a DSL signal uses a different set of frequen-
cies, and it transmits digital rather than analog signals. Therefore, the voice
traffic generated by talking with a friend on the phone does not interfere with
a Web page being simultaneously downloaded by someone else in the family.
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Furthermore, unlike the modem which requires that you explicitly establish a
connection (dial a number) and end a connection (hang up), a DSL is a per-
manent “always-on” link, which eliminates the aggravating delay of dialing
and waiting for the circuit to be established.

A digital subscriber line is often asymmetric. This means it does not have
the same transmission speed in the download direction (from the network to
your computer) as in the upload direction (from your computer to the net-
work). That is because most users consume much more data than they gener-
ate. For example, to obtain a Web page, your computer sends a request
message to the machine with that page. (It does this by sending the address of
that page, such as www.macalester.edu.) This request message is small and
contains only a few dozen characters. However, the Web page you receive—
complete with applets, graphics, and plug-ins—contains possibly millions of
bits. To handle this imbalance, a DSL provides greater bandwidth coming in to
your computer than going out. Typical DSL speeds are 2–8 million bits per
second (Mbps) for downloads and 0.5–1 million bits per second for uploads—
still much more than is available from a modem.

The second option for broadband communications is a cable modem. This
technology makes use of the links that deliver cable TV signals into your
home, so it is offered by cable TV providers. Some of the link capacity previ-
ously allocated for TV signals is now used for data communications. Like a
DSL, a cable modem also provides an “always-on” link and offers download
speeds roughly comparable to those available from DSL.

In the commercial and office environment, the most widely used broadband
technology is Ethernet. Ethernet was developed in the mid-1970s by computer
scientists at the Xerox PARC research center in Palo Alto, California. It was orig-
inally designed to operate at 10 Mbps using coaxial cable. However, 10 Mbps is
too slow for some applications, so in the early 1990s researchers developed a
“new and improved” version, called Fast Ethernet, which transmits at 100 Mbps
across coaxial cable, fiber-optic cable, or regular twisted-pair copper wire. 

Because even 100 Mbps may not be fast enough for multimedia applica-
tions, computer science researchers began investigating the concept of gigabit
networking—transmission lines that support speeds in excess of 1 billion bits
per second  (Gbps). In the early 1990s, the U.S. government funded a long-term
research project called NREN, the National Research and Education Network. One
of its goals was to investigate the design and implementation of wide area
gigabit data networks. The project was successful, and in 1998 the first interna-
tional gigabit Ethernet standard was adopted by the IEEE (the Institute of
Electrical and Electronics Engineers), an international professional society
responsible for developing industrial standards in the area of telecommunica-
tions. The standard supports communication on an Ethernet cable at 1,000 Mbps
(1 Gbps), 100 times faster than the original 10 Mbps standard. Many classrooms
and office buildings today are wired to support 10 Mbps, 100 Mbps, or even
1,000 Mbps—18,000 times faster than a 56K modem! In addition, most PCs
today come with a built-in Ethernet interface, and new homes and dorm rooms
are often equipped with Ethernet links.

However, not willing to rest on their laurels (and realizing that even faster
networks will be needed to support future research and development), work
immediately began on a new ten-gigabit Ethernet standard, a version of
Ethernet with the almost unimaginable data rate of 10 billion bits per second.
That standard was adopted by the IEEE in 2003.  To get an idea of how fast that
is, in a single second a 10 Gbps Ethernet network could transmit the entire con-
tents of 1,700 books, each 300 pages long!
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Do applications that truly need to transmit information at billions of bits per
second exist? To answer that question, let’s determine how long it takes to trans-
mit a high-resolution color image, such as a CAT scan, satellite image, or a single
movie frame, at different transmission speeds. As described in Section 4.2, a
high-resolution color image contains at least 5 million picture elements (pixels),
and each pixel is encoded using 8–24 bits. If we assume 16 bits per pixel, then a
single uncompressed image would contain at least 80,000,000 bits of data. If the
image is compressed before it is sent, and the compression ratio is 10:1 (see Sec-
tion 4.2 for a definition of compression ratio), then we must transmit a total of 8
million bits to send this single image. Figure 7.3 shows the time needed to send
this amount of information at the speeds discussed in this chapter.

Figure 7.3 clearly demonstrates the need for high-speed communications
to support applications such as video on demand and medical imaging. Receiv-
ing an 8 Mb image using a 56 Kbps modem takes 2.4 minutes, an agonizingly
long time. (You have probably had the experience of waiting for what seemed
like forever as a Web page s-l-o-w-l-y appeared on your screen.) That same
8 Mb image can be received in 4 seconds using a DSL or cable modem with a
download speed of 2 Mbps, 0.8 second using a 10 Mbps Ethernet, and a blaz-
ing 0.08 second with 100 Mbps Ethernet.

However, even 0.08 second may not be fast enough if an application
requires the rapid transmission of either multiple images or a huge amount of
data in a short period of time. For example, to watch a real-time video image
without flicker or delay, you need to send at least 24 frames per second. Any
less and the human eye notices the time delay between frames. If each frame
contains 8 Mb, you need a bandwidth of 8,000,000 3 24 = 192 Mbps. This is
beyond the speed of modems, DSL, cable modems, and even 100 Mbps Ethernet,
but it is achievable using gigabit networks. These high-speed networks are
widely used in such data-intensive applications as exchanging 3D medical
images, transmitting weather satellite data, and supporting collaboration
among researchers working on the Human Genome Project.

A relatively recent development in telecommunications is the growth of
wireless data communication using radio, microwave, and infrared signals.
In the wireless world, users no longer need to be physically connected to a
wired network to access data, just as cellular phones liberated telephone
users. Using wireless, you can be in the back yard, a car, at the beach, or on
the factory floor and still send and receive e-mail, access online databases, or
surf the Web. The ability to deliver data to users regardless of their location is
called mobile computing.

There are two forms of wireless data communications. In a wireless local
access network, a user transmits from his or her computer to a local wireless
base station, often referred to as a wireless router, that is no more than a
few hundred feet away. This base station is connected to a traditional wired

2937.2 Basic Networking Concepts LEVEL 3

Transmission Time of an
Image at Different Transmission
Speeds

FIGURE 7.3
TIME TO TRANSMIT 8 MILLION BITS

LINE TYPE SPEED (ONE COMPRESSED IMAGE)

Dial-up phone line 56   Kbps 2.4 minutes
DSL line, cable modem 2     Mbps 4 seconds
Ethernet 10   Mbps 0.8 second
Fast Ethernet 100 Mbps 0.08 second
Gigabit Ethernet 1     Gbps 0.008 second
Ten-gigabit Ethernet 10   Gbps 0.0008 second



One of the most widely used standards for wireless local access is called
Wi-Fi, short for Wireless Fidelity. It is also referred to by its official name, the
IEEE 802.11 wireless network standards. Wi-Fi is used to connect a computer
to the Internet when it is within range (typically 150–300 feet or 45–90 meters)
of a wireless base station, often advertised in stores and shops as a Wi-Fi hot
spot (a router). Wi-Fi systems generally use the 2.4 GHz radio band for commu-
nications and support download transmission speeds of about 10-50 Mbps.  

A new development in wireless networking is the concept of a Metropolitan
Wireless Local Access Network. A number of cities in the U.S., Europe, and Asia
have installed Wi-Fi routers every few blocks throughout the city, often on top of
telephone poles or building roofs.  These routers provide convenient, low cost
wireless Internet access to all residents. 

Another popular wireless local access standard is Bluetooth. It is a low-power
wireless standard used to communicate between devices located quite close to
each other, typically no more than 30–50 feet (10–15 meters). Bluetooth is often
used to support communication between wireless computer peripherals, such as
printers, mice, and keyboards and a laptop or desktop system close by. Bluetooth
also supports information exchange between digital devices such as mobile
phones, cameras, and video game consoles.

While Wi-Fi is great for communicating with a nearby router, its transmis-
sion limit means it cannot provide mobile Internet access from a car or out-
door site far from any base station. To handle this type of wireless
communications we need a different type of network called a wireless wide-
area access network. In this type of network the computer (typically a PDA
or smart phone) transmits messages to a remote base station provided by a
telecommunications company, which may be located many miles away. The
base station is usually a large cellular antenna placed on top of a tower or
building, providing both long-distance voice and data communication services
to any system within sight of the tower. One of the most popular wide-area
wireless technologies is called 3G. It offers voice services as well as data com-
munication at rates of 0.5 to 2.4 Mbps, comparable to DSL or cable modem.
Future plans call for a speed increase to about 5-15 Mbps. 

Although wireless data communication is an exciting development in
computer networking, it is not without problems that must be studied and
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network, such as a DSL or cable modem to provide full Internet access. This
is the type of wireless configuration typically found in a home, library, office, or
coffee shop because it is cheap, simple, low powered, and easy to install. A
typical local wireless configuration is shown in the following diagram:
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1. Show how the 4-bit digital value 0110 is converted to an analog sig-
nal by a modem that modulated the frequency of a carrier wave,
rather than its amplitude.

2. Consider an uncompressed 1,200 3 780 image, with each pixel stored
using an 8-bit gray scale representation. If we want to transmit the
entire image in under 1 second, what is the minimum acceptable
transmission speed?

PRACTICE PROBLEMS

The rapid growth of wireless communications, along with
the availability of extremely cheap microprocessors, has
led to an exciting new area of computer science research
called ubiquitous computing, also called pervasive
computing. In the early days of computing, a single
large mainframe served many users. In the PC era, a
single desktop machine served a single user. In the
ubiquitous computing model, many computers work
together to serve a single user, and rather than being
perched on a desktop, they become nearly invisible. The
idea is that computers will become so commonplace that

they will blend into the background and disappear from
our consciousness, much as electricity has today. The
goal is to create a system that is embedded in the
environment, providing its service in a seamless,
efficient manner.

Computers will be located inside our appliances,
furnaces, lights, clocks, and even clothing to provide
useful services in a transparent fashion. Topics
of research in this area include such things as wearable
computing and smart homes. As described by Mark
Weiser of Xerox, “Ubiquitous computing is invisible,
everywhere computing that does not sit on the desktop
but lies deep inside the woodwork.”

Ubiquitous 
Computing

solved. For example, some forms of wireless, such as microwaves, are line-of-
sight, traveling only in a straight line. Because of the curvature of the earth,
transmitters must be placed on top of hills or tall buildings, and they cannot be
more than about 10–50 miles (15–80 kilometers) apart, depending on height.
Other types of wireless media suffer from environmental problems; they are
strongly affected by rain and fog, cannot pass through obstacles such as build-
ings or large trees, and have higher error rates than wired communication. While
a few random “clicks” and “pops” do not disrupt voice communications over a
mobile phone, it can be disastrous in data communications.  For example, if you
are transmitting data at 10 million bits per second, a break-up on the line that
lasts only one-tenth of a second could potentially cause the loss of one million
bits of data. Wireless is often slower than wired communication (a few Mbps
rather than hundreds of Mbps or Gbps), which may make it inappropriate for the
transfer of large amounts of data. Finally, there is the issue of security. Currently,
it is not difficult to intercept transmissions and gain unauthorized access to
wireless networks. All of these are ongoing concerns being investigated by the
computer science and telecommunications research community.



7.2.2 Local Area Networks

There are two types of computer networks. A local area network (LAN)
connects hardware devices such as computers, printers, and storage devices
that are all in close proximity. (A diagram of a LAN was provided in Figure
6.21.) Examples of LANs include the interconnection of machines in one room,
in the same office building, or on a single campus. An important characteris-
tic of a LAN is that the owner of the computers is also the owner of the means
of communications. Because a LAN is located entirely on private property, the
owner can install telecommunications facilities without having to purchase
services from a third-party provider such as a phone or cable company.

The previous section described how a wireless local network is set up using
Wi-Fi and a router connected to a wired network.  Here we take a look at the
properties of that wired network. Wired LANs can be constructed using a number
of different interconnection strategies, as seen in Figure 7.4. In the bus topol-
ogy, Figure 7.4(a), all nodes are connected to a single shared communication
line. If two or more nodes use the link at the same time, the messages collide and
are unreadable, and therefore, nodes must take turns using the line. The cable
modem technology described in Section 7.2.1 is based on a bus topology. A num-
ber of homes are all connected to the same shared coaxial cable. If two users
want to download a Web page at the exact same time, then the effective trans-
mission rate is lower than expected, because one of them must wait.

The ring topology of Figure 7.4(b) connects the network nodes in a circu-
lar fashion, with messages circulating around the ring in either a clockwise or
counterclockwise direction until they reach their destination. Finally, the star
network, Figure 7.4(c), has a single central node that is connected to all other
sites. This central node can route information directly to any other node in
the LAN. Messages are first sent to the central site, which then forwards them
to the correct location.
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There are many different LAN technologies available in the marketplace, but
the most widely used is Ethernet, which you learned about in the previous sec-
tion. It is the model that we will use to describe the general behavior of all LANs.

Ethernet uses the bus topology of Figure 7.4(a). To send a message, a
node places the message, including the destination address, on the cable.
Because the line is shared, the message is received by every other node
(assuming no one else sent at the exact same time and garbled our data). Each
node looks at the destination address to see if it is the intended recipient. If
so, it accepts the message; if not, it discards it.

There are two ways to construct an Ethernet LAN. In the first method,
called the shared cable, a wire (such as twisted-pair copper wire, coaxial
cable, or fiber-optic cable) is literally strung around and through a build-
ing. Users tap into the cable at its nearest point using a device called a
transceiver, as shown in Figure 7.5(a). Because of technical constraints, an
Ethernet cable has a maximum allowable length. For a large building or
campus, it may be necessary to install two or more separate cables and
connect them via hardware devices called repeaters or bridges.

A repeater is a device that simply amplifies and forwards a signal. In
Figure 7.5(b), if the device connecting the two LANs is a repeater, then every
message on LAN1 is forwarded to LAN2, and vice versa. Thus, when two
Ethernet LANs are connected by a repeater, they function exactly as if they
were a single network.

A bridge, also called a switch, is a “smarter” device that has knowledge
about the nodes located on each separate network. It examines every message
to see if it should be forwarded from one network to another. For example, if
node A is sending a message to node B, both of which are on LAN1, then the
bridge does nothing with the message. However, if node A on LAN1 is sending
a message to node C on LAN2, then the bridge copies the message from LAN1
onto LAN2 so node C is able to see it and read it.

(a) Single Cable Configuration

Transceiver

Ethernet
cable

(b) Multiple Cable Configuration

Bridge or repeater

LAN 1

LAN 2

C

A B

An Ethernet LAN Implemented
Using Shared Cables

FIGURE 7.5
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1. Explain why message collisions would or would not occur on local
area networks that used the ring topology of Figure 7.4(b) or the
star topology of Figure 7.4(c).

2. What changes, if any, must be made to our description of the Ether-
net protocol to allow a message to be sent by node A on a local area
network to every other node on that same LAN? This operation is
called broadcasting.

PRACTICE PROBLEMS

Host
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Host
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Wireless
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Must be
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An Ethernet LAN Implemented
Using a Switch

FIGURE 7.6

In the second approach to constructing an Ethernet LAN, there is no
shared cable strung throughout the building. Instead, there is a box called a
switch located in a room called a wiring closet. The switch contains a number
of ports, with a wire leading from each port to an Ethernet interface in the
wall of a room in the building, or to a wireless router somewhere in the build-
ing. To connect to the network, we first activate that port, typically by flipping
a switch, and then simply plug our machine directly into the wall socket. This
approach is shown in Room 101 of Figure 7.6. Alternately, we could use Wi-Fi
to transmit from our computer to a wireless router located somewhere in the
building. This router would then connect to one of the Ethernet ports in the
hub. This approach is shown in Room 103 of Figure 7.6.  In either case, it is no
longer necessary to climb into the ceiling or crawl through ductwork looking
for the cable, because the shared cable is located inside the switch instead of
inside the building walls. That is why switches are the most widely used tech-
nique for constructing LANs. 
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7.2.3 Wide Area Networks

A wide area network (WAN) connects devices that are not in close proximity
but rather are across town, across the country, or across the ocean. Because
WANs cross public property, users must purchase telecommunications services,
like those described in Section 7.2.1, from an external provider. Typically,
these are dedicated point-to-point lines that directly connect two machines,
and not the shared channels found on a LAN such as Ethernet. The typical
structure of a WAN is shown in Figure 7.7.

Most WANs use a store-and-forward, packet-switched technology to
deliver messages. Unlike a LAN, in which a message is broadcast on a shared
channel and is received by all nodes, a WAN message must “hop” from one
node to another to make its way from source to destination. The unit of
transmission in a WAN is a packet—an information block with a fixed
maximum size that is transmitted through the network as a single unit.

3. Assume you are given the following configuration of three local area net-
works, called LAN1, LAN2, and LAN3, connected by bridges B1 and B2.

Explain exactly how node A on LAN1 sends a message to node B
on LAN3.

LAN1

LAN2

LAN3

A

B

B1

B2



To send a message from source node A to destination node D, the message
could go from A S B S C S D. Alternately, the message may travel from A S
B S F S D or A S E S F S D. The exact route is determined by the network,
not the user, based on which path can deliver the message most quickly. If the
message is large, it may be broken up into multiple packets, and each one may
take a different route.

One of the nicest features of a store and forward network is that the fail-
ure of a single line or a single node does not necessarily bring down the entire
network. For example, assume the line connecting node B to node C in the
previous diagram crashes. Nodes B and C can still communicate via the route
B S F S D S C. Similarly, if node F fails completely, nodes E and D, located
on either side of F, can still exchange messages. However, instead of talking
via node F, they now use the route E S A S B S C S D.

Reliability and fault tolerance were the reasons that WANs were first studied
in the late 1960s and early 1970s. The U.S. military was interested in communi-
cation systems that could survive and function even if some of their components
were destroyed, as might happen in time of war or civil unrest. Their research
ultimately led to the creation of the Internet. (We will have much more to say
about the history of networking and the Internet later in this chapter.)

7.2.4 Overall Structure of the Internet

We have defined two classes of networks, LANs and WANs, but all real-world
networks, including the Internet, are a complex mix of both network types.

For example, a company or a college would typically have one or more LANs
connecting its local computers—a computer science department LAN, a human-
ities building LAN, an administration building LAN, and so forth. These individ-
ual LANs might then be interconnected into a wide area “company network”
that allows users to send e-mail to other employees in the company and access
the resources of other departments. These individual networks are intercon-
nected via a device called a router. Like the bridge in Figure 7.5(b), a router
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If you send a short message, then it can usually be transmitted as a single
packet. However, if you send a long message, the source node may “chop” it
into N separate packets (such as the first 1,000 characters, the next 1,000
characters, and so on) and send each packet independently through the net-
work. When the destination node has received all N packets, it reassembles
them into a single message.

For example, assume the following 6-node WAN:
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FIGURE 7.8(a)

transmits messages between two distinct networks. However, unlike a bridge,
which connects two identical types of networks, routers can transmit informa-
tion between networks that use totally different communication techniques—
much as an interpreter functions between two people who speak different
languages. For example, a router, not a bridge, is used to send messages from a
wireless Wi-Fi network to a wired Ethernet LAN (as discussed in the previous
section), or from an Ethernet LAN to a packet-switched, store-and-forward WAN.
We can see this type of interconnection structure in Figure 7.8(a).

The configuration in Figure 7.8(a) allows the employees of a company or
the students of a college to communicate with each other, or to access local
resources. But how do these people reach users outside their institution, or
access remote resources such as Web pages that are not part of their own net-
work? Furthermore, how does an individual home user who is not part of any
company or college network access the larger community? The answer is that
a user’s individual computer or a company’s private network is connected to
the world through an Internet Service Provider, or ISP. An ISP is a business
whose purpose is to provide access from a private network (such as a corpo-
rate or university network) to the Internet, or from an individual’s computer
to the Internet.  This access occurs through a WAN owned by the ISP, as shown
in Figure 7.8(b).  An ISP typically provides many ways for a user to connect to
this network, from 56 Kbps modems to dedicated broadband telecommunica-
tion links with speeds in excess of hundreds of millions of bits per second.

The scope of networking worldwide is so vast, a single ISP cannot possibly
hope to directly connect a single campus, company, or individual to every other
computer in the world, just as a single airport cannot directly serve every possi-
ble destination. Therefore, ISPs (that is, ISP networks) are hierarchical, intercon-
necting to each other in multiple layers, or tiers, that provide ever-expanding
geographic coverage. This hierarchical structure is diagrammed in Figure 7.8(c).

An individual or a company network connects to a local ISP, the first level
in the hierarchy. This local ISP typically connects to a regional or national ISP
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that interconnects all local ISPs in a single geographic region or country.
Finally, a regional or national ISP might connect to an international ISP, also
called a tier-1 network or an Internet backbone, which provides global cover-
age. This hierarchy is similar to the standard telephone system. When you place
a call to another country, the telephone line from your home or office connects
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to a local phone switching center, which establishes a connection to a regional
switching center, which establishes a connection to a national switching center.
This national center has high-speed connections to similar national switching
centers in other countries, which are connected, in turn, to regional and then
local switches to establish a connection to the phone you are calling.  The dia-
gram in Figure 7.8(c) is a pictorial representation of that enormously complex
telecommunications entity we call the Internet. The Internet is not a single
computer network; instead, it is a huge interconnected “network of networks”
that includes nodes, LANs, WANs, bridges, routers, and multiple levels of ISPs.

As of early 2008, there were about 541 million nodes (hosts) and hundreds
of thousands of separate networks located in more than 225 countries. A graph
of the number of host computers on the Internet over the last 17 years is
shown in Figure 7.9. (This figure is really an undercount, because there are
numerous computers located behind protective firewalls that do not respond to
any external attempts to be counted.)

How does something as massive as the Internet actually work? How is it
possible to get 541 million machines around the world to function efficiently
as a single system? We answer that important question in the next section.
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LAYER NAME EXAMPLES

5 Application HTTP, SMTP, FTP
4 Transport TCP, UDP
3 Network IP
2b Logical Link Control PPP, Ethernet
2a Medium Access Control Ethernet

Data Link Layer

1 Physical Modem, DSL, Cable Modem, Wi-Fi, 3G

The Five-Layer TCP/IP Internet
Protocol Hierarchy

FIGURE 7.10

7.3 Communication Protocols

When you talk on the telephone, there is a set of procedures that you follow.
When you answer the phone you say “Hello,” and then wait for the individual
on the other end to respond. The conversation continues until someone says
“Goodbye,” at which time both parties hang up. You might call this “telephone
etiquette”—these conventions are what allows orderly exchanges to take
place. Imagine what would happen if someone were unaware of them. For
example, such a person might answer the phone but not say anything. Hearing
silence, the person on the other end would be totally confused, think the call
did not get through, and hang up.

Similar etiquette applies to computer networks. To have meaningful com-
munications we need a set of procedures that specifies how the exchanges will
take place. This “network etiquette,” is achieved by means of network protocols.

In networking, a protocol is a mutually agreed upon set of rules, conven-
tions, and agreements for the efficient and orderly exchange of information.
Even though the Internet has hundreds of millions of machines made by dozens
of manufacturers and located in hundreds of countries, they can all exchange
messages correctly and efficiently for one simple reason: They all agree to use
the same protocols to govern that exchange.

You might think that something as massive and global as the Internet would
be managed by either the governments of the major industrialized nations or an
international agency like the United Nations. In fact, the Internet is operated by
the Internet Society, a nonprofit, nongovernmental, professional society com-
posed of more than 100 worldwide organizations (e.g., foundations, governmen-
tal agencies, educational institutions, companies) in 180 countries united by the
common goal of maintaining the viability and health of the Internet. This group,
along with its subcommittees, the Internet Architecture Board (IAB) and the
Internet Engineering Task Force (IETF), establishes and enforces network proto-
col standards. (Perhaps the fact that the Internet developed outside the scope of
governmental bureaucracies and their “red tape” is exactly what has allowed it to
become so enormously successful!) To learn more about the Internet Society and
its activities, check out its home page at www.isoc.org.

The protocols that govern the operation of the Internet are set up as a mul-
tilayered hierarchy, with each layer addressing one aspect of the overall com-
munications task. They are structured in this way because of the volatility of
telecommunications and networking. By dividing the protocols into separate,
independent layers, a change to the operation of any one layer will not cause a
change to other layers, making maintenance of the Internet much easier.

The Internet protocol hierarchy, also called a protocol stack, has five layers,
and their names and some examples are listed in Figure 7.10. This hierarchy is also
referred to as TCP/IP, after the names of two of its most important protocols.

In the following sections we briefly describe the responsibilities of each of
the five layers in the hierarchy shown in Figure 7.10.

www.isoc.org


7.3.1 Physical Layer

The physical layer protocols govern the exchange of binary digits across a
physical communication channel, such as a fiber-optic cable, copper wire, or
wireless radio channel. These protocols specify such things as:

• How we know when a bit is present on the line

• How much time the bit will remain on the line

• Whether the bit is in the form of a digital or an analog signal

• What voltage levels are used to represent a binary 0 and a binary 1

• The shape of the connector between the computer and the transmis-
sion line

The goal of the physical layer is to create a “bit pipe” between two com-
puters, such that bits put into the pipe at one end can be read and understood
by the computer located at the other end, as shown in Figure 7.11.

Once you select a physical layer protocol by purchasing a modem, getting a
digital subscriber line, or using a mobile phone with wireless data capabilities,
you can transmit binary signals across a physical channel. From this point on in
the protocol stack, you no longer need be concerned about such engineering
issues as voltage levels, wavelengths, or radio frequencies. These details are
hidden inside the physical layer, which provides all of the necessary bit trans-
mission services. From now on all you need to know about the communication
channel is that when you ask the physical layer to send a bit, it does so, and
when you ask the physical layer to get a bit, it presents you with a 0 or a 1. 

7.3.2 Data Link Layer

The physical layer protocols create a bit pipe between two machines con-
nected by a communications link. However, this link is not an error-free chan-
nel, and due to interference or weather or any number of other factors, it can
introduce errors into the transmitted bit stream. The bits that come out may
not be an exact copy of the bits that went in. This creates what is called the
error detection and correction problem—how do we detect when errors
occur, and how do we correct them?

Also, because we want to receive complete messages, and not raw streams of
bits, we need to know which bits in the incoming stream belong together; that is,
we need to identify the start and the end of a message. This is called the fram-
ing problem. It is the job of the data link protocols to address and solve these
two issues—error handling and framing. This process is done in two stages called
layer 2a, medium access control, and layer 2b, logical link control. Together
these two services form the layer 2 protocol called the data link layer.
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In Section 7.2.1 we described how local area networks communicate by
having multiple machines connected to a single shared communication line
(Figures 7.5 and 7.6).  However, while shared by many machines, at any single
point in time this line is capable of sending and receiving only a single mes-
sage.  Attempting to send two or more messages at the same time results in all
messages being garbled and none getting through.  In this environment, a
necessary first step in transmitting a message is determining how to allocate
this shared line among the competing machines. The medium access control
protocols determine how to arbitrate ownership of a shared line when multi-
ple nodes want to send messages at the same time.

This could be done in a centralized manner by creating a single master
control node responsible for determining who gets ownership of the line at
any instant in time. Although easy to do, centralized control is rarely used.
One reason is that it can be slow. Each node sends its request to the master,
who must decide which node gets the line, and then inform every other node
of its decision. This takes a good deal of time, making the network highly
inefficient. Another problem is that centralized control is not fault tolerant. If
the master node fails, the entire network is inoperable.

Most medium access control protocols, including Ethernet, use a contention-
based approach in which there is no central authority and all nodes compete
equally for ownership of the line. When a node wants to send a message, it first
listens to the line to see whether or not it is currently in use. If the line is idle,
then the node transmits immediately. If the line is busy, the node wishing to
send monitors the status of the line and, as soon as it becomes idle, it transmits.
This situation is diagrammed in Figure 7.12(a), in which node B wants to send
but notices that A is using the line. B listens and waits until A is finished, and
as soon as that occurs, B is free to send.

However, there is still a problem. If two or more users want to send a mes-
sage while the line is in use, then both are monitoring its status. As soon as the
line is idle, both transmit at exactly the same time. This is called a collision,
and it is a common occurrence in contention-based networks like Ethernet.
When a collision occurs, all information is lost. This scenario is shown in 
Figure 7.12(b). According to the Ethernet protocols, when a collision occurs,
the colliding nodes immediately stop sending, wait a random amount of time,
and then attempt to resend. Because it is unlikely that both nodes will select
the exact same random waiting period, one of them should be able to acquire
the line and transmit while the other node waits a little longer. This situation
is diagrammed in Figure 7.12(c).

One reason Ethernet is so popular is that control is distributed. Responsibil-
ity for network operation is shared by all nodes in the network rather than cen-
tralized in a single master controller. Each node makes its own decisions about
when to listen, when to send, and when to wait. That means that the failure of
one node does not affect the operation of any other node in the network.

If our network uses point-to-point links like those in Figure 7.7, rather than
shared lines, we do not need the medium access control protocols just described
because any two machines along the path are connected by a dedicated line.
Therefore, regardless of whether we are using a shared channel or a point-to-
point link, we now have a sender and a receiver, who want to exchange a single
message, directly connected by a channel. It is the job of the layer 2b logical
link control protocols to ensure that the message traveling across this channel
from source to destination arrives correctly.

How is it possible to turn an inherently error-prone bit pipe like the one
in Figure 7.11 into an error-free channel? In fact, we cannot entirely eliminate
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errors, but we can detect that an error has occurred and retransmit a new and
unblemished copy of the original message. The ARQ algorithm, for automatic
repeat request, is the basis for all data link control protocols in current use.

Remember that at this point, nodes A and B are directly connected by a
physical link. When A wishes to send a message to B, it first adds some addi-
tional information to form what is called a packet. It inserts a sequence number
(1, 2, 3, . . .) uniquely identifying this packet, and it adds some error-checking
bits that allow B to determine if the packet was corrupted during transmission.
Finally, it adds a start of packet (SOP) and end of packet (EOP) delimiter to allow
node B to determine exactly where the packet begins and ends.

Thus, the packet M sent from A to B looks like Figure 7.13. This packet is
sent across the communication channel, bit by bit, using the services of the
physical layer protocols described in the previous section. When B receives the
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packet, it examines the error-check field to determine if the packet was trans-
mitted correctly.

What makes the ARQ algorithm work is that node A maintains a copy of
the packet after it has been sent. If B correctly receives the packet, it returns
to A a special acknowledgment message, abbreviated ACK, containing the
sequence number of the correctly received packet. Node A now knows that
this packet was correctly received and can discard its local copy. It is now free
to send the next message:

A B
M(1) S Send the first packet from A to B

d ACK(1) B says to A, “I got it,” A can discard it
M(2) S Send the second packet from A to B

d ACK(2) B says to A, “I got it,” A can discard it
:

If B does not correctly receive the packet (or the packet is lost entirely),
then A will not receive the ACK message from B. After waiting a reasonable
amount of time, A resends the message to B using the copy stored in its memory:

A B

M(1) S Send the first packet from A to B

d ACK(1) B says to A, “I got it,” A can discard it

M(2) S Send the second packet from A to B

No response. Wait for a while

M(2) S and resend the second packet from A to B

d ACK(2) B says to A, “I got it,” A can discard it

:

The ACK for a correctly received packet is itself a message and can be lost
or damaged during transmission. If an ACK is lost, then A incorrectly assumes
that the original packet was lost and retransmits it. However, B knows this is a
duplicate because it has the same sequence number as the packet received ear-
lier. It simply acknowledges the duplicate and discards it. This ARQ algorithm
guarantees that every message sent (eventually) arrives at the destination.

Thus, we can think of the data link layer protocols as creating an error-
free “message pipe,” in which messages go in one end and always come out
the other end correct and in the proper sequence.
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7.3.3 Network Layer

The first two layers of the protocol stack enable us to transmit messages from
node A to node B, but only if these two nodes are directly connected by a
physical link. If we look back at the model of a wide area network shown in
Figure 7.7, we see that the great majority of nodes are not directly connected.
It is the job of the end-to-end network layer protocols to deliver a message
from the site where it was created to its ultimate destination. As part of this
delivery task, every node must agree to use the same node addressing scheme
so that everyone is able to identify that ultimate destination. Thus, the two
critical responsibilities of the network layer are

• Creating a universal addressing scheme for all network nodes

• Delivering messages between any two nodes in the network

Every node in the network must run the identical network layer protocol,
and it is one of the most important parts of the protocol stack. It is often said
that the network layer is the “glue” that holds the entire network together.
The network layer in the Internet is called IP, for Internet Protocol.

You have almost certainly been exposed to the host naming scheme used by
the Internet, as you use it in all your e-mail and Web applications. For example,
the machines of the two authors of this book have the following names:

macalester.edu

hawaii.edu
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Node A and node B are exchanging messages using the ARQ algorithm
described in this section. State what action node B should take in
each of the following situations:

Node A Node B
1. M(3) S

d ACK(3)
M(3) S

?
2. M(3) S

d ACK(3)
M(4) S

?
3. M(3) S

d ACK(3)
M(5) S

?

PRACTICE PROBLEMS



However, these host names are not the actual names that nodes use to
identify each other in IP. Instead, nodes identify each other using a 32-bit IP
address, often written as four 8-bit numeric quantities in the range 0–255,
each grouping separated by a dot.1 For example, the machine referred to as
macalester.edu has the 32-bit IP address 141.140.1.5. In binary it appears as
follows:

10001101 10001100 00000001 00000101

141 140 1 5

and this is the actual destination address that is placed inside a message as it
makes its way through the Internet. Looking at the numeric address shown
above, it is easy to understand why people prefer symbolic names. Whereas it
is easy for humans to remember mnemonic character strings, imagine having
to remember a sequence of 32 binary digits. (This is reminiscent of the bene-
fits of assembly language over machine language.)

It is the task of a special Internet application called the Domain Name
System (DNS) to convert from a symbolic host name such as macalester.edu to
its 32-bit IP address 141.140.1.5. The DNS is a massive database, distributed
over literally thousands of machines that, in total, contain the host name-to-IP
address mappings for the 540 million or so host computers on the Internet.
When you use a symbolic host name, such as mySchool.edu, this character
string is forwarded to a computer called a local name server that checks to see
if it has a data record containing the IP address for this symbolic name. If so,
it returns the corresponding 32-bit value. If not, the local name server forwards
it on to a remote name server (and possibly another, and another, . . .) until it
locates the name server that knows the correct IP address.

Let’s use the diagram shown earlier to see how the network layer operates:
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1 The people who assign IP addresses are actually starting to run out of numbers. The new stan-
dard for IP, called IP version 6, increases the size of the address field from 32 to 128 bits.  This
will provide enough IP addresses for every atom in the universe, and then some!  They are deter-
mined not to run out of addresses this time!

Assume A wishes to send a message to D. First, node A uses the DNS to obtain
the IP address of node D, which it inserts into its message. Because there is no
direct path from A to D, the message is sent along a multi-hop path reaching
from A to D. (Each of these direct machine-to-machine hops uses the data link
layer protocols described in the previous section.) In this example there are
four possibilities—ABCD, AEFD, ABFD, and AEFBCD—and the process of select-
ing one specific path is called routing.



Routing algorithms are highly complex because of the massive volume
of data that must be maintained and the enormous amount of processing
required to determine the optimal route, called the shortest path. The
shortest path between two nodes is not necessarily the shortest path in
length, but the path via which the message can travel the fastest. To deter-
mine the shortest path between every pair of nodes, we need to know
the time delay between every connected pair of nodes in the network. In the
example above, this is the time to get from A to B, from B to C, from A to E,
and so on. For small networks it is feasible to have all this data, but for net-
works like the Internet, with hundreds of millions of nodes and links, this is
an unimaginably huge amount of data to obtain and keep current.

Even if we were somehow able to collect all this data, we are still not fin-
ished. Now we must determine exactly which path to select. One possible algo-
rithm is to determine the time required to send a message along every path
from a source to a destination and then pick the one with the smallest delay.
For example, to determine the optimal path from A to D, we could start out by
summing the individual delays from A to B, B to C, and C to D, which would
give us the time to get from A to D using the route A S B S C S D. We now
repeat this process for every other path from A to D and pick the smallest.

However, in Section 3.5 we showed that, as the number of network nodes
increases, the solution time for these “brute force” algorithms grows exponen-
tially. Therefore, this method is infeasible for any but the tiniest networks.
Fortunately, there are much better algorithms that can solve this problem in
Θ(N2) time, where N is the number of nodes in the network. (The Internet
uses a method called Dijkstra’s shortest path algorithm.) For large net-
works, where N = 108 or 109, an Θ(N2) algorithm might require on the order of
1016 or 1018 calculations to determine the best route from any node to
another—still an enormous amount of work.

There are additional problems that make routing difficult. One complication
is topological change. The Internet is highly dynamic, with new links and new
nodes added on an almost daily basis. Therefore, a route that is optimal now
may not be optimal in a couple of days or even a couple of hours. For example,
the optimal route from A to D in our diagram may currently be A S B S C S D.
However, if a new line is added connecting nodes E and D, this might change the
shortest path to A S E S D. Because of frequent changes, routing tables must
be recomputed often.

There is also the question of network failures. It may be that when every-
thing is working properly, the optimal route from A to D is A S B S C S D.
But what if node B fails? Rather than have all communications between A and
D suspended, it would be preferable for the network to switch to an alterna-
tive route that does not pass through node B, such as A S E S F S D. This
ability to dynamically reroute messages allows a WAN to continue operating
even in the presence of node and link failures.

The network layer has many other responsibilities not mentioned here,
including network management, broadcasting, and locating mobile nodes
that move around the network. The network layer is truly a complex piece of
software.

With the addition of the network layer to our protocol stack, we no longer
have just a bit pipe or a message pipe, but a true “network delivery service” in
which messages are delivered between any two nodes in the network, regard-
less of their location:
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Given the following 6-node wide area network for which the numbers
attached to the links are a measure of the “delay” in using that link
(e.g., some lines could be more heavily used than others, and there is
more waiting), answer the following questions:

1. What is the shortest path from node A to node D, where shortest
path is defined as the path with the smallest sum of the delays on
each individual link? Explain exactly how you went about finding
that path.

2. Do you think the algorithm you used in Problem 1 works if we
redraw the graph so it has 26 nodes rather than 6 and about 50 links
rather than 10? Why or why not?

3. What if the link connecting node F to node D fails? What is now the
shortest path from node A to node D? Could the failure of any single
link in this network prevent nodes A and D from communicating?

PRACTICE PROBLEMS
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7.3.4 Transport Layer

Imagine that 123 Main St. is a large, multistory office building with thousands
of tenants. When you address a letter to an employee who works in this build-
ing, it is not enough to write:

Joe Smith

123 Main St.

My Town, Minnesota



This identifies the correct building, but how do the people in the central mail-
room locate “Joe Smith” from among the thousands of people who work there?
We need to provide a more descriptive address, one that not only identifies the
correct building but also exactly where inside this building Mr. Smith works:

Joe Smith

Acme Services Inc., Suite 2701

123 Main St.

MyTown, Minnesota

The same situation exists on the Internet. Every host computer has an IP
address that uniquely identifies it. However, there may be many application
programs running on that one machine, each one “doing its own thing.” When
a message comes in, how do we know which application program it is for and
where to deliver it?

We need a second level of address that identifies not only a specific
machine but also a specific program running on that machine. This “program
identifier,” usually just a small integer value, is called a port number, and it
serves the same role as the address line “Acme Services Inc., Suite 2701.”
Assigning port numbers to programs and remembering which program goes with
which port is a part of the transport layer protocols. While each host computer
has one IP address, it may at any instant in time have many active ports.

The relationship between these two address types is shown in Figure 7.14.
This diagram shows two hosts: Host A whose IP address is 101.102.103.104, and
Host B with IP address 105.106.107.108. Host A is currently running two pro-
grams called W and X, with port numbers 12 and 567 respectively, while Host B
is executing two programs named Y and Z, with port numbers 44 and 709.

The transport layer protocols create a “program-to-program” delivery ser-
vice, in which we don’t simply move messages from one host to another, but
from a specific program at the source to a specific program at the destination.

In the example in Figure 7.14, it is the job of the network layer protocol to
deliver the message from the host with IP address 101.102.103.104 to the host
with IP address 105.106.107.108, at which point its responsibilities are over. The
transport protocol at the destination node examines the newly arrived message to
determine which program should get it, based on the port number field inside the
message. For example, if the port number field is 709, then the information in the
message is forwarded to application program Z. (What program Z does with this
information and exactly what that message means are not part of the transport
protocols but rather the application protocols discussed in the following section.)

How does a program (such as W or X) learn the port number of another
program (such as Y or Z) running on a remote machine somewhere out in the
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network? The answer is that all important applications on the Internet use
well-known port numbers. Just as it is widely known in the U.S. that direc-
tory assistance is found at 555-1212 and police and fire emergencies are
reported to 911, fixed integer values are assigned to certain applications, and
those values are made known to every machine on the Internet. For example,
the HTTP protocol, which allows us to access remote Web pages (and which we
discuss in the following section), always uses port 80. If you wish to get a Web
page from another machine, you simply need to talk to the program that is lis-
tening for messages on port 80.

Figure 7.16 lists the port numbers of some common Internet applications.
A list of all well-known port assignments is contained in the report titled
Assigned Numbers on the Internet (RFC 1700) available over the Internet.2 The
only time you need to get a new port number is when you are developing a
new application.

The other primary responsibility of the transport layer has to do with
errors and reliability. When we introduced the data link layer in Section 7.3.2,
we said that one of its tasks is to take the inherently unreliable physical chan-
nel underneath it and turn it into an efficient and error-free channel. That
same type of relationship exists between the transport layer and the layer
underneath it, namely the network layer.

The network layer of the Internet, IP, is an inherently unreliable commu-
nication channel. IP uses what is called a good faith transmission model. That
means that it tries very hard to deliver a message from source to destination,
but it does not guarantee delivery. In this sense, IP is like the post office. The
post office does a very good job of delivering mail, and the overwhelming
majority of letters do get through. However, they do not guarantee that
absolutely every letter you send will arrive, and they do not guarantee that let-
ters will arrive either within a specific time period or in exactly the same order
that they were originally posted. If you need these features you have to use
some type of “special handling” service such as Registered Mail or Express Mail.

In a sense, the transport layer represents just this type of “special han-
dling” service. Its job is to create a high-quality, error-free, order-preserving
end-to-end delivery service on top of the unreliable delivery services provided
by IP. On the Internet, the primary transport protocol is TCP, an acronym for
Transport Control Protocol. (There is another transport protocol called UDP for
User Datagram Protocol. We will not be discussing it here.)

TCP requires that the two programs at the source and destination node ini-
tially establish a connection. That is, they must first inform each other of the
impending message exchange, and they must describe the “quality of service”
they wish to receive. This connection does not exist in a hardware sense—
there is no “wire” stretched between the two nodes. Instead, it is a logical con-
nection that exists only as entries in tables. However, TCP can make this logical
connection behave exactly as if there were a real connection between these
two programs. This logical view of a TCP connection is shown in Figure 7.15.

Once this connection has been established, messages can be transmitted
from the source program to the destination program. Programs P1 and P2
appear to have a direct, error-free link between them. In reality, however,
their communications go from P1 to A, B, C, D, and finally to P2, using the
services of the data-link protocol for each link along the way.
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TCP uses the same ARQ algorithm described in our discussion of the data
link level. The receiving program must acknowledge every message correctly
received. If a message is lost in the network and does not arrive, the sending
program does not receive an acknowledgment, and eventually resends it.
Every message is ultimately delivered to the application program waiting for it
and therefore, this TCP connection does function like an error-free channel.

Every message sent on this TCP connection contains a sequence number—
1, 2, 3, . . . . If messages are received out of order (say message 3 comes in
before message 2 because of errors along the route), then TCP simply holds the
later message (message 3) until the earlier message (message 2) correctly
arrives. At that time it can deliver both messages to the application program
in the proper order. From the destination’s point of view, this TCP connection
always delivers messages in the proper order.

With four protocol layers in place, we have a complete end-to-end delivery
service. The network can transmit a message from a program anywhere in the
network to another program anywhere in the network, and do it both correctly
and efficiently. The only thing left to specify is the content of those messages;
that is, what does a program want to say to another program? Essentially we
are asking, What types of applications do we want to give to our network users
and exactly how do we implement them? We answer that question as we look at
the very top layer of our protocol stack—the application layer.

7.3.5 Application Layer

The application layer protocols are the rules for implementing the end-user
services provided by a network, and they are built on top of the four protocol
layers described in previous sections. These services are the reason that net-
works exist in the first place, and the appearance of exciting new applica-
tions (often called “killer apps”) has fueled the rapid growth of networking
and the Internet—e-mail in the 1970s, chat rooms in the 1980s, the Web and
e-commerce in the 1990s, and Internet-based applications and collaborative
computing in the twenty-first century. Figure 7.16 lists a few of the impor-
tant application protocols on the Internet.

It is not possible in this one section to discuss all the protocols listed in
Figure 7.16. Instead, we will use the HTTP protocol, which is used by the World
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Wide Web to access and deliver Web pages, to serve as a general model for how
application layer services are typically built on top of the TCP/IP protocol stack.

A single Web page is identified by a symbolic string called a Uniform
Resource Locator, abbreviated URL. URLs have three parts, and they look
like this:

protocol://host address/page

The first part, protocol, indicates the type of information contained in this
page. The most common format is hypertext, and we access it using the hyper-
text transfer protocol called HTTP. (The Web is designed to accept and transfer
other types of information as well. Thus, we could use the protocol identifier
“news” to obtain information from bulletin boards and news groups, or
“mailto,” which allows us to send and receive e-mail documents via the Web.)
The second part of the URL is the host address of the machine where the page is
stored. This is the symbolic host name first discussed in Section 7.3.3. The third
and last part of the URL is the page identification, which is usually a file stored
on the specified machine. Thus, a typical URL might look like the following:

http://www.macalester.edu/about/history.html

This identifies a hypertext (“http”) document stored in a file called
/about/history.html located on a host computer whose symbolic name is
www.macalester.edu. (Note: “http” is the default protocol. Thus, the previous
URL can also be written as simply www.macalester.edu/about/history.html.)

Before we can use the HTTP protocol to transfer a Web page, we must first
establish a connection between the HTTP client program (the Web browser
being run by the user) and port 80, the port number of the HTTP Web server
located at the node where the Web page resides, namely www.macalester.edu.
The network uses the TCP protocol described in Section 7.3.4 to establish this
connection. Thus, we can clearly see how the HTTP application protocol is
built on top of the TCP/IP protocol stack just described.

Once we establish this connection, we use the HTTP application protocol
to access the desired Web page. An HTTP request message is sent on the TCP
connection from the client to the server, specifying the name of a Web page.
A second HTTP message type, called a response message, is returned from the
server to the client along the same TCP connection. The response contains a
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SMTP Simple Mail Transfer Protocol Sending electronic mail 25
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status code specifying whether or not the request was successful and, if it
was, it includes the requested page.3

Let’s illustrate how these pieces work together using a simple example. Imag-
ine that you are using a Web browser and have just clicked on the following URL:

http://www.macalester.edu/about/history.html

The following sequence of events takes place:

1. Your browser scans the URL and extracts the host name of the machine
to which it must connect—www.macalester.edu. (Let’s disregard
the issue of how this symbolic name is converted to its corresponding
32-bit IP address.)

2. Your browser asks TCP to establish a connection between itself and
port 80 (the Web server) of the machine called www.macalester.edu.

3. When the TCP connection between your browser and the Web server is
established, the browser scans the URL to identify the page you want
to access. In this case it is /about/history.html. The browser con-
structs an http GET message, which requests the contents of that Web
page. This GET message looks something like the following:

GET  /about/history.html  HTTP /1.1

Host:  www.macalester.edu

Accept-language:  English

This message says that we want a copy of the English language page
/about/history.html located at www.macalester.edu, and it should be
accessed using the HTTP protocol, version 1.1. (An actual GET message is
a bit more complex and includes a number of additional fields not shown
here.)

4. The http GET message in step 3 is transmitted across the Internet from
the client’s Web browser program at the source node to the Web server
at the destination node using the services of TCP/IP as well as the data
link and physical layer protocols.

5. When the GET message arrives, it is delivered to the Web server pro-
gram (which is listening on port 80). The Web server locates the file
named in the GET message and creates a response message contain-
ing a copy of the contents of that file. This response message looks
something like the following:

HTTP/1.1  200 OK

Connection:  close

Date:  Thursday, 26 Mar 2009

Content Length:  53908

Content Type:  text/html

. . . (the contents of the Web page go here) . . .
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This response message says that the server successfully found the file
(code 200), and it contains 53,908 bytes of text. It also says that after
the Web page has been sent, the TCP connection between the browser
and the server will be closed. Finally, there is a copy of the entire Web
page. (Again, some fields in the response message have been omitted
for clarity.)

6. This HTTP response message in step 5 is transmitted across the Internet
from the Web server back to the port of the client’s Web browser using the
services of TCP/IP as well as the data link and physical layer protocols.

7. The message is delivered to your browser, and the page is displayed on
the screen. The TCP connection between the two programs is terminated.

Something similar to this occurs every time we click on a new URL. This
sequence of events is diagrammed in Figure 7.17.
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We have just completed a rather long and complex discus-
sion of how a computer network functions.  The chapter
presented a good deal of technical material that for some
can be fairly difficult to grasp.  To help clarify these ideas,
this laboratory experience illustrates network behavior
using a software package called a network simulator. This
simulator allows you to observe and control many of the
technical concepts introduced in this section, concepts
such as packets, messages, error detection, error correc-
tion, and routing.  Shown here is an example of the type of
information you will be working with in this laboratory
experience.

By simulating the behavior of a wide area network,
many of the technical concepts introduced in the preced-
ing pages should become more clear and understandable.

LABORATORY
EXPERIENCE 11

7.4 Network Services and Benefits

At the beginning of this chapter we said that networks have the potential to cre-
ate enormous social change. Now that we have looked at how they are designed
and built, let’s examine the services they offer and their impact on society.

Electronic mail (e-mail) has been the single most popular application of
networks for the last 30 years. When the Internet was first developed, its design-
ers thought that it would be an ideal way to access advanced, high-performance
hardware and software. Instead, they found that it was a wonderfully effective
way to communicate, and e-mail rapidly became the dominant application.

E-mail is convenient. You can send a message whenever you want, and it
waits for the recipient to log on and read it at his or her convenience. E-mail
is fast. A message from the United States typically arrives anywhere in the
world in less than a minute, even though it may have to pass through 15 or
20 nodes along the way (using the packet-switched protocols described in the
previous section). E-mail supports multimedia. The contents of your electronic
messages are not limited to characters but can also include a wide range of
attachments, including photographs, text, graphics, and sound. Finally, e-mail
is a broadcast medium. A computer can send a letter to a thousand recipients
as easily as it can send it to one (which may, in fact, be a detriment rather
than an advantage as we see in the box titled “Spam”).

An interesting application related to e-mail is bulletin boards. A bulletin
board is a shared public file where anyone can post messages and everyone is free
to read the postings of others. It is an electronic version of the bulletin boards
commonly seen in grocery stores, cafes, and public libraries. Most bulletin boards
are associated with a particular topic or special area of interest. These specialized
bulletin boards, called news groups, are a wonderful way to create a community
of individuals who share a common interest and want to exchange ideas and
opinions. Some news groups support chat rooms—the real-time exchange of
messages. Rather than posting a message that is read at a later time, what the



sender types appears immediately on the screen of one or more individuals,
allowing for the direct exchange of ideas. Another popular form of real-time mes-
sage exchange is Instant Messaging (IM), the rapid exchange of messages,
often using wireless technology.  This service is provided by many of the large
ISPs, such as MSN, Yahoo, and AOL. All these ways of keeping in touch with other
people (e-mail, chat, IM) have led to the development of what are called social
networks—systems that create communities of users who share common inter-
ests and activities and which provide multiple methods of online interaction. See
the box on Social Networking on page 328. 

Another important network service is resource sharing, the ability to
share physical resources, such as a printer or storage device, as well as logical
resources, such as software and information.

The prices of computers and peripherals have been dropping for many
years, so it is tempting to think that everyone should buy their own I/O or
storage devices. However, that is not a cost-effective way to configure com-
puter systems. For example, a high-quality color printer may be used rather
infrequently. Buying everyone in the office his or her own printer would leave
most of them idle for long periods of time. It is far more efficient to have a few
shared printers, called print servers, which can be accessed whenever
needed. Similarly, if a group of users requires access to a data file or a piece of
software, it makes sense to keep a single copy on a shared network disk, called
a file server. A network file server can also be a cost-effective way to provide
shared backup services to multiple sites.

The style of computing wherein some nodes provide services while the
remaining nodes are users (or clients) of those services is called, naturally
enough, client-server computing. We have seen two examples—print servers
and file servers—but there are many others, such as mail servers, name servers,
compute servers, and Web servers. The philosophy behind the client-server
model is that we use a network to share resources that are too widespread, too
expensive, or used too infrequently to warrant replication at every node. A dia-
gram of the client-server model of computing is shown in Figure 7.18.

Information sharing is another important service, and a network is an
excellent way to access scientific, medical, legal, and commercial data files stored
on systems all over the world. (In fact, it was the need to share information
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Spam is electronic “junk mail”—unsolicited e-mail sent to
thousands, even millions, of network users without their
permission or knowledge. It is not certain where the term
spam came from, but the best guess is from the famous
Monty Python comedy routine in which the word spam is
repeated over and over, making it a synonym for the seem-
ingly endless repetition of silly or worthless words.

Junk mail in the form of advertising flyers and politi-
cal brochures has been a staple of surface mail for many
years. But there is a natural cap on its volume—the sender
has to pay the post office to deliver it. So, if a mailing is

not likely to produce a profitable return or have a worth-
while purpose, it will not be sent.

However, e-mail does not have that built-in cap, and
it is beginning to clutter our electronic mail boxes and con-
sume large amounts of bandwidth. Because the Internet is
a public facility, there is little that can be done to regulate
spam. A number of companies have developed mail filters
that attempt to determine which e-mails are useful and
which are spam. Unfortunately, as soon as a filter is devel-
oped and released, the “spammers” quickly figure out a way
to beat it and get their e-mail through to your machine.
Probably the best filter developed so far (and for the near
future) is the DELETE button on your keyboard!

Spam



efficiently among hundreds of physicists that led to the development of the
World Wide Web in the early 1990s.) For example, information can be distributed
among the geographically dispersed sites of a multinational corporation and
shared as needed, using a distributed database. Web pages can be exchanged
between remote systems. Files can be transmitted anywhere in the world using
FTP, which is mentioned in Figure 7.16, and online databases can be accessed by
authorized users regardless of location.

Many network sites now provide a service called an information utility,
also known as a data warehouse. These nodes contain massive amounts of
information that can be electronically searched for specific facts or docu-
ments. Frequently such sites contain highly specialized information, such as
geopolitical data, current stock prices, real estate records, or information on
case law and legal precedents. Nowadays it is more common for students, sci-
entists, businesspeople, and politicians to search for information at their
monitor than in the stacks of a library.

Another important network service is the ability to support collaborative
group efforts in producing a shared document such as a user’s manual, grant
application, or design specification. Workers on a project can communicate via
the network, hold virtual conferences, check electronic calendars and schedule
meetings automatically, and share, discuss, and edit documents in progress
online. A rapidly growing network application is collaborative software, also
known as groupware—software that facilitates the efforts of individuals con-
nected by a network and working on a single shared project.

Electronic commerce (or just e-commerce) is a general term applied to
any use of computers and networking to support the paperless exchange of
goods, information, and services in the commercial sector. The idea of using
computers and networks to do business has been around for some time; the
early applications of e-commerce include (1) the automatic deposit of pay-
checks, (2) automatic teller machines (ATMs) for handling financial transac-
tions from remote sites, and (3) the use of scanning devices at check-out
counters to capture sales and inventory information in machine-readable form.

More recently the focus has been on the use of the Internet and the World
Wide Web to advertise and sell goods and services. Initially, the Internet was
used mostly by scientists and engineers. However, the business world soon came
to appreciate the potential of a communications medium that could cheaply and
reliably reach millions of people around the world. In the last 5–10 years, traffic
on the Internet has changed from primarily academic and professional to heav-
ily commercial. For example, as of early 2008, there were about 95,000,000 host
computers in the .com (U.S. commercial) domain, while fewer than 11,000,000
were in the .edu domain (U.S. educational institutions).

We will have much more to say about electronic commerce and commer-
cial uses of the Internet in Chapter 14.
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7.5 A Brief History of the Internet and the World Wide Web

In the preceding sections we discussed the technical characteristics and ser-
vices of networks in general. However, to most people, the phrase computer
network isn’t a generalized term but a very specific one—the global Internet
and its most popular component, the World Wide Web.

In this section we highlight the history, development, and growth of the
Internet and the World Wide Web. Much of the information in the following
pages is taken from the original 1997 article “A Brief History of the Internet,”
written by its original designers and available on the World Wide Web.4

In the words of its designers, “The Internet has revolutionized the com-
puter and communications world like nothing before. It is at once a world-
wide broadcasting capability, a mechanism for information dissemination, and
a medium for collaboration and interaction between individuals and their
computers without regard for geographic location.” 

7.5.1 The Internet

The Internet is not a recent development but an idea that has been around for
more than 40 years. The concept first took shape during the early and mid-
1960s and was based on the work of computer scientists at MIT and the RAND
Corporation in the United States and the NPL Research Laboratory in
Great Britain. The first proposal for building a computer network was made by
J. C. R. Licklider of MIT in August 1962. He wrote his colleagues a memo titled
(somewhat dramatically) “The Galactic Network,” in which he described a
globally interconnected set of computers through which everyone could
access data and software. He convinced other researchers at MIT, including
Larry Roberts and Leonard Kleinrock, of the validity of his ideas. From 1962 to
1967 they and others investigated the theoretical foundations of wide area
networking, especially such fundamental technical concepts as protocols,
packet switching, and routing.

In 1966, Roberts moved to the Advanced Research Projects Agency (ARPA),
a small research office of the Department of Defense charged with developing
technology that could be of use to the U.S. military. ARPA was interested in
packet-switched networking because it seemed to be a more secure form of com-
munications during wartime. (Traditional dial-up telephones were considered
too vulnerable because the failure of the central phone switch would completely
cut all voice communications. As we described earlier, a WAN can automatically
route around a failed line or node in order to maintain communications.)

ARPA funded a number of network-related research projects, and in 1967
Roberts presented the first research paper describing ARPA’s plans to build a
wide area packet-switched computer network. For the next two years, work pro-
ceeded on the design of the network hardware and software. The first two nodes
of this new network, called the ARPANET, were constructed at UCLA and the
Stanford Research Institute (SRI), and in October 1969, the first computer-to-
computer network message was sent. Later that same year two more nodes were

4 Leitner, B., Cerf, V., Kahn, R., Kleinrock L., Lynch, D., Postel, J., Roberts, L., and Wolff, S.,
“A Brief History of the Internet,” Version 3.32, www.isoc.org/internet/history/brief.shtml,
December 10, 2003.

www.isoc.org/internet/history/brief.shtml


added (the University of California–Santa Barbara and the University of Utah),
and by the end of 1969, the budding 4-node network was off the ground.

The ARPANET grew quickly during the early 1970s, and it was formally
demonstrated to the scientific community at an international conference in
1972. It was also in late 1972 that the first “killer app” (critically important
application) was developed—electronic mail. It was an immediate success and
caused an explosion of growth in people-to-people traffic rather than the peo-
ple-to-machine or machine-to-machine traffic that dominated usage in
the first few years.  (It is interesting to note that the total e-mail volume
in the United States in 2007 was about 10 trillion messages!)

The success of the ARPANET in the 1970s led other researchers to develop
similar types of computer networks to support information exchange within
their own specific scientific area: HEPNet (High Energy Physics Network),
CSNET (Computer Science Network), and MFENet (Magnetic Fusion Energy
Network). Furthermore, corporations started to notice the success of the
ARPANET and began developing proprietary networks to market to their cus-
tomers: SNA (Systems Network Architecture) at the IBM Corp. and DECNet
from the Digital Equipment Corporation. The 1970s were a time of rapid
expansion of networks in both the academic and commercial communities.

Farsighted researchers at ARPA, in particular Robert Kahn, realized that
this rapid and unplanned proliferation of independent networks would lead to
incompatibilities and prevent users on different networks from communicat-
ing with each other, a situation that brings to mind the problems that
national railway systems have sharing rail cars because of their use of differ-
ent gauge track. Kahn knew that to obtain maximum benefits from this new
technology, all networks would need to communicate in a standardized fash-
ion. He developed the concept of internetworking, which stated that any
WAN is free to do whatever it wants internally. However, at the point where
two networks meet, both must use a common addressing scheme and identical
protocols—that is, they must speak the same language.

This is the same concept that governs the international telephone system.
Every country is free to build its own internal phone system in whatever way
it wants, but all must agree to use a standardized worldwide numbering sys-
tem (country code, city code), and each must agree to send and receive tele-
phone calls outside its borders in the format standardized by the worldwide
telephone regulatory agency.

Figure 7.19 is a diagram of a “network of networks.” It shows four WANs
called A, B, C, and D interconnected by a device called a gateway that makes
the internetwork connections and provides routing between different WANs.
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To allow the four WANs of Figure 7.19 to communicate, Kahn and his col-
leagues needed to create (1) a standardized way for a node in one WAN to
identify a node located in a different WAN, and (2) a universally recognized
message format for exchanging information across WAN boundaries. Kahn,
along with Dr. Vinton Cerf of Stanford, began working on these problems in
1973, and together they designed the solutions that became the framework
for the Internet. Specifically, they created both the hierarchical host naming
scheme that we use today and the TCP/IP protocols that are the “common lan-
guage” spoken by networks around the world. (These protocols were discussed
in Sections 7.3.3 and 7.3.4.)

During the late 1970s and early 1980s, work proceeded on implementing and
installing TCP/IP on not only mainframe computers but also on the PCs and desk-
top machines that were just starting to appear in the marketplace. It is a tribute
to the power and flexibility of the TCP/IP protocols that they were able to adapt
to a computing environment quite different from the one that existed when they
were first created. Originally designed to work with the large mainframe comput-
ers of the 1970s, they were successfully implemented in the modern computing
environment—desktop PCs connected by LANs.

By the early 1980s, TCP/IP was being used all around the world. Even net-
works that internally used other communication protocols implemented
TCP/IP to exchange information with nodes outside their own community. At
the same time, exciting new applications appeared that were designed to meet
the growing needs of the networking community. (Many of these application
protocols were introduced in Section 7.3.5.) For example, Telnet is a software
package that allows users to log on remotely to another computer and use it
as though it were their own local machine. FTP (file transfer protocol)
provides a way to move files around the network quickly and easily. Along
with e-mail (still wildly popular), these and other new applications added
more fuel to the superheated growth of computer networks.

With TCP/IP becoming a de facto network standard, a global addressing
scheme, and a growing set of important applications, the infrastructure was in
place for the creation of a truly international network. The Internet, in its
modern form, had slowly begun to emerge.

Although many of the technical problems had been solved, networking had
yet to make [or to have?] a significant impact on the general population for one
very important reason: In order to use the ARPANET, you needed a research
grant from the U.S. Department of Defense (DOD). By the early 1980s, many
people were using the Internet, but they were almost exclusively physicists,
engineers, and computer scientists at a select set of secure military and research
centers. For example, in 1982, 13 years after its creation, there were only 235
computers connected to the ARPANET.

One last step was needed, and it was taken by the National Science Foun-
dation (NSF) in 1984. In that year the NSF initiated a project whose goal was to
bring the advantages of the Internet to the entire academic and professional
community, regardless of discipline or relationship with the DOD. NSF planned
and built a national network called NSFNet, which used TCP/IP technology
identical to the ARPANET. This new network interconnected six NSF supercom-
puter centers with dozens of new regional networks set up by the NSF. These
new regional networks included thousands of users at places like universities,
government agencies, libraries, museums, medical centers, and even high
schools. Thus, by the mid-1980s, this emerging “network of networks” had
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grown to include many new sites and, even more important, a huge group of
first-time users such as students, faculty, librarians, museum staff, politicians,
civil servants, and urban planners, to name just a few.

At about the same time, other countries began developing wide-area
TCP/IP backbone networks like NSFNet to interconnect their own medical cen-
ters, schools, research centers, and government agencies. As these national
networks were created, they were also linked into this expanding network,
and the user population continued to expand. For the first time since the
development of networking, the technology had begun to have an impact on
the wider community. A diagram of the state of internetworking in the late
1980s is shown in Figure 7.20.

Some time in the late 1980s, the term ARPANET ceased to be used because,
as Figure 7.20 shows, the ARPANET was now only one of many networks belong-
ing to a much larger collection. (By 1990, it had grown to 300,000 computers on
3,000 separate networks.) People began referring to this entire collection of
interconnected networks as “the Internet,” though this name was not officially
accepted by the U.S. government until October 24, 1995.
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Once people had easy access, the Internet became an immediate success
and grew rapidly. By the middle of 1993, it included 1.8 million host comput-
ers, and roughly 5 to 10 million active users, and its size was doubling every
year. In fact it had become so successful that the NSF decided it was time to get
out of the “networking business.” The goal of the NSF is to fund basic research,
not to operate an ongoing commercial enterprise. In April 1995, NSFNet closed
up shop. The exit of the U.S. government from the networking arena created
business opportunities for new firms called Internet service providers that
offered the Internet access once provided by the ARPANET and NSFNet.

By early 2008, the Internet had grown to 541,000,000 computers located
in just about every country in the world. The extraordinary growth of the
Internet continues to this very day. Figure 7.9 in Section 7.2.4 shows a graph
of the number of host computers connected to the Internet.

The Internet has been one of the biggest success stories in moving
research out of the laboratory and into the wider community. What began as
the wild idea of a few dedicated researchers has grown, in only 40 years, into
a global communications infrastructure moving trillions of bits of data among
hundreds of millions of people. It has adapted time and time again—to
changes in usage (from research and academic to commercial and entertain-
ment), changes in hardware (from mainframes to PCs and local area networks),
and changes in scale (from hundreds of nodes to hundreds of millions).

The Internet continues to undergo massive growth and change, this
time from the most important new “killer app” developed for the Internet
since e-mail—the World Wide Web.

7.5.2 The World Wide Web

Tim Berners-Lee, a researcher at CERN, the European High Energy Physics Lab-
oratory in Geneva, Switzerland, first developed the idea for a hypertext-based
information distribution system in 1989. Because physics research is often
done by teams of people from many different universities, he wanted to create
a way for scientists throughout Europe and North America to easily and
quickly exchange information such as research articles, journals, and experi-
mental data. Although they could use existing Internet services such as FTP
and e-mail, Berners-Lee wanted to make information sharing easier and more
intuitive for people unfamiliar with computer networks.
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The Internet is a truly “global phenomenon,” affecting the
way people work, shop, and communicate throughout
the world. Consider that, whereas the United Nations has
192 member states, the Domain Name System (DNS) of the
Internet includes entries for 239 countries, territories, and
possessions. The DNS includes standardized domain names
for such places as (you may want to get out your atlas)

Comoros (.km), Nauru (.nr), Bouvet Island (.bv), Mayotte
(.yt), Kiribati (.ki), Svalbard and Jan Mayen Islands (.sj),
and even the continent of Antarctica (.aq), which includes
more than 100 computers in its domain. The smallest non-
empty DNS domain is .wf—the Wallis and Futuna Islands, a
tiny French territory in the South Pacific between Hawaii
and New Zealand. As of early 2008 it contained exactly one
host computer!

Geography 
Lesson



Beginning in 1990, Berners-Lee designed and built a system using the
concept of hypertext, a collection of documents interconnected by pointers,
called links, as shown in Figure 7.21. Traditional documents are meant to be
read linearly from beginning to end, but users of hypertext documents (called
pages in Web parlance) are free to navigate the collection in whatever order
they want, using the links to move freely from page to page. Berners-Lee rea-
soned that the idea of hypertext matched up very well with the concept of
networking and the Internet. Hypertext documents could be stored on the
machines of the Internet, and a link would be the name of a page along with
the IP address of the machine where that page is stored. He called his hyper-
text link a URL, an acronym for Uniform Resource Locator, and it is the
worldwide identification of a Web page located on a specific host computer
on the Internet.

Berners-Lee named his new information system the World Wide Web,
and it was completed and made available to all researchers at CERN in May
1991, the date that marks the birth of the Web. It became an instant success,
and traffic on the CERN Web server increased by 1,000% in its first two years
of use. In April 1993, the directors of CERN, realizing the beneficial impact
that the Web could have on research throughout the world, announced that,
effective immediately, all Web technology developed at CERN would be freely
available to everyone without fees or royalties. For many people, this impor-
tant announcement really marks the emergence of the World Wide Web on a
global scale.

A powerful graphical Web browser, called Mosaic, was developed in late
1993 and made available to the general public so that they could begin to
use this new service. With the appearance of Mosaic, the World Wide Web
began to “take off.” It was a network application that offered users exactly
what they needed most—access to massive amounts of helpful information
whenever they wanted it. Other browsers soon appeared in the marketplace,
including Netscape Navigator (1994) and Microsoft Internet Explorer (1995).

In late 1995, the NSF conducted a study of the different types of traffic
on the Internet as a percentage of all information sent. At that time the World
Wide Web represented 23.9% of the total volume of Internet traffic, even
though it had been in existence for only four years!

Since that time the Web has continued to grow exponentially, contain-
ing roughly 108 million distinct Web sites and about 8–12 billion pages by
early 2008. It is by far the fastest growing component of the Internet. The
Web’s colorful graphics and simple point-and-click method of accessing
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information has made it the Internet killer app of the twenty-first century.
It has become the vehicle for bringing the capabilities of networking to
everyone—from toddlers to senior citizens and kindergarten students to
PhDs. For many people, the World Wide Web is the Internet.

7.6 Conclusion

Computer networking has changed enormously in the 40 or so years that it
has been around. From a specialized communication system devoted to aca-
demic research, it has blossomed into a worldwide information system. What
was once the esoteric domain of a few thousand scientists is now used by
hundreds of millions, the vast majority of whom have no formal training in
computer science. From providing access to technical databases and research
journals, it has become a way for the average citizen to shop, chat, stay
informed, and be entertained. There is every reason to believe that the
Internet will continue to grow and evolve as much in the coming years as it
has in the past.

Computer networks were originally created to provide sci-
entists and engineers with easy access to important soft-
ware packages and data files stored on remote computers.
However, the first Internet “killer app” was rather unex-
pected and something quite different—e-mail—and while
many messages did contain technical material, even more
were of the “Wanna meet for lunch today?” variety. 

Linking people together for purposes of social inter-
action has been a popular use of computer networks
since their earliest days. Following the enormous success
of e-mail in the early 1970s, there were many other
attempts to foster online communities. The first bulletin
board system (BBS) appeared in 1978. It allowed users
to dial a central site using a time-sharing terminal, read
and post notices, chat, play online games, and exchange
messages. A similar system, called Usenet, was developed
in 1980. It was similar to a BBS with the added feature of
supporting “newsgroups“—subgroups of users who indi-
cate an interest in a particular topic, such as space flight,
Chinese cooking, or Minnesota Vikings football. Usenet
subscribers could post notices to and chat with members
of just one specific newsgroup.  BBS systems were very
popular from the late 1970s until the mid-1990s when
they began to be replaced by Web-based applications. One
of the earliest examples of using the Web to support inter-

personal communication and collaboration was the wiki. A
wiki is a set of Web pages that everyone is free to access,
add to, or modify. It is essentially a collaborative shared
document built and maintained by a community of online
users. The most well known and widely used wiki is the
online encyclopedia Wikipedia, which currently has over
2.5 million English-language articles, not to mention mil-
lions of other articles in languages from Polish to Por-
tuguese, from French to Finnish. (By comparison, the
Encyclopedia Britannica has about 0.5 million articles.)

The use of Web-based social networking sites has
grown to the point where they are some of the most well
known and widely used applications on the Internet, and
there is hardly a young person today who is not thoroughly
familiar with them and, more likely, a registered member.
Facebook, developed in 2004 by Mark Zuckerberg while a
student at Harvard, has 36 million subscribers in the U.S.
alone and receives 132 million visits per month. MySpace,
which appeared one year earlier in 2003, has 73 million
subscribers and 117 million visitors per month.  LinkedIn,
also started in 2003, has 24 million registered users. 

Twitter, another popular social networking tool, allows
users to keep up with those in their circle of friends with
”tweets,” short text-based posts that appear on the users’
and friends’ pages. By some estimates, Twitter is now the
third largest social network, after Facebook and MySpace. 

Social 
Networking
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The most pressing issue facing the Internet today is not technology and
new applications. Those issues have been and will continue to be addressed
and solved by the computer science community. The biggest concern today is
how the growth and direction of networking will be managed and controlled.
In its early days, the Internet was run by a core group of specialists without a
financial stake in its future, and its management was relatively simple. Cur-
rently, the Internet is managed by the Internet Society, the nonprofit agency
first introduced in Section 7.3. Now that it is a global phenomenon that affects
millions of people and generates hundreds of billions of dollars in revenue, the
Internet is being pulled and tugged by many new constituencies and
stakeholders, such as corporations, politicians, lawyers, advertisers, govern-
ment agencies, and manufacturers. The question now is who will speak for the
Internet in the future and who will help shape its destiny. As the designers of
the Internet warned at the end of their paper (see footnote 4 on page 322)
on the history of networking:

If the Internet stumbles, it will not be because we lack for technol-
ogy, vision, or motivation. It will be because we cannot set a direc-
tion and march collectively into the future.



1. Show how a modem would encode the 5-bit binary
sequence 11001 onto an analog carrier by
a. Modifying its amplitude (the height of the carrier wave)
b. Modifying its frequency (the number of waves per

second)

2. A modem can also modify the phase of a carrier wave to
encode binary data. Find out what the phase of a signal is
and determine how it can be modified so that it can
encode the same 5-bit signal 11001 used in Exercise 1.

3. Determine the total time it takes to transmit an uncom-
pressed grayscale image (with 8 bits/pixel) from a screen
with a resolution of 1,280 3 840 pixels using each of the
following media:
a. A 56 Kbps modem
b. A 1.5 Mbps DSL line
c. A 100 Mbps Ethernet link

4. a. Assume there are 1 million books in your campus
library. Approximate (to the nearest order of magni-
tude) how many bytes of data there are if all these
books were stored online and accessible across a com-
puter network.

b. How long does it take to transfer the entire collection
of books if the data rate of the transmission medium
is 10 Mbps, the speed of the original Ethernet? How
long does it take if we have a line with a speed of
1 Gbps? (This value represents the time needed to
download your entire campus library.)

5. Why is the address field needed in an Ethernet LAN pro-
tocol? Can you think of a useful situation where you
might want either to omit the address field entirely or to
use some “special” address value in the address field?

6. After reviewing the description of the Ethernet protocol
in Section 7.3.2, how do you think this protocol behaves
in a very heavily loaded network—that is, a network
environment where there are lots of nodes attempting to
send messages? Explain what behavior you expect to see
and why.

7. The Ethernet is a distributed LAN protocol, which means
that there is no centralized control node and that the fail-
ure of a single node can never bring down the entire net-
work. However, can you think of any advantage to the
creation of a centralized LAN in which one node is in
charge of the entire network and makes all decisions about
who can send a message and who must wait? Explain.

8. Agree or disagree with the following assertion and
state why:

In an Ethernet network, even though there are colli-
sions, every message is guaranteed to be delivered in
some maximum amount of time T.

9. a. Assume there is a wide-area network with N nodes,
where N $ 2. What is the smallest number of point-to-
point communication links such that every node in the
network is able to talk to every other node? (Note: A
network in which some nodes are unable to exchange
messages with other nodes because there is no path
between them is called disconnected.)

b. If you are worried about having a disconnected net-
work, what type of interconnection structure should
you use when configuring your network?

10. What happens to the store-and-forward protocol of Fig-
ure 7.8 if a packet M is repeatedly sent from node A to
node B but never correctly arrives at B? (Perhaps the link
from A to B is broken.) What modifications can we make
to this protocol to handle this situation?

11. The ARQ algorithm described in Section 7.3.2 is quite
inefficient because the sending node must stop sending
until it receives an explicit ACK from the receiving node.
Can you design a modification to the protocol that makes
it more efficient, and not cause the sender to have to
stop each time it sends a message? Describe your revised
protocol in detail.

12. How do we broadcast a message using an ARQ algorithm?
That is, how do we send the same message to 100 differ-
ent nodes on a WAN?

13. Given the following diagram, where the numbers repre-
sent the time delays across a link:

a. How many simple paths (those that do not repeat a
node) are there from node A to G?

b. What is the shortest path from node A to node G? What
is the overall delay?

c. If node E fails, does that change the shortest path? If
so, what is the new shortest path?

14. What are some of the specific responsibilities performed by
the device called a gateway (diagrammed in Figure 7.19)
that is placed between two different types of networks to
allow them to communicate?
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15. In Section 7.3.4 we said that the transport layer turns
the inherently unreliable network layer into an error-free
delivery service. However, the network layer uses the ser-
vices of the data link layer, which is guaranteed to cor-
rectly deliver messages on a point-to-point link. For
example, assume we have the following 4-node network:

B

A D

C

If the network layer is sending a message from A to D via
B, it can be sure that a message sent by the data link
layer from A to B will always correctly get to B, and a

message sent from B to D will always correctly get to D.
How then is it possible for the network layer to be unable
to correctly deliver a message from A to D?

16. Look at the home page of the Internet Society
(www.isoc.org) and read about one of the designers of
the original ARPANET—Larry Roberts, Leonard Kleinrock,
Vinton Cerf, Robert Kahn, John Postel, or others. Learn
about the early days of networking and the contributions
that these individuals made to the ultimate development
of the Internet. The home page of the Internet Society
has links to many other places that provide a wealth of
fascinating information about networks in general and
the Internet and the Web in particular.

The TCP/IP protocols are the heart and soul of the Inter-
net, and they describe the fundamental rules that govern
all communications in the network. Read more about the
TCP/IP protocols and write a report describing their basic
characteristics and giving a simple overview of the way
that they work.

One of the best places to go for this information is a
set of documents called RFCs (Request for Comments).
These are a series of documents produced by the Internet

Engineering Task Force (IETF) that describe virtually all
aspects of the Internet’s behavior, including its protocols.
Some RFCs contain enormously detailed technical specifi-
cations of the workings of the Internet, while others are
more informational or tutorial (even humorous) in nature.
A good place to start is RFC 1180, “A TCP/IP Tutorial.”
A complete set of all the Internet RFCs is located at
http://www.faqs.org/rfcs, and it can be searched using
the searchable database located at that Web site.
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8.1 Introduction

Information security means, of course, keeping information secure—that is,
protected from those who should not have access to it. Information security
could cover information locked in your filing cabinet, stuffed somewhere in
your purse or wallet, or lying around on your desk. But today it usually means
electronic information, data stored on your computer’s hard disk or data being
transmitted across a network.

In the early days of computing, when big mainframes were the only
option, physical security was enforced by securing the rooms housing these
machines. Only authorized persons had access. Now that there is a machine on
virtually every desktop and a laptop in many briefcases, that kind of physical
security is harder to obtain, but you can take some obvious steps: Don’t leave
your laptop lying around; never leave your workstation running when you are
not in the room; do not share your password with anyone!

However, the danger of someone nearby swiping your laptop pales in
comparison with the risks the Internet and the World Wide Web (discussed in
the previous chapter) have brought. As our virtual environment expands, we
celebrate the ability to reach out from our desktop, laptop, or handheld device
to the rest of the world, receiving information, entertainment, and communi-
cations from thousands of sources. But we may be less aware of the potential
for thousands of sources around the world to reach into our machines to do
harm or steal information.

Security can be breached at many different points in the “virtual
machine” we have presented in the last few chapters. Flaws in assembly-
language programming can be exploited, operating system protections can be
circumvented, and computer networks present all kinds of opportunities for
viewing, manipulating, or destroying data. Consequences can range from
annoyance to identity theft to major economic losses or threats to national
security. Because there are so many ways in which security can be compro-
mised, and the consequences can be so serious, information security is an
important topic of both research and practice.

8.2 Threats and Defenses

You are no doubt aware of the possible threats to the security of your personal
property, such as your car or the contents of your home or apartment. That’s
why you probably carry auto and home or renter’s insurance. Aside from fire,
flood, or other accidents, someone can steal your property, causing you finan-
cial harm and emotional distress. Everyone wants a secure environment. Your



defenses against theft are to employ locks and possibly an alarm system. The
alarm system only comes into play in an active manner if security has already
been breached, but the announcement that a property is alarmed can be a
deterrent to break-ins. While it’s true that an experienced thief can quickly
pick a lock, it’s easier to break into an unlocked house. Be it thieves or com-
puter hackers, either will attack the most vulnerable spots.

This section discusses the threat of individual computers being accessed
by the wrong people, and also the threats to which a computer is exposed
through network connections; in addition, it describes various defenses
against these threats.
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Every new technology develops its own set of “undesir-
ables”—those who see a new technology in terms not of
potential benefits but of increased opportunities for mis-
use, just as automobiles brought wonderful benefits but
also car thieves and drunk drivers. In computer science our
abusive subculture goes by the name hackers.

Originally, the word hacker did not have a negative
connotation. It was a mildly complimentary term for people
who knew how to get things done on a computer—those
somewhat strange and quirky individuals who seemed to
know all the incomprehensible details about how comput-
ers worked, in essence, computer enthusiasts. They were
the “tinkerers” and “fixers” who could enter some weird
sequence of commands that miraculously cured whatever
was wrong with your system.

As computers became more and more important to the
functioning of society, and as computer networks increased
the number of machines that could be accessed by individ-
uals, the term hacker began to take on a different meaning.
Some hackers turned their talents to figuring out how to
override security measures to gain unauthorized access to

other computers. Why? Perhaps for fun, or just because
they could—the computer equivalent of joyriding in a
stolen automobile. The results at first were relatively harm-
less. But soon these explorations turned to exploitations—
ways to attack computer systems and cause destruction.
Sometimes the word cracker is used to denote those who
break into someone else’s computer (like “cracking” a safe)
as opposed to the more innocent “hacker” of the original
use of the word. The general usage, however, is “hacker” for
both types of intent. Computer code (scripts) or even
downloadable programs for hacking can be found on the
Internet. So it’s possible to be an amateur hacker with lit-
tle or no understanding of the technical aspects involved.
“Professional” hackers view with disdain those script kid-
dies who resort to such tactics.

Be aware, though, that any type of hacking is illegal
and punishable under the law by fines or imprisonment.
Just as vandalism is not considered a harmless prank, the
misuse of information technology is no longer viewed as
the harmless intellectual play of “computer jockeys.” It is
seen for what it is—a serious crime with serious conse-
quences and very severe penalties. We will examine the
legal and ethical issues related to hacking in Chapter 17.

How Hackers became Crackers

8.2.1 Authentication and Authorization

The first line of defense against illicit use of, or threats to, computer resources
and sensitive information is a strong authentication and authorization process.

AUTHENTICATION. You want to start up your computer. You want to access
your online e-mail account. You want to access your online bank account to
transfer money or pay a bill. What’s the first thing you have to do in all these
cases? Generally it is to log on to your machine or to the appropriate Web page
by giving your user ID and password. This authentication process on your
computer is managed by your machine’s operating system, as we learned in
Chapter 6. On the Web page, it is managed by the operating system of the Web
server computer. Authentication verifies who has the right to gain access to
the computer, whether it is your local machine or the Web server. The operating
system maintains a file of user IDs and corresponding passwords. When a user



attempts to log on to the machine, the operating system reads the user ID and
checks that the password matches the password for that user in the password
file. Hackers breaking into a computer system look for a file of user IDs and
passwords as the “Open, Sesame” for all locked doors.

If the user ID/password list were just in the form of

Tijara popsicle

Murphy badboy2

Jaylynn mom

. . .

then the entire system would be compromised if this password file were
stolen (copied). Instead, the operating system encrypts the password for a
given user by encoding the information, using a process (a hash function)
that is easy to apply but hard to undo. The hash function takes the pass-
word the user originally chooses, chops it up, and stirs it around according
to a given formula. As a very simple example, suppose the hash function
process is the following:

1. Take each letter in the password and replace it with a number repre-
senting its place in the alphabet (a S 1, b S 2, etc.). Leave each digit
in the password alone. In the above case, “badboy2” would become

2 1 4 2 15 25 2

2. Add up these digits to get a single integer. In this example

2 � 1 � 4 � 2 � 15 � 25 � 2 � 51

3. Divide the integer from Step 2 by 7 and find the remainder. In this
example, dividing 51 by 7 gives a remainder of 2 (51 equals 7 � 7 with
2 left over).

4. Add 1 to the result from Step 3, then multiply the new number by 9.
In this example, the result equals (2 � 1) � 9 � 27.

5. Reverse the digits in the integer from Step 4 and then replace each
digit with the corresponding letter of the alphabet. The result for this
example is 72, which becomes gb.

The encrypted password file would contain an entry of

Murphy gb

and the original password is discarded.
Now when Tom Murphy attempts to log on, he gives “Murphy” as the user

ID and enters a password. The operating system applies the hash function to
that password and compares the encrypted result to the encrypted value “gb”
stored in the password file for that user ID. If there is a match, Tom is recog-
nized as an authorized user and allowed access to the computer.

You may have forgotten a password to some online account at, let’s say,
Ninth Street Bank, and asked for help. The people in charge of Ninth Street
Bank’s Web computer will e-mail you a temporary password that will allow you
to log on and then require you to reset your password to something you choose
(which will change your entry in the password file). You might find this
annoying and wonder why they didn’t just send you your original password. As
we’ve just seen, the system at online Ninth Street Bank doesn’t actually know
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your original password, only its encrypted form and—as we are about to see—
this isn’t enough information to regenerate the original password.

If you managed to steal the encrypted password file, you would not be
able to recover the original password, even if you knew the steps of the algo-
rithm. In our simple example, you could reverse Steps 5 and 4, but not Step 3.
For example,

chjbup5

also hashes to gb, so clearly the process is not reversible. In fact, algorithms
for hashing seem to be well known for each operating system, but, as we have
seen here, knowledge of the hashing algorithm does not give you (or the sys-
tem administrator) certain knowledge of the original password, even if you
have the encrypted password file.

But this appears to raise another problem. What if Fred and Alice have two
different passwords that hash to the same encrypted value? What if Fred and
Alice chose the same original password? In general, this is not a problem—
both Fred and Alice can log in using their respective passwords. But if Fred
stole the password file and saw that his password and Alice’s password hashed
to the same value, he would have a better than random chance of guessing
Alice’s password; he would certainly try his own password with Alice’s user ID,
and he would be successful if indeed the passwords were the same.

To solve this problem, some operating systems keep a third entry for
each user in the password file, namely the exact time at which the user cre-
ated the password. This timestamp gets appended to the original password,
and the result is then run through the encryption algorithm. That way, two
identical passwords do not hash to the same value because the probability
that they were created at the exact same instant in time is infinitesimally
small. When someone attempting to log on gives his or her password, the
operating system consults the password file, appends the timestamp for that
user ID to the password just entered, encrypts the result, and compares it
with the encrypted password entry for that user ID in the password file.

Nonetheless, there are ways in which the operating system’s authentication
process is vulnerable. Consider Ravi, who has not stolen the password file but
nevertheless knows Alice’s user ID and wants to hack into Alice’s account. Since
Ravi knows Alice personally, he might try to guess her password. He might try
her nickname, the name of her pet poodle, the title of her favorite band. Of
course he could also try “alice”, “123456”, or—a perennial favorite—“password”.
Many systems set “password” as the default value, and if Alice hasn’t changed (or
been required to change) her password, this will get Ravi into Alice’s account.
Failing at these attempts, Ravi might try a brute-force attack of trying all possi-
ble passwords. Suppose there are n possible characters that can be used in a pass-
word (at least uppercase and lowercase letters and the 10 digits are possibilities).
To try all possible passwords of length k or less would require

n1 � n2 � . . . � nk

attempts. On the average, Ravi might be successful after about

(n1 � n2 � . . . � nk)/2

attempts. But this will be very time-consuming. In addition, most systems have
a lock-out after some number of failed tries, which would foil this approach.

For someone who has stolen the password file, a better way to do a brute-
force approach is by using password-cracking software. For a given user ID (which
our villain knows because the user ID is not encoded), password-cracking
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software will first try all words in its built-in dictionary, encrypting each with
the well-known hash function and comparing the result with the password file. If
this fails, it will then go on to a brute-force attack using all combinations of
characters in turn. Such software is amazingly fast and can try a million or more
potential passwords per second.

Surprisingly, the easiest way to obtain someone’s password is not to steal the
password file (hard to do) or to guess that person’s password (time-consuming),
but to use social engineering. Social engineering is the process of using people
to get the information you want. If Ravi wants Alice’s password, he might just
ask her! In a business setting, he might get a chance to snoop around her office
and find the yellow sticky note containing her password attached to her monitor
or stuck beneath her keyboard. He might violate “password etiquette” and watch
over her shoulder while she logs on. Or he could try an indirect approach; he
could call Alice’s (gullible) secretary and, posing as an IT technician, explain that
Alice has called the IT service group about some computer problems she is expe-
riencing and that to fix them, he needs Alice’s password. Most companies try to
educate their employees about the dangers of social engineering.

Your best defense against someone guessing your password is to be smart
about how you choose and use your password.
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Choosing passwords

• Use long passwords (at least 8 characters)
• Use a mixture of uppercase and lowercase let-

ters, digits, and special symbols (if allowed on
your system)

• Consider using the first letters of some long
phrase that is meaningful to you, mixed with
some digits or special symbols

• Avoid personal information such as your name,
user ID, or birthdate

• Avoid common dictionary words

Using passwords

• Change your password often (many systems
require this)

• Use different passwords for different applica-
tions

• Don’t tell anyone your password
• Don’t write your password down
• Be wary when your browser offers to remember

a password for you

Managing passwords may be a bit of a hassle, but security
measures are always a balancing act between user conve-
nience and user protection.

Password Pointers

While user IDs and passwords are the most common authentication mechanism,
there are other options. Some laptops now use biometric information, i.e.,
fingerprint scanning. Some company networks use a one-time password
scheme that works as follows: The legitimate user enters his or her user ID and
partial password. Each user has a small device that then generates the (ran-
dom) last half of the password, which is good only for a few seconds. The sys-
tem knows both the first half and last half and checks for a match after the
user enters the last half. In this way, the password is quite secure because it is
only valid for a very short time.

Don’t forget the most basic physical security principles—maintain con-
trol of your laptop, be sure no one peers over your shoulder in your office or
on the airplane, lock your office door when you leave, and so on. In a secure
business or government environment, video surveillance cameras can
enhance security, and visitors to a secure server site are checked against an
access list and logged in to and out of the room.
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Using the hash function described in this section, verify that the
password “chjbup5” also hashes to “gb”.

PRACTICE PROBLEM

AUTHORIZATION. Authorization governs what an authenticated user is
allowed to do. Enforcing authorization rules is also one of the jobs of the
operating system, as discussed in Chapter 6. On your own machine, you may
have administrative privileges and be able to see everything on the machine.
On your banking Web site, you can only see your own account information.
The operating system maintains access control lists. Depending on who users
are, they have various privileges, such as

• Read access (can read a particular file)

• Write access (can modify a particular file)

• Execute access (can run a particular program file)

• Delete access (can delete a particular file)

As a student in a class, you have read/write/delete access to your own files.
You have execute access and read access to programs and files the instructor
has placed in a common folder. The instructor probably has access to the files
of all students in the class. The system administrator or superuser has
access to everything, and is the person who sets up the authorization privi-
leges for all other users. A careful operating system will check every access
every time by every user.

8.2.2 Threats from the Network

Once your personal computer, a business computer, or a Web server computer
is connected to the Internet, there are many more possibilities for harm.
Attacks can come from anonymous sources anywhere in the world via many
intermediate nodes that maintain varying levels of security. Recall the com-
plexity of the Internet, the fact that it is not specifically governed by any one
entity, and the idea that the whole point is to share information, and it is
clear what a difficult task “Internet security” can be.

Most of these threats come in the form of malware (malicious software)
that can attack an individual computer. The most common attacks to individ-
ual computers are by viruses, worms, Trojan horses, and denial of service.

VIRUS. A virus is a computer program that, like a biological virus, infects a
host computer and then spreads. It embeds itself within another program or file.
When that program or file is activated, the virus copies itself and attacks other
files on the system. The results may be as simple as taunting pop-up messages,
but could also include erratic behavior or drastic slowdown of the computer,
corrupted or deleted files, loss of data, or system crashes. The virus is spread
from one machine to another by passing on the infected file, perhaps on a flash
drive. By far the most common mechanism for spreading a virus, however, is
through e-mail attachments. An infected file is attached to an e-mail message



and sent out to 100 people, for example. Anyone who downloads and opens the
attachment causes the virus to replicate the infected file and perhaps send it out
as an e-mail attachment to the first 100 people in that person’s personal address
book. In this way a virus can potentially spread like wildfire across the Internet.

