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Foreword

Today, many practitioners and students of war approach it as a discipline founded
on purely scientific principles. The mathematics involved in decision making are
playing an increasingly important role in military tactics and applications.

This book is the outgrowth of a conference held in April 2011 at the Hellenic
Army Academy and aims to examine the application of mathematics and infor-
matics military science. Essentially, it is an attempt to synthesize the concepts of
military science, together with the concepts and techniques of applied operations
research, signal processing, scattering, scientific computing and applications, sim-
ulation, satellite remote sensing, coding, and statistical modeling. The work will
prove useful as a textbook and reference for these subjects; it could also be a basis
for further study and research.

The key features of the book and their corresponding benefits are:

1. The leveraging of analysis in support of current operations in order to improve
analytic support to the war fighter and to improve analytical capability for
warfare

2. To working groups meeting in composite sessions to address a wider spectrum
of topics

3. To the development of courses of action or methodologies to reconcile issues
identified

4. To enable cooperation between various scientific and military communities by
bringing together a range of interdisciplinary objects across a breadth of military
areas

The book’s 15 chapters are independent of each other and cover so many scientific
aspects of military science that only a well-read military analyst would be conver-
sant with them all. The suggestion is to approach the book as a whole. We hope that
the book will be especially helpful to students and new entrants to the field, as well
as to people whose knowledge is already established.

NATO C3 Agency Georges D’Hollander
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Preface

This work is an outgrowth of a conference held in April 2011 at the Hellenic
Army Academy and brings together a wide variety of mathematical methods with
application to defense and security and discusses directions and pursuits of scientists
that pertain to the military. Also studied is the theoretical background required for
methods, algorithms, and techniques used in military applications as well as the
direction of theoretical results in these applications. Open problems and future areas
of focus are also highlighted.

Topics covered include applied operations research and military applications,
signal processing, scattering, scientific computing and applications, simulation
and combat models, satellite remote sensing, coding, statistical modeling, and
applications. Analysis, assessment, and data management are core competencies
for operations research analysts. At the two day colloquium “Applications of
Mathematics and Informatics of Military Education”, held at the Hellenic Army
Academy April 11–12, 2011, we addressed these issues and developed production
recommendations for improving our analysis, assessment, and data management
ability.

One current need is to review the assessment framework in order to catalog
best practices. This process will also help to better identify the data needed for
assessments. Armed with a clearer assessment framework, the operations research
community could then work with the operational community to improve the
assessment and data management processes.

One of the largest issues we have in trying to develop assessment decision
support using multi-criteria analysis methods is that the objectives are not always
clearly articulated. From these objectives should flow what we do for assessments,
but often the reverse is true—we assess what we can and then provide that to senior
commanders in lieu of what they might need.

Additional aspects needed by the broader community are software, statistical
and computing tools used to support the process and methods for displaying the
information for a broad number of metrics that provide meaning and insight into
objective accomplishment.
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viii Preface

We also need to better educate the operations community so that the leaders
have realistic expectations of what can be produced from warfare analysis and
assessment. Commanders need to understand that much of the warfare assessment
process relies on qualitative data as opposed to the quantitative data often used in
assessing conventional campaigns. One potential product of the “Applications of
Mathematics and Informatics of Military Education”, held at the Hellenic Army
Academy April 11–12, 2011 would be a presentation that clearly outlines the current
state of assessment capabilities in a warfare environment. The information derived
from the presentation could then be shared with Division and Corps commanders to
help them better understand the assessment process.

Finally, the assessment process involves analysis across multiple lines of opera-
tion (satellite remote sensing, security and information operations). One beneficial
product would be a community wide campaign plan for combat modeling. The plan
would be designed to answer key commander questions.

Vari Attikis, Greece Nicholas J. Daras



Contents

Part I General

1 The Significance of Research and Development
for National Defence and Its Relation with the Military
University Institutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Nikolaos Uzunoglu

Part II Applied Operational Research and Military
Applications

2 Selected Topics in Critical Element Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Jose L. Walteros and Panos M. Pardalos

3 Study of Engagement with Mobile Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Spiridon Tassopoulos

Part III Signal Processing, Scattering

4 Solving an Electromagnetic Scattering Problem in Chiral Media . . . . 35
Christodoulos Athanasiadis, Sotiria Dimitroula,
and Kostantinos Skourogiannis

5 Orthonormality in Interpolation Schemes
for Reconstructing Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Nicholas J. Daras

Part IV Scientific Computing and Applications

6 Computer Graphics Techniques in Military Applications . . . . . . . . . . . . 77
Dimitrios Christou, Antonios Danelakis, Marilena Mitrouli,
and Dimitrios Triantafyllou

ix



x Contents

7 Numerical Optimization for the Length Problem . . . . . . . . . . . . . . . . . . . . . . . 87
Christos Kravvaritis and Marilena Mitrouli

Part V Simulation and Combat Models

8 Adaptive Policies for Sequential Sampling under
Incomplete Information and a Cost Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 97
Apostolos Burnetas and Odysseas Kanavetas

9 On a Lanchester Combat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
G. Kaimakamis and N.B. Zographopoulos

10 Land Warfare and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Dionysios Stromatias

Part VI Satellite Remote Sensing

11 Wavelet Transform in Remote Sensing
with Implementation in Edge Detection and Noise
Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Pantelis N. Michalis

12 Optimal Orbital Coverage of Theater Operations and Targets . . . . . . . 151
Vasileios Oikonomou

Part VII Coding, Statistical Modelling and Applications

13 A Bird’s-Eye View of Modern Symmetric Cryptography
from Combinatorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Christos Koukouvinos and Dimitris E. Simos

14 On the Weak Convergence of an Empirical Estimator
of the Discrete-Time Semi-Markov Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Stylianos Georgiadis and Nikolaos Limnios

15 Analysis Methods for Unreplicated Factorial Experiments . . . . . . . . . . . . 241
P. Angelopoulos, C. Koukouvinos, and A. Skountzou



Chapter 1
The Significance of Research and Development
for National Defence and Its Relation
with the Military University Institutions

Nikolaos Uzunoglu

Abstract In this article, the difficulties and obstacles being faced in the effort to
implement technology-oriented research and development in the area of national
defence applications are presented. In addition, the importance of investing human
research resources for the benefit of National Defence is emphasized based on
the author’s 35 years of experience in Greece. As a last point, the significance of
Military Universities offering graduate programs is stated, which could develop into
a strong factor to support National Defence and also stimulate local industry.

Keywords Research and Development

Mathematics Subject Classification (2010): 00A99, 97B10, 97M99

1.1 A Short Historical Overview

The history of mankind is full of conflicts and wars in which technological initiatives
played a decisive role. To mention a few examples:

– In the ancient era: Starting from the Trojan war up to the illustrative examples
of Archimedes’ defence technologies and the Athenian fast moving ships—the
triremes.

– In the Twentieth Century, the two World Wars: The proper use of technology
changed the course of the war. The invention of the microwave radar, a
result of the research efforts of a small research group at the University of
Birmingham (magnetron), and computational principles were used to attack

N. Uzunoglu (�)
National Technical University of Athens, School of Electrical and Computer Engineering,
Spetson 1A, GR 15122, Maroussi, Greece
e-mail: nuzu@cc.ece.ntua.gr

N.J. Daras (ed.), Applications of Mathematics and Informatics in Military Science,
Springer Optimization and Its Applications 71, DOI 10.1007/978-1-4614-4109-0 1,
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4 N. Uzunoglu

difficult-to-break codes. In contrast, despite the advanced nature of the missile
technology developed by Germany, it did not have any effect on the course of the
war, not being used at the proper time.

– During the Cold War: The competition in the field of technology and the inability
of the Soviet side to compete with the western alliance in the fields of computers
and communications (because of wrong strategic selections) determined the
outcome of the cold war.

– During the last 20 years: The developments in non-military technologies have
overtaken the military technologies, opening up the possibility of developing
intelligent and clever systems based on commercial components provided a
country possesses the necessary experienced engineers, human resources, and
laboratory infrastructure.

Analysis of the present defence market clearly indicates that technologically
strong state entities are spending much political effort to convince the technolog-
ically weak states to allocate substantial funds to defence projects, which are highly
dependent on technology and its role in international relations. This observation is
highly linked with the debt burden of technologically weak states.

1.2 The Significance of National Technology for National
Defence

In a sovereign country, the necessary conditions to develop national defense
technologies are as follows:

• The political determination of the country’s leadership to pursue a truly sovereign
policy.

• The creation of a technological research and development capacity by investing
in human resources as well as technological infrastructure.

• The establishment of significant potential for industrial production. In this
framework, the main issues to be addressed are the following:

• Deciding the country’s production policy: whether to invest in creativity and
innovation or in a commercial and service economy approach.

• Choosing feasible objectives and implementing a long-term program in
upgrading the national defence infrastructure.

• The collaboration of defence agencies with research institutions and national
industry with well-defined rules.

• Orienting the entire system of defence armament programs to support the
nationalization of production so that it reaches a significant level, ensuring saving
of important national resources that will be forwarded to other vital social sectors
such as education and health.

• Initiatives by the national research capital that will support the effort of upgrading
and exploiting technology for the benefit of national defence.

• Focusing the domestic industry, public or private, on “real production” and, at
the same time, abandoning the syndrome of “commercial representative”.
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1.3 Specific Observations of the Last 35 years in Greece

Many obstacles are being faced in Greece over the last 35 years related to the
national defence industry:

• The legal background: The whole system of legislation has been oriented to
providing open floor solely to technology users of the armed forces and this has
led to powerful lobby groups placing insurmountable obstacles against the efforts
to develop prototype technological advancements in the field of defence systems.

• The Law on Inventions and Patents concerning National Defence: Despite
the fact that a Law going as far back as 1964 foresaw the existence of a
Committee under the auspices of the Ministry of Defence to review the patents
to be submitted to receive approval and in case a patent has significant value for
national defence, to be classified and treated as such, this procedure has been
abandoned at least in the last 15 years.

• Research Institutes: Presently there are several research units and establishments
that have the capability to carry out original work in the field of research and
development related to national defence projects. This potential has not been
exploited in full.

• The History of Matching Programs: It is a well-known fact that the funds
allocated to armament programs during the last 30 years have not been used
to stimulate national production programs; rather, they were used to increase
the profit of representatives of foreign companies without any concrete results.
This is contrary, what other countries have achieved by utilizing the funds in
corresponding cases by developing production or research and development
facilities.

• Assessment of the obtained results of the Research Efforts: Despite the
difficulties, there have been several serious efforts in the development of
prototypes based on novel ideas incorporating original ideas. Of course, an
independent assessment of these efforts is needed to arrive to a concrete
conclusion.

• Research Potential of Human Resources: It is important to state that, in terms of
human resources, Greece has a unique capital of scientists, taking into account
the human potential inside and outside the Country. However, this potential
should be utilized with proper management.

1.4 The Need for Extending Military Universities into R & D
Through Postgraduate Studies

The political and military leadership of the National Defence Ministry should set
the objectives for the exploitation of the human capital of the military Universities
for the support and development of the research needs of the armed forces.
The realization of this objective could be served best by the present military
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universities corresponding to the land, sea and air armed forces. Specifically, this
could be achieved by the establishment of postgraduate programs corresponding
to sectors that are vital for national defence. Following the National Defence
Ministry’s definition of priority sectors and fields that needed to be developed for the
benefit of national defence, an expert committee should be established to propose,
in the short term, specific postgraduate programs. These postgraduate programs will
be supervised by a special committee that will be formed and authorized by special
government law. The basic guidelines for these postgraduate programs should be as
follows:

• Intensive and focused education
• Diploma thesis: Conveying of significant and vital operational problems.
• PhD studies in cooperation with University Laboratories and Research Institutes.
• The potential of officers with postgraduate or doctoral degrees should be utilized

by appointing them as instructors and supervisors of projects.

1.5 Conclusions

In this article, the problems being faced in Greece in the field of R & D in national
defence are analyzed and then a specific proposal is submitted on the extension
of the three military universities to postgraduate studies by incorporating research
and development activities to serve the urgent needs of national defence. In this
effort, the role of the military universities will be crucial after the extension of their
activities to R & D. The design of the postgraduate framework should (a) minimize
the financial burden, (b) exploit the nations scientific capital, and (c) prevent external
factors the influence of that could jeopardize the whole effort.



Chapter 2
Selected Topics in Critical Element Detection

Jose L. Walteros and Panos M. Pardalos

Abstract In this paper we consider the problem of detecting critical elements in
networks. The objective of these problems is to identify a subset of elements (i.e.,
nodes, arcs, paths, cliques, etc.) whose deletion minimizes a given connectivity
measure over the resulting network. This paper surveys some of the recent advances
for solving these kinds of problems including heuristic, mathematical programming,
approximated algorithms, and dynamic programming approaches.

Keywords Critical element detection • Critical node problem • Critical clique
detection

Mathematics Subject Classification (2010): 90-02

2.1 Introduction

In network analysis, the problem of detecting subsets of elements important to the
connectivity of a network (i.e., critical elements) has become a fundamental task
over the last few years. Identifying the nodes, arcs, paths, clusters, cliques, etc., that
are responsible for network cohesion can be crucial for studying many fundamental
properties of a network. Depending on the context, finding these elements can
help to analyze structural characteristics such as attack tolerance, robustness, and
vulnerability. Furthermore, it can also help for classifying members based on
their centrality, prestige, and reputation; and to determine dominant clusters and
partitions.

J.L. Walteros (�) • P.M. Pardalos
Department of Industrial ans Systems Engineering, Center for Applied Optimization, University
of Florida, 303 Weil Hall, Gainesville, FL, USA
e-mail: jwalteros@ufl.edu; pardalos@ise.ufl.edu

N.J. Daras (ed.), Applications of Mathematics and Informatics in Military Science,
Springer Optimization and Its Applications 71, DOI 10.1007/978-1-4614-4109-0 2,
© Springer Science+Business Media New York 2012

9



10 J.L. Walteros and P.M. Pardalos

From the point of view of robustness and vulnerability analysis, evaluating how
well a network will perform under certain disruptive events plays a vital role in
the design and operation of such a network. To detect vulnerability issues, it is
of particular importance to analyze how well connected a network will remain
after a disruptive event takes place, destroying or impairing a set of its elements.
The main strategy is to identify the set of critical elements that must be protected or
reinforced in order to mitigate the negative impact, the absence of such elements
may produce in the network. Applications of this kind are typically found in
homeland security [15,17], evacuation planning [21], immunization strategies [28],
energy [24], and transportation [19].

From the member-classification perspective, identifying members with a
high reputation and influential power within a social network could be of great
importance when designing a marketing strategy. Positioning a product, spreading
a rumor, or developing a campaign against drugs and alcohol abuse may have
a great impact over society if the strategy is properly targeted among the most
influential and recognized members of a community. The recent emergence of social
networks such as Facebook, Twitter, LinkedIn, etc. provides countless applications
for problems of critical-element detection.

Furthermore, determining dominant cliques or clusters over different industries
and markets via critical clique detection may be crucial for analyzing market share
concentration, debt concentration, spotting possible collusive actions and may even
help to prevent future economic crisis.

This paper surveys some of the recent advances for solving these kinds of
problems including heuristics, mathematical programming, approximated algo-
rithms, and dynamic programming approaches. We provide a brief description of
the mathematical models and formulations used in the referenced papers. Proofs,
computational experiments, and additional discussions are in general omitted, but
sources are fully referenced in each case. To avoid discrepancies with the sources,
we present the mathematical formulations using the original notation as found in
each paper. There are few cases though, where we are forced to slightly modify
some elements to ensure the consistency in the style. However, we try our best effort
to point out these differences to avoid possible confusion.

In general, critical element detection problems lie in the boundaries of different
research areas including network interdiction [18, 30], network design [13], graph
clustering and partitioning [14, 26], among others. We provide the reader with
additional references to some related problems in these areas; however, we do not
include detailed descriptions. While we have tried not to omit any of the recent
publications, we have no claim to completeness.

We organize this paper as follows. In Sect. 2.2 we give a general description of the
critical element detection problem and summarize some of the different connectivity
measures that are generally used in the literature. Section 2.3 focuses on the
critical node problem (CNP). We describe three mathematical formulations and
present some additional methodologies used to solve this problem. In Sect. 2.4 we
describe the literature regarding the critical arc detection problem. In Sect. 2.5, we
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introduce the critical clique detection problem (CCP). We provide two mathematical
formulations designed for using two different connectivity measures. Finally, in
Sect. 2.6 we provide conclusions and further directions for subsequent projects.

2.2 Critical Element Detection Problems

Let G = (V ,E) be a graph, where V is the set of nodes and E is the set of arcs. Let
T be the set of elements to be analyzed. Let bt be a cost associated with the deletion
of element t ∈ T and let B be a deletion budget. In general, most critical element
detection problems aim to identify a subset of elements in T (i.e., the critical
elements) whose removal minimizes the connectivity of the residual network, while
satisfying the budget constraint.

Depending on the context, G may vary in its composition. It can be a tree, a
planar graph, a series–parallel graph, a forest, or a more complex graph. It can be
defined as directed or undirected, and the degree of the nodes may follow different
distributions (uniform, power law, etc.). Moreover,T may represent a set of different
kinds of elements. It can simply be defined as the set of nodes or the set of arcs, or
can be comprised by more complex substructures such as paths, cliques, or clusters.
In the contexts of the critical node and the critical arc detection, we have that T = V
and T = E , and costs bt are node and arc deletion costs bi for i ∈V and be for e ∈ E ,
respectively. For more complex cases, such as for the CCP, set T is composed by
all the possible cliques in G and the deletion cost bt can be defined as the sum of the
deletion cost of all the nodes and arcs of clique t ∈ T . Additionally, in some papers
the deletion cost bt is assumed to be one for all the elements, therefore B is defined
as the upper bound of the number of elements that can be deleted.

In addition to the structure of the network and the definition of the critical
elements, a crucial factor that should be taken into account is the measure that is
used to analyze the connectivity of the residual network. There are several ways
to quantify how well connected a network is, and depending on the measure that
is chosen, the complexity of the problem, the solution approach, and the optimal
results may vary dramatically. Even though the principal objective is to find the
elements whose absence disconnects the network the most, depending on which
measure is used to calculate the connectivity of the residual network we may obtain
different optimal solutions. As we will point out in Sect. 2.3, a simple modification
in the structure of the costs may lead to a significantly more difficult problem.
Moreover, the selection of appropriated solution technique also depends on the
connectivity measure. Some measures are easier to formulate with some techniques
than with others. We now summarize some of the measures that are commonly used.

2.2.1 Connectivity Measures

Several measures have been used to assess the level of disconnection of the residual
network. These measures can be categorized into two classes depending on the
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context of the problem that is being solved. The measures from the first class are
mainly associated with network flow problems, in particular shortest path problems,
maximum flow problems, or minimum cost flow problems. The logic behind these
measures is that a network gets disconnected when it starts losing its ability to
send flow between a predefined set of node pairs, or simply when traversing
the network becomes too expensive (see [7, 16, 30]). For these cases, the critical
elements are the ones whose deletion results in the maximum increase of the shortest
paths or, consequently, the maximum decrease of the flow capacity between the
predefined node pairs. These kinds of measures are commonly used in the context
of network interdiction (see [6, 18, 20, 21, 31]), and are generally designed to tackle
arc interdiction problems (detecting critical arcs).

On the other hand, the measures of the second class are mostly associated with
topological characteristics of the network. Among this class, the most common
measures are: the total number of pairwise connections (i.e., the total number
of node pairs that are connected in the network by at least one path) [3, 8],
the total weighted pairwise connectivity (i.e., a weighted sum of the pairwise
connections) [3, 8], the size of the largest connected component (i.e., the number
of nodes that belong to the largest maximal connected subgraph of G) [23, 25], and
the total number of connected components [2, 25].

The first two measures of this class are mainly explicit evaluations of how
reachable the nodes of the network are in the absence of the critical elements. These
measures are generally used when there is no need to account for capacities or costs
associated with the paths between the nodes. For example, these can be used when
analyzing the vulnerability of a city’s infrastructure during an evacuation event to
identify areas of the city that can be totally disconnected from predefined safe zones.

The measure that accounts for the size of the largest component can be used
to achieve a relatively more homogeneous disconnection. When minimizing the
size of the largest component, despite a possible sacrifice in the total number of
pairwise connections, we can avoid having large concentrations of connections in
the residual network. A possible application for this measure could be to identify
the key members of a criminal organization that have to be captured to maximize
the segregation of the remaining members.

Additional topological measures that can be incorporated in critical element
detection problems may involve the diameter of the residual components (i.e., the
shortest path between the two most remote nodes in the network), the degree of the
remaining nodes (i.e., the number of incident arcs to a node), the number of paths
between every pair of nodes, and the number of common neighbors every pair of
the remaining nodes, among others. For additional ways of measuring vulnerability
and connectivity see [5, 15].

In general, the selection of the adequate measure is fundamental for making the
right analysis. Despite the fact that all of these account for a connection level of the
given network, using one over the other may lead to a completely different set of
critical elements. Figure 2.1 provides an example of the different optimal solutions
that are found depending on the measure that is chosen. For this example we assume
that the goal is to identify the most critical node among the network. Note that if the
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Fig. 2.1 Optimal solutions for different connectivity measures. (a) Original network (b) Maxi-
mizing the shortest path between nodes 1 and 5 (c) Minimizing the size of the largest component
(d) Maximizing the number of components

connectivity measure is set to be the length of the shortest path between nodes one
and five, the critical node is node three. On the other hand, if the measure is the size
of the largest component, the critical node is node four. And finally, if the measure
is the total number of components, the critical node is node 6.

2.3 Critical Node Detection Problems

Among all of the critical element detection problems, the ones of detecting critical
nodes and critical arcs are the ones that have attracted significantly more attention.
In this section we consider the problem of detecting critical nodes on graphs, often
referred as the CNP.

From the complexity point of view, the decision version of the CNP was proven
to be NP-complete on general networks in [3, 9, 23], by reductions from either the
vertex cover problem or the independent set problem [11]. These complexity proofs
were developed for the total number of pairwise connections and the total weighted
pairwise connectivity measures, but they can be generalized for other as well.

An additional complexity analysis of the CNP for other network topologies such
as trees and series–parallel graphs can be found in [8, 25]. Di Summa et al. [8]
proved that the CNP is also NP-complete on trees for the total weighted pairwise
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connectivity measures using a reduction from the multicut in trees problem [12].
They also showed that when the pairwise connection costs are set to be one (i.e.,
when the connectivity measure is replaced with the sum of the total number of
pairwise connections), the problem can be solved in polynomial time using a
dynamic programming approach (see Sect. 2.3.4). Moreover, Shen and Smith [25]
proved that the CNP is polynomially solvable in trees and series–parallel graphs for
the cases when the deletion costs of the nodes are set to be one and the objective
is either minimizing the size of the largest component or maximizing the number
of residual components. They also propose a dynamic programming scheme for
solving the CNP in these cases (see Sect. 2.3.4).

We now discuss the literature regarding the existing methodologies for solving
the CNP. These include mathematical programming, approximated algorithms,
heuristics, and dynamic programming approaches. We first introduce some math-
ematical formulations and then give a short description of other approaches.

2.3.1 Mathematical Formulations

When studying combinatorial problems, using a mathematical formulation is in
general a natural starting point. Despite the inherent difficulty of these problems,
techniques such as branch-and-bound and branch-and-cut are proven to be very
efficient approaches to obtain solutions for instances of manageable size. Recent
endeavors using mathematical programming techniques can be found in [3,6,16,23].

The mathematical formulation introduced in [3] is designed to tackle the CNP for
the case when the total number of pairwise connections is used as the connectivity
measure and when the deletion costs are set equal to one. Note, however, that this
formulation can be easily adapted to use the weighted pairwise connectivity or to
include deletion costs different than one. For this formulation, the authors define
a binary variable ui j for every pair of nodes i, j ∈ V that takes the value of one if
nodes i and j belong to the same component and zero otherwise. In addition, they
introduce a binary variable vi for every node i∈V that takes the value of one if node i
is deleted in the optimal solution and zero otherwise. The mathematical formulation
is as follows:

min ∑
i, j∈V

ui j (2.1)

s.t. ui j + vi + v j ≥ 1 (i, j) ∈ E (2.2)

ui j + u jl − uil ≤ 1 i, j, l ∈ V (2.3)

ui j − u jl + uil ≤ 1 i, j, l ∈ V (2.4)

− ui j + u jl + uil ≤ 1 i, j, l ∈ V (2.5)
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∑
i∈V

vi ≤ B (2.6)

vi ∈ {0,1} i ∈ V (2.7)

ui j ∈ {0,1} i, j ∈ V (2.8)

where the objective function (2.1) minimizes the sum of pairwise connections.
Constraint (2.2) ensures that if there is an arc between two nodes and none of them is
deleted, they have to be in the same component. Constraints (2.3)–(2.5) are known as
triangle inequalities and ensure the transitive relationship between the connections
in the graph (i.e., if node i is connected to node j and node j is connected to node
l, then node i must also be connected with node l). Constraint (2.6) sets the upper
bound on the number of critical nodes, and constraints (2.7) and (2.8) define the
domain of the variables used.

An alternative formulation for the CNP was presented in [16]. In this paper,
the author’s aim is to analyze what is the maximum (and the minimum) possible
disruption that can occur in the network when a given number p of nodes are
removed. The idea behind this approach is that, by calculating the maximum and
the minimum damage that can be inflicted to the network, one can obtain a broader
picture of the possible damages that may occur during a real disruptive event.
To account for the disruption level, the authors define a parameter ae for each arc
e ∈ E , which measure the demand volume that is present in arc e in the case that
the arc remains in the network after the removal of the critical nodes. For this
formulation, let E(i) be the set of arcs that are incident to node i and ri = |E(i)|
be its size. Consequently, let V(e) be the set of end points (i, j) ∈ V of arc e. Let
xi be a binary variable that takes the value of one if node i is deleted and zero
otherwise. Finally, let ye be binary variable that takes the value of one if arc e
remains in the network and zero otherwise. The mathematical formulation now
follows. We slightly modify the notation of this formulation to be consistent with
the style of this paper.

max(min) ∑
e∈E

aeye (2.9)

s.t. ∑
i∈V

xi = p (2.10)

∑
e∈E(i)

ye ≤ ri(1− xi) ∀i ∈ V (2.11)

ye ≥ 1− xi− x j e ∈ E ,(i, j) ∈ V(e) (2.12)

xi ∈ {0,1} i ∈ V (2.13)

ye ∈ {0,1} e ∈ E (2.14)

where the objective function (2.9) either maximizes or minimizes the sum of arc
demands that are not affected by the node disruption. Constraint (2.11) sets the
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number of nodes that will be removed. Constraints (2.11) ensure that if node i
is deleted, the arcs incident to it are not present in the final network. Constraints
(2.12) enforce that an arc is present in the final network if none of its end points
is removed. Finally, constraints (2.13) and (2.14) define the domain of the variables
used. Alternative formulations regarding the CNP in this context can be found in [6].

A different mathematical formulation was introduced in [23]. In this work, the
formulation is designed to solve a simple variation of the CNP where the objective is
to minimize the number of nodes deleted, while ensuring that the size of the residual
components is less or equal than a given parameter c. In this formulation, variable
xi j is a binary variable that takes the value of one if nodes i and j belong to the same
component and zero otherwise, and yi is a binary variable that takes the value of
one if node i is not deleted in the optimal solution and zero otherwise (note that
in this formulation variables yi are defined in the opposite way as variables vi are
defined in [3]). The mathematical formulation follows:

max ∑
i∈V

yi (2.15)

s.t. ui j + u jl − uil ≤ 1 i, j, l ∈ V (2.16)

ui j − x jl + xil ≤ 1 i, j, l ∈ V (2.17)

− xi j + x jl + xil ≤ 1 i, j, l ∈ V (2.18)

∑
i∈V\{i}

xi j ≤ c− 1 ∀i ∈ V (2.19)

yi + y j − xi j ≤ 1 (i, j) ∈ E (2.20)

yi ∈ {0,1} i ∈ V (2.21)

xi j ∈ {0,1} i, j ∈ V (2.22)

where the objective function (2.15) maximizes the sum of nodes that are not deleted.
Constraints (2.16)–(2.18) are the triangle inequalities; constraints (2.19) ensure that
each of the residual components is comprised by no more than c nodes; constraints
(2.20) ensure that if there is an arc between two nodes and none of them is deleted,
they have to be in the same component. And finally constraints (2.21) and (2.22)
define the domain of the variables used.

