FIFTH ERDITION

INVITATION TO

COMPUTER SCIENCE

G. MlchalS nelder'ludlthL Gersting

5TH EDITION

Invitation
to Computer
Science

plicafions
S 13,14,15,16

5TH EDITION

Invitation
to Computer
Science

¥ G. Michael Schneider
Macalester College

@ Judith L. Gersting
University of Hawaii, Hilo

Contributing author:
Keith Miller
University of Illinois, Springfield

» » COURSE TECHNOLOGY
1 &» CENGAGE Learning

Australia « Brazil Japan ¢ Korea ¢ Mexico « Singapore s Spain ¢ United Kingdom « United States

~ » COURSE TECHNOLOGY

*
1 » CENGAGE Learning"

Invitation to Computer Science, Fifth Edition
G. Michael Schneider and Judith L. Gersting

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt
Development Editor: Deb Kaufmann
Editorial Assistant: Julia Leroux-Lindsey
Marketing Manager: Bryant Chrzan
Content Project Manager: Jennifer K. Feltri
Art Director: Faith Brosnan

Cover Designer: RHDG/Tim Heraldo

Cover Artwork: Fotolia.com (Royalty Free),
Image # 375162

Compositor: Integra

Printed in Canada
12345671312111009

© 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored or used in any form or by any means
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without the prior
written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions
Further permissions questions can be emailed to
permissionrequest@cengage.com

ISBN-13: 978-0-324-78859-4
ISBN-10: 0-324-78859-2

Course Technology

20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com
Visit our corporate website at cengage.com.

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or
registered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used throughout
this book is intended for instructional purposes only. At the time this book was
printed, any such data was fictional and not belonging to any real persons or
companies.

Course Technology, a part of Cengage Learning, reserves the right to revise
this publication and make changes from time to time in its content without
notice.

The programs in this book are for instructional purposes only.

They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.

To my wife, Ruthann, our children, Benjamin, Rebecca, and Trevor, and
our grandson, Liam

G. M. S.
To my husband, John, and to: Adam and Francine; Jason, Cathryn, and

Sammie
J. L. G.

BRIEF CONTENTS

Chapter 1 An Introduction to Computer Science 1

The Algorithmic Foundations of Computer Science 36

Chapter 2 Algorithm Discovery and Design 39
Chapter 3 The Efficiency of Algorithms 79

The Hardware World 126

Chapter 4 The Building Blocks: Binary Numbers, Boolean Logic, and Gates 129
Chapter 5 Computer Systems Organization 187

The Virtual Machine 236

Chapter 6 An Introduction to System Software and Virtual Machines 239
Chapter 7 Computer Networks, the Internet, and the World Wide Web 287
Chapter 8 Information Security 333

The Software World 356

Chapter 9 Introduction to High-Level Language Programming 359
Chapter 10 The Tower of Babel 397

Chapter 11 Compilers and Language Translation 445

Chapter 12 Models of Computation 491

Applications 532

Chapter 13 Simulation and Modeling 535

Chapter 14 Electronic Commerce and Databases 561

Chapter 15 Artificial Intelligence 585

Chapter 16 Computer Graphics and Entertainment: Movies, Games, and Virtual
Communities 617

Social Issues in Computing 642

Chapter 17 Making Decisions about Computers, Information, and Society 645

Answers to Practice Problems 673
Index 699

vi

Chapter 1

CONTENTS

An Introduction to Computer Science 1

1.1 Introduction 2

Special Interest Box: In the Beginning . . . 4

1.2 The Definition of Computer Science 4

Special Interest Box: Abu Ja’ far Muhammad ibn Musa Al-Khowarizmi
(a.d. 780-850?) 8

1.3 Algorithms 10

1.3.1 The Formal Definition of an Algorithm 10

1.3.2 The Importance of Algorithmic Problem Solving 15

PRACTICE PROBLEMS 16

1.4 A Brief History of Computing 16

1.4.1 The Early Period: Up to 1940 16

Special Interest Box: The Original “Technophobia” 19

Special Interest Box: Charles Babbage (1791-1871) Ada Augusta
Byron, Countess of Lovelace (1815-1852) 20

1.4.2 The Birth of Computers: 1940-1950 21

Special Interest Box: John Von Neumann (1903-1957) 23

Special Interest Box: And the Verdict Is . . . 24

1.4.3 The Modern Era: 1950 to the Present 25

Special Interest Box: Good Evening, This Is Walter Cronkite 26

Special Interest Box: The World’s First Microcomputer 27

1.5 Organization of the Text 28

LABORATORY EXPERIENCE 1 33

EXERCISES 34

CHALLENGE WORK 35

FOR FURTHER READING 35

The Algorithmic Foundations of Computer Science 36

Chapter 2

Algorithm Discovery and Design 39

2.1 Introduction 40

2.2 Representing Algorithms 40

2.2.1 Pseudocode 40

2.2.2 Sequential Operations 43
PRACTICE PROBLEMS 45

2.2.3 Conditional and Iterative Operations 46

vii

viii

Chapter 3

CONTENTS

Special Interest Box: From Little Primitives Mighty Algorithms
Do Grow 53

PRACTICE PROBLEMS 54

2.3 Examples of Algorithmic Problem Solving 54

2.3.1 Example 1: Go Forth and Multiply 54

PRACTICE PROBLEMS 57

2.3.2 Example 2: Looking, Looking, Looking 57

LABORATORY EXPERIENCE 2 61

2.3.3 Example 3: Big, Bigger, Biggest 62

PRACTICE PROBLEMS 66

LABORATORY EXPERIENCE 3 67

2.3.4 Example 4: Meeting Your Match 67

PRACTICE PROBLEMS 73

2.4 Conclusion 73

EXERCISES 75

CHALLENGE WORK 77

FOR FURTHER READING 78

The Efficiency of Algorithms 79

3.1 Introduction 80

3.2 Attributes of Algorithms 80
PRACTICE PROBLEMS 84

3.3 Measuring Efficiency 84

3.3.1 Sequential Search 84

3.3.2 Order of Magnitude—Order n 86

Special Interest Box: Flipping Pancakes 88
PRACTICE PROBLEM 89

3.3.3 Selection Sort 89

PRACTICE PROBLEM 94

3.3.4 Order of Magnitude—Order n? 95

Special Interest Box: The Tortoise and the Hare 97
LABORATORY EXPERIENCE 4 98
PRACTICE PROBLEM 99

3.4 Analysis of Algorithms 99

3.4.1 Data Cleanup Algorithms 99
PRACTICE PROBLEMS 105

3.4.2 Binary Search 106

PRACTICE PROBLEMS 111
LABORATORY EXPERIENCE 5 111
3.4.3 Pattern Matching 112

3.4.4 Summary 113

PRACTICE PROBLEM 113

3.5 When Things Get Out of Hand 113
PRACTICE PROBLEMS 117
LABORATORY EXPERIENCE 6 118
3.6 Summary of Level 1 118

EXERCISES 120
CHALLENGE WORK 124
FOR FURTHER READING 125

The Hardware World 126

Chapter 4

Chapter 5

The Building Blocks: Binary Numbers, Boolean
Logic, and Gates 129
4.1 Introduction 130
4.2 The Binary Numbering System 130
4.2.1 Binary Representation of Numeric and
Textual Information 130

Special Interest Box: A Not So Basic Base 133
PRACTICE PROBLEMS 142
4.2.2 Binary Representation of Sound and Images 142
PRACTICE PROBLEMS 149
4.2.3 The Reliability of Binary Representation 150
4.2.4 Binary Storage Devices 151
Special Interest Box: Moore’s Law and the Limits of

Chip Design 156
4.3 Boolean Logic and Gates 157
4.3.1 Boolean Logic 157
PRACTICE PROBLEMS 159
4.3.2 Gates 160
Special Interest Box: George Boole (1815-1864) 162
4.4 Building Computer Circuits 163
4.4.1 Introduction 163
4.4.2 A Circuit Construction Algorithm 165
PRACTICE PROBLEMS 169
LABORATORY EXPERIENCE 7 170
4.4.3 Examples of Circuit Design and Construction 170
PRACTICE PROBLEMS 178
LABORATORY EXPERIENCE 8 178
Special Interest Box: Dr. William Shockley (1910-1989) 179
4.5 Control Circuits 179
4.6 Conclusion 183
EXERCISES 184
CHALLENGE WORK 185
FOR FURTHER READING 186

Computer Systems Organization 187

5.1 Introduction 188

5.2 The Components of a Computer System 190
5.2.1 Memory and Cache 192

Special Interest Box: Powers of 10 195

CONTENTS

ix

PRACTICE PROBLEMS 201

5.2.2 Input/Output and Mass Storage 202

PRACTICE PROBLEMS 207

5.2.3 The Arithmetic/Logic Unit 207

5.2.4 The Control Unit 211

PRACTICE PROBLEMS 215

5.3 Putting All the Pieces Together—the Von Neumann
Architecture 219

Special Interest Box: An Alphabet Soup of Speed Measures: MHz, GHz,

MIPS, and GFLOPS 224
LABORATORY EXPERIENCE 9 224
5.4 Non-Von Neumann Architectures 225
Special Interest Box: Speed to Burn 229
Special Interest Box: Quantum Computing 231
5.5 Summary of Level 2 231
EXERCISES 233
CHALLENGE WORK 234
FOR FURTHER READING 235

The Virtual Machine 236

X

Chapter 6

CONTENTS

An Introduction to System Software and Virtual Machines
6.1 Introduction 240

6.2 System Software 241

6.2.1 The Virtual Machine 241

6.2.2 Types of System Software 243

6.3 Assemblers and Assembly Language 245

6.3.1 Assembly Language 245

PRACTICE PROBLEMS 251

6.3.2 Examples of Assembly Language Code 252
PRACTICE PROBLEMS 256
LABORATORY EXPERIENCE 10 256
6.3.3 Translation and Loading 257

PRACTICE PROBLEMS 261

6.4 Operating Systems 263

6.4.1 Functions of an Operating System 264

Special Interest Box: A Machine for the Rest of Us 266
PRACTICE PROBLEM 270

Special Interest Box: The Open Source Movement 273
6.4.2 Historical Overview of Operating Systems Development
Special Interest Box: Now That's Big! 274

6.4.3 The Future 281

EXERCISES 284

CHALLENGE WORK 286

FOR FURTHER READING 286

239

273

Chapter 7

Chapter 8

Computer Networks, the Internet, and the World Wide Web
7.1 Introduction 288

7.2 Basic Networking Concepts 289

7.2.1 Communication Links 289

Special Interest Box: Blogs 289

PRACTICE PROBLEMS 295

Special Interest Box: Ubiquitous Computing 295
7.2.2 Local Area Networks 296

PRACTICE PROBLEMS 298

7.2.3 Wide Area Networks 299

7.2.4 Overall Structure of the Internet 300

7.3 Communication Protocols 304

7.3.1 Physical Layer 305

7.3.2 Data Link Layer 305

PRACTICE PROBLEMS 309

7.3.3 Network Layer 309

PRACTICE PROBLEMS 312

7.3.4 Transport Layer 312

7.3.5 Application Layer 315
LABORATORY EXPERIENCE 11 319
7.4 Network Services and Benefits 319
Special Interest Box: Spam 320

7.5 A Brief History of the Internet and the World Wide Web
7.5.1 The Internet 322

7.5.2 The World Wide Web 326

Special Interest Box: Geography Lesson 326

7.6 Conclusion 328

Special Interest Box: Social Networking 328
EXERCISES 330

CHALLENGE WORK 331

FOR FURTHER READING 331

Information Security 333

8.1 Introduction 334

8.2 Threats and Defenses 334

Special Interest Box: How Hackers became Crackers 335
8.2.1 Authentication and Authorization 335

Special Interest Box: Password Pointers 338
PRACTICE PROBLEM 339

8.2.2 Threats from the Network 339

Special Interest Box: Beware the Trojan Horse 340
Special Interest Box: Defense Against the Dark Arts 341
Special Interest Box: Gone Phishin’ 341

8.3 Encryption 342

8.3.1 Encryption Overview 342

8.3.2 Simple Encryption Algorithms 342

287

322

CONTENTS

xi

PRACTICE PROBLEMS 345
LABORATORY EXPERIENCE 12 345
Special Interest Box: Hiding in Plain Sight 346
8.3.3 DES 346

Special Interest Box: Cracking DES 349

8.3.4 Public Key Systems 349

PRACTICE PROBLEM 350

8.4 Web Transmission Security 350

8.5 Conclusion 351

8.6 Summary of Level 3 352
EXERCISES 353

CHALLENGE WORK 354

FOR FURTHER READING 355

The Software World 356

Chapter 9 Introduction to High-Level Language Programming 359

9.1 The Language Progression
9.1.1 Where Do We Stand and What Do We Want? 360

360

9.1.2 Getting Back to Binary 363

9.2 A Family of Languages 364

9.3 Two Examples in Five-Part Harmony 365
9.3.1 Favorite Number 365

9.3.2 Data Cleanup (Again) 368

9.4 Feature Analysis 377

9.5 Meeting Expectations 377

9.6 The Big Picture: Software Engineering 385
9.6.1 Scaling Up 386

9.6.2 The Software Development Life Cycle 387

Chapter 10

Special Interest Box: Vital Statistics for Real Code 388

9.6.3 Modern Environments 392

9.7 Conclusion 393
EXERCISES 394

CHALLENGE WORK 394

FOR FURTHER READING 396

The Tower of Babel 397

10.1 Why Babel? 398

10.2 Procedural Languages 399

10.2.1 Plankalkiil 400

10.2.2 Fortran 400

Special Interest Box: Old Dog, New Tricks #1 402

PRACTICE PROBLEM 402
10.2.3 COBOL 402
PRACTICE PROBLEM 404

xii CONTENTS

Chapter 11

10.2.4 C / C++ 404

PRACTICE PROBLEMS 407

10.2.5 Ada 407

PRACTICE PROBLEM 408

10.2.6 Java 408

PRACTICE PROBLEM 410

10.2.7 Python 410

PRACTICE PROBLEM 411

10.2.8 C# and .NET 411

Special Interest Box: 0ld Dog, New Tricks #2 412
PRACTICE PROBLEM 413

10.3 Special-purpose Languages 413

10.3.1 SQL 413

10.3.2 HTML 414

LABORATORY EXPERIENCE 13 416
Special Interest Box: Beyond HTML 417

10.3.3 JavaScript 417

Special Interest Box: PHP 418

PRACTICE PROBLEMS 419

10.4 Alternative Programming Paradigms 420
10.4.1 Functional Programming 421

Special Interest Box: Simplicity Is in the Eye of the Beholder
PRACTICE PROBLEMS 426
LABORATORY EXPERIENCE 14 426
10.4.2 Logic Programming 426

PRACTICE PROBLEMS 431

10.4.3 Parallel Programming 432

Special Interest Box: Let Me Do That For You 437
PRACTICE PROBLEM 438

10.5 Conclusion 438

Special Interest Box: Parallel Computing with Titanium 438
EXERCISES 441

CHALLENGE WORK 443

FOR FURTHER READING 444

Compilers and Language Translation 445
11.1 Introduction 446

11.2 The Compilation Process 449
11.2.1 Phase I: Lexical Analysis 450
PRACTICE PROBLEMS 453
11.2.2 Phase II: Parsing 453
PRACTICE PROBLEMS 459
PRACTICE PROBLEMS 469
11.2.3 Phase III: Semantics and Code Generation 470
PRACTICE PROBLEM 479
11.2.4 Phase IV: Code Optimization 479

CONTENTS

425

xiii

xiv

Chapter 12

LABORATORY EXPERIENCE 15 479
Special Interest Box: “I Do Not Understand,” Said the Machine
11.3 Conclusion 485

EXERCISES 486

CHALLENGE WORK 488

FOR FURTHER READING 489

Models of Computation 491

12.1 Introduction 492

12.2 What Is a Model? 492

PRACTICE PROBLEMS 494

12.3 A Model of a Computing Agent 494

12.3.1 Properties of a Computing Agent 494

12.3.2 The Turing Machine 495

Special Interest Box: Alan Turing, Brilliant Eccentric 496

PRACTICE PROBLEMS 502

12.4 A Model of an Algorithm 503

12.5 Turing Machine Examples 506

12.5.1 A Bit Inverter 506

12.5.2 A Parity Bit Machine 508

12.5.3 Machines for Unary Incrementing 511

12.5.4 A Unary Addition Machine 514

PRACTICE PROBLEMS 516

LABORATORY EXPERIENCE 16 516

12.6 The Church-Turing Thesis 516

Special Interest Box: The Turing Award 517

12.7 Unsolvable Problems 519

Special Interest Box: Couldn’t Do, Can't Do, Never Will
Be Able to . . . 524

PRACTICE PROBLEMS 524

LABORATORY EXPERIENCE 17 524

12.8 Conclusion 525

12.9 Summary of Level 4 525

EXERCISES 527

CHALLENGE WORK 529

FOR FURTHER READING 531

Applications 532

Chapter 13

CONTENTS

Simulation and Modeling 535

13.1 Introduction 536

13.2 Computational Modeling 536

13.2.1 Introduction to Systems and Models 536
13.2.2 Computational Models, Accuracy, and Errors 538
13.2.3 An Example of Model Building 541

484

Chapter 14

Chapter 15

PRACTICE PROBLEMS 548
LABORATORY EXPERIENCE 18 549

13.3 Running the Model and Visualizing Results 549
13.4 Conclusion 556

Special Interest Box: The Mother of All Computations! 557
EXERCISES 558

CHALLENGE WORK 559

FOR FURTHER READING 560

Electronic Commerce and Databases 561
14.1 Introduction 562

Special Interest Box: Shopping on the Web 563
14.2 E-commerce 564

14.2.1 The Vision Thing 564

14.2.2 Decisions, Decisions 565

14.2.3 Anatomy of a Transaction 566

Special Interest Box: A Rose by Any Other Name . . . 568
14.2.4 Designing Your Web Site 571

Special Interest Box: Accessible Web Pages 572
14.2.5 Behind the Scenes 573

PRACTICE PROBLEM 573

Special Interest Box: The Price of Success 574
14.3 Databases 574

14.3.1 Data Organization 574

14.3.2 Database Management Systems 576
14.3.3 Other Considerations 580

Special Interest Box: Think Big! 581
PRACTICE PROBLEMS 581
LABORATORY EXPERIENCE 19 582
14.4 Conclusion 582

EXERCISES 583

CHALLENGE WORK 583

FOR FURTHER READING 584

Artificial Intelligence 585

15.1 Introduction 586

Special Interest Box: To Whom Am I Speaking? 587
15.2 A Division of Labor 588

15.3 Knowledge Representation 590
PRACTICE PROBLEM 593

15.4 Recognition Tasks 593

Special Interest Box: Can You Hear Me Now? 598
LABORATORY EXPERIENCE 20 598
PRACTICE PROBLEM 599

15.5 Reasoning Tasks 599

CONTENTS

XV

Chapter 16

15.5.1 Intelligent Searching 599

15.5.2 Swarm Intelligence 601

Special Interest Box: The Games People Play 602
15.5.3 Intelligent Agents 603

Special Interest Box: ANTS in Space! 603
Special Interest Box: The Demise of Clippit 605
15.5.4 Expert Systems 605

PRACTICE PROBLEMS 608

15.6 Robotics 608

Special Interest Box: Finding Water on Mars 608
15.7 Conclusion 610

Special Interest Box: RoboCup 611
EXERCISES 612

CHALLENGE WORK 613

FOR FURTHER READING 616

Computer Graphics and Entertainment: Movies,
Games, and Virtual Communities 617

16.1 Introduction 618

16.2 Computer-Generated Imagery (CGI) 620
16.2.1 Introduction to CGI 620

Special Interest Box: Computer Horsepower 621
16.2.2 How It's Done: The Graphics Pipeline 622
16.2.3 Object Modeling 622

PRACTICE PROBLEM 624

16.2.4 Object Motion 625

PRACTICE PROBLEM 628

16.2.5 Rendering and Display 629

16.2.6 The Future of CGI 631

16.3 Video Gaming 632

Special Interest Box: The Good, the Bad, and the Ugly
16.4 Multiplayer Games and Virtual Communities
16.5 Conclusion 637

Special Interest Box: The Computer Will See You Now
16.6 Summary of Level 5 638
EXERCISES 639

CHALLENGE WORK 641

FOR FURTHER READING 641

634

638

Social Issues in Computing 642

xvi

Chapter 17

CONTENTS

Making Decisions about Computers, Information,
and Society 645

17.1 Introduction 646

17.2 Case Studies 646

17.2.1 Case 1: The Story of MP3—Compression Codes, Musicians, and
Money 646

PRACTICE PROBLEMS 652

Special Interest Box: The Sound of Music 653

17.2.2 Case 2: PGP: The U.S. Government vs. Phil Zimmermann 653

17.2.3 Case 3: Hackers: Public Enemies or Gadflies? 657

PRACTICE PROBLEMS 658

Special Interest Box: Professional Codes of Conduct 659

17.2.4 Thinking Straight about Technology and Ethics 661

PRACTICE PROBLEMS 662

17.2.5 Case 4: Genetic Information and Medical Research 663

17.3 What We Covered and What We Did Not 667

17.4 Summary of Level 6 668

EXERCISES 669

FOR FURTHER READING 670

Answers to Practice Problems 673
Index 699

CONTENTS xvii

This page intentionally left blank

PREFACE

Overview

This text is intended for a one-semester introductory course in computer
science. It presents a breadth-first overview of the discipline that assumes no
prior background in computer science, programming, or mathematics. It is
appropriate for use in a service course for students not majoring in computer
science. It is also appropriate for schools that implement their introductory
sequence for majors using the breadth-first model described in the ACM/IEEE
Computing Curricula 2001 Report. It would be quite suitable for a high school
computer science course as well. Previous editions of this text have been used
in all these types of courses.

The Non-Majors Course

The introductory computer science service course has undergone many changes
over the years. In the 1970s and early 1980s, it was usually a course in FOR-
TRAN, BASIC, or Pascal. At that time it was felt that the most important skill a
student could acquire was learning to program in a high-level language. In the
mid-to-late ‘80s, a rapid increase in computer use caused the course to evolve
into something called “computer literacy” in which students learned about new
applications of computing in such fields as business, medicine, law, and educa-
tion. With the growth of personal computers and productivity software, a typ-
ical early to mid-1990s version of this course would spend a semester teaching
students to use word processors, databases, spreadsheets, presentation soft-
ware, and electronic mail. The most recent change has been its evolution into a
Web-centric course where students learn to design and implement Web pages
using technology such as HTML, XML, and Java applets.

Most academics feel it is time for the computer science service course to
evolve yet again. There are two reasons for this. First, virtually all students in col-
lege today are familiar with personal computers and productivity software. They
have been using word processors since elementary school and are quite familiar
with social networks, online retailing, e-mail, and chat rooms. Many have written
Web pages and some even have their own Web sites. In this day and age, a course
that focuses on applications of computing will be of little or no interest.

But a more important reason for rethinking the structure of this course, and
the primary reason why we authored this book, is the following observation:

Most computer science service courses do not teach students about the
foundations of computer science!

We believe quite strongly that students in a computer science service course
must receive a solid grounding in the fundamental intellectual concepts of

Xix

XX

PREFACE

computer science in addition to learning about important uses of computing
and information technology. The material in such a course would not be lim-
ited to “fun” applications such as Web page design and interactive graphics
but would also cover issues such as algorithms, hardware design, computer
organization, system software, language models, theory of computation, and
social and ethical issues of computing. An introduction to these core ideas
exposes students to the overall richness and beauty of the field. It allows them
to not only use computers and software effectively but to understand and
appreciate the basic ideas underlying their creation and implementation.

The CS1 Course

The design of a first course for computer science majors has also come in for
a great deal of discussion. Since the emergence of computer science as a dis-
tinct academic discipline in the 1960s, the first course has always been an
introduction to programming—from BASIC to FORTRAN to Pascal, to C++,
Java, and Python today. Related topics have been added to the syllabus
(e.g., object-oriented design), but the central focus has remained high-level
language programming. However, the ACM/IEEE Computing Curriculum 2001
Report suggested a number of alternative models for the first course, includ-
ing a breadth-first overview, an approach that has gained in popularity in
the last couple of years.

A first course for computer science majors using the breadth-first model
emphasizes early exposure to the sub-disciplines of the field rather than plac-
ing exclusive emphasis on programming. This gives new majors a more com-
plete and well-rounded understanding of their chosen field of study. As stated
in the Curriculum 2001 Report, “[introductory] courses that emphasize only
this one aspect [programming] fail to let students experience the many other
areas and styles of thought that are part of computer science as a whole.”

Our book—intended for either majors or non-majors—is organized around
this breadth-first approach, and it presents a wide range of subject matter
drawn from many areas of computer science. However, to avoid drowning stu-
dents in a sea of seemingly unrelated facts and details, a breadth-first presen-
tation must be carefully woven into a fabric, a theme, a “big picture” that ties
together these topics and presents computer science as a unified and inte-
grated discipline. To achieve this we have divided the study of computer sci-
ence into a hierarchy of topics, with each layer in the hierarchy building on
and expanding upon concepts from earlier chapters.

A Hierarchy of Abstractions

The central theme of this book is that computer science is the study of algo-
rithms. Our hierarchy utilizes this definition by first looking at the algorithmic
basis of computer science and then moving upward from this central theme to
higher-level issues such as hardware, software, applications, and ethics. Just as
the chemist starts from protons, neutrons, and electrons and builds up to
atoms, molecules, and compounds, so, too, does our text build from elementary
concepts such as algorithms, binary arithmetic, gates, and circuits to higher-
level ideas such as computer organization, operating systems, high-level lan-
guages, applications, and the social, legal, and ethical problems of information
technology.

The six levels in our computer science hierarchy are as follows:

Level 1. The Algorithmic Foundations of Computer Science
Level 2. The Hardware World

Level 3. The Virtual Machine

Level 4. The Software World

Level 5. Applications

Level 6. Social Issues in Computing

Following an introductory chapter, Level 1 (Chapters 2-3) introduces “The
Algorithmic Foundations of Computer Science,” the bedrock on which all other
aspects of the discipline are built. It presents important ideas such as the
design of algorithms, algorithmic problem solving, abstraction, pseudocode,
iteration, and efficiency. It illustrates these ideas using well-known examples
such as searching a list, finding maxima and minima, sorting a list, and
matching patterns. It also introduces the concepts of algorithm efficiency and
asymptotic growth and demonstrates that not all algorithms are, at least in
terms of running time, created equal.

The discussions in Level 1 assume that our algorithms are executed by
something called a “computing agent,” an abstract concept for any entity that
can effectively carry out the instructions in our solution. However, in Level 2
(Chapters 4-5), “The Hardware World,” we want our algorithms to be executed
by “real” computers to produce “real” results. Thus begins our discussion of
hardware, logic design, and computer organization. The initial discussion
introduces the basic building blocks of computer systems—binary numbers,
Boolean logic, gates, and circuits. It then shows how these elementary concepts
are used to construct a real computer using the classic Von Neumann architec-
ture, including processors, memory, buses, and input/output. It presents a typ-
ical machine language instruction set and explains how the algorithms of Level
1 can be represented in machine language and run on the Von Neumann hard-
ware of Level 2, conceptually tying together these two areas. It ends with a dis-
cussion of important new directions in hardware design—multicore and
massively parallel machines.

By the end of Level 2 students have been introduced to some basic con-
cepts in logic design and computer organization, and they understand and
appreciate the enormous complexity of these areas. This complexity is the
motivation for Level 3 (Chapters 6-8), “The Virtual Machine.” This section
describes how system software produces a more friendly, user-oriented
problem-solving environment that hides many of the ugly hardware details
just described. Level 3 looks at the same problem discussed in Level 2,
encoding and executing an algorithm, but shows how much easier this is in
a virtual environment containing software tools like editors, translators, and
loaders. This section also discusses the services and responsibilities of oper-
ating systems and how operating systems have evolved. It investigates one
of the most important virtual environments in current use—a network of
computers. It shows how systems such as the Ethernet, Internet, and the
Web are created from computers linked together via transmission media and
communications software. This creates a virtual environment in which we
can seamlessly use not only the computer on our desk but computers
located practically anywhere in the world. Level 3 concludes with a look at

PREFACE xxi

xxii

PREFACE

one of the most important services provided by a virtual machine, informa-
tion security, and describes algorithms for protecting the user and the sys-
tem from accidental or malicious damage.

Once we have created this user-oriented virtual environment, what do we
want to do with it? Most likely we want to write programs to solve interesting
problems. This is the motivation for Level 4 (Chapters 9-12), “The Software
World.” Although this book should not be viewed as a programming text, it
contains an overview of the features found in modern programming lan-
guages. This gives students an appreciation for the interesting and challeng-
ing task of the computer programmer and the power of the problem-solving
environment created by a modern high-level language. There are many differ-
ent programming language models, so this level includes a discussion of other
language types, including special-purpose languages such as SQL, HTML, and
JavaScript, as well as the functional, logic, and parallel language paradigms.
This level also describes the design and construction of a compiler and shows
how high-level languages can be translated into machine language for execu-
tion. This discussion ties together ideas presented in earlier chapters, as we
show how an algorithm (Level 1) is translated into a high-level language
(Level 4), compiled and executed on a typical Von Neumann machine (Level
2), which makes use of the system software tools of Level 3. These “recurring
themes” and frequent references to earlier concepts help reinforce the idea of
computer science as an integrated set of related topics. At the conclusion of
Level 4, we introduce the idea of computability and unsolvability. A formal
model of computing (the Turing machine) is used to prove that there exist
problems for which no general algorithmic solution can be found. It shows
students that there are provable limits to what computers and computer sci-
ence can achieve.

We now have a high-level programming environment in which it is
possible to write programs to solve important problems. In Level 5
(Chapters 13-16), “Applications,” we take a look at a few important uses of
computers in our modern society. There is no way to cover even a tiny frac-
tion of the many applications of computers and information technology in
a single section. Instead, we focus on a relatively small set that demon-
strates some important concepts, tools, and techniques of computer sci-
ence. This includes applications drawn from the sciences and engineering
(simulation and modeling), business and finance (e-commerce, databases),
the social sciences (artificial intelligence), and everyday life (computer
generated imagery, video gaming, virtual communities). Our goal is not to
provide “encyclopedic coverage” of modern computing usage; instead, it is
to show students that applications packages are not “magic boxes” whose
inner workings are totally unfathomable. Rather, they are the result of uti-
lizing core computer science concepts—e.g., algorithms, hardware, lan-
guages—presented in earlier chapters. We hope that our discussions in this
section will encourage readers to seek out information on applications and
software packages specific to their own areas of interest.

Finally, we reach the highest level of study, Level 6 (Chapter 17), “Social
Issues in Computing,” which addresses the social, ethical, and legal issues
raised by the applications presented in Level 5. This section (written by con-
tributing author Prof. Keith Miller of the University of Illinois at Springfield)
examines such thorny problems as the ownership of intellectual property in
the electronic age, national security concerns aggravated by information
technology, and the erosion of individual privacy caused by the use of online

databases. This section does not attempt to provide quick solutions to these
complex problems. Instead, it focuses on techniques that students can use to
think about these ethical issues and reach their own conclusions. Our goal in
this final section is to make students aware of the enormous impact that
information technology is having on everyone's lives and to give them tools
that will allow them to make more informed decisions.

This, then, is the hierarchical structure of our text. It begins with the
algorithmic foundations of the discipline and works its way from low-level
hardware concepts through virtual machine environments, languages, soft-
ware, and applications to the social issues raised by computer technology.
This organizational structure, along with the use of recurring themes,
enables students to view computer science as a unified, integrated, and
coherent field of study. While the social issues material in Chapter 17 can be
presented at any time, the rest of the material is intended to be covered
sequentially.

What’'s New

The fifth edition of Invitation to Computer Science represents the single
biggest rewrite of this best-selling text. It includes two new chapters that
address important emerging areas of computer science. In an age where per-
sonal, financial, and medical data is all online, Chapter 8, “Information
Security,” deals with the growing problem of keeping that data safe from
improper access and inappropriate modification. Chapter 16, “Computer
Graphics and Entertainment: Movies, Games, and Virtual Communities,” looks
at how computers, once the domain of the military, government, and business,
are now being used to entertain, amaze, and enthrall. It concludes with a dis-
cussion of how these same visualization algorithms are also used to address
more important problems, such as medical imaging.

In addition to these two chapters, new material and exercises have been
added to existing chapters on Computer Organization (multicore and cluster
computing), Computer Networks (wireless computing), and Artificial Intelligence
(robotics) as well as the addition of new Practice Problems and boxed features.

However, the single biggest change has been to move all programming-
language-specific materials, once placed into their own chapter in the text
itself, to the Cengage Web site. For the first four editions we produced two dis-
tinct versions of the text, one for C++ and the other for Java. As new lan-
guages began to enter the computer science curriculum, e.g., Python, Ada, C#,
it became infeasible to produce a separate chapter and a separate edition
for each one. Instead, Chapter 9, “Introduction to High-Level Language
Programming,” is now a general description of the features common to mod-
ern programming languages. Detailed discussions of a particular language are
available to instructors for distribution to students under the Instructor
Download section of www.cengage.com. (Currently the Cengage Web site
includes online language modules for C++, Java, Python, Ada, and C#, with
additional modules possible in the future.) Using this approach we can
respond much more quickly to new developments in programming language
design as well as proposals for curricular change. In addition, instructors and
students are not limited to exposure to a single language but are invited to
download (or request from instructors) the modules for any and all languages
in which they are interested.

PREFACE xxiii

www.cengage.com

xXiv

PREFACE

An Experimental Science

Another important aspect of computer science education is the realization
that, like physics, chemistry, and biology, computer science is an empirical,
laboratory-based discipline in which learning comes not only from watching
and listening but from doing and trying. Many complex ideas in computer sci-
ence cannot be fully understood and appreciated until they are visualized,
manipulated, and tested. Today, most computer science faculty consider formal
laboratories to be an essential part of an introductory course. We concur, and
this development is fully reflected in our approach to the material.

Associated with this text is a laboratory manual and custom-designed labo-
ratory software that enables students to experiment with the concepts we pre-
sent. The manual contains 20 laboratory experiences, closely coordinated with
the main text, that cover all levels except Level 6. These labs give students the
chance to observe, study, analyze, and/or modify an important idea or concept.
For example, associated with Level 1 (the algorithmic foundations of computer
science) are experiments that animate the algorithms in Chapters 2 and 3 and
ask students to observe and discuss what is happening in these animations.
There are also labs that allow students to measure the running time of these
algorithms for different-sized data sets and discuss their observed behavior.
Associated with Level 2 (the hardware world) are projects to design and analyze
logic circuits as well as program a simulated Von Neumann machine that is iden-
tical to the one presented in the text. There are similar labs available for Levels
3, 4, and 5 that highlight and clarify the material presented in the text.

Each of the lab manual experiments includes an explanation of how to use
the software, a description of exactly how to conduct the experiment, and dis-
cussion questions and problems for students to complete and hand in. When
doing these projects, students could work on their own or in teams, and the
course may utilize either a closed-lab (scheduled) or an open-lab (unscheduled)
setting. The manual and software will work well in any of these laboratory mod-
els. The text contains 20 boxes labeled “Laboratory Exercise” that describe each
lab and identify the point where it may be appropriate to assign it; most show a
screen shot of the output that is produced when you run the lab software.

Other Textbook Features

To challenge the more advanced students, each chapter includes, along with a
regular set of exercises, some “Challenge Problems.” These more complex ques-
tions could be used for longer assignments done either individually or by
teams of students. Finally, if a student is interested in a topic and wants more
detail, there is a section at the end of each chapter titled “For Further
Reading” with references to texts and Web sites containing additional mater-
ial on the topics covered in that chapter.

Summary

Computer science is a young and exciting discipline, and we hope that the
material in this text, along with the laboratory projects and online
modules, will convey this feeling of excitement. By presenting the field in all
its richness—algorithms, hardware, software, systems, applications, and

social issues—we hope to give students a deeper appreciation for the many
diverse and interesting areas of research and study within the discipline of
computer science.

Supplemental Materials

This textbook includes teaching tools to support instructors in the classroom.
The ancillaries that accompany the textbook include an Instructor's Manual,
Solutions, Test Banks and Test Engine, PowerPoint presentations, and Figure
files. All teaching tools available with this book are provided to the instructor
on a single CD-ROM and are also available on the Web at www.cengage.com/
coursetechnology

The Instructor’s Manual

This manual provides materials to help instructors make their classes more
informative and interesting.

For each chapter, the manual includes lecture and class presentation
ideas, quick quizzes, topics for class discussion, and key term definitions.

Solutions

We provide instructors with solutions to Review Questions and Discussion
Questions as well as for quantitative hands-on work in each chapter. Solutions
may also be found on the Course Technology Web site at www.course.com. The
solutions are password protected.

ExamView®

This objective-based test generator lets the instructor create paper, LAN, or
Web-based tests from test banks designed specifically for this Course
Technology text. Instructors can use the QuickTest Wizard to create tests in
fewer than five minutes by taking advantage of Course Technology’s question
banks—or create customized exams.

PowerPoint Presentations

Microsoft PowerPoint slides are included for each chapter. Instructors might
use the slides in a variety of ways, such as teaching aids during classroom pre-
sentations or as printed handouts for classroom distribution. Instructors can
add their own slides for additional topics introduced to the class.

Figure Files

Figure files allow instructors to create their own presentations using figures
taken directly from the text.