WORM. A worm is very similar to a virus, but it can send copies of itself to
other nodes on a computer network without having to be carried by an
infected host file. In its most benign form, a worm can clog the Internet so
that legitimate traffic is slowed or shut out completely. In addition, the worm
might also subvert the host systems it passes through so that, at a later time,
those systems can be controlled by the worm’s author and used to send spam
e-mail, deface Web pages, or perform other mischief.

TROJAN HORSE. A Trojan horse (in the software world) is a computer pro-
gram that does some harmless little job but also, unbeknownst to the user,
contains code to perform the same kinds of malicious attacks as viruses and
worms—corrupt or delete files, slow down the computer, and the like. It might
also upload or download files, capture the user’s address book to send out
spam e-mail, hide a keystroke logger that captures the user’s passwords and
credit card numbers (and sends them to someone else), or even put the com-
puter under someone else’s remote control at some point in the future. A com-
puter can become infected by a Trojan horse when the user downloads
infected software from a malicious Web site. In fact even visiting an infected
Web site can, behind the scenes, download a Trojan horse (an attack called a
drive-by exploit or drive-by download).

DENIAL OF SERVICE. A denial-of-service (DOS) attack is typically directed at
a business or government Web site. The attack automatically directs browsers
on many machines to a single URL at roughly the same time, causing so much
network traffic to that site that it is effectively shut down to legitimate users.
Spam e-mail can accomplish a similar, but less targeted effect, by flooding the
Internet with e-mail messages that consume available bandwidth and clog
mail servers.
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The “Trojan horse” name refers to a wooden horse in Greek
mythology which the Greeks left as a gift for the Trojans
during the Trojan War. When the Trojans pulled the horse
into the city, the Greek soldiers hiding inside sneaked out
under cover of nightfall, opened the gates of Troy to the
Greek army, and Troy was defeated.

In the same way, Trojan horse software works by
hiding destructive code within some seemingly legitimate
program where it waits until it can sneak out and spring
into action. A Trojan horse known as Coreflood or AF Core
Trojan has been around since 2002 but has recently taken
a more dangerous turn. Coreflood can infect the
computing capability of an entire network. If a system

administrator logs on to an infected machine, say for
routine maintenance, the Trojan horse infects the system
administrator machine and thereafter any machine the
system administrator logs on to. The current variation of
Coreflood captures banking or brokerage account user IDs,
passwords, and balance information. In 2008, a security
company was able to find a host computer where the
Coreflood perpetrators maintained a database of over 50
GB of data they had stolen from over 378,000 computers
during the previous 16 months, including 14,000
machines within a global hotel chain network. Widespread
attacks also occurred at financial institutions, hospitals,
and even a law enforcement agency. At the time of this
writing, the authors of the sophisticated Coreflood attack
have not been identified.

Beware the Trojan Horse
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You may feel at this point that you should just unplug your
computer from the Internet or disable your wireless capa-
bility. The good news is you can protect yourself.

• Be sure your computer has up-to-date anti-
virus software from a reputable company. Such
software can detect worms, viruses, and Trojan
horses by distinctive “signatures” those pro-
grams carry. It cleans your machine of infected
files. Most anti-virus software comes with a fea-
ture for automatic updates; this is necessary
because the “good guys” have to keep up with
the new ideas from the “bad guys.”

• Be sure your computer has an up-to-date fire-
wall from a reputable company. Firewall soft-
ware guards the access points to your
computer, blocking communications to or
from sites you don’t permit.

• Be sure your computer has up-to-date anti-
spyware software from a reputable company.
Anti-spyware routinely scans your computer

for any “spyware” programs that may have
infected your machine—programs that cap-
ture information on what Web sites you have
visited and what passwords and credit card
numbers you have used.

• Be sure to install the latest security patches
or updates to your operating system, whatever
operating system you use. It’s a widely held
belief that home computers with Windows
operating systems are most vulnerable to
attack, but this may only reflect the market
share Windows enjoys.

• Don’t open e-mail attachments from unknown
sources, especially files with .exe or .zip exten-
sions.

• Don’t download software except from rep-
utable sources.

• Don’t send personal or financial information in
response to any e-mail (“My wealthy Nigerian
uncle left me a fortune that I am willing to
share with you but I need your account
number . . .”).

Defense Against 
the Dark Arts

Phishing is a practice used to illegally obtain sensitive
information such as credit card numbers, account numbers,
and passwords. An e-mail is sent claiming to be from a
legitimate organization such as a bank, credit card com-
pany, or online retailer asking the recipient to click on a
link to update or verify his or her account information.
Often the message contains a warning that your account
will be suspended or cancelled if you fail to provide this
information (although this personal information is already
on file with the legitimate organization if indeed you do
have an account there). The link takes the unwary user to a
fake Web site that appears to be legitimate, and captures
the information the user enters. Despite the fact that no
legitimate bank or other financial organization ever oper-
ates this way, many people fall for this scheme and become
victims of identity theft, suffering financial losses that in
total cost consumers hundreds of millions of dollars.

The Anti-Phishing Working Group (APWG) is an
industry and law enforcement association focusing on

helping eliminate identity theft resulting from phishing
(www.antiphishing.org/index.html). It provides discussion
forums, maintains statistics, and tests promising technol-
ogy solutions. The APWG protects the identity of its
member industries because such organizations, although
guilty of no wrongdoing, are reluctant to admit that their
sites were mimicked in phishing attacks. According to
data from the APWG, there were over 47,000 phishing
attacks in the first half of 2008 launched from over
26,000 unique domain names (a given domain name can
host multiple attacks). The average phishing site is left
online for less than two days, making it difficult to catch
those responsible.

The term “phishing” comes about because perpetra-
tors cast out bait, in the form of e-mail messages, to thou-
sands of potential victims in the hope that one or two will
“bite” and fall for this scam. Never follow the link in such
a message or reply to the message; instead, delete the
message immediately. If you want to check an account’s
status, open a separate browser window and access your
account information as you normally would.

Gone Phishin’

www.antiphishing.org/index.html


8.3 Encryption

Much of the thrust of information security, as we have talked about it so far, is
to devise defenses so that the “bad guys” can’t steal our information. If,
despite these precautions, files on a computer hard disk or packets passing
along a network connection are illegally accessed and fall into the wrong
hands, we can still protect their contents through encryption (we make our
information meaningless to the bad guys if they do get it). We’ve already dis-
cussed encryption of the password file by the operating system as a security
measure, in case the password file is stolen. In this section we’ll discuss various
other encryption mechanisms, which apply both to data stored and data sent.

8.3.1 Encryption Overview

Cryptography is the science of “secret writing.” A message (plaintext) is
encoded (encrypted) before it is sent, for the purpose of keeping its content
secret if it is intercepted by the wrong parties. The encrypted message is
called ciphertext. The ciphertext is decoded (decrypted) back to plaintext
when it is received, in order to retrieve the original information. Encryption
and decryption date back thousands of years. The most famous instances of
cryptography occur in military history, beginning with Julius Caesar of the
Roman Empire, who developed the Caesar cipher. In more modern times, the
military importance of cryptography was illustrated by the German Enigma
code cracked by the Allies during World War II.

Encryption and decryption are inverse operations because decryption must
“undo” the encryption and reproduce the original text. (An exception is hash
function encoding, used for password encryption, which is a one-way code and
does not involve decryption.) There are many encryption/decryption algorithms,
and of course both the sender and receiver must use the same system. A symmet-
ric encryption algorithm requires the use of a secret key known to both the
sender and receiver. The sender encrypts the plaintext using the key. The receiver,
knowing the key, is easily able to reverse the process and decrypt the message.
One of the difficulties with a symmetric encryption algorithm is how to securely
transmit the secret key so that both the sender and the receiver know what it is;
in fact, this approach seems to simply move the security problem to a slightly dif-
ferent level, from transmitting a message to transmitting a key. In an asymmet-
ric encryption algorithm, also called a public key encryption algorithm, the
key for encryption and the key for decryption are quite different, although
related. Person A can make an encryption key public, and anyone can encrypt a
message using A’s public key and send it to A. Only A has the decryption key, how-
ever, so only A can decrypt the message. This approach avoids the difficulty of
secret key transmission, but it introduces a new problem: The relationship
between the decryption key and the encryption key must be sufficiently complex
that it is not possible to derive the decryption key from the public encryption key.

8.3.2 Simple Encryption Algorithms

CAESAR CIPHER. A Caesar cipher, also called a shift cipher, involves shifting
each character in the message to another character some fixed distance farther
along in the alphabet. Specifically, let s be some integer between 1 and 25 that
represents the amount of shift. Each letter in the message is encoded as the letter
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that is s units farther along in the alphabet, with the last s letters of the alphabet
shifted in a cycle to the first s letters. For example, if s � 3, then A is encoded as
D, B is encoded as E, X is encoded as A, and Z is encoded as C. The integer s is the
secret key. Decoding a message, given knowledge of s, simply means reversing the
shift. For example, if s � 3, then the code word DUPB is decoded as ARMY.

The Caesar cipher is an example of a stream cipher; that is, it encodes
one character at a time. This makes it easy to encode just by scanning the
plaintext and doing the appropriate substitution at each character. On the
other hand, there are only 25 possible keys, so a ciphertext message could be
decoded by brute force, that is, by simply trying all possible keys.

In addition, the Caesar cipher is a substitution cipher, whereby a single
letter of plaintext generates a single letter of ciphertext. We can replace the
simple shift mechanism of the Caesar cipher with a more complex substitution
mechanism, for example:

A B C E F . . .

Z A Y B X . . .

(Can you guess the substitution algorithm being used?) However, in any simple
substitution cipher, the structure of the plaintext is maintained in the
ciphertext—letter frequency, occurrence of double letters, frequently occurring
letter combinations, and so forth. With a sufficiently long message, an experi-
enced cryptanalyst (code breaker) can use these clues to recover the plaintext.

BLOCK CIPHER. In a block cipher, a group or block of plaintext letters gets
encoded into a block of ciphertext, but not by substituting one character at a
time for each letter. Each plaintext character in the block contributes to more
than one ciphertext character, and each ciphertext character is the result of
more than one plaintext letter. It is as if each plaintext character in a block
gets chopped into little pieces, and these pieces are scattered among the
ciphertext characters in the corresponding block. This tends to destroy the
structure of the plaintext and make decryption more difficult.

As a simple example, we’ll use a block size of 2 and an encoding key that
is a 2 � 2 arrangement of numbers called a matrix. Here A and B,

are matrices. We can define an operation of matrix multiplication as follows.
The product A � B will also be a 2 � 2 matrix, where the element in row i,
column j of A � B is obtained by multiplying each element in row i of A by its
corresponding element in column j of B and adding the results. So to obtain
the element in row 1, column 1 of the result, we multiply the row 1 elements
of A by the corresponding column 1 elements of B and add the results:

1 * 5 � 2 * 2 � 5 � 4 � 9

c
1 2
3 4

d 3 c
5 1
2 1

d 5 c
9

 d

A 5 c
1 2
3 4

d B 5 c
5 1
2 1

d
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To obtain the element in row 1, column 2 of the result, we multiply the row 1
elements of A by the corresponding column 2 elements of B and add the results:

The completed product A � B is .

However, for encryption purposes, we are going to modify this
definition. When we add up the terms for each element, whenever we exceed
25, we will start over again, counting from 0. In this scheme, 26 S 0, 27 S 1,
28 S 2, . . . , 52 S 0, and so on.

Not every 2 � 2 matrix can serve as an encryption key; we need an invert-
ible matrix. This is a matrix M for which there is another matrix M� such that

For example, is invertible because for ,

(remember that any value � 25 

gets wrapped around to 0).1

This property is what allows M� to reverse the effect of M. Also, part of
our encryption algorithm is a simple substitution S that maps letters into
numbers; we’ll let S be really simple here: S(A) � 1, S(B) � 2, . . . , S(Z) � 26.
Obviously S is reversible, and we’ll call the reverse mapping S�: S�(1) � A,
S�(2) � B, . . . , S�(26) � Z.

To encode our message, we break it up into two-character blocks. Suppose
the first two characters form the block (D E). We apply the S mapping to this
block to get (4 5). Now we multiply (4 5) � M by treating (4 5) as the row of
some matrix (and remember to wrap around if the result exceeds 25):

Finally, apply the S� mapping to get from digits back to characters: S� (22 9) �
(V I). This completes the encoding, and (V I) is the ciphertext for the message
block (D E). Notice that the digit 4 (i.e., the plaintext letter D) contributed to
both the 22 (V) and the 9 (I), as did the digit 5 (i.e., the plaintext letter E). This
diffusion (scattering) of the plaintext within the ciphertext is the advantage of
a block cipher.

5 (22  35) S (22  9)

(4   5) 3 c
3 5
2 3

d  5(4 * 3 1 5 *2     4 * 5 1 5 * 3)  

S c
1 0
0 1

d  

M9 3 M 5 c
23 5
2 23

d 3 c
3 5
2 3

d  5 c
79 130
52 79

d

M95 c
23 5
2 23

dM 5 c
3 5
2 3

d  

M9 3 M 5 c
1 0
0 1

d
 

c
9 3
23 7

d  

c
1 2
3 4

d 3 c
5 1
2 1

d 5 c
9 3

d  
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1 The mathematical function modulo 26 is being applied.



For decoding, we reverse the above steps. Starting with the ciphertext 
(V I), we first apply S to get (22 9). We then multiply (22 9) by M�, the inverse
of the encoding key (remembering to wrap around if the result exceeds 25):

Finally we apply S� to get back—voilà!—the plaintext (D E).
Figure 8.1 summarizes the steps. Again, the matrix M is the secret encryp-

tion key, from which the decryption key M� can be derived.

5 (524  317) S  (4  5)

(22   9) 3 c
23 5
2 23

d  5 (22 * 23 1 9 * 2      22 *  5 1 9 * 23)  

3458.3 Encryption LEVEL 3

The laboratory software for this laboratory experience uses
a block cipher of block size 2. You will be able to encrypt
and decrypt messages. The encryption key is again a
matrix, but the encryption algorithm is quite different
from that of the block cipher discussed in this section. In
the illustration shown here, the first block of the plaintext
is “th”. This has been encrypted, using the encryption
matrix, into “qE”.

Steps in Encoding and Decoding
for a Block Cipher

FIGURE 8.1
Encoding

1. Apply S mapping to plaintext block.
2. Multiply result times M, applying wraparound.
3. Apply S’ to the result.

Decoding

1. Apply S mapping to ciphertext block.
2. Multiply result times M’, applying wraparound.
3. Apply S’ to the result.

LABORATORY
EXPERIENCE 12

1. Using a Caesar cipher with s � 5, encrypt the message NOW IS THE
HOUR.

2. A messenger tells you that the secret key for today for the Caesar
cipher is s � 26. Should you trust the messenger? Why, or why not?

PRACTICE PROBLEMS
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Steganography is the practice of hiding the very existence
of a message. It’s an old idea; an ancient Greek ruler was
said to have sent a (not very urgent) message by tattooing
the message on the shaved head of one of his slaves and
then sending the slave off after his hair had grown back.
The message was revealed on the other end by once more
shaving the messenger’s head.

These days, steganography has again come into favor
in the form of hidden text within images posted on the
Web. As we learned in Chapter 4, a colored digital image is
composed of individual pixels; in the usual RGB format, 8
bits are allocated for each of the red, green, and blue color
components. This allows for 28 � 256 variations of inten-
sity for each color. Let’s say the red component in a pixel
has the following 8-bit value:

11010010

The least-significant bit (the right-most 0) con-
tributes the least to the color intensity. If this bit is
changed from 0 to 1, the red component becomes

11010011
This tiny change will not be detectable to the human

eye viewing the image.
A text file can be hidden in an image file by changing

(if needed) the least significant bit of each byte of the
image file to match the binary form of the characters in
the text. For example, if the first letter of the text file to
be hidden is “A”, with ASCII code 01000001, then the first
8 bytes of the image file would be modified (if needed) so
that the least significant bits are 0, 1, 0, 0, 0, 0, 0, and 1.
To the naked eye, the image appears unaltered.

The image on the left below is the original. The
image on the right uses steganography to hide 668 KB of
text, over 140 double-spaced pages. Can you see any
difference?

Hiding in Plain Sight

8.3.3 DES

Both of the previous encryption algorithms are too simplistic to provide
much real security. DES (Data Encryption Standard) is an encryption algo-
rithm developed by IBM in the 1970s for the U.S. National Bureau of Stan-
dards (now called the U.S. National Institute of Standards and Technology, or
NIST), and is certified as an international standard by the International Orga-
nization for Standardization, or ISO (the same organization that certifies the
MP3 digital audio format, as discussed in Chapter 4). One might expect this
internationally standard algorithm to rest upon some extremely complex
and obscure operations, but the DES algorithm actually uses very simple
operations—however, it uses them over and over.



DES was designed to protect electronic information, so the plaintext is a
binary string of 0s and 1s, just as it is stored in a computer. As we learned in
Chapter 4, this means that ordinary text has already undergone an encoding
using ASCII or Unicode to convert characters to bit strings. This encoding,
however, is not for the purposes of secrecy, and has nothing to do with the
cryptographic encoding we are talking about in this chapter.

DES is a block cipher, and the blocks are 64 bits long, meaning that 64 plain-
text bits at a time are processed into 64 ciphertext bits. The key is a 64-bit binary
key, although only 56 bits are actually used. The algorithm begins by sending the
plaintext 64-bit string through an initial permutation (rearrangement). The
algorithm then cycles through 16 “rounds.” Each round i performs the following
steps:

1. The incoming 64-bit block is split into a left half Li and a right half Ri.
The right half Ri gets passed through unchanged to become the left
half of the next round, Li�1.

2. In addition, the 32 bits in the right half get permuted according to a
fixed formula and then expanded to 48 bits by duplicating some of the
bits. Meanwhile, the 56-bit key is also permuted (the result is passed
on as the key to the next round) and then reduced to 48 bits by omit-
ting some of the bits. These two 48-bit strings are matched bit by bit,
using an XOR (exclusive OR) gate for each bit. Figure 8.2 shows the
standard symbol for an XOR gate, along with its truth table.

3. The resulting 48-bit string undergoes a substitution and reduction to
emerge as a 32-bit string. This string is permuted one more time, and
the resulting 32-bit string is matched bit by bit, using XOR gates, with
the left half Li of the input. The result is passed to the next round as
the new right half Ri�1.

After all 16 rounds are complete, the final left and right halves are recom-
bined into a 64-bit string that is permuted one more time, and the resulting
64-bit string is the ciphertext. Figure 8.3 outlines the steps involved in the
DES algorithm.

Two important points about the DES algorithm: The first is that every sub-
stitution, reduction, expansion, and permutation is determined by a well-
known set of tables. So, given the same plaintext and the same key, everyone
using DES ends up with the same ciphertext. The “secret” part is the initial
key. The second point is that the same algorithm serves as the decryption
algorithm—just start with the ciphertext and apply the sequence of keys in
reverse order, that is, the round-16 key first and the original secret key last.

With increased computing power in the hands of those trying to break a
code, a 56-bit key does not seem as formidable as when DES was first introduced.
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a

b

a

0
0
1
1

b

0
1
0
1

a + b

0
1
1
0

The XOR Gate

FIGURE 8.2
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Permutation

Permutation

Initial permutation

Final permutation

64-bit ciphertext

Expansion to
48 bits

Substitution 
and reduction 

to 32 bits

Permutation

Next key

Reduction to
48 bits

64-bit plaintext 56-bit key

Bitwise XOR

Bitwise XOR

R1L1

Round 1

R2L2

RL

Round 2

Round 16

The DES Encryption Algorithm

FIGURE 8.3

It might even be feasible to try all 256 (72,057,594,037,927,936) possible keys.
Triple DES improves the security of DES; it requires two 56-bit keys (which can
be thought of as a 112-bit key length), and runs the DES algorithm three times:
Encode using key 1, decode the result using key 2, encode the result using key 1
again.

Concerns about the eventual breakdown of DES in the face of ever-increasing
computing power prompted NIST in 1997 to request proposals for a successor
encryption scheme. The result was AES (Advanced Encryption Standard),
which was adopted for use by the U.S. government in 2001. AES is based on the
Rijndael (pronounced Rin-dahl) algorithm, named for the two Belgian cryptogra-
phers who designed it, Vincent Rijmen and Joan Daemen. Like DES, AES uses suc-
cessive rounds of computations that mix up the data and the key. The key length
can be 128, 192, or even 256 bits, and the algorithm appears to be very efficient.



3498.3 Encryption LEVEL 3

In 1997, the Electronic Frontier Foundation, a nonprofit
civil-liberties organization, began to build the DES Cracker,
a PC connected to a large array of custom chips. The entire
configuration cost less than $250,000 to build (a very rea-
sonable price at the time for big computing power). This
machine was intended to apply brute-force techniques
(trying all possible 56-bit keys) to crack ciphertext
encoded using DES. In 1998, the machine was used to
respond to a challenge in the form of a ciphertext message
posed by RSA Laboratories, the research component of RSA
Security, a leading electronic security company. The DES
Cracker could test 88 billion keys per second, and it found
the correct 56-bit key in less than three days.

This result had political and economic overtones
because the U.S. government at the time had strict controls

on the export of cryptographic software, most of which was
limited to encryption algorithms using a 40-bit key or less.
This hampered overseas sales of software products with
strong encryption. The government also pressured industry
within the United States to limit the use of cryptography to
DES, claiming that DES codes were highly secure and nearly
impossible to crack, a claim clearly refuted by this chal-
lenge. The designer of the DES Cracker machine noted that
searching for a 40-bit key (the export limit at the time)
using the DES Cracker would take 3–12 seconds.

Some people suspected that the government wanted
to keep weak encoding in use in order to be able to access
information, perhaps infringing on personal privacy. The
U.S. export policy was made less restrictive in 1998,
although not as a result of the DES Cracker. In Chapter 17,
we’ll examine the ethical issues raised in a specific
instance of government regulation of encryption.

Cracking DES

8.3.4 Public Key Systems

The encryption algorithms we have discussed so far have all been symmetric
encryption algorithms, requiring that both the sender and receiver have knowl-
edge of the key. Our final algorithm is an asymmetric, or public key, encryption
algorithm. Remember that the main difficulty with a symmetric algorithm is
how to securely transmit the secret key. In a public key system, the encryption
key for messages to go to a particular receiver is broadcast to everyone, but the
decryption key cannot be derived from it and is known only by the receiver.

The most common public key encryption algorithm is RSA, named for its
developers, Ron Rivest, Adi Shamir, and Len Adleman at MIT (founders of RSA
Security—see the box “Cracking DES”). This algorithm, developed in 1977, is
based on results from the field of mathematics known as number theory.

A prime number is an integer greater than 1 that can only be written as
the product of itself and 1. For example, 2, 3, 5, 7, 11, . . . are prime numbers;
you can only write 7, for example, as 7 � 1 � 7, the product of 1 and 7. The
numbers 4, 6, 8, 10, and 12, for example, are not prime because they can be
factored in a nontrivial way:

4 � 2 � 2 6 � 2 � 3 8 � 2 � 2 � 2
10 � 2 � 5 12 � 2 � 2 � 3

Any positive integer is either a prime number or a number that can be written
in a unique way as a product of prime factors. For example, 12 � 2 � 2 � 3 is
the product of three prime factors. The success of RSA encryption depends on
the fact that it is extremely difficult to find the prime factors for n if n is a
large number. So although information encrypted using RSA is technically not
secure, it is secure in practice because of the large amount of computation
necessary to find the prime factors of the encoding key.

Here’s how RSA works. Two large prime numbers p and q are chosen at −
random, and their product n � p � q is computed. The product m � (p � 1) �
(q � 1) is also computed. Next, a large random number e is chosen in such a way



that e and m have no common factors other than 1. This step guarantees the
existence of a unique integer d between 0 and m, such that when we compute e
� d using the same sort of wraparound arithmetic we used in the block encoding
scheme—that is, whenever we reach m, we start over again counting from 0—
the result is 1. There are computationally efficient ways to produce p, q, e, and d.

For example, suppose we pick p � 3 and q � 7 (a trivially small case). Then,

1. n � p � q � 3 � 7 � 21

2. m � (p � 1) � (q � 1) � 2 � 6 � 12

3. Choose e � 5 (e � 5 and m � 12 have no common factors)

4. Then d � 5 because e � d � 5 � 5 � 25 � 2 � 12 � 1, so when we
compute e � d using wraparound arithmetic with respect to 12, we get 1.

Now the number pair (n, e) becomes the public encryption key, and d is the
decryption key. Let’s suppose that the plaintext message has been converted
into an integer P, using some sort of mapping from characters to numbers. The
encryption process is to compute Pe using wraparound arithmetic with respect
to n (when you reach n, make that 0). Continuing with our example, suppose
P � 3. Then the ciphertext is computed as

5. 35 � 243 � 11 � 21 � 12 S 12

(Note that the sender uses both parts of the public key, e and n, to compute
the ciphertext.) The receiver decodes the ciphertext C by computing C d using
wraparound arithmetic with respect to n. In our example,

6. 125 � 248832 � 11849 � 21 � 3 S 3

Of course, our example has a major problem in that d is the same as e. Obvi-
ously, in a real case, you want e and d to be different. The whole point is that
even though n and e are known, the attacker must determine d, which
involves finding the prime factors p and q of n. There is no known computa-
tionally efficient algorithm for this task.
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1. You receive a message “17” that was sent using the RSA public
encryption key (21, 5) of the example in this section. Decode this
to find the original numeric message. (You might want to use a
spreadsheet to help with this computation.)

PRACTICE PROBLEM

8.4 Web Transmission Security

One area where the public is very security-conscious is in making online
purchases, which require the purchaser to send out across the network his or
her name, address, and—most worrisome of all—credit card number. One
method for achieving secure transfer of information on the Web is SSL
(Secure Sockets Layer). This is a series of protocols developed by Netscape



Communications (Netscape was an early Web browser) in the mid-1990s. The
TLS (Transport Layer Security) protocol, first defined in 1999, is based on
SSL and is nearly identical to SSL. TLS has a few technical security improve-
ments over SSL, but the major difference is that TSL is nonproprietary and is a
standard supported by the Internet Engineering Task Force. The IETF is an
open organization of individuals concerned with “the evolution of the Inter-
net architecture and the smooth operation of the Internet.”2

Both TLS and SSL protocols are in use and are supported by all Web browsers.
Technically, TSL/SSL fits between the transport layer, with its TCP protocols, and
the application layer, with its HTTP protocols (both discussed in the previous
chapter). When you see a closed lock icon at the top or bottom of your Web
browser page, or when the URL displayed begins with HTTPS (instead of HTTP),
then you can be assured that the communication between your browser and the
Web server (the vendor’s Web computer) is secure and protected by TLS or SSL.
TLS/SSL allows a client (the purchaser’s Web browser) and a Web server to agree
on the encryption methods to be used, exchange the necessary security keys,
and authenticate the identity of each party to the other. (Here we are again with
encryption and authentication, the two pillars of security we’ve seen before.)

Now that we know a bit more about encryption, we might ask what
encryption algorithm TLS/SSL uses; is it DES encryption or the newer, stronger
RSA encryption? Surprisingly, it is both. One of the problems with the RSA
algorithm is the computational overload for encryption/decryption. What
often happens is that RSA is used in the initial stage of communication
between client and server. For example, in response to a client request, the
server may send the client its public key along with an authentication certifi-
cate. This is a certificate issued by a trusted third-party certificate authority;
it’s like a letter of introduction that attests that the server belongs to the
organization the browser thinks it is talking to.

The client, using RSA and the public key of the server, encodes a short mes-
sage containing the keys for a symmetric encryption algorithm. Because only keys
are being encrypted, the message is short and the encryption can be done quickly
with little RSA overload. The server receives and decodes this message and
responds to the client with a message encoded using the symmetric key. The client
and server have now established a secure exchange of keys (one of the issues with
a symmetric encryption algorithm) and can complete the transaction using, for
example, DES. Figure 8.4 illustrates the major steps in this process, although the
technical details may require a few additional transmissions between the client
and the server. The exchange of setup information between the client and server,
preparatory to exchanging real data, is known as a handshake.

8.5 Conclusion

In this chapter we’ve looked at components of information security, both on an
isolated local computer and a machine exposed to the network. Whether it’s an
individual’s personal data, corporate information, or sensitive government data,
all are under threat. Still, a bit of caution and common sense can go a long way.
As the well-worn watchword says, “Security: It’s Everybody’s Business.”
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A TLS/SSL Session

FIGURE 8.4 Initiate TLS/SSL, request RSA/DES encryption

Authentication certificate, acknowledge
RSA/DES, se rver public key

DES key, encrypted with server’s public key

Acknowledgment encrypted with DES key

Secure data exchange

Client Web
server

8.6 Summary of Level 3

We have seen that the hardware described in Chapters 4 and 5 is, by itself,
nearly unusable. Working directly with the hardware components of a von Neu-
mann machine—processors, memory, ALU—is impossible for any but the most
technically knowledgeable users. To make the system accessible, the system
software must create a people-oriented virtual machine or virtual environment
that is easy to understand and use. In addition to ease of use, this virtual envi-
ronment provides a number of other services, including resource management,
security, access control, and efficient resource use. A great deal of work has
been done to try to identify and create an optimal virtual environment.

Operating systems—a critical component of the virtual environment—
have evolved from early batch systems through multiprogramming and time-
sharing to the current network and real-time operating systems. Most modern
operating systems allow us to use a large collection of machines, called a com-
puter network, almost as easily as if it were a single logical system. Network
technology has expanded our virtual environment to encompass a worldwide
grid of interconnected computers. More and more, the computer user on a net-
worked system can deal only with what operations need to be done, not with
where or how they can be done. The future of computer systems definitely lies
in the direction of more abstract and more powerful virtual environments.

As our virtual environment has expanded, our most important asset—our
data—is increasingly at risk for theft or destruction by clever outsiders with
malicious intent. Constant vigilance is required to maintain information secu-
rity so that our virtual environment is not only user-friendly but also safe.

Now that we have created a vastly more usable environment in which to
work, what do we want to do with it? Well, we probably want to write pro-
grams that solve important problems. In the next level of the text, we begin
our study of the software world.



1. Below are three possible logon scenarios. Explain why
answer (c) below is preferable in terms of system security.
a. Welcome to XYZ computing

Enter user name: jones
Invalid user name
Enter user name:

b. Welcome to XYZ computing
Enter user name: smith
Enter password: password
Invalid access
Enter user name:

c. Enter user name: smith
Enter password: password
Invalid access
Enter user name: smith
Enter password: FpQr56
Welcome to XYZ computing

2. Using the hash function described in Section 8.2.1, find
the encrypted forms of the following passwords:
a. fido
b. blank
c. ti34pper

3. Merriam-Webster’s Collegiate Dictionary, 11th ed. (Merriam-
Webster, Inc., 2003), contains over 225,000 entries.
Using a password-cracking tool that can process 1.7 mil-
lion words per second, how long would it take to test
each word in the dictionary as a possible password?

4. A virus attacks a single user’s computer and within one
hour embeds itself in 50 e-mail attachment files sent out
to other users. By the end of the hour, 10% of these have
been opened and have infected their host machines. If
this process continues, how many machines will be
infected at the end of 5 hours? Can you find a formula for
the number of machines infected after n hours?

5. Using a Caesar cipher with , decode the received

message RTAJ TZY FY IFBS.

6. The centurion who was supposed to inform you of s was
killed en route, but you have received the message MXX
SMGX UE PUHUPQP in a Caesar cipher. Find the value of s
and decode the message.

7. You receive a message that was encoded using a block
encoding scheme with the encoding matrix

.

a. Verify by computing .

(Remember to wrap around if a value is > 25.)
b. Decode the ciphertext message MXOSHI.

8. The DES algorithm combines two bit strings by applying
the XOR operator on each pair of corresponding bits.
Compute the 6-bit string that results from 100111 �

110101.

9. Using the RSA encryption algorithm, pick p � 11 and
q � 7. Find a set of encryption/decryption keys e
and d.

10. Using the RSA encryption algorithm, let p � 3 and q � 5.
Then n � 15 and m � 8. Let e � 11.
a. Compute d.
b. Find the code for 3.
c. Decode your answer to part (b) to retrieve the 3.

11. If a message is encrypted using AES with a key length of
256 bits, the brute-force approach to decryption involves
generating each of the 2256 possible keys in turn until
one is found that decodes the encrypted message. Quan-
tum computing was discussed in Chapter 5. Using a
quantum computer, how many qubits are required to rep-
resent all 2256 possible keys simultaneously?

M9 3 M that M9 5 
 

c
5 24
19 3

d

M 5 c
3 2
7 5

d  

 s 5 5 

E X E R C I S E S
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1. Find information about a well-known computer virus or
worm. Answer as many of the following questions as you
can, and be sure to list your sources.
a. What is the name of the virus or worm?
b. When did it first appear?
c. Who wrote it?
d. How was it spread?
e. What systems did it attack?
f. What were its observable effects?
g. What are the technical details on how it worked?
h. What was the “cure”?
i. Did it spawn “copycat” attacks?
j. What was its economic impact?
k. Was the perpetrator found, arrested, convicted?

2. The Vigenère cipher was first proposed in the sixteenth
century. At its heart is the Vigenère table (shown below),
where each row represents a Caesar cipher of the letters of
the alphabet shown in the row of column headers. The
shift for row A is s � 0, for row B it is s � 1, for row C it
is s � 2, etc. Thus in row C, the column header A is
shifted 2 characters to become C, B becomes D, and so
forth. The key to the Vigenère cipher is a secret word or
phrase known only to the sender and receiver. Each letter
in the key is used to encode a letter in the plaintext by
finding in the table the row of the key letter and the col-
umn of the plaintext letter; their intersection is the
ciphertext letter for that plaintext letter. When every let-
ter in the key has been used, the key is repeated.

For example, suppose the key is
SONG

and the plaintext message is
MEETATNOON

Because the key is shorter than the plaintext, it will have
to be used several times:

SONGSONGSO

MEETATNOON

The first character of the ciphertext is found at the inter-
section of row S and column M; it is E. The second char-
acter of the ciphertext is found at the intersection of row
O and column E; it is S. The complete ciphertext is

ESRZSHAUGB

To decode a received message, you reverse this process.
Again matching the key characters to the ciphertext
characters,

SONGSONGSO

ESRZSHAUGB

find the ciphertext character in the key character’s row;
the plaintext character is the corresponding column
heading. Thus in row S, the E occurs in column M, so M is
the corresponding plaintext.

You receive the following ciphertext message that you
know was encoded using the Vigenère cipher with a
secret key of PEANUTS:

DREVZUQAENQ

Decode the ciphertext to find the plaintext.

C H A L L E N G E  WO R K

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y



For Further Reading LEVEL 3 355

Many of the books on information security are quite technical in nature and therefore
rather difficult to read, but here is a smattering of more accessible material.

The following books give surveys of information security from the perspective of the busi-
ness manager or policy maker.

Schou, C., and Shoemaker, D. Information Assurance for the Enterprise: A Roadmap to Information
Security. New York: McGraw-Hill, 2007.

Whitman, M., and Mattord, H. Principles of Information Security, 3rd ed. Boston, MA: Course Tech-
nology, 2007.

This book covers various forms of attack, as well as encryption and assessing a system for security.

Easttom, C. Computer Security Fundamentals. Englewood Cliffs, NJ: Prentice-Hall, 2006.

The next book is a series of papers and essays on the ethical and policy issues raised by Internet
hacking.

Himma, Kenneth. Internet Security: Hacking, Counterhacking, and Society. Sudbury, MA: Jones and
Bartlett, 2007.
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LEVEL 4

In Level 4 we return to our original focus on algorithms
as the heart of computer science. Algorithms are devised
to solve problems. Computer programs express these
algorithms in the form of a programming language,
harnessing the power of the hardware and the system
software to bring algorithms to life.

Chapter 9 presents a framework for comparing several
popular programming languages: Ada, C++ (pronounced
C plus plus), C# (pronounced C sharp), Java, and Python.
A more detailed introduction to any of these languages
can be found in one of the five separate online chapters
located at www.cengage.com/coursetechnology (search
on the ISBN or title of this text). Other programming
languages and different language design philosophies
are introduced in Chapter 10. Chapter 11 explains how
high-level programming language statements are trans-
lated into the low-level statements that can be executed
in machine hardware. Chapter 12 demonstrates that, in
spite of all the power of modern hardware and software,
and no matter how clever we may be in designing algo-
rithms, problems exist that have no algorithmic solution.

www.cengage.com/coursetechnology
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9.1 The Language Progression

As of the end of Chapter 8, we have a complete and workable computer
system. We have a virtual environment in which we can pretend that we are
communicating directly with the computer, even though we are using a
language (assembly language) more suited to human communication than
is (binary) machine language. We know about the system software needed
to support this virtual environment, including the assembler that trans-
lates assembly language programs into machine language, as well as the
operating system that actually accepts requests to load and execute a pro-
gram and coordinates and manages the other software tools needed to
accomplish this task. Our system also includes the network technologies
and protocols that extend the virtual world across our campus, throughout
our office building, and around the world, and we are aware of the need for
protection against the security threats to which we are exposed as our vir-
tual world widens.

But this puts us somewhat ahead of our story. In Chapter 6 we talked
about the progression from machine language to assembly language, but
today, using computers to solve problems often involves writing programs in a
high-level programming language. This section continues the progression of
programming languages from assembly language (where we left off in our lan-
guage story) to high-level languages.

9.1.1 Where Do We Stand and What Do We Want?

At the end of Chapter 6, we were back in the “early days” of computing—the
1950s—when assembly language had just come into existence. As a step up
from machine language, it was considered quite a satisfactory programming
environment. For one thing, the people writing computer programs were for
the most part very technically oriented. Many had backgrounds in engineer-
ing, they were familiar with the inner workings of a computer, and they were
accustomed to dealing with difficult problems steeped in mathematical
notation, so the tedious precision of assembly language programming did not
deter them. Also, because assembly language is so closely tied to machine
language, assembly language programmers could see the kinds of processor
activity that the assembly language instructions would generate. By being
sufficiently clever in their choice of instructions, they could often reduce
this activity and shave a small amount off the execution time that their
programs required. For example, the following sequence of assembly language
instructions:
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LOAD X

ADD ONE

STORE X

. .

. .

. .

ONE: .DATA 1

could be replaced by the single instruction

INCREMENT X

This is not the sort of performance improvement obtained by changing from
a sequential search algorithm to a binary search algorithm. It is a fine-tuning
improvement that may save a few millionths of a second, or even a few
seconds if these instructions occur inside a loop that is executed many times.
But remember that in this era, people did not have powerful personal
computers sitting on their desks. Programmers were competing for the
resources of a mainframe computer, and although these computers were
physically large, they did not have the processing speed or memory capacity
of today’s personal computers. Conserving machine resources, even in tiny
amounts, was important.

Over the next few decades, however, computer usage became widespread,
permeating society to a degree that would probably not have been believed in
the 1950s. “Nontechie” types needed to write programs too, and they
demanded a more user-friendly programming environment. This was provided
through the use of high-level programming languages (which we talk about in
this chapter and the next) and also through evolving operating systems and
other system software (which were discussed in Chapter 6). In turn, these
high-level languages opened the door for new programmers. Also during this
period, incredible technological strides made machines so powerful that
conserving resources was not the issue it once was, and the overhead of exe-
cution time occasioned by the use of high-level programming languages
became acceptable.

Let’s review some of the aspects of assembly language programming that
made people look for better alternatives. Suppose our task is to add two inte-
gers. In the assembly language of Chapter 6, the following instructions would
have to be included (assume that B and C have already been assigned values).

LOAD B

ADD C

STORE A

. .

. .

. .

A: .DATA 0

B: .DATA 0

C: .DATA 0
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The three .DATA statements request storage for signed integers, generate the
binary representation of the integer value 0 to occupy that storage initially,
and ensure that the labels A, B, and C are bound to those memory locations.
The LOAD statement copies the current contents of the memory location
labeled B into the ALU register R, the ADD statement adds the current con-
tents of the memory location labeled C to what is currently in register R, and
the STORE instruction copies the contents of R (which is now B � C) into the
memory location labeled A.

To perform a simple arithmetic task, we had to manage all the data move-
ment of the numbers to be combined as well as the resulting answer. This is
a microscopic view of a task—we’d like to be able to say something like “add
B and C, and call the result A,” or better yet, something like “A � B � C.” But
each assembly language statement corresponds to at most one machine
language statement (you may recall from Chapter 6 that the pseudo-op .DATA
statements do not generate any machine language statements). Therefore,
individual assembly language statements, though easier to read, can be no
more powerful than the underlying machine instructions. For the same reason,
assembly language programs are machine-specific. An assembly language
statement that runs on machine X is nothing but a slightly “humanized”
machine language statement for X, and it will not execute on a machine Y
that has a different instruction set. Indeed, machine Y’s assembler won’t know
what to do with such a statement.

Finally, assembly language instructions are rather stilted. STORE A does
not sound much like the sort of language we customarily speak,
though STORE is certainly more expressive than its binary machine lan-
guage counterpart.

To summarize, assembly language has the following disadvantages:

• The programmer must “manually” manage the movement of data items
between and among memory locations (although such data items can
be assigned abbreviated names).

• The programmer must take a microscopic view of a task, breaking it
down into tiny subtasks at the level of what is going on in individual
memory locations.

• An assembly language program is machine-specific.

• Statements are not natural-language-like (although operations
are given mnemonic code words as an improvement over a string
of bits).

We would like to overcome these deficiencies, and high-level program-
ming languages were created to do just that. Thus, we have the following
expectations of a program written in a high-level language:

• The programmer need not manage the details of the movement of data
items within memory or pay any attention to exactly where those
items are stored.

• The programmer can take a macroscopic view of tasks, thinking at a
higher level of problem solving (add B and C, and call the result A).
The “primitive operations” used as building blocks in algorithm
construction (see Chapter 1) can be larger.
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• Programs are portable rather than machine-specific.

• Programming statements are closer to natural language and use
standard mathematical notation.

High-level programming languages are often called third-generation
languages, reflecting the progression from machine language (first genera-
tion) to assembly language (second generation) to high-level language. They
are another step along the continuum shown in Figure 6.3. This also suggests
what by now you have suspected: We’ve reached another layer of abstraction,
another virtual environment designed to further distance us from the low-
level electronic components of the machine.

9.1.2 Getting Back to Binary

There is a price to pay for this higher level of abstraction. When we moved from
machine language to assembly language, we needed a piece of system
software—an assembler—to translate assembly language instructions into
machine language (object code). This was necessary because the computer
itself—that is, the collection of electronic devices—can respond only to binary
machine language instructions. Now that we have moved up another layer in
the language in which we communicate with the computer, we need another
translator to convert our high-level language instructions into machine
language instructions. Such a piece of system software is called a compiler.
Rather than doing the whole translation job clear down to object code, the
compiler often translates high-level language instructions (source code) only
into low-level code rather close to machine language (the hard part of the
translation) and then turns the final (simple) translation job over to a second
translator. Compilers for some high-level languages generate low-level code
that is machine-specific assembly language, and the second translator is an
assembler for that machine’s assembly language. Compilers for other high-level
languages generate low-level code that—while still machine-independent—is
nonetheless very easy to convert to the final object code for any particular
machine language.

Some tasks (e.g., sorting or searching) need to be performed often, as
part of solving other problems. The code for such a useful task can be written
as a group of high-level language instructions and thoroughly tested to be
sure it is correct. Then the object code for the task can be stored in a code
library. A program can just request that a copy of this object code be included
along with its own object code. A piece of system software called a linker
inserts requested object code from code libraries into the object code for the
requesting program. The resulting object code is often called an executable
module. Thus a high-level program might go through the transitions shown in
Figure 9.1. Compare this with Figure 6.4.

The work of the compiler is discussed in more detail in Chapter 11. Let us
note here, however, that the compiler has a tougher job than the assembler.
An assembler has a one-for-one translation task because each assembly
language instruction corresponds to (must be translated into) at most one
machine language instruction. A single high-level programming language
instruction, on the other hand—precisely because a high-level language is
more expressive than assembly language—can “explode” into many assembly
language instructions.
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9.2 A Family of Languages

Most of today’s popular high-level programming languages fall into the same
philosophical family; they are procedural languages (also called imperative
languages). A program written in a procedural language consists of sequences
of statements that manipulate data items. The programmer’s task is to devise
the appropriate step-by-step sequence of “imperative commands”—instructions
in the programming language—that, when carried out by the computer, accom-
plish the desired task.

Procedural languages follow directly from the Von Neumann computer
architecture described in Chapter 5, an architecture characterized by sequential
fetch-decode-execute cycles. A random access memory stores and fetches values
to and from memory cells. Thus it makes sense to design a language whose most
fundamental operations are storing and retrieving data values. For example,

a = 1; //store value 1 in location a
c = a + b; //retrieve a and b, add, store result in

//location c

Even though a high-level programming language allows the programmer to
think of memory locations in abstract rather than physical terms, the pro-
grammer is still directing, via program instructions, every change in the value
of a memory location.

The languages we have chosen to discuss from this procedural language
family are Ada, C++, C#, Java, and Python. These languages differ in the rules
(the syntax) for exactly how statements must be written and in the meaning
(semantics) of correctly written statements. Rather than fill up pages and
pages of this book with the details of each of these languages, we’ve created
online chapters for you to investigate the language of your choice (or your
instructor’s choice) in much more detail than you will see here.
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9.3 Two Examples in Five-Part Harmony

At this point you may (or may not) have studied one or more of the online
chapters for Ada, C++, C#, Java, or Python. In either case, you may be
interested to see how these languages are similar and how they differ. In this
section we’ll look at two example problems, and their solutions in each of the
five languages.

9.3.1 Favorite Number

Our first problem is trivially simple. A pseudocode version is shown in Figure 9.2.
Next we show this same algorithm implemented in Ada (Figure 9.3), C++

(Figure 9.4), C# (Figure 9.5), Java (Figure 9.6), and Python (Figure 9.7). The
program code in each figure is easily recognizable as a formalized version of
the pseudocode—it uses some mechanism to get the user’s favorite number,
then sets the value of n to n � 1, and finally writes the output. The syntax,
however, varies with the language. In particular, each language has its own
way of reading input (from the keyboard), and its own way of writing output
(to the screen). There’s also a variation in the amount of “start-up” required
just to get to the actual algorithm implementation part. Each language has a
notation (--, //, or #) that denotes a program comment. Four of the five
languages (Python being the exception) require a semicolon to terminate an
executable program statement.
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Chapters on Ada, C++, C#, Java, and Python can be 

found online at

www.cengage.com/coursetechnology

(search on the title or ISBN of this text). These PDF 

documents can be read online, downloaded to your 

computer, or printed out and read on paper.

Pseudocode Algorithm for
Favorite Number

FIGURE 9.2
1. Get value for the user’s favorite number, n
2. Increase n by 1
3. Print a message and the new value of n

www.cengage.com/coursetechnology
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--Ada program for the 
--favorite number algorithm

WITH TEXT_IO;

PROCEDURE FavoriteNumber IS
PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

n : INTEGER;           -- user’s favorite number

BEGIN
-- Get the user’s favorite number
TEXT_IO.PUT(“What is your favorite number? ”);
INT_IO.GET(n);

-- Compute the next number
n := n + 1;

--write the output
TEXT_IO.NEW_LINE;
TEXT_IO.PUT(“My favorite number is 1 more than that, ”);
INT_IO.PUT(n, 4);
TEXT_IO.NEW_LINE;
TEXT_IO.NEW_LINE;

END FavoriteNumber;

Ada Program for Favorite
Number

FIGURE 9.3

//C++ program for the  
//favorite number algorithm

#include <iostream>
using namespace std;

void main()
{

int n;    //user’s favorite number

//get the user’s favorite number
cout << “What is your favorite number? ”;
cin >> n;

//compute the next number
n = n + 1;

//write the output
cout << endl;
cout << “My favorite number is 1 more than that, "

<< n << endl;
cout << endl << endl;

}

C++ Program for Favorite
Number

FIGURE 9.4
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//C# program for the
//favorite number algorithm

using System;

namespace InvitationCSharp

{
class FavoriteNumber
{

static void Main(string[] args)
{

int n;  //user’s favorite number

//get the user’s favorite number
Console.Write(“What is your favorite number? ”);
n = Convert.ToInt32(Console.ReadLine());

//compute the next number
n = n + 1;

//write the output
Console.WriteLine();
Console.Write(“My favorite number is ”);
Console.WriteLine(“1 more than that, ” + n);
Console.WriteLine();
Console.WriteLine();

}
}

}

C# Program for Favorite 
Number

FIGURE 9.5

//Java program for the 
//favorite number algorithm 

import java.util.*;
public class FavoriteNumber
{   

public static void main(String[] args)
{  

int n;         //user’s favorite number
Scanner inp = new Scanner(System.in);    //to read input

//get the user’s favorite number
System.out.print(“What is your favorite number? ”);
n = inp.nextInt();

//compute the next number
n = n + 1;

Java Program for Favorite
Number

FIGURE 9.6



9.3.2 Data Cleanup (Again)

Now that you’ve seen a bare-bones sample for each language, let’s implement a
solution to a considerably more interesting problem. In Chapter 3 we discussed
several algorithms to solve the data cleanup problem. In this problem, the
input is a set of integer data values (answers to a particular question on a
survey, for example) that may contain 0s, and 0s are considered to be invalid
data. The output is to be a clean data set where the 0s have been eliminated.
Figure 9.8 is a copy of Figure 3.16. It shows the pseudocode for the Converging-
Pointers data cleanup algorithm, the most time- and space-efficient of the
three data cleanup algorithms from Chapter 3.
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//write the output
System.out.println();
System.out.println(“My favorite number is 1 more " 

+ "than that, " + n);
System.out.println();
System.out.println();

}
}

Java Program for Favorite
Number (continued)

FIGURE 9.6

#Python program for the
#favorite number algorithm

#get the user’s favorite number
n = int(input(“What is your favorite number? ”))

#compute the next number
n = n + 1

#write the output
print()
print(“My favorite number is 1 more than that,”, n)

#finish up
input(“\n\nPress the Enter key to exit”);

Python Program for Favorite
Number

FIGURE 9.7

The Converging-Pointers
Algorithm for Data Cleanup

FIGURE 9.8
1. Get values for n and the n data items
2. Set the value of legit to n
3. Set the value of left to 1
4. Set the value of right to n
5. While left is less than right do steps 6 through 10
6. If the item at position left is not 0 then increase left by 1
7. Else (the item at position left is 0) do steps 8 through 10
8. Reduce legit by 1
9. Copy the item at position right into position left

10. Reduce right by 1
11. If the item at position left is 0, then reduce legit by 1
12. Stop



Our pseudocode does not specify the details of how to “get values.” In the
favorite number example, the single input value was entered at the keyboard.
The survey data, however, is probably already stored in an electronic file. It may
have been collected via an online survey that captured the responses, or via
paper forms that have been scanned to capture the data in digital form. Design-
ing our programs to read input data from a file, however, is a bit more than we
want to get into, so we’ll again assume the input data is typed in at the key-
board.

The pseudocode algorithm of Figure 9.8 is implemented in Ada (Figure 9.9),
C++ (Figure 9.10), C# (Figure 9.11), Java (Figure 9.12), and Python (Figure 9.13).
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--Ada program for the converging-pointers
--data cleanup algorithm

WITH TEXT_IO;

PROCEDURE DataCleanup IS
PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

maxList : constant := 50; -- maximum list size
n : INTEGER;      -- max number of data elements

-- in list
data : array(0..maxList - 1) of INTEGER; -- create the empty 

-- list
i : INTEGER;    -- index variable
left : INTEGER; -- algorithm left pointer into

-- the list
right: INTEGER;   -- algorithm right pointer

-- into the list
legit: INTEGER;       -- counts number of legitimate

-- (non-zero) data values

BEGIN
-- Get the values for n and the n data items
TEXT_IO.PUT(“How many numbers are in the list? (maximum is ”);
INT_IO.PUT (maxList,2);
TEXT_IO.PUT(“) ”);
INT_IO.GET(n);

i := 0;
TEXT_IO.PUT(“Enter the first number: ”);
INT_IO.GET(data(i));

while i < n - 1
loop
i := i + 1;
TEXT_IO.PUT(“Enter next number: ”);
INT_IO.GET(data(i));
end loop;

--Set the value of legit, left, and right
legit := n - 1;
left := 0;
right := n - 1;

Ada Converging-Pointers
Algorithm

FIGURE 9.9



As with the previous, simpler example, one can see that each program follows the
outline of the pseudocode algorithm. Each language supports if statements and
while loops. The extent of the while loop is denoted by curly braces { } in three
of the languages, by loop . . . end loop in Ada, and (although this is less evident)
by a colon and indentation in Python. There are several different ways of creat-
ing the memory space to hold the list of data values. And, as we saw before, each
language does I/O (from keyboard to screen) using different syntax, and requires
different “start-up” code. But the output of each version looks like Figure 9.14,
where boldface indicates user input.
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TEXT_IO.NEW_LINE;
TEXT_IO.PUT(“The original list is: ”);

i := 0;
while i <= legit
loop
INT_IO.PUT(data(i), 4);
i := i + 1;
end loop;
TEXT_IO.NEW_LINE;
TEXT_IO.NEW_LINE;

--move the pointers together,
--swapping value at right for 0 at left

while left < right
loop
if data(left)/= 0 
then
left := left + 1;
else
legit := legit - 1;
data(left) := data(right);
right := right - 1;

end if;
end loop;
if data(left) = 0
then
legit := legit - 1;

end if;

--final output
TEXT_IO.PUT(“The cleaned list is: ”);

i := 0;
while i <= legit
loop
INT_IO.PUT(data(i), 4);
i := i + 1;
end loop;
TEXT_IO.NEW_LINE;

END DataCleanup;

Ada Converging-Pointers
Algorithm (continued)

FIGURE 9.9
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//C++ program for the converging-pointers
//data cleanup algorithm

#include <iostream>
using namespace std;

void main()
{

const int MAXLIST = 50;          //maximum list size
int n;             //max number of data elements in list
int data[MAXLIST]; //create the empty list
int i;             //index variable
int left, right;   //algorithm pointers into the list
int legit;         //counts number of legitimate (non-zero) 

//data values

//Get the values for n and the n data items
cout << “How many numbers are in the list? ”;
cout << “(maximum is ” << MAXLIST << “) ”;
cin >> n;

i = 0;
cout << “Enter the first number: ”;
cin >> data[i];

while (i < n - 1)
{

i = i + 1;
cout << “Enter next number: ”;
cin >> data[i];

}

//Set the value of legit, left, and right
legit = n - 1;
left = 0;
right = n - 1;

cout << endl;
cout << “The original list is” << endl;

i = 0;
while (i <= legit)
{

cout << data[i] << “ ”;
i = i + 1;

}
cout << endl << endl;

//move the pointers together,
//swapping value at right for 0 at left

while (left < right)
{

if (data[left] != 0)
left = left + 1;

else 

C++ Converging-Pointers
Algorithm

FIGURE 9.10
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{
legit = legit - 1;
data[left] = data[right];
right = right - 1;

}
}
if (data[left] == 0)

legit = legit - 1;

//final output    
cout << “The cleaned list is” << endl;        
i = 0;
while (i <= legit)
{

cout << data[i] << “ ”;
i = i + 1;

}
cout << endl << endl;

}

C++ Converging-Pointers
Algorithm (continued)

FIGURE 9.10

C# Converging-Pointers
Algorithm

FIGURE 9.11
//C# program for the converging-pointers
//data cleanup algorithm

using System;

namespace InvitationCSharp
{

class DataCleanup
{

static void Main(string[] args)
{

const int maxList = 50;        //maximum list size
int n;                         //max number of data

//elements in list
int[] data = new int[maxList];   //create the empty

//list
int i;                         //index variable
int left, right;                //algorithm pointers

//into the list
int legit;                     //counts number of

//legitimate  
//(non-zero) data
//values

//Get the values for n and the n data items
Console.Write(“How many numbers are in the list? ”);
Console.Write(“(maximum is ” + maxList + “) ”);
n = Convert.ToInt32(Console.ReadLine());

i = 0;
Console.Write(“Enter the first number: ”);
data[i] = Convert.ToInt32(Console.ReadLine());
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while (i < n - 1)
{

i = i + 1;
Console.Write(“Enter next number: ”);
data[i] = Convert.ToInt32(Console.ReadLine());

}

//Set the value of legit, left, and right
legit = n - 1;
left = 0;
right = n - 1;

Console.WriteLine();
Console.WriteLine(“The original list is”);       

i = 0;
while (i <= legit)
{

Console.Write(data[i] + “ ”);
i = i + 1;

}
Console.WriteLine();
Console.WriteLine();

//move the pointers together,
//swapping value at right for 0 at left

while (left < right)
{

if (data[left] != 0)
left = left + 1;

else
{

legit = legit - 1;
data[left] = data[right];
right = right - 1;

}
}
if (data[left] == 0)

legit = legit - 1;

//final output
Console.WriteLine(“The cleaned list is”); 
i = 0;
while(i <= legit)
{

Console.Write(data[i] + “ ”);
i = i + 1;

}
Console.WriteLine();
Console.WriteLine();

}
}

}

C# Converging-Pointers
Algorithm (continued)

FIGURE 9.11
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Java Converging-Pointers
Algorithm

FIGURE 9.12
//Java program for the converging-pointers
//data cleanup algorithm 

import java.util.*;
public class DataCleanup
{

public static void main(String[] args)
{

final int MAXLIST = 50;       //maximum list size
int n;                        //max number of data

//elements 
//in the list

int[] data = new int[MAXLIST];  //create the empty list
int i;                        //index variable
int left, right;              //algorithm pointers

//into the list
int legit;                    //counts number of

//legitimate (non-zero)
//data values

Scanner inp = new Scanner(System.in); //to read input

//Get the values for n and the n data items
System.out.print(“How many numbers are in the list? ”);
System.out.print(“ (maximum is ” + MAXLIST + “) ”);
n = inp.nextInt();

i = 0;
System.out.print(“Enter the first number: ”);
data[i] = inp.nextInt();

while (i < n - 1)
{

i = i + 1;
System.out.print(“Enter next number: ”);
data[i] = inp.nextInt();

}

//Set the value of legit, left, and right
legit = n - 1;
left = 0;
right = n - 1;

System.out.println();
System.out.println(“The original list is”);

i = 0;
while (i <= legit)
{

System.out.print(data[i] + “ ”);
i = i + 1;

}
System.out.println();
System.out.println();
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//move the pointers together,
//swapping value at right for 0 at left

while (left < right)
{

if (data[left] != 0)
left = left + 1;

else
{

legit = legit - 1;
data[left] = data[right];
right = right - 1;

}
}
if (data[left] == 0)

legit = legit - 1;

//final output
System.out.println(“The cleaned list is”);

i = 0;
while (i <= legit)
{

System.out.print(data[i] + “ ”);
i = i + 1;

}

System.out.println();
}

}

Java Converging-Pointers
Algorithm (continued)

FIGURE 9.12

Python Converging-Pointers
Algorithm

FIGURE 9.13
#Python program for the converging-pointers
#data cleanup algorithm

#Get the values for n and the n data items
n = int(input(“How many numbers are in the list: ”))
data = []  #create an empty list

i = 0  
number = int(input(“Enter first number: ”))
data.append(number)  #append a value to the data list
while i < n - 1:

i = i + 1
number = int(input(“Enter next number: ”))
data.append(number)

#Set the value of legit, left, and right
legit = n - 1
left = 0
right = n - 1
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print()
print(“The original list is”)
i = 0
while i <= legit:

print(data[i],end=“ ”)
i = i + 1

print()
print()

#move the pointers together,
#swapping value at right for 0 at left

while left < right:
if data[left] != 0:

left = left + 1
else:

legit = legit - 1
data[left] = data[right]
right = right - 1

if data[left] == 0:
legit = legit - 1

#final output    
print(“The cleaned list is”)
i = 0
while i <= legit:

print(data[i], end=“ ”)
i = i + 1

#finish up
input(“\n\nPress the Enter key to exit”);

Python Converging-Pointers
Algorithm (continued)

FIGURE 9.13

Output from the Various Data
Cleanup Implementations

FIGURE 9.14
How many numbers are in the list? (maximum is 50) 10
Enter the first number: 0
Enter next number: 24
Enter next number: 16
Enter next number: 0
Enter next number: 36
Enter next number: 42
Enter next number: 23
Enter next number: 21
Enter next number: 0
Enter next number: 27

The original list is
0 24 16 0 36 42 23 21 0 27

The cleaned list is
27 24 16 21 36 42 23



Each of the five languages supports many more programming features than
are shown in Figure 9.15. Consult the online chapters for more in-depth pro-
gramming concepts (including functions, parameter-passing, object-oriented pro-
gramming, and graphical programming) supported by each of these languages.

9.4 Feature Analysis

If you have studied one (or more) of the online chapters for Ada, C++, C#, Java,
or Python, then the “features” of that programming language will be familiar
to you. You can compare them with the features of the other languages by
scanning Figure 9.15. If you haven’t studied any of these languages in detail,
the figure will still give you a brief reference on each of them. Figure 9.15
compares only the features that are included in the online chapter for each
language, so it should not be viewed as a comprehensive list of features for any
of these languages.1

9.5 Meeting Expectations

At the beginning of this chapter, we gave four expectations for programs
written in a high-level programming language. Now that we know the essen-
tials of writing programs in such a language, it is time to see how well these
expectations have been met.

1. The programmer need not manage the details of the movement of data
items within memory or pay any attention to exactly where those items are
stored. The programmer’s only responsibilities are to declare (or in the case of
Python, create) all constants and variables the program will use. This involves
selecting identifiers to represent the various data items and indicating the data
type of each, either in the declaration statement or, in the case of Python, in an
assignment statement. The identifiers can be descriptive names that meaning-
fully relate the data to the problem being solved. Data values are moved as
necessary within memory by program instructions that simply reference these
identifiers, without the programmer knowing which specific memory locations
contain which values, or what value currently exists in an ALU register. The
concepts of memory address and movement between memory and the ALU,
along with the effort of generating constant data values, have disappeared.

2. The programmer can take a macroscopic view of tasks, thinking at a
higher level of problem solving. Instead of moving data values here and there and
carefully orchestrating the limited operations available at the machine language
or assembly language level, the programmer can, for example, write the formula
to compute the circumference of a circle given its radius. The details of how the
instruction is carried out—how the data values are moved about and exactly how
the multiplication of real number values is done—are handled elsewhere. Com-
pare the power of conditional and looping instructions—which are tools for algo-
rithmic problem solving and resemble the operations with which we constructed
algorithms in pseudocode—with the assembly language instructions LOAD,
STORE, JUMP, and so on, which are tools for data and memory management.
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FEATURE ADA C�� C#

Comment -- // //

Include object code WITH #include � � using 
from code libraries WITH TEXT_IO; #include �iostream� using System;

using namespace std:

Statement terminator ; ; ;

Statement continuation N/A N/A N/A
character

Block delimiter Keyword pairs { . . . } { . . . }
BEGIN . . . END 
loop . . . end_loop
then . . . else . . . endif

Free format yes yes yes

Case sensitive no yes yes

Reserved words yes (BEGIN, INTEGER, FLOAT, . . .) yes (void, double, . . . ) yes (void, double, . . . ) 

Identifiers letters, digits, or underscore, letters, digits, or underscore, letters, digits, or under-
must begin with a letter, cannot cannot begin with a digit, score, cannot begin with 
be a reserved word cannot be a reserved word a digit, cannot be a 

reserved word

Named constants yes yes yes

Declarations before use, in declarative before use, generally at the before use, generally 
portion of procedure or function top of a function at the top of a function
speed : INTEGER; int speed; int speed;

Strong typing yes yes yes

Implicit (automatic) no yes – int to double in input, yes – int to double in input,
typecasting assignment, arithmetic  assignment, arithmetic 

expressions expressions

Explicit typecasting yes yes yes 
FLOAT(number) double(number) Convert.To Double(number)

Primitive data types

Integer INTEGER int int

Decimal FLOAT double double

Character CHARACTER char char

String

Feature Analysis of Five 
High-Level Languages

FIGURE 9.15
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JAVA PYTHON

// #

import import 
import java.util.*; import math

; end of line unless followed by statement 
continuation character

N/A \

{ . . . } : followed by indentation

yes no, due to indentation signifying blocks of code

yes yes

yes (class, public, . . . ) yes (if, while, . . . )

letters, digits, or underscore, cannot begin letters, digits, or underscore, cannot begin
with a digit, cannot be a reserved word with a digit, cannot be a reserved word

yes no

before use, generally at the top of a method no - variable is created when a value is assigned to it
int speed;

yes no - variable assumes data type of value assigned to it

yes – int to double in input, assignment, yes – assignment statement sets data type of variable; int to 
arithmetic expressions float in arithmetic expressions

yes yes 
(double)number float(number)

int int

double float

char

string

Feature Analysis of Five 
High-Level Languages
(continued)

FIGURE 9.15
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FEATURE ADA C�� C#

Composite data type array array array

Literal string yes – enclose in “ “ yes – enclose in “ “ yes – enclose in “ “

String concatenation & �

Input from keyboard INT_IO.GET(. . .); requires cin �� Console.ReadLine() 
I/O package for integers cin �� number; returns a string; typecast
FLO_IO.GET (. . .); requires to numeric data type
I/O package for floating point if needed
numbers 
TEXT_IO.GET(. . .)

Output to screen INT_IO.PUT(. . .); requires cout �� Console.Write(string );
I/O package for integers cout �� number; or
FLO_IO.PUT(. . .); requires Console.WriteLine(string);
I/O package for floating point 
numbers 
TEXT_IO.PUT(. . .);

Output formatting yes yes yes 
FLO_IO.PUT(time, 5, 2, 0); cout.setf(ios::fixed); time.ToString(“#.##”)

cout.precision(2);

Assignment operator :� � �

Arithmetic operators �, -, *, /, mod, ** �, -, *, /, % �, -, *, /, %

Comparison operators �, �, ��, �, ��, /� ��, �, ��, �, ��, !� ��, �, ��, �, ��, !�

Boolean operators and, or, not &&, | |, ! &&, | |, !

Control structures

Conditional if . . . or if . . . if ( ) or if ( ) if ( ) or if ( ) 
then          then { . . . }         { . . . } { . . . }         { . . . }

. . . . . . else else
else          endif; { . . . } { . . . }

. . .
end if;

Looping while . . . or loop while ( ) or do while ( ) or do
loop                    . . . { . . . }               { . . . } { . . . }               { . . . }
. . . exit when . . . ; while( ); while( );

end loop; end loop;
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JAVA PYTHON

array list

yes – enclose in “ “ yes – enclose in “ “

� �

use the Scanner class method input (“prompt”)
Scanner inp � new returns a string;

Scanner(System.in); typecast to numeric data type if needed
number � inp.nextInt();

System.out.print(string); print(string)
or
System.out.println(string);

yes yes 
import java.text.*; print(“%5.2f” % time)
DecimalFormat p � new 

DecimalFormat(“0.00”);
System.out.println(p.format(time));

� �

�, -, *, /, % �, -, *, /, %

��, �, ��, �, ��, !� ��, �, ��, �, ��, !�

&&, | |, ! and, or, not

if ( ) or if ( ) if . . . : or if . . . :
{ . . . }         { . . . } . . . . . .
else else:
{ . . . } . . .

(colon and indentation required)

while ( ) or do while . . . : or while True:
{ . . . }               { . . . } . . . . . .

while ( ); if . . . :
break

(colon and indentation required)



FEATURE ADA C�� C#

Modularity via functions and procedures, via functions via functions
which are nested within other 
functions or procedures

Local scope yes - variables declared within yes – variables declared  yes – variables declared 
functions or procedures are within functions are known within functions are 
known only there only there known only there

Arguments /Parameters yes – must match in number, yes – must match in  yes – must match in 
order, data type number, order, data type number, order, data type

Parameter passing default: pass by value (or use default: pass by value default: pass by value 
in in parameter list)  Use & in parameter list for Use ref in both parameter 
Use out or in out in parameter pass by reference list and argument list 
list for pass by reference for pass by reference

Math-like module keyword FUNCTION in header, give returned data type in give returned data type 
(computes and returns give returned data type in  function header, return in function header, return 
a single value) function header, return statement statement with computed statement with computed 

with computed expression in expression in function body expression in function body
function body

Procedure-like module keyword PROCEDURE in header use void in function header use void in function header

Object-oriented supported via tagged record type supported required - everything is 
programming part of a class

Class terminology object properties; primitive member variables, member variables, 
operations member functions member functions

Scope object properties are private, public – known everywhere public – known everywhere
primitive operations are public private – known only within private – known only within

class class
protected – known within  protected – known within
class and subclass class and subclass 

Module invocation module-identifier(object-identifier, object-identifier.function- object-identifier.function-
argument list) identifier (argument list) identifier (argument list);

static function can be 
invoked without an object

Inheritance yes yes yes

Separate compilation yes yes yes
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JAVA PYTHON

via methods via functions

yes – variables declared within methods are known yes – variables declared within functions are known only there
only there

yes – must match in number, order, data type yes – must match in number and order; parameters will pick 
up passed data type

pass by value the effect of pass by value is achieved if the function invocation
is a stand-alone statement (changing the parameter value 
by an assignment statement creates a new local variable and 
does not change the original argument value); the effect of 
pass by reference is to invoke the function on the right side of 
an assignment statement and send the changed value(s) 
back via a return statement

give returned data type in method header, return statement with computed expression in function body
return statement with computed expression in method body

use void in method header; no values returned use no return statement or use return statement with multiple
to invoking module values where function invocation is right side of assignment 

statement

required - everything is part of a class supported

instance variables, instance methods attributes, methods

public static instance method – known everywhere class methods are public 
public instance method - known everywhere class attributes are public by default; they are “semi-private” if 
private instance variable or instance method – known declared with __before the identifier, but still can be referenced

only within class anywhere if class name is used, as in 
swimmingPool_Circle__radius

for public static: object-identifier.method-identifier(argument list);
class-identifier.method-identifier (argument list) “self” must be first parameter in method parameter list

for public:
object-identifier.method-identifier(argument list)

yes yes

required - must have separate file for each class yes

Feature Analysis of Five 
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3. Programs written in a high-level language will be portable rather than
machine-specific. Program developers use a variety of approaches to make their
programs portable to different platforms. For programs written in most high-
level languages, the program developer runs through the complete translation
process to produce an executable module (as shown in Figure 9.1), and it is
the executable module that is sold to the user, who runs it on his or her own
machine. The program developer doesn’t usually give the user the source code
to the program, for a multitude of reasons. First, the program developer does
not want to give away the secrets of how the program works by revealing the
code to someone who could make a tiny modification and then sell the “new”
program. Second, the program developer wants to prevent the user from being
able to change the code, rendering a perfectly good program useless, and then
complaining to the program developer. And finally, if the program developer
distributes the source code, then all users must have their own translators to
get the executable module needed to run on their own machines.

The program developer can compile the program on any kind of machine
as long as there is a compiler on that machine for the language in which the
program is written. However, there must be a compiler for each (high-level
language, machine-type) pair. If the program is written in C++, for example,
and the program developer wants to sell his or her program to be used on a
variety of computers, he or she needs to compile the same program on a PC
using a C++ compiler for the PC, on a Mac using a C++ compiler for the Mac,
and so on, to produce all the various object code versions. The program itself
is independent of the details of each particular computer’s machine language
because each compiler takes care of the translation. This is the “portability”
we seek from high-level language programs.

Even the availability of the appropriate compiler may not guarantee that
a program developed on one type of machine can be compiled on a different
type of machine. Each programming language has a certain core of instruc-
tions that are considered standard. Any respectable compiler for that language
must support that core. In fact, national and international standards groups
such as ANSI (American National Standards Institute) and ISO (International
Organization for Standardization), which develop standards for an incredible
number of things, also develop standards for programming languages. Compil-
ers are thus built to support “ANSI-standard language X.” However, there are
often useful features or types of instructions that are not considered a
standard part of the language and that some compilers support and some do
not. If a program is written to take advantage of some of these extra features
that are available on a particular compiler—often referred to as extensions, or
“bells and whistles”—the program may not work with a different compiler.
The price for using nonstandard features is the risk of sacrificing portability.

The standardization process (for anything, including a programming lan-
guage) is necessarily a slow one because it seeks to satisfy the interests of a
number of groups, such as consumers, industry, and government. If official
standardization comes too late, it must bow to what may have become a de
facto standard by common usage. If standardization is imposed too early, it
may thwart the development of new ideas or technology.

Newer languages such as Java and C# were developed specifically to run
on a variety of hardware platforms without the need for a separate compiler
for each type of machine. A compiler for Java or C# translates the source code
program into very low-level code (called bytecode in Java and Microsoft
Intermediate Language in C#). The resulting programs are not machine-
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language code for any real machine, but they can easily be translated into any
specific machine language. The program developer only needs to do one com-
pilation to produce low-level code and then can distribute the resulting
program to the various users. The final translation/execution of the low-level
code into the machine language of a particular user’s machine is done by a
small piece of software on the user’s machine (a Java bytecode interpreter
for Java or a Just In Time compiler for C#).

The Python language takes a still different approach to portability.
A Python program is interpreted rather than compiled, which means that it is
translated from source code into object code every time it is executed. As a
consequence, each user’s machine has to have a Python interpreter, but such
an interpreter is available for virtually every operating system, and is small,
quick, and free. In the spirit of open-source code development, Python devel-
opers are happy to send their source code to users.

4. Programming statements in a high-level language will be closer to
natural language and will use standard mathematical notation. High-level
languages provide us with statements that give natural implementations of
pseudocode instructions such as “while condition do something . . . ” or “if
condition do something. . . . ” While pseudocode is still somewhat stilted, it is
nonetheless close to natural language. We can also use standard mathematical
notation such as A � B.

9.6 The Big Picture: Software Engineering

Because any high-level language program ultimately must be translated by
a compiler or interpreter, there are very stringent syntax rules about
punctuation, use of keywords, and so on for each program statement. If
something about a program statement cannot be understood by the com-
piler, then the compiler cannot translate the program; if the compiler can-
not translate a program, then its instructions cannot be executed. This
obstacle leads beginning programming students to conclude that the major
effort should be devoted to implementation—that is, restating an algo-
rithm in computer code and ridding that code of syntax errors to the point
where it finally executes.

In fact, implementation represents a relatively small part of the
software development life cycle—the overall sequence of steps needed to
complete a large-scale software project. Studies have shown that on big
projects (system software such as operating systems or compilers, for example,
or large applications such as writing a program to manage an investment com-
pany’s portfolio), the initial implementation of the program may occupy only
10–20% of the total time spent by programmers and designers. About 25–40%
of their time is spent on problem specification and program design—important
planning steps that must be completed prior to implementation. Another
40–65% is spent on tasks that follow implementation—reviewing, modifying,
fixing, and improving the original code and writing finished documentation.
Although there is no universal agreement on the exact sequence of steps in the
software development life cycle, Figure 9.16 summarizes one possible break-
down. We’ll discuss each of these steps shortly.

Beginning programming students may not see or appreciate the entire
software development life cycle because the programming assignments usually
solved in introductory classes are extremely and unrealistically small. This can
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Steps in the Software
Development Life Cycle

FIGURE 9.16
1. Before Implementation

a. Feasibility study
b. Problem specification
c. Program design
d. Algorithm selection or development, and analysis

2. Implementation
a. Coding
b. Debugging

3. After Implementation
a. Testing, verification, and benchmarking
b. Documentation
c. Maintenance

create a skewed and misleading view of the software development process. It is
somewhat akin to a civil engineering student building a matchstick bridge
that is 5 inches long; a multitude of new problems must be addressed when
that task is scaled up to a full-sized, real-life bridge.

9.6.1 Scaling Up

The programs that students write in an introductory course may have 50–100
lines of code. Even by the end of the course, programs are usually not longer
than a few hundred lines. Real-world programs are often orders of magnitude
larger. Operating systems or compilers contain tens or hundreds of thousands
of lines. Truly large software systems, such as the NASA Space Shuttle ground
control system and the data management system of the U.S. Census Bureau,
may require the development of more than a million lines of code. To give you
an idea of how very large that is, a printed listing of a one-million-line pro-
gram would be 17,000 pages long—about the size of 50 books. The difference
in complexity between a million-line software package and a hundred-line
homework assignment is equivalent to a three-hundred-page novel and a sin-
gle sentence!

Figure 9.17 categorizes software products in terms of size, the number of
programmers needed for development, and the duration of the development
effort. These numbers are very rough approximations, but they give you an
idea of the size of some widely used software packages. Analogous building
construction projects are also listed.

Virtually all software products developed for the marketplace are neither
trivial nor small. Most fall instead into either the Medium or the Large category
of Figure 9.17. The Very Large and Extremely Large categories are enormous
intellectual enterprises. It would be impossible to develop correct and main-
tainable software systems of that size without extensive planning and design,
just as it is impossible to build a 50-story skyscraper without paying a great
deal of attention to project planning and project management. Neither
endeavor can be carried out by a single individual; a team development effort
is essential in building software, just as in constructing buildings. Such projects
also entail estimation of costs and budgets, personnel management, and sched-
uling issues, which are typical concerns for large engineering projects, and
therefore the term software engineering is often applied to large-scale
software development.



9.6.2 The Software Development Life Cycle

Each step in the software development life cycle, as shown in Figure 9.16 and
described in the following paragraphs, has its own purpose and activities. Each
should also result in a written document that reflects past decisions and
guides future actions. Keep in mind that every major software project is devel-
oped as a team effort, and these documents help keep various members of the
team informed and working toward a common goal.

1. The feasibility study. The feasibility study evaluates a proposed project
and compares the costs and benefits of various solutions. One choice might be
to buy a new computer system for this project. Even though the cost of
computer hardware has dropped dramatically, computers are still significant
purchases. In addition to the costs of the machine itself, there may be costs for
peripherals such as laser printers and telecommunications links. The costs of
software (purchased or produced in-house), equipment maintenance, and
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Size Categories of Software
Products

FIGURE 9.17
TYPICAL PRODUCT

NUMBER SIZE IN

OF TYPICAL LINES OF BUILDING

CATEGORY PEOPLE DURATION CODE EXAMPLES ANALOGY

Trivial 1 1–2 weeks < 500 Student homework Small home 

assignments improvement

Small 1–3 a few weeks 500– Student team projects, Adding on

or months 2,000 advanced course a room

assignments

Medium 2–5 a few months 2,000– Research projects, Single-family 

to one year 10,000 simple production house

software such as 

assemblers, editors, 

recreational and 

educational software

Large 5–25 1–3 years 10,000– Most current Small 

100,000 applications - word shopping

processors, spreadsheets, mall

operating systems for 

small computers, 

compilers

Very 25–100 3–5 years 100,000– Airline reservations Large 

Large 1 M systems, inventory office 

control systems for building

multinational companies

Extremely > 100 > 5 years > 1 M Large-scale real-time Massive 

Large operating systems, skyscraper

advanced military work, 

international 

telecommunications 

networks



salary for developers or consultants, technical support people, and data entry
clerks must all be factored in, as well as the costs incurred in training new users
on the system. The overall cost of using a computer to solve a problem can be
much higher than expected, and it can be more than the value of the informa-
tion produced. Other options should also be considered. Thus, the feasibility
study should address the following question:

What are the relative costs and benefits of

• buying a new computer system and writing or buying software

• writing new software for an existing computer system

• outsourcing the work to a contractor

• revising the current manual process for solving this problem

• cutting back the scope of the project to better align it with existing
resources

• other solutions . . . 

At the end of the feasibility study, a feasibility document expresses the
resulting recommendations. The creation of this document can be a very
complex process involving considerations that are the provinces of business,
law, management, economics, psychology, and accounting, as well as
computer science. The purpose of the feasibility study is to make all project
stakeholders aware of the costs, risks, and benefits of various development
paths, as a guide to deciding on the approach to use.

2. Problem specification. If it is determined that the project is feasible
and will benefit from a computer solution, and that the software development
is to go forward, we move on to the problem specification phase. Problem
specification involves developing a clear, concise, and unambiguous
statement of the exact problem the software is to solve. Because the original
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The Windows operating system was created by Microsoft
Corporation. Development of this system (which was origi-
nally called the Interface Manager) began in 1981. Subse-
quently renamed Microsoft Windows, the system was not
released until November 1985, after 55 person-years of
effort. Since then, there have been a number of evolutions,
such as Windows 3.1, Windows for Workgroups, Windows
95, Windows 98, Windows NT, Windows 2000, Windows XP,
and Windows Vista.

The Windows NT development project began with a
team of 10 or 12 people and expanded to include more than
200 in both technical and support staff roles. Over the four-
year development effort for the first version, which was
released in 1993, this translated into hundreds of person-
years of labor merely to get the system out the door, to say
nothing of maintenance work required to support this version
and the efforts to upgrade it to new versions. The final sys-

tem contained several hundred thousand lines of code. This is
a Very Large project by the standard of Figure 9.16. Windows
95, released in August 1995, required about 8,000,000 lines
of code, which clearly puts it into the “massive skyscraper”
(i.e., Extremely Large) category of Figure 9.17.

The Windows XP operating system was released in
2001. It has more than 40,000,000 lines of code, which
even presses the envelope of our Extremely Large category.
The Windows Vista series of operating systems – for per-
sonal use, business use, on desktops, laptops, and tablet
PCs - was released in 2007 after more than 5 years of
development. Its 50,000,000 lines of code probably make
it the single largest software development project ever.

The software for the laboratory component of this
book contains about 20,000 lines of Java code and
required 2,000 person-hours to develop. As is the case
with most software development, most of this time was
spent in design and testing, and a relatively small portion
in actually writing code.

Vital Statistics for 
Real Code



problem statement used in the feasibility study is written in a natural
language, such as English, it may be unclear, incomplete, or even internally
contradictory. This rough initial problem statement must be transformed into
a complete problem specification. During the problem specification phase, the
software developers and their “customers”—those who are commissioning the
software and will be its eventual users—must resolve each and every inconsis-
tency, ambiguity, and gap. It is much easier and cheaper to make changes at
this stage than to make changes in software months down the road. Consider
how much more practical it is to change your mind when looking at the
blueprints of your new home than after the foundation has been dug and the
walls have started to go up.

The problem specification document commits the final and complete
problem specification to paper and guides the software developers in all
subsequent decisions. The specification document describes exactly how a
program behaves in all circumstances—not only in the majority of cases, but
even under the most unusual conditions. It includes a description of the data
expected to be input to the program, as well as what results should be
computed and how these results are to be displayed as output. It may also
include limitations on the time allotted to produce those computations or on
the amount of memory the program requires.

Once agreed to by the developer and the customer, this document
becomes essentially a legal contract describing what the developer promises to
provide and what the customer agrees to accept. Like a contract, it usually
includes a delivery schedule and a price, and it is signed by both the customer
and the developer.

3. Program design. Now that it is clear what is to be done, the program
design phase is the time to plan how it is to be done. In a traditional pro-
gramming approach, the divide-and-conquer strategy (also called top-down
decomposition) comes into play. Tasks are broken down into subtasks, which
are broken down into sub-subtasks, and so on, until each piece is small
enough to code comfortably. These pieces work together to accomplish the
total job. In an object-oriented approach, the appropriate objects are identi-
fied, together with their data and the subtasks they must perform. This allows
classes to be designed with variables to store the data, and functions (also
called methods) to carry out the subtasks. Objects from these classes cooper-
ate to accomplish the total job.

The larger the project, the more crucial it is to think of it in terms of
smaller building blocks, or helpful classes, that are created separately and
then properly assembled to solve the problem at hand. Although small
programs of 50–100 lines can be thought of in one piece, 100,000-line pro-
grams cannot.

The program design document breaks the problem down into subtasks
and sub-subtasks, or into various classes. Some of this design may be docu-
mented graphically, through structure charts or through class diagrams that
give the properties and functions of each class. Modules that carry out
subtasks in a traditional design, or that carry out some service that the
objects of a class provide, are ultimately translated into separate sections of
code. There must also be a complete specification of each module: what it is to
do, what information it needs to know in order to do it, and what the rest of
the program needs to get from it when it is done. This information must be
sufficiently detailed that a programmer can use the description as a guide to
writing code for the module in the language of choice.
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Program design is one of the truly creative and interesting parts of the
software development life cycle. It is related to coding in roughly the same
way that designing an airplane is related to riveting a wing.

4. Algorithm selection or development, and analysis. Once the various
subtasks have been identified, algorithms must be found to carry them out. For
example, one subtask may be to search a list of numbers for some particular
value. In Chapters 2 and 3 we examined two different algorithms for search-
ing—sequential search and binary search. If there is a choice of algorithms, it
must be determined which is more suitable for this particular task, and perhaps
which is more efficient. It may also be that an algorithm has to be developed
from scratch. This, too, is a very creative process. Documentation of this phase
includes a description of the algorithms chosen or developed, perhaps in
pseudocode, and the rationale for their use.

5. Coding. Coding is the process of translating the detailed designs into
computer code. If the design has been carefully developed, this should be a
relatively routine job. Perhaps reusable code can be pulled from a program
library, or a useful class can be employed. Coding is the step that usually
comes to mind when people think of software development. However, as we
have shown, a great deal of important preparatory work precedes the actual
production of code. Inexperienced programmers may think that they will save
time by skipping the earlier phases and getting right to the coding. The oppo-
site is usually true. In all but the most trivial of programs, tackling coding
without first doing problem specification, program design, and algorithm
selection or development ultimately leads to more time being spent and a
poorer outcome. The coding phase also results in a written document, namely
the listing of the program code itself.

6. Debugging. Debugging is the process of locating and correcting
program errors, and it can be a slow and expensive operation that requires as
much effort as writing the program in the first place. Errors can occur because
a program statement fails to follow the correct rules of syntax, which makes
the statement unrecognizable by the compiler and results in an error. Though
irritating, these syntax errors are accompanied by messages from the com-
piler that help to pinpoint the problem. Other errors, called runtime errors,
occur only when the program is run using certain sets of data that result in
some illegal operation, such as dividing by zero. The system software also
provides messages to help detect the cause of runtime errors. The third, and
most subtle, class of errors is logic errors. These are errors in the algorithm
used to solve the problem. Some incorrect steps that result in wrong answers
are performed, but there are no error messages to help pinpoint the problem.
Indeed, the first step in debugging a logic error is to notice that the answers
are wrong.

Debugging has always been one of the most frustrating, agonizing, and
time-consuming steps in the programming process. Extensive time spent on
debugging usually means that insufficient time was spent on carefully
specifying, organizing, and structuring the solution. If the design is poor,
then the resulting program is often a structural mess, with convoluted, hard-
to-understand logic. On the other hand, devoting careful attention to the
design phases can help reduce the amount of debugging that must be done.

Careful documentation of the debugging process includes notes on the
problems found and on how the code was changed to solve them. This may
prevent later changes from reintroducing old errors.
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7. Testing, verification, and benchmarking. Even though a program
produces correct answers for 1, 5, or even 1,000 data sets, how can we be sure
that it is 100% correct and will work on all data? One approach, called empirical
testing, is to design a special set of test cases and run the program using these
test data. Test data that are carefully chosen to exercise all the different logic
paths through a program can help uncover errors. In a conditional statement, for
example, one set of data should make the Boolean expression true, so that one
block of code is executed. Another set of data should make the same Boolean
expression false, so that the other block of code is executed. The quantity of the
test data does not matter; what matters is that the data cover all the various
cases. Having said that, we should note that in all but the most trivial programs,
it is not possible to “cover all the cases.” The best that can be said is that the
more thorough the testing, the higher the level of our confidence that the
program is correct.

It’s not a good plan to wait until the complete program is “finished”
before testing takes place. In a program of any size, that’s too late to identify
where an error occurs. Unit testing takes place on each module (subtask
code) as it is completed. As these tested modules are combined to work
together, integration testing is done to see that the modules communicate
the necessary data between and among themselves and that all modules work
together smoothly. And if anything is changed on an already-tested module,
regression testing is done to be sure that this change hasn’t introduced a
new error into code that was previously correct.

A second approach to confirming a program’s correctness is to use mathe-
matical logic. Program verification can be used to prove that if the input
data to a program satisfies certain conditions, then, after the program has
been run on these data, the output data satisfies certain other conditions.
This is not a magic wand that gives us blanket assurance that the program will
absolutely behave as we wish. Furthermore, the program verification process
can be difficult and time-consuming. That’s why program testing is used much
more than formal program verification to reduce the risk of program errors.

In addition to correctness, the problem specification may require certain
performance characteristics such as the amount of time to compute the
results. Benchmarking the program means running it on many data sets to be
sure its performance falls within those required limits. At the completion of
testing (or verification) and benchmarking, we should have a correct and
efficient program that is ready for delivery. Of course, all of the testing, veri-
fication, and benchmarking results are committed to paper as evidence that
the program meets its specifications.

8. Documentation. Program documentation is all of the written material
that makes a program understandable. This includes internal documentation,
which is part of the program code itself. Good internal documentation consists
of choosing meaningful names for program identifiers, using plenty of com-
ments to explain the code, and separating the program into short modules,
each of which does one specific subtask. External documentation consists of
any materials assembled to clarify the program’s design and implementation.
Although we have put this step rather late in the software development
process, note that each preceding step produces some form of documentation.
Program documentation goes on throughout the software development life
cycle. The final, finished program documentation is written in two forms.
Technical documentation enables programmers who later have to modify the
program to understand the code. Such information as structure charts or class
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diagrams, descriptions of algorithms, and program listings fall in this category.
User documentation helps users run the program. Such documentation
includes online tutorials or help systems that the user can bring up while the
program is running, and (less often) written user’s manuals.

9. Maintenance. Programs are not static entities that, once completed,
never change. Because of the time and expense involved in developing software,
successful programs are used for a very long time. It is not unusual for a
program to be in use 5, 10, or 15 years after it was written. In fact, the typical
life cycle for a medium- to large-sized software package is 1–3 years in develop-
ment and 5–15 years in the marketplace. During this long period of use, errors
may be uncovered, new hardware or system software may be purchased on
which the program has to run, user needs may change, and the whims of the
marketplace may fluctuate. The original program must be modified and brought
out in new versions to meet these changing needs. Program maintenance,
the process of adapting an existing software product, may consume as much as
65% of the total software development life cycle budget. If the program has
been well planned, carefully designed, well coded, thoroughly tested, and well
documented, then program maintenance is a much easier task. Indeed, it is with
an eye to program maintenance (and to reducing its cost) that we stress the
importance of these earlier steps.

Maintenance should not really be viewed as a separate step in the soft-
ware development life cycle. Rather, it involves repetition of some or all of the
steps previously described, from a feasibility study through implementation,
testing, and updated documentation. Maintenance reflects the fact that the
software development life cycle is truly a cycle, during which it is necessary to
redo earlier phases of development as our software changes, grows, and
matures.

9.6.3 Modern Environments

Modern software development environments have had a great impact on the
software development life cycle process. Most programming languages are
now presented within an Integrated Development Environment, or IDE.
The IDE lets the programmer perform a number of tasks within the shell of a
single application program, rather than having to use a separate program
for each task. Consider some of the system software tasks described in
Section 6.2: Use a text editor to create a program; use a file system to store
the program; use a language translator to translate the program to machine
language; and if the program does not work correctly, use a debugger to help
locate the errors.

A modern programming IDE provides a text editor, a file manager, a com-
piler, a linker and loader, and tools for debugging, all within this one piece of
software. This can significantly speed up program development.

Many IDEs enable programmers to design GUIs that can be shown to the
user early on in the development process. This rapid prototyping allows mis-
communications between the user and the programmer to be identified and
corrected early in the development process.

Finally, there are software packages that track requirements from the ini-
tial specification through the design process to final code, to make sure that
nothing gets lost along the way. These packages may also support graphical
design of the various program elements, such as classes, and facilitate their
translation into code.
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9.7 Conclusion

In this chapter we have seen how the use of a high-level language overcomes
many of the disadvantages of assembly language programming, creating a
more comfortable and useful environment for the programmer. In a high-level
language, the programmer need not manage the storage or movement of data
values in memory. The programmer can think about the problem at a higher
level, can use program instructions that are both more powerful and more nat-
ural-language-like, and can write a program that is much more portable
among various hardware platforms. The online language chapters (on Ada,
C++, C#, Java, Python) spell out the mechanisms used by each language to
give the programmer these more powerful problem-solving abilities. In this
chapter we’ve seen two small example programs in each language plus a brief
comparison of some of the features of these languages.

We also discussed the entire software development life cycle, noting that
for large, real-world programs, software development must be a managed disci-
pline. Coding is but a small part of the software development process.