In this paper, the authors also provide a detailed polyhedral analysis of this
formulation and discuss some valid inequalities that are inherited from some clique
partitioning problems. We now discuss the heuristic approaches.

2.3.2 Heuristics Approaches

A simple heuristic approach regarding the CNP was used in [2]. Rather than
detecting which are the set of critical nodes of the network, this work is aimed to
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study the tolerance of complex networks with respect to strategic node deletions.
The authors seek to analyze the resulting consequences over the network when
nodes with a relative high importance are removed. In this case, the authors used
the degree of the nodes (i.e., the number of arcs that are incident to the node) as
a measure of importance, and then analyze the network cohesion after deleting the
nodes with the largest degree. However, even though it seems natural that removing
a node with a larger degree may cause a large disconnection in the network, it is
easy to show that this is not necessarily the case. For example, observe the network
described in Fig. 2.2. Note that removing the node with the largest degree (node 4)
does not affect the connectivity of the residual network at all, whereas removing a
node with a lesser degree (node 6) divides the network into two components.

An alternative approach to solve the CNP is to use a greedy algorithm. For the
case of the CNP, note that finding the node whose remotion minimizes the
connectivity of the network (i.e., solving the CNP when the node-deletion budget
is one) can be done in polynomial for any connectivity measure by removing
individually each node from the network, and then solving a breadth-first search,
a shortest path problem, or a maximum flow problem (see [1]), depending on the
measure, to identify which is the node deletion that gives a better disconnection.
Thus, a simple greedy algorithm for solving a general case of the CNP is to
sequentially eliminate the node that generates the largest disruption at each iteration.
Unfortunately, greedy algorithms like this are known to perform poorly in practice.
In order to improve the suboptimal solutions that are obtained when using greedy
techniques, Borgatti [4] introduces a local search heuristic. In this algorithm, an
initial collection of critical nodes S is selected either randomly or with a greedy
algorithm. Then, the local search performs a swap between each pair of nodes
(s, t) such that s ∈ S and t ∈ V \ S. If the swap leads to an improvement, the
swap is accepted and set S is updated; otherwise, the algorithm continues with the
exploration. The algorithm stops when no further improvements are found.

A greedy heuristic that is based on identifying maximal independent sets was
proposed in [3]. The intuition behind this approach is that the subgraph induced by
a maximal independent set is empty. Therefore, the deletion of the nodes that are
not in the independent set will result in an empty subgraph. Note that if the size
of the maximal independent set that is found by the algorithm is greater than the
number of nodes in the network minus the critical node budget, the optimal solution
for the CNP is to select the nodes that are not in the independent set. However, if
the size of the independent set is less than this value, one can greedily keep adding
nodes which provide the best improvement on the objective value until reaching the
upper bound.
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To improve the solution of the proposed algorithm, a local search procedure
similar to the one described above is also implemented and is embedded into a
multi-start heuristic, that sequentially reproduces the same algorithm and returns
the best overall solution.

2.3.3 Approximation Algorithms

Form the approximation algorithms perspective, a variation of the CNP problem
is presented in [9]. In this work, the authors propose a reformulation for the CNP
where the objective function is set to minimize the number of nodes that must be
removed in order to achieve a certain degradation (disruption) in the connectivity
that is measured using the total pairwise connectivity measure. The authors provide
a proof of the NP-completeness of this version of the CNP by a reduction
from the vertex cover problem. The authors also prove that this problem cannot
be approximated within a factor less than 1.36 of the optimal solution, when
the degradation level is set to be 0. Finally, they propose a O(logn log logn)
pseudo-approximation scheme.

2.3.4 Dynamic Programming

The use of dynamic programming has been studied in [8, 25]. In the work of Di
Summa et al. [8], the authors prove that the general version of the CNP over trees, for
the weighted pairwise connectivity measure, is still NP-Hard. For the cases where
the total pairwise connectivity measure is used, with and without node deletion
costs, they propose two dynamic programming algorithms with complexities O(n7)
and O(n3B2), respectively.

In the work of Shen and Smith [25], the authors introduce a polynomial-time
dynamic programming scheme for solving the CNP over trees and series–parallel
graphs, for two connectivity measure: the number of connected components and
the size of the largest component. For the case of the CNP over trees, the overall
time and space complexities of the proposed algorithms are, respectively, O(n3) and
O(n2) for the number of connected components measure and O(n3 logn) and O(n2)
for the size of the largest component. The authors also show that their approach
can be slightly modify to tackle (with the same time complexity) the variant of
the CNP where a deletion cost is present. Additionally, the authors proved that the
CNP variation, where a weight is associated with each node and the objective is
to minimize the largest weight over the components is NP-Hard in the ordinary
sense. They show that this variation can be solved with a pseudopolynomial version
of their scheme.

For the case of the series–parallel graphs, Shen and Smith present two dynamic
programming algorithms for the total number of connected components and the size
of the largest component measure, with a time and space complexity of O(n3 logn)
and O(n2), and O(n5 logn) and O(n3), respectively.
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2.4 Critical Arc Problems

We now discuss some of the approaches for detecting critical arcs in networks
including enumeration algorithms, mathematical programming approaches, and
approximated algorithms.

2.4.1 Enumeration Approaches

An early approach for solving the critical arc detection problem by path enumeration
was proposed in [7]. In this work the authors use as connectivity measure the
shortest path between two predefined nodes s and t, and define the set of critical
arcs L∗

n ⊆ A(D) as a set of n arcs such that the shortest path between s and t
in G(V ,A(D) \ L∗

n) is greater or equal than the shortest path between s and t in
G(V ,A(D)\Ln) for any other set of n arcs Ln ⊆ A(D).

The idea of the algorithm is as follows. Let P be the set of all possible paths
between s and t and c(p) be the cost of path p ∈ P . Let Pk = {pk

1, pk
2, . . . , pk

nk
} be

the set of all kth shortest paths between node s and node t. That is, the set of paths
such that c(pk

i ) = c(pk
j) and c(ph

i ) < c(pk
i ) < c(pl

j) for h < k < l. First, enumerate

the set of all first shortest paths P1 and find the set of arcs Q1 that belong to the
intersection of the paths in P1 (i.e., Q1 =

⋂n1
i=1 p1

i ). If this intersection is empty, all
the arcs in the paths of set P1 are considered critical. On the other hand, if Q1 is not
empty, find the set of all second shortest paths P2 and obtain set Q2 =

⋂n2
i=1 p2

i ∩Q1.
If Q2 is empty, the set of critical arcs is set Q1. If set Q2 is a singleton, Q2 is the set
of critical arcs. And, if Q2 is not empty and not a singleton, repeat the process for
Q3, . . . ,Qk, until finding an empty set or a singleton set.

2.4.2 Mathematical Formulations

In most of the extant literature, the problem of detecting critical arcs is modeled
as a network interdiction problem (e.g., [18, 20, 30, 31]). A network interdiction
problem can be seen as a single-stage static Stackelberg game between a leader
and a follower (see [27]), where the leader attempts to interdict a set of network
elements, in an effort to optimally restrict the ability of the follower to use the
network. For example, the leader may try to increase the cost that the follower
perceives while traversing the network or to decrease the network capacity for
shipping commodities. In contrast, the follower objective is either to minimize the
total cost of using the network or to maximize the amount of commodities shipped.
From the point of view of the critical element detection, the critical elements are
then the elements that were optimally interdicted by the leader. That is, the elements
whose deletion resulted in the maximum increase of the shortest paths used by the
follower, or in the maximum decrease of the flow capacity of the network.
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An example of a network interdiction formulation where the objective is to
maximize the shortest path between two given nodes s and t can be described as
follows. Let ce be the cost associated with using the arc e ∈ E . Let set FS(i) and
RS(i) be the forward- and reverse-stars of node i, respectively. Let ye be a binary
variable that takes the value of one if the follower uses arc e and zero otherwise.
Let xe be a binary variable that takes the value of one if the leader interdicts arc e
and zero otherwise. The mathematical formulation follows:

maxmin ∑
e∈E

ceye (2.23)

s.t. ∑
e∈FS(i)

ye ∑
e∈RS(i)

ye =

⎧
⎨

⎩

1 i = s
0 i ∈ V \{s, t}
−1 i = t

(2.24)

ye ≤ 1− xe e ∈ E (2.25)

∑
e∈E

bexe ≤ B (2.26)

ye ∈ {0,1} e ∈ E (2.27)

xe ∈ {0,1} e ∈ E (2.28)

where the objective function (2.23) maximizes the shortest path used by the
follower, constraints (2.24) enforce the flow balance conditions, constraints (2.25)
ensure that the follower does not use an arc that has been interdicted, constraint
(2.26) defines the interdiction budget, and constraints (2.27) and (2.28) define the
domain of the variables. One of the approaches that is commonly used to solve
these problems is to reformulate the model by replacing the inner problem (i.e.,
the followers problem) by its dual version. The result is a bilinear maximization
problem that can be solved via standard linearization techniques.

A path-based mathematical formulation was presented in [22]. In this paper,
the authors used as the connectivity measure the weighted sum of the pairwise
connections. For this formulation, a parameter ri j is defined as the weight of the
connection between i and j. Pi j is defined as the set of all possible paths connecting
the pair of nodes (i, j), and E(P) is the set of arcs that comprise path P ∈ Pi j.
Furthermore, xi j is a binary variable that takes the value of one if nodes i and j
are not connected and zero otherwise, and variable ye is a binary variable that takes
the value of one if node i is not deleted in the optimal solution and zero otherwise.
The mathematical formulation follows:

max ∑
i∈V

ri jxi j (2.29)

s.t. ∑
e∈E

ye ≤ B ∀i ∈ V (2.30)
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∑
e∈E(P)

ye ≥ xi j ∀i, j ∈ V ,P ∈ Pi j (2.31)

ye ∈ {0,1} e ∈ E (2.32)

xi j ∈ {0,1} i, j ∈ V (2.33)

where the objective function (2.29) maximizes the weighted sum of pairwise
connections that are disrupted, constraint (2.30) ensures that no more than B arcs
are eliminated, constraints (2.31) ensure that if there is a path between nodes i
and j, variable xi j = 0. Finally constraints (2.32) and (2.33) define the domain of
the variables used. An alternative formulation regarding the critical arc detection
problem in this context can be found in [21].

2.4.3 Approximation Algorithms

Dinh et al. [9] presented also an approximation algorithm for detecting critical arcs.
Similarly to the approach designed for the CNP, the authors propose to minimize
the number of arcs that must be removed in order to achieve a disruption level
in the number of the residual pairwise connections. The authors provide a proof
of the NP-completeness of this problem by a reduction from the balanced cut
problem [10]. Finally, they propose a O(log1.5) pseudo-approximation scheme.

2.5 The Critical Clique Detection Problem (CCP)

The increasing interest on the CNP has motivated recent studies regarding the
detection of other critical substructures such as cliques and paths. The CCP has
been recently explored in the work of Walteros and Pardalos [29], who examine the
extension of some of the approaches originally conceived for the CNP, to tackle the
CCP. In their work, the authors prove that the CCP is NP-complete for the general
case using a transformation from the partition into cliques problem [11]. They also
propose a mathematical formulation as well as a decomposition approach.

The CCP can be defined as follows: Given a connected undirected network
G(V ,E) where V and E are the set of nodes and arcs, respectively, and an integer k,
the CCP involves finding a set of k disjoint cliques such that its deletion results in
the maximum network disconnection. Additional constraints regarding the structure
of the cliques can also be imposed, for instance, an upper bound on the size of the
critical cliques. Notice that the CCP can be seen as a generalization of the CNP,
where the objective is to find cliques instead nodes. The CNP is then the case where
the size of the cliques is limited to be one. Figure 2.3 presents an example of the
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Fig. 2.3 Example for a 9-node graph. (a) Original graph (b) Optimal solution

CCP over a 9-node graph, where k = 2. Figure 2.3a displays the original network,
and Fig. 2.3b the optimal solution where the cliques selected are colored in green
and blue, respectively.

Among the different connectivity measure described above, the authors discussed
two: the total pairwise connections and the size of the largest component. A de-
scription of how these measures are incorporated in the mathematical formulations
follows:

For any subset V′ ⊆ V , set E(V′) ⊆ E is defined as the set of arcs such that,
for each arc e ∈ E(V′), both endpoints of e belong to V′. Let G(V′) be the graph
comprised by the set of nodes V′, and the set of arcs E(V′). Assume that nodes
i, j ∈ V are connected over G if there exists at least one path that connects i with
j in G. Let Q be the set of maximal connected components of G. That is, a subset
Cq ⊆ V of nodes such that every pair of nodes i, j ∈ Cq is connected over G(Cq),
and such that, for every node l ∈ V \Cq, there is no arc connecting l with any node
i ∈ Cq. Let σq = |Cq| be the number of nodes of component Cq ∈ Q. The number
of pairwise connections of component Cq ∈ Q is then defined as σq(σq − 1)/2. Let
T = {K1, . . . ,Kk} be the set of k critical cliques of G, V(Kt) ⊆ V be the subset
of nodes that comprise clique Kt ∈ T , and V(T ) ⊆ V be the set of all the nodes
that belong to the critical cliques. Finally, let GT = (V \V(T ),E(V \V(T ))) be the
resulting network after the deletion of the critical cliques, and QT the corresponding
set of remaining components. Then, the objectives are:

Minimize the total pairwise connections: Given a network G = (V ,E) and an
integer k, find a collection of cliques T , of size |T | ≤ k, such that the sum of the
pairwise connections of all the components left is minimized:

min ∑
q∈QT

σq(σq − 1)/2 (2.34)

Minimize the size of the largest component: Given a network G = (V ,E) and an
integer k, find a collection of cliques T , of size |T | ≤ k, such that the size of the
largest component is minimized:

min max
q∈QT

{σq} (2.35)
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2.5.1 Mathematical Formulations

One of formulations described in [29] is as follows. Let V(e) be the set of endpoints
of arc e ∈ E and T be the set of critical cliques such that |T | = k. Let vt

i be a
binary variable that takes the value of one if node i is assigned to clique Kt ∈ T .
Let ui j be a binary variable that takes the value of one if nodes i and j, belong to
the same component and zero otherwise. Let zi be an auxiliary binary variable that
takes the value of one if node i belongs to a component in the residual graph and
zero otherwise. The mathematical formulation for the CCP for the TPW objective
measure is as follows:

min ∑
i, j∈V

ui j (2.36)

s.t. ∑
t∈T

vt
i ≤ 1 i ∈ V (2.37)

vt
i + vt

j ≤ 1 e ∈ V ×V \E , i, j ∈ V(e), t ∈ T (2.38)

zi + ∑
t∈T

vt
i = 1 i ∈ V (2.39)

ui j ≥ zi + z j − 1 e ∈ E , i, j ∈ V(e) (2.40)

ui j + u jl − uil ≤ 1 i, j, l ∈ V (2.41)

ui j − u jl + uil ≤ 1 i, j, l ∈ V (2.42)

− ui j + u jl + uil ≤ 1 i, j, l ∈ V (2.43)

vt
i ∈ {0,1} i ∈ V , t ∈ T (2.44)

zi ∈ {0,1} i ∈ V (2.45)

ui j ∈ {0,1} i, j ∈ V (2.46)

where the objective function (2.36) minimizes the sum of pairwise connections.
Note that since ui j is equal to 1 if nodes i and j belong to the same component,
∑i, j∈V ui j is equivalent to ∑q∈Q σq(σq −1). Constraint (2.37) ensures that each node
is assigned to at most one clique. Constraint (2.38) ensures that if there is no arc
e ∈ E between nodes i and j (i.e., e ∈ V ×V \ E), both nodes cannot be assigned
to the same clique. Constraint (2.39) ensures that if node i is not assigned to a
clique, its corresponding variable zi must be equal to one. Constraints (2.40) define
the relationship between u variables and z variables. Constraints (2.41) and (2.42)
define the triangular relationship of u variables. And finally constraints (2.44)–(2.46)
define the domain of the variables used.
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Furthermore, to use the maximum size of the largest component as the objective,
above model is adapted by introducing a new variable β defined as the size of the
largest component. Then the model is then formulated as follows:

min β (2.47)

s.t. (2.37− 2.46)

∑
i∈V

ui j ≤ β i ∈ V (2.48)

where objective function (2.47) combined with constraints (2.48) enforces the
minimization of the size of the largest component.

Similarly to the case of the CNP, these two formulations grow relatively large in
size with respect to |V| (they require O(|V|2) variables and O(|V|3) constraints).
To efficiently solve these formulations, it is common to use a cutting plane
generation scheme that sequentially includes constraints (2.3)–(2.5) as needed.
Moreover, it is easy to see that we can strengthen these formulations using some
valid inequalities originally designed for similar problems [14, 23], as well as
symmetry-breaking constraints.

2.6 Concluding Remarks and Further Directions

This study was motivated by the increasing interest of solving critical element
detection problems on analyzing graphs. Recently, several research efforts have been
put together to develop approaches and techniques to efficiently solve these kinds
of problems. In this paper we outline and relate these approaches and survey mainly
recent contributions.

Most of the extant literature has been focused on identifying critical nodes
and critical arcs. Many techniques and applications have been published regarding
these two problems and their applications. However, because of the recent nature
of these problems, there are still plenty of different trends that can be followed to
improve the current solution techniques.

For example, the use of other metaheuristics such as genetic algorithms, tabu
search, or ant colony schemes has yet to be explored. These techniques can be very
fruitful to obtain solutions for large-scale instances, generally out of reach for exact
solution approaches.

Another possible path may involve extending some of the available techniques
that were originally tailored to solve particular cases of these problems, to tackle
more general versions. This could be the case of the dynamic programming schemes
initially designed to solve CNPs over trees.

Additionally, in contrast to the current state of the art regarding the detection
of critical nodes and arcs, there is still very few attention to the identification of



2 Selected Topics in Critical Element Detection 25

more complex critical structures (paths, cliques, clusters, etc.), despite the evident
applicability. We believe that this is one of the possible research paths to follow over
the next years.

Finally, a future task will also involve the application of critical element detection
problems in new fields such as neuroscience, biology, and genetics.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1993)

2. Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex networks. Nature
406(6794), 378–382 (2000)

3. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos P.M.: Detecting critical nodes in
sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

4. Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theor.
12, 21–34 (2006)

5. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Network 28(4),
466–484 (2006)

6. Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: The median
and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)

7. Corley, H., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1(4),
157–160 (1982)

8. Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees.
Comput. Oper. Res. 38(12), 1766–1774 (2011)

9. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing
network vulnerability: Hardness and approximation, Networking, IEEE/ACM Transactions on,
20(2), 609–619 (2012)

10. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified np-complete graph problems. Theor.
Comput. Sci. 1(3), 237–267 (1976)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

12. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow
and multicut in trees. Algorithmica 18, 3–20 (1997)

13. Grötschel, M., Monma, C., Stoer, M.: Design of survivable networks. In: Ball, C.M.M.O.,
Magnanti, T.L., Nemhauser, G. (eds.) Network Models. Handbooks in Operations Research
and Management Science, vol. 7, pp. 617–672. Elsevier (1995)

14. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Program. 47,
367–387 (1990)

15. Grubesic, T.H., Matisziw T.C., Murray, A.T., Snediker D.: Comparative approaches for
assessing network vulnerability. Int. Reg. Sci. Rev. 31(1), 88–112 (2008)

16. T. H. Grubesic and A. T. Murray. Vital nodes, interconnected infrastructures, and the
geographies of network survivability. Ann. Assoc. Am. Geogr. 96(1), 64–83 (2006)

17. Houck, D.J., Kim, E., O’Reilly, G.P., Picklesimer, D.D., Uzunalioglu, H.: A network
survivability model for critical national infrastructures. Bell Labs Technical J. 8(4), 153–172
(2004)

18. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)
19. Jenelius, E., Petersen, T., Mattsson L.-G.: Importance and exposure in road network

vulnerability analysis. Transport. Res. Part A: Pol. Prac. 40(7), 537–560 (2006)
20. Lim, C., Smith, J.C.: Algorithms for discrete and continuous multicommodity flow network

interdiction problems. IIE Transactions 39(1), 15–26 (2007)



26 J.L. Walteros and P.M. Pardalos

21. Matisziw, T.C., Murray, A.T.: Modeling s-t path availability to support disaster vulnerability
assessment of network infrastructure. Comput. Oper. Res. 36, 16–26 (2009)

22. Myung, Y.-S., joon Kim, H.: A cutting plane algorithm for computing k-edge survivability of
a network. Eur. J. Oper. Res. 156(3), 579–589 (2004)

23. Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing vertices:
a polyhedral approach. Statistica Neerlandica 61(1), 35–60 (2007)

24. Salmeron, J., Wood, K.R., Baldick, R.: Analysis of electric grid security under terrorist threat.
IEEE Transactions on Power Systems. 19(2), 905–912 (2004)

25. Shen, S., Smith, J.C.: Polynomial-time algorithms for solving a class of critical node problems
on trees and series-parallel graphs. Networks, Wiley Subscription Services, Inc., A Wiley
Company (2011) doi: 10.1002/net.20464

26. Shmoys, D.B.: Cut problems and their application to divide-and-conquer, pages 192–235. PWS
Publishing Co., Boston, MA, USA (1997)

27. Simaan, M., Cruz, J.B.: On the stackelberg strategy in nonzero-sum games. J. Optim. Theor.
Appl. 11, 533–555 (1973)

28. Tao, Z., Zhongqian, F., Binghong, W.: Epidemic dynamics on complex networks. Progr. Nat.
Sci. 16(5), 452–457 (2006) doi: 10.1080/10020070612330019

29. Walteros, J.L., Pardalos, P.M.: A decomposition approach for solving critical clique detection
problems, Experimental Algorithms. In: Klasing, R., (ed.) Lecture Notes in Computer Science,
vol. 7276, pp. 393–404, Springer Berlin, Heidelberg (2012)

30. Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)
31. Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)



Chapter 3
Study of Engagement with Mobile Targets

Spiridon Tassopoulos

Abstract This study intends to describe a methodology and to provide the data
required for a realistic analysis of a mobile target engagement. Specifically, it
provides a means of estimating the probability that a target is still present at an
observed location as a function of time from the observation where the time the
target stopped is unknown. With this methodology targets can then be evaluated not
only on the basis of expected fractional coverage as in the manual, but also on the
basis of whether there is an adequate likelihood that they will still be present when
weapon arrives.

Keywords Engagement • Acquisition • Mobile target • Dwell time • Renewal
Theory

Mathematics Subject Classification (2010): 26A42, 60H30, 60K05, 65C20,
65C30

3.1 Introduction

The scope of this paper is to describe a methodology and to provide the data required
for a realistic analysis of a mobile target engagement ([2–4]). More specifically, it
provides a means of estimating the probability that a target is still present at an
observed location as a function of time from the observation where the time the
target stopped is unknown.

S. Tassopoulos (�)
Eleftherias 1, Nea Kios Argolidas, GR 21053, Argolida, Greece
e-mail: spitasso@yahoo.gr

N.J. Daras (ed.), Applications of Mathematics and Informatics in Military Science,
Springer Optimization and Its Applications 71, DOI 10.1007/978-1-4614-4109-0 3,
© Springer Science+Business Media New York 2012

27



28 S. Tassopoulos

Fig. 3.1 Probability of target presence

Mobile target is defined both as a target that moves nearly continuously (such as a
tank company) and as one that moves only occasionally (such as an artillery battery
or command post).

With this methodology targets can then be evaluated not only on the basis of
expected fractional coverage as in the manuals but also on the basis of whether
there is an adequate likelihood that they will still be present when weapon arrives.
Results are summarized in Fig. 3.1.
This chart shows the probability of target being present at an observed location as
a function of the expected target dwell time (τ) and the acquisition/engagement
time (t). Its use is best illustrated by an example. Let us assume an expected target
dwell time (τ) of 12 h and that the time (t) necessary to acquire and process the
target information, to communicate it to required elements, to make decisions, to
plan and prepare weapon use, and to deploy the weapon is 6 h. The ratio of t to
is therefore 0, 5. The resultant expected probability is about 0, 53. Thus, there is
slightly better than a 50/50 change of the target still being present when the weapon
actually arrives for example (Fig. 3.2).
We begin by assuming that the probability of the target leaving its original position
between t and t + DT is

P1(t)dt =
1

Cσ
√

2π
e−

(t−τ)2

2σ2 dt



3 Study of Engagement with Mobile Targets 29

Fig. 3.2 Target dwell time
distribution model

where t = 0 is the time at which the target originally settled into the given position,
τ is the average time that the target remains in place, σ2 is the variance in the
distribution, and the normalization constant

C =
1
2
+

1
2

erf

(
τ

σ
√

2

)

is chosen such that ∫ +∞

0
P1(t)dt = 1.

66% of the target will leave between τ −σ and τ +σ .
95% of the target will leave between τ − 2σ and τ + 2σ .
We now assume that the target is detected at some arbitrary time t = t1 and we wish
to know the probability destiny (P2(t2)) of the time t2 between detection and the
departure of the target.

This turns out to be one of the main problems of a branch of probability theory
called Renewal Theory. The random variable t2 is called the residual waiting time
or the excess lifetime. Using the results of Renewal Theory it can be shown that the
probability that the target will leave at a time t2 after it is detected is

P2(t2)dt2 =
1−F1(t2)

μ
dt2

where

F1(t2) =
∫ t2

0
P2(t)dt

And/or, integrating by parts and using F1(∞) = 1

μ =

∫ ∞

0
tP1(t)dt

μ =

∫ ∞

0
(1−F1(t))dt
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so that

P2(t2)dt2 =
[1−F1(t2)]dt2∫ ∞
0 (1−F1(t))dt

Using the original expression for P1 (t) we now have

1−F1(t2) =
∫ ∞

t2
P1(t)dt =

1

Cσ
√

2π
e−

(t−τ)2

2σ2 dt

Setting t − τ = σ
√

2x, this becomes

1−F1(t2) =
1

C
√

π

∫ ∞

t2−τ
σ
√

π

e−x2
dx

which gives

1−F1(t2) =
1

2C

{
1− erf

[
t2 − τ
σ
√

2

]}

where erf(x) is the error function, so that the expression for P2(t2)dt2 becomes

P2(t2)dt2 =

{
1− erf

[
t2−τ
σ
√

2

]}
dt2

∫ ∞
0

{
1− erf

[
t−τ
σ
√

2

]}
dt
.

This can be further simplified. Using the formulas

∫
erf(αx)dx = xerf(αx)+

e−α2x2

α
√

π

and ∫ ∞

0
[1− erf(αx)]dx =

1
α
√

π
we obtain ∫ ∞

y
[1− erf(αx)]dx =

e−α2y2

α
√

π
− y[1− erf(αy)].

Using this we have

∫ ∞

0

{
1− erf

[
t − τ
σ
√

2

]}
dt = σ

√
2
π

e
− π2

e2σ2 + τ
[

1+ erf

(
τ

σ
√

2

)]
.

So that the final result for P2(t2)dt2 is

P2(t2)dt2 =

{
1− erf

[
t2−τ
σ
√

2

]}
dt2

σ
√

2
π e

− π2

e2σ2 + τ
[
1+ erf

(
τ

σ
√

2

)] .
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Fig. 3.3 Generalized curve for estimating probability target is still at observed location [1, 5]
and [6].

The probability that the target will still be present at a time t3 after it was detected
is now given by

P3(t3) = 1−
∫ t3

0
P2(t2)dt2

or, since, ∫ +∞

0
P2(t2)dt2 = 1

P3(t3) =
∫ +∞

t3
P2(t2)dt2.