PREFACE XXV

www.course.com
www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

xxvi

PREFACE

Reviewers

The following reviewers, along with the many users of previous editions who
have provided helpful comments, have contributed to the writing of this new
edition, and we want to thank them all:

JAMES AMAN S. JANE FRriTZ

Saint Xavier University St. Joseph’s College—New York
PuiLiip BARRY Barry Kors

University of Minnesota Ocean County College

ROBERT BEASLEY MIKE SCHERGER

Franklin College Texas A&M University, Corpus Christi
Douc EpwarDs STEWART SHEN

Central Texas College 0ld Dominion University

—G. Michael Schneider
Macalester College
schneider@macalester.edu

—Judith L. Gersting
University of Hawaii - Hilo
gersting@hawaii.edu

An Introduction to
Computer Science
1.1 Introduction

1.2 The Definition of Computer Science
1.3 Algorithms

1.3.1 The Formal Definition of an Algorithm
1.3.2 The Importance of Algorithmic Problem Solving

1.4 A Brief History of Computing

1.4.1 The Early Period: Up to 1940

1.4.2 The Birth of Computers: 1940-1950

1.4.3 The Modern Era: 1950 to the Present
1.5 Organization of the Text

LABORATORY EXPERIENCE 1
EXERCISES

CHALLENGE WORK
FOR FURTHER READING

KRISHBAL SOLUTIONS

1.1

Introduction

.

This text is an invitation to learn about one of the youngest and most excit-
ing of the scientific disciplines—computer science. Almost every day our
newspapers, magazines, and televisions carry reports of advances in comput-
ing, such as high-speed supercomputers that perform one quadrillion (10%°)
mathematical operations per second; networks that transmit high-definition
images and movies anywhere in the world in fractions of a second; and minute
computers that can be embedded into our books, watches, clothing, and even
our bodies. The next few years will see technological breakthroughs that,
until a few years ago, existed only in the minds of dreamers and science fic-
tion writers. These are exciting times in computing, and our goal in this text
is to provide you with an understanding of computer science and an apprecia-
tion for the diverse areas of research and study within this important field.

While the average person can produce a reasonably accurate description
of most scientific fields, even if he or she did not study the subject in school,
many people do not have an intuitive understanding of the types of problems
studied by computer science professionals. For example, you probably know
that biology is the study of living organisms and that chemistry deals with the
structure and composition of matter. However, you might not have the same
understanding of the work that goes on in computer science. In fact, many
people harbor one or more of the following common misconceptions about
this field.

MisconcerTION 1: Computer science is the study of computers.

This apparently obvious definition is actually incorrect or, to put it more
precisely, incomplete. For example, some of the earliest and most fundamental
theoretical work in computer science took place from 1920 to 1940, years before
the development of the first computer system. (This pioneering work was ini-
tially considered a branch of logic and applied mathematics. Computer science
did not come to be recognized as a separate and independent field of scientific
study until the late 1950s to early 1960s.) Even today, there are branches of
computer science quite distinct from the study of “real” machines. In theoretical
computer science, for example, researchers study the logical and mathematical
properties of problems and their solutions. Frequently, these researchers inves-
tigate problems not with actual computers but rather with formal models of
computation, which are easier to study and analyze mathematically. Their work
involves pencil and paper, not circuit boards and disks.

CHAPTER 1: An Introduction to Computer Science

This distinction between computers and computer science is beautifully
expressed by computer scientists Michael R. Fellows and Ian Parberry in an
article in the journal Computing Research News:

Computer science is no more about computers than astronomy is
about telescopes, biology is about microscopes, or chemistry is about
beakers and test tubes. Science is not about tools. It is about how we
use them and what we find out when we do.!

MisconcepTION 2: Computer science is the study of how to write computer
programs.

Many people are first introduced to computer science when learning to
write programs in a language such as C++, Python, or Java. This almost uni-
versal use of programming as the entry to the discipline can create the misun-
derstanding that computer science is equivalent to computer programming.

Programming is extremely important to the discipline—researchers use it
to study new ideas and build and test new solutions—but like the computer
itself it is a tool. When computer scientists design and analyze a new
approach to solving a problem, or create new ways to represent information,
they implement their ideas as programs in order to test them on an actual
computer system. This enables researchers to see how well these new ideas
work and whether they perform better than previous methods.

For example, searching a list is one of the most common applications of
computers, and it is frequently applied to huge problems, such as finding one
name among the approximately 20,000,000 listings in the New York City tele-
phone directory. (We will solve this problem in Chapter 2.) A more efficient
lookup method could significantly reduce the time that customers must wait
for directory assistance. Assume that we have designed what we believe to be
a “new and improved” search technique. After analyzing it theoretically, we
would study it empirically by writing a program to implement our new
method, executing it on our computer, and measuring its performance. These
tests would demonstrate under what conditions our new method is or is not
faster than the directory search procedures currently in use.

In computer science, it is not simply the construction of a high-quality
program that is important but also the methods it embodies, the services it
provides, and the results it produces. It is possible to become so enmeshed in
writing code and getting it to run that we forget that a program is only a
means to an end, not an end in itself.

MisconcepTion 3: Computer science is the study of the uses and applications of
computers and software.

If one’s introduction to computer science is not programming, then it may
be a course on the application of computers and software. Such a course typi-
cally teaches the use of a number of popular packages, such as word proces-
sors, presentation software, database systems, imaging software, electronic
mail, and a Web browser.

1 Fellows, M. R., and Parberry, I. “Getting Children Excited About Computer Science,” Computing
Research News, vol. 5, no. 1 (January 1993).

(TTHRHEIGH
|
1.1 Introduction £ :"M”I

These packages are widely used by professionals in all fields. However,
learning to use a software package is no more a part of computer science than
driver’s education is a branch of automotive engineering. A wide range of
people use computer software, but the computer scientist is responsible for
specifying, designing, building, and testing software packages as well as the
computer systems on which they run.

These three misconceptions about computer science are not entirely
wrong; they are just woefully incomplete. Computers, programming languages,
software, and applications are part of the discipline of computer science, but
neither individually nor combined do they capture the richness and diversity
of this field.

We have spent a good deal of time saying what computer science is not.
What, then, is it? What are its basic concepts? What are the fundamental ques-
tions studied by professionals in this field? Is it possible to capture the breadth
and scope of the discipline in a single definition? We answer these fundamen-
tal questions in the next section and, indeed, in the remainder of the text.

occupations, such as programmer, numerical analyst, and

There is no single date that marks the beginning of com-
puter science. Indeed, there are many “firsts” that could be
used to mark this event. For example, some of the earliest
theoretical work on the logical foundations of computer sci-
ence occurred in the 1930s. The first general-purpose, elec-
tronic computers appeared during the period 1940-1946.
(We will discuss the history of these early machines in Sec-
tion 1.4.) These first computers were one-of-a-kind experi-
mental systems that never moved outside the research
laboratory. The first commercial machine, the UNIVAC I, did
not make its appearance until March 1951, a date that marks
the real beginning of the computer industry. The first high-
level (i.e., based on natural language) programming lan-
guage was FORTRAN. Some people mark its debut in 1957 as
the beginning of the “software” industry. The appearance
of these new machines and languages created new

computer engineer. To address the intellectual needs of
these workers, the first professional society for people in the
field of computing, the Association for Computing Machin-
ery (ACM), was established in 1947. (The ACM is still the
largest professional computer science society in the world.
Its Web page is located at www.acm.org.) To help meet the
rapidly growing need for computer professionals, the first
Department of Computer Science was established at Purdue
University in October 1962. It awarded its first M.Sc. degree
in 1964 and its first Ph.D. in computer science in 1966. An
undergraduate program was established in 1968.

Thus, depending on what you consider the most impor-
tant “first,” the field of computer science is somewhere
between 40 and 70 years old. Compared to such classic sci-
entific disciplines as mathematics, physics, chemistry, and
biology, computer science is the new kid on the block.

1.2 The Definition of Computer Science ®
There are many definitions of computer science, but the one that best cap-
tures the richness and breadth of ideas embodied in this branch of science was
first proposed by professors Norman Gibbs and Allen Tucker.? According to
their definition, the central concept in computer science is the algorithm. It
is not possible to understand the field without a thorough understanding of
this critically important idea.

2 Gibbs, N. E., and Tucker, A. B. “A Model Curriculum for a Liberal Arts Degree in Computer Sci-
ence,” Comm. of the ACM, vol. 29, no. 3 (March 1986).

4 CHAPTER 1: An Introduction to Computer Science

www.acm.org

b" Computer science the study of algorithms, including

.

1. Their formal and mathematical properties
2. Their hardware realizations

3. Their linguistic realizations

4. Their applications

The Gibbs and Tucker definition says that it is the task of the computer
scientist to design and develop algorithms to solve a range of important prob-
lems. This design process includes the following operations:

e Studying the behavior of algorithms to determine if they are correct
and efficient (their formal and mathematical properties)

¢ Designing and building computer systems that are able to execute
algorithms (their hardware realizations)

¢ Designing programming languages and translating algorithms into
these languages so that they can be executed by the hardware (their
linguistic realizations)

e Identifying important problems and designing correct and efficient
software packages to solve these problems (their applications)

Because it is impossible to appreciate this definition fully without know-
ing what an algorithm is, let’s look more closely at this term.
The dictionary defines the word algorithm as follows:

al ® go ® rithm n. A procedure for solving a mathematical problem in a
finite number of steps that frequently involves repetition of an operation;
broadly: a step-by-step method for accomplishing some task.

Informally, an algorithm is an ordered sequence of instructions that is guar-
anteed to solve a specific problem. It is a list that looks something like this:

Step 1: Do something
STEP 2: Do something
STep 3: Do something

Step N: Stop, you are finished

If you are handed this list and carefully follow its instructions in the order
specified, when you reach the end you will have solved the task at hand.

All the operations used to construct algorithms belong to one of only
three categories:

1. Sequential operations A sequential instruction carries out a single
well-defined task. When that task is finished, the algorithm moves on

I
1.2 The Definition of Computer Science 5 |

to the next operation. Sequential operations are usually expressed as
simple declarative sentences.

e Add 1 cup of butter to the mixture in the bowl.

e Subtract the amount of the check from the current account
balance.

e Set the value of x to 1.

2. Conditional operations These are the “question-asking” instructions
of an algorithm. They ask a question, and the next operation is
selected on the basis of the answer to that question.

e If the mixture is too dry, then add one-half cup of water to the bowl.

e If the amount of the check is less than or equal to the current
account balance, then cash the check; otherwise, tell the person
that the account is overdrawn.

e If x is not equal to 0, then set y equal to 1/x; otherwise, print an
error message that says you cannot divide by 0.

3. Iterative operations These are the “looping” instructions of an algo-
rithm. They tell us not to go on to the next instruction but, instead, to
go back and repeat the execution of a previous block of instructions.

® Repeat the previous two operations until the mixture has thickened.

e While there are still more checks to be processed, do the following
five steps.

e Repeat steps 1, 2, and 3 until the value of y is equal to +1.

We use algorithms (although we don't call them that) all the time—whenever
we follow a set of instructions to assemble a child’s toy, bake a cake, balance a
checkbook, or go through the college registration process. A good example of an
algorithm used in everyday life is the set of instructions shown in Figure 1.1 for
programming a DVR to record a sequence of television shows. Note the three types
of instructions in this algorithm: sequential (steps 2, 4, 5, 6, and 8), conditional
(steps 1 and 7), and iterative (step 3).

Mathematicians use algorithms all the time, and much of the work done by
early Greek, Roman, Persian, and Indian mathematicians involved the discov-
ery of algorithms for important problems in geometry and arithmetic; an exam-
ple is Euclid’s algorithm for finding the greatest common divisor of two positive
integers. (Exercise 7 at the end of the chapter presents this 2,300-year-old
algorithm.) We also studied algorithms in elementary school, even if we didn't
know it. For example, in the first grade we learned an algorithm for adding two
numbers such as

47
+ 25
72

The instructions our teacher gave were as follows: First add the rightmost
column of numbers (7 + 5), getting the value 12. Write down the 2 under the
line and carry the 1 to the next column. Now move left to the next column,
adding (4 + 2) and the previous carry value of 1 to get 7. Write this value
under the line, producing the correct answer 72.

LRIIFE N
M!l ll] 6 CHAPTER 1: An Introduction to Computer Science

FIGURE|1.1
Programming Your DVR. Algorithm for Programming Your DVR

An Example of an Algorithm
ple of J Step 1 If the clock and calendar are not correctly set, then go to page 9 of the

instruction manual and follow the instructions there before proceeding to
step 2.

Step2 Place a blank tape into the DVR disc slot.

Step 3 Repeat steps 4 through 7 for each program that you wish to record.

Step 4 Enter the channel number that you wish to record and press the button
labeled CHAN.

Step 5 Enter the time that you wish recording to start and press the button
labeled TIME-START.

Step 6 Enter the time that you wish recording to stop and press the button
labeled TIME-FINISH. This completes the programming of one show.

Step 7 If you do not wish to record anything else, press the button labeled
END-PROG.

Step 8 Turn off your DVR. Your DVR is now in TIMER mode, ready to record.

Although as children we learned this algorithm informally, it can, like
the DVR instructions in Figure 1.1, be written formally as an explicit
sequence of instructions. Figure 1.2 shows an algorithm for adding two posi-
tive m-digit numbers. It expresses formally the operations informally
described previously. Again, note the three types of instructions used to con-
struct the algorithm: sequential (steps 1, 2, 4, 6, 7, 8, and 9), conditional
(step 5), and iterative (step 3).

Even though it may not appear so, this is the same “decimal addition
algorithm” that you learned in grade school; if you follow it rigorously, it is
guaranteed to produce the correct result. Let’s watch it work.

FIGURE 1.2
Algorithm for Adding Algorithm for Adding Two m-Digit Numbers

Two m-digit Numbers) - L .
Given: m = 1 and two positive numbers each containing m digits, a,,_, a,, ,... &,
and b, b, ,...b

Wanted: c,c,,_4 Cp,_o- - - C; Where ¢, ¢, G

m“m—1 “m-2"""* C0 = (am—1 a
(bt by - - - bg)

m—a---8g) +

Algorithm:

Step1 Set the value of carry to 0.

Step2 Set the value of ito 0.

Step 3 While the value of iis less than or equal to m— 1, repeat the instructions in
steps 4 through 6.

Step 4 Add the two digits a; and b; to the current value of carry to get c;

Step 5 If ¢;= 10, then reset c; to (c;— 10) and reset the value of carry to 1;

otherwise, set the new value of carry to 0.

Step 6 Add 1 to J, effectively moving one column to the left.

Step 7 Set ¢, to the value of carry.

Step 8 Print out the final answer, ¢, ¢, ; C,.5 --- Cy-

Step 9 Stop.

MM
|
1.2 The Definition of Computer Science 7 !uwl

Add (47 + 25)
m=2 The input
a, =4 a, =7
b,=2 b, =5
Step 1: carry = 0.
STep 28 i=0.
Step 3: We now repeat steps 4 through 6 while i is less than or equal
to 1.
First repetition of the loop (i has the value 0)
STEP 4: Add (a, + b, + carry), which is 7 + 5 + 0, so ¢, = 12.
Step 5: Because ¢, = 10, we reset ¢, to 2 and reset carry to 1.
STEP 62 Reset i to (0 + 1) = 1. Since i is less than or equal to 1, go back

to step 4.
Second repetition of the loop (i has the value 1)

STEP 4: Add (a, + b, + carry), whichis4 +2 + 1,s0¢, = 7.

Step 5: Because ¢; < 10, we reset carry to 0.

STEP 6: Reset i to (1 + 1) = 2. Because i is greater than 1, do not
repeat the loop but instead go to step 7.

Step 7: Setc,=0.

Step 8: Print out the answer ¢, ¢, ¢, = 072 (see the boldface values).

STEP 9: Stop.

We have reached the end of the algorithm, and it has correctly produced the
sum of the two numbers 47 and 25, the three-digit result 072. (A more clever
algorithm would omit the unnecessary leading zero at the beginning of the num-
ber if the last carry value is a zero. That modification is an exercise at the end of
the chapter.) Try working through the algorithm shown in Figure 1.2 with
another pair of numbers to be sure that you understand exactly how it functions.

TR S ST
110 SI1 I TR T 0 5 T
i 1z g L =

had recently been developed in India. In this book he
described formalized, step-by-step procedures for

The word algorithm is derived from the last name of
Muhammad ibn Musa Al-Khowarizmi, a famous Persian
mathematician and author from the eighth and ninth
centuries. Al-Khowarizmi was a teacher at the Mathemat-
ical Institute in Baghdad and the author of the book
Kitab al jabr wal mugabala, which in English means
“Rules of Restoration and Reduction.” It is one of the ear-
liest mathematical textbooks, and its title gives us the
word algebra (the Arabic word al jabr means “reduction”).

In 825 A.D., Al-Khowarizmi wrote another book
about the base-10 positional numbering system that

doing arithmetic operations, such as addition, sub-
traction, and multiplication, on numbers represented
in this new decimal system. In the twelfth century
this book was translated into Latin, introducing the
base-10 Hindu-Arabic numbering system to Europe,
and Al-Khowarizmi’s name became closely associated
with these formal numerical techniques. His last
name was rendered as Algorismus in Latin characters,
and eventually the formalized procedures that he pio-
neered and developed became known as algorithms in
his honor.

CHAPTER 1: An Introduction to Computer Science

The addition algorithm shown in Figure 1.2 is a highly formalized repre-
sentation of a technique that most people learned in the first or second grade
and that virtually everyone knows how to do informally. Why would we take
such a simple task as adding two numbers and express it in so complicated a
fashion? Why are formal algorithms so important in computer science?
Because:

If we can specify an algorithm to solve a problem, then we can automate its
solution.

Once we have formally specified an algorithm, we can build a machine (or
write a program or hire a person) to carry out the steps contained in the algo-
rithm. The machine (or program or person) does not need to understand the
concepts or ideas underlying the solution. It merely has to do step 1, step 2,
step 3, . . . exactly as written. In computer science terminology, the machine,
robot, person, or thing carrying out the steps of the algorithm is called a
computing agent.

Thus computer science can also be viewed as the science of algorithmic
problem solving. Much of the research and development work in computer
science involves discovering correct and efficient algorithms for a wide range
of interesting problems, studying their properties, designing programming
languages into which those algorithms can be encoded, and designing and
building computer systems that can automatically execute these algorithms in
an efficient manner.

At first glance, it may seem that every problem can be solved algorithmi-
cally. However, you will learn in Chapter 12 the startling fact (first proved by
the German logician Kurt Godel in the early 1930s) that there are problems for
which no generalized algorithmic solution can possibly exist. These problems
are, in a sense, unsolvable. No matter how much time and effort is put into
obtaining a solution, none will ever be found. Godel’s discovery, which stag-
gered the mathematical world, effectively places a limit on the capabilities of
computers and computer scientists.

There are also problems for which it is possible to specify an algorithm but
a computing agent would take so long to execute it that the solution is essen-
tially useless. For example, to get a computer to play winning chess, we could
use a brute force approach. Given a board position as input, the computer
would examine every legal move it could possibly make, then every legal
response an opponent could make to each initial move, then every response it
could select to that move, and so on. This analysis would continue until the
game reached a win, lose, or draw position. With that information the com-
puter would be able to optimally choose its next move. If, for simplicity’s sake,
we assume that there are 40 legal moves from any given position on a chess-
board, and it takes about 30 moves to reach a final conclusion, then the total
number of board positions that our brute force program would need to evalu-
ate in deciding its first move is

40 X 40 X 40 X ... X 40 = 403, which is roughly 104

30 times

LML)
|
1.2 The Definition of Computer Science 9 :"hM”I

1.3

s
L 10

Algorithms

If we could build a supercomputer that evaluates 1 trillion (10'?) board
positions per second (which is too high at current levels of technology), it
would take about 30,000,000,000,000,000,000,000,000,000 years for the com-
puter to make its first move! Obviously, a computer could not use a brute force
technique to play a real chess game.

There also exist problems that we do not yet know how to solve algorith-
mically. Many of these involve tasks that require a degree of what we term
“intelligence.” For example, after only a few days a baby recognizes the face of
its mother from among the many faces it sees. In a few months it begins to
develop coordinated sensory and motor control skills and can efficiently plan
how to use them—how to get from the playpen to the toy on the floor with-
out bumping into either the chair or the desk that are in the way. After a few
years the child begins to develop powerful language skills and abstract rea-
soning capabilities.

We take these abilities for granted, but the operations just mentioned—
sophisticated visual discrimination, high-level problem solving, abstract rea-
soning, natural language understanding—cannot be done well (or even at all)
using the computer systems and software packages currently available. The
primary reason is that researchers do not yet know how to specify these oper-
ations algorithmically. That is, they do not yet know how to specify a solution
formally in a detailed step-by-step fashion. As humans, we are able to do them
simply by using the “algorithms” in our heads. To appreciate this problem,
imagine trying to describe algorithmically exactly what steps you follow when
you are painting a picture, composing a poem, or formulating a business plan.

Thus, algorithmic problem solving has many variations. Sometimes solu-
tions do not exist; sometimes a solution is too inefficient to be of any use;
sometimes a solution is not yet known. However, discovering an algorithmic
solution has enormously important consequences. As we noted earlier, if we
can create a correct and efficient algorithm to solve a problem, and if we
encode it into a programming language, then we can take advantage of the
speed and power of a computer system to automate the solution and produce
the desired result. This is what computer science is all about.

By
g 1.3.1 The Formal Definition of an Algorithm
TR —
.F" Algorithm a well-ordered collection of unambiguous and effectively com-
putable operations that, when executed, produces a result and halts in a finite i
amount of time. |

The formal definition of an algorithm is rather imposing and contains a
number of important ideas. Let’s take it apart, piece by piece, and analyze
each of its separate points.

. .. a well-ordered collection . . .

CHAPTER 1: An Introduction to Computer Science

An algorithm is a collection of operations, and there must be a clear and
unambiguous ordering to these operations. Ordering means that we know
which operation to do first and precisely which operation follows each com-
pleted operation. After all, we cannot expect a computing agent to carry out
our instructions correctly if it is confused about which instruction it should
be carrying out.

Consider the following “algorithm” that was taken from the back of
a shampoo bottle and is intended to be instructions on how to use the
product.

Step 1: Wet hair
Step 2: Lather
SteP 3: Rinse
STEP 4: Repeat

At step 4, what operations should be repeated? If we go back to step 1, we will
be unnecessarily wetting our hair. (It is presumably still wet from the previous
operations.) If we go back to step 3 instead, we will not be getting our hair
any cleaner because we have not reused the shampoo. The Repeat instruction
in step 4 is ambiguous in that it does not clearly specify what to do next.
Therefore, it violates the well-ordered requirement of an algorithm. (It also
has a second and even more serious problem—it never stops! We will have
more to say about this second problem shortly.) Statements such as

¢ Go back and do it again. (Do what again?)

e Start over. (From where?)

e If you understand this material, you may skip ahead. (How far?)
e Do either part 1 or part 2. (How do I decide which one to do?)

are ambiguous and can leave us confused and unsure about what operation to
do next. We must be extremely precise in specifying the order in which oper-
ations are to be carried out. One possible way is to number the steps of the
algorithm and use these numbers to specify the proper order of execution. For
example, the ambiguous operations shown above could be made more precise
as follows:

e Go back to step 3 and continue execution from that point.
e Start over from step 1.
e If you understand this material, skip ahead to line 21.

e If you are 18 years of age or older, do part 1 beginning with step 9;
otherwise, do part 2 beginning with step 40.

. .. of unambiguous and effectively computable operations . . .

Algorithms are composed of things called “operations,” but what do those
operations look like? What types of building blocks can be used to construct
an algorithm? The answer to these questions is that the operations used in an
algorithm must meet two criteria—they must be unambiguous, and they must

be effectively computable.
. e
1.3 Algorithms 11 ||| d

Here is a possible “algorithm” for making a cherry pie:

Step 1: Make the crust

STEP 2: Make the cherry filling

Step 3: Pour the filling into the crust
STEP 4: Bake at 350°F for 45 minutes

For a professional baker, this algorithm would be fine. He or she would under-
stand how to carry out each of the operations listed above. Novice cooks, like
most of us, would probably understand the meaning of steps 3 and 4. However,
we would probably look at steps 1 and 2, throw up our hands in confusion, and
ask for clarification. We might then be given more detailed instructions.

Step 1: Make the crust
1.1 Take one and one-third cups flour
1.2 Sift the flour

1.3 Mix the sifted flour with one-half cup butter and
one-fourth cup water

1.4 Roll into two 9-inch pie crusts

STEP 2: Make the cherry filling

2.1 Open a 16-ounce can of cherry pie filling and pour
into bowl

2.2 Add a dash of cinnamon and nutmeg, and stir

With this additional information most people, even inexperienced cooks,
would understand what to do, and they could successfully carry out this bak-
ing algorithm. However, there may be some people, perhaps young children,
who still do not fully understand each and every line. For those people, we
must go through the simplification process again and describe the ambiguous
steps in even more elementary terms.

For example, the computing agent executing the algorithm might not
know the meaning of the instruction “Sift the flour” in step 1.2, and we would
have to explain it further.

1.2 Sift the flour

1.2.1 Get out the sifter, which is the device shown on page A-9
of your cookbook, and place it directly on top of a
2-quart bowl

1.2.2 Pour the flour into the top of the sifter and turn the crank in
a counterclockwise direction

1.2.3 Let all the flour fall through the sifter into the bowl

Now, even a child should be able to carry out these operations. But if that
were not the case, then we would go through the simplification process yet
one more time, until every operation, every sentence, every word was clearly
understood.

An unambiguous operation is one that can be understood and carried out
directly by the computing agent without further simplification or explanation.

LRIIFE N
M!l ll] 12 CHAPTER 1: An Introduction to Computer Science

When an operation is unambiguous, we call it a primitive operation, or sim-
ply a primitive of the computing agent carrying out the algorithm. An algo-
rithm must be composed entirely of primitives. Naturally, the primitive
operations of different individuals (or machines) vary depending on their
sophistication, experience, and intelligence, as is the case with the cherry pie
recipe, which varies with the baking experience of the person following the
instructions. Hence, an algorithm for one computing agent may not be an algo-
rithm for another.

One of the most important questions we will answer in this text is, What
are the primitive operations of a typical modern computer system? What oper-
ations can a hardware processor “understand” in the sense of being able to
carry out directly, and what operations must be further refined and simplified?

However, it is not enough for an operation to be understandable. It must
also be doable by the computing agent. If an algorithm tells me to flap my
arms really quickly and fly, I understand perfectly well what it is asking me to
do. However, I am incapable of doing it. “Doable” means there exists a compu-
tational process that allows the computing agent to complete that operation
successfully. The formal term for “doable” is effectively computable.

For example, the following is an incorrect technique for finding and print-
ing the 100th prime number. (A prime number is a whole number not evenly
divisible by any numbers other than 1 and itself, such as 2, 3, 5, 7, 11, 13,)

Step 1: Generate a list L of all the prime numbers: L,L,L,...
Step 2: Sort the list L in ascending order

STEP 3: Print out the 100th element in the list, L,

STEP 4: Stop

The problem with these instructions is in step 1, “Generate a list L of all the
prime numbers. . . .” That operation cannot be completed. There are an infi-
nite number of prime numbers, and it is not possible in a finite amount of
time to generate the desired list L. No such computational process exists, and
the operation described in step 1 is not effectively computable. Here are some
other examples of operations that may not be effectively computable:

Write out the exact decimal value of 7. (7 cannot be represented exactly.)

Set average to (sum + number). (If number = 0, division is undefined.)

Set the value of result to W (If N < 0, then result is undefined if you are
using real numbers.)

Add 1 to the current value of x. (What if x currently has no value?)

This last example explains why we had to initialize the value of the variable
called carry to 0 in step 1 of Figure 1.2. In step 4 the algorithm says, “Add the
two digits @, and b, to the current value of carry to get c.” If carry has no current
value, then when the computing agent tries to perform the instruction in step 4,
it will not know what to do, and this operation is not effectively computable.

... that produces a result . . .
Algorithms solve problems. In order to know whether a solution is correct,

an algorithm must produce a result that is observable to a user, such as a
numerical answer, a new object, or a change to its environment. Without some

LML)
|
1.3 Algorithms 13 :"M”I

B -

FIGURE|1.3 (a)

A Correct Solution to the
Shampooing Problem

observable result, we would not be able to say whether the algorithm is right or
wrong. In the case of the DVR algorithm (Figure 1.1), the result will be a disc
containing recorded TV programs. The addition algorithm (Figure 1.2) produces
an m-digit sum.

Note that we use the word result rather than answer. Sometimes it is not
possible for an algorithm to produce the correct answer because for a given set
of input, a correct answer does not exist. In those cases the algorithm may
produce something else, such as an error message, a red warning light, or an
approximation to the correct answer. Error messages, lights, and approxima-
tions, though not necessarily what we wanted, are all observable results.

... and halts in a finite amount of time.

Another important characteristic of algorithms is that the result must be
produced after the execution of a finite number of operations, and we must
guarantee that the algorithm eventually reaches a statement that says, “Stop,
you are done” or something equivalent. We have already pointed out that the
shampooing algorithm was not well ordered because we did not know which
statements to repeat in step 4. However, even if we knew which block of state-
ments to repeat, the algorithm would still be incorrect because it makes no
provision to terminate. It will essentially run forever, or until we run out of
hot water, soap, or patience. This is called an infinite loop, and it is a com-
mon error in the design of algorithms.

Figure 1.3(a) shows an algorithmic solution to the shampooing problem
that meets all the criteria discussed in this section if we assume that you want
to wash your hair twice. The algorithm of Figure 1.3(a) is well ordered. Each
step is numbered, and the execution of the algorithm unfolds sequentially,
beginning at step 1 and proceeding from instruction i to instruction i + 1,
unless the operation specifies otherwise. (For example, the iterative instruc-
tion in step 3 says that after completing step 6, you should go back and start
again at step 4 until the value of WashCount equals 2.) The intent of each
operation is (we assume) clear, unambiguous, and doable by the person wash-
ing his or her hair. Finally, the algorithm will halt. This is confirmed by
observing that WashCount is initially set to 0 in step 2. Step 6 says to add 1 to
WashCount each time we lather and rinse our hair, so it will take on the values
0,1, 2,....However, the iterative statement in step 3 says stop lathering
and rinsing when the value of WashCount reaches 2. At that point, the algo-
rithm goes to step 7 and terminates execution with the desired result: clean

Algorithm for Shampooing Your Hair

STEP OPERATION

1 Wet your hair

Set the value of WashCountto 0

Repeat steps 4 through 6 until the value of WashCount equals 2
Lather your hair
Rinse your hair
Add 1 to the value of WashCount

Stop, you have finished shampooing your hair

No o~ N

CHAPTER 1: An Introduction to Computer Science

FIGURE 1.3(b)
Another Correct Solution to the Another Algorithm for Shampooing Your Hair
Shampooing Problem

STEP OPERATION
1 Wet your hair
2 Lather your hair
3 Rinse your hair
4 Lather your hair
5 Rinse your hair
6 Stop, you have finished shampooing your hair

hair. (Although it is correct, do not expect to see this algorithm on the back
of a shampoo bottle in the near future.)

As is true for any recipe or set of instructions, there is always more than a
single way to write a correct solution. For example, the algorithm of Figure 1.3(a)
could also be written as shown in Figure 1.3(b). Both of these are correct solu-
tions to the shampooing problem. (Although they are both correct, they are not
necessarily equally elegant. This point is addressed in Exercise 6 at the end of the
chapter.)

= 1.3.2 The Importance of Algorithmic Problem Solving

The instruction sequences in Figures 1.1, 1.2, 1.3(a), and 1.3(b) are examples
of the types of algorithmic solutions designed, analyzed, implemented, and
tested by computer scientists, although they are much shorter and simpler.
The operations shown in these figures could be encoded into some appropriate
language and given to a computing agent (such as a personal computer or a
robot) to execute. The device would mechanically follow these instructions
and successfully complete the task. This device could do this without having
to understand the creative processes that went into the discovery of the solu-
tion and without knowing the principles and concepts that underlie the prob-
lem. The robot simply follows the steps in the specified order (a required
characteristic of algorithms), successfully completing each operation (another
required characteristic), and ultimately producing the desired result after a
finite amount of time (also required).

Just as the Industrial Revolution of the nineteenth century allowed
machines to take over the drudgery of repetitive physical tasks, the “com-
puter revolution” of the twentieth and twenty-first centuries has enabled us
to implement algorithms that mechanize and automate the drudgery of
repetitive mental tasks, such as adding long columns of numbers, finding
names in a telephone book, sorting student records by course number, and
retrieving hotel or airline reservations from a file containing hundreds of
thousands of pieces of data. This mechanization process offers the prospect
of enormous increases in productivity. It also frees people to do those things
that humans do much better than computers, such as creating new ideas, set-
ting policy, doing high-level planning, and determining the significance of
the results produced by a computer. Certainly, these operations are a much
more effective use of that unique computing agent called the human brain.

TGN
|
1.3 Algorithms 15 !"MI

PRACTICE PROBLEMS

Get a copy of the instructions that describe how to
1. register for classes at the beginning of the semester.

2. use the online computer catalog to see what is available in the col-
lege library on a given subject.

3. use the copying machine in your building.
4. log on to the World Wide Web.

Look over the instructions and decide whether they meet the definition
of an algorithm given in this section. If not, explain why, and rewrite
each set of instructions so that it constitutes a valid algorithm. Also
state whether each instruction is a sequential, conditional, or iterative
operation.

1.4 A Brief History of Computing *

Although computer science is not simply a study of computers, there is no
doubt that the field was formed and grew in popularity as a direct response to
their creation and widespread use. This section takes a brief look at the his-
torical development of computer systems.

The appearance of some technologies, such as the telephone, the light
bulb, and the first heavier-than-air flight, can be traced directly to a single
place, a specific individual, and an exact instant in time. Examples include the
flight of Orville and Wilbur Wright on December 17, 1903, in Kitty Hawk, North
Carolina; and the famous phrase “Mr. Watson, come here, I want to see you.”
uttered by Alexander Graham Bell over the first telephone on March 12, 1876.

Computers are not like that. They did not appear in a specific room on a given
day as the creation of some individual genius. The ideas that led to the design of
the first computers evolved over hundreds of years, with contributions coming
from many people, each building on and extending the work of earlier discoverers.

#= 1.4.1 The Early Period: Up to 1940

If this were a discussion of the history of mathematics and arithmetic instead of
computer science, it would begin 3,000 years ago with the early work of the
Greeks, Egyptians, Babylonians, Indians, Chinese, and Persians. All these cul-
tures were interested in and made important contributions to the fields of
mathematics, logic, and numerical computation. For example, the Greeks devel-
oped the fields of geometry and logic; the Babylonians and Egyptians developed
numerical methods for generating square roots, multiplication tables, and
trigonometric tables used by early sailors; Indian mathematicians developed
both the base-10 decimal numbering system and the concept of zero; and in the
ninth century the Persians developed algorithmic problem solving.

The first half of the seventeenth century saw a number of important
developments related to automating and simplifying the drudgery of

LRIIFE N
M!l ll] 16 CHAPTER 1: An Introduction to Computer Science

FIGURE|1.4

The Pascaline. One of the
Earliest Mechanical Calculators

arithmetic computation. (The motivation for this work appears to be the sud-
den increase in scientific research during the sixteenth and seventeenth cen-
turies in the areas of astronomy, chemistry, and medicine. This work required
the solution of larger and more complex mathematical problems.) In 1614, the
Scotsman John Napier invented logarithms as a way to simplify difficult
mathematical computations. The early seventeenth century also witnessed
the development of a number of new and quite powerful mechanical devices
designed to help reduce the burden of arithmetic. The first slide rule
appeared around 1622. In 1672, the French philosopher and mathematician
Blaise Pascal designed and built one of the first mechanical calculators
(named the Pascaline) that could do addition and subtraction. A model of
this early calculating device is shown in Figure 1.4.

The famous German mathematician Gottfried Leibnitz (who, along with Isaac
Newton, was one of the inventors of the calculus) was also excited by the idea of
automatic computation. He studied the work of Pascal and others, and in 1674,
he constructed a mechanical calculator called Leibnitz’s Wheel that could do
not only addition and subtraction but multiplication and division as well. Both
Pascal’s and Leibnitz’s machines used interlocking mechanical cogs and gears to
store numbers and perform basic arithmetic operations. Considering the state of
technology available to Pascal, Leibnitz, and others in the seventeenth century,
these first calculating machines were truly mechanical wonders.

These early developments in mathematics and arithmetic were important
milestones because they demonstrated how mechanization could simplify and
speed up numerical computation. For example, Leibnitz’s Wheel enabled
seventeenth-century mathematicians to generate tables of mathematical
functions many times faster than was possible by hand. (It is hard to believe
in our modern high-tech society, but in the seventeenth century the genera-
tion of a table of logarithms could represent a lifetime’s effort of one person!)
However, the slide rule and mechanical calculators of Pascal and Leibnitz,
though certainly impressive devices, were not computers. Specifically, they
lacked two fundamental characteristics:

e They did not have a memory where information could be stored in
machine-readable form.

¢ They were not programmable. A person could not provide in advance a
sequence of instructions that could be executed by the device without
manual intervention.

Computer History Museum

|
1.4 A Brief History of Computing 17 !.