The high-level languages we have investigated so far all belong to the
procedural language family. In the next chapter, we’ll look briefly at several
more procedural languages, as well as other languages that take quite a dif-
ferent approach to problem solving.
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Each online language chapter has its own set of exercises.
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E X E R C I S E S

1. Write a program in the language of your choice to imple-
ment the sequential search algorithm of Figure 3.1,
except that instead of searching a list of names for a par-
ticular name, the program searches a list of integers for a
particular integer. Use the same input mechanism as in
the data cleanup programs of Section 9.3.2 to get the list
of integers to be searched. Then get the target number to
be searched for. The program should output “Successful
search, the value is in the list” or “Unsuccessful search,
the value is not in the list.” Be sure to test your program
for both outcomes.

2. In Chapter 8 we learned about a simple encryption algo-
rithm called a Caesar cipher. Write a program in the lan-
guage of your choice to implement the Caesar cipher
algorithm.
a. Write a main function (method, procedure) that col-

lects a message from the user and writes it out again.
Assume for simplicity that the message contains no
more than 10 characters and that only the 26 upper-
case letters of the alphabet are used. Use an array of
10 elements to store the message. Ask the user to
enter no more than 10 characters, one per line, and to
terminate the message by entering some special char-
acter such as “%.” Use a variable to keep track of the
number of array elements actually used (which could
be fewer than 10 if the message word is short) so that
you do not write out meaningless characters stored at
the end of the array.

b. Because you will be writing out the contents of the
message array several times, write a helper function
(method, procedure) WriteMessage to do this task.
Now rewrite your main function so that it uses
WriteMessage to write out the message array.

c. Write a function (method, procedure) to modify the
array to represent the encoded form of the message
using a Caesar cipher. Have the main function ask for
the shift amount. Pass this information, along with the
message array and the number of array elements actu-
ally used, to the encoding function. To get from one
character to the character s units along in the alpha-
bet, you can simply add s to the original character.

This works for everything except the end of the
alphabet; here you will have to be a bit more clever to
cycle back to the beginning of the alphabet once the
shift is applied. Have the main function invoke the
encoding function and then invoke WriteMessage to
write out the encoded form of the message.

d. Write a function (method, procedure) to modify the
array containing the encoded message back to its
original form. This function also needs the number of
array elements used and the value of the shift amount
as arguments, as well as the array itself. The body of
the function should accomplish the reverse of the
encoding function. Have the main function invoke the
decoding function and then write out the decoded
form of the message, which should agree with the
original message.

e. Test your program with different values for s and dif-
ferent word lengths.

3. In Chapter 7 we learned about the routing problem in
computer networks, which consists of finding the opti-
mal path from a source node to a destination node. Each
hop along a path represents a communication channel
between two nodes that has an associated “cost”; the
cost might actually be a monetary cost to use a leased
line, but it could also be a cost in terms of the volume of
traffic the line typically carries. In either case, the
“shortest path” is the one with the lowest cost. As men-
tioned in Chapter 7, the Internet uses Dijkstra’s shortest
path algorithm to solve this problem. If node x is the
source node and receives a message for node y, then x
only needs to know the shortest path from itself to node
y. But an alternative is to have a centralized site period-
ically compute the “all-pairs shortest path” from any
node to any other node, and then broadcast that infor-
mation to all nodes in the network. The algorithm for the
all-pairs shortest path, called Floyd’s algorithm, is sim-
pler to implement than Dijkstra’s algorithm.

A two-dimensional array (table) is used to represent
the nodes in the network. If there are n nodes in the net-
work, the array is n � n in size. The entry in position i, j
of the array is the length (cost) of the line from i to j.
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For example, the following network has five nodes, num-
bered 0 through 4.

It is represented by the 5 � 5 array shown here.

The entry in row 1, column 4 is 4 because the length
of the line between node 1 and node 4 is 4. The entry in
row 0, column 3 is � because there is no direct line
between nodes 0 and 3. All the entries on the “main
diagonal” (positions [0,0], [1,1], [2,2], [3,3], and [4,4])
are 0 because there is a 0-length link from a node to
itself.

Floyd’s algorithm operates on the array A of the
graph. A pseudocode description of the algorithm is

set the value of k to 0

while (k <= n – 1)do

set the value of i to 0

while (i <= n – 1)do

set the value of j to 0

while (j <= n – 1)do

if A[i, k] + A[k, j] < A[i, j]

A[i, j] = A[i, k] + A[k, j]

end of the j-loop

end of the i-loop

end of the k-loop

When this algorithm terminates, the entry in posi-
tion [i, j] of the array represents the length of the short-
est path between nodes i and j, although this algorithm
does not say what the intermediate nodes on the short-
est path are.

Write a program in the language of your choice to
solve the all-pairs shortest path problem for a graph with
five nodes. The program gets the values for each row of
the array from the user, runs Floyd’s algorithm, and writes
out the resulting array. Use 500 for “infinity,” which
assumes all legitimate line lengths are less than 500.

Try your program for the preceding graph. From the
output of your program, what is the length of the short-
est path from node 2 to node 4? By looking at the graph,
what are the nodes on this path?

4. Read more about software engineering and write a short
paper on one or more of the following topics:

• Agile software development
• Black-box and white-box testing
• CASE tools
• Configuration management
• Data dictionary
• JAD (Joint Application Development) sessions
• Pair programming
• Quality assurance
• Rapid prototyping
• Requirements tracing
• Software metrics
• Stubs and drivers
• Version control
• Waterfall model
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F O R  F U R T H E R  R E A D I N G

There are many, many textbooks on learning to program in different programming lan-
guages. Here’s one for each of our five languages:

Barnes, J. Programming in Ada 2005. Reading, MA: Addison-Wesley, 2006.

Lewis, J. C# Software Solutions: Foundations of Program Design. Reading, MA: Addison-Wesley,
2007.

Malik, D. Java Programming: From Problem Analysis to Program Design, 3rd ed. Boston, MA: Course
Technology, 2008.

Savitch, W. Problem Solving with C++, 7th ed. Reading, MA: Addison-Wesley, 2009.

Zelle, J. Python Programming: An Introduction to Computer Science. Wilsonville, OR: Franklin, Beedle
& Associates, Inc., 2003.

The classic work on software engineering, first published in 1975, was published 20 years
later in an anniversary edition because the truths it contains are still relevant. These
essays on the management of software engineering projects apply in most managerial sit-
uations, and they are entertaining and easy to read.

Brooks, Frederick P, Jr. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edi-
tion. Reading, MA: Addison-Wesley, 1995.
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10.1 Why Babel?

The biblical story of the Tower of Babel takes place at a time when “the whole
earth had one language and few words.” The people began to build a city with
a mighty tower when, suddenly, everyone began speaking in different tongues
and could no longer communicate. They became confused, abandoned the
tower, and scattered “over the face of all the earth.” A shared enterprise was
impossible to pursue without the mutual understanding fostered by a common
language, and (the message this story was intended to convey) the power of
what people could do was thus forever limited. In modern times it has been
argued that if all peoples of the earth spoke a common language, the chances
of war would be greatly reduced.

Similarly, it might seem that having all computer programs written in the
same programming language would have an appealing simplicity. Chapter 9
gave a brief comparison of five general-purpose programming languages: Ada,
C++, C#, Java, and Python. By now you may have also studied one or more of
these languages in some depth through the online language chapters.
But again, why aren’t all programs written in the best one of these languages?
Or do each of these languages have some things it can't do that some of the
other languages can do? If so, then why aren’t all programs written in some
“superlanguage” that overcomes these deficiencies?

There are multiple programming languages not so much because there
are tasks that one programming language cannot do but because each
programming language was designed to meet specific needs. Consequently,
one language may be better suited than others for writing certain kinds of
programs. The situation is somewhat analogous to the automobile market.
The basic automotive needs of the country probably could be served by a
single car model and a single truck model. So why do we have seemingly end-
less models from which to choose? The answer lies partly in competition:
automotive companies are all trying to claim a share of the market. More
than that, though, the answer lies in the variety of ways we use our automo-
biles. Although a luxury car could be used for off-roading, it is not designed
for that use; a four-wheel-drive vehicle does the job better, more safely, and
more efficiently. Although a sports car could be used to haul Little Leaguers
home from the ball game, it is not designed for that use; an SUV or minivan
serves this purpose better. The diversity of tasks for which we use our
automobiles has promoted a variety of automotive models, each designed to
handle a particular range of tasks.

The same thing applies to programming languages. For example, we could
use C++ to write programs for solving engineering problems (and it has indeed
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been so used). However, C++ was not designed with engineering applications
in mind. Although C++ supports the basic arithmetic operations of addition,
subtraction, multiplication, and division by providing simple operators (+, –,
*, /) to do these tasks, there is no operator for exponentiation—that is,
raising a value to a power. Computing 2.841.8 in a C++ program, for example,
can certainly be done but it requires some effort.1 Calculations involving
exponents are performed hundreds of times in many engineering and other
numerical-based applications, so why not use a language that provides an
operator for exponentiation, a language designed with such tasks in mind?
Ada has such an exponentiation operator, as does FORTRAN, which we’ll dis-
cuss in the next section.

Similarly, suppose our program writes complicated sales reports with
columns of figures and blocks of information strategically located on the page.
Specifying the exact placement of output on the page is rather tedious in C++
or Java. Why not use a language that allows detailed output formatting
because it was designed with such a purpose in mind? Again, we’ll briefly dis-
cuss such a language—COBOL—in the next section.

What if we want a program to interact with a database, to manipulate
graphics, or to act as a hyperlinked Web page? Any of these specialized tasks
is probably best done with a language designed for just that purpose.

A major reason, then, for the proliferation of programming languages is
the proliferation of programming tasks. Another reason is that different
philosophies have developed about how people should think when they are
writing programs. This has resulted in several families of programming lan-
guages that take quite different approaches from the ones we’ve looked at so
far, and we’ll see some of these approaches in Section 10.4.

10.2 Procedural Languages

As mentioned earlier, all the languages of Chapter 9 (Ada, C++, C#, Java, and
Python) are procedural languages. Programs written in such languages differ in
the way the statements must be arranged on a line and in how variables can be
named. They differ in the details of assigning a new value to a variable, in the
mechanisms the language provides for directing the flow of control through
conditional and looping statements, and in the statement forms that control
input and output. They also differ in the way programs can be broken down
into modules to handle separate tasks, and in how those modules share infor-
mation. We noted some of these syntactical differences in the Feature Analysis
table (Figure 9.15) of Chapter 9. But all procedural language programs tell the
computer in a step-by-step fashion how to manipulate the contents of memory
locations. In a general sense, then, the languages are quite similar, just as
French, Spanish, and Italian are all members of the family of Romance lan-
guages. In this section, we’ll concentrate, not on syntactical differences, but
on the history and “intent” of some of the most important procedural
languages—important in that, of the many programming languages that have
come and gone over the years, these became widely used. The languages of
Chapter 9 are included here, but there are additional languages as well.

1 The C++ expression for 2.841.8 is exp(1.8*log(2.84)), or, somewhat shorter, pow(2.84, 1.8),
using functions available in the math library that are linked in with a #include <cmath> directive.



10.2.1 Plankalkül

What??? OK, this language never became widely used. In fact, it was never really
implemented. It’s a programming language designed by Konrad Zuse who, you
may recall from Chapter 1, built a computer in Germany during World War II.
The manuscript describing this programming language was completed in
1945 but not published until 1972. The manuscript contained a number of
complex algorithms written in Plankalkül (the name means “program calculus”).
The language itself, although burdened with obscure notation, contained a
number of sophisticated concepts that, had they been known earlier, might
have changed the development of programming languages.

10.2.2 FORTRAN

The name FORTRAN derives from FORmula TRANslation. The very name indicates
its affiliation with “formulas” or engineering-type applications. Developed in the
mid-1950s by a group at IBM headed by John Backus, in conjunction with some
IBM computer users, the first commercial version of FORTRAN was released in
1957. This makes FORTRAN the first high-level programming language. Early
computer users were often engineers who were solving problems with a heavy
mathematics or computational flavor. FORTRAN has some features ideally suited
to these applications, such as the exponentiation operator we mentioned earlier,
the ability to carry out extended-precision arithmetic with many decimal places
of accuracy, and the ability to work with the complex number system. Updated
versions of FORTRAN (FORTRAN II, FORTRAN IV, FORTRAN 77, Fortran 90, Fortran
2003, and High Performance Fortran) have been introduced over the years, incor-
porating new data types and new statements to direct the flow of control. Fortran
2003 supports object-oriented programming.

Early versions of FORTRAN did not allow the use of mathematical symbols
such as < to compare two quantities; the keypunches that were used to create
the punched cards on which early FORTRAN programs were submitted to the
computer had no such symbols. Thus the condition

number < 0

would have been expressed in early FORTRAN as

NUMBER .LT. 0

(Before Fortran 90, variable identifiers had to be uppercase.) Early versions of
FORTRAN also had no while loop mechanism. The effect of a while loop was
obtained by using an IF statement together with GO TO statements. The
pseudocode

input number
while (number >= 0)
{

.

.

.
input number

}
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would have been accomplished by

READ(*,*) NUMBER
10   IF (NUMBER .LT. 0) GO TO 20

.

.

.
READ(*,*) NUMBER
GO TO 10

20    ...

READ is the FORTRAN implementation of “input”, so the first line inputs a value
for NUMBER. If NUMBER is less than 0, the GO TO statement transfers control to
statement 20. If NUMBER is greater than or equal to 0, something is done and
then another value for NUMBER is obtained. Control is then redirected by the
second GO TO statement back to statement 10 where the new value is tested.

Directing the flow of control by GO TO statements is similar to using the var-
ious JUMP statements in the assembly language of Chapter 6, and it reflects the
fact that FORTRAN’s developers were, after all, working from assembly language.
In the absence of an equivalent to the while statement, there is no choice but to
use GO TO statements to implement looping, as shown above. Excessive and care-
less use of GO TOs, however, can make a program very difficult to read. (Imagine
reading a novel where in the middle of page 49 you are told to stop reading this
page and to begin reading at the top of page 215. Then, when you reach page
218, you are told to stop, go back, and start reading page 125. You might wonder
whether you were really following the plot.) Code filled with GO TO statements
that send the flow of control all over the place can be a nightmare. Such
“spaghetti code” tangled across hundreds of lines can be very difficult to unravel.
Given that a GO TO statement is available, it is up to the programmer’s individual
discipline to avoid abusing it. The potential for such abuse prompted the well-
known computer scientist E. W. Dijkstra to write a letter headed “Go To Statement
Considered Harmful,” which appeared in the Communications of the ACM (Associ-
ation for Computing Machinery) in 1968. This sparked the “GO TO controversy,”
which debated the merits of replacing the GO TO statement with more controlled
programming language constructs such as the while loop. From our perspective
many years later, when almost every language has a looping construct, this con-
troversy seems rather quaint, but it provoked lively discussion at the time.

FORTRAN was designed to support numerical computations. This led to con-
cise mathematical notation (aside from the early < dilemma just mentioned)
and to the availability of a number of mathematical functions within the
language. Another design goal was to optimize the resulting object code, that is,
to produce object code that took as little space and executed as efficiently as
possible. (Remember that when FORTRAN was developed, machine resources
were scarce and precious.) FORTRAN allows external libraries of well-written,
efficient, and thoroughly tested code modules that are separately compiled and
then drawn on by any program that wishes to use their capabilities. Because of
FORTRAN’s extensive use as a programming language over the years, a large and
well-tested FORTRAN library collection exists, so in many cases programmers can
use existing code instead of having to write all code from scratch. This feature
is sometimes highly touted for newer languages, but FORTRAN designers got
there first. FORTRAN was an extremely successful language; millions of lines of
FORTRAN code are still in use, and thanks to its evolution over time, FORTRAN
has remained an effective language for engineering applications.
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10.2.3 COBOL

The name COBOL derives from COmmon Business-Oriented Language. COBOL
was developed in 1959 and 1960 by a group headed by Grace Hopper of the
U.S. Navy. FORTRAN and COBOL were the dominant high-level languages of
the 1960s and 1970s. COBOL was designed to serve business needs such as
managing inventories and payrolls. In such applications, summary reports
are important output products. Much of the processing in the business
world concerns updating “master files” with changes from “transaction
files.” For example, a master inventory file contains names, manufacturers,
and quantities available for various items in inventory; a transaction file
contains names and quantities of items sold out of inventory or delivered to
inventory over some period of time. The master file is updated from the
transaction file on a daily or weekly basis to reflect the new quantities
available, and a summary report is printed. The user doesn’t interact
directly with the COBOL program; rather, the user prepares the master file
(once) and the transaction file (regularly). As is consistent with this
intended usage, COBOL is far more adept at handling file input than key-
board input.

In the design of COBOL, particular attention was paid to input formatting
for data being read from files and to output formatting both for writing data
to a file and for generating business reports with information precisely located
on the page. Therefore, much of a COBOL program may be concerned with for-
matting, described by “PICTURE clauses” in the program.

402 LEVEL 4 CHAPTER 10: The Tower of Babel

FORTRAN was first introduced in 1957. In the history of
computing, this is roughly the Jurassic Age. But FORTRAN is
no extinct dinosaur. Instead, it is a chameleon, changing
with the times. Thanks to ever-increasing hardware capabil-
ity, FORTRAN runs on PCs while still providing the power to
tackle “number-crunching” problems. However, programmers
can now use an environment with a graphical user interface
to develop code, and that code can present a graphical user
interface to the ultimate user of the program.

As further proof of FORTRAN’s continued usefulness, a
standard for HPF (High Performance Fortran) has been

developed. This version of FORTRAN is designed to run on
massively parallel processors that can bring huge amounts of
computer horsepower to bear. Parallelism is especially useful
for speeding up the kinds of calculations on large arrays that
often occur in scientific and engineering problems,
FORTRAN’s traditional domain. Problems with real-time
response requirements in the areas of signal processing and
image processing are also appropriate for HPF parallelism.

FORTRAN can “talk with” many other modern program-
ming languages, which allows the creation of mixed-language
programs that capture the best features of each language for
the application at hand. Given these adaptations, FORTRAN,
in one form or another, is likely to live on for quite some time.

Old Dog, New 
Tricks #1

Write a FORTRAN condition to test whether the value of ITIME is
less than or equal to 7. Use early FORTRAN syntax.

PRACTICE PROBLEM



COBOL was also designed such that programs describe what they are doing
in natural language phrases. As a result, COBOL programs are rather verbose.
Instead of a succinct and mathematical statement

sum = a + b;

COBOL says

ADD A TO B GIVING SUM.

This compromise actually sacrifices one of the goals of high-level languages that
we enumerated in the previous chapter, to use standard mathematical notation,
but this deliberate decision on the part of the COBOL language designers allows
COBOL programs to be written by people who are less “formula-oriented.”

COBOL programs are highly portable across many different COBOL compil-
ers, are quite easy to read, and are very well-suited to manipulating large data
files. Because COBOL has been around for a long time, there are many existing
COBOL applications. COBOL probably provides as much as 60% of the existing
code base (between 180 billion and 200 billion lines of COBOL code), making
it, even today, the most widely used language in the world.

Nonetheless, the continuing importance of COBOL as a commercial program-
ming language had perhaps been overlooked by those outside the business world
until the “Year 2000 problem” came along. The Y2K problem (K stands for kilo, or
“thousand”) dealt with a lurking time bomb in legacy code (i.e., old, but still-run-
ning programs), primarily COBOL code. When these programs were written, their
authors never imagined their longevity. In addition, computer memory was at a
premium, so efficiency was the order of the day. Why store four digits of a date
(1967, say) when two digits (67)—the “19” prefix was to be assumed—would be
sufficient and would take less space? Furthermore, code was entered on punched
paper cards, and no one wanted an instruction to have to be continued on to a sec-
ond card because of four-digit dates instead of two. In the new millennium, “02”
should mean “2002,” but in these programs it would be interpreted as “1902.”

Making code Y2K-compliant was technically simple: just change every date
reference to four digits instead of two. It was the magnitude of the task that
was staggering, because it was necessary to locate each line of code where a
date entry needed to be changed. Huge sums of government and corporate
money were spent to address the problem and, despite dire predictions on the
potential consequences of Y2K, it proved to be a “non-event”—probably
because of the massive effort made to address the problem.

So, does post-Y2K mark the death of COBOL? No—all this money was not
spent on code that businesses planned to throw away. On the contrary, the major-
ity of business transactions, billions of them per day, are still done on COBOL code
that has now been updated and is likely to continue to run for the foreseeable
future. New applications in other languages have to integrate with these existing
COBOL programs. The current international standard for COBOL was approved in
September 2002. The standards working group for COBOL posted its draft recom-
mendations for a new international standard in June 2008 and a final version
should be approved in early 2010, so COBOL, like FORTRAN, changes and improves
over time. Meanwhile, however, the pool of trained COBOL programmers is being
depleted by retirements and deaths and is not being replenished by new gradu-
ates, many of whom have never been exposed to COBOL.
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10.2.4 C / C++

C was developed in the early 1970s by Dennis Ritchie at AT&T Labs. It was origi-
nally designed for systems programming, in particular for writing the operating
system UNIX. UNIX had been developed at Bell Labs a short time before and was
originally written primarily in assembly language. Ritchie sought a high-level
language in which to rewrite the operating system in order to gain all the advan-
tages of high-level languages: ease of programming, portability, and so on.

Since that time, C has become a popular general-purpose language for two
major reasons. One is the close relationship between C and UNIX. UNIX has been
implemented on many different computers, and UNIX provides many “tools” that
support C programming. A second reason for C’s popularity is its efficiency—that
is, the speed with which its operations can be executed. This efficiency derives
from the fact that C programs can make use of low-level information such as
knowledge of where data are stored in memory. In this respect, C is closer to
assembly language than are other high-level languages, yet it still has the pow-
erful statements and portability to many machines that high-level languages
offer. One can imagine C humming along as a high-level language but then, every
once in a while when efficiency is really important, slipping into a low-level,
machine-dependent configuration. One of the goals of a high-level language is to
provide a level of abstraction that shields the programmer from any knowledge of
the actual hardware/memory cells used during program execution, as depicted in
Figure 10.1(a). C provides this outlook, unless the programmer wishes to make
use of the low-level constructs available in C that give him or her a direct view of
the actual hardware, which Figure 10.1(b) depicts.
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High-level language Hardware

Hardware

(a) A high-level language shields the programmer from the hardware

(b) C can shield the programmer or allow direct access to hardware

High-level C language

Low-level C construct

User Hardware Interface and
Programming Languages

FIGURE 10.1

Write statements in your choice of language from Chapter 9 that are
equivalent to the COBOL statements

MOVE INPUT-NUMBER TO OUTPUT-NUMBER.
ADD INPUT-NUMBER TO SUM-OF-VALUES.

PRACTICE PROBLEM

LEVEL 4 CHAPTER 10: The Tower of Babel
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Identifier Address

Number is 234
&Number is 1000

Number 1000 234

C Allows Access to a Memory
Cell Address as well as to 
its Content

FIGURE 10.2

For example, suppose number is a variable in a C program with the value 234.
The value of number is stored in some specific memory location with address, say,
1000 (Figure 10.2). Then &number in that same program refers to the memory
address where the value of number is stored, in this case, 1000. Note the distinc-
tion between the content of a memory cell and the address of that cell. Here
number refers to the value 234, but &number refers to the address 1000. It is pos-
sible to write a C program statement that passes &number as an argument to an
output function so that the program actually writes out the memory address
value (1000). The ability to print an actual memory address is not available in
most other high-level languages.

C not only provides a way to see the actual memory address where a variable
is stored but also gives the programmer some control over the address where
information is stored. C includes a data type called pointer. Variables of pointer
type contain—instead of integers, real numbers, or characters—memory
addresses. For example, the statement

int* intPointer;

declares intPointer as a pointer variable that will contain the address of a
memory cell containing integer data. The assignment

intPointer = (int*) 800;

assigns the memory address 800 as the value of intPointer. Figure 10.3(a) illus-
trates this situation: the pointer variable intPointer is stored at some
unknown memory address, but the content of intPointer is the memory
address 800. The value stored at the address contained in intPointer, in this
case stored at 800, is denoted by *intPointer. In other words, *intPointer is the
value contained in the address to which intPointer points. We can find out
what this value is by writing out *intPointer. We can also assign an integer
value, say 3, to be the content of memory address 800 by the statement

*intPointer = 3;



which results in Figure 10.3(b). We have controlled the content of a specific
memory location, and now we know exactly what is stored in memory location
800. Similarly, if number is an integer variable that has been stored some-
where in memory, then the statement

*intPointer = number;

results in the value of number being stored in memory cell 800.
This capability for low-level memory manipulation resembles the assembly

language programming of Chapter 6. It is fraught with the problems we sought
to avoid by going to high-level languages in the first place; specifically, the pro-
grammer is assuming responsibility for what is stored where. For example, what
if memory cell 800 in our example is not a memory cell allocated to this pro-
gram? Perhaps something needed by another program, or even by the operating
system, has been overwritten. However, the fact that it enables the programmer
to reach down into the machine level is precisely why C is useful for writing sys-
tem software such as operating systems, assemblers, compilers, programs that
allow the computer to interact with input/output devices, and so on.

A program to interact with an I/O device is called a device driver. Consider,
for example, the problem of writing a device driver for the mouse on a PC. The
“serial port” of the computer, to which the mouse is connected, reads changes in
the mouse position by changes in voltage levels. It stores the voltage levels
in fixed locations in memory, as allocated by the operating system. The job of the
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Identifier Address

intPointer ?

*intPointer 800

800

?

Identifier Address

intPointer ?

*intPointer 800

800

3

(a) The value 800 is assigned to intPointer (b) The value 3 is assigned to *intPointer

Storing a Value in a Specific
Memory Location Using C

FIGURE 10.3



mouse driver is to translate voltage levels to specific locations on the screen so
that any application software that uses the mouse, such as a word processor, does
not have to interact with low-level hardware information (abstraction again!).
The mouse driver program would have to access the specific memory locations
where voltage information is stored. A language like C provides such a capability.

C is the most widely used language for writing system software because of
the versatility its design philosophy bestowed on it. It combines the power of
a high-level language with the ability to circumvent that level of abstraction
and work at the assembly-language-like level. But C is also used for a great
deal of general-purpose computing.

The C++ language was developed in the early 1980s by Bjarne Stroustrup,
also at AT&T Labs. C++ is in fact a “superset” of C, meaning that all of the
C language is part of C++. Everything that can be done in C—including the
ability to change the contents of specific memory locations—can be done in
C++. But C++ adds many new features to C, giving it more sophistication and
cleaner ways to do certain tasks. The most significant extension of C that C++
provides is the ability to do object-oriented programming.

C++ was first commercially released by AT&T in 1985. Like many other
languages, C++ has evolved over time. The standardization process for the lan-
guage took more than 10 years, in part because of this evolution. In November
1997, the combined C++ subcommittees of ANSI and ISO submitted their C++
standards draft, part of a document of some 800 pages, for final ISO approval. The
standards were finally approved in 1998. Standardization, object orientation,
and a strong collection of library code have helped to make C++ one of the most
popular of the modern “industrial-strength” languages.
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1. Suppose a C/C++ program uses a variable called Rate. Explain the
distinction in the program between Rate and &Rate.

2. Suppose that Rate is an integer variable in a C/C++ program with
the value 10 and that intPointer is a pointer variable for integer
data. Rate is stored at memory address 500. After the statement

intPointer = &Rate;

is executed, what is the value of *intPointer?

PRACTICE PROBLEMS

10.2.5 Ada

Probably more than any other language we have mentioned, Ada has a long and
interesting development history. It began in the mid-1970s when the various
branches of the U.S. armed services set about trying to develop a common high-
level programming language for use by defense contractors. They began by speci-
fying the requirements that the language would have to meet, including such
characteristics as efficiency, reliability, readability, and maintainability.

The original set of requirements, first circulated for discussion in 1975, was
known as “Strawman.” Successively tighter and more thorough requirements bore
the names “Woodenman” and “Tinman.” The Tinman requirements were approved
in 1976, and a large number of existing programming languages were evaluated in



the light of these requirements. All were found wanting, and it became clear that
a new language would have to be developed. The “Ironman” specification, issued
in 1977, became the standard against which to measure a new language. A design
competition was held, and the requirements were further specified in “Steelman.”

The eventual language design winner was chosen in 1979, and the new
language was christened Ada, after Ada Augusta Byron Lovelace, daughter of
the poet Lord Byron and later the wife of Lord Lovelace. Ada was trained in
mathematics and science at the wish of her mother, who sought to steer Ada
away from the mental instability and moral lapses she despised in Lord Byron.
Lady Ada Lovelace is regarded as the world’s first programmer on the basis of
her correspondence with Charles Babbage and her published notes on his work
with the Analytic Engine (see the box on page 20).

An updated requirements document, less imaginatively named the Ada 9X
Requirements and issued in December 1990, became the basis for the Ada 95
Reference Manual, an international standard. The current Ada 2005 standard
is an amended version of the Ada 95 standard.

Ada, like C++, is a large language, and it was accepted not only in the
defense industry, where its use was mandated by the Department of Defense,
but for other technological applications and as a general-purpose language as
well. Ada is known for its multiprocessing capability—the ability to allow
multiple tasks to execute independently and then synchronize and communi-
cate when directed. It is also known as a strongly object-oriented language.

The Department of Defense “Ada mandate” was terminated in 1997, but by
then Ada was well-established as a programming language supporting good
software engineering practice, safety, and reliability. Today Ada is still strong
in the transportation industry (aircraft, helicopters, subway systems, European
high-speed train control systems) and in safety monitoring systems at nuclear
reactors, as well as in financial and communication systems. Its proponents
tout Ada as “the language designed for building systems that really matter.”
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What do you think is accomplished by the following Ada program?

with ada_io; use ada_io;
procedure simple is
begin

for i in 1..10 loop
put(i);
put(' ');

end loop;
new_line;

end;

PRACTICE PROBLEM

10.2.6 Java

Unlike FORTRAN, COBOL, C, C++, and Ada, which were carefully developed as
programming languages, Java, a modern, object-oriented language, was almost
an accident. In early 1991, Sun Microsystems, Inc. created a team of top-notch
software developers and gave them free rein to do whatever creative thing they



wanted. The somewhat secret “Green Team” isolated itself and set to work map-
ping out a strategy. Its focus was on the consumer electronics market. Televi-
sions, VCRs, stereo systems, laser disc players, and video game machines all
operated on different CPUs. Over the next 18 months the team worked to
develop the graphical user interface (GUI), a programming language, an oper-
ating system, and a hardware architecture for a handheld, remote-control
device called the *7 that would allow various electronic devices to communi-
cate over a network. In contrast to the high-end workstations that were a Sun
hallmark, the *7 was designed to be small, inexpensive, easy to use, reliable,
and equipped with software that could function over the multiple hardware
platforms the consumer electronics market represented.

Armed with this technology, Sun went looking for a business market but
found none. In 1993, Mosaic, the first graphical Internet browser, was created
at the National Center for Supercomputing Applications, and the World Wide
Web began to emerge. This development sent the Sun group in a new direc-
tion, where their capabilities with platform-independence, reliability, secu-
rity, and GUI paid off: they wrote a Web browser.

The programming language component of the *7 was named Oak, for a
tree outside language developer James Gosling’s window. Later renamed Java,
the language was used for the Web browser. The Web browser was released in
1995, and the first version of the Java programming language itself was
released in 1996. After that, Java gained market share among programming
languages at quite a phenomenal rate.

Java programs come in two flavors: applications and applets. Applications
are complete standalone programs that reside and run on a self-contained com-
puter; these are the kinds of programs we illustrated in Chapter 9. But Java’s
development went hand in hand with the development of Web browsers. Applets
(small applications) are programs designed to run from Web pages. Applets are
embedded in Web pages on central servers; when the user views a Web page with
a Java-enabled browser, the applet’s code is temporarily transferred to the user’s
system (whatever that system may be) and interpreted/executed by the browser
itself. Today’s common Web browsers, such as Microsoft Internet Explorer and
Mozilla Firefox, are Java-enabled. Java applets bring audio, video, and real-time
user interaction to Web pages, making them “come alive” and become much more
than static hyperlinked text. For example, a Java applet might display an ani-
mated analog clock face on the screen that shows your computer system’s time, or
a streaming ticker tape of stock market quotes, or a form that allows you to book
an airline reservation online. Java applets held much of the original appeal of the
Java language, but big, serious programs are also written using Java applications.

Java is an object-oriented language based on C++, but it avoids some of
the features that can make C/C++ programs error prone. For example, in C++
we could declare an array of 12 integers by

int hits[12];

The equivalent statement in Java is

int hits[] = new int[12];

Both Java and C++ number individual array locations beginning with 0, so there is
no hits[12] in either case. In C++ one can write an assignment statement such as

hits[12] = 5;
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that destroys the contents of some memory location outside the array, and the
program will go merrily on its way. Such an assignment in Java would cause a
runtime error.

One of the main features of Java is its portability; recall that platform
independence was one of the goals of the original Sun “Green Team.” In most
languages, source code gets compiled into the object code for a particular
machine, which means that the developer who wants to distribute executable
code needs to compile the source code on each target platform, using the
appropriate compiler. The Java programmer, however, compiles source code
just once, into low-level code called Java bytecode, which is then distributed
to the various users. Bytecode is not itself the language of any real machine,
but it can be easily translated into any specific machine language. This final
translation/execution of bytecode is done by software called a Java bytecode
interpreter, which must be present on each user machine. This approach is
workable because the Java bytecode interpreter is a small piece of software;
even your Web browser contains one.

You can download Java software and system documentation from the Web
site http://java.sun.com.
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Output in Java is handled by requesting the predefined Java
System.out object to invoke a println() function. Also, the + operator
stands for string concatenation. What is the output after execution of
the following Java statement if number has the value 7?

System.out.println(“The answer is” + number);

PRACTICE PROBLEM

10.2.7 Python

The Python language was originally created in the early 1990s by Guido van
Rossum at Stichting Mathematisch Centrum in The Netherlands. Its development
is now overseen by the Python Software Foundation, but Van Rossum still has the
final stamp of approval on “official” features of the language. However, unlike
other languages we have mentioned here, Python is an open-source language.
The source code is freely available and can be used, distributed, or modified by
anyone. Python’s advocates claim that having a community of people interested
in using and improving the language has led to a better language than would
have resulted from standardized or proprietary code. 

Like Java, Python is an interpreted language, meaning it is translated from
source to object code at every execution. Python was originally used for system
administration tasks and as a Web interface language. But with the development
of an extensive library of supporting code, Python has become a powerful lan-
guage for more general use.

Python’s main distinguishing feature among the procedural family of lan-
guages is its ease of use. The syntax rules for Python are relaxed and intuitive,
making it easy to develop programs rapidly. However, this lack of rigidity can
put the responsibility for careful usage on the programmer rather than on the
compiler/interpreter.

A free Python interpreter is available to download at http://www.python.
org/download.

http://www.python
http://java.sun.com


10.2.8 C# and .NET

In June 2000, Microsoft introduced a new language called C# (pronounced 
“C-sharp”). This language is a successor in spirit to C++, but it is a totally
new language. Therefore, it has no backward-compatibility issues, as C++
had with C. C# is designed to make some improvements over C++ in safe
usage, and it shares many features with Java. As an example of potentially
unsafe usage, a C++ program can dynamically grab additional memory for its
use during program execution, but the programmer is responsible for
releasing that memory when the program no longer needs it to reduce the
possibility of running out of memory. In C#, however, this process of
garbage collection—reclaiming memory no longer needed by the pro-
gram—is handled automatically.

It is impossible to discuss C# without discussing the Microsoft .NET
Framework that supports C# and other programming languages. The
.NET Framework is essentially a giant collection of tools for software develop-
ment. It was designed so that traditional text-based applications, GUI applica-
tions, and Web-based programs can all be built with equal ease. For example,
the .NET framework provides a whole library of classes for building GUIs with
menus, buttons, text boxes, and so forth. And it is the .NET framework (actu-
ally a part of the .NET framework called the Common Language Runtime or
CLR) that handles garbage collection for a C# program, or for any other lan-
guage that uses the .NET platform. All .NET programs—in whatever lan-
guage—are compiled into Microsoft Intermediate Language (MSIL) code.
Like Java bytecode, MSIL is not tied to any particular platform. The final step
of compiling MSIL code into object code is done by a Just In Time compiler,
or JIT (part of the CLR), on the user’s machine. So, like Java, the developer
achieves portability across multiple platforms because source code is compiled
only once, into the MSIL.
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Below are some sample programming statements (from Ada, C++, C#,
Java, and Python) to output the programmer’s typical first message of

Hello World

a. System.out.print(“Hello World”);
b. WITH TEXT_IO;

TEXT_IO.PUT(“Hello World”);
c. print(“Hello World”)
d. using System;

Console.Write(“Hello World”);
e. #include <iostream>

using namespace std;
cout << “Hello World”;

Given our claims about the simplicity of Python syntax, which of the
above would you judge to be the Python output statement?

PRACTICE PROBLEM
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There is one notable difference between the Java approach and the .NET
approach. The Java bytecode translator is an interpreter, meaning that a pro-
gram is translated into object code and executed statement by statement. At
the end of program execution, no object code is retained and the next time
the program executes, the interpreter must repeat this task. The Just in Time
compiler, on the other hand, senses when a particular module of MSIL code is
being called, translates that module into object code, and then executes it. At
the end of program execution, the object code for that module is still there,
and if the program executes again with no changes, it can be run directly
without invoking the JIT compiler. This difference between interpreted and
compiled code leads to more efficient program execution.

Over 40 programming languages have been adapted to fit into the .NET
Framework—for example, FORTRAN, COBOL, C++, Visual J# (Microsoft’s ver-
sion of Java), and Visual Basic.NET (see the “Old Dog, New Tricks #2” box).
That means applications written in any of these languages have access to the
tools provided within the .NET Framework and, because all of these languages
compile to MSIL, applications can be written that mix and match modules in
various languages. Thus, the choice of which language to use becomes less an
issue of language capability and more a matter of personal preference and
familiarity.

In April 2003, only three years after the first release of C# and .NET, C#
and the CLI (Common Language Infrastructure—a significant subset of the
.NET tools) were adopted as ISO standards. C# continues to grow in popularity
as a programming language.

Visual C# 2008 Express Edition is a lightweight version of the C# language
that is freely downloadable from Microsoft at http://www.microsoft.com/express/
product/default.aspx. Its use requires the Microsoft .NET Framework. If you do
not have the Microsoft .NET Framework already on your Windows system, you will
be alerted at installation, and you can go to http://www.microsoft.com/net/
Download.aspx to download it.

BASIC (Beginner’s Allpurpose Symbolic Instruction Code) is a
programming language that was developed by John Kemeny
at Dartmouth College in 1963 and 1964. As the name sug-
gests, it was intended to be a general language. It was also
designed to be easy to learn and use. During the 1960s, pro-
gramming was a rather difficult task relegated to technical
professionals or, in the academic world, to advanced under-
graduate engineering, math, and physics majors. BASIC was
Kemeny’s attempt to design a programming language easy
enough for anyone to learn, including high school and ele-
mentary school students. This effort was very successful.
BASIC was supplied with most microcomputers throughout
the 1980s, and as such it introduced many people, in and out
of school, to simple programming ideas. 

BASIC got a new lease on life and a whole new look
when Microsoft released Visual Basic in 1991. Visual Basic
supplied tools to create a sophisticated GUI application by
simply dragging components such as buttons and text
boxes from a Toolbox onto a form, and then writing BASIC
code to allow those components to respond to events,
such as the click of a button. This programming ease made
Visual Basic a very popular language for rapid prototyping
of Windows applications, and the number of VB program-
mers outstripped the total of C, C++, and Java program-
mers. Subsequent versions of Visual Basic produced an
ever-more-powerful language. Now Visual Basic.NET is a
fully object-oriented-language that, like the other .NET
languages, can take advantage of all the built-in .NET
Framework tools. Old languages that can evolve with the
times need never die!

Old Dog, New 
Tricks #2

http://www.microsoft.com/express/product/default.aspx
http://www.microsoft.com/express/product/default.aspx
http://www.microsoft.com/net/Download.aspx
http://www.microsoft.com/net/Download.aspx
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A running Visual Basic program produces the following GUI:

The user types a name in the text box called txtName, then clicks
the button called btnShowName. This “click event” is handled by the
following Visual Basic module. Explain what you think happens when
this module is executed.

Private Sub btnShowName_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs)

lblDisplay.Text = txtName.Text

End Sub

PRACTICE PROBLEM

txtName

btnShowName

lblDisplay

10.3 Special-purpose Languages

Although each of the procedural languages we have mentioned has its own
strong points, all are more or less general-purpose languages. In this section
we visit three languages that were each designed for one specialized task.
These three are merely representative; many other specialized languages exist.

10.3.1 SQL

Our first specialized language is SQL, which stands for Structured Query
Language. SQL is designed to be used with databases, which are collections of
related facts and information. We’ll do some work with databases in Chapter 14,
but here is the general idea. A database stores data; the user of the database
must be able to add new data and to retrieve data already stored. For example, a
database contains information on vendors with which a retail store does busi-
ness. For each vendor, it contains the name, address, and phone number of the
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vendor, the name of the product line the vendor sells, and the amount of stock
purchased from that vendor during the previous business quarter. The database
user should be able to add information on a new vendor and retrieve informa-
tion on a vendor already in the database.

But if this is all that a database can do, it simply acts as an electronic fil-
ing cabinet. Databases can also be queried—that is, the user can pose ques-
tions to the database. Queries can furnish information that is more than the
sum of its parts because they combine the individual data items in various
ways. For example, the vendor database can be queried to obtain the names of
all vendors with whom the store has done more than $40,000 worth of busi-
ness in the past quarter, or all vendors from a certain zip code. Such queries
might be framed in SQL as

SELECT NAME
FROM VENDOR
WHERE PURCHASE > 40000;

SELECT NAME
FROM VENDOR
WHERE ZIP = 95082;

SQL is the language used to frame database queries. SQL was developed
by IBM, and in 1986, it was adopted by the American National Standards
Institute (ANSI) as the standard query language in the United States; it has
since been adopted by the International Organization for Standardization (ISO)
as an international standard. Even database systems that provide users with
easier—even graphical—ways to frame queries are simply using a front end
that eventually translates the query into an equivalent SQL statement.

An SQL query does not give specific directions as to how to retrieve the
desired result.  Instead, it merely describes the desired result.  This makes SQL sim-
ilar in flavor to a logic programming language, which we'll see in a later section.

10.3.2 HTML

HTML stands for HyperText Markup Language. It is used to create HTML docu-
ments that, when viewed with Web browser software, become Web pages. An
HTML document consists of the text to be displayed on the Web page, together
with a number of special characters called tags that achieve formatting, spe-
cial effects, and references to other HTML documents. Although we speak of
“HTML programming,” that's a bit of a stretch. One is just giving the Web
browser instructions on how to display text, there's no computation or pro-
cessing going on as we think of with programming in general.

HTML tags are enclosed in angle brackets (< >) and often come in pairs.
The end tag, the second tag in the pair, looks like the begin tag, the first tag
in the pair, but with an additional / in front.

The overall format for an HTML document is

<html>
<head>
<title> stuff to go in the title bar </title>
</head>
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<body>
stuff to go on the page
</body>
</html>

Here we see the paired tags for the document as a whole (<html>, </html>),
the head (<head>, </head>), the title (<title>, </title>)—framing what
appears in the title bar of the page window—and the body (<body>,
</body>)—framing what is on the page itself.

Of course, other material needs to go between the beginning and ending
“body” tags, or the page will be blank. Figure 10.4 shows an HTML document,
and Figure 10.5 shows how the Web page actually looks when viewed with a
Web browser. By comparing the two, you can probably understand the mean-
ing of the tags used, as explained in Figure 10.6. In particular, the use of a
single-row table helps arrange the Name prompt and the corresponding text
box in a fixed way on every browser. We have also added two attributes to
the <input> tag: the “type” attribute, which here specifies a text box, and the
“name” attribute, which identifies the text box.

Early word processors required the user to type in various codes manually
to mark text for boldface, italic, and so forth. Later, more sophisticated word
processors with GUI interfaces reduced these tasks to point and click. The
same has come to pass with HTML code. HTML documents themselves are sim-
ply text files that can be created using any text editor by typing the appro-
priate tags. But Web editor software makes it possible to create HTML code by,
for example, highlighting text and clicking a button to insert the tags for
making the text boldface.

<html> 
<head> 
<title>First Page</title> 

</head> 

<body> 
<h1>This is an H1 heading</h1> 
<p>This text is <b>BOLD</b> and this text is 

<i>italic</i></p> 
<p>Below is a bulleted list:</p> 
<ul> 
<li>First item</li> 
<li>Second item</li> 

</ul> 
<p>And here is a link to another document called 
<a href=”second.htm”>Second Page</a></p>

<table>
<tr>
<td>Name</td>
<td><input type = “text”  name = “Name”></td>

</tr>
</table>

</body> 
</html>

HTML Code for a Web Page

FIGURE 10.4
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Body of the Web Page 
Generated by Figure 10.4

FIGURE 10.5

HTML TAG PURPOSE

h1 Create H1 heading (bold with largest font size)
p New paragraph
b Bold
i Italic
ul Unordered list (bulleted list)
li List item
a href = “. . .” Provides hyperlink address
table Table
tr Table row
td Table data (item in a table)

Some HTML Tags

FIGURE 10.6

This laboratory experience will give you practice in
HTML programming. Learning how to program in HTML will
open the door for you to become a contributor to the
Web instead of just a user. You will also learn how to use your

Web browser to perform simple file transfers from special
computers called FTP servers. This will enable you to access a
wealth of software and data files in the public domain.

LABORATORY
EXPERIENCE 13
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10.3.3 JavaScript

A scripting language is a “lightweight” language that is interpreted (translated,
then executed, statement by statement). Scripting language code fragments can
be embedded in Web pages to make those pages active rather than static.
JavaScript is such a language; keep in mind that JavaScript is not the same as
the full-blown Java programming language.

Consider the HTML page from the previous section. When this page is dis-
played by the Web browser, the user can type his or her name into the text
box, but nothing happens as a result. Suppose we want to turn this page into
an order form. The user downloads the page from the server machine of the
online merchant, fills in the form, and submits the result. We want the infor-
mation the user enters to be returned to the server. (In this case the only
information is the user’s name, but a real order form would require nothing
more than additional text boxes.)

First, we’ll add a “Submit” button at the bottom of the form using another
<input> tag whose attributes create a button with the word Submit on it:

<input type = “submit” value = “Submit”>

Next we turn the part of our page that contains the table and the Submit but-
ton into a form using the <form> </form> tags. The <form> tag needs some
further attributes, as shown in Figure 10.7. The “method” attribute here is
post, which instructs the browser to construct an HTTP POST message, indicat-
ing that data is to be passed to the server (recall the discussion of the HTTP
GET message in Chapter 7, which is how the user’s browser got the form page
from the server in the first place). The “enctype” attribute here says that the
data to be transmitted is ordinary text. The “name” attribute identifies
the form, and the “action” attribute tells the browser where to send the data.
Ordinarily this would be back to some active Web page on the merchant’s
server, but because we have no server to send to, we’ll just mail the form data
to ourselves. Finally, we plan to write a small JavaScript function that will
execute on the client machine when the Submit button is clicked to validate
that the user has indeed entered something in the Name text box; the
“onSubmit” method invokes this function.

The tags in HTML are, as we have seen, specified. The tag
pair <b> </b>, for example, is used to display the enclosed
text as boldface. The writer of the HTML document cannot
invent new tags. XML (eXtensible Markup Language) is a
newer markup language. It is a “metalanguage,” that is, a
markup language for markup languages. Using XML, the
writer can create his or her own tags; an XML document is
not about displaying information but about how to struc-
ture and interpret information to be displayed. An XML

document usually also contains or refers to a schema that
describes the data, and the body of the XML document can
then be checked against the schema to be sure that it is a
well-formed document. All modern browsers support mech-
anisms that translate XML documents into HTML docu-
ments for display. XML allows for flexible document
interchange across the Web; for example, in May 2003, the
National Library of Medicine announced a “Tagset” for
journal articles to provide a single format in which journal
articles that originate from many different publishers and
societies can be archived.

Beyond HTML



The JavaScript function ValidateName() is placed within <script></script>
tags to alert the browser that these statements are to be interpreted as
JavaScript commands.

<script language = “JavaScript”>
function ValidateName()
{

if (document.TrialForm.Name.value==””)
{

alert(“You must enter a name”);
document.TrialForm.Name.focus();
return false;

}
return true;

}
</script>

The ValidateName() function looks at the value of the Name object (the text box)
in the form TrialForm on the current document. If it is empty (no text data has
been entered), an error message is displayed, the focus returns to the text box to
encourage the user to enter data, a value of “false” is returned, and the form is not
submitted. Otherwise a value of “true” is returned and the form data is posted.
Figure 10.8 shows the complete HTML page with the embedded JavaScript.
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An Example of the HTML 
<form> tag

FIGURE 10.7
<form method = “post” enctype = “text/plain”
name = “TrialForm”
action = “mailto:me@somewhere.edu”
onSubmit = “return ValidateName()”>

Web pages that are designed using HTML are generally
static Web pages, that is, their content looks the same
each time the page is opened in your browser. However,
when you visit your favorite online store, the content is
different with each visit, reflecting, for example, items on
sale or the newest products. These are dynamic Web pages
(their content changes) that are stored on the Web server
of the online merchant. Dynamic pages are often tied to a
behind-the-scenes product database. If a new product
becomes available or a price changes because of a sale, the
change is made in one place in the underlying database.
Whenever any dynamic page tied to the database is
requested from the server, the latest database information
is loaded into the page before it is sent back to your Web
browser, and your browser then displays it. The HTML for

the various pages does not have to be constantly rewritten
to incorporate the new data.

PHP (which originally stood for Personal Home
Pages but now stands for PHP: Hypertext Preprocessor)
is a server-side scripting language. Like JavaScript, PHP
is embedded within HTML code in Web pages hosted on a
server. PHP is particularly adept at making database con-
nections for dynamic Web pages. The PHP code, when
executed, sets up a connection to the database and for-
mats HTML code on the page to include the new data
values. According to an October 2008 survey, PHP is
found on about 33% of Web sites worldwide. This ranges
from a high of 96% in the Bahamas to about 30% in the
United States to less than 4% in Turkmenistan (see
www.nexen.net/chiffres_cles/phpversion/18824-php_
statistics_for_october_2008.php#adoption).

PHP

www.nexen.net/chiffres_cles/phpversion/18824-php_statistics_for_october_2008.php#adoption
www.nexen.net/chiffres_cles/phpversion/18824-php_statistics_for_october_2008.php#adoption
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<html> 
<head> 
<title>First Page</title> 
<script language = “JavaScript”>
function ValidateName()
{
if (document.TrialForm.Name.value==””)
{

alert(“You must enter a name”);
document.TrialForm.Name.focus();
return false;

}
return true;

}
</script>
</head> 

<body> 
<h1>This is an H1 heading</h1> 
<p>This text is <b>BOLD </b> and this text is 
<i>italic</i></p> 

<p>Below is a bulleted list:</p> 
<ul> 
<li>First item</li> 
<li>Second item</li> 

</ul> 
<p>And here is a link to another document called 
<a href=”second.htm”>Second Page</a></p>

<form method = “POST” enctype = “text/plain”
name = “TrialForm”
action = “ mailto:me@somewhere.edu “  
onSubmit = “return ValidateName()”>
<table>
<tr>
<td>Name</td>
<td><input type = “text” name = “Name”></td>

</tr>
<table>
<input type = “submit” value = “Submit”>

</form>

</body>
</html>

JavaScript Embedded in an
HTML page

FIGURE 10.8

1. Describe the result of executing the following SQL query on the
vendor database.

SELECT NAME
FROM VENDOR
WHERE CITY = 'CHICAGO';

PRACTICE PROBLEMS



10.4 Alternative Programming Paradigms

Computer scientists are fond of the word paradigm. A paradigm is a model or
mental framework for representing or thinking about something. The para-
digm of procedural programming languages says that a sequence of detailed
instructions is provided to the computer. Each instruction accesses or modifies
the contents of a memory location. If the computer carries out these instruc-
tions one at a time, then the final result of all the memory cell manipulations
is the solution to the problem at hand. This sounds suspiciously like our 
definition of an algorithm in Chapter 1 (“a well-ordered collection of 
unambiguous and effectively computable operations that when executed pro-
duces a result . . .”). In fact, programming in a procedural language consists of

• Planning the algorithm

• Capturing the “unambiguous and effectively computable operations”
as program instructions

In a procedural programming language, then, we must pay attention to the
details of exactly how the computer is going to accomplish the desired task in
a step-by-step fashion. In object-oriented programming, the procedural para-
digm still holds, but the step-by-step instructions may be split into multiple
small sets that are encapsulated within classes.

In this section we look at programming languages that use alternatives to
the procedural approach—languages based on other paradigms. It is as though
we have studied French, Spanish, and Italian (different but related languages)
and are now about to embark on a study of Arabic, Japanese, or sign language—
languages totally different in form, structure, and alphabet. Alternative para-
digms for programming languages include viewing a program’s actions as

• A combination of various transformations on items (functional
programming)

• A series of logical deductions from known facts (logic programming)

• Multiple copies of the same subtask or multiple subtasks of the same
problem being performed simultaneously by different processors (par-
allel programming)

We’ll look briefly at each of these alternative programming paradigms, focus-
ing on the different conceptual views rather than on the details of language
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2. Given the following HTML statement, what does the corresponding
line of text on the Web page look like?

<p>These are the <i>times</i> that try
<b>men's souls</b></p>

3. Type the HTML code of Figure 10.8 into a text editor such as
Notepad. Change the e-mail address to your own address. Save the
file with an .html extension. Then double-click on the file to bring
it up in your browser. What happens if you enter nothing in the
text box and click the Submit button? What happens if you enter
your name in the text box and click the Submit button?
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syntax. In short, this chapter won’t make you an expert programmer, or even
a novice programmer, in any of these languages, but you’ll have a sense of
some of the different approaches to programming languages that have been
developed. Both LISP, mentioned in the next section, and Prolog, discussed in
Section 10.4.2, are often used in artificial intelligence work; for more infor-
mation on artificial intelligence, see Chapter 15.

10.4.1 Functional Programming

Functional programming had its start with the design of the LISP (LISt Processing)
programming language by John McCarthy at MIT in 1958. This makes LISP second
only to FORTRAN in longevity. John Backus (who, you will recall, led the develop-
ment of FORTRAN) argued for functional programming as opposed to “conven-
tional Von Neumann languages” and introduced the language FP (for Functional
Programming) in 1977. Other functional programming languages or dialects of
LISP have been developed. We will look at examples using Scheme—a functional
programming language that was derived from LISP in the late 1970s.

A functional programming language views every task in terms of (sur-
prise!) functions. Unlike the more general usage of the word function in some
procedural programming languages, function in this context means something
like a mathematical function—a recipe for taking an argument (or possibly
several arguments) and doing something with them to compute a single value.
More formally, when the arguments are given values, the function transforms
those values, according to some specified rule, into a corresponding resulting
value. Different values for the arguments can produce different resulting val-
ues. The doubling function f(x) = 2x transforms the argument 3 into 6 because
f(3) = 2*3 = 6, and it transforms the argument 6 into 12 because f(6) = 2*6 = 12.
In the grand sense, we can think of a program as a function acting on input
data (the arguments) and transforming them into the desired output.

In a functional programming language, certain functions, called primitive
functions or just primitives, are defined as part of the language. Other func-
tions can be defined and named by the programmer. To define the doubling
function using Scheme, we could say

(define (double x)
(* 2 x))

The keyword “define” indicates that we are defining a new function. The func-
tion name and its list of arguments follow in parentheses. The function name is
double, and x is its single argument. The definition says that when this function
is invoked, it is to multiply the argument value by 2. Having defined the func-
tion, we can now invoke it in a program by giving the function name, followed by
a list of values for the arguments of the function. (For the double function, there
is only one number in the list of argument values because there is only one argu-
ment.) Scheme responds immediately to a function invocation by displaying the
result, so the following interaction occurs as the user invokes the double func-
tion with various argument values (boldface indicates what the user types).

(double 4)
8

(double 8)
16



Here’s the definition of another function:

(define (square x)
(* x x))

which says that the function named square, when invoked, is to multiply the
single argument value by itself. Thus a dialog with Scheme could be

(square 3)
9

Functions, once defined, can be used in the definition of other functions.
This can lead to nested tasks that must be performed. The function polynomial,
defined by

(define (polynomial x)
(double (square x)))

is the function that we write mathematically as g(x) = 2x2. Using this func-
tion, the dialog could be

(polynomial 3)
18

When the polynomial function is invoked with the argument 3, Scheme con-
sults the function definition and sees that this is really

(double (square 3))

Thus, the polynomial function must invoke the double function, and it is to
invoke that function with an argument value of (square 3). Therefore, the first
thing to do is to invoke the square function with an argument value of 3. The
result is 32 = 9. This 9 gets used as the argument value for the double function,
resulting in 18. The total computation is equivalent to g(3) = 2(3)2 = 2(9) = 18.

Here we’ve defined one function (polynomial) in terms of another func-
tion (double) acting on the result of applying a third function (square). In
functional programming languages, we can build complex combinations of
functions that use the results of applying other functions, which use the
results of applying still other functions, and so on. In fact, functional pro-
gramming languages are sometimes called applicative languages because of
this property of repeatedly applying functions.

As the name LISP suggests, LISP processes lists of things and so does
Scheme. The arguments to functions, then, are often lists. As a trivial case,
“nothing” can be thought of as an empty list, which is called nil. We will use
four primitive list-processing functions available in Scheme. The first function
is called list. This function can have any number of arguments, and its action
is to create a list out of those arguments. Therefore,

(list 3 4 5)

evaluates to the list 3, 4, 5, which we write as

(3 4 5)
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Two other list-processing functions are called car (pronounced as when it
means an automobile) and cdr (pronounced “could-er”). (The names have his-
torical significance from the distant past. Car stands for “Contents of Address
Register,” and cdr stands for “Contents of Decrement Register.” These registers
were part of the architecture of the IBM 704 computer on which LISP was orig-
inally implemented.) The car function takes a nonempty list as its argument
and produces as a result the first element in that list. Therefore, a dialog with
Scheme could consist of

(car (list 3 4 5))
3

The cdr function takes a nonempty list as its argument and produces as a
result the list that remains after the first element has been removed.
Therefore,

(cdr (list 3 4 5))

evaluates to the list

(4 5)

As a special case, when the cdr function is applied to an argument consisting
of a one-element list, the empty list is produced as the result. Thus,

(cdr (list 5))

evaluates to the list nil. Note that the car function applied to a list evaluates
to a list element, whereas the cdr function applied to a list evaluates to
another, shorter list.

One final primitive list-processing function is null?, which has a single
list as its argument and evaluates to true if the list is nil (empty) and to
false if the list is nonempty. Armed with these primitives, we can at last
write a little Scheme program (Figure 10.9) to add some nonnegative
integers.

Dialog with the program in Figure 10.9 could result in

(adder (list 3 4 5))
12

Let’s see how this works. Our function adder was defined to have one argument,
symbolically denoted in the definition by input-list. Now we’re invoking this
function where the argument has the value of (list 3 4 5); that is to say, the
function is to operate on (3 4 5). The cond function (short for “conditional”) is
acting like an if-else statement: it is equivalent to

(define (adder input-list)
(cond ((null? input-list) 0)
(else (+ (car input-list)
(adder (cdr input-list))))))

Scheme Program to Add 
Nonnegative Integers

FIGURE 10.9



if (null? input-list)
total = 0;

else
total = (car input-list) + (adder(cdr input-list));

The condition “null? input-list” is evaluated and found to be false because
input-list at this point is (list 3 4 5). The else clause is executed, and it says to
add two quantities. The first of these two quantities is (car input-list), which
is (car (list 3 4 5)), or 3. Thus, 3 is to be added to the second quantity. The
second quantity is the result of invoking the adder function on the argument
(cdr input-list), which is (cdr (list 3 4 5)), or (4 5). The value, as constructed
so far, is therefore

3 + (adder (list 4 5))

Now the program invokes the adder function again, this time with an argu-
ment of (list 4 5) instead of (list 3 4 5). Once again we test whether this list is
nil (it isn’t), so we add together

(car (list 4 5)) + (adder (cdr (list 4 5)))

or

4 + (adder (list 5))

The adder function is invoked again with an argument of (list 5). The list still
is not nil, so we add together

(car (list 5)) + (adder (cdr (list 5)))

or

5 + (adder nil )

A final invocation of the adder function, this time with the nil list as its
argument, takes the other branch of the cond statement, which results in 0.
Altogether, then, we’ve done

(adder (list 3 4 5))

or

(adder (3 4 5)) =

3 + (adder (4 5)) =

3 + 4 + (adder (5)) =

3 + 4 + 5 + (adder nil ) =

3 + 4 + 5 + 0 = 12

The definition of the adder function involves the adder function again,
this time acting on a shorter list. Note in our example how we invoke the
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adder function repeatedly—first on (3 4 5), then on (4 5), next on (5), and
finally on nil. Something that is defined in terms of “smaller versions” of itself
is said to be recursive, so the adder function is a recursive function.

Recursion is one of the features of functional languages that makes
possible short and elegant solutions to many problems. Although recursion
is a dominant mode of operation in functional languages, many procedural
languages also support recursion, so that’s not the major argument for
using a functional language. Then what is the benefit of going to a func-
tional language?

A functional language allows for clarity of thought; data values are trans-
formed by flowing, as it were, through a stream of mathematical functions.
The programmer has no concern about where intermediate values are stored,
nor indeed about how a “list” could occupy many memory cells. Another layer
of abstraction has been offered to the programmer—the rarefied layer of pure
mathematics. Because functions are described in a mathematical way by what
they do to an item of data rather than by how they modify memory cells in
the process of doing it, the possibility of side effects is eliminated. A side
effect occurs when a function, in the course of acting on its argument values
to produce a result value, also changes other values that it has no business
changing. Implementing a function in a procedural language, where the major
mode of operation is modification of memory cells, opens the door to poten-
tial side effects.

We used recursion to define the function to add a list, as
follows: add the first list element to the result of adding
the rest of the list elements together. The recursive way of
thinking takes a bit of getting used to. For example,

• Reading a book can be defined as reading the first
page followed by reading the rest of the book.

• Climbing a ladder can be defined as climbing the first
rung followed by climbing the rest of the ladder.

• Eating a six-course meal can be done by eating the
first course followed by eating the rest of the meal.

Having learned to program in a procedural language,
some people are initially uncomfortable with the recursive
style of functional languages. However, this seems to be
more a matter of what one is used to rather than any
inherent “difficulty factor.” Many people argue for using a
functional language like Scheme as a first programming
language because of its simplicity, clarity, and elegance.

The functional language Logo was developed by
Seymour Papert at MIT in 1980, specifically as an educa-
tional tool for young children who seem to take to it read-
ily. In Logo one can use “turtle graphics”—that is, a
“turtle” can be programmed to move about on the screen,
tracing lines as it travels, and thereby drawing various fig-
ures. (The original MIT turtle was an actual mechanical
model of a turtle that children could direct to move about
on the floor, tracing lines on a sheet of paper.) For exam-
ple, the turtle can be programmed to draw a square recur-
sively by first drawing one side and then drawing the
remaining three sides of the square. Here’s the Logo (recur-
sive) version of the sequential search algorithm, as
expressed by one of the authors’ children: “To find the ele-
phant in the zoo, look in the first cage, and if it’s not
there, then look in the rest of the zoo!” Does this seem
like an easier way to think about sequential searching than
the algorithm we developed in Chapter 2?

Simplicity Is in the 
Eye of the Beholder



10.4.2 Logic Programming

Functional programming gets away from explicitly instructing the computer
about the details of each step to be performed; instead, it specifies various
transformations of data and then allows combinations of transformations to
be performed. Logic programming goes a step further toward not specifying
exactly how a task is to be done. In logic programming, various facts are
asserted to be true, and on the basis of these facts, a logic program can infer
or deduce other facts. When a query (a question) is posed to the program, it
begins with the storehouse of facts and attempts to apply logical deductions,
in as efficient a manner as possible, to answer the query. Logic programming
languages are sometimes called declarative languages (as opposed to imper-
ative languages) because their programs, instead of issuing commands, make
declarations or assertions that various facts are true.

A logic program relates to a domain of interest in which the declarations
make sense (such as medicine, literature, or chemistry), and the queries are
related to that domain. Logic programming has been used to write expert
systems. In an expert system about a particular domain, a human “expert” in
that domain contributes facts based on his or her knowledge and experience.
A logic program using these facts as its declarations can then make inferences
that are close to those the human expert would make.

The best-known logic programming language is Prolog, which was devel-
oped in France at the University of Marseilles in 1972 by a group headed by
A. Colmerauer. Prolog stands for PROgramming in LOGic; the language was orig-
inally intended as a tool for natural language processing. Prolog received a great
boost when the Japanese announced their Fifth Generation Project in 1981. The
goal of this effort, which proved to be too ambitious, was to transform society
through computers that make logical inferences and interact with human
beings in a “natural” way through both spoken and written language.
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1. To what does each of the following evaluate?
a. (cdr (list 1 2 3 4))
b. (car (cdr (list 4 5 6)))

2. Define a function in Scheme that adds 3 to a number.

PRACTICE PROBLEMS

This laboratory experience will guide you through some
functional programming exercises. You’ll see that a higher
level of problem solving is possible than in procedural lan-
guages, where you have to write step-by-step instructions

to manipulate data values by way of specific memory loca-
tions. You will need your own LISP or Scheme interpreter;
a free Scheme interpreter is available to download at
http://www.plt-scheme.org/software/drscheme.

LABORATORY
EXPERIENCE 14

http://www.plt-scheme.org/software/drscheme
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Prolog programs consist of facts and rules. A fact expresses a property
about a single object or a relationship among several objects. For example,
let’s write a Prolog program in the domain of American history. We are inter-
ested in which U.S. presidents were in office when certain events occurred and
in the chronology of those presidents’ terms in office. Here is a short list of
facts (declarations):

president(lincoln, gettysburg_address).
president(lincoln, civil_war).
president(nixon, first_moon_landing).
president(jefferson, lewis_and_clark).
president(kennedy, cuban_missile_crisis).
president(fdr, world_war_II).

before(jefferson, lincoln).
before(lincoln, fdr).
before(fdr, kennedy).
before(kennedy, nixon).

The interpretation of these facts is fairly obvious. For example, the declaration

president(jefferson, lewis_and_clark).

asserts or declares that Jefferson was the U.S. president during the Lewis and
Clark expedition. And

before(kennedy, nixon).

asserts that Kennedy was president before Nixon. (There are a number of ver-
sions of Prolog available; the version we use requires that identifiers for spe-
cific items begin with lower-case letters and have no internal blanks.)

This list of facts constitutes a Prolog program. We interact with the
program by posing queries; this is the way Prolog programs are executed. For
example, the user could make the following query (boldface indicates what
the user types):

?-before(lincoln, fdr).

Prolog responds

Yes.

because “before(lincoln, fdr)” is a fact in the program. After every response,
Prolog also asks

More? (Y/N):

because there may be multiple responses to the query. If we wish to see fur-
ther responses, we answer Yes. If we answer yes when there are no further
responses, as in this case, Prolog simply responds

No.



Here’s some further dialogue with Prolog using this same program. (We won’t
write the “More? (Y/N):” that appears after each Prolog response.)

?-president(lincoln, civil_war).
Yes.

?-president(truman, world_war_II).
No.

The first query corresponds to a declaration in the program, and the second
does not.

More complicated queries can be phrased. A query of the form A, B is ask-
ing Prolog whether fact A and fact B are both in the program. Thus, a query
such as

?-president(lincoln, civil_war), before(lincoln, fdr).

produces a Yes response because both facts are in the program. The interpre-
tation is that Lincoln was president during the Civil War and that Lincoln was
president before FDR.

So far, Prolog appears to be little more than some sort of retrieval system
that does lookups on a table of facts. But Prolog can do much more. Variables
can be used within queries, and this is what gives Prolog its power. Variables
must begin with uppercase letters. The query

?-president(lincoln, X).

is asking for a match against facts in the program of the form

president(lincoln,”something”)

In other words, X can stand for anything that is in the “president relation”
with Lincoln. The responses are

X = gettysburg_address
X = civil_war

because both

president(lincoln, gettysburg_address).
president(lincoln, civil_war).

are facts in the program. (Remember that in order to see more than one
response, we have to keep answering Yes when asked “More? (Y/N):“.)

Let’s describe what it means for one president to precede another in
office. It may appear that the before relation already takes care of this. Cer-
tainly if “before( X, Y)” is true, then President X precedes President Y. How-
ever, in our example program,

before(lincoln, fdr).
before(fdr, kennedy).

are both true, but that does not tell us that Lincoln precedes Kennedy
(which is also true). Of course, we could add another before fact to cover
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this case, but that is an ad hoc patch. Instead, let’s add further declarations
to the program to define the precedes relation. We already know that two
presidents in the before relation should also be in a precedes relation. Fur-
thermore, from the example above, it would appear that if X is before Z and
Z is before Y, then “precedes(X, Y)” should also be true. But we can say
more than that: if X is before Z and Z precedes Y, then “precedes(X, Y)”
should be true. This extension means that Jefferson precedes Kennedy
because

before(fdr, kennedy)
implies precedes(fdr, kennedy)

before(lincoln, fdr)
precedes(fdr, kennedy)

implies precedes(lincoln, kennedy)

and

before(jefferson, lincoln)
precedes(lincoln, kennedy)

implies precedes(jefferson, kennedy)

Using this reasoning, we have derived three new “precedes” facts that were
not in the original list of facts.

Thus, we want to say that there are two ways in which X can precede Y:

precedes(X,Y) if before(X,Y)
precedes(X,Y) if before(X,Z) and precedes(Z,Y)

We can make declarations in our Prolog program that express the precedes
relation, but this time the declarations are stated as rules rather than as
facts. A Prolog rule is a declaration of an “if A then B” form, which means
that if A is true (A is a fact), then B is also true (B is a fact). The actual
Prolog declarations follow; think of the notation B :– A as meaning “if A
then B.”

precedes(X,Y) :– before(X,Y).
precedes(X,Y) :– before(X,Z), precedes(Z,Y).

The rule for precedes includes precedes as part of its definition; it is therefore
a recursive rule.

Our Prolog program now consists of the facts and rules shown in 
Figure 10.10. Here’s some further dialogue, using the new program. Be sure you
understand why each query receives the response or responses it does.

?-precedes(fdr, kennedy).
Yes.
?-precedes(lincoln, nixon).
Yes.
?-precedes(lincoln, X).
X = fdr
X = kennedy
X = nixon



Let’s add one final declaration to the program—a declaration that says
that event X occurred earlier than event Y if X took place during president R’s
term in office, Y took place during president S’s term in office, and president R
precedes president S. (Do you agree with this definition of the earlier relation?)
Here’s the rule:

earlier(X,Y) :- president(R,X),
president(S,Y),precedes(R,S).

Then a final query of

?-earlier(world_war_II, X).

produces the responses

X = first_moon_landing
X = cuban_missile_crisis

In this simple example, it is easy to check that the responses to our queries
are correct, and it is also not difficult to do the necessary comparisons with the
program declarations to see how Prolog was able to arrive at its responses.
The interesting thing to note, however, is that the program consists solely of
declaratives (facts and rules), not instructions about what steps to take in order
to produce the answers. The program provides the raw material, and in the logic
programming paradigm, this raw material is inspected more or less out of our
sight, and without our detailed instructions, to deduce the answers to a query.

Figure 10.11 illustrates the situation. The programmer builds a knowl-
edge base of facts and rules about a certain domain of interest; this knowl-
edge base constitutes the program. Interaction with the program takes place
by posing queries—sometimes rather complex queries—to an inference
engine (also called a query interpreter). The inference engine is a piece of
software that is supplied as part of the language itself; that is, it is part of the
compiler or interpreter, not something the programmer has to write. The
inference engine can access the knowledge base, and it contains its own rules
of deductive reasoning based on symbolic logic. For example, a Prolog infer-
ence engine processing the program in Figure 10.10 would conclude that

precedes(fdr, kennedy)
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president(lincoln, gettysburg_address).
president(lincoln, civil_war).
president(nixon, first_moon_landing).
president(jefferson, lewis_and_clark).
president(kennedy, cuban_missile_crisis).
president(fdr, world_war_II).

before(jefferson, lincoln).
before(lincoln, fdr).
before(fdr, kennedy).
before(kennedy, nixon).

precedes(X,Y) :- before(X,Y).
precedes(X,Y) :- before(X,Z), precedes(Z,Y).

A Prolog Program

FIGURE 10.10
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is true from the rule of the form

if before(X, Y) then precedes(X, Y)

together with the fact

before(fdr, kennedy).

because it is a rule of deductive reasoning (known as modus ponens) that “if
A then B” together with “A” must result in “B.” The programmer need not
supply this rule or instruct the inference engine when it should be applied.
Thus, the inference engine can be thought of as providing still another layer
of abstraction between the programmer and the machine. The programmer
supplies the fundamental facts and rules about the domain but does not
direct the computer’s step-by-step processing of those facts and rules to
answer a query.

This is a somewhat idealistic view of logic programming; in actuality, the
idiosyncrasies of Prolog compilers mean that programmers do need to under-
stand something about the order in which rules of logic will be applied. Yet,
Prolog still gives us a good sense of the logic programming paradigm, where the
intent is to concentrate on the “what” [is true] rather than on the “how” [to
find it] that is the hallmark of procedural programming. You can experiment
with Prolog at the following Web site: http://www.csse.monash.edu.au/~lloyd/
tildeLogic/Prolog.toy.

Using the Prolog program of Figure 10.10, what is the result of each of
the following queries?

1. ?-before(jefferson, kennedy).

2. ?-president(X, lewis_and_clark).

3. ?-precedes(jefferson, X).

PRACTICE PROBLEMS

http://www.csse.monash.edu.au/~lloyd/tildeLogic/Prolog.toy
http://www.csse.monash.edu.au/~lloyd/tildeLogic/Prolog.toy


10.4.3 Parallel Programming

Chapter 5 described how the complex scientific problems of the twenty-first
century—climate modeling, genomic research, artificial intelligence—are testing
the limits of the Von Neumann model of sequential processing. Figure 10.12 lists
some of the “grand challenges” identified by the government-sponsored High
Performance Computing and Communications Initiative for the 1990s.

For the most part, these remain significant challenges today, along with a
host of new research questions that have arisen in the last decade. Parallel
processing offers the promise of providing the computational speed required
to solve these important large-scale problems.

Parallel processing is really a catchall term for a variety of approaches to
computing architectures and algorithm design. Let’s review the two models of
parallel architectures introduced in Chapter 5:

• SIMD (single instruction stream/multiple data stream): A single con-
trol unit broadcasts a single program instruction to multiple ALUs, all
of which carry out that instruction in unison, using globally shared
data as well as private data stored in local memory.

• MIMD (multiple instruction stream/multiple data stream): Intercon-
nected processors independently execute their own program on their
own data, communicating as needed with other processors. The MIMD
model includes a number of different structures, such as multi-core
computing, in which two or more processors are packaged together on
a single integrated circuit, and cluster computing, in which indepen-
dent systems such as mainframes, desktops, or laptops are intercon-
nected by a local area network (LAN) like the Ethernet or a wide area
network (WAN) such as the Internet.

The algorithms with which we are most familiar, like those introduced
in Chapters 2 and 3, operate sequentially because they were originally
designed for Von Neumann–type execution. To reap the full benefit of a
parallel architecture, we need to develop totally new algorithms that
exploit this collection of processing resources. After all, it does not do any
good to have 100 people available to help with a project if only one is doing
any useful work, while the other 99 sit idle. (In contrast to other sections
of this chapter, this one does not describe a specific parallel programming
language. Instead, we introduce and discuss some general principles of par-
allel languages and algorithms.)

An example of SIMD parallel processing, first presented in Chapter 5,
involves adding a constant value K to each element of a 6-element vector V.
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• 72-hour weather prediction
• Modeling oil reservoirs
• Chemical dynamics
• Vehicle dynamics
• Fluid turbulence
• Human genome project
• Ocean circulation model

“Grand Challenge” Computing
Problems

FIGURE 10.12
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(a) Model of SIMD Processing

FIGURE 10.13

Assume that we have six ALUs with unique ID numbers from 1 to 6. Each ALU
has its own local or “private” data consisting of one of the six vector compo-
nents; that is, the ALU with ID 1 has a private copy of element V[1] in its
local memory. The ALU with ID 2 has a private copy of element V [2] in
its local memory, and so forth. Since all ALUs need access to the constant
value K, it is stored in shared global memory that is accessible to everyone.
This allocation of processing units, memory units, and data values is dia-
grammed in Figure 10.13(a).

A language designed to support SIMD parallel processing would allow you
to declare a data value “public,” which places it into global shared memory.
The language would also allow you to declare a vector “private,” which means
the individual elements of the vector are distributed into the private memory
unit of each ALU. Finally, a SIMD-style language allows you to write some-
thing like the following:

PARALLEL [I .. J]
statements

END PARALLEL

The meaning of this statement is that every ALU with an ID number from
I to J inclusive will, in unison, execute the block of statements enclosed
within the PARALLEL block, using data stored in global memory and their own
private memory.

With these statements available to us, our vector addition problem could
be solved in a SIMD parallel fashion as follows:

K : public
V : private

...
PARALLEL [1..6]

V � V � K
END PARALLEL

In this SIMD algorithm, every processing element executes in unison the
exact same instruction, namely the vector addition operation V � V � K. How-
ever, each one uses the element of V stored in its private memory. The result is
that the six elements of vector V are updated concurrently. Rather than taking
six units of time to be solved, as is the case with a sequential solution, the
problem is now solved in one unit of time, a speedup factor of six.
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The first MIMD example we look at is the problem initially presented in
Chapter 5—locating a single name among all the names in the New York City
telephone book. However, let’s now assume that we have 101 independent
processors to assist with this task. To take advantage of these resources, let’s
designate one processor, say ID number 101, to handle input/output while the
remaining ones, those with ID numbers 1 to 100, are assigned to the search
task. The job of the input/output processor is to input the 20,000,000-
element phone book, partition it into 100 separate chunks of size 200,000,
and send these chunks to the 100 search processors along with the NAME we
are looking for. After distributing this data, the input/output processor waits
for one of the search processors to find the correct phone number and send it
back. It then prints this result (or, more likely, speaks it) and terminates. This
MIMD data allocation strategy is diagrammed in Figure 10.13(b).

Now, in parallel, the 100 search processors execute the sequential search
algorithm on their chunk of data, called YOURLIST, to see if NAME is contained in
this segment. However, they do not have to do this in instruction-by-instruction
lockstep; instead, each processor executes independently. Here is the outline of
the program distributed to each of the 100 search processors:

// this is the program run by processors numbered 1
// to 100.
// These are the ones carrying out the search task.

YOURLIST � LIST[1..200000] // the sublist of 
// names to be searched

NAME // the one name we 
// are searching for

. . .
RECEIVE YOURLIST, NAME FROM PROCESSOR 101
. . .

// Each processor now executes the following 
// instructions at its own rate
FOUND EQUALS FALSE
SEQSEARCH (YOURLIST, NAME, FOUND, PHONENUM)
IF FOUND

SEND PHONENUM TO PROCESSOR 101
ELSE

DO NOTHING
END
HALT

(b) Model of MIMD Processing

FIGURE 10.13
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Each search processor initially waits for a message from the input/output
processor containing its segment of the overall list, YOURLIST, and NAME. This
is achieved via a RECEIVE instruction that tells the program not to continue
executing but, instead, to wait for a message from the indicated processor, in
this case 101. When that message arrives, the processor executes the sequen-
tial search algorithm, called SEQSEARCH, to determine if NAME is located
within its 200,000-element sublist. If NAME is located within that list, then
SEQSEARCH will exit with FOUND set to true, and that processor will SEND
the correct phone number to processor 101. If NAME is not found, the variable
FOUND will remain false, and that processor will “Do nothing” and halt. The
SEND/RECEIVE commands used to exchange information are called message-
passing primitives, and they are a very important part of MIMD programming
languages.

To complete this solution we need a second program, the one executed by
the input/output processor. Its job is easy to describe—distribute data to all
100 processors and wait for a result to arrive from whatever processor finds
the answer. This program might look like the following:

// this is the program run by processor 101

SET P TO 1
SET N TO THE NAME FOR WHICH WE ARE SEARCHING

// distribute the data to all 100 search processors
REPEAT 100 TIMES

SET LIST TO THE NEXT 200,000 NAMES IN THE
PHONE BOOK

SEND LIST, NAME TO PROCESSOR P
ADD 1 TO P

END LOOP

RECEIVE PHONE NUMBER FROM ANY PROCESSOR
OUTPUT THE PHONE NUMBER
HALT

Note the differences between this example and the previous SIMD code.
There is no need to specifically indicate parallelism using a PARALLEL statement.
Instead, the parallelism is implemented automatically by having multiple proces-
sors executing their programs concurrently. Note that every processor does not
use the same program. In this case there are two programs, one for the search
processors and one for the input/output processor. Furthermore, even though
100 processors are executing the same program, they are not all executing the
same sequence of instructions. For example, if NAME occurs exactly one time in
the phone book, then 99 processors will execute the ELSE clause and “do
nothing.” The one processor that does find NAME will SEND the correct phone
number to processor 101. Finally, note the difference in how we handle the
concept of global data. In the SIMD example, every processor needed access to
the variable K, so it was placed in global shared memory. In the MIMD example,
every processor needed access to NAME, but in this case there is no global shared
memory. Instead, we explicitly SEND this value to every processor, using
message-passing primitives.

This phone book search is a rather simplified example of MIMD parallelism
for two reasons. First, there were only two distinct programs, and 100 of the
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101 processors were executing the same one. In many MIMD algorithms there
are many more distinct programs. The situation here is equivalent to having
101 people building a house and having 100 of those 101 doing the exact same
task. In most cases there will be carpenters, roofers, plumbers, masons, etc.,
all performing their own specific tasks. The second reason why this is a sim-
plified example is that there is little communication between processors. In
this algorithm processors receive data at the start of the program and (possi-
bly) send a result at the end. There is no communication during the computa-
tion itself. However, in most MIMD algorithms there is message passing going
on throughout the computation, for such purposes as sharing intermediate
computations, exchanging temporary data, and providing status information.
For example, in the home-building analogy mentioned above, the people
putting up the walls must communicate their status (progress) to the roofers,
who are waiting for them to finish before they can begin. (This example is
simple for a third reason—it does not deal with the possibility that NAME is
not in the phone book. If that occurs, all 100 search processors will execute
the ELSE clause and “Do nothing.” The input/output processor will be sitting
and waiting to RECEIVE a result that never will be SENT.)

A better example of MIMD parallel processing occurs when a divide-and-
conquer model is used to solve a task. In this approach the problem is suc-
cessively partitioned into smaller and smaller parts and sent off to other
processors, until each one has only a trivial job to perform. Each processor
then completes that trivial operation and returns its result to the processor
that sent it the task. These processors in turn do a little work and give the
results back to the processors that gave them the tasks, and so on, all the way
back to the originating processor. In this model there is far more communica-
tion between processors.

For example, the task of finding the largest number in a list can be solved
in a MIMD parallel fashion using the divide-and-conquer model. (The sequen-
tial version of this algorithm was presented in Chapter 2.) The original list of
numbers is assigned to the top-level processor, which partitions the list into
two parts and sends each half to a different processor. Each of these two
processors divides its list in half and hands it off to yet two other processors,
and so on, creating the pyramid effect shown in Figure 10.14.

At the bottom of the pyramid is a collection of processors that only have
to find the largest number in a one-element list, a trivial task. They each pass

A Divide-and-Conquer Approach
Using Multiple Processors

FIGURE 10.14
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this result up to their “parent” processor, which selects the larger of the two
numbers it receives and passes that value up to its parent. All the way up the
pyramid, each processor has only to select the larger of the two numbers it
receives from its “children.” When the processor at the top of the pyramid
completes this task, the problem of finding the overall largest number has
been solved.

Using a single processor, finding the largest of N numbers takes �(N)
time, since each of the N numbers in the list must be examined exactly once.
(This order of complexity was introduced and discussed in Chapter 3.) How-
ever, the parallel approach diagrammed in Figure 10.14 traverses the pyramid
from top to bottom and then back to the top. Since the N numbers are divided
into two halves at each step, until the lists are of length one, this down-and-
up-the-pyramid process requires (2 * ln2(N)) steps, and a parallel solution to
the “Find Largest” algorithm is �(ln2(N)). (Logarithmic efficiency was dis-
cussed in Section 3.4.2.) This can lead to enormous speedup in the solution
time, since the function ln2(N) grows at a much slower rate than N. For exam-
ple, if N � 1,000,000, then using a sequential approach to finding the largest
number takes on the order of 1,000,000 steps, while our parallel solution
needs only on the order of 2 * ln2(1,000,000) � 40 steps, a potential speedup
of 25,000!

We would expect the use of parallelism to reduce processing time because
subtasks are being executed concurrently. However, one potential roadblock to
achieving these higher levels of speedup is the amount of communication traf-
fic between processors, both to distribute code and data and to share status
and results. At some point, an increase in the number of processors can
become more of a hindrance than a help, due to the extra data communication
required. This is analogous to having too many people serve on a committee.
The work involved in keeping everyone informed can slow down rather than
speed up the work. In that case it could actually be more efficient to have
fewer people working on the task. One of the most important areas of research

Section 9.1 described the evolution of sequential program-
ming languages from machine language to assembly lan-
guage to high-level languages like C++, Java, and Python.
A similar evolution is happening with parallel programming
languages. Most of the parallel languages in current use,
such as POSIX, OpenMP, and MPI, require programmers to
personally manage all aspects of parallelism—allocating
data to global and local memory units, distributing pro-
grams, and sending and receiving messages. That is not
unlike low-level assembly languages that required program-
mers to format data and manage memory, tasks that
humans do not do very well.

However, just as assembly languages evolved into high-
level languages in which compilers perform these mundane

tasks, the field of parallel programming languages is also
evolving. Today, automatic parallelization is an active area
of computer science research. The goal of automatic paral-
lelization is to design and build parallel compilers that
accept sequential code and automatically “discover” oppor-
tunities for parallel execution. The compiler then converts
this sequential code into parallel code that runs efficiently
on SIMD or MIMD machines. The ultimate goal is to relieve
programmers of the error-prone task of manually coding the
complex details of parallel algorithms, something that
humans, again, do not do very well.

In spite of many years of research, as yet there has
been limited success in achieving this goal. Today only a
few parallel compilers can generate parallel code that is
anywhere close to the efficiency of what can be produced
by good human programmers.

Let Me Do That 
For You
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Mathematicians from the University of New York and com-
puter scientists from the University of California, Berkeley,
have developed software to model the fluid dynamics
(blood flow, blood coagulation) of the human heart. The

algorithms are written in a language called Titanium,
which is a parallel version of Java. Titanium was developed
at UC Berkeley and is specifically designed to support
high-performance scientific computing on massively paral-
lel machines.  

Parallel Computing 
with Titanium 

Explain how parallel processing can be used to evaluate the expression

A + B + C + D

If each addition operation takes one “time slot,” what savings can be
achieved by using parallel processing instead of sequential processing?

PRACTICE PROBLEM

10.5 Conclusion

There is an entire spectrum of programming languages, each with its own fea-
tures that make it more suitable for some types of applications than for oth-
ers. A number of well-known languages (Fortran, COBOL, C, C++, Ada, Java, C#,
Python) fall into the traditional, procedural paradigm. Procedural languages
can be object-oriented, leading to a different program design perspective and
the promise of software reuse. Some languages (such as SQL, HTML, and
JavaScript) are designed as special-purpose tools. Still others rely on combi-
nations of function evaluations (a functional language—Scheme), logical
deductions from specified facts (a logic programming language—Prolog), or a
parallel programming approach. Figure 10.15 lists the languages we have dis-
cussed, along with some of the other major languages. A few words about this
figure are in order. It is hard to pinpoint a date for a programming language.
Should it be when the language was developed, when it was first commercially

in parallel processing is the design and development of efficient parallel algo-
rithms that keep processors busy, minimize communications, and significantly
speed up the overall execution time.

A final form of parallelism, a type we will discuss again in Chapter 15, is
the neural network. Patterned after the human brain, neural networks can
involve massive interconnections of many extremely simple devices. They are
one of the most interesting areas of artificial intelligence.



used, or when it became standardized? It is also sometimes hard to pigeonhole
a language as to paradigm. Although we’ve tried to make clear distinctions in
this chapter, some languages combine features drawn from several
approaches. Finally, your favorite language may have been omitted. (By all
means, add it to the table.) At any rate, it is certain that the programming
language world has been and continues to be a “Tower of Babel.”

The trend in programming language design is to develop still higher levels
of abstraction. This allows the human programmer to think in bigger pieces
and in more novel or conceptual ways about solving the problem at hand. We
would like eventually to be able to write programs that contain only the
instruction “Solve the problem.” Yet, we must remember that code written in
any high-level programming language is still of no use to the computer trying
to execute that code. No matter how abstract and powerful the language for
front-end communication with the computer, the machine itself is still toiling
away at the bit level. The services of an appropriate translator must be
employed to take the code down into the machine language of that computer.
The workings of a translator are discussed in Chapter 11.
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NAME DATE TYPE

FORTRAN 1955–57 Procedural

ALGOL 60 1958–60 Procedural

COBOL 1959–60 Procedural

BASIC 1963–64 Procedural

PL/1 1964 Procedural

ALGOL-68 1968 Procedural

Pascal 1971 Procedural

C 1974 Procedural

Modula-2 1977 Procedural

Ada 1979 Procedural/Parallel

Oberon 1988 Procedural/Parallel

Smalltalk 1971–1980 Object-oriented

Flavors 1979 Object-oriented

C++ 1983 Object-oriented

Eiffel 1987 Object-oriented

Visual Basic 1988 Object-oriented

Python 1990 Object-oriented

Java 1995 Object-oriented

Alice 1995 Object-oriented

C# 2000 Object-oriented

SQL 1986 Database queries

Perl 1987 Text extraction/reporting

HTML 1994 Hypertext authoring

LISP 1958 Functional

APL 1960 Functional
(continued)

Programming Languages at
a Glance

FIGURE 10.15
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Scheme 1975 Functional

FP 1977 Functional

ML 1978 Functional

Prolog 1972 Logic

Occam II 1987 Parallel

Linda 1989 Parallel

High Performance Fortran 1993 Parallel

Ruby 1995 Scripting language/

Object-oriented

JavaScript 1996 Scripting language

VBScript 1996 Scripting language

PHP 1997 Server-side scripting

language

ASP 1997 Server-side scripting

language

JSP 1999 Server-side scripting

language

Programming Languages at
a Glance (continued)

FIGURE 10.15



1. What is the output from the following section of
FORTRAN code?

ISUM = 0
I = 1

20 IF (I .GT. 4) GO TO 30
ISUM = ISUM + I
I = I + 1
GO TO 20

30 WRITE(*,*) ISUM

2. Exponentiation is expressed in FORTRAN by **; that is,
3**2 means 32. If I has the value 7 and J has the value 3,
what is the value of the following FORTRAN expression?

((I - J)**2)/2

3. What is the value of RESULT after execution of the following
COBOL code? Assume that INITIAL has the value 100.

MOVE INITIAL TO INDEX.
ADD 1 TO INDEX.
ADD INITIAL TO INDEX.
ADD INITIAL TO INDEX GIVING
RESULT.

4. What is true after the following statements in a C pro-
gram have been executed?

int* intPointer;
intPointer = (int*) 500;
*intPointer = 10;

5. Write a section of C code that stores in memory location
1000 the integer value currently in SAM.

6. The following section of Ada code conveys the services that
a “teller” object can perform. What are these services?

task type teller is
-- Entries to do simple
-- transactions and return status

entry deposit ( id : cust_id;
val : in money; stat : out
status );

entry withdraw( id : cust_id;
val : in money; stat : out
status );

entry balance ( id : cust_id;
val : out money; stat :
out status );

end teller;

7. In the following two Java output statements,

System.out.println(“Hello. Welcome
to this program.”);

System.out.print(“Tell me your
favorite number: ”);

Why do you think the first uses println and the second
uses print?

8. In Python, indentation is used to indicate the extent of a
block of code. What is the output of the following Python
code?

first � 3
second � 5

if first � second:
print (“second is bigger”)

else:
print (“but this time ”)

print (“first is bigger”)

9. In C#, && is the symbol for the Boolean AND operation,
and || is the symbol for the Boolean OR operation. What
is the truth value of the following Boolean expressions?

a. (3 �� 3) && (7 � 5)

b. (3 � 3) || (7 � 5)

c. (4 � 1) && (3 � 2)

10. Which procedural language might be most appropriate for
a program to do each of the following applications and
why?

a. Compute trajectories for a satellite launcher

b. Monitor an input device feeding data from an experi-
ment to the computer

c. Process the day’s transactions at an ATM (automated
teller machine)

11. In the vendor database described in Section 10.3.1, the
user wants to know all of the cities where there are ven-
dors from whom the store bought more than $10,000
worth of stock the previous business quarter. Write an
SQL query for this information.