Using the expression for P2, we obtain after integrating

P3(t3) =
σ
√

2
π e

− π2

e2σ2 − (t3 − τ)
{

1− erf
[

t3−τ
σ
√

2

]}

σ
√

2
π e

− π2

e2σ2 + τ
[
1+ erf

(
τ

σ
√

2

)]

Figure 3.3 presents the generalized curve for the probability of a target being
present as a function of time from detection. The probability is presented as a
function of two parameters, t

σ and t
τ , where τ is the average target dwell time,

σ denotes standard deviation of the dwell time, and t denotes the time.
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Chapter 4
Solving an Electromagnetic Scattering Problem
in Chiral Media

Christodoulos Athanasiadis, Sotiria Dimitroula,
and Kostantinos Skourogiannis

Abstract In this work we consider the problem of scattering of a plane
electromagnetic wave by a chiral dielectric obstacle in a chiral environment.
We formulate the problem in terms of Beltrami fields in order to state existence
and uniqueness. We prove a general scattering theorem when the incident field is a
chiral electromagnetic Herglotz pair. Using low-frequency techniques the scattering
problem is reduced to an iterative sequence of potential problems which can be
solved successively in terms of expansions in appropriate ellipsoidal harmonic
functions and we evaluate the zeroth-order approximation.

Keywords Chiral media • Herglotz functions • Far-field operator • Low-
frequency scattering

Mathematics Subject Classification (2010): 35P25, 35Q60, 78A40

4.1 Introduction

Chiral materials exhibit the phenomenon of optical activity, that is, the plane of
vibration of linearly polarized light is rotated upon passing through an optically
active medium. Arago (1811) and Biot (1812), first, studied optically active materi-
als. Pasteur (1848, 1850) found that the arrangement of atoms within a molecule of
a natural optically active material is asymmetric in having a nonsuperposable mirror
image, but Kelvin was the one to introduce the term chirality, which comes from the
greek word “hand” ([25], pp.83–89). Chirality is common in a variety of naturally
occurring and man-made objects, such as the DNA molecular scale and helices.
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It has applications in medicine as one-third of all medical drugs are characterized
by chirality. It has also applications in military aircraft as well as in detection of
targets by radars [4]. Chirality is introduced into the classical Maxwell equations
by a pair of generalized constitutive relations in which the electric and magnetic
field are coupled via a new material parameter. In a homogeneous isotropic chiral
medium the electromagnetic fields are composed of left-circularly polarized (LCP)
and right-circularly polarized (RCP) components. These components have different
wave numbers and independent directions of propagation. When either an LCP or
a RCP (or a linear combination of LCP and RCP) electromagnetic wave is incident
upon a chiral scatterer then the scattered field is composed of both LCP and RCP
components. This leads to the derivation of both LCP and RCP far-field patterns.

In recent years chiral materials have been studied intensively in the electro-
magnetic theory literature; indicatively we refer to the books written by Lakhtakia
(1990), Lakhtakia [25], Lakhtakia et al. [24] and Lindell et al. [27]. Representative
of works following rigorous mathematical analysis in the study of chiral media
have given by Ammari et al. in [1, 2] and [3]. In [8, 9] and [28] the existence
and uniqueness of electromagnetic wave-scattering problems by chiral obstacles
in chiral media, using the boundary integral method, have been given. Scattering
relations for electromagnetic waves in chiral media have been studied in [11]
for planes waves and in [14] for spherical waves. Moreover, Beltrami Herglotz
functions for electromagnetic chiral media have been defined in [12] and [13].

In this paper we consider the scattering of time-harmonic waves by a bounded
three-dimensional homogeneous penetrable chiral obstacle, with homogeneous
host, embedded in a chiral environment. In the second part, we formulate the
scattering problem and present the Bohren decomposition [15, 16] of the electric
and magnetic fields into left-handed and right-handed Beltrami fields [8,9] and [28].
More specifically, we restate the scattering problem in terms of Beltrami fields
and we formulate an equivalent to the scattering problem integral equation. In the
third part, we define the LCP and RCP electric far-field patterns via the asymptotic
behavior of the scattered electric field [11]. We state general scattering theorems by
which we obtain closed form expressions for the scattering cross sections in terms
of the forward LCP or RCP far-field pattern. We state some results on the LCP, RCP
far-field operators [12] and [13]; considering as an incident field, a superposition of
incident fields, we prove the General Scattering Theorem for both LCP and RCP
operators. These results can be used in solving inverse scattering problems in chiral
media. Finally, we give the integral representation of the solution of the transmission
problem as well as some results on the approximation of the zeroth order of the
solution via the method of low-frequency scattering in ellipsodial geometry [2,6,9]
and [29].

A homogeneous isotropic chiral medium in a region D is characterized by three
parameters, the electric permittivity ε , the magnetic permeability μ , and the chirality
measure β . If E,H are the electric and the magnetic fields and considering a time
dependence of e−iωt , ω > 0 being the angular frequency, throughout, we have in a
source free region

∇×E− iωB = 0, ∇×H+ iωD = 0. (4.1)
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The chirality measure β appears in the Drude-Born-Fedorov constitutive relations
that we make use of in this paper

D = ε(E+β ∇×E), B = μ(H+β ∇×H). (4.2)

Moreover, we have that E and H are divergence-free, that is ∇ ·E = 0, ∇ ·H = 0.
Hence, eliminating B and D, we get

∇×E = γ2β E+ iωμ
( γ

κ

)2
H, (4.3)

∇×H = γ2β H− iωε
( γ

κ

)2
E, (4.4)

where κ = ω√εμ is simply a shorthand notation, not a wave number, and γ2 =
κ2(1−κ2β 2)−1. We always assume that |κβ |< 1.
In chiral media, left-handed and right-handed waves can both propagate inde-
pendently and with different phase speeds. To see this, we consider the Bohren
decomposition of E, H into suitable Beltrami fields QL, QR

E = QL +QR, H =
1
iη

(QL −QR), (4.5)

where η =
√

μ
ε is the intrinsic impedance of the chiral medium, and

∇×QL = γLQL, ∇×QR =−γRQR, (4.6)

with

γL = κ(1−κβ )−1, γR = κ(1+κβ )−1, (4.7)

being the wave numbers of QL, QR, respectively.

4.2 The Scattering Problem

We will proceed by formulating the scattering problem. Let D1 denote a bounded
three-dimensional domain with a smooth closed boundary, S, and connected
exterior, D, where D1 and D are filled with different chiral media of parameters
ε1,μ1,β1 and ε,μ ,β , respectively. Consider an incident electromagnetic field upon
the obstacle D1,

Einc(r) = bLeiγL d̂L·r +bReiγRd̂R·r,

Hinc(r) =
1
iη

(
bLeiγL d̂L·r −bReiγRd̂R·r

)
(4.8)
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where the following relations hold for the polarization vectors bL, bR and the
propagation unit vectors d̂L, d̂R

bL · d̂L = 0, bL × d̂L =−ibL,

bR · d̂R = 0, bR × d̂R = ibR. (4.9)

The electromagnetic incident field is partially scattered and partially transmitted into
the obstacle. Note that

∇×bLeiγLd̂L·r = γLbLeiγLd̂L·r,

∇×bReiγRd̂R·r =−γRbReiγRd̂R·r,

from which we conclude that the incident field Einc(r) is a combination of the LCP
incident plane wave and the RCP incident plane wave. This leads to the following
transmission problem.

Find electric fields E1, E, and magnetic fields H1, H that satisfy the following
modified Maxwell’s equations:

∇×E1 = γ2
1 β1E1 + iω1μ1

(
γ1

κ1

)2

H1 in D1,

∇×H1 = γ2
1 β1H1 − iω1ε1

(
γ1

κ1

)2

E1 in D1, (4.10)

∇×E = γ2β E+ iωμ
( γ

κ

)2
H in D,

∇×H = γ2β H− iωε
( γ

κ

)2
E in D. (4.11)

The transmission conditions on the interface, S, of, D1 are

n̂×Et = n̂×E1, n̂×Ht = n̂×H1 on S, (4.12)

where n̂ is the unit outward normal to S and the total exterior fields are given by

Et = E+Einc, Ht = H+Hinc in D. (4.13)

The scattered fields satisfy the following Silver-Müller radiation conditions:

r̂×H(r)+η−1E(r) = o

(
1
r

)
, r → ∞, (4.14)

r̂×E(r)−ηH(r) = o

(
1
r

)
, r → ∞, (4.15)
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uniformly for all directions r̂ = r
r , where r = |r|. The physical parameters ε1, μ1, β1,

γ1L, γ1R, and γ1 are defined and connected with each other as in the region D adding
the index “1.” For this problem, in what follows, we will prove a “general scattering
theorem” for LCP, RCP Herglotz incident fields [12, 20, 21] that is important for
solving inverse scattering problems. Moreover, we will apply low-frequency theory
for chiral media and we reduce the problem in a sequence of potential theory
problems. We also calculate the zeroth-order approximation in ellipsoidal geometry.

This problem is well posed and its solvability has been studied extensively
in [7, 8] using the boundary integral method. Here, we will give a brief description
of this method that will help us in the third part of this work.

First we are going to define the function spaces we will employ. Let X be the
smooth boundary of an open set in R

3 and let Hs(X) be the L2-based Sobolev
spaces on X . If F is a function space on the (smooth) boundary of an open bounded
set in R

3, then TF is the space of all tangential fields with cartesian components
in F. We denote H

1
loc(D) the space of all u ∈ D′

(R3) such that for all open balls B
containing D, we have u |B∩D∈ H1(B∩D). Let Div be the surface divergence on S.
Then,

H1
Div(D1) =

{
u ∈ H1(D) : Div(n̂× v) ∈ H1/2(S)

}
,

H
1
loc,Div(D) =

{
u ∈ H

1
loc(D) : Div(n× v) ∈ H1/2(S)

}
,

TH1/2
Div(S) =

{
u ∈ TH1/2(D) : Div(u) ∈ H1/2(S)

}
.

We rewrite the transmission problem in terms of Beltrami fields (for details we refer
to [7]), and we obtain that the interior LCP (resp. RCP) and the exterior LCP (resp.
RCP) satisfy the Helmhlotz equation,

ΔQ1L + γ2
1LQ1L = 0 in D1, ΔQ1R + γ2

1RQ1R = 0 in D1,

ΔQL + γ2
LQL = 0 in D, ΔQR + γ2

RQR = 0 in D.

Hence we may use the classical layer potentials. For κ ∈ C with Im κ ≥ 0, we define
the single-layer potential,

(S1(κ)υ)(x) =
∫

S
υ(y)Φ(x,y;κ)ds(y), x ∈ D1, (4.16)

where y ∈ S, υ(y) is a continuous density function and

Φ(x,y;κ) =
eiκ |x−y|

4π |x− y| , x �= y

is the fundamental solution of the Helmholtz equation.
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Consider a(y) be a tangential vector density, that is a(y) · n̂(y) = 0 for all y ∈ S.
We define

(C1(κ)a)(x) = ∇×{S1(κ)a},
and

(F1(κ)a)(x) = ∇×{C1(κ)a}.
It is known [8, 18] that there exist continuous extensions for the interior and the
exterior of the domain D1

C1(κ), F1(κ) : TH1/2
Div(S)→ H1

Div(D1),

C(κ), F(κ) : TH1/2
Div(S)→ H

1
loc,Div(D).

It is also known that there exist continuous extensions on the boundary S

C(κ), F(κ) : TH1/2
Div(S)→ TH1/2

Div(S).

In addition, C(κ) is compact and the following mappings are continuous:

C(κ) : THs(S)→ THs+1(S), s ∈ R,

and

F(κ) : THs(S)→ THs-1(S), s ∈R.

Moreover, if ν ∈ TH1/2
Div(S), we have for the traces on S,

C̃(κ)ν = n̂×C1(κ)ν +
1
2

ν = n̂×C(κ)ν − 1
2

ν , (4.17)

F̃(κ)ν = n̂×F1(κ)ν = n̂×F(κ)ν. (4.18)

We rewrite the solution of the problem as linear combinations of C1(κ), F1(κ), and
C(κ), F(κ), [8–10] and hence we conclude to the following integral equation:

(M+K)φ̃ = f̃, (4.19)

where

φ̃ =

(
φ 1

φ 2

)
, φ 1, φ 2 ∈ TH1/2(S), f̃ =

(
f1

f2

)
, f1, f2 ∈ TH1/2

Div(S),

and M, K, are linear combinations of C1, C, F1 and F and thus are compact operators.
Next, we state a uniqueness result for the transmission problem (4.10)–(4.15), for
this, consider the corresponding homogeneous transmission problem, that is the
problem arising from (4.10)–(4.15) when Einc = Hinc = 0. In [8] the following
theorems have been proved.
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Theorem 4.1. The corresponding homogeneous transmission problem has only the
trivial solution.

Theorem 4.2. If φ̃ ∈ TH1/2(S)× TH1/2(S) is a solution of the integral equation

(4.19), and if f̃ ∈ TH1/2
Div(S)×TH1/2

Div(S), then φ̃ ∈ TH1/2
Div(S)×TH1/2

Div(S).

4.3 Scattering Relations

In this section we will define the LCP and RCP electric far-field patterns via
the asymptotic behavior of the scattered electric field. We will also state general
scattering theorems which are very useful in solving the inverse scattering problem
and in determining low-frequency expansions for the far-field patterns. We begin
our analysis with the following theorem which gives the asymptotic behavior of the
scattered electric field.

First, we will write the transmission problem eliminating the magnetic field
H, H1

∇×∇×E− 2β γ2∇×E− γ2 = 0 in D

∇×∇×E1 − 2β1γ2
1 ∇×E1 − γ2

1 = 0 in D1,

n̂× (Einc +E) = n̂×E1

κ
γ2η

n̂× (∇× (Einc +E))− κβ
η

n̂× (Einc +E)

=
κ1

γ2
1 η1

n̂× (∇×E1)− κ1β1

η1
n̂×E1 on S,

r̂× (∇×E)− 2β γ2r̂×E+
iγ2

κ
E = o

(
1
r

)
, r → ∞, (4.20)

Theorem 4.3. Let Es ∈ C2(D)∩ C1(D) be a solution of the modified Helmholtz
equation satisfying the radiation condition. Then Es has the asymptotic form

Es(r) = h(γLr)gL(r)+ h(γRr)gR(r)+O

(
1
r2

)
, r → ∞, (4.21)

uniformly in all directions r̂ ∈ S2, where h(x) = eix

ix is the zeroth-order spherical
Hankel function of the first kind. The vector fields gL and gR are the electric LCP
far-field pattern and RCP far-field pattern respectively. They are given by

gL(̂r) =
iκγL

8πγ2 K̃L (̂r) ·
∫

S
n̂× [γL∇Es(r′)+ γ2Es(r′)]e−iγL r̂·r′ds(r′) (4.22)
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gR(̂r) =
iκγR

8πγ2 K̃R(̂r) ·
∫

S
n̂× [γR∇Es(r′)− γ2Es(r′)]e−iγR r̂·r′ds(r′) (4.23)

and satisfy

r̂ ·gL (̂r) = r̂ ·gR(̂r) = 0, (4.24)

r̂× gL(̂r) =−igL (̂r), r̂× gR(̂r) = igR(̂r). (4.25)

The dyadics K̃L (̂r) and K̃R(̂r) are given by

K̃L (̂r) = Ĩ− r̂̂r+ îr× Ĩ, K̃R(̂r) = Ĩ− r̂̂r− îr× Ĩ, (4.26)

where Ĩ = x̂x̂+ ŷŷ+ ẑ̂z is the identity dyadic.

Proof. The scattered electric field has the following integral representation:

Es(r) = −2β γ2
∫

S
B̃(r,r′) · [n̂×Es(r′)]ds(r′)

+

∫

S
{B̃(r,r′) · [n̂× (∇×Es(r′))]

+ [∇r × B̃(r,r′)] · [n̂×Es(r′)]}ds(r′), (4.27)

where B̃(r,r′) is the infinite medium Greeen’s dyadic, given by

B̃(r,r′) = B̃L(r,r′)+ B̃R(r,r′), (4.28)

B̃L(r,r′) =
iκγL

8πγ2

[
γLĨ +

1
γL

∇∇+∇× Ĩ

]
h(γL|r− r′|), (4.29)

B̃R(r,r
′) =

iκγR

8πγ2

[
γRĨ +

1
γR

∇∇−∇× Ĩ

]
h(γR|r− r′|). (4.30)

Using asymptotic relations, we obtain

B̃(r,r′) =
iκγL

8πγ2 h(γLr)e−iγL r̂·r′K̃L (̂r)+
iκγR

8πγ2 h(γRr)e−iγR r̂·r′K̃R(̂r)

+O(
1
r2 ), r → ∞ (4.31)

∇r × B̃(r,r′) =
iκγ3

L

8πγ2 h(γLr)e−iγL r̂·r′K̃L (̂r)− iκγ3
R

8πγ2 h(γRr)e−iγR r̂·r′K̃R(̂r)

+O(
1
r2 ), r → ∞ (4.32)
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Introducing the above asymptotic forms into the integral representation of the
electric scattered field we get the integral representations of the LCP and RCP far-
field pattern as given in the theorem. 	


Next we are going to state the reciprocity relation for chiral media and the
“general scattering theorem.” The latter is a connection of the electric far-field
patterns for two LCP and two RCP directions and an integral over directions of
both LCP and RCP electric far-field patterns.

Theorem 4.4. Let Ei
1, Ei

2 be two plane electric waves incident upon the scatter
D1 and Es

1, Es
1 the corresponding scattered fields. Then the following reciprocity

relation holds true:

1

γ2
L

pL2 ·gL1(−d̂L2)+
1

γ2
R

pR2 ·gR1(−d̂R2) =
1

γ2
L

pL1 ·gL2(−d̂L1)+
1

γ2
L

pR1 ·gR2(−d̂R1).

(4.33)

We refer to [11] for the proof.

Theorem 4.5. Let Ei
1, Ei

2 be two plane electric waves incident upon the scatter
D1, Es

1, Es
1 be the corresponding scattered fields and under the assumption that the

transmission conditions are satisfied on S, then the following relation is valid:

1

γ2
L

[pL1 ·gL2(d̂L1)+ pL2 ·gL1(d̂L2)]+
1

γ2
R

[pR1 ·gR2(d̂R1)+ pR2 ·gR1(d̂R2)]

=− 1
2π

∫

S2

[
1

γ2
L

gL1(̂r) ·gL2(̂r)+
1

γ2
R

gR1(̂r) ·gR2(̂r)
]

ds(̂r). (4.34)

We refer to [11] for the proof.
We now consider either an LCP or an RCP plane electric wave Ei

A(r;dA,pA),
A = L,R, incident upon the scatterer D1. The scattering cross section σ s

A expresses
the scattered power

σ s
A =

2
√μ

|pA|2
√

ε
〈Ps〉, (4.35)

where

〈Ps〉= 1
2

Re
∫

S
n̂ · (Es ×Hs)ds (4.36)

is the time-averaged scattered power. Taking into account that Es, Hs satisfy (4.3)–
(4.4), after some calculations, we find

σ s
A =− κ

γ2|pA|2
Im

∫

S
(n̂×Es)·(∇×Es −β γ2Es)ds. (4.37)
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Let Sr be a sphere centered at the origin with radius r large enough to include the
scatterer in its interior. Applying Gauss’ theorem in the region between S and Sr,
we get

σ s
A =− κ

γ2|pA|2
Im

∫

Sr

(n̂×Es)·(∇×Es −β γ2Es)ds. (4.38)

For r → ∞ we can use the asymptotic form and obtain

σ s
A =

1
|pA|

∫

S2

[
1

γ2
L

|gL (̂r; d̂A,pA)|2+
1

γ2
R

|gR(̂r; d̂A,pA)|2
]

ds(̂r). (4.39)

The absorption cross section σa
A defines the total energy that is absorbed by a lossy

scatterer and is given by

σa
A =

2
√μ

|pA|2
√

ε
〈Pa〉, (4.40)

where

〈Pa〉=−1
2

Re
∫

S
n̂ · (Et ×Ht)ds (4.41)

is the time-average absorbed power. As in the scattering cross section, we find

σa
A =

κ
γ2|pA|2

Im
∫

Sr

(n̂×Et)·(∇×Et −β γ2Et)ds. (4.42)

The extinction cross section σ e
A is given by

σ e
A = σ s

A +σa
A (4.43)

and describes the total energy that the scatterer extracts from the incident wave
either by radiation or by absorption. In particular for the dielectric, inserting the
transmission conditions into (4.42) and applying the divergence theorem in D1 we
take1 σa

A = 0.
Therefore, we can state the following optical theorem.

Theorem 4.6. If Ei
A(r;dA,pA), A = L, R, is a plane electric wave incident upon a

dielectric, then

σ s
A =− 4π

γ2
A|pA|2

Re{pA ·gA(d̂A; d̂A,pA)}. (4.44)

Proof. Apply general scattering theorem for d̂A1 = d̂A2 = d̂A and pA1 = pA2 = pA
and take into account the asymptotic expression of scattering cross section σ s

A.
Next consider the following tangential subsets of L2(S2):

T2
L(S

2) = {bL : S2 → C
3 : bL ∈ L2(S2), n̂ ·bL = 0, n̂×bL =−ibL} (4.45)
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T2
R(S

2) = {bR : S2 →C
3 : bR ∈ L2(S2), n̂ ·bR = 0, n̂×bR = ibR} (4.46)

	

Definition 4.7. A LCP Beltrami Herglotz function is a function of the form

qL =
∫

S2
bL(d̂L)eiγd̂L·rds(d̂L), (4.47)

where bL ∈ T2
L(S

2) is the LCP Beltrami Herglotz kernel. Similarly, an RCP Beltrami
Herglotz function is a function of the form

qR =

∫

S2
bR(d̂R)e

iγd̂R·rds(d̂R), (4.48)

where bR ∈ T2
R(S

2) is respectively the RCP Beltrami Herglotz kernel.

Remark 4.8. It is easily seen that both LCP and RCP Beltrami Herglotz functions
satisfy the Beltrami equations (4.6), are divergence free, and satisfy the vector
Helmholtz equation

∇×∇×qA + γ2
AqA = 0, A = L, R (4.49)

Using the LCP and RCP Beltrami Herglotz functions we will introduce the concept
of a chiral Herglotz pair

Definition 4.9. A chiral Herglotz pair is a pair of vector fields of the form

E(r) =
∫

S2
bL(d̂L)e

iγd̂L·rds(d̂L)+

∫

S2
bR(d̂R)e

iγd̂R·rds(d̂R),

H(r) =
1
iη

(∫

S2
bL(d̂L)eiγd̂L·rds(d̂L)−

∫

S2
bR(d̂R)eiγd̂R·rds(d̂R)

)
(4.50)

that is

E(r) = qL +qR,

H(r) =
1
iη

(qL −qR). (4.51)

Theorem 4.10. For given densities bA ∈ T2
A(S

2), A = L, R, the solution to the
scattering problem for the incident wave

Ei
bA
(r) =

∫

S2
bA(d̂A)e

iγAd̂A·rds(d̂A) (4.52)

is given by the relation

Es
bA
(r) =

∫

S2
{Es

L(r; d̂A,bA(d̂A))+Es
R(r; d̂A,bA(d̂A))}ds(d̂A) (4.53)
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and has the far-field pattern

g(̂r)bA = γA

∫

S2

[
1
γL

gL(̂r; d̂A,bA(d̂A))+
1
γR

gR(̂r; d̂A,bA(d̂A))

]
ds(dA) (4.54)

Proof. We express the solutions of the scattering problem in terms of the boundary
integral operators C,C1,F,F1 from second part, using (4.19) and we follow the
analysis of ([19], pp. 188, lemma 6.31).

We will close this section by stating a new result relatively to general scattering
theorem, where the incident field E is an electromagnetic chiral Herglotz incident
field. In order to do this, we will define the LCP, RCP far-field operators. This result
is important on solving the inverse scattering problem in chiral media. 	

Definition 4.11. The operators

FA : TA(S
2)→ TA(S

2),

where A = L,R

(FAbA)(̂r) := γA

∫

S2

[
1
γL

gL (̂r; d̂A,bA(d̂A))+
1
γR

gR(̂r; d̂A,bA(d̂A))

]
ds(d̂A) (4.55)

We state the following theorem [21] which gives the connection between the LCP,
RCP far-field operator and the electromagnetic chiral LCP, RCP Herglotz pair,
respectively.

Theorem 4.12. Let Ei
bA

, Ei
b′A

, be electric chiral Herglotz functions with kernels bA,

b′A ∈ TA(S2), for A = L,R, and let EbA , Eb′A be solutions of the modified Helmholtz

equation with Ei
bA

, Ei
b′A

have replaced the incident field Ei. Then it holds,

(FAb′A,bA)+ (b′A,FAbA) =− γ1

2π
(FAb′A,FAbA), for A = L,R. (4.56)

Proof. For the proof of this theorem, we refer to the proof of “general scattering
theorem” Theorem 4.5 where the electric fields E1, E2 have been replaced by their
superposition electric fields Ei

bA
and Ei

b′A
, for A = L,R, respectively. 	


4.4 Low-Frequency Scattering

For the wave numbers γL, γR, γ1L, γ1R, from (4.7), we have

γL =
ω√εμ

1−β ω√εμ
, γR =

ω√εμ
1+β ω√εμ

, (4.57)
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γ1L =
ω√ε1μ1

1−β1ω√ε1μ1
, γ1R =

ω√ε1μ1

1+β1ω√ε1μ1
(4.58)

and as functions of the angular frequency ω , then they are analytic in a neighbor-
hood of zero [10, 22], that is,

γL =
∞

∑
n=0

ωn

n!
γ(n)L (0) =

∞

∑
n=0

ωn

n!
β n−1(εμ)

n
2 n! =

∞

∑
n=0

ωnβ n−1(εμ)
n
2 (4.59)

γR =
∞

∑
n=0

ωn

n!
γ(n)R (0) =

∞

∑
n=0

ωn

n!
(−1)n+1β n−1(εμ)

n
2 n! =

∞

∑
n=0

ωn(−1)n+1β n−1(εμ)
n
2

(4.60)

Also, we obtain for the exponential terms

fL(ω) = eiγLd̂L·r

=
∞

∑
n=0

ωn

n!
f (n)L (0)

= id̂L · r
∞

∑
n=0

ωn

n!

n−1

∑
l=0

(
n− 1

l

)
γn−l

L (0) f (l)L (0)

= id̂L · r
∞

∑
n=0

ωn

n!
Cn, (4.61)

fR(ω) = eiγRd̂R·r

=
∞

∑
n=0

ωn

n!
f (n)R (0)

= id̂R · r
∞

∑
n=0

ωn

n!

n−1

∑
l=0

(
n− 1

l

)
γn−l

R (0) f (l)R (0)

= id̂R · r
∞

∑
n=0

ωn

n!
Dn. (4.62)

where C0 = D0 = 1. Thus, the incident field is analyzed as follows:

Einc(r) =
∞

∑
n=0

ωn

n!

[
pLi(d̂L · r)

n

∑
l=0

Cn +pRi(d̂R · r)
n

∑
l=0

Dn

]
(4.63)

The exterior field is also analyzed in two components, the exterior,

E =
∞

∑
n=0

ωn

n!
ϕn(r) (4.64)
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and the interior,

E1 =
∞

∑
n=0

ωn

n!
ϕ1

n(r) (4.65)

Inserting the above expansions in equations and transmission conditions of (4.20)
we obtain the following iterative sequence (n ∈N):

∇×∇×ϕ0(r) = ∇×∇×ϕ1(r) = 0 r ∈ D,

∇×∇×ϕn(r) = εμn(n− 1)[β 2∇×∇×ϕn−2(r)

+2β ∇×ϕn−2(r)+ϕn−2(r)] n � 2, r ∈ D (4.66)

∇×∇×ϕ1
0(r) = ∇×∇×ϕ1

1(r) = 0 r ∈ D1,

∇×∇×ϕ1
n(r) = ε1μ1n(n− 1)[β 2

1 ∇×∇×ϕ1
n−2(r)

+2β1∇×ϕ1
n−2(r)+ϕ1

n−2(r)] n � 2, r ∈ D1 (4.67)

n̂×ϕn(r) = n̂×ϕ1
n(r), n � 0, r ∈ S, (4.68)

n̂×∇×ϕ1
n(r)− ε1μ1β1n(n− 1)[β1n̂×∇×ϕ1

n−2(r)− n̂×ϕ1
n−2(r)]

=
μ1

μ
n̂×∇×ϕn(r)−μ1εβ n(n− 1)[n̂×∇×ϕn−2(r)− n̂×ϕn−2(r)] n � 2, r ∈ S.