S -

FIGURE|1.5

Drawing of the Jacquard Loom

Surprisingly, the first actual “computing device” to include both of these
features was not created for the purposes of mathematical computations.
Rather, it was a loom used for the manufacture of rugs and clothing. It was
developed in 1801 by the Frenchman Joseph Jacquard. Jacquard wanted to
automate the weaving process, at the time a painfully slow and cumbersome
task in which each separate row of the pattern had to be set up by the weaver
and an apprentice. Because of this, anything but the most basic style of cloth-
ing was beyond the means of most people.

Jacquard designed an automated loom that used punched cards to create
the desired pattern. If there was a hole in the card in a particular location,
then a hook could pass through the card, grasp a warp thread, and raise it to
allow a second thread to pass underneath. If there was no hole in the card,
then the hook could not pass through, and the thread would pass over the
warp. Depending on whether the thread passed above or below the warp, a
specific design was created. Each punched card described one row of the pat-
tern. Jacquard connected the cards and fed them through his loom, and it
automatically sequenced from card to card, weaving the desired pattern. A
drawing of the Jacquard loom is shown in Figure 1.5. The rows of connected
punched cards can be seen at the top of the device.

Jacquard’s loom represented an enormously important stage in the devel-
opment of computers. Not only was it the first programmable device, but it
also showed how the knowledge of a human expert (in this case, a master
weaver) could be captured in machine-readable form and used to control a

© Bettmann/CORBIS

CHAPTER 1: An Introduction to Computer Science

machine that accomplished the same task automatically. Once the program
was created, the expert was no longer needed. The lowliest apprentice could
load the cards into the loom, turn it on, and produce a finished, high-quality
product over and over again.

to this new manufacturing technology, and they burned

down factories that attempted to use it. The movement
The development of the automated Jacquard loom and lasted only a few years and its leaders were all jailed, but
other technological advances in the weaving industry was their name lives on today as a pejorative term for any
so frightening to the craft guilds of the early nineteenth group that is frightened and angered by the latest devel-
century that in 1811 it led to the formation of a group opments in any branch of science and technology, includ-
called the Luddites. The Luddites, named after their leader ~ ing computers.
Ned Ludd of Nottingham, England, were violently opposed

These pioneers had enormous influence on the designers and inventors who
came after them, among them a mathematics professor at Cambridge University
named Charles Babbage. Babbage was interested in automatic computation. In
1823, he extended the ideas of Pascal and Leibnitz and constructed a working
model of the largest and most sophisticated mechanical calculator of its time. This
machine, called the Difference Engine, could do addition, subtraction, multipli-
cation, and division to 6 significant digits, and it could solve polynomial equa-
tions and other complex mathematical problems as well. Babbage tried to
construct a larger model of the Difference Engine that would be capable of work-
ing to an accuracy of 20 significant digits, but after 12 years of work he had to
give up his quest. The technology available in the 1820s and 1830s was not suffi-
ciently advanced to manufacture cogs and gears to the precise tolerances his
design required. Like Galileo’s helicopter or Jules Verne's atomic submarine, Bab-
bage’s ideas were fundamentally sound but years ahead of their time. (In 1991 the
London Museum of Science, using Babbage’s original plans, built an actual work-
ing model of the Difference Engine. It was 7 feet high, 11 feet wide, weighed
3 tons, and had 4,000 moving parts. It worked exactly as Babbage had planned.)

Babbage did not stop his investigations with the Difference Engine. In the
1830s, he designed a more powerful and general-purpose computational
machine that could be configured to solve a much wider range of numerical
problems. His machine had four basic components: a mill to perform the arith-
metic manipulation of data, a store to hold the data, an operator to process
the instructions contained on punched cards, and an output unit to put the
results onto separate punched cards. Although it would be about 110 years
before a “real” computer would be built, Babbage’s proposed machine, called
the Analytic Engine, is amazingly similar in design to a modern computer. The
four components of the Analytic Engine are virtually identical in function to
the four major components of today’s computer systems:

Babbage’s Term Modern Terminology
mill arithmetic/logic unit
store memory

operator processor

output input/output

TG
1.4 A Brief History of Computing 19 !uwl

20

Babbage died before a working steam-powered model of his Analytic
Engine could be completed, but his ideas lived on to influence others, and
many computer scientists consider the Analytic Engine the first “true” com-
puter system, even if it existed only on paper and in Babbage’s dreams.

Another person influenced by the work of Pascal, Jacquard, and Babbage
was a young statistician at the U.S. Census Bureau named Herman Hollerith.
Because of the rapid increase in immigration to America at the end of the
nineteenth century, officials estimated that doing the 1890 enumeration man-
ually would take from 10 to 12 years. The 1900 census would begin before the
previous one was finished. Something had to be done.

Hollerith designed and built programmable card-processing machines that
could automatically read, tally, and sort data entered on punched cards. Cen-
sus data were coded onto cards using a machine called a keypunch. The cards
were taken either to a tabulator for counting and tallying or to a sorter for
ordering alphabetically or numerically. Both of these machines were program-
mable (via wires and plugs) so that the user could specify such things as
which card columns should be tallied and in what order the cards should be
sorted. In addition, the machines had a small amount of memory to store
results. Thus, they had all four components of Babbage’s Analytic Engine.

Hollerith’s machines were enormously successful, and they were one of
the first examples of the use of automated information processing to solve
large-scale “real-world” problems. Whereas the 1880 census required 8 years to
be completed, the 1890 census was finished in about 2 years, even though
there was a 30% increase in the U.S. population during that decade.

Although they were not really general-purpose computers, Hollerith's card
machines were a very clear and very successful demonstration of the enormous
advantages of automated information processing. This fact was not lost on

b e i v R ‘mi . E

Charles Babbage, the son of a banker, was born into a life of
wealth and comfort in eighteenth-century England. He
attended Cambridge University and displayed an aptitude
for mathematics and science. He was also an inventor and
“tinkerer” who loved to build all sorts of devices. Among the
devices he constructed were unpickable locks, skeleton keys,
speedometers, and even the first cow catcher for trains. His
first and greatest love, though, was mathematics, and he
spent the better part of his life creating machines to do
automatic computation. Babbage was enormously impressed
by the work of Jacquard in France. (In fact, Babbage had on
the wall of his home a woven portrait of Jacquard that was
woven using 24,000 punched cards.) He spent the last 30 to
40 years of his life trying to build a computing device, the
Analytic Engine, based on Jacquard’s ideas.

In that quest, he was helped by Countess Ada Augusta
Byron, daughter of the famous English poet, Lord Byron.

The countess was introduced to Babbage and was enor-
mously impressed by his ideas about the Analytic Engine.
As she put it, “We may say most aptly that the Analytic
Engine weaves algebraic patterns just as the Jacquard Loom
weaves flowers and leaves.” Lady Lovelace worked closely
with Babbage to specify how to organize instructions for
the Analytic Engine to solve a particular mathematical
problem. Because of that pioneering work, she is generally
regarded as history’s first computer programmer.

Babbage died in 1871 without realizing his dream.
He also died quite poor because the Analytic Engine ate
up virtually all of his personal fortune. His work was gen-
erally forgotten until the twentieth century when it
became instrumental in moving the world into the com-
puter age.

CHAPTER 1: An Introduction to Computer Science

Hollerith, who left the Census Bureau in 1902 to found the Computer Tabulat-
ing Recording Company to build and sell these machines. He planned to mar-
ket his new product to a country that was just entering the Industrial
Revolution and that, like the Census Bureau, would be generating and pro-
cessing enormous volumes of inventory, production, accounting, and sales
data. His punched card machines became the dominant form of data process-
ing equipment during the first half of the twentieth century, well into the
1950s and 1960s. During this period, virtually every major U.S. corporation
had data processing rooms filled with keypunches, sorters, and tabulators, as
well as drawer upon drawer of punched cards. In 1924, Hollerith's tabulating
machine company changed its name to IBM, and it eventually evolved into the
largest computing company in the world.

We have come a long way from the 1640s and the Pascaline, the early
adding machine constructed by Pascal. We have seen the development of more
powerful mechanical calculators (Leibnitz), automated programmable manu-
facturing devices (Jacquard), a design for the first computing device (Bab-
bage), and the initial applications of information processing on a massive
scale (Hollerith). However, we still have not yet entered the “computer age.”
That did not happen until about 1940, and it was motivated by an event that,
unfortunately, has fueled many of the important technological advances in
human history—the outbreak of war.

= 1.4.2 The Birth of Computers: 1940-1950

World War II created another, quite different set of information-based prob-
lems. Instead of inventory, sales, and payroll, the concerns became ballistics
tables, troop deployment data, and secret codes. A number of research projects
were started, funded largely by the military, to build automatic computing
machines to perform these tasks and assist the Allies in the war effort.

Beginning in 1931, the U.S. Navy and IBM jointly funded a project at Har-
vard University under Professor Howard Aiken to build a computing device
called Mark I. This was a general-purpose, electromechanical programmable
computer that used a mix of relays, magnets, and gears to process and store
data. The Mark I was the first computing device to use the base-2 binary num-
bering system, which we will discuss in Chapter 4. It used vacuum tubes and
electric current to represent the two binary values, off for 0, on for 1. Until
then computing machines had used decimal representation, typically using a
10-toothed gear, each tooth representing a digit from 0 to 9. The Mark I was
completed in 1944, about 110 years after Babbage’s dream of the Analytic
Engine, and is generally considered one of the first working general-purpose
computers. The Mark I had a memory capacity of 72 numbers, and it could be
programmed to perform a 23-digit multiplication in the lightning-like time of
4 seconds. Although laughably slow by modern standards, the Mark I was
operational for almost 15 years, and it carried out a good deal of important
and useful mathematical work for the U.S. Navy during the war.

At about the same time, a much more powerful machine was taking shape
at the University of Pennsylvania in conjunction with the U.S. Army. During
the early days of World War II, the Army was producing many new artillery
pieces, but it found that it could not produce the firing tables equally as fast.
These tables told the gunner how to aim the gun on the basis of such input as
distance to the target and current temperature, wind, and elevation. Because

I
(TTHRLUHGE
1.4 A Brief History of Computing 21 !"hM“:

R

FIGURE 1.6

Photograph of the ENIAC
Computer

of the enormous number of variables and the complexity of the computations
(which use both trigonometry and calculus), these firing tables were taking
more time to construct than the gun itself.

To help solve this problem, in 1943 the Army initiated a research project
with J. Presper Eckert and John Mauchly of the University of Pennsylvania to
build a completely electronic computing device. The machine, dubbed the
ENIAC (Electronic Numerical Integrator and Calculator), was completed in 1946
and was the first fully electronic general-purpose programmable computer.
This pioneering machine is shown in Figure 1.6.

ENIAC contained 18,000 vacuum tubes and nearly filled a building; it was
100 feet long, 10 feet high, and weighed 30 tons. Because it was fully elec-
tronic, it did not contain any of the slow mechanical components found in
Mark I, and it executed instructions much more rapidly. The ENIAC could add
two 10-digit numbers in about 1/5,000 of a second and could multiply two
numbers in 1/300 of a second, a thousand times faster than the Mark I.

The Mark I and ENIAC are two well-known examples of early computers, but
they are by no means the only ones of that era. For example, the ABC system
(Atanasoff-Berry Computer), designed and built by Professor John Atanasoff
and his graduate student Clifford Berry at Iowa State University, was actually
the first electronic computer, constructed during the period 1939-1942. How-
ever, it never received equal recognition because it was useful for only one
task, solving systems of simultaneous linear equations. In England, a computer
called Colossus was built in 1943 under the direction of Alan Turing, a famous
mathematician and computer scientist whom we will meet again in Chapter 12.
This machine, one of the first computers built outside the United States, was
used to crack the famous German Enigma code that the Nazis believed to be
unbreakable. Colossus has also not received as much recognition as ENIAC
because of the secrecy that shrouded the Enigma project. Its very existence was
not widely known until many years after the end of the war.

At about the same time that Colossus was taking form in England, a German
engineer named Konrad Zuse was working on a computing device for the German

CHAPTER 1: An Introduction to Computer Science

From the Collections of the University of Pennsylvania Archives

army. The machine, code named Z1, was similar in design to the ENIAC—a pro-
grammable, general-purpose, fully electronic computing device. Fortunately for
the allied forces, the Z1 project was not completed before the end of World War II.

Although the machines just described—ABC, Mark I, ENIAC, Colossus, and
Z1—were computers in the fullest sense of the word (they had memory and
were programmable), they did not yet look like modern computer systems.
One more step was necessary, and that step was taken in 1946 by the individ-
ual who was most instrumental in creating the computer as we know it today,
John Von Neumann.

Von Neumann was not only one of the most brilliant mathematicians who
ever lived, but was a genius in many other areas as well, including experimen-
tal physics, chemistry, economics, and computer science. Von Neumann, who
taught at Princeton University, had worked with Eckert and Mauchly on the
ENIAC project at the University of Pennsylvania. Even though that project was
successful, he recognized a number of fundamental shortcomings in ENIAC. In
1946, he proposed a radically different computer design based on a model
called the stored program computer. Until then, all computers were pro-
grammed externally using wires, connectors, and plugboards. The memory unit
stored only data, not instructions. For each different problem, users had to
rewire virtually the entire computer. For example, the plugboards on the
ENIAC contained 6,000 separate switches, and reprogramming the ENIAC
involved specifying the new settings for all these switches—not a trivial task.

Von Neumann proposed that the instructions that control the operation
of the computer be encoded as binary values and stored internally in the

John Von Neumann was born in Budapest, Hungary. He was
a child prodigy who could divide 8-digit numbers in his
head by the age of 6. He was a genius in virtually every
field that he studied, including physics, economics, engi-
neering, and mathematics. At 18 he received an award as
the best mathematician in Hungary, a country known for
excellence in the field, and he received his Ph.D., summa
cum laude, at 21. He came to the United States in 1930 as
a guest lecturer at Princeton University and taught there

F FFEEEEEEEEEEEE R

for three years. Then, in 1933 he became one of the found-
ing members (along with Albert Einstein) of the Institute
for Advanced Studies, where he worked for 20 years.

He was one of the most brilliant minds of the twenti-
eth century, a true genius in every sense, both good and
bad. He could do prodigious mental feats in his head, and
his thought processes usually raced way ahead of “ordi-
nary” mortals who found him quite difficult to work with.
One of his colleagues joked that “Johnny wasn’t really
human, but after living among them for so long, he
learned to do a remarkably good imitation of one.”

Von Neumann was a brilliant theoretician who did
pioneering work in pure mathematics, operations research,
game theory, and theoretical physics. He was also an engi-
neer, concerned about practicalities and real-world prob-
lems, and it was this interest in applied issues that led Von
Neumann to design and construct the first stored program
computer. One of the early computers built by the RAND
Corp. in 1953 was affectionately called “Johnniac” in his
honor, although Von Neumann detested that name. Like
the UNIVAC I, it has a place of honor at the Smithsonian
Institution.

1.4

A Brief History of Computing

(TIVIRERGRI
| I
1 .I”.IMLI

i

11

H
|I= 24

memory unit along with the data. To solve a new problem, instead of rewiring
the machine, you would rewrite the sequence of instructions—that is, create
a new program. Von Neumann invented programming as it is known today.

The model of computing proposed by Von Neumann included many other
important features found on all modern computing systems, and to honor him
this model of computation has come to be known as the Von Neumann
architecture. We will study this architecture in great detail in Chapters 4 and 5.

Von Neumann's research group at the University of Pennsylvania imple-
mented his ideas, and they built one of the first stored program computers,
called EDVAC (with a V), in 1951. At about the same time, a stored program
computer called EDSAC (with an S) was built at Cambridge University in
England under the direction of Professor Maurice Wilkes. The appearance of
these machines and others like them ushered in the modern computer age.
Even though they were much slower, bulkier, and less powerful than our
current machines, EDVAC and EDSAC executed programs in a fashion surpris-
ingly similar to the miniaturized and immensely more powerful computers of
the twenty-first century. A commercial model of the EDVAC, called UNIVAC I—
the first computer actually sold—was built by Eckert and Mauchly and deliv-
ered to the U.S. Bureau of the Census on March 31, 1951. (It ran for 12 years
before it was retired, shut off for the last time, and moved to the Smithsonian
Institution.) This date marks the true beginning of the “computer age.”

The importance of Von Neumann's contributions to computer systems
development cannot be overstated. Although his original proposals are at
least 60 years old, virtually every computer built today is a Von Neumann
machine in its basic design. A lot has changed in computing, and a powerful
high-resolution graphics workstation and the EDVAC would appear to have
little in common. However, the basic principles on which these machines are

in disgrace for tax fraud.) Judge Larson overturned the ENIAC
patent on the basis that Eckert and Mauchly had been signif-

Our discussion of what was happening in computing from
1939 to 1946 showed that many groups were involved in
designing and building the first computers. Therefore, it
would seem that no single individual can be credited with
the title Inventor of the Electronic Digital Computer.
Surprisingly, that is not true. In February 1964, the
Sperry Rand Corp. (now UNISYS) was granted a U.S. patent
on the ENIAC computer as the first fully electronic comput-
ing device, J. Presper Eckert and John Mauchly being its
designers and builders. However, in 1967 a suit was filed in
U.S. District Court in Minneapolis, Minnesota, to overturn
that patent. The suit, Honeywell v. Sperry Rand, was heard
before U.S. Federal Judge Earl Larson, and on October 19,
1973, his verdict was handed down. (This enormously impor-
tant verdict was never given the media coverage it deserved
because it happened in the middle of the Watergate hearings
and on the very day that Vice President Spiro Agnew resigned

icantly influenced in their 1943-1944 work on ENIAC by ear-
lier research and development work by John Atanasoff at
TIowa State University. During the period 1939-1943,
Mauchly had communicated extensively with Atanasoff and
had even traveled to Iowa to see the ABC machine in person.
In a sense, the verdict declared that Atanasoff is really the
inventor of the first computer. This decision was never
appealed. Therefore, the official honor of having designed
and built the first electronic computer, at least in U.S. Dis-
trict Court, goes to Professor John Vincent Atanasoff.

On November 13, 1990, in a formal ceremony at the
White House, Professor Atanasoff was awarded the National
Medal of Technology by President George H.W. Bush for
his pioneering contributions to the development of the
computer.

CHAPTER 1: An Introduction to Computer Science

constructed are virtually identical, and the same theoretical model underlies
their operation. There is an old saying in computer science that “There is
nothing new since Von Neumann!” This saying is certainly not true (much has
happened), but it demonstrates the importance and amazing staying power of
Von Neumann's original design.

= 1.4.3 The Modern Era: 1950 to the Present

The last 60 or so years of computer development have involved taking the Von
Neumann architecture and improving it in terms of hardware and software.
Since 1950, computer systems development has been primarily an evolutionary
process, not a revolutionary one. The enormous number of changes in com-
puters in recent decades have made them faster, smaller, cheaper, more reli-
able, and easier to use, but have not drastically altered their basic underlying
structure.

The period 1950-1957 (these dates are rough approximations) is often
called the first generation of computing. This era saw the appearance of
UNIVAC I, the first computer built for sale, and the IBM 701, the first com-
puter built by the company that would soon become a leader in this new
field. These early systems were similar in design to EDVAC, and they were
bulky, expensive, slow, and unreliable. They used vacuum tubes for process-
ing and storage, and they were extremely difficult to maintain. The act of
turning the machine on alone could blow out a dozen tubes! For this reason,
first-generation machines were used only by trained personnel and only in
specialized locations such as large corporations, government and university
research labs, and military installations, which could provide this expensive
support environment.

The second generation of computing, roughly 1957-1965, heralded a
major change in the size and complexity of computers. In the late 1950s, the
bulky vacuum tube was replaced by a single transistor only a few millimeters in
size, and memory was now constructed using tiny magnetic cores only 1/50 of
an inch in diameter. (We will introduce and describe both of these devices in
Chapter 4.) These technologies not only dramatically reduced the size of com-
puters but also increased their reliability and reduced costs. Suddenly, buying
and using a computer became a real possibility for some small and medium-
sized businesses, colleges, and government agencies. This was also the era of
the appearance of FORTRAN and COBOL, the first high-level (English-like)
programming languages. (We will study this type of programming language
in Chapters 9 and 10.) Now it was no longer necessary to be an electrical engi-
neer to solve a problem on a computer. One simply needed to learn how to
write commands in a high-level language. The occupation called programmer
was born.

This miniaturization process continued into the third generation of
computing, which lasted from about 1965 to 1975. This was the era of the
integrated circuit. Rather than using discrete electronic components, inte-
grated circuits with transistors, resistors, and capacitors were photographi-
cally etched onto a piece of silicon, which further reduced the size and cost
of computers. From building-sized to room-sized, computers now became
desk-sized, and this period saw the birth of the first minicomputer—the
PDP-1 manufactured by the Digital Equipment Corp. It also saw the birth of
the software industry, as companies sprang up to provide programs such as

I
(TTHRLUHGE
1.4 A Brief History of Computing 25 !"hM“:

AL -

accounting packages and statistical programs to the ever-increasing numbers
of computer users. By the mid-1970s, computers were no longer a rarity.
They were being widely used throughout industry, government, the military,
and education.

The fourth generation, 1975-1985, saw the appearance of the first micro-
computer. Integrated circuit technology had advanced to the point that a com-
plete computer system could be contained on a single circuit board that you
could hold in your hand. The desk-sized machine of the early 1970s now became
a desktop machine, shrinking to the size of a typewriter. Figure 1.7 shows the
Altair 8800, the world's first microcomputer, which appeared in January 1975.

It soon became unusual not to see a computer on someone’s desk. The
software industry poured forth all types of new packages—spreadsheets,
databases, and drawing programs—to meet the needs of the burgeoning user
population. This era saw the appearance of the first computer networks, as
users realized that much of the power of computers lies in their facilitation of
communication with other users. (We will look at networking in great detail in
Chapter 7.) Electronic mail became an important application. Because so many
users were computer novices, the concept of user-friendly systems emerged.
This included new graphical user interfaces with pull-down menus, icons, and
other visual aids to make computing easier and more fun. Embedded
systems—devices that contain a computer to control their internal operation—
first appeared during this generation. Computers were becoming small enough
to be placed inside cars, thermostats, microwave ovens, and wristwatches.

The fifth generation, 1985-?, is where we are today. However, so much is
changing so fast that most computer scientists believe that the concept of
distinct generations has outlived its usefulness. In computer science, change

predicted early that evening, on the basis of well-known
statistical sampling techniques, that Eisenhower would

In the earliest days of computing (1951-1952), few people
knew what a computer was, and even fewer had seen or
worked with one. Computers were the tool of a very small
group of highly trained technical specialists in such fields as
mathematics, physics, and engineering. In those days, the
general public’'s knowledge of computer science was limited
to the robots and alien computers of science fiction movies.

This all changed in November 1952, when millions of
Americans turned on their television sets (also a relatively
new technology) to watch returns from the 1952 presiden-
tial election between Dwight D. Eisenhower and Adlai
Stevenson. In addition to seeing Walter Cronkite and TV
reporters and analysts, viewers were treated to an unex-
pected member of the news staff—a UNIVAC I. CBS execu-
tives had rented a computer and installed it in the very
center of their set, where it sat, lights blinking and tape
drives spinning. They planned to use UNIVAC to produce
election predictions quickly and scoop rival stations that
did their analyses by hand. Ironically, UNIVAC correctly

win the election, but nervous CBS executives were so skep-
tical about this new technology that they did not go on
the air with the computer’s prediction until it had been
confirmed by old-fashioned manual methods.

It was the first time that millions of TV viewers had
actually seen this thing called an electronic digital com-
puter. The CBS staff, who were also quite inexperienced in
computer technology, treated the computer as though it
were human. They would turn toward the computer console
and utter phrases like “UNIVAC, can you tell me who is cur-
rently ahead in Ohio?” or “UNIVAC, do you have any pre-
diction on the final electoral vote total?” In actuality, the
statistical algorithms had been programmed in, days ear-
lier, by the Remington Rand staff, but it looked great on
TV! This first public appearance of a computer was so well
received that computers were used many more times in the
early days of TV, primarily on quiz shows, where they rein-
forced the public’s image of the computer as a “giant elec-
tronic brain.”

CHAPTER 1: An Introduction to Computer Science

FIGURE 1.7

The Altair 8800, the World's |
First Microcomputer

is now a constant companion. Some of the recent developments in computer

systems include:

e Massively parallel processors capable of quadrillions (10*°) of computa-
tions per second

e Handheld digital devices and other types of personal digital assistants

(PDAs)

e High-resolution graphics for imaging, animation, movie making, and

virtual reality

The Altair 8800, shown in Figure 1.7, was the first micro-
computer and made its debut on the cover of Popular
Electronics in January 1975. Its developer, Ed Roberts,
owned a tiny electronics store in Albuquerque, New Mex-
ico. His company was in desperate financial shape when he
read about a new microprocessor from Intel, the Intel
8080. Roberts reasoned that this new chip could be used
to sell a complete personal computer in kit form. He
bought these new chips from Intel at the bargain base-
ment price of $75 each and packaged them in a kit called
the Altair 8800 (named after a location in the TV series
Star Trek), which he offered to hobbyists for $397. Roberts
figured he might sell a few hundred kits a year, enough to
keep his company afloat temporarily. He ended up selling
hundreds of them a day! The Altair microcomputer kits
were so popular that he could not keep them in stock, and

legend has it that people even drove to New Mexico and
camped out in the parking lot to buy their computers.

This is particularly amazing in view of the fact that
the original Altair was difficult to assemble and had only
256 memory cells, no I/0 devices, and no software sup-
port. To program it, the user had to enter binary machine
language instructions directly from the console switches.
But even though it could do very little, people loved it
because it was a real computer, and it was theirs.

The Intel 8080 chip did have the capability of run-
ning programs written in the language called BASIC that
had been developed at Dartmouth in the early 1960s. A
small software company located in Washington state wrote
Ed Roberts a letter telling him that it had a BASIC compiler
that could run on his Altair, making it much easier to use.
That company was called Microsoft—and the rest, as they
say, is history.

1.4

A Brief History of Computing

Aress

27 ||I
E

1.5

o
R

e Powerful multimedia user interfaces incorporating sound, voice recog-
nition, touch, photography, video, and television

e Integrated digital communication devices incorporating data, televi-
sion, telephone, fax, the Internet, and the World Wide Web

e Wireless data communications

® Massive storage devices capable of holding one hundred terabytes (10%4)
of data

e Ubiquitous computing, in which miniature computers are embedded
into our cars, cameras, kitchen appliances, home heating systems, and
even our clothing

In only a few decades, computers have progressed from the UNIVAC I,
which cost millions of dollars, had a few thousand memory locations, and was
capable of only a few thousand operations per second, to today’s top-of-the-
line workstation with a high-resolution flat panel monitor, billions of memory
cells, massive amounts of external storage, and enough processing power to
execute billions of instructions per second, all for about $1,000. Changes of
this magnitude have never occurred so quickly in any other technology. If the
same rate of change had occurred in the auto industry, beginning with the
1909 Model-T, today’s cars would be capable of traveling at a speed of 20,000
miles per hour, would get about a million miles per gallon, and would cost
about $1.00!

Figure 1.8 summarizes the major developments that occurred during each
of the five generations of computer development discussed in this section.
And underlying all of these amazing improvements, the theoretical model
describing the design and construction of computers has not changed signifi-
cantly in the last 60 years.

However, many people feel that significant and important structural
changes are on the way. At the end of Chapter 5 we will introduce models of
computing that are fundamentally quite different from the Von Neumann
architecture in use today. These totally new approaches (e.g., quantum com-
puting) may be the models used in the twenty-second century and beyond.

i

Organization of the Text L

This book is divided into six separate sections, called levels, each of which
addresses one aspect of the definition of computer science that appears at the
beginning of this chapter. Let’s repeat the definition and see how it maps into
the sequence of topics to be presented.

_DEFINITION el

jp#= Computer science the study of algorithms, including

1. Their formal and mathematical properties

2. Their hardware realizations |
3. Their linguistic realizations i
4. Their applications I

CHAPTER 1: An Introduction to Computer Science

FIGURE|1.8

Some of the Major Advance-
ments in Computing

GENERATION APPROXIMATE DATES MAJOR ADVANCES

First 1950-1957 First commercial computers
First symbolic programming languages
Use of binary arithmetic, vacuum tubes for
storage
Punched card input/output
Second 1957-1965 Transistors and core memories
First disks for mass storage
Size reduction, increased reliability, lower costs
First high-level programming languages
First operating systems
Third 1965-1975 Integrated circuits
Further reduction in size and cost, increased
reliability
First minicomputers
Time-shared operating systems
Appearance of the software industry
First set of computing standards for compati-
bility between systems

Fourth 1975-1985 Large-scale and very-large-scale integrated
circuits
Further reduction in size and cost, increased
reliability
First microcomputers
Growth of new types of software and of the
software industry
Computer networks
Graphical user interfaces

Fifth 1985-7? Ultra-large-scale integrated circuits
Supercomputers and parallel processors
Laptops and handheld computers
Wireless computing
Massive external data storage devices
Ubiquitous computing
High-resolution graphics, visualization, virtual
reality
Worldwide networks
Multimedia user interfaces
Widespread use of digitized sound, images,
and movies

Computer science is the study of algorithms, including

1. Their formal and mathematical properties Level 1 of the text (Chapters 2
and 3) is titled “The Algorithmic Foundations of Computer Science.” It continues
the discussion of algorithmic problem solving begun in Sections 1.2 and 1.3 by
introducing important mathematical and logical properties of algorithms. Chap-
ter 2 presents the development of a number of algorithms that solve important
technical problems—certainly more “technical” than shampooing your hair. It
also looks at concepts related to the problem-solving process, such as how we
discover and create good algorithms, what notation we can use to express our
solutions, and how we can check to see whether our proposed algorithm cor-
rectly solves the desired problem.

AL
1.5 Organization of the Text 29 !"hMuI

Our brute force chess example illustrates that it is not enough simply to
develop a correct algorithm; we also want a solution that is efficient and that
produces the desired result in a reasonable amount of time. (Would you want to
market a chess-playing program that takes 10%® years to make its first move?)
Chapter 3 describes ways to compare the efficiency of different algorithms and
select the best one to solve a given problem. The material in Level 1 provides
the necessary foundation for a study of the discipline of computer science.

2. Their hardware realizations Although our initial look at computer sci-
ence investigated how an algorithm behaved when executed by some abstract
“computing agent,” we ultimately want to execute our algorithms on “real”
machines to get “real” answers. Level 2 of the text (Chapters 4 and 5) is titled
“The Hardware World,” and it looks at how to design and construct computer
systems. It approaches this topic from two quite different viewpoints.

Chapter 4 presents a detailed discussion of the underlying hardware. It
introduces the basic building blocks of computers—binary numbers, transis-
tors, logic gates, and circuits—and shows how these elementary electronic
devices can be used to construct components to perform arithmetic and logic
functions such as addition, subtraction, comparison, and sequencing.
Although it is both interesting and important, this perspective produces a
rather low-level view of a computer system. It is difficult to understand how a
computer works by studying only these elementary components, just as it
would be difficult to understand human behavior by investigating the behav-
ior of individual cells. Therefore, Chapter 5 takes a higher-level view of com-
puter hardware. It looks at computers not as a bunch of wires and circuits but
as an integrated collection of subsystems called memory, processor, storage,
input/output, and communications. It will explain in great detail the princi-
ples of the Von Neumann architecture introduced in Section 1.4.

A study of computer systems can be done at an even higher level. To
understand how a computer works, we do not need to examine the functioning
of every one of the thousands of components inside a machine. Instead, we
need only be aware of a few critical pieces that are essential to our work. From
the user’s perspective, everything else is superfluous. This “user-oriented” view
of a computer system and its resources is called a virtual machine or a virtual
environment. A virtual machine is composed only of the resources that the
user perceives rather than of all the hardware resources that actually exist.

This viewpoint is analogous to our level of understanding of what happens
under the hood of our car. There may be thousands of mechanical components
inside an automobile engine, but most of us concern ourselves only with the
items reported on the dashboard—oil pressure, fuel level, engine temperature.
This is our “virtual engine,” and that is all we need or want to know. We are
all too happy to leave the remaining details about engine design to our
friendly neighborhood mechanic.

Level 3 (Chapters 6, 7, and 8), titled “The Virtual Machine,” describes how
a virtual environment is created using a component called system software.
Chapter 6 takes a look at the most important and widely used piece of system
software on a modern computer system, the operating system, which controls
the overall operation of a computer and makes it easier for users to access.
Chapter 7 then goes on to describe how this virtual environment can extend
beyond the boundaries of a single system as it examines how to interconnect
individual machines into computer networks and distributed systems that
provide users with access to a huge collection of computer systems and infor-
mation as well as an enormous number of other users. It is the system software,

LRIIFE N
M!l ll] 30 CHAPTER 1: An Introduction to Computer Science

and the virtual machine it creates, that makes computer hardware manageable
and usable. Finally, Chapter 8 discusses a critically important component of a
virtual machine—the security system that validates who you are and ensures
that you are not attempting to carry out an improper, illegal, or unsafe opera-
tion. As computers become central to the management of such sensitive data as
medical records, military information, and financial data, this aspect of sys-
tem software is taking on even greater importance.

3. Their linguistic realizations After studying hardware design, computer
organization, and virtual machines, you will have a good idea of the tech-
niques used to design and build computers. In the next section of the text, we
ask the question, How can this hardware be used to solve important and inter-
esting problems? Level 4, titled “The Software World” (Chapters 9-12), takes a
look at what is involved in designing and implementing computer software. It
investigates the programs and instruction sequences executed by the hard-
ware, rather than the hardware itself.

Chapter 9 compares several high-level programming languages and intro-
duces fundamental concepts related to the topic of computer programming
regardless of the particular language being studied. This single chapter is cer-
tainly not intended to make you a proficient programmer. Instead, its purpose
is to illustrate some basic features of modern programming languages and give
you an appreciation for the interesting and challenging task of the computer
programmer. Rather than print a separate version of this text for each pro-
gramming language, the textual material specific to each language can be
found on the Web site for this text, and you can download the pages for the
language specified by your instructor and used in your class. See the Preface of
this text for instructions on accessing these Web pages.

There are many programming languages such as C++, Python, Java, and Perl
that can be used to encode algorithms. Chapter 10 provides an overview of a
number of different languages and language models in current use, including the
functional and parallel models. Chapter 11 describes how a program written in a
high-level programming language can be translated into the low-level machine
language codes first described in Chapter 5. Finally, Chapter 12 shows that, even
when we marshal all the powerful hardware and software ideas described in the
first 11 chapters, problems exist that cannot be solved algorithmically. Chapter 12
demonstrates that there are, indeed, limits to computing.

4. Their applications Most people are concerned not with creating pro-
grams but with using programs, just as there are few automotive engineers but
many, many drivers. Level 5, titled “Applications” (Chapters 13-16), moves on
from how to write a program to what these programs can do.

Chapters 13 through 16 explore just a few of the many important and
rapidly growing applications of computers, such as simulation, visualization,
e-commerce, databases, artificial intelligence, and computer graphics and
entertainment. This section cannot possibly survey all the ways in which com-
puters are being used today or will be used in the future. Indeed, there is
hardly an area in our modern, complex society that is not affected in some
important way by information technology. Readers interested in applications
not discussed should seek readings specific to their own areas of interest.

Some computer science professionals are not concerned with building
computers, creating programs, or using any of the applications just described.
Instead, they are interested in the social and cultural impact—both positive and
negative—of this ever-changing technology. The sixth level of this text addresses
this important perspective on computer science. This is not part of the original

I
(TTHRHEIGH
1.5 Organization of the Text 31 !"hM“:

S -

FIGURE(1.9

Organization of the Text into a
Six-Layer Hierarchy

definition of computer science but has become an important area of study. In
Level 6, titled “Social Issues” (Chapter 17), we move to the highest level of
abstraction—the view furthest removed from the computer itself—to discuss
social, ethical, legal, and professional issues related to computer and information
technology. These issues are critically important, because even individuals not
directly involved in developing or using computers are deeply affected by them,
just as society has been drastically and permanently altered by such technological
developments as the telephone, television, and automobile. This last chapter takes
a look at such thorny and difficult topics as computer crime, information privacy,
and intellectual property. Because it's impossible to resolve the complex questions
that arise in these areas, our intent is simply to raise your awareness and provide
some decision-making tools to help you reach your own conclusions.

The overall six-layer hierarchy of this text is summarized in Figure 1.9.
The organizational structure diagrammed in Figure 1.9 is one of the most
important aspects of this text. To describe a field of study, it is not enough to
present a mass of facts and explanations. For learners to absorb, understand,
and integrate this information, there must be a theme, a relationship, a
thread that ties together the various parts of the narrative—in essence, a “big
picture.” Our big picture is Figure 1.9.

We first lay out the basic foundations of computer science (Level 1). We
then proceed upward through five distinct layers of abstraction, from
extremely low-level machine details such as electronic circuits and computer
hardware (Level 2), through intermediate levels that address virtual machines
(Level 3), programming languages and software development (Level 4), to
higher levels that investigate computer applications (Level 5), and address the
use and misuse of information technology (Level 6). The material in each level
provides a foundation to reveal the beauty and complexity of a higher and
more abstract view of the discipline of computer science.

Social Issves
Chapter 17

lications
ChapAt,e’{’,S 13,14,15,16

CHAPTER 1: An Introduction to Computer Science

i ..