12. Describe  the text on a Web page that results from the
HTML statement:

<p><center> <font size = 12 color
= “green”> How Now Brown Cow
</center></p>

13. Suppose the Web form in Figure 10.5 had a second text
box named Age to collect the user’s age. Add to the
JavaScript code of Figure 10.8 to check that the Age text
box contains data.

14. What is the result of the following Scheme expression?

(car (cdr (cdr (list 16 19 21))))

15. Write a Scheme function that returns a list consisting of
the first two values in the input list but in the opposite
order.
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16. Consider the following Scheme function:

(define (mystery input-list)
(cond ((null? input-list) 0)
(else ( + 1 (mystery (cdr
input-list))))))

What is the result of invoking the function as follows?

(mystery (list 3 4 5))

Explain what this function does in general.

17. Consider the following Scheme function:

(define (unknown n)
(cond ((= n 1) 1)
(else (* n (unknown (- n 1))))))

The condition (= n 1) means “If n = 1 . . . “. What is the
result of the following function invocation?

(unknown 4)

18. After the rule

earlier(X,Y) :- president(R,X),
president(S,Y), precedes(R,S).

is added to the Prolog program of Figure 10.10, what is
the result of each of the following queries?
a. ?- earlier(lewis_and_clark, civil_war).
b. ?-earlier(world_war_II, first_moon_landing).
c. ?-earlier(X, world_war_II).

19. Here is the beginning of a Prolog program about a family.
The facts are

male(eli)
male(bill)
male(joe)
female(mary)
female(betty)
female(sarah)
parent-of(eli, bill)
parent-of(mary, bill)
parent-of(bill, joe)
parent-of(bill, betty)
parent-of(bill, sarah)

The declaration

male(eli)

asserts that Eli is male, and

parent-of(eli, bill)

asserts that Eli is Bill’s parent. Draw a “family tree” based
on these facts.

20. Add to the Prolog program of Exercise 19 a rule to define
“father-of”.

21. Add to the Prolog program of Exercise 19 a rule to define
“daughter-of”.

22. a. Add to the Prolog program of Exercise 19 a rule to
define “ancestor-of”.

b. After this rule is added, determine the result of
the query

?-ancestor-of(X, sarah).

23. Suppose the symbolic arrangement of Figure 10.14 is
used in a divide-and-conquer algorithm to compute the
largest element in a list of eight elements. Assume that
the time to partition a list in half and pass it to sub-
processors is 0.003n �sec, where n is the size of the list
to be partitioned. Assume that the time to compare two
values and find the larger of the two is 1 �sec. Assume
that the time to pass the larger value back to a parent
processor is 0.001 �sec. Compute the time required to do
this task compared with doing it on a sequential proces-
sor that uses the Find Largest algorithm of Chapter 2,
which also involves a series of comparisons of two values
and finding the larger of the two.

24. In the telephone number lookup example of parallel pro-
cessing, the input/output processor may wait forever if
NAME appears nowhere in the telephone directory.
Assume that the code for processors 1–100 remains the
same, and modify the code for processor 101 to output a
message and then stop execution if NAME is not in the
telephone directory. (Hint: Assume that you have the
ability to run a countdown timer in processor 101.)
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C H A L L E N G E  WO R K

1. Visual Basic.NET (see the box on page 410) supplies a
“toolbox” that makes creation of a graphical user inter-
face a simple matter of dragging and dropping the
objects you want (e.g., buttons, labels, and text boxes)
onto a form object. The resulting Windows-based pro-
grams operate in an event-driven mode. Instead of
proceeding from beginning to end under the control of
the program instructions, an event-driven program starts
up and then waits for some “event” to occur. An event is
generally caused by some user action such as clicking on
a button. Each of the form objects can have a code mod-
ule to respond to such events.

The following shows a simple Visual Basic.NET form
that contains two text boxes, a label, and a button. The
user types his or her first name and last name into
the two text boxes. When the user clicks the button, the
name is displayed in the label as

Lastname, Firstname

If you have Visual Basic.NET (available in Microsoft Visual
Studio), open a new Visual Basic Windows Application.
Drag objects from the Toolbox to create a form that looks
like the one shown. Give each of these objects a meaning-
ful name by changing its Name property in the Properties

window. Use the Text property of each object to set what
that object displays (the text boxes and label should ini-
tially be blank and the button should say “Name Writer”).

The only code required is a response to the button’s
Click event. Double-click the button and then write a
code statement that concatenates—in the correct
order—the Text properties of the two text boxes,
together with a comma, and assigns the result to the
Text property of the label. Run your program (press the
function key F5 on the keyboard) to test it. (Hints: Visual
Basic uses & as the concatenation operator. A form
object’s property is referenced by giving the name of the
object, followed by a dot, followed by the property name,
as in lblOutput.Text.)

2. Find information on one of the Grand Challenge problems
of Figure 10.12. Write a report on
• What the problem involves
• The benefits to be obtained from solving it
• Why it is computationally challenging
• Why parallel processing may be able to, or has been

able to, help solve it
• The current state of progress toward a solution

Form1

Judith Gersting

Gersting, Judith

Name Writer

Text boxes

Label

Button
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Chapman, S. Fortran 95/2003 for Scientists & Engineers, 3rd ed. New York: McGraw Hill, 2008.
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The following book offers more advanced discussions on the theory and issues behind
programming language design and implementation:
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11.1 Introduction

Although the high-level languages you learned about in the previous two
chapters vary greatly in structure and behavior, they all share one feature: No
computer in the world can understand them. There are no “Java computers” or
“C++ processors” that can directly execute programs written in the high-level
languages of Chapters 9 and 10. In Chapter 6 you learned that assembly lan-
guage must be translated into machine language prior to execution. High-level
languages must also be translated into machine language prior to execution—
in this case by a special piece of system software called a compiler. Compilers
for languages like those discussed in Chapters 9 and 10 are very complex pro-
grams. They contain tens of thousands of lines of code and require dozens of
person-years to complete. Unlike the assemblers of Chapter 6, these transla-
tors are not easy to design or implement.

There is a simple explanation for the vast difference in complexity
between assemblers and compilers. Assembly language and machine language
are related one to one; that is, one assembly language instruction produces
exactly one machine language instruction. Therefore, translation is really a
replacement process in which the assembler looks up a symbolic value in a
table (either the op code table or the symbol table) and replaces it by its
numeric equivalent:

This is equivalent to translating English into Spanish by looking up each indi-
vidual English word in an English/Spanish dictionary and replacing it with
exactly one Spanish word:

LOAD X Assembly Language

Op code table Symbol table

0101 0000 0000 1001 Machine Language

u E
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This is a simple way to do translation, and this approach does work for assem-
blers. Unfortunately, it does not work for most English sentences. Often, a sin-
gle English word must be translated into a multiword Spanish phrase or vice
versa. This same problem exists in the translation of high-level programming
languages like Java, C++, or Python.

The relationship between a high-level language and machine language is
not one to one but one to many. That is, one high-level language statement,
such as an assignment or conditional, usually produces many machine lan-
guage or assembly language instructions. For example,

Java Assembly Language

a = b + c – d; S LOAD B

ADD C

SUBTRACT D

STORE A

To determine which machine language instructions must be generated, a
compiler cannot simply look up a name in a table. Instead, it must do a
thorough linguistic analysis of the structure (syntax) and meaning
(semantics) of each high-level language statement. This is far more diffi-
cult than table lookup. In fact, building a compiler for a modern high-level
programming language can be one of the most difficult system software
projects.

When performing a translation, a compiler has two distinct goals. The
first is correctness. The machine language code produced by the compiler
must do exactly what the high-level language statement describes, and noth-
ing else. For example, here is a typical Java assignment statement:

A = (B + C) - (D + E);

Assume that a compiler translates this statement into the following assembly
language code:

-- Compute the term (B + C)

LOAD B -- Register R holds the value of B

ADD C -- Now it holds the result (B + C)

STORE B -- Let’s store the result temporarily in B (see comments below)

-- Next compute the term (D + E)

LOAD D -- Register R holds the value of D

This  is   a  book.

Este es un libro.



ADD E -- Now it holds the result (D + E)

STORE D -- Let’s store the result temporarily in D (see comments below)

-- Finally, subtract the two terms and store the result in A

LOAD B -- This loads (B + C)

SUBTRACT D -- This is (B + C) – (D + E)

STORE A -- Put the result in A. We are done translating the statement.

This translation is wrong. Although the code does evaluate (B + C) – (D + E) and
stores the result into A, it does two things it should not do. The translated
program destroys the original contents of the variables B and D when it does the
first two STORE operations. This is not what the Java assignment statement is sup-
posed to do, and this compiler has produced an incorrect translation. 

In addition to correctness, a compiler has a second goal. The code it
produces should be reasonably efficient and concise. Even though memory
costs have come down and processors are much faster, programmers will not
accept gross inefficiencies in either execution speed or size of the compiled
program. They may not care whether a compiler eliminates every wasted
microsecond or every unnecessary memory cell, but they do want it to produce
reasonably fast and efficient machine language code. For example, to compute
the sum 2x0 + 2x1 + 2x2 + . . . + 2x50000, an inexperienced programmer might
write something like the following:

sum = 0.0;
i = 0;
while (i <= 50000) {

sum = sum + (2.0 * x[i]);
i = i + 1;

}

This loop includes the time-consuming multiplication operation (2.0 * x[i]).
By the rules of arithmetic, this operation can be moved outside the loop and
done just once. A “smart” compiler should recognize this and translate the
previous fragment as though it had been written as follows:

sum = 0.0;
i = 0;
while (i <= 50000)   {

sum = sum + x[i];
i = i + 1;

};
sum = sum * 2.0;

By restructuring the loop, a smart compiler saves 49,999 unnecessary 
multiplications.

As you can see, we have our work cut out for us in this chapter. We want
to describe how to construct a compiler that can read and interpret high-
level language statements, understand what they are trying to do, correctly
translate their intentions into machine language without errors or unex-
pected side effects, and do all of this efficiently. Building a compiler is a
major undertaking.
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The remainder of this chapter gives an overview of the steps involved in
building a compiler for a procedural, Java- or C++-like language. No single
chapter could investigate the subtleties and complexities of this huge sub-
ject. We can, however, give you an appreciation for some of the issues and
concepts involved in designing and implementing this important piece of
system software.

11.2 The Compilation Process

The general structure of a compiler is shown in Figure 11.1. Because there is a
good deal of variability in the design and organization of a compiler, this dia-
gram should be viewed as a model rather than as an exact description of how
all compilers are structured.

The four phases of compilation listed in Figure 11.1 are:

• Phase I: Lexical analysis. The compiler examines the individual char-
acters in the source program and groups them into syntactical
units, called tokens, that will be analyzed in succeeding stages.
This operation is analogous to grouping letters into words prior to
analyzing text.

• Phase II: Parsing. The sequence of tokens formed by the scanner is
checked to see whether it is syntactically correct according to the rules
of the programming language. This phase is roughly equivalent to
checking whether the words in the text form grammatically correct
sentences.

• Phase III: Semantic analysis and code generation. If the high-level lan-
guage statement is structurally correct, then the compiler analyzes its
meaning and generates the proper sequence of machine language
instructions to carry out these actions.

• Phase IV: Code optimization. The compiler takes the generated code
and sees whether it can be made more efficient, either by making it
run faster or having it occupy less memory.
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When these four phases are complete, we have a correct and efficient machine
language translation of the original high-level language source program. In
the final step this machine language code, called the object program, is writ-
ten to an object file. We have reached the stage labeled “Machine language
program” from Figure 6.4, and the resulting object program can be handled in
exactly the fashion shown there. That is, it can be loaded into memory and
executed by the processor to produce the desired results.

The overall sequence of operations performed on a high-level language
program is summarized in Figure 11.2. The following sections take a closer
look at each of the four phases of the compilation process.

11.2.1 Phase I: Lexical Analysis

The program that performs lexical analysis is called a lexical analyzer, or
more commonly a scanner. Its job is to group input characters into units
called tokens—syntactical units that are treated as single, indivisible entities
for the purposes of translation. For example, take a look at the following
assignment statement:

a = b + 319 - delta;

You probably see an assignment statement containing some symbols (a, b,
delta), a number (319), and some operators (5, 1, 2, ;). However, your
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eyes and your brain actually do a great deal of processing to create these
objects, just as they do a great deal of processing to create words, sen-
tences, and paragraphs from the individual characters on this page. In the
assignment statement shown previously, high-level linguistic objects such
as symbols and numbers do not yet exist. Initially, there are only the fol-
lowing 21 characters:

tab, a, blank, 5, blank, b, blank, 1, blank, 3, 1, 9, blank, 2, 
blank, d, e, l, t, a, ;

It is the task of the scanner to discard non-essential characters, such as
blanks and tabs, and then group the remaining characters into high-level syn-
tactical units such as symbols, numbers, and operators. A scanner would con-
struct from the preceding example the following eight tokens:

a

5

b

1

319

2

delta

;

Now our compiler no longer has to deal with individual characters. Instead, it
can work at the level of symbols (a, b, delta), numbers (319), and operators
(5, 1, 2, ;).

In addition to building tokens, a scanner must classify tokens by type—
that is, is it a symbol, is it a number, is it an assignment operator? Whereas
a modern high-level language like C++, Java, or Python may have 50 or more
different token types, our simple examples are limited to the 11 classifica-
tions listed in Figure 11.3.

The scanner assigns the classification number 1 to all legal symbols,
such as a, b, and delta. Similarly, all unsigned numbers, regardless of value,
are assigned classification number 2. The reason all symbols and all numbers
can be grouped into single classifications is that the grammatical correctness
of a statement depends only on whether a legal symbol or a legal number

45111.2 The Compilation Process LEVEL 4

TOKEN TYPE CLASSIFICATION NUMBER

symbol 1
number 2
5 3
1 4
2 5
; 6
55 7
if 8
else 9
( 10
) 11

Typical Token Classifications
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appears in a given location. It does not depend on exactly which symbol or
which number is actually used. For example, given the following model of an
assignment statement:

“symbol” = “symbol” 1 “number”;

it is possible to state that it is syntactically correct, regardless of which specific
“symbol” and “number” are actually used (as long as they are all legal).

Using the token types and classification values shown in Figure 11.3, it is
now possible to describe exactly what a scanner must do:

The input to a scanner is a high-level language statement from the source pro-
gram. Its output is a list of all the tokens contained in that statement, as well
as the classification number of each token found.

Here are some examples (using the classification values shown in Figure 11.3):

Input: a 5 b 1 319 2 delta;

Output: Token Classification

a 1

5 3

b 1

1 4

319 2

2 5

delta 1

; 6

Input: if (a 55 b) xx 5 13; else xx 5 2;

Output: Token Classification

if 8

( 10

a 1

55 7

b 1

) 11

xx 1

5 3

13 2

; 6

else 9

xx 1
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5 3

2 2

; 6

Regardless of which programming language is being analyzed, every
scanner performs virtually the same set of operations: (1) it discards blanks
and other nonessential characters and looks for the beginning of a token;
(2) when it finds the beginning, it puts characters together until (3) it
detects the end of the token, at which point it classifies the token and
begins looking for the next one. This algorithm works properly regardless of
what the tokens look like.

We can see this process more clearly by looking at an algorithm for group-
ing natural language characters into words:

This is English.
Este es Espanol.
Kore wa Nihongo desu.

Even though these three sentences are in different languages, the algorithm for
constructing words is identical: (1) discard blanks until you find a nonblank
character; (2) group characters together until (3) you encounter either a blank
or the character “.”. You have now built a word. Go back to step 1 and repeat the
entire sequence to locate the next word. This is essentially the same algorithm
that is used to build a lexical scanner for high-level programming languages.

11.2.2 Phase II: Parsing

INTRODUCTION. During the parsing phase, a compiler determines whether
the tokens recognized by the scanner during phase I fit together in a
grammatically meaningful way. That is, it determines whether they are a
syntactically legal statement of the programming language. This step is
analogous to diagramming a sentence. For example, to prove that the
sequence of words

The man bit the dog
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Using the token types and classification numbers given in Figure 11.3,
determine the output of a scanner given the following input statements:
a. x = x + 1;
b. if (a + b42 = = 0) a = zz - 12;

PRACTICE PROBLEMS



is a correctly formed sentence, we must show that the individual words can be
grouped together structurally to form a proper English language sentence:

If we are unable to diagram the sentence, then it is not correctly formed. For
example, when we try to analyze the sequence, “The man bit the”, here is
what happens:

At this point in the analysis we are stuck, because there is no object for the
verb “bit.” We cannot diagram the sentence and must conclude that it is not
properly formed.

The same thing happens with statements in a programming language,
which are roughly analogous to sentences in a natural language. If a compiler is
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able to “diagram” a statement such as a 5 b 1 c, it concludes that the state-
ment is structurally correct:

The structure shown above is called a parse tree. It starts from the indi-
vidual tokens in the statement, a, 5, b, 1, and c, and shows how these
tokens can be grouped into predefined grammatical categories such as <sym-
bol>, <assignment operator>, and <expression> until the desired goal is
reached—in this case, <assignment statement>. (We will explain shortly
why we are writing the names of these grammatical categories inside the
angle brackets “<” and “>”.) The successful construction of a parse tree is
proof that this statement is correctly formed according to the rules of the
language. If a parser cannot produce such a parse tree, then the statement is
not correctly formed.

In the field of compiler design, the process of diagramming a high-level
language statement is called parsing, and it is done by a program called a
parser. The output of a parser is a parse tree, or an error message if one can-
not be constructed.

GRAMMARS, LANGUAGES, AND BNF. How does a parser know how to con-
struct the parse tree? What tells it how the pieces of a language fit together?
For example, in the statement shown above, you might wonder how the parser
knows that the format of an assignment statement in our language is

<symbol> 5 <expression>

The answer is that it does not know; we must tell it. The parser must be
given a formal description of the syntax—the grammatical structure—of
the language that it is going to analyze. The most widely used notation for
representing the syntax of a programming language is called BNF, an
acronym for Backus-Naur Form, named after its designers John Backus
and Peter Naur.

In BNF, the syntax of a language is specified as a set of rules, also called
productions. The entire collection of rules is called a grammar. Each individ-
ual BNF rule looks like this:

lefthand side ::5 “definition”
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The lefthand side of a BNF rule is the name of a single grammatical cat-
egory, such as <symbol>, <expression>, or <assignment statement>. The BNF
operator ::5 means “is defined as,” and “definition,” which is also called the
righthand side, specifies the grammatical structure of the symbol appearing
on the lefthand side of the rule. The definition may contain any number of
objects. For example, here is a BNF rule that defines how an <assignment
statement> is formed:

<assignment statement> ::5 <symbol> = <expression>

This rule says that the syntactical construct called <assignment statement> is
defined as a <symbol> followed by the token 5 followed by the syntactical
construct called <expression>. In order to have a structurally correct assign-
ment statement, these three objects must all be present in exactly that order.

A BNF rule that gives one possible definition for the English language
construct called <sentence> follows.

<sentence> ::5 <subject> <verb> <object>

This rule says that a <sentence> is defined as a <subject> followed by a
<verb> followed by an <object>. It is this rule that allowed us to parse “The
man bit the dog”.

Finally, the simple BNF rule

<addition operator> ::5 1

says that the grammatical construct <addition operator> is defined as the single
character 1.

If a parser is analyzing a statement in a language and it sees exactly the
same sequence of objects that appears on the righthand side of a BNF rule, it
is allowed to replace them with the one grammatical object on the lefthand
side of that rule. For example, given our BNF rule for <assignment statement>:

<assignment statement> ::5 <symbol> 5 <expression>

if a parser encounters the three objects <symbol>, 5, and <expression> next to
each other in the input, it can replace them with the object appearing on the
lefthand side of the rule—in this case, <assignment statement>. In a sense, the
parser is constructing one branch of the parse tree, which looks like this:

We say that the three objects, <symbol>, =, and <expression>, produce the
grammatical category called <assignment statement>, and that is why a BNF
rule is also called a production.

456 LEVEL 4 CHAPTER 11: Compilers and Language Translation

<symbol> =

<assignment statement>

<expression> . . .. . .



BNF rules use two different types of objects, called terminals and nonter-
minals, on the righthand side of a production. Terminals are the actual
tokens of the language recognized and returned by a scanner. The terminals of
our language are the 11 tokens listed in Figure 11.3:

<symbol> 55

<number> if

5 else

1 (

2 )

;

The important characteristic of terminals is that they are not defined any
further by other rules of the grammar. That is, there is no rule in the grammar
that explains the “meaning” of such objects as <symbol>, 5, 1, and if. They
are simply elements of the language, much like the words man, bit, and dog in
our earlier example.

The second type of object used in a BNF rule is a nonterminal. A non-
terminal is not an actual element of the language but an intermediate
grammatical category used to help explain and organize the language. For
example, in the analysis of the English sentence, “The man bit the dog”, we
used grammatical categories called article, noun, verb, noun phrase, sub-
ject, and object. These categories help us understand the structure of the
sentence and show that it is correctly formed, but they are not actual words
of the sentence being studied.

In every grammar, there is one special nonterminal called the goal
symbol. This is the final nonterminal, and it is the nonterminal object that
the parser is trying to produce as it builds the parse tree. When the parser
has produced the goal symbol using all the elements of the sentence or
statement, it has proved the syntactical correctness of the sentence or
statement being analyzed. In our English language example, the goal sym-
bol is <sentence>; in our assignment statement example, it is, naturally,
<assignment statement>. When this nonterminal goal symbol has been pro-
duced, the parser has finished building the tree, and the statement has
been successfully parsed. The collection of all statements that can be suc-
cessfully parsed is called the language defined by a grammar.

All nonterminals are written inside angle brackets; examples include
<expression> and <assignment statement>. Some terminals are also written in
angle brackets when they do not represent actual characters of the language
but rather groups of characters constructed by the scanner, such as <symbol>
or <number>. However, it is easy to tell the difference between the two. A ter-
minal like <symbol> is not defined by any other rule of the language. That is,
there is no rule anywhere in the grammar that looks like this:

<symbol> ::= “definition of a symbol”

Terminal symbols are like the words and punctuation marks of a language, and
a parser does not have to know anything more about their syntactical struc-
ture in order to analyze a sentence.
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However, nonterminals are constructed by the parser from more elemen-
tary syntactical units. Therefore, nonterminals such as <expression> and
<assignment statement> must be further defined by one or more rules that
specify exactly how this nonterminal is constructed. For example, there must
exist at least one rule in our grammar that has the nonterminal <expression>
as the lefthand side. This rule tells the parser how to form expressions from
other terminals and nonterminals:

<expression> ::= “definition of expression”

Similarly, there must be at least one rule that specifies the structure of an
assignment statement:

<assignment statement> ::= “definition of assignment statement”

We can summarize the difference between terminals and nonterminals by say-
ing that terminals never appear on the lefthand side of a BNF rule, whereas
nonterminals must appear on the lefthand side of one or more rules.

The three symbols <, >, and ::= used as part of BNF rules are termed
metasymbols. This means that they are symbols of one language (BNF) that
are being used to describe the characteristics of another language. In addi-
tion to these three, there are two other metasymbols used in BNF definitions.
The vertical bar, |, means OR, and it is used to separate two alternative defi-
nitions of a nonterminal. This could be done without the vertical bar by just
writing two separate rules:

<nonterminal> ::= “definition 1”

<nonterminal> ::= “definition 2”

However, it is sometimes more convenient to use the | character and write a
single rule:

<nonterminal> ::= “definition 1” | “definition 2”

For example, the rule

<arithmetic operator> ::= 1 | 2 | * | /

says that an arithmetic operator is defined as either a 1, or a 2, or an *, or a /.
Without the | operator, we would need to write four separate rules, which would
make the grammar much larger. Here is a rule that defines the nonterminal
<digit>:

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We will see many more examples of the use of the OR operator.
The final metasymbol used in BNF definitions is the Greek character

lambda, L, which represents the null string—nothing at all. It is possible that
a nonterminal can be “empty,” and the symbol L is used to indicate this. For
example, the nonterminal <signed integer> can be defined as an optional sign
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preceding an integer value, such as 17 or 25 or 8. To define the idea of an
optional sign in BNF, we could say:

<signed integer> ::5 <sign> <number>

<sign> ::= 1 | 2 | L

which says that <sign> may be either a + or a –, or it may be omitted
entirely. 

PARSING CONCEPTS AND TECHNIQUES. Given this brief introduction to
grammars, languages, and BNF, we can now explain how a parser works. A
parser receives as input the BNF description of a high-level language and a
sequence of tokens recognized by the scanner. The fundamental rule of
parsing follows.

If, by repeated applications of the rules of the grammar, a parser can convert
the sequence of input tokens into the goal symbol, then that sequence of
tokens is a syntactically valid statement of the language. If it cannot convert
the input tokens into the goal symbol, then this is not a syntactically valid
statement of the language.
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1. Write a single BNF rule that defines the nonterminal <Boolean
operator>. (Assume that the three possible Boolean operators are
AND, OR, and NOT.)

2. Create a BNF grammar that describes all 1- or 2-character identi-
fiers that begin with the letter i or j. The second character, if
present, can be any letter or digit. What is the goal symbol of
your grammar?

3. Write a BNF grammar that describes Boolean expressions of the form

(var op var)

where “var” can be one of the symbols x, y, and z, and “op” can be one
of the three relational operators ==, >, and <. The parentheses are part
of the expression.

4. Using the grammar created in Problem 3, show the parse tree for
the expression (x > y).

5. Using the grammar created in Problem 3, show what happens when
you try to parse the illegal expression ( x 55 ).

6. Modify your grammar from Problem 3 so that the enclosing paren-
theses are optional. That is, Boolean expressions can be written as
either (var op var) or var op var.

PRACTICE PROBLEMS



To illustrate this idea, here is a three-rule grammar:

Number Rule

1 <sentence> ::5 <noun> <verb> .
2 <noun> ::5 bees | dogs
3 <verb> ::5 buzz | bite

The grammar contains five terminals: bees, dogs, buzz, bite, and the character “.”
(a period). It also contains three nonterminals: <sentence>, <noun>, and <verb>.
The goal symbol is <sentence> because it is the one nonterminal that does not
appear on the righthand side of any other rule. In addition to the grammar, we
also provide a sequence of tokens such as “dogs”, “bite”, and “.”. The parser
attempts to transform these tokens into the goal symbol <sentence> using the
three BNF rules given above:

In this case the parse was successful. (The numbers in the diagram indicate
which rule is being applied.) Thus, “dogs bite.” is a syntactically valid sen-
tence of the language defined by this three-rule grammar. However, the fol-
lowing sequence of tokens:

leads to a dead end. We have not yet produced the goal symbol <sentence>,
but there is no rule in the grammar that can be applied to the sequence
<noun> <noun> “.”. That is, no sequence of terminals and nonterminals in the
parse tree constructed so far matches the righthand side of any rule. This
means that “bees dogs.” is not a valid sentence of this language.

Grammars for “real” high-level languages like C++, Python, or Java are
very large, containing many hundreds of productions; therefore, it is not
feasible to use these grammars as examples. Even a grammar describing
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or rule 2:

One of these choices may be correct, whereas the other may lead down a gram-
matical dead end, and the parser has no idea which i s which.
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NUMBER RULE

1 <assignment statement> ::5 <variable> 5 <expression>
2 <expression> ::5 <variable> | <variable> 1 <variable>
3 <variable> ::5 x | y | z

First Attempt at a Grammar for a
Simplified Assignment Statement

FIGURE 11.4

A B

<t1>

C . . .. . .

A B

<t2>

C . . .. . .

individual statements can be quite complex. For example, the BNF description
of an assignment statement, complete with variables, constants, operators,
parentheses, and procedure calls, can easily require 20 or 30 rules. Therefore,
the following examples all use highly simplified “toy” languages to keep the
level of detail manageable and enable us to focus on important concepts.

Our first example is a grammar for a highly simplified assignment state-
ment in which the only operator is +, numbers are not permitted, and the
only allowable variable names are x, y, and z. A first attempt at designing a
grammar for this simplified assignment statement is shown in Figure 11.4.

If the input statement is x = y + z, then the parser can determine that this
statement is correctly formed because it can construct a parse tree (Figure 11.5).
The parse tree of Figure 11.5 is the output of the parser, and it is the informa-
tion that is passed on to the next stage in the compilation process.

Building a parse tree like the one in Figure 11.5 is not as easy as it may
appear. Often two or more rules of a grammar may be applied to the current
input string, and the parser is not sure which one to choose. For example,
assume that our grammar includes the following two rules:

Number Rule
1 <t1> ::= A B
2 <t2> ::= B C

and that the statement being parsed contains the three-character string
. . . A B C . . . . We could apply either rule 1:



You are probably not aware that a similar situation occurs in the example
shown in Figure 11.5. Assume that the parser reaches this position in building
the parse tree for the statement x 5 y 1 z:

In Figure 11.5, the parser next groups the three objects <variable>, 1, and
<variable> into an <expression> using rule 2. However, at this point the parser has
other options. For example, it could choose to parse the nonterminal <variable>
generated from the symbol y to <expression> using rule 2 and then parse the
sequence <variable> 5 <expression> to <assignment statement> using rule 1. This
produces the following parse tree:
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<variable>

<assignment statement>

x = +

<variable>

<expression>

y

<variable>

z
Parse Tree Produced by the
Parser

FIGURE 11.5

<variable>

x = +

<variable>

y

<variable>

z

<variable>

<assignment statement> ?

x = +

<variable>

<expression>

y

<variable>

z



Unfortunately, this is the wrong choice. Although the parser does generate
the goal symbol <assignment statement>, it does not use all of the tokens. An
extra plus sign and <variable> are not used. (It accidentally parsed the assign-
ment statement x 5 y instead of x 5 y 1 z.) The parser has gone down the
wrong path and reached a point where it is unable to continue. It must now go
back to the point where it made the incorrect choice and try something else.
For example, it might choose to parse the nonterminal <variable> generated
from z to <expression> using rule 2. Unfortunately, this is also a dead end; it
produces the sequence <variable> 1 <expression>, which does not match the
righthand side of any rule.

The process of parsing is a complex sequence of applying rules, building
grammatical constructs, seeing whether things are moving toward the cor-
rect answer (the goal symbol), and, if not, “undoing” the rule just applied
and trying another. It is much like finding one’s way through a maze. You
try one path and if it works, fine. If not, you back up to where you made
your last choice and try another, hoping that this time it will lead in the
right direction.

This sounds like a haphazard and disorganized way to analyze statements,
and in fact, it is. However, “real” parsing algorithms don’t rely on a random
selection of rules, as our previous discussion may have implied. Instead, they
try to be a little more clever in their choices by looking ahead to see whether
the rule they plan to apply will or will not help them to reach the goal. For
example, assume we have the following input sequence:

A B C

and this grammar:

<goal> ::5 <term> C

<term> ::5 A B | B C

We have two choices on how to parse the input string. We can either group the
two characters A B to form a <term>, or we can group B C instead. A random
choice causes us to be wrong about half the time, but if a parser is clever and
looks ahead, it can do a lot better. It is easy to see that grouping B C to produce
the nonterminal <term> leads to trouble, because there is no rule telling us
what to do with the sequence A <term>. We quickly come to a dead end:
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However, by choosing to group the tokens A B into <term> instead of B C, the
parser quickly produces a correct parse tree:

There are many well-known look-ahead parsing algorithms that use the
ideas just described. These algorithms “look down the road” a few tokens to
see what would happen if a certain choice is made. This helps keep the parse
moving in the right direction, and it significantly reduces the number of false
starts and dead ends. These algorithms can do very efficient parsing, even for
large languages with hundreds of rules.

There is another important issue in the design of grammars. Let’s assume
we attempt to parse the following assignment statement:

x = x + y + z

using the grammar in Figure 11.4. No matter how hard we try to build a parse
tree, it is just not possible:

All other attempts lead to a similar result.
The problem is that the grammar in Figure 11.4 does not correctly describe

the desired language. We wanted a language that allowed expressions containing
an arbitrary number of plus signs. However, the grammar of Figure 11.4 describes
a language in which expressions may contain at most a single addition operator.
More complicated expressions such as x + y + z cannot be parsed, and they are
erroneously excluded from our language.
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One of the biggest problems in building a compiler for a programming lan-
guage is designing a grammar that

• Includes every valid statement that we want to be in the language

• Excludes every invalid statement that we do not want to be in the
language

In this case, a statement that should be a part of our language (x = x + y + z)
was excluded. If this statement were contained in a program, the parser would
not recognize it and would not be able to translate it into machine language.
The grammar in Figure 11.4 is wrong in the sense that it does not define the
language that we want.

Let’s redo the grammar of Figure 11.4 so that it describes an assign-
ment statement that allows expressions containing an arbitrary number of
occurrences of the plus sign. That is, our language will include such state-
ments as

x = x + y + z
x = x + y + x + y + x + z + z

This second attempt at a grammar is shown in Figure 11.6.
The grammar in Figure 11.6 does recognize and accept expressions with

more than one plus sign. For example, here is a parse tree for the statement
x = x + y + z:

Note that rule 2 of Figure 11.6 uses the nonterminal <expression> on both the
lefthand and the righthand side of the same rule. In essence, the rule defines
the nonterminal symbol <expression> in terms of itself. This is called a

46511.2 The Compilation Process LEVEL 4

<variable>

<assignment statement>

x = +

<variable>

<expression>
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recursive definition, and its use is very common in BNF. It is recursion that
allows us to describe an expression not just with one or two or three or . . .
plus signs but with an arbitrary and unbounded number, as shown here.

We have solved one problem, that of making sure our grammar defines a
language that includes expressions with multiple addition operators. Unfortu-
nately, though one problem has disappeared, another has arisen, and the
grammar of Figure 11.6 is still not quite correct. To demonstrate this new
problem, let’s take the same statement that we have been analyzing:

x = x + y + z

and construct a second parse tree using the grammar of Figure 11.6. Both
trees are shown in Figure 11.7.

Using this assignment statement and the grammar in Figure 11.6, it is pos-
sible to construct two distinct parse trees. This may not seem to be a problem,
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RULE NUMBER RULE

1 <assignment statement>  ::5 <variable> 5 <expression>
2 <expression>  ::5 <variable> | <expression> 1 <expression>
3 <variable>  ::5 x | y | z

Second Attempt at a Grammar
for Assignment Statements

FIGURE 11.6
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<expression>
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<expression>
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<expression>

. . .



because the construction of a parse tree has been used only to demonstrate
that a statement is correctly formed. Building two parse trees implies that the
parser has demonstrated correctness in two different ways. 

However, a parse tree not only serves to demonstrate that a statement
is correct, it also assigns it a specific meaning, or interpretation. The next
phase of compilation uses this parse tree to understand what a statement
means, and it generates code on the basis of that meaning. The existence of
two different parse trees implies two different interpretations of the same
statement, which is disastrous. A grammar that allows the construction of
two or more distinct parse trees for the same statement is said to be
ambiguous.
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Two Parse Trees for the 
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This problem can occur in natural languages as well as programming lan-
guages. Consider the following ambiguous sentence:

I saw the man in the store with the dogs.

This sentence has two distinct meanings depending on how we choose to parse it:

Interpretation 1: I saw the man in the store (with the dogs).

Meaning: The man I viewed was in a pet store that sells dogs.

Interpretation 2: I saw the man in the store (with the dogs).

Meaning: The man I viewed was walking his dogs and was
inside some type of store.

These two interpretations say very different things, so the sentence
leaves us confused about what the speaker meant. In the areas of languages
and grammars, ambiguity is decidedly not a desirable property.

The two parse trees shown in Figure 11.7 correspond to the following two
interpretations of the assignment statement x = x + y + z.

x = (x + y) + z (Do the operation x + y first.)
x = x + (y + z) (Do the operation y + z first.)

Because addition is associative—that is, (a + b) + c = a + (b + c)—in this case
the ambiguity does not cause a serious problem. However, if the statement
were changed slightly to

x = x – y – z

then these two different interpretations lead to completely different results:

x = (x – y) – z which evaluates to x – y – z
x = x – (y – z) which evaluates to x – y + z

We now have a situation in which a statement could mean one thing using
compiler C on machine M and something totally different using compiler C’ on
machine M’, depending on which parse tree it happens to construct. This con-
tradicts the spirit of machine independence, which is a basic characteristic of
all high-level languages.

To solve the problem, the assignment statement grammar must be rewrit-
ten a third time so that it is no longer ambiguous. This new grammar is shown
in Figure 11.8. To see that the grammar of Figure 11.8 is not ambiguous, try
parsing the statement x = x + y + z in the two ways shown in Figure 11.7. You
will see that one of these two parse trees cannot be built.

Figure 11.9 shows the BNF grammar for a simplified version of an if-else
statement that allows only a single assignment statement in the two separate
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RULE NUMBER RULE

1 <assignment statement>  ::5 <variable> = <expression>
2 <expression>  ::5 <variable> | <expression> 1 <variable>
3 <variable>  ::5 x | y | z

Third Attempt at a Grammar for
Assignment Statements

FIGURE 11.8



clauses and allows the else clause to be omitted. The <Boolean expression> can
include at most a single use of the relational operators ==, <, and >. The non-
terminal <assignment statement> is defined in the same way as in Figure 11.8.
Figure 11.10 then shows the parse tree for the statement

if (x == y) x = z;  else x = y;

using the grammar of Figure 11.9.
Even though this if-else statement has been greatly simplified, its gram-

mar still requires seven rules, and its parse trees are quite “bushy.” Grammars
for real statements, not our toy ones, rapidly become large and complicated,
and BNF grammars for programming languages like C++, Python, and Java
contain many hundreds of productions.
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NUMBER RULE

1 <if statement> ::5 if ( <Boolean expression> ) <assignment statement> ;
<else clause>

2 <Boolean expression> ::5 <variable> | <variable> <relational> <variable>
3 <relational> ::5 55 | < | >
4 <variable> ::5 x | y | z
5 <else clause> ::5 else <assignment statement> ; | L
6 <assignment statement> ::5 <variable> 5 <expression>
7 <expression> ::5 <variable> | <expression> 1 <variable>

Grammar for a Simplified Version
of an if-else Statement

FIGURE 11.9

1. Using the grammar of Figure 11.8, show the parse tree for the
assignment statement

x = x + y

2. Using the grammar of Figure 11.8, show the parse tree for the
assignment statement

x = x + y + z

3. Using the grammar of Figure 11.9, show the parse tree for the statement

if (x > y) x = y;

4. What language is described by the following pair of rules:

<string> ::= <character> | <character> <string>
<character> ::= a | b

5. Write a BNF grammar that describes strings containing any number of
repetitions of the character pair AB. That is, all of the following
strings are part of the language: AB ABAB ABABAB ABABABABAB . . .

PRACTICE PROBLEMS



11.2.3 Phase III: Semantics and Code Generation

Let’s look back at one of the example grammars used in the previous section:

<sentence> ::5 <noun> <verb> .

<noun> ::5 dogs | bees

<verb> ::5 bite | bark

The language defined by this grammar contains exactly four sentences:

dogs bite.

dogs bark.

bees bite.

bees bark.
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Parse Tree for the Statement
if (x55y)x5z; else x5y;
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For each of these four sentences, we can construct a parse tree showing that it
is (structurally, at least) a valid sentence of the language:

There is one problem, though. Although the sentence “bees bark.” is
structurally valid, it makes no sense whatsoever! During parsing, a compiler
deals only with the syntax of a statement—that is, its grammatical structure.
At that point, the only “correctness” that a compiler can determine is gram-
matical correctness with respect to the syntactical rules of the language.
Another example of this limitation is the sentence, “The man bit the dog.”
This sentence is structurally correct, but its meaning is somewhat unusual! (It
certainly would be news.)

The next phase of translation, during which a compiler examines the
semantics of a programming language statement, deals with this issue. It ana-
lyzes the meaning of the tokens and tries to understand the actions they per-
form. If the statement is meaningless, as “bees bark.” is, then it is
semantically rejected, even though it is syntactically correct. If the statement
is meaningful, then the compiler translates it into machine language.

It is easy to give examples of English-language sentences that are syntac-
tically correct but semantically meaningless:

The orange artichoke flew through the elephant.

But what are semantically meaningless statements in high-level programming
languages?

One possibility is the following assignment statement:

sum = a + b;

This is obviously correct syntactically, but what if the variables sum, a, and b
are declared as follows:

char a;
double b;
int sum;

What does it mean to add a character to a real number? What would possi-
bly be the result of adding the letter Q to 3.1416? In most cases this oper-
ation has no meaning, and perhaps it should be rejected as semantically
invalid.

47111.2 The Compilation Process LEVEL 4

bees

<noun>

bark

<verb>

<sentence>

.



To check for this semantic error, a compiler must look at the parse tree to
see whether there is a branch that looks something like this:

If there is such a branch, then the compiler must examine the data types of
the two expressions to see whether they “make sense.” That is, it must deter-
mine whether addition is defined for the data types of the two expressions.

The compiler does this by examining the semantic records associated with
each nonterminal symbol in the grammar, such as <expression> and <variable>.
A semantic record is a data structure that stores information about a nontermi-
nal, such as the actual name of the object and its data type. For example, the
nonterminal <variable> might have been constructed from the actual character
variable named CH. This relationship is represented by a link between the
nonterminal <variable> and a semantic record containing the name CH and its
data type, char. Pictorially, we can represent this link as follows:

The initial semantic records in our parse tree are built by the compiler
when it sees the declarations of new objects. Additional semantic records are
constructed as the parse tree grows and new nonterminals are produced.
Thus, a more realistic picture of the parse tree for the expression a + b
(assuming both are declared as integers) would look like this:

This parse tree says that we are adding two <expression>s that are inte-
ger variables named a and b. The result is an <expression> stored in the
integer variable temp, a name picked by the compiler. Because addition is
well defined for integers, this operation makes perfectly good sense, and
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Semantic Record Parse Tree Semantic Record

a integer b integer

temp integer

<expression> +

<expression>
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the compiler can generate machine language instructions to carry out this
addition. If, however, the parse tree and its associated semantic records
looked like this:

the compiler determines that this is not a meaningful operation, because
addition is not defined between a real number and a character. The compiler
rejects this parse tree for semantic rather than syntactical reasons.

Thus, the first part of code generation involves a pass over the parse tree
to determine whether all branches of the tree are semantically valid. If so,
then the compiler can generate machine language instructions. If not, there is
a semantic error, and generation of the machine language is suppressed
because we do not want the processor to execute meaningless code. This step
is called semantic analysis.

Following semantic analysis, the compiler makes a second pass over the
parse tree, not to determine correctness but to produce the translated code.
Each branch of the parse tree represents an action, a transformation of one or
more grammatical objects into other grammatical objects. The compiler must
determine how that transformation can be accomplished in machine language.
This step is called code generation.

Let’s work through the complete semantic analysis and code generation
process using the parse tree for the assignment statement x = y + z, where x, y,
and z are all integers. The example uses the instruction set shown in Figure 6.5.
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Typically, code generation begins at the productions in the tree that are near-
est to the original input tokens. The compiler takes each production and, one
branch at a time, translates that production into machine language operations or
data generation pseudo-ops. For example, the following branch in the parse tree:

can be implemented by allocating space for the variable y using the .DATA
pseudo-op

Y:     .DATA     0

In addition to generating this pseudo-op, the compiler must build the initial
semantic record associated with the nonterminal <variable>. This semantic
record contains, at a minimum, the name of this <variable>, which is y, and its
data type, which is integer. (The data type information comes from the int
declaration, which is not shown.) Here is what is produced after analyzing and
translating the first branch of the parse tree:

Identical operations are done for the branches of the parse tree that produce
the nonterminal <variable> from the symbols x and z, leading to the following
situation:

474 LEVEL 4 CHAPTER 11: Compilers and Language Translation

<variable>

y

<variable>

.DATA

.DATA

.DATA

0

0

0

x

<variable>

y

<variable>

z

x integer

Productions:

Semantic Records:

Code:

y integer z integer

X:

Y:

Z:

<variable> Y: .DATA 0

y

y integer

Parse Tree Semantic Record Code



The production that transforms the nonterminal <variable> generated
from y into the nonterminal <expression>:

does not generate any machine language code. This branch of the tree is really
just the renaming of a nonterminal to avoid the ambiguity problem discussed
earlier. This demonstrates an important point: Although most branches of a parse
tree produce code, some do not. Although no code is produced, the compiler
must still create a semantic record for the new nonterminal <expression>. It is
identical to the one built for the nonterminal <variable>.

The branch of the parse tree that implements addition:

can be translated into machine language using the assembly language instruction
set presented in Section 6.3.1. The compiler loads the value of <expression> into
a register, adds the value of <variable>, and stores the resulting <expression>
into a temporary memory location. This can be accomplished using the LOAD,
ADD, and STORE operations in our instruction set. The names used in the address
field of the instructions are determined by looking in the semantic records asso-
ciated with the nonterminals <expression> and <variable>. The code generated
by this branch of the parse tree is

LOAD Y

ADD Z

STORE TEMP
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TEMP is the name of a memory cell picked by the compiler to hold the
result (Y + Z). Whenever the compiler creates one of these temporary vari-
ables, it must also remember to generate memory space for it using the
DATA pseudo-op

TEMP: .DATA 0

In addition, the compiler records the name (TEMP) and the data type (inte-
ger) of the result in the semantic record associated with this new nonter-
minal called <expression>. Here is what is produced by this branch of the
parse tree:

The final branch of the parse tree builds the nonterminal called <assignment
statement>:

This production is translated into machine language by loading the
value of the <expression> on the righthand side of the assignment opera-
tor, using a LOAD instruction, and storing it, via a STORE operation, into
the <variable> on the lefthand side of the assignment operator. Again, the
names used in the address fields of the machine language instructions are
obtained from the semantic records associated with <variable> and
<expression>. The machine language code generated by this branch of the
parse tree is

LOAD TEMP

STORE X

The compiler must also build the semantic record associated with the newly
created nonterminal <assignment statement>. The name (x) and the data type
(integer) of the variable on the lefthand side of the assignment operator are
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<expression> +

<expression>
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LOAD     Y
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. .
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Semantic Record Parse Tree Semantic Record

x integer temp integer<variable>
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Our compiler has now analyzed every branch in the parse tree, and it has
produced the following translation. (We have separated the pseudo-ops and
executable instructions for clarity.)

LOAD Y

ADD Z

STORE TEMP

LOAD TEMP

STORE X

.

.

.

X: .DATA 0

Y: .DATA 0

Z: .DATA 0

TEMP: .DATA 0

This is an exact translation of the assignment statement x = y + z.
Figure 11.11 shows the code generation process for the slightly more com-

plex assignment statement x = x + y + z. The branches of the parse tree are
labeled and referenced by comments in the code. (The parse tree was con-
structed using the grammar shown in Figure 11.8.)

The code of Figure 11.11 could represent the end of the compilation
process, because generating a correct machine language translation was our
original goal. However, we are not quite finished. In the beginning of the
chapter, we said that a compiler really has two goals: correctness and effi-
ciency. The first goal has been achieved, but not necessarily the second. We
have produced correct code, but not necessarily good code. Therefore, the
next and final operation is optimization, where the compiler polishes and
fine-tunes the translation so that it runs a little faster or occupies a little
less memory.
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Semantic Record Parse Tree Semantic Record
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Code

LOAD   TEMP
STORE    X

copied into that semantic record because the value stored in that variable is
considered the value of the entire assignment statement.
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<variable>

<assignment statement>

--Here is the code for the production labeled B
 LOAD X
 ADD Y
 STORE TEMP -- Temp holds the expression (x + y)
- -Here is the code for the production labeled C
 LOAD TEMP
 ADD Z
 STORE TEMP2 -- Temp2 holds (x + y + z)
- -Here is the code for the production labeled D
 LOAD TEMP2
 STORE X -- X now holds the correct result
   - - The remainder of the program goes here
--These next three pseudo-ops are generated by the productions labeled A
X: .DATA  0
Y: .DATA  0
Z: .DATA  0
-- The pseudo-ops for these temporary variables are generated 
by productions B and C
TEMP: .DATA  0
TEMP2:  .DATA  0

x = +

<variable>

<expression>

Parse Tree

Generated Code

x

<variable>

y

<expression>

+

<variable>

z

<expression>

A A A

B

C

D

Code Generation for the Assign-
ment Statement x = x + y + z

FIGURE 11.11
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In this laboratory experience, you will be able to observe
how a compiler actually translates the high-level state-
ments you learned about in Chapter 9. You will observe as
a compiler carries out each of the phases of translation
described in the preceding sections. You will see how a
compiler interprets each of the three basic statement
types—sequential, conditional, and iterative—and you
will better understand how it is able to produce a correct
machine language translation. The laboratory will provide
the types of output shown here so that you can view the
original source code, the translated object code, and the
symbol table produced by the compiler.

LABORATORY
EXPERIENCE 15

Go through the code generation process for the simple assignment
statement x = y. The parse tree for this statement is

For each branch in the tree, show what semantic records are created
and what code is generated.

<variable>

<assignment statement>

x =

<variable>

y

<expression>

PRACTICE PROBLEM

11.2.4 Phase IV: Code Optimization

As you learned in Chapter 10, the first high-level language and compiler was
FORTRAN, which appeared in 1957. (It was created by John Backus, the B of
BNF.) At that time everyone programmed in assembly language because nothing 



else was available. Given all the shortcomings of assembly language, you might
think that programmers flocked to FORTRAN and thanked their lucky stars that
it was available. After all, it is certainly a lot easier to understand the statement
a = b + c than the rather cryptic sequence LOAD B, ADD C, STORE A.

In fact, programmers did not accept this new language very quickly. The
reason had nothing to do with the power and expressiveness of FORTRAN.
Everyone admitted that it was far superior to assembly language in terms of
clarity and ease of use. The problem had to do with efficiency—the ability to
write highly optimized programs that contained no wasted microseconds or
unnecessary memory cells.

In 1957 (early second-generation computing), computers were still enor-
mously expensive; they typically cost millions of dollars. Therefore, program-
mers cared more about avoiding wasted computing resources than
simplifying their job. The productivity of programmers earning $2.00/hour
was unimportant compared to optimizing the use of a multimillion-dollar
computer system. In 1957, the guiding principle was “Programmers are
cheap, hardware is expensive!”

When programmers used assembly language, they were working on the
actual machine, not the virtual machine created by the system software (and
described in Chapters 6 and 7). They were free to choose the instructions that
ran most quickly or used the least amount of memory. For example, if the
INCREMENT, LOAD, and STORE instructions execute in 1 msec, whereas an ADD
takes 2 msec, then translating the assignment statement x = x + 3 as

INCREMENT X -- x +1 1 msec

INCREMENT X -- x +2 1 msec

INCREMENT X -- x +3 1 msec

requires 3 msec to execute. This code runs 25% faster than if it had been
translated as

LOAD X 1 msec

ADD THREE -- x+3 2 msec

STORE X 1 msec

.

.

.

THREE: .DATA 3

which takes 4 msec to execute and requires an additional memory cell for the
integer constant 3. When programmers wrote in assembly language, they were
free to choose the first of these sequences rather than the second, knowing
that it is faster and more compact. However, in a high-level language like FOR-
TRAN, a programmer can only write x = x + 3 and hope that the compiler is
“smart enough” to select the faster of the two implementations.

Because efficiency was so important to programmers of the 1950s and
1960s, these early first- and second-generation compilers spent a great deal
of time doing code optimization. In fact Backus himself said that “. . . we
did not regard language design as a difficult problem, but merely a prelude
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to the real problem: designing a compiler which could produce efficient pro-
grams.” These compiler pioneers were quite successful in solving many of the
problems of optimization, and early FORTRAN compilers produced object pro-
grams that ran nearly as fast as highly optimized assembly language code
produced by top-notch programmers. After seeing these startling results, pro-
grammers of the 1950s and 1960s were eventually won over. They could gain
the benefits of high-level languages—a powerful virtual environment—
without loss of efficiency. The code optimization techniques developed by
Backus and others were one of the most important reasons for the rapid
acceptance of high-level programming languages during the early years of
computer science.

However, conditions have changed dramatically since 1957. Because of
dramatic reductions in hardware costs, code optimization no longer plays
the central role it did 45 or 50 years ago. Programmers rarely worry about
saving a few memory cells when even a tiny PDA has 512 MB of memory,
and 1 to 4 GB of memory is standard on most computers. Similarly, as
processor speeds increase to 500–800 MIPS (million instructions per sec-
ond) for small machines and to 1,000–2,000 MIPS for bigger ones, removing
a few instructions becomes much less important. For example, eliminating
the execution of 1,000 unnecessary instructions saves only 0.000002 sec-
ond on a 500-MIPS machine. Therefore, compilers are no longer judged
solely on whether they produce highly optimized code.

Whereas hardware costs are dropping, programmer costs are rising dra-
matically. A powerful high-speed graphics workstation can be purchased for
as little as $1,000, but the programmers developing software for that sys-
tem earn 50 to 100 times that in annual salary. The operational phrase of
the twenty-first century is the exact opposite of what was true in the
1950s: “Hardware is cheap, people are expensive!” The goal in compiler
design today is to provide a wide array of compiler tools to simplify the
programmer’s task and increase his or her productivity. This includes such
tools as visual development environments that use graphics and video to
let the programmer see what is happening, sophisticated online debuggers
to help programmers locate and correct errors, and reusable code libraries,
which contain a large collection of pre-written program units. When a com-
piler is embedded within a collection of supporting software development
routines such as debuggers, editors, and libraries, it is called an integrated
development environment, usually abbreviated IDE. It is these types of
programmer optimizations, rather than code optimizations, that have taken
priority in language and compiler design.

However, this does not mean that code optimization is no longer of any
importance or that programmers will tolerate any level of code inefficiency. A
little bit of effort by a compiler can often pay large dividends in reduced mem-
ory space and lower running time. Thus, optimization algorithms are still part
of most compilers. Let’s briefly survey what they do and how they help
improve the finished product.

There are two types of optimization: local optimization and global opti-
mization. The former is relatively easy and is included as part of most com-
pilers. The latter is much more difficult, and it is usually omitted from all
but the most sophisticated and expensive production-level optimizing
compilers.

In local optimization, the compiler looks at a very small block of
instructions, typically from one to five. It tries to determine how it can
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improve the efficiency of this local code block without regard for what
instructions come before or after. It is as though the compiler has placed a
tiny “window” over the code, and it optimizes only the instructions inside
this optimization window:

.

.

.

instruction

instruction

instruction    d The optimization window

instruction

instruction
.
.
.

Here is a list of some possible local optimizations:

1. Constant evaluation. Arithmetic expressions are fully evaluated at
compile time if possible, rather than at execution time. 

High-level Statement: x = 1 + 1;

Nonoptimized code LOAD ONE Optimized code: LOAD TWO

ADD ONE STORE X

STORE X

2. Strength reduction. Slow arithmetic operations are replaced with
faster ones. For example, on most computers increment is faster than
addition, addition is faster than multiplication, which is faster than
division. Whenever possible, the compiler replaces an operation with
one that is equivalent but executes more quickly. 

High-level Statement: x 5 x * 2; // x times 2 is equivalent to x + x

Nonoptimized code: LOAD X Optimized code: LOAD X

MULTIPLY TWO ADD X

STORE X STORE X

3. Eliminating unnecessary operations. Instructions that are correct,
but not necessary, are discarded. For example, because of the nonde-
structive read principle, when a value is stored from a register into
memory, its value is still in the register, and it does not need to be
reloaded. However, because the code generation phase translates each
statement individually, there may be some unnecessary LOAD and
STORE operations: 

High-level Statement: x 5 y;

z 5 x;
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Nonoptimized code: LOAD Y -- This is x 5 y Optimized code: LOAD Y

STORE X STORE X

LOAD X -- This is z 5 x STORE Z

STORE Z

The code in Figure 11.11 contains two opportunities for local optimizations:

• There are unnecessary LOAD and STORE operations. For example, the
first four instructions in Figure 11.11 read

LOAD X

ADD Y

STORE TEMP

LOAD TEMP

The STORE and LOAD operations on lines 3 and 4 are both unnecessary
because the sum (X + Y) is still in register R.

• The code uses two memory cells called TEMP and TEMP2 to hold tem-
porary values. Neither of these variables is needed.

Locally optimized code for the assignment statement x = x + y + z is shown in
Figure 11.12. It uses only 7 instructions and data generation pseudo-ops
rather than the 13 of Figure 11.11, a savings of about 45%.

The second type of optimization is global optimization, and it is much
more difficult. In global optimization the compiler looks at large segments of
the program, not just small pieces, to determine how to improve performance.
The compiler examines large blocks of code such as while loops, if statements,
and procedures to determine how to speed up execution. This is a much harder
problem, both for a compiler and for a human programmer, but it can produce
enormous savings in time and space. For example, earlier in the chapter we
showed a loop that looked like this:

sum = 0.0;
i = 0;
while (i <= 50000) {

sum = sum + (2.0 * x[i]);
i = i + 1;

}
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LOAD X
ADD Y
ADD Z
STORE X — X now holds the correct result
.
. — The remainder of the program goes here
.

X: .DATA 0
Y: .DATA 0
Z: .DATA 0

Optimized Code for the Assign-
ment Statement x = x + y + z

FIGURE 11.12



By moving the multiplication operation outside the loop, it is possible to elim-
inate 49,999 unnecessary and time-consuming operations. A good optimizing
compiler would analyze the entire loop and restructure it as follows:

sum = 0.0;
i = 0;
while (i <= 50000) {

sum = sum + x[i];
i  =  i + 1;

};
sum = sum * 2.0;

Such restructuring requires the ability to look at more than a few instructions
at a time. The compiler cannot look at only a small “optimization window” but
must be able to examine and analyze large segments of code. It requires a
compiler that can see the “big picture,” not just a small scene. Seeing this big
picture is difficult, and many compilers are unable to do the type of global
optimizations just discussed.
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Chapter 6 showed that translating assembly language into
machine language is quite easy. This chapter demonstrates
that translating high-level programming languages into
machine language is more difficult, but it can be done.
What about the next step—the translation of natural lan-
guages such as English? If a computer could understand
our spoken languages, then we could use English, for
example, rather than the artificial languages studied in
Chapters 9 and 10, to communicate.

Unfortunately, getting computers to understand and
use natural language is nowhere near a reality. In fact,
natural language understanding may be the single most
difficult research problem in computer science. Success in
this area may be dozens of years away, or it may never be
achieved. After all, millions of years of evolution have left
virtually every animal except humans without sophisti-
cated language capabilities.

What makes natural languages so much more difficult
to understand than formal languages? Why is this problem
so immense? There are far too many reasons to discuss in
these brief paragraphs, but most have to do with the
immense richness and complexity of natural languages. The
number of rules in an English language grammar would
probably number in the tens or hundreds of millions, far
beyond the ability of any modern computer. Furthermore,
most words in English have many meanings, and we must
determine their meaning by the context. This sophisticated
linguistic discrimination is very difficult, and a complete,

unambiguous semantic analysis of English sentences is
beyond the ability of computer systems.

It actually gets much worse, because meaning may be
extracted from a sentence using not just context but also
our own human experiences. Computers do not have
human experiences, so it is enormously difficult for them
to determine the full meaning of many sentences.

This is a rather pessimistic outlook. Is there any hope at
all for getting computers to understand natural languages?
In two special areas, the answer is a qualified yes. First, lim-
ited success can be achieved when a computer works with a
very small vocabulary and grammar within a very limited
problem domain. This has been demonstrated, for example,
in the flying of planes by voice. The pilot speaks commands
in English that are interpreted by a computer and translated
into the proper actions on the airplane. In this very special-
ized problem domain, the computer has only to understand a
few hundred words (up, down, turn, and so on) and some
simple sentence structures. It does not have to discuss
global politics or existential philosophy.

A second area where some successes have been
demonstrated is the use of a computer to generate “rough”
translations from one natural language to another. A
human would complete the translation, smoothing out
choppy phrases and filling in areas where the computer
was in error or unable to determine the correct meaning.

Having a computer understand natural language is a
problem with no solution on the immediate horizon. In
fact, just as the use of sophisticated language distin-
guishes humans from animals, it may also end up being
what distinguishes humans from computers.

“I Do Not Understand,”
Said the Machine



We close this section with one extremely important fact about code opti-
mization: it cannot make an inefficient algorithm efficient. As we learned in
Chapter 3, the efficiency of an algorithm is an inherent characteristic of its
structure. It is not something programmed in by a programmer or optimized in
by a compiler. A sequential search program, written by a team of world-class
programmers and optimized by the best compiler available, will not run as fast
as a nonoptimized binary search program written by first-year computer sci-
ence students. Code optimization should not be seen as a way to create fast,
efficient programs. That goal is achieved when we decide which algorithm to
use. Optimization is more like the “frosting on the cake,” whereby we take a
good algorithm and make it just a little bit better.

11.3 Conclusion

This chapter has touched on some of the many issues involved in compiler
design. Topics such as syntax, grammars, parsing, semantics, and optimization
are rich and complex, each worthy of an entire book rather than one brief
chapter. In addition, there are topics not even mentioned here that play an
important role in compiler design:

• Development environments and support tools

• Compilers for alternative languages, such as functional, object-oriented,
or parallel languages

• Language standardization

• Top-down versus bottom-up parsing algorithms

• Error detection and recovery

The key point is that, unlike building the assemblers of Chapter 6, building a
compiler is hard, and compilers for languages like C++, Python, and Java are
large, complicated pieces of software. John Backus reported that the construc-
tion of the first FORTRAN compiler in 1957 required about 18 person-years of
effort to design, code, and test. Even though we know much more today about
how to build compilers, and numerous support tools are available to assist in
this effort, it still requires a large team of programmers working months or years
to build a correct and efficient compiler for a modern high-level programming
language.

This chapter and the previous two chapters looked at the implementation
phase of software development. They focused on the languages used to write
programs and the methods used to translate programs into instructions that
can be executed by the hardware. However, there are limits to computing.
Chapter 12 will show that, no matter how powerful your hardware capabilities
and no matter how sophisticated and expressive your programming language,
there are some problems that simply cannot be solved algorithmically.
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1. Identify the tokens in each of the following statements.
(You do not need to classify them; just identify them.)
a. if (a 55 b1) a 5 x 1 y;
b. delta 5 epsilon 1 1.23 2 sqrt(zz);
c. print(Q);

2. Assume that we are working in a programming language
that allows underscores (_) in variable names. When a
scanner sees a character string such as AB_CD, is it more
likely to classify this string as the single five-character
token AB_CD or as three separate tokens: AB, _, CD?
Explain your answer.

3. In some programming languages a comment can be
enclosed either in braces { } or in the symbols (* *).
How do you think a scanner would group the four sym-
bols {, }, (*, *) for purposes of classification? That is,
would each symbol be given its own classification num-
ber or would some share classifications?

4. Using the token types and classification values given in
Figure 11.3, show the output of a scanner when it is pre-
sented with each of the following statements:
a. limit 5 begin + end
b. a 5 b - 1;
c. if (c 55 50) x 5 1; else y 5 x 1 44;
d. thenelse 55 error 2

5. a. Write a BNF grammar that describes the structure of a
nonterminal called <number>. Assume that <number>
contains an optional 1 sign followed by exactly 2 dec-
imal digits, the first of which cannot be a 0. Thus 23,
191, and 140 are legal, but 9, 101, and 123 are not.

b. Using your grammar from part (a), show a parse tree
for the value 190.

6. a. Write a BNF grammar that describes the structure of
U.S. telephone numbers, which can be either
(xxx)xxx-xxxx or xxx-xxxx, where x can be any digit
from 0 to 9.

b. Modify your grammar from part (a) so that (1) the
middle digit of an area code must be either a 0 or a 1,
(2) the first digit of an area code cannot be a 0 or a 1,
and (3) the first digit of the seven-digit phone num-
ber cannot be a 0 or a 1.

c. Using your grammar from either part (a) or part (b),
show a parse tree for the phone number (612) 555-1212.

7. a. Write a BNF grammar for identifiers that consist of an
arbitrarily long string of letters and digits, the first
one of which must be a letter.

b. Using your grammar from part (a), show a parse tree
for the identifier AB5C8.

8. Assume that we represent dollar amounts in the 
following way:

$number.numberCR

The dollar sign and the dollar value must be present. The
cents part (including both the decimal point and the
number) and the CR (which stands for CRedit and is how
businesspeople represent negative numbers) are both
optional, and “number” is a variable-length sequence of
one or more decimal digits. Examples of legal dollar
amounts include $995, $99CR, $199.95, and $500.000CR.
a. Write a BNF grammar for the dollar amount just

described.
b. Modify your grammar so that the cents part is no

longer an arbitrarily long sequence of digits but is
exactly two digits, no more and no less.

c. Using your grammar from either part (a) or part (b),
show a parse tree for $19.95CR.

9. Describe the language defined by the following grammar:

<goal> ::5 <letter> | <letter> <next>

<next> ::5 , <letter>

<letter> ::5 A

10. How does the language defined by the following gram-
mar differ from the language defined by the grammar in
Exercise 9?

<goal> ::5 <letter> | <letter> <next>

<next> ::5 , <letter> | <letter> <next>

<letter> ::5 A

11. a. Create a BNF grammar that describes simple Boolean
expressions of the form

var AND var

var OR var
where var is one of the symbols w, x, y, and z.

b. Modify your grammar from part (a) so that the
Boolean expressions can be of the form

expr AND expr

expr OR expr
where expr is either a simple variable (w, x, y, or z) or
an expression of the form

(var 55 var) (var < var) (var > var)
c. Modify your grammar one more time to allow a

Boolean expression to have an arbitrary number of
terms connected by either AND or OR. That is, your
expressions can be of the form

expr AND expr OR expr OR expr AND expr . . . .
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12. Using the grammar of Figure 11.8, show a parse tree for
the statement

y = x + y + y + z

Is your parse tree unique? If not, how many other parse
trees exist for this statement? What does the existence of
these different trees imply about the meaning of this
assignment statement?

13. What is the language defined by the following pair of
BNF rules?

<number> ::= <digit> | <digit> <number>

<digit> ::= 0 | 1

Where have you seen this language before?

14. Write a BNF grammar that describes an arbitrarily long
string of the characters a, b, and c. The string can contain
any number of occurrences of these three letters (including
none) in any order. The strings “empty”, a, accaa, abcabc-
cba, and bbbbb are all valid members of this language.

15. What are the different interpretations of the English
language sentence

I bought a shirt in the new store that was too large.

16. Write a BNF grammar to describe the following hypothet-
ical input statement:

input(var, var,  . . . , var);

The statement begins with the word “input,” followed by
a left parenthesis, and then one or more variables, each
variable separated from the one after it by a comma. The
entire statement ends with a right parenthesis and a
semicolon. Variable names are arbitrarily long strings of
digits and letters, the first of which must be a letter.

17. Discuss what other information, in addition to name and
data type, might be kept in a semantic record. From
where would this other information come?

19. Referring to the parse tree in Figure 11.11, why is the
production that appears to the left of the = sign in that
figure not labeled with an A ? Does this production gen-
erate any code?

20. Assume that our language specifically permits you to
assign an integer value to a real variable. The compiler
handles this mixed mode by generating code to perform
data conversion from an integer to a real representation.
Consider the following declarations:

int x;

double y;

The assignment statement y = x is legal in this language.
Explain how a compiler handles the previous assignment

statement. You do not have to show the exact code that
would be generated; just describe how a compiler deals
with the statement, and show at what point in the code
generation process the compiler discovers that it needs to
produce the data conversion instructions.

21. Explain how the concept of algebraic identities could
be exploited during the code optimization phase of
compilation. An identity is a relationship that is true for
all values of the unknowns. For example,

x + 0 = x for all values of x.

Describe other identities and explain how they could
become part of the optimization phase. Is this consid-
ered local or global optimization?

22. Assume that we wrote the following pairs of assignment
statements:

Delta = 2.9 + (a + b + c * 3) / (x - 5.7);

Epsilon = (a + b + c * 3) + sqrt(3.1 * y);

How can a compiler optimize the execution of these two
statements? Is this considered local or global optimization?

18. How do you think a compiler translates into machine language a branch in the parse tree that looks like the following?

Show the code that can be generated from this production and the semantic record created for the new nonterminal symbol
<Boolean expression>.
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23. If we assume that all mathematical operations take 5 nsec
(5 billionths of a second) to execute, how much time
does your optimization from Exercise 22 actually save?

What does this value say about the importance of compiler
optimizations?

1. Our discussion on lexical analysis in Section 11.2.1
may lead you to believe that every lexical analyzer is
unique and built “from scratch.” In fact, it is quite rare
to write a scanner when building a compiler for a new
language, because there exists a special program called
a scanner generator that can, with the appropriate
input, act as a “universal scanner” for any language. To
use a scanner generator, we need to provide only a for-
mal linguistic description of the tokens in our language
and their classification. This description is input to the
scanner generator, which then locates and classifies
tokens according to the description provided. Thus,
instead of writing a program called a scanner, you pro-
vide data to an already written program called a scan-
ner generator.

One of the most widely used scanner generators is a
program called lex, and it has been used to build dozens
of compilers, assemblers, and other linguistic interfaces.
Read about scanner generators in general and lex in par-
ticular. Find out how they work and the techniques for
describing the structure and classification of tokens.
Then show how you formally describe in lex the following
token types:
a. Identifiers
b. Signed integers
c. Signed real numbers

If your installation has lex available, enter your formal
descriptions and have lex locate tokens of each of
these types.

2. The techniques described in Challenge Exercise 1 also work
for the parsing phase of the compilation process. That is,
instead of writing a parsing program, we can provide data
to an already written program that will do the job for us. A
special program called a parser generator, also called a
compiler-compiler, can act as a universal parser for any
language that can be described using BNF notation. To use
a parser generator, you simply input the productions of the
grammar of your language and the sequence of tokens to
be parsed. The output of the parser generator is a parse
tree if the sequence of tokens is legal according to your
productions, or an error message if it is not.

The most widely used parser generator is a program
called yacc, an acronym for “Yet Another Compiler-
Compiler.” Yacc, like lex, has been used to build a great
number of compilers. Read about parser generators and
yacc, and write a report describing how yacc works and how
you formally represent BNF productions. If you have yacc
available at your installation, enter the BNF rules for
<assignment statement> and let yacc parse the statement

x = y + z;
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The classic book on compiling is the “Dragon Book,” so called because of the dragon
motif on its cover:

Aho, A., Lam, M., Sethi, R., and Ullman, J. Compilers: Principles, Techniques, and Tools. 2nd ed.,
Reading, MA: Addison-Wesley, 2006.

There are also a large number of good reference books on languages, BNF, and compilers.
Here is a sampling of these books:

Appel, A., and Ginsberg, M., Modern Compiler Implementation in C. Cambridge, England: Cambridge
University Press, 2004.

Fisher, C., Crafting a Compiler, 2nd Edition. Upper Saddle River, NJ: Benjamin Cummings, 2005.

Grune, K., et. al., Modern Compiler Design. New York: John Wiley & Sons Publ. Co., 2000.

Louden, K. Compiler Construction: Principles and Practice. Boston, MA: Course Technology, 1997.
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12.1 Introduction

The central topic of this book has been, in one way or another, algorithmic
problem solving. We’ve discussed the concept of an algorithm, how to repre-
sent algorithms, the importance of their correctness and efficiency in solving
problems, the hardware that executes algorithms, the various levels of abstrac-
tion in which a programmer deals with algorithms, and, finally, the system
software that translates these abstractions back to the elementary hardware
level. It might seem as though algorithms, and problems solvable by algo-
rithms, represent the entire scope of the computer science universe.

However, there are problems that do not have any algorithmic solution! Be
sure you understand why this is such a powerful statement. There are many
problems for which no algorithmic solution has yet been found, but for which
we might find one if we were only clever enough to discover it. Indeed, such
new discoveries are being made all the time. But there are also problems for
which no algorithmic solution exists; it does not matter how inventive we may
be, how much time we spend looking, or how remarkable our hardware or soft-
ware; no algorithms will ever be found that solve these problems.

We will prove this statement later in this chapter by actually finding such a
problem. This is a rather difficult task, because failing to find an algorithmic
solution to a problem does not prove that one does not exist. It might only mean
that we have not yet been able to figure out an algorithm. Instead, we must show
that no one can ever find such an algorithm—that one does not exist.

Algorithms, as noted in Chapter 1, are carried out by computing agents
(people, robots, computers). Throughout most of this book, we’ve assumed that
the computing agent is a real computer. Ordinarily, we would choose to execute
an algorithm on the most modern, high-speed computer available, with all the
bells and whistles we could possibly find. But to show that something cannot
be done by any computer, we want the bells and whistles to get out of the way
so we can concentrate on the fundamental nature of “computerness.” What we
need is a simple, “ideal” computer—something easy to work with yet theoreti-
cally as powerful as the real thing. We need a model of a computer; indeed, to
consider algorithms in general, we need a model of a computing agent.

12.2 What Is a Model?

Model cars, model trucks, model airplanes, and dolls (model people) are for-
ever popular with children. Children use these toys to “play” at being grown
up—at being drivers, pilots, and parents—because the toys capture the spirit



of the objects they model. A model car looks like a car. The more expensive the
model, the more realistic its features. But although the model captures the
essence of a car, it is (usually) smaller in scale, omits many of the details of a
real car, and does not have the full functionality of a real car.

Models are an important way of studying many physical and social phe-
nomena. Weather systems, climate cycles, the spread of epidemics, population
demographics, and chemical molecules—all are phenomena that have been
studied via modeling. (In fact, we will look at some of these applications in
Chapter 13.) Like a model car, a model of such a phenomenon

1. Captures the essence—the important properties—of the real thing

2. Probably differs in scale from the real thing

3. Omits some of the details of the real thing

4. Lacks the full functionality of the real thing

The model might be a physical model or a pencil-and-paper mathematical
model. For example, a physical model of a chemical molecule might use Velcro®-
covered balls stuck together in a certain way to represent the molecular struc-
ture. This model illustrates certain important properties: how many atoms of
each element are present and where they are located in relation to one another.
It is much larger than the real molecule, does not display the details of the
chemical bonding, and is certainly not a real molecule.

A simple example of a mathematical model is the equation for the dis-
tance d that a moving vehicle travels as the product of rate r and time t:

d = r 3 t

Although this equation can give approximate information, it ignores the vari-
ations in the speed of the vehicle by assuming that the rate is a constant.
Because this is not a physical model, it does not have a size as such, but there
is a difference in time scale from the actual moving vehicle. A calculation that
a vehicle traveling at a constant rate of 60 miles per hour for 2 hours will
cover a distance of 120 miles can be done in an instant by simply plugging
values into the equation.

What can be gained by studying models if they do not behave in exactly
the same way as the real thing? For one thing, they can enhance our under-
standing of the real system being modeled. By changing some aspect within
the model we can immediately see the effects of that change. These changes
might be very costly, difficult, or dangerous to make in the real phenomena.
The benefit is that models give us a safe and controlled environment to play
with “what ifs”—what might be the effect if this or that factor in the real sys-
tem were changed? The answers can be used to guide future decisions. Models
can also provide environments for learning and practicing interactions with
various phenomena. An aircraft flight simulator, for example, can give the
trainee pilot realistic experience in a danger-free setting. Finally, not only can
models give us information about existing phenomena, they can also be used
as design tools. A model of a new design may reveal major flaws without the
time, expense, and potential danger of building a prototype. (We will look
more closely at these applications of models in Chapter 13.)

Whether a model is used to predict the behavior of an existing system or as
a test bed for a proposed design, the information it provides is only as good as
the assumptions made in building the model. If the model does not incorporate
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the major aspects of the system being studied, if relationships are represented
incorrectly, or if so much detail has been omitted as to make the model a
totally inaccurate representation, then little faith can be placed in the results
it produces.
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1. Describe some situation (besides aircraft pilot training) in which a
simulator would be useful as a training device.

2. What factors might a model of groundwater pollution need to
include? What are the advantages of a good model? Are there poten-
tial disadvantages to using such a model?

PRACTICE PROBLEMS

12.3 A Model of a Computing Agent

12.3.1 Properties of a Computing Agent

To construct a good model of the “computing agent” entity—one that enables
us to explore the capabilities and limitations of computation in the most gen-
eral sense—we must make certain that we capture the fundamental properties
of a computing agent while suppressing lower-level details. This means we
must decide which features are central to a computing agent and which are
relatively incidental and can be ignored. For example, a computing agent must
be able to follow the instructions in an algorithm. The instructions must be
presented in some form that makes sense to the computing agent, but it does
not matter whether the instructions are presented in English or Japanese, or
words as opposed to pictures.

However the instructions are presented, the computing agent must be able
to comprehend them. Likewise, the computing agent must be able to receive
any data pertinent to the task. When we dealt with real computers, we
described this as an input task, but the ability to accept input is central to any
computing agent—whether a human being following instructions or a pro-
grammable DVR. The instructions and data must be stored somewhere during
the execution of the algorithm. In addition, they must be retrievable, whether
from a computer’s memory, the DVR microprocessor’s memory, a human being’s
memory, or a written sheet of paper to which the human being refers.

The computing agent must be able to act in accordance with algorithm
instructions. These instructions may take into account the present situation or
state of the computing agent, as well as the particular input item being
processed. In a real computer, a conditional operation may say, If condition A
then do B else do C. Condition A may involve the value of some variable or vari-
ables that have already been read into memory; we may think of the contents
of memory (i.e., how the various bits are set) as the present state of the com-
puter. The DVR microprocessor may have an instruction that says, “If the time
is 7 P.M. and I am programmed to record at 7 P.M., then turn on.” Here the
action of the DVR depends on both the input of the current time from its clock



and the “state” of its programming, just as a human being carrying out the
algorithm of ordering lunch from a menu reacts both to the “input” (what
items are on the menu) and to his or her present state of hunger.

Finally, the computing agent is expected to produce output because the
outcome of an algorithm must be an observable result. The computer displays
results on a screen, prints them on a sheet of paper, or writes them to a file;
the DVR records bits on a disc; the human being speaks or writes.

To summarize, we require that any computing agent be able to do all of
the following:

1. Accept input.

2. Store information in and retrieve it from memory.

3. Take actions according to algorithm instructions; the choice of what
action to take may depend on the present state of the computing
agent, as well as on the input item presently being processed.

4. Produce output.

Of course, a real computer has all of these capabilities and is an example
of a computing agent, as are a human being and a programmable DVR. The
DVR, however, has a very limited set of primitive operations it can perform, so
it can react only to a very limited algorithm. The computer, though it has a
limited set of simple primitives, is a general-purpose computing agent
because, as we have seen in the previous chapters, those primitives can be
combined and organized to accomplish complex tasks. The “primitive opera-
tions” available to human beings haven’t been fully explored, but in many
ways they seem to exceed those of a computer, and we would certainly classify
a human being as a general-purpose computing agent.

In the next section, we will discuss one particular model for a computing
agent. It will have the four required properties just specified, and it will rep-
resent a general-purpose computing agent able to follow the instructions of
many different algorithms.

12.3.2 The Turing Machine

We think of “computing” as a modern activity—something done by electronic
computers. But interest in the theoretical nature of computation far predates
the advent of modern computers. By the end of the nineteenth century, math-
ematicians were interested in formalizing the nature of proof, with two goals
in mind. First, a formal basis for mathematical proofs would guarantee the
correctness of a proof because the proof would contain no intuitive state-
ments, such as “It is clear that . . .” or “We can now see that . . . .” Second, a
formal basis for proofs might allow for mechanical theorem-proving, where
correct proofs could be generated simply by following a set of rules. In 1931,
the Austrian logician Kurt Gödel looked at formal systems to describe the ordi-
nary arithmetic of numbers. He demonstrated that in any reasonable system,
there are true statements about arithmetic that cannot be proved using that
system. This led to interest in finding a way to recognize which statements are
indeed unprovable in a formal system—that is, in finding a computational
procedure (what we have called an algorithm) to recognize such statements.
This in turn led to an investigation of the nature of computation itself, and a
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The Turing machine was proposed as a model for a comput-
ing agent by the brilliant British mathematician Alan Tur-
ing in 1936. Turing began by thinking of how to generalize
the typewriter as an “automatic device.” But despite its
name, the Turing machine is not a machine at all. It is a
model of the pencil and paper type that captures the
essential features of a computing agent.

Alan Turing (1912–1954) was a colorful individual
and a brilliant thinker. Stories abound about his “absent-
minded professor” demeanor, his interest in running
(through the streets of London with an alarm clock flop-
ping about, tied to his belt by a piece of twine), and his
fascination with a children’s radio show whose characters
he would discuss daily with his mother. Convicted of
homosexual acts in 1952, he chose drug treatment over
prison, primarily because he feared a prison term would
impede his intellectual work. There was even a Broadway

play (Breaking the Code) written about him, years after his
death by suicide.

Turing made three distinct and remarkable contribu-
tions to computer science. First, he devised what is now
known as the Turing machine, using it—as we will see in
this chapter—to model computation and to discover that
some problems have no general computable solution. Sec-
ond, during World War II, his team at the British Foreign
Office built the Colossus machine, which used cryptanaly-
sis, the science of code breaking, to break the secret code
used on the German Enigma machine. The details of this
work, carried on in a Victorian country mansion called
Bletchley Park, were kept secret until many years later.
Breaking the code enabled the British to gain access to
intelligence about German submarine movements, which
contributed significantly toward winning the war. Third,
after the war Turing investigated what it means for
machines to “think.” We’ll discuss his early contribution to
artificial intelligence in Chapter 15.

Alan Turing, 
Brilliant Eccentric

A Turing Machine Tape

FIGURE 12.1 

. . . b b 0 1 1 b b . . .

number of mathematicians in the mid-1930s proposed various models of com-
putational procedures, along with models of computing agents to carry out
those procedures. We will look at the model proposed by Alan Turing.

A Turing machine includes a (conceptual) tape that extends infinitely in
both directions. The tape is divided into cells, each of which contains one sym-
bol. The symbols must come from a finite set of symbols called the alphabet.
The alphabet for a given Turing machine always contains a special symbol b
(for “blank”), usually both of the symbols 0 and 1 (zero and one), and some-
times a limited number of other symbols, let’s say X and Y, used as placeholders
or markers of some kind. At any point in time, only a finite number of the
cells contain nonblank symbols. Figure 12.1 shows a typical tape configura-
tion, with three nonblank cells containing the alphabet symbols 0, 1, 1,
respectively.

The tape is used to hold the input to the Turing machine. We know that
input must be presented to a computing agent in a form it can understand; for
a Turing machine, this means that the input must be expressed as a finite
string of nonblank symbols from the alphabet. The Turing machine writes its
output on the tape, again using the same alphabet of symbols. The tape also
serves as memory.

The rest of the Turing machine consists of a unit that reads one cell of the
tape at a time and writes a symbol in that cell. There is a finite number k of
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A Turing Machine Configuration

FIGURE 12.2

. . . b b 0 1 1 b b . . .

y
1 (current state of the machine)

“states” of the machine, labeled 1, 2, . . . , k, and at any moment the unit is
in one of these states. A state can be thought of as a certain condition; the
Turing machine may reach this condition partly on the basis of its history of
events, much as your “hungry state” is a condition reached because of the
meals you have skipped recently.

Figure 12.2 shows a particular Turing machine configuration. Using the
tape of Figure 12.1, the machine is currently in state 1 and is reading the cell
containing the symbol 0, so the 0 is what the machine is seeing as the current
input symbol.

The Turing machine is designed to carry out only one type of primitive
operation. Each time such an operation is done, three actions take place:

1. Write a symbol in the cell (replacing the symbol already there).

2. Go into a new state (it might be the same as the current state).

3. Move one cell left or right.

The details of the actions (what to write, what the new state is, and which
direction to move) depend on the current state of the machine and on the
contents of the tape cell currently being read (the input). Turing machines
follow instructions that describe these details. Each instruction tells what to
do for a specific current state and current input symbol, as follows:

if (you are in state i) and (you are reading symbol j) then

write symbol k onto the tape

go into state s

move in direction d

The Turing machine’s single primitive operation is to check its current state
and the current input symbol being read, look for an instruction that tells
what to do under these circumstances, and then carry out the three actions
specified by that instruction. For example, one Turing machine instruction
might say

if (you are in state 1) and (you are reading symbol 0) then

write symbol 1 onto the tape

go into state 2

move right

If a Turing machine is in the configuration shown in Figure 12.2 (where the
current state is 1 and the current input symbol is 0), then this instruction



498 LEVEL 4 CHAPTER 12: Models of Computation

The Next Turing Machine
Configuration after Executing
One Instruction

FIGURE 12.3

. . . b b 1 1 1 b b . . .

y
2 (current state of the machine)

applies. After the machine executes this instruction, its next configuration is
shown in Figure 12.3, where the previous 0 symbol has been overwritten with
a 1, the state has changed to state 2, and the “read head” has moved one cell
to the right on the tape.

Let’s develop a shorthand notation for Turing machine instructions. There
are five components:

• Current state

• Current symbol

• Next symbol

• Next state

• Direction of move

We’ ll give these five things in order and enclosed in parentheses.

(current state, current symbol, next symbol, next state, direction of move)

The instruction that we talked about earlier,

if (you are in state 1) and (you are reading symbol 0) then

write symbol 1 onto the tape

go into state 2

move right

is therefore represented by the 5-tuple:

(1,0,1,2,R)

Similarly, the Turing machine instruction

(2,1,1,2,L)

stands for

if (you are in state 2) and (you are reading symbol 1) then

write symbol 1 onto the tape

go into state 2

move left

In following this instruction, the machine writes in the current cell the same
symbol (1) as was already there and remains in the same state (state 2) as before.



A Turing machine can execute a whole sequence of instructions. A clock
governs the action of the machine. Whenever the clock ticks, the Turing
machine performs its primitive operation; that is, it looks for an instruction
that applies to its current state and the symbol currently being read and then
follows that instruction. Instructions may be used more than once.

There are a couple of details we’ve glossed over. What if there is more than
one instruction that applies to the current configuration? Suppose, as in
Figure 12.2, that the current state is 1, that the current symbol is 0, and that

(1,0,1,2,R)

(1,0,0,3,L)

both appear in the same collection of instructions. These instructions are in
conflict. Should the Turning machine write a 1, go to state 2, and move right,
or should it write a 0, go to state 3, and move left? We’ll avoid this ambiguity
by requiring that a set of instructions for a Turing machine can never contain
two different instructions of the form

(i, j, -, -, -)

(i, j, -, - ,-)

On the other hand, what if there is no instruction that applies to the current
state and current symbol for the machine? In this case, we specify that the
machine halts, doing nothing further.

We impose two additional conventions on the Turing machine regarding its
initial configuration when the clock begins. The start-up state is always state 1,
and the machine is always reading the leftmost nonblank cell on the tape. This
ensures that the Turing machine has a fixed and definite starting point.

Now let’s do a sample Turing machine computation. Suppose the instruc-
tions available to a Turing machine are

1. (1,0,1,2,R)

2. (1,1,1,2,R)

3. (2,0,1,2,R)

4. (2,1,0,2,R)

5. (2,b,b,3,L)

Also suppose the Turing machine’s initial configuration is again that of
Figure 12.2, reprinted below: 

This satisfies our convention about starting in state 1 at the leftmost nonblank
cell on the tape. The Turing machine looks for an appropriate instruction for its
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current state, 1, and its current input symbol, 0, which means it looks for an
instruction of the form (1,0,–,–,–). Instruction 1 applies; this was our example
instruction earlier, and the resulting configuration agrees with Figure 12.3: 

At the next clock tick, with current state 2 and current symbol 1, the Turing
machine looks for an instruction of the form (2, 1, –,–,–). Instruction 4 applies
and, after the appropriate actions are performed, the resulting configuration is 

Instruction 4 applies again and results in 

Instruction 5 now applies, leading to 

At this point the machine is in state 3 reading the symbol 0. Because there are
no instructions of the form (3,0,–,–,–), the machine halts. The Turing machine
computation is complete.

Although we numbered this collection of instructions for reference, the
Turing machine does not necessarily execute instructions in the order of this
numbering. Some instructions may not be executed at all, and some more
than once. The sequence of instructions used depends on the input written on
the tape.
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How does the Turing machine stack up against our list of required fea-
tures for a computing agent?

1. It can accept input. The Turing machine can read symbols on its tape.

2. It can store information in and retrieve it from memory. The Turing
machine can write symbols on its tape and, by moving around over the
tape, can go back and read those symbols at a later time, so the tape
has stored that information.

3. It can take actions according to algorithm instructions, and the choice of
action to take may depend on the present state of the computing agent
and on the input item presently being processed. Certainly the Turing
machine satisfies this requirement insofar as Turing machine instruc-
tions are concerned; the present state and present symbol being
processed determine the appropriate instruction, and that instruction
specifies the actions to be taken.

4. It can produce output. The Turing machine writes symbols on its tape in
the course of its normal operation. If (when?) the Turing machine halts,
what is written on the tape at that time can be considered output.

In the Turing machine computation that we just finished, the input was the
string of symbols 011 (ignoring the surrounding blanks) and the output was
the string of symbols 100. Starting with the same input tape but with a dif-
ferent set of instructions could result in different output. Given the benefit of
hindsight, we could say that we wrote this particular set of instructions to
carry out the task of transforming the string 011 into the string 100. Writing
a set of Turing machine instructions to allow a Turing machine to carry out a
certain task is similar to writing a computer program to allow a computer to
carry out a certain task. We can call such a collection of instructions a Turing
machine program.

Thus, a Turing machine does capture those properties we identified as
essential for a computing agent, which qualifies it as a model of a computing
agent. Furthermore, it represents a general computing agent in the sense that,
like a real computer, it can follow many different sets of instructions (pro-
grams) and thus do many different things (unlike the one-job-only DVR). By
its very simplicity of operation, it has eliminated many real-world details,
such as exactly how symbols are read from or written to the tape, exactly how
data are to be encoded into a string of symbols from the alphabet to be writ-
ten on the tape, exactly how a string of symbols on the tape is to be inter-
preted as meaningful output, and exactly how the machine carries out the
activities of “changing state.” In fact, the Turing machine is such a simple
concept that we may wonder how good a model it really is. Did we eliminate
too many details? We’ll answer the question of how good a model the Turing
machine is later in the chapter.

A Turing machine is different in scale from any real computing agent in
one respect. A Turing machine can, given the appropriate instructions, move
right or left to the blank portion of the tape and write a nonblank symbol.
When this happens, the machine has gobbled up an extra cell to use for infor-
mation storage purposes—that is, as memory. Depending on the instructions,
this could happen over and over, which means that there is no limit to the
amount of memory available to the machine. Any real computing agent has a
limit on the memory available to it. In particular, a real computer, though it
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has a certain amount of internal memory and has access to external memory
in the form of disks or tapes on which data can be stored, still has such a
limit. There are only so many disks or tapes in the world.

This difference in scale means that a Turing machine (elementary device
though it may seem to be) actually has more capability in one respect than
any real computer that exists or ever will exist. Therefore, we must be careful
about the use of the Turing machine model and the conclusions we draw from
it about “real” computing (i.e., computing on a real computer). If we find
some task that a Turing machine can perform (because of its limitless mem-
ory), it may not be a task that a real computer could perform.
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1. A Turing machine has the following instructions:
(1,0,0,2,R)
(2,1,1,2,L)
(2,0,1,2,R)
(1,b,1,1,L)

For each of the following configurations of this Turing machine,
draw the next configuration. 
a. 

b.

c.

d.

PRACTICE PROBLEMS

. . b 1 0 1 b . .

y
1

. . b 1 1 1 b . .

y
2
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y
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2. Consider a Turing machine that has the following two instructions
(1,1,0,2,R)
(2,1,1,1,R)

Determine its output when it is run on the following tape. (Remem-
ber that a Turing machine starts in state 1, reading the leftmost
nonblank cell.)

. . b 1 1 1 b . .

12.4 A Model of an Algorithm

An algorithm is a collection of instructions intended for a computing agent to
follow. If we accept the Turing machine as a model of a computing agent, then
the instructions for a Turing machine should be a model of an algorithm.
Remember from our definition in Chapter 1 that an algorithm must

1. Be a well-ordered collection

2. Consist of unambiguous and effectively computable operations

3. Halt in a finite amount of time

4. Produce a result

Let’s consider an arbitrary collection of Turing machine instructions and see
whether it exhibits these properties of an algorithm.

1. Be a well-ordered collection. The Turing machine must know which opera-
tion to carry out first and which to do next at any step. We have already
specified the initial conditions for a Turing machine computation: that
the Turing machine must begin in state 1, reading the leftmost nonblank
cell on the tape. We have also insisted that in any collection of Turing
machine instructions, there cannot be two different instructions that
both begin with the same current state and current symbol. Given this
requirement, there is never any confusion about which operation to do
next. There is at most one instruction that matches the current state and
current symbol of the Turing machine. If there is one instruction, the
Turing machine executes the operation that instruction describes. If
there is no instruction, the Turing machine halts.