(4.69)

In order to derive radiation conditions for the low-frequency coefficients, we work
as follows. First we construct an integral representation of the total exterior field in
which all the data of the problem have been incorporated. In integral representation
(4.27) applying Divergence Theorem to the interior of the scatterer we obtain

∫

S
n̂ · [E(r′)× B̃(r,r′)]ds(r′) =

∫

D1

(∇×E) · B̃(r,r′)du(r′)

−
∫

D1

E(r′) · (∇r × B̃(r,r′))du(r′) (4.70)

Taking into account the following properties of the dyadic Green function
[B̃(r,r′)] = B̃(r′,r) and [∇r × B̃(r,r′)] = ∇r′ × B̃(r,r′) and the vector-dyadic
identities E× B̃ =−[B̃×E] and E · B̃ = B̃ ·E, we have

∫

S
B̃(r,r′) · (n̂×E(r′))ds(r′) =

∫

D1

(∇×E1) · B̃(r′,r)du(r′)

−
∫

S
E1 · (∇r′ × B̃(r′,r))ds(r′), (4.71)
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and
∫

S
B̃(r,r′) · (n̂× (∇×E)(r′))ds(r′) = 2γ2

1 β1

∫

D1

(∇×E1(r
′)) · B̃(r′,r)du(r′)

+γ2
1

∫

D1

E1(r′) · B̃(r′,r)du(r′)−
∫

D1

(∇×E1(r′)) · (∇r′ × B̃(r′,r))du(r′) (4.72)

and
∫

S
∇r × B̃(r,r′) · (n̂×E(r′))ds(r′) =

∫

D1

(∇×E(r′)) · (∇r′ × B̃(r′,r))du(r′)

−2β γ2
∫

D1

E(r′) · (∇r′ × B̃(r′,r))du(r′)− γ2
∫

D1

E(r′) · B̃(r′,r)du(r′). (4.73)

Substituting the above three terms in (4.27) we finally get

E(r′) = Einc(r′)+ 2(β1γ2
1 −β γ2)

∫

D1

∇×E1(r′) · B̃(r′,r)du(r′)

+(γ2
1 − γ2)

∫

D1

E1(r
′) · B̃(r′,r)du(r′) (4.74)

Next we express all the fields in terms of low-frequency coefficients. The
asymptotic representation for the nth order coefficient can be derived from this
integral representation if we omit the nth term which is of order 1

r . For convenience
and to avoid long calculations we describe the above procedure for the zeroth-order
approximation. We will give the solution of the problem in ellipsoidal geometry.

∇×∇×ϕ0(r) = 0 inD,

∇×∇×ϕ1
0(r) = 0 inD1,

∇ ·ϕ0(r) = 0 inD,

∇ ·ϕ1
0(r) = 0 inD1,

n̂×ϕ0(r) = n̂×ϕ1
0(r) onS, (4.75)

n̂× (∇×ϕ0(r)) =
μ
μ1

n̂×∇×ϕ1
0(r) onS,

ϕ0(r) = q̂L + q̂R +O

(
1
r

)
r → ∞

ϕ0(r) = P0(r)+W0(r), (4.76)

where P0(r) = q̂L + q̂R and W0(r) = ∇U0(r), if considering

U0(r) = α00I0(ρ)+α1
01F1(ρ ,μ ,ν)+α2

01F2(ρ ,μ ,ν)+α3
01F3(ρ ,μ ,ν).
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Similarly, for the interior approximation we obtain

ϕ1
0(r) = W1

0(r) = ∇U1
0 (r) (4.77)

where U1
0 (r) = c1

01E1
1(ρ ,μ ,ν)+ c2

01E2
1(ρ ,μ ,ν)+ c3

01E3
1(ρ ,μ ,ν).

We also write d = (d1,d2,d3) = q̂L + q̂R. Hence, we have for the exterior and
interior zeroth approximation

ϕ0(r) = (d1,d2,d3)+
(
A1(ρ),A2(ρ),A3(ρ)

)

− d1(ε − ε1)α1α2α3

h2h3[ε − (ε − ε1)(1−α1α2α3I1(α1))]
· μν

ρ
√

ρ2 −μ2
√

ρ2 −ν2
ρ̂

− d2(ε − ε1)α1α2α3

h3h1[ε − (ε − ε1)(1−α1α2α3I2(α1))]
·

√
μ2 −h2

3

√
h2

3 −ν2

√
ρ2 −h2

3

√
ρ2 −μ2

√
ρ2 −ν2

ρ̂

− d3(ε − ε1)α1α2α3

h1h2[ε − (ε − ε1)(1−α1α2α3I3(α1))]
·

√
μ2 −h2

3

√
h2

3 −ν2

√
ρ2 −h2

2

√
ρ2 −μ2

√
ρ2 −ν2

ρ̂

(4.78)

where

A1(ρ) =
d1(ε − ε1)α1α2α3I1(ρ)

ε − (ε − ε1)α1α2α3I1(α1)
,

A2(ρ) =
d2(ε − ε1)α1α2α3I2(ρ)

ε − (ε − ε1)α1α2α3I2(α1)
,

A3(ρ) =
d3(ε − ε1)α1α2α3I3(ρ)

ε − (ε − ε1)α1α2α3I3(α1)

ϕ1
0(r) = (B1,B2,B3) (4.79)

where

B1 =
d1ε

ε − (ε − ε1)α1α2α3I1(α1)
,

B2 =
d2ε

ε − (ε − ε1)α1α2α3I2(α1)
,

B3 =
d3ε

ε − (ε − ε1)α1α2α3I3(α1)
).
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Appendix

Ellipsoidal Harmonics

The interior ellipsoidal harmonics are given by the Lamé products

E
m
n (ρ ,μ ,ν) = E

m
n (ρ)E

m
n (μ)E

m
n (ν) (4.80)

and the exterior ellipsoidal harmonics

F
m
n (ρ ,μ ,ν) = F

m
n (ρ)E

m
n (μ)E

m
n (ν) (4.81)

where Em
n , Fm

n are the Lamé functions of the first and second kind, respectively. The
Lamé functions are related by the formula

Fm
n (ρ) = (2n+ 1)Em

n (ρ)I
m
n (ρ), (4.82)

where the functions Im
n (ρ) are the elliptic integrals

Im
n (ρ) =

∫ +∞

ρ

du

[Em
n (u)]2

√
u2 − h2

2

√
u2 − h2

3

(4.83)

The value of the function Im
n (ρ) on the surface ρ = α j

1 of the m.l.e. is denoted by

I( j)m
n . The index n specifies the degree of the corresponding ellipsoidal harmonic

and it takes the values 0,1,2, . . .. The superscript m represents the number of inde-
pendent harmonic functions of degree n and runs through the values 1,2, . . . ,2n+1.
In this work we only use the ellipsoidal harmonics of degree 0,1, which are given
in their Cartesian form

E
m
0 (ρ ,μ ,ν) = 1Em

1 (ρ ,μ ,ν) =
h1h2h3

hm
xm, m = 1,2,3. (4.84)

The exterior ellipsoidal harmonics Fm
n (ρ ,μ ,ν) of degree 0,1 are given by (4.83),

when (4.82) and (4.84) are used. The Lamé functions Em
n of degree 0,1 that appear

in the expressions (4.83) for the elliptic integrals I(ρ) are:

E1
0(ρ) = 1

Em
1 (ρ) =

√
ρ2 − (α j

1)
2 +(αm

1 )
2, m = 1,2,3.

The outward normal derivative on the surface ρ = α j
1 is given by

∂n =
α j

2α j
3√

(α j
1)

2 − μ2
√
(α j

1)
2 −ν2

∂ρ . (4.85)

For details we refer to Hobson’s book [23].
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Chapter 5
Orthonormality in Interpolation Schemes
for Reconstructing Signals

Nicholas J. Daras

Abstract Given only a few of initial Fourier coefficients for a continuous-time
periodic signal, we construct efficient rational approximants to the whole sig-
nal everywhere on his domain of definition. The convergence of these approxi-
mants depends on the orthonormality of the chosen generating polynomial system
{Vm+1(eit) : m = 0,1, . . .} into L2[−π ,π ]. The form of each Vm+1(x) is characterized
by recurrence relations due to the connection between Schur and Szegö theories.

Keywords Approximation by rational functions • Padé-type and/or Padé
approximants • Fourier coefficients • Orthogonal polynomials • Acceleration
of convergence • Interpolation • Trigonometric approximation and interpolation
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5.1 Introduction

Given a signal, say a sound or a image, Fourier analysis easily calculates the
frequencies and the amplitudes of those frequencies which make up the signal.
However, Fourier methods are not always a good tool to recapture the signal,
particularly if it is highly non-smooth: too much Fourier information is needed to
reconstruct the signal locally. Especially, there is no analytical way to reconstruct
with exactitude a noised signal if only a few of its initial Fourier coefficients are
known.
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Such extension problems in Taylor series context have a long history dating from
1907 [6,7]. Indeed, the Schur problem, or Carathéodory–Fejér problem, was to find
conditions for the existence of an analytic function bounded by one in the unit planar
disk whose initial Taylor coefficients are given numbers a0,a1, . . . ,aμ . In [25, 26],
Schur showed that such a function exists if and only if the lower triangular matrix

(aμ,k = aμ−k)k≤μ =

⎛
⎜⎜⎜⎝

a0 0 0 0
a1 a0 0 0

. . .
. . . 0

aμ a1 a0

⎞
⎟⎟⎟⎠

is bounded by one as an operator on complex Euclidean space, and he determined
how all solutions can be found. The method was adapted to Pick–Nevanlinna
interpolation by Nevanlinna [24]. Ever since, several different applications and
analogue developments are considered. For instance, given a partial covariance
sequence of length μ , the problem of finding all positive rational extensions of
degree at most μ is a fundamental open problem with important applications in
signal processing and speech processing [5, 13, 15, 18–21, 23] and in stochastic
realization theory and system identification [2, 22, 25].

In this paper, we will consider a numerical version of the above Carathéodory–
Schur interpolation problem in the trigonometric context. In particular, we will
investigate a numerical method for constructing efficient approximants to any
continuous-time periodic signal by using only a few of its initial Fourier coefficients.
These approximants are real parts of rational functions with numerators determined
by the condition that the Fourier series expansion of the approximants matches the
Fourier series of the signal as far as possible. Motivated by this crucial property,
the obtained approximants will be called Padé-type and/or Padé approximants. The
convergence of these approximants depends strongly on the orthonormality of the
chosen generating polynomial system {Vm+1(eit) : m = 0,1, . . .} into L2[−π ,π ]. The
form of Vm+1(x) is characterized by recurrence relations dues to the connection
between Schur and Szegö theories.

The detailed definition of a Padé-type and a Padé approximant to a continuous-
time periodic L1-signal and their principal properties are presented in Sect. 5.1.
Section 5.2 is devoted to a study of the convergence of a sequence of such
approximants. Section 5.3 deals with assumptions under which, for every sequence
of functions converging to a periodic continuous signal there is a Padé-type
approximation sequence converging pointwise to that signal faster than the first
sequence. Finally, in Sect. 5.4 numerical examples are given making use of Padé-
type approximants.



5 Orthonormality in Interpolation Schemes for Reconstructing Signals 57

5.2 Construction of Rational Approximants to a Periodic
Continuous-Time Signal

Consider a T -periodic continuous-time signal ϕ(x) defined over an interval
[−(T/2),(T/2)]. Suppose ϕ ∈ L1(−(T/2),(T/2)) and f has a finite num-
ber of extrema and discontinuities in any given interval. Then, ϕ has a
Fourier series expansion defined by ϕ(x) = ∑∞

ν=−∞ σν eiν(2π/T)x with σν =
1
T

∫ (T/2)
−(T/2)ϕ(y)e−iν(2π/T)ydy (ν = 0,±1,±2, . . .). The problem we will investigate

is the following: “if only a few Fourier coefficients σ0,σ±1, . . . ,σ±μ of the signal
ϕ(x) are given, construct efficient rational approximants to the whole signal ϕ(x)
(almost) everywhere on [−(T/2),(T/2)]”.

Putting t := (2π/T)x, the signal ϕ(x) converts to a 2π-period continuous-
time signal f (t) defined over the standard interval [−π ,π ], with Fourier series
expansion f (t) = ∑∞

ν=−∞ cν eiνt and Fourier coefficients cν = 1
2π
∫ π
−π f (s)e−iνsds

(ν = 0,±1,±2, . . .). It is clear that cν = σν (ν = 0,±1,±2, . . .) and f can be
identified with a real-valued function u(z) in L1 of the unit circle C by setting
u(eit) := f (t) =∑∞

ν=−∞ cνeiνt . From the solution of the Dirichlet problem in the unit
disk D, it follows that the extended real-valued function u(z) := u(reit) is harmonic
in the open unit disk and such that limr → 1 ‖ur(t)−u(eit)‖1(:= limr → 1

∫ π
−π�ur(t)−

u(eit)�dt) = 0 and the Fourier series expansion of the restriction ur(t) of u(reit) to
any circle Cr of radius r < 1 is given by ∑∞

ν=−∞ cνr|ν|eiνt .
We can consider Padé-type and Padé approximants to the harmonic function

u(z). These approximants can be chosen in such a way to be harmonic real-valued
functions everywhere in D. Their fundamental property is that the Fourier series
expansion of their restriction to any circle of radius r < 1 coincides with the Fourier
series expansion of u(z) as far as possible. Indeed, u(z) is the real part of an analytic
function F(z) in D. So, u = F + F where F denotes complex conjugate of F . If
∑∞

ν=0 aνzν is the Taylor power series expansion of F around 0 ∈ D, then u(z) =
2Re(F(z))− a0 = 2Re(∑∞

ν=0 aνzν )− a0 and aν = cν (ν = 0,1, . . .). Define the
C-linear functional Tf : P(C) → C;xν �→ Tf (xν ) := aν(= cν), where P(C) is the
vector space of all complex analytic polynomials. An application of Cauchy’s inte-
gral formula shows that |Tf (p(x))| ≤ (2π)−1 sup|s|=r |F(s)| sup|s|=r−1 |p(s)| when-
ever p(x) ∈ P(C). By density, there is a continuous extension of Tf into the space
O(D) of all functions which are analytic in an open neighborhood of D. In particular,
for every fixed point z ∈ D, the number Tf ((1− xz)−1) is well defined and equals
∑∞

ν=0 aνzν . Hence, it holds u(z) = 2ReTf ((1− xz)−1)− c0 for any z ∈ D. If the
function (1− xz)−1 is replaced by a polynomial Q(x,z), then u(z) is approximated
by 2ReTf (Q(x,z))− c0. This is an approximate quadrature formula and leads to a
Padé or, more generally, to a Padé-type approximant to the harmonic real-valued
function u(z).
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Definition 5.1. [10, 11]

(i) Let Qm(x,z) denote the unique complex polynomial of degree at most m in x,
which interpolates the Cauchy kernel (1− xz)−1 at m+ 1 points π0,π1, . . . ,πm,
i.e., Qm(πk,z) = (1− πkz)−1 for any z ∈ C� {π−1

k ; k = 0,1, . . . ,m} and k ≤
m. The real-valued function (m/m+ 1)u(z) := 2ReTf (Qm(x,z))− c0 is said to
be a Padé-type approximant to u(z), with generating polynomial Vm+1(x) =
γ ∏m

k=0(x−πk) (γ ∈ C� {0}).
(ii) Suppose the Hankel determinants

H( f )
m+1(c0) = det

⎛
⎜⎜⎜⎜⎜⎝

c0 c1 c2 · · · cm

c1 c2 c3 · · · cm+1

c2 c3 c4 · · · cm+2
...

...
...

...
cm cm+1 cm+2 · · · c2m

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
m+1

are all different from zero. There exists uniquely defined family {qm+1(x) : m =
0,1,2, . . .} of orthogonal polynomials with respect to the functional Tf , in the
sense that Tf (xν qm+1(x)) = 0 for any ν = 0,1,2, . . . ,m. The exact degree of
each qm+1(x) is m + 1. Let Pm(x,z) denote the unique complex polynomial
of degree at most m in x, which interpolates the Cauchy kernel (1− xz)−1 at
the m+ 1 zeros ρ0,ρ1, . . . ,ρm of qm+1(x), i.e., Pm(πk,z) = (1−ρkz)−1 for any
z ∈ C� {ρ−1

k ; k = 0,1, . . . ,m} and k ≤ m. The real-valued function [m/m+
1]u(z) := 2ReTf (Pm(x,z))− c0 is said to be a Padé approximant to u(z).

Obviously, the Padé approximant [m/m+1]u(z) to u(z), if it exists, can be viewed
as a Padé-type approximant with predesigned generating polynomial Vm+1(x) =
qm+1(x).

The approximants in Definition 5.1 can be interpreted as real parts of rational
functions. Indeed, we put

Ṽm+1(z) := zm+1Vm+1(x−1),

Wm(z) := Tf ([Vm+1(x)−Vm+1(z)]/[x− z]),
W̃m(z):=zmWm(z−1),

q̃m+1(z) := zm+1qm+1(z−1),

wm(z) := Tf ([qm+1(x)−qm+1(z)]/[x−z]),
w̃m(z) := zmwm(z−1).

As it is well known, the general Hermite interpolation polynomial can be deduced
from the Lagrange polynomial by continuity arguments. So, by using the expression
of the Lagrange interpolation polynomial for (1 − xz)−1, one can exploit the
definitions of Wm(z) and wm(z) to create appropriate partial fraction decompositions
and thus, to obtain the following.
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Theorem 5.2. [10, 11]

(i) (m/m+ 1)u(z) and [m/m+ 1]u(z) are real parts of rational complex functions
of type (m,m+ 1):

(m/m+1)u(z)=2Re

(
W̃m(z)

Ṽm+1(z)

)
−c0 and [m/m+1]u(z)=2Re

(
w̃m(z)

q̃m+1(z)

)
−c0.

(ii) The errors of the respective approximations equal

(m/m+ 1)u(z)− u(z) = 2Re

[
1

Vm+1(z−1)
Tf

(
Vm+1(x)
xz− 1

)]
and

[m/m+ 1]u(z)− u(z) = 2Re

[
1

[qm+1]2(z−1)
Tf

(
[qm+1]

2(x)
xz− 1

)]

= Re

[
1

[qm+1]2(z−1)
Tf

(
xm+1qm+1(x)

xz− 1

)]
.

Now, from the exactitude of the Newton–Côtes quadrature formula for polynomials
of degree less than m, it follows that the Fourier series expansion of the restriction
(m/m + 1)ur(t) of (m/m + 1)u(−eit) to any circle of radius r < 1 matches the
Fourier series expansion of the restriction ur(t) of u(z) to that circle up to the ±mth
Fourier term. This property justifies the notation Padé-type approximant to u(z).
Similarly, from the exactitude of the Gauss quadrature formula for polynomials
of degree less than 2m + 1, it follows that the Fourier series expansion of the
restriction [m/m+ 1]ur(t) of [m/m+ 1]u(reit) to any circle of radius r < 1 matches
the Fourier series expansion of the restriction ur(t) of u(z) to that circle up to the
±(2m+ 1)th Fourier term. This property justifies the notation Padé approximant to
u(z). Summarizing, we have the next formulation for the crucial property of Padé-
type and Padé approximation.

Theorem 5.3. The fundamental property of these approximants is the following.

• The Fourier series expansion ∑∞
ν=−∞ d(m)

ν r|ν|eiνt of the restriction (m/m+1)ur(t)

of (m/m + 1)u(reit) to the circle of radius r fulfills d(m)
ν = cν for any ν =

0,±1,±2, . . . ,±m.
• The Fourier series expansion ∑∞

ν=−∞ f (m)
ν r|ν|eiνt of the restriction [m/m+1]ur(t)

of [m/m + 1]u(reit) to the circle of radius r fulfills f (m)
ν = cν for any ν =

0,±1,±2, . . . ,±(2m).

Since the two limits limr → 1(m/m + 1)ur(t) and limr → 1[m/m + 1]ur(t) are
uniform on [−π ,π ], the two functions (m/m+ 1)u(reit) and [m/m+ 1]u(reit) are
the Poisson integrals of two continuous functions on the unit circle.
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Definition 5.4. [10, 11]

(i) The radial limit (m/m+1) f (t) := limr → 1(m/m+1)ur(t)= 2ReTf (Qm(x,eit))−
c0 is said to be a Padé-type approximant to f (t), with generating polynomial
Vm+1(x) = γ ∏m

k=0(x−πk) (γ ∈ C� {0}).
(ii) The radial limit [m/m+1] f (t) := limr → 1[m/m+1]ur(t) = 2ReTf (Pm(x,eit ))−

c0 is said to be a Padé approximant to f (t).

Remark 5.5. From a numerical point of view, construction of a Padé-type approx-
imant (m/m+ 1) f (t) with generating polynomial Vm+1(x) = γ ∏m

k=0(x−πk) needs
the knowledge of the (2m + 1) first Fourier coefficients c0,c±1, . . . ,c±m, while
construction of the Padé approximant [m/m+ 1] f (t) makes use of the (4m+ 1)
Fourier coefficients c0,c±1, . . . ,c±2m.

By Theorems 5.2 and 5.3, we immediately get the following fundamental
properties of these approximants.

Theorem 5.6. (i) The Padé-type approximant (m/m + 1) f (t) is the real
part of a rational complex function of type (m,m + 1) : (m/1) f (t) =

2Re(W̃m(eit)/Ṽm+1(eit))− c0. The error of the respective approximation is
given by the following theoretical formula

(m/m+ 1) f (t) =
1
π

lim
r → 1

Re

{
1

Vm+1(r−1e−it)

∫ π

−π

f (s)Vm+1(e−is

rei(t−s)− 1
ds

}

where the limit is taken in the L1-norm. The Fourier series expansion

∑∞
ν=−∞ d(m)

ν eiνt of (m/m + 1) f (t) fulfills d(m)
ν = cν for any ν = 0,±1,

±2, . . . ,±m.
(ii) The Padé approximant [m/m+1] f (t) is also the real part of a rational complex

function of type (m,m+1) : [m/m+1] f (t) = 2Re(w̃m(eit)/q̃m+1(eit))− c0. The
error of the respective approximation equals

[m/m+1] f (t)− f (t)=
1
π

lim
r → 1

Re

{
1

[qm+1]2(r−1e−it)

∫ π

−π

f (s)[qm+1]
2(e−is)

re]i(t−s)− 1
ds

}

where the limit is taken in the L1-norm. The Fourier series expansion

∑∞
ν=−∞ β (m)

ν eiνt of [m/m+ 1] f (t) fulfills β (m)
ν = cν for any ν = 0,±1,±2, . . . ,

±(2m+ 1).

Proof. To prove the theorem, we will use the standard identification of the 2π-
periodic signal f (t) (t ∈ [−π ,π ])with the L1-function u(z)≡ u(eit) (z = eit , |z|= 1).

(i) Let (rn ∈ [0,1])n=0,1,2,... be any sequence such that limn →+∞ rn = 1. Since, by
Theorem 5.2.(i), (m/m + 1)u(rneit) = 2Re(W̃m(rneit)/Ṽm+1(rneit)) − c0,
the uniform convergence of the sequence ((m/m + 1)u(rneit))n=0,1,2,... to
the radial limit function (m/m + 1)u(eit) implies that (m/m + 1)u(eit) =
2Re(W̃m(eit)/Ṽm+1(eit))− c0, and the first assertion of part (i) is proved. To
prove the second assertion, recall that limn →+∞ ‖u(rneit)− u(eit)‖1 = 0. Fur-
ther, by the uniform convergence of the sequence ((m/m+1)u(rneit))n=0,1,2,...
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to the radial limit function (m/m + 1)u(eit ) we also get limn →+∞ ‖(m/m+
1)u(rneit)− (m/m + 1)u(eit‖1 = 0. Letting ε > 0, we infer that there exists
a N = N(ε) such that ‖u(rneit)− u(eit)‖1 + ‖(m/m + 1)u(rneit)− (m/m +
1)u(eit)‖1 < ε whenever n ≥ N, and therefore ‖[(m/m+ 1)u(eit)− u(eit)]−
[(m/m+ 1)u(rneit)− u(rneit)]‖1 < ε for any n ≥ N, or, by Theorem 5.2.(ii),
∥∥∥∥[(m/m+ 1)u(e

it)− u(eit)]− 2Re

[
1

Vm+1(r
−1
n e−it)

Tf

(
Vm+1(x)
xrneit − 1

)]∥∥∥∥
1
< ε

for any n ≥ N. Now, set Vm+1(x) = ∑m+1
k=0 b(m)

k xk. An application of the
continuity property for the linear functional Tf shows that

Tf

(
Vm+1(x)
xrneit − 1

)
=−

∞

∑
ν=0

rν eiνt
m

∑
k=0

b(m)
k

2π

∫ π

−π
u(eis)e−i(ν+k)sds.

Computing, we obtain

Tf

(
Vm+1(x)
xrneit − 1

)
=

1
2π

∫ π

−π
u(eis)

[
−
( m

∑
k=0

b(m)
k e−iks

)( ∞

∑
ν=0

rν
n ei(t−s)ν

)]

=
1

2π

∫ π

−π
u(eis)

[
Vm+1(e−is)

rnei(t−s)− 1

]
ds =

∫ π

−π

f (s)Vm+1(e−is)

rnei(t−s)− 1
ds.

Hence

‖[(m/m+1)u(eit)−u(eit)]−2Re

[
1

Vm+1(r
−1
n e−it)

∫ π

−π

f (s)Vm+1(e−is)

rnei(t−s)− 1
ds

]∥∥∥∥
1
< ε,

for any n ≥ N. Using the standard identifications (m/m+ 1)u(eit) = (m/m+
1) f (t) and u(eit) = f (t), we conclude that

‖[(m/m+ 1) f (t)− f (t)]− 2Re

[
1

Vm+1(r
−1
n e−it)

∫ π

−π

f (s)Vm+1(e−is)

rnei(t−s)− 1
ds

]∥∥∥∥
1
< ε,

for any n ≥ N, which proves the second assertion of part (i). It remains to prove
the third assertion of part (i). Since every harmonic real-valued function in
the unit disk, with continuous boundary values, is the Poisson integral of its
continuous restriction to the unit circle, we have

(m/m+ 1)u(re
it) =

1
2π

∫ π

−π
(m/m+ 1)u(e

iθ )
1− r2

1− 2r cos(t −θ )+ r2 dθ

=
1

2π

∫ π

−π
(m/m+ 1)u(eiθ )

∞

∑
ν=−∞

r|ν|eiν(t−θ)dθ

=
∞

∑
ν=−∞

r|ν|
[

1
2π

∫ π

−π
(m/m+ 1)u(eiθ )eiνθ dθ

]
eit .
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Henceforth, the Fourier series expansion of (m/m + 1)u(reit) is ∑∞
ν=+∞ d(m)

ν

r|ν|eiν+t . From Theorem 5.3, it follows that d(m)
ν = cν for any ν = 0,±1,±2, . . . ,

±m, and the proof of part (i) is complete.
(ii) Repetition of the arguments in (i) with only obvious formal changes proves (ii).

��
From Theorem 5.6, it follows immediately that if only a few Fourier coefficients

cν of the signal f (t) are given, then one can approximate f by an approximant in
the Padé-type and/or Padé sense: (m/m+ 1) f (t)≈ f (t) and [m/m+ 1] f (t)≈ f (t).