LABORATORY 'I

EXPERIENCE

1. e iris e i [rmprylt {niemy b
[Tt 3 Ao e i

Vo By ol gl i, ' By
10 e el e e e i g e B
|3 Wern e m i

|) M A T,
| 8 g
oLl

i

1

Associated with this text is a laboratory manual that
includes software packages and a collection of formal lab-
oratory exercises. These laboratory experiences are
designed to give you a chance to build on, modify, and
experiment with the ideas discussed in the text. You are

T

strongly encouraged to carry out these laboratories to gain
a deeper understanding of the concepts presented in the
chapters. Learning computer science involves not just
reading and listening but also doing and trying. Our labo-
ratory exercises will give you that chance. (In addition, we
hope that you will find them fun.)

Laboratory Experience 1, titled “A Glossary and Web
Browsing,” introduces the fundamental operations that you
will need in all future labs—operations such as using menus,
buttons, and windows and accessing pages on the Web. (In
the text, you will find a number of pointers to Web pages con-
taining a wealth of information that complements our discus-
sions.) In addition, the lab provides a useful tool that you
may use during your study of computer science and in other
courses as well. You will learn how to use a computer to build
a glossary of important technical terms along with their defi-
nitions and locations in the text. Not only will the lab intro-
duce you to some essential skills, but it will also allow you to
create your own glossary of important terms and definitions
as shown in this screen shot from the lab.

Please turn to Laboratory Experience 1 in the labora-
tory manual and try it now.

1.5 Organization of the Text

l..n..'l.'l

33

QS

EXERCISES

. Identify some algorithms, apart from DVR instructions and

cooking recipes, that you encounter in your everyday life. Write
them out in any convenient notation, and explain how they
meet all of the criteria for algorithms presented in this chapter.

. In the DVR instructions in Figure 1.1, step 4 says, “Enter the

channel number that you wish to record and press the but-
ton labeled CHAN.” Is that an unambiguous and well-defined
operation? Explain why or why not.

. Trace through the decimal addition algorithm of Figure 1.2

using the following input values:
m=3 a,=1a, =4a,=9
b,=0b,=2b,=9

At each step, show the values for ¢;, c,, ¢

2 Ci € and carry.

. Modify the decimal addition algorithm of Figure 1.2 so that it

does not print out nonsignificant leading zeroes; that is, the
answer to question 3 would appear as 178 rather than 0178.

. Under what conditions would the well-known quadratic

formula
—b = Vb® — 4ac
2a

not be effectively computable? (Assume that you are work-
ing with real numbers.)

Roots =

. Compare the two solutions to the shampooing algorithm

shown in Figures 1.3(a) and 1.3(b). Which do you think is a
better general-purpose solution? Why? (Hint: What if you
wanted to wash your hair 1,000 times?)

. The following is Euclid’s 2,300-year-old algorithm for finding the

greatest common divisor of two positive integers I and J.

Step Operation

1 Get two positive integers as input. Call the larger

value I and the smaller value J.
Divide I by J, and call the remainder R.
3 If R is not 0, then reset I to the value of J, reset J to
the value of R, and go back to step 2.
4 Print out the answer, which is the value of J.
Stop.

a. Go through this algorithm using the input values 20 and 32.
After each step of the algorithm is completed, give the
values of I, J, and R. Determine the final output of the
algorithm.

b. Does the algorithm work correctly when the two inputs are
0 and 32? Describe exactly what happens, and modify the
algorithm so that it gives an appropriate error message.

. A salesperson wants to visit 25 cities while minimizing the

total number of miles she has to drive. Because she has
studied computer science, she decides to design an algo-
rithm to determine the optimal order in which to visit the
cities to (1) keep her driving distance to a minimum, and

10.

11.

12.

13.

'I-|||||II!|| i ||l I _' L
||||I'

(2) visit each city exactly once. The algorithm that she has

devised is the following:
The computer first lists all possible ways to visit the
25 cities and then, for each one, determines the total
mileage associated with that particular ordering.
(Assume that the computer has access to a road map
that provides the distances between all cities.) After
determining the total mileage for each possible trip,
the computer searches for the ordering with the mini-
mum mileage and prints out the list of cities on that
optimal route, that is, the order in which the sales-
person should visit her destinations.

If a computer could analyze 10,000,000 separate paths per
second, how long would it take to determine the optimal route
for visiting these 25 cities? On the basis of your answer, do you
think this is a feasible algorithm? If it is not, can you think of
a way to obtain a reasonable solution to this problem?

. One way to do multiplication is by repeated addition. For

example, 47 X 25 can be evaluated as 47 + 47 + 47 + . . .
+ 47 (25 times). Sketch out an algorithm for multiplying two
positive numbers a and b using this technique.

Read about one of the early pioneers mentioned in this
chapter—Pascal, Liebnitz, Jacquard, Babbage, Lovelace,
Hollerith, Eckert, Mauchly, Aiken, Zuse, Atanasoff, Turing, or
Von Neumann. Write a paper describing in detail that
person’s contribution to computing and computer science.

Get the technical specifications of the computer on which
you are working (either from a technical manual or from your
computer center staff). Determine its cost, its processing
speed (in MIPS, millions of instructions per second), its
computational speed (in MFlops, millions of floating point
operations per second), and the size of its primary memory.

Compare those values with what was typically available
on first-, second-, and third-generation computer systems, and
calculate the percentage improvement between your computer
and the first commercial machines of the early 1950s.

A new and growing area of computer science is ubiquitous
computing, in which a number of computers automatically
provide services for a user without that user’s knowledge or
awareness. For example, a computer located in your car
contacts the garage door opener and tells it to open the
garage door when the car is close to home. Read about this
new model of computing and write a paper describing some
of its applications. What are some of the possible problems
that could be created?

A standard computer CD holds approximately 700 million
characters. Estimate how many linear feet of shelf space are
required to store 700 million characters encoded as text
(i.e., printed, bound books) rather than as electronic media.
Assume there are 5 characters per word, 300 words per page,
and 300 pages/inch of shelf.

CHAPTER 1: An Introduction to Computer Science

CHALLENGE WORK

1. Assume we have a “computing agent” that knows how to do

one-digit subtraction where the first digit is at least as large as
the second (i.e., we do not end up with a negative number).
Thus, our computing agent can do such operations as 7 - 3 = 4,
9-1=38,and 5 -5=0. It can also subtract a one-digit value

[s

s il

15 F1
il
Bl
do not assume that each individual digit a; is greater than or
equal to b, If the digit on the bottom is larger than the
digit on the top, then you must implement a borrowing

scheme to allow the subtraction to continue. (Caution: It
may have been easy to learn subtraction as a first grader,

from a two-digit value in the range 10-18 as long as the final but it is devilishly difficult to tell a computer how to do it!)
result has only a single digit. This capability enables it to do 2.
such operationsas 13 -7=6,10-2=8,and 18 - 9=9.

Using these primitive capabilities, design an algorithm
to do decimal subtraction on two m-digit numbers, where
m = 1. You will be given two unsigned whole numbers a,_
a, ., .-0ayand b, b . b,. Your algorithm must compute

m-1“m-2°*
the value c_ . ¢ . €, the difference of these two values.

Our definition of the field of computer science is only one of
many that have been proposed. Because it is so young, people
working in the field are still debating how best to define exactly
what they do. Review the literature of computer science (per-
haps some of the books listed in the next section) and browse
the Web to locate other definitions of computer science. Com-

m-1"-m-2* pare these definitions with the one presented in this chapter

g Opoe - 0y and discuss the differences among them. Discuss how different

b, b, ,..b, definitions may give you a vastly different perspective on the

I — field and what people in this field do. [Note: A very well-known
G Gasr 0 0 & . L .

and widely used definition of computer science was presented

You may assume that the top number (a,, a,,. . .) in “Report of the ACM Task Force on the Core of Computer

is greater than or equal to the bottom number (b, ,
b, ,. . . by) so that the result is not a negative value. However,

Science,” reprinted in the journal Communications of the ACM,
vol. 32, no. 1 (January 1989).]

FOR FURTHER READING

The following books provide a good introduction to and overview of the field of computer
science. Like this text, they survey many different aspects of the discipline.

Biermann, A. W. Great Ideas in Computer Science, 2nd ed. Cambridge, MA: MIT Press, 1997.
Brookshear, J. G. Computer Science: An Overview, 10th ed. Reading, MA: Addison Wesley, 2008.

Decker, R., and Hirshfield, S. The Analytical Engine: An Introduction to Computer Science Using the
Internet, Boston, MA: Course Technology, 2004.

Dewdney, A. K. The New Turing Omnibus. New York: Freeman, 2001.

Dewdney, A. K. Introductory Computer Science: Bits of Theory, Bytes of Practice. Boston, MA: W.H.
Freeman & Company, 1996.

Snyder, Lawrence, Fluency with Information Technology, 3rd ed. Prentice Hall, 2008.

The following books provide an excellent overview of the historical development of both com-
puters and software.

Broy, M., and Denert, E. Software Pioneers. Amsterdam: Springer-Verlag, 2002.

Cambell-Kelly, M., and Asprey, W. Computers: A History of the Information Machine. New York: Basic
Books, 1997.

Ceruzzi, P. A History of Modern Computing. 2nd Edition, Cambridge, MA: MIT Press, 2003.

Ifrah, George. The Universal History of Computing: From the Abacus to Quantum Computer. New York:
Wiley, 2002.

Rojas, Ral, Hashagen, Ulf, Rojas, Raul, The First Computers—Their History and Architecture, Cam-
bridge, MA: MIT Press, 2002.

Wurster, C. The Computer: An Illustrated History. Cologne, Germany: Taschen, 2002

In addition, the Charles Babbage Institute at the University of Minnesota is an outstanding
resource for information about the history of information technology and its impact on society.

Its Web site is at www.cbi.umn.edu.
—
IRV
2 L0
L i

For Further Reading

www.cbi.umn.edu

The Algorithmic Foundations
of Computer Science

e mm— /

e

of the text continues our exploration of algo-
rithms and algorithmic problem solving—essential mater-
ial for studying any branch of computer science. It first
introduces methods for designing and representing algo-
rithms. It then uses these ideas to develop solutions to
some real-world problems, including an important appli-
cation in medicine and biology.

When judging the quality of an essay or book report,
we do not look only at sentence structure, spelling, and
punctuation. Although grammatical issues are important,
we also evaluate the work’s style, for it is a combination
of correctness and expressiveness that produces a written
document of high quality. So, too, for algorithms: cor-
rectness is not the only measure of excellence. This sec-
tion will present criteria for evaluating the quality and
elegance of the algorithmic solutions that you develop.

This page intentionally left blank

il

||I'J
il | i.

Algorithm Discovery and Design

2.1 Introduction

2.2 Representing Algorithms
2.2.1 Pseudocode
2.2.2 Sequential Operations
2.2.3 C(onditional and Iterative Operations

2.3 Examples of Algorithmic Problem Solving
2.3.1 Example 1: Go Forth and Multiply
2.3.2 Example 2: Looking, Looking, Looking
LABORATORY EXPERIENCE 2
2.3.3 Example 3: Big, Bigger, Biggest
LABORATORY EXPERIENCE 3
2.3.4 Example 4: Meeting Your Match

2.4 Conclusion

EXERCISES

CHALLENGE WORK

FOR FURTHER READING

2.1 Introduction "M

Chapter 1 introduced algorithms and algorithmic problem solving, two of the
most fundamental concepts in computer science. Our introduction used exam-
ples drawn from everyday life, such as programming a DVR (Figure 1.1) and
washing your hair (Figure 1.3). While these are perfectly valid examples of
algorithms, they are not of much interest to computer scientists. This chapter
develops more fully the notions of algorithm and algorithmic problem solving
and applies these ideas to problems that are of interest to computer scientists:
searching lists, finding maxima and minima, and matching patterns.

-

2.2 Representing Algorithms

= 2.2.1 Pseudocode

Before presenting any algorithms, we must first make an important decision.
How should we represent them? What notation should we use to express our
algorithms so that they are clear, precise, and unambiguous?

One possibility is natural language, the language we speak and write in
our everyday lives. (This could be English, Spanish, Arabic, Japanese, Swahili,
or any language.) This is an obvious choice because it is the language with
which we are most familiar. If we use natural language, then our algorithms
read much the same as a term paper or an essay. For example, when expressed
in natural language, the addition algorithm in Figure 1.2 might look something
like the paragraph shown in Figure 2.1.

Comparing Figure 1.2 with Figure 2.1 illustrates the problems of using nat-
ural language to represent algorithms. Natural language can be extremely ver-
bose, causing the resulting algorithms to be rambling, unstructured, and hard
to follow. (Imagine reading 5, 10, or even 100 pages of text like Figure 2.1.) An
unstructured, “free-flowing” writing style may be wonderful for essays, but it
is horrible for algorithms. The lack of structure makes it difficult for the reader
to locate specific sections of the algorithm, because they are buried inside the
text. For example, on the eighth line of Figure 2.1 is the phrase,
“ ... and begin the loop all over again.” To what part of the algorithm does
this refer? Without any clues to guide us, such as indentation, line numbering,
or highlighting, locating the beginning of that loop can be a daunting and
time-consuming task. (For the record, the beginning of the loop corresponds to
the sentence on the second line that starts, “When these initializations have

LR
|||-_| : || | 40 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

FIGURE|2.1

The Addition Algorithm of Initially, set the value of the variable carry to 0 and the value of the variable ito 0.
Figure 1.2 Expressed in Natural When these initializations have been completed, begin looping as long as the value
Language of the variable iis less than or equal to (m — 1). First, add together the values of the

two digits a; and b; and the current value of the carry digit to get the result called c;.
Now check the value of ¢; to see whether it is greater than or equal to 10. If ¢;is
greater than or equal to 10, then reset the value of carry to 1 and reduce the value of
¢; by 10; otherwise, set the value of carry to zero. When you are finished with that
operation, add 1 to /i and begin the loop all over again. When the loop has completed
execution, set the leftmost digit of the result ¢, to the value of carry and print out the
final result, which consists of the digits ¢, ¢, . . . ¢,. After printing the result, the
algorithm is finished, and it terminates.

been completed” Itis certainly not easy to determine this from a casual
reading of the text.)

A second problem is that natural language is too “rich” in interpretation
and meaning. Natural language frequently relies on either context or a reader’s
experiences to give precise meaning to a word or phrase. This permits different
readers to interpret the same sentence in totally different ways. This may be
acceptable, even desirable, when writing poetry or fiction, but is disastrous
when writing algorithms that must always execute in the same way and pro-
duce identical results. We can see an example of this problem in the sentence
on lines 7 and 8 of Figure 2.1 that starts with “When you are finished with that
operation” When we are finished with which operation? It is not at all
clear from the text, and individuals may interpret the phrase that operation in
different ways, producing radically different behavior. Similarly, the statement
“Determine the shortest path between the source and destination” is ambigu-
ous until we know the precise meaning of the phrase “shortest path.” Does it
mean shortest in terms of travel time, distance, or something else?

Because natural languages are not sufficiently precise to represent algo-
rithms, we might be tempted to go to the other extreme. If we are ultimately
going to execute our algorithm on a computer, why not write it out as a com-
puter program using a high-level programming language such as C++ or
Java? If we adopt that approach, the addition algorithm of Figure 1.2 might
start out looking like the program fragment shown in Figure 2.2.

As an algorithmic design language, this notation is also seriously flawed.
During the initial phases of design, we should be thinking and writing at a
highly abstract level. Using a programming language to express our design
forces us to deal immediately with detailed language issues such as punctua-
tion, grammar, and syntax. For example, the algorithm in Figure 1.2 contains
an operation that says, “Set the value of carry to 0.” This is an easy statement
to understand. However, when translated into a language like C++ or Java,
that statement becomes

carry = 0;

Is this operation setting carry to 0 or asking if carry is equal to 0? Why does a
semicolon appear at the end of the line? Would the statement

Carry = 0;

mean the same thing? Similarly, what is meant by the cryptic statement
“int[] a = new int[100];”? These technical details clutter our thoughts, and at

A
2.2 Representing Algorithms LEVEL 1 41 !"hMuI

i

I
W

FIGURE|2.2

The Beginning of the Addition
Algorithm of Figure 1.2
Expressed in a High-Level
Programming Language

{
Scanner inp = new Scanner(System.in);
int i, m, carry;
int[] a = new int[100];
int[] b = new int[100];
int[] ¢ = new int[100];
m = inp.nextInt();
for (int j = 0;3j <= m-1;j++) {
al[j] = inp.nextInt();

b[j] = inp.nextInt();
b

carry = 0;

i = @
while (i < m) {
c[i] = a[i] + b[i] + carry;

if (c[i] >= 10)

this point in the solution process are totally out of place. When creating
algorithms, a programmer should no more worry about semicolons and capital-
ization than a novelist should worry about typography and cover design when
writing the first draft!

If the two extremes of natural languages and high-level programming
languages are both less than ideal, what notation should we use? What is
the best way to represent the solutions shown in this chapter and the rest of
the book?

Most computer scientists use a notation called pseudocode to design
and represent algorithms. This is a set of English language constructs
designed to resemble statements in a programming language but that do not
actually run on a computer. Pseudocode represents a compromise between
the two extremes of natural and formal languages. It is simple, highly read-
able, and has virtually no grammatical rules. (In fact, pseudocode is some-
times called a programming language without any details.) However, because
it contains only statements that have a well-defined structure, it is easier to
visualize the organization of a pseudocode algorithm than one represented as
long, rambling natural-language paragraphs. In addition, because pseudocode
closely resembles many popular programming languages, the subsequent
translation of the algorithm into a computer program is relatively simple. The
algorithms shown in Figures 1.1, 1.2, and 1.3(a) and (b) are all written in
pseudocode.

In the following sections we will introduce a set of popular and easy-to-
understand constructs for the three types of algorithmic operations intro-
duced in Chapter 1: sequential, conditional, and iterative. Keep in mind,
however, that pseudocode is not a formal language with rigidly standardized
syntactic and semantic rules and requlations. On the contrary, it is an infor-
mal design notation used solely to express algorithms. If you do not like the
constructs presented in the next two sections, feel free to modify them or
select others that are more helpful to you. One of the nice features of
pseudocode is that you can adapt it to your own personal way of thinking and
problem solving.

LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

= 2.2.2 Sequential Operations

Our pseudocode must include instructions to carry out the three basic sequen-
tial operations called computation, input, and output.

The instruction for performing a computation and saving the result looks
like the following. (Words and phrases inside quotation marks represent spe-
cific elements that you must insert when writing an algorithm.)

Set the value of “variable” to “arithmetic expression”

This operation evaluates the “arithmetic expression,” gets a result, and stores that
result in the “variable.” A variable is simply a named storage location that can
hold a data value. A variable is often compared to a mailbox into which one can
place a value and from which one can retrieve a value. Let’s look at an example.

Set the value of carry to 0

First, evaluate the arithmetic expression, which in this case is the constant
value 0. Then store that result in the variable called carry. If carry had a pre-
vious value, say 1, it is discarded and replaced by the new value 0. You can
visualize the result of this operation as follows:

carry 0

Here is another example:
Set the value of Area to (nt 1?)

Assuming that the variable r has been given a value by a previous instruction
in the algorithm, this statement evaluates the arithmetic expression 1t 2 to
produce a numerical result. This result is then stored in the variable called
Area. If r does not have a value, an error condition occurs, because this
instruction is not effectively computable, and it cannot be completed.

We can see additional examples of computational operations in steps 4, 6,
and 7 of the addition algorithm of Figure 1.2:

Step 4: Add the two digits a; and b, to the current value of carry to
get ¢;

Step 6: Add 1 to i, effectively moving one column to the left

Step 7: Set ¢, to the value of carry

Note that these three steps are not written in exactly the format just
described. If we had used that notation, they would have looked like this:

Step 4: Set the value of ¢, to (a; + b, + carry)
Step 6: Set the value of i to (7 + 1)
Step 7: Set the value of ¢, to carry

However, in pseudocode it doesn’t matter exactly how you choose to write
your instructions as long as the intent is clear, effectively computable, and

A
2.2 Representing Algorithms LEVEL 1 43 !"MI

h',., I

I 44

unambiguous. At this point in the design of a solution, we do not really care
about the minor language differences between

Add a and b to get c
and
Set the value of c to (a + b)

Remember that pseudocode is not a precise set of notational rules to be mem-
orized and rigidly followed. It is a flexible notation that can be adjusted to fit
your own view about how best to express ideas and algorithms.

When writing arithmetic expressions, you can assume that the computing
agent executing your algorithm has all the capabilities of a typical calculator.
Therefore, it “knows” how to do all basic arithmetic operations such as +, —,
X, +, [, absolute value, sine, cosine, and tangent. It also knows the value of
important constants such as 7.

The remaining two sequential operations enable our computing agent to
communicate with “the outside world,” which means everything other than
the computing agent itself:

Input
Outside > Computing
world agent

A

Output

Input operations submit to the computing agent data values from the outside
world that it may then use in later instructions. Qutput operations send results
from the computing agent to the outside world. When the computing agent is a
computer, communications with the outside world are done via the input/output
equipment available on a typical system (e.g., keyboard, screen, mouse, printer,
hard drive, CD/DVD, USB drive). However, when designing algorithms, we
generally do not concern ourselves with such details. We care only that data is
provided when we request it and that results are issued for presentation.

Our pseudocode instructions for input and output are expressed as follows:

Input: Get values for “variable”, “variable”, . . .

"o u

Output: Print the values of “variable”, “variable”, . . .
For example,

Get a value for r, the radius of the circle
When the algorithm reaches this input operation, it waits until someone or
something provides it with a value for the variable r. (In a computer, this may
be done by entering a value at the keyboard.) When the algorithm has
received and stored a value for 7, it continues on to the next instruction.

Here is an example of an output operation:

Print the value of Area

LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

Assuming that the algorithm has already computed the area of the circle, this
instruction says to display that value to the outside world. This display may
be on a screen or printed on paper by a printer.

Sometimes we use an output instruction to display a message in place of
the desired results. If, for example, the computing agent cannot complete a
computation because of an error condition, we might have it execute some-
thing like the following operation. (We will use ‘single quotes’ to enclose mes-
sages so as to distinguish them from such pseudocode constructs as “variable”
and “arithmetic expression,” which are enclosed in double quotes.)

Print the message ‘Sorry, no answers were computed!

Using the three sequential operations—computation, input, and output—
we can now write some simple but useful algorithms. Figure 2.3 presents an
algorithm to compute the average miles per gallon on a trip, when given as
input the number of gallons used and the starting and ending mileage readings
on the odometer.

PRACTICE PROBLEMS

Write pseudocode versions of:

1. An algorithm that gets three data values x, y, and z as input and
outputs the average of those three values.

2. An algorithm that gets the radius r of a circle as input. Its output is
both the circumference and the area of a circle of radius r.

3. An algorithm that gets the amount of electricity used in kilowatt-
hours and the cost of electricity per kilowatt-hour. Its output is the
total amount of the electric bill, including an 8% sales tax.

4. An algorithm that inputs your current credit card balance, the total
dollar amount of new purchases, and the total dollar amount of all
payments. The algorithm computes the new balance, which includes
a 12% interest charge on any unpaid balance.

5. An algorithm that is given the length and width, in feet, of a rec-
tangular carpet and determines its total cost given that the mater-
ial cost is $23/square yard.

FIGURE2.3
Algorithm for Computing Average Miles per Gallon Algorithm (Version 1)
Average Miles per Gallon
STEP OPERATION
1 Get values for gallons used, starting mileage, ending mileage
2 Set value of distance driven to (ending mileage — starting mileage)
3 Set value of average miles per gallon to (distance driven + gallons used)
4 Print the value of average miles per gallon
5 Stop

MM
2.2 Representing Algorithms LEVEL 1 45 !uwl

h',., I

B 46

= 2.2.3 Conditional and Iterative Operations

The average miles per gallon algorithm in Figure 2.3 performs a set of opera-
tions once and then stops. It cannot select among alternative operations or
perform a block of instructions more than once. A purely sequential
algorithm of the type shown in Figure 2.3 is sometimes termed a straight-
line algorithm because it executes its instructions in a straight line from top
to bottom and then stops. Unfortunately, most real-world problems are not
straight-line. They involve nonsequential operations such as branching and
repetition.

To allow us to address these more interesting problems, our pseudocode
needs two additional statements to implement conditional and iterative oper-
ations. Together, these two types of operations are called control operations;
they allow us to alter the normal sequential flow of control in an algorithm. As
we saw in Chapter 1, control operations are an essential part of all but the very
simplest of algorithms.

Conditional statements are the “question-asking” operations of an algo-
rithm. They allow an algorithm to ask a question and to select the next oper-
ation to perform on the basis of the answer to that question. There are a
number of ways to phrase a question, but the most common conditional state-
ment is the if/then/else, which has the following format:

If “a true/false condition” is true then
first set of algorithmic operations
Else (or otherwise)

second set of algorithmic operations
The meaning of this statement is as follows:

1. Evaluate the true/false condition on the first line to determine
whether it is true or false.

2. If the condition is true, then do the first set of algorithmic operations
and skip the second set entirely.

3. If the condition is false, then skip the first set of operations and do
the second set.

4. Once the appropriate set of operations has been completed, continue
executing the algorithm with the operation that follows the
if/then/else instruction.

Figure 2.4 is a visual model of the execution of the if/then/else statement.
We evaluate the condition shown in the diamond. If the condition is true we
execute the sequence of operations labeled T1, T2, T3, If the condition is
false we execute the sequence labeled F1, F2, F3, In either case, however,
execution continues with statement S, which is the one that immediately fol-
lows the if/then/else.

Basically, the if/then/else statement allows you to select exactly one of
two alternatives—either/or, this or that. We saw an example of this state-
ment in step 5 of the addition algorithm of Figure 1.2. (The statement has
been reformatted slightly to highlight the two alternatives clearly, but it has
not been changed.)

CHAPTER 2: Algorithm Discovery and Design

FIGURE|2.4

The If/Then/Else Pseudocode
Statement

true Boolean false
condition
2
T1 F1
T2 F2
T3 F3

— - - - —
L - - - ¢—

If (c; = 10) then
Set the value of ¢; to (c, - 10)
Set the value of carry to 1
Else
Set the value of carry to 0

The condition (c; > 10) can be only true or false. If it is true, then there is
a carry into the next column, and we must do the first set of instructions—
subtracting 10 from c; and setting carry to 1. If the condition is false, then
there is no carry —we skip over these two operations, and perform the second
block of operations, which simply sets the value of carry to 0.

2.2 Representing Algorithms LEVEL 1 47 :

h'

il
lgf

|4I1

H |l
il 48

FIGURE|2.5

Second Version of the Average
Miles per Gallon Algorithm

Figure 2.5 shows another example of the if/then/else statement. It
extends the miles per gallon algorithm of Figure 2.3 to include a second line
of output stating whether you are getting good gas mileage. Good gas mileage
is defined as a value for average miles per gallon greater than 25.0 mpg.

The last algorithmic statement to be introduced allows us to implement a
loop—the repetition of a block of instructions. The real power of a computer
comes not from doing a calculation once but from doing it many, many times.
If, for example, we need to compute a single value of average miles per gallon,
it would be foolish to convert an algorithm like Figure 2.5 into a computer
program and execute it on a computer—it would be far faster to use a calcu-
lator, which could complete the job in a few seconds. However, if we need to
do the same computation 1,000,000 times, the power of a computer to repeti-
tively execute a block of statements becomes quite apparent. If each compu-
tation of average miles per gallon takes 5 seconds on a hand calculator, then
1 million of them would require about 2 months, not allowing for such luxu-
ries as sleeping and eating. Once the algorithm is developed and the program
written, a computer can carry out that same task in less than 1 second!

The first algorithmic statement that we will use to express the idea of
iteration, also called looping, is the while statement:

While (“a true/false condition”) do step i to step j
step i: operation

stepi+ 1: operation

step j: operation

This instruction initially evaluates the “true/false condition”—called the
continuation condition—to determine if it is true or false. If the condition is
true, all operations from step 7 to step j, inclusive, are executed. This block of
operations is called the loop body. (Operations within the loop body should be
indented so that it is clear to the reader of the algorithm which operations
belong inside the loop.) When the entire loop body has finished executing, the
algorithm again evaluates the continuation condition. If it is still true, then the
algorithm executes the entire loop body, statements i through j, again. This

Average Miles per Gallon Algorithm (Version 2)

STEP OPERATION
1 Get values for gallons used, starting mileage, ending mileage
2 Set value of distance driven to (ending mileage — starting mileage)
3 Set value of average miles per gallon to (distance driven + gallons used)
4 Print the value of average miles per gallon
5 If average miles per gallon is greater than 25.0 then
6 Print the message ‘You are getting good gas mileage’
Else
7 Print the message ‘You are NOT getting good gas mileage’
8 Stop
LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

FIGURE|2.6
Execution of the While Loop

looping process continues until the continuation condition evaluates to false, at
which point execution of the loop body terminates and the algorithm proceeds
to the statement immediately following the loop—step j+1 in the previous dia-
gram. If for some reason the continuation condition never becomes false, then
we have violated one of the fundamental properties of an algorithm, and we
have the error, first mentioned in Chapter 1, called an infinite loop.

Figure 2.6 is a visual model of the execution of a while loop. The algo-
rithm first evaluates the continuation condition inside the diamond-shaped
symbol. If it is true then it executes the sequence of operations labeled S1, S2,
S3, . . ., which are the operations of the loop body. Then the algorithm
returns to the top of the loop and reevaluates the condition. If the condition
is false, then the loop has ended, and the algorithm continues executing with
the statement after the loop, the one labeled S, in Figure 2.6.

l

5 Continuation
condition
2

false

‘ true

loop
body S2

- -

2.2 Representing Algorithms LEVEL 1

(VAR
s Sl

h',., I

IR 5o

Here is a simple example of a loop:

Step Operation
1 Set the value of count to 1
2 While (count < 100) do step 3 to step 5
3 Set square to (count X count)
4 Print the values of count and square
5 Add 1 to count

Step 1 initializes count to 1, the next operation determines that (count <
100), and then the loop body is executed, which in this case includes the
three statements in steps 3, 4, and 5. Those statements compute the value of
count squared (step 3) and print the value of both count and square (step 4).
The last operation inside the loop body (step 5) adds 1 to count so that it now
has the value 2. At the end of the loop the algorithm must determine whether
it should be executed again. Because count is 2, the continuation condition is
true, and the algorithm must perform the loop body again. Looking at the
entire loop, we can see that it will execute 100 times, producing the following
output, which is a table of numbers and their squares from 1 to 100.

1

2 4

3

100 10,000

At the end of the 100th pass through the loop, the value of count is incre-
mented in step 5 to 101. When the continuation condition is evaluated,
it is false (because 101 is not less than or equal to 100), and the loop
terminates.

We can see additional examples of loop structures in steps 3 through 6
of Figure 1.2 and in steps 3 through 6 of Figure 1.3(a). Another example
is shown in Figure 2.7, which is yet another variation of the average
miles per gallon algorithm of Figures 2.3 and 2.5. In this modification,
after finishing one computation, the algorithm asks the user whether
to repeat this calculation again. It waits until it gets a Yes or No response
and repeats the entire algorithm until the response provided by the user
is No. (Note that the algorithm must initialize the value of response to
Yes, since the very first thing that the loop does is test the value of this
quantity.)

There are many variations of this particular looping construct in addition
to the while statement just described. For example, it is common to omit the
line numbers from algorithms and simply execute them in order, from top to
bottom. In that case we could use an End of Loop construct (or something
similar) to mark the end of the loop rather than explicitly stating which steps
are contained in the loop body. Using this approach, our loops would be writ-
ten something like this:

CHAPTER 2: Algorithm Discovery and Design

While (“a true/false condition”) do
operation

operation
End of the loop

In this case, the loop body is delimited not by explicit step numbers but by
the two lines that read, “While . . .” and “End of the loop”.

This type of loop is called a pretest loop because the continuation condi-
tion is tested at the beginning of each pass through the loop, and therefore it is
possible for the loop body never to be executed. (This would happen if the con-
tinuation condition were initially false.) Sometimes this can be inconvenient, as
we see in Figure 2.7. In that algorithm we ask the user if they want to solve the
problem again, but we ask that at the very end of execution of the loop body.
Therefore, we had to give the variable called response a “dummy” value of Yes so
that the test would be meaningful when the loop was first entered.

Another variation of the looping structure is the posttest loop, which
also uses a true/false continuation condition to control execution of the loop.
However, the test is done at the end of the loop body, not the beginning. The
loop is typically expressed using the do/while statement, which is usually
written as follows:

Do
operation
operation

While (“a true/false condition”)

FIGURE|2.7
Third Version of the Average Average Miles per Gallon Algorithm (Version 3)
Miles per Gallon Algorithm StEp OPERATION
1 response = Yes
2 While (response = Yes) do steps 3 through 11
3 Get values for gallons used, starting mileage, ending mileage
4 Set value of distance driven to (ending mileage — starting mileage)
5 Set value of average miles per gallon to (distance driven + gallons used)
6 Print the value of average miles per gallon
7 If average miles per gallon > 25.0 then
8 Print the message ‘You are getting good gas mileage’
Else
9 Print the message ‘You are NOT getting good gas mileage’
10 Print the message ‘Do you want to do this again? Enter Yes or No’
11 Get a new value for response from the user
12 Stop

ElLil
|

I
2.2 Representing Algorithms LEVEL 1 51 !u

u

| 52

FIGURE|2.8

Execution of the Do/While
Posttest Loop

This type of iteration performs all the algorithmic operations contained in
the loop body before it evaluates the true/false condition specified at the end
of the loop. If this condition is false, the loop is terminated and execution
continues with the operation following the loop. If it is true, then the entire
loop body is executed again. Note that in the Do/While variation, the loop
body is always executed at least once, while the While loop can execute 0, 1,
or more times. Figure 2.8 diagrams the execution of the posttest Do/While
looping structure.

Figure 2.9 summarizes the algorithmic operations introduced in this sec-
tion. These operations represent the primitives of our computing agent.
These are the instructions that we assume our computing agent understands
and is capable of executing without further explanation or simplification. In
the next section we will use these operations to design algorithms that solve
some interesting and important problems.

loop
52 body

- - - - <

| true Continuation

condition
2

l false

Sn

LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

FIGURE|2.9

Summary of Pseudocode
Language Instructions

COMPUTATION:

INpuT/OUTPUT:

Get a value for “variable”,
Print the value of “variable”,

Set the value of “variable” to “arithmetic expression”

” o«

variable”. . .
", “variable”, . ..

Print the message ‘message’

CONDITIONAL:

If “a true/false condition” is true then
first set of algorithmic operations

Else

second set of algorithmic operations

ITERATIVE:

While (“a true/false condition”) do step i through step j
Step i: operation

Step j: operation

While (“a true/false condition”) do

operation

operation
End of the loop

Do
operation
operation

While (“a true/false condition”)

Although the set of algorithmic primitives shown in
Figure 2.9 may seem quite puny, it is anything but! In fact,
an important theorem in theoretical computer science
proves that the operations shown in Figure 2.9 are sufficient
to represent any valid algorithm. No matter how compli-
cated it may be, if a problem can be solved algorithmically,
it can be expressed using only the sequential, conditional,
and iterative operations just discussed. This includes not
only the simple addition algorithm of Figure 1.2 but also the

I .-_' _n_
A ’.h..h
| EE
exceedingly complex algorithms needed to fly NASA's space
shuttles, run the international telephone switching system,
and describe all the Internal Revenue Service's tax rules and
regulations.

In many ways, building algorithms is akin to con-
structing essays or novels using only the 26 letters of the
English alphabet, plus a few punctuation symbols. Expres-
sive power does not always come from a huge set of prim-
itives. It can also arise from a small number of simple

building blocks combined in interesting ways. This is the
real secret of building algorithms.

2.2 Representing Algorithms LEVEL 1

53

||i'
i

___|
PRACTICE PROBLEMS

1. Write an if/then/else statement that sets the variable y to the
value 1if x > 0. If x < 0, then the statement should set y to the
value 2. (Assume x already has a value.)

2. Write an algorithm that gets as input three data values x, y, and z
and outputs the average of these values if the value of x is positive.
If the value of x is either zero or negative, your algorithm should
not compute the average but should print the error message ‘Bad
Data’ instead.

3. Write an algorithm that gets as input your current credit card bal-
ance, the total dollar amount of new purchases, and the total dollar
amount of all payments. The algorithm computes the new balance,
which this time includes an 8% interest charge on any unpaid bal-
ance below $100, 12% interest on any unpaid balance between $100
and $500, inclusive, and 16% on any unpaid balance above $500.

4. Write an algorithm that gets as input a single data value x and out-
puts the three values x?, sin x, and 1/x. This process is repeated
until the input value for x is equal to 999, at which time the algo-
rithm terminates.

5. Write an algorithm that inputs the length and width, in feet, of a
rectangular carpet and the price of the carpet in $/square yard. It
then determines if we can afford to purchase this carpet, given that
our total budget for carpeting is $500.

2.3 Examples of Algorithmic Problem Solving L

= 2.3.1 Example 1: Go Forth and Multiply

Our first example of algorithmic problem solving addresses a problem origi-
nally posed in Chapter 1 (Exercise 9). That problem asked you to implement
an algorithm to multiply two numbers using repeated addition. This problem
can be formally expressed as follows:

Given 2 nonnegative integer values, a > 0, b > 0, compute and output
the product (a X b) using the technique of repeated addition. That
is, determine the value of the suma+a+a+...+a (b times).