2. Consist of unambiguous and effectively computable operations. Recall
that this property is relative to the computing agent; that is, opera-
tions must be understandable and doable by the computing agent.
Each individual Turing machine instruction describes an operation
that (to the Turing machine) is unambiguous, requiring no additional
explanation, and any Turing machine is able to carry out the operation
described. After all, Turing machine instructions were designed for
Turing machines to be able to execute.



3. Halt in a finite amount of time. In order for a Turing machine to halt
when executing a collection of instructions, it must reach a configura-
tion where no appropriate instruction exists. This depends on the
input given to the Turing machine—that is, the contents initially
written on the tape. Consider the following set of Turing machine
instructions:

(1,0,0,1,R)

(1,b,b,1,R)

and suppose the tape initially contains, as its nonblank portion, the
single symbol 1. The initial configuration is 

and the machine halts immediately because there is no applicable
instruction. On the other hand, suppose the same set of instructions is
used with a starting tape that contains the single symbol 0. The Turing
machine computation is then
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We can see that the second instruction applies indefinitely and that
this Turing machine will never halt.

Typically, an algorithm is designed to carry out a certain type of
task. Let us agree that for input appropriate to that task, the instruc-
tions must be such that the Turing machine does indeed eventually
halt. If the Turing machine is run on a tape containing data that are
not appropriate input for the task of interest, it need not halt.

This may seem to be a change in our definition of an algorithm, but
it simply confirms that there is always a “universe of discourse” con-
nected with the problem we are trying to solve. For example, we can
use a simple algorithm for dividing one positive integer by another
using repeated subtraction until the result is negative. Thus, 7 ÷ 3 can
be computed using this algorithm as follows:

7 – 3 = 4
4 – 3 = 1
1 – 3 < 0

The quotient is 2 because two subtractions could be done before the
result became negative. However, if we attempt to use this same
approach to compute 7 ÷ (–3), we get

7 – (–3) = 10
10 – (–3) = 13
13 – (–3) = 16
16 – (–3) = 19
and so on

The process would never halt because the result would never become
negative. Yet, this approach is still an algorithm for the problem of
dividing two positive numbers, because it does produce the correct
result and then halt when given input suitable for this problem.

4. Produce a result.  We have already imposed the requirement that the
Turing machine instructions must lead to a halting configuration when
executed on input appropriate to the problem being solved. Whatever
is written on the tape when the machine halts is the result.

A collection of Turing machine instructions that obeys the restrictions
we have specified satisfies the properties required of an algorithm. Yet,
it is not a “real” algorithm because it is not designed to be executed by
a “real” computing agent. It is a model of an algorithm, designed to be
executed by the model computing agent called a Turing machine.

Most of the time, no distinction is made between a Turing machine
as a computing agent and the instructions (algorithm) it carries out—
a machine together with a set of instructions is called “a Turing
machine” and is thought of as an algorithm. Thus, we say we are going
to write a Turing machine to do a particular task, when we really mean
that we are going to write a set of instructions—a Turing machine pro-
gram, an algorithm—to do that task.
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12.5 Turing Machine Examples

Because the Turing machine is such a simple device, it may seem nearly
impossible to write a program for a Turing machine that carries out any inter-
esting or significant task. In this section, we’ll look at a few Turing machines
that, though they do not accomplish anything earth-shaking, should convince
you that Turing machines can do some rather worthwhile things.

12.5.1 A Bit Inverter

Let’s assume that the only nonblank portion of the input tape for a particular
Turing machine consists of a string of bits (0s and 1s). Our first Turing
machine moves along its tape inverting all of the bits—that is, changing 0s to
1s and 1s to 0s. (Recall that our sample Turing machine computation inverted
the bits in the string 011, resulting in the string 100. Do you think that
machine is a bit inverter? What if the leftmost nonblank symbol on the input
tape is a 1?)

The Turing machine must begin in state 1 on the leftmost nonblank cell.
Whatever the current symbol that is read, the machine must invert it by print-
ing its opposite. Machine state 1 must, therefore, be a state in which 0s are
changed to 1s and 1s are changed to 0s. This is exactly what we want to hap-
pen everywhere along the tape, so the machine never needs to go to another
state; it can simply move right while remaining in state 1. When we come to
the final blank, we want to halt. This can be accomplished by making sure
that our program does not contain any instruction of the form

(1,b,–,–,–)

This describes the Turing machine algorithm in words, but let’s represent it
more precisely. In the past, we’ve used pseudocode to describe algorithms. Here
we’ll use an alternative form of representation that corresponds more closely to
Turing machine instructions. A state diagram is a visual representation of a Tur-
ing machine algorithm, where circles represent states, and arrows represent tran-
sitions from one state to another. Along each transition arrow, we show three
things: the input symbol that caused the transition, the corresponding output
symbol to be printed, and the direction of movement. For the bit inverter Turing
machine, we have only one state and hence one circle in the state diagram,
shown in Figure 12.4. The arrow originating in state 1, marked 1/0/R, and return-
ing to state 1 says that when in state 1 (the only state) reading an input symbol
of 1, the machine should print the symbol 0, move right, and remain in state 1.

State 1
1/0/R 0/1/RState Diagram for the Bit 

Inverter Machine

FIGURE 12.4



The arrow marked 0/1/R says that when in state 1 reading an input symbol of 0,
the machine should print the symbol 1, move right, and remain in state 1.

The complete Turing machine program for the bit inverter is

1. (1,0,1,1,R) Change the symbol 0 to 1.

2. (1,1,0,1,R) Change the symbol 1 to 0.

(We’ve added a comment to each instruction to explain its purpose.) Here’s a sam-
ple computation using this machine, beginning with the string 1101 on the tape: 
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Using instruction 2, 

Using instruction 2 again, 

Using instruction 1, 

. . . b 0 0 0 1 b . . .

y
1

. . . b 0 0 1 1 b . . .

y
1



Using instruction 2, 
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. . . b 0 0 1 0 b . . .

y
1

and the machine halts with the inverted string 0010 as output on the tape.
Bit inversion may seem like a trivial task, but recall that in Chapter 4 we

introduced an electronic device called a NOT gate that is essentially a bit
inverter and is one of the components of a real computer.

12.5.2 A Parity Bit Machine

An extra bit, called an odd parity bit, can be attached to the end of a string
of bits. The odd parity bit is set such that the number of 1s in the whole string
of bits, including the parity bit, is odd. Thus, if the string preceding the par-
ity bit has an odd number of 1s, the parity bit is set to 0 so that there is still
an odd number of 1s in the whole string. If the string preceding the parity bit
has an even number of 1s, the parity bit is set to 1 so that the number of 1s
in the whole string is odd. As an example, the following string of bits includes
as its rightmost bit an odd parity bit:

1 1 0 0 0 1 0 1 0 1

The parity bit is set to 1 because there are four 1s (an even number) in the
string before the parity bit; the total number of 1s is five (an odd number).
Another example of odd parity is the string

1 0 1 1 0 0

where the parity bit (the rightmost bit) is a 0 because three 1s (an odd num-
ber) appear in the preceding string. Our job here is to write a Turing machine
that, given a string of bits on its input tape, attaches an odd parity bit at the
right end.

We know from Chapter 4 that information in electronic form is repre-
sented as strings of bits. Parity bits are used to detect errors that occur as a
result of electronic interference when transmitting such strings (see Exercise
20, Chapter 4). If a single bit (or any odd number of bits) is changed from a 1
to 0 or from a 0 to 1, then the parity bit is incorrect, and the error can be
detected. A correct copy of the information can then be retransmitted. Again,
we are devising a Turing machine for a significant real-world task.

Our Turing machine must somehow “remember” whether the number of
1s so far processed is even or odd. We can use two states of the machine to



represent these two conditions. Because the Turing machine begins in state 1,
having read zero 1s so far (zero is an even number), we can let state 1 repre-
sent the even parity state, where an even number of 1s has been read so far.
We’ll let state 2 represent the odd parity state, where an odd number of 1s has
been read so far.

We can read the input string from left to right. Until we get to the end of
the bit string, the symbol printed should always be the same as the symbol
read, because none of the bits in the input string should change. But every
time a 1 bit is read, the parity should change, from even to odd or odd to even.
In other words, the state should change from 1 to 2 or from 2 to 1. Reading a
0 bit does not affect the parity and therefore should not change the state.
Thus, if we are in state 1 reading a 1, we want to go to state 2; if we are in
state 1 reading a 0, we want to stay in state 1. If we are in state 2 reading a 1,
we want to go to state 1; if we are in state 2 reading a 0, we want to stay
in state 2.

When we come to the end of the input string (when we first read a blank
cell), we write the parity bit, which is 1 if the machine is in state 1 (the even
parity state) or 0 if the machine is in state 2 (the odd parity state). Then we
want to halt, which is accomplished by going into state 3, for which there
are no instructions. The state diagram for our parity bit machine is given in
Figure 12.5.

The Turing machine program is as follows:

1. (1,1,1,2,R) Even parity state reading 1, change state.

2. (1,0,0,1,R) Even parity state reading 0, don’t change state.

3. (2,1,1,1,R) Odd parity state reading 1, change state.

4. (2,0,0,2,R) Odd parity state reading 0, don’t change state.

5. (1,b,1,3,R) End of string in even parity state, write 1 and go to
state 3.

6. (2,b,0,3,R) End of string in odd parity state, write 0 and go to
state 3.

Let’s do an example. The initial string is 101, which contains an even number
of 1s. Therefore, we want to add a parity bit of 1 and have the final output be
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State 2

0/0/R

State 1

0/0/R

1/1/R

1/1/R

State 3

b/1/R b/0/R

State Diagram for the Parity 
Bit Machine

FIGURE 12.5



the string 1011. Because this final string contains three 1 bits, it has the cor-
rect parity. Here’s the initial configuration: 
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. . . b 1 0 1 b b . . .

y
1

Using instruction 1, 

. . . b 1 0 1 b b . . .

y
2

Using instruction 4, 

. . . b 1 0 1 b b . . .

y
2

Using instruction 3, 

. . . b 1 0 1 b b . . .

y
1

and finally using instruction 5 to write the parity bit, we get 

. . . b 1 0 1 1 b . . .

y
3

whereupon the machine halts.



12.5.3 Machines for Unary Incrementing

Turing machines can be written to accomplish arithmetic using the nonnega-
tive numbers 0, 1, 2, and so on. Working with these numbers poses a problem
we did not face with the bit inverter or the parity bit machine. In those exam-
ples, we were manipulating only bits (i.e., 0s and 1s), already part of the Tur-
ing machine alphabet of symbols. We can’t put numbers like 2, 6, or 754 in
cells of the Turing machine tape because these symbols are not part of the
alphabet. Therefore, our first task is to find a way to encode such numbers
using 0s and 1s. We could use binary representation, as a real computer does.
Instead, let us agree on a simpler unary representation of numbers (unary
means that we will use only one symbol, namely 1). In unary representation,
any unsigned whole number n is encoded by a sequence of n + 1 1s. Thus,

Number Turing Machine Representation

0 1
1 11
2 111
3 1111
. .
. .
. .

(You may wonder why we don’t simply use 1 to represent 1, 11 to represent 2,
and so on. This scheme would mean using no 1s to represent 0, and then the
machine could not distinguish a single 0 on the tape from nothing—all
blanks—on the tape.)

Using this unary representation of numbers, let’s write Turing machines to
accomplish some basic arithmetic operations. We can write a Turing machine to
add 1 to any number; such a machine is often called an incrementer. Using the
unary representation of numbers just described, we need only stay in state 1
and travel over the string of 1s to the righthand end. When we encounter the
first blank cell, we write a 1 in it and go to state 2, which has no instructions,
in order to halt. Figure 12.6 shows the state diagram.

The Turing machine for the incrementer is

1. (1,1,1,1,R)    Pass to the right over 1s.

2. (1,b,1,2,R)    Add a single 1 at the righthand end of the string.
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State 2State 1
1/1/R

b/1/R

State Diagram for Incrementer

FIGURE 12.6



Here’s a quick sample computation: 
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. . . b b 1 1 1 b b . . .

y
1

. . . b b 1 1 1 b b . . .

y
1

. . . b b 1 1 1 b b . . .

y
1

. . . b b 1 1 1 b b . . .

y
1

. . . b b 1 1 1 1 b . . .

y
2

at which point the machine halts. The output on the tape is the representation
of the number 3. The machine thus incremented the input, 2, to the output, 3.

Here is another algorithm to accomplish the same task. The preceding
algorithm moved to the righthand end of the string and added a 1. But the
increment problem can also be solved by moving to the lefthand end of the
string and adding a 1. The Turing machine program for this algorithm is

(1,1,1,1,L)    Pass to the left over 1s.
(1,b,1,2,L)    Add a single 1 at the lefthand end of the string.



If we apply this algorithm to the same input tape, the computation is 
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. . . b b 1 1 1 b b . . .

y
1

. . . b b 1 1 1 b b . . .

y
1

. . . b 1 1 1 1 b b . . .

y
1

Once again, 2 has been incremented to 3. But whereas the first computa-
tion took four operations—that is, four applications of Turing machine
instructions—the second computation took only two.

Let’s compare these two algorithms in terms of their time and space effi-
ciency. We’ll take the execution of a single Turing machine instruction as a
unit of work, so we measure the time used by a Turing machine algorithm by
the number of instructions executed. The “space” a Turing machine algorithm
takes on any given input is the number of nonblank cells on the tape that are
used during the course of running the program. The input itself occupies some
nonblank cells, so the interesting question is how many additional cells the
algorithm uses in the course of its execution.

Suppose that the number 5 is to be incremented using algorithm 1. The
initial input tape contains six 1s (the unary representation for 5). The
machine moves to the right, over all the 1s on the tape, until it encounters
the first blank cell. It writes a 1 into the blank cell and then halts. An instruc-
tion is executed for each move to the right. By the time the blank cell is
reached, six instruction executions have been done; actually, the first instruc-
tion has been executed six times. One final execution, this time of the second
instruction, completes the task. Altogether, seven steps are required, two
more than the number 5 we are incrementing. One “extra” step comes because
of the unary representation, with its additional 1, and a second “extra” step is
used to write over the blank cell. Therefore, it is easy to see that if the prob-
lem is to increment the number n, then n + 2 steps would be required using
algorithm 1. Algorithm 2 does a constant number of steps (two) no matter
what the size of n. Both algorithms use n + 2 cells on the tape: n + 1 for the
initial input and one more for incrementing. The algorithms are equivalent in
space efficiency, but algorithm 2 is more time-efficient.
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Time Efficiency for Two Turing
Machine Algorithms for
Incrementing

FIGURE 12.7
THE NUMBER TO BE INCREMENTED, n NUMBER OF STEPS REQUIRED

ALGORITHM 1 ALGORITHM 2

10 12 2
100 102 2

1,000 1,002 2
10,000 10,002 2

With an input such as 5, our example here, the difference in time effi-
ciency between the two algorithms does not seem great. Figure 12.7 shows the
steps required by algorithms 1 and 2 for larger problems. As the input gets
larger, the difference in efficiency becomes more obvious. If our hypothetical
Turing machine actually existed and could do, say, one step per second, then
algorithm 1 would take 2 hours, 46 minutes, and 42 seconds to increment the
number 10,000. Algorithm 2 could do the same job in 2 seconds! This signifi-
cant difference gives a definite edge to algorithm 2 as the preferable solution
method for this problem. Using the notation of Chapter 3, algorithm 1 is a
linear time Q(n) algorithm, whereas algorithm 2 is a constant time 
Q(1) algorithm.

Although we can compare two Turing machine algorithms for the same
task, we can’t really compare the efficiency of a Turing machine algorithm
with an algorithm that runs on a “real” computer. For one thing, the data rep-
resentation is probably different (numbers aren’t written in unary form). But
more to the point, the basic unit of work is different. It takes many Turing
machine operations to do a trivial task, because the entire concept of a Turing
machine is so simplistic. Turing machines, as we saw in our few examples,
work by carefully moving, changing, and keeping track of individual 0s and
1s. Given such a limited range of activities, a Turing machine must exert a lot
of effort to accomplish even mildly interesting tasks.

12.5.4 A Unary Addition Machine

A Turing machine can be written to perform the addition of two numbers. Again
using unary representation, let’s agree to start with the two numbers on the
tape separated by a single blank cell. When the Turing machine halts, the tape
should contain the unary representation of the sum of the two numbers. The
separating blank should be gone. If we erase the leftmost 1 and then fill in the
separating blank with a 1, this has the effect of sliding the entire first number
one cell to the right on the tape. Also, both numbers are originally written on
the tape using unary representation, which means that there is an extra 1 for
each number. When we are finished, we want to have only one extra 1, for the
unary representation of the sum. Therefore, a second 1 should be removed from
the tape. Our plan is to erase the two leftmost 1s on the tape, proceed rightward
to the separating blank, and replace the blank with a 1.



For example, suppose we wish to add 2 + 3. The original tape representation
(rather than drawing the individual cells, we’ll just show the tape contents) is

. . . b b 1 1 1 b 1 1 1 1 b b . . .
2 3

and the final representation—somewhere on the tape—should be the unary
representation for the number 5,

. . . b b 1 1 1 1 1 1 b b b b . . .
5

Our algorithm will accomplish this transformation in stages. First, we erase
the leftmost 1:

. . . b b b 1 1 b 1 1 1 1 b b . . .

We then erase a second 1 from the left end (see Exercise 23 at the end of this
chapter for the case when there is no “second 1”):

. . . b b b b 1 b 1 1 1 1 b b . . .

and then move to the right and fill in the blank with a 1:

. . . b b b b 1 1 1 1 1 1 b . . .
5

The Turing machine begins in state 1, so we use that state to erase the
leftmost 1 and move right, changing to state 2. The job of state 2 is to erase
the second 1 and move right, changing to state 3. State 3 must move across
any remaining 1s until it encounters the blank, which it changes to a 1 and
then goes into a “halting state” with no instructions, state 4. A state diagram
(Figure 12.8) illustrates the desired transitions to next states.

Here is the Turing machine program:

1. (1,1,b,2,R)    Erase the leftmost 1 and move right.

2. (2,1,b,3,R)    Erase the second 1 and move right.

3. (3,1,1,3,R)    Pass over any 1s until a blank is found.

4. (3,b,1,4,R)    Write a 1 over the blank and halt.

Try “running” this machine on the preceding 2 + 3 problem.
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State 4State 1

1/b/R

State 2 State 3

1/b/R b/1/R

1/1/R

State Diagram for the Addition
Machine

FIGURE 12.8
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1. a. What should the output be when the parity bit Turing machine
is run on the input shown below?

. . . b 1 1 0 1 b . . .

b. Now run the parity bit Turing machine on this tape and see
whether you get the answer you expected from part a.

2. Set up the input and run the addition Turing machine to compute
3 + 4.

3. Write a Turing machine that, when run on the tape

. . . b 1 1 1 0 b . . .

produces an output tape of

. . . b 1 1 1 0 1 b . . .

PRACTICE PROBLEMS

In this laboratory experience you will run a Turing machine
simulator. Using Turing machine algorithms that we have
developed in the text, you can set up the input tape and
then run the machine. You can watch as the Turing
machine passes from state to state and see which instruc-
tion it is executing at each step.  You can also see whether
the input tape is modified at any step, and how (or
whether) the machine reaches a halting configuration. 

LABORATORY
EXPERIENCE 16

12.6 The Church–Turing Thesis

Just how good is the Turing machine as a model of the concept of an algo-
rithm? We’ve already seen that any Turing machine exhibits the properties of
an algorithm, and we’ve even produced Turing machine algorithms for a cou-
ple of important tasks. But perhaps we were judicious in our choice of tasks
and happened to use those for which Turing machine instructions could be
devised. We should ask whether there are other tasks that are “doable” by an
algorithm but not “doable” by a Turing machine.

Of course, the answer to this question is yes. A Turing machine cannot pro-
gram a DVR or shampoo hair, for example—tasks for which algorithms were
given in Chapter 1. But suppose we limit the task to one for which the input
and output can be represented symbolically, that is, using letters and numbers.
Symbolic representation is, after all, how we traditionally record information



such as names, addresses, telephone numbers, pay rates, yearly profits, tem-
peratures, altitudes, times, Social Security numbers, grade point averages,
growth rates, and so on. Taking a symbolic representation of information and
manipulating it to produce a symbolic representation of other information cov-
ers a wide range of tasks, including everything done by “traditional” comput-
ing. Now let’s ask a modified version of our previous question: Are there symbol
manipulation tasks that are “doable” by an algorithm but not “doable” by a
Turing machine?

The answer to this question is generally considered to be no, as stated by
the Church–Turing thesis, named for Alan Turing and another famous mathe-
matician, Alonzo Church.

Church–Turing Thesis: If there exists an algorithm to do a symbol
manipulation task, then there exists a Turing machine to do that task.

This is quite an extraordinary claim. It says that any symbol manipulation
task that has an algorithmic solution can also be carried out by a Turing
machine executing some set of Turing machine instructions. Processing the
annual Internal Revenue Service records, for example, or directing the guidance
and navigation systems on a space shuttle can be done (according to this claim)
using Turing machines. The thought of writing a Turing machine program to
process IRS records is mind-boggling, but our examples may have convinced you
that it is possible. Although such a program can be written, one can hardly
imagine how many centuries it would take to execute, even with a very rapid
“system clock.” But the Church–Turing thesis says nothing about how effi-
ciently the task will be done, only that it can be done by some Turing machine.
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The most prestigious technical award given by the Associ-
ation for Computing Machinery is the annual Turing
Award, named in honor of Alan Turing. It is sometimes
called the computer science Nobel Prize, and is given to an
individual selected for “contributions of lasting and major
technical importance to the computer field.” Some of the
individuals we’ve mentioned in this book have been recip-
ients of the Turing Award, which was first given in 1966:

1971: John McCarthy (Chapter 10)

1972: E. W. Dijkstra (Chapter 10)

1977: John Backus (Chapters 10 and 11)

1983: Dennis Ritchie (Chapter 10)

Other recipients of the award have made contributions in
areas we have discussed or will discuss in later chapters:

1975: Allen Newell as one of the founding fathers of artificial

intelligence (AI), beginning his work in this area in 1954 

(Chapter 15)

1981: Edgar F. Codd for fundamental contributions to database

management systems (Chapter 14)

1982: Stephen A. Cook for exploring the class of problems that in 

Chapter 3 we called “suspected intractable”

1986: John Hopcroft and Robert Tarjan for their work on analysis of algo-

rithms (Chapter 3)

1990: Fernando J. Corbato for pioneering work on general-purpose, time-

shared mainframe operating systems (Chapter 6)

1992: Butler Lampson for work in the 1970s and early 1980s on hardware 

and software that demonstrated solutions to problems of distributed 

computing done on personal workstations linked by a local area 

network (Chapter 7)

1999: Frederick P. Brooks, Jr. for landmark contributions to computer 

architecture, operating systems, and software engineering 

(Chapters 5, 6, 9)

2001: Ole-Johan Dahl and Kristen Nygaard for ideas fundamental to the

emergence of object-oriented programming (Chapter 9)

2002: R. Rivest, A. Shamir, and L. Adleman for seminal contributions to the 

theory and applications of cryptography (Chapter 8)

2004: Vinton Cerf and Robert Kahn for pioneering work on internetworking, 

including the design and implementation of the Internet’s basic com-

munications protocols, TCP/IP (Chapter 7)

2008: Barbara Liskov for contributions to practical and theoretical founda-

tions of programming language and system design (Chapters 6 and 9)

The Turing 
Award



There are really two parts to writing a Turing machine for a symbol
manipulation task. One part involves encoding symbolic information as
strings of 0s and 1s so that it can appear on Turing machine tapes. This is not
difficult, and we know that real computers store all information, including
graphical information, in binary. The other part is the heart of the challenge:
Given that we get the input information encoded on a Turing machine tape,
can we write the Turing machine instructions that produce the encoded form
of the correct output? Figure 12.9 illustrates the problem. The bottom arrow is
the algorithmic solution to the symbol manipulation task we wish to emulate.
To perform this emulation, we must first encode the symbolic input into a bit
string on a Turing machine tape (upward-pointing left arrow), write the
Turing machine that solves the problem (top arrow), and finally, decode the
resulting bit string into symbolic output (downward-pointing right arrow).
The Church–Turing thesis asserts that this process can always be done.

What exactly is a thesis? According to the dictionary, it is “a statement
advanced for consideration and maintained by argument.” That sounds less
than convincing—hasn’t the Church–Turing thesis been proved? No, and that’s
why it is called a thesis, not a theorem. Theorems are ideas that can be proved
in a formal, mathematical way, such as “the sum of the interior angles of a tri-
angle equals 180°.” The Church–Turing thesis can never be proved, because—
despite all our talk about algorithms and their properties—the definition of an
algorithm is still descriptive, not mathematical. It would be like trying to
“prove” that an ideal day at the beach is sunny and 85°F. We might all agree on
this, but we’ll never be able to “prove” it. Well, then, the Church–Turing thesis
makes a remarkable claim and can never be proved! Sounds pretty suspicious—
what are the arguments on its behalf? There are two.

One argument is that early on, when the thesis was first put forward,
whenever computer science researchers described algorithmic solutions for
tasks, they also tried to find Turing machines for those tasks. They were always
successful; no one was ever able to put forth an algorithm for a task for which
a Turing machine was not eventually found. This does not mean that no such
task exists, but it lends weight to a body of evidence in support of the thesis.

A second argument on behalf of the thesis is the fact that a number of
other mathematicians attempted to find models for computing agents and
algorithms. All of these proved to be equivalent to Turing machines and Turing
machine programs in that whatever could be done by these other computing
agents running their algorithms could also be done by a Turing machine run-
ning a Turing machine program, and vice versa. This suggests that the Turing
machine captures all of these other ideas about “algorithm.”
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Bit string on tape when 
Turing machine starts

Bit string on tape when 
Turing machine halts

Turing machine

Algorithm

Encoding Decoding

Symbolic input Symbolic output

Emulating an Algorithm by a
Turing Machine

FIGURE 12.9
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The Church–Turing thesis is now widely accepted by computer scientists.
They no longer feel it necessary to write a Turing machine when they talk
about an algorithmic computation. After describing an algorithm to carry out
some task, they simply say, Now let T be the Turing machine that does this
task. You may make your own decision about the Church–Turing thesis, but in
this book we will go along with convention and accept it as true. We therefore
accept the Turing machine as an ultimate model of a computing agent and a
Turing machine program as an ultimate model of an algorithm. We are saying
that Turing machines define the limits of computability—that which can be
done by symbol manipulation algorithms. What can be done by an algorithm is
doable by a Turing machine, and what is not doable by a Turing machine can-
not be done by an algorithm. In particular, if we find a symbol manipulation
task that no Turing machine can perform (in its elementary way of moving
around over a tape of 0s and 1s), then there is no algorithm for this task, and
no real computer, no matter how sophisticated, will ever be able to do it
either. That’s why the Turing machine is so important. You can now see where
this is all leading in terms of our search for a problem that has no algorithmic
solution. Suppose we can find a (symbol manipulation) problem for which we
can prove that no Turing machine exists to solve it. Then, because of the
Church–Turing thesis, no algorithm exists to solve it either. The problem is an
uncomputable or unsolvable problem.

If we pose a problem and try to construct a Turing machine to solve it but
are not successful, that alone does not prove that no Turing machine exists.
What we must do is actually prove that no one can ever find such a Turing
machine—that it is not possible for a Turing machine to exist that solves this
problem. It may appear that the introduction of Turing machines hasn’t
helped at all and that we are confronted by the same dilemma we faced at the
beginning of this chapter. But Alan Turing, in the late 1930s, found such a
problem and proved its unsolvability.

12.7 Unsolvable Problems

The problem Turing found is an ingenious one that itself involves Turing machine
computations. A Turing machine that is executing an algorithm (a collection of
Turing machine instructions) to solve some task must halt when begun on a tape
containing input appropriate to that task. On other kinds of input, the Turing
machine may not halt. It is easy enough for us to decide whether any specific
configuration of a given Turing machine is a halting configuration. If a Turing
machine program consists of the following four instructions:

(1,0,1,2,R)

(1,1,0,2,R)

(2,0,0,2,R)

(2,b,b,2,L)

then the configuration 

. . . b 1 1 b b b . . .

2



is a halting configuration because there is no instruction of the form (2,1,–,–,–).
It is also easy to see that this configuration will arise if the Turing machine is
begun on the tape

. . . b 0 1 b b b . . .

Similarly, we can see that if the Turing machine is begun on the tape

. . . b 1 b b b . . .

then it will never halt. Instead, after the first step (clock tick), the machine
will cycle forever between the two configurations 

. . . b 0 b b b . . . and . . . b 0 b b b . . .

2 2

In a more complicated case, however, if we know the Turing machine program
and we know the initial contents of the tape, then it may not be so easy to
decide whether the Turing machine will eventually halt when begun on that
tape. Of course, we can always simply execute the Turing machine—that is,
carry out the instructions. We don’t have all day to wait for the answer, so
we’ll set a time-out for our Turing machine system clock. Let’s say we are will-
ing to wait for 1,000 clock ticks. If we come to a halting configuration within
the first 1,000 steps, then we know the answer: this Turing machine, running
on this input tape, halts. But suppose we do not come to a halting configura-
tion within the first 1,000 clock ticks. Can we say that the machine will never
halt? Should we wait another 1,000 clock ticks? 10,000 clock ticks? Just run-
ning the Turing machine doesn’t necessarily enable us to decide about halting.

Here is the problem we propose to investigate:

Decide, given any collection of Turing machine instructions together
with any initial tape contents, whether that Turing machine will ever
halt if started on that tape.

This is a clear and unambiguous problem known as the halting problem. Does
it have a Turing machine solution? Can we find one Turing machine that will
solve every instance of this problem—that is, one that will give us the answer
“Yes, halts” or “No, never halts” for every (Turing machine, initial tape) pair?

This is an uncomputable problem; we will show that no Turing machine
exists to solve this problem. Remember that we said it was not sufficient to
look for such a machine and fail; we actually have to prove that no such
machine can exist. The way to do this is to assume that such a Turing machine
does exist and then show that this assumption leads to an impossible situa-
tion, so such a machine could not exist after all. This approach is called a
proof by contradiction.

Assume, then, that P is a Turing machine that solves the halting problem.
On the initial tape for P we have to put a description—using the binary digits 0
and 1—of a collection T of Turing machine instructions, as well as the initial
tape content t on which those instructions run. This is the encoding part of
Figure 12.9. Translating Turing machine instructions into binary form is tedious
but not difficult. For example, we can use unary notation for machine states
and tape symbols, designate the direction in which the read unit moves by 1 for
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R (right) and 11 for L (left), and separate the parts of a Turing machine instruc-
tion by 0s. Let’s use T* to symbolize the binary form of the collection T of Turing
machine instructions. P is then run on a tape containing both T* and t, so the
initial tape for P looks like the following, where T* and t may occupy many cells
of the tape.

. . . b b T * b t b b . . .

Our assumption is that P will always give us an answer (“Yes, halts” or “No,
never halts”). P ’s yes/no answer would be its output—what is written on the
tape when P halts; therefore P itself must always halt. Again, because the out-
put is written on P ’s tape, it also has to be in binary form, so let’s say that a
single 1 and all the rest of the blanks represents “yes,” and a single 0 and all
the rest of the blanks represents “no.” This is the decoding part of Figure 12.9.
To summarize:

When begun on a tape containing T* and t

P halts with 1 on its tape exactly when T eventually halts when
begun on t

P halts with 0 on its tape exactly when T never halts when
begun on t

Figure 12.10 is a pictorial representation of the actions of P when started on a
tape containing T* and t.

When P halts with a single 1 on its tape, it does so because there are no
instructions allowing P to proceed in its current state when reading 1. For
example, P might be in state 9, and there is no instruction of the form

(9,1,–,–,–)

for machine P. Let’s imagine adding more instructions to P to create a new
machine Q that behaves just like P except that when it reaches this same config-
uration, it moves forever to the right on the tape instead of halting. To do this,
pick some state not in P, say 52, and add the following two new instructions to P:

(9,1,1,52,R)

(52,b,b,52,R)
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T*btInput

P

Halts with
1 on tape
exactly when
T eventually
halts on t

Output

Halts with
0 on tape
exactly when
T never
halts on t

Hypothetical Turing Machine P
Running on T* and t

FIGURE 12.10



Figure 12.11 represents Q’s behavior when started on a tape containing T* and t.
Finally, we’ll create a new machine S. This machine first makes a copy of

what appears on its input tape. (This is a doable, if tedious, task. The machine
must “pick up” a 0 or 1 by going to a particular state, move to another part of
the tape, and write a 0 or 1, depending on the state. It travels back and
repeats the process; however, each time it picks up a 0 or 1, it must mark the
tape with some marker symbol, say X for 0 and Y for 1, so that it doesn’t try
to pick them up again. At the end of the copying, the markers must be
changed back to 0s and 1s.) After S is finished with its copying job, it uses the
same instructions as machine Q.

Now what happens when machine S is run on a tape that contains S*, the
binary representation of S’s own instructions? S first makes a copy of S* and then
turns the computation over to Q, which is now running on a tape containing S*
and S*. Figure 12.12 shows the result; this figure follows from Figure 12.11 where
T* and t are both S*. Figure 12.12 represents the behavior of S running on input
S*. The final outcome is either (left output)

S running on input S* never halts

exactly when S halts running on S*—this is a contradiction

or (right output)

S running on input S* halts with 0 on the tape

exactly when S never halts running on S*—also a contradiction

(Perhaps you’ll need to read this several times while looking at Figure 12.12 to
convince yourself of what we have said.) We have backed ourselves into a cor-
ner here, but that’s good. This is exactly the impossible situation we were
hoping to find.

We assumed that there was a Turing machine that could solve the halting
problem, and this assumption led to an impossible situation. The assumption
is therefore incorrect, and no Turing machine can exist to solve the halting
problem. Therefore, no algorithm can exist to solve this problem. The halting
problem is an example of an unsolvable or uncomputable problem.

The halting problem seems rather abstract; perhaps we don’t care whether
it is unsolvable. However, real computer programs written in real programming
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languages to run on real computers are also symbol manipulation algorithms
and, by the Church–Turing thesis, can be simulated by Turing machines. This
means that the unsolvability of the halting problem has practical conse-
quences. For example, we know that some C++, Java, or Python programs can
get stuck in infinite loops. It would be nice to have a program that you could
run ahead of time on any C++, Java, or Python program, together with its
input, that would tell you, Uh-oh, if you run this program on this input, it
will get into an infinite loop, or No problem, if you run this program on this
input, it will eventually stop. The unsolvability of the halting problem says
that no such program is possible. Other unsolvable problems, related to the
halting problem, have the following practical consequences:

• No program can be written to decide whether any given program
always stops eventually, no matter what the input.

• No program can be written to decide whether any two programs are
equivalent (will produce the same output for all inputs).

• No program can be written to decide whether any given program run
on any given input will ever produce some specific output.

This last case means it is impossible to write a general automatic program
tester—one that for any program can check whether, given input A, it pro-
duces correct output B. That is why program testing plays such an important
role in the software development life cycle described in Chapter 9.

It is important to note, however, that these problems are unsolvable
because of their generality. We are asking for one program that will decide
something about any given program. It may be very easy to write a program A
that can make a decision only about a specific program B by utilizing special-
ized properties of B. (Analogy: If I ask you to be ready to write “I love you” in
English, you can do it; if I ask you to be ready to write “I love you” in any lan-
guage I might later specify, you can’t do it.)
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Unsolvable problems are not confined to problems about
running programs (Java programs, C++ programs, Python
programs, or Turing machines).

In Chapter 11 we talked about grammars that can be
described in Backus-Naur Form (BNF) and about how a
compiler parses a programming language statement by
applying the rules of its grammar. We noted that ambigu-
ous grammars are not suitable for programming languages
because they can allow multiple interpretations of a state-
ment. It would be nice to have a test (an algorithm) to
decide whether any BNF grammar is ambiguous. This is an
unsolvable problem—no such algorithm can exist. Decid-
ing whether any two such grammars produce the same lan-
guage is also unsolvable.

One of the earliest “decision problems” was posed by
the British mathematician David Hilbert in 1900. Consider
quadratic equations of the form

ax2 + bx – c = 0

where a, b, and c are integers. We can easily decide
whether any one such equation has integer solutions by
applying the quadratic formula to solve the equation. But
consider more general polynomial equations in several
unknowns, such as

ax4 + by2 + cz6 + dw4 + e = 0

where the unknowns are x, y, z, and w and the coefficients
(a, b, c, d, and e) are integers. Is there an algorithm to
decide whether any such equation has integer solutions?
In 1970, this problem was finally shown to be unsolvable.

Couldn’t Do, Can’t Do, 
Never Will Be Able to . . .

Using the same Turing machine simulator as before, you
can now design and run your own Turing machine algo-
rithms for simple problems.  You will add states to an ini-
tially empty machine by describing the purpose of the new
state and adding instructions for that state.  You then run
your machine on an appropriate input tape to see whether
it behaves as intended.

LABORATORY
EXPERIENCE 17

1. Explain how a proof by contradiction is done.

2. a. Write in your own words a description of the halting problem.
b. Write a paragraph that describes the proof of the unsolvability of

the halting problem.

PRACTICE PROBLEMS



52512.9 Summary of Level 4 LEVEL 4

12.8 Conclusion

We began this chapter by proposing that there exist problems for which no
solution algorithm exists. To prove such a statement, we looked for appropri-
ate models of “computing agent” and “algorithm” that would enable us to con-
centrate on the fundamental nature of computation. We discussed the nature
of models in general and their importance in helping us understand real phe-
nomena. After developing a list of properties inherent in any computing
agent, we defined the Turing machine, noted that it incorporates these prop-
erties, and accepted it as a model of a computing agent. A Turing machine
program incorporates the properties of an algorithm described in Chapter 1, so
we accepted it as a model of an algorithm. Are these good models? Do they
capture everything that is fundamental about computing and algorithms?
After looking at a few Turing machines devised to do some simple tasks, we
stated our position with a resounding yes in the form of the Church–Turing
thesis: Not only is a Turing machine program an example of an algorithm, but
every symbolic manipulation algorithm can be done by a Turing machine (we
believe). This leap of faith—putting total confidence in Turing machine pro-
grams as models of algorithms—allows us to define the boundaries of com-
putability. If it can’t be done by a Turing machine, then it is not computable.
Thus, the real value of Turing machines as models of computability is in
exposing problems that are uncomputable—problems for which no algorithmic
solution exists no matter how intelligent we are or how long we keep looking.
As a practical matter, recognizing uncomputable problems certainly saves
time; we are less likely to devote our lives to searching for algorithms that can
never be. As a philosophical matter, it is important to know that computabil-
ity has its limits, beyond which lies the great abyss of the uncomputable!

Uncomputable!

Computable

Turing-computable

↔

12.9 Summary of Level 4

In Level 4, “The Software World,” we examined in some detail your choice of
one procedural programming language as an example of a means for express-
ing algorithms at a high level of abstraction. Other high-level languages exist,
including other procedural languages, special-purpose languages, and those
that follow other philosophies, such as functional languages and logic-based
languages. Because algorithms written in high-level languages ultimately run
on low-level hardware, program translators must convert from one level of



algorithmic expression to another. We’ve looked at the series of tasks that a
language compiler must be able to perform to carry out this conversion. This
final chapter of Level 4 proved that there are limits to computability—that
there exist problems that can never be solved algorithmically.

With all of the hardware and software mechanisms in place to implement
algorithmic problem solutions, we are ready to proceed to the next level—the
level of applications—to see some of the ways in which computers (and algo-
rithms) are being put to use.

The first application we examine relates very closely to what we have
discussed in this chapter—building models. In this chapter we constructed a
formal model of an algorithm to prove the existence of unsolvable problems,
but in Chapter 13 we will build simulation models that help us to solve impor-
tant problems such as predicting the weather, creating new medicines, track-
ing our economy, and designing safe and efficient airplanes.

526 LEVEL 4 CHAPTER 12: Models of Computation



In this set of exercises, when writing Turing machine algo-
rithms, include comments for each instruction or related
group of instructions. The comments should convey informa-
tion in terms of the algorithm the Turing machine is accom-
plishing. Thus, the instruction

(1,0,0,1,R)

might have a comment such as, “Pass to the right over all the
0s,” not a comment such as, “In state 1 looking at a 0, write a 0,
stay in state 1, and move right,” which provides no additional
information.

1. Describe what factors might be included in a model for
the spread of an epidemic.

2. Say an automobile manufacturer designs a new car using
a sophisticated and detailed computer simulation, but no
prototype vehicles, and the automobile is later found to
have a defect. Do you think the manufacturer is account-
able? Is the manufacturer accountable if it builds proto-
types that do not reveal the defect, but does not do a
simulation?

3. Give an example of a potential use of computerized mod-
els in
a. The pharmaceutical industry
b. The food processing industry
c. The insurance industry

4. Which of the following can be considered computing
agents and why?
a. A clock radio
b. A thermostat
c. A video camera
d. A programmable calculator

5. Given the Turing machine instruction

(1,1,0,2,L)

and the configuration

. . . b 1 0 b . . .

1

draw the next configuration.

6. A Turing machine contains only the following instructions:

(1,1,1,1,R)

(1,b,1,2,R)

Can this machine ever reach the following configuration?
Explain your answer.

. . . b 0 1 b . . .

1

7. Find the output for the Turing machine

(1,1,1,2,R)

(1,0,0,2,R)

(1,b,1,2,R)

(2,0,0,2,R)

(2,1,0,1,R)

when run on the tape

. . . b 1 0 0 1 b . . .

8. Find the output for the Turing machine

(1,1,1,2,L)

(2,b,0,3,L)

(3,b,1,4,R)

(4,0,1,4,R)

when run on the tape

. . . b 1 b . . .

9. Describe the behavior of the Turing machine

(1,1,1,1,R)

(1,0,0,2,L)

(2,1,0,2,L)

(2,b,1,3,L)

(3,b,b,1,R)

when run on the tape

. . . b 1 0 1 b . . .

10. Describe the behavior of the following Turing machine on
any input tape containing a binary string:

(1,1,1,1,R)

(1,0,0,1,R)

(1,b,1,1,R)

11. Write a Turing machine that, when run on the tape

. . . b 1 1 1 1 1 b . . .

produces an output tape of

. . . b 0 1 1 1 1 b . . .

You can accomplish this using only one instruction.

12. Say a Turing machine is supposed to change any string of
1s to a string of 0s. For example,

. . . b 1 1 1 b . . .

should become

. . . b 0 0 0 b . . .
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Will the following Turing machine do the job? Why or
why not?

(1,1,0,2,R)

(2,1,0,3,R)

(3,1,0,4,R)

13. a. Write a Turing machine that, when run on the tape

. . . b 1 1 1 1 1 b . . .
produces an output tape of

. . . b 1 1 1 1 0 b . . .
b. Write a Turing machine that, when run on any tape

containing a unary string, changes the rightmost 1 to
0 and then halts. (If your solution to part (a) was suf-
ficiently general, you will not have to change it here.)

14. Write a Turing machine to perform a unary decrement
(the opposite of an increment). Assume that n > 0.

15. Write a Turing machine to perform a unary decrement.
Assume that n may be 0, in which case a single 0 should
be output on the tape to signify that the operation
results in a negative number.

16. Write a Turing machine that operates on any binary
string and changes it to a string of the same length with
all 1s. It should, for example, change the tape

. . . b 0 1 1 0 1 0 b . . .

to

. . . b 1 1 1 1 1 1 b . . .

However, you must write instructions that allow your Tur-
ing machine to work on any binary string, not just the
one shown here.

17. Write a Turing machine that operates on any string of 1s
and changes it to a string of alternating 1s and 0s.

18. Write a Turing machine that begins on a tape containing
a single 1 and never halts but successively displays the
strings

. . . b 1 b . . .

. . . b 0 1 0 b . . .

. . . b 0 0 1 0 0 b . . .

and so on.

19. Write a Turing machine that operates on the unary repre-
sentation of any number and decides whether the number
is 0; your machine should produce an output tape contain-
ing the unary representation of 1 if the number was 0 and
the unary representation of 2 if the number was not 0.

20. A palindrome is a string of characters that reads the
same forward and backward, such as radar or IUPUI.
Write a Turing machine to decide whether any binary
string is a palindrome by halting with a blank tape if the
string is a palindrome and halting with a nonblank tape
if the string is not a palindrome.

Note: The world’s longest single-word palindrome is
the Finnish word for “lye dealer”:
Saippuakivikauppias
Other palindromes include: 
Slap a ham on Omaha pals
Do geese see god
A man a plan a canal Panama

21. Write a Turing machine that takes any unary string of an
even number of 1s and halts with the first half of the
string changed to 0s. (Hint: You may need to use a
“marker” symbol such as X or Y to replace temporarily any
input symbols you have already processed and do not
want to process again; at the end, your program must
“clean up” any marker symbols.)

22. Write a Turing machine that takes as input the unary rep-
resentation of any two different numbers, separated by a
blank, and halts with the representation of the larger of
the two numbers on the tape. (Hint: You may need to use
a “marker” symbol such as X or Y to replace temporarily
any input symbols you have already processed and do not
want to process again; at the end, your program must
“clean up” any marker symbols.)

23. The Turing machine described in Section 12.5.4 to add
two unary numbers was designed to erase the two left-
most 1s on the tape, move to the right to the blank sep-
arating the two numbers, and replace the blank with a 1.
If the first of the two numbers being added is 0, then
there are not two 1s before the separating blank. Does
the algorithm still work in this case?

24. Draw a state diagram for a Turing machine that takes any
string of 1s and changes every third 1 to a 0. Thus, for
example,

. . . b 1 1 1 1 1 1 b . . .

becomes

. . . b 1 1 0 1 1 0 b . . .

25. Draw a state diagram for a Turing machine that incre-
ments a binary number. Thus, if the binary representation
of 4 is initially on the tape,

. . . b 1 0 0 . . .

then the output is the binary representation of 5,

. . . b 1 0 1 . . .

or if the initial tape contains the binary representation of 7,

. . . b 1 1 1 b . . .

then the output is the binary representation of 8,

. . . b 1 0 0 0 b . . .

26. Analyze the time and space efficiency of the following
Turing machine operating on a unary string of length n.

(1,1,1,1,R)

(1,b,b,2,L)
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(2,1,0,2,L)

(2,b,b,3,R)

(3,0,1,3,R)

27. Suppose we already have Turing machine instructions to
copy a unary string; we also know how to add two unary
numbers. Describe (in words only) the design of a Turing
machine to multiply two unary numbers.

28. Two other Turing machine unary addition algorithms follow.
1. Fill in the separating blank with a 1, go to the far

right end and erase two 1s
2. Erase a 1 on the left end, fill in the separating blank

with a 1, erase a 1 on the right end

a. Do both of these algorithms work correctly?
b. Write the Turing machine for each of these algorithms.
c. Informally, which of the three addition algorithms

(the one given in the chapter and these two) seems
most time-efficient?

d. Suppose that the numbers to be added are n and m. The
original tape contains the unary representation of n, fol-
lowed by a blank, followed by the unary representation
of m. Write exact expressions in terms of n, m, or both
for the time efficiency of each of the three algorithms.
Does this confirm your answer from part (c)?

e. Again assuming that the numbers to be added are n
and m, write an exact expression for the space effi-
ciency of each of the three algorithms.

29. Your boss gives you a computer program and a set of
input data and asks you to determine whether the pro-
gram will get into an infinite loop running on these
data. You report that you cannot do this job, citing the
Church–Turing thesis. Should your boss fire you?
Explain.

30. What is the significance of the unsolvability of the halt-
ing problem?

31. The uniform halting problem is to decide, given any col-
lection of Turing machine instructions, whether that Turing
machine will halt for every input tape. This is an unsolvable
problem. Which of the three practical consequences
of unsolvability problems described in Section 12.7
(page 521) follows from the uniform halting problem?

32. The 10-step halting problem is to decide, given any
collection of Turing machine instructions, together with
any initial tape contents, whether that Turing machine
will halt within 10 steps when started on that tape.
Explain why the 10-step halting problem is computable.
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1. Several alternative definitions of Turing machines exist,
all of which produce machines that are equivalent in
computational ability to the Turing machine defined in
this chapter. One of these alternative definitions is the
multitrack Turing machine. In a multitrack Turing
machine, there are multiple tapes. The machine reads a
cell from each of the tapes and, on the basis of what it
reads, it writes a symbol on each tape, changes state,
and moves left or right. Figure 12.13 shows a two-track
Turing machine currently in state 1 reading a 1 on the
first tape and a 0 on the second tape.

An instruction for this Turing machine has the follow-
ing form:

(current state, current first tape symbol, next first
tape symbol, current second tape symbol, next sec-
ond tape symbol, next state, direction of move)

An instruction of the form (1,1,0,0,0,2,R) applied to the
machine configuration of Figure 12.13 results in the con-
figuration shown in Figure 12.14.

C H A L L E N G E  WO R K

A Two-Track Turing Machine

FIGURE 12.13
. . . b b 1 1 1 b b . . .

. . . b b 0 1 1 0 b . . .

y
1



As in the original Turing machine definition, some
conventions apply. Each tape can contain only a finite
number of nonblank symbols, and the leftmost nonblank
symbols must initially “line up” on the two tapes. The
read head begins in this leftmost nonblank position in
state 1. At any time, if no instruction applies to the cur-
rent machine configuration, the machine halts.
a. Design a two-track Turing machine that compares two

binary strings and decides whether they are equal. If
the strings are equal, the machine halts in some fixed
state; if they are not equal, the machine halts in some
other fixed state.

b. Solve this same problem using the Turing machine
defined in this chapter.

c. Prove the following statement: Any computation that
can be carried out using a regular Turing machine can
be done using a two-track Turing machine.

d. On the basis of parts (a) and (b), make an argument
for the following statement: Any computation that
can be carried out using a two-track Turing machine
can be done using a regular Turing machine.

2. Read some biographical information on Alan Turing and
write a report on his life, concentrating particularly on
his contributions in computability theory, cryptography,
and artificial intelligence.
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New Configuration for the 
Two-Track Machine

FIGURE 12.14
. . . b b 0 1 1 b b . . .

. . . b b 0 1 1 b b . . .

y
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A classic explanation of Gödel’s work on the limitations of formal systems describing
arithmetic can be found in

Nagel, E., and Newman, J. R. “Gödel’s Proof,” Scientific American (June 1956).
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LEVEL 5

Level 4 focused on programming languages and software
development. In this section, titled Applications, we
answer the question, What kind of programs do we want
to write? Now that we have introduced the hardware
(Level 2) and software (Levels 3, 4) tools that implement
algorithms, we need to take a look at the types of prob-
lems we wish to address using these tools.

Of course, there are far too many applications to sur-
vey them all; indeed, there is hardly an area of society
that has not been significantly influenced and changed
by the rapid growth of information technology. Therefore,
rather than trying to briefly survey a large number of
applications, we will, instead, examine a few important
applications in depth. These applications exemplify the
enormous effect that computing has on our work and on
our lives.
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13.1 Introduction

The computational devices of the nineteenth and early twentieth centuries were
used to solve important mathematical and scientific problems of the day. We saw
this in the historical review of computing in Chapter 1: Charles Babbage’s Differ-
ence Engine evaluated polynomial functions; Herman Hollerith’s punched card
machines carried out a statistical analysis of the 1890 census; ENIAC computed
artillery ballistic tables; and Alan Turing’s Colossus cranked away at Bletchly
Park, breaking the “unbreakable” German Enigma code. The users of these early
computing devices were primarily mathematicians, physicists, and engineers.

Today, there is hardly a field of study or aspect of our society—from art to
zoology, business to entertainment—that has not been profoundly changed by
information technology. Now we use computers in many “nonscientific” ways,
such as playing games (a topic we will investigate in Chapter 16), surfing the
Web, listening to music, and sending e-mail.

However, the physical, mathematical, engineering, and economic sciences
are still some of the largest users of computing and information technology.
In this chapter we investigate perhaps the single most important scientific
use of computing—computational modeling. This application is having a
major impact on a number of quantitative fields, including chemistry, biology,
medicine, meteorology, ecology, geography, and economics.

13.2 Computational Modeling

13.2.1 Introduction to Systems and Models

The scientific method entails observing the behavior of a system and formulat-
ing a hypothesis that tries to explain its behavior. We then design and carry out
experiments to either prove or disprove the validity of that hypothesis. This is
the fundamental way to obtain new scientific knowledge and understanding.

Scientists often work with a model of a system rather than experimenting
on the “real thing.” A model, as defined in Section 12.2, is an abstraction of
the system being studied, which we claim behaves much like the original. If
that claim is true, then we can experiment on the model and use these results
to understand the behavior of the actual system. For example, physical models
(small-scale replicas) have been in use for many years, and we are all familiar
with the idea of testing a model airplane in a wind tunnel to understand how
the full-sized aircraft would behave.



In this chapter we are not interested in physical models but in
computational models, also called simulation models. In a computer simu-
lation, a physical system is modeled as a set of mathematical equations
and/or algorithmic procedures that capture the fundamental characteristics
and behavior of a system. This model is then translated into one of the high-
level languages of Chapters 9 and 10 and executed on the Von Neumann com-
puter described in Chapters 4 and 5.

Why construct a simulation model? Why not study the system itself, or a
physical replica of the system? There are many reasons:

• Existence. The system may not exist; therefore, it is not possible to
experiment directly on the actual system.

• Physical realization. The system is not constructed from entities that
can be represented by physical objects. For example, it may be a social
system (e.g., welfare policies, labor practices) that can only be simu-
lated on a computer.

• Safety. It may be dangerous to experiment on the actual system or a
physical replica. For example, you would not want to try out a totally
new welfare policy that could economically devastate a population or
build a nuclear reactor using a new and unproven technology.

• Speed of construction. It may take too much time to construct a physical
model. Sometimes it is faster to design and build a computer simulation.

• Time scale. Some physical systems change too slowly or too quickly. For
example, an elementary particle in a high-speed accelerator may
decompose in 10-15 seconds. At the other end of the time scale, some
ecosystems take thousands of years to react to a modification. A simu-
lation can easily model fractions of a second or billions of years,
because time is simply a parameter in an equation.

• Ethical behavior. Some physical models have serious moral and ethical
consequences, perhaps the best known being the use of animals for
medical research. In this case, a computational model could eliminate
a great deal of suffering.

• Ease of modification. If we are not happy with our original design, we
would need to construct a brand new physical model. In a simulation, we
only need to change some numerical parameters and rerun the model.

This last advantage—ease of modification—makes computational model-
ing a particularly attractive tool for designing totally new systems. We initial-
ize the system, observe its response, and if we are not satisfied, modify the
parameters and run the model again. We repeat this process over and over,
always trying to improve performance. Only when we think we have created
the best design possible would we actually build it. This “interactive”
approach to design, sometimes called computational steering, is usually
infeasible using physical models, as it would take too much time. This interac-
tive design methodology is diagrammed in Figure 13.1.

Computational models are therefore an excellent way to design new sys-
tems and to study and improve the behavior of existing systems. Virtually
every branch of science and engineering makes use of models, and it is not
unusual today to see chemists, biologists, physicists, ecologists, and physicians
conducting research at their computer screens rather than in the laboratory.

53713.2 Computational Modeling LEVEL 5



Computational models often use advanced mathematical techniques far
beyond the scope of this text (and solving them often requires the large-scale
parallel computers mentioned in Chapter 5). Therefore, in the following pages
we often rely on rather simple examples, far simpler than the models you will
encounter in the real world. However, even these simple examples illustrate
the enormous power and capabilities of computational modeling.

13.2.2 Computational Models, Accuracy, and Errors

Legend says that in the late sixteenth century the famed scientist Galileo
Galilei dropped two balls from the top of the Tower of Pisa—a massive iron
cannonball and a lighter wooden one—to disprove the Aristotelian Theory,
which predicted that heavy objects would fall faster than light ones. When
Galileo dropped the two balls they hit the ground at the same time, exactly as
he had hypothesized. Whether this event actually took place (and there is
considerable debate), it is an excellent example of scientific experimentation
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using a physical system, in this case two balls of different weight, a high plat-
form, and the earth below.

Today, we do not need to climb the Tower of Pisa because there is a well-
known mathematical model that describes the behavior of a falling mass acted
upon only by the force of gravity:

d = vinit t + 1/2 gt2

This equation says that if a mass in free fall has an initial velocity vinit
meters/sec at time 0, then at time t it will have fallen a distance of d meters.
(Notice that the object’s mass is not part of the equation. This is exactly what
Galileo was trying to demonstrate.) The factor g is the acceleration due to grav-
ity, which is assumed to be 9.8 meters/sec2 everywhere along the Earth’s surface.

Using this model, we can reproduce aspects of Galileo’s sixteenth-century
experiment without having to travel to Italy. For example, we can determine
the time when the two balls Galileo dropped from the 54-meter high Tower of
Pisa would have hit the ground, assuming that their initial velocity was 0.0:

54 = (0 * t) + 1/2 * 9.8 * t2

t2 = 11.02
t = 3.32 seconds

This simple example shows the beauty and simplicity of computational
models. Such models can provide quick answers to questions without the cum-
bersome setup often required of physical experiments. This model is also easy
to modify. For example, if we want to know how long it takes those same two
balls to hit the ground when dropped from a height of 150 meters, rather than
54, we reset d to 150 and solve the same equation:

150 = (0 * t) + 1/2 * 9.8 * t2

t2 = 30.6
t = 5.53 seconds

To use a physical model, Galileo would have had to scour the sixteenth-century
world for a 150-meter high tower. (A mathematical model is also much safer
because no one ever fell off the top of an equation!)

Unfortunately, modeling is not quite as simple as we have just described,
and there are a number of issues that must be addressed and solved to make
this technique workable.

The first issue is achieving the proper balance between accuracy and
complexity. Our model must be an accurate representation of the physical
system, but at the same time, it must be simple enough to implement as a
program or set of equations and solve on a computer in a reasonable amount
of time. Often this balance is not easy to achieve, as most real-world systems
are acted upon by a large number of factors. We need to decide which of those
factors are important enough to be included in our model and which can
safely be omitted.

For example, the model of a falling body given earlier is inaccurate
because it does not account for the effects of air resistance. (It is only an
appropriate model if the object is falling in a vacuum.) Whereas the effect of
air resistance on a cannonball may be minimal, imagine dropping a feather!
The model would produce inaccurate results, and our conclusions about how
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the system behaves would be wrong. It is obvious that we need to incorporate
the effects of air resistance into our model if we have any hope of producing
worthwhile and useful results.1

Our model also assumes that the Earth is a perfect sphere and that the
acceleration due to gravity is the same everywhere along its surface. That
assumption is not quite true. The Earth is a “slightly squashed” sphere with a
radius of 6,378 km at the equator and 6,357 km at the poles. This means that
the acceleration due to gravity is a tiny bit greater at the North and South
Poles than at the equator, because the poles are 21 km closer to the center of
the Earth. Is this something for which we should account? Is it important
when constructing a model of a freely falling body? In this case probably not,
because the miniscule error resulting from this approximation will almost cer-
tainly not affect our conclusions.

This is how computational models are built. We include the truly important
factors that act upon our system so that our model is an accurate representa-
tion but omit the unimportant factors that make the model harder to build,
understand, and solve. As you might imagine, identifying these factors and dis-
tinguishing the important from the unimportant can be a daunting task.

Another problem with building simulations is that we may not know, in a
mathematical sense, exactly how to describe certain types of systems and
behaviors. The gravitational model given earlier is an example of a continuous
model. In a continuous model, we write out a set of explicit mathematical
equations that describes the behavior of a system as a continuous function of
time t. These equations are then solved on a computer system to produce the
desired results. Unfortunately, there are many systems that cannot be modeled
using precise mathematical equations because researchers have not discovered
exactly what those equations should be. Simply put, science is not yet suffi-
ciently knowledgeable about how some systems function to characterize their
behavior using explicit mathematical formulae.

In some cases what makes these systems difficult to model is that they
contain stochastic components. This means that there are parts of the sys-
tem that display random behavior, much like the throw of the dice or the
drawing of a card. In these cases, we cannot say with certainty what will hap-
pen to our system because it is the very essence of randomness that we can
never know what event will occur next. An example of this is a model of a
business in which customers walk into the store at random times. In these
cases we need to build models that use statistical approximations rather
than precise and exact equations. We will present one such example in the fol-
lowing section.

In summary, computational modeling is a powerful but complex tech-
nique for designing and studying systems. Building a good model can be a dif-
ficult task that requires us to capture, in computational form, all the
important factors that influence the behavior of a system. If we are able to
successfully build such a model, then we have at our disposal a powerful tool
for studying the behavior of that system. This is how a good deal of quantita-
tive research is being done today. Simulation is also an interesting area of
study within computer science itself. Researchers in this field create new
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techniques, both algorithms and special-purpose languages, that allow users
to design and implement computer models more quickly and easily.

13.2.3 An Example of Model Building

As we mentioned at the end of the previous section, there are many ways to
build a model, but most of them require mathematical techniques far beyond
the scope of this text. In this section we will construct a model using a
method that is relatively easy to understand and does not require a lot of com-
plex mathematics. It is called discrete event simulation, and it is one of the
most popular and widely used techniques for building computer models.

In a discrete event simulation, we do not model time as continuous, like
the falling body model in the last section, but as discrete. That is, we model
the behavior of a system only at an explicit and finite set of times. The
moments we model are those times when an event takes place, an event being
any activity that changes the state of our system. For example, if we are mod-
eling a department store, an event might be a new customer entering the store
or a customer purchasing an item.

When we process an event, we change the state of the simulated system
in the same way that the actual system would change if this event had
occurred in real life. In the case of a department store, this might mean that
when a customer arrives we add one to the number of customers currently in
the store or, if a customer buys an item, we decrease the number of these
items on the shelf. Furthermore, the processing of one event can cause new
events to occur some time in the future. For example, a customer coming into
a store creates a later event related to that customer leaving the store. When
we are finished processing one event we move on to the next, skipping those
times when nothing is happening, that is, when there are no events scheduled
to occur.

Figure 13.2(a) shows system S and three events scheduled to occur within
system S: event E1 at time 9:00, event E2 at time 9:04, and event E3 at time 9:10. 

Because E1 is the event currently being processed, the variable current
time, which functions like a “simulation clock,” has the value 9:00. Let’s
assume that E1 causes a new event, E4, to be created and scheduled for time
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9:17. We add this new event to the list of all scheduled events. When we are
finished processing event E1, we remove it from the list and determine the
next event scheduled to occur in system S, in this case E2. We move current
time ahead to 9:04, skipping the period 9:01–9:03, because nothing of inter-
est happens, and begin processing E2. The new list of events scheduled for sys-
tem S is shown in Figure 13.2(b).

We repeat this same sequence—process an event, remove it from the list,
add newly created events to the list, move on to the next event—as long as
desired. The variable current time keeps advancing as we process the events in
strict time order. Typically the simulation is terminated when current time
reaches some upper bound. For example, in a department store we might
choose to run the model until closing time. When the simulation is complete,
the program displays a set of results that characterizes the system’s behavior
and allows the user to examine these results at their leisure.

Let’s apply this modeling technique to an actual problem. Assume that you
are the owner of a new take-out restaurant, McBurgers, currently under con-
struction. You want to determine the proper number of checkout stations
needed in your new store. This is an important decision because, if there are
too few checkout stations, the lines will get long and customers will leave. If
there are too many checkout stations, you will waste money paying for unnec-
essary construction costs, equipment, and personnel. Because you took a com-
puter science class in school, you decide to build a simulation model of your
new restaurant and use this model to determine the optimal number of servers.

The system being simulated is shown in Figure 13.3. Customers enter the
restaurant and wait in a single line for service. If any of the N servers is avail-
able, where N is an input value provided by the user, the first customer in line
goes to that station, places an order, waits until the order is processed, pays,
and departs. During that time the server is busy and cannot help anyone else.
When the server is finished with a customer, he or she can immediately begin
serving the next person, if someone is in line. If no one is waiting, then the
server waits until a new customer arrives.

To create a model, we must first identify the events that can change the
state of our system and thus need to be included in the model. In this exam-
ple there are two: a new customer arriving and an existing customer departing
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after receiving food and paying. An arrival changes the system because either
the waiting line grows longer or an idle cashier becomes busy. A departure
changes the system because the cashier serving that customer either begins
serving a new customer or becomes idle because no one is in line.

For each of these two events we must develop an algorithm that describes
exactly what happens to our system when the event occurs. Figure 13.4 shows
the algorithm for the new customer arrival event.

Let’s look at this algorithm in more detail. When a new customer arrives,
we record the time. The arrival time of each new customer is stored in a sepa-
rate variable until that customer is served and departs. As we mentioned ear-
lier, when the simulation is finished, we want to display a set of results that
allows a user to determine how well the system performed. The total time a cus-
tomer spends in the restaurant (waiting time + service time) is a good example
of this type of result. If this value is large, we are not doing a good job serving
customers, and we need to increase the number of servers so that customers
don’t wait so long. A large part of any simulation model is collecting data about
the system so that we can understand and analyze its performance.

The next thing in our New Customer Arrival algorithm is to determine if
there is an idle server. If not, the customer goes to the end of the waiting line
(no special treatment here at McBurgers), and the length of the waiting line is
increased by 1. If there is an idle server then the customer goes directly to
that server, who is then marked as busy. (Note: If more than one server is free,
the customer can go to any one because our model assumes that all servers are
identical. We could also construct a model in which not all servers are identi-
cal and some provide a special service.)

Now we must determine how much time is required to service this cus-
tomer. This is a good example of what we termed a stochastic, or random,
component of a simulation model. Exactly what a customer orders and how
much time it takes to fill that order are random quantities whose exact value
can never be known in advance. However, even though it behaves randomly, it
is possible that this value, called Tserve in Figure 13.4, follows a pattern called
a statistical distribution. If we know this pattern, then the computer can
generate a sequence of random numbers that follows this pattern, and this
sequence accurately models the time it takes to serve customers in real life.

How can we discover this pattern? One way is to know something about
the statistical distribution of quantities that behave in a similar way. For
example, if we know something about the distribution of service times for
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Determine how long it will take to serve this customer, call

that value Tserve

Schedule a customer departure event for (current time + Tserve)
Increase the total time that server Si has worked by Tserve

End of New Customer Arrival



customers in a bank or a grocery store, then this information might help us
understand the pattern of service times at our hamburger stand. Another way
is to observe and collect data from an actual system similar to ours. For exam-
ple, we could go to other take-out restaurants and measure exactly how long
it takes them to service their customers. If these restaurants were similar to
ours, then the McBurgers owner might be able to discover from this data the
statistical distribution of the variable Tserve.

There are other ways to work with statistical distributions, but we will
leave this topic to courses in statistics. In this example we simply assume that
the statistical distribution for the customer service time, Tserve, has been dis-
covered and is shown in the graph in Figure 13.5.

The graph in Figure 13.5 states that 5% of the time a customer is served
in less than 1 minute; 15% of the time it takes 1–2 minutes; 40% of the time
it takes 2–3 minutes; 30% of the time it takes 3–4 minutes; and finally, 10%
of the time it takes 4–5 minutes. It never requires more than 5 minutes to
serve a customer. We can model this distribution using the algorithm shown in
Figure 13.6.

First, we generate a random integer v that takes on one of the values 1, 2,
3, . . . , 100 with equal likelihood. This is called a uniform random number.
We now ask if v is between 1 and 5. Because there are five numbers in this
range, and there were 100 numbers that could originally have been generated,
the answer to this question is yes 5% of the time. This is the same percent of
time that customers spend from 0 to 1 minute being served. Therefore, we
generate another uniform random value, this time a real number between 0.0
and 1.0, which is the value of Tserve, the customer service time.
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Generate a uniform random integer value v between 1 and 100
If v is in the range 1–5, then

Set Tserve to a uniform random number between 0.0 and 1.0
Else if v is in the range 6–20, then

Set Tserve to a uniform random number between 1.0 and 2.0
Else if v is in the range 21–60, then

Set Tserve to a uniform random number between 2.0 and 3.0
Else if v is in the range 61–90, then

Set Tserve to a uniform random number between 3.0 and 4.0
Else

Set Tserve to a uniform random number between 4.0 and 5.0



If the original random value v is not between 1 and 5, we ask if it is
between 6 and 20. There are 15 integers in this range, so the answer to this
question is yes 15% of the time, exactly the fraction of time that customers
spend 1–2 minutes being served. If the answer is yes, we generate a Tserve
value that is in the range 1.0 to 2.0. This process is repeated for all possible
values of service time.

Once the value of Tserve has been generated, we use this value to deter-
mine exactly when this customer leaves the store (current time + Tserve) as well
as to update the total amount of time the server has spent serving customers.
This last computation allows us to determine the percentage of time during
the day that each server was busy.

The value assigned to Tserve using the algorithm of Figure 13.6 exactly
matches the statistical distribution shown in Figure 13.5. If this graph is an
accurate representation of customer service time, then our model is an accurate
depiction of what happens in the real world. However, if the graph of Figure 13.5
is not an accurate representation of the customer service time, then this model is
incorrect and will produce wrong answers. This is a good example of the well-
known computer science dictum garbage in-garbage out. The results you get
out of a simulation model are only as good as the data and the assumptions put
into the model.

We can now specify how to handle the second type of event contained in
our model, which is customer departures. The algorithm to handle a customer
leaving the restaurant is given in Figure 13.7.

When a customer is ready to leave, we determine the total time this cus-
tomer spent in the restaurant. The variable current time represents the time
now, which is the time of this customer’s departure. We recorded the time this
customer first arrived on line 2 of Figure 13.4, and we can retrieve the con-
tents of the variable storing that information. The difference between these
two numbers is the total time this customer spent in the restaurant. We use
this result, averaged over all the customers, to determine if we are providing
an adequate level of service.

If there is another customer in line, the server begins serving that cus-
tomer in exactly the same way as described earlier. If no one is waiting, then
the server is idle and has nothing to do until a new customer arrives. (We
don’t want this to happen too often as we will be paying the salary of some-
one with little to do.)

We have now described the two main events that change our system:
someone arriving and someone leaving the restaurant. The only thing left is to
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initialize our parameters and get the model started. To initialize the model we
must do the following four things:

• Set the current time to 0.0 (we begin our simulation at time 0)

• Set the waiting line size to 0 (no one is in line when the doors open)

• Get a value for N, the number of servers, and make them all idle

• Determine the total number of customers to be served and exactly
when they will arrive

The last value—customer arrival times—are like the service times dis-
cussed earlier in that they are stochastic, or random, values that cannot be
known with certainty. We cannot possibly know exactly when the next cus-
tomer will walk in the door. However, if we know the statistical distribution of
the time interval between the arrival of any two customers, then we can gen-
erate a set of random intervals, called Tinterval, that allows us to accurately
model our customer arrivals.

Assume we have a graph like Figure 13.5 that specifies the statistical dis-
tribution of the time interval that elapses between the arrivals of two succes-
sive customers. (That is, it might say something like 10% of the time two
customers arrive within 0–15 seconds of each other, 20% of the time they
arrive within 15–30 seconds, etc.) We schedule our first customer to arrive at
time 0.0, just as the doors open. We then use an algorithm like the one in
Figure 13.6 to generate a random value that matches the distribution of inter-
arrival times. Call this value Tinterval. This represents the amount of time that
will elapse until the next customer arrives. Because the first customer arrived
at time 0.0, we schedule the next one to arrive at (0.0 + Tinterval) = Tinterval. We
repeat this for as many customers as desired, scheduling each one to arrive at
Tinterval time units after the previous one. Our sequence of customer arrivals
will look something like this:
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The main program to run our McBurgers simulation model is given in
Figure 13.8. It allows the user to provide two inputs: M, the number of cus-
tomers they want to model, and N, the number of servers. Each one of the M
customer arrivals is handled by the arrival algorithm of Figure 13.4. Each
arrival event generates a customer departure event that is handled by the
departure algorithm of Figure 13.7. This simulation does not terminate at a
specific point in time but, instead, when there are no more events to be
processed—that is, every customer who was scheduled to arrive has been
served and has departed.

The last issue that we must address is how to implement the second to last
line of Figure 13.8, the one that reads, “Print out a set of data that describes
the behavior of our system.” Looking back at Figure 13.1, we see that one of
the responsibilities of a simulation is to “collect data describing its behavior.”
Our model must collect data that accurately measures the performance of our



McBurgers restaurant so that we can configure it in a profitable manner before
it is built. Therefore, we need to determine what data are required to meet this
need. Often this cannot be done by the person building the model because they
may not know anything at all about this application area. Instead, it is the
user of a model who determines what data should be displayed. In our case, the
user is the restaurant owner.

Let’s assume that we have talked to the owner and determined that the
information he or she most needs to know is the following:

• The average time that a customer spends in the restaurant, including
both waiting in line and getting served

• The maximum length of the waiting line

• The percentage of time that servers are busy serving customers

From this data the owner should be able to determine whether the system
is functioning well. For example, if our model determines that a server is busy
only 10% of the time (about 48 minutes in an 8-hour workday), we can prob-
ably reduce the number of servers without affecting service, saving a good
deal in salary costs. On the other hand, if the average time that a customer
spends in the restaurant is 1 hour or there are times when there are 100 peo-
ple in line, then we had better increase the number of servers if we want to
avoid bankruptcy (or riots)!

This model will likely be used in the interactive design approach first dia-
grammed in Figure 13.1. The owner will enter his or her best estimate for the
arrival time and service time distributions and then select a value for N, the
number of servers. The computer will run the simulation, processing all M cus-
tomers, and then print the results, perhaps something like the following:

Average Waiting Maximum Line Server Busy
Servers Time (min) Length Percentage (%)

2 63.3 35 100.0
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Set current time to 0
Set the waiting line size to 0
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Each arrival occurs Tinterval time units after the previous one
While there is still a scheduled event on the list do

Get the next event on the list
Move current time to the time of this event
If this is a customer arrival event

Execute the arrival algorithm of Figure 13.4
Else

Execute the departure algorithm of Figure 13.7
Remove this event from the list of all scheduled events

End of the loop
Print out a set of data that describes the behavior of our system

Stop
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With only two servers, our customers waited on average more than one
hour to be served, there were dozens of people in line, and both servers were
busy every second of the day—not very good performance! The owner would
certainly try to improve on this performance, perhaps by having 6 servers,
rather than only 2. He or she resets the parameter N to 6 and reruns the
model, which now produces the following:

Average Waiting Maximum Line Server Busy
Servers Time (min) Length Percentage (%)

6 2.75 1 43

Now the owner may have erred too far in the other direction. Our cus-
tomers are being well served, waiting only a couple of minutes, and the line is
tiny, never having more than a single person. However, our six servers are
busy only 43% of the time—meaning they are idle about 4.5 hours during an
8-hour workday. Could we provide the same high level of service to our cus-
tomers with fewer servers? To answer this question, the owner might try
rerunning the model with N = 3, 4, or 5, a compromise value between these
two extremes. This is how a simulation model is used—run it, examine the
results, and use these results to reconfigure the system so its performance is
enhanced.

This completes the development of our McBurgers simulation, but not the
end of its usefulness. In the next laboratory experience you are going to “play”
with this model by selecting a range of different values for the customer arrival
and service times. You then take on the role of the McBurger’s owner and deter-
mine the optimal number of servers to use for the selected configuration.
Working with a simulation in an interactive design environment demonstrates
the enormous power and capabilities of computational models.

The restaurant modeled in this section is about as simple a system as we
could present, yet it still took almost eight pages to describe. A computational
model of a suspension bridge, “El Niño“ Pacific Ocean currents, the human
heart, or a strand of DNA would certainly be much more complex than the sim-
ulation of a hamburger joint! Real-world models are mathematically intricate,
highly detailed, and difficult to build. However, if we are able to build such a
model or if we have access to such a model, then we have a powerful tool that
can significantly enhance our ability to do high-quality research and design.
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1. In the McBurgers new customer arrival algorithm, describe the conse-
quences of accidentally omitting the instruction “Mark that server Si
is now busy.”

2. In the McBurgers customer departure algorithm, describe the conse-
quences of accidentally omitting the instruction “Mark this server
as idle.” 

PRACTICE PROBLEMS
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In this Lab Experience you will work with a simulation
model of a McBurgers restaurant that is similar to the one
presented in this section. You will play the role of the
restaurant owner who is trying to determine the correct

number of servers for a specific pattern of customer
arrivals and service times. You will configure your restau-
rant, run the model, see how well you serviced your cus-
tomers, and then reconfigure the restaurant to try to
improve its performance and its profit. The software allows
you to set parameters for (1) the total running time of the
simulation, (2) the average service time of each customer,
(3) the probability that a new customer will arrive, and
(4) the number of servers. It will then run the model
exactly as you have described and, upon completion, pro-
duce the following output: (1) the number of customers
remaining in line when the simulation terminated, (2) the
average time that a customer spent in the restaurant, and
(3) the percentage of time that the cashier was busy over
the entire simulation.  The screen shot shown here is typi-
cal of what you will see when you run the lab.

Your goal in this simulation is to determine the set of
parameters that optimizes behavior of the overall system.

LABORATORY
EXPERIENCE 18

13.3 Running the Model and Visualizing Results

The McBurgers restaurant model developed in Section 13.2.3 is much simpler
than real-world models for two reasons. First, it is computationally small. Run-
ning it and producing results does not require much in the way of hardware
resources. For example, assume that we model M = 1,000 customers, a reason-
able value for a large restaurant. Each customer generates one arrival event
(Figure 13.4) and one departure event (Figure 13.7), for a total of 2,000 events
that must be processed by the computer before the simulation is completed
and the results displayed. Two thousand events is a miniscule amount of work
that could be handled by even the smallest desktop machine in just a few
seconds or, more likely, fractions of a second. Most real-world models require
much more computational work to produce their results.

For example, the U.S. Department of Energy’s National Energy Research
Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory
has developed a powerful new climate system model. Using this model, simu-
lating one year of global climatic change requires about 1017 computations—
one hundred thousand trillion operations. A single Von Neumann machine could
not handle this almost unimaginably large amount of work. A typical desktop
computer executes roughly 1 billion instructions per second—1,000 MIPS. At
this rate, completing one year of simulated time in the model would require
three years of real time—we would not get our results until the actual time
period being simulated had passed!

Massive models like this one can be executed only on the large-scale par-
allel machines described in Chapter 5. The NERSC climate model was executed
on a massively parallel IBM-SP supercomputer containing 6,080 processors,
with a peak computation rate of 6 teraflops, or 6 trillion operations per second.
At this rate, one year of climatic change can be modeled in about five hours.



These numbers are much more typical of the amount of work required by
real-world simulations. It is not unusual for a model to perform 1015, 1016,
1017, or more computations to produce a single result—amounts far beyond
the capabilities of individual machines. The increasing interest in building and
using computational models is one of the main reasons behind the develop-
ment of larger and more powerful supercomputers.

The second reason why the McBurgers model in Section 13.2.3 is so unre-
alistic is that it produces only a tiny amount of output. After each run is com-
plete the model generates only three lines of output, such as those shown
below and in the previous section:

Average Waiting Maximum Line Server Busy
Servers Time (min) Length Percentage (%)

6 2.75 1 43

Because the number of servers in a restaurant might range from one up to a
couple of dozen, the total volume of output this model would ever produce is
about 20–60 lines, less than a single page. With such a small amount of output,
our model can display its results using a simple text format, as shown in the
lines above. A user will have no difficulty reading and interpreting this output.

Unfortunately, most simulations do not produce a few dozen lines of out-
put, but rather tens or hundreds of thousands of lines, perhaps even millions.
For example, assume the NERSC climate model described earlier displayed the
temperature, humidity, barometric pressure, wind velocity, and wind direction
at 50-mile intervals over the surface of the Earth for every simulated day the
model is run. After one year of simulated time, it will have produced roughly
500 million data values—about 10 million pages of output! If these values
were displayed as text, it would overwhelm its users, who wouldn’t have a clue
how to deal with this mountain of paper.

Text, when it appears in such large amounts, does not lend itself to easy
interpretation or understanding. The field of scientific visualization is con-
cerned with the issue of how to visualize data in a way that highlights its
important characteristics and simplifies its interpretation. This is an enor-
mously important part of computational modeling, because without it we
would be able to construct models and execute them, but we would not be
able to interpret their results.

The term scientific visualization is often treated as synonymous with the
related term computer graphics, but there is an important difference. The field
of computer graphics is concerned with the technical issues involved in informa-
tion display. That is, it deals with the actual rendering of an image—light
sources, shadows, hidden lines and surfaces, shading, contours, and perspective.
Scientific visualization, on the other hand, is concerned with how to visually dis-
play a large data set in a way that is most helpful to users and that maximizes its
comprehension. It is concerned with issues such as data extraction, namely,
determining which data values are important and should be part of the visual
display and which ones can be omitted, and data manipulation, which consists
of looking for ways to convert the data to other forms or to different units that
will make the display easier to understand and interpret. Once we have decided
exactly how we wish to display the data, then a scientific visualization package
typically uses a computer graphics package to render an image on the screen or
the printer.
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For example, assume we have built a computer model of the ocean tides
at some point along the coast. Our model predicts the height of the tide every
30 seconds in a 24-hour day, based on such factors as the lunar phase, wind
speed, and wind direction. If this information is printed simply as text, it
might look something like the following:

Time Height (feet)
12:00:00 A.M. 43.78
12:00:30 A.M. 43.81
12:01:00 A.M. 43.84
12:01:30 A.M. 43.88
12:02:00 A.M. 43.92
12:02:30 A.M. 43.97
. .
. .
. .
11:57:00 P.M. 45.08
11:57:30 P.M. 45.04
11:58:00 P.M. 45.01
11:58:30 P.M. 44.99
11:59:00 P.M. 44.97
11:59:30 P.M. 44.95

There are 2,880 lines of output, which at 60 lines per page would produce
almost 50 printed pages. Trying to extract meaning or locate significant fea-
tures from these long columns of numbers would certainly be a formidable,
not to mention boring, task.

What if, instead, we displayed these two columns of values as a two-
dimensional graph of time versus height? The output could also include a hor-
izontal line showing the average water height during this 24-hour period. This
latter value is not part of the original output but can easily be computed from
these values and included in the output—an example of a data manipulation
carried out to enhance data interpretation. Now the output of our model
might look something like the graph in Figure 13.9.

Using the graph in Figure 13.9, it is a lot quicker and easier to identify
the interesting features of the model’s output. For example,

• There appear to be two high tides and two low tides during this 24-hour
time period.

• The high tide is about 8 feet above the average water level, whereas
the low tide is about 8 feet below the average water level.

It is possible to discover the same features from a textual representation
of the output, but it would probably take much more time. Interpreting the
graph of Figure 13.9 is a great deal easier than working directly with raw
numerical data. The use of visualizations becomes even more important as the
amount of output increases and grows more complex. For example, what if in
addition to the tidal height our model also predicted the water temperature
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Using a Two-Dimensional Graph
to Display Output

FIGURE 13.9
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and displayed its value every 30 seconds. Now the raw data produced by the
model might look like this:

Time Height (feet) Temperature (°C)
12:00:00 A.M. 43.78 15.03
12:00:30 A.M. 43.81 15.02
12:01:00 A.M. 43.84 15.01
12:01:30 A.M. 43.88 14.99
12:02:00 A.M. 43.92 14.97
12:02:30 A.M. 43.97 14.94
. . .
. . .
. . .
11:57:00 P.M. 45.08 14.95
11:57:30 P.M. 45.04 14.98
11:58:00 P.M. 45.01 15.00
11:58:30 P.M. 44.99 15.01
11:59:00 P.M. 44.97 15.03
11:59:30 P.M. 44.95 15.05

Now there are almost 6,000 numbers, and our task has become even more
difficult as we try to understand the behavior of the two variables, height and
temperature. Working directly with the raw data generated by the model is
cumbersome. However, if the value of both variables were presented on a sin-
gle graph, as shown in Figure 13.10, this interpretation is much easier.

Looking at Figure 13.10, we can quickly observe that temperature seems to
move in exactly the opposite direction as the tide, but delayed by a few min-
utes. That is, water temperature reaches its minimum value shortly after the
tidal height has reached its maximum value, and vice versa. This is exactly the
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Using a Two-Dimensional Graph
to Display and Compare Two
Data Values

FIGURE 13.10

Three-Dimensional Image of a
Region of the Earth’s Surface

FIGURE 13.11

type of information that could be of help to a researcher. Without the graphical
visualization in Figure 13.10, we may have overlooked this important fact.

The graphs in Figures 13.9 and 13.10 are both two-dimensional, but many
real-world models study the behavior of three-dimensional objects, for example,
an airplane wing, a gas cloud, or the Earth’s surface. The results produced by
these models are also three-dimensional, such as the spatial coordinates of a
point on that airplane wing or on a gas molecule. Therefore, it is common for the
output of a computational model to be displayed as a three-dimensional image
rather than the two-dimensional graphs shown earlier. For example, Figure 13.11
shows a computer model of a portion of the Earth’s surface. Using this three-
dimensional image, it is easy to locate important topographical features, such as
mountains, valleys, and rivers. This type of output would be extremely useful
when, for example, planning the location of roads and bridges.



As a second example, suppose that medical researchers are using a simu-
lation model to study the behavior of the chemical compound methyl nitrite,
CH3NO2, a potential carcinogen found in our air and drinking water. Assume
that their molecular model produces the following textual output:

Location
Molecule Number Element x y z Bonded To

1 O 1.7 1.0 0.0 3, 4
2 O 3.0 0.0 0.0 3
3 N 2.6 0.3 1.0 1, 2
4 C 0.0 0.0 0.0 1, 5, 6, 7
5 H –0.5 0.5 0.5 4
6 H 0.5 0.5 0.5 4
7 H –0.5 -0.5 0.5 4

This is an accurate textual description of a methyl nitrite molecule. The
output specifies the seven atoms in the molecule, the spatial (x, y, z) coordi-
nates of the center of each atom, and the identity of all other atoms to which
this one has a chemical bond. This is all the information required to under-
stand the structure of this molecule. However, most of us would find it hard to
form a mental image of what this molecule actually looks like using this table.

What if, instead, our model took this textual description of methyl nitrite
and used it to create and display the three-dimensional image of Figure 13.12?

It is certainly a lot easier to work with the visualization in Figure 13.12
than with the numerical description. For example, if the simulation model
changed the shape or structure of this molecule, say by modeling a chemical
reaction or stretching a chemical bond, we would be able to observe this
change on our computer screen, significantly increasing our understanding of
exactly what is happening.

The image in Figure 13.12 makes use of two other features found in many
visualizations—color and scale. These characteristics allow us to display infor-
mation in a way that makes the image more understandable by someone look-
ing at the diagram. In this example, color represents the element type—red
for hydrogen, purple for carbon, yellow for oxygen, and blue for nitrogen. The
relative size of each sphere represents the relative size of each of the atoms.

The clever use of visual enhancements such as color and size can make an
enormous difference in how easy or hard it is to interpret the output of a
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Three-Dimensional Model of a
Methyl Nitrite Molecule

FIGURE 13.12



computer model. For example, the image displayed in Figure 13.13 was gener-
ated by simulating the dispersion of a toxic gas cloud in the downtown area of
a major city. Based on wind speed and direction, the location of buildings, and
the molecular structure of the gas, this model determines the gas concentra-
tion throughout the downtown area at discrete points in time. (Figure 13.13
shows one of these time points.)

In this example, color indicates the concentration of toxic gas in the
atmosphere. Blue and green represent the lowest two levels of concentrations,
yellow represents a moderate level, whereas orange and red represent the high-
est and most deadly concentrations of gas. Using images like Figure 13.13, an
emergency crew, knowing the current wind speed and direction, could quickly
determine where to direct their rescue efforts in the event of a gas leak. If,
instead of these color-coded, three-dimensional images, the crew was given
only page after page of numerical values, it would take much longer to extract
this vital information. Here is an example where enhancing comprehension is
not just for convenience but for saving lives!

Finally, we mention one of the most powerful and useful forms of
visualization—image animation. In many models, time (whether continuous
or discrete) is one of the key variables, and we want to observe how the model’s
output changes over time. This could be the case, for example, with the gas dis-
persion model discussed in the previous paragraphs. The image in Figure 13.13
is a picture of a gas cloud at one discrete instant in time. That may be of some
value, but what might be of even greater interest is how the cloud moves and
disperses as a function of time. Some questions we could answer using this
time-varying model are: How long does it take for the highest levels of gas (red
and orange) to dissipate completely? What is the maximum distance from the
site of the leak where the highest levels of gas were found?

To answer these and similar questions we need to generate not one image
like Figure 13.13, but many, with each image showing the state of the system
at a slightly later point in time. If we generate a sufficient number of these
images, then we can display them rapidly in sequence, producing a visual ani-
mation of the model’s output.

Obviously we cannot show an animation in this book, but Figure 13.14 shows
two images (out of 365) from a program that models the total amount of ozone
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Visualization of Gas Dispersion

FIGURE 13.13
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(a) On Day 114 (b) On Day 292

Use of Animation to Model
Ozone Layers in the Atmosphere

FIGURE 13.14

present in the Earth’s atmosphere over a one-year period. The model computes the
ozone levels for each day of the year and displays the results graphically, with
green and blue representing acceptable ozone levels and red representing a dan-
gerously low level. These 365 images can be displayed in sequence to produce a
“movie” showing how the ozone level changes throughout the year.

The amount of output needed to produce these 365 images was probably
in the hundreds of millions of data values, perhaps more. If this enormous vol-
ume of data were displayed as text, a user would be overwhelmed, and the
truly important characteristics of the data would be buried deep within this
mass of numbers, much like the proverbial “needle in a haystack.” However,
using the visualization techniques highlighted in this section—two- and
three-dimensional graphics, color, scale, and animation—key features of the
data, such as the presence of a significant ozone hole (the red area) over the
Antarctic on day 292, can be quickly and easily located.

This is precisely the reason for the existence of these scientific visualiza-
tion techniques. It is not merely a desire to produce “pretty pictures,” although,
indeed, many of the images are artistically interesting. Instead, the goal is to
take a massive data set and present it in a way that is more informative and
more understandable for the user of that data. Without this understanding,
there would be no reason to build computational models in the first place.

13.4 Conclusion

Computational modeling is a fascinating and highly complex subject and one
that will become even more important in the coming years as computers increase
in power and researchers gain experience in designing and building these models.

Constructing models of complex systems requires a deep understanding of
both mathematics and statistics so, as we have mentioned a number of times,
they can be rather difficult to build. However, even if you are not directly



involved in building models, it is quite likely that you will use these types of
models in your research, development, or design work. Simulation is affecting
many fields of study. For example, in this chapter we looked at models drawn
from physics (the falling body equations), economics (the McBurgers simula-
tion), chemistry (the molecular model of methyl nitrite), cartography (a map
of the Earth’s surface), meteorology (tides, climatic changes), and ecology
(toxic gas dispersion). We could just as easily have selected our examples from
medicine, geology, biology, geography, or pharmacology. For those who work
in scientific or quantitative fields like these, computational modeling is
rapidly becoming one of the most important tools available to the researcher.
It is also a vehicle for amusing and entertaining us through the creation of
simulated fantasy worlds and alien planets where we can explore and play. We
discuss this exciting new role of simulation in Chapter 16.  

Even though simulation is an important application of computers, you are
probably more familiar with the many uses of computers in the commercial
sector—paying bills online, remotely accessing corporate databases, and buy-
ing and selling products on the Web. These commercial applications, often
grouped together under the generic term electronic commerce, or e-commerce,
will be discussed at length in Chapter 14.
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Climatic changes occur slowly, often taking hundreds or
thousands of years to complete. For example, the ice ages
were periods when large areas of the Earth’s surface were
covered by glaciers. These individual ice ages were sepa-
rated by intervals of thousands of years during which the
Earth became warmer and the glaciers receded. To study
global climate change, a researcher cannot look at data for
only a few years. Instead, he or she must examine changes
taking place over long periods of time.

To provide this type of data, scientists at the National
Center for Atmospheric Research (NCAR) in Boulder, Colorado,
used the NERSC global climate model described earlier to

carry out a 1,000-year simulation of climatic changes on the
surface of the Earth. NCAR used a 6,000+ processor IBM-SP
supercomputer and started it running in late January 2002.
This massive machine worked on the problem 24 hours a day,
7 days a week, modeling decade after decade, century after
century of changes to the Earth’s climate. Finally, on Septem-
ber 4, 2002, it finished its task. It had taken more than
200 days of uninterrupted computing and the execution of
about a hundred billion billion (1020) computations on a
multimillion-dollar machine to obtain the results!

Data from this simulation are being made available to
the research community to further the study of changes to
our climate and investigate such weather-related phenom-
ena as global warming and “El Niño” ocean currents.

The Mother of All 
Computations!



1. You are probably familiar with the idea of a two-
dimensional spreadsheet, like the ones created in
Microsoft Excel. Would you call this type of spreadsheet a
“computational model”? State why or why not, and justify
your answer.