Remark 5.7. If f : [−π ,π ] → R : t �→ f (t) is a 2π-periodic continuous-time signal
with Fourier series representation ∑∞

ν=−∞ cνeiνt , the function (m+ n/m+ 1) f (t) :=
2Re

(
∑n−1

ν=−∞ cνeiνt + eintTfn(Qm(x,eit )
)− c0 (t ∈ [−π ,π ]) is the real part of a

rational function of type (m + n,m + 1) with respect to the dependent variable
s = s(t) = eit and is said to be a Padé-type approximant of type (m+ n,m+ 1) to
the signal f . The functional Tfn is now defined by Tfn(x

ν) = cn+ν . The fundamental
property of such an approximant is the coincidence of its Fourier representation
with that of f up to the ±(m+n)th Fourier term. Similarly, the function [m+n/m+
1] f (t) := 2Re

(
∑n−1

ν=−∞ cνeiνt + eintTfn(Pm(x,eit))
)− c0 (t ∈ [−π ,π ]) is the real part

of a rational function of type (m+ n,m+ 1) with respect to the dependent variable
s = s(t) = eit and is said to be a Padé approximant of type (m+ n,m+ 1) to the
signal f . The fundamental property of such an approximant is the coincidence of its
Fourier representation with that of f up to the ±(2m+ n)th Fourier term.

5.3 Convergence and Orthogonal Polynomials

In this section, we shall study the convergence of a sequence of Padé-type
approximants to a signal. The corresponding results derived for a sequence of Padé
approximants can be viewed as a very special case. Let M= (πm,k)m=0,1,...;k=0,1,...,m

be an infinite triangular interpolation matrix with complex entries πm,k ∈ D. For
any fixed z ∈ C � {π−1

m,k;m = 0,1, . . . and k = 0,1, . . . ,m}, let Qm(x,z) denote
the unique polynomial of degree at most m in x, which interpolates the Cauchy
kernel (1− xz)−1 in the (m+ 1) nodes of the mth row of M, i.e., Qm(πm,k,z) =
(1−πm,kz)−1 for any k ≤ m.

Theorem 5.8. Suppose the family {Vm+1(eit) : m = 0,1, . . .} of generating
polynomials is an orthonormal bounded system in L2[−π ,π ] and infm≥M0 inft∈[−π ,π ]
|Vm+1(eit)| > 0, for a M0. Then for any real-valued 2π-periodic continuous-
time signal f (t) ∈ L1[−π ,π ], the associated sequence ((m/m + 1) f (t) =
2ReTf (Qm(x,eit))− c0)m=0,1,... of Padeé-type approximants to f (t) with generating
polynomials Vm+1(x) = ∏m

k=0(x − πm,k) converges to f (t) almost everywhere
on [−π ,π ]. Especially, if f (t) ∈ C[−π ,π ], the sequence ((m/m + 1) f (t) =

2Re(W̃m(eit )/Ṽm+1(eit))− c0)m=0,1,... converges to f (t) everywhere on [−π ,π ].
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Proof. Let f (t) ∈ L1[−π ,π ] be a real-valued 2π-periodic continuous-time signal.
Let also ε > 0 and (rn)n=0,1,2,... be a strictly increasing sequence of positive numbers
such that limn → ∞ rn = 1. Fix any n. By Theorem 5.6.(i), there is a subsequence
(rn j ) j=0,1,2,... of (rn) such that

(m/m+ 1) f (t)− f (t) =
1
π

lim
j → ∞

Re

{
1

Vm+1(r
−1
n j e−it)

∫ π

−π
f (s)

Vm+1(e−is)

(rn j e
i(t−s)− 1)

ds

}

for almost all t ∈ [−π ,π ]. Denote by D the set of all points t ∈ [−π ,π ] with this
property. For every t ∈ D, one can find a J = J(ε.m) such that

• |(m,m+ 1) f (t)− f (t)| ≤ 1
π
∣∣ 1

Vm+1(r
−1
n j e−it )

∣∣ ∣∣∫ π
−π f (s)

[ Vm+1(e
−is)

(rn j ei(t−s)−1)

]
ds
∣∣+ ε

2 ( j ≥ J)

• The function [−π − π ] → C : s �→ ( f (s)/[rn j e
i(t−s) − 1]) is in L1[−π ,π ], so,

by Mercer’s Theorem, the Fourier coefficients of this function with respect to
the orthonormal family {Vm+1(e−is) : m = 0,1, . . .} tend to zero. This means that
there exists a M = M(ε, t) such that

π−1
∣∣∣Vm+1(r

−1
nj

e−it )−1
∣∣∣
∣∣∣∣
∫ π

−π
[ f (s)Vm+1(e

−is/(rnj e
i(t−s)−1)]ds

∣∣∣∣< ε/2 (m≥M and j ≥ J).

Combining of these inequalities shows that |(m/m+ 1) f (t)− f (t)| < ε for any
m ≥ M. This implies that limm → ∞(m/m+ 1) f (t) = f (t) for almost all t ∈ [−π ,π ].
If f (t) ∈C[−π ,π ], the convergence holds for any t ∈ [−π ,π ]. ��
Corollary 5.9. Let the generating polynomials of a Padé-type approximation

Vm+1(x) = ∑m+1
k=0 b(m)

k xk =∏m
k=0(x−πm,k) (m = 0,1, . . .) be such that ∑m+1

k=0 |b(m)
k |2 =

(1/2π) (m ≥ 0) and ∑m+1
k=0 b(m)

k b(n)k = 0 (n ≥ m). If there are two constants σ < ∞
and τ < 1 fulfilling ∑m+1

k=0 |b(m)
k |< σ (m ≥ 0) and |πm,k|< τ (m ≥ 0 and 0 ≤ k ≤ m),

then, for any real-valued 2π-periodic continuous-time signal f (t) ∈ L1[−π ,π ], the
associated sequence ((m/m+1) f (t) = 2Re[W̃m(eit/Ṽm+1(eit)]−c0)m=0,1,... of Padé-
type approximants to f (t), with generating polynomials Vm+1(x) = ∏m

k=0(x−πm,k),
converges to f (t) almost everywhere on [−π ,π ]. Especially, if f (t) ∈C[−π ,π ], the
sequence ((m/m+1) f (t) = 2Re(W̃m(eit)/Ṽm+1(eit))− c0)m=0,1,... converges to f (t)
everywhere [−π ,π ].

Proof. It is easily seen that if there is a constant τ < 1 satisfying |πm,k| < τ
(m ≥ 0 and 0 ≤ k ≤ m), then there exists an open neighborhood U of the
unit circle into which there holds infz∈U |Vm+1(z)| ≥ K > 0 for some positive
constant K (m = 0,1,2, . . .) which is independent of m. In particular, we have
infm≥M0 inft∈[−π ,π ] |Vm+1(eit)| > 0 for a M0. Further, if the polynomial Vm+1(x) =

∏m
k=0(x− πm,k) is written in the form Vm+1(x) = ∑m+1

k=0 b(m)
k xk, the orthonormality

assumption for the family {Vm+1(eit) : m = 0,1, . . .} is completely described by

the following conditions: ∑m+1
k=0 |b(m)

k |2 = (1/2π) (m ≥ 0) and ∑m+1
k=0 b(m)

k b(n)k = 0
(n ≥ m). In fact, for any m ≥ 0, we have
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• 2π
m+1

∑
k=0

|b(m)
k |2 =

m+1

∑
k=0

b(m)
k b(m)

ν

∫ π

−π
eikse−iνsds =

∫ π

−π
Vm+1(e

is)Vm+1(eis)ds

=
∫ π

−π
|Vm+1(e

is)|2ds = 1

• 2π
m+1

∑
k=0

b(m)
k b(n)k =

m+1

∑
k=0

n+1

∑
ν=0

b(m)
k b(n)ν

∫ π

−π
eikse−iνsds

=

∫ π

−π
Vm+1(e

is)Vn+1(eis)ds = 0 (n > m).

Finally, the boundedness assumption for the family {Vm+1(eit) : m = 0,1, . . .} is

guaranteed if there is a positive constant σ < ∞ satisfying ∑m+1
k=0 |b(m)

k | < σ for
any m. ��
Remark 5.10. In [12], we gave a stronger sufficient condition in terms of the
entries πm,k only: if the interpolation points πm,k are chosen so that −1 <
πm,k < 1 and limm → ∞ ∑n>1

1
n ∑m

k=0(πm,k)
n = −∞, then for any real-valued 2π-

periodic continuous-time signal f (t) ∈C[−π ,π ], the associated sequence ((m/m+
1) f (t))m=0,1,... of Padé-type approximants to f (t), with generating polynomials
Vm+1(x) =∏m

k=0(x−πm,k), converges to f (t) everywhere on [−π ,π ]. If, for instance,

πm,k =

{
0, if k = even

−a, if k = odd

for some a ∈ [0,1], then limm → ∞(m/m+ 1) f (t) = f (t) whenever t ∈ [−π ,π ].

Remark 5.11. Another approach to the convergence problem is analogous to the
results of Eiermann [14]: if the generating polynomials Vm+1(x) of a Padé-type
approximation satisfy limm → ∞(Vm+1(x)/Vm+1(z−1)) = 0 uniformly on the compact
subsets of an open set Ω ⊂ C2 containing (D × D) ∪ (C× {0}), then, for any
real-valued 2π-periodic continuous-time signal f (t) ∈C[−π ,π ], the associated se-
quence ((m/m+1) f (t))m=0,1,... of Padé-type approximants to f (t), with generating
polynomials Vm+1(x) = ∏m

k=0(x− πm,k), converges to f (t) everywhere on [−π ,π ]
[9, 10].

As it is mentioned in Theorem 5.8, the crucial property for the convergence of a
sequence of Padé-type approximants to a signal is the orthonormality of the system
{Vm+1(eit) : m = 0,1, . . .} into L2[−π ,π ]. One can obtain interesting results about
the form of Vm+1(x), dues to the connection between Schur and Szegö theories.
This connection is often attributed to Akhiezer [1], but it appears earlier and in
greater detail in the papers of Geronimo [16,17]. It is based on important recurrence
relations which were first given in previous Szegö’s work [28].

Theorem 5.12. [16, 17] Denoting by V ∗
m+1(x) the polynomial xm+1Vm+1(1/x̄), the

recurrence relations written in terms of the monic polynomials Vm+1(x) =Vm+1(x)/
V ∗

m+1(0) are of the general form Vm+2(x) = xVm+1(x)− ām+1V ∗
m+1(x) for certain

parameters am+1 ∈C (m = 0,1, . . .).
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Remark 5.13. In current terminology the numbers −ām+1 = Vm+2(0) are called
Szegö parameters.

Let us now see what the Schur parameters are. To do so,we first remind the
following Schur’s construction.

Theorem 5.14. There is a one-to-one correspondence between the class S(D) of
analytic functions which are bounded by one on the unit disk D and the set of all
sequences (γm+1)m=0,1,2,... of complex numbers which are bounded by 1 and such
that if some term has unit modulus, then all subsequent terms are zero.

Proof. Given any φ(x) ∈ S(D), define a sequence

φm+1(x) =

⎧⎨
⎩

φ(x), if m = 0
φm(x)−φm(0)

x[1−φm(0)φm(x)]
, if m ≥ 1.

If |φi(0)|= 1 for some i, then φi(x) is constant and we take φ j(x) = 0 for any j > i.
This occurs if and only if φ(x) is finite Blaschke product of i factors:

φ(x) = c
x− b1

1− b1x

x− b2

1− b2x
· · · x− bi

1− bix
,

where |c| = 1 and b1,b2, . . . ,bi are points in D. The numbers γm+1 = γ(φ)m+1 :=
φm+1(0) (m ≥ 0) are defined to be the Schur parameters for φ(x). ��
Remark 5.15. The method of labeling S(D) by numerical sequences is known as
the Schur algorithm and is due to Schur [26, 27].

Since g(x) = (2π)−1 ∫ π
−π([e

is + x]/[eis − x])ds has positive real part in the open
unit disk D and value 1 at the origin, the function Φ(x) = (1/x)([g(x)− 1]/[g(x)+
1]) belongs to S(D). In 1943, Geronimo showed that

Theorem 5.16. [17] The Shur parameters γm+1 = γ(Φ)
m+1 for Φ(x) coincide with the

numbers am+1 in the recurrence formula of Theorem 5.12: γm+1 = γ(Φ)
m+1 = am+1

(m = 0,1, . . .).

5.4 Acceleration of the Convergence and Orthogonal
Polynomials

We shall now see how Padé-type approximants can accelerate the convergence of
functional sequences. More precisely, we shall study assumptions under which, for
every sequence of functions converging to a real-valued continuous 2π-periodic
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signal, there is always a Padé-type approximation sequence converging pointwise
to that signal faster than the first sequence. This property, due to the free choice of
the interpolation points πm,k permits us to construct better and better approximations
to continuous functions.

Using techniques similar those proposed by Bromwich [4] and Clark [8], we can
prove the following.

Proposition 5.17. Let Δ be the operator of differences. Let also (xm)m=0,1,2,...

and (ym)m=0,1,2,... be two sequences of real numbers satisfying xm �= ym and
limm → ∞ ym = 0. Suppose (ym)m=0,1,2,... is strictly monotone. If limm → ∞[Δxm/
Δym] = 0, then there is a x ∈ R such that limm → ∞ xm = x and limm → ∞[(xm −
x)/ym] = 0. In other words, under the assumptions of Proposition 5.17, the sequence
(xm)m=0,1,2,... converges to x faster than the sequence (ym)m=0,1,2,... converges to 0.

Proof. Let ε < 0. Without loss of generality, we can assume that the sequence
(ym)m=0,1,2,... is strictly decreasing. Since limm → ∞[Δxm/Δym] = 0, there is a M0 > 0
so that −ε < Δxm/Δym < ε for any m ≥ M0. Since Δym < 0, these inequalities
can be rewritten as −ε(ym − ym+1) < xm − xm+1 < ε(ym − ym+1), for any m ≥ M0.
Replacing the index m by m+ 1,m+ 2, . . . ,m+ p− 1, we form the p inequalities
−ε(tm+ j−1 − ym+ j) < xm+ j−1 − xm+ j < ε(ym+ j−1 − ym+ j) ( j = 1,2, . . . , p) for any
m ≥ M0. Adding these inequalities, we get −ε(ym − ym+p) < xm − xm+p < ε(ym −
ym+p) for any m ≥ M0. Of course, we can suppose ym − ym+p < 1 and therefore
obtain−ε < xm−xm+p < ε for any m≥M0. It follows that (xm)m=0,1,2,... is a Cauchy
sequence. As the real field R is complete, this sequence converges to a limit in
R, say x. Letting now p → ∞ in the inequalities −ε(ym − ym+p) < xm − xm+p <
ε(ym − ym+p) (m ≥ M0), we take −εym < xm − x < εym for any m ≥ M0, which
implies that limm → ∞[(xm − x)/ym] = 0. The proof is now complete. ��
Corollary 5.18. Let Δ be the operator of differences. Let also (xm)m=0,1,2,... and
(ym)m=0,1,... be two convergent sequences of real numbers. Suppose (ym)m=0,1,2,... is
strictly monotone and limm → ∞ ym = 0. If

limm → ∞|Δxm|1/m = r < R = lim
m → ∞

|Δym|1/m = 0,

the sequence (xm)m=0,1,2,... converges faster than the sequence (ym)m=0,1,2,....

Proof. It is well known that if limm → ∞|Δxm|1/m = r < R = limm → ∞ |Δym|1/m = 0,
the sequence (Δxm)m=0,1,2,... converges faster than the sequence (Δym)m=0,1,2,... [3].
Hence, from Proposition 5.17, it follows immediately the desired assertion. ��

Combination of Corollary 5.18 with Theorem 5.8 gives the following conver-
gence acceleration result.

Theorem 5.19. Let (ym)m=0,1,2,... be any strictly monotone converging sequence.
Suppose the family {Vm+1(eit) : m = 0,1, . . .} is an orthonormal bounded system
in L2[−π ,π ] and infm≥M0 inft∈[−π ,π ] |Vm+1(eit)| > 0, for a M0. Then, for any
real-valued 2π-periodic continuous-time signal f (t) ∈ C[−π ,π ], the associated
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sequence
(
(m/m+ 1) f (t) = 2Re

( W̃m(eit)

Ṽm+1(eit)

)
m=0,1,... of Padé-type approximants con-

verges to f (t) faster than (ym)m=0,1,2,... everywhere on

{
t ∈ [−π ,π ] :

lim
m → ∞

∣∣Δym
∣∣ 1

m ≥ limm → ∞

[
sup
|x|≤1

∣∣∣∣
Vm+1(x)Vm+2(e−it)−Vm+1(e−it)Vm+2(x)

1− xeit

∣∣∣∣
] 1

m
}
.

Proof. Obviously, condition infm≥M0 inft∈[−π ,π ] |Vm+1(eit)| > 0 (for a M0) implies
that there is a positive constant K and a neighborhoodU of the unit circle into which
the generating polynomials Vm+1(x) satisfy |Vm+1(x)| ≥ K for any x ∈ U and m
sufficiently large. By Theorem 5.8 the sequence ((m/m+ 1) f (t))m=0,1,... converges
to the signal f (t) everywhere on [−π ,π ]. Letting t ∈ [−π ,π ] be fixed, it is easily
seen that

|Δ(m/m+ 1) f (t)|1/m ≤ 2
∣∣Tf (Qm+1(x,e

it)−Qm(x,eit ))
∣∣

where Qm(x,z) denotes the unique complex polynomial of degree at most m in x,
which interpolates the Cauchy kernel (1− xz)−1 at m+ 1 points π0,π1, . . . ,πm, i.e.,
Qm(πk,z) = (1−πkz)−1 for any z ∈ C\{π−1

k ; k = 0,1, . . . ,m} and k ≤ m. Thus, the
continuity of the linear functional Tf implies that

|Δ(m/m+ 1) f (t)|1/m

≤
(
L f

K

)1/m[
sup
|x|≤1

∣∣∣∣
Vm+1(x)Vm+2(e−it)−Vm+1(e−it)Vm+2(x)

1− xeit

∣∣∣∣
]1/m

,

where the constant L f depends only on f . By passing in the upper limit, we obtain

limm → ∞
∣∣Δ(m/m+ 1) f (t)

∣∣ 1
m

≤ limm → ∞

[
sup
|x|≤1

∣∣∣∣
Vm+1(x)Vm+2(e−it)−Vm+1(e−it)Vm+2(x)

1− xeit

∣∣∣∣
] 1

m

.

Application of Corollary 5.18 for the sequences (xm = (m/m+1) f (t))m=0,1,2,... and
(ym)m=0,1,2,... proves the Theorem. ��

Similarly, using Corollary 5.9 instead of Theorem 5.8, we are leaded to the

Theorem 5.20. Let the generating polynomials of a Padé-type approximation

Vm+1(x) = ∑m+1
k=0 b(m)

k xk =∏m
k=0(x−πm,k) (m = 0,1, . . .) be such that ∑m+1

k=0 |b(m)
k |2 =

(1/2π) (m≥ 0) and ∑m+1
k=0 b(m)

k b(n)k = 0 (n≥m). Assume that there are two constants

σ < ∞ and τ < 1 fulfilling ∑m+1
k=0 |b(m)

k | < σ (m ≥ 0) and |πm,k| < τ (m ≥ 0 and
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0 ≤ k ≤ m). Then, for any real-valued 2π-periodic continuous-time signal f (t) ∈
C[−π ,π ], the associated sequence ((m/m + 1) f (t) = 2Re(W̃m(eit)/Ṽm+1(eit))−
c0)m=0,1,... of Padé-type approximants converges to f (t) everywhere on [−π ,π ]
faster than every strictly monotone converging sequence (ym)m=0,1,2,... satisfying

lim
m → ∞

|Δym|1/m > limm → ∞

⎡
⎢⎣

m+2

∑
k=0

m+1

∑
ν=0
(ν�=k)

∣∣b(m+1)
k b(m)

ν
∣∣
⎤
⎥⎦

1/m

.

Proof. We note that

|Vm+1(x)Vm+2(e
−it)−Vm+1(e

−it)Vm+2(x)|

=

∣∣∣∣
m+1

∑
ν=0

b(m)
ν e−νt

m+2

∑
k=0

b(m+1)
k xk −

m+2

∑
k=0

b(m+1)
k e−ikt

m+1

∑
ν=0

b(m)
ν xν

∣∣∣∣

=

∣∣∣∣
m+2

∑
k=0

m+1

∑
ν=0

b(m+1)
k b(m)

ν [xke−νt − xνe−ikt ]

∣∣∣∣

≤
m+2

∑
k=0

m+1

∑
ν=0

|b(m+1)
k b(m)

ν | |xke−νt − xνe−ikt |.

Thus

limm → ∞

[
sup
|x|≤1

∣∣∣∣
Vm+1(x)Vm+2(e−it)−Vm+1(e−it)Vm+2(x)

1− xeit

∣∣∣∣
]1/m

≤ limm → ∞

⎡
⎢⎣

m+2

∑
k=0

m+1

∑
ν=0
(ν�=k

∣∣b(m+1)
k b(m)

ν
∣∣
⎤
⎥⎦

1/m

.

Application of Theorem 5.19 completes the proof. ��

5.5 Numerical Examples

In this section, we give examples making use of Padé-type approximants to 2π-
periodic continuous-time signals f (t).

Example 5.21. Let f be the signal f (t) = |t| (t ∈ R). The Fourier series of f into
[−π ,π ] is F(t) = (π/2)+∑∞

ν=−∞(ν�=0)[{(−1)ν − 1}/πν2]eiνt . Define the C-linear
functional Tf : P(C) → C associated with f by

Tf (x
ν ) :=

{
π/2, if ν = 0

{(−1)ν − 1}/πν2, if ν �= 0
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If M = (πm,k)m=0,1,...;k=0,1,...,m is an infinite triangular interpolation matrix with
complex entries πm,k ∈ D, then a Padé-type approximation to the signal f (t) = |t| is
a function

(m/m+ 1) f (t) = 2Re

([
e−itTf

(
Vm+1(e−it)−Vm+1(x)

e−it − x

)]/
Vm+1(e

−it)

)
− (π/2)

where Vm+1(x) = ∏m
k=0(x− πm,k) is the generating polynomial of this approxima-

tion.

(i) If m = 4 and π4,k are the roots of the fifth Legendre polynomial in [−1,1], then
V5(x) = (63x5 − 70x3+ 15x)/8 and therefore

(4/5) f (t) =
9094π 5292

π cost − 10920π cos2t + 12096
π cos3t + 1890π cos4t

(63− 70cos2t + 15cos4t)2 +(−70sin2t + 15sin4t)2 − π
2

(t ∈ [−π ,π ]). Indicatively, we have

t f (t) (4/5) f (t)

±π/2 1.5707963 1.5707963
±1 1 1.0957434
±π/6 0.5235987 0.5507175

(ii) If m = 4 and π4,k = 0, then V5(x) = x5 and therefore

(4/5) f (t) =
π
2
− 4

π
cost − 4

9π
cos3t

(t ∈ [−π ,π ]). Indicatively, we have

t f (t) (4/5) f (t)

0 0 0
±π/2 1.5707963 1.5707963
±π/8 0.392699 0.3403377
±π 3.1415926 2.9855069
±1 1 1.0756475
±e 2.7182818 2.673454

Example 5.22. Let f be the signal f (t) = t2 (t ∈ R). The Fourier series of f into
[−π ,π ] is F(t) = (π2/3)+∑∞

ν=−∞(ν=−∞(ν�=0)[2(−1)ν/ν2]eiνt . Define the C-linear
functional Tf : P(C) → C associated with f by

Tf (x
ν ) :=

{
π2/3, if ν = 0

2(−1)ν/ν2, if ν �= 0.
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If M = (πm,k)m=0,1,...;k=0,1,...,m is an infinite triangular interpolation matrix with
complex entries πm,k ∈ D, then a Padé-type approximant to the signal f (t) = t2 is a
function

(m/m+ 1) f (t) = 2Re

(e−itTf
(Vm+1(e

−it )−Vm+1(x)
e−it−x

)

Vm+1(e−it)

)
− π2

3

where Vm+1(x) = ∏m
k=0(x− πm,k) is the generating polynomial of this approxima-

tion.

(i) If m = 20 and π20,0 = π20,1 = · · ·= π20,19 = 0,π20,20 =−1, then V21(x) = x21 +
x20 and therefore

(20/21) f (t) = 4

( 19

∑
ν=0

(−1)ν

ν2 cos(νt)+
1

800
cos(39t/2)

cos(t/2)

)
+

π2

3

(t ∈ [−π ,π ]). Indicatively, we have

t f (t) (4/5) f (t)

±π/2 2.4674011 2.466903
±1 1 1.028211
±π/6 0.2741556 0.2649733

(ii) If m = 40 and π40,k = 0, then V41(x) = x41 and therefore

(40/41) f (t) =
π2

3
− 4

40

∑
ν=0

(−1)ν

ν
cos(νt)

(t ∈ [−π ,π ]). Indicatively, we have

t f (t) (4/5) f (t)

0 0 0
±π/2 2.4674011 2.4653582
±π/8 0.1542125 0.1403446
±π 9.8696044 9.77084433
±1 1 1.024185
±e 7.3890559 7.6610918

Example 5.23. Let f be the signal f (t) = r sin t
1−2r cost+r2 (t ∈R). The Fourier series of

f into [−π ,π ] is F(t) = ∑∞
ν=1[ir

ν/2]e−νt +∑∞
ν=1[−irν/2]eiνt . Define the C-linear

functional Tf : P(C) → C associated with f by

Tf (x
ν ) :=

{
0, if ν = 0

−irν/2, if ν = 1,2, . . . .
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If M = (πm,k)m=0,1,...;k=0,1,...,m is an infinite triangular interpolation matrix with
complex entries πm,k ∈ D, then a Padé-type approximant to the signal f (t) is a
function

(m/m+ 1) f (t) = 2Re

(
e−itTf

(
Vm+1(e−it)−Vm+1(x)

e−it − x

)/
Vm+1(e

−it)

)

where Vm+1(x) = ∏m
k=0(x− πm,k) is the generating polynomial of this approxima-

tion.