Obviously, we need to create a loop that executes exactly b times, with
each execution of the loop adding the value of a to a running total. These
operations will not make any sense (that is, they will not be effectively com-
putatable) until we have explicit values for a and b. So one of the first opera-
tions in our algorithm must be to input these two values

Get values for a and b

LA
h:m!h ||| 54 LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

To create a loop that executes exactly b times, we create a counter, let’s
call it count, initialized to 0 and incremented by (increased by) 1 after each
pass through the loop. This means that when we have completed the loop
once the value of count is 1; when we have completed the loop twice the
value of count is 2, and so forth. Since we want to stop when we have com-
pleted the loop b times, we want to stop when (count = b). Therefore, the
condition for continuing execution of the loop is (count < b). Putting all
these pieces together produces the following algorithmic structure, which is
a loop that executes exactly b times as the variable count ranges from 0 up
to (b - 1).

Get values for a and b

Set the value of count to 0

While (count < b) do
... the rest of the loop body will go here ...
Set the value of count to (count + 1)

End of loop

The purpose of the loop body is to add the value of a to a running total,
which we will call product. We express that operation in the following manner:

Set the value of product to (product + a)

This statement says the new value of product is to be reset to the current
value of product added to a.

What is the current value of product the first time this operation is
encountered? Unless we initialize it, it has no value, and this operation is not
effectively computable. Before starting the loop we must be sure to include
the following step:

Set the value of product to 0

Now our solution is starting to take shape. Here is what we have devel-
oped so far:

Get values for a and b

Set the value of count to 0

Set the value of product to 0

While (count < b) do
Set the value of product to (product + a)
Set the value of count to (count+1)

End of loop

There are only a few minor “tweaks” left to make this a correct solution to
our problem.

When the while loop completes we have computed the desired result,
namely (a X b), and stored it in product. However, we have not displayed that
result, and as it stands this algorithm produces no output. Remember from

LML)
|
2.3 Examples of Algorithmic Problem Solving LEVEL 1 55 :"hM”I

h',., I

G 56

Chapter 1 that one of the fundamental characteristics of an algorithm is that
it produces an observable result. In this case the desired result is the final
value of product, which we can display using our output primitive:

Print the value of product

The original statement of the problem said that the two inputs a and b
must satisfy the following conditions: a > 0 and b > 0. The above algorithm
works for positive values of a and b, but what happens when either a = 0 or
b =0? Does it still function correctly?

If b = 0 there is no problem. If you look at the while loop, you see that it
continues executing so long as (count < b). The variable count is initialized to
0. If the input variable b also has the value 0 then the test (0 < 0) is initially
false, and the loop is never executed. The variable product keeps its initial
value of 0, and that is the output that is printed, which is the correct answer.

Now let’s look at what happens when a = 0 and b is any non-zero value,
say 5,386. Of course we know immediately that the correct result is 0, but the
algorithm does not. Instead, the loop will execute 5,386 times, the value of b,
each time adding the value of a, which is 0, to product. Since adding 0 to any-
thing has no effect, product remains at 0, and that is the output that is
printed. In this case we do get the right answer, and our algorithm does work
correctly. However, it gets that correct answer only after doing 5,386 unnec-
essary and time-wasting repetitions of the loop.

In Chapter 1 we stated that it is not only algorithmic correctness we are
after but efficiency and elegance as well. The algorithms designed and imple-
mented by computer scientists are intended to solve important real-world
problems, and they must accomplish that task in a correct and reasonably effi-
cient manner. Otherwise they are not of much use to their intended audience.

In this case we can eliminate those needless repetitions of the loop by
using our if/then/else conditional primitive. Right at the start of the algo-
rithm we ask if either a or b is equal to 0. If the answer is yes, we can imme-
diately set the result to 0 without requiring any further computations:

If (either a = 0 or b = 0) then
Set the value of product to 0
Else

... solve the problem as described above ...

We will have much more to say about the critically important concepts of
algorithmic efficiency and elegance in Chapter 3.

This completes the development of our multiplication algorithm, and the
finished solution is shown in Figure 2.10.

This first example needed only two integer values, a and b, as input. That
is a bit unrealistic, as most interesting computational problems deal not with a
few numbers but with huge collections of data, such as lists of names,
sequences of characters, or sets of experimental data. In the following sections
we will show examples of the types of processing—searching, reordering,
comparing—often done on these large collections of information.

CHAPTER 2: Algorithm Discovery and Design

FIGURE|2.10
Algorithm for Multiplication of

Non-negative Values via
Repeated Addition

Multiplication of Non-negative Values via Repeated Addition

Get values for a and b
If (either a= 0 or b = 0) then
Set the value of productto 0
Else
Set the value of countto 0
Set the value of productto 0
While (count < b) do
Set the value of product to (product + a)
Set the value of count to (count+1)
End of loop
Print the value of product
Stop

PRACTICE PROBLEMS

1. Manually work through the algorithm in Figure 2.10 using the input
values a = 2, b = 4. After each completed pass through the loop,
write down the current value of the four variables a, b, count, and
product.

2. Describe exactly what would be output by the algorithm in Figure 2.10
for each of the following two cases, and state whether that output is
or is not correct:

case 1: a=-2,b=4
case2: a=2,b=-4

3. If the algorithm of Figure 2.10 produced the wrong answer for either
case 1 or case 2 of question 2, explain exactly how you could fix the
algorithm so it works correctly and produces the correct answer.

= 2.3.2 Example 2: Looking, Looking, Looking

Finding a solution to a given problem is called algorithm discovery, and it is
the most challenging and creative part of the problem-solving process. We
developed an algorithm for a fairly simple problem (multiplication by repeated
addition) in Example 1. Discovering a correct and efficient algorithm to solve
a complicated problem can be difficult and can involve equal parts of intelli-
gence, hard work, past experience, technical skill, and plain good luck. In the
remaining examples, we will develop solutions to a range of problems to give
you more experience in working with algorithms. Studying these examples,
together with lots of practice, is by far the best way to learn creative problem
solving, just as experience and practice are the best ways to learn how to write
essays, hit a golf ball, or repair cars.

MM
2.3 Examples of Algorithmic Problem Solving LEVEL 1 57 !uwl

il

|||||
RIGE =8

The next problem we will solve was also mentioned in Chapter 1—locating
a particular person’s name in a telephone book. This is just the type of simple
and rather uninteresting repetitive task so well suited to computerization.
(Many large telephone companies have implemented such an application.
Most of us have dialed directory assistance and heard the desired telephone
number spoken in a computer-generated voice.)

Assume that we have a list of 10,000 names that we define as N, N,, N,,

. N10 000" along with the 10,000 telephone numbers of those 1nd1v1duals

denoted aa T, T, T, ..., T1o,ooo To simplify the problem, we initially
assume that all names in the book are unique and that the names need not be
in alphabetical order. Essentially what we have described is a nonalphabetized
telephone book of the following form:

Name Telephone Number
Ny Ty 1

N, Ty

N T

} 10,000 (name, phone number) pairs

NlO,OOO 7-10,000)

Let's create an algorithm that allows us to input the name of a specific
person, which we will denote as NAME. The algorithm will check to see if
NAME matches any of the 10,000 names contained in our telephone book. If
NAME matches the value NJ where j is a value between 1 and 10,000, then the
output of our algorithm will be the telephone number of that person: the
value T, If NAME is not contained in our telephone book, then the output of
our algorithm will be the message “I am sorry but this name is not in the
directory.” This type of lookup algorithm has many additional uses. For exam-
ple, it could be used to locate the zip code of a particular city, the seat num-
ber of a specific airline passenger, or the room number of a hotel guest.

Because the names in our telephone book are not in alphabetical order,
there is no clever way to speed up the search. With a random collection of
names, there is no method more efficient than starting at the beginning and
looking at each name in the list, one at a time, until we either find the one we
are looking for or come to the end of the list. This rather simple and straight-
forward technique is called sequential search, and it is the standard algo-
rithm for searching an unordered list of values. For example, this is how we
would search a telephone book to see who lives at 123 Elm Street, because a
telephone book is not sorted by address. It is also the way that we look
through a shuffled deck of cards trying to locate one particular card. A first
attempt at designing a sequential search algorithm to solve our search prob-
lem might look something like Figure 2.11.

The solution shown in Figure 2.11 is extremely long. At 66 lines per page,
it would require about 150 pages to write out the 10,002 steps in the com-
pleted solution. It would also be unnecessarily slow. If we are lucky enough to
find NAME in the very first position of the telephone book, N, then we get
the answer T, almost immediately. However, the algorithm does not stop at
that point. Even though it has already found the correct answer, it foolishly

asks 9,999 more questions looking for NAME in positions N,, Ny 000 OF

CHAPTER 2: Algorithm Discovery and Design

FIGURE|2.11

First Attempt at Designing a Step OPERATION

Sequential Search Algorithm 1 Get values for NAME, N;, ..., Nyggee,and Ty, ..., i
2 It NAME = N, then print the value of T,
3 If NAME = N, then print the value of T,
4 If NAME = N, then print the value of T,

10,000 If NAME = N,

b.000 then print the value of Tg gqq
10,001 If NAME = Ny 4o, then print the value of T, ;40
10,002 Stop

course, humans have enough “common sense” to know that when they find
the answer they are searching for, they can stop. However, we cannot assume
common sense in a computer system. On the contrary, a computer will
mechanically execute the entire algorithm from the first step to the last.

Not only is the algorithm excessively long and highly inefficient, it is also
wrong. If the desired NAME is not in the list, this algorithm simply stops (at
step 10,002) rather than providing the desired result, a message that the
name you requested is not in the directory. An algorithm is deemed correct
only when it produces the correct result for all possible cases.

The problem with this first attempt is that it does not use the powerful
algorithmic concept called iteration. Instead of writing an instruction 10,000
separate times, it is far better to write it only once and indicate that it is to
be repetitively executed 10,000 times, or however many times it takes to
obtain the answer. As you learned in the previous section, much of the power
of a computer comes from being able to perform a loop—the repetitive execu-
tion of a block of statements a large number of times. Virtually every algo-
rithm developed in this text contains at least one loop and most contain
many. (This is the difference between the two shampooing algorithms shown
in Figures 1.3(a) and (b). The algorithm in the former contains a loop; that in
the latter does not.)

The algorithm in Figure 2.12 shows how we might write a loop to imple-
ment the sequential search technique. It uses a variable called 7 as an index,
or pointer, into the list of all names. That is, N, refers to the ith name in the
list. The algorithm then repeatedly executes a group of statements using dif-
ferent values of i. The variable 7 can be thought of as a “moving finger” scan-
ning the list of names and pointing to the one on which the algorithm is
currently working.

FIGURE|2.12
Second Attempt at Designing a Step OPERATION
Sequential Search Algorithm 1 Get values for NAME, N,, ..., Nigoopr @Nd Ty, ..., Vomin
2 Set the value of ito 1 and set the value of Foundto NO
3 While (Found = NO) do steps 4 through 7
4 If NAME is equal to the ith name on the list N, then
5 Print the telephone number of that person, T;
6 Set the value of Foundto YES
Else (NAME is not equal to N)
7 Add 1 to the value of
8 Stop

A
2.3 Examples of Algorithmic Problem Solving LEVEL 1 59 !"Ml

i

I
I eo

The first time through the loop, the value of the index i is 1, so the algo-
rithm checks to see whether NAME is equal to N, the first name on the list. If
it is, then the algorithm writes out the result and sets Found to YES, which
causes the loop in steps 4 through 7 to terminate. If it is not the desired
NAME, then i is incremented by 1 (in step 7) so that it now has the value 2,
and the loop is executed again. The algorithm now checks (in step 4) to see
whether NAME is equal to N, the second name on the list. In this way, the
algorithm uses the single conditional statement “If NAME is equal to the ith
name on the list . . .” to check up to 10,000 names. It executes that one line
over and over, each time with a different value of i. This is the advantage of
using iteration.

However, the attempt shown in Figure 2.12 is not yet a complete and cor-
rect algorithm because it still does not work correctly when the desired NAME
does not appear anywhere on the list. This final problem can be solved by ter-
minating the loop when the desired name is found or the end of the list is
reached. The algorithm can determine exactly what happened by checking the
value of Found when the loop terminates. If the value of Found is NO, then
the loop terminated because the index 7 exceeded 10,000, and we searched the
entire list without finding the desired NAME. The algorithm should then pro-
duce an appropriate message.

An iterative solution to the sequential search algorithm that incorporates
this feature is shown in Figure 2.13. The sequential search algorithm shown in
Figure 2.13 is a correct solution to our telephone book look up problem. It
meets all the requirements listed in Section 1.3.1: It is well ordered, each of the
operations is clearly defined and effectively computable, and it is certain to halt
with the desired result after a finite number of operations. (In Exercise 12 at the
end of this chapter you will develop a formal argument that proves that this
algorithm will always halt.) Furthermore, this algorithm requires only 10 steps
to write out fully, rather than the 10,002 steps of the first attempt in Figure
2.11. As you can see, not all algorithms are created equal.

Looking at the algorithm in Figure 2.13, our first thought may be that
this is not at all how people manually search a telephone book. When looking
for a particular telephone number, we would never turn to page 1, column 1,
and scan all names beginning with Aardvark, Alan. Certainly, a telephone
company in New York City would not be satisfied with the performance of a

FIGURE|2.13
The Sequential Search Sequential Search Algorithm
Algorithm STEP OPERATION
1 Get values for NAME, N,, ..., N10,ooo' and T, ..., Tmy000
2 Set the value of ito 1 and set the value of Foundto NO
3 While both (Found = NO) and (i < 10,000) do steps 4 through 7
4 If NAME is equal to the ith name on the list N, then
5 Print the telephone number of that person, T;
6 Set the value of Foundto YES
Else (NAME is not equal to N)
7 Add 1 to the value of i
8 If (Found = NO) then
9 Print the message ‘Sorry, this name is not in the directory’
10 Stop
LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

LABORATORY
EXPERIENCE

directory search algorithm that always began on page 1 of its 2,000-page tele-
phone book.

Because our telephone book was not alphabetized, we really had no
choice in the design of a search algorithm. However, in real life we can do
much better than sequential search, because telephone books are alphabet-
ized, and we can exploit this fact during the search process. For example, we
know that M is about halfway through the alphabet, so when looking for the
name Samuel Miller, we open the telephone book somewhere in the middle
rather than to the first page. We then see exactly where we are by looking at
the first letter of the names on the current page, and then we move forward or
backward toward names beginning with M. This approach allows us to find the
desired name much more quickly than searching sequentially beginning with
the letter A.

This use of different search techniques points out a very important con-
cept in the design of algorithms:

The selection of an algorithm to solve a problem is greatly influenced by the
way the data for that problem are organized.

An algorithm is a method for processing some data to produce a result, and the
way the data are organized has an enormous influence both on the algorithm
we select and on how speedily that algorithm can produce the desired result.
In Chapter 3 we will expand on the concept of the efficiency and quality
of algorithms, and we will present an algorithm for searching alphabetized
telephone books that is far superior to the one shown in Figure 2.13.

&7 taa R

Computer science is an empirical discipline as well as a

I.....m

theoretical one. Learning comes not just from reading
about concepts like algorithms, but manipulating and

observing them as well. The laboratory manual for this text
includes laboratory exercises that enable you to engage
the ideas and concepts presented on these pages.
Laboratory Experience 2 introduces the concept of algo-
rithm animation, in which you can observe an algorithm
being executed and watch as data values are dynamically
transformed into final results. Here is an example of the
type of output produced by this Laboratory Experience.

Bringing an algorithm to life in this way can help you
understand what the algorithm does and how it works. The
first animation that you will work with is the sequential
search algorithm shown in Figure 2.13. The laboratory
software allows you to create a list of data values, and to
watch as the algorithm searches this list to determine
whether a special target value occurs.

We strongly encourage you to work through these lab-
oratory experiences to deepen your understanding of the
ideas presented in this and following chapters.

2.3 Examples of Algorithmic Problem Solving LEVEL 1 61

;

|62

= 2.3.3 Example 3: Big, Bigger, Biggest

The third algorithm we will develop is similar to the sequential search in
Figure 2.13 in that it also searches a list of values. However, this time the
algorithm will search not for a particular value supplied by the user but for
the numerically largest value in a list of numbers. This type of “find largest”
algorithm could be used to answer a number of important questions. (With
only a single trivial change, the same algorithm also finds the smallest value,
so a better name for it might be “find extreme values.”) For example, given a
list of examinations, which student received the highest (or lowest) score?
Given a list of annual salaries, which employee earns the most (or least)
money? Given a list of grocery prices from different stores, where should I
shop to find the lowest price? All these questions could be answered by exe-
cuting this type of algorithm.

In addition to being important in its own right, such an algorithm can
also be used as a “building block” for the construction of solutions to other
problems. For example, the Find Largest algorithm that we will develop could
be used to implement a sorting algorithm that puts an unordered list of num-
bers in ascending order. (Find and remove the largest item in list A and move
it to the last position of list B. Now repeat these operations, each time moving
the largest remaining number in A to the last unfilled slot of list B. We will
develop and write this algorithm in Chapter 3.)

The use of a “building-block” component is a very important concept in
computer science. The examples in this chapter might lead you to believe that
every algorithm you write must be built from only the most elementary and
basic of primitives—the sequential, conditional, and iterative operations
shown in Figure 2.9. However, once an algorithm has been developed, it may
itself be used in the construction of other, more complex algorithms, just as
we will use “find largest” in the design of a sorting algorithm. This is similar
to what a builder does when constructing a home from prefabricated units
rather than bricks and boards. Our problem-solving task need not always
begin at the beginning but can instead build on ideas and results that have
come before. Every algorithm that we create becomes, in a sense, a primitive
operation of our computing agent and can be used as part of the solution to
other problems. That is why a collection of useful algorithms, called a library,
is such an important tool in the design and development of algorithms.

Formally, the problem we will be solving in this section is defined as follows:

Given a value n > 1 and a list containing exactly n unique numbers
calledA,, A,, ..., A, find and print out both the largest value in the
list and the position in the list where that largest value occurred.

For example, if our list contained the five values
19, 41, 12, 63,22 (n=5)

then our algorithm should locate the largest value, 63, and print that value
together with the fact that it occurred in the fourth position of the list. (Note:
Our definition of the problem states that all numbers in the list are unique, so
there can be only a single occurrence of the largest number. Exercise 15 at the
end of the chapter asks how our algorithm would behave if the numbers in the
list were not unique and the largest number could occur two or more times.)

CHAPTER 2: Algorithm Discovery and Design

When faced with a problem statement like the one just given, how do we
go about creating a solution? What strategies can we employ to discover a cor-
rect and efficient answer to the problem? One way to begin is to ask ourselves
how the same problem might be solved by hand. If we can understand and
explain how we would approach the problem manually, we might be able to
express that solution as a formal algorithm.

For example, suppose we were given a pile of papers, each of which con-
tains a single number, and were asked to locate the largest number in the pile?
(The following diagrams assume the papers contain the five values 19, 41, 12,
63, and 22.)

The pile

We might start off by saying that the first number in the pile (the top
one) is the largest one that we have seen so far, and then putting it off to the
side where we are keeping the largest value.

41

The pile The largest so far

Now we compare the top number in the pile with the one that we have called
the largest one so far. In this case, the top number in the pile, 41, is larger than
our current largest, 19, so we make it the new largest. To do this, we throw the
value 19 into the wastebasket (or, better, into the recycle bin) and put the
number 41 off to the side, because it is the largest value encountered so far.

| =

12 A1 The previous largest so far

The pile The largest so far

We now repeat this comparison operation, asking whether the number on top
of the pile is larger than the largest value seen so far, now 41. This time the
value on top of the pile, 12, is not larger, so we do not want to save it. We sim-
ply throw it away and move on to the next number in the pile.

A
2.3 Examples of Algorithmic Problem Solving LEVEL 1 63 !"Ml

i

I
I 6

' =

The value 12,
63 41 which was not used

The pile The largest so far

This compare-and-save-or-discard process continues until our original pile of
numbers is empty, at which time the largest so far is the largest value in the
entire list.

Let’s see how we can convert this informal, pictorial solution into a for-
mal algorithm that is built from the primitive operations shown in Figure 2.9.

We certainly cannot begin to search a list for a largest value until we have
a list to search. Therefore, our first operation must be to get a value for n, the
size of the list, followed by values for the n-element list ALA, ... A. This
can be done using our input primitive:

Get a value for n, the size of the list
Get values for A, A,, ..., A, the list to be searched

Now that we have the data, we can begin to implement a solution.

Our informal description of the algorithm stated that we should begin by
calling the first item in the list, A,, the largest value so far. (We know that
this operation is meaningful since we stated that the list must always have at
least one element.) We can express this formally as

Set the value of largest so far to A,

Our solution must also determine where that largest value occurs. To remem-
ber this value, let’s create a variable called location to keep track of the posi-
tion in the list where the largest value occurs. Because we have initialized
largest so far to the first element in the list, we should initialize location to 1.

Set the value of location to 1

We are now ready to begin looking through the remaining items in list A
to find the largest one. However, if we write something like the following
instruction:

If the second item in the list is greater than largest so far then . . .

we will have made exactly the same mistake that occurred in the initial ver-
sion of the sequential search algorithm shown in Figure 2.11. This instruction
explicitly checks only the second item of the list. We would need to rewrite
that statement to check the third item, the fourth item, and so on. Again, we
are failing to use the idea of iteration, where we repetitively execute a loop as
many times as it takes to produce the desired result.

To solve this problem let’s use the same technique used in the sequential
search algorithm. Let’s not talk about the second, third, fourth, . . . item in
the list but about the ith item in the list, where 7 is a variable that takes on

LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

different values during the execution of the algorithm. Using this idea, a
statement such as

If A, > largest so far then . . .

can be executed with different values for i. This allows us to check all n values
in the list with a single statement. Initially, i should be given the value 2,
because the first item in the list was automatically set to the largest value.
Therefore, we want to begin our search with the second item in the list.

Set the value of 7 to 2

If A; > largest so far then . . .

What operations should appear after the word then? A check of our earlier dia-
grams shows that the algorithm must reset the values of both largest so far
and location.

If A. > largest so far then
Set largest so far to A;
Set location to i

If A, is not larger than largest so far, then we do not want the algorithm
to do anything. To indicate this, the if/then instruction can include an else
clause that looks something like

Else

Don't do anything at all to largest so far and location

This is certainly correct, but instructions that tell us not to do anything are
usually omitted from an algorithm because they do not carry any meaningful
information.

Whether the algorithm resets the values of largest so far and location, it
needs to move on to the next item in the list. Our algorithm refers to 4, the
ith item in the list, so it can move to the next item by simply adding 1 to the
value of i and repeating the if/then statement. The outline of this iteration
can be sketched as follows:

If A. > largest so far then
Set largest so far to A;
Set location to i

Add 1 to the value of 7

AL
2.3 Examples of Algorithmic Problem Solving LEVEL 1 65 !"hMuI

[N
i

|66

FIGURE|2.14

Algorithm to Find the Largest
Value in a List

However, we do not want the loop to repeat forever. (Remember that one of
the properties of an algorithm is that it must eventually halt.) What stops this
iterative process? When does the algorithm display an answer and terminate
execution?

The conditional operation “If A; > largest so far then . . ."” is meaningful
only if 4; represents an actual element of list A. Because A contains n elements
numbered 1 to n, the value of i must be in the range 1 to n. If i > n, then the
loop has searched the entire list, and it is finished. The algorithm can now
print the values of both largest so far and location. Using our looping primi-
tive, we can describe this iteration as follows:

While (7 < n) do
If A, > largest so far then
Set largest so far to A;
Set location to i
Add 1 to the value of i
End of the loop

We have now developed all the pieces of the algorithm and can finally put
them together. Figure 2.14 shows the completed Find Largest algorithm. Note
that the steps are not numbered. This omission is quite common, especially as
algorithms get larger and more complex.

___|
PRACTICE PROBLEMS

1. Modify the algorithm of Figure 2.14 so that it finds the smallest
value in a list rather than the largest. Describe exactly what
changes were necessary.

2. Describe exactly what would happen to the algorithm in Figure 2.14
if you tried to apply it to an empty list of length n = 0. Describe
exactly how you could fix this problem.

3. Describe exactly what happens to the algorithm in Figure 2.14 when
it is presented with a list with exactly one item, i.e., n = 1.

Find Largest Algorithm

Get a value for n, the size of the list
Get values for A;, A,, ..., A, the list to be searched
Set the value of largest so farto A,
Set the value of location to 1
Set the value of jto 2
While (i < n) do
It A;> largest so far then
Set largest so farto A,
Set location to i
Add 1 to the value of
End of the loop
Print out the values of largest so far and location
Stop

LEVEL 1 CHAPTER 2: Algorithm Discovery and Design

LR
LABORATORY

EXPERIENCE

—

Like Laboratory Experience 2, this laboratory also uses ani-

1 s r—" L
. o e e e s
2 R -

mation to help you better understand the concept of algo-
rithm design and execution. It presents an animation of

B =i P the Find Largest algorithm discussed in the text and shown

B o oy e i i o e i

. B o o e s
B S A Oy

B I B o B i] O
an ma

in Figure 2.14. An example of what you will see on the
screen when you run this lab is shown here.

This laboratory experience allows you to create a list
of data and watch as the algorithm attempts to determine

the largest numerical value contained in that list. You will
be able to observe dynamic changes to the variables index,
location, and maximum, and will be able to see how values
are set and discarded as the algorithm executes. Like the
previous laboratory experience, it is intended to give you a
deeper understanding of how this algorithm works by
allowing you to observe its behavior.

B 2.3.4 Example 4: Meeting Your Match

The last algorithm we develop in this chapter solves a common problem in
computer science called pattern matching. For example, imagine that you
have a collection of Civil War data files that you wish to use as resource mate-
rial for an article on Abraham Lincoln. Your first step would probably be to
search these files to locate every occurrence of the text patterns “Abraham
Lincoln,” “A. Lincoln,” and “Lincoln.” The process of searching for a special
pattern of symbols within a larger collection of information is called pattern
matching. Most good word processors provide this service as a menu item
called Find or something similar. Furthermore, most Web search engines try to
match your search keys to the keywords that appear on a Web page.

Pattern matching can be applied to almost any kind of information, includ-
ing graphics, sound, and pictures. For example, an important medical application
of pattern matching is to input an X-ray or CT scan image into a computer and
then have the computer search for special patterns, such as dark spots, which
represent conditions that should be brought to the attention of a physician. This
can help speed up the interpretation of X-rays and avoid the problem of human
error caused by fatigue or oversight. (Computers do not get tired or bored!)

One of the most interesting and exciting applications of pattern matching
is assisting microbiologists and geneticists studying and mapping the human
genome, the basis for all human life. The human genome is composed of a

2.3 Examples of Algorithmic Problem Solving LEVEL 1 67

h',., I

I 68

sequence of approximately 3.5 billion nucleotides, each of which can be one of
only four different chemical compounds. These compounds (adenine, cytosine,
thymine, guanine), are usually referred to by the first letter of their chemical
names: A, C, T, and G. Thus, the basis for our existence can be rendered in a
very large “text file” written in a four-letter alphabet.

...TCGGACTAACATCGGGATCGAGATG. ..

Sequences of these nucleotides are called genes. There are about 25,000 genes
in the human genome, and they determine virtually all of our physical
characteristics—sex, race, eye color, hair color, and height, to name just a few.
Genes are also an important factor in the occurrence of certain diseases. A
missing or flawed nucleotide can result in one of a number of serious genetic
disorders, such as Down syndrome or Tay-Sachs disease. To help find a cure for
these diseases, researchers are attempting to map the entire human genome—
to locate individual genes that, when exhibiting a certain defect, cause a spe-
cific malady. A gene is typically composed of thousands of nucleotides, and
researchers generally do not know the entire sequence. However, they may
know what a small portion of the gene—say, a few hundred nucleotides—
looks like. Therefore, to search for one particular gene, they must match the
sequence of nucleotides that they do know, called a probe, against the entire
3.5 billion-element genome to locate every occurrence of that probe. From this
matching information, researchers hope to be able to isolate specific genes.
For example,

Genome: ...TCAGGCTAATCGTAGG. ..
Probe: TAATC a match

When a match is found, researchers examine the nucleotides located before
and after the probe to see whether they have located the desired gene and, if
so, to see whether the gene is defective. Physicians hope someday to be able
to “clip out” a bad sequence and insert in its place a correct sequence.

This application of pattern matching dispels any notion that the algorithms
discussed here—sequential search (Figure 2.13), Find Largest (Figure 2.14), and
pattern matching—are nothing more than academic exercises that serve as
examples for introductory classes but have absolutely no role in solving real-
world problems. The algorithms that we have presented (or will present) are
important, either in their own right or as building blocks for algorithms used by
physical scientists, mathematicians, engineers, and social scientists.

Let’s formally define the pattern-matching problem as follows:

You will be given some text composed of n characters that will be
referred toas T, T, . . . T,. You will also be given a pattern of m char-
acters, m < n, that will be represented as P P,...P. The algorithm
must locate every occurrence of the pattern within the text. The out-
put of the algorithm is the location in the text where each match
occurred. For this problem, the location of a match is defined to be
the index position in the text where the match begins.

For example, if our text is the phrase “to be or not to be, that is the question”
and the pattern for which we are searching is the word to, then our algorithm
produces the following output:

LEVEL 1

CHAPTER 2: Algorithm Discovery and Design

Text: to be or not to be, that is the question
Pattern: to

Output: Match starting at position 1.

Text: to be or not to be, that is the question
Pattern: to

Output: Match starting at position 14. (The t is in position 14,
including blanks.)

The pattern-matching algorithm that we will implement is composed of
two parts. In the first part, the pattern is aligned under a specific position of
the text, and the algorithm determines whether there is a match at that given
position. The second part of the algorithm “slides” the entire pattern ahead
one character position. Assuming that we have not gone beyond the end of
the text, the algorithm returns to the first part to check for a match at this
new position. Pictorially, this algorithm can be represented as follows:

Repeat the following two steps.

Step 1: The matching process: r,r,I, I, ..
P P, P,
Step 2: The slide forward: rnr,r,I, I, ..
1-character slide — P P, P,

The algorithm involves repetition of these two steps beginning at position 1
of the text and continuing until the pattern has slid off the right hand end of
the text.

A first draft of an algorithm that implements these ideas is shown in
Figure 2.15, in which not all of the operations are expressed in terms of the
basic algorithmic primitives of Figure 2.9. While statements like “Set k,
the starting location for the attempted match, to 1” and “Print the value of
k, the starting location of the match” are just fine, the instructions “Attempt
to match every character in the pattern beginning at position k of the text”
and, “Keep going until we have fallen off the end of the text” are certainly not
primitives. On the contrary, they are both high-level operations that, if writ-
ten out using only the operations in Figure 2.9, would expand into many
instructions.

Is it okay to use high-level statements like this in our algorithm?
Wouldn't their use violate the requirement stated in Chapter 1 that algorithms
be constructed only from unambiguous operations that can be directly exe-
cuted by our computing agent?

In fact it is perfectly acceptable, and quite useful, to use high-level state-
ments like this during the initial phase of the algorithm design process. When
starting to design an algorithm, we may not want to think only in terms of ele-
mentary operations such as input, computation, output, conditional, and itera-
tion. Instead, we may want to express our proposed solution in terms of high-level

A
2.3 Examples of Algorithmic Problem Solving LEVEL 1 69 !"Ml

h',., I

e 70

FIGURE|2.15

First Draft of the Pattern-
Matching Algorithm

Get values for n and m, the size of the text and the pattern, respectively
Get values for both the text T, T, ... T and the pattern P, P, ... P
Set k, the starting location for the attempted match, to 1
Keep going until we have fallen off the end of the text
Attempt to match every character in the pattern beginning at
position k of the text (this is step 1 from the previous page)
If there was a match then
Print the value of k, the starting location of the match
Add 1 to k, which slides the pattern forward one position (this is step 2)
End of the loop
Stop

and broadly defined operations that represent dozens or even hundreds of primi-
tive instructions. Here are some examples of these higher-level constructs:

e Sort the entire list into ascending order.
e Attempt to match the entire pattern against the text.
e Find a root of the equation.

Using instructions like these in an algorithm allows us to postpone worrying about
how to implement that operation and lets us focus instead on other aspects of the
problem. Eventually, we will come back to these statements and either express
them in terms of our available primitives or use existing “building block” algo-
rithms taken from a program library. However, we can do this at our convenience.

The use of high-level instructions during the design process is an example of
one of the most important intellectual tools in computer science—abstraction.
Abstraction refers to the separation of the high-level view of an entity or an oper-
ation from the low-level details of its implementation. It is abstraction that allows
us to understand and intellectually manage any large, complex system, whether it
is a mammoth corporation, a complex piece of machinery, or an intricate and very
detailed algorithm. For example, the president of General Motors views the com-
pany in terms of its major corporate divisions and very high-level policy issues,
not in terms of every worker, every supplier, and every car. Attempting to manage
the company at that level of detail would drown the president in a sea of detail.

In computer science we frequently use abstraction because of the com-
plexity of hardware and software. For example, abstraction allows us to view
the hardware component called “memory” as a single, indivisible high-level
entity without paying heed to the billions of electronic devices that go into
constructing a memory unit. (Chapter 4 examines how computer memories are
built, and it makes extensive use of abstraction.) In algorithm design and
software development, we use abstraction whenever we think of an operation
at a high level, and temporarily ignore how we might actually implement that
operation. This allows us to decide which details to address now and which to
postpone. Viewing an operation at a high level of abstraction and fleshing out
the details of its implementation at a later time constitute an important com-
puter science problem-solving strategy called top-down design.

Ultimately, however, we have to describe how each of these high-level
abstractions can be represented using the available algorithmic primitives.
The fifth line of the first draft of the pattern-matching algorithm shown in
Figure 2.15 reads:

LEVEL 1

CHAPTER 2: Algorithm Discovery and Design

Attempt to match every character in the pattern beginning at position k of
the text.

When this statement is reached, the pattern is aligned under the text begin-
ning with the kth character. Pictorially, we are in the following situation:

Text: T1 Tg T3' . Tk Tk+1Tk+2‘ c Tk+(m—1) o
Pattern: P, P, Ps"' P,

The algorithm must now perform the following comparisons:

Compare P, to T,

Compare P, to T, ,

Compare Py to T, ,

Compare P to Tk+(m_1)
If the members of every single one of these pairs are equal, then there is a
match. However, if even one pair is not equal, then there is no match, and the
algorithm can immediately cease making comparisons at this location. Thus,
we must construct a loop that executes until one of two things happens—it
has either completed m successful comparisons (i.e., we have matched the
entire pattern) or it has detected a mismatch. When either of these conditions
occurs the algorithm stops; however, if neither condition has occurred, the
algorithm must keep going. Algorithmically, this iteration can be expressed in
the following way. (Remember that k is the starting location in the text.)

Set the value of i to 1

Set the value of Mismatch to NO

While both (i < m) and (Mismatch = NO)
If P, # Tk+(,._1) then
Set Mismatch to YES

Else
Increment 7 by 1 (to move to the next character)

End of the loop

When the loop has finished, we can determine whether there has been a
match by examining the current value of the variable Mismatch. If Mismatch is
YES, then there was not a match because at least one of the characters was out
of place. If Mismatch is NO, then every character in the pattern matched its
corresponding character in the text, and there is a match.

If Mismatch = NO then
Print the message ‘There is a match at position’
Print the value of k

AL
2.3 Examples of Algorithmic Problem Solving LEVEL 1 71 !"hMuI

i

|4I1

Il
’| 72

FIGURE|2.16

Final Draft of the Pattern-
Matching Algorithm

Regardless of whether there was a match at position k, we must add 1 to k to
begin searching for a match at the next position. This is the “sliding forward”
step diagrammed earlier.

The final high-level statement in Figure 2.15 that needs to be expanded is
the loop on line 4.

Keep going until we have fallen off the end of the text

What does it mean to “fall off the end of the text”? Where is the last possible
place that a match can occur? To answer these questions, let’s draw a diagram
in which the last character of the pattern, P, lines up directly under T, the
last character of the text.

Text: I T, T3 ... T
Pattern: P

1 e m-2 m-1 m

This diagram illustrates that the last possible place a match could occur is
when the first character of the pattern is aligned under the character at posi-
tion T ., of the text, because P isaligned underT , P, isunderT ,, P ,
is aligned under T, etc. Thus, P, which can be written as Pm_(m_l), is aligned
under T\, whichis T .. If we tried to slide the pattern forward any fur-
ther, we would truly “fall off” the right hand end of the text. Therefore, our
loop must terminate when k, the starting point for the match, strictly exceeds

the value of n-m+1. We can express this as follows:
While (k < (n - m+1)) do

Now we have all the pieces of our algorithm in place. We have expressed
every statement in Figure 2.15 in terms of our basic algorithmic primitives and
are ready to put it all together. The final draft of the pattern-matching algo-
rithm is shown in Figure 2.16.

Pattern-Matching Algorithm

Get values for n and m, the size of the text and the pattern, respectively
Get values for both the text T, T, ... T, and the pattern P, P, ... P,
Set k, the starting location for the attempted match, to 1
While (k < (n- m+1)) do
Set the value of ito 1
Set the value of Mismatch to NO
While both (i = m) and (Mismatch = NO) do
It P, # Ty iyy then
Set Mismatch to YES
Else
Increment jby 1 (to move to the next character)
End of the loop
If Mismatch = NO then
Print the message ‘There is a match at position’
Print the value of k
Increment k by 1
End of the loop
Stop, we are finished

LEVEL 1

CHAPTER 2: Algorithm Discovery and Design

PRACTICE PROBLEMS

1. Consider the following “telephone book.”

Name Number

Smith 555-1212
Jones 834-6543
Adams 921-5281
Doe 327-8900

Trace the sequential search algorithm of Figure 2.13 using each of
the following NAMEs and show the output produced.

a. Adams
b. Schneider

2. Consider the following list of seven data values.
22,18, 23, 17, 25, 30, 2

Trace the Find Largest algorithm of Figure 2.14 and show the output
produced.