2. Look up the definition of the terms computer-aided design
(abbreviated CAD) and computer-aided manufacturing
(CAM). Find out what they mean, how they are used, and
how they relate to the ideas presented in this chapter.

3. Rather than using a general-purpose programming lan-
guage like the ones discussed in Chapter 9, models are
often constructed using simulation languages designed
specifically for this application. (These languages fall
into the category of “special purpose languages” men-
tioned in Chapter 10.) Examples of simulation languages
include:

• SIMULA
• GPSS (General Purpose System Simulation)
• Simscript

Read about one of these languages and discuss what
features make it well-suited for implementing simula-
tion models.

4. In Section 13.2.2, we specified two inaccuracies in the
equation describing a body falling under the influence of
gravity: the problems of air resistance and the fact that

the Earth is not a perfect sphere. Are there additional
inaccuracies contained in this mathematical model? Do
you think that these other factors should be included in
our falling body model? Explain why you believe they do
or do not need to be included.

5. In this chapter we described a way to model a statistical
distribution by using random numbers generated by a
computer. How do you think it is possible for a computer
to generate a truly random number that successfully
passes all tests for randomness? Read about random num-
ber generators and discuss the algorithms that they use.

6. In Section 13.2.3 we specified the statistical distribution
for the service time in our McBurgers restaurant: 5% of
customers were serviced in less than 1 minute and so
forth. Do you think this is an accurate distribution of
service times in real-world take-out restaurants? Why or
why not? If this distribution is not an accurate portrayal
of the customer service time, what are the implications
of this inaccuracy on our model?

7. Describe how the customer arrival and departure event
algorithms (Figures 13.4, 13.7) and the main algorithm
(Figure 13.9) of our McBurgers simulation would change if
we changed the system in each of the following three ways:
a. Instead of a single waiting line, we have N waiting

lines, one for each of the N servers in the restaurant.
That is, our model now behaves as shown:
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In this challenge problem you are going to build a com-
putational model, much like the McBurgers simulation of
Section 13.2.3. To do this, follow the same design steps
that were used in this example, namely:
• Specify the events that can change the state of your

system.
• For each event, specify an algorithm that shows how

the system changes when this type of event occurs.
• Specify the main algorithm that will initialize your

system, get the simulation started, and run the simu-
lation until it has completed.

You do not need to specify your solution in a high-level
programming language (unless you want to). Instead,
you can write your algorithms using the pseudocode pre-
sented in Chapter 2 and shown in Figure 2.6.

The system that you are going to model is a small
airport with a single runway that handles both takeoffs
and landings. This system is diagrammed on page XXX.

All planes take off and land from right to left. In this
model, departures are created, and these newly created
flights taxi to the beginning of the runway, take off, and
leave the system. Arrivals are created, and these new
flights land, taxi off the far end of the runway, and leave
the system. Only one plane at a time can use the runway,
and because planes currently in the air may be low on
fuel, arriving flights have priority to use the runway over
departing flights. That is, if a flight is ready to depart
and another flight is ready to land, the landing flight is
the one that gets to use the runway and the departing
flight must wait in line.

The purpose of this model is to determine, for a
given rate of flight arrivals and departures, how long a
plane must wait to take off or land and the maximum
number of planes in the arrival and departure lines. This
type of information would be of great help to a trans-
portation engineer trying to decide whether a second
runway will be needed as the airline traffic increases.

b. The waiting line has a maximum length of MAX. If the
length of the waiting line is currently less than MAX,
then the customer gets into line in exactly the same
way as in the current model. However, if the waiting
line has a length equal to MAX, then the customer
leaves the store without being served.

c. Each customer is assigned a priority when first enter-
ing the store (a value from 1 to 10), and if there is no
server currently available, the customer goes into the
waiting line in priority order. That is, a customer gets
into line ahead of all people with lower priority and
behind everyone with an equal or higher priority.

8. Assume that you want to model a bus system in which
passengers purchase tickets and travel from city A to one
of four other cities, either B, C, D, or E. An important
part of the model is determining to which city a specific
passenger is traveling, a random variable. How might you
go about creating a statistical distribution that accu-
rately specifies to which of these four cities a passenger
will buy a ticket and travel?

9. a. Assume our model requires 1014 computations to simu-
late one hour of activity. We run the program on a desk-
top computer with a computation speed of 800 MIPS.

How long will it take to simulate one day of activity in
the model?

b. How fast a computer (in terms of MIPS) do we need to
use if we want to complete the simulation of one day
in 5 minutes of computing time?

10. We discussed the use of color and scale to enhance and
highlight aspects of a data set being studied. In addition
to these two features, suggest other ways to visually
enhance the output of a model that will help to clarify
its interpretation.

11. In this chapter we focused our discussions primarily on
the uses of modeling in the physical sciences, life sci-
ences, economics, and engineering. However, the use of
models is certainly not limited to these areas. Read
about how simulation models are currently used to con-
duct research in the social sciences and humanities, such
as the fields of anthropology, sociology, and political sci-
ence. Write a report describing the uses of computational
modeling in one of these fields.

12. Read about how simulation models are being used in
your own specific field of study and write a report on
exactly what these models do and what type of research
is being done using them.
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An excellent introduction to the use of simulation and modeling in business and commer-
cial applications is

Evan, J. R., and Olson, D. Introduction to Simulation and Risk Analysis, 2nd ed. Englewood Cliffs,
NJ: Prentice-Hall, 2003.

Excellent introductions to simulation for a wide range of environments can be found in

Gould, H., Tobochnik, J., and Christian, W., An Introduction to Computer Simulation Methods, 3rd ed.
New York: Addison Wesley, 2006.

Ross M. Sheldon, Simulation, 4th ed., Academic Press, 2006.
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14.1 Introduction

As mentioned in Chapter 7, the Internet has been around for quite a while
(since 1969), but it did not have a great impact on our everyday lives until the
appearance of the World Wide Web in the early 1990s. Increasingly, the Web is
our primary source of information about a variety of topics as well as a
purveyor of goods and services from businesses on the other end of the wire.

If you own just about any type of business, you almost have to have a
Web presence these days. For example,

• Your business provides a service, such as landscaping, that does not
sell products directly to retail customers. But you use the Web for
advertising—getting your name in front of the public, disseminating
information on the services you provide, and convincing people to
contact you or visit your place of business because you have superior
services, knowledge, capabilities, and price.

• Your business provides a service for which follow-up information is
important. For example, you are a shipping company and you use your
Web site to allow customers to track their shipments.

• Your business provides a service that enables customers to engage in
online transactions that are not retail sales. For example, you are a
bank that allows customers to use the Web to view their current
account balances and to transfer money between accounts.

• Your company sells products or materials to other companies rather than
to the general public. You maintain a B2B (business-to-business) Web
presence to streamline transactions between you as the seller and other
businesses as buyers. Your goal is not only to advertise and attract new
business customers but also to cut down transaction costs. (Note that
the sales figures given in the box “Shopping on the Web” do not include
these wholesale B2B transactions.)

• Your company is a retail business, and you maintain a B2C (business-
to-consumer) Web site. You do this to advertise your products and to
allow the general public to make online purchases.

In this chapter we’ll talk mostly about the last scenario—selling retail
products to the general public. This is how most consumers interact with and
experience the Web’s commercial capabilities.

Assume that you run a retail rug business—let’s call it “Rugs-For-You”—out
of a traditional store, that is, a store with a physical building, display windows,



563

aisles with merchandise, and salespersons. You have decided to expand your
retail business into the e-commerce world, where financial transactions are
conducted by electronic means. During the early stages of online commerce (the
early and mid-1990s), this might have meant that a customer would fill out an
order via the Web and submit it. The online order was printed out by the business
at the other end, and this paper document was then processed much like any
traditional purchase, including rekeying the order data for both the shipping and
billing departments. The Web allowed the customer to initiate an order, but it had
little or no role in filling the order, transferring funds, or restocking inventory.

This early approach to online commerce was cumbersome, inefficient, and
error-prone. Today businesses have moved away from this restricted model of
online commerce to a total e-business concept where orders are processed,
credit is verified, transactions are completed, debits are issued, shipping is
alerted, and inventory is reduced, all electronically—at least in theory. The
business may operate completely online, or it may also have a physical retail
site. In the latter case, it uses the Web to complement and enhance its tradi-
tional “brick-and-mortar” business. This describes the e-business model you
want to implement for your Rugs-For-You business. In addition to your tradi-
tional store, you have decided to establish a Web presence for your business
where customers can come, view area rugs for sale, ask questions, make a
selection, purchase their rug, and have it delivered to them, all in a quick,
easy, and secure electronic environment.

In the next section, we’ll look at some of the many considerations
involved in such a decision. Some of these are technical; some are purely busi-
ness; many are a combination of the two. Then we’ll look more closely at data-
bases, one of the most important features of the e-commerce world.
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The Census Bureau of the U.S. Department of Commerce
estimated e-commerce retail sales in the United States for
the first quarter of 2008 to be $32.4 billion, an increase of
32% from the first quarter of 2006.

But to keep these numbers in perspective, in the first
quarter of 2008, e-commerce sales accounted for only
3.4% of total U.S. retail sales, also an increase over the
2006 figure for the same period.

Clearly, there has been significant growth in the 
e-commerce retail sector, but, just as clearly, there is room
for much more.
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14.2 E-commerce

In Chapter 10 we talked about HTML, the language used to build Web pages. As
a small business owner, you may not know much about HTML, to say nothing of
the many other technologies used in creating Web pages, such as XML. (See the
box “Beyond HTML” in Section 10.3.2.) However, you can hire someone who
knows these technologies, ask that person to put together some Web pages for
your store, and presto, you’re in e-business! But maybe not for long.

Opening an online store requires at least as much planning as building
another physical store location—in fact, probably more, because it is a different
medium in which to do business. Although it’s possible to build Web pages in a
virtual environment more quickly and cheaply than constructing a building,
that doesn’t mean you should charge ahead without the proper level of planning
and forethought.

14.2.1 The Vision Thing

The first question you need to answer is: What is your vision for this new part
of your overall commercial enterprise? Put another way: What is the business
problem you are trying to solve? Do you want to:

• Broaden your customer base?

• Recapture customers you are losing to competitors with online stores?

• Better serve your existing customer base?

• Better integrate departments/functions within your existing business,
so that the Shipping Department and the Accounting Department, for
example, work off the same order form?

Any of these might be legitimate reasons for moving into e-commerce, but
have you considered the risks involved with this decision?

• Will you just move your in-store customers online and achieve no overall
gain?

• When you expose yourself to online competition, will you have some-
thing unique to offer?

• Does your existing customer base need or want anything that you
don’t or can’t provide in your traditional business environment? What
part of your existing customer base will never shop online?

• Are the employees in your Shipping and Accounting departments in
agreement with this idea, or do they feel threatened by change?

And we haven’t even mentioned the costs involved with this decision:

• Do you have all the necessary hardware (computers), software, and
infrastructure (network connectivity) to host a business Web site? If
not, what will it cost you to acquire or lease them?

• Do you have the personnel and skills you need to build and maintain a
Web site? If not, what will it cost to acquire new personnel or retrain
existing personnel?
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• Do you have the legal expertise onboard to manage issues such as
(1) protecting your intellectual property; (2) navigating regula-
tions, tariffs, and taxes in the many geographic regions where you
will now be doing business (including perhaps overseas); and (3)
legally handling customer data collected online? If not, what will it
cost you to acquire this expertise?

• Do you know the potential costs of diverting resources away from your
existing traditional business?

Let’s assume that you and your company officers have assessed the objectives,
the risks, and the costs, and you feel that overall your bottom line will
improve by going online. What should happen next?

14.2.2 Decisions, Decisions

Once you decide to move into the e-commerce arena, there are still many
questions to be answered and decisions to be made. The first major decision is
choosing between in-house development and outsourcing; in fact, this is
not a single decision but a whole host of decisions.

First, the personnel issues: Are you going to use your existing staff to
develop this e-business, either because they already have the necessary skills
or because they will be retrained? Will you hire new personnel with the
needed skills? Will you hire consultants who bring a good deal of expertise
and will work with your people to get things up and running quickly? Or,
alternately, will you turn the entire job over to an ASP (application service
provider) who, for a fee, will design your Web site and manage it on an
ongoing basis? The answers to these questions depend, of course, on the
skills of your existing staff, how quickly you want your site to be up and run-
ning, the costs involved, and how much control you are willing to relinquish.
Whoever is chosen to develop your Web site, it is important that business
information about your company is made available and is used to shape all
decisions along the way. In the end, your Web site should capture the
“image” and provide the customer services of your company, not the company
someone else may have in mind.

Similar questions follow regarding the hardware and software. You will
need at least one Web server machine to host your Web site. You may need
additional computers to store your customer database information, to support
program development, and to supply the appropriate network connections and
security. Do you have these machines? Will you buy them? Will you lease
space on someone else’s commercial Web server? You will also need a good deal
of new software, such as programs to process the customer orders that you
hope will come pouring in, to interact with your accounting, shipping, and
inventory control software, and to manage and store customer information.
Will you use inexpensive, off-the-shelf software or more expensive packages
that you can customize for your business needs? Will you use commercial
software or open source software? (See “The Open Source Movement” box in
Chapter 6.) Will your company develop its own proprietary software that can
be modified whenever your business needs change? Of course, if you decide to
turn everything over to an ASP, you will have little or no control over these
hardware and software decisions.
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14.2.3  Anatomy of a Transaction

What draws a customer to online shopping? The number one attraction is
probably convenience. Your online store is open 24 hours a day. People can
shop from the comfort of home, save time, and avoid the hassles of traffic. It
is also easy to comparison shop merely by hopping from one Web site to
another. But this also means that your competition is just a click away. Your
goals are to:

• Draw potential customers to your site

• Keep them there

• Set up optimum conditions for them to complete a purchase

Figure 14.1 illustrates the major components of an online purchase, which we
have broken down into nine steps. Next, we’ll elaborate on these steps, with
an eye to the three goals mentioned above.

STEP 1: GETTING THERE. How can you get customers to your Web site?
Technically, once the customer knows the URL (uniform resource locator),
the process works exactly as described in Chapter 7. The customer hooks up
to the Internet through his or her ISP (Internet service provider) and puts
the URL into his or her Web browser. The browser works with the DNS
(Domain Name System) to find the unique IP (Internet Protocol) address for
this URL. Using this address, the TCP (Transport Control Protocol) routes a
connection through the Internet from the customer’s machine to the appro-
priate server. The browser uses this connection to send an HTTP GET message
for the desired Web page, which is then transmitted from the Web server
back to the browser and displayed on the user’s screen, at which time the
TCP/IP connection is broken.
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But how does your potential customer learn your URL in the first place?
There are many possibilities:

• Conventional advertising. You post your home page URL on flyers, in
print and TV advertisements, on letterhead, and on any other tradi-
tional promotional materials you may produce.

• Obvious domain name. You want your domain name (your home-
page URL) to relate so closely to your business name that potential
customers can easily guess it if they don’t have it in front of them.
Who wouldn’t try www.mcdonalds.com to reach this well-known fast-
food giant? Of course, Rugs-For-You might not be quite that well
known. Domain names are registered by companies that are accred-
ited for this purpose by ICANN (Internet Corporation for
Assigned Names and Numbers), a nonprofit corporation that took
over the task of domain name management from the U.S. govern-
ment in 1998. When a domain name is registered, it becomes part
of the DNS so that Web users can find your IP address and get to
your site. A list of accredited registrars can be obtained from
http://www.icann.org/registrars/accredited-list.html, an information
Web site maintained by ICANN. A number of Web sites allow you to
determine whether a particular domain name has already been
registered. In addition to registering your “real” domain name
(rugs-for-you.com), you would be wise to register obvious spelling
variants (rugs-for-u.com, rugs-4-u.com, etc.) if they are available, so
that all roads lead to your Web site.

• Search engine. Potential customers may use an Internet search
engine to search for Web sites about products that you sell, and
your company’s Web site may turn up in the list returned as a result
of this search. You can also pay for a “sponsored link” so that a
search on appropriate keywords will bring up links to your Web site
in a prominent spot on the search engine’s page or near the top of
the list of search results.

• Portal. A portal is an entry point Web page with links to other Web
pages on some topic. It can be thought of as a starting point to
learn about a particular subject, and it typically contains many
helpful pointers to useful information on that subject. For exam-
ple, www.floorbiz.com is a portal with links to retail stores selling
rugs, carpet, tile, adhesives, padding, cleaning equipment, and so
forth. This site also features links about flooring materials and
manufacturers, links to news articles and press releases, upcoming
conventions, and employment opportunities connected with the
flooring industry, as well as forums for bulletin board postings,
links to tips (e.g., how to maintain hardwood floors), leads for
contractors to bid on floor installation jobs, and an opportunity to
register to receive e-mail. You would certainly want to have a link
to Rugs-For-You from this portal page, and you may even want to
purchase a banner ad (a graphical ad, often with animation,
placed in a prominent position on a Web page) so that anyone who
goes to this portal sees the rugs-for-you.com link right away.
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STEP 2: DO I KNOW YOU? Regular customers at your traditional store are
treated with special care. You may mail them promotional offers that you
think will be of interest to them, and the salespeople know them when they
walk into the store and greet them by name. You pay particular attention to
their needs because, after all, return customers are the basis of your business.
How will your online store provide this type of personalized attention?

Some sites ask users to register and then log in when they revisit the site.
These sites consult the database of registered customers and recall pertinent
information—for example, how the customer browsed the site previously,
what pages the customer visited, where the customer lingered, what the
customer bought, as well as more mundane information such as name and
address. What the return customer sees is tailored to reflect this information.

Other sites that do not require a customer login still greet the customer
with “Welcome, John,” for example, and arrange a Web page with items tied to
John’s apparent interests, based on his last purchase. This type of Web site
personalization can be accomplished by means of cookies. A cookie is a small
text file that the Web server sends to the user’s browser and that gets stored
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Cybersquatting is the practice of registering a domain name
that uses the name or trademark of an existing business,
with the intent to sell the name to that business at a
profit or to capitalize on that name for some other
purpose. A 1999 federal law called the Anti-Cybersquatting
Consumer Protection Act (ACPA) makes cybersquatting
illegal. A trademark owner claiming to be a victim of
cybersquatting can file a suit under the ACPA. To have its
claim upheld, a trademark owner must prove that it was
the first to use the name or trademark for commercial
purposes, that the name or trademark was distinctive at
the time the domain name was first registered, that the
domain name is the same as or sufficiently similar to the
trademark as to cause confusion, and that the domain
name registrant had a bad faith intent to profit from the
trademark. A trademark owner who wins a suit can obtain
the rights to the domain name and perhaps be awarded
monetary damages up to $100,000.

ICANN also arbitrates cybersquatting disputes, with
essentially the same criteria, but does not award any
monetary damages. International disputes may be brought
before the World Intellectual Property Organization, a
United Nations agency. In 2000, AT&T won its case before
WIPO against WorldclassMedia.com of Austria over the
domain name attmexico.com, and Microsoft won its case
against Global Net 2000, Inc., of Tehran, Iran, over the
domain name microsoftnetwork.com.

A variant of cybersquatting, called typosquatting,
takes advantage of typographical errors a user might

make when typing a URL directly into the browser, as
opposed to following a link, estimated to be about 15%
of all Web traffic. For example, www.rugs-for-you.com
might be entered as www.rugs-for-you.org (wrong top-
level domain name), www.rug-for-you.com (spelling
error), or www.rusg-for-you.com (transposition error).
A company may have registered a few of these types of
variations so that they link to the company’s legitimate
Web site, but there are many possibilities, some of which
may be registered to typosquatters. If the user reaches a
typosquatting site, the resulting Web page may contain
anything from shocking or pornographic material to pay-
per-click advertising links targeted to the user’s
interests, based on the likely site the user was trying to
reach. Each click on such an ad link generates a small
amount of revenue from the advertiser for the typosquat-
ter, as well as for the ad network that brokered placement
of the ad. Google—legitimately—makes its money by
collecting a small sum for each click on an advertising
link on its own Web pages. But in May 2008, a federal
judge ruled that Google might be subject to suit for vio-
lation of the ACPA because it might post links to
typosquatting pages that contain ads from which Google
stands to profit, in its ad network capacity. This is an
interesting case because Google is not the owner of the
typosquatting domain names.

Microsoft estimates that on any given day there are
2000 registered domain names that contain Microsoft trade-
mark terms (e.g., downloadvistaforwindows.com) operated
by cybersquatters seeking to profit from Microsoft intellec-
tual property via pay-per-click online ads.

A Rose by Any Other Name . . .

www.rugs-for-you.com
www.rugs-for-you.org
www.rug-for-you.com
www.rusg-for-you.com


on the user’s hard drive. It contains personal information about the user, such
as name, address, time of visit, and what was looked at or bought. On the
customer’s next visit to that same site, the browser sends the cookie back to
the server (along with the page request) so the server can create a customized
page just for this shopper. This does more than merely create a friendly,
personalized atmosphere. It also allows the server to record information for
later use. For example, cookies enable a customer to put items into his or her
online shopping basket and return at a later time to find them still there.

Transmission of Web pages between a client and server is stateless; that is,
no information about this exchange is permanently retained by the server.
Indeed, recall that the TCP/IP connection between the browser and Web server
is (usually) broken once a Web page has been sent back to the browser. A totally
new connection has to be established to access a different page or to return
later to that same page. Without cookies, there is no association between the
customer visiting one page and the same customer visiting another page, or
between the same customer visiting the same page at different times. It’s possi-
ble to configure a Web browser to not accept cookies, but cookies cannot
execute on the client machine and are harmless. They just take up a little space.

You can provide incentives and benefits for return customers—product
support for items already purchased, special promotions (“John, would you like
some stain guard for that new rug you just bought? Click here for our special
offer!”), free shipping, a clearly stated return policy (including the ability to
return items to your traditional brick-and-mortar store if more convenient), and
a chance to register complaints or ask questions online (to which you should
pay attention and respond). And certainly you should provide a toll-free
number where your customers can speak with a real, live person, although you
don’t want to make the number too prominent on your site, because you are
looking for your online business to free up staff, not burden them.

Online customers, both new and returning, can leave your site in the
blink of an eye or, more precisely, the click of a mouse button. Your Web site
must invite them in, entice them to stay, and make their path toward
purchase so convenient that there is no reason not to buy from you. This is
what makes designing a Web page so much more than just an HTML program-
ming assignment! We’ll talk more about Web page features in Section 14.2.4,
but for now let’s assume that a customer has successfully navigated your Web
site, selected an item to purchase, and is ready for Step 3.

STEP 3: COMMITTING TO AN ONLINE PURCHASE. Customers are understand-
ably hesitant to transmit sensitive information such as their credit card number,
or even their name and address, over the Web. Your site must provide security for
transmitting this information, and that security comes in two pieces: encryption
and authentication. Encryption encodes the data to be transmitted into a scram-
bled form, using a scheme agreed on between the sender and the receiver. While
encryption provides for the secure transmission of data, this is of little use if the
data are not being sent to the correct party. Authentication is the process of
verifying the identity of the receiver of the data. In Step 3 of our online transac-
tion process, the sender is the customer (actually the customer’s Web browser)
placing an order and sending confidential personal and financial information,
and the receiver is the retailer’s Web server. In Chapter 8 we discussed how the
SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols provide
encryption and authentication for Web transactions. There we learned that the
Web server can pass to the browser a certificate of authentication issued by a
trusted third party such as VeriSign (http://www.verisign.com).
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Because you decided to use VeriSign SSL software on your Web site, you can
post a “VeriSign Secured” seal on your pages that users can click to verify that
they are at the correct site. After all, they didn’t walk into your physical place
of business, so how do they know where they really are? The URL is www.rugs-
for-you.com, and there are many pictures of rugs, but maybe it is simply a scam
where the customer will send money but receive nothing in return. Spoofing is
the practice of impersonating a legitimate site for the purposes of stealing
money or stealing identity by collecting confidential information such as credit
card numbers, names, and addresses. Clicking on your VeriSign seal might bring
up a window with the information shown in part in Figure 14.2.

Customers about to transmit sensitive information to your Web site are
alerted by a message saying they are being transferred to a secure site. The
corresponding Web page has the protocol heading https, rather than http,
with the s signifying a site under the protection of SSL. Customers may also
see a little lock graphic on the Web page to indicate a secure site, and the
browser address bar may turn green. When they leave the site, they receive a
message saying they are leaving a secure site.

STEPS 4 AND 5: PAYMENT PROCESSING. Let’s assume that your customers
will pay with credit cards, the most common online option. The online order
form communicates with your accounting system (Step 4), which might verify
the customer’s credit and process this transaction with the credit company
(Step 5) on the fly, that is, while the customer waits. This way, the customer
can be alerted and given another chance to enter information if there is an
error. In addition, you do not have to store the customer credit card number in
your database, which reduces your security risk.

Another option is to collect information on the customer’s order, includ-
ing an e-mail address (Step 4), close the order process, and then evaluate the
customer’s credit and complete the transaction offline (Step 5). Once the
transaction is completed, an e-mail confirmation is sent to the customer. To
use this option you must maintain customer credit card information.

570 LEVEL 5 CHAPTER 14: Electronic Commerce and Databases

Secure Site Assurance

FIGURE 14.2
WWW.RUGS-FOR-YOU.COM is a VeriSign Secure Site

Security remains the primary concern of online consumers. The VeriSign Secure Site
Program allows you to learn more about Web sites you visit before you submit any
confidential information. Please verify that the information below is consistent with
the site you are visiting.

Name: WWW.RUGS-FOR-YOU.COM Status: Valid
Validity Period: 14-May-09–25-May-12
Server ID Information:

Country = U.S.
State = Ohio
Locality = Cleveland
Organization = Rugs-For-You, Inc.
Common Name = www.rugs-for-you.com

If the information is correct, you may submit sensitive data (e.g., credit card num-
bers) to this site with the assurance that:

This site has a VeriSign Secure Server ID.
All information sent to this site, if in an SSL session, is encrypted, protecting against
disclosure to third parties.

www.rugs-for-you.com
www.rugs-for-you.com
WWW.RUGS-FOR-YOU.COM
WWW.RUGS-FOR-YOU.COM
www.rugs-for-you.com


STEPS 6–9: ORDER FULFILLMENT. Once your customer’s credit is approved,
your order entry system must alert your inventory system to decrement the
number of items in stock by whatever quantity the user has purchased (Step 6)
and must also contact your shipping system to arrange for shipping (Step 7).
The shipping system works with the shipping company you use (Step 8) to pick
up and deliver the purchase to the customer (Step 9).

14.2.4  Designing Your Web Site

Your Web site must be designed with your customers in mind. It has to be
fresh and up to date, ever changing, and always displaying the latest product
information. Department stores don’t keep the same displays in their windows
for months or years on end, and neither should you. One of your earliest
decisions is your Web site taxonomy—how information is classified and orga-
nized so customers can easily find what they want. At rugs-for-you.com, you
could organize your site by rug manufacturer, color, size, material, or by
rooms in the house. There are many options, and you must consider how your
customers usually shop for their rugs.

Your customers should always know where they are on your Web site. As
we mentioned in Chapter 7, hypertext allows a user to move easily from page
to page by simply clicking a link. However, after a few clicks, it is easy to
become totally lost and not know where you are or how to get back. A site
map or a navigation bar can provide a high-level overview of your site archi-
tecture, plus make it easy to navigate (i.e., move from page to page) through
the site. A good rule of thumb is that the customer should be able to get from
any page in your Web site to any other page in four clicks or fewer. And
although you want to encourage browsing, just as you do in your physical
store, you also want customers to be able to find what they are looking for
quickly, so your Web pages should include the ability to search the site.

You need electronic “shopping carts” and order checkout forms. Keep in
mind that customers want to feel in control (especially of their money!). Be
sure that as customers step through the ordering process, they are always
informed about the current order—items being ordered, quantity, price, and
so on—and about what will happen with the next button click. It is also
important to give customers the option to go back and change something or to
clearly indicate that, following the next click, the order will be final and no
further changes will be possible.

Give customers shipping options so that they can make the best trade-off
between cost and speed of delivery. Send e-mail to confirm orders, and send
follow-up e-mails when orders are shipped.

Display your privacy policy on the Web page. Tell your customers what per-
sonal information you collect, why this information is needed, how you will use
it, whether you will share it and with whom you might share it, and how you
will store and safeguard it. Also, understand what information you can legally
collect, based on the regulations of the state or country of your target users.

You may also want to offer extras to your customers. Put up a FAQ
(frequently asked questions) page or a bulletin board for discussion groups.
You can ask customers if they wish to subscribe to an e-mail newsletter to
alert them to the latest products (no spam, please), with the option to unsub-
scribe at any time. Give your customers a “suggestion box.” Allow them to
track their shipment through an order number. Post news and press releases
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about your business or products. And again, configure your site in a personal-
ized way for return customers. All of these measures can help improve cus-
tomer satisfaction, build customer relationships, and bring people back to
your Web site time and time again. The suggestions and ideas listed above are
part of your online CRM (customer relationship management) strategy.

At the same time that you want to cram all this content into your Web
pages, your site must adhere to good design principles. It must look professional
and uncluttered. Avoid glaring colors, flashing images, and annoying pop-up
windows, although there could be a judicious use of animation or changing,
tasteful images. Make good use of white space—it can draw attention to the
items you want emphasized. All of your pages should have a consistent look and
feel and a consistent set of navigation tools; this can be accomplished by
designing a master template page from which all pages are derived. Be sure your
company logo and/or slogan are part of this master template.

On the technical side, your Web pages should be designed to be displayed
on many different machines with different operating systems and browsers
(e.g., Internet Explorer, Safari, or Firefox). Not all browsers render every HTML
element in exactly the same way. Users may run monitors at different screen
resolutions and have widely varying communication speeds, from tens of
thousands to tens of millions of bits per second. (See Section 7.2.1, “Commu-
nication Links.”) Your Web design should use only those features that you
know will work satisfactorily on virtually every machine and browser that
your customers are likely to use. Offer features such as text-only options for
users with slow connections. Adhere to ADA (Americans with Disabilities Act)
requirements for Web accessibility (see box).

As you can see from our brief discussion, designing Web pages, or at least
a successful set of commercial Web pages, is a difficult and complex task. It
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The Americans with Disabilities Act, signed into law in
1990, ensures equal opportunity for persons with disabili-
ties in employment, government services, public facilities,
and transportation. ADA has been interpreted to apply to
Web page accessibility. In addition, Section 508 of the
federal Rehabilitation Act mandated in 1998 that all U.S.
federal agencies must make their Web pages accessible to
people with disabilities.

One of the most common issues in Web page accessi-
bility relates to images, charts, or photographs. Blind
users or users with low vision have several assistive tech-
nologies available to them, such as speech synthesizers
that speak text that appears on the screen or devices that
translate text on the screen into touch-readable Braille.
These technologies can only read text, so a visual element
on a Web page needs a corresponding text tag in the HTML
code for the image. The text tag should be as descriptive
as possible. Here’s an image that might appear on one of
the rugs-for-you.com Web pages with its corresponding text
tag as displayed by the browser.

Accessible Web Pages
ORIENTAL THROW RUGS

Afghanistan, wool, 2 ft x 3 ft

Price: $475

Rectangular rug, intricate red and gold
geometric designs on black
background, wide border with
repeating geometric pattern



involves not only computer science skills (e.g., HTML, XML, HTTP, TCP/IP),
but a knowledge of such fields as art, graphics design, business, management,
and consumer psychology, to name but a few. It is easy to create just any Web
page, but much more difficult to create a really good one.

14.2.5  Behind the Scenes

Your business maintains a number of other computer applications in addition
to your online order entry system. In Figure 14.1, we saw that there are
accounting, inventory control, and shipping systems as well as a customer
database, and that’s just to deal with customers. You also have systems that
deal with your suppliers to manage orders, shipments, billing, and payments.
Finally, you have personnel systems to deal with your employees—payroll,
insurance, Social Security. Some of these systems may be brand-new and just
installed (like your new Web site), whereas others may be “legacy” code that
has been around for dozens of years.

Obviously, these systems are not all independent of one another, and
some must collaborate quite closely. For example, your inventory control sys-
tem must communicate with the supplier order system whenever you run low
on an item and must restock it. Your accounting system needs to inform the
customer database when a payment has been made. However, these systems
may have been developed by different vendors (some functions may even be
done by hand) and may run on different machines using totally different pro-
tocols and formats from those on your new Web site. Because of this, once the
Web site is up and running, you may need to invest in middleware—software
that allows separate, existing programs to communicate and work together
seamlessly. These middleware packages do such things as translate between
incompatible data representations, file formats, and network protocols to
allow otherwise incompatible systems to exchange information. This allows
your new e-commerce application to access and/or transmit important busi-
ness data to all other parts of your company.

Finally, as soon as you have your enterprise humming along smoothly as
an e-commerce site, you will need an effective disaster recovery strategy.
What are your plans for backing up critical data? What is your plan to keep
your online business open even when your server fails? What will you do if a
hacker breaks into your Web site and steals customer information? Without a
plan, you are never more than one electrical storm, one malicious user, or one
disk failure away from catastrophe.

By now you may have surmised that you need a lot of help to put
together your successful e-business. You need network help, programming
help, graphics design help, and legal advice, as well as input from those who
know your business well.
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Try to locate a portal page for at least one of the following topics:
health care, environmental issues, basketball, higher education,
and/or the steel industry.

PRACTICE PROBLEM



14.3 Databases

The management and organization of data have always been important problems.
It is likely that a strong impetus for the development of written language was the
need to record commercial transactions (“On this day Procrastinus traded
Consensius 4 sheep for 7 barrels of olive oil”). From there it is only a short step
to recording inventories (“Procrastinus has 27 sheep”), wages paid, profits
gained, and so on. As the volume of data grows, it becomes more difficult to keep
track of all the facts, harder to extract useful information from a large collection
of facts, and more difficult to relate one fact to another. With the 1890 U.S.
census (Chapter 1), Herman Hollerith demonstrated the advantages that can
accrue from mechanizing the storage and processing of large amounts of data.

We talked about the online customer database as part of your expansion
into e-commerce, but databases are probably a key part of your business
whether you have an online presence or not. You have a set of data to main-
tain about your employees (names, addresses, pay rates, Social Security num-
bers, etc.), another set of data to maintain about your suppliers (names,
addresses, products, orders, etc.), and yet another set of data to maintain
about your business itself (sales, expenses, taxes, etc.). Previously, such items
of data were recorded by hand, but they are now maintained in electronic
databases. The important thing about an electronic database is that it is more
than a storehouse of individual data items; these items can easily be
extracted, sorted, and even manipulated to reveal new information. To see
how this works, let’s examine the structure of a file containing data.

14.3.1  Data Organization

As we learned in Chapters 4 and 5, the most basic unit of data is a single bit, a
value of 0 or 1. A single bit rarely conveys any meaningful information. Bits are
combined into groups of eight called bytes; each byte can store the binary
representation of a single character or a small integer number. A byte is a single
unit of addressable memory. A single byte is often too small to store meaningful
information, so a group of bytes is used to represent a string of characters—say,
the name of an employee in a company or a larger numerical value. Such a group
of bytes is called a field. A collection of related fields—say, all the information
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One happy thought is that your e-business might grow to
be so successful that you have to scale up beyond your
expectations. Amazon.com is one of the most successful
e-businesses, and has expanded beyond its original book-
selling role to include sales of toys, clothing, electronics,
kitchen goods, housewares, and home and garden items.

July 21, 2007, marked the release of Harry Potter
and the Deathly Hallows, the final book in the very
popular Harry Potter series by author J. K. Rowling. By
the day before it went on sale, Amazon.com had received
orders for 2.3 million books that had to be shipped out
worldwide. Imagine the demand this record sale created
on the online servers, the back-office applications, and
the shippers!

The Price of Success



about a single employee—is called a record, a term inherited from the pencil
and paper concept of “keeping records.” Related records—say, the records of all
the employees in a single company—are kept in a data file. (File is another
term inherited from the familiar filing cabinet.) And finally, related files make
up a database. Thus,

Bits combine to form bytes.
Bytes combine to form fields.
Fields combine to form records.
Records combine to form files.
Files combine to form databases.

Figure 14.3 shows this hierarchical organization of data elements. (This figure
was drawn to look neat, but files in a database are almost never all the same
size or “shape.”)

Bits and bytes are too fine a level of detail for what we will discuss in this
section. Also, for the moment, let’s assume for simplicity that the database
consists of only a single file. Figure 14.4 illustrates a single file made up of five
records (the rows), each record composed of three fields (the columns). The
various fields can hold different types of data. One field in each record might
hold character strings; another field in each record might hold integer data.

Each record in a file contains information about an item in the “universe
of discourse” that the file describes. In our example, we assume that the
universe of discourse is the set of employees at Rugs-For-You and that each
record corresponds to a single employee. An individual employee record, with
six different fields, is shown in Figure 14.5. Here it is clear that the LastName
and FirstName fields hold character strings. The type of data being stored in
the ID field is not clear to us as human beings from looking at the record; they
could be numeric data, but because they are unlikely to be involved in compu-
tations, they could also be character string data. The data type must be
specified when the file is created.
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14.3.2  Database Management Systems

A database management system (DBMS) manages the files in a database. We
know that such files actually consist of collections of individual records. How-
ever, Edgar F. Codd (mentioned in Chapter 12 as a Turing Award winner for his
work in database management systems) proposed the conceptual model of a
file as simply a two-dimensional table. In this relational database model, the
Employees file at Rugs-For-You would be represented by the Employees table of
Figure 14.6.

With the change from records in a file to a conceptual table representing
data come some changes in terminology. The table represents information about
an entity, a fundamental distinguishable component in the Rugs-For-You
business—namely its employees. A row of the table contains data about one
instance of this entity—that is, one employee—and the row is called a tuple (in
Figure 14.6, each row is a 6-tuple, containing six pieces of information). How
the tuples (rows) are ordered within the table is not important. Each category of
information (ID, FirstName, and so on, in our example) is called an attribute.
The heading above each column identifies an attribute. The table thus consists
of tuples of attribute values. (In other words, in the relational model, files are
thought of as tables, records as tuples, and fields as attributes.) A primary key
is an attribute or combination of attributes that uniquely identifies a tuple. In
our example, we are assuming that ID is a primary key; ID is underlined in the
heading in Figure 14.6 to indicate that it is the primary key for this table. The
Social Security number is often used as a primary key to uniquely identify
tuples that involve people. Obviously, neither LastName nor FirstName can serve
as a primary key—there are many people with the last name Smith and many
people with a first name of Michael or Judith.

The computer’s operating system functions as a basic file manager. As we
learned in Chapter 6, the operating system contains commands to list all of
the files on the hard drive, to copy or delete a file, to rename a file, and so
forth. But a database management system, unlike a simple file manager,
works at the level of individual fields in the individual records of the file; in
more appropriate terminology, we should say that it works at the level of
individual attribute values of individual tuples in the relational table. Given
the Employees table of Figure 14.6, a database management system could be
given the instruction shown on the page below. 
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ID LASTNAME FIRSTNAME BIRTHDATE PAYRATE HOURSWORKED

149 Takasano Frederick 5/23/1966 $12.35 250
One Record in the Rugs-For-You
Employees File

FIGURE 14.5

EMPLOYEES

ID LASTNAME FIRSTNAME BIRTHDATE PAYRATE HOURSWORKED

116 Kay Janet 3/29/1956 $16.60 94
123 Perreira Francine 8/15/1987 $ 8.50 185
149 Takasano Frederick 5/23/1966 $12.35 250
171 Kay John 11/17/1954 $17.80 245
165 Honou Morris 6/9/1988 $ 6.70 53

Employees Table for Rugs-For-You

FIGURE 14.6



SELECT ID, LastName, FirstName, Birthdate, PayRate,
HoursWorked

FROM Employees
WHERE ID = 123;

This command asks the system to retrieve all the information about the
employee with ID 123. Because ID is the primary key, there can only be one
such employee, and this is a relatively easy task. But the following request to
locate all the information about an employee with a given last name,

SELECT ID, LastName, FirstName, Birthdate, PayRate,
HoursWorked

FROM Employees
WHERE LastName = ‘Perreira’;

is done just as easily, even though the LastName attribute may not uniquely
identify the tuple. If multiple employees in the table have the same name, all
of the relevant entries will be returned.

If only some of the attributes are wanted, an instruction such as

SELECT LastName, PayRate
FROM Employees
WHERE LastName = ‘Perreira’;

produces just the last name and pay rate for the employee(s) with the given
name.

Database management systems usually require specialized query languages
to enable the user or another application program to query (ask questions of)
the database, in order to retrieve information. The three preceding SELECT
examples are written in a language called SQL, Structured Query Language.
We briefly discussed SQL in Chapter 10.

To appreciate the power of SQL, consider the following simple SQL queries
for more complicated tasks:

SELECT *
FROM Employees
ORDER BY ID;

This query says to retrieve all of the attribute values (the asterisk is short-
hand for listing all attributes) for all the tuples (because there is no further
qualification) in the Employees table sorted in order by ID. Thus, we have
effectively sorted the tuples in the relational table using a single command.
This is a significant gain in productivity over the step-by-step process of
comparing items and moving them around used in the sorting algorithm in
Chapter 3. (Of course, what has happened internally is that SQL has
invoked its own sorting algorithm. However, the user is shielded from the
details of this algorithm and is allowed to work at a more abstract level.)
The query

SELECT *
FROM Employees
WHERE PayRate > 15.00;
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gets all the tuples for employees above a certain pay rate. Here we’ve searched
all the tuples on a particular attribute, again without having to specify all of
the details, as we had to do when writing the sequential search or binary
search algorithms of Chapter 3.

To manage a relational table, you must be able to add new tuples to the
table (which is how the existing tuples got into the table in the first place),
delete tuples from a table, and change information in an existing tuple. These
tasks are easily handled by the SQL commands INSERT, DELETE, and UPDATE.

In order to explore further the power of a DBMS, let’s expand our Rugs-
For-You database to include a second relational table. The InsurancePolicies
table shown in Figure 14.7 contains information on the insurance plan type
and the date of issue of the policy for an employee with a given ID.

In the InsurancePolicies table, there is a composite primary key in that
both EmployeeID and PlanType are needed to identify a tuple uniquely,
because a given employee may have more than one insurance plan (e.g., both
health and disability insurance plans). It is also true that an employee may
have no plan; in Figure 14.7, there is no tuple with ID 116, although there is
an employee with ID 116. Each value of EmployeeID in the InsurancePolicies
table exists as an ID value in a tuple of the Employees table, where it is a pri-
mary key. Because of this, the EmployeeID attribute of the InsurancePolicies
table is called a foreign key into the Employees table. This foreign key estab-
lishes the relationship that employees may have insurance plans.

The database management system can relate information between various
tables through these key values—in our example, the linkage between the
foreign key EmployeeID in the InsurancePolicies table and the primary key ID
in the Employees table. Thus, the following query will give us information
about Frederick Takasano’s insurance plan, even though Frederick Takasano’s
name is not in the InsurancePolicies table:

SELECT LastName, FirstName, PlanType
FROM Employees, InsurancePolicies
WHERE LastName = ‘Takasano’
AND FirstName = ‘Frederick’
AND ID = EmployeeID;

The query is an instruction to retrieve the LastName and FirstName attributes
from the Employees table and the PlanType attribute from the InsurancePolicies
table by looking for the tuple with LastName attribute value “Takasano” and
FirstName attribute value “Frederick” in the Employees table, and then finding
the tuple(s) with the matching EmployeeID value in the InsurancePolicies table.
(Here is the Boolean AND operation we encountered in Chapter 4 in our discus-
sion on Boolean logic.) It is the last term in the WHERE clause of the query
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INSURANCEPOLICIES

EMPLOYEEID PLANTYPE DATEISSUED

171 B2 10/18/1974
171 C1 6/21/1982
149 B2 8/16/1990
149 A1 5/23/1995
149 C2 12/18/1999

InsurancePolicies Table for
Rugs-For-You

FIGURE 14.7



(the last line) that causes the two tables to be joined together by the match
between primary key and foreign key. The result of the query is

Takasano Frederick B2
Takasano Frederick A1
Takasano Frederick C2

The correspondence between primary keys and foreign keys is what estab-
lishes the relationships among various entities in a database. The SQL com-
mand to create a table requires specification of the various attributes by name
and data type, identification of the primary key, identification of any foreign
keys, and identification of the tables into which these are foreign keys. This
information is used to build the actual file that stores the data in the tuples.

We’ve now done a fairly complex query involving two different tables. It is
easy to see how these ideas can be expanded to multiple tables, linked
together by relationships represented by foreign keys and their corresponding
primary keys. Figure 14.8 shows an expansion of the Rugs-For-You database to
include a table called InsurancePlans that contains, for each type of insurance
plan, a description of its coverage and its monthly cost. PlanType is the pri-
mary key for this table. This makes PlanType in the InsurancePolicies table a
foreign key into the InsurancePlans table, as shown in Figure 14.8. This link-
age would allow us to write a query to find, for example, the monthly cost of
Mr. Takasano’s insurance (see Practice Problem 2 at the end of this section).

Using multiple tables in a single database reduces the amount of redun-
dant information that must be stored. For example, a stand-alone insurance
file for Rugs-For-You employees would probably have to include employee
names as well as IDs. It also minimizes the amount of work required to main-
tain consistency in the data (if Francine Perreira gets married and changes her
name, the name change need only be entered in one place). But most impor-
tant of all, the database gives the user, or the user’s application software, the
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ability to combine and manipulate data easily in ways that would be very
difficult if the data were kept in separate and unrelated files.

As we have seen by looking at some queries, SQL is a very high-level
language in which a single instruction is quite powerful. In terms of the
language classifications of Chapter 10, it is also a nonprocedural language.
A program written in SQL merely asks for something to be done (sort all tuples
in some order, search all tuples to match some condition); it does not contain
a specific sequence of instructions on how it is to be done.

14.3.3  Other Considerations

Performance issues definitely affect the user’s satisfaction with a database
management system; a slow response to a query is at best annoying and at
worst unacceptable. Large files are maintained on disk in secondary storage
rather than being brought in total into main memory. Accessing a record in
the file involves at least one disk input/output (I/O) operation, which is a
much slower process than accessing information stored in main memory,
sometimes as much as three or four orders of magnitude slower.

In Chapter 5 we talked about the three components that contribute to
reading an individual disk sector into memory or writing from memory to a
disk sector: seek time (time to position the read/write head over the correct
track on the disk), latency (time for the correct sector to rotate under the
read/write head), and transfer time (time to read from or write to the entire
sector). Organizing the way that records are stored on the disk can help to
minimize the access time by reducing the number of disk I/O operations that
must be done before finding the sector containing the desired record. For
example, assume that we have a database that occupies 30 sectors on our
disk, and there are 15 sectors per track. It would make the most sense to store
the information on surface 0, track 0, sectors 0–14 and on surface 1, track 0,
sectors 0–14. Using the same track on different surfaces means that the head
does not have to move to a different track to obtain the data, and the seek
time is always 0.

Also, creating additional records to be stored along with the file, although
consuming extra storage, can significantly reduce access time. This works
much like a library catalog system. To access a book, the user first consults a
smaller structure that is organized in a useful way (alphabetically), and that
directs the user to the desired book. The smaller structure stored with the file
may even be organized in a treelike manner that is a generalization of the tree
structure we used in Chapter 3 to visualize the binary search. Following the
branches of the tree can quickly lead to information about the location in the
file of the record with a particular primary key value. A good DBMS incorpo-
rates the services of a sophisticated file manager to organize the disk files in
an optimal way, in order to minimize access time to the records.

Distributed databases allow the physical data to reside at separate and
independent locations that are electronically networked together. The user at
site A makes a database query that needs access to data physically stored at
site B. The database management system and the underlying network make
the necessary links and connections to get the data from where it is currently
stored to the node where it is needed. To the user, it looks like a single data-
base on his or her own machine, except perhaps for increased access time
when data have to travel across a network.

580 LEVEL 5 CHAPTER 14: Electronic Commerce and Databases



58114.3 Databases LEVEL 5

If a database management system can easily make connections among dif-
ferent files, and even among data stored at different locations, how difficult is
it to electronically link information in the IRS database with information in
the FBI database, the Social Security database, credit card databases, banking
databases, and so on? Obviously, it would not be difficult, using the technol-
ogy that we have described in this chapter. Building these types of massive,
integrated government databases raises fewer technical questions than legal,
political, social, and ethical ones. Remember that even the online customers
of Rugs-For-You want assurances as to how their personal information is used.

The world’s largest database can be found at the
World Data Center for Climate (http://www.ngdc.noaa.gov/
wdc/europe/climate.html). One of 52 Centers in 12 countries
making up the World Data Center System, the WDCC is
located at the Max Planck Institute for Meteorology in
Hamburg, Germany. Its mission is to collect, examine,
and disseminate data related to climate change
on all time scales, particularly data from scientific climate

modeling (remember the discussion on climate modeling in
Chapter 13).

In 2007 the WDCC database held about 340 terabytes
of data! That’s 340,000,000,000,000 bytes. A standard
data DVD holds 4.7 GB, so this database represents the
content of more than 72,000 DVDs. In addition to this
huge amount of data available online to scientists from
around the world, the WDCC also maintains 6 petabytes
(6,000 terabytes) of additional data on magnetic tape.

Think Big!

1. Using the Employees table of Figure 14.6, what is the result of the
following SQL query?

SELECT ID, PayRate
FROM Employees
WHERE LastName = ‘Takasano’;

2. Complete the following SQL query to find the monthly cost of Fred-
erick Takasano’s insurance; because PlanType is an attribute of both
InsurancePolicies and InsurancePlans, we have to include the table
name as well.

SELECT LastName, FirstName, _____
FROM Employees, InsurancePlans, InsurancePolicies
WHERE LastName = _____
AND ID = EmployeeID
AND InsurancePolicies.PlanType = _____;

3. Using the InsurancePolicies table of Figure 14.7, write an SQL query
to find all the employee IDs for employees who have insurance plan
type B2.

PRACTICE PROBLEMS

http://www.ngdc.noaa.gov/wdc/europe/climate.html
http://www.ngdc.noaa.gov/wdc/europe/climate.html


In general, issues of personal privacy and public safety are magnified enor-
mously by the capabilities of networked databases. We’ll discuss approaches to
these and other ethical issues in Chapter 17.

14.4 Conclusion

In this chapter we’ve looked at e-commerce, a highly popular application of
computing. We’ve learned that there is much more involved in a retail Web
business than simply creating a Web page, and that technical areas of com-
puter science such as information security and databases play a critical role.

In Chapter 15 we will look at another application of computer science,
one that has long captured the public’s attention through its depiction in
science-fiction literature and movies—artificial intelligence.
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If you have a commercial database package available, you
can work through the exercises in this laboratory experi-
ence using an expanded Rugs-For-You database. You will

write SQL queries similar to the ones discussed in this
section and will also learn how to use SQL to carry out
some computations.

LABORATORY
EXPERIENCE 19



1. Find an example of what you consider an excellent retail
Web site. Comment on:
a. The use of color and white space.
b. The ease of navigation.
c. The taxonomy.
d. Whether the site displays its privacy policy.
e. Whether the site displays a security assurance.
f. Your experience walking through the online purchase

process (of course, cancel before you commit to the
final purchase!). Are you in control and informed at
each step?

2. Find an example of what you would consider a poor retail
Web site. Use the same list as for Exercise 1 and note the
differences you find.

3. Depending on your Web browser, you may be able to
locate a folder on your machine called “Cookies,” or a
single file “cookies.txt.” Look through the folder or open
the cookies.txt file. List references to three Web sites you
have visited.

4. Using the Employees table of Figure 14.6, what is the
result of the following SQL query?

SELECT * FROM Employees

WHERE HoursWorked < 100;

5. Write an SQL query that retrieves first and last names and
pay rate, ordered by PayRate, from the Employees table of
Figure 14.6.

6. Using the Employees table of Figure 14.6 and the Insur-
ancePolicies table of Figure 14.7, what is the result of the
following SQL query? (The # marks allow the date to be
treated numerically.)

SELECT ID, PlanType

FROM Employees, InsurancePolicies

WHERE Birthdate > #1/01/1960#

AND ID = EmployeeID;

7. Using the Employees table of Figure 14.6 and the Insur-
ancePolicies table of Figure 14.7, write an SQL query that
retrieves first and last names, hours worked, and insur-
ance plan types for all employees who have worked fewer
than 100 hours.

8. Figure 14.8 describes the attributes in an InsurancePlans
table. Write some possible tuples for this table.

9. Assuming the existence of an InsurancePlans table as
described in Figure 14.8, write an SQL query that retrieves
the employee first and last name, insurance plan type,
and monthly cost for John Kay’s insurance.
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Make a list of all the databases (county, state, federal,
school, credit card, bank, and so forth) that you think cur-
rently contain information about you. Investigate what
laws or restrictions, if any, exist to protect your privacy.

Then write a short paper on the additional legislation, at
the county, state, or federal level, you believe is needed to
protect consumer privacy, or write a newspaper editorial
explaining why no further laws need to be passed.



The following books address various aspects of e-commerce:

Awad, E. M. Electronic Commerce: From Vision to Fulfillment, 3rd ed. Englewood Cliffs, NJ: 
Prentice-Hall, 2007.

Laudon, K. C., and Traver, C. G. E-Commerce: Business. Technology. Society, 4th ed. Englewood Cliffs,
NJ: Prentice-Hall, 2008.

Rayport, J. F., and Jaworski, B. J. Introduction to E-Commerce, 2nd ed. New York: McGraw-Hill,
2004.

Schneider, Gary. Electronic Commerce, 6th ed. Boston, MA: Course Technology, 2006.

Strauss, J., El-Ansary, A., and Frost, R. E-Marketing, 4th ed. Englewood Cliffs, NJ: Prentice-Hall,
2006.

The following reference gives a complete grounding in the theory of databases:

Date, C. J. An Introduction to Database Systems, 8th ed. Reading, MA: Addison-Wesley, 2004.

For a look at the use of databases with Internet applications:

Riccardi, G. Database Management: With Website Development Applications. Englewood Cliffs, NJ:
Prentice-Hall, 2003.

Finally, a really remarkable Web site, http://digitalenterprise.org, presents an entire
online course called “Managing the Digital Enterprise,” maintained by Professor Michael
Rappa of North Carolina State University.
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15.1 Introduction

Artificial intelligence (AI) is the branch of computer science that explores
techniques for incorporating aspects of intelligence into computer systems.
This definition, however, raises more questions than it answers. What really is
“intelligence”? Is it a uniquely human attribute? If a computer system
exhibits behavior that we might characterize as intelligent, does that make it
truly intelligent? What sorts of behaviors demonstrate intelligence?

Alan Turing, whose investigations into the fundamental nature of compu-
tation led to the Turing machine (Chapter 12), was also interested in artificial
intelligence. In 1950, before the term artificial intelligence was coined, he pro-
posed a test for intelligent behavior of machines. The Turing test allows a
human to interrogate two entities, both hidden from the interrogator (Figure 15.1).
One entity is a human and the other a machine (a computer). The interrogator
can ask the entities questions and receive their responses. The communication
is carried on in some form that does not alone reveal which entity is the com-
puter; for example, the interrogator’s questions could be typed on a keyboard
and the responses printed out. If, as a result of this questioning, the interroga-
tor is unable to determine which entity is the human and which the computer,

Interrogator

Machine

Human

Communication

The Turing Test

FIGURE 15.1



then the computer has exhibited sufficiently human intelligence to pass the
Turing test. This test does not explore the nature of human intelligence in a
deep philosophical way; it merely says that if a machine exhibits behavior indis-
tinguishable from that of a human, then how can we tell the difference—a
question that has been explored more than once in science fiction. 

In Chapter 13 we discussed models of physical phenomena (objects
falling under the force of gravity, customers in a store). Artificial intelligence
is the construction of computer models of human intelligence. Just as we
learned in Chapter 13 that a model cannot capture all aspects of the system
it represents, so artificial intelligence cannot capture all aspects of “intelli-
gence.” Although science fiction conjures scenarios of thinking computers
controlling the world, the advances in artificial intelligence have been more
modest. Nonetheless, artificial intelligence has produced practical results in
natural language understanding, robotics, game playing, problem-solving,
machine learning, expert systems, pattern recognition, and other areas. And
conversely, attempts to model intelligence within a computer have in turn
made contributions to cognitive science, the study of how we as humans
think and learn.
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The Loebner Prize Competition has been held annually
since 1991. This competition is essentially a Turing test.
Dr. Hugh Loebner, a sociologist and inventor, has posted a
$100,000 grand prize and a gold medal for the first com-
puter program whose responses are indistinguishable from
a human’s. Though the grand prize remains unclaimed, a
prize of $2,000 and a bronze medal is awarded each year
to the computer program judged to be “most human” in
that year’s competition.

One of the most famous early AI experiments
occurred in the laboratory of Professor Joseph Weizen-
baum at MIT in 1966. A program named ELIZA conversed
with people in the fashion of a psychotherapist, picking
up on key words and echoing them back in a sentence.
This was quite mechanical and there was no understand-
ing involved. For example, an ELIZA conversation might
go something like this:

Human: I am not feeling well today.
Computer: I AM SORRY TO HEAR THAT YOU ARE NOT

FEELING WELL.
Human: I had a fight with my wife.
Computer: TELL ME ABOUT YOUR WIFE.
Human: The house ate my zebra.
Computer: TELL ME ABOUT YOUR ZEBRA.

Weizenbaum was horrified at the ease with which
people who interacted with ELIZA became convinced

that they were talking with a real person. Today, there
are many “chatbot” programs available on the Web. 
The 2007 winning entry in the Loebner Prize Competi-
tion was Ultra Hal Assistant, a chatbot program that can
not only hold a conversation but remember and remind
you of appointments, tell you the local weather report,
give you the definition of a word, or do some Web
searching for you. Ultra Hal also appears to learn; con-
sider this sample conversation (http://zabaware.com/
loebner.html): 

User: If it rains hard, then the roads get slick.   
Hal: I will remember that one follows the other.

Caught in a rainstorm, it's time to seek shelter.    
User: If the roads get slick, then drivers need to slow

down.   
Hal: I see the relationship. It would be nice to get

rain when we need it. 
User: If drivers need to slow down, then traffic

moves more slowly.   
Hal: Yes, I get that clearly.       
User: Ok, so what happens when it rains hard?   
Hal: Traffic moves more slowly because drivers need

to slow down.

While this conversation seems much more intelligent
than the one with ELIZA, we can see the same type of 
if-then reasoning that the Prolog inference engine uses
(Chapter 10).

To Whom Am I 
Speaking?

http://zabaware.com/loebner.html
http://zabaware.com/loebner.html


15.2 A Division of Labor

To understand better what artificial intelligence is all about, let’s consider a
division of task types. Humans can perform a great variety of tasks, but we’ll
divide them into three categories, representative but by no means exhaustive:

• Computational tasks

° Adding a column of numbers

° Sorting a list of numbers into numerical order

° Searching for a given name in a list of names

° Managing a payroll

° Calculating trajectory adjustments for the space shuttle

• Recognition tasks

° Recognizing your best friend

° Understanding the spoken word

° Finding the tennis ball in the grass in your backyard

• Reasoning tasks

° Planning what to wear today

° Deciding on the strategic direction a company should follow for the
next 5 years

° Running the triage center in a hospital emergency room after an
earthquake

Algorithmic solutions exist for computational tasks (we devised algo-
rithms for sorting and searching in the early chapters of this book). As
humans, we can, in principle at least, follow these step-by-step instructions.
Computational tasks are also tasks for which accurate answers must be
found—sometimes very quickly—and that’s where we as humans fall down.
We make mistakes, we get bored, and we aren’t very speedy. Computers are
better (faster and more accurate) at performing computational tasks, provided
they are given programs that correctly embody the algorithms. Throughout
most of this book, with its emphasis on algorithms, we’ve been talking about
procedures to solve computational tasks, how to write those procedures, how
to get the computer to execute them, and so on. 

Humans are better at recognition tasks. We should perhaps expand the
name of this task type to sensory/recognition/motor-skills tasks, because we
receive information through our senses (primarily seeing and hearing), we rec-
ognize or “make sense of” the information we receive, and we often respond to
the information with some sort of physical response that involves controlled
movement. Although we wait until elementary school to learn how to add, an
infant a few weeks old, on seeing its mother’s face, recognizes that face and
smiles; soon that infant understands the spoken word. You spot the tennis ball
in the yard even though it is green and nestled in among other green things
(grass, dandelions). You register whether the tennis ball is close or far away,
and you manipulate your legs and feet to propel you in the right direction.

How do we do these things? Traditional step-by-step procedural
algorithms don’t seem to apply, or if they do, we don’t know what those
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algorithms are. Rather, it seems that we as humans succeed at these tasks
by processing a huge amount of data and then matching the results against
an even larger storehouse of data based on our past experiences. Consider
the task of recognizing your best friend. You have, in effect, been shown a
number of “pictures” of your friend’s face that seem to be “burned into”
your memory, along with pictures of the faces of everyone else you know
well. When you see your friend, you sort through your mental picture file
until you come to a match. It is a bit more complicated than that, however,
because if you encounter your friend’s sister, you may know who it is even
though you have never met her before. You find not an exact match to one
of the images in your mental picture file, but a close approximation.
Approximation, unlike the exactitude required in computational tasks, is
good enough. These complex recognition tasks that we find so easy are
difficult for computers to perform.

When humans perform reasoning tasks, they are also using a large store-
house of experience. This experience involves not just images but also cause
and effect situations. You know that you should wear a coat when it’s cold
because you’ve experienced discomfort in cold weather when you didn’t wear
a coat. This could be considered “mere” commonsense reasoning, but getting
a computer to mimic common sense, to say nothing of higher-order concep-
tual, planning, or reasoning tasks, is extremely challenging. There may be no
“right” answer to such tasks, and the way humans arrive at their respective
answers sometimes seems ambiguous or based at least in part on intuition,
which may be just another name for knowledge or reasoning that we don’t yet
understand.

Figure 15.2 summarizes what we’ve outlined as the relative capabilities of
humans and computers in these three types of tasks. Computers fall below
humans where procedural algorithms either don’t work or aren’t known, and
where there seems to be a high level of complexity and perhaps approximation
or ambiguity. Artificial intelligence seeks ways to improve the computer’s abil-
ity to perform recognition and reasoning tasks, and we’ll look at artificial
intelligence approaches in these two areas in the rest of this chapter. As men-
tioned earlier, however, both types of tasks seem to require a storehouse of
information—images, past experiences, and the like—for which we’ll use the
general term knowledge. Therefore, we’ll first look at various approaches to
representing knowledge.
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15.3 Knowledge Representation

We can consider knowledge about some topic as a body of facts or truths. For
the computer to make use of that knowledge, there must be some representa-
tional form in which the knowledge is stored within the computer. (At the low-
est level, of course, only 0s and 1s are stored within the computer, but strings
of 0s and 1s are organized and interpreted at a higher level of abstraction—as
integers or characters, for example.) For computational tasks, the relevant
knowledge is often isolated numeric or textual items. This is the data that
we’ve manipulated with procedural programs. What about more complex
knowledge?

There are many workable representation schemes; let’s consider four
possibilities.

1. Natural language. A paragraph or a page of text that contains all the
knowledge we are trying to capture is written in English, French,
Spanish, or some other natural language. Here is an example:

Spot is a brown dog and, like any dog, has four legs and a tail. Also
like any dog, Spot is a mammal, which means Spot is warm-blooded.

Note that although this representational form is text, it is text in a
different sense from the character strings that are used in computa-
tional tasks. Here it is not simply the strings of characters that are
important but also the meaning that those strings of characters con-
vey. When reading a natural language paragraph, we use our under-
standing of the richness of the language’s vocabulary to extract the
meaning. Some researchers believe that the words we read or hear do
not actually communicate meaning, but merely act as “triggers” to
meanings stored in our brains.

2. Formal language. A formal language sacrifices richness of expression
for precision of expression. Attributes and cause and effect relation-
ships are more explicitly stated. A formal language version of the fore-
going natural language paragraph might look like this:

Spot is a dog.

Spot is brown.

Every dog has four legs.

Every dog has a tail.

Every dog is a mammal.

Every mammal is warm-blooded.

The term language was used in Chapter 11 to mean the set of
statements derivable by using the rules of a grammar. But here the
term formal language means the language of formal logic, usually
expressed more symbolically than we have done in our example. In the
usual notation of formal logic, we might use dog(x) to symbolize that
the symbolic entity x has the attribute of being a dog and brown(x) to
mean that x has the attribute of being brown. Similarly four-legged(x),
tail(x), mammal(x), and warm-blooded(x) could symbolize that x has
these various attributes. The specific entity Spot could be represented
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by S. Then dog(S) would mean that Spot has the attribute of being a
dog. Cause and effect relationships are translated into “if-then” state-
ments. Thus, “Every dog has four legs” is equivalent to “For every x, if
x is a dog, then x has four legs.” An arrow symbolizes cause and effect
(if-then); “If x is a dog, then x has four legs” would be written sym-
bolically as

dog(x) S four-legged(x)

To show that every x that has the dog property also has the four-
legged property, we would use a universal quantifier, (;x), which
means “for every x.” Therefore,

(;x)(dog(x) S four-legged(x))

means “For every x, if x is a dog, then x has four legs” or “Every dog
has four legs.” Symbolically, the preceding six formal language state-
ments become

Natural Language Statement Symbolic Representation
Spot is a dog. dog(S)
Spot is brown. brown(S)
Every dog has four legs. (;x)(dog(x) S four-legged(x))
Every dog has a tail. (;x)(dog(x) S tail(x))
Every dog is a mammal. (;x)(dog(x) S mammal(x))
Every mammal is warm-blooded. (;x)(mammal(x) S warm-blooded(x))

The use of formal languages represents one of the major approaches
to building artificial intelligence systems. Intelligent behavior is
achieved by using symbols to represent knowledge and by manipulating
these symbols according to well-defined rules. We’ll see an example of
this when we discuss expert systems later in this chapter.

3. Pictorial. Information can be stored in pictorial form as an image—a
grid of pixels that have attributes of shading and color. Using this rep-
resentation we might have a picture of Spot, showing that he is brown
and has four legs and a tail. We might have some additional labeling
that says something like, This is Spot, the dog. This visual representa-
tion might contain additional knowledge about Spot’s appearance that
is not embodied in the natural language paragraph or the formal lan-
guage statements, but it would also fail to capture the knowledge that
Spot is a mammal and that mammals are warm-blooded. It also wouldn’t
tell us that all dogs have four legs and a tail. (After all, a photo of a
three-legged dog does not tell us that all dogs have three legs.)

4. Graphical. Here we are using the term graphical not in the sense of
“visual” (we have already talked about pictorial representation) but
in the mathematical sense of a graph with nodes and connecting
arcs. Figure 15.3 is such a graph, also called a semantic net, for
our dog example. In the terminology of object orientation that
was a feature of the programming language(s) of Chapter 9, the
rectangular nodes represent classes or objects, the oval nodes repre-
sent properties, and the arcs represent relationships. The “is a”
relationship represents a subclass of a class that inherits properties
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from the parent class; “dog” is a subclass of “mammal,” and any dog
object inherits all the properties of mammals in general, such
as being warm-blooded. Objects from the dog class may also have
properties of their own. The “instance” relationship shows that
something is an object of a class; Spot is a particular object from the
dog class and may have a unique property not necessarily shared
by all dogs.

Any knowledge representation scheme that we select must have the fol-
lowing four characteristics:

1. Adequacy. The representation method must be adequate to capture all
of the relevant knowledge. Because of its rich expressive powers, a nat-
ural language representation will surely capture a lot of knowledge.
However, it may be difficult to extract exactly what that knowledge is.
One may have to wade through a lot of unnecessary verbiage, and one
must also understand the nuances of meaning within the natural lan-
guage. A formal language representation has the advantage of extract-
ing the essentials.

2. Efficiency. We want the representational form to be minimalist, avoid-
ing redundant information wherever possible. This means allowing
some knowledge that is not explicitly represented to be inferred from
the knowledge that is explicitly represented. In the preceding exam-
ple, it is easy to infer from the natural language, the formal language,
or the semantic net that because Spot is a dog, he has four legs and a
tail and also is a mammal and therefore warm-blooded. This knowl-
edge, as we have said, is not captured in the pictorial format. On the
other hand, it would take a much longer natural language paragraph to
describe all the additional knowledge about Spot that is captured in
the picture.

3. Extendability. It should be relatively easy to extend the representation
to include new knowledge. For example, the semantic net can easily be
extended to tack on another “dog” instance. It would also be easy to
capture the fact that dogs have two eyes or that mammals do not lay
eggs; these properties can simply be plugged in as new ovals con-
nected into the network.
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4. Appropriateness. The representation scheme used should be appropriate
for the knowledge domain being represented. For example, a pictorial
representation scheme would appear to be the most appropriate way to
represent the knowledge base for a problem dealing with recognition of
visual images. We saw before that a pictorial representation is probably
not appropriate for the kind of knowledge about Spot that is difficult to
display visually. The level of granularity needed for the intended applica-
tion might also influence the appropriateness of a particular scheme. Is a
given pictorial representation sufficient, or do we need to “zoom in” and
expose more detail? The appropriate representational form for knowledge
therefore depends on the knowledge to be captured and on the type of
task for which the knowledge is to be used.

15.4 Recognition Tasks

If artificial intelligence aims to make computers “think” like humans, then
it is natural to investigate and perhaps attempt to mimic the way the
human brain functions. It is estimated that the human brain contains
about 1012 neurons (that’s 1 trillion, or 1,000,000,000,000). Each neuron is
a cell capable of receiving stimuli, in the form of electrochemical signals,
from other neurons through its many dendrites (Figure 15.4). In turn, it
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can send stimuli to other neurons through its single axon. The axon of a
neuron does not directly connect with the dendrites of other neurons;
rather, it sends signals over small gaps called synapses. Some of the
synapses appear to send the neuron activating stimuli, whereas others seem
to send inhibiting stimuli. A single neuron collects all the stimuli passing
through all the synapses around its dendrites. The neuron sums the
activating (positive) and inhibiting (negative) stimuli it receives and
compares the result with an internal “threshold” value. If the sum equals or
exceeds the threshold value, then the neuron “fires,” sending its own
signal down its axon to affect other neurons.

Each neuron can be thought of as an extremely simple computational
device with a single on/off output. The power of the human brain lies 
in the vast number of neurons, the many interconnections between them,
and the activating/inhibiting nature of those connections. To borrow a
term from computer science, the human brain uses a connectionist archi-
tecture, characterized by a large number of simple “processors” with multi-
ple interconnections. This contrasts quite noticeably with the Von
Neumann architecture discussed in Chapter 5 and is still the basis for most
computers today. In that model there are a small number (maybe only one)
of very powerful processors with a limited number of interconnections
between them.

In some areas of the brain, an individual neuron may collect signals
from as many as 100,000 other neurons and send signals to an equally large
number of other neurons. This extensive parallelism is evidently required
because of the relatively slow time frame within which a neuron fires.
In the human brain, neurons operate on a time scale of milliseconds (thou-
sandths of a second), as opposed to the nanoseconds (billionths of a sec-
ond) in which computer operations are measured, a difference of 6 orders of
magnitude. In a human processing task that takes about 1/10 second
(recognition of your friend’s face), the number of steps that can be
executed by a single neuron would be on the order of 100. To carry out
the complexity of a recognition task, then, requires the parallel activities
of a large number of neurons executing cooperatively within this short time
frame. In addition, massive parallelism supplies redundancy so that
information is not stored only in one place but is shared within the
network of neurons. Thus, the deterioration of a limited number of single
neurons (a process that happens constantly as biological cells wear out)
does not cause a failure of the information processing capabilities of
the network.

Artificial intelligence systems for recognition tasks have used this
connectionist approach. Artificial neural networks, usually just called
neural networks, can be created by simulating individual neurons in
hardware and connecting them in a massively parallel network of simple
devices that act somewhat like biological neurons. (Recall our discussion
in Chapter 5 of parallel processing and non–Von Neumann architectures.)
Alternatively, the effect of a neural network may be simulated in software
on an ordinary sequential-processing computer. In either case, each
neuron has a threshold value, and its incoming lines carry weights that
represent stimuli. The neuron fires when the sum of the incoming weights
equals or exceeds its threshold value; the input lines are activated via the
firing of other neurons.
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Figure 15.5 represents a neuron with a threshold value of 3 and three
input lines with weights of 2, 21, and 2, respectively. If all three input lines
are activated, the sum of the incoming signals is 2 1 (21) 1 2 5 3 and the
neuron fires. It also fires if only lines 1 and 3 are activated, because the sum
of the incoming signals is then 2 1 2 5 4 . 3. Any other combination of acti-
vated input lines cannot carry sufficient stimulation to fire the neuron. (Real,
biological neurons fire with intensities that vary through a continuous range
but, as usual, our simplified computer representation of such analog values
uses a set of discrete values.)

Figure 15.6 depicts a neural net with an input layer and an output layer
of neurons. An input value xi is presented to neuron Nj in the input layer via
a line with signal strength xi 3 wij. The values of xi are usually binary (0 or 1),
so that this line carries a signal of either 0 when xi is 0, or the weight wij when
xi is 1. The weights to the input neurons, as well as the weights from the input
layer to the output layer, can be positive, negative, or zero.
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In the neural network shown in Figure 15.7, we have eliminated connec-
tions of weight 0. Here x1 and x2 have binary values of 0 or 1. If x1 or x2 or
both have the value 1, then a signal of 1 is passed to one or both of the neu-
rons in the input layer, causing one or both of them to fire, which causes the
single neuron in the output layer to fire and produce an output of 1. If both
x1 and x2 have the value 0, then neither neuron in the input layer fires, the
single neuron in the output layer does not fire, and the network output is 0.
This neural network is acting like an OR gate.

It turns out to be impossible to build such a network to represent the
Boolean operation called exclusive OR, or XOR, whose truth table is shown in
Figure 15.8. Here the output is true (1) when one or the other input is true,
but not when both are true. In Figure 15.9, no matter what values we give for
the weights and thresholds, it is not possible to generate this behavior. If
exactly one input signal of 1 is enough to fire the output neuron, which is
the desired behavior, then two input signals of 1 can only increase the ten-
dency for the output neuron to fire. To represent the XOR operation requires
a “hidden layer” of neurons between the input and output layers. Neural net-
works with a hidden layer of neurons are useful for recognition tasks, where
we want a certain pattern of output signals for a certain pattern of input sig-
nals. The XOR network, for example, recognizes when its two binary inputs do
not agree.

Conventional computer processing works on a knowledge base where the
information is stored as data in specific memory cells that can be accessed by
the program as needed. In a neural network, both the knowledge representa-
tion and also the “programming” are stored in the network itself as the
weights of the connections and the thresholds of the neurons. If you want to
build a neural network that performs in a certain way, how do you determine
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these values? In a simple network, trial and error can produce a solution, but
such is not the case for a network with thousands of neurons. Fortunately,
the right answer doesn’t have to be found the first time. Remember that
neural networks are modeled on the human brain; you learned to recognize
your best friend through repeated “learning experiences” that modified your
knowledge base until you came to associate certain features or characteristics
with that individual.

Similarly, a neural network can learn from experience by modifying the
weights on its connections (even making some connections “disappear” by
assigning them 0 weights). A network can be given an initial set of weights
and thresholds that is simply a first guess. The network is then presented
with training data, for which the correct outputs are known. The actual
output from the network is compared to the correct output for one set of
input values from the training data. For those output neurons that produce
correct values, their threshold values and the weights on their inputs do
not change. Output neurons that produce erroneous values can err in one of
two ways. If an output neuron fires when it is not supposed to, then the
positive (excitatory) input values coming into it are adjusted downward,
and the negative (inhibitory) weights coming into it are adjusted upward.
If it fails to fire when it is supposed to, the opposite adjustment is made.
But before these adjustments take place, information on the errors is
passed back from each erroneous output neuron to the neurons in the hid-
den layer that are connected to it. Each hidden-layer neuron adds these
error counts to derive an estimate of its own error. This estimate is used to
calculate the adjustments to be made on the weights of the connections
coming to it from the input-layer neurons. Finally, the weights are all
adjusted, and then the process is repeated for the next set of input values
from the training data.

This back propagation algorithm, so named for the error estimates that
are passed back from the output layer, eventually causes the network to settle
into a stable state where it can correctly respond, to any desired degree of
accuracy, to all inputs in the training set. In effect, the successive changes in
weights have reinforced good behavior and discouraged bad behavior (much as
we train our pets) until the paths for good behavior are imprinted on the con-
nections (as in Fido’s brain). The network has “learned” what its connection
weights should be, and its ability to recognize the training data is embedded
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somehow in the collective values of these weights. At the end of its training,
the neural network is ready to go to work on new recognition problems that
are similar to, but not the same as, the training data and for which the
answers are unknown.

Neural networks have found their way into dozens of real-world appli-
cations. A few of these are handwriting recognition, speech recognition,
recognizing patterns indicative of credit card fraud, recognizing bad
credit risks for loans, predicting the odds of susceptibility to cancer, lim-
ited visual recognition systems, segmenting magnetic resonance images
in medicine, adapting mirror shapes for astronomical observations, and
discovering the best routing algorithm in a large communications network
(a problem we mentioned in Chapter 7). With the ever-lower cost of mas-
sively parallel networks, it appears that neural networks will continue to
find new applications.
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In 1999, two biomedical engineers at the University
of Southern California, Theodore Berger and Jim-Shih
Liaw, created the Berger-Liaw Neural Network Speaker-
Independent Speech Recognition System. This is a neural
network that, after minimal training, can recognize words
spoken by any individual. Furthermore, it can pick out
individual words from a noisy background far better than

a human listener can. Even more remarkable, this neural
net uses only 11 neurons connected by 30 links. The key
to the success of this neural net is that the researchers
incorporated a temporal dimension; neurons do not all fire
for the same time duration, nor in lockstep. A demonstra-
tion of this speech recognition system can be found at
http://www.usc.edu/ext - re lat ions/news_serv ice/
real/real_video.html.

Can You Hear 
Me Now?

In this lab experience, you will train a neural network sim-
ulator for a character recognition task.  You can choose
one or more characters to present to a neural network’s
input layer and then train the network to correctly recog-
nize these characters.  After the network is trained, you
can input garbled variations of these characters that are
similar to, but not identical to, the training data charac-
ters and test the network’s ability to correctly identify
them.  You can vary the level of “garbling” in the input to
see at what point the network fails in its recognition task.
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15.5 Reasoning Tasks

We noted that one of the characteristics of human reasoning seems to be
the ability to draw on a large body of facts and past experience to come to
a conclusion. In this section we look at several ways in which artificial intel-
ligence specialists try to get computers to emulate this characteristic.

15.5.1 Intelligent Searching

Earlier in this book, we presented two algorithms for searching—sequential
search and binary search. These search algorithms look for a perfect match
between a specific target value and an item in a list. The amount of work
involved is Θ(n) for sequential search and Θ(lg n) for binary search.

A decision tree for a search algorithm illustrates the possible next choices of
items to search if the current item is not the target. In a sequential search, there
is only one item to try next: the next item in the list. The decision tree for
sequential search is linear, as shown in Figure 15.10. A decision tree for a binary
search, such as the one shown in Figure 15.11, reflects the fact that if the current
item is not the target, there are only two next choices: the midpoint of the sub-
list before this node or the midpoint of the sublist after this node. Furthermore,
the binary search algorithm specifies which of the two nodes to try next.

The classical search problem benefits from two simplifications:

1. The search domain (the set of items being searched) is a linear list. At
each point in the search, if the target is not found, the choice of where
to look next is highly constrained.

2. We seek a perfect match, so the comparison of the target against the
list item results in a binary decision—either they match or they do not.
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If input line 1 is stimulated in the following neural network (and line 2 is not stimulated), will the
output line fire? Explain.
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Suppose, however, that condition 1 does not hold; the search domain is such
that after any one node has been searched, there are a huge number of next
choices to try, and there is no algorithm to dictate the next choice. Figure 15.12
attempts to portray this scenario. In the terminology of artificial intelligence,
such a figure is called a state-space graph, and we seek to perform a
state-space search to find a solution path through the graph. The idea is
that each node of the graph represents a “state” of our problem, and we have
some “goal state” or states in mind. For example, in a game of tic-tac-toe, our
initial state is the empty game grid, and our goal state is a winning configura-
tion. A solution path takes us from the initial state to a winning configuration,
and the graph nodes along the way represent the intermediate configurations.
In addition to finding a winning sequence of moves for a board game (tic-tac-toe,
checkers, chess, and so forth), many other types of problems, such as finding
the shortest path through a network or finding the most successful investment
strategy in the stock market, fall into the state-space search category. In some
of these problems, condition 2 of the classical search problem—that of seeking
an exact match with a specified target value—is not present either. We simply
want to acquire as many characteristics of the desired goal as possible, and we
need some measure of when we are “close enough.”

A brute force approach for a solution path traces all branches of the
state-space graph so that all possible choices are tested and no test cases
are repeated. This becomes a massive bookkeeping task because the number
of branches grows exponentially. Given that time and computing resources
are limited, an intelligent search needs to be employed. An intelligent
search narrows the number of branches that must be tried and thereby puts
a cap on the otherwise exponential growth of the problem. Intelligent
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Decision Tree for Sequential
Search

FIGURE 15.10

Decision Tree for Binary Search

FIGURE 15.11



searching involves applying some heuristic (which means, roughly, an
“educated guess”) to evaluate the differences between the present state and
the goal state and to move us to a new state that minimizes those differ-
ences—namely, the state that maximizes our progress toward the goal state.

An intelligent chess-playing strategy, for example, is one that makes
an appropriate first move and that, at each step, makes a move more
likely than others to lead to a winning board configuration. Even a grand
master of chess cannot pursue the brute force approach of mentally try-
ing out all the possible next moves, all the possible moves following from
each of those moves, and so on, for very many steps. (In Section 1.2 we
showed that using a brute force approach, a computer would require a
billion billion billion years to make its first move!) Intelligent searching
is required. There must be a deep storehouse of experience that can be
“consulted” on the basis of the present configuration of the board. A
grandmaster–level player may need a mental database of around 50,000
of these board configurations, each with its associated information about
the best next move.

Building a machine that can beat a human at chess was long thought to
be a supreme test of artificial intelligence—machines that “think.” Suc-
cessfully playing chess, it was believed, surely epitomized logical reason-
ing, true “intelligence.” Chess is difficult for humans. Yet, the rules for
chess are straightforward; it is simply the size of the state-space that is
overwhelming. As artificial intelligence researchers delved deeper into sup-
posedly “simpler” problems such as visual recognition—things we humans
do easily—it became clear that these were the harder challenges for
machines. Playing chess came to be viewed as the last of the “easy” hard
problems. Nonetheless, the contest of human being versus machine at the
chessboard is irresistibly fascinating.

15.5.2 Swarm Intelligence

Recall that the connectionist architecture—neural networks—draws its inspira-
tion from nature, namely, the human brain. Another approach to achieving a
desired end, swarm intelligence, also draws its inspiration from nature, modeling
the behavior of, for example, a colony of ants. Each ant is an unsophisticated crea-
ture with limited capabilities, yet acting as a collective, an ant colony can accom-
plish remarkable tasks. Ants can find the shortest route from a nest to a food
source, carry large items, emigrate as a colony from one location to another, and
form bridges. An ant “communicates” with other ants by laying down a scent trail,
called a pheromone trail; other ants follow this trail and reinforce its strength by
laying down their own pheromones. Given a choice, ants have a higher probability
of following the strongest pheromone trail. Hence, the ant that took the shortest
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A State-Space Graph with 
Exponential Growth

FIGURE 15.12
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In May 1997, international attention was focused on a his-
toric chess match between world champion Garry Kasparov
and the IBM chess-playing computer known as Deep Blue.
(IBM has since built machines hundreds of times more power-
ful than Deep Blue, such as the 2004 Blue Gene/L, developed
for biomolecular research. These machine names are a clever
play on “Big Blue,” IBM’s nickname in the corporate world.)
Kasparov and Deep Blue played neck and neck. Both relied on
the respective strengths of their “species,” Kasparov utilizing
recognition and reasoning, and Deep Blue churning out its
high-speed computations (see Figure 15.2). In the final
game, Kasparov lost the match by falling for a well-known
trap. Kasparov’s error, which was considered a major blunder
for a player of his ability, probably reflected his weariness and
the emotional strain of competing against an unexpectedly
strong, utterly impassive foe. These human frailties, of course,
were not shared by Deep Blue.

Kasparov Deep Blue

Could evaluate up to 3 chess Could evaluate up to 200,000,000
positions per second, or 540 in chess positions per second, or 50
the 3 minutes allowed between billion in 3 minutes
moves

Selected which few positions to Evaluated a large number of random
evaluate on the basis of recognition positions to determine the
of successful strategies or tactical optimal move
approaches

Used his brain, including experience Used its 512 communicating
and intuition processors, which act algorithmically

following their C programming

Could assess his opponent’s Could be modified by its 
weaknesses and dynamically development team between
adjust his playing strategy games to change its approach

Was subject to human emotions Did not tire or have emotional
and weaknesses responses to alter its play

The Chinook project, involving a group of computer
scientists at the University of Alberta in Canada, headed
by Professor Jonathan Schaeffer, began in 1989. This pro-
ject was to develop a checkers-playing computer program.
In 1992, an early version of Chinook competed in the
World Checkers Championship against Dr. Marion Tinsley,
the world champion who had won every tournament he
had played in since 1950. The program lost this match but
was the winner in a 1994 rematch. All this occurred before
the Kasparov-Deep Blue contest, and the Guinness Book
of World Records in 1996 accorded Chinook the honor of
being the first computer program to win a human world
championship. In April of 2007, it was announced that
Chinook was finally perfected. From the standard starting
positions used in tournament play, Chinook can never
lose; the best a skilled opponent can achieve is a draw.
Multiple computers—as many as 200 at a time—–worked
simultaneously to carry out the 1014 (100 trillion) 
computations needed to determine how Chinook should
make its moves so that it never loses. You can play
against a “reduced strength” version of Chinook at
http://www.cs.ualberta.ca/~chinook/play.
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path to food and returned to tell about it lays down a trail that other ants follow
and reinforce faster than the trail laid down by an ant that took a longer path.
Because pheromone trails evaporate quickly, the collective intelligence of the
colony is constantly updated to respond to current conditions of its environment.

http://www.cs.ualberta.ca/~chinook/play


The swarm intelligence model captures this behavior by using simple
agents (analogous to the ants) that operate independently, can sense certain
aspects of their environment, and can change their environment. Research is
underway to use such simple agents in telecommunications networks to avoid
the complexity of a centralized control system to compute and distribute
routing tables within a network. Researchers are also applying swarm intelli-
gence to vehicle routing, job scheduling, and sensing of biological or chemical
contaminants. The “ants,” if you will, may even “genetically evolve” and
acquire additional capabilities over time.

15.5.3 Intelligent Agents

Swarm intelligence rests in the colony as a whole, which seems to acquire
“knowledge” that is greater than the sum of its parts. At the opposite end of
the spectrum are intelligent agents. An intelligent agent is a form of soft-
ware technology that is designed to interact collaboratively with a user some-
what in the mode of a personal assistant. Imagine that you have hired your
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NASA’s Goddard Space Flight Center is developing one of
the most interesting applications of swarm intelligence.
The ANTS (Autonomous NanoTechnology Swarm) project
involves objects shaped like three-sided pyramids with
a base (tetrahedrons).  Called TETwalkers, these objects
have a small motor at each vertex with connecting
struts between motors.  The motors can retract or
extend the struts, thereby changing the center of grav-
ity of the TETwalker and causing it to tumble over. Such
tumblings, repeated over and over, are the method of
locomotion for the TETwalker. Future versions of the
TETwalker will be much smaller, and capable of being
joined together in swarms.

NASA envisions using artificial intelligence to allow
these swarms to make decisions and change shape as circum-
stances arise. For example, a swarm could configure itself as
a snake-like body that slithers across the surface of a distant
planet. When it finds something interesting to report, it can
reconfigure itself to grow an antenna and transmit data back
to earth. Reconfiguration can also make the swarm resistant
to damage—if a few TETwalkers are “injured,” the swarm can
just reconfigure itself to work around them.

For further information on TETwalkers, see http://
www.nasa.gov/vision/universe/roboticexplorers/ants.html.
And you can download a (faintly creepy!) video of a Tet-
walker in motion at http://ants.gsfc.nasa.gov/features/
steppin.MPG.

ANTS in Space!
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own (human) personal assistant. In the beginning, you must tell your assis-
tant what to do and how you want it done. Over time, however, your assistant
comes to know more about you and soon can anticipate what tasks need to be
done and how to perform them, what items to bring to your attention, and so
forth. Your assistant becomes more valuable as he or she becomes more self-
directed, always acting with your best interests in mind. You, in turn, put
more and more trust in your assistant.

Like the human personal assistant, an intelligent agent begins to not
merely wait for user commands but initiates communication, takes action,
and performs tasks on its own on the basis of its increasing knowledge of your
needs and preferences. Here are some examples that exist today:

• A personalized Web search engine that allows you to profile items of
interest to you and then automatically delivers appropriate information
from the Web. For example, you may request updated weather condi-
tions for your geographic area, along with news items related to sports
and European trade. At periodic time intervals, this push technology
downloads your updated, personalized information to your screen to be
displayed whenever no other task is active.

• A more intelligent version of this personalized Web searcher that
enables you to “vote” on each article it sends you and then dynam-
ically adjusts what it sends in the future as it learns about your
preferences.

• An even more intelligent search agent that not only narrows down
choices from topics you have chosen but can suggest new, related
topics for you to explore. This is accomplished by having your agent
communicate with similar agents on the Web, even when you are not
online. If your agent knows of your interest in French cuisine, for
example, it communicates with other agents to find those that repre-
sent users with the same interest. It may learn from these agents
that many of their users are also interested in Cajun cooking. Your
agent then judges whether these suggestions are coming from agents
whose recommendations on the whole have been well received by
you in the past. If so, it asks whether you also want information
about Cajun cooking. If you do not agree to this proposal, your agent
notes what agents made that suggestion and, on the next pass, gives
less consideration to their ideas. The more agents that participate,
the more accurate each one becomes at “understanding” the interests
of its user.

• An online catalog sales company that uses an agent to monitor incom-
ing orders and make suggestions. For example, a customer who orders
a camera may be presented with a list of related accessories for sale,
such as tripods and lens filters.

• A manufacturing plant that uses an intelligent agent to negotiate with
suppliers on the price and scheduling of parts delivery to maximize
efficiency of production.

Intelligent agent technology has been an area of interest in artificial
intelligence for many years. However, intelligent agents need to display sig-
nificantly greater learning capabilities and “common sense” before most users
will trust them to make autonomous decisions regarding the allocation of time
and money. Until then, they will be relegated to presenting suggestions to
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their human users. However, when a sufficient level of trust in intelligent
agent technology has been achieved, and when human users are willing to
allow their software to make independent decisions, we will begin to see such
exciting new applications as

• Financial agents that negotiate with one another over the Web for the
sale and purchase of goods and services, using price/cost parameters
set by the sellers and buyers.

• Travel and tourism agents (electronic, not human) that book airline
flights, rent automobiles, and make hotel reservations for you 
on the basis of your destination, schedule, price range, and 
preferences.

• Office manager agents that screen incoming telephone calls and e-mail,
putting meetings on their users’ schedules, and drafting replies.

15.5.4 Expert Systems

Although intelligent agents incorporate a body of knowledge to “filter”
their choices and thereby appear to capture certain aspects of human rea-
soning, they still perform relatively limited tasks. Consider the more
unstructured scenario of managing the triage center in a busy hospital
emergency room. The person in charge draws on (1) past experience and
training to recognize various medical conditions (which may involve many
recognition subtasks), (2) understanding of those conditions and their
probable consequences, and (3) knowledge about the hospital’s capabilities
and resources in general and at the moment. From this knowledge base, a
chain of reasoning is followed that leads, for example, to a decision to treat
patient A immediately in a particular fashion and to let patient B wait. We
consider this to be evidence of quite general “logical reasoning” in
humans.

Artificial intelligence simulates this kind of reasoning through the use of
rule-based systems, which are also called expert systems or knowledge-
based systems. (The latter term is a bit confusing, because all “intelligent
activity” rests on some base of knowledge.) A rule-based system attempts to
mimic the human ability to engage pertinent facts and string them together in
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From 1997 to 2003, Microsoft Office software featured
the Office Assistant, a form of intelligent agent that fea-
tured an animated paperclip known as Clippit. Clippit
tried to assist the user based on its analysis of the task
the user was engaged in. For example, if the user typed
an address and then “Dear,” Clippit might pop up and say,
"It looks like you're writing a letter. Would you like help?"

Clippit was widely viewed as annoying and intrusive
rather than helpful, and it disappeared from later Office
versions. The field of HCI (human-computer 
interaction) studies, in part, design principles to provide
better bridges between the task the user wants to 
do and the computer’s understanding of and support of
that task. The well-intentioned Clippit clearly missed the
boat!