(i) If m = 14 and π14,14 = π14,14 = · · · = π14,14 = 0, then (14/15) f (t) is the
trigonometric polynomial which equals the partial sum of the first fourteen
terms in the Fourier expansion F(t) of f (t) and indicatively, we have

t f1/8(t) (14/15)t f1/2(t) (14/15) f1/2
(t) f3/4(t) (14/15) f3/4

(t)

0 0 0 0 0 0 0
π/3 0.1215 0.1215 0.5773 0.5773 0.7994 0.8101
−π 0 0 0 0 0 0
π/4 0.1054 0.1053 0.6512 0.6512 1.056 1.055
−π/6 −0.0782 −0.0782 −0.6511 −1.1381 −1.4233 −1.4055
π/5 0.0903 0.0903 0.6664 0.9971 1.2632 1.2742
π/2 0.1231 0.1231 0.4 0.4000 0.48 0.4885

(ii) If m = 3 and π3,k = cos[(2k+ 1)π/7] : π3,0 = 0.9009688, π3,1 = 0.2225209,
π3,2 =−0.6234898, π3,3 =−1, then V4(x) = x4 +0.5x3 − x2 −0.375x+0.125
and therefore

(3/4) f (t) =− r× ([1.125r2− 0.3125r− 1.0625]sint

+[−0.5r2− 1.125r− 1.3125]sin2t +[−r2 + 0.5r+ 1.375]sin3t)

× ([1+ 0.5cost − cos2t − 0.375cos3t + 0.125cos4t]2

+[0.5sint − sin2t − 0.375sin3t + 0.125sin4t]2)−1

(t ∈ [−π ,π ]). In particular, there holds

t f (t) (3/4) f (t)

0 0 0
π
3

0.8660254r
1−r−r2

0.8660254
4.5468749 r(3.413294+ r)(1.113294− r)

−π 0 0
π
4

0.7071067r
1−1.4142135r−r2

r
2.3765699 (r−0.018477)(11.20945− r)

− π
6

−0.5r
1−1.7320508r+r2 − r

1.5370791 (0.8705127r2 +0.6305285r+0.2929083)
π
5

0.5877852r
1−1.6180339r+r2 − r

2.2188258 (0.7653264r2 +0.7775396r+0.5654351)
π
2

r
1+r2 − r

5.28125 (r+0.8967606)(1.2791136− r)
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(iii) If m = 3 and π3,0 = π3,1 = π3,2 = 0 and π3,3 = −i, then V4(x) = x4 + ix3 and
therefore

(3/4) f (t) =
r

2(1− sint)
× (−1+ 2sint + r sin2t + r2 sin3t + r sin4t − r cost

+[1− r2]cos2t + r cos3t)

(t ∈ [−π ,π ]\{π/2}). Observe that (3/4) f (t) is well defined everywhere on
−π ,π ], with the exception of the point t = π/2. This is consequence of our
choice π3,3 =−i, which in particular implies |π3,3|= 1 (⇔ π3,3 ∈C). However,
it holds

t f (t) (3/4) f (t)

0 0 −0.5r3

π
3

0.8660254r
1−r−r2 3.7320507r(0.7320508−1.5r+0.5r2)

−π 0 0.5r(1− r2)
π
4

0.7071067r
1−1.4142135r−r2 1.7071067r(0.4142135−0.4142135r+0.7071067r2 )

− π
6

−0.5r
1−1.7320508r+r2 0.3333333r(0.5−2.5980762r−1.5r2)

π
5

0.5877852r
1−1.6180339r+r2 1.2129599r(0.4845874+2.0388417r−0.3090169r2 )

π
2

r
1+r2 indefined

Example 5.24. Let f be the signal

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if t =−π
2
(

t
π + 1

)
, if −π < t ≤ 0

2, if 0 ≤ t < 0
1, if t = π

The Fourier series of f into [−π ,π ] is F(t) = (3/2) + ∑∞
ν=−∞(ν�=0)

[ 1−(−1)ν

(νπ)2 +

i (−1)ν

νπ
]
eiνt . Define the C-linear functional Tf : P(C) → C associated with f by

Tf (x
ν ) :=

{
3/2, if ν = 0

1−(−1)ν

(νπ)2 + i (−1)ν

νπ , if ν = 1,2, . . . .

If M = (πm,k)m=0,1,...;k=0,1,...,m is an interpolation matrix with complex entries
πm,k∈D, then a Padé-type approximant to the signal f (t) is a function

(m/m+ 1) f (t) = 2Re

(e−itTf
(Vm+1(e−it)−Vm+1(x)

e−it−x

)

Vm+1(e−it)

)
− 3

2

where Vm+1(x) = ∏m
k=0(x− πm,k) is the generating polynomial of the approxima-

tion.
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(i) If m = 3 and π3,0 = π3,1 = π3,2 = 0,π3,3 =−1/2, then V4(x) = x4 +(x3/2) and
therefore

(3/4) f (t) =
4

5+ 4cost
× (3.9526423+ 0.6366197sint

+ 3.5066059cost + 0.251163cos2t − 0.1061032sin3t

+ 0.0450316cos3t − 0.0506655sin4t)− 1.5

(t ∈ [−π ,π ]). In particular, we have

t f (4/5) f (t)

π/2 2 2.0553617
π/3 2 2.0031648
−π/3 1.3333333 1.3730748
π/5 2 1.9466674
−π/5 1.6 1.5967140

(ii) If m = 3 and π3,0 = π3,1 = π3,2 = π3,3 = 0, then V4(x) = x4 and therefore

(3/4) f (t) =1.5+ 0.6366197sint + 0.4052847cost − 0.3183098sin2t

+ 0.2122065sin3t + 0.0450316cos3t

(t ∈ [−π ,π ]). In particular, we have

t f (4/5) f (t)

π/2 2 1.9244132
π/3 2 1.9332752
−π/3 1.3333333 1.3819462
π/5 2 2.2890725
−π/5 1.6 1.5406813
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Chapter 6
Computer Graphics Techniques in Military
Applications

Dimitrios Christou, Antonios Danelakis, Marilena Mitrouli,
and Dimitrios Triantafyllou

Abstract The determination of intersection points of plane curves is a problem
of Computer Graphics with many applications in Applied Mathematics, Numerical
Analysis and many other scientific fields. More precisely, in military applications,
the trajectories of two flying objects such as missiles, aircrafts, etc. can be
interpreted by two plane curves. Our scope is to find the intersection points of
the given curves. The number of floating point operations (flops) of many classical
methods is not satisfactory, since they demand over O(n4) operations. Conversely,
many algorithms that are fast enough have serious problems with their numerical
stability. The main objective here is to develop fast and stable algorithms computing
the intersection points of plane curves. The error analysis and the computation of
complexity of all the proposed methods are analysed and demonstrated through
various examples.
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6.1 Introduction

In many military applications the determination of intersection points of plane
curves is required. The main difficulties are the high complexity of the existing
algorithms and their numerical stability. In order to handle in an efficient way the
previous problem, Numerical Linear Algebra techniques will be used. Our aim
is to reduce the numerical complexity in a stable way. For achieving this aim,
we implement our method combining numerical and symbolical arithmetic in a
“hybrid” way.

Hybridity refers in its most basic sense to mixture: a mixture of different ways,
components, methods, etc. which can produce the same or similar results. The basic
idea of making something “hybrid” is to improve on its characteristics and therefore
make it work better. In our case, we focus on the mixture of symbolic arithmetic
and numeric arithmetic, which will be referred to as hybrid arithmetic. In a hybrid
arithmetic system both exact symbolic and numeric finite precision arithmetic
operations can be carried out simultaneously. Symbolic computations refer to
arithmetic operations either with arbitrary variables or fractions of integers to
represent the numerical input data. The symbolic computations which involve only
numerical data in rational format are also referred to as rational computations and
they are always performed in almost infinite accuracy, depending on the symbolic
kernel of the programming environment. Conversely, numerical computations refer
to arithmetic operations with numbers in floating-point format (decimal numbers).
However, the accuracy of the performed numerical computations is limited to
a specific number of decimal digits which gives rise to numerical rounding
errors that often cause serious complications and thus must be avoided. Recent
years have witnessed the emergence of new research combining symbolic and
numeric computations and leading to new kinds of algorithms, involving algebraic
computations with rational and approximate numeric arithmetic. This combination
gives a different perspective in the way to implement an algorithm and introduces
the notion of hybrid computations. Therefore, the different algebraic procedures,
which form an algorithm, can be implemented independently either using symbolic
computations or numerical computations. This kind of implementation is also
referred to as hybrid implementation. The hybridization of an algorithm (i.e.
the hybrid implementation of an algorithm) is possible in software programming
environments with symbolic-numeric arithmetic capabilities such as Maple, Matlab,
Mathematica and others which involve an efficient combination of symbolic (ratio-
nal) and numerical (floating-point) operations. However, the effective combination
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of symbolic and numerical operations depends on the nature of an algebraic method
and the proper handling of the input data either as rational or floating-point numbers.

Considering the problem of intersection points, let Ct and Cu be two plane curves
with parametric equations P(t) = (x(t),y(t)), t ∈ [a,b] and Q(u) = (x̂(u), ŷ(u)),
u ∈ [c,d], which represent the trajectories of a missile and a moving target.
The computation of their intersection points requires three steps. In the first step,
we transform one of these parametric equations of the curves to its implicit form.
In the second step, we have to find the roots of a polynomial which form the possible
intersection points of the curves. In the last step, we exactly specify the intersection
points.

6.2 Symbolical Factorization of the Modified Sylvester
Matrix

Theorem 6.1 ([5]). Let P(t) =
(

u1(t)
υ1(t)

, u2(t)
υ2(t)

)
be a parametrization of a plane curve

C with gcd(u1(t),υ1(t)) = gcd(u2(t),υ2(t)) = 1. Then the polynomial defining the
implicit equation of C is

F(x,y) = Rest (u1(t)− xυ1(t),u2(t)− yυ2(t)) = Rest (p(t),q(t))

In order to compute the resultant of the polynomials u1(t)− xυ1(t) and u2(t)−
yυ2(t), we will use the Sylvester matrix.

Definition 6.2 (The Sylvester Matrix [1]). Let a and b be two polynomials,
respectively, of degree m and n, n ≤ m. Thus:

a(s) = amsm + am−1sm−1 + · · ·+ a1s+ a0

b(s) = bnsn + bn−1sn−1 + · · ·+ b1s+ b0

The Sylvester matrix associated to a and b is an (n+m)× (n+m) matrix obtained
as follows:

S = S(a,b) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

am am−1 am−2 . . . . . . a0 0 . . . . . . 0 0
0 am am−1 am−2 . . . . . . a0 0 . . . 0 0
...

...
... . . . . . .

...
... . . . . . .

...
...

0 0 0 . . . am am−1 . . . . . . . . . a1 a0

bn bn−1 . . . b0 0 0 . . . 0 . . . 0 0
0 bn . . . b0 0 . . . 0 . . . 0 0
...

...
... . . . . . .

...
... . . . . . .

...
...

0 0 0 . . . . . . bn bn−1 . . . . . . b1 b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Collecting the two first rows of the blocks representing the polynomials a(s)
and b(s), respectively, next collecting the second rows of them, etc., we construct a
modified Sylvester matrix with n same (2× (m+ 1)) blocks.

S∗(a,b) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

am am−1 am−2 am−3 . . . am−n am−n−1 am−n−2 . . . a0 0 0 . . . 0
bn bn−1 bn−2 bn−3 . . . b0 0 0 . . . 0 0 0 . . . 0
0 am am−1 am−2 . . . am−n+1 am−n am−n−1 . . . a1 a0 0 . . . 0
0 bn bn−1 bn−2 . . . b1 b0 0 . . . 0 0 0 . . . 0
0 0 am am−1 . . . am−n+2 am−n+1 am−n . . . a2 a1 a0 . . . 0
0 0 bn bn−1 . . . b2 b1 b0 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 am am−1 . . . am−n+1 am−n am−n−1 . . . a0

0 0 0 0 . . . 0 bn bn−1 . . . b1 b0 0 . . . 0
0 0 0 0 . . . 0 0 bn . . . b2 b1 b0 . . . 0
. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 0 0 . . . 0 0 bn . . . b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let a(t,x) = u1(t)−xυ1(t) and b(t,x) = u2(t)−yυ2(t). For computing the resultant
of these polynomials we have to triangularize their modified Sylvester matrix in
respect of t. We zero the first element of the second row of S∗(a,b) and we update
the other entries using LU or QR factorization. Since the two first rows are repeated
right shifted per one element, we update the rest of the matrix with no other
calculations. Now we have [ n

2 ] same blocks, where [·] denotes the integer part of
a real number. We continue similarly by zeroing and updating only one block at a
time, until the whole matrix is triangularized. This procedure requires O(n2) flops,
one order less than the complexity order of the classical LU or QR factorization.
The numerical stability of the algorithm remains the same as that of the classical
one. The determinant of S∗ gives the implicit equation of the curve. Due to the term
x in polynomials a(t,x) and b(t,x), the factorization of S∗ must be implemented
symbolically. The implicit equation of the curve will be

F(x,y) = det(S∗(a,b))

where det(·) denotes the determinant of a matrix.

6.3 Computing the Possible Intersection Points

If F(x,y) = 0 is the implicit equation of Ct , then by substituting the parametric
equation of Cu into F(x,y) = 0, we obtain the equation:

F(x̂(u), ŷ(u)) = 0
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The possible intersection points of the curves are the roots of the above equation
in [c,d]. Applying some steps of the bisection method and continuing with
Newton-Raphson (N-R) or Secant method [2], we compute the previous equation.
The convergence of N-R method is quadratic, but an initial value close to the root is
required. Bisection converges slower than Newton–Raphson, but it is used in order
to compute a “good” initial point for N-R.

6.4 Computing the Intersection Points

Let p1 = (x1,y1) be a possible intersection point of the two curves obtained in the
previous step. If p1 is an intersection point, then

p1 = (x1,y1) = (x(t),y(t)) = P(t)

Computing t from the previous equation, if t ∈ [a,b], then p1 is an intersection point
of the two curves, otherwise it is not. In order to implement this step, we will apply
the Singular Value Decomposition (SVD) [3]. If (x0,y0) is a possible intersection
point and M is the matrix obtained by substituting x0 and y0 in the modified Sylvester
matrix, then the vector (tm+n−1, . . . , t,1) belongs to the nullspace of M. If the rank
of M is m+ n− 1, then the vector (tm+n−1, . . . , t,1) is a basis of the nullspace of M.
Since V is orthogonal, in the last column of that matrix in the SVD of M, we obtain
a multiple of that vector with Euclidean norm α(tm+n−1, . . . , t,1). Taking this into
account the value of t corresponding to (x0,y0) is t = αt

α [4]. In the first phase
of SVD, we apply the modified QR factorization to the modified Sylvester matrix
reducing the complexity.

6.5 Numerical Example

Specify the intersection points of the following curves P(t),Q(u) [4] (Fig. 6.1):

Let P(t) = (x(t),y(t)) be a rational Bezier curve of degree 5, t ∈ [0,1].

x(t) = v1(t)
w1(t)

= −1/2 (1−t)5−5/4 t2(1−t)3+5/4 t4(1−t)+1/2 t5

(1−t)5+5/2 t(1−t)4+5/2 t2(1−t)3+5/2 t3(1−t)2+5/2 t4(1−t)+t5

y(t) = v2(t)
w2(t)

= 1/2 (1−t)5−5/4 t(1−t)4−5/4 t2(1−t)3+5/4 t3(1−t)2+5/4 t4(1−t)−1/2 t5

(1−t)5+5/2 t(1−t)4+5/2 t2(1−t)3+5/2 t3(1−t)2+5/2 t4(1−t)+t5

and Q(u) = (x(u),y(u)) be a polynomial Bezier curve of degree 8, u ∈ [0,1]:

x(u)=− 24(1− t)7 + 128t2(1− t)6 − 392t3(1− t)5 + 392t5(1− t)3 − 182t6(1− t)2

+24t7(1−t)
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Fig. 6.1 Determining the intersection points of two parametric curves

y(u) = − 1
4(1 − t)8 + 32t(1 − t)7 − 476t2(1 − t)6 + 1960t3(1 − t)5 − 3010t4

(1− t)4+ 1960t5(1− t)3 − 476t6(1− t)2+ 32t7(1− t)− 1
4 t8

Then, we compute the polynomials p = v1(t)− xw1(t) and q = v2(t)− yw2(t):

p =− 1
2 (1− t)5 − 5

4 t2 (1− t)3 + 5
4 t4 (1− t)+ 1

2 t5−
−x

(
(1− t)5 + 5

2 t (1− t)4 + 5
2 t2 (1− t)3 + 5

2 t3 (1− t)2 + 5
2 t4 (1− t)+ t5

)

q = 1
2 (1− t)5 − 5

4 t (1− t)4 − 5
4 t2 (1− t)3 + 5

4 t3 (1− t)2 + 5
4 t4

(1− t)− 1
2 t5−y

(
(1− t)5+ 5

2 t (1−t)4+ 5
2 t2 (1− t)3+ 5

2 t3 (1− t)2+ 5
2 t4 (1− t)+t5

)

The modified Sylvester matrix S∗(p,q) of p and q in respect of t is

S =

⎡
⎢⎢⎢⎢⎢⎣

1 −5 35/4 −(5x)/2−25/4 (5x)/2+5/2 −x−1/2 0 0 0 0

−1 5/2 −15/2 35/4− (5y)/2 (5y)/2−15/4 1/2− y 0 0 0 0

0 1 −5 35/4 −(5x)/2−25/4 (5x)/2+5/2 −x−1/2 0 0 0

0 −1 5/2 −15/2 35/4− (5y)/2 (5y)/2−15/4 1/2− y 0 0 0

0 0 1 −5 35/4 −(5x)/2−25/4 (5x)/2+5/2 −x−1/2 0 0

0 0 −1 5/2 −15/2 35/4− (5y)/2 (5y)/2−15/4 1/2− y 0 0

0 0 0 1 −5 35/4 −(5x)/2−25/4 (5x)/2+5/2 −x−1/2 0

0 0 0 −1 5/2 −15/2 35/4− (5y)/2 (5y)/2−15/4 1/2− y 0

0 0 0 0 1 −5 35/4 −(5x)/2−25/4 (5x)/2+5/2 −x−1/2

0 0 0 0 −1 5/2 −15/2 35/4− (5y)/2 (5y)/2−15/4 1/2− y

⎤
⎥⎥⎥⎥⎥⎦
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We follow the next process:

• Step 1: Symbolical computation of the determinant of S∗(p,q)

We compute the determinant F(x,y) of S∗(p,q) by using the modified LU
factorization for two polynomials. The special form of S∗(p,q) and the use
of symbolic operations guarantee a fast and error-free computation of the
determinant which defines the implicit equation of P(t).

F(x,y) =− 507
32 x5+ 22425

128 x4− 2145
64 x4y− 345

32 y2x3− 5625
8 x3+ 975

64 yx3+ 50625
128 x2y−

53025
256 x2y2 + 58125

1024 x2 + 165
16 y3x2 + 20625

256 y2x − 136875
1024 xy + 33525

256 y3x − 15
8 y4x +

9375
128 x− 35625

256 y3 − 69375
512 y2 − 339

64 y5 − 9375
64 y− 5325

128 y4

• Step 2: Symbolic-numeric (hybrid) computation of the possible intersection
points

The polynomial, obtained after the symbolical substitution of Q(u) into
F(x,y), has degree 40 with leading term 343739242171367008752927

2048 u40 and its roots,
which are computed numerically, are:

−0.1390025326, −0.01565456997, 0.006263135463, 0.02078384533,

0.2356938206, 0.7493929838, 0.9061596468, 0.9877287235

Six of the above roots are located in [0,1] and hence there are six possible points
in the intersection of the two curves:

x := −0.1370658337 y :=−0.06346706448
x := −0.3644703081 y := 0.1968785911
x := −0.07523503040 y :=−0.03785917025
x := 0.0931399242 y := 0.04193972369
x := 0.4384598681 y :=−0.0852719548
x := 0.2453565161 y := 0.0704612486

Substituting the first pair into S we take the matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −5 35
4 −5.907335416 2.157335416 −0.3629341663 0 0 0 0

0 1 −5 35
4 −5.907335416 2.157335416 −0.3629341663 0 0 0

0 0 1 −5 35
4 −5.907335416 2.157335416 −0.3629341663 0 0

0 0 0 1 −5 35
4 −5.907335416 2.157335416 −0.3629341663 0

0 0 0 0 1 −5 35
4 −5.907335416 2.157335416 −0.3629341663

−1 5/2 −15/2 8.908667661 −3.908667661 0.5634670645 0 0 0 0

0 −1 5/2 −15/2 8.908667661 −3.908667661 0.5634670645 0 0 0

0 0 −1 5/2 −15/2 8.908667661 −3.908667661 0.5634670645 0 0

0 0 0 −1 5/2 −15/2 8.908667661 −3.908667661 0.5634670645 0

0 0 0 0 −1 5/2 −15/2 8.908667661 −3.908667661 0.5634670645

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• Step 3: Numerical computation of the intersection points

Now, computing the SVD of M by using the modified version of the QR
method, the singular values and the last column of V are:

SV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

29.8054861571094812
20.7951855309906364
11.7147904374475332
5.87373827065510578
2.97903489165063552
1.27170139207374166

0.511452110138166161
0.419563134741653964
0.221314878081687760

1.29548396427539710×10−12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00754085106243570884
0.0176876237818112404
−0.0327212779420765210
0.0478347150969115134
0.0489506140418809604
−0.0444343296751540593
−0.0820511003903460212

0.176557015211754626
0.344819359122573276
0.913835716166440770

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, t1 = V (9,10)
V (10,10) = 0.3773318913 ∈ [0,1] and so t1 is a point in the

intersection of the two curves. We continue similarly with the other five pairs
(x,y).

With this process, we have actually achieved a significant reduction of the
required flops and the corresponding computational time. Using the modified QR
factorization in the first phase of the SVD for the bidiagonalization of M, the
required flops are only O(m3

2 + 3
2 mn2 + 2m2n− 4

3 n3) (which for m = n is equal to
8
3 n3 flops) in contrast with the O( 4

3 (m+n)3) flops (which for m = n is equal to 32
3 n3

flops) of the classical QR bidiagonalization. The reduction of the flops in the first
phase of the SVD is very important, since the total flops of SVD generally depend
on the flops required for the bidiagonalization of the matrix.

6.6 Conclusions

In this paper, we have presented a method for computing the intersection points
of plane curves. We modified classical methods, such as LU and QR factorization,
in order to take advantage of the special form of the modified Sylvester matrix,
reducing the numerical complexity of the methods. The modified QR factorization
is implemented twice, one in the first step of the proposed algorithm and one in
the third step (in the first phase of SVD). This computational technique reduced
per one order the required complexity of the whole procedure, resulting in an
algorithm of O(n3) flops. Our algorithm is numerically stable, since it uses slightly
modified versions of QR factorization and SVD methods. The proposed algorithm
was developed in a hybrid computational environment, where both numeric and the
symbolic arithmetic were used in order to improve the quality of the given results.
Finally, an analytical example regarding the computation of intersection points of
plane curves was given.
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Chapter 7
Numerical Optimization for the Length Problem

Christos Kravvaritis and Marilena Mitrouli

Abstract The length problem for normalized orthogonal (NO) matrices (satisfying
AAT = AT A= c(A)In, for some constant c(A)), which is the determination of c(n) =
sup{c(A)|A ∈ R

n×n, NO matrix}, is formulated as a constrained optimization
problem. The most appropriate numerical optimization technique for its study
is analyzed. The corresponding numerical results provide useful experimental
evidence concerning the possible values of c(n) for various values of n and the
relevant significance of Hadamard and weighing matrices is pointed out.

Keywords Length problem • Normalized orthogonal matrices • Numerical
optimization

AMS Subject Classification: 65K05, 15B10, 15B34

7.1 Introduction

A Hadamard matrix H of order n is a matrix with entries ±1 satisfying HHT =
HT H = nIn [4, 9, 13]. It can be proved [7] that if H is a Hadamard matrix of order
n then n = 1,2 or n ≡ 0(mod4). However it is still an open conjecture whether
Hadamard matrices exist for every n a multiple of 4. A more general class of
orthogonal matrices are the weighing matrices W of order n and weight n− k with
entries 0,±1 satisfying WW T = W TW = (n− k)In [4]. These matrices are special
cases of a generalized class of orthogonal matrices called orthogonal designs [4].
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Hadamard and weighing matrices appear in several scientific fields, including the
theory of Combinatorial Designs in Statistics, Coding Theory, Cryptography, Image
and Signal Processing, and Analytical Chemistry [4, 9, 13]. Therefore they can be a
powerful tool for military applications. For instance, in Coding Theory Hadamard
matrices are used for constructing the error correcting Hadamard codes, which have
good coding properties concerning the secure transmission of data sequences and
provide high error correction rate. A famous application of the Hadamard code was
in the NASA Mariner spacecraft missions in 1969 and 1972 to Mars, for correcting
the picture transmission errors and for digitalizing and transmitting photos of Mars
back to Earth. Since the messages from Mariner were fairly weak, the potential for
errors was high, so high error correction capability was necessary. Also information
transmission during recent flybys of the outer planets in the solar system is based on
Hadamard matrices, too.

Hadamard matrices are used in Cryptography for guaranteeing the encryption,
concealment, and secure transmission of data over a nonsecure channel; at personal
level (e.g., safeguarding the PIN and banking transactions via internet) as well as
at national level (e.g., national security, protection of medical and tax records and
confidential data). Hadamard matrices are associated with bent functions which have
the highest possible nonlinearity. Thus they effectively disguise and confuse char-
acteristics of data sequences. This is a good property from a cryptographic point of
view. Hadamard matrices and bent functions are used in the design of the so-called
S-boxes, which are fundamental to the construction of cryptographically strong SPN
algorithms (substitution-permutation-network) for private key cryptography.

7.1.1 The Length Problem

Hadamard and weighing matrices are examples of normalized orthogonal matrices.
A matrix A is called normalized if maxi, j |ai j| = 1 and normalized orthogonal
(NO) if A is normalized and satisfies additionally AAT = AT A = c(A)In for some
constant c(A).

The problem of determining

c(n) = sup{c(A)|A ∈ R
n×n, NO matrix}

is called the length problem [3]. The term “length” is associated with the quantity√
c(A), which is the usual Euclidean length of every row of a NO matrix A. The NO

matrices form a compact subset of the set of all n×n matrices Rn2
and the function

c(A) is continuous on it. Hence c(n) exists and it is attained for a NO matrix A
with c(A) = c(n). Hadamard matrices are the only matrices known so far that attain
length and growth [3, 11] equal to their order and also the maximum determinant
value for matrices with entries ±1, so it is intriguing to study their properties.
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7.2 Optimization Formulation of the Length Problem

Here we present an approach that is based on the formulation of the length problem
as an appropriate optimization problem. This strategy yields useful experimental
results concerning the possible values of c(n) for various n for NO matrices and
helps to gather evidence relevant to the determination of c(n).

The main idea of the method is to represent the n2 unknown entries of an n× n
matrix X = (xi j), 1 ≤ i, j ≤ n, as a vector x̄ with elements x1, . . . ,xn2 . We apply the
constraints

−1 ≤ xi ≤ 1, i = 1, . . . ,n2

for the entries of a matrix X , since it is supposed to be normalized. Since maximizing
f is equivalent to minimizing − f , one should minimize the objective function

−
n

∑
j=1

x2
1 j,

or equivalently, in terms of the vector formulation,

f (x̄) =−
n

∑
i=1

x2
i ,

which is actually the negative of the square of the Euclidean length of the first
row, corresponding to the quantity c(A). This stand-alone property is not enough
for the correct interpretation and modeling of the length problem, i.e., it cannot
be formulated as an unconstrained optimization problem but constraints should be
applied.

In order to write a proper optimization problem exploiting the specific formula-
tion with this objective function, one should take also into account the equality of
the usual Euclidean lengths of every two distinct rows, which are actually equal to
c(X). This property can be formulated in terms of xi j, 1 ≤ i, j,≤ n, as

n

∑
j=1

x2
i j −

n

∑
j=1

x2
i+1, j = 0, 1 ≤ i ≤ n− 1

and in the sequel in terms of x1, . . . ,xn2 as

n

∑
k=1

x2
(i−1)n+k −

n

∑
k=1

x2
in+k = 0, 1 ≤ i ≤ n− 1.

Furthermore the orthogonality of every two distinct rows of X must be taken into
consideration. This fact leads to the constraints

n

∑
k=1

xikx jk = 0, 1 ≤ i < j ≤ n
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and
n

∑
k=1

x(i−1)n+kx( j−1)n+k = 0, 1 ≤ i ≤ n− 1, i+ 1 ≤ j ≤ n,

formulated in terms of xi j and xi, respectively.
Summarizing, the optimization formulation of the length problem can be stated

as follows:

min
x̄∈Rn2 f (x̄) =−∑n

i=1 x2
i (7.1)

subject to ∑n
k=1 x2

(i−1)n+k −∑n
k=1 x2

in+k = 0, 1 ≤ i ≤ n− 1, (7.2)

∑n
k=1 x(i−1)n+kx( j−1)n+k = 0, 1 ≤ i ≤ n− 1, i+ 1 ≤ j ≤ n, (7.3)

xi + 1 ≥ 0, i = 1, . . . ,n2 (7.4)

and 1− xi ≥ 0, i = 1, . . . ,n2. (7.5)

So there are totally n− 1+ n(n−1)
2 equality constraints (n− 1 from (7.2) and n(n−1)

2
from (7.3)) and 2n2 inequality constraints. Since the relative computer program
produces approximations to local constrained optima, depending on the choice of
the initial point, and we are interested in global constrained optima, it is sensible to
repeat the procedure for many initial points.