3. Consider the following text.
Text: A man and a woman

Trace the pattern-matching algorithm of Figure 2.16 using the
2-character pattern ‘an’ and show the output produced.

4. Explain exactly what would happen to the algorithm of Figure 2.16
if m, the length of the pattern, were greater than n, the length of
the text.

ik

2.4 Conclusion =y

You have now had a chance to see the step-by-step design and development of
some interesting, nontrivial algorithms. You have also been introduced to a
number of important concepts related to problem solving, including algorithm
design and discovery, pseudocode, control statements, iteration, libraries,
abstraction, and top-down design. However, this by no means marks the end
of our discussion of algorithms. The development of a correct solution to a
problem is only the first step in creating a useful solution.

Designing a technically correct algorithm to solve a given problem is only
part of what computer scientists do. They must also ensure that they have created
an efficient algorithm that generates results quickly enough for its intended users.
Chapter 1 described a brute force chess algorithm that would, at least theoreti-
cally, play perfect chess but that would be unusable because it would take millions
of centuries to make its first move. Similarly, a directory assistance program that
takes 10 minutes to locate a telephone number would be of little or no use. A
caller would surely hang up long before the answer was found. This practical

TTHRIEIR
2.4 Conclusion LEVEL 1 73 !||MI

h'

il
lgf

|4I1

!'| 74

concern for efficiency and usefulness, in addition to correctness, is one of the
hallmarks of computer science.

Therefore, after developing a correct algorithm, we must analyze it thor-
oughly and study its efficiency properties and operating characteristics. We
must ask ourselves how quickly it will give us the desired results and whether
it is better than other algorithms that solve the same problem. This analysis,
which is the central topic of Chapter 3, enables us to create algorithms that
are not only correct, but elegant, efficient, and useful as well.

LEVEL 1

CHAPTER 2: Algorithm Discovery and Design

EXERCISES

1. Write pseudocode instructions to carry out each of the
following computational operations.

a. Determine the area of a triangle given values for the
base b and the height h.

b. Compute the interest earned in 1 year given the start-
ing account balance B and the annual interest rate I
and assuming simple interest, that is, no compounding.
Also determine the final balance at the end of the year.

c. Determine the flying time between two cities given
the mileage M between them and the average speed of
the airplane.

2. Using only the sequential operations described in
Section 2.2.2, write an algorithm that gets values for
the starting account balance B, annual interest rate I,
and annual service charge S. Your algorithm should out-
put the amount of interest earned during the year and
the final account balance at the end of the year. Assume
that interest is compounded monthly and the service
charge is deducted once, at the end of the year.

3. Using only the sequential operations described in
Section 2.2.2, write an algorithm that gets four numbers
corresponding to scores received on three semester tests
and a final examination. Your algorithm should compute
and display the average of all four tests, weighting the
final exam twice as heavily as a regular test.

4. Write an algorithm that gets the price for item A plus the
quantity purchased. The algorithm prints the total cost,
including a 6% sales tax.

5. Write an if/then/else primitive to do each of the follow-
ing operations.
a. Compute and display the value x + y if the value of y is
not 0. If y does have the value 0, then display the
message ‘Unable to perform the division!

b. Compute the area and circumference of a circle given
the radius r if the radius is greater than or equal to 1.0;
otherwise, you should compute only the circumference.

6. Modify the algorithm of Exercise 2 to include the annual
service charge only if the starting account balance at the
beginning of the year is less than $1,000. If it is greater
than or equal to $1,000, then there is no annual service
charge.

7. Write an algorithm that uses a loop (1) to input 10 pairs
of numbers, where each pair represents the score of a foot-
ball game with the Computer State University (CSU) score
listed first, and (2) for each pair of numbers, determine
whether CSU won or lost. After reading in these 10 pairs of
values, print out the won/lost/tie record of CSU. In
addition, if this record is a perfect 10-0, then print out the
message ‘Congratulations on your undefeated season!

e Y (R T
1 | || I||||II.II_. i
|

R
i

8. Modify the test-averaging algorithm of Exercise 3 so that it
reads in 15 test scores rather than 4. There are 14 regular
tests and a final examination, which counts twice as much
as a regular test. Use a loop to input and sum the scores.

9. Modify the sales computation algorithm of Exercise 4 so
that after finishing the computation for one item, it
starts on the computation for the next. This iterative
process is repeated until the total cost exceeds $1000.

10. Write an algorithm that is given your electric meter read-
ings (in kilowatt-hours) at the beginning and end of each
month of the year. The algorithm determines your annual
cost of electricity on the basis of a charge of 6 cents per
kilowatt-hour for the first 1,000 kilowatt-hours of each
month and 8 cents per kilowatt-hour beyond 1,000. After
printing out your total annual charge, the algorithm also
determines whether you used less than 500 kilowatt-
hours for the entire year and, if so, prints out a message
thanking you for conserving electricity.

11. Develop an algorithm to compute gross pay. The inputs
to your algorithm are the hours worked per week and the
hourly pay rate. The rule for determining gross pay is to
pay the regular pay rate for all hours worked up to 40,
time-and-a-half for all hours over 40 up to 54, and dou-
ble time for all hours over 54. Compute and display the
value for gross pay using this rule. After displaying one
value, ask the user whether he or she wants to do
another computation. Repeat the entire set of operations
until the user says no.

12. Develop a formal argument that “proves” that the
sequential search algorithm shown in Figure 2.13 cannot
have an infinite loop; that is, prove that it will always
stop after a finite number of operations.

13. Modify the sequential search algorithm of Figure 2.13 so
that it works correctly even if the names in the directory
are not unique, that is, if the desired name occurs more
than once. Your modified algorithm should find every
occurrence of NAME in the directory and print out the tele-
phone number corresponding to every match. In addition,
after all the numbers have been displayed, your algorithm
should print out how many occurrences of NAME were
located. For example, if NAME occurred three times, the
output of the algorithm might look something like this:

528-5638
922-7874
488-2020

A total of three occurrences were located.

Exercises LEVEL 1

rs IS

14.

15.

16.

17.

18.

Use the Find Largest algorithm of Figure 2.14 to help you
develop an algorithm to find the median value in a list
containing N unique numbers. The median of N numbers
is defined as the value in the list in which approximately
half the values are larger than it and half the values are
smaller than it. For example, consider the following list
of seven numbers.

26, 50, 83, 44, 91, 20, 55

The median value is 50 because three values (20, 26, and
44) are smaller and three values (55, 83, and 91) are
larger. If N is an even value, then the number of values
larger than the median will be one greater than the num-
ber of values smaller than the median.

With regard to the Find Largest algorithm of Figure 2.14,
if the numbers in our list were not unique and therefore
the largest number could occur more than once, would
the algorithm find the first occurrence? The last occur-
rence? Every occurrence? Explain precisely how this algo-
rithm would behave when presented with this new
condition.

On the sixth line of the Find Largest algorithm of
Figure 2.14 there is an instruction that reads,

While (7 < n) do
Explain exactly what would happen if we changed that
instruction to read as follows:
a. While (1> n) do
b. While (i < n) do
c. While (i=n) do
On the seventh line of the Find Largest algorithm of
Figure 2.14 is an instruction that reads,

If A, > largest so far then . . .
Explain exactly what would happen if we changed that
instruction to read as follows:
a. If A, > largest so far then . . .
b. If A, < largest so far then . . .
Looking back over your answers to the previous two
questions, what do they say about the importance of
using the correct relational operation (<, =, >, >, <, #)

when writing out either an iterative or conditional algo-
rithmic primitive?

a. Refer to the pattern-matching algorithm in Figure 2.16.
What is the output of the algorithm as it currently
stands if our text is

Text: We must band together and handle adversity
and we search for the pattern “and”?

19.

20.

21.

22.

23.

b. How could we modify the algorithm so that it finds
only the complete word and rather than the occur-
rence of the character sequence a, n, and d that are
contained within another word, such as band?

Refer to the pattern-matching algorithm in Figure 2.16.
Explain how the algorithm would behave if we acciden-
tally omitted the statement on line 16 that says,

Increment k by 1

Design an algorithm that is given a positive integer N
and determines whether N is a prime number, that is,
not evenly divisible by any value other than 1 and
itself. The output of your algorithm is either the mes-
sage “not prime,” along with a factor of N, or the
message “prime.”

Write an algorithm that generates a Caesar cipher—a
secret message in which each letter is replaced by the
one that is k letters ahead of it in the alphabet, in a
circular fashion. For example, if k = 5, then the letter a
would be replaced by the letter f, and the letter x would
be replaced by the letter c. (We'll talk more about
the Caesar cipher and other encryption algorithms in
Chapter 8.) The input to your algorithm is the text to
be encoded, ending with the special symbol “$”, and
the value k. (You may assume that, except for the spe-
cial ending character, the text contains only the 26 let-
ters a . . . z.) The output of your algorithm is the
encoded text.

Design and implement an algorithm that is given as input
an integer value k > 0 and a list of k numbers N, N, . . .,
N,. Your algorithm should reverse the order of the numbers
in the list. That is, if the original list contained:

N,=5 N,=13, N;=8, N, =27, N;=10 (k=5)

then when your algorithm has completed, the values
stored in the list will be:

N, =10, N,=27, N;=8, N, =13, N, =5

Design and implement an algorithm that gets as input a
list of k integer values N, N,, ..., N, as well as a spe-
cial value SUM. Your algorithm must locate a pair of val-
ues in the list N that sum to the value SUM. For example,
if your list of values is 3, 8, 13, 2, 17, 18, 10, and the
value of SUM is 20, then your algorithm would output
either the two values (2, 18) or (3, 17). If your algo-
rithm cannot find any pair of values that sum to the
value SUM, then it should print out the message ‘Sorry,
there is no such pair of values!

LEVEL 1

CHAPTER 2: Algorithm Discovery and Design

CHALLENGE WORK

1. Design an algorithm to find the root of a function f(x),
where the root is defined as a point x such that f(x) = 0.
Pictorially, the root of a function is the point where the
graph of that function crosses the x-axis.

Ay

Your algorithm should operate as follows. Initially it will
be given three values:

1. A starting point for the search

2. A step size

3. The accuracy desired
Your algorithm should begin at the specified starting point
and begin to “walk up” the x-axis in units of step size. After
taking a step, it should ask the question “Have I passed a
root?” It can determine the answer to this question by see-
ing whether the sign of the function has changed from the
previous point to the current point. (Note that below the
axis the sign of f(x) is negative; above the axis it is positive.
If it crosses the x-axis, it must change sign.) If the algo-
rithm has not passed a root, it should keep walking up the
x-axis until it does. This is expressed pictorially as:

A flx)
4 Starting point

o/ o Jo

Step:

size

Direction of search

-y

When the algorithm passes a root, it must do two
things. First, it changes the sign of step size so that it
starts walking in the reverse direction, because it is now
past the root. Second, it multiplies step size by 0.1, so
our steps are 1/10 as big as they were before. We now
repeat the operation described above, walking down the
x-axis until we pass the root.

Ll

New step size

Direction of search

Again, the algorithm changes the sign of step size
to reverse direction and reduces it to 1/10 its previous
size. As the diagrams show, we are slowly zeroing in on
the root—going past it, turning around, going past it,
turning around, and so forth. This iterative process stops
when the algorithm passes a root and the step size is
smaller than the desired accuracy. It has now bracketed
the root within an interval that is smaller than the accu-
racy we want. At this point it should print out the mid-
point of the interval and terminate.

There are many special cases that this algorithm
must deal with, but in your solution you may disregard
them. Assume that you will always encounter a root in
your “travels” along the x-axis. After creating a solution,
you may wish to look at some of these special cases,
such as a function that has no real roots, a starting point
that is to the right of all the roots, and two roots so
close together that they fall within the same step.

One of the most important and widely used classes of algo-
rithms in computer science is sorting, the process of
putting a list of elements into a predefined order, usually
numeric or alphabetic. There are many different sorting
algorithms, and we will look at some of them in Chapter 3.
One of the simplest sorting algorithms is called selection
sort, and it can be implemented using the tools that you
have learned in this chapter. It is also one of the easiest
to understand as it mimics how we often sort collections
of values when we must do it by hand.

Assume that we are given a list named A, containing
eight values that we want to sort into ascending order,
from smallest to largest:

A: 23 18 66 9 21 90 32 4
Position: 1 2 3 4 5 6 7 8

We first look for the largest value contained in positions
1 to 8 of list A. We can do this using something like the

Challenge Work LEVEL 1 77

Find Largest algorithm that appears in Figure 2.14. In
this case the largest value is 90, and it appears in posi-
tion 6. Since this is the largest value in A, we swap it
with the value in position 8 so that it is in its correct
place at the back of the list. The list is now partially
sorted from position 8 to position 8:

A: 23 18 66 9 21 4 32 90
Position: 1 2 3 4 5 6 7 8

We now search the array for the second largest value.
Since we know that the largest value is contained in
position 8, we need to search only positions 1 to 7 of list
A to find the second largest value. In this case the sec-
ond largest value is 66, and it appears in position 3. We
now swap the value in position 3 with the value in posi-
tion 7 to get the second largest value into its correct
location. This produces the following:

A: 23 18 32 9 21 4 66 90
Position: 1 2 3 4 5 6 7 8
The list is now partially sorted from position 7 to position 8,
with those two locations holding the two largest values. The
next search goes from position 1 to position 6 of list A, this

time trying to locate the third largest value, and we swap
that value with the number in position 6. After repeating

FOR FURTHER READING

this process 7 times, the list is completely sorted. (That is
because if the last 7 items are in their correct place, the
item in position 1 must also be in its correct place.)

Using the Find Largest algorithm shown in Figure 2.14
(which may have to be slightly modified) and the primitive
pseudocode operations listed in Figure 2.9, implement the
selection sort algorithm that we have just described.
Assume that n, the size of the list, and the n-element list A
are input to your algorithm. The output of your algorithm
should be the sorted list.

. Most people are familiar with the work of the great math-

ematicians of ancient Greece and Rome, such as
Archimedes, Euclid, Pythagoras, and Plato. However, a
great deal of important work in arithmetic, geometry,
algebra, number theory, and logic was carried out by
scholars working in Egypt, Persia, India, and China. For
example, the concept of zero was first developed in
India, and positional numbering systems (like our own
decimal system) were developed and used in China,
India, and the Middle East long before they made their
way to Europe. Read about the work of some mathemati-
cian (such as Al-Khowarizmi) from these or other places,
and write a paper describing his or her contributions to
mathematics, logic, and (ultimately) computer science.

The classic text on algorithms is the four-volume series by Donald Knuth:

Knuth, D. The Art of Computer Programming, 4 vols. Reading, MA: Addison Wesley.
Volume 1: Fundamental Algorithms, 3rd ed., 1997.

Volume 2: Seminumerical Algorithms, 3rd ed., 1998.

Volume 3: Sorting and Searching, 2nd ed., 1998.

Volume 4: Introduction to Combinatorial Algorithms and Boolean Functions, 2008.

The following books provide additional information about the design of algorithms to
solve a wide range of interesting problems.

Baase, S., and Van Gelder, A., Computer Algorithms: Introduction to Design and Analysis, 3rd ed.
Reading, MA: Addison Wesley, 2000.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C. Introduction to Algorithms, 2nd ed. New

York: McGraw-Hill, 2002.

Harel, D., and Feldman, Y., Algorithmics: The Spirit of Computing, 3rd ed. Reading, MA: Addison

Wesley, 2004.

Michalewicz, Z., and Fogel, D. How to Solve It: Modern Heuristics. Amsterdam: Springer-Verlag, 2004.

Skiena, S. The Algorithm Design Manual, 2nd ed. Amsterdam: Springer, 2008.

The following is an excellent introduction to algorithm design using the control of the
motions and actions of a toy robot as a basis for teaching algorithmic problem solving.

Pattis, R.; Roberts, J.; and Stehlik, M. Karel the Robot: A Gentle Introduction to the Art of Program-
ming, 2nd ed. New York: Wiley, 1995.

LEVEL 1

CHAPTER 2: Algorithm Discovery and Design

CHAPTER 3

The Efficiency of Algorithms

3.1 Introduction
3.2 Attributes of Algorithms
3.3 Measuring Efficiency
3.3.1 Sequential Search
3.3.2 Order of Magnitude—Order n
3.3.3 Selection Sort
3.3.4 Order of Magnitude—Order n?
LABORATORY EXPERIENCE 4
3.4 Analysis of Algorithms
3.4.1 Data Cleanup Algorithms
3.4.2 Binary Search
LABORATORY EXPERIENCE 5
3.4.3 Pattern Matching
3.4.4 Summary
3.5 When Things Get Out of Hand
LABORATORY EXPERIENCE 6
3.6 Summary of Level 1
EXERCISES
CHALLENGE WORK
FOR FURTHER READING

-1

3.1

3.2

SR

Introduction

i

Finding algorithms to solve problems of interest is an important part of com-
puter science. Any algorithm that is developed to solve a specific problem has,
by definition, certain required characteristics (see the formal definition in
Chapter 1, Section 1.3.1), but are some algorithms better than others? That
is, are there other desirable but non-essential characteristics of algorithms?

Consider the automobile: there are certain features that are part of the “defi-
nition” of a car, such as four wheels and an engine. These are the basics. However,
when purchasing a car, we almost certainly take into account other things, such
as ease of handling, style, and fuel efficiency. This analogy is not as superficial as
it seems—the properties that make better algorithms are in fact very similar.

Attributes of Algorithms ™

First and foremost, we expect correctness from our algorithms. An algorithm
intended to solve a problem must, again by formal definition, give a result and
then halt. But this is not enough; we also demand that the result be a correct
solution to the problem. One could consider this an inherent property of the
definition of an algorithm (like a car being capable of transporting us where
we want to go), but it bears emphasizing. An elegant and efficient algorithm
that gives wrong results for the problem at hand is worse than useless. It can
lead to mistakes that are enormously expensive or even fatal.

Determining that an algorithm gives correct results may not be as straight-
forward as it seems. For one thing, our algorithm may indeed be providing correct
results—but to the wrong problem. This can happen when we design an algorithm
without a thorough understanding of the real problem we are trying to solve, and
it is one of the most common causes of “incorrect” algorithms. Also, once we
understand the problem, the algorithm must provide correct results for all possible
input values, not just for those values that are the most likely to occur. Do we
know what all those correct results are? Probably not, or we would not be writing
an algorithm to solve this problem. But there may be a certain standard against
which we can check the result for reasonableness, thus giving us a way to deter-
mine when a result is obviously incorrect. In some cases, as noted in Chapter 1,
the correct result may be an error message saying that there is no correct answer.
There may also be an issue of the accuracy of the result we are willing to accept as
correct. If the “real” answer is &, for example, then we can only approximate its
decimal value. Is 3.14159 close enough to “correct?” Is 3.1416 close enough? What
about 3.14? Computer scientists often summarize these two views of correctness
by asking, Are we solving the right problem? Are we solving the problem right?

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

If an algorithm to solve a problem exists and has been determined, after
all the considerations of the previous paragraph, to give correct results, what
more can we ask? To many mathematicians, this would be the end of the mat-
ter. After all, once a solution has been obtained and shown to be correct, it is
no longer of interest (except possibly for use in obtaining solutions to other
problems). This is where computer science differs significantly from theoreti-
cal disciplines such as pure mathematics and begins to take on an “applied”
character more closely related to engineering or applied mathematics. The
algorithms developed by computer scientists are not merely of academic inter-
est. They are also intended to be used.

Suppose, for example, that a road to the top of a mountain is to be built.
An algorithmic solution exists that gives a correct answer for this problem in
the sense that a road is produced: Just build the road straight up the moun-
tain. Problem solved. But the highway engineer knows that the road must be
usable by real traffic and that this constraint limits the grade of the road. The
existence and correctness of the algorithm is not enough; there are practical
considerations as well.

The practical considerations for computer science arise because the algo-
rithms developed are executed in the form of computer programs running on real
computers to solve problems of interest to real people. Let’s consider the “people
aspect” first. A computer program is seldom written to be used only once to solve
a single instance of a problem. It is written to solve many instances of that prob-
lem with many different input values, just as the sequential search algorithm of
Chapter 2 would be used many times with different lists of names and different
target NAME values. Furthermore, the problem itself does not usually “stand
still.” If the program is successful, people will want to use it for slightly different
versions of the problem, which means they will want the program slightly
enhanced to do more things. After a program is written, it therefore needs to be
maintained, both to fix any errors that are uncovered through repeated usage
with different input values, and to extend the program to meet new require-
ments. Much time and much money are devoted to program maintenance. The
person who has to modify a program, either to correct errors or to expand its
functionality, often is not the person who wrote the original program. To make
program maintenance as easy as possible, the algorithm the program uses should
be easy to understand. Ease of understanding, clarity, “ease of handling”—
whatever you want to call it—is a desirable characteristic of an algorithm.

On the other hand, there is a certain satisfaction in having an “elegant”
solution to a problem. Elegance is the algorithmic equivalent of style. The
classic example, in mathematical folklore, is the story of the German mathe-
matician Karl Frederick Gauss (1777-1855) who was asked as a schoolchild
to add up the numbers from 1 to 100. The straightforward algorithm of
adding 1 + 2 + 3 + 4 + .. . + 100 by adding one number at a time can be
expressed in pseudocode as

Set the value of sum to 0

Set the value of x to 1

While x is less than or equal to 100 do steps 4 and 5
Add x to sum
Add 1 to the value of x

Print the value of sum

N O O DA W=

Stop

3.2 Attributes of Algorithms LEVEL 1 81 |

I
r

1

rlll
pERi] 82

This algorithm can be executed to find that the sum has the value 5,050. It is
fairly easy to read this pseudocode and understand how the algorithm works.
It is also fairly clear that if we want to change this algorithm to one that adds
the numbers from 1 to 1,000, we only have to change the loop condition to

3. While x is less than or equal to 1,000 do steps 4 and 5

However, Gauss noticed that the numbers from 1 to 100 could be grouped into
50 pairs of the form

1+ 100 =101
2+99 =101
50 +51 =101

so that the sum equals 50 X 101 = 5,050. This is certainly an elegant and
clever solution, but is it easy to understand? If a computer program just said
to multiply

(100)
—)101
2

with no further explanation, we might guess how to modify the program to add
up the first 1,000 numbers, but would we really grasp what was happening
enough to be sure the modification would work? (The Practice Problems at the
end of this section discuss this.) Sometimes elegance and ease of understand-
ing work at cross-purposes; the more elegant the solution, the more difficult it
may be to understand. Do we win or lose if we have to trade ease of under-
standing for elegance? Of course, if an algorithm has both characteristics—
ease of understanding and elegance—that’s a plus.

Now let’s consider the real computers on which programs run. Although
these computers can execute instructions very rapidly and have some memory
in which to store information, time and space are not unlimited resources. The
computer scientist must be conscious of the resources consumed by a given
algorithm, and if there is a choice between two (correct) algorithms that per-
form the same task, the one that uses fewer resources is preferable. Efficiency
is the term used to describe an algorithm'’s careful use of resources. In addi-
tion to correctness, ease of understanding, and elegance, efficiency is an
extremely desirable attribute of an algorithm.

Because of the rapid advances in computer technology, today’s computers
have much more memory capacity and execute instructions much more rapidly
than computers of just a few years ago. Efficiency in algorithms may seem to
be a moot point; we can just wait for the next generation of technology and it
won't matter how much time or space is required. There is some truth to this,
but as computer memory capacity and processing speed increase, people find
more complex problems to be solved, so the boundaries of the computer’s
resources continue to be pushed. Furthermore, we will see in this chapter that
there are algorithms that consume so many resources that they will never be
practical, no matter what advances in computer technology occur.

CHAPTER 3: The Efficiency of Algorithms

How shall we measure the time and space consumed by an algorithm to
determine whether it is efficient? Space efficiency can be judged by the
amount of information the algorithm must store in the computer’s memory to
do its job, in addition to the initial data on which the algorithm is operating.
If it uses only a few extra memory locations while processing the input data,
the algorithm is relatively space efficient. If the algorithm requires almost as
much additional storage as the input data itself takes up, or even more, then
it is relatively space-inefficient.

How can we measure the time efficiency of an algorithm? Consider the
sequential search algorithm shown in Figure 2.13, which looks up a name in a
telephone directory where the names are not arranged in alphabetical order.
How about running the algorithm on a real computer and timing it to see how
many seconds (or maybe what small fraction of a second) it takes to find a
name or announce that the name is not present? The difficulty with this
approach is that there are three factors involved, each of which can affect the
answer to such a degree as to make whatever number of seconds we come up
with rather meaningless.

1. On what computer will we run the algorithm? Shall we use a modest
laptop or a supercomputer capable of doing many trillions of calcula-
tions per second?

2. What telephone book (list of names) will we use: New York City or
Yeehaw Junction, Florida?

3. What name will we try to find? What if we pick a name that happens
to be first in the list? What if it happens to be last in the list?

Simply timing the running of an algorithm is more likely to reflect machine
speed or variations in input data than the efficiency (or lack thereof) of the
algorithm itself.

This is not to say that you can’t obtain meaningful information by timing
an algorithm. For example, using the same input data (searching for Karlenski,
say, in the New York City phone book) and timing the algorithm on different
machines gives a comparison of machine speeds, because the task is identical.
Using the same machine and the same list of names, but searching for differ-
ent names, gives an indication of how the choice of NAME affects the algo-
rithm’s running time on that particular machine. This type of comparative
timing is called benchmarking. Benchmarks are useful for rating one machine
against another and for rating how sensitive a particular algorithm is with
respect to variations in input on one particular machine.

However, what we mean by an algorithm’s time efficiency is an indication
of the amount of “work” required by the algorithm itself. It is a measure of the
inherent efficiency of the method, independent of the speed of the machine
on which it executes or the specific input data being processed. Is the amount
of work an algorithm does the same as the number of instructions it executes?
Not all instructions do the same things, so perhaps they should not all be
“counted” equally. Some instructions are carrying out work that is fundamen-
tal to the way the algorithm operates, whereas other instructions are carrying
out peripheral tasks that must be done in support of the fundamental work.
To measure time efficiency, we identify the fundamental unit (or units) of
work of an algorithm and count how many times the work unit is executed.
Later in this chapter we will see why we can ignore peripheral tasks.

3.2 Attributes of Algorithms LEVEL 1 83 |

I
L

1

PRACTICE PROBLEMS

1. Use Gauss’s approach to find a formula for the sum of the numbers
from 1 to n,

1+2+3+...+n

where n is an even number. Your formula will be an expression
involving n.

2. Test your formula from Problem 1 for the following sums.

1+2
1+2+...+6
1+2+...+10
1+2+...+100
1+2+...+1000

PRp gy

3. Now see if the same formula from Problem 1 works when n is odd;
try it on

a. 1+2+3
b. 1+2+...+5
c. 1+2+...+9

3.3 Measuring Efficiency L

The study of the efficiency of algorithms is called the analysis of algorithms,
and it is an important part of computer science. As a first example of the
analysis of an algorithm, we'll look at the sequential search algorithm.

= 3.3.1 Sequential Search

The pseudocode description of the sequential search algorithm from Chapter 2
appears in Figure 3.1, where we have assumed that the list contains n entries
instead of 10,000 entries.

FIGURE|3.1

Sequential Search Algorithm . Get values for NAME, n, N, ...,N,and T, ...,T,

’'n
. Set the value of ito 1 and set the value of Foundto NO
. While (Found = NO) and (i = n) do steps 4 through 7
If NAME is equal to the ith name on the list, N, then
Print the telephone number of that person, T;
Set the value of Foundto YES
Else (NAME is not equal to)
Add 1 to the value of i
. If (Found = NO) then
Print the message ‘Sorry, this name is not in the directory’
Stop

SIS IS SO

© © x® N

—_

H1il.
11 84 LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

The central unit of work is the comparison of the NAME being searched for
against a name in the list. The essence of the algorithm is the repetition of
this task against successive names in the list until NAME is found or the list is
exhausted. The comparison takes place at step 4, within the loop composed of
steps 4 through 7. Peripheral tasks include setting the initial value of the
index i, writing the output, adjusting Found, and moving the index forward in
the list of names. Why are these considered peripheral tasks?

Setting the initial value of the index and the initial value of Found requires
executing a single instruction, done at step 2. Writing output requires executing
a single instruction, either at step 5 if NAME is in the list, or at step 9 if NAME
is not in the list. Note that instruction 5, although it is part of the loop, writes
output at most once (if NAME equals N)). Similarly, setting Found to YES occurs
at most once (if NAME equals NV,) at step 6. We can ignore the small contribution
of these single-instruction executions to the total work done by the algorithm.

Moving the index forward is done once for each comparison, at step 7. We
can get a good idea of the total amount of work the algorithm does by simply
counting the number of comparisons and then multiplying by some constant
factor to account for the index-moving task. The constant factor could be 2
because we do one index move for each comparison, so we would double the
work. It could be less because it is less work to add 1 to 7 than it is to compare
NAME letter by letter against N.. As we will see later, the precise value of this
constant factor is not very important.

So again, the basic unit of work in this algorithm is the comparison of
NAME against a list element. One comparison is done at each pass through the
loop in steps 4 through 7, so we must ask how many times the loop is exe-
cuted. Of course, this depends on when, or if, we find NAME in the list.

The minimum amount of work is done if NAME is the very first name in the
list. This requires only one comparison, because NAME has then been found and
the algorithm exits the loop after only one pass. This is the best case, requiring
the least work. The worst case, requiring the maximum amount of work, occurs
if NAME is the very last name in the list, or is absent. In either of these situa-
tions, NAME must be compared against all n names in the list before the loop
terminates because FOUND gets set to YES (if NAME is the last name on the list)
or because the value of the index i exceeds n (if NAME is not in the list).

When NAME occurs somewhere in the middle of the list, it requires some-
where between 1 (the best case) and n (the worst case) comparisons. If we were
to run the sequential search algorithm many times with random NAMEs occur-
ring at various places in the list and count the number of comparisons done
each time, we would find that the average number of comparisons done is
about n/2. (The exact average is actually slightly higher than n/2; see Exercise
4 at the end of the chapter.) It is not hard to explain why an average of approx-
imately n/2 comparisons are done (or the loop is executed approximately n/2
times) when NAME is in the list. If NAME occurs halfway down the list, then
roughly n/2 comparisons are required; random NAMEs in the list occur before
the halfway point about half the time and after the halfway point about half
the time, and these cases of less work and more work balance out.

This means that the average number of comparisons needed to find a
NAME that occurs in a 10-element list is about 5, in a 100-element list about
50, and in a 1,000-element list about 500. On small values of n—say, a few
hundred or a few thousand names—the values of n/2 (the average case) or n
(the worst case) are small enough that a computer could execute the

3.3 Measuring Efficiency LEVEL 1 85 |

I
r

1

F[ll‘i
pRREN 86

algorithm quickly and get the desired answer in a fraction of a second. However,
computers are generally used to solve not tiny problems but very large ones.
Therefore, we are usually interested in the behavior of an algorithm as the size
of a problem (n) gets very, very large. For example, in the New York City tele-
phone directory, n may be as large as 20,000,000. If the sequential search algo-
rithm were executed on a computer that could do 50,000 comparisons per
second, it would require on the average about

20,000,000 . 1
———— comparisons X
2 50,000

seconds/comparison = 200 seconds

or 3 1/3 minutes just to do the comparisons necessary to locate a specific
name. Including the constant factor for advancing the index, the actual time
needed would be even greater. It would require almost 7 minutes just to do
the comparisons required to determine that a name was not in the directory!
Sequential search is not sufficiently time-efficient for large values of n to be
useful as a telephone directory lookup algorithm.

Information about the number of comparisons required to perform the
sequential search algorithm on a list of n names is summarized in Figure 3.2.
Note that the values for both the worst case and the average case depend on
n, the number of names in the list. The bigger the list, the more work must be
done to search it. Few algorithms do the same amount of work on large inputs
as on small inputs, simply because most algorithms process the input data,
and more data to process means more work. The work an algorithm does can
usually be expressed in terms of a formula that depends on the size of the
problem input. In the case of searching a list of names, the input size is the
length of the list.

Let’s say a word about the space efficiency of sequential search. The algo-
rithm stores the list of names and the target NAME as part of the input. The
only additional memory required is storage for the index value 7 and the Found
indicator. Two single additional memory locations are insignificant compared
to the size of the list of names, just as executing a single instruction to ini-
tialize the value of i and Found is insignificant beside the repetitive compari-
son task. Therefore, sequential search uses essentially no more memory
storage than the original input requires, so it is very space-efficient.

= 3.3.2 Order of Magnitude—Order n

When we analyzed the time efficiency of the sequential search algorithm, we
glossed over the contribution of the constant factor for the peripheral work.
To see why this constant factor doesn’t particularly matter, we need to under-
stand a concept called order of magnitude.

The worst-case behavior of the sequential search algorithm on a list of n
names requires n comparisons, and if ¢ is a constant factor representing the

FIGURE 3.2

Number of Comparisons to Find BEST CASE WoRST CASE AVERAGE CASE
NAME in a List of n Names 1 n n/2
Using Sequential Search

LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

FIGURE 3.3
Work = 2n

FIGURE|3.4

Work = cn for Various Values

of c

peripheral work, it requires cn total work. Suppose that ¢ has the value 2.
Then the values of n and 2n are

n 2n
1 2
2 4
3 6
and so on

These values are shown in Figure 3.3, which illustrates how the value of 2n,
which is the total work, changes as n changes. We can add to this graph to show
how the value of cn changes as n changes, where c=1orc=1/2 aswellas c =2
(see Figure 3.4; these values of c are completely arbitrary). Figure 3.5 presents a
different view of the growth rate of cn as n changes for these three values of c.
Both Figure 3.4 and Figure 3.5 show that the amount of work cn increases
as n increases, but at different rates. The work grows at the same rate as n when

4 - (2,4)

2] (1,2)

3.3 Measuring Efficiency LEVEL 1 87

FIGURE|3.5 Wc=1/2
Growth of Work = cn for Vari- W=
ous Values of c c=2
8 —
6 —
=<
S 4
=
Ll ol
O——‘ n
1 2 3 4

¢ =1, at twice the rate of n when c = 2, and at half the rate of n when c = 1/2.
However, Figure 3.4 also shows that all of these graphs follow the same basic
straight-line shape of n. Anything that varies as a constant times n (and whose
graph follows the basic shape of n) is said to be of order of magnitude n, writ-
ten ©(n). We will classify algorithms according to the order of magnitude of
their time efficiency. Sequential search is therefore an ©(n) algorithm (an

SR

order-n algorithm) in both the worst case and the average case.

A problem posed in the American Mathematical Monthly in
1975 by Jacob Goodman concerned a waiter in a café
where the cook produced a stack of pancakes of varying
sizes. The waiter, on the way to delivering the stack to the
customer, attempted to arrange the pancakes in order by
size, with the largest on the bottom. The only action
available was to stick a spatula into the stack at some
point and flip the entire stack above that point. The ques-
tion is: What is the maximum number of flips ever needed
for any stack of n pancakes? This number, P_, is known as
the nth pancake number.

Here's a fairly simple algorithm to arrange the pan-
cakes. Put the spatula under the largest pancake, as
shown in (a) in the figure, and flip. This puts the largest
pancake on top [(b) in the figure]. Put the spatula at the
bottom of the unordered section (in this case at the bot-
tom) and flip. This puts the largest pancake on the
bottom [(c) in the figure], where it belongs. Repeat with
the rest of the pancakes. Each pancake therefore requires
two flips, which would give a total of 2n flips required.
But the last two pancakes require at most one flip; if they
are already in order, no flips are needed, and if they are
out of order, only one flip is needed. So this algorithm
requires at most 2(n - 2) + 1 = 2n - 3 flips in the worst
case, which means that P, < 2n - 3. Are there other algo-
rithms that require fewer flips in the worst case?

o—
S —

(S

(a)
—
—
>
(c)

A faculty member at Harvard University posed this
question to his class; several days later, a sophomore from
the class came to his office with a better algorithm. This
algorithm, which requires at most (5n + 5)/3 flips, was pub-
lished in the journal Discrete Mathematics in 1979. The
authors were William Gates (the student) and Christos
Papadimitriou.

Yes, THAT William Gates!

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

PRACTICE PROBLEM

Using the information in Figure 3.2, fill in the following table for the
number of comparisons required in the sequential search algorithm.

n Best Case Worst Case Average Case
10
50
100
1,000
10,000
100,000

= 3.3.3 Selection Sort

The sequential search algorithm solves a very common problem: searching a list
of items (such as the names in a telephone directory) for a particular item.
Another very common problem is that of sorting a list of items into order—
either alphabetical or numerical order. The registrar at your institution sorts stu-
dents in a class by name, a mail-order business sorts its customer list by name,
and the IRS sorts its tax records by Social Security number. In this section we'll
examine a sorting algorithm and analyze its efficiency.

Suppose we have a list of numbers to sort into ascending order—for example,
5,7,2,8, 3. The result of sorting this list is the new list 2, 3, 5, 7, 8. The selec-
tion sort algorithm performs this task. The selection sort “grows” a sorted sub-
section of the list from the back to the front. We can look at “snapshots” of the
progress of the algorithm on our example list, using a vertical line as the marker
between the unsorted section at the front of the list and the sorted section at the
back of the list in each case. At first the sorted subsection is empty; that is, the
entire list is unsorted. This is how the list looks when the algorithm begins.