The Demise 
of Clippit



a logical fashion to reach some conclusion. A rule-based system must there-
fore contain these two components:

• A knowledge base: a set of facts about the subject matter

• An inference engine: a mechanism for selecting the relevant facts and
for reasoning from them in a logical way

Note that the knowledge base contains facts about a specific subject domain to
narrow the scope to a manageable size.

The facts in the knowledge base consist of certain simple assertions. For
example, let’s say that the domain of inquiry is U.S. presidents. Three simple
assertions are

1. Lincoln was president during the Civil War.

2. Kennedy was president before Nixon.

3. FDR was president before Kennedy.

Another type of fact is a rule, a statement of the form if . . . then . . . , which
says that whenever the clause following “if” is true, so is the clause following
“then.” For example, here are two rules that, taken together, define what it
means for one president to precede another in office. In these rules, X, Y, and
Z are variables.

I. If X was president before Y, then X precedes Y.

II. If X was president before Z and Z precedes Y, then X precedes Y.

Here we are using a formal language to represent the knowledge base.
What conclusions can be reached from this collection of three assertions

and two rules? Assertion 2 says that Kennedy was president before Nixon. This
matches the “if” clause of rule I, where X is Kennedy and Y is Nixon. From this,
the “then” clause of rule I yields a new assertion, that Kennedy precedes
Nixon, which we’ll call assertion 4. Now assertion 3 says that FDR was presi-
dent before Kennedy, and assertion 4 says that Kennedy precedes Nixon. This
matches the “if” clause of rule II, where X is FDR, Z is Kennedy, and Y is Nixon.
From this, the “then” clause of rule II yields a new assertion, that FDR pre-
cedes Nixon, which we’ll call assertion 5. Hence,

4. Kennedy precedes Nixon.

5. FDR precedes Nixon.

are two new conclusions or assertions. These assertions were previously
unknown and were obtained from what was known through a process of logi-
cal reasoning. The knowledge base has been extended. We could also say that
the system has learned two new pieces of knowledge.

If this example sounds familiar, it is because it is part of the example we
used in Chapter 10 to illustrate the logic programming language Prolog. Prolog
provides one means of implementing an inference engine for a rule-based system.

The inference engine is basically using the following pattern of reasoning:

Given that the rule

If A then B

and the fact

A

are both in the knowledge base, then the fact
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B

can be inferred or concluded.

This reasoning process, as we noted in Chapter 10, goes by the Latin name of
modus ponens, which means “method of assertion.” It gives us a method for
making new assertions. We humans use this deductive reasoning process all
the time. However, it is also suitable for computerization because it is basi-
cally a matching algorithm that can be implemented by brute force trial and
error. Systems like Prolog, however, apply some additional guidelines in their
search for matches to speed up the process; that is, they employ a form of
intelligent searching.

Inference engines for rule-based systems can proceed in several ways.
Forward chaining begins with assertions and tries to match those assertions
to the “if” clauses of rules, thereby generating new assertions. These may in
turn be matched with “if” clauses, generating still more assertions. This is the
process we used in our example. Backward chaining begins with a proposed
conclusion and tries to match it with the “then” clauses of rules. It then looks
at the corresponding “if” clauses and tries to match those with assertions, or
with the “then” clauses of other rules. This process continues until all “if”
clauses that arise have been successfully matched with assertions, in which
case the proposed conclusion is justified, or until no match is possible, in
which case the proposed conclusion is rejected. Backward chaining in our
example says, Here’s a hypothesis: FDR precedes Nixon, and the system works
backwards to justify this hypothesis.

In addition to the knowledge base and the inference engine, most rule-
based systems also have an explanation facility. This allows the user to see
the assertions and rules used in arriving at a conclusion, as a sort of check on
the path of reasoning or for the user’s own enlightenment.

Of course, a rule-based system about some particular domain is only as
good as the assertions and rules that make up the knowledge base. The
builder of such a system acquires the information for the knowledge base by
consulting “experts” in the domain and mining their expertise. This
process, called knowledge engineering, requires a great deal of interac-
tion with the human expert, much of it in the domain environment. If the
domain expert is the manager of a chemical processing plant, for example,
a decision to “turn down valve A whenever the temperature in pipe P
exceeds 235°F and valves B and C are both closed” may be such an
ingrained behavior that the expert won’t remember it as part of a question
and answer session on “what you do on your job.” It only emerges by on-
site observation. For the hospital example, one might need to follow people
around in the emergency room, observe their decisions, and later question
them on why those decisions were made. It is also possible to incorporate
probabilities to model the thinking process, for example, “If the patient has
fever and stomach pains, the probability of appendicitis is 73% and the
probability of gall bladder problems is 27%, therefore I first check A and
then B.”

Rule-based systems have been implemented in many domains, includ-
ing specific forms of medical diagnosis, computer chip design, monitoring
of manufacturing processes, financial planning, purchasing decisions for
retail stores, automotive troubleshooting, and diagnosis of failures in elec-
tronic systems. They will no doubt be even more commonplace in the
future.
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15.6 Robotics

The term “robot” implies a device, often human-like in form, that has the
ability to gather sensory information from its surroundings and to
autonomously (i.e., without direct human instructions) perform mechanical
actions of some sort in response. The term “robot” was used in a play written
in 1921 by Czech author Karel Capek.  The play was entitled R.U.R, short for
Rossum’s Universal Robots. In the play, a scientist invents robots that perform
simple repetitive tasks to help people but who take over the world when their
human owners try to use them to fight wars. The word “robot” comes from
the Czech word “robota,” meaning slave-like labor. Robots have been part of
science fiction ever since—think C3-PO and R2-D2 in the Star Wars movies, or
WALL-E (Waste Allocation Load Lifter Earth-class) in the 2008 Disney-Pixar
animated movie of the same name.

Fact has not yet caught up with science fiction, but today there are a sur-
prising number of applications of robots. Here’s a partial list of the uses to
which robots are put in manufacturing, science, the military, medicine, and in
the consumer marketplace.

• Assembling automobile parts
• Packaging food and drugs
• Placing and soldering wires in circuits
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1. Given the assertion “Frank is bald” and the rule “If X is bald, then X
is tall,” what conclusion can be inferred? If Frank were known to be
tall, would that necessarily imply that he was bald?

2. Given the assertion “Frank is not bald” and the rule “If X is bald,
then X is tall,” what conclusion can be inferred?

PRACTICE PROBLEMS

NASA’s Phoenix Mission to Mars in the summer of 2008
obtained conclusive proof that frozen water is contained
in the Martian soil. The robotic arm of the Phoenix Mars
Lander, shown here with part of the Lander’s solar panel,
scooped up a small frozen soil sample and delivered it to
a heater that analyzed the resultant vapors and sent data
back to earth, confirming that the sample contained
water ice. The presence of water is considered a key fac-
tor for the possibility of life. Scientists will study
whether this frozen water ever is or was available on Mars
in liquid form.

Finding Water 
on Mars
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• Bomb disposal
• Welding
• Radiation and chemical spill detection
• Inspection of sewer lines and oil pipes
• Exploration (the Mars Rovers)
• Underwater salvage 
• Microsurgery
• Wheelchair navigation
• Emergency search and rescue
• Vacuum cleaning
• Window washing
• Lawn mowing
• Home or commercial security sentry duty

Robots currently perform tasks that are too repetitive or dangerous for humans.
Robots, of course, do not get bored, they can perform the same tasks with the
same precision every time, and they can work in hostile environments. 

Groups of robotic devices can act together to investigate wide-ranging
geographic areas that, again, would be difficult for human workers. Scientists
at the University of Washington in Seattle have built robotic “fish.” Each fish
is about 20 inches long, with the ability to flap its tail and two fins; using this
propulsion and steering mechanism, the fish can swim in any direction and
make tight turns. Communicating with each other using radio signals, the fish
can swim together as a coordinated group or move independently. Such tech-
nology will eventually allow tracking of marine wildlife or assessment of envi-
ronmental damage in the earth’s oceans.  

Researchers at the Harvard Microrobotics Laboratory are perfecting a
robotic “fly.” Robotic flying insects are not just “small airplanes”—the flight
dynamics of insects are much more complex because of an insect’s ability to
hover, fly in any direction, land on walls, etc. Once perfected, swarms of
robotic insects could be released in a disaster area to search for survivors.
Because of their size, they could penetrate hard-to-access areas of debris and
transmit signals to (human or robotic) rescue workers. 

Collecting data on the world’s ice shelves, to study climate change, is the
goal of researchers at the Georgia Institute of Technology and Pennsylvania
State University. They have created small robotic “snowmobiles” called
SnoMotes that will be able to travel autonomously over assigned terrain, take
measurements, and report their findings. After an initial failure at building a
rugged robot from scratch, the team turned to a toy snowmobile designed to
operate in snow conditions and to withstand abuse by children. In addition to
a camera, sensors, and computing equipment, the robot needs to be fitted with
a heater to protect the electronic equipment in below-zero environments. Like
the robotic fish, the SnoMotes will communicate with each other to decide
which robot samples which location for the most efficient overall coverage.

More and more, however, robots are being developed to interact with
humans in a less “robotic” and more “human-like” way to perform tasks for the
disabled, to watch over small children, and to entertain and provide compan-
ionship. Japan has an interest in developing “humanoid” robots to help care for
its aging population. 

One of the more well-known humanoid robots is ASIMO (Advanced Step in
Innovative Mobility), built by Honda Motor Company, a Japanese corporation.
As the name suggests, much of the focus of the design of this robot over ear-
lier models was refinement of the robot’s motion capabilities, extending the
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range of its arm movement and improving the smoothness and stability of its
two-legged walking, including walking on uneven ground and navigating
stairs. This jointed robot is designed to measure the forces acting on it at each
step. If these forces get out of balance, threatening a fall, adjustments are
made in the placement of the foot and the position of the torso to regain bal-
ance. One only has to watch a toddler learning to walk to see the challenges
this represents. ASIMO's capabilities continue to be developed. ASIMO can
open and close doors while passing through a doorway, guide office guests to
a meeting room and  serve refreshments on a tray, recognize when it needs
recharging, and walk to the nearest recharging station and hook up to be
recharged. In May 2008, ASIMO conducted the Detroit Symphony Orchestra in
a concert for young people! Go to http://world.honda.com/ASIMO/ for more
detailed information about ASIMO.

Research is ongoing in the field of robotics. Robotics involves the
aspects of artificial intelligence we discussed earlier, namely recognition
tasks and reasoning tasks. Through some sort of elementary vision, auditory,
or tactile system, the robot must not only gather sensory information, but
filter out the possibly vast amount of data its surroundings might present to
it to “recognize,” that is, make sense of, the important features. Then the
robot must make decisions—reason about—the information it has recog-
nized to be able to take some action. There is also the additional challenge of
the mechanics and electronics needed to make the robot respond physically.

Two strategies characterize robotics research. The deliberative strategy
says that the robot must have an internal representation of its environment
and that its actions in response to some stimuli are programmed into the
robot based on this model of the environment. This strategy seems to reflect
what we as humans think of as high-level cognitive reasoning—we have a
mental model of our environment, we reflect on a stimulus from that envi-
ronment, and make a reasoned decision about the next course of action.
(This is a generalization of the expert system idea discussed earlier.) The
reactive strategy uses heuristic algorithms to allow the robot to respond
directly to stimuli from its environment without filtering through some line
of reasoning based on its internal understanding of that environment. This
stimulus-response approach seems to reflect human subconscious behavior—
holding out our hands to protect ourselves during a fall, for example, or
drawing back from a hot flame. Proponents of the deliberative strategy argue
that a robot cannot react meaningfully without processing the stimulus and
planning a reaction based on its internal representation of the environment.
Proponents of the reactive strategy say that such a requirement is too restric-
tive and does not allow the robot to respond freely to any or all new stimuli
it might encounter. Note that we as humans use both our conscious thought
processes and our subconscious reactions in our everyday life, so a combina-
tion of these strategies may be the most successful approach.

15.7 Conclusion

In this chapter we have touched on three basic elements of artificial intelli-
gence: knowledge representation, recognition problems, and reasoning prob-
lems. We’ve discussed common approaches to building artificial intelligence
systems: symbolic manipulation (expert systems), connectionist architectures
(neural networks), and genetic or evolutionary approaches (swarm intelligence).
We have also outlined some of the strategies and challenges in robotics design.
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We have mentioned only a few of the many application areas of AI. Others
include speech recognition, natural language translation, image analysis, tar-
get recognition, and game playing. Today we can use speech recognition sys-
tems to control our telephones, appliances, and computers by talking to them,
use a tablet PC with handwriting recognition software, and ask a Web page to
translate text from one language to another.

RoboCup is an annual international event that includes
competitions in various categories between soccer-playing
robots. The 12th annual RoboCup competition was held in
Suzhou, China, in July 2008. The Dutch Robotics team par-
ticipated in the TeenSize Humanoid League. The robotics
initiative in the Netherlands is associated with the
3TU.Federation representing the three technical universi-
ties: Delft, Eindhoven, and Twente. Research groups from
the three universities contribute different fields of exper-
tise to the development of more intelligent humanoid
robots, including TUlip, the Dutch entry in RoboCup 2008.
TUlip is rendered here in a protective suit of orange, the
colors of the (human) Dutch National soccer team. TUlip is
1.2 meters tall and has a walking speed of 0.5 m/sec. Go
to http://site.dutchrobocup.com for more information on
the Dutch Robotics initiative

The RoboCup event is not all fun and games; it is
intended to promote research in artificial intelligence
through robotics. It includes a symposium to discuss
robotics research related to the technological challenges
of soccer-playing robots, such as vision, recognition, and
locomotion. Solutions being found for the soccer field are
the same ones that will lead to new autonomous robots
more capable of carrying out useful tasks.

RoboCup
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E X E R C I S E S

1. Suppose that in a formal logic, green(x) means that x has
the attribute of being green, frog(x) means that x has the
attribute of being a bullfrog, and J stands for the specific
entity Jeremiah. Translate the following formal state-
ments into English:
a. frog(J)
b. (;x)(frog(x) S green(x))

2. Draw a semantic net that incorporates the knowledge
contained in the following paragraph:

If I had to describe what distinguishes a table
from other pieces of furniture, I guess I would say
it has to have four legs and a flat top. The legs, of
course, hold up the top. Nancy’s table is made of
maple, but mine is bigger and is walnut.

3. a. Use an English-like formal language to represent
the knowledge explicitly contained in the following
semantic net:

b. Add to your list from part (a) the knowledge that can
be inferred from the semantic net.

4. In the following neural network, which event or events
cause node N3 to fire?

5. Assign weights and threshold values in the following
neural network so that the output neuron fires only when
x1 and x3 have the value 1 and x2 has the value 0.
Remember that weights can be negative.

6. Try to find some literature or product information on a
mobile device or tablet PC that allows pen-based hand-
written entries. What sort of scheme does this system
use for handwriting recognition? Does the system use a
neural network? Does it require initial training on the
user’s handwriting?

7. Ant colonies are an example from nature of swarm intel-
ligence. Find two other examples of swarm intelligence
seen in nature.

8. You are a knowledge engineer and have been assigned the
task of developing a knowledge base for an expert system to
advise on mortgage loan applications. What are some sam-
ple questions you would ask the loan manager at a bank?

9. We described both forward chaining and backward chain-
ing as techniques used by inference engines in rule-
based systems. In Section 11.2.2 we described how a
parser might analyze a programming statement to pro-
duce a parse tree. Does the method described in Chapter 11
correspond more closely to forward chaining or to backward
chaining? Explain.

10. A rule-based system for writing the screenplays for mys-
tery movies contains the following assertions and rules:

The hero is a spy.
The heroine is an interpreter.
If the hero is a spy, then one scene should take
place in Berlin and one in Paris.
If the heroine is an interpreter, then the heroine
must speak English.
If the heroine is an interpreter, then the heroine
must speak Russian.
If one scene should take place in Berlin, then there
can be no car chase.
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If there can be no car chase, then there can be no
crash scene.
If one scene should take place in Berlin, then the
hero is European.
If one scene should take place in Paris, then the
hero must speak French.

Can the following assertion be inferred? Explain.
The hero must speak French and there can be no
crash scene.

11. In Exercise 10, is it possible to add the following asser-
tion to the knowledge base? Why or why not?

The hero is American.

12. If you studied Prolog in Chapter 10 and have a Prolog
interpreter available, try implementing the rule-based
system of Exercise 10 in Prolog.

1. A neural network is to be built that behaves according to
the table in Figure 15.13, which represents the Boolean
AND operation. Input to the network consists of two
binary signals; the single output line fires exactly when
both input signals are 1.
a. Find values for the weights and the threshold of the

output neuron in Figure 15.14 that cause the network
to behave properly.

b. Because this is a relatively simple problem, it is easy to
guess and come up with a combination of weights and
threshold values that works. The solution is not unique;
there are many combinations that produce the desired
result. In a large network with many connections, it is
impossible to find a solution by guessing. Instead, the
network learns to find its own solution as it is repeat-
edly exercised on a set of training data. For networks
with hidden layers, the back propagation algorithm can
be used for training. For a general class of networks of
the form shown in Figure 15.15, an easier training algo-
rithm exists, which will be described here. Note that in

Figure 15.15, the input signals are binary, and all neu-
rons are assumed to have the same threshold value θ.
The table in Figure 15.16 sets up the notation needed
to describe the algorithm.

Initially, the network is given arbitrary values
between 0 and 1 for the weights w1, w2, . . . , and the
threshold value θ. A set of input values x1, x2, . . .
from the training data is then applied to the network.
Because we are working with training data, the correct
result t for this set of input values is known. The
actual result from the network, y, is computed and
compared to t. The difference between the two values
is used to compute the next round of values for the
weights and the threshold value, which are then
tested on another set of values from the training data.
This process is repeated until the weights and thresh-
old value have settled into a combination for which
the network behaves correctly on all of the training
sets. The network is fully trained at this point.

C H A L L E N G E  WO R K

INPUTS OUTPUT

x1 x2

0 0 0
1 0 0
0 1 0
1 1 1

The AND Truth Table

FIGURE 15.13
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A Skeleton for the AND Network

FIGURE 15.14
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Each new weight wi’ is computed from the previ-
ous weight by the formula

wi’ = wi + a(t 2 y)xi (A)
and the new threshold value θ’ is computed from the
previous value by the formula

θ’ = θ 2 a(t 2 y) (B)
There are three cases to consider:
i. If the network behaved correctly for the current set

of data—that is, if the computed output y equals
the desired output t—then the quantity a(t 2 y)
has the value 0, so when we use formulas (A) and
(B), the new weights and threshold value will equal
the old ones. The algorithm makes no adjustments
for behavior that is already correct.

ii. If the output y is 0 when the target output t is 1,
then the quantity a(t 2 y) has the value a, a small
positive value. Each weight corresponding to an
input xi that was active in this computation (i.e.,
had the value 1) gets increased slightly by formula
(A). This is because the output neuron didn’t fire
when we wanted it to, so we stimulate it with more
weight coming into it. At the same time, we lower
the threshold value by formula (B), again so as to
stimulate the output neuron to fire.

iii. If the output y is 1 when the target output t is 0,
then the quantity a(t 2 y) has the value 2a, a
small negative value. Each weight corresponding to
an input xi that was active (i.e., had the value 1)
gets decreased slightly by formula (A). This is
because the output neuron fired when we didn’t

want it to, so we dampen it with less weight com-
ing into it. At the same time, we raise the thresh-
old value by formula (B), again so as to discourage
the output neuron from firing.

We will use the training algorithm to train an AND
network. The training set will be the four pairs of binary
values shown in the table of Figure 15.13. (Here the
training set is the entire set of possible input values; in
most cases, a neural network is trained on some input
values for which the answers are known and then is used
to solve other input cases for which the answers are
unknown.) For starting values, we choose (arbitrarily)
w1 = 0.6, w2 = 0.1, u = 0.5, and a = 0.2. The value of a
stays fixed and should be chosen to be relatively small;
otherwise, the corrections are too big and the values
don’t have a chance to settle into a solution. The initial
picture of the network is therefore that of Figure 15.17.
Note that with these choices we did not stumble on a
solution because input values of x1 = 1 and x2 = 0 do not
produce the correct result.

The following table shows the first three training
sessions. The current network behaves correctly for the
first two cases (x1 = 0 and x2 = 0; x1 = 0 and x2 = 1), so no
changes are made. For the third case (x1 = 1 and x2 = 0),
an adjustment takes place in the weights and in the
threshold value.

After these changes, the new network configuration
is that now shown in Figure 15.18.

Continue the table from this point, cycling through
the four sets of input pairs until the network produces
correct answers for all four cases.

1

1

x1 w1

x2

w2

1xn

wn

A General Network for a 
Training Algorithm

FIGURE 15.15

w1 w2 π x1 x2 y t a (t2y) w1’ w2’ π’
0.6 0.1 0.5 0 0 0 0 0 0.6 0.1 0.5
0.6 0.1 0.5 0 1 0 0 0 0.6 0.1 0.5
0.6 0.1 0.5 1 0 1 0 20.2 0.4 0.1 0.7
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SYMBOL MEANING

x1, x2, . . . Binary input values from the training set
y The binary output value from the network
t The target binary output value from the network for this set of input values
a The “learning rate” for the network; a small positive value that controls

how rapidly the weights change during training
w1, w2, . . . The current set of weights
θ The current threshold value
w1’, w2’, . . . The next set of weights
θ’ The next threshold value

Notation for the Training 
Algorithm

FIGURE 15.16 
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Initial Configuration of Network
to Be Trained

FIGURE 15.17

2. Pick one of the technologies discussed in this chapter
(neural networks, swarm intelligence, intelligent agents,

expert systems, or robotics) and write a report on how it
has been applied to a real-world product or problem.
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0.1
0.7

1
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0.7
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x2

Configuration of the Network
After One Adjustment

FIGURE 15.18
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For a general overview of artificial intelligence, try the following textbooks:

Coppin, B. Artificial Intelligence Illuminated. Sudbury, MA: Jones and Bartlett, 2004.

Luger, G. Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th ed. Reading,
MA: Addison-Wesley, 2009. 

Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed. Reading, MA: Addison-
Wesley, 2005.

Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed. Englewood Cliffs, NJ:
Prentice-Hall, 2009.

The following books provide more specialized information:

Giarratano, J. and Riley, G. Expert Systems: Principles and Programming, 4th ed. Boston, MA: Course
Technology, 2004.

Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed. Englewood Cliffs, NJ: Prentice-
Hall, 1999.

Niku, S. Introduction to Robotics: Analysis, Systems, Applications, Englewood Cliffs, NJ: Prentice-
Hall, 2002.

The following fascinating study of the chess-playing computer HAL of the film 2001, A
Space Odyssey reveals which of HAL’s capabilities had been achieved and which were still
beyond the grasp of artificial intelligence at the time of its publication.

Stork, D. G., ed. HAL’s Legacy: 2001’s Computer as Dream and Reality. Cambridge, MA: MIT
Press, 1997.

For interesting information on robotics, go to http://www.roboticstrends.com.
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16.1 Introduction

The first commercially marketed computer was the UNIVAC I, manufactured by
Remington Rand. On March 31, 1952, the company delivered its first machine
to the U.S. Census Bureau. Later systems went to the U.S. Army, the U.S. Air
Force, the Atomic Energy Commission, U.S. Steel, General Electric, and CBS,
which used it to predict the outcome of the 1952 presidential election. (See
the special interest box in Chapter 1 entitled “Good Evening, This Is Walter
Cronkite.”)

In 1952 a UNIVAC I cost $1,500,000, about $12 million in today’s dollars.
It weighed 15 tons, contained 5200 vacuum tubes, consumed 125,000 watts of
electricity (generating an enormous amount of heat), and occupied floor space
equal in size to a small apartment. These early machines were prohibitively
expensive and required a massive financial investment in space, power,
cooling, and support staff. Because of these costs, computers of the 1950s and
early 1960s were only available to large organizations and only for what were
deemed “important” purposes—classified military work, corporate research
and development, or governmental policy analysis. The idea of using these
systems for such frivolous pastimes as playing games or watching videos
would have been unimaginable.

However, conditions changed dramatically in the late 1960s due to the
development of transistors and integrated circuits, introduced in Chapter 4.
Computers became more compact, more reliable, and less costly. In 1965 Digital
Equipment Corp. (DEC) rolled out the PDP-8, the world’s first “minicomputer,”
a term coined to describe a computer system that was smaller and less expen-
sive than the unwieldy mainframes of the 1950s and early 60s. A DEC PDP-8
minicomputer could be purchased for as little as $16,000 (about $100,000 in
current dollars) and only took up as much space as two or three refrigerators.

Although still not cheap by today’s standards, this lower price meant that
computers were no longer accessible only to the military, government, and
wealthy corporations; instead, they were now within the financial reach of
colleges, universities, and small businesses. Some of the first computer games
were created in the early 1970s by college students experimenting after hours
to see what these new minicomputers were capable of doing. Games like Space
Wars, Adventure, and Dungeons & Dragons were played on university comput-
ers, arcade machines, or custom-designed home consoles well before personal
computers arrived on the scene.

In 1972 Nolen Bushnell, an electrical engineering graduate of the Univer-
sity of Utah, started a company called Atari (named after a board position in
the game of Go), which released its first product in 1974, an arcade game called
Pong. It was wildly successful and quickly became the most popular computer



game in the country with 40,000 units sold nationwide and hundreds of
thousands of players eager to stuff coins into a slot just for the privilege of
playing a primitive electronic version of Ping-Pong, as shown in Figure 16.1.
(It is amazing to see how far video game technology has progressed in just
35 years!)

In 1976 Atari produced a home version of Pong that allowed users to play
the game on their televisions using a console, complete with joysticks and
onscreen scoring. It sold hundreds of thousands of units and became one of the
most popular Christmas gifts of the late 1970s. Other games soon followed, and
the decade of the late 1970s and early 1980s is termed the “golden period” of
video arcade systems. By early 1982 Atari had become a $2 billion corporation
and the fastest-growing company in the United States.

Using computers for entertainment (once considered frivolous and a
waste of scientific resources) had by the late 1970s become an important, not
to mention financially lucrative, industry, and that growth has continued
unabated. Today, computer-based entertainment is a $15–20 billion industry
employing tens of thousands of talented designers, artists, computer scien-
tists, and engineers. Gamers stand in line for hours to purchase the latest and
greatest video game release. Hollywood spends massive amounts of money and
manpower producing computer-generated images that amaze and enthrall, all
in the hope of reaping hundreds of millions of dollars in movie ticket and DVD
sales. Virtual worlds enroll millions of subscribers who spend hours wandering
imaginary spaces, joining online virtual communities, and making virtual
friends.

Using information technology to amuse, fascinate, and frighten is no
longer viewed as a waste of time, at least not by the millions who participate
and play. Instead, it is seen as an application that contributes significantly to
the national economy and brings enjoyment to many people. Just as the Jeep
and Hummer evolved from specialized military vehicles to passenger cars used
for off-road fun and adventure, so too has the computer evolved from a
research tool of the military and government to something available for our
personal pleasure. By the start of the twenty-first century, entertainment had
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Pong–One of the First
Computer-Based Video Games

FIGURE 16.1



become an application that stands alongside traditionally “important” uses of
computers such as mathematical modeling (Chapter 13), electronic commerce
(Chapter 14), and robotics (Chapter 15).

16.2 Computer-Generated Imagery (CGI)

16.2.1 Introduction to CGI

On March 2, 1933, a sellout audience at Radio City Music Hall in New York City was
treated to the premiere of the science-fiction movie King Kong. This was the first
feature-length film (rather than cartoon) to have its central character, in this case a
giant gorilla, generated using animation. Animation had been used before in feature
films, but only in a few short scenes or to animate minor characters. Since the movie’s
premiere occurred years before the appearance of the first commercial computer,
Kong’s movements were created using a manual technique called stop-motion
animation. The special effects staff built a small-scale clay mockup of the creature,
positioned it, and snapped a single photograph, called a frame. Then they made a
tiny change in the position of the model to represent its location a fraction of a
second later and shot another frame. This process of “move the model, shoot a frame”
was repeated thousands of times and, when the frames were shown in sequence with-
out interruption, Kong appeared to come alive on-screen. (This is similar to the 
“flip-book” style of animation, in which pages of a notebook are filled with drawings
and riffled to produce the effect of motion.) Stop-motion special effects were used in
many fantasy, adventure, and science-fiction movies of the 1940s through 1970s.

Although it is possible to produce reasonably good images using either
hand-drawn frames or stop-motion animation (King Kong was voted one of the
100 best films of all time by the American Film Institute), both of these tech-
niques have serious limitations. Hand-drawing frames can be a painstakingly
slow process, requiring dozens or even hundreds of highly skilled artists. The
most notable problem with stop-motion techniques is the difficulty of reposi-
tioning a clay model with a sufficient degree of accuracy so that the model’s
movements do not appear jerky and artificial. At 30 frames per second (the
standard rate for video; film uses 24), one hour of stop-motion animation
requires 108,000 separate images, each of which must be manually positioned
and photographed. The effort required can make this a painfully slow and
expensive way to create special effects.

However, until the early 1990s, there were really no other choices. As we
will soon learn, using a computer to produce realistic images requires enor-
mous amounts of computational speed and power, and the mainframes of
earlier decades were generally not up to the task. In addition, the algorithms
used to create realistic human and animal replicas were in their infancy and
not well understood. There were some early attempts to produce computer-
animated movies—for example, Tron (1982) and The Last Starfighter (1984)—
but the quality of that early work was poor, and most movie directors opted to
stay with stop-motion or hand-drawn animation for their special effects.

Two groundbreaking movies of the early 1990s quickly changed Holly-
wood’s mind: Terminator 2: Judgment Day (1991) used a computer to create
the T-100 Terminator character and the special effects used in action
sequences. Jurassic Park (1993) used computers to create and animate the
movie’s dinosaurs and paste them seamlessly into the background. The
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quality of those early 1990s images was an order of magnitude improvement
over what had been available just 8 to 10 years earlier. Both movies
were huge financial as well as artistic successes, and they clearly demon-
strated the rapidly improving capability of computer-generated imagery,
usually referred to by its acronym CGI. By the mid-1990s computer hardware
could handle the computational demands required to create realistic three-
dimensional images, and CGI software development had reached a point
where its final product was as good as, if not better than, the manual out-
put of human animators. By the beginning of the twenty-first century, CGI
had become the method of choice for virtually all film and TV animation and
special effects.

CGI has many advantages over manual techniques. It can produce
extremely high-quality, lifelike images, called photorealistic animation, that
are difficult to create using hand-drawn pictures or stop-motion models
because of the level of detail. CGI can generate images that are prohibitively
expensive to produce manually, such as massive crowd scenes containing
thousands of characters. Without CGI, directors would either have to hire
thousands of extras, animate the scenes by hand, or produce thousands of
miniature models, all of which would be quite costly. Computers can be used
to produce scenes that would be dangerous if filmed using human subjects,
such as car chases and explosions. Finally, CGI produces frames using only a
single animator and a single tool—the computer—instead of a team of
animators, model builders, camera crew, and lighting staff. This can reduce
costs and speed up the animation process.

Today, computer imaging is a multibillion-dollar industry, and the CGI
budget for a wide-release feature film can easily exceed $40–50 million.
Furthermore, CGI techniques have moved well beyond the Hollywood sound stage
and are now used in such fields as video gaming (discussed later in this chapter),
computer software, scientific and medical imaging, television, advertising, flight
simulation, and the production of still images for books and magazines.

Although most of us are well aware that computers generate many of the
images we see in the theater or on TV, few of us know how this is done. In the
following section, we describe some of the fundamental algorithms used to
produce computer-generated images.
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Industrial Light and Magic (ILM) is one of the largest
visual effects companies in the world. It was founded by
George Lucas in 1975 to produce special effects for his
science-fiction movie Star Wars. ILM went on to do the CGI
work for The Empire Strikes Back, Jurassic Park, Star Trek, Back
to the Future, Pirates of the Caribbean, the Harry Potter
series, and dozens of other well-known and highly profitable
films. The company has won 38 Oscars for its outstanding
visual effects work.

None of this would be possible, however, without
an enormous amount of computing resources. At its

California headquarters, ILM has the computational
power equivalent of 15,000 home computers, and
enough online storage to hold 5000 trillion bytes of
data. These systems are interconnected by a high-speed
network capable of transmitting 12 trillion bits of infor-
mation per second. This massive collection of equipment
draws 2.4 million megawatts of power and is cooled by
32 air-conditioning units that require 25 tons of coolant
to keep the building inhabitable—all of this computing
power just to make sure that the alien Death Star
spaceship looks realistic while you sit back and munch
popcorn!

Computer Horsepower



16.2.2 How It’s Done: The Graphics Pipeline

The production of computer-generated images is a complex subject that takes
years of study to understand fully. In this short chapter we cannot possibly do
justice to its many facets and details. Instead, we introduce and describe a few
of the fundamental operations required to generate and display images. Our
goal is to provide a basic understanding of CGI techniques and an appreciation
for the powerful computers and sophisticated algorithms required to carry out
this difficult task.

There is a sequence of operations that must be completed successfully to pro-
duce a realistic three-dimensional image. This sequence is termed the graphics
pipeline. There is no agreement on exactly which steps should or should not be
included, and the number of distinct items in a pipeline diagram can vary from
three to eight, depending on the type of image being produced and whether cer-
tain operations are grouped together or listed separately. The following sections
describe the three stages shown in the simplified graphics pipeline of Figure 16.2:
object modeling, object motion, and rendering and display. (Exercise 1 at the end
of the chapter asks you to find other examples of a graphics pipeline diagram to
determine which steps were omitted from the version shown in Figure 16.2.)

16.2.3 Object Modeling

The first step in generating a three-dimensional image is object modeling—
the creation of a mathematical or computational model of a three-dimensional
object that can be stored in memory and manipulated algorithmically. There
are many approaches to object modeling, but one of the most well known and
widely used is wireframe modeling. In this technique, the object’s surface,
but not its interior, is represented mathematically using a set of simple
polygons, usually triangles or rectangles.

For example, to create a scene containing a dolphin, we start by inputting
an image of that object. There are a number of ways to provide this input—an
artist could draw a picture by hand, or we could scan an existing photograph.
Next, using special CGI software and an algorithm called tessellation, the
object is subdivided into a set of plane figures that covers its surface. An
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Object modeling

Object motion

Rendering and
display

Output

System input
A Simplified Three-Stage
Graphics Pipeline

FIGURE 16.2



example of this tessellation process is shown in Figure 16.3, using triangles.
Figure 16.3 also explains the reason behind the name of this technique. The
polygonal outline on the surface, called a polygon mesh, produces a model
that looks as if it were built from many thin pieces of wire.

Once the object’s surface is tessellated, information about the polygons is
stored in memory, usually in the form of a vertex list. This is a table giving
the coordinates of each vertex on the object’s surface and the identity of all
other vertices to which this one is connected. In order to enter the proper
(x, y, z) coordinates of each vertex, we need to know the origin of the coor-
dinate system, that is, the (0, 0, 0) reference point. For simplicity, one of the
vertices is usually specified as the origin. It does not matter which is chosen,
as long as the computer knows its identity.

As an example, the four triangles in Figure 16.4(a) might produce the ver-
tex list shown in Figure 16.4(b) using vertex v1 as the origin point.

The simple four-triangle object in Figure 16.4(a) produced the vertex list
of Figure 16.4(b) containing about three dozen pieces of information.
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Wireframe Model of a Dolphin
(based on image in Wikipedia
entry on polygon meshes)

FIGURE 16.3

v2

v5

v4

v1 v3

Tesselation Producing Three
Triangles and Five Vertices

FIGURE 16.4(a)

Vertex List Representation of
the Model in Figure 16.4(a)

FIGURE 16.4(b)
VERTEX X Y Z CONNECTED TO

(origin) v1 0 0 0 v2, v3, v4

v2 0 1.0 0 v1, v4, v5

v3 1.6 0 0 v1, v4, v5

v4 0.7 0.5 0.5 v1, v2, v3, v5

v5 1.4 1.1 0 v2, v3, v4
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The following is a polygonal mesh representation of a two-dimen-
sional drawing of a house created using tessellation:

Using v1 as the origin, show the vertex list generated by this
wireframe model. (Note: Since this is a two-, rather than three-,
dimensional model, the z entry in each column of Figure 16.4(b)
will be 0.) How many distinct pieces of information are required
to store the information about this model?

PRACTICE PROBLEM
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Realistic objects such as the dolphin of Figure 16.3 can result in enormous
tables that consume huge amounts of memory and massive amounts of com-
puter time. Furthermore, our dolphin may be only one of hundreds of objects
(e.g., rocks, coral, algae, fish, water, sky) present in a single frame, all of
which must be modeled and stored. You can now begin to understand the
reasons why CGI places such huge processing and storage demands on a
computer system.
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16.2.4 Object Motion

After we have captured and stored a model of our object in a computational
format, we can begin the next stage in the graphics pipeline of Figure 16.2—
moving that object to its proper position in the next frame.

There are three types of rigid motion (motion that does not bend or
deform an object): translation, rotation, and reflection. These three motions
are illustrated in Figure 16.5.

Translation, shown in Figure 16.5(a), is the lateral (up, down, right, left,
in, out) movement of every point in an object by the same amount and in the
same direction. Rotation, Figure 16.5(b), is the circular movement of an object
around some fixed axis of rotation, much as a merry-go-round horse revolves
around the ride’s central mechanism. Finally, reflection, Figure 16.5(c), is a
special type of rotation. It produces a mirror image of an object such that
every point in the reflected image is the same distance from the mirror as the
original object, but on the opposite side of the mirror.

The movement of an object from its location in one frame to its new loca-
tion in the next is often described not by a single type of motion but a com-
bination of two or more of these basic operations. For example, to model the
motion of an airplane taking off and banking to the left, we might use trans-
lation to move the airplane forward and upward in space and rotation to model
the turning operation. (Note: Some movements cannot be described using just
these three operations. Motions that deform or change the shape of an object,
such as scaling, squeezing, stretching, or ripping, are widely used in computer
graphics, but they need additional operators not described here.)

The Three Types of Rigid Motion

FIGURE 16.5

(a) Translation

(b) Rotation around
a Point

(c) Reflection

rotation
point

mirror
mirror
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Using Matrix Multiplication to
Implement Object Translation

FIGURE 16.6

To implement these three motions, we use a mathematical structure called
a transformation matrix. When a vector containing the (x, y, z) coordinates
of a single vertex point is multiplied by the matrix, the result is a new vector
containing the translated, rotated, or reflected (x9, y9, z9) coordinates of that
vertex point in the next frame. This same multiplication operation is then
applied to every vertex in the vertex list, generating the new coordinates for
the entire object. Thus, in CGI the abstract concept of motion is defined in
terms of matrix multiplication, an algorithmic operation easily programmed
on a computer. However, even though it may be easy to implement, the poten-
tially huge number of multiplications can make this a time-consuming task.
Animating an object containing thousands of vertices, like the dolphin of
Figure 16.3, can require millions or even billions of arithmetic operations.
Again, we can begin to understand and appreciate the need for high-perfor-
mance computers in the field of CGI.

Let’s illustrate how this is done using translation, the straight-line move-
ment of a single point. To move a single vertex point located at coordinates
(x, y, z) to a new position at location (x 1 a, y 1 b, z 1 c), we multiply the
current coordinates by the 4 3 4 translation matrix in Figure 16.6. (See
pages 343–344 for an explanation of matrix multiplication.) The results of this
operation are the coordinates of this vertex point in the next frame after it
has been moved by a units along the x-axis, b units along the y-axis, and c
units along the z-axis.

After the operation of Figure 16.6 has been applied to every vertex in the
vertex list, the entire object will appear to move laterally as a single unit. This
behavior is diagrammed in Figure 16.7, in which the object of Figure 16.4(a) is
moved a units right in the x-direction and b units up in the y-direction. (Assume
zero movement in the z-direction to make the picture easier to visualize.)

What actually happened in Figure 16.7 is that the (x, y, z) coordinates of
each of the five vertices in the vertex list of Figure 16.4(b)—i.e., columns 2,
3, and 4—were multiplied by the 4 3 4 translation matrix in Figure 16.6,
with c set to 0 since there is no movement in the z-direction. The newly gen-
erated (x9, y9, z9) coordinates of each vertex point are copied back into
columns 2, 3, and 4 of the vertex list, replacing the old coordinates. Now,
when this object is displayed in the next frame it will be in its proper location.
If we repeat this operation 30 times, moving the object a tiny amount each
time (i.e., using small values for a, b, and c), then when these 30 frames are
shown in sequence, the result will be one second of animated motion. Our
eyes will not see 30 separate and distinct movements like those in Figure 16.7,
but one second of smooth, flowing motion.

Both rotation and reflection operations are implemented in a similar way,
but using the appropriate rotation or reflection matrix in place of the transla-
tion matrix shown in Figure 16.6. (Exercises 7 and 8 at the end of the chapter
ask you to determine what these two matrices look like when working in two
dimensions rather than three.)
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Example of a Translation
Performed on the Object Shown
in Figure 16.4(a)

FIGURE 16.7
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FIGURE 16.8
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One of the advantages of CGI over manual systems is that a computer
can perform many of the required operations without the assistance of a
human designer, speeding up the animation process. For example, assume
the translation motion in Figure 16.7 takes place over one second. At 30 frames
per second, the standard rate for video, an animator would need to generate
30 frames to obtain the desired effect. However, using a CGI technique called
keyframing, a human animator only needs to produce the first frame, contain-
ing the starting location of the object; the last frame, containing the final
location of the object; and the elapsed time, in this case one second. Using this
information, a computer can automatically generate the 28 required intermedi-
ate frames, called in-between frames or, more simply, tweeners. The computer
adds 1/29th of the distance between the object’s location in the first and last
frames to the coordinates of the object in the current frame to position it cor-
rectly, since with N total frames there are N 2 2 in-between frames and N 2 1
intervals. The work of the animator is reduced from creating 30 frames to creat-
ing two, the first and the last. This is a huge shift in workload from human
being to computer.

In our discussions of motion we have moved the entire object as a single
entity in relation to a single origin point. For example, the polygon in 
Figure 16.7 moved up and to the right as a complete unit. However, sometimes
we want to move different parts of an object in relation to different points or
axes, rather than one, in order to achieve a specific effect. For example, 
Figure 16.8 shows a figure-8 object with two axes of rotation, labeled A and B,
with A lying outside the object and B lying at the center of the right circle.
(Note: Assume the axes of rotation are parallel to the z-axis and are coming
out of the page.)
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Assume that you want to animate the lateral motion of a triangle from
its current location, in which:

vertex v1 is at (0, 0, 0), vertex v2 is at (1, 0, 0), and vertex v3 is at
(0.5, 1, 0) to a new location such that

vertex v1 is at (4, 2, 0), vertex v2 is at (5, 2, 0), and vertex v3 is at
(4.5, 3, 0)

This movement is shown in the following diagram:

This motion will take two seconds to complete. Show the translation
matrix that can be used to generate all the necessary in-between
frames.

PRACTICE PROBLEM

v1
(0, 0, 0)

v3
(0.5, 1, 0)

v3
(4.5, 3, 0)

v1
(4, 2, 0)

v2
(5, 2, 0)

v2
(1, 0, 0)

If we perform a rotation operation around axis B on just the rightmost circle,
that circle rotates like a wheel around its axle. If we do a second rotation on
the entire figure-8 object, this time using axis A, the figure-8 flies around
A like the earth around the sun. We will have created two distinct types of
motion—one part of the object spinning like a wheel, while both parts of the
object are flying around in a circle. We have achieved this complex set of
motions by using two different points of control. A point or axis used to con-
trol the motion of an object is called a control point, also called an
animation variable or simply an avar.

In an object like the dolphin of Figure 16-3 there may be dozens or
hundreds of distinct control points that allow us to move the object’s head,
body, and tail in multiple ways. Similarly, if we are animating the image of a



human face, we might want control points for the smiling and frowning
movements of the mouth; control points for each eye, to allow them to move
in different directions; and control points for the head, to allow it to turn
left and right as well as swivel up and down. It would not be unusual for an
animated image of a human being to have as many as 500 separate control
points, to allow it to move in many different ways, just as people are able to
do in the real world.

16.2.5 Rendering and Display

We now have a polygon mesh composed of a set of plane figures, such as
triangles, correctly positioned within the new frame after motion has taken
place. The final step in the graphics pipeline of Figure 16.2 is rendering and
displaying the final image. Rendering means taking an object stored as a
mathematical model, such as the vertex list of Figure 16.4(b), and converting
it into a fully formed, visually pleasing three-dimensional image.

Rendering is a complex set of operations that often consumes the vast
majority of computer time required to produce an image. Some of the issues
addressed during the rendering process are:

• Lighting. We specify the location and intensity of all light sources
illuminating the image and determine the effect these light sources
have on the final appearance.

• Color shading. We initially assign a single color or gray level to each
vertex in the model and then interpolate those colors across the face
of the polygon. We also determine if there are any modifications to the
intensity or shade of that color due to the incidence of light falling on
that plane.

• Shadows. We modify the color and brightness of each plane figure
because of shadows cast on that plane by opaque objects.

• Texture mapping. In the first two stages of CGI, we assume that each
plane is a homogeneous, detail-free surface. However, real surfaces like
human skin or tree bark are far from homogeneous. Texture mapping
allows us to add surface details (bumps, grain, indentations) to each of
the plane figures.

• Blur. If an object is moving rapidly from one frame to the next, we may
choose to blur the final image to represent that motion.

The operations just described (and many others not listed here) are
carried out by CGI software running special-purpose rendering algorithms.
Figure 16.9 shows a fully rendered color image generated from a polygon mesh
representation of each object—glasses, pitcher, dice, ashtray, tiled walls, and
table. This image clearly illustrates the many difficult issues that rendering
software must deal with in producing a finished image—the color shading of
the ashtray from bright green to almost black; the transparency of the glass
objects, revealing objects located behind them; the opaqueness of the pitcher;
shadows on the wall; reflection of light off the glass surfaces; and the complex
texture on the bottom of the water glass.

Rendering a complex image like Figure 16.9 can be difficult and time-
consuming, especially when there are numerous objects and many light
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Three Light Sources Illuminating
Triangle T

FIGURE 16.10

Light source
C

T

Light source
B

Light source
A

sources. It would not be unusual for a computer, even a powerful one, to
spend hours producing a single frame such as Figure 16.9.

There are many algorithms for carrying out the rendering operations just
described, with names such as ray tracing, rasterization, and radiosity.
However, most use a similar approach—determining the amount and direction
of light falling on each plane surface in the model’s vertex list. For example, in
Figure 16.10 there are three light sources illuminating triangle T, where T is a
single triangle on the object’s surface. Light source A shines directly onto the
surface of T. Light source B is blocked by an opaque object, so it does not con-
tribute any direct light, although it does contribute some indirect lighting due
to reflection off another surface. Light source C is partially, but not completely,
blocked by an opaque object, so it contributes a fraction of its potential light.
The contributions of each light source are summed to determine the total
amount of light falling on the face of triangle T. This value, along with a
knowledge of the object’s orientation in space, allows us to determine the

Example of a Fully Rendered
Frame

FIGURE 16.9
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Converting an Image to a 
Two-Dimensional Representation

FIGURE 16.11

(a) Three-dimensional representation

A

B

C

V

(b) Two-dimensional representation

proper intensity, color shading, and brightness of that face and render it in a
visually appropriate manner.

Tracing the individual rays of light falling on every face of a model can be
an extremely slow operation, especially if there are numerous light sources
and we are rendering a “busy” object, such as leaves on a tree or strands of
hair on a human head. For these special surfaces CGI often uses algorithms
designed to render just this type of object.

The end product of rendering is a fully colored and textured three-
dimensional image ready for display. The final step in the process is changing
that three-dimensional image into a two-dimensional one for display on a com-
puter, game console, or movie screen. This is a relatively simple step based on
the position of each object in the frame, the location of the viewer, and some
simple geometry. For example, Figure 16.11(a) contains three three-dimen-
sional objects labeled A, B, and C, and a viewer whose position is indicated by
the letter V. Knowing the three-dimensional coordinates of A, B, C, and V, we
can determine that, from the perspective of point V, sphere B is totally
obscured while pyramid C is partially obscured. This information can be used to
produce a two-dimensional screen representation of what can be seen by a
viewer from location V. This is shown in Figure 16.11(b).

16.2.6 The Future of CGI

High-quality CGI is one of the most computationally demanding applications of
computers, and only in the last 10–15 years have processors become suffi-
ciently powerful and memory units grown sufficiently large to carry out the
operations described in this section in a reasonable amount of time. However,



as we learned in Chapter 5, parallel and multicore computers are becoming
more common, and this parallelism is allowing computers to overcome Moore’s
law and continue to gain in speed. In addition, computer scientists are discov-
ering newer and better algorithms for such common CGI operations as
modeling, animation, and rendering. The future of CGI is bright, and it is quite
likely that the next 35 years will see improvements in the quality of computer-
generated imagery that may be as (or more) dramatic than the change from the
primitive Pong image in Figure 16.1 to the elegant still life of Figure 16.9.

16.3 Video Gaming

The computer science issues involved in producing video games are much the
same as those addressed by CGI because game images displayed on a laptop,
arcade system, or console must still be modeled, animated, and rendered as
described in the last section. However, there is one huge difference between
CGI and video gaming that makes an enormous difference in how we approach
and implement these two applications.

A movie is not an interactive environment. There is no change to the plot
or action on the screen based on what the user is thinking or doing. If you
watch a movie 10 times, you see exactly the same images in exactly the same
order 10 times. Therefore, movie animators can spend as much time as they
want rendering each frame, even hours if necessary, because once each frame
is completed its content never changes, and the order in which the frames are
shown never changes. Simply put, a movie is a static environment that is
created once and shown as often as desired.

On the other hand, a video game is a highly interactive environment.
Using an input device such as a joystick, wireless controller, or keyboard
arrow, a user dynamically controls the action and makes instant decisions
about what happens next—Should I shoot that alien? Will I go through this
trapdoor? The content of the next frame depends on what the user does at
this instant. Therefore, we cannot render all frames in advance, since we don’t
know how the objects will move or behave. When the game is in progress, we
must generate the frames fast enough so that action on the screen appears to
happen at roughly the same rate as it would happen in the real world. For
example, if I use my game controller to swing a virtual golf club, the screen
image must immediately display the ball’s flight based on the properties of the
swing I just made. If the processor cannot work that quickly, the action will
be sluggish, and the game will be far less enjoyable to play.

The branch of computer graphics that studies methods for creating images
at a rate matching that of the real world is called real-time graphics, and
video gaming is an excellent example of a real-time application. This means
that instead of having minutes or hours to render a frame, we have, at thirty
frames per second, only 1/30th of a second to get the user’s input, determine
what took place, generate a new frame representing the result of that action,
and display the final image. That is a severe time constraint, and because of
this limitation the operative principle in producing video game images is:

If necessary, sacrifice image quality for speed of display.

One of the most common techniques for increasing imaging speed, termed
the frame rate, is to use a GPU, an acronym for Graphics Processing Unit. A
GPU is an independent Von Neumann processor, much like those described in
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Chapter 5 and diagrammed in Figure 5.18. A GPU executes instructions in
parallel with the CPU, the main processor, and carries out all graphics opera-
tions described in this chapter—modeling, motion, rendering, and display. If
there is no GPU, these operations must be handled by the CPU in addition to
its many other responsibilities—running user programs, updating disks, han-
dling input/output, and managing network connections.

With a GPU, all imaging responsibilities are offloaded from the CPU to
the GPU, and the two processors run in tandem, an excellent example of the
multi-core parallelism introduced in Section 5.4. Since a GPU does not have to do
general-purpose computing, only image processing, its instruction set can be
optimized to perform the specific operations needed by CGI. These might include
rendering and drawing triangles like those in the dolphin model of Figure 16.3 or
searching two-dimensional matrices like the vertex list of Figure 16.4(b).

Typically, a GPU has its own dedicated random access memory where it
stores its image data and which is separate from primary memory. The GPU along
with this dedicated RAM, referred to as video memory, is located on a video
card connected to the main CPU and memory either through a plug-in expan-
sion slot or via the system bus. This architecture is diagrammed in Figure 16.12.

The configuration shown in Figure 16.12 allows the GPU to access image
data (e.g., vertex list, color information, location of light sources) from video
memory without having to compete with, and be slowed down by, the CPU as
it tries to access the primary memory. Today, the great majority of computer
systems and video game consoles contain a dedicated video card and GPU
architecture similar to the one shown in Figure 16.12.

Another way to achieve speedup in real-time graphics is to avoid the use
of algorithms that, although they produce high-quality images, simply take
too much time. An excellent example is the ray-tracing algorithm introduced
in Section 16.2.5 and diagrammed in Figure 16.10. Following millions (or
billions) of light rays from their source to an object’s surface and any subse-
quent reflections can produce truly lifelike images, such as the still life of
Figure 16.9, but it can take minutes or hours to render a single frame. In a
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Typical Architecture of a GPU
and Video Memory

FIGURE 16.12 System Bus

Central
Processing

Unit
(CPU)

Primary
Memory

Graphics
Processing

Unit
(GPU)

Video
Memory

Video
Card



real-time environment we don’t have hours or minutes, only 1/30th of a
second, to complete this task.

We can gain considerable speedup by rendering an entire plane (i.e., a
single triangle) using a uniform color, shade, and texture. As was mentioned in
the previous section, many rendering algorithms assign a color and texture to
each vertex and then use this information to interpolate shading and intensity
changes across the face of the triangle. We can eliminate this step and instead
assign a single color and texture to the entire face; subtle color differences or
brightness changes within a single plane would not be allowed. This reduces
our workload significantly, but it comes at the cost of a less lifelike image.

Another technique to speed up rendering and display is culling. Rather
than rendering every plane in the wireframe model and then determining which
planes are visible from the user’s perspective, as diagrammed in Figure 16.11,
we could turn those two operations around. First determine which planes can be
seen from the user’s point of view, based on location and opaqueness, and then
render only those objects visible in the next frame, omitting all operations on
hidden surfaces.

Finally, video gaming often makes use of a technique called cut-ins.
These are fully modeled and fully rendered objects stored in a video library in
video memory. These already prepared objects can be dropped into a frame as
is, producing a significant speedup in frame creation. These cut-ins often
include images of the main game characters as well as standard background
objects—cars, castles, weapons—that appear in many of the frames.

The end result of these optimizations (and many others not mentioned
here) is the ability to accept user input, determine what action should be
taken in response to this input, and render and display a frame representing
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In the mid-nineteenth century, a British literary genre
called “penny dreadfuls” was extremely popular among Eng-
lish teenagers. These cheap magazines, costing a penny,
contained lurid tales and drawings of horror, sex, and vio-
lence. Respectable Victorians detested these publications
and fought to censor them, claiming they warped the minds
of young, impressionable British lads. This was one of the
earliest attempts at censoring a style of youth culture
deemed inappropriate and degrading by adults of that era.

Similar attempts at censorship have been repeated
numerous times against other popular pastimes such as
comic books, rock and roll, R- and X-rated movies, and rap
music. Most recently there has been a good deal of vocal
opposition to modern video games.

There is no doubt that video games contain a good
deal of controversial content—drug use, criminal behavior,
sexual acts, violence, and strong language. In many cases,
this extreme content forms the central theme of the game.
For example, the primary goal of one popular game is to
steal a car and run down pedestrians. A widely played

video game includes the simulated shooting of police
officers and the rape and murder of prostitutes. Another
game involves violent gang activity between competing
ethnic groups. These games often use a “first person
shooter” format, in which the player views the activity
through the eyes of the main character, actually pointing
the gun and shooting the victims.

This is rough stuff and has led to public criticism of
the video game industry from politicians, schools, parents,
religious groups, and mental health organizations. To
address these concerns, the industry has adopted a volun-
tary rating system, but it is strongly opposed to any addi-
tional forms of censorship. The game industry argues that
adults should be free to play these games if they so desire,
and that there are few scientific studies linking the playing
of violent video games to real-world crime or changes in
the personality or behavior of their players.

This controversy will no doubt continue to grow, as
governments around the world have passed, or are consid-
ering, legislation to regulate or restrict the production and
sale of violent video games.

The Good, the Bad, 
and the Ugly



the game state after that action has been completed. And all of this in only
1/30th of a second!

Today the quality of a typical video game image does not approach the
level achieved in high-quality, feature-film CGI because of the time
constraints placed on real-time graphics. However, as processors grow faster
and as higher degrees of multi-core parallelism (4, 8, 16 GPUs per system)
become both technically and financially feasible, the quality of real-time
video game images will certainly improve and perhaps begin to approach the
level of the computer-generated imagery found in today’s best feature films.

16.4 Multiplayer Games and Virtual Communities

Most video games involve a small number of players, typically one to four.
However, the last 10 years have seen the development of a new game genre
called massively multiplayer on-line games, abbreviated MMOG. These
games allow a large number of players, often thousands or tens of thousands,
to interact, form groups, and compete against one another within a simulated
virtual world.

The world in which the action takes place is created and managed by
special computers called game servers. Depending on the game complexity and
the number of players, there may be one or two game servers or many thou-
sands. In an MMOG the virtual world in which the game is played is persistent.
This means the server software that creates the world is always running and
always available, and it always remembers the current state of every player.
This is unlike games that can be turned off and on at will, but that lose state
information when turned off, and must be restarted from the beginning.

Users log on to the game server whenever they wish, using client
software running on their home computer or laptop. This client software may
be either proprietary code purchased from the gaming company or a freely
available program such as a Web browser. Thus, the architecture of an MMOG,
shown in Figure 16.13, is virtually identical to the client-server network
model introduced and diagrammed in Figure 7.18.

The development of an MMOG incorporates a number of important
computer-science-related research topics. For example, the three-dimensional
images displayed on the user’s computer employ all the real-time graphics
algorithms discussed in the previous section, but with the added complexity
and tighter time constraints caused by delays across the network. In addition
to rendering the game images, designers of MMOG must also address and solve
the following technical problems:

• Registration management. There may be tens of thousands of existing
users at various points in the game, as well as thousands of new users
joining every day. The responsibilities of the server software that
manages this user base include ensuring that new users correctly join
the community, saving the game state of existing users when they log
off, and restoring that state when they log back in. This is similar to
the “receptionist” responsibility of the operating system discussed in
Section 6.4.1.

• Client/server protocols. In an MMOG there are tens of thousands of users
simultaneously accessing hundreds or thousands of game servers across
multiple communication channels. The game designers must implement
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the network protocols that support this vast communications array. We
discussed the topic of computer networks and protocols in Chapter 7.

• Security. An MMOG must keep track of each user’s activity to ensure that
his or her actions do not incorrectly or inappropriately affect the actions
of other players. Furthermore, the system must ensure that all users
adhere to the rules of the game and do not attempt to carry out illegal
operations. The topic of computer security was discussed in Chapter 8.

• Database design. The world database of Figure 16.13 can be a truly
massive structure holding trillions of bytes of data. The game designers
are responsible for implementing this database and making sure that it
can be accessed quickly enough to provide real-time response to user
actions. Databases were introduced and described in Section 14.3.

Because of these many technical complexities, the cost of developing a
sophisticated MMOG can run to tens of millions of dollars and take hundreds
or thousands of person-years to design and implement.

When we think of the word “game” we often assume an environment
based on competition, scoring, winners, and losers. However, a recent devel-
opment in MMOG design is the concept of a noncompetitive MMOG, some-
times called a metauniverse, or just a metaverse. This is a simulated virtual
world, much like what we have just described, but where the goal is not to
destroy your opponent or get the highest score. Instead, the purpose of enter-
ing this metaverse is simply to explore the virtual world, interact with other
people in the world (often called “residents”), form communities of residents
with similar interests, and create new economic entities that have (virtual)
value. Players behave in this metaverse in many of the same ways they do in
the real world—communicating, working, building, and moving around. There
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is no winning or losing in a noncompetitive MMOG, just the enjoyment of
experiencing a new environment and meeting new people—not unlike
traveling (for real) to a foreign country.

The most widely used and well-known metaverse is Second Life, a virtual
world created by Linden Labs in 2003. Many of the items in this virtual world
(houses, cars, clothing) are user-generated objects constructed by individuals
or groups using a CGI modeling tool that allows residents to customize their
virtual environment. (This tool performs the operations listed in the graphics
pipeline diagram of Figure 16.2.) According to many of its residents, it is the
collaborative and creative activities, not competition, that make Second Life
so popular.

Second Life uses the client-server model diagrammed in Figure 16.13. The
client software that provides access to the virtual world is a free, download-
able program called Second Life Viewer. Currently there are several thousand
server computers and over 100 trillion (1014) bytes of data in the Second Life
world database. However, even with this vast amount of computing power, the
popularity and growth of Second Life is beginning to strain the computational
resources of Linden Labs, making it difficult to keep up with the growth of
their virtual world. (This problem is not unlike the problems encountered in
rapidly growing real-world cities whose resources strain to keep up with an
expanding population.)

Currently there are 15 million residents of Second Life, which would
make it the 63rd-largest country in the world (if it were a country), a little
smaller than the Netherlands but larger than Ecuador, Greece, Portugal,
Hungary, and Sweden. At any instant in time, there are approximately
40,000 people logged on to Second Life, wandering this virtual world, chat-
ting with members of virtual communities, and creating virtual economic
wealth.

16.5 Conclusion

Not long ago, all input to a computer was textual. Communication with the
operating system was via cryptic textual commands that were difficult to
understand. The primary applications of the 1960s, 1970s, and 1980s were also
textual—e-mail, word processing, databases, spreadsheets—and they often
produced reams of incomprehensible textual output. The appearance of the
first graphical user interfaces demonstrated the power of visualization, using
icons, windows, and buttons to enhance understanding. By the early 1990s,
graphics had moved into the scientific domain via charts, diagrams, and
images that made it easier to interpret the output of scientific programs. (This
was described in Chapter 13 and shown in Figures 13.11, 13.12, and 13.13.)
Businesses began to use graphics in the form of computer-aided design (CAD)
tools that gave architects and manufacturers the power to create and edit
designs online. Soon visualization was being added to just about every popu-
lar application, such as the ability to place images in documents or enhance
JPEG photographs and attach them to e-mail.

But it is in the last 10 years that visualization has found one of its
most compelling and exciting uses—the ability to amuse us, entertain us, and
enhance our pleasure. The use of CGI in feature movies, TV, advertisements,
and online videos is growing to the point where nearly every environment and
action can be created on a computer and displayed in a photorealistic fashion.
The use of interactive real-time graphics takes us beyond passive viewing
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of virtual worlds to letting us play in them, function in them, and even live
in them.

As graphics processors and visualization algorithms grow faster and more
sophisticated, and as parallel computing environments become even more com-
mon in laptops, home computers, and game consoles, the quality of computer-
generated images will continue to improve, and the feeling of actually being
inside that virtual world will grow more real. Perhaps the simulated-reality
“holodeck” technology from the 1980s TV series Star Trek: The Next Generation,
usually thought of as a comic book fantasy, is no longer an unattainable goal.

16.6 Summary of Level 5

At the beginning of Level 5, “Applications,” we said that we would be able to
cover only a sampling of the important applications of computers. After looking
at simulation and modeling, electronic commerce and databases, artificial intel-
ligence, and computer graphics, we hope you will seek to learn more about
application areas that interest you but that were not covered in detail here.

There is one more level to our story. With all the capabilities that exist
today and that will be developed tomorrow, what is the larger picture of com-
puter technology within society? What are the ethical, legal, and social con-
sequences of these capabilities? What should we welcome? What should we
monitor or regulate? Is there anything we should prohibit? (Some of these
issues were raised earlier in the special interest box in this chapter entitled
“The Good, the Bad, and the Ugly.”) Are there any tools that can help us clar-
ify thorny ethical decisions? Level 6 raises these questions in more detail,
though, of course, it provides no definitive answers. Individuals, armed with
adequate knowledge, must hammer out their own position on many of these
complex social issues. This is one of the responsibilities that comes with our
unprecedented opportunity to enjoy the benefits of computer technology.
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Computer imaging can be used to amaze, enthrall, and enter-
tain. It can also be used to diagnose, treat, and heal—appli-
cations that most of us would agree are far more important.

Medical imaging is a rapidly growing area of com-
puter and biological science research in which comput-
ers and graphics software are used to produce highly
accurate two- and three-dimensional images of the
human body without surgery or other invasive proce-
dures. The instrumentation that generates the image
data may be x-ray, MRI, PET scans, or ultrasound. How-
ever, in all cases, these raw data would be useless for
diagnostic purposes if they could not be converted into
high-quality, lifelike images that can be examined and
analyzed by health professionals. To do this, the raw

data from these instruments are input to a graphics
pipeline similar to the one in Figure 16.3. This allows a
computer to model, render, and display images in a pho-
torealistic fashion. Today, medical imaging algorithms
are helping physicians detect the early stages of breast
cancer, perform delicate brain surgery, and track fetal
development in the womb.

The algorithms that produce these medical visualiza-
tions are quite similar to, sometimes identical to, algo-
rithms originally developed to generate images of alien
invaders, prehistoric dinosaurs, and virtual worlds. This is
an excellent demonstration of the importance of basic
scientific research—you never know where that work may
lead, or in which fields it may ultimately make fundamental
contributions.

The Computer Will See 
You Now



1. Locate sources describing the graphics pipeline of
Figure 16.2 in greater detail. (A good place to start is the
“Graphics Pipeline” entry at Wikipedia.org.) How many
distinct steps are included in these versions of the
pipeline? Which ones that are included were omitted in
this chapter, and what operations do these missing steps
perform? Write a report giving an overview of these more
complete treatments of the sequence of steps involved in
computer graphics.

2. Given the following triangular model of a two-dimen-
sional object:

show what a vertex list representation of this model would
look like. Since you are working in two dimensions rather
than three, your vertex list will only have (x, y) coordi-
nates rather than (x, y, z). Assume vertex v1 is the origin.

3. a. Assume the matrix multiplication of Figure 16.6
requires a total of 28 arithmetic operations—floating-
point additions and multiplications. If we want to
move (i.e., translate) a wireframe representation of an
object containing 100,000 vertex points, and if that
motion takes 10 seconds to complete, how many
arithmetic operations in total does a computer need
to perform to implement that movment?

b. If your GPU can execute 50 million floating-point
operations per second, how long will it take the
processor to complete this translation operation?

4. Assume a polygon mesh containing 250,000 vertices. If a
single matrix multiplication requires 28 floating-point
operations, how fast a GPU is needed (floating-point
operations per second) to produce real-time graphics at
the rate of 30 frames per second?

5. Here is the vertex list for a two-dimensional wireframe
triangular model:

Draw the two-dimensional figure modeled by this vertex
list.

6. We want to animate the movement of the object in
Question 2 from its current location at (0, 0, 0), the
coordinates of v1, to the point (3, 5, 0). The motion
lasts for a total of 2 seconds. Show the translation
matrix that accomplishes this motion. That is, show
the matrix that, when reapplied 30 times each second
for a total of 2 seconds, will produce the desired
ending position.

7. Assume you are working in two, rather than three,
dimensions. Determine the four entries of the 2 3 2
rotation matrix that will take a vertex point located at
position (x, y) and rotate it clockwise around the origin
by an angle ø. The rotation is shown below: (Hint: You
will need to use some trigonometric functions to
accomplish this.)

8. Again assume you are working in two, rather than three,
dimensions. Determine the four entries of the 2 3 2
reflection matrix that takes a vertex point at position
(x, y) and reflects it around the y-axis. That is, assume 
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the mirror line in Figure 16.5(c) is the y-axis. This
reflection operation is shown below:

9. Shown below is an image of a human arm, from shoulder
to hand. It has three control points labeled A, B, and C.
Describe what type of motion might require the use of
each of these three control points. Using these three
control points, describe informally how you might ani-
mate the motion of an arm raising a glass held in the
hand up to a figure’s mouth.

10. Would a flight simulator package used to teach pilots to
fly an airplane be a real-time graphical environment?
Explain your answer.

11. The next diagram shows a single triangular face in the
wireframe representation of an object. The three vertices
of the triangle are labeled v1, v2, and v3, and each has
been assigned a color, either red, blue, or green.

The vertex color is stored as a three-tuple, with each entry
an integer in the range 0 to 255, representing the contribu-
tion of the components red, green, and blue, respectively.

(Note: This is identical to the RGB color model introduced in
Chapter 4, pp. 146.) So, for example, the color red is repre-
sented by the three-tuple (255,0,0). Purple, an equal mix of
red and blue, would be represented as (128, 0, 128).

During the rendering phase, a computer must shade
in the entire triangular face, according to the colors
assigned to each of the three vertices. Describe an
algorithm that would do color shading and blending of
the triangular face in a visually attractive manner.

12. You are given the three-dimensional coordinates of a point
P1 (x1, y1, z1) and a point P2 (x2, y2, z2). You are also given
the coordinates of the location point of a viewer (xV, yV,
zV). You may assume that P1 and P2 are located on the
same side of the viewer. Describe informally (you do not
need to write out an algorithm) exactly how to determine
if, from the point of view of the viewer, it is possible to see
both points P1 and P2, or if one of these points is
obstructed and not visible. In the latter case, describe how
you can determine which is the occluded point.

13. The diagram below contains a circle of radius 1 with its
center at the origin (0, 0). There is a mirror line parallel
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to the y-axis located at the point x 5 22. For each of
the following pairs of operations, show the final result
after each of the two pairs of motions has been
completed, one at a time:

a. Translate the circle along the x-axis by 12 units.
Reflect the circle around the mirror line.

In Section 16.2.5 we described only the most basic
aspects of the rendering process. It is a far more complex
topic than the elementary material presented in that one
section. However, it is also the most critical and most
difficult step in the overall imaging process. A wireframe
model is not a finished image that could be displayed on
a screen. It is the set of rendering algorithms that takes
this primitive model and turns it into something both
realistic and believable in its appearance.

Find sources of technical information on rendering
and read about the steps involved in this visualization
process. Specifically, read about some of these aspects of
rendering that were not presented in this chapter:

• Bump-mapping. Creating small-scale bumps on the
surface of an object

• Fogging. The dimming and dispersal of light as it
passes through a partially obscure atmosphere

• Refraction. The bending of light associated with trans-
parency

• Indirect illumination. Surfaces that are illuminated by
light reflecting off other objects

• Translucency. The scattering of light as it passes
through solid objects

• Depth of field. Objects that appear out of focus
because they are too close or too far from the object
that is in focus

For one or more of these rendering topics, write up
a report that describes the algorithms used to address
these issues.

C H A L L E N G E  WO R K

b. Reflect the circle around the mirror line.
Translate the circle along the x-axis by 12 units.

c. Reflect the circle around the mirror line.
Reflect the circle around the mirror line.
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LEVEL 6

We have now reached the highest and most abstract
level in our discussion of computer science—the social,
ethical, legal, and moral questions raised by the information-
based technologies just presented. In this section we are no
longer interested solely in algorithms (Level 1), hardware
(Level 2), virtual machines (Level 3), software (Level 4),
or applications (Level 5). Instead, we investigate the
impact, both good and bad, that these developments can
have on business, government, society, and individuals.
These issues were not part of the original definition of
computer science, and in the early days of the field they
were often not included in the curriculum. However, as
computing has become more pervasive, these social and
ethical concerns have become a critically important part
of the study of computer science.
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17.1 Introduction

Most of this book has focused on the technical issues of computing. For example,
you have read about the mathematics of algorithmic efficiency (Chapter 3), the
hardware implementation of computer systems (Chapters 4 and 5), building com-
puter networks (Chapter 7), and software development (Chapters 9 and 10). How-
ever, in this chapter we focus on the human issues lurking behind these
technical details. We can’t provide a comprehensive list of such issues; such a list
would be way too long, and it is growing daily. Instead, we introduce skills that
will help you to think and reason carefully when making personal decisions
about computing. The chapter will also discuss important societal issues related
to information technology and point you toward resources to help you explore
these issues in greater detail. Making critical decisions about computing tech-
nology is unavoidable. Increasingly, our society is being driven by the access to
and the control of information. As citizens of our communities, our country, and
the world, we want our decisions to be well informed and well reasoned.

When humans make decisions about things they value, there are conflicts
and trade-offs. The scholarly field of ethics has a long history of studying how
to identify and resolve such conflicts, and we will borrow from several classi-
cal theories of applied ethics. In this chapter we present a number of case
studies built around complex ethical issues related to computing and informa-
tion. For each case study, we present the issues as well as arguments used to
support and oppose certain positions. We then describe methods that allow us
to understand and evaluate these arguments in terms of their ethical implica-
tions. When you finish this chapter you should have an increased appreciation
for the complexities of human/computer interactions as well as an enhanced
set of skills for thinking and reasoning about these interactions.

17.2 Case Studies

17.2.1 Case 1: The Story of MP3—
Compression Codes, Musicians, and Money

In 1987, some scientists in Germany started working on an algorithm to com-
press digital files that store recorded music on CDs. Using a complex model of
how humans perceive sound, the Fraunhofer Institute in Erlangen, Germany,
devised a method with the rather ungainly title of Moving Picture Experts Group,
Audio Layer III. This algorithm (or protocol) quickly got the nickname MP3.
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We introduced MP3 in our discussion of the binary representation of
sound in Section 4.2.2. In that section we showed how the digital representa-
tion of audio information can produce massive and unwieldy data files. To
reduce these files to a more manageable size, we compress them using a com-
pression algorithm such as MP3, which allows various levels of compression.
The more you compress the music data, the more sound quality you lose. A
compression ratio of 12 to 1 has become popular, with the resulting sound
quality almost comparable to a music CD that has not been compressed.

In 1989, the Fraunhofer Institute patented MP3 in Germany, and a few years
later MP3 became an international standard. It might simply have become
another technical detail known to only a few engineers had it not been for the
World Wide Web and an army of young people enthusiastic about recorded music.

In 1997, Tomislav Uzelac, a software developer at Advanced Multimedia
Products, created what is regarded as the first commercially viable MP3 playback
program. Two students from the University of Utah, Justin Frankel and Dmitry
Boldyrev, used Uzelac’s player to develop a user-friendly Windows application
called WinAmp that played MP3 music. WinAmp was offered for free on the
Internet in 1998. Suddenly MP3 became very well known.

Prior to the release of WinAmp, there had been some sharing of digital
music from copyrighted CDs. However, uncompressed sound files produced from
traditional CDs were massive, and transferring these files using a 56 Kb modem
(the most widely used communication link on the Internet in the late 1990s)
was slow and clumsy. But because MP3 sound files were so much smaller, and
Internet connections were getting faster (especially in university computer
labs), sharing MP3 music files became increasingly popular, and the people who
make and sell music CDs became increasingly nervous.

In the spring of 1999, two Northeastern University students, Shawn Fanning
and Sean Parker, created a file-sharing system that spread quickly over the
Internet. The users of the system were mostly other university students, who had
ready access to fast Internet connections and who were very interested in obtain-
ing music files that other students were willing to share. Fanning and Parker
called their system “Napster,” and it became so popular that several universities
noticed that their campus networks were slowing to a crawl because of all the
student MP3 downloads.

The Napster system is a fine example of how technical details about comput-
ing systems can have significant social effects. The Napster software set up
what’s called peer-to-peer file sharing. As diagrammed in Figure 17.1, Napster’s
software electronically “introduced” two users who are distant from Napster and
from each other. Once Napster helped these users find each other electronically,
the file sharing took place between the users, not through Napster. Although
that sounds like an unimportant technical detail, this distinction turned out to
be significant in the many court battles to follow.

On December 7, 1999, an organization of recording companies filed suit
against Napster in U.S. District Court on grounds of copyright infringement. Dur-
ing the highly publicized arguments that followed, the recording companies
insisted that Napster was a conspiracy to encourage mass infringement of U.S.
copyright law. By most accounts, the majority of MP3 music that Napster users
“shared” was copyrighted, and most of the copyright holders objected to the copy-
ing of their music without royalty payments. Some artists wanted their music
copied, but they were said to be in the minority.

Its supporters argued that the Napster system was merely acting as a com-
mon carrier, much like a telephone company. They claimed that they were simply

64717.2 Case Studies LEVEL 6



providing information on songs and their location, and did not participate in the
actual exchange of copyrighted information. They argued that they could not be
held responsible for what peers (Users A and B) did with that information in the
peer-to-peer file sharing system depicted in Figure 17.1. In addition, Napster
contended that peer-to-peer copying was very similar to a user making a backup
copy of a file. They pointed out that copyright law allows a person who has pur-
chased a recording in one format to transfer it to a different format as long as it
is for personal use and is not resold. Napster claimed that both peers in each
swap were transferring the file without any payment to each other or to Napster,
and therefore the copying should be considered “fair use.”

Eventually, Napster lost the case and subsequent appeals, and it ceased
operating in 2001. (Napster has since reopened as a commercial music
downloading site.) However, new peer-to-peer file-sharing systems such as
Kazaa sprang up on the Web, and MP3 music sharing via the Internet con-
tinues, much to the chagrin of recording companies. Several commercial
sites have facilitated legal buying and downloading of MP3 (or similarly
compressed) music. Movie file swapping is now common, both legal and
illegal. The file-swapping saga will no doubt continue, both on the Internet
and in the courts. But for the rest of our discussion of MP3 music, we’ll
concentrate on a question that isn’t exactly a legal question and isn’t
merely a technical computer science question: Is it ethical to swap copy-
righted MP3 files?
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ASKING ETHICAL QUESTIONS. A legal question, we take to a judge. A
technical question, we take to a scientist or an engineer. But who can help us
with an ethical question? In this section we look to ethicists for guidance
about getting an answer to an ethical question.

We define ethics as the study of how to decide if something is morally
right or wrong. A fundamental question in ethics is what criteria to use when
“measuring” the rightness or wrongness of a particular act. Over the cen-
turies, ethicists have championed different criteria and developed schools of
thought about how to label an act as good or bad, better or worse. One of the
most influential schools is called consequentialism. As the name implies, a
consequentialist focuses on the consequences of an act to determine if the
act is good or bad. If the consequences are on the whole good, then the act
is good. If the consequences are mostly bad, then the act is bad. However, in
focusing on the goodness of an act, we have to ask, Good for whom? For
instance, in our MP3 example the copying is certainly good for people who
get free music. But just as clearly, most music copyright holders are con-
vinced that MP3 copying is bad.

The most well-known consequentialists are the utilitarians. Utilitarians
answer the question Good for whom? with a hearty, Good for everyone!
Imagine a cosmic calculator that is capable of adding up human happiness.
The utilitarian theory says that a moment before an act takes place, the cos-
mic calculator adds up all human happiness and puts a happiness number
into the variable HAPPINESS_BEFORE. Then the act occurs. We wait awhile,
long enough for the consequences of the act to become visible; then we use
our cosmic calculator again and put a second happiness total into the vari-
able HAPPINESS_AFTER. According to a utilitarian, the act in question is
“good” if

HAPPINESS_AFTER . HAPPINESS_BEFORE.

If

HAPPINESS_AFTER , HAPPINESS_BEFORE,

then the act is said to be “bad.” (Just to satisfy the law of trichotomy, if
HAPPINESS_AFTER = HAPPINESS_BEFORE, a careful utilitarian would declare
the act to be ethically neutral.)

Of course, there is no cosmic calculator, and quantifying happiness is no
easy task. Clearly, using the utilitarians’ criterion requires subjective judg-
ments. But making consequences count and ensuring that all people are taken
into account when making an ethical judgment both seem like good ideas. So
let’s try out two short utilitarian arguments to explore whether mass copying
of MP3 music files is right. First, we’ll build a utilitarian argument that says
such copying is OK, and then we’ll build a second utilitarian argument that
says such copying is not OK.

UTILITARIAN ARGUMENT #1: MP3 COPYING IS OK. First, there are many
more music listeners than there are music publishers. Music listeners are
very pleased to get convenient, virtually free access to this music. Further-
more, music publishers should be pleased to get so much free publicity for
their product. When radio stations play music, it’s free to listeners, and
many listeners go out and buy music that they’ve heard on the radio. The
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same thing happens to listeners who download MP3 files. That makes sense,
because the music on a CD provides slightly better sound quality than MP3
music. There is market research that shows that MP3 downloading has
increased the sale of music CDs. So everyone should be happier because of
MP3 file sharing.

UTILITARIAN ARGUMENT #2: MP3 COPYING IS NOT OK. Although some
early research suggested that MP3 file copying may have initially encouraged
CD buying, later research showed that music CDs sales had declined rapidly.
That’s the real, long-term effect of widespread copying of copyrighted mate-
rials. If the people who publish music can’t make a fair profit, then less and
less music will be published. Eventually, both music listeners and music 
publishers (including the people who make the music) will lose. In addition,
copyright protection is the law. This widespread criminal activity will result
in a widespread disrespect for the law in general, and that is a very danger-
ous consequence.

Hmmm. We have used an ethicist’s idea, a utilitarian argument, to try to
clarify the MP3 question. But instead of getting a clear answer to our ques-
tion, you may be thinking we’ve only managed to make things more confus-
ing. Both sides of this issue seem to have some reasonable points. How are we
to decide between them?

Let’s admit something up front: Deciding right and wrong is not always
easy. If you want to do a binary search on a sorted array, there is a “plug-and-
chug” algorithm that does the job quite nicely. Unfortunately, there isn’t an
all-purpose “ethics algorithm” that is guaranteed to provide a definitive
answer to every ethical question. Still, we do have to make decisions about
these issues, and we want to make those decisions on reasonable grounds, not
just on whims or instinct.

Ethicists depend on what is called a dialectic to try to get better and bet-
ter ethical decisions. In a dialectic, we move back and forth between different
viewpoints, criticizing each and trying to learn from each. In a debate, one
side is trying to win by undermining the opposition and building up the argu-
ments for its position. Ideally, in a dialectic the ultimate goal is for both sides
to “win” by moving closer to the truth from two different perspectives. It’s
perfectly OK for people engaged in a dialectic to change their minds; in fact,
that’s the point. By systematically reasoning about the issue, the back and
forth of argument can bring all parties to a more well-reasoned and justified
decision. There’s never a guarantee that the two sides in a dialectic will arrive
at identical positions (although that is possible). More often, the participants
end the dialectic still disagreeing, but hopefully with a better understanding
of the reasons why there are still disagreements.

In the spirit of a dialectic, let’s examine the strengths and weaknesses
of the two utilitarian arguments above on the issue of MP3. Both arguments
cite evidence about the sales of CDs to bolster their position: people for MP3
copying claim that it increases the sales of music CDs; people against the
copying claim that it decreases the sales of music CDs. This is an example of
a difference in fact, not just a difference of opinion. If the effect of MP3
copying is, in fact, to increase CD sales, then the “copying is OK” people
have a strong argument; if the effect is instead to decrease sales, then the
“copying is not OK” people have a strong argument. When the dialectic
uncovers an empirical question at the heart of a disagreement, the smart
move is to check the facts.
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According to published statistics, worldwide music CD sales in 2003/2004
were down almost 8% from 2001/2002. In the early days of Napster, CD sales
were climbing; but as more and more files were downloaded for free and as
more and more MP3 hardware was sold, CD sales fell (and they have continued
to decline to the present). So it seems that, on this point, the MP3 opponents
have a stronger argument. It often happens that consequences take a while to
become visible, and that seems to be the case here.

Next, let’s examine the other main point in support of MP3 copying: the
happiness of legions of listeners at getting free music. The opponents of the
copying again make an argument about short-term and long-term effects of
copying: In the short run, listeners might get tremendous benefits, but in the
long run there may be far less music available for copying because artists and
publishers will have far less incentive to create and disseminate music. This
seems to make a certain amount of economic sense.

A third point raised by opponents of MP3 copying is the issue of illegality.
The claim is that widespread disregard of copyright protections will have as a
consequence widespread disrespect of the law. This claim is harder to demon-
strate empirically than the CD sales claim, so we’re probably not going to be
able to settle this with statistics. But MP3 advocates don’t often claim that
breaking the law will have particularly salutary effects, and we don’t see many
legitimate claims for anarchy.

The dialectic so far seems to favor banning MP3 copying, but there are
a few interesting counterarguments. For example, some musicians (particu-
larly relatively unknown ones) are great enthusiasts of MP3. These musi-
cians have not yet been able to get recording contracts, so they use MP3
Internet file copying as a way to distribute and publicize their music. For
them, MP3 copying has positive consequences for both listeners and music
makers. Advocates of MP3 copying also point out that only a small percent-
age of the money spent on CDs goes to the artists. The rest of the money
goes to the people who market the music. Some artists (including a few
bands who have not achieved commercial success) have decided to give
away their music on the Internet and make their money via live concerts.
They are content to benefit from reduced sales of their CDs to people who
prefer that medium.

Seen from this perspective, MP3 copying is merely the first wave of a new
way of thinking about making and sharing music. This new way will favor
music listeners and music makers who like to perform live. The new way will
deemphasize the need for large publishing companies. Some people think that
these are good directions to go, although, quite obviously, most music com-
pany executives don’t agree.

Notice something technically interesting about the MP3 debate. If you buy
a light bulb, you are mostly paying for the materials and the manufacture of
the bulb. When you buy a CD, very little of the cost has to do with the materi-
als and manufacture of the disk; that costs only pennies per disk. You mostly
pay for the information encoded on the disk, not the physical disk itself. That’s
why MP3 copying is so dangerous for music publishers—the information on the
Internet bypasses the physical intermediary, and it was always the transfer of a
physical form during which publishers made their money.

An ethical dialectic rarely has a clean stopping point. We can almost
always make better and better arguments, and there are often strong
points remaining on different sides of an argument. For example, we
haven’t discussed the fact that much of the MP3 music copying takes place
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using university and corporate computers (which often have better Inter-
net connections than home computers), and that such equipment usually
isn’t supposed to be used for such purposes. We’ll leave that and other
issues for you to pursue on your own. We will make some closing remarks
on MP3 copying, but we don’t think this is a final word on the issue, and
we certainly don’t want you to think so either.

The consequences of widespread disregard of the law seem troubling
and a strong argument against illegally copying copyrighted music or video.
If the United States decides as a country that we are better off without
copyrighted music, then the law should be changed. Until then, it seems
unethical to encourage breaking the law that currently protects copy-
righted music.

In response to this seeming deadlock, some music distributors have
come up with new ways to sell music online. For example, Apple Com-
puter’s iTunes Music Store coordinates with the iPod, Apple’s music player.
iTunes and similar systems by other companies let users download songs
for a relatively small fee after previewing the song online. The hope is that
music consumers will opt for legal copying if the system is convenient and
reasonably priced. (See the box titled “The Sound of Music.”) Also, the
Creative Commons License is a copyright approach that allows intellectual
property creators to have more control over copyright specifications, while
encouraging legal sharing of music, videos, texts, and other intellectual
property.
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1. Talk to someone you know about copying MP3 files or commercial
movies using the Internet. Ask them to show you how they do it.
Does the software they use differentiate between music that is
copyrighted and music that isn’t copyrighted? Ask the person show-
ing you how to copy the files if they’ve ever thought about the 
ethical implications.

2. Not every decision is an ethical one. For example, we usually don’t
think of choosing an ice cream flavor as being “good” or “bad.”
Write down 10 choices you have made in the past week. Then go
back over the list and label each as ethical or not ethical. (Note:
“not ethical” is different from “unethical.”) After you’ve labeled all
10 choices, see if you can convince yourself to change your mind
about one of the choices you labeled “not ethical.”

3. To effectively build a utilitarian argument, we need to think of all
the people who are affected by a decision. We call these people
“stakeholders” in the decision. Choose one of the “ethical” choices
you listed in Problem 2. Now write down all the people or groups of
people who are potentially affected, directly or indirectly, by your
decision. Finally, list what each stakeholder may gain or lose from
your decision.
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17.2.2 Case 2: PGP: The U.S. Government 
vs. Phil Zimmermann

In Chapter 8, we discussed the concepts of encryption and cryptography. Not
surprisingly, the “secret codes” used in computing and online business can
raise interesting ethical questions. A particularly controversial case involves
the encryption code called PGP.

In 1991, a software engineer named Phillip Zimmermann developed an
encryption algorithm that he humorously called “Pretty Good Privacy,” nick-
named PGP. Zimmermann was concerned about bills introduced in the U.S.
Congress that would allow the government to restrict the use of encryption for
keeping electronic communications private. To combat this restriction, he
made PGP freely available to anyone who wanted it, and the program was soon
available from multiple sources on the Internet.

In response, the U.S. government started a criminal investigation
against Zimmermann. Their claim was that by releasing this algorithm to
the world, Zimmermann was unleashing a powerful technology that would
allow criminals and terrorists to avoid detection by law enforcement agen-
cies. In the hope of improving public safety, the government had for years
banned the export and publication of cryptographic products and informa-
tion. Zimmermann countered that this was primarily a matter of free
speech. Just because some people might misuse the technology for evil pur-
poses shouldn’t mean everyone should be denied the benefits of enhanced
online privacy.

After years of litigation and threats by the government, the investiga-
tions of Zimmermann and others who supported him were closed in 1996.
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Peer-to-peer music sharing became popular because it
offered users virtually unlimited access to free music.
Many computer scientists and ethicists thought that
once people were accustomed to this, it would be virtu-
ally impossible to break them of the habit and charge for
music. Steve Jobs and Apple Computer did not believe
this. Instead, they thought that if costs were reasonable
and value-added services were provided (e.g., preview-
ing, billboard charts, audio books, movie trailers), peo-
ple would be willing to pay for legal access to
copywritten music. In 2003, Apple went public with the
iTunes Music Store, a paid online music downloading ser-
vice for its new iPod MP3 player. The service started
small with access limited to Mac OS X users and a few
thousand songs on its play list. However, it was an
immediate success with more than 1 million downloads
in the first week. It rapidly expanded to Windows

machines as well as European and Asian users. Currently,
the iTunes Music Store has the rights to hundreds of mil-
lions of songs and other audio materials. Obviously,
those who did not think people would pay for online
music after having free access were wrong. Perhaps the
desire to act ethically is more deeply ingrained than we
had thought.  

Interestingly, to control dissemination of the music it
sells, Apple uses a proprietary digital rights management
(DRM) software package called FairPlay. FairPlay digitally
encrypts a song so it can only be played on Apple’s Quick-
Time and iPod systems, limits the number of times it can
be burned onto a CD, and restricts the number of comput-
ers on which it can be played within a 24-hour period.
Microsoft has followed suit and has instituted DRM tech-
nology for its .wav files on the Napster and Rhapsody
media services. Perhaps Apple and Microsoft do not believe
that the desire to act ethically is more deeply ingrained
than we had thought!

The Sound of 
Music



Some people interpret this as a victory for free speech and individual privacy;
others interpret it as merely an admission that the Internet distribution of
PGP had already taken place and that trying to squeeze the “toothpaste back
into the tube” was hopeless. Either way, Zimmermann was out from under a
cloud. Technically, it is still illegal to export PGP to some countries, but it is
available globally via the Internet. (For a history of PGP take a look at
www.cypherspace.org/~adam/timeline/.)

The saga of PGP has fascinating legal aspects, but we’ll focus here on eth-
ical issues, not legal ones. Was it right for Zimmerman to distribute his
encryption program, or was the government right to try to prohibit its distri-
bution? We used utilitarian arguments to explore ethical questions about MP3
copying. In this case study we will use a different kind of argument, analo-
gies, to explore questions about PGP.

Analogies are commonplace, and that’s one of the reasons they can be a
useful way to think about ethical concerns. Most people are familiar and com-
fortable with the idea of explaining something less well known by comparing
it to something better known. “It tastes a little like chicken, but drier” is a
pedestrian example. But when we apply analogies to ethics, we need to be
more careful about the analogies that we choose.

The power of an analogy is that it can transfer our understandings and
intuitions about something well known to a situation or entity that is less
well known. Sometimes that transfer is ethically appropriate, and sometimes
it isn’t. In a dialectic argument that uses analogies, there may be competing
analogies presented; one analogy supports a particular view of the situation
being discussed and the other analogy supports an opposing view of the exact
same situation. In a productive dialectic using analogies, the participants in
the discussion explore the strengths and weaknesses of each argument.

In any analogy between two “things,” there are both similarities and dif-
ferences. For example, someone might say “swimming is like riding a bike—
once you learn it, you never forget.” Clearly, swimming is not exactly like
riding a bike. (Just try swimming on a driveway or riding a bike in a lake.) The
point of this analogy is clear: The person making the analogy thinks that the
similarity (you don’t forget it once it has been learned) is most important to
the current conversation.

To explore both the PGP controversy and ethical reasoning using analo-
gies, we will examine two analogies that have been used in public debates
about PGP. The first comes from Phillip Zimmermann, the author of PGP, and
the second is an argument used by law enforcement to argue against the pri-
vate, unrestricted use of encryption. Just to make this analysis a little easier,
we’re going to narrow our discussion to the use of the PGP algorithm for e-mail
security, even though PGP could also be used for many other types of commu-
nications, including digital phone calls.

ANALOGY #1: E-MAIL IS LIKE A PRIVATE CONVERSATION.