7.2.1 The Appropriate Optimization Technique

The most appropriate method for solving the optimization problem corresponding
to the length problem is the sequential quadratic programming (SQP) algorithm.
The SQP approach is one of the most effective methods for nonlinearly constrained
optimization problems and it is equally suitable for both small and large problems.
It is based on generation of steps by solving sequentially appropriately formulated
quadratic subproblems. It can be adopted in both fundamental iterative strategies of
optimization for moving from a current point xk to a new iterate xk+1 in order to find
a local minimum of an objective function: line search and trust-region frameworks.
Here we illustrate the essential ingredients of a line search SQP algorithm for
solving the following general nonlinear programming problem (7.6)–(7.8) with
equality and inequality constraints

minx∈Rn f (x) (7.6)

subject to ci(x) = 0, i ∈ E , (7.7)

and ci(x)≥ 0, i ∈ I, (7.8)

where f , ci : Rn →R are smooth. More details on SQP can be found in [1,5,10,12].
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In a line search strategy, the algorithm chooses a direction pk and searches along
this direction from the current iterate xk for a new iterate with a lower function value.
The distance to move along pk can be found by solving approximately the following
one-dimensional minimization problem in order to find a step length ak:

min
a>0

f (xk + apk).

Then the new iterate is updated as xk+1 = xk + ak pk. The procedure is terminated
when a suitable criterion is satisfied, e.g., ||∇ f (xk)|| is sufficiently small.

The essential idea of SQP is to model the problem (7.6)–(7.8) at the current
iterate xk by a quadratic programming subproblem and to use the minimizer of this
subproblem for defining a new iterate xk+1. It is important to design the quadratic
subproblem so that it yields a good step for the underlying constrained optimization
problem and so that the overall SQP algorithm has good convergence properties and
good practical performance. The quadratic programming subproblem is obtained by
linearizing both the inequality and equality constraints:

min
p∈Rn

1
2

pT Bk p+∇ f T
k p

subject to ∇ci(xk)
T p+ ci(xk) = 0, i ∈ E ,

and ∇ci(xk)
T p+ ci(xk)≥ 0, i ∈ I.

Bk stands for B(xk,λk), where B(x,λ ) = ∇2
xxL(x,λ ) is the Hessian matrix of the

Lagrangian. This quadratic problem can be solved by means of any algorithm for
quadratic programming described in [1,12], with most preferable being an active set
strategy similar to that of [5]. The solution of the quadratic subproblem produces a
vector pk, which is used to form a new iterate xk+1 = xk + ak pk.

7.3 Numerical Results

After using the appropriate computer package repeatedly and for many initial points
we obtained the following numerical results, which confirm the theoretically known
values c(3) = 9/4, c(4) = 4 and the experimental results carried out in [3] for n =
5,6,7 and also extend them for the cases n = 8, . . . ,16. Precisely, we are led to
believe that the results given in Table 7.1 hold, where the values of c(n) for n odd
are rounded to four decimal digits. First of all we mention that the algorithm exhibits
a very stable behavior, i.e., for the majority of the many and various random initial
points chosen the results of Table 7.1 occur.

These results give rise to the following observations. The values obtained for
c(n), n even, are given for the special cases of orthogonal designs presented before.
More specifically, for n ≡ 0mod4, c(n) is always given by a Hadamard matrix of
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Table 7.1 Numerical results
for the length problem

n c(n)

5 3.3611
6 5
7 5.0777
8 8
9 6.4308
10 9
11 8.4495
12 12
13 10.3934
14 13
15 11.8511
16 16

order n and equals n. For n ≡ 2mod4, c(n) is always given by a weighing matrix of
order n and weight n− 1 and equals n− 1. These observations can be proved also
theoretically yielding the following Propositions 7.1 and 7.2.

Proposition 7.1. c(n) = n iff there exists a Hadamard matrix of order n.

Proof. We deal with NO matrices, so it is clear that c(n) ≤ n. Because of the NO
property, the only possibility to obtain the maximum value c(n) = n is when we
have a matrix with mutually orthogonal distinct rows and columns, and the inner
product of every row and column with itself is equal to n. The only possibility are
the Hadamard matrices. �

The second case can be proved by means of the same argumentation.

Proposition 7.2. c(n) = n− 1 iff there exists a weighing matrix of order n and
weight n− 1.

The rest of the values do not seem to follow a specific, predictable pattern and it
is interesting to examine whether the values in Table 7.1 for n odd are true or not,
and whether they are subject to any particular formula, which would help to predict
c(n) for larger values of n. The above results provide also evidence that c(n) seems
to be increasing for n odd and even separately, whereas the monotonicity of c(n)
for arbitrary values of n does not become apparent. Furthermore it is questionable
whether c(5)< c(4), c(11)< c(10), c(13)< c(12), etc.

7.4 Conclusions

The length problem has been defined and the role of Hadamard and weighing
matrices has been highlighted. Its interpretation as an appropriately formutated
constrained nonlinear optimization problem yields interesting experimental results
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offering insight into the possible values of c(n). It is always useful to formulate
some problems as appropriately defined optimization problems, if possible, as it
was done, e.g., in [6]. The corresponding numerical results led to proving that the
inequality part in the famous Cryer’s complete pivoting conjecture for the growth
factor in Gaussian Elimination [2, 3, 8], which was believed for many years to be
true, is finally false. Ongoing research is focused on whether the values, which
don’t correspond to Hadamard and weighing matrices, follow a specific, predictable
pattern.
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Chapter 8
Adaptive Policies for Sequential Sampling under
Incomplete Information and a Cost Constraint

Apostolos Burnetas and Odysseas Kanavetas

Abstract We consider the problem of sequential sampling from a finite number
of independent statistical populations to maximize the expected infinite horizon
average outcome per period, under a constraint that the expected average sampling
cost does not exceed an upper bound. The outcome distributions are not known.
We construct a class of consistent adaptive policies, under which the average
outcome converges with probability 1 to the true value under complete information
for all distributions with finite means. We also compare the rate of convergence for
various policies in this class using simulation.

Keywords Stochastic learning and adaptive control • Sequential design
• Sampling cost constraint
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8.1 Introduction

In this paper we consider the problem of sequential sampling from k independent
statistical populations with unknown distributions. The objective is to maximize
the expected outcome per period achieved over infinite horizon, under a constraint
that the expected sampling cost per period does not exceed an upper bound.
The introduction of a sampling cost introduces a new dimension in the standard
trade-off between experimentation and profit maximization faced in problems
of control under incomplete information. The sampling cost may prohibit using
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populations with high mean outcomes because their sampling cost may be too high.
Instead, the decision maker must identify the subset of populations with the best
combination of outcome versus cost and allocate the sampling effort among them in
an optimal manner.

From the mathematical point of view, this class of problems incorporates
statistical methodologies into mathematical programming problems. Indeed, under
complete information, the problem of effort allocation under cost constraints is
typically formulated in terms of linear or nonlinear programming. However when
some of the problem parameters are not known in advance but must be estimated
by experimentation, the decision maker must design adaptive learning and control
policies that ensure learning about the parameters while at the same time ensuring
that the profit sacrificed for the learning process is as low as possible.

The model in this paper falls in the general area of multi-armed bandit problems,
which was initiated by [10], who proposed a simple adaptive policy for sequentially
sampling from two unknown populations in order to maximize the expected
outcome per unit time infinite horizon. Lai and Robbins [6] generalize the results
by constructing asymptotically efficient adaptive policies with optimal convergence
rate of the average outcome to the optimal value under complete information
and show that the finite horizon loss due to incomplete information increases
with logarithmic rate. Katehakis and Robbins [4] prove that simpler index-based
efficient policies exist in the case of normal distributions with unknown means,
while Burnetas and Katehakis [2] extend the results on efficient policies in the
nonparametric case of discrete distributions with known support.

In a finite horizon Kulkarni and Lugosi [5] develop a minimax version of the [6]
results for two populations, while Auer et al. [1] construct policies which also
achieve logarithmic regret uniformly over time, rather than only asymptotically.

In all works mentioned above there is no side constraint in sampling. Problems
with adaptive sampling and side constraints are scarce in the literature. Wang [11]
considers a multi-armed bandit model with constraints and adopts a Bayesian
formulation and the Gittins-index approach. The paper proposes several heuristic
policies. Pezeshk and Gittins [8] also consider the problem of estimating the
distribution of a single population with sampling cost under the assumption that the
number of users who will benefit from the depends on the outcome of the estimation.
Finally, Madani et al. [7] present computational complexity analysis for a version
of the multi-armed bandit problem with Bernoulli outcomes and Beta priors, where
there is a budget available for sampling.

Another approach, which is closer to the one we adopt here, is to consider
the family of stochastic approximations and reinforcement learning algorithms.
The general idea is to select the sampled population following a randomized
policy with randomization probabilities that are adaptively modified after observing
the outcome in each period. The adaptive scheme is based on the stochastic
approximation algorithm. Algorithms of this type are analyzed in [9] for the more
general case where the population outcomes have Markovian dynamics instead of
being i.i.d.
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The contribution of this paper is the construction of a family of policies for which
the average outcome per period converges to the optimal value under complete
information for all distributions of individual populations with finite means. In this
sense, it generalizes the results of [10] by including a sampling cost constraint. The
paper is organized as follows. In Sect. 8.2, we describe the model in the complete
and incomplete information framework. In Sect. 8.3, we construct a class of adaptive
sampling policies and prove that it is consistent. In Sect. 8.4, we explore the rate of
convergence of the proposed policies using simulation. Section 8.5 concludes.

8.2 Model Description

Consider the following problem in adaptive sampling. There are k independent
statistical populations, i = 1, . . . ,k. Successive samples from population i constitute
a sequence of i.i.d. random variables Xi1,Xi2, . . . following a univariate distribution
with density fi(·) with respect to a nondegenerate measure v. Then the stochastic
model is uniquely determined by the vector f = ( f1, . . . , fk) of individual pdfs.
Given f let μ( f ) be the vector of expected values, i.e., μi( f ) = E fi(Xi). The form
of f is not known. In each period the experimenter must select a population to
obtain a single sample from. Sampling from population i incurs cost ci per sample
and without loss of generality we assume c1 ≤ c2 ≤ ·· · ≤ ck, but not all equal.
The objective is to maximize the expected average reward per period subject to the
constraint that the expected average sampling cost per period over infinite horizon
does not exceed a given upper bound C0. Without loss of generality we assume
c1 ≤ C0 < ck. Indeed if C0 < c1 then the problem is infeasible. On the other hand
if C0 ≥ ck then the cost constraint is redundant. Let d = max{ j : c j ≤ C0}. Then
1 ≤ d < k and cd ≤C0 < cd+1.

8.2.1 Complete Information Framework

We first analyze the complete information problem. If all fi(·) are known, then the
problem can be modeled via linear programming. Consider a randomized sampling
policy which at each period selects population j with probability x j, for j = 1, . . . ,k.
To find a policy that maximizes the expected reward, we can formulate the following
linear program in standard form:

z∗ = max
k

∑
j=1

μ jx j

k

∑
j=1

c jx j + y =C0
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k

∑
j=1

x j = 1

x j ≥ 0,∀ j. (8.1)

Note that z∗ depends on f only through the vector μ( f ), i.e., z∗ is the same for all
collections of pdf with the same μ . Therefore in the remainder we will denote z∗ as
a function of the unknown mean vector μ .

In the analysis we will also use the dual linear program (DLP) of (8.1),

z∗D = min g+C0λ

g+ c1λ ≥ μ1

...

g+ ckλ ≥ μk

g ∈ R,λ ≥ 0,

with two variables λ and g which correspond to the first and second constraints of
(8.1), respectively.
The basic matrix B corresponding to a basic feasible solution (BFS) of problem (8.1)
may take one of two forms:
In the first case, the basic variables are xi,x j, for two populations i, j, with ci ≤C0 ≤
c j,ci < c j, and the basic matrix is

B =

(
ci c j

1 1

)
.

The BFS is then

xi =
c j −C0

ci − c j
, x j =

C0 − ci

ci − c j
, and xm = 0 for m �= i, j, y = 0,

with

z(x) = μixi + μ jx j.

The solution is nondegenerate when ci < C0 < c j and degenerate when C0 = ci or
C0 = c j. In the latter case, it corresponds to sampling from a single population l = i
or l = j, respectively:

xl = 1, xm = 0 ∀m �= l, y = 0,

with

z(x) = μl .

The second case of a BFS corresponds to basic variables xi,y for a population i with
ci ≤C0. The basic matrix is
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B =

(
ci 1
1 0

)
.

In this case the BFS corresponds to sampling from population i only

xi = 1, xm = 0 ∀m �= i, y =C0 − ci,

with

z(x) = μi.

The solution is nondegenerate if ci <C0; otherwise it is degenerate.
From the above it follows that a BFS is degenerate if xl = 1 for some l with

cl =C0. Any basic matrix B that includes xl as a basic variable corresponds to this
BFS.

For a BFS x let

b = {i : xi > 0}.
Then, either b = {i, j} for some i, j with i ≤ d ≤ j, or b = {i} for some i ≤ d. There
is a one to one correspondence between BFSs and sets b of this form. We use K to
denote the set of BFS, or equivalently

K = {b : b = {i, j}, i ≤ d ≤ j or b = {i}, i ≤ d}.

Since the feasible region of (8.1) is bounded, K is finite.
For a basic matrix B, let vB = (λ B,gB) denote the dual vector corresponding to B,

i.e., vB = μBB−1, where μB = (μi,μ j), or μB = (μi,0), depending on the form of B.
Regarding optimality, a BFS is optimal if and only if for at least one correspond-

ing basic matrix B the reduced costs (dual slacks) are all nonnegative:

φB
a ≡ cα λ B + gB − μα ≥ 0, α = 1, . . . ,k.

A basic matrix B satisfying this condition is optimal. Note that if an optimal BFS is
degenerate, then not all basic matrices corresponding to it are necessarily optimal.

It is easy to show that the reduced costs can be expressed as a linear combination
φB

α = wB
α μ , where wB

α is an appropriately defined vector that does not depend on μ .
We finally define the set with optimal solutions of (8.1) for a μ ,

s(μ) = {b ∈ K : b corresponds to an optimal BFS}.

An optimal solution of (8.1) specifies randomization probabilities that guarantee
maximization of the average reward subject to the cost constraint. Note that an
alternative way to implement the optimal solution, without randomization, is to
sample periodically from all populations so that the proportion of samples from each
population j is equal to x j. This characterization of a policy is valid if randomization
probabilities are rational.
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8.2.2 Incomplete Information Framework

In this paper we assume that the population distributions are unknown. Specifically
we make the following assumption.

Assumption 1 The outcome distributions are independent, and the expected values
μα = E(Xα)< ∞, α = 1, . . . ,k.

Let F be the set of all f = ( f1, . . . , fk) which satisfy Assumption 1 Class F is the
effective parameter set in the incomplete information framework. Under incomplete
information, a policy as that in Sect. 8.2.1, which depends on the actual value of μ ,
is not admissible. Instead we restrict our attention to the class of adaptive policies,
which depend only on the past observations of selections and outcomes.

Specifically, let At ,Xt , t = 1,2, . . . denote the population selected and the
observed outcome at period t. Let ht = (α1,x1, . . . ,αt−1,xt−1) be the history of
actions and observations available at period t.

An adaptive policy is defined as a sequence π = (π1,π2, . . .) of history dependent
probability distributions on {1, . . . ,k}, such that

πt( j,ht) = P(At = j|ht).

Given the history hn, let Tn(α) denote the number of times population α has been
sampled during the first n periods

Tn(α) =
n

∑
t=1

1{At = α}.

Let Sπ
n be the reward up to period n:

Sπ
n =

n

∑
t=1

Xt ,

and Cπ
n be the total cost up to period n:

Cπ
n =

n

∑
t=1

cAt .

These quantities can be used to define the desirable properties of an adaptive policy,
namely feasibility and consistency.

Definition 8.1. A policy π is called feasible if

limsup
n→∞

Eπ(Cπ
n )

n
≤C0, ∀ f ∈ F. (8.2)
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Definition 8.2. A policy π is called consistent if it is feasible and

lim
n→∞

Sπ
n

n
= z∗(μ), a.s. ∀ f ∈ F.

Let Π F and ΠC denote the class of feasible and consistent policies, respectively.
The above properties are reasonable requirements for an adaptive policy. The first
ensures that the long-run average sampling cost does not exceed the budget. The
second definition means that the long-run average outcome per period achieved
by π converges with probability one to the optimal expected value that could be
achieved under full information, for all possible population distributions satisfying
Assumption 1.

Note that consistency as defined in Definition 8.2 is equivalent to the notion of
strong consistency of an estimator function.

8.3 Construction of a Consistent Policy

A key question in the incomplete information framework is whether feasible and,
more importantly, consistent policies exist and how they can be constructed.

It is very easy to show that feasible policies exist, since the sampling costs are
known. Indeed any randomized policy, such as those defined in Sect. 8.2.1, with
randomization probabilities satisfying the constraints of LP (8.1) is feasible for any
distribution f . Thus, Π F �= /0.

On the other hand, the construction of consistent policies is not trivial. A con-
sistent policy must accomplish three goals: first to be feasible, second to be able
to estimate the mean outcomes from all populations, and third, in the long run,
to sample from the nonoptimal populations rarely enough so as not to affect the
average profit.

In this section we establish the existence of a class of consistent policies. The
construction follows the main idea of [10], based on sparse sequences, which is
adapted to ensure feasibility.

We start with some definitions. For any population j, let μ̂ j,t , t = 1,2, . . . be a
strongly consistent estimator of μ j, i.e., limt→∞ μ̂ j,t = μ j a.s. − f j. Such estimators
exist; for example from Assumption 1, the sample mean X j,t =

1
t ∑t

k=1 Xj,k is
strongly consistent.

For any n, let μ̂
n
= (μ̂ j,Tj(n), j = 1, . . . ,k) be the vector estimates of μ based on

the history up to period n. Also let ẑn = z(μ̂
n
) denote the optimal value of the linear

program in (8.1) where the estimates are used in place of the unknown mean vector
in the objective. ẑn will be referred to as the Certainty-Equivalence LP. Note that
s(μ̂

n
) is the set of optimal BFS of ẑn.

The solution of ẑn corresponds to a sampling policy determined by an optimal
vector x̂n, so that ẑn = μ̂

′
n
x̂n.
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We next define a class of sampling policies, which we will show to be consistent.
Consider k nonoverlapping sparse sequences of positive integers,

τ j = {τ j,m, m = 1,2, . . .}, j = 1, . . . ,k,

such that

lim
m→∞

τ j,m

m
= ∞, j = 1, . . . ,k. (8.3)

Now define policy π0 which in period n selects any population j with probability
equal to

π0( j|hn) =

{
1, if τ j,m = n for some m ≥ 1
x̂n, j, otherwise

where x̂n is any optimal BFS of the certainty-equivalence LP ẑn.
The main idea in π0 is that at periods which coincide with the terms of sequence

τ j, population j is selected regardless of the history. These instances are referred to
as forced selections of population j. The purpose of forced selections is to ensure
that all populations are sampled infinitely often, so that the estimate vector μ̂

n
converges to the true mean μ as n → ∞.

On the other hand, because sequences τ j are sparse, the fraction of forced
selections periods converges to zero for all j, so that sampling from the nonoptimal
populations does not affect the average outcome in the long run.

In the remaining time periods, which do not coincide with a sparse sequence
term, the sampling policy is that suggested by the certainty equivalence LP, i.e., the
experimenter in general randomizes between those populations, which, based on the
observed history, appear to be optimal.

In the next theorem we prove the main result of the paper, namely that of π0∈ΠC.
The proof adapts the main idea of [10] to the problem with the cost constraint.

Theorem 8.3. Policy π0 is consistent.

Before we show Theorem 8.3, we prove an intermediate result which shows that
if in some period the certainty equivalence LP yields an optimal solution that is
nonoptimal under the true distribution f , then the estimate of at least one population
mean must be sufficiently different from the true value. We use the supremum norm
‖x‖= max j |x|.
Lemma 8.4. For any μ there exists ε > 0 such that for any n = 1,2, . . . if b ∈ s(μ̂

n
)

and b /∈ s(μ) for some b ∈ K, then ‖μ − μ̂
n
‖ ≥ ε .

Proof. Since b /∈ s(μ), we have that for any basic matrix B′ corresponding to BFS

b there exists at least one m ∈ {1, . . . ,k} such that φB′
m (μ)< 0. Therefore,

−wB′
m μ =−φB′

m (μ)> 0. (8.4)
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In addition, since b ∈ s(μ̂
n
), there exists a basic matrix B corresponding to b,

such for any m ∈ {1, . . . ,k} it is true that φB
m(μ̂n

)≥ 0, thus,

wB
mμ̂

n
= φB

m(μ̂n
)≥ 0. (8.5)

For this basic matrix B, it follows from (8.4) and (8.5) that

wB
mμ̂

n
−wB

mμ ≥−φB
m(μ) = |φB

m(μ)|> 0

⇒ wB
m(μ̂n

− μ)≥ |φB
m(μ)|

⇒ k‖wB
m‖‖μ̂

n
− μ‖ ≥ |φB

m(μ)|

⇒ ‖μ̂
n
− μ‖ ≥ |φB

m(μ)|
k‖wB

m‖
,

because from the property wB
mμ < 0 it follows that ‖wB

m‖> 0.
Now let

ε = min
b∈K,b/∈s(μ)

min
B∈b

min
m∈{1,...,k}

{
|φB

m(μ)|
k‖wB

m‖
: φB

m(μ)< 0

}
> 0.

where the minimization over B ∈ b is taken over all basic matrices corresponding to
BFS b.

Then ‖μ̂
n
− μ‖ ≥ ε . �

Proof of Theorem 8.3. For i = 1, . . . ,k let

SSi(n) =
n

∑
t=1

1{τi,m = t, for some m},

denote the number of periods in {1, . . . ,n} where a forced selection from
population i is performed.

Also let,

Y b
j (n) =

n

∑
t=1

1{b ∈ s(μ̂
t
),b is used in period t, and j is sampled from,

due to randomization in b}.
Y b(n) = ∑

j∈b

Y b
j (n),

Y (n) = ∑
b∈s(μ)

Y b(n).
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Since these include all possibilities of selection in a period, it is true that

n =
k

∑
i=1

SSi(n)+ ∑
b/∈s(μ)

Y b(n)+ ∑
b∈s(μ)

Y b(n).

Now let Wn denote the sum of outcomes in periods where true optimal BFS
are used:

Wn = ∑
b∈s(μ)

n

∑
t=1

Xt ·1{b is used in period t}.

To show the theorem we will prove that

lim
n→∞

SSi(n)
n

= 0, i = 1, . . . ,k (8.6)

lim
n→∞ ∑

b/∈s(μ)

Y b(n)
n

= 0, a.s., (8.7)

lim
n→∞

Wn

n
= z∗(μ), a.s.. (8.8)

First, (8.6) holds since τi,m are sparse for all i. To show (8.7), in no forced selection
periods, in order to sample from a BFS b it is necessary but not sufficient that
b ∈ s(μ̂

n
), thus

Y b(n)≤
n

∑
t=1

1
{

b ∈ s(μ̂
t
)
}
.

For any b ∈ s(μ̂
t
) and b /∈ s(μ), it follows from Lemma 8.4 that

‖μ̂
t
− μ‖ ≥ ε.

Therefore, for b /∈ s(μ)

Y b(n) ≤
n

∑
t=1

1
{

b ∈ s(μ̂
t
)
}

≤
n

∑
t=1

1
{
|μ̂

t
− μ‖ ≥ ε

}

thus,

Y b(n)
n

≤ 1
n

n

∑
t=1

1
{
‖μ̂

t
− μ‖ ≥ ε

}
→ 0, n → ∞, a.s.,

because μ̂
t
→ μ , a.s., since μ̂

t
is strongly consistent estimator, thus (8.7) holds.
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Now to show (8.8) we rewrite Wn as

Wn

n
=

1
n ∑

b∈s(μ)

n

∑
t=1

Xt ·1{b is used in period t}

=
1
n ∑

b∈s(μ)
∑
j∈b

n

∑
t=1

Xt ·1{b is used in period t and j is sampled from}

=
1
n ∑

b∈s(μ)
∑
j∈b

Y b
j (n) ·X j,Yb

j (n)

= ∑
b∈s(μ)

Y b(n)
n

· ∑
j∈b

Y b
j (n)

Y b(n)
·X j,Y b

j (n)
.

From this expression it follows that

Wn

n
− z∗ = ∑

b∈s(μ)

Y b(n)
n

· ∑
j∈b

Y b
j (n)

Y b(n)
·X j,Y b

j (n)
− z∗

= ∑
b∈s(μ)

Y b(n)
n

· zb
n − z∗,

where zb
n = ∑ j∈b

Y b
j (n)

Y b(n)
·X j,Y b

j (n)
.

Since Y (n) = ∑b∈s(μ)Y
b(n), we have

Wn

n
− z∗ = ∑

b∈s(μ)

Y b(n)
n

· zb
n − z∗+

Y (n)
n

z∗ − Y (n)
n

z∗

= ∑
b∈s(μ)

Y b(n)
n

· (zb
n − z∗)− (1− Y (n)

n
)z∗.

To show (8.8) we will prove that

Y b(n)
n

· (zb
n − z∗)→ 0 a.s. ∀b ∈ s(μ), and

Y (n)
n

→ 1, a.s.

Random variable Y b(n) is increasing in n and 0≤Y b(n)≤ n, thus either Y b(n)→
∞ or Y b(n)→ M for some M < ∞. We define the following events:

D = {Y b(n)→ ∞} and Dc = {Y b(n)→ M}.
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Now let P(D) = p and P(Dc) = 1− p. Also let

A =

{
lim
n→∞

Y b(n)
n

· (zb
n − z∗) = 0

}
.

Then P(A) = P(A|D) · p+P(A|Dc) · (1− p).
Now,

P(A|D) = P

(
lim
n→∞

Y b(n)
n

· (zb
n − z∗) = 0| lim

n→∞
Y b(n) = ∞

)

≥ P
(

lim
n→∞

zb
n − z∗ = 0| lim

n→∞
Y b(n) = ∞

)

= 1,

from the strong law of large numbers, since Y b(n)
n ≤ 1 ∀ n, and

P(A|Dc) = P

(
lim
n→∞

Y b(n)
n

· (zb
n − z∗) = 0| lim

n→∞
Y b(n) = M < ∞

)
= 1,

since in this case zb
n − z∗ is bounded for any finite n. Therefore, P(A) = 1, thus

Y b(n)
n

· (zb
n − z∗)→ 0, n → ∞, a.s. , ∀b ∈ s(μ).

Finally,

Y (n)
n

= ∑
b∈s(μ)

Y b(n)
n

= 1−
n

∑
t=1

SSi(n)
n

− ∑
b/∈s(μ)

Y b(n)
n

→ 1, a.s., n → ∞.

Thus the proof of the theorem is complete. �

8.4 Rate of Convergence: Simulations

From the results of the previous section it follows that there exists significant
flexibility in the construction of a consistent sampling policy. Indeed, any collection
of sparse sequences of forced selection periods satisfying (8.3) guarantees that
Theorem 8.3 holds.

In this section we refine the notion of consistency and examine how the rate of
convergence of the average outcome to the optimal value is affected by different
types of sparse sequences. Furthermore, since the sensitivity analysis will be
performed using simulation, it is more appropriate to use the expected value of the
deviation as the convergence criterion. We thus consider the expected difference of
the average outcome under a consistent policy π from the optimal value:
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dπ
n (μ) = Eπ

(
Wn

n

)
− z∗(μ).

Note that the almost sure convergence of Wn
n to z∗(μ) proved in Theorem 8.3 does

not imply convergence in expectation, unless further technical assumptions on the
unknown distributions are made. For the purpose of our simulation study, we will
further assume that the outcomes of any population are absolutely bounded with
probability one, i.e., P(|Xj| ≤ u) = 1, for some u > 0. Under this assumption it is
easy to show that Theorem 8.3 implies

lim
n→∞

dπ
n (μ) = 0, (8.9)

for any consistent policy π and any vector μ .
To explore the rate of convergence in (8.9), we performed a simulation study, for

a problem with k = 4 populations. The outcomes of population i follow binomial
distribution with parameters (N, pi), where p1 = 0.3, p2 = 0.5, p3 = 0.9, p4 = 0.8.
The vector of expected values is thus μ = (1.5,2.5,4.5,4). The cost vector is
c = (3,4,8,10) and C0 = 5. Under this set of values the optimal policy under
incomplete information is x=(0,3/4,1/4,0), y= 0, and z∗(μ) = 3, i.e., it is optimal
to randomize between populations 2 and 3, the expected sampling cost per period is
equal to 5 and the expected average reward per period is equal to 3.

For the above problem we simulated the performance of a consistent policy for
sparse sequences of power function form:

{τ j,m = � j +mb,m = 1,2, . . . ,}, j = 1, . . . ,k,

where � j are appropriately defined constants which ensure that the sequences are
not overlapping, and the exponent parameter b is common for all populations. We
compared the convergence rate in (8.9) for five values of b: (1.2, 1.5, 2, 3, 5). For
each value of b the corresponding policy was simulated for 1,000 scenarios of length
n = 104 periods each, to obtain an estimate of the expected average outcome per
period dπ

n (μ). The results of the simulations are presented in Fig. 8.1.
We observe in Fig. 8.1 that the convergence is slower both for small and large

values of b and faster for intermediate values. Especially for b = 1.2 the difference
is relatively large even after 10,000 periods. This is explained as follows. For small
values of b the forced selections are more frequent. Although this has the desirable
effect that the mean estimates for all populations become accurate very soon, it also
means that nonoptimal populations are also sampled frequently because of forced
selections. As a result the average outcome may deviate from the true optimal value
for a longer time period. On the other hand, for large values of b the sequences τ j

all become very sparse and thus the forced selections are rare. In this case it takes
a longer time for the estimates to converge, and the linear programming problems
may produce nonoptimal solutions for long intervals.
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It follows from the above discussion that intermediate values of b are generally
preferable, since they offer a better balance of the two effects, fast estimation of all
mean values and avoiding nonoptimal populations. This is also evident in the graph,
where the value b = 2 seems to be the best in terms of speed of convergence.

To address the question of accuracy of the comparison of convergence rates based
on simulation, Fig. 8.2 presents a 95% confidence region for the average outcome
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curve corresponding to b = 2, based on 1,000 simulated scenarios. The confidence
region is generally very narrow (note that the vertical axes have different scale in the
two figures); thus the estimate of the expected average outcome is quite accurate.
This is also the case for the other curves; therefore the comparison of convergence
rates is valid. Furthermore, the length of the confidence interval becomes smaller
for larger time periods since, as expected, the convergence to the true value is better
for longer scenario durations.

Another issue arising from Fig. 8.1 is the following. For b = 1.2 the average
outcome converges very slowly to z∗, but remains above it for the entire scenario
duration. Thus it could be argued that, although the convergence is not good, this
policy is actually preferable, because it yields higher average outcomes than the
other policies. It also seems to contradict the fact that z∗ is the maximum average
outcome under complete information, since there is a sampling policy that even
under incomplete information performs better.

The reason for this discrepancy is related to the form of the cost constraint
(8.2). The constraint requires the infinite-horizon expected cost per period not to
exceed Co. This does not preclude the possibility that one or more populations
with large sampling costs and large expected outcomes could be used for arbitrarily
long intervals before switching to a constrained-optimal policy for the remaining
infinite horizon. Such policies might achieve average rewards higher than z∗ for long
intervals; however this is achieved by “borrowing,” i.e., violating the cost constraint,
also for long time periods. Since (8.2) is only required to hold in the limit, this
behavior of a policy is allowed.

Although the consistent policies in Sect. 8.3 are not designed specifically to take
advantage of this observation, they are neither designed to avoid it. Therefore, it is
possible, as it happens here for b = 2, that a consistent policy may achieve higher
than optimal average outcomes for long time periods before it converges to z∗.

The above discussion shows that the constraint as expressed in (8.2), may not be
appropriate, if, for example, the sampling cost is a tangible amount that must be paid
each time an observation is taken, and there is a budget C0 per period for sampling.
In this situation a policy may suggest exceeding the budget for long time periods
and still be feasible, something that may not be viable in reality. In such cases it
would be more realistic to impose a stricter average cost constraint, for example, to
require that (8.2) holds for all n and not only in the limit.

8.5 Conclusion and Extensions

In this paper we developed a family of consistent adaptive policies for sequentially
sampling from k independent populations with unknown distributions under an
asymptotic average cost constraint. The main idea in the development of this
class of policies is to employ a sparse sequence of forced selection periods for
each population, to ensure consistent estimation of all unknown means and in the
remaining time periods employ the solution obtained from a linear programming
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problem that uses the estimates instead of the true values. We also performed a
simulation study to compare the convergence rate for different policies in this class.

This work can be extended in several directions. First, as it was shown in
Sect. 8.4, the asymptotic form of the cost constraint is in some sense weak, since it
allows the average sampling cost to exceed the upper bound for arbitrarily long time
periods and still be satisfied in the limit. A more appropriate, albeit more complex,
model would be to require the cost constraint to be satisfied at all time points. The
construction of consistent and, more importantly, efficient policies under this stricter
version of the constraint is work currently in progress.

Another extension is towards the direction of Markov process control. Instead
of assuming distinct independent populations with i.i.d. observations, one might
consider an average reward Markovian Decision Process with unknown transition
law and/or reward distributions, and one or more nonasymptotic side constraints
on the average cost. In this case the problem is to construct consistent and,
more importantly, efficient control policies, extending the results of [3] in the
constrained case.
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Chapter 9
On a Lanchester Combat Model

G. Kaimakamis and N.B. Zographopoulos

Abstract Theory of combat has to do with the destruction of enemy forces. Most
models are descriptive in the sense that they are not built to optimize any particular
tactical decision. These models use differential equations and simply describe how
the numbers of the opposites forces involved will fluctuate with time, generally
decreasing until one or more battle termination criterions are met. After Lanchester,
who examined air combat situations during World War I, many researchers studied
several models. In this short note we present in brief some of these models and a
model using reinforcement.

Keywords Lanchester combat model

Mathematics Subject Classification (2010): 97Mxx

9.1 Introduction

Lanchester in his book Aircraft in Warfare: The Dawn of the Fourth Arm [8] studied
several mathematical models which based on differential equations to describe
combat situations. Lanchester stated laws on the progression of combat such as the
square and linear law. More precisely, Lanchester stated the following model (for
two forces—red and blue):

{
x′(t) = −ay(t), x(t)> 0,
y′(t) = −bx(t), y(t)> 0,
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where x(t) and y(t) the number of survivors of blue and red forces at time t and the
rate of change of each variable are proportional to the other.

Since then, Lanchester’s ideas have been extensively modified from other
researchers to study many battles or wars, [2,10]. More recently MacKay [7] studied
the model: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = −g1 y1(t)− g2 y2(t), x(t)> 0,

y′1(t) = −r y1(t)
y(t) x(t), y1(t)> 0,

y′2(t) = −r y2(t)
y(t) x(t), y2(t)> 0,

where red forces are composed of two types with effectiveness g1, g2. Later
Koyuncu and Bostanci in [2] focused on the model

{
x′(t) = −ay(t)− bx(t)+ x′(t), x(t)> 0,

y′(t) = −cy(t)− d x(t)+ y′(t), y(t)> 0,

where −bx(t) and −dy(t) define the non-operational loses as a function of the
team’s own number of units at a given time and x′(t), y′(t) denote the reinforce-
ments.

On the other hand many researchers achieved to verify Lanchester combat
models using real data from some famous battles. For example one could see the
works of Lucas and Turkes [9] where the battles of Kursk and Ardennes are studied.
Also MacKay in [6] deals with the battle of England and Aruka [1] analyzed the
battle of Iwo Jima. Finally, we refer to [3,5], where the interested reader may found
applications of the Lanchester combat models to insurgency situations.

9.2 A Model with Reinforcement

In this note we consider a Lanchester Combat Model with reinforcement. We
consider the system of equations

1

{
x′(t) = −ay(t) +g(t − τ)y(t),
y′(t) = −bx(t),

(9.1)

where

g(t − τ) =
{

0, t < τ,
g0, t ≥ τ,

g0 be a positive constant number. The initial conditions are denoted by x0 > 0 and
y0 > 0, respectively. For the positive numbers a, b, we assume that

bx2
0 < ay2

0. (9.2)
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We try to give the optimal reinforcement of the army x and the corresponding time
τ , such that x wins.

9.2.1 For t < τ

When t < τ system (9.1) has the form
{

x′(t) = −ay(t),
y′(t) = −bx(t).

(9.3)

The dynamics of system (9.3) are given by standard methods. More precisely, for
any t < τ the following equality holds:

−bx2(t)+ ay2(t) =C,

where C is given by

− bx2
0 + ay2

0 =C. (9.4)

Note that x(t) and y(t) are both decreasing functions of time. Our assumption (9.2)
implies that, for large t, x will be eliminated or that y finally wins. However, this
is not the case we discuss here. Thus the reinforcement of the army x must happen
before its elimination.

We calculate the precise value of the time of this elimination; the solution of the
system (9.3) is given by

x(t) = c1
√

ae−
√

abτ + c2
√

ae
√

abτ ,

y(t) = c1
√

be−
√

abτ − c2
√

be
√

abτ ,
(9.5)

where

c1 =
1
2

(
x0√

a
+

y0√
b

)
and c2 =

1
2

(
x0√

a
− y0√

b

)
.

Observe that c2 is a negative quantity. From these relations we calculate that x
becomes zero at the time

τelim =
1

2
√

ab
log

(
c1

−c2

)
. (9.6)

We thus obtain that an upper bound for τ is τelim:

τ < τelim. (9.7)
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9.3 For t > τ

When t > τ system (9.1) has the form

{
x′(t) = −ay(t) +g0 y(t),
y′(t) = −bx(t).

(9.8)

The dynamics of system (9.3) is described by the following equality:

−bx2(t)+ ay2(t)− g0 y2(t) =Cτ ,

where Cτ is given by

− bx2(τ)+ ay2(τ)− g0 y2(τ) =Cτ . (9.9)

The continuity of the solutions of (9.1) implies that x(τ) and y(τ) are given by (9.5).
The army x wins if the constant Cτ is negative. This means that

−bx2(τ)+ ay2(τ)< g0 y2(τ),

or

g0 >
C

y2(τ)
, (9.10)

where C is given by (9.4). From (9.10) we finally conclude that the optimal
reinforcement of the army x at the time τ is

g0 y(τ) =
C

y(τ)
, (9.11)

and the optimal time for this is as t → 0, i.e., as sooner as possible. In any case (9.7)
must hold.

9.4 Conclusion

Summarizing we conclude that the best time for the reinforcement is as much as
earlier, with the restriction that this will happen before the elimination time τelim

given in (9.6). The number of this reinforcement is given in terms of the enemy y(t),
by (9.10).
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Chapter 10
Land Warfare and Complexity

Dionysios Stromatias

Abstract This issue summarizes the results of a multiyear research program
whose basic chapter was to use complex adaptive systems theory to develop
tools to help to understand the fundamental processes of war. The chapters are
mostly self-contained, so that they may be read in any order, and are roughly
divided into two parts. Part one introduces the general context for the ensuing
discussion, and provides both qualitative and more technical overviews of those
elements of nonlinear dynamics, artificial-life, complexity theory and multiagent-
based simulation tools that are applied to modeling combat. Part two summarizes
the main ideas introduced throughout the issue.

Keywords Complex systems • Self-organization • Collectivism • Edge of
chaos • Cellular automata • Genetic algorithms • Levels of applicability of
complexity theory

10.1 Introduction

In 1914, the British engineer F.W. Lanchester developed a theory based on World
War I aircraft engagements to explain why concentration of forces was useful in
modern warfare. His model underlies many low-resolution and medium-resolution
combat models and works on the basis of attrition

1. Homogeneous (model)

(a) A single scalar represents a unit’s combat power.
(b) Both sides are considered to have the same weapon effectiveness.
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2. Heterogeneous (model)

(a) Attrition is assessed by weapon type and target type and other variability
factors.

Similar forms also apply to models of biological populations in ecology.
Lanchester (deterministic) equations describe the rate at which a force loses

systems as a function of the size x of the force and the size of the enemy force y

dx
dt

= f1 (x,y, . . . )

dy
dt

= f2 (x,y, . . . ) .

Solving these equations as functions of x(t) and y(t) provide insights about
battle outcome. The most elementary form arises by taking f1 (x,y, . . . ) = −ay
and f2 (x,y, . . . ) =−bx :

dx
dt

=−ay

dy
dt

=−bx.

Integrating, the equations which describe modern warfare we get the following state
equation, called Lanchester’s “Square Law”:

b
(
x2

0 − x2)= a
(
y2

0 − y2) .

These equations have also been postulated to describe “aimed fire” where
√

ab
measures battle intensity and

√
a/b measures relative effectiveness.

After extensive derivation, the following expression for the X force level is derived
as a function of time (the Y force level is equivalent):

x(t) =
1
2

[(
x0 −

√
a
b

y0

)
e
√

abt +

(
x0 +

√
a
b

y0

)
e−

√
abt
]
.

To determine who will win, each side must have victory conditions, i.e., we must
have a “battle termination model.” Assume both sides fight to annihilation. One of
three outcomes at time t f , the end time of the battle:

1. X wins, i.e., x
(
t f
)
> 0 and y

(
t f
)
= 0.

2. Y wins, i.e., y
(
t f
)
> 0 and x

(
t f
)
= 0.

3. Draw, i.e., x
(
t f
)
= 0 and y

(
t f
)
= 0.

It can be shown that a Square-Law battle will be won by X if and only if:

x0

y0
>

a
b
.
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Now, several natural questions arise. How many survivors x f are there when X
wins a fight-to-the-finish? And, when X wins, how long does it take? The answer is
an easy consequence of the above formulas. Indeed, we havecomplex adaptive

x f =

√(
x2

0 −
a
b

y2
0

)
.

The time needed is

t
(
x f
)
=

1

2
√

ab
ln

[
1+ y0

x0

√ a
b

1− y0
x0

√ a
b

]

.

Further, assuming battle termination at x(t) = xBP or y(t) = yBP, in what case X
wins and how long does it take if X wins? It can be shown that X wins if and only if

x0

y0
>

√√√
√a

b

(
1− [y2

BP/y2
0

]

1− [x2
BP/x2

0

]

)

.

In this case, the time needed for X’s victory is given by

t (yBP) =

⎧
⎪⎨

⎪⎩

1√
ab

ln x0
xBP

, i f x0
y0

=
√ a

b

1√
ab

ln

(
yBP−

√
y2

BP−y2
0+(b/a)x2

0

y0−
√

(b/a)x0

)
, i f x0

y0
�=√ a

b .

10.2 Complex Adaptive Systems

The main idea put forth in this paper is that significant new insights into the
fundamental processes of land warfare can be obtained by viewing land warfare
as a complex adaptive system (CAS). That is to say, by viewing a military
“conflict” as a nonlinear dynamical system composed of many interacting semiau-
tonomous and hierarchically organized agents continuously adapting to a changing
environment [2].

Complex systems is a new field of science studying how parts of a system give
rise to the collective behaviors of the system, and how the system interacts with
its environment. Social systems formed (in part) out of people, the brain formed
out of neurons, molecules formed out of atoms, the weather formed out of air
flows are all examples of complex systems. The field of complex systems cuts
across all traditional disciplines of science, as well as engineering, management,
and medicine. It focuses on certain questions about parts, wholes, and relationships.
These questions are relevant to all traditional fields.

The study of complex systems is about understanding indirect effects. Problems
that are difficult to solve are often hard to understand because the causes and
effects are not obviously related. Pushing on a complex system “here” often has
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effects “over there” because the parts are interdependent. This has become more
and more apparent in our efforts to solve societal problems or avoid ecological
disasters caused by our own actions. The field of complex systems provides a
number of sophisticated tools, some of them are concepts that help us think about
these systems, some of them are analytical for studying these systems in greater
depth, and some of them are computer based for describing, modeling, or simulating
these systems.

There are three interrelated approaches to the modern study of complex systems

1. How interactions give rise to patterns of behavior
2. Understanding the ways of describing complex systems
3. The process of formation of complex systems through pattern formation and

evolution

CST is concerned with more complicated systems, where “complicated” typi-
cally means that a system consists of a large number of mutually interrelated parts.
In dealing with such systems, CST generalizes the conventional approach in two
fundamental ways:

1. The final state, Sfinal, is no longer assumed to be a function of the initial state
alone, but can depend strongly on the path, P, that the system follows in evolving
from its initial to final states.

2. The initial state is endowed with both an internal and external structure. CST can
be described as the study of the behavior of collections of simple (and typically
nonlinearly) interacting parts that can evolve.

10.3 Military Conflicts, Particularly Land Combat,
Have Almost All the Key Features of Complex
Adaptive Systems

Nonlinear interaction

• Friendly and enemy forces are composed of a large number of nonlinearly
interacting “parts.”

• Combat is not just an aggregate of many smaller-scale conflicts, but is a complex
system composed of parts whose action and pattern of behavior depend on the
action and pattern of behavior of other (nearby and not-so-nearby) parts.

Decentralized control

• Despite the presence of “global commanders,” who have a (global, albeit
imprecise) view of the overall combat arena, there is no master “voice” that
dictates the actions of each and every combatant.
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Self-organization

• Local action, which often appears “chaotic,” induces long-range order.
• Command and control tends to organize what is otherwise disorganized action.

Collectivism

• There is continual feedback between the behavior of (low-level) combatants and
the (high-level) C2 hierarchy.

Parts are more like “niches” than “parts”

• Their parts, particularly those represented by the lowest level combatant and as
long as the war fighting skills of combatants exceed some threshold war fighting
skill level, are essentially interchangeable.

Adaptation

• Their parts, in order to survive, must continually adapt to a changing combat
environment (new strategies and tactics must be conceived of and implemented
on-the-spot and in immediate response to changes in the environment).

• Each combatant comes into a conflict armed with a set of default rules (“doc-
trine”), a goal (or goals), and hardware designed to facilitate the implementation
of doctrine. The success or failure of a campaign depends on how well each
combatant adapts to the continually changing combat environment, which
includes the functioning and adaptation of both friendly and enemy combatants.

• Actions and outcomes of actions are as much a function of the internal “human
element” (reasoning capacity, unpredictability, inspiration, accident, etc.) as they
are of the hardware.

Hierarchical structure

• Parts are organized in a (command and control) hierarchy.

10.3.1 Self-Organization

Self-organization is a fundamental characteristic of complex systems. It refers to
the emergence of macroscopic nonequilibrium organized structures, and is due to
the collective interactions of the constituents of a complex system as they react and
adapt to their environment.

There is no God-like “oracle” dictating what each and every part ought to be
doing; parts act locally on local information and global order emerges without any
need for external control.
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10.3.2 Collectivism

As an example of the importance of collectivism, consider a natural ecology. Each
species that makes up an ecology composed of a large number of diverse species
coevolves with other members of the ecology according to a fitness function that
is, in part, itself a function of the emerging ecology. Individual members of each
species collectively define a (part of the) coevolving ecology; the ecology, in turn,
determines the fitness-function according to which its constituent parts evolve. It
is this nonlinear feedback between the information describing individual species (or
the system’s microscopic level) and the global ecology (or the system’s macroscopic
level) that those species collectively define that determines the temporal evolution—
and identity—of the entire system.

10.3.3 Chaos and Complexity

Very loosely speaking, it can be said that where chaos is the study of how
simple systems can generate complicated behavior, complexity is the study of how
complicated systems can generate simple behavior. Since both chaos and complex
systems theory attempt to describe the behavior of dynamical systems, it should not
be surprising to learn that both share many of the same tools, although, properly
speaking, complex systems theory ought to be regarded as the superset of the two
methodologies.

10.4 Cellular Automata

A cellular automaton is a collection of “colored” cells on a grid of specified shape
that evolves through a number of discrete time steps according to a set of rules based
on the states of neighboring cells. The rules are then applied iteratively for as many
time steps as desired. Von Neumann was one of the first people to consider such a
model, and incorporated a cellular model into his “universal constructor.” Cellular
automata were studied in the early 1950s as a possible model for biological systems.
Comprehensive studies of cellular automata have been performed by S. Wolfram
starting in the 1980s, and Wolfram’s fundamental research in the field culminated
in the publication of his book A New Kind of Science in which Wolfram presents
a gigantic collection of results concerning automata, among which are a number
of ground breaking new discoveries. Cellular automata come in a variety of shapes
and varieties. One of the most fundamental properties of a cellular automaton is the
type of grid on which it is computed. The simplest such “grid” is a one-dimensional
line. In two dimensions, square, triangular, and hexagonal grids may be considered.
Cellular automata may also be constructed on Cartesian grids in arbitrary numbers
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of dimensions, with the d-dimensional integer lattice zd being the most common
choice. Cellular automata on a d-dimensional integer lattice are implemented in
Mathematica as Cellular Automaton [rule, init, steps].

The number of colors (or distinct states) k a cellular automaton may assume
must also be specified. This number is typically an integer, with k = 2 (binary)
being the simplest choice. For a binary automaton, color 0 is commonly called
“white,” and color 1 is commonly called “black”. However, cellular automata having
a continuous range of possible values may also be considered.

In addition to the grid on which a cellular automaton lives and the colors its
cells may assume, the neighborhood over which cells affect one another must
also be specified. The simplest choice is “nearest neighbors,” in which only cells
directly adjacent to a given cell may be affected at each time step. Two common
neighborhoods in the case of a two-dimensional cellular automaton on a square
grid are the so-called Moore neighborhood (a square neighborhood) and the von
Neumann neighborhood (a diamond-shaped neighborhood).

The simplest type of cellular automaton is a binary, nearest-neighbor, one-
dimensional automaton. Such automata were called “elementary cellular automata”
by S. Wolfram, who has extensively studied their amazing properties. There are 256
such automata, each of which can be indexed by a unique binary number whose
decimal representation is known as the “rule” for the particular automaton. An
illustration of rule 30 is shown above together with the evolution it produces after
15 steps starting from a single black cell.
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1 0 2 0 2 1 0

A slightly more complicated class of cellular automata are the nearest-neighbor,
k-color, one-dimensional totalistic cellular automata. In such automata, it is the
average of adjacent cells that determine the evolution, and the simplest nontrivial
examples have k = 3 colors. For these automata, the set of rules describing the
behavior can be encoded as a (3k− 2)-digit k-ary number known as a “code.” The
rules and 300 steps of the ternary (k = 3) code 912 automaton are illustrated above.

In two dimensions, the best-known cellular automaton is Conway’s game of life,
discovered by J.H. Conway in 1970 and popularized in Martin Gardner’s Scientific
American columns. The game of life is a binary (k = 2) totalistic cellular automaton
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with a Moore neighborhood of range r = 1. Although the computation of successive
game of life generations was originally done by hand, the computer revolution
soon arrived and allowed more extensive patterns to be studied and propagated.
An animation of the game of life construction known as a puffer train is illustrated
above. The theory of cellular automata is immensely rich, with simple rules and
structures being capable of producing a great variety of unexpected behaviors. For
example, there exist universal cellular automata that are capable of simulating the
behavior of any other cellular automaton or Turing machine. It has even been proved
by Gacs (2001) that there exist fault-tolerant universal cellular automata, whose
ability to simulate other cellular automata is not hindered by random perturbations
provided that such perturbations are sufficiently sparse.

10.5 Genetic Algorithms

Genetic algorithms are one of the best ways to solve a problem for which little is
known. They are very general algorithms and so will work well in any search space.
All you need to know is what is required for the solution to be able to do well, and a
genetic algorithm will be able to create a high-quality solution. Genetic algorithms
use the principles of selection and evolution to produce several solutions to a given
problem. Genetic algorithms tend to thrive in an environment in which there is a
very large set of candidate solutions and in which the search space is uneven and
has many hills and valleys. True, genetic algorithms will do well in any environment,
but they will be greatly outclassed by more situation-specific algorithms in the
simpler search spaces. Therefore you must keep in mind that genetic algorithms
are not always the best choice. Sometimes they can take quite a while to run
and are therefore not always feasible for real-time use. They are, however, one of
the most powerful methods with which to (relatively) quickly create high-quality
solutions to a problem. The most common type of genetic algorithm works like this:
a population is created with a group of individuals created randomly. The individuals
in the population are then evaluated. The evaluation function is provided by the
programmer and gives the individuals a score based on how well they perform at the
given task. Two individuals are then selected based on their fitness, the higher the
fitness, the higher the chance of being selected. These individuals then “reproduce”
to create one or more offspring, after which the offspring are mutated randomly. This
continues until a suitable solution has been found or a certain number of generations
have passed, depending on the needs of the programmer.

10.5.1 Swarms

Swarm intelligence is the collective behavior of decentralized, self-organized
systems, natural or artificial. The concept is employed in work on artificial
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intelligence. The expression was introduced by Gerardo Beni and Jing Wang in
1989, in the context of cellular robotic systems [1]. Swarm intelligence systems
are typically made up of a population of simple agents or boids, interacting locally
with one another and with their environment. The agents follow very simple rules,
and although there is no centralized control structure dictating how individual
agents should behave, local and to a certain degree random interactions between
such agents lead to the emergence of intelligent global behavior, unknown to
the individual agents. Swarm intelligence research is multidisciplinary. It can be
divided into natural swarm research studying biological systems and artificial swarm
research studying human artifacts. There is also a scientific stream attempting to
model the swarm systems themselves and understand their underlying mechanisms,
and an engineering stream focused on applying the insights developed by the
scientific stream to solve practical problems. The goal of the Swarm project is
to provide the complex systems theory research community with a fully general-
purpose artificial-life simulator. The system comes with a variety of generic artificial
worlds populated with generic agents, a large library of design and analysis tools and
a “kernel” to drive the actual simulation. These artificial worlds can vary widely,
from simple 2D worlds in which elementary agents move back and forth to com-
plex multidimensional “graphs” representing multidimensional telecommunication
networks in which agents can trade messages and commodities, to models of real-
world ecologies in other areas.

10.6 Complex Adaptive Systems

CASs are complex systems (meaning that they consist of many nonlinearly interact-
ing parts) whose parts can adapt to changing environments. Moreover, each “part”
typically exists within a nested hierarchy of parts within parts.

Traditionally, simulations of complex systems have consisted of mathematical
or stochastic models, typically involving differential equations that relate one set
of global parameters to another set and describe the system’s overall dynamics. The
behavior of a system is then “understood” by looking at the relationship between the
input and output variables of the simulation. While such an approach is adequate for
systems with parts that possess little or no internal structure, it is largely incapable
of describing groups, or societies, in which the internal dynamics of the constituent
members of the system represent a vital part of the underlying dynamics.

Additional drawbacks of traditional simulation methods include:

• A failure to distinguish among different levels of activity within real complex
systems; that is to say, a failure to appreciate that global parameters, such
as the population size of an ecology, are often profoundly related to local
parameters, such as the decision-making processes of individuals within the
ecology—traditional simulation methods, particularly those relying on a differ-
ential equation approach, seldom take into account this local-global dichotomy
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• An inability to analytically account (such as in a differential equation form)
for individual actions and/or strategies of the constituent elements of a complex
system

• An inability to realistically account for the qualitative information that
individuals may use in formulating their strategies and upon which they may
base their local decision

The fundamental question that is addressed, at least indirectly, in this report, and
more fully in the follow-on paper, is

“what does complexity theory tell us about land warfare?”

This question really embodies three separate but interrelated issues:

1. Complexity theory
2. Land