57,28 3|
Unsorted subsection (entire list) Sorted subsection (empty)

Later, the sorted subsection of the list has grown from the back so that some
of the list members are in the right place.

53217 8
Unsorted subsection Sorted subsection

Finally, the sorted subsection of the list contains the entire list; there are no
unsorted numbers, and the algorithm stops.

| 2,35 78
Unsorted subsection (empty) Sorted subsection (entire list)

At any point, then, there is both a sorted and an unsorted section of the list.
A pseudocode version of the algorithm is shown in Figure 3.6.

IEFEI
3.3 Measuring Efficiency LEVEL 1 89 :tb i

F[lw
pRRET %0

FIGURE 3.6
Selection Sort Algorithm

Get values for n and the n list items

Set the marker for the unsorted section at the end of the list

While the unsorted section of the list is not empty, do steps 4 through 6
Select the largest number in the unsorted section of the list
Exchange this number with the last number in the unsorted section of the list
Move the marker for the unsorted section left one position

Stop

Noohkoh=

Before we illustrate this algorithm at work, take a look at step 4, which
finds the largest number in some list of numbers. We developed an algorithm
for this task in Chapter 2 (Figure 2.14). A detailed version of the selection sort
algorithm would replace step 4 with the instructions from this existing algo-
rithm. New algorithms can be built up from “parts” consisting of previous
algorithms, just as a recipe for pumpkin pie might begin with the instruction,
“Prepare crust for a one-crust pie.” The recipe for pie crust is a previous algo-
rithm that is now being used as one of the steps in the pumpkin pie algorithm.

Let’s follow the selection sort algorithm. Initially, the unsorted section is
the entire list, so step 2 sets the marker at the end of the list.

5728 3|

Step 4 says to select the largest number in the unsorted section—that is, in
the entire list. This number is 8. Step 5 says to exchange 8 with the last num-
ber in the unsorted section (the whole list). To accomplish this exchange, the
algorithm must determine not only that 8 is the largest value but also the
location in the list where 8 occurs. The Find Largest algorithm from Chapter 2
provides both rt\hese pieces of information. The exchange to be done is

5728 3|

After this exchange and after the marker is moved left as instructed in step 6,
the list looks like

57238

The number 8 is now in its correct position at the end of the list. It becomes the
sorted section of the list, and the first four numbers are the unsorted section.

The unsorted section is not empty, so the algorithm repeats step 4 (find
the largest number in the unsorted section); it is 7. Step 5 exchanges 7 with
the last number in the unsorted section, which is 3.

¥ Y
5723]|8

After the marker is moved, the result is

532]|78

The sorted section is now 7, 8 and the unsorted section is 5, 3, 2.

Repeating the loop of steps 4 through 6 again, the algorithm determines
that the largest number in the unsorted section is 5, and exchanges it with 2,
the last number in the unsorted section.

¥ Y
532]|78

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

After the marker is moved, we get

2,357 8

Now the unsorted section (as far as the algorithm knows) is 2, 3. The largest
number here is 3. Exchanging 3 with the last number of the unsorted section
(that is, with itself) produces no change in the list ordering. The marker is
moved, giving

213,578

When the only part of the list that is unsorted is the single number 2, there is
also no change in the list ordering produced by carrying out the exchange. The
marker is moved, giving

12,3578

The unsorted section of the list is empty, and the algorithm terminates.

To analyze the amount of work the selection sort algorithm does, we
must first decide on the unit of work to count. When we analyzed sequen-
tial search, the unit of work that we measured was the comparison between
the name being searched for and the names in the list. At first glance there
seem to be no comparisons of any kind going on in the selection sort.
Remember, however, that there is a subtask within the selection sort: the
task of finding the largest number in a list. The algorithm from Chapter 2
for finding the largest value in a list begins by taking the first number in
the list as the largest so far. The largest-so-far value is compared against
successive numbers in the list; if a larger value is found, it becomes the
largest so far.

When the selection sort algorithm begins, the largest-so-far value,
initially the first number, must be compared to all the other numbers in the
list. If there are n numbers in the list, n - 1 comparisons must be done. The
next time through the loop, the last number is already in its proper place, so
it is never involved in a comparison. The largest-so-far value, again initially
the first number, must be compared to all the other numbers in the unsorted
part of the list, which will require n - 2 comparisons. The number of com-
parisons keeps decreasing as the length of the unsorted section of the list
gets smaller, until finally only one comparison is needed. The total number
of comparisons is

nm-1)+n-2)+(n-3)+...+3+2+1

Reviewing our example problem, we can see that the following comparisons
are done.

e To put 8 in place in the list 5, 7, 2, 8, 3 |
Compare 5 (largest so far) to 7
7 becomes largest so far
Compare 7 (largest so far) to 2
Compare 7 (largest so far) to 8
8 becomes largest so far
Compare 8 to 3

3.3 Measuring Efficiency LEVEL 1 91 I‘E

8 is the largest
Total number of comparisons: 4 (which is 5 - 1)

e To put 7 in place in the list 5, 7, 2, 3| 8
Compare 5 (largest so far) to 7
7 becomes largest so far
Compare 7 to 2
Compare 7 to 3
7 is the largest
Total number of comparisons: 3 (which is 5 - 2)

e To put 5 in place in the list 5, 3, 2| 7, 8
Compare 5 (largest so far) to 3
Compare 5 to 2
5 is the largest
Total number of comparisons: 2 (which is 5 - 3)

e To put 3 in place in the list 2, 3| 5, 7, 8
Compare 2 (largest so far) to 3
3 is the largest
Total number of comparisons: 1 (which is 5 - 4)

To put 2 in place requires no comparisons; there is only one number in the
unsorted section of the list, so it is of course the largest number. It gets
exchanged with itself, which produces no effect. The total number of compar-
isonsis 4 +3+2+1=10.

The sum

nm-1)+n-2)+(n-3)+...+3+2+1

turns out to be equal to

<n—1> 1, 1
n=-—-n"—-—n
2 2 2

(Recall from earlier in this chapter how Gauss computed a similar sum.) For
our example with five numbers, this formula says that the total number of
comparisons is (using the first version of the formula):

(5= (o= -

which is the number of comparisons we had counted.
Figure 3.7 uses this same formula

H1il.
11 92 LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

FIGURE|3.7

Comparisons Required by LENGTH n oF LIST T0 SORT n? NuUMBER OF COMPARISONS REQUIRED
Selection Sort 10 100 45

100 10,000 4,950

1,000 1,000,000 499,500

to compute the comparisons required for larger values of n. Remember that n
is the size of the list we are sorting. If the list becomes 10 times longer, the
work increases by much more than a factor of 10; it increases by a factor closer
to 100, which is 102.

The selection sort algorithm not only does comparisons, it does exchanges.
Even if the largest number in the unsorted section of the list is already at the
end of the unsorted section, the algorithm exchanges this number with itself.
Therefore, the algorithm does n exchanges, one for each position in the list to
put the correct value in that position. With every exchange the marker gets
moved. However, the work contributed by exchanges and marker moving is so
much less than the amount contributed by comparisons that it can be ignored.

We haven't talked here about a best case, a worst case, or an average case
for the selection sort. This algorithm does the same amount of work no matter
how the numbers are initially arranged. It has no way to recognize, for exam-
ple, that the list might already be sorted at the outset.

A word about the space efficiency of the selection sort: The original list
occupies n memory locations, and this is the major space requirement. Some
storage is needed for the marker between the unsorted and sorted sections
and for keeping track of the largest-so-far value and its location in the list,
used in step 4. Surprisingly, the process of exchanging two values at step 5
also requires an extra storage location. Here’s why. If the two numbers to be
exchanged are at position X and position Yin the list, we might think the fol-
lowing two steps will exchange these values:

1. Copy the current value at position Y into position X
2. Copy the current value at position X into position ¥

The problem is that after step 1, the value at position X is the same as that at
position Y. Step 2 does not put the original value of X into position Y. In fact,
we don't even have the original value of position X anymore. In Figure 3.8(a)
we see the original X and Y values. At Figure 3.8(b), after execution of step 1,
the current value of position Y has been copied into position X, writing over

FIGURE 3.8 X | 3 | Y | 5 |
An Attempt to Exchange the
Values at X and Y

(a)

x5 | v[s |

(b)

X[s | Y[s |

()

IEF FI
3.3 Measuring Efficiency LEVEL 1 93 :I} i

SR

Exchanging the Values at X

what was there originally. At Figure 3.8(c), after execution of step 2, the
current value at position X (which is the original Y value) has been copied into
position ¥, but the picture looks the same as Figure 3.8(b).

Here's the correct algorithm, which makes use of one extra temporary storage
location that we'll call T.

1. Copy the current value at position X into location T
2. Copy the current value at position Y into position X
3. Copy the current value at location T into position Y

Figure 3.9 illustrates that this algorithm does the job. In Figure 3.9(a), the
temporary location contains an unknown value. After execution of step 1
(Figure 3.9b), it holds the current value of X. When Y’s current value is put
into X at step 2 (Figure 3.9c), T still holds the original X value. After step 3
(Figure 3.9d), the current value of T goes into position ¥, and the original val-
ues of X and Y have been exchanged. (Step 5 of the selection sort algorithm is
thus performed by another algorithm, just as step 4 is.)

All in all, the extra storage required for the selection sort, over and above
that required to store the original list, is slight. Selection sort is space-efficient.

PRACTICE PROBLEM

1. For each of the following lists, perform a selection sort and show
the list after each exchange that has an effect on the list ordering.

a. 4,8,2,6
b. 12,3,6,8,2,5,7
c. D,B,G FACE

x| 3] v[s] r[|
(a)

x| 3] r[s] r[3]
(b)

x[s | y[s] r[3]
(©)

¥[s | r[s] T[s]

CHAPTER 3: The Efficiency of Algorithms

FIGURE!3.10

Work = cn? for Various Values

of ¢

FIGURE|3.11

A Comparison of n and n?

= 3.3.4 Order of Magnitude—Order n?

We saw that the number of comparisons done by the selection sort algorithm
does not grow at the same rate as the problem size n; it grows at approxi-
mately the square of that rate. An algorithm that does cn? work for any con-
stant ¢ is order of magnitude n?, or ©(n?). Figure 3.10 shows how cn?
changes as n changes, where ¢ = 1, 2, and 1/2. The work grows at the same
rate as n® when ¢ = 1, at twice that rate when ¢ = 2, and at half that rate when
c=1/2. But all three graphs in Figure 3.10 follow the basic shape of n?, which
is different from all of the straight-line graphs that are of ©(n). Thus, we have
come up with two different “shape classifications”: one including all graphs
that are ©(n), and the other including all graphs that are ©(n?).

If it is not important to distinguish among the various graphs that make
up a given order of magnitude, why is it important to distinguish between the
two different orders of magnitude n and n?? We can find the answer by com-
paring the two basic shapes n and n?, as is done in Figure 3.11.

Figure 3.11 illustrates that n? grows at a much faster rate than n. The two
curves cross at the point (1,1), and for any value of n larger than 1, n? has a
value increasingly greater than n. Furthermore, anything that is order of magni-
tude n? eventually has larger values than anything that is of order n, no matter
what the constant factors are. For example, Figure 3.12 shows that if we choose a

(1,2)
27 (2.2)

Work, cn2

3.3 Measuring Efficiency LEVEL 1

+» [EEH

FIGURE|3.12 A

For Large Enough n, 0.25n? Has 0.25n2 /10n
Larger Values Than 10n
600 —

500 —

400 — (40,400)

Work

300 —

200 —

100 —

0 S —
0 25 50 75 100

\
>

graph that is ©(n?) but has a small constant factor (to keep the values low), say
0.25n?, and a graph that is ©(n) but has a larger constant factor (to pump the
values up), say 10n, it is still true that the ©(n?) graph eventually has larger val-
ues. (Note that the vertical scale and the horizontal scale are different.)
Selection sort is an ©(n?) algorithm (in all cases) and sequential search is
an ©(n) algorithm (in the worst case), so these two algorithms are different
orders of magnitude. Because these algorithms solve two different problems,
this is somewhat like comparing apples and oranges—what does it mean? But
suppose we have two different algorithms that solve the same problem and
count the same units of work, but have different orders of magnitude. Suppose
that algorithm A does 0.0001n2 units of work to solve a problem with input size
n and that algorithm B does 100n of the same units of work to solve the same
problem. Here algorithm B's factor of 100 is 1 million times larger than algorithm
A’s factor of 0.0001. Nonetheless, when the problem gets large enough the
inherent inefficiency of algorithm A causes it to do more work than algorithm B.
Figure 3.13 shows that the “cross-over” point occurs at a value of 1,000,000 for
n. At this point, the two algorithms do the same amount of work and therefore
take the same amount of time to run. For larger values of n, the order-n? algo-
rithm A runs increasingly slower than the order-n algorithm B. (Input sizes of
1,000,000 are not that uncommon—think of the New York City telephone list.)
As we have seen, if an ©(n?) algorithm and an ©(n) algorithm exist for
the same task, then for large enough n, the ©(n?) algorithm does more work
and takes longer to execute, regardless of the constant factors for peripheral

FIGURE|3.13
A Comparison of Two Extreme Numeer oF WoRK UNITS REQUIRED
©(n?) and ©(n) Algorithms ALGORITHM A ALGORITHM B
n 0.0001n? 100n
1,000 100 100,000
10,000 10,000 1,000,000
100,000 1,000,000 10,000,000
1,000,000 100,000,000 100,000,000
10,000,000 10,000,000,000 1,000,000,000

H1il.
11 96 LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

One way to compare performance among different makes of
automobiles is to give the number of seconds it takes each
car to go from 0 to 60 miles per hour. One way to compare
performance among different makes of computers is to give
the number of arithmetic operations, such as additions
or subtractions of real numbers, that each one can do in
1 second. These operations are called “floating-point opera-
tions,” and computers are often compared in terms of the
number of flops (floating-point operations per second) they
can crank out. This is only one measure of a computer’s
performance, primarily related to processing power for
“number-crunching” applications. Whereas this is the mea-
sure we use here, other measures include the ability of the
machine to handle multimedia, graphics, or multitasking.
(For example, how well can the machine run a virus checker
in the background while you are playing a video game?)

A laptop based on the Intel Core 2 Duo processor runs
at about 20 gigaflops (20 billion floating-point operations
per second). In 2008, an IBM supercomputer developed for
the Los Alamos National Laboratory in New Mexico captured
the top speed record at the time of over a petaflop (1,000
trillion floating-point operations per second). This
machine, known as Roadrunner (named for the state bird of
New Mexico), is a “parallel processor computing system”
containing almost 19,000 processor chips, and it has the
computing power equivalent of 50,000 laptops. The stage
is set for the race between the tortoise and the hare.

Not fair, you say? We'll see. Let’s suppose the laptop is
assigned to run an ©(n) algorithm, whereas the Roadrunner

gets an ©(n?) algorithm for the same task. The work units
are floating-point operations, and for simplicity, we'll take
the constant factor to be 1 in each case. Here are the timing
results:

100,000 0.000005 sec 0.000000001 sec

10,000,000 0.0005 sec 0.00001 sec
1,000,000,000 0.05 sec 0.1 sec
1,000,000,000,000 50 sec 100,000 sec = 1.16 days
100,000,000,000,000 5000 sec = 1.39 hr 1,000,000,000 =31.7 years

Out of the gate—that is, for relatively small values of n
such as 100,000 or even 10 million—Roadrunner has a head
start and takes less time. When n reaches 1 billion, however,
Roadrunner is falling a bit behind, taking 0.1 sec as opposed
to the laptop’s 0.05 sec. And for larger values of n, the lap-
top has left Roadrunner in the dust. The difference in order
of magnitude between the algorithms was enough to slow
down the mighty Roadrunner and let the laptop creep past,
chugging along doing its more efficient ©(n) algorithm.
Where would one need to perform 100,000,000,000,000
operations? Complex problems involving weather simula-
tions, biomedical research, and economic modeling might
utilize such number-crunching applications.

The point of this little tale is not to say that super-
computers will be readily replaced by laptops! It is to
demonstrate that the order of magnitude of the algorithm
being executed can play a more important role than the raw
speed of the computer.

work. This is the rationale for ignoring constant factors and concentrating on
the basic order of magnitude of algorithms.

As an analogy, the two shape classifications ©(n?) and ©(n) may be thought
of as two different classes of transportation, the “walking” class and the “dri-
ving” class, respectively. The walking class is fundamentally more time-consum-
ing than the driving class. Walking can include jogging, running, and leisurely
strolling (which correspond to different values for ¢), but compared to any form
of driving, these all proceed at roughly the same speed. The driving class can
include driving a MINI Cooper and driving a Ferrari (which correspond to differ-
ent values for c), but compared to any form of walking, these proceed at roughly
the same speed. In other words, varying ¢ can make modest changes within a
class, but changing to a different class is a quantum leap.

Given two algorithms for the same task, we should usually choose the algo-
rithm of the lesser order of magnitude, because for large enough n it always
“wins out.” It is for large values of n that we need to be concerned about the
time resources being used and, as we noted earlier, it is often for large values
of n that we are seeking a computerized solution in the first place.

3.3 Measuring Efficiency LEVEL 1 97

SR

{0 LA

LABORATORY

EXPERIENCE

—

Note, however, that for smaller values of n, the size of the constant factor is
significant. In Figure 3.12, the 10n line stayed above the 0.25n2 curve up to the
cross-over point of n = 40 because it had a large constant factor relative to the
factor for n?. Varying the factors changes the cross-over point. If 10n and 0.25n?
represented the work of two different algorithms for the same task, and if we
are sure that the size of the input is never going to exceed 40, then the 0.25n?
algorithm is preferable in terms of time resources used. (To continue the trans-
portation analogy, for traveling short distances—say, to the end of the
driveway—walking is faster than driving because of the overhead of getting
the car started, and so on. But for longer distances, driving is faster.)

However, making assumptions about the size of the input on which an algo-
rithm will run can be dangerous. A program that runs quickly on small input
size may at some point be selected (perhaps because it seems efficient) to solve
instances of the problem with large input size, at which point the efficiency
may go down the drain! Sequential search may serve for directory assistance in
Yeehaw Junction, Florida, but it won't translate satisfactorily to New York City.
Part of the job of program documentation is to make clear any assumptions or
restrictions about the input size the program was designed to handle.

Comparing algorithm efficiency only makes sense if there is a choice of
algorithms for the task at hand. Are there any tasks for which a choice of algo-
rithms exists? Yes; because sorting a list is such a common task, a lot of
research has gone into finding good sorting algorithms. Selection sort is one
sorting algorithm, but there are many others, including the bubble sort,
described in Exercises 8-10 at the end of this chapter. You may wonder why
people don't simply use the one “best” sorting algorithm. It’s not that simple.
Some algorithms (unlike the selection sort) are sensitive to what the original
input looks like. One algorithm may work well if the input is already close to
being sorted, whereas another algorithm works better if the input is random.
An algorithm like selection sort has the advantage of being relatively easy to
understand. If the size of the list, n, is fairly small, then an easy-to-understand
algorithm may be preferable to one that is more efficient but more obscure.

AR 2

This laboratory experience allows you to step through ani-

1 o] R T B e om AT] T

mations of various sorting algorithms to understand how

s rgzerceem T they work. The sorting algorithms available in the labora-
5 N 1 tory software include selection sort and bubble sort—
5 1o e e S which are described in this text—as well as insertion sort
s o LR and quicksort, which are described in the laboratory man-
B - At

ual. You'll be able to see values being switched around
according to the various algorithms, and see how lists
eventually settle into sorted order. The screen shot shown
here displays the selection sort at work, where the last
(largest) element in the list, 99, has been put in place and
the algorithm is searching for the largest value in the cur-
rent unsorted section of the list.

You'll also do some experiments to measure the
amount of work the various algorithms perform.

LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

PRACTICE PROBLEM

1. An algorithm does 14n2 + 5n + 1 units of work on input of size n.
Explain why this is considered an ©(n?) algorithm even though
there is a term that involves just n.

3.4 Analysis of Algorithms h:

#= 3.4.1 Data Cleanup Algorithms

In this section we look at three different algorithms that solve the same
problem—the data cleanup problem—and then do an analysis of each. Sup-
pose a survey includes a question about the age of the person filling out
the survey, and that some people choose not to answer this question. When
data from the survey are entered into the computer, an entry of 0 is used to
denote “no response,” because a legitimate value for age would have to be
a positive number. For example, assume that the age data from 10 people
who completed the survey are stored in the computer as the following 10-
entry list, where the positions in the list range from 1 (far left) to 10 (far
right).

Ll 0 J 24 16| o |36 4223]21] 0] 27|
1 2 3 4 5 6 7 8 9 10

Eventually, the average age of the survey respondents is to be com-
puted. Because the 0 values are not legitimate data—including them in the
average would produce too low a value—we want to perform a “data
cleanup” and remove them from the list before the average is computed. In
our example, the cleaned data could consist of a 10-element list, where the
seven legitimate elements are the first seven entries of the list, and some
quantity—let’s call it legit—has the value 7 to indicate that only the first
seven entries are legitimate. An alternative acceptable result would be a 7-
element list consisting of the 7 legitimate data items, in which case there is
no need for a legit quantity.

THE SHUFFLE-LEFT ALGORITHM. Algorithm 1 to solve the data cleanup
problem works in the way we might solve this problem using a pencil and
paper (and an eraser) to modify the list. We proceed through the list from left
to right, pointing with a finger on the left hand to keep our place, and pass-
ing over non-zero values. Every time we encounter a 0 value, we squeeze it
out of the list by copying each remaining data item in the list one cell to the
left. We could use a finger on the right hand to move along the list and point
at what to copy next. The value of legit, originally set to the length of the list,
is reduced by 1 every time a 0 is encountered. (Sounds complicated, but you'll
see that it is easy.)

IEFE ¥
3.4 Analysis of Algorithms LEVEL 1 99 *E ol

The original configuration is
legit = 10
Ll 0o J 24 16| o |36 4223]21] o] 27|

[

(finger of ~ (finger of
left hand right hand
points to points to
cell 1) cell 2)

Because the first cell on the left contains a 0, the value of legit is reduced by
1, and all of the items to the right of the 0 must be copied one cell left. After
the first such copy (of the 24), the scenario looks like

legit = 9
l 24 | 24 16 | 0o | 36 |42 23] 21] o] 27|

| |

After the second copy (of the 16), we get

legit = 9
| 24 | 16 | 16 | o | 36 | 42] 23 | 21] 0o | 27]

| |

And after the third copy (of the 0),

legit = 9
L 24 |16 | o [o |36 |42 23 21| o [27]

| |

Proceeding in this fashion, we find that after we copy the last item (the 27),
the result is

legit = 9
|24 | 16 | 0o 136 | 42 |23 21] o | 27] 27]

I

Because the right hand finger has moved past the end of the list, one entire
shuffle-left process has been completed. It required copying nine items. We
reset the right hand finger to start again.

legit = 9
l 24 J 16 | 0o 36 |42 23] 21] o271 27|

[

A14]
b : 100 | LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

We must again examine position 1 for a 0 value, because if the original list
contained 0 in position 2, it would have been copied into position 1. If the
value is not 0, as is the case here, both the left hand finger and the right hand
finger move forward.

legit = 9
| 24 |16 | o [36 |42 | 23 |21] o |27 |27 |

[

Moving along, we pass over the 16.

legit = 9
losa 16] o V36 422321] o] 27] 27]

[

Another cycle of seven copies takes place to squeeze out the 0; the result is

legit = 8
l 24 16 1 36 | 42 | 23 21| o |27] 27] 27 |

[

The 36, 42, 23, and 21 are passed over, which results in

legit = 8
| 24 16 | 36 | 42 | 23 [21 | o |27] 27] 27 |

[

and then copying three items to squeeze out the final 0 gives

legit = 7
24 L 16 1 36 Va2 | 23 1 21] 27 | 27] 27] 27]

[

The left hand finger is pointing at a non-zero element, so another advance of
both fingers gives

legit = 7
| 24 1 16 1 36 | 42 | 23 | 21 |27] 27] 27] 27 |

[

At this point we can stop because the left hand finger is past the number of
legitimate data items (legit = 7). In total, this algorithm (on this list) examined
all 10 data items, to see which ones were 0, and copied 9 + 7 + 3 = 19 items.
A pseudocode version of the shuffle-left algorithm to act on a list of n
items appears in Figure 3.14. The quantities left and right correspond to the
positions where the left hand and right hand fingers point, respectively. You

IEF R
3.4 Analysis of Algorithms LEVEL 1 101 : E b i

Al e

FIGURE|3.14

The Shuffle-Left Algorithm for
Data Cleanup

1. Get values for n and the n data items

2. Set the value of legitto n

3. Set the value of /eftto 1

4. Set the value of rightto 2

5. While leftis less than or equal to /egit do steps 6 through 14

6. If the item at position /eft is not 0 then do steps 7 and 8

7. Increase left by 1

8. Increase right by 1

9. Else (the item at position /eftis 0) do steps 10 through 14
10. Reduce legit by 1
11. While right is less than or equal to n do steps 12 and 13

12. Copy the item at position right into position (right — 1)
13. Increase right by 1

14. Set the value of right to (left + 1)

15. Stop

should trace through this algorithm for the preceding example to see that it
does what we described.

To analyze the time efficiency of an algorithm, you begin by identifying
the fundamental units of work the algorithm performs. For the data cleanup
problem, any algorithm must examine each of the n elements in the list to see
whether they are 0. This gives a base of at least ©(n) work units.

The other unit of work in the shuffle-left algorithm is copying numbers. The
best case occurs when the list has no 0 values because no copying is required.
The worst case occurs when the list has all 0 values. Because the first element is
0, the remaining n - 1 elements are copied one cell left and legit is reduced
from n to n - 1. After the 0 in position 2 gets copied into position 1, the first ele-
ment is again 0, which again requires n - 1 copies and reduces legit from n - 1 to
n - 2. This repeats until legit is reduced to 0, a total of n times. Thus there are n
passes, during each of which n - 1 copies are done. The algorithm does

nn-1)=n?-n

copies. If we were to draw a graph of n? - n, we would see that for large n, the
curve follows the shape of n?. The second term can be disregarded, because as
n increases, the n? term grows much larger than the n term; the n? term dom-
inates and determines the shape of the curve. The shuffle-left algorithm is
thus an ©(n?) algorithm in the worst case.

The shuffle-left algorithm is space-efficient because it only requires four
memory locations to store the quantities n, legit, left, and right in addition to
the memory required to store the list itself.

THE COPY-OVER ALGORITHM. The second algorithm for solving the data

cleanup problem also works as we might using a pencil and paper if we decided to

write a new list. It scans the list from left to right, copying every legitimate (non-

zero) value into a new list that it creates. After this algorithm is finished the

original list still exists, but so does a new list that contains only non-zero values.
For our example, the result would be

LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

FIGURE|3.15

The Copy-Over Algorithm for
Data Cleanup

. Get values for n and the n data items

. Set the value of leftto 1

. Set the value of newposition to 1

. While leftis less than or equal to n do steps 5 through 9

If the item at position /eft is not 0 then do steps 6 through 8
Copy the item at position /eft into position newposition in new list
Increase left by 1
Increase newposition by 1

Else (the item at position left is 0) increase left by 1

. Stop

SComNOU RGN

—_

Every list entry is examined to see whether it is 0 (as in the shuffle-left
algorithm), and every non-zero list entry is copied once (into the new list), so
a total of seven copies are done for this example. This is fewer copies than the
shuffle-left algorithm requires, but a lot of extra memory space is required
because an almost complete second copy of the list is stored. Figure 3.15
shows the pseudocode for this copy-over algorithm.

The best case for this algorithm occurs if all elements are 0; no copies are
done so the work is just the ©(n) work to examine each list element and see
that it is 0. No extra space is used. The worst case occurs if there are no 0 val-
ues in the list. The algorithm copies all n non-zero elements into the new list,
and doubles the space required. Combining the two types of work units, we
find that the copy-over algorithm is only ©(n) in time efficiency even in the
worst case, because ©(n) examinations and ©(n) copies still equal O(n) steps.

Comparing the shuffle-left algorithm and the copy-over algorithm, we see
that no 0 elements is the best case of the first algorithm and the worst case of
the second, whereas all 0 elements is the worst case of the first and the best
case of the second. The second algorithm is more time efficient and less space-
efficient. This choice is called the time/space tradeoff—you gain something
by giving up something else. Seldom is it possible to improve both dimensions
at once, but our next algorithm accomplishes just that.

THE CONVERGING-POINTERS ALGORITHM. For the third algorithm, imag-
ine that we move one finger along the list from left to right and another fin-
ger from right to left. The left finger slides to the right over non-zero values.
Whenever the left finger encounters a 0 item, we reduce the value of legit by
1, copy whatever item is at the right finger into the left-finger position, and
slide the right finger one cell left. Initially in our example

legit = 10
Ll o 24 16] 0o |36 |42] 23] 21] o] 27]

| |

And because a 0 is encountered at position left, the item at position right is
copied into its place, and both legit and right are reduced by 1. This results in

legit = 9
| 27 | 24 J 16] o |36 | 42] 23] 21] o] 27]

| |

IEF FI
3.4 Analysis of Algorithms LEVEL 1 103 :t "l

The value of left increases until the next 0 is reached.
legit = 9
|27|24|16|0|36|42|23|21|0|27|

I

Again, the item at position right is copied into position left, and legit and
right are reduced by 1.

legit = 8
| 27 24 J 16 | o | 36 | 42] 23 21] o] 27]

| |

The item at position left is still 0, so another copy takes place.

legit = 7
L 27 | 24 16 1 21 136 1 42] 23] 21] 0] 27]

| |

From this point, the left finger advances until it meets the right finger, which
is pointing to a non-zero element, and the algorithm stops. Once again, each
element is examined to see whether it equals 0. For this example, only three
copies are needed—fewer even than for algorithm 2, but this algorithm
requires no more memory space than algorithm 1. The pseudocode version of
the converging-pointers algorithm is given in Figure 3.16.

The best case for this algorithm, as for the shuffle-left algorithm, is a list
containing no 0 elements. The worst case, as for the shuffle-left algorithm, is a
list of all 0 entries. With such a list, the converging-pointers algorithm repeat-
edly copies the element at position right into the first position, each time
reducing the value of right. Right goes from n to 1, with one copy done at each
step, resulting in n - 1 copies. This algorithm is ©(n) in the worst case. Like
the shuffle-left algorithm, it is space-efficient. It is possible in this case to beat
the time space tradeoff, in part because the data cleanup problem requires no
particular ordering of the nonzero elements in the “clean” list; the converging-
pointers algorithm moves these elements out of their original order.

FIGURE|3.16

The Converging-Pointers
Algorithm for Data Cleanup

. Get values for n and the n data items

. Set the value of legitto n

. Set the value of leftto 1

. Set the value of rightto n

. While leftis less than right do steps 6 through 10

If the item at position /left is not O then increase left by 1

Else (the item at position leftis 0) do steps 8 through 10
Reduce /legit by 1
Copy the item at position right into position left
Reduce right by 1

. If the item at position leftis 0, then reduce legit by 1

. Stop

ONOO AN

N
P=oo

BT E
11 104 | LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

It is hard to define what an “average” case is for any of these algorithms;
the amount of work done depends on how many 0 values there are in the list
and perhaps on where in the list they occur. If we assume, however, that the
number of 0 values is some percentage of n and that these values are scattered
throughout the list, then it can be shown that the shuffle-left algorithm will
still do ©(n?) work, whereas the converging pointers algorithm will do ©(n).
Figure 3.17 summarizes our analysis, although it doesn’t reflect the three or
four extra memory cells needed to store other quantities used in the algo-
rithms, such as legit, left, and right.

Let’s emphasize again the difference between an algorithm that is ®(n) in
the amount of work it does and one that is ©(n?). In an ©(n) algorithm, the
work is proportional to n. Hence if you double n, you double the amount of
work; if you multiply n by 10, you multiply the work by 10. But in an ©(n?)
algorithm, the work is proportional to the square of n. Hence if you double n,
you multiply the amount of work by 4; if you multiply n by 10, you multiply
the work by 100.

This is probably a good place to explain why the distinction between n
and 2n is important when we are talking about space, but we simply classify n
and 8000n as ©(n) when we are talking about units of work. Units of work
translate into time when the algorithm is executed, and time is a much more
elastic resource than space. Whereas we want an algorithm to run in the short-
est possible time, in many cases there is no fixed limit to the amount of time
that can be expended. There is, however, always a fixed upper bound on the
amount of memory that the computer has available to use while executing an
algorithm, so we track space consumption more closely.

S
PRACTICE PROBLEMS

In the data cleanup problem, suppose the original data are

L 2o [4] 1

1. Write the data list after completion of algorithm 1, the shuffle-left
algorithm.

2. Write the two data lists after completion of algorithm 2, the copy-
over algorithm.

3. Write the data list after completion of algorithm 3, the converging-
pointers algorithm.

4. Make up a data list such that step 11 of the converging-pointers
algorithm (Figure 3.16) is needed.

FIGURE|3.17
) | 1. SHUFFLE-LEFT | 2. CopY-OVER | 3. CONVERGING-POINTERS
Analysis of Three Data Cleanup
Algorithms Time Space Time Space Time Space
Best case O(n) n 0(n) n 0(n) n
Worst case o(rP) n A(n) 2n O(n) n
Average case O(rP) n O(n) n=x=2n| ©(n) n

IEF FI
3.4 Analysis of Algorithms LEVEL 1 105 :["l

F

.
o !

t 106

FIGURE|3.18

Binary Search Algorithm
(list must be sorted)

= 3.4.2 Binary Search

The sequential search algorithm searches a list of n items for a particular item;
it is an ©(n) algorithm. Another algorithm, the binary search algorithm, is
more efficient but it works only when the search list is already sorted.

To understand how binary search operates, let us go back to the problem
of searching for NAME in a telephone directory. When you look up the name
Miranda in the telephone book, you do not do a sequential search beginning
with the very first name in the directory and looking at each name in succes-
sion until you come to Miranda or the end of the directory! Instead you make
use of the fact that the names in the directory have already been sorted into
ascending order. You open the phone book in a place somewhere near the mid-
dle. If the name you see is Miranda, your search is over. If the name you see
begins with P, you look closer to the front of the book; if the name you see
begins with L, you move farther toward the back of the book.

The binary search algorithm works in a similar fashion on a sorted list. It
first looks for NAME at roughly the halfway point in the list. If the name there
equals NAME, the search is over. If NAME comes alphabetically before the name
at the halfway point, then the search is narrowed to the front half of the list,
and the process begins again on this smaller list. If NAME comes alphabeti-
cally after the name at the halfway point, then the search is narrowed to the
back half of the list, and the process begins again on this smaller list. The
algorithm halts when NAME is found or when the sublist becomes empty.

Figure 3.18 gives a pseudocode version of the binary search algorithm on a
sorted n-element list. Here beginning and end mark the beginning and end of
the section of the list under consideration. Initially the whole list is consid-
ered, so at first beginning is 1 and end is n. If NAME is not found at the mid-
point m of the current section of the list, then setting end equal to one less
than the midpoint (step 9) means that at the next pass through the loop, the
front half of the current section is searched. Setting beginning equal to one
more than the midpoint (step 10) means that at the next pass through the
loop, the back half of the current section is searched. Thus, as the algorithm
proceeds, the beginning marker can move toward the back of the list, and the
end marker can move toward the front of the list. If the beginning marker and
the end marker cross over—that is, end becomes less than beginning—then the
current section of the list is empty and the search terminates. Of course it also
terminates if the name is found.

. Get values for NAME, n, N,, . . ., N,and T, ..., T
. Set the value of beginning to 1 and set the value of Foundto NO
. Set the value of endto n
. While Found = NO and beginning is less than or equal to end do steps 5 through 10
Set the value of m to the middle value between beginning and end
If NAME is equal to N, the name found at the midpoint between beginning
and end, then do steps 7 and 8
7 Print the telephone number of that person, T,
8. Set the value of Foundto YES
9. Else if NAME precedes N, alphabetically, then set end = m — 1
10. Else (NAME follows N, alphabetically) set beginning = m + 1
11. If (Found = NO) then print the message ‘I am sorry but that name is not in the
directory’
12. Stop

o0 AW =

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

Let's do an example, using seven names sorted into ascending order. The fol-
lowing list shows not only the names in the list but also their locations in the list.

Ann Bob Cora Devi Grant Nathan Sue
1 2 3 4 5 6 7

Suppose we search this list for the name Cora. We set beginning to 1 and end to
7; the midpoint between 1 and 7 is 4. We compare the name at position number
4, Devi, with Cora. Cora precedes Devi alphabetically, so the algorithm sets end
to 4 - 1 =3 (step 9) to continue the search on the front half of the list,

Ann Bob Cora
1 2 3

The midpoint between beginning = 1 and end = 3 is 2, so we compare the name
at position number 2, Bob, with Cora. Cora follows Bob alphabetically, so the
algorithm sets beginning to 2 + 1 = 3 (step 10) in order to continue the search
on the back half of this list, namely

Cora
3

At the next pass through the loop, the midpoint between beginning = 3 and
end = 3 is 3, so we compare the name at position number 3, Cora, with the tar-
get name, Cora. We have found the name; the appropriate telephone number
can be printed and Found changed to YES. The loop terminates, and then the
algorithm terminates.

Now suppose we search this same list for the name Maria. As before, the
first midpoint is 4, so Devi is compared with Maria. Maria follows Devi, so the
search continues with beginning = 5, end = 7 on the back half:

Grant Nathan Sue
5 6 7

The midpoint is 6, so Nathan is compared with Maria. Maria precedes Nathan,
so the search continues with beginning = 5, end = 5 on the front half:

Grant
5

The midpoint is 5, so Grant is compared with Maria. Maria follows Grant, so
beginning is set to 6 to continue the search on the back half of this list. The
algorithm checks the condition at step 4 to see whether to repeat the loop
again and finds that end is less than beginning (end = 5, beginning = 6). The
loop is abandoned, and the algorithm moves on to step 11 and indicates that
Maria is not in the list.

It is easier to see how the binary search algorithm operates if we list
the locations of the names checked in a “tree-like” structure. The tree in
Figure 3.19 shows the possible search locations in a 7-element list. The
search starts at the top of the tree, at location 4, the middle of the original
list. If the name at location 4 is NAME, the search halts. If NAME comes after
the name at location 4 (as Maria does in our example), the right branch is
taken and the next location searched is location 6. If NAME comes before the
name at location 4 (as Cora does in our example), the left branch is taken and
the next location searched is location 2. If NAME is not found at location 2,

3.4 Analysis of Algorithms LEVEL 1 107 |

I
L

1

L oo

FIGURE|3.19

Binary Search Tree for a
7-Element List

the next location searched is either 1 or 3. Similarly, if NAME is not found at
location 6, the next location searched is either 5 or 7.

In Figure 3.18, the binary search algorithm, we assume in step 5 that
there is a middle position between beginning and end. This happens only
when there is an odd number of elements in the list. Let us agree to define the
“middle” of an even number of entries as the end of the first half of the list.
With eight elements, for example, the midpoint position is location 4.

12345678

With this understanding, the binary search algorithm can be used on lists of
any size.

Like the sequential search algorithm, the binary search algorithm relies on
comparisons, so to analyze the algorithm we count the number of comparisons
as an indication of the work done. The best case, as in sequential search,
requires only one comparison—NAME is located on the first try. The worst case,
as in sequential search, occurs when NAME is not in the list. However, we learn
this much sooner in binary search than in sequential search. In our list of seven
names, only three comparisons are needed to determine that Maria is not in the
list. The number of comparisons needed is the number of circles in some branch
from the top to the bottom of the tree in Figure 3.19. These circles represent
searches at the midpoints of the whole list, half the list, one quarter of the list,
and so on. This process continues as long as the sublists can be cut in half.

Let’s do a minor mathematical digression here. The number of times a
number n can be cut in half and not go below 1 is called the logarithm of n
to the base 2, which is abbreviated lg n (also written in some texts as log, n).
For example, if n is 16, then we can do four such divisions by 2:

16/2 =8
8/2 =4
4)2 =2
2/2=1

so lg 16 = 4. This is another way of saying that 2% = 16. In general,

lg n =m is equivalent to 2™ =n

NAME before name 4 NAME after name 4

2 6
Before name 2/ \Aﬂer name 2 Before name 6/ \’\Her name 6
1 3 5 7

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

FIGURE|3.20
Values for n and lg n

Figure 3.20 shows a few values of n and 1g n. From these, we can see that as n
doubles, 1g n increases by only 1, so lg n grows much more slowly than n.
Figure 3.21 shows the two basic shapes of n and 1g n and again conveys that
lg n grows much more slowly than n.

Remember the analogy we suggested earlier about the difference in time
consumed between ©(n?) algorithms, equivalent to various modes of walking,
and ©(n) algorithms, equivalent to various modes of driving? We carry that
analogy further by saying that algorithms of ©(lg n) are like various modes of
flying. Changing the coefficients of g n can mean that we go from a Piper cub
to an F-14, but flying, in any form, is still a fundamentally different—and
much faster—mode of travel than walking or driving.

Suppose we are doing a binary search on n names. In the worst case, as we
have seen, the number of comparisons is related to the number of times the
list of length n can be halved. Binary search does ©(lg n) comparisons in the
worst case (see Exercise 23 at the end of the chapter for an exact formula for
the worst case). As a matter of fact, it also does ©(lg n) comparisons in the
average case (although the exact value is a smaller number than in the worst
case). This is because most of the names in the list occur at or near the bot-
tom of the tree, where the maximum amount of work must be done; recall that
it also took three comparisons to find that Cora was in the list. As Figure 3.19
shows, relatively few locations (where NAME might be found and the algo-
rithm terminate sooner) are higher in the tree.

Both binary search and sequential search solve the telephone book
search problem, but these algorithms differ in the order of magnitude of the
work they do. Binary search is an O(lg n) algorithm, whereas sequential
search is an ©(n) algorithm, in both the worst case and the average case. To
compare the binary search algorithm with the sequential search algorithm,
suppose there are 100 elements in the list. In the worst case, sequential
search requires 100 comparisons, and binary search 7 (27 = 128). In the aver-
age case, sequential search requires about 50 comparisons, and binary search
6 or 7 (still much less work). The improvement in binary search becomes even
more apparent as the search list ¢ gets longer. For example, if n = 100,000,
then in the worst case sequential search requires 100,000 comparisons,
whereas binary search requires 17 (2% = 131,072). If we wrote two programs,
one using sequential search and one using binary search, and ran them on a
computer that can do 1000 name comparisons per second, then to determine
that a name is not in the list (the worst case) the sequential search program
would use

100,000 comparisons X seconds/comparison = 100 seconds

1,000

16
32
64
128

N o o~ W

3.4 Analysis of Algorithms LEVEL 1 109 | E

L o

FIGURE|3.21
A Comparison of n and lg n

or 1.67 minutes, just to do the necessary comparisons, disregarding the con-
stant factor for advancing the index. The binary search program would use

. 1
17 comparisons X
1,000

’

seconds/comparison = 0.017 seconds

to do the comparisons, disregarding a constant factor for updating the values
of beginning and end. This is quite a difference.

Suppose our two programs are used with the 20,000,000 names we assume
are in the New York City phone book. On the average, the sequential search
program needs about

20,000,000 .
————— comparisons X

seconds/comparison = 10,000 seconds
2 1,000

(about 2.78 hours!) just to do the comparisons to find a name in the list,
whereas the binary search program needs (because 22> =~ 33,000,000) about

25 comparisons X seconds/comparison = 0.025 seconds

’

This is an even more impressive difference. Furthermore, it’s a difference due
to the inherent inefficiency of an ©(n) algorithm compared to an O(lg n)
algorithm; the difference can be mitigated but not eliminated by using a
faster computer. If our computer does 50,000 comparisons per second, then
the average times become about

20,000,000 .
———— comparisons X

1 .
seconds/comparison = 200 seconds
2 50,000

or 3.33 minutes for sequential search and about

25 comparisons X seconds/comparison = 0.0005 seconds

50,000

for binary search. The sequential search alternative is simply not acceptable.
That is why analyzing algorithms and choosing the best one can be so important.

LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

We also see, as we noted in Chapter 2, that the way the problem data are orga-
nized can greatly affect the best choice of algorithm.

The binary search algorithm works only on a list that has already been
sorted. An unsorted list could be sorted before using a binary search, but sort-
ing also takes a lot of work, as we have seen. If a list is to be searched only a
few times for a few particular names, then it is more efficient to do sequential
search on the unsorted list (a few ©(n) tasks). But if the list is to be searched
repeatedly—as in the daily use of an automated telephone directory for the
foreseeable future—it is more efficient to sort it and then use binary search:
one ©(n?) task and many ©(lg n) tasks, as opposed to many ©(n) tasks.

As to space efficiency, binary search, like sequential search, requires only
a small amount of additional storage to keep track of beginning, end, and
midpoint positions in the list. Thus, it is space-efficient; in this case, we did
not have to sacrifice space efficiency to gain time efficiency. But we did have
to sacrifice generality—binary search works only on a sorted list whereas
sequential search works on any list.

|
PRACTICE PROBLEMS

1. Suppose that, using the list of seven names from this section, we
try binary search to decide whether Grant is in the list. What names
would be compared to Grant?

2. Suppose that, using the list of seven names from this section, we
try binary search to decide whether Vernon is in the list. What
names would be compared to Vernon?

_ 1 Wi i i ! 1_“"!1 A m .|__ip- 4 F
LABORATORY I i gty g?*ﬁ*th;._ .

EXPERIENCE

In this laboratory experience, you will be able to run ani-
mations of the shuffle-left algorithm and the converging-
pointers algorithm for the data cleanup problem. You'll be
able to see the left and right pointers take on different
values, which represent changing positions in the data
list. Shown here is the converging pointers algorithm
= about to move the element at the right pointer to the
A position of the left pointer to eliminate the first 0 element
in the list. As the algorithms run on various lists, you can
count the number of copies of data elements that are
required and see how they relate to the original positions
of any 0 items in the list. You will also work with an ani-
mation of the binary search algorithm and see how the
work done compares with the theoretical results we discov-
ered in this section.

o
A vt i el i
£ G pe iaaod milm 1
3 B vkl il b sy
P kel . B B D
L L LT T
i ety

1553 o s o s i g i s ey [
i [[

3.4 Analysis of Algorithms LEVEL 1 111 I ll I |

F
;

l

I
B

112

= 3.4.3 Pattern Matching

The pattern-matching algorithm in Chapter 2 involves finding all occurrences of
a pattern of the form P.P, ... P within text of the form I'T, ... T . Recall that
the algorithm simply does a “forward march” through the text, at each position
attempting to match each pattern character against the text characters. The
process stops only after text position n - m + 1, when the remaining text is not
as long as the pattern so that there could not possibly be a match. This algo-
rithm is interesting to analyze because it involves two measures of input size: n,
the length of the text string, and m, the length of the pattern string. The unit
of work is comparison of a pattern character with a text character.

Surprisingly, both the best case and the worst case of this algorithm can
occur when the pattern is not in the text at all. The difference hinges on exactly
how the pattern fails to be in the text. The best case occurs if the first
character of the pattern is nowhere in the text, as in

Text: KLMNPQRSTX
Pattern: ABC

In this case n - m + 1 comparisons are required, trying (unsuccessfully) to
match P, with T,T,, ..., T __ ., in turn. Each comparison fails, and the algo-
rithm slides the pattern forward to try again at the next position in the text.

The maximum amount of work is done if the pattern almost occurs every-

where in the text. Consider, for example, the following case:
Text: AAAAAAAAA
Pattern: AAAB

Starting with T, the first text character, the match with the first pattern
character is successful. The match with the second text character and the sec-
ond pattern character is also successful. Indeed m - 1 characters of the pat-
tern match with the text before the mth comparison proves a failure. The
process starts over from the second text character, T,. Once again, m compar-
isons are required to find a mismatch. Altogether, m comparisons are required
for each of the n - m + 1 starting positions in the text.

Another version of the worst case occurs when the pattern is found at
each location in the text, as in

Text: AAAAAAAAA
Pattern: AAAA

This results in the same comparisons as are done for the other worst case, the
only difference being that the comparison of the last pattern character is
successful.

Unlike our simple examples, pattern matching usually involves a pattern
length that is short compared to the text length, that is, when m is much less
than n. In such cases, n - m + 1 is essentially n. The pattern-matching algo-
rithm is therefore ©(n) in the best case and ®(m X n) in the worst case.

It requires somewhat improbable situations to create the worst cases we
have described. In general, the forward-march algorithm performs quite well on
text and patterns consisting of ordinary words. Other pattern-matching algo-
rithms are conceptually more complex but require less work in the worst case.

LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

= 3.4.4 Summary

Figure 3.22 shows an order-of-magnitude summary of the time efficiency for
the algorithms we have analyzed.

PRACTICE PROBLEM

1. Use the first example pattern and text given in Section 3.4.3 for the
worst case of the pattern-matching algorithm. What is m? What is
n? What is m X n? This algorithm is ®(m X n) in the worst case,
but what is the exact number of comparisons done?

3.5 When Things Get Out of Hand L
We have so far found examples of algorithms that are ©(lg n), ©(n), and ©(n?)
in time efficiency. Order of magnitude determines how quickly the values grow
as n increases. An algorithm of order lg n does less work as n increases than
does an algorithm of order n, which in turn does less work than one of order
n?. The work done by any of these algorithms is no worse than a constant
multiple of n?, which is a polynomial in n. Therefore, these algorithms are
polynomially bounded in the amount of work they do as n increases.

Some algorithms must do work that is not polynomially bounded. Consider
four cities, A, B, C, and D, that are connected as shown in Figure 3.23, and ask
the following question: Is it possible to start at city A, go through every other
city exactly once, and end up back at A? Of course, we as humans can immedi-
ately see in this small problem that the answer is Yes and that there are two
such paths: A-B-D-C-A and A-C-D-B-A. However, an algorithm doesn’t get to
“see” the entire picture at once, as we can; it has available to it only isolated
facts such as “A is connected to B and to C,” “B is connected to A and to D,”

FIGURE|3.22

Order-of-Magnitude Time
Efficiency Summary

PROBLEM Unit oF WORK ALGORITHM BEesT CASE | WORST CASE | AVERAGE CASE

Searching | Comparisons Sequential
search 1 O(n) O(n)

Binary search 1 O(lg n) O(lg n)

Sorting

Comparisons
and exchanges

Selection
sort

()

()

O(rP)

Data
cleanup

Examinations
and copies

Shuffle-left

O(n)

O(?)

()

Copy-over

O(n)

O(n)

O(n)

Converging-
pointers

O(n)

O(n)

O(n)

Pattern
matching

Character
comparisons

Forward
march

O(n)

O(m X n)

3.5 When Things Get Out of Hand

LEVEL 1

w [EEN

i
}

1

i

I 114

FIGURE|3.23
Four Connected Cities

FIGURE|3.24

Hamiltonian Circuits among All
Paths from A in Figure 3.23
with Four Links

and so on. If the number of nodes and connecting edges is large, humans also
might not “see” the solution immediately. A collection of nodes and connect-
ing edges is called a graph. A path through a graph that begins and ends at
the same node and goes through all other nodes exactly once is called a
Hamiltonian circuit, named for the Irish mathematician William Rowan
Hamilton (1805-1865). If there are n nodes in the graph, then a Hamiltonian
circuit, if it exists, must have exactly n links. In the case of the four cities, for
instance, if the path must go through exactly A, B, C, D, and A (in some order),
then there are five nodes on the path (counting A twice) and four links.

Our problem is to determine whether an arbitrary graph has a Hamilton-
ian circuit. An algorithm to solve this problem examines all possible paths
through the graph that are the appropriate length to see whether any of them
are Hamiltonian circuits. The algorithm can trace all paths by beginning at the
starting node and choosing at each node where to go next. Without going into
the details of such an algorithm, let's represent the possible paths with
four links in the graph of Figure 3.23. Again, we use a tree structure. In
Figure 3.24, A is the tree “root,” and at each node in the tree, the nodes
directly below it are the choices for the next node. Thus, any time B appears
in the tree, it has the two nodes A and D below it, because edges exist from B
to A and from B to D. The “branches” of the tree are all the possible paths
from A with four links. Once the tree has been built, an examination of the
paths shows that only the two dark paths in the figure represent Hamiltonian
circuits.

The number of paths that must be examined is the number of nodes at the
bottom level of the tree. There is one node at the top of the tree; we'll call the top

N N\
SN\ NN
AVAAYAVAYATARA

DA D A DA D A

LEVEL 1 CHAPTER 3: The Efficiency of Algorithms

FIGURE|3.25

Comparisons of lg n, n, n?,
and 2"

of the tree level 0. The number of nodes is multiplied by 2 for each level down in
the tree. At level 1 there are 2 nodes, at level 2 there are 22 nodes, at level 3 there
are 23 nodes, and at level 4, the bottom of the tree, there are 2% = 16 nodes.

Suppose we are looking for a Hamiltonian circuit in a graph with n nodes
and two choices at each node. The bottom of the corresponding tree is at level n,
and there are 2" paths to examine. If we take the examination of a single path as
a unit of work, then this algorithm must do 2" units of work. This is more work
than any polynomial in n. An ©(2") algorithm is called an exponential
algorithm. Hence the trial-and-error approach to solving the Hamiltonian circuit
problem is an exponential algorithm. (We could improve on this algorithm by let-
ting it stop tracing a path whenever a repeated node different from the starting
node is encountered, but it is still exponential. If there are more than two
choices at a node, the amount of work is even greater.)

Figure 3.25 shows the four curves lg n, n, n?, and 2". The rapid growth of
2" is not really apparent here, however, because that curve is off the scale for
values of n above 5. Figure 3.26 compares these four curves for values of n that
are still small, but even so, 2" is already far outdistancing the other values.

To appreciate fully why the order of magnitude of an algorithm is impor-
tant, let’s again imagine that we are running various algorithms as programs on
a computer that can perform a single operation (unit of work) in 0.0001 second.
Figure 3.27 shows the amount of time it takes for algorithms of ©(lg n), ©(n),
©(n?), and ©(2") to complete their work for various values of n.

The expression 2" grows unbelievably fast. An algorithm of ®(2") can take
so long to solve even a small problem that it is of no practical value. Even if we
greatly increase the speed of the computer, the results are much the same. We
now see more than ever why we added efficiency as a desirable feature for an
algorithm and why future advances in computer technology won't change this.
No matter how fast computers get, they will not be able to solve a problem of
size n = 100 using an algorithm of ©(2") in any reasonable period of time.

The algorithm we have described here for testing an arbitrary graph for
Hamiltonian circuits is an example of a brute force algorithm—one that beats

n

35 — -
30
25 — n

20 —

Work

15 —

10 —

3.5 When Things Get Out of Hand LEVEL 1 115

]
S

FIGURE|3.26

Comparisons of lg n, n, n%, and

2" for Larger Values of n

FIGURE|3.27

A Comparison of Four Orders

of Magnitude

Mign W
ma 2"
300 —
250 —
_ 200
2 150
100 —
50 — I I
0- n
5 6 7 8

the problem into submission by trying all possibilities. In Chapter 1 we described
a brute force algorithm for winning a chess game; it consisted of looking at all
possible game scenarios from any given point on and then picking a winning
one. This is also an exponential algorithm. Some very practical problems have
exponential solution algorithms. For example, an e-mail message that you send
over the Internet is routed along the shortest possible path through intermedi-
ate computers from your mail server computer to the destination mail server
computer. An exponential algorithm to solve this problem would examine all pos-
sible paths to the destination and then use the shortest one. As you can imagine,
the Internet uses a better (more efficient) algorithm than this one!

For some problems, however, no polynomially bounded algorithm exists.
Such problems are called intractable; they are solvable, but the solution algo-
rithms all require so much work as to be virtually useless. The Hamiltonian
circuit problem is suspected to be such a problem, but we don't really know
for sure! No one has yet found a solution algorithm that works in polynomial
time, but neither has anyone proved that such an algorithm does not exist.
This is a problem of great interest in computer science. A surprising number of
problems fall into this “suspected intractable” category. Here's another one,
called the bin-packing problem: Given an unlimited number of bins of vol-
ume 1 unit and given n objects, all of volume between 0.0 and 1.0, find the
minimum number of bins needed to store the n objects. An algorithm that
solves this problem would be of interest to any manufacturer who ships sets of
various items in standard-sized cartons or to anyone who wants to store image
files on a set of CDs in the most efficient way.

Problems for which no known polynomial solution algorithm exists are
sometimes approached via approximation algorithms. These algorithms
don’t solve the problem, but they provide a close approximation to a solution.

n

ORDER ‘ 10 50 100 1,000

lgn 0.0003 sec 0.0006 sec 0.0007 sec 0.001 sec

n 0.001 sec 0.005 sec 0.01 sec 0.1 sec

n 0.01 sec 0.25 sec 1 sec 1.67 min

2n 0.1024 sec 3,570 years 4 x 10'® centuries Too big to compute!!

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

FIGURE|3.28

A First-Fit Solution to a
Bin-Packing Problem

For example, an approximation algorithm to solve the bin-packing problem
is to take the objects in order, put the first one into bin 1, and stuff each
remaining object into the first bin that can hold it. This (reasonable) approach
may not give the absolute minimum number of bins needed, but it gives a first
cut at the answer. (Anyone who has watched passengers stowing carry-on bag-
gage in an airplane has seen this approximation algorithm at work.)

For example, suppose a sequence of four objects with volumes of 0.3, 0.4,

0.5, and 0.6 are stored using the “first-fit” algorithm described above. The result
requires three bins, which would be packed as shown in Figure 3.28. However,
this is not the optimal solution (see Exercise 29 at the end of the chapter).

In Chapter 12, we will learn that there are problems that cannot be solved

algorithmically, even if we are willing to accept an extremely inefficient solution.

PRACTICE PROBLEMS

1. Consider the following graph:

A B
CZD

Draw a tree similar to Figure 3.24 showing all paths from A and
highlighting those that are Hamiltonian circuits (these are the same
two circuits as before). How many paths have to be examined?

2. The following tree shows all paths with two links that begin at node
A in some graph. Draw the graph.

/A\
/B /C\ /D \
A C D A B D A B C
Empty e Empty
0.4 .
05 0.6

Fil
3.5 When Things Get Out of Hand LEVEL 1 117 :ib i

J
i

1

i

LABORATORY
EXPERIENCE

. TS
BT

The various sorting algorithms examined in Laboratory
Experience 4 (selection sort, quicksort, etc.) do different
amounts of work on the same data sets. But how do these
various workloads affect the actual running time of the
algorithms? In this laboratory experience, you can run
these sorting algorithms and find their wall-clock running
time on different sizes of input. In addition, because you
can see the patterns of values falling into place in a large
list while an algorithm runs, you will get a much better
understanding of how each sorting algorithm moves values
around to accomplish its task. Here we see a picture of the
quicksort algorithm that has run for 3.71 seconds and is
about halfway through its task of sorting numerical values
in increasing order.

3.6 Summary of Level 1 ™

We defined computer science as the study of algorithms, so it is appropriate
that Level 1 was devoted to exploring algorithms in more detail. In Chapter 2
we discussed how to represent algorithms using pseudocode. Pseudocode pro-
vides us with a flexible language for expressing the building blocks from
which algorithms can be constructed. These building blocks include assigning
a particular value to a quantity, choosing one of two next steps on the basis
of some condition, or repeating steps in a loop.

We developed algorithmic solutions to three very practical problems:
searching for a name in a list of names, finding the largest number in a list of
numbers, and searching for a particular pattern of characters within a seg-
ment of text. In Chapter 3 we noted that computer scientists develop algo-
rithms to be used and thus there is a set of desirable properties for algorithms,
including ease of understanding, elegance, and efficiency, in addition to cor-
rectness. Of these, efficiency—which may be either time efficiency or space
efficiency—is the most easily quantifiable.

A convenient way to classify the time efficiency of algorithms is by examin-
ing the order of magnitude of the work they do. Algorithms that are of differing
orders of magnitude do fundamentally different amounts of work. Regardless of
the constant factor that reflects peripheral work or how fast the computer on
which these algorithms execute, for problems with sufficiently large input, the
algorithm of the lowest order of magnitude requires the least time.

We analyzed the time efficiency of the sequential search algorithm and
discovered that it is an ©(n) algorithm in both the worst case and the average

I 118 | LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

case. We found a selection sort algorithm that is ©(n?), we found a binary
search algorithm that is ©(lg n), and we analyzed the pattern-matching algo-
rithm from Chapter 2. By examining the data cleanup problem, we learned
that algorithms that solve the same task can indeed differ in the order of mag-
nitude of the work they do, sometimes by employing a time/space tradeoff.
We also learned that there are algorithms that require more than polynomially
bounded time to complete their work and that such algorithms may take so
long to execute, regardless of the speed of the computer on which they are
run, that they provide no practical solution. Some important problems may be
intractable—that is, have no polynomially bounded solution algorithms.

Some computer scientists work on deciding whether a particular problem
is intractable. Some work on finding more efficient algorithms for problems—
such as searching and sorting—that are so common that a more efficient algo-
rithm would greatly improve productivity. Still others seek to discover
algorithms for new problems. Thus, as we said, the study of algorithms under-
lies much of computer science. But everything we have done so far has been a
pencil-and-paper exercise. In terms of the definition of computer science that
we gave in Chapter 1, we have been looking at the formal and mathematical
properties of algorithms. It is time to move on to the next part of that defini-
tion: the hardware realizations of algorithms. When we execute real algo-
rithms on real computers, those computers are electronic devices. How does
an electronic device “understand” an algorithm and carry out its instructions?
We begin to explore these questions in Chapter 4.

3.6 Summary of Level 1 LEVEL 1 119 | E

1.

BT E
b L bi 120

EXERCISES

a. Use Gauss's approach to find the sum

2+4+6+...+100

b. Use Gauss's approach to find a formula for the sum of
the even numbers from 2 to 2n,

2+4+6+...+2n
Your formula will be an expression involving n.

. The Fibonacci sequence of numbers is defined as fol-

lows: The first and second numbers are both 1. After
that, each number in the sequence is the sum of the two
preceding numbers. Thus, the Fibonacci sequence is

1,1,2,3,5,8,13,21, ...
If F(n) stands for the nth value in the sequence, then
this definition can be expressed as

F(1) =1

F2)=1

F(n)=F(n-1)+F(n-2)forn>2
a. Using the definition of the Fibonacci sequence, com-

pute the value of F(20).

b. A formula for F(n) is

Fn) = VE(H\/E) . \/5(1—%)

5 2 5 2

Using the formula (and a calculator), compute the
value of F(20).

c. What are your opinions on the relative clarity, ele-
gance, and efficiency of the two algorithms (using the
definition and using the formula) to compute F(20)?
Would your answer change if you considered F(100)?

. A tennis tournament has 342 players. A single match

involves 2 players. The winner of a match will play the
winner of a match in the next round, whereas losers are
eliminated from the tournament. The 2 players who have
won all previous rounds play in the final game, and the
winner wins the tournament. What is the total number of
matches needed to determine the winner?

a. Here is one algorithm to answer this question. Compute
342 / 2 =171 to get the number of pairs (matches) in
the first round, which results in 171 winners to go on to
the second round. Compute 171 / 2 = 85 with 1 left

| lllitii'llr 'tt-
over, which results in 85 matches in the second round
and 85 winners, plus the 1 left over, to go on to the
third round. For the third round compute 86 / 2 = 43, so
the third round has 43 matches, and so on. The total

number of matches is 171 + 85 + 43 + Finish this
process to find the total number of matches.

b. Here is another algorithm to solve this problem. Each
match results in exactly one loser, so there must
be the same number of matches as losers in the
tournament. Compute the total number of losers in
the entire tournament. (Hint: This isn’t really a com-
putation; it is a one-sentence argument.)

c. What are your opinions on the relative clarity, ele-
gance, and efficiency of the two algorithms?

. We have said that the average number of comparisons

needed to find a name in an n-element list using sequen-
tial search is slightly higher than n/2. In this problem we
find an exact expression for this average.

a. Suppose a list of names has an odd number of names,
say 15. At what position is the middle name? Using
sequential search, how many comparisons are required
to find the middle name? Repeat this exercise with a
few more odd numbers until you can do the following:
If there are n names in the list and n is an odd num-
ber, write an expression for the number of compar-
isons required to find the middle name.

b. Suppose a list of names has an even number of names,
say 16. At what positions are the two “middle” names?
Using sequential search, how many comparisons are
required to find each of these? What is the average of
these two numbers? Repeat this exercise with a few
more even numbers until you can do the following: If
there are n names in the list and n is an even number,
write an expression for the average number of compar-
isons required to find the two middle names.

c. Noting that half the names in a list fall before the
midpoint and half after the midpoint, use your answer
to parts (a) and (b) to write an exact expression for
the average number of comparisons done using
sequential search to find a name that occurs in an
n-element list.

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

5. Here is a list of seven names:
Sherman, Jane, Ted, Elise, Raul, Maki, John

Search this list for each name in turn, using sequential
search and counting the number of comparisons for each
name. Now take the seven comparison counts and find their
average. Did you get a number that you expected? Why?

6. Perform a selection sort on the list 7, 4, 2, 9, 6. Show the
list after each exchange that has an effect on the list
ordering.

7. The selection sort algorithm could be modified to stop
when the unsorted section of the list contains only one
number, because that one number must be in the correct
position. Show that this modification would have no
effect on the number of comparisons required to sort an
n-element list.

Exercises 8-10 refer to another algorithm, called bubble sort,
that sorts an n-element list. Bubble sort makes multiple
passes through the list from front to back, each time
exchanging pairs of entries that are out of order. Here is a
pseudocode version:

1. Get values for n and the n list items
2. Set the marker U for the unsorted section at the end of
the list
3. While the unsorted section has more than one element
do steps 4 through 8
4. Set the current element marker C at the second ele-
ment of the list

5. While Cis has not passed U do steps 6 and 7

6. If the item at position C is less than the item to
its left then exchange these two items

7. Move C to the right one position

8. Move U left one position

9. Stop

8. For each of the following lists, perform a bubble sort,
and show the list after each exchange. Compare the num-
ber of exchanges done here and in the Practice Problem
at the end of Section 3.3.3.

a. 4,8,2,6
b. 12,3,6,8,2,5,7
c¢.D,B,GFACE

9. Explain why the bubble sort algorithm above does ©(n?)
comparisons on an n-element list.

10.

11.

12.

13.

14.

Suppose selection sort and bubble sort are both per-
formed on a list that is already sorted. Does bubble sort
do fewer exchanges than selection sort? Explain.

Algorithms A and B perform the same task. On input of
size n, algorithm A executes 0.003n? instructions, and
algorithm B executes 243n instructions. Find the approx-
imate value of n above which algorithm B is more effi-
cient. (You may use a calculator or spreadsheet.)

Suppose a metropolitan area is divided into 4 telephone
calling districts: 1, 2, 3, 4. The telephone company
keeps track of the number of calls placed from one dis-
trict to another and the number of calls placed within a
district. This information is recorded each month in a
4 X 4 table as shown here. The entry in row 1, column 3
(314), for example, shows the number of calls placed
from district 1 to district 3 for the month. The entry in
row 1, column 1 (243) shows the number of calls placed
from district 1 to district 1.

| 1 2 3 4
1 | 243 187 314 244
2 | 215 420 345 172
3 197 352 385 261
4 | 340 135 217 344

Suppose the telephone company serves n telephone dis-
tricts, and maintains an n X n table.

a. Write a pseudocode algorithm to print out the table,
that is, to print each of the entries in the table. Write
an expression for the number of print statements the
algorithm executes.

b. Write a pseudocode algorithm to print n copies of the
table, one to give to each of the n district managers.
Write an expression for the number of print state-
ments the algorithm executes.

c. What is the order of magnitude of the work done by
the algorithm in Part b if the unit of work is printing a
table element?

Write the data list that results from running the shuffle-
left algorithm to clean up the following data. Find the
exact number of copies done.

[3]ofof2]6f[7f]oJof5]1]

Write the resulting data list and find the exact number of
copies done by the converging-pointers algorithm when
it is executed on the data in Exercise 13.

Exercises LEVEL 1 121 i

P

— —

F

't
"

15.

16.

17.

18.

19.

20.

21.

t 122

Explain in words how to modify the shuffle-left data
cleanup algorithm to slightly reduce the number of
copies it makes. (Hint: Must item n always be copied?) If
this modified algorithm is run on the data list of Exercise
13, exactly how many copies are done?

The shuffle-left algorithm for data cleanup is supposed
to perform n(n - 1) copies on a list consisting of n 0s
(zeros). Confirm this result for the following list:

000000

Consider the following list of names.

Arturo, Elsa, JoAnn, John, Jose, Lee, Snyder, Tracy

a. Use binary search to decide whether Elsa is in this list.
What names will be compared to Elsa?

b. Use binary search to decide whether Tracy is in this
list. What names will be compared to Tracy?

c. Use binary search to decide whether Emile is in this
list. What names will be compared to Emile?

Use the binary search algorithm to decide whether 35 is
in the following list:

3,6,7,9, 12, 14, 18, 21, 22, 31, 43

What numbers will be compared to 35?

If a list is already sorted in ascending order, a modified
sequential search algorithm can be used that compares
against each element in turn, stopping if a list element
exceeds the target value. Write a pseudocode version of
this short sequential search algorithm.

This exercise refers to short sequential search (see
Exercise 19).

a. What is the worst-case number of comparisons of
short sequential search on a sorted n-element list?

b. What is the approximate average number of compar-
isons to find an element that is in a sorted list using
short sequential search?

c. Is short sequential search ever more efficient than
regular sequential search? Explain.

Draw the tree structure that describes binary search on
the 8-element list in Exercise 17. What is the number of
comparisons in the worst case? Give an example of a
name to search for that requires that many comparisons.

22.

23.

Draw the tree structure that describes binary search on a
list with 16 elements. What is the number of comparisons
in the worst case?

We want to find an exact formula for the number of com-
parisons that binary search requires in the worst case on
an n-element list. (We already know the formula is
O(lg n).)

a. If x is a number that is not an integer, then |x|, called
the floor function of x, is defined to be the largest
integer less than or equal to x. For example, [3.7] = 3
and [5] = 5. Find the following values: [1.2], |2.3],
|8.9], [-4.6/.

b. If nis not a power of 2, then lg n is not an integer. If
n is between 8 and 16, for example, then lg n is

between 3 and 4 (because lg 8 = 3 and lg 16 = 4).
Complete the following table of values:

n |lg n|
2 1

3

4 2

5

6

7

8 3

c. Forn=2,3,4,5,6,7,8, draw a tree structure similar
to Figure 3.19 to describe the positions searched by
binary search. For each value of n, use the tree struc-
ture to find the number of comparisons in the worst
case, and complete the following table:

n Number of compares, worst case
2

3

4 3

5

6

7 3

8

d. Comparing the tables of Parts b and c, find a formula
involving |lg n| for the number of comparisons binary
search requires in the worst case on an n-element list.
Test your formula by drawing trees for other values of n.

LEVEL 1

CHAPTER 3: The Efficiency of Algorithms

24.

25.

26.

27.

28.

29.

30.

Using the tree in Figure 3.19, find the number of com-
parisons to find each of items 1-7 in a seven element list
using binary search. Then find the average. Compare this
with the worst case.

At the end of Section 3.4.2, we talked about the tradeoff
between using sequential search on an unsorted list as
opposed to sorting the list and then using binary search.
If the list size is n = 100,000, about how many worst-
case searches must be done before the second alternative
is better in terms of number of comparisons? (Hint: Let p
represent the number of searches done.)

Suppose the pattern-matching problem is changed to
require locating only the first instance, if any, of the pat-
tern within the text.

a. Describe the worst case, give an example, and give the
exact number of comparisons (of a pattern character
with a text character) required.

b. Describe the best case, give an example, and give the
exact number of comparisons required.

At about what value of n does an algorithm that does 100n?
instructions become more efficient than one that does
0.01(2") instructions? (Use a calculator or spreadsheet.)

a. An algorithm that is ®(n) takes 10 seconds to execute
on a particular computer when n = 100. How long
would you expect it to take when n = 5007

b. An algorithm that is ®(n?) takes 10 seconds to exe-
cute on a particular computer when n = 100. How long
would you expect it to take when n = 500?

Find an optimal solution to the bin-packing problem
described in Section 3.5.

In the data cleanup problem, we assumed that the items
were stored in a list with a fixed number of positions.
Each item could be examined by giving its position in
the list. This arrangement of data is called an array. Here
is an array of four items:

[43[13[55[39
12 3 4

Another way to arrange items is to have a way to locate
the first item and then have each item “point to” the

1311%

next item. This arrangement of data is called a linked
list. Here are the same four items in a linked list
arrangement:

(4311 55] —[391]
To examine any item in a linked list, one must start

with the first item and follow the pointers to the
desired item.

[131]

Unlike arrays, which are fixed in size, linked lists
can shrink and grow. An item can be eliminated from a
linked list by changing the pointer to that item so that it
points to the next item instead.

a. Draw the linked list that results when item 13 is elim-
inated from the foregoing linked list.

b. Draw the linked list that results when data cleanup is
performed on the following linked list.

19— [0l -3l —[28]—[0 I —[33]]

c. Describe (informally) an algorithm to do data cleanup
on a linked list. You may assume that neither the first
item nor the last item has a value of 0, and you may
assume the existence of operations such as “follow
pointer” and “change pointer.” If these operations
are the unit of work used, show that your algorithm is
an ©(n) algorithm, where n is the number of items in
the list.

Below is a pseudocode algorithm that prints a set of out-
put values.

1. Get value for n

2. Set the value of k to 1

3. While k is less than or equal to n, do steps 4 through 8
4, Set the value of j to one-half n
5

While j is greater than or equal to 1, do steps 6
through 7

Print the value of j

Set the value of j to one-half its former value
Increase k by 1
. Stop

. Let n have the value 4. Write the values printed out
by this algorithm.

©® N o

[«¥]

b. Let n have the value 8. Write the values printed out
by this algorithm.

Exercises LEVEL 1

123 :i

P

— —

c. Which of the following best describes the efficiency of
this algorithm, where the “work unit” is printing a value?

O(n?) O(n lg n) O(n) O(lg n)

d. How many work units would you expect this algorithm
to do if n = 16?

32. Chapter 2 contains an algorithm that finds the largest
value in a list of n values.

a. What is the order-of-magnitude of the largest-value
algorithm, where the work unit is comparisons of val-
ues from the list?

CHALLENGE WORK

1. You are probably familiar with the children’s song “Old
MacDonald Had a Farm.” The first verse is

Old MacDonald had a farm, ee