If you and I decide to go for a walk in the woods and just talk, no one
in his right mind believes that we should be forced by the govern-
ment to carry microphones along to record our conversation so that
they can listen to it. Before all this technology came in, every con-
versation was private. —Phil Zimmermann in Life on the Internet:
Cyber Secrets (PBS, 1996).
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ANALOGY #2: E-MAIL IS LIKE PHONE CONVERSATIONS. Criminals and
terrorists increasingly use e-mail for their communication. Phone conversa-
tions can, with a court order, be intercepted via a wiretap, and that can be
effective in fighting criminal conspiracies. A court order to look at e-mails is
futile if the e-mails are encrypted and unintelligible to the law enforcement
community. Unless something is done to limit the power of encryption tech-
nologies, criminals and terrorists will be harder to stop because a valuable tool
for law enforcement won’t be available.

Both these analogies have a certain intuitive appeal. It doesn’t seem sen-
sible to require all conversations to be recorded; it doesn’t seem sensible to
allow criminals to avoid law enforcement. Good analogies often have a strong
intuitive appeal, but we should look deeper than our initial reaction when
using analogies in ethical analysis. It’s smart to think methodically about
both the similarities and the differences in each analogy.

SOME SIMILARITIES AND DIFFERENCES IN ANALOGY #1. Private physical
conversations are the same as e-mails in that people want to communicate
with each other. Also, both types of communication are meant to include a
limited number of people. In both types, however, the presumed audience
may be larger than intended: In a voice conversation, people may be eaves-
dropping either by being physically close but unnoticed by the speakers,
via a hidden microphone or by a distant parabolic listening device. In an 
e-mail exchange, the e-mail may be intercepted at any number of places
along the electronic path between sender and receivers. Major differences
between private conversations and e-mails derive from the medium of
information exchange. A private conversation is high-bandwidth, including
auditory, visual, and other sensory information; e-mails are much more
restricted, often involving only text. Conversation happens in real time,
with participants together in time and space; e-mails are asynchronous, and
participants can be distant in time and space. Conversations are common-
place and an ancient form of communication; e-mails are relatively recent.
Private physical conversations require only humans in close proximity; 
e-mails require extensive technologies and infrastructure. Private physical
conversations are presumed to be free, although sometimes people are paid
to talk (for example, consultants and therapists). Having e-mail capability
costs money, but once you have the capability, the cost does not increase in
proportion to the number of e-mails you send or receive.

SOME SIMILARITIES AND DIFFERENCES IN ANALOGY #2. As in the first
analogy, both phone calls and e-mails are means of communicating. Both
phone calls and e-mails have an intended audience, and in both types there
may be someone unknown “listening in.” Phone calls typically include more
information than e-mails, because a phone conversation includes voices and
e-mails are often limited to text. Both phone calls and e-mails are done at a
physical distance. Phone calls are meant to be in real time (excluding answer-
ing machine messages), but e-mails are asynchronous. Both phone calls and 
e-mails require extensive technology support, and the information in both
passes through circuits and routing systems that are controlled by others.
Phones have been available for a longer time than e-mails. Phone calls and 
e-mails are paid for differently: more use of the phone usually means you pay
more, whereas more use of e-mail typically does not cost more.
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ANALYZING THE ETHICAL SIGNIFICANCE OF THE SIMILARITIES AND
DIFFERENCES. The similarities and differences discussed so far are pretty
straightforward, and with some additional thought we could probably list
many more. But instead of making a longer list, we’ll look more closely at the
items we’ve already generated. To make progress in our ethical analysis, we
need to examine which of these similarities and which of these differences are
most relevant to our ethical question.

The three methods of communication—face-to-face conversation,
phone calls, and e-mail—all differ in the amount of information
exchanged. (Engineers call this “communication bandwidth,” and measure
it in the number of bits communicated per second.) That difference surely
is significant for the participants’ shared experience. The different modes of
communication involved also determine, to a large extent, how difficult it
is for the government to gain access to the information. However, the tech-
nical issue of bandwidth and the practical issue of convenience of intercep-
tion don’t seem to be central to our ethical question. Either the government
should be allowed to eavesdrop or not, no matter what the mode of com-
munication. So we’ll ignore the modes and concentrate on other aspects of
the analogies.

Private voice conversations are ancient, phone calls are more recent, and 
e-mails more recent still. This may be relevant ethically because societies
have had more time to make decisions about private conversations. In our
own society, private conversations are, by default, free from government
intrusion. This is not an absolute right—court orders can be obtained by law
enforcement to use technology that invades private physical conversations.
But these are the exceptions that prove the rule. Unless law enforcement can
demonstrate probable cause, they are not permitted to take extraordinary
measures to listen in on private physical conversations. The same is true for
phone calls; a court order is normally  required for an exception to the rule of
not “listening in.” (Revelations that the U.S. government was circumnavigat-
ing the requirement for a court order for wiretaps was a major scandal.) Thus,
if e-mails are subject to routine screening by law enforcement without a
court order (and many people believe that this is currently done), then infor-
mation in e-mails is far less protected than information in phone calls and
private conversations. This difference seems directly relevant to our ethical
question.

PGP allows e-mail users to return to the default of privacy. If the encryp-
tion works (and most experts think it works well), then it is impractical, if not
impossible, for law enforcement to routinely eavesdrop on PGP encrypted 
e-mails. Without PGP, e-mails afford less privacy than a phone call or physical
conversation; but with PGP, e-mails afford more privacy than a phone call or
physical conversation, because it is more difficult for law enforcement to
break the PGP code than it is to eavesdrop on a physical conversation or to tap
a phone line.

Now that we better understand some similarities and differences in the
modes of communication, and we recognize important technical details that
distinguish the three modes, we may be better able to understand the ethical
issues behind the PGP debate. Most of us think catching criminals and stop-
ping terrorists are good things. Most of us think having personal privacy is a
good thing. A decision about PGP affects both our security and our privacy. At
least from what we’ve considered to this point, we can’t seem to improve both
with our decision about PGP; if that’s true, we have to choose between them.
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To make progress on the PGP question, we’ll use the utilitarian perspec-
tive introduced earlier in this chapter. What are the consequences of enforcing
a ban on PGP, and what are the consequences of allowing people to use PGP?
We’ve already agreed that allowing the use of PGP facilitates privacy and
incurs security risks. What does banning PGP do? Clearly, banning PGP reduces
privacy. In addition, we’d expect that most people would avoid something that
is likely to get them in trouble with the law, and corporations would certainly
avoid promoting illegal software (corporations are often more vulnerable legal
targets than individuals when it comes to software use). If PGP and similar
privacy protection for e-mails is banned, e-mail will become like postcards—
everyone will know that there isn’t much privacy. In fact, many people treat 
e-mail in exactly that way today.

However, banning PGP is a complicated undertaking. Would the govern-
ment ban its use or its dissemination? Banning dissemination on the Web is
difficult, because the Web is global and most laws are limited to physical
borders. PGP is, in its most fundamental form, just an idea. Would the gov-
ernment ban people from having the idea? Would it be illegal to express the
idea on, for example, a piece of paper? (Opponents of government restric-
tions on PGP have taken to wearing T-shirts with the PGP algorithm printed
on the front.) The United States has a tradition of free speech and free
thought that seems incompatible with banning ideas, and the prohibition
against PGP appears to run counter to that tradition. Free speech is not an
absolute right; you aren’t supposed to yell “Fire!” in a crowded theatre
unless there really is a fire. But the drama of this example demonstrates
that limits to free speech are not to be taken lightly. We’ve discovered an
ethically significant difference between physical conversations, phone com-
munications, and e-mail: Only in the case of e-mail has the government
proposed restrictions on an idea. This does not necessarily decide the issue,
but it is certainly an important cost if the ban is enforced, and that cost
should be taken into account when weighing whether to try to enforce a
ban on PGP.

Although the U.S. government still has some regulations against exporting
PGP, there is currently no active effort to ban PGP domestically. And our ethi-
cal analysis above suggests that avoiding the costs of a PGP ban is a defensible
position. At least in this case, the increased security of such a ban would be
bought at a very high price, a price made more evident by the use of analogies
and a utilitarian analysis.

17.2.3 Case 3: Hackers: Public Enemies or Gadflies?

During the Middle Ages, a “hacker” was someone who made hoes. In the
seventeenth century, a hacker was a “lusty laborer” who enthusiastically
wielded a hoe. But hacker has quite a different meaning today, far removed
from its agricultural roots (see the box titled “Hackers” on page 335, 
Chapter 8).

The term hacker is used in several different ways, but a common defini-
tion of a hacker is someone who breaks into computer systems and launches
Internet worms and viruses, or perpetrates other computer-related vandalism.
Still, some people think at least some of the activities categorized as “hack-
ing” constitute a public service, and several computer hackers have written
books and articles about the ethics of computer hacking. In this section we’ll  
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explore whether there is an ethical case to be made in support of computer
hackers. To focus our discussion, we’ll concentrate on a single type of hacking:
gaining unauthorized access to someone else’s computer system. (This is
sometimes referred to as “cracking.”) This could be as simple as using a
coworker’s laptop while he or she is at lunch or as elaborate as using an Inter-
net connection to crack several levels of security and gain entry into a sensi-
tive government database.

ANALOGY: BREAKING INTO A COMPUTER IS LIKE BREAKING INTO
SOMEONE’S HOUSE. Imagine that a burglar picks the lock on your back
door, wanders around picking up valuables, and then escapes into the night
undetected. When you find out you’ve been robbed, you feel outrage and fear.
If computer hacking is ethically linked to burglary, then we will have an
instinctive revulsion toward both.

Clearly there are similarities between burglars and hackers; in both cases
the intruders are there without our permission and (at least in most cases)
without us being aware of their presence. In most homes and with most com-
puters, the owners take some precautions to discourage unwanted visitors,
precautions that must be overcome by the intruder. There are laws against
both forms of intrusion, although the laws against physical break-ins are
clearer and easier to enforce.

There are also differences between the intrusions. A burglar is likely to
take something from your house, and that removal will deprive you of
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1. An important skill in using analogies is noticing both similarities
and differences. This skill can be practiced. Think of a book and a
Web site that contain essentially the same information. How are
they alike? How are they different? Make a list of similarities and
differences, at least 10 of each. Don’t ignore the obvious, but don’t
limit yourself to the obvious either.

2. Imagine that your public library decides to go completely digital.
The library now has a policy to phase out books and replace them
with Web sites, CDs, and public access computers in the library.
Using the list you made in Problem 1, make another list of the peo-
ple who would gain from this decision and a list of the people who
would lose. Build a utilitarian argument either for or against the
decision.

3. Some people think that the content of Internet sites should be regu-
lated just as the content of radio and TV broadcasts are, for example
with rules regarding obscenity and the amount of advertising. Other
people think that the content of Internet sites, like private phone
conversations, should not be regulated. Is the analogy between
Internet sites and radio and TV broadcasts more appropriate, or is
the analogy between Internet sites and telephone conversations
more appropriate? Justify your position.

PRACTICE PROBLEMS



something. A hacker may look at things, and even copy things from your
computer, but the hacker is less likely to remove or destroy things from
your system. A hacker takes your intellectual property and privacy, and
that is different from taking physical objects.

When someone breaks into a house, there is a palpable threat of vio-
lence. When a burglar is detected, things may turn nasty. This physical
threat is not present in a computer break-in, although the information
stolen may be personal and could lead to future physical threats. The physi-
cal degree of separation of a virtual break-in seems to be an ethically rele-
vant distinction.

The analogy between a house break-in and a computer break-in helps
us to clarify differences and similarities, both of which seem important in
this case. Next we’ll look at a pair of utilitarian arguments to extend the
dialectic.

UTILITARIAN ARGUMENT: COSTS AND BENEFITS OF HACKING. What is
gained and lost when a computer is hacked? First, whoever owns the hacked
computer loses some control over the information in that computer, and the
hacker gains access to that information. Second, as a consequence of the
break-in, there may be intentional or unintentional deletions or corruptions
of data on the computer. These changes may be largely benign or may sub-
sequently cause significant harm. Neither the hacker nor the person hacked
can know with certainty the eventual consequences of these changes.

When computer system owners or system administrators discover that a
system has been hacked, they often increase system security to reduce the
probability of another successful intrusion. Some hackers claim that they
provide a public service by alerting people to security holes in their systems.
As long as the hacker doesn’t hurt anything while “inside” the system, and
especially if the hacker makes the intrusion obvious, then they would argue
that the consequence of the hacking is improved security against malicious
hackers. An alternative consequential argument says that increased security
wouldn’t be necessary if hackers weren’t such a threat.
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Many professional organizations in the fields of computer
science and electrical engineering have established codes of
ethical behavior to provide guidelines for their members.
These codes outline standards of behavior and conduct that
typically include general imperatives such as avoiding harm
to others and being honest, as well as more specific profes-
sional responsibilities and duties such as respecting intellec-
tual property and protecting client privacy. Some of these
organizations are:

• The Association for Computing Machinery (ACM)
http://www.acm.org

• The Association of Information Technology Profes-
sionals (AITP) http://www.aitp.org

• Computer Professionals for Social Responsibility
(CPSR) http://www.cpsr.org

• The Institute of Electrical and Electronics Engineers
(IEEE) http://www.ieee.org

• The British Computer Society (BCS) http://
www.bcs.org

In addition, ACM has published an article entitled
“Social Responsibility and the Computer Science Stu-
dent: How Can I Get Involved?” that all students
entering the field should read. It can be found at
http://www.acm.org/crossroads/xrds1-4/soc_orgs.html.

Professional Codes 
of Conduct

http://www.aitp.org
http://www.cpsr.org
http://www.ieee.org
http://www.bcs.org
http://www.bcs.org
http://www.acm.org
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This discussion illustrates two challenges when using a utilitarian argu-
ment in a dialectic about hacking:

1. It is sometimes hard to predict consequences with any accuracy.

2. There seems to be a distinction between “good hackers” (who don’t
want to hurt anything when they break in) and “bad hackers” (who
want to do damage or steal things).

These kinds of challenges arise in other discussions, and some people think
they are difficult to overcome using a utilitarian argument. Let’s try a differ-
ent kind of ethical argument, a deontological argument, to try to meet these
challenges in a different way.

DEONTOLOGICAL ARGUMENT: HACKING WITH A GOLDEN HEART.
Utilitarian and other consequentialist arguments focus on the consequences of
an act to determine if the act is ethical. Deontological arguments focus instead
on the inherent nature of the act. A deontologist focuses more on the intent of
an act and how that act either is or isn’t a defensible, responsible act.

The word deontology is from the Greek and means “the science of duty.”
Perhaps the most famous deontologist was the German philosopher Immanuel
Kant (1724–1804). Kant wrestled eloquently (and at great length) about what
duties we humans have to each other. He came up with “categorical impera-
tives” that characterized these duties. His second categorical imperative goes
something like this:

Never treat a fellow human merely as a means to an end.

To boil that down to a bumper sticker slogan, we might say, “Every human
being deserves respect.”

Let’s try out a deontological perspective on our question about hacking.
Is the act of hacking into another person’s computer system inherently uneth-
ical? If we take some hackers at their word, their intent is not to harm. They
characterize themselves as insatiably curious about how computers and net-
works work, and they characterize hacking as an intellectually satisfying
activity related to that curiosity. They claim to want to help people discover
security holes to protect against malevolent hackers.

Let’s stipulate that hackers who explicitly want to destroy and corrupt
data are doing something unethical by any of the three arguments we’ve seen
so far in this section (analogy, utilitarian, deontological). For the rest of this
section we’ll concentrate on hackers who claim a benign if not benevolent
intent to their computer break-ins. 

First, we assume that “good hackers” are telling the truth when they
claim to mean no harm. (If some good hackers are lying about that, we’ll
reclassify them as “bad hackers” and focus on those hackers who are
telling the truth.) Next, we’ll explore how hackers describe the “goodness”
of what they do. The “hacker ethic” makes two claims:

1. Information sharing is a powerful positive good, and it is the ethical
duty of hackers to facilitate access to information and computing
resources wherever possible.

2. System cracking for fun and exploration is ethically OK as long as the
cracker commits no theft, vandalism, or breach of confidentiality.

660 LEVEL 6 CHAPTER 17: Making Decisions about Computers, Information, and Society



We’ll examine each of these ethical claims. (For a more detailed discussion,
see Computer Ethics, 4th ed., by Deborah Johnson, which is listed in the “For
Further Reading” section at the end of this chapter.) In claim 1, the idea of
sharing information sounds pretty good at first glance. But it seems a bit less
noble when we remember that much of the information that hackers share isn’t
their information, it’s someone else’s! It’s one thing to share open-source com-
puter code (like Linux or OpenOffice.org) or the works of Shakespeare on the
Web. It’s quite another thing to share material whose copyright is legally still
in force (like Lady Gaga’s latest CD), or to share someone else’s credit card num-
ber. Unless hackers consciously make these kinds of distinctions (and many
hackers do not), then the duty to respect other people (and their intellectual
property) isn’t being met.

The second claim has a similar weakness. Although a hacker might avoid
inflicting a consequential harm (no theft or vandalism), you can’t hack a system
without breaking through the owner’s security, and that act on its own breaches
a duty to respect certain boundaries between people. To use an analogy, consider
someone who breaks into your house but doesn’t harm anyone or steal anything.
Just knowing that someone entered and occupied your physical home can make
you feel uncomfortable and unsafe. Many of us feel the same way about our com-
puter “homes.” Computer security exists because we don’t like trespassers, and
hacking violates our boundaries.

Hackers might argue that our expectation of electronic privacy is the
problem, not their violation of that expectation. What’s missing from the
hacker argument is why their ideas about information (“all information should
be free”) should take priority over the majority view (“some information
should be private”). Ethically, there’s no problem with thinking and arguing
that all information should be free; there is a big problem with acting on that
belief in contradiction of law and custom.

The arguments above won’t convince most hackers, and you too might have
some remaining questions about this issue. For example, open-source efforts
such as GNU, Linux, and Apache provide useful software for little or no money
to many computer users. It can certainly be argued that such software is a pos-
itive good, and in this case “free” information (in the form of source code that
is shared without charge) seems to support many of the hacker ideas. Also,
some people deeply concerned about the increasing amount of personal infor-
mation in corporate computers have suggested that hackers are a defense
against the concentration of informational power. Again, some resistance to this
centralization of power may sound like a positive thing. But the existence of
positive good is not a slam-dunk ethical argument. Acts have both good and bad
consequences, and utilitarians remind us that we have to weigh these conse-
quences and think of them globally. Deontologists encourage us to remember
that acts can be inherently good or bad outside the consequences. At the very
least, the preceding brief analysis raises serious questions about the claims of
the hacker ethic. In the Practice Problems on the next page, you’re invited to con-
tinue the dialectic about this ongoing controversy.

17.2.4 Thinking Straight about Technology and Ethics

So far in this chapter we’ve looked at three different cases using three differ-
ent techniques: reasoning by analogy, utilitarian analysis, and deontological
analysis. In this section we’ll suggest a “paramedic method” for computer
ethics, and we’ll invite you to practice that method on another case.
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PARAMEDIC ETHICS FOR TECHNOLOGY. When you get sick, you often need
medical help in a hurry. Paramedics aren’t necessarily medical doctors, but they
know quite a bit about how to help people, and they know who to ask when they
aren’t certain about a particularly puzzling case. We don’t expect you to become
a research ethicist by reading this chapter, but we hope you have started to gain
some new skills: recognizing ethical questions regarding computing and reason-
ing carefully about answers to those questions. When you recognize an ethical
problem, we think there are several important questions you should ask yourself:

1. Who are the stakeholders in this situation?

2. What does each stakeholder have to gain or lose? (This is the
utilitarian step.)

3. What duties and responsibilities in this situation are important to the
stakeholders? (This is the deontological step.)

4. Can you think of an analogous situation that doesn’t involve comput-
ing? If so, does that analogous situation clarify the situation that does
involve computing? (Here we reason by analogy.)

5. Either make a decision or revisit the steps.

Before we illustrate how to apply these questions to a particular case, we
need to announce a disclaimer. Unlike the formal algorithms studied earlier in
this book, this “paramedic method” is not a step-by-step solution method,
guaranteed to produce a result and then halt. Instead, it is an outline that can
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1. There are times when we want someone to break into our house. For
example, if my house is on fire, I probably won’t object if firefight-
ers use an ax on the front door. Can you think of other such situa-
tions? Try to make an argument based on an analogy between
firefighters and hackers that supports the hacker ethic. Do you find
this analogy convincing? Why or why not?

2. Sometimes we are invited to look in to windows and to enter pri-
vately owned property. For example, stores spend money to make
attractive windows to draw us in. What are some ethically signifi-
cant differences between a store inviting us in and a computer
being hacked? Focus on the issue of intent as you consider this
question.

3. Some Internet chat rooms allow and even encourage people to
remain anonymous. As people type to each other in real time, the
people chatting are identified by fictitious “handles.” Is this a
good idea? Think of two reasons why such Internet anonymity may
be a good thing and two reasons why it may be a bad thing. Here is
an analogy you might consider: a phone solicitor and children at
Halloween.

PRACTICE PROBLEMS



help guide you in a productive dialectic. That dialectic may be in your head or
with others interested in the case. Either way, you want to think carefully and
move toward a better understanding of the problem and toward better ethical
solutions.

17.2.5 Case 4: Genetic Information 
and Medical Research

Many people believe that the Industrial Age is over and we are now living in
the Information Age. In the last few years, human genetic information has
taken center stage in scientific exploration. Computers are an integral part of
this research and of the growing commerce connected to the human genome.
Because this “new” information is contained in the cells of our bodies, the
computerization of this information is simultaneously personal and mysteri-
ous. (Genetic information is not new, since human genes have always encoded
information; but our access to that information is new.) In our final case study
we will explore a fictional case involving genetic information. We’ll use the
paramedic method outlined in the previous section to examine this case from
several different perspectives.

Imagine that you are at your family doctor for a routine checkup. The
doctor asks you to participate in a study of genetic diversity and disease by
donating some skin cells for the study. The doctor informs you that your skin
cells will be identified only by a randomly assigned number and your zip code.
Should you donate your cells?

STEP 1: IDENTIFY STAKEHOLDERS. According to our paramedic method,
the first question to ask is, Who are the stakeholders? Clearly the doctor and
you are two stakeholders. But are these the only ones you should consider?
Probably not. Unless the doctor is doing this study on her own (unlikely),
there is someone else involved in this research. When you inquire, the doctor
tells you that a pharmaceutical company is sponsoring the research and that
they hope to use the information gathered from around the country to iden-
tify genetic links to several diseases, some of them fatal. Now you’ve identi-
fied three more stakeholders: the pharmaceutical company (let’s call the
company PHARM CO), skin cell donors all over the country, and people who
have or will have these genetic diseases. (There may be more stakeholders, but
this list seems long enough for now.)

STEP 2: WHAT IS AT STAKE? Next, we ask what each stakeholder might
gain or lose from our decision. If we say yes and donate our skin cells, then
we will undergo some sort of procedure and lose a few cells; our doctor will
participate more fully in the study; PHARM CO will get a larger database and
may be able to develop new drugs; if the drugs are successful, then people
with diseases may have new therapies. If we say no to the donation, then our
doctor, PHARM CO, and patients will have a slightly smaller chance of success
with the research.

Just thinking about these possible costs and benefits might lead to a few
more questions. First, is the procedure for donating the cells dangerous? Your
doctor assures you that the procedure is harmless and requires just a moment
to scrape a tongue depressor lightly against your arm.
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Probably, you also have questions about how your genetic information
is going to be stored and processed. (Because you’ve almost finished this
book, you have quite a bit of sophistication about computerized informa-
tion!) A logical way to store this information would be to assign a 
randomly generated number for each donor in the study, perhaps linked 
to information your doctor already has. We might envision information
like the following table, which includes the use of your Social Security
number (SSN):

The doctor has assured you that only the random number (from the
first column) and the zip code (from the fourth column) will be associated
with your genetic sample and the information derived from it. If we believe
that the doctor will in good faith send only that information to PHARM CO,
should you be confident that your privacy is assured? The answer is proba-
bly not. If a table such as the one just shown exists, then PHARM CO could
potentially link the information they receive from your doctor back to you
by gaining access to that table. At the very least, PHARM CO could likely
find out the names and addresses of all the people who donated cells from
a particular zip code, and there may not be many from your particular zip
code. Furthermore, computerized files like our table have a habit of hang-
ing around, in one form or another, for a long time unless they are explic-
itly and carefully deleted. Unless your doctor has been scrupulous about
data deletion (including cleaning up any backups and the like), PHARM CO
may indeed be able to track down your personal information if it becomes
important for them to do so. And we can envision situations in which
PHARM CO might be eager to track you down; for example, your genetic
information might reveal that your body has a resistance to a widespread
disease.

You’ve also read in Chapter 7 some technical details about networks and
communication over those networks. You know that information on the Inter-
net can be intercepted at various points. Will your genetic information and/or
the table described above be sent electronically to PHARM CO or anyone else?
If so, will it be encrypted using the algorithms described in Chapter 8? Will
access to the information be password protected?

A final question involves finances. Presumably, PHARM CO plans to
make a profit from these drugs. Is anyone being paid for this research?
Let’s assume that the doctor is being paid a nominal fee for collecting the
samples, say $5 for each patient who donates cells. PHARM CO is paying for
all the collection kits and for all the analysis. Because PHARM CO is paying
for the research, the information collected and any information developed
will belong to PHARM CO.
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NUMBER SSN NAME ZIP CODE GENDER DOCTOR

10568322 532 12 3456 Joe Smith 45321 M Goodgene
952990981 532 11 9503 Sue Jones 55416 F Goodgene
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STEP 3: IDENTIFY DUTIES AND RESPONSIBILITIES. Now that we have a
clearer picture of possible costs and benefits, we’ll move to the third step of
the paramedic method: analyzing duties and responsibilities. Your doctor has
a primary responsibility to do her best to treat you and protect your privacy.
You have a duty to pay your bills promptly and to follow instructions that the
doctor prescribes. PHARM CO is responsible for developing safe and useful
drugs, and in return its customers pay for those drugs. In this research effort,
PHARM CO is hoping that doctors will enlist volunteer patient donors, and in
return PHARM CO is promising doctors a small fee for each patient who volun-
teers. Both your doctor and PHARM CO have promised to protect donors’ pri-
vacy and are obligated to make a good faith effort to fulfill that promise.

Most of the responsibilities we’ve discussed so far are fairly straightfor-
ward and uncontroversial. There are other possible responsibilities that are
less obvious and more controversial. We’ve already discussed intellectual prop-
erty, the value of information, in the preceding MP3 case. Analogous to the
music in that case study, this example also involves valuable information.
What if your genetic information includes an important clue to the treatment
of cancer or some other fatal disease? If PHARM CO develops an effective drug
based on your genetic information, they stand to make billions of dollars.
Should you get a royalty on the information in your genes? Does PHARM CO
have a duty to share your genetic information and the information from oth-
ers, or does their initial funding of this research give them proprietary control
of that information?

Your doctor told you that only a random number and a zip code would
identify your donated skin cells. This coding procedure seems to afford you
some confidentiality, and that’s a good thing. But you might also want to
know why the zip code is required at all. Is geographic location part of the
research, or is the zip code important for subsequent marketing of drugs? Is
this study being done all over the world, only in the United States, or only
in select zip codes in the United States? If it turns out your genetic infor-
mation is particularly valuable, can the doctor give you assurances that
your privacy will not be invaded? As we’ve seen previously, maintaining
strict confidentiality would require a sophisticated protocol to make sure
information could not be linked back to you and to protect information
stored on computers and communicated over a network. Because both
PHARM CO and your doctor want you to volunteer for this process, they
have a duty to disclose these kinds of details before asking for your genetic
information.

Another question is whether you have a duty to try to help cure disease
in this case. If there is a chance for you to advance medicine by a simple dona-
tion process, is there an obligation for you to donate? In a situation like this,
is altruism required?

STEP 4: THINK OF ANALOGIES. As we move through the paramedic method,
the seemingly simple request for a few skin cells has taken on added depth and
complexity. Ethical analysis often reveals a broader perspective than our first
thoughts about a situation. Now let’s move on to our final step in the paramedic
method, reasoning by analogy. An important aspect of this case is the promise
of confidentiality to donors. Another aspect of the case that emerged during the
first steps is that two of the stakeholders are potentially gaining money, PHARM
CO and the doctors. The other two stakeholders, you and patients who poten-
tially will want the drugs developed, are not getting money now and may be
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paying later. To explore both the confidentiality and the financial aspects of
donors and users of donations, we’ll consider blood donations.

The Red Cross solicits blood donations. The Red Cross is concerned about
the quality of the blood that they distribute. Therefore, when you give a blood
donation, the blood is tested for certain diseases. If your donated blood turns
out to be unusable, then your name is entered into a “deferred donor data-
base” and you are prevented from giving blood. Clearly, the Red Cross cannot
offer you complete confidentiality about your blood and any diseases it dis-
covers in your donation. However, the Red Cross is sensitive to the issue of
confidentiality. On the Web site www.givelife2.org/donor/faq.asp#5, the fol-
lowing appears on an FAQ (frequently asked questions) list:

Are the health history questions and my test results confidential?
Yes. The health history will be conducted by a trained professional in
an individual booth arranged to preserve confidentiality. Your answers
will be kept confidential, except where required by law. If your blood
tests positive to any of the administered standard tests, you will
receive confidential notification. The Red Cross maintains strict confi-
dentiality of all blood donor records.

The Red Cross is a not-for-profit organization, but it incurs processing
costs associated with collecting, testing, and distributing blood. To recover
these processing costs, the Red Cross charges a reimbursement fee to hospitals
that use the donated blood. The hospitals also incur operating costs, which
appear on your hospital bill. One of the reasons that the Red Cross prefers vol-
unteer donors is that it has been found that people who donate blood for
altruistic reasons are the safest blood donors. Blood donation and skin cell
donation (as proposed by your doctor) are similar in that the donors are vol-
unteers, but the collectors and eventual users of the donated materials are
paid. In both cases, it is something from donors’ bodies that is being col-
lected. And in both cases, the donors are asked to volunteer for altruistic rea-
sons.

There are differences between the two situations. In the case of blood
donation, the blood itself is the item of value, and both donor and collector
are clear about what will happen with the blood. In the case of the skin cells,
it is the genetic information in the cells that is of value, not the cells them-
selves. Also, PHARM CO is looking for something it may or may not find in
your cells. If it finds valuable information, PHARM CO stands to make a profit;
if it doesn’t find valuable information, it may take a loss on the project. The
Red Cross and hospitals presumably won’t make large profits on your blood,
although they do charge for its use.

Let’s examine another analogy: companies that solicit money for a char-
ity. In this case, a for-profit company solicits donations from volunteers.
Again, confidentiality is an issue. On the one hand, we expect that a charity
will keep records that we can use to confirm our donation if the government
audits our tax returns; on the other hand, there are many reasons why we
might not want our history of donations to become public information.

On the issue of finances, a for-profit solicitation company takes a certain
percentage of donations to pay for its costs in soliciting and processing the
donations and then passes on the rest of the money to the charity. This process
becomes ethically objectionable when the percentage of money that goes to
the solicitor becomes comparatively large. If the soliciting company pockets
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80% of the donations it collects and passes along only 20% to the charity,
donors feel cheated. If the soliciting organization keeps only 2% of the dona-
tions and passes along 98% to the charity, most people would not object.

The charity solicitation scenario is similar to the skin cell donation in
that volunteers are asked to donate by someone who has a financial interest
in that donation. In both situations, the donors are asked to make the dona-
tion for altruistic reasons. In both cases, the amount of money given to the
person in the middle (the solicitor or the doctor) seems ethically relevant, as
does the control of information about donors. In all of the cases we’ve exam-
ined, this donor information is almost certainly in the form of computer files
and therefore easy to store and distribute.

The scenarios are different in that the donation requested for charity is
monetary, not physical. In the charity solicitation, only the solicitor is for-
profit. In the skin cell donation, both the doctor and PHARM CO are for-profit
entities, although the doctor is making just a little money and PHARM CO is
both spending and hoping to make much larger sums.

STEP 5: MAKE A DECISION OR LOOP THROUGH THE METHOD AGAIN.
You’ve moved through the first four steps of the paramedic method and now
you’ve developed a better understanding of the situation. If you have to make
a decision right away (the doctor is waiting!), you can do so with a more rea-
soned response than before. But perhaps you have the luxury of thinking it
over some more (“Doc, let me get back to you about the skin cell donation,
OK?”). You might want time to ask a few more questions of the doctor or
PHARM CO. You also might want to think about it more carefully on your own.
In cases where the decision was potentially more critical to you or someone
important to you, you might want to seek out help in making your decision.
If you have the time, you could revisit earlier steps in the paramedic method.

Just to give this section some closure, let’s imagine that the doctor wants
you to decide about the donation while you’re there at the office. (“The study
is only going on for a few more days, and we wouldn’t want you to have to
come in again for such a trivial procedure.”) We think that the analysis above
would give you sufficient reasons to decline the invitation unless the doctor
could give you more assurance about how PHARM CO was going to store and
use your genetic information. On the one hand, helping find cures to serious
diseases seems like a good thing, and the donation procedure sounds harm-
less. On the other hand, you haven’t been given much assurance about how
your genetic privacy will be maintained, and the financial interests of the
other stakeholders may give you pause.

A thoughtful reader may or may not agree with that conclusion, but we
hope any reader recognizes that this seemingly straightforward request has
some surprisingly complex issues attached to it.

17.3 What We Covered and What We Did Not

We don’t want to end this chapter without warning you that we’ve only
scratched the surface of some of the issues involving technology and society.
In the chapter exercises we’ll invite you to look at some of the many contro-
versies in this developing area of applied ethics. And although we’ve discussed
how to apply utilitarian ideas, deontological ideas, and analogies to computer
ethics, we haven’t even mentioned Rawlsian negotiation, virtue ethics, or any
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other number of ethical techniques. We also haven’t explicitly mentioned
“science and technology studies,” though many of the themes we’ve described
are included in that emerging scholarly field. Please examine the Further
Readings section if we’ve piqued your interest.

You may think that the paramedic method is too involved for your decisions,
and perhaps just trying to remember how to spell deontological gives you a
headache. But we hope you’ll at least remember that technical decisions involve
human values, whether we recognize it or not. And when you have to decide if
something having to do with technology is right or wrong, we hope you remem-
ber to think carefully about consequences and duties. Computers give us tremen-
dous power. Let’s hope we learn to use the power well. Happy computing!

17.4 Summary of Level 6

In this last and highest level of abstraction in our study of computer science, we
looked at several case studies involving computer technology and saw how even
seemingly straightforward situations, when examined closely, reveal multiple
facets of ethical implications. But more than the particular cases involved, this
level provided some tools for coping with ethical decision making.

Because of the increasing capabilities of computers and their increasingly
pervasive presence in our private and public lives, the path ahead will be filled
with instances in which the use of computers, information, and technology will
have ethical consequences. As private citizens and as members of society, we
cannot avoid making decisions on such issues, because even doing nothing is a
decision that has ethical consequences. Finally, ethical decision making seems to
be a purely human responsibility, not one that our computers can help us with
directly, at least not at the moment.
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1. Here are some issues that you may have noticed in the
news, each of which involves the intertwining of technology
and human values:

Personal privacy when surfing the Web
Software quality issues: How good is good enough?
Licensing of software engineers
The digital divide: the haves and have-nots of

information
U.S. Supreme Court ruling on virtual kiddie porn
U.S. Supreme Court ruling on filters in public library

Internet use
Tracking terrorist and hate group Web sites
Censoring information on the Web about making

bombs
The Clipper Chip: FBI wants encryption keys
Loss of jobs due to technology
Computer algorithms for determining the risks of

subprime mortgages
Virtual reality as recreation
Computer simulations in the courtroom
E-mail spam and legislation to stop it
Online education and cheating
Surveillance cameras in public areas
Face recognition to scan for terrorists at the

Super Bowl
FBI databases of criminals
Web sites with convicted sex offenders’ addresses
E-commerce replacing face-to-face businesses
Stolen credit card numbers posted on the Internet
Sales taxes on Internet sales
Computing for the disabled
Open source software versus commercial software
Using pictures found on the Web to create electronic art
Term papers for sale on the Internet
States selling information compiled from drivers’

licenses
Database matching to find deadbeat parents
Internet casino gambling
Workplace monitoring using computers
Legal rights for robots
Smart bombs and other lethal robots
Artificial intelligence devices for medical diagnosis
DNA evidence in capital cases

a. Practice creating analogies. Pick three topics from the list
shown, or make up some topics of your own that involve
technology and humans. For each topic, think of an anal-
ogous situation that does not involve computing. For

example, if you picked “online education and cheating,”
an obvious analogy would be to consider face-to-face
education and cheating. If you picked “personal privacy
when surfing the Web,” an analogy might be “personal
privacy when checking out library books.” When you’ve
picked your three topics and your analogy for each, make
a short list of how each analogy is like the topic and how
the analogy is different from the topic.

b. Practice finding stakeholders. Pick your favorite topic
from among the three topics you chose in part (a). For
that topic, make a new list of all the significant stake-
holders in the topic. (Hint: Remember that a stakeholder
can be an individual, a group of individuals, a corpora-
tion, perhaps the environment, or any other entities you
think are important in your topic.) For each stakeholder,
list what the stakeholder most values in this situation.

It may help you to frame a specific question or pro-
pose a particular action related to the topic. For example,
if your topic is “online education and cheating,” you
might propose the action, “online education should be
suspended until online cheating can be better controlled”
or “online education should include automated cheating
detection.” This narrowing of the topic sometimes simpli-
fies the task of imagining what people value with respect
to this issue.

c. Practice identifying costs and benefits. For each stake-
holder you identified in part (b), list the possible costs
and benefits in the situation you chose. In many cases,
these are potential costs and benefits, things that might
or might not happen. Sometimes the words “vulnerabil-
ity” and “opportunity” can be more accurate than “cost”
and “benefit” because of uncertainties in the situation.

d. Practice looking for duties and responsibilities. In the
previous two parts, you identified some stakeholders.
Let’s use the letter N to stand for the number of stake-
holders you identified. Now, make a two-dimensional
table that has N 3 N cells. At the top of the table,
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E X E R C I S E S

Fred Ethel Lucy

Fred Things that 
Fred owes 

Lucy

Ethel Things that 
Ethel owes 

Ethel

Lucy Things that 
Lucy owes 

Fred



label each column with one of your stakeholders. At
the left of the table, copy the list of stakeholders, one
for each row. If the stakeholders were {Fred, Ethel,
Lucy}, then the table would look like the one shown
on the previous page.
Inside each cell, list any duties or responsibilities that
the stakeholder on the left owes the stakeholder
above. For example, three of the cells are marked in
the sample table. Don’t neglect the cells that describe
duties people have to themselves.

2. Pull it all together. In Exercise 1, you looked at one
topic in some detail. In this exercise, write a short
paragraph about what you think is the right thing to do
in the situation you selected. Justify your decision
based on the analogy you developed, the costs and
benefits you listed, and the duties in your table. After
you’ve devised the best argument you can to show that
you’re right, write a short description of what you think
is the best argument against your decision.
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Books

Here are three textbooks that focus on the kinds of social and ethical issues we’ve
explored in this chapter:

Basse, S. A Gift of Fire: Social, Legal, and Ethical Issues for Computers and the Internet, 3rd Ed.
Englewood Cliffs, NJ: Prentice-Hall, 2008.

Johnson, D. Computer Ethics, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2009.

Quinn, M. Ethics for the Information Age: International Edition, 3rd ed. Pearson Higher Education,
2009.

The late Ann Wells Branscomb wrote an influential book about privacy and personal information:

Branscomb, A. W. Who Owns Information? From Privacy to Public Access. New York: Basic Books, 1994.

Richard Epstein writes clever fiction about the intersection of human values and techno-
logical advances. His most famous piece so far is about a “killer robot”:

Epstein, R. The Case of the Killer Robot. New York: Wiley, 1996.

The following are collections of articles about social issues in computing:

Johnson, D. G., and Nissenbaum, H., eds. Computers, Ethics & Social Values. Englewood Cliffs, NJ:
Prentice-Hall, 1995.

Floridi, Luciano. “Philosophy of Information and Information Ethics: Reflections on the State of the
Art.” Ethics and Information Technology, Numbers 2-3, September 2008.

Himma, K. Internet Security: Hacking, Counterhacking, and Society. Jones and Bartlett, 2007.

Himma, K. and Tavain, H., eds. The Handbook of Information and Computer Ethics. Wiley and Sons,
2008.

Kling, R., ed. Computerization and Controversy: Value Conflicts and Social Choices, 2nd ed. San
Diego, CA: Academic Press, 1996.

DePalma, P., ed. Computers in Society 05/06, 12th ed. Guilford, CT: McGraw-Hill/Dushkin, 2004.

Spinello, R., and Tavani, H., eds. Readings in CyberEthics, 2nd ed. Sudbury, MA: Jones and Bartlett, 2004.

Web Sites

Herman Tavani created an extensive online bibliography for “Computing, Ethics, and
Social Responsibility.” Find it at http://cyberethics.cbi.msstate.edu/biblio.

Chuck Huff has several well-documented computer ethics cases online at http://www.
computingcases.org.

F O R  F U R T H E R  R E A D I N G

http://www.computingcases.org
http://www.computingcases.org
http://cyberethics.cbi.msstate.edu/biblio


J.A.N. Lee at Virginia Tech’s Department of Computer Science has a large collection of
online materials about computer ethics at http://courses.cs.vt.edu/professionalism.

Edward F. Gehringer has a clever interface on his site about “Ethics in Computing” at
http://ethics.csc.ncsu.edu/.

For an international view of computer ethics, see http://icie.zkm.de.

Terry Bynum has a large collection of materials at the Research Center on Computing and Soci-
ety at Southern Connecticut State University: http://www.southernct.edu/organizations/rccs.

Kevin Bowyer’s “Ethics and Computing” site has teaching materials sponsored by the
National Science Foundation (NSF) at http://www.cse.nd.edu/%7Ekwb/nsf-ufe.

The DOLCE site is also NSF-sponsored: https://edocs.uis.edu/kmill2/www/dolce/.

The Online Ethics Center for Engineering and Science was founded by Caroline Whitbeck at
Case Western Reserve University: http://www.onlineethics.org.

Don Gotterbarn at East Tennessee State University heads up the Software Engineering
Ethics Research Institute: http://seeri.etsu.edu/default.htm.

Organizations

In addition to the organizations associated with the Web sites above, we take special
note of three professional organizations:

ACM SIGCAS: Special Interest Group on Computers and Society: http://www.acm.org/sigcas.

IEEE SSIT: The IEEE Society on Social Implications of Technology: http://www.ieeessit.

INSEIT: International Society for Ethics and Information Technology: http://www.uwm.edu/
Dept/SLIS/cipr/inseit.html.
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1.
Step Operation
1 Get values for x, y, and z
2 Set the value of average to ( x + y + z )/3
3 Print the value of average
4 Stop

2.
Step Operation
1 Get a value for r, the radius of the circle
2 Set the value of circumference to 2 * p * r
3 Set the value of area to p * r2

4 Print the values of circumference and area
5 Stop

3.
Step Operation
1 Get values for amount, the amount of electricity used, and for cost, the

cost per kilowatt-hour
2 Set the value of subtotal to amount * cost
3 Set the value of tax to 0.08 * subtotal
4 Set the value of total to subtotal + tax
5 Print the value of total
6 Stop

4.
Step Operation
1 Get values for balance, the current credit card balance, for purchases, the

total dollar amount of new purchases, and for payment, the total dollar
amount of all payments

2 Set the value of unpaid to balance + purchases – payment
3 Set the value of interest to unpaid * 0.12
4 Set the value of newbalance to unpaid + interest
5 Print the value of newbalance
6 Stop

5.  
Step Operation
1.  Get values for length and width in feet
2.  Set the value of length-in-yards to length/3
3. Set the value of width-in-yards to width/3
4.  Set the value of area to length-in-yards * width-in-yards
5. Set the value of cost to area * 23
6. Print the value of cost

1. If x $ 0 then
Set the value of y to 1

Else
Set the value of y to 2
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2. Get values for x, y, and z
If x > 0 then

Set the value of average to ( x + y + z )/3
Print the value of average

Else
Print the message 'Bad Data'

Stop

3. Get values for balance, purchases, payment
Set the value of unpaid to balance + purchases – payment
If unpaid < 100 then

Set the value of interest to unpaid * 0.08
Else

If unpaid # 500 then
Set the value of interest to unpaid * 0.12

Else
Set the value of interest to unpaid * 0.16

Set the value of newbalance to unpaid + interest
Print the value of newbalance
Stop

4. Get a value for x
While x Z 999

Set the value of a to x2

Set the value of b to sin(x)
Set the value of c to 1/x
Print the values of a, b, and c
Get a value for x

End of the loop
Stop

5. Get values for length, width, price
Set the value of length-in-yards to length/3
Set the value of width-in-yards to width/3
Set the value of area to length-in-yards * width-in-yards
Set the value of cost to area * price
If  cost <= 500 then

Print the message 'You can afford this carpet'
Else

Print the message 'This carpet is too expensive'
Stop

1. Initial values
a = 2 b = 4 count = 0 product = 0
After pass 1
a = 2 b = 4 count = 1 product = 2
After pass 2
a = 2 b = 4 count = 2 product = 4
After pass 3
a = 2 b = 4 count = 3 product = 6
After pass 4
a = 2 b = 4 count = 4 product = 8

2. case 1 (a = –2, b = 4):
The value of product will be –8, which is correct.
case 2 (a = 2, b = –4):
The value of product will be 0 (the while loop does not execute at all),
which is incorrect.

3. The original algorithm fails when b < 0 because count is never less than b.
If b < 0, change the value of b to –b, but set the value of a variable
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called bnegative to YES to remember that b was negative. After the product
is computed, the sign of product will be incorrect if b was negative, so
change the sign.  Here is a pseudocode version that works for all integer
values of a and b:
Get values for a and b
Set the value of bnegative to NO
If (either a = 0 or b = 0) then

Set the value of product to 0
Else

If b < 0 then
Set the value of b to –b
Set the value of bnegative to YES

Set the value of count to 0
Set the value of product to 0
While (count < b) do

Set the value of product to (product + a)
Set the value of count to (count+1)

End of loop
If (bnegative = YES) then

Print the value of –product
Else

Print the value of product
Stop

1. You must change the operation on line 7 from a greater than (>) to a less
than (<) sign. That line will now read as follows:

If Ai < largest so far then . . .

That is the only required change. However, to avoid confusion about what the
algorithm is doing, you probably should also change the name of the variable
largest so far to something like smallest so far on lines 3, 7, 8, and 12. Other-
wise, a casual reading of the algorithm might lead someone to think incor-
rectly that it is still an algorithm to find the largest value rather than the
smallest.

2. If n = 0 (the list is empty) then there are no values for A1, A2, . . . , An. In
particular, setting the value of largest so far to A1 gives a meaningless
value to largest so far. The while loop will not execute at all because i has
the value 2 and n has the value 0, so the condition i <= n is false. The
algorithm will print out nonsense values for largest so far and location.

The algorithm can be fixed by putting a conditional statement after
line 1. If n = 0, the algorithm should print a message that says the list is
empty. The “else” case will be the rest of the current algorithm.

3. If n = 1 then largest so far is set to A1, the only list element, and location
is set to 1.  Also i is set to 2, so the while loop will not execute because it
is false that i # n (i.e., it is false that 2 # 1).  The correct values of largest
so far and location are printed.  

1. a. NAME = Adams
i Operation Found
1 Compare Adams to N1, Smith. No match No
2 Compare Adams to N2, Jones. No match No
3 Compare Adams to N3, Adams. Match Yes
Output = 921-5281

b. NAME = Schneider
i Operation Found
1 Compare Schneider to N1, Smith. No match No
2 Compare Schneider to N2, Jones. No match No
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3 Compare Schneider to N3, Adams. No match No
4 Compare Schneider to N4, Doe. No match No
Output = Sorry, but the name is not in the directory.

2. n = 7, A = 22, 18, 23, 17, 25, 30, 2

Largest So Far Location i Operation

22 1 2 Compare A2 and largest so far.
Is 18 > 22? No

22 1 3 Compare A3 and largest so far.
Is 23 > 22? Yes, so reset values

23 3 4 Compare A4 and largest so far.
Is 17 > 23? No

23 3 5 Compare A5 and largest so far.
Is 25 > 23? Yes, so reset values

25 5 6 Compare A6 and largest so far.
Is 30 > 25? Yes, so reset values

30 6 7 Compare A7 and largest so far.
Is 2 > 30? No

Output: Largest = 30. Location = 6.

3. Pattern = an m = 2. The pattern has 2 characters.
Text = A man and a woman n  = 17. The text has 17 characters.

k i Mismatch Operation
1 1 No Compare P1, the "a", to T1, the "A". No match.

Yes End of the check for a match at position 1 of the text.
2 1 No Compare P1, the "a", to T2, the blank. No match.

Yes End of the check for a match at position 2 of the text.
3 1 No Compare P1, the "a", to T3, the "m". No match.

Yes End of the check for a match at position 3 of the text.
4 1 No Compare P1, the "a", to T4, the "a". Match.
4 2 No Compare P2, the "n", to T5, the "n". Match.
4 3 No i (3) is greater than m (2), so we exit the loop.

Output: There is a match at position 4

In a similar way, the program will produce the following two additional lines
of output:

There is a match at position 7
There is a match at position 16

4. If m > n, then n – m + 1 # 0. Because the value of k is set to 1 right before
the outer while loop, the condition k # (n – m + 1) is false, the loop is not
executed, and the algorithm terminates with no output.

The numbers from 1 to n, where n is even, can be grouped into n/2 pairs of
the form

1 + n = n + 1
2 + (n – 1) = n + 1
. . .
n/2 + (n/2 + 1) = n + 1

giving a sum of (n/2)(n + 1). This formula gives the correct sum for all cases
shown, whether n is even or odd.
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n Best Case Worst Case Average Case
10 1 10 5
50 1 50 25

100 1 100 50
1000 1 1000 500

10,000 1 10,000 5,000
100,000 1 100,000 50,000

a. 4, 8, 2, 6
4, 6, 2, 8
4, 2, 6, 8
2, 4, 6, 8

b. 12, 3, 6, 8, 2, 5, 7
7, 3, 6, 8, 2, 5, 12
7, 3, 6, 5, 2, 8, 12
2, 3, 6, 5, 7, 8, 12
2, 3, 5, 6, 7, 8, 12

c. D, B, G, F, A, C, E
D, B, E, F, A, C, G
D, B, E, C, A, F, G
D, B, A, C, E, F, G
C, B, A, D, E, F, G
A, B, C, D, E, F, G

The basic shape of the curve as n gets large is still n2 because as n gets large,
the n2 term dominates the other two terms.

1. legit = 3

2.

3. legit 5 3

4. For example,

1. Devi, Nathan, Grant

2. Devi, Nathan, Sue

Pattern = AAAB; Text = AAAAAAAAA; m = 4; n = 9; m 3 n = 36; the exact
number of comparisons is 4 3 6 = 24.

1. 38 paths 

0021

1412

142

1402

1142
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2. 

1. a. 10101000 5 (1 3 23) + (1 3 25) + (1 3 27)
5 8 + 32 + 128
5 168 as an unsigned integer value

b. 10101000 5 (1 3 23) + (1 3 25)
5 8 + 32
5 40

This is the value of the magnitude portion of the number. The leftmost bit repre-
sents the sign bit. In this example it is a 1, which is a negative sign.

5 –40 as a signed integer value

2. To answer this question, you need to represent the decimal value as a sum
of powers of 2 and then convert that representation to binary.

99 5 64 + 32 + 2 + 1
5 26 + 25 + 21 + 20

5 1100011

However, this is only 7 bits and we need 8, so we must add one leading 0
to fill out the answer.

5 01100011

3. The 10 bits would be represented as 9 bits for the magnitude and the left-
most bit for the sign. To represent the magnitude, we must rewrite 300 as
the sum of powers of 2, as we did in the previous question.

300 5 256 1 32 1 8 1 4
5 28 1 25 1 23 1 22

5 100101100 in 9 bits

CHAPTER 4
Section 4.2.1

B

A D

BC A B D CB

A C D A D

C

A

B A DCC B C B A C D A DB

C

A D

BC A C D CB

A C D A D

B

B A DBC B C B A C D A DB

A

C

B

D



ANSWERS TO PRACTICE PROBLEMS 679

To make it a negative value, we must add a 1 bit (the negative sign) to the
leftmost position of the number.

2300 5 1100101100
254 5 128 1 64 1 32 1 16 1 8 1 4 1 2

5 27 1 26 1 25 1 24 1 23 1 22 1 21

5 011111110 to 9 bits of accuracy for the magnitude

To make it a +254, we must add a 0 (the + sign) to the leftmost position of
the number.
1254 5 0011111110

4. Writing the numbers 0000 through 1111 around a circle, the positive values
count up from 0000 and the negative numbers count down from 1111. 

a. +6 is 0110 
b. –3 is 1101

5.

1110          ← carry digit
01110

      +   01011
11001

6. a. To see what this value would look like in ASCII, we first look up the
characters "X," "+," and "Y" in the ASCII conversion table to see what
their internal representation is in decimal.

"X" 5 88
"+" 5 43
"Y" 5 89

We then convert these decimal values to unsigned 8-bit binary values.

"X" 5 88 = 01011000
"1" 5 43 = 00101011
"Y" 5 89 = 01011001

The internal representation of the three-character string 'X+Y' is formed by
putting together all three of the preceding values, producing the following
24-bit string:

010110000010101101011001

which is how a computer stores 'X+Y' using ASCII encoding.

b. From the Unicode tables,

"X" 5 0058
"1" 5 002B
"Y" 5 0059

where these representations are in hexidecimal (base 16) form. In base 16,
digits run from 0–F rather than 0–9 as in the decimal system. Translating
these representations into decimal, we get

"X" 5 0 3 163 1 0 3 162 1 5 3 161 1 8 3 160

5 80 1 8
5 88

"1" 5 0 3 163 1 0 3 162 1 2 3 161 1 11 3 160

5 32 1 11
5 43

"Y" 5 0 3 163 1 0 3 162 1 5 3 161 1 9 3 160

5 80 1 9
5 89
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These are the same decimal values as under ASCII encoding (Unicode for
common characters agrees with ASCII encoding) but will be written in 
16-bit binary form, with extra spaces for readability.

"X" 5 88 5 0000 0000 0101 1000
"1" 5 43 5 0000 0000 0010 1011
"Y" 5 89 5 0000 0000 0101 1001

Putting these together produces the following 48-bit string for 'X+Y':

0000 0000 0101 1000 0000 0000 0010 1011 0000 0000 0101 1001

7. a. 10.25 5 0.01 in binary
5 0.1 3 221 in scientific notation

so the mantissa is 10.1 and the exponent is 21.
5 0 100000000 1 00001

mantissa exponent

b. 232 1/16 5 2100000.0001
5 20.1000000001 3 26

5 1 100000000 0 00110

mantissa exponent

Note that the last 1 in the mantissa was not stored because there was
not enough room. The loss of accuracy that results from limiting the
number of digits available is called truncation error.

8. 1111          ← carry digits
00001

+01111
10000

Here 15 + 1 = –16

1. 44,100 samples/second 3 16 bits/sample 3 3 minutes 3 60 sec/minute =
127 million bits

Compressed at a ratio of 4:1, this becomes about 32 million bits.

2. 2,100,000 pixels 3 24 bits/pixel = 50,400,000 bits or 6,300,000 bytes

3. To reduce 6,300,000 bytes to 1,000,000 bytes requires a compression ratio
of almost 7:1.
To reduce 6,300,000 bytes to 256,000 bytes requires a compression ratio of
almost 25:1.

4. The fixed-length 4-bit representation of ALOHA requires 5 3 4 = 20 bits.
Using the variable-length code requires the following:

A L O H A
00 1111111 0111 010 00

which is a total of 18 bits.  The compression ratio is 20/18 = 1.11.

1. a. (x 5 1) AND (y 5 3)
True AND False
False The final answer is False.

b. (x , y) OR (x . 1)
True OR False
True The final answer is True.

c. NOT [(x 5 1) AND (y 5 2)]
NOT [True AND True]
NOT [True]
False The final answer is False.

Section 4.2.2
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2. (x 5 5) AND (y 5 11) OR ([x 1 y] 5 z)
True AND False OR True

We now must make an assumption about which of the two logical opera-
tions to do first, the AND or the OR. If we assume the AND goes first, then
we get

False OR True
True

If we assume that the OR goes first, then the expression would be evalu-
ated as follows:

True AND True
True

In this case the answer is the same, but we arrive at the answer in differ-
ent ways.

3. (x $ 0) AND (x # 100) AND (y $ 0) AND (y # 100) AND (NOT(x = y))

4. NOT[(score $ 200) AND (score # 800)] 

1. The four separate cases are

Combining them by using the OR operator produces the following Boolean
expression:

When this Boolean expression is represented as a Boolean diagram, it ap-
pears as follows:

a ? b ? c 1 a ? b ? c 1 a ? b ? c 1 a ? b ? c

a ? b ? ca ? b ? ca ? b ? ca ? b ? c

Section 4.4.2
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2. The Boolean expressions for the two cases are

Combining these two by using the OR operator produces

Pictorially, the corresponding circuit diagram is

3. The Boolean expression for this is

Pictorially, the corresponding circuit diagram is

1. Bit-compare a > b, where both a and b are 1 bit in length.

The truth table for this circuit would be as follows:

a b Output
0 0 0
0 1 0
1 0 1 (because a is greater than b)
1 1 0

There is only one case where there is a 1 bit in the output. It is in the
third row and corresponds to the following Boolean expression:

a ? b

a ? b ? c 1 a ? b ? c

a ? b 1 a ? b

a ? b

a ? b
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We can skip step 3 because with only one case, there is no combining of
Boolean expressions. Thus, the circuit diagram for this circuit is

2. The truth table is already given, and again there is only one case with a 1
bit in the output. This occurs in the first row and corresponds to the
Boolean expression 

Given this single subexpression, we can proceed immediately to draw the
circuit diagram:

3. The truth table is already given.  There are two cases with a 1 bit in the out-
put, occuring in rows 1 and 4.  The corresponding subexpressions are:

Case 1:

Case 2: a • b

The final Boolean expression is a • b + a • b and the circuit diagram is

1. If the memory unit is a two-dimensional grid 1024 (210) by 1024 (210), then
it contains a total of 1,048,576 (220) memory cells. We need a total of 20
bits to represent all the possible memory addresses, which range from 0
to 220 – 1.

2. Because there are 210 = 1024 row lines and 210 = 1024 column lines, we
would need to send 10 (of the 20) bits in the MAR to the row decoder and
10 bits to the column decoder.

3. Average access time = (0.8 3 10) + 0.20 3 (10 + 25) = 15 nsec

4. With a cache hit rate of 92%, the average access time is

(0.92 3 10) + 0.08 3 (10 + 25) = 12

5. For example:  If we think that human memory consists of “cells” in which
information is stored and from which it can be retrieved, then human

a ? b

a ? b
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memory does not seem to have the property of a uniform time to access
every cell.  “Short-term memories” seem to be more quickly accessible than
long-term memories.

1. The total number of characters (ch) is
2 surfaces/disk 3 50 tracks/surface 3 20 sectors/track 3 1024 ch/sector
which is 2,048,000 characters on a single disk. 

2. The seek time depends on the number of tracks over which the read head
must move.   This could range from 0, if the arm does not need to move, to
a worst case of the arm having to move from the far inside track to the far
outside track, a total of 49 tracks. The average, as stated in the problem, is
a move across 20 tracks. The best-case rotational delay is 0, whereas the
worst case is one complete revolution.  The rotational speed is  2400
rev/min = 40 rev/sec = 25 msec/rev.  On the average we will wait about
1/2 a revolution. Finally, the transfer time is the same in all cases, the
time it takes for one sector (1/20 of a track) to rotate under the read/write
head, which is 1/20 rev * 25 msec/rev = 1.25 msec. Putting all this
together in a table produces the following values for the time (in msec)
required for each task:

Best Case Average Case Worst Case
Seek time 0.0 20 * 0.4 = 8.0  49 * 0.4 = 19.6 
Latency 0.0 0.5 * 25 = 12.5  1 * 25 = 25.0  
Transfer 1.25 1.25  1.25  
Total 1.25  21.75  45.85  

3. The new rotational speed is  7200 rev/min = 120 rev/sec = 8.33 msec/rev.
The seek time is unaffected by the rotational speed.  The new average la-
tency time is 0.5 rev * 8.33 msec/rev = 4.17 msec.  The new transfer time is
1/20 rev * 8.33 msec/rev = 0.42 msec.  The total average case time = 12.59
msec.

4. If many pieces of the file are on the same track, then no movement of the
read head arm is required and seek time is 0.

Assuming that variables a, b, c, and d are stored in memory location 100, 101,
102, and 103, respectively:

1. Memory Op Address 
Location Code Field Comment

50 LOAD 101 Register R now contains the value
of b

51 ADD 102 R now contains the sum b + c
52 ADD 103 R now contains the sum b + c + d
53 STORE 100 And we store that sum into a

There are many other possible solutions to this and the following problems,
depending on which instructions you choose to use. This solution uses the
one-address format. The two- and three-address formats will lead to differ-
ent sequences.

2. Memory Op Address 
Location Code Field Comment

50 LOAD 101 Register R contains the value of b
51 MULTIPLY 103 R now contains the 

product b 3 d
52 STORE 101 b now has the value b 3 d

Section 5.2.2
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53 LOAD 102 R contains the value of c
54 DIVIDE 103 R now contains the quotient c / d
55 STORE 103 d now has the value c / d
56 LOAD 101 Load the product b 3 d back into R
57 SUBTRACT 103 R now contains  (b 3 d) – (c / d)
58 STORE 100 Store the result into a

3. Memory Op Address 
Location Code Field Comment

50 COMPARE 100, 101 Compare a and b and set condition
codes

51 JUMPNEQ 54 If they are not equal go to 
address 54

52 LOAD 103 Otherwise load R with the value of
d

53 STORE 102 And store it into c
54 The next instruction begins here

4. Memory Op Address 
Location Code Field Comment

50 COMPARE 100, 101 Compare a and b and set condition
codes

51 JUMPGT 55 Jump to address 55 if a > b
52 LOAD 103 Load R with the value of d
53 STORE 102 And store it into c
54 JUMP 58 Jump to address 58
55 LOAD 103 Load R with the value of d
56 ADD 103 R now contains 2d
57 STORE 102 And store that result into c
58 The next instruction begins here

5. Memory Op Address 
Location Code Field Comment

50 LOAD 103 R contains the value d
51 STORE 100 And store it into a
52 COMPARE 100, 102 Compare a and c, set

condition codes
53 JUMPGT Jump to address 58 if a > c
54 LOAD 100 R now contains the (current) value

of a
55 ADD 101 R now contains the value a + b
56 STORE 100 And store that sum into a
57 JUMP 52 Jump back to test loop condition

again  
58 The next instruction begins here

1. Initial values R 5 20 memory location 80 5 43
memory location 81 5 97

Final Contents Final Contents Final Contents 
Operation of Register R of Mem Loc 80 of Mem Loc 81

a. LOAD 80 43 43 97
b. STORE 81 20 43 20
c. COMPARE 80 20 43 97

(and the GT indicator goes ON)
d. ADD 81 117 43 97
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e. IN 80 20 Whatever value 97
is entered by
the user

f. OUT 81 20 43 97

2. Initial value memory location 50 = 4

Final Contents
Operation of Register R

a. LOAD 50 4
b. LOAD 4 A copy of the contents of memory cell 4
c. LOAD L Because L is equivalent to 50, this operation is equivalent

to LOAD 50, which is the same as part (a).
d. LOAD L + 1 A copy of the contents of memory cell 51. This operation

means LOAD (L + 1), which is equivalent to LOAD 51.
LOAD L + 1 does arithmetic on addresses, not contents.

3. The HALT operation tells the CPU to stop program execution.  If the program
is organized as in Figure 6.6, then without the HALT instruction the CPU will
fetch the data value stored in the next memory location after the last instruc-
tion and attempt to execute it.  The .END pseudo-op tells the assembler to
stop the translation process.  The assembler is a piece of software that is
acting on the source code, loaded into memory, as its “data”; without the
.END pseudo-op, the assembler will try to translate whatever might be stored
in memory after the last legitimate source code statement.

1. a. INCREMENT X
.
.
.

X: .DATA 0

Another way to do the same thing is
LOAD X
ADD ONE
STORE X

.

.

.
ONE: .DATA 1
X: .DATA 0

However, the first way is much more efficient. It takes two fewer
instructions and one fewer DATA pseudo-op.

b. LOAD X
ADD FIFTY
STORE X

.

.

.
FIFTY: .DATA 50
X: .DATA 0

c. LOAD Y -- Load the value of Y into register R
ADD Z --R now holds the sum (Y + Z)
SUBTRACT TWO --R now holds –(Y + Z – 2)
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STORE X --Store the result in X
.
.
.

X: .DATA 0
Y: .DATA 0
Z: .DATA 0
TWO: .DATA 2

d. LOAD FIFTY --R holds the constant 50
COMPARE X
JUMPGT THEN --if X > 50 go to label THEN
IN X --input a new value
JUMP DONE --and jump to done because we are all

finished
THEN: OUT X
DONE: --the next statement goes here

.

.

.
X: .DATA 0
FIFTY: .DATA 50

e. LOAD ZERO --Put 0 in R
STORE SUM --Initialize SUM to 0
STORE I --Initialize loop counter to 0

LOOP: LOAD FIFTY --Put 50 in R
COMPARE I
JUMPEQ DONE --I equals 50, exit loop
LOAD SUM --Put SUM in R
ADD I --R now holds (SUM + I)
STORE SUM --Store result in SUM
INCREMENT I --Add 1 to I
JUMP LOOP --end of loop body

DONE: --the next statement goes here
.
.
.

I: .DATA 0
SUM: .DATA 0
ZERO: .DATA 0
FIFTY: .DATA 50

2. .BEGIN
IN NUMBER --get first number

LOOP: LOAD ZERO
COMPARE NUMBER --see whether number < 0
JUMPLT DONE --the number is negative so go to DONE
INCREMENT COUNT --it is nonnegative so increment count
IN NUMBER --get next number
JUMP LOOP --and repeat the loop

DONE: OUT COUNT --print out the final count
HALT

COUNT: .DATA 0 --count of number of non-
negative values

ZERO: .DATA 0 --the constant 0 used for comparison
NUMBER: .DATA 0 --place to store the input value

.END
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3. .BEGIN
IN NUMBER --get first number

LOOP: LOAD ZERO
COMPARE NUMBER --see whether number < 0
JUMPLT DONE --the number is negative so go to DONE
INCREMENT COUNT --number is nonnegative so

increment count
LOAD HUNDRED 
COMPARE COUNT
JUMPEQ DONE --count = 100 so go to DONE 
IN NUMBER –count < 100 so get next number
JUMP LOOP --and repeat the loop

DONE: OUT COUNT --count is either 100 or a legitimate count
of the less than 100 nonnegative num-
bers read, so print count in either case

HALT
COUNT: .DATA 0 --count of number of nonnegative values
ZERO: .DATA 0 --the constant 0 used for comparison
NUMBER: .DATA 0 --place to store the input value
HUNDRED: .DATA 100 –the constant 100

.END

1. .BEGIN
CLEAR NEGCOUNT --Step 1. Not really necessary

--because
--negcount is already set to 0

LOAD ONE --Step 2. Set i to 1. also not really
STORE I --necessary because i is initialized

--to 1
LOOP: LOAD FIFTY --Step 3. Check whether i > 50,

--and if so
--terminate the loop

COMPARE I
JUMPGT ENDLOOP
IN N --Step 4. Read a value
LOAD ZERO --Step 5. Increment negcount if
COMPARE N --N is less than zero
JUMPGE SKIP
INCREMENT NEGCOUNT

SKIP: INCREMENT I --Step 6. Count one more loop
--iteration

JUMP LOOP --Step 7. and start the loop over
ENDLOOP: OUT NEGCOUNT --Step 8. Produce the final answer

HALT --Step 9. and halt
NEGCOUNT: .DATA 0
I: .DATA 1
N: .DATA 0
ONE: .DATA 1
FIFTY: .DATA 50
ZERO: .DATA 0

.END

2. a.
COMPARE = 0111 Y = decimal 10 = 0000 0000 1010
instruction = 0111 0000 0000 1010

Section 6.3.3
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b.
JUMPNEQ = 1100 DONE = decimal 7 = 0000 0000 0111 
instruction = 1100 0000 0000 0111

c.
DECREMENT = 0110 LOOP = decimal 0 = 0000 0000 0000
instruction = 0110 0000 0000 0000

3. LOOP is the address of an instruction (IN X), but decrement is treating it as
though it were a piece of data and subtracting 1 from it. Thus, what this
instruction is doing is “computing” (IN X) – 1, which is meaningless.
However, the computer will be very happy to carry out this meaningless
operation.

4. The address values that you come up with will depend entirely on your so-
lution. The symbol table for the program in Problem 1 would look like the
example below. (Note: The solution assumes that each instruction occupies
one memory location.)

Symbol Address
LOOP 3
SKIP 11
ENDLOOP 13
NEGCOUNT 15
I 16
N 17
ONE 18
FIFTY 19
ZERO 20

If there is 1 chance in 4 that a program is blocked waiting for input/output,
then there is a (1/4) 3 (1/4) = 1 chance in 16 that both of the two pro-
grams in memory are simultaneously blocked waiting for I/O. Therefore, the
processor will be busy 15/16, or about 94%, of the time. This is the proces-
sor utilization. If we increase the number of programs in memory to 4, then
the probability that all 4 of these programs are blocked at the same time
waiting for I/O is (1/4) 3 (1/4) 3 (1/4) 3 (1/4) = 1 chance in 256. Now
the utilization of the processor is 255/256, or about 99.6%. We can see
clearly now why it is helpful to have more programs in memory. It increases
the likelihood that at least one program will always be ready to run.

Section 6.4.1
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1. The figure shows the representation of a binary signal using frequency
modulation of a carrier wave.

2. The number of bits in the image is 1200 3 780 3 8 = 7,488,000. To trans-
mit this in 1 second requires a transmission speed of 7,488,000 bps, or
nearly 7.5 Mbps.

1. Collisions can occur in a ring topology because all nodes share the ring and
a node may wish to send a message just as a message from another node is
passing by. In a star topology, collisions are avoided because each node has
a direct line (via the hub node) to any other node.

2. Because the message is to be broadcast, there is no need to include a desti-
nation address. Each node reads the message.

3. Node A sends the message on LAN1, where every node receives it, but only
bridge B1 keeps it. All other nodes discard it because it is not addressed
to them. Bridge B1 removes the message from LAN1 and rebroadcasts it out on
LAN2. Every node on LAN2 receives the message, but again, only bridge B2
keeps it. All others discard it. Bridge B2 knows that node B is located on LAN3,
so it rebroadcasts the message on LAN3, where node B receives it, recognizes
its own address, and removes the message from the network. The message has
arrived at its intended destination.

1. A has resent M(3), presumably because B’s ACK(3) message never reached
A. When B receives the second copy of M(3), it should again send the
ACK(3) to A but discard the message because it is a duplicate.

2. B should disassemble M(4) and check that it was correctly transmitted. If
so, B should send an ACK(4) message to A; if not, B should discard the
faulty message and wait for A to resend it.

3. B should disassemble M(5) and check that it was correctly transmitted. If
so, B should send an ACK(5) message to A; if not, B should discard the
faulty message and wait for A to resend it. Although this message has been
received out of sequence (presumably because M(4) was lost), no special
action is required at this time; B did not send an ACK(4) so A should in
time resend M(4).

Carrier

Input data

0 1 1 0

0 1 1 0

Encoded data

CHAPTER 7
Section 7.2.1

Section 7.2.2

Section 7.3.2
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1. There are four distinct paths from node A to node D, and their total
weights are

ABCD Weight = 16
ABFD Weight = 14
AEFBCD Weight = 25
AEFD Weight = 15

So the shortest path is ABFD, found by computing the weight of every pos-
sible path and then picking the smallest. This is essentially a “brute force”
approach to the problem.

2. This approach would not work with larger graphs such as one with
26 nodes and 50 links. The number of possible paths would grow much too
large for us to enumerate and evaluate them all in a reasonable amount of
time. We must use a more clever algorithm.

3. If the link connecting node F to node D fails, then the paths ABFD and
AEFD will not work and their weight becomes “infinite.” Of the two paths
remaining, path ABCD with weight 16 now becomes the shortest path. No
one link in the network will disconnect nodes A and D. We can see that
clearly by noting that the two paths ABCD and AEFD do not share any links
in common. Therefore, if a link along one of these paths fails, we can use
the other path.

Step 1: chjbup5 → 3  8  10  2  21  16  5 

Step 2: 3 + 8 + 10 + 2 + 21 + 16 + 5 = 65

Step 3: 65 / 7 leaves a remainder of 2  (65 = 9 3 7 with 2 left over)

Steps 4 and 5 are identical to the example.

1. STB NX YMJ MTZW

2. Because there are 26 letters in the alphabet, a shift of s = 26 encrypts each
character as itself, so you should not trust the messenger.

1. In the example, where n = 21 and e = 5, then d = 5 as well.  To decode,
compute

Cd = 175 = 1419857 = 67612*21 + 5 → 5

Therefore the original numeric message was 5. 

ITIME .LE. 7

In Ada:

outputNumber := inputNumber;

sumOfValues := sumOfValues + inputNumber;

In C++, C#, or Java:

outputNumber = inputNumber;

sumOfValues = sumOfValues + inputNumber;

In Python:

outputNumber = inputNumber

sumOfValues = sumOfValues + inputNumber

1. Rate refers to the contents of the memory cell called Rate; &Rate refers to
the address of that cell.

2. 10

Prints the numbers from 1 through 10 on a single line with a blank space
between them.

Section 7.3.3

CHAPTER 8
Section 8.2.1

Section 8.3.2

Section 8.3.3

CHAPTER 10
Section 10.2.2
Section 10.2.3

Section 10.2.4

Section 10.2.5
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The answer is7

The Python version is 

c. print("Hello World")

The name entered in the textbox will be displayed in the label.

1. Results in the names of all vendors from Chicago.

2. These are the times that try men’s souls.
3. A message box pops up that says “You must enter a name.”

A message box pops up that warns that the form is going to be e-mailed
and that the form data will be sent unencrypted; user can cancel or go
ahead. If you say OK, then you should get an e-mail message that says
Name = whatever you typed in the text box.

1. a. (2 3 4)

b. 5

2. (define (threeplus x)
(+ 3 x))

1. No

2. X = jefferson

3. X = lincoln
X = fdr
X = kennedy
X = nixon

One processor could compute A + B while another computes C + D. A third
processor could then take the two quantities A + B and C + D and compute
their sum. Parallel processing uses a total of two time slots: one to simulta-
neously do the two additions A + B and C + D, then one to do the addition
(A + B) + (C + D). Sequential processing would require a total of three time
slots: (A + B), then (A + B) + C, then ((A + B) + C) + D.

a. Token Classification
x 1
= 3
x 1
+ 4
1 2
; 6

b. Token Classification
if 8
( 10
a 1
+ 4
b42 1
== 7
0 2
) 11
a 1
= 3
z 1
- 5
12 2
; 6

Section 10.4.1

Section 10.4.2

Section 10.4.3

Section 10.3.3

CHAPTER 11
Section 11.2.1

Section 10.2.6
Section 10.2.7

Section 10.2.8
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1. <Boolean operator> ::= AND | OR | NOT

2. <identifier> ::= <first> <second>
<first> ::= i | j
<second> ::= <letter> | <digit> | L
<letter> ::= A | B | C | D | ... | Z
<digit> :: = 0 | 1 | 2 | ... | 9

<identifier> is the goal symbol

3. <expression> ::= (<var> <op> <var> )
<var> ::= x | y | z
<op> ::= < | == | >

4.

5. You eventually reach the point in the parse where you have the following
sequence:

(<var> <op>)

which does not match the righthand side of any rule, and the parse fails.

6. The first rule of Problem 3 could be changed to

<expression> ::= (<var> <op> <var> ) | <var> <op> <var>

1.

Section 11.2.2 (Set 1)

<expression>

<var><var> <op>

<expression>

<assignment statement>

<expression>

<variable> <variable> <variable>

Section 11.2.2 (Set 2)
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2.

3.

<assignment statement>

<variable> <variable> <variable> <variable>

<expression>

<expression>

<expression>

<assignment statement>

<if statement>

<variable> <variable>

<relational>
<expression>

<Boolean expression>

<variable> <variable>

4. The language consists of all strings containing an arbitrary sequence of a’s
and b’s of length 1 or more.

5. <goal> ::= <pair> | <pair> <goal>

<pair> ::= AB
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The parse tree for this expression is

During the construction of this parse tree, you will build four semantic
records: two for <variable>, one for <expression>, and one for <assignment
statement>.

The code generated is

LOAD Y

STORE TEMP

LOAD TEMP

STORE X

.

.

.

X: .DATA 0

Y: .DATA 0

TEMP: .DATA 0

1. Piloting a boat, performing an operation, fighting a fire

2. Soil conditions, water supply, types of industrial waste. It could illustrate
long-term effects of various waste disposal policies. If it were inaccurate,
policies based on the model could be pursued that would result in environ-
mental damage.

1. a. b 1 0 1 b
c
2

b. b 1 1 1 b
c
2

c. b 1 1 1 b
c
2

d. b 0 1 1 1b
c
1

2. b 0 1 0 b

1. a. b 1 1 0 1 0 b

2. b 1 1 1 1 b 1 1 1 1 1 b becomes
b b b 1 1 1 1 1 1 1 1 b

<variable> <variable>

<expression>

<assignment statement>

Section 11.2.3

CHAPTER 12
Section 12.2

Section 12.3

Section 12.5
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3. (1,1,1,1,R)
(1,0,0,1,R)
(1,b,1,2,R)

1. To prove that something is not true, assume that it is and arrive at a con-
tradiction. The assumption must then be wrong.

1. Without this instruction, server Si is servicing a newly arrived customer yet
is still marked as idle; the next newly arrived customer could try to go to
that server.

2. Without this instruction, server Si has finished serving a customer and
there are no customers waiting in line, but the next newly arrived customer
will not try to be served by Si.

1. For example:
www.webmd.com
www.eco-portal.com
www.thebasketballportal.com
www.petersons.com
www.steelonthenet.com

1. 149 12.35

2.
SELECT LastName, FirstName, MonthlyCost

FROM Employees, InsurancePlans, InsurancePolicies

WHERE LastName = 'Takasano'

AND ID = EmployeeID

AND InsurancePolicies.PlanType =
InsurancePlans.PlanType;

3.
SELECT EmployeeID

FROM InsurancePolicies

WHERE PlanType = 'B2';

For example, a hamburger is a kind of sandwich. As such, it comes between
two pieces of bread, but it is hot. It may have various condiments, such as
mustard, ketchup, and a pickle.

Section 12.7

CHAPTER 13
Section 13.2.3

CHAPTER 14
Section 14.2.5

CHAPTER 15
Section 15.3

Section 14.3.3

is between

may have

is a

is
instance instance instance

breadsandwich

hamburger condiment

hot mustard ketchup pickle

www.webmd.com
www.eco-portal.com
www.thebasketballportal.com
www.petersons.com
www.steelonthenet.com
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CHAPTER 16
Section 16.2.3

Section 15.4 No. N1 and N4 fire, but N2 and N3 do not, so N5 does not.

1. Frank is tall. Knowing that Frank is tall does not imply that he is bald.

2. No conclusion can be inferred. Frank may or may not be tall.

(Note:  In the following answer, the z column has been omitted since it will
contain all zeros.)

Vertex x y Connected To

v1 0 0 v2 v6 v8 (Origin)

v2 0 2.4 v1 v3 v4

v3 1.5 4.5 v2 v4 v5

v4 1.5 2.4 v2 v3 v5 v6 v7

v5 3 2.4 v3 v4 v10

v6 1 1.7 v1 v4 v7 v8 v9

v7 2 1.7 v4 v6 v9 v10

v8 1 0 v1 v6 v9

v9 2 0 v6 v7 v8 v10

v10 3 0 v5 v7 v9

A total of 67 pieces of information are stored in the above table. 

Since the motion takes place over a period of two seconds, we need to
produce a total of 60 frames, given that 30 frames/second is the standard
frame rate for video. These 60 frames represent 59 time intervals.  So in each
of the 58 in-between frames we need to move the triangle 1/59th of the total
distance from its position in the first frame to its position in the last frame.
This information allows us to compute the translation matrix.  

Total x-distance moved = 4 units.  

a = 1/59 3 4 = 0.067796

Total y-distance moved = 2 units

b = 1/59 3 2 = 0.033898

Total z-distance moved = 0 units

c = 1/59 3 0 = 0

Now, using the model shown in Figure 16.6,  we can say that the translation
matrix required to perform the desired motion is as follows:

1 0 0 0.067796

0 1 0 0.033898

0 0 0 0

0 0 0 1

Section 15.5

Section 16.2.4
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10-step halting problem, 529

A
abstraction

described, 70
level of, 188–190

access control
medium access control protocols, 306
operating system controls, 267–268

access time, memory, 194, 203–204
accessibility of Web pages, 572
accounting systems, e-commerce, 573
accuracy in modeling, 539–540
acknowledgment message (ACK), 308–309
ACM (Association for Computing

Machinery), 659
ADA (Americans with Disabilities Act),

Web site design guidelines, 572
Ada procedural language

See also procedural languages
Converging Pointers data cleanup

algorithm, 369–370
feature analysis, 377–385
overview, 407–408
programming example, 365–366

addition circuits, 172–177
address, memory, 192–193
address fields, 211
address space, 193
addresses

IP, 310
symbolic, 247–248

Adleman, Len, 349
Advanced Encryption Standard (AES), 348
Advanced Research Projects Agency

(ARPA), and Internet, 322
advertising and e-commerce, 567
AES (Advanced Encryption Standard), 348
AF Core Trojan horse, 340
AI. See artificial intelligence
Aiken, Howard, 21
algebra, Boolean, 162
algebraic identities, 487
algorithm animation, 61
algorithm discovery, 57

algorithmic-problem-solving cycle, 255
algorithms

See also specific algorithm
AI tasks and, 588–589
analysis of, 99–113
approximation, 116–117
ARQ, 307, 309
attributes of, 80–84
back propagation, 597–598
binary-to-decimal, decimal-to-

binary, 132
brute force, 115–116
circuit construction, 165–170
data cleanup, 99–105
data compression, 147–148
deadlock recovery, 270–271
described, usage, 4–10
Dijkstra’s shortest path, 311
efficiency, measuring, 84–99, 118–119
efficient, 70–71
encryption, 342–346
examples of algorithmic problem-

solving, 54–73
exponential, 115
“find largest,” 62–66
Floyd’s, 394–395
formal definition of, 10–15, 29
importance of algorithmic problem

solving, 15
look-ahead parsing, 464
model of, 503–505
parallel, 230–231
pattern matching, 67–73
polynomially bounded, 113
and problem-solving, 492
random number generating, 544–545
representing, 40–54
selection (software development life

cycle), 390
sequential searches, 58–62, 252
simple encryption, 342–345
tessellation, 622–623

Al-Khowarizmi, 8
alphabet, and Turning machines, 496

INDEX



Altair 8800 computer, 27
Amazon.com, 574
ambiguous statements, 467–468
Americans with Disabilities Act 

(ADA), 572
amplitude of waves, 143
analog

vs. digital representation, 143
information representation, 290–291

analysis of algorithms, 84–88
Analytical Engine, 19
AND

Boolean logic, 157–159
gates, 160–163

angle brackets (<>), and HTML 
tags, 414–417

animation
algorithm, 61
photorealistic, 621
stop-motion, 620
variables, 628

ANSI (American National Standards
Institute) programming language
standards, 384

answers to practice problems, 673–697
Anti-Cybersquatting Consumer

Protection Act (ACPA), 568
Anti-Phishing Working Group 

(APWG), 341
anti-spyware software, 341
anti-virus software, 341
Apple Computer

Macintosh vs. PC computers, 266
peer-to-peer music sharing, 653

applets, Java, 409
application layer protocols, 315–318
application service providers (ASPs), 565
applications

Java, 409
‘killer apps,’ 315

applicative languages, 422–423
approximation algorithms, 116–117
architecture

non-Von Neumann, 225–230
Von Neumann. See Von Neumann

architecture
arithmetic in binary, 134–135
arithmetic overflow, 134
arithmetic/logic unit (ALU)

described, 207–211
in Von Neumann architecture, 191

ARPA (Advanced Research Projects
Agency), and Internet, 322

ARPANET, 322–323

ARQ algorithm, 307, 309
arrays

in Java vs. C, 409–410
and parallel processing, 228

artificial intelligence (AI)
described, 586–587
knowledge representation, 590–593
overview, 610–611
reasoning tasks, 599–608
recognition tasks, 593–598
robotics, 608–610
tasks and algorithms, 588–589

artificial neural networks, 594–598
ASCII standard

bit depth of, 144–145
described, 140–141

ASIMO robots, 609–610
ASPs (application service providers), 565
assemblers

and assembly language, 245–252
described, 243
and language translation, 446–449
translation and loading, 257–263

assembly language
and assemblers, 245–252
examples of code, 252–255
and high-level programming

languages, 360–363
translation and loading, 257–263

Association for Computing Machinery
(ACM), 4

asymmetric, digital subscriber lines, 292
asymmetric encryption algorithms, 342
Atanasoff, John, 22, 24
Atari, 618, 619
attachments, e-mail, 318
attacks

See also information security
and defenses, 334–341

attributes in DBMSs, 576
authentication

described, 335–339
and e-commerce, 569

authorization
described, 339
lists in operating systems, 267

automatic parallelization, 437
avars (animation variables), 628
axons, and neurons, 594

B
B2B (business-to-business), 562
B2C (business-to-consumer), 562
Babbage, Charles, 19–20, 20, 536
Babel, Tower of, 398
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back propagation algorithms, 597–598
backbone, Internet, 302
backup operations, 205
Backus, John, 400, 421, 455, 

479–481, 485
Backus-Naur Form (BNF), 455–459
backward chaining, 607
bandwidth described, 291
banner ads, 567
base, in transistors, 155
base station, wireless, 293
base-2 positional numbering system, 131
BASIC programming language, 412
batch operating systems, 273–274
Bell, Alexander Graham, 16
benchmarking

described, 83
in software development life cycle, 391

Berger, Theodore, 598
Berners-Lee, Tim, 326, 327
Berry, Clifford, 22
best case algorithm analysis, 85
binary

and compilers, 363
gates, 160–163
numbering system, 130–141
operators (Boolean logic), 158–159
search algorithm, 105–111, 258
storage devices, 151–156

binary representation
reliability of, 150–151
of sounds, images, 142–150

binary-to-decimal algorithm, 132
binding described, 259
bin-packing problem, 116
biometric information, 338
bistable environment, 151
bit depth, 144–145
bit inverter (Turning machine),

505–508
bits described, 131–132, 574–575
black/white images, 146
block cipher, 343–345
blogs (Web logs), 289
Bluetooth standard, 294
BMP graphics standard, 146
BNF (Backus-Naur Form), 455–459
Boeing 787 Dreamliner jet, 281
Boldyrev, Dmitry, 647
book, this

and laboratory experiences, 33
organization of this, 28–33

Boole, George, 159, 162
Boolean algebra, 162

Boolean logic
and circuits, 164–170
described, 157–159
gates and, 160–163

branch instructions, 215
bridges in networks, 297
broadband

described, 292
technologies described, 291–292

broadcasting described, 298
broadcasts, SIMD model, 227–228
brute force algorithms, 115–116
brute force approach, 9–10, 30
bubble sorts, measuring performance, 98
bulletin board system (BBS), 328
bulletin boards, 319
bus topology, 296
buses and ALU, 208
Bushnell, Nolen, 618
business

B2B, B2C, 562
e-commerce. See e-commerce 

(electronic commerce)
Byron, Ada Augusta, 20
bytecode (Java), 384, 410
bytes

described, 146, 192–193, 574–575
information volume of, 195

C
C#

See also procedural languages
Converging Pointers data cleanup

algorithm, 372–373
feature analysis, 377–385
and .NET Framework, 411–412
programming example, 367

C��

See also procedural languages
Converging Pointers data cleanup

algorithm, 371–372
feature analysis, 377–385
overview, 245, 404–407
programming example, 364, 366
using for engineering application,

398–399
cable modems, 292
cables, communication link 

types, 289–295
cache memory

cache hit rate, 201
described, 198–201

Caesar cipher, 342–343
calculators, 17
Capek, Karel, 608
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carriers, 290
C/C�� overview, 404–407
CE (compare-for-equality) circuits,

170–172
cell size (memory), 192
cells, memory, 192
Cengage Web site, online chapters of

this book, 357
Census Bureau, and computers, 20–21
CGI (computer-generated imagery)

described, 620–621
future of, 631–632
graphics pipeline, object modeling,

622–624
object motion, 625–629
rendering and display, 629–631

chaining, forward and backward, 607
chat rooms, 319–320
chatbots, 587
chemical bonds, modeling, 554–555
chess-playing computers, 601, 602
Chinook checkers-playing computer

project, 602
chips described, 153–154
Church, Alonzo, 517
Church-Turning thesis, 516–519
circuit boards, 153–154
circuit construction

algorithms, 165–170
examples of, 170–179
overview, 183

circuit diagrams, 164–165
circuit optimization, 185
circuit simulators, 170
circuits

See also specific circuit type
ALU circuitry, 209–210
building computer, 162–179
communication links, 290
control, 179–183
control unit, 216–217
decoders, 179, 181–182, 196
described, 162–163
and gates, 127
optimal, 167–168

CLI (Common Language 
Infrastructure), 412

client software, 635
clients in networks, 279
client-server computing, 320
climate change

database, 581
simulations, 549–550

Clippit intelligent agent, 605
clock speed, 224

CLR (Common Language Runtime), 411
cluster computing, 228–229, 432
coaxial cable, 279
COBOL programming language, 25, 399,

402–404
Codd, Edgar F., 576
code

assembly language examples, 
252–255

generation (compilation), 449,
470–479

legacy, 403
mapping, 139, 148
optimization (compilation), 449,

479–485
source, 363
source lines of, 274

code breaking, science of, 496
code libraries, 363
coding (software development life

cycle), 390
cognitive science, 587
collaborative software, 321
Collectors, in transistors, 155
collisions in networks, 306–308
colons (:) and symbolic labels, 248
color

palette, 147
RGB encoding scheme, 146–147
shading, rendering and display,

629–631
Colossus computer, 22, 536
combinational circuits, 164
command language, 264, 274
commands

system, 263
in time-sharing systems, 277–278
typical operating system (fig.), 264

comment field in assembly 
language, 246

Common Language Infrastructure 
(CLI), 412

Common Language Runtime 
(CLR), 411

communication links and networks,
289–295

communications protocols
application layer, 315–318
data link layer, 305–309
generally, 304
network layer, 309–312
physical layer, 305
transport layer, 312–315

compare-for-equality (CE) circuits,
170–172
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comparisons
compare-for-equality (CE) circuits,

170–172
order of magnitude, 86–88
selection sorts, 89–94
sequential searches, 84–86

compilation process
code optimization, 479–485
lexical analysis, 450–453
overview, 485
parsing, 453–470
semantics and code generation,

470–479
compiler tools, 481
compiler-compilers, 488
compilers

compilation process, 449–485
described, 243, 246, 363
Just In Time (C#), 385
and language translation, 446–449
optimizing, 481

complements
Boolean logic, 159
Boolean subexpression, 166

complex instruction set computers
(CISC), 213

complexity in modeling, 539–540
compression

data, 147–148
lossless, lossy, 149, 186
ratio described, 148

computability limits, 519
computation, using pseudocode, 43
computational models, 537–538,

556–557
computational steering, 537–538
computational tasks, 588–589
compute-bound, 278
computer circuits, building, 162–179
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client/server, for MMOGs, 

635–636
prototyping, rapid, 392
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public key encryption, 349–350
public key encryption algorithms, 342
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punched cards, 18
Purdue University, 4
push technology, 604
Python, 245

See also procedural languages
Converging Pointers data cleanup

algorithm, 374–375
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representing
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reusable code libraries, 481
RFCs (Requests for Comments), 314, 331
RGB encoding scheme, 146–147
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Rijmen, Vincent, 348
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Ritchie, Dennis, 404
Rivest, Ron, 349
Roadrunner supercomputer, 97
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wireless, 293–294
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described, 310

Rowling, J.K., 574
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in Prolog programming language, 

427, 429
run-length encoding, 147–148
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Schaeffer, Jonathan, 602
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421–425
scientific method described, 536
scientific notation, converting numbers
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scientific visualization, 550–556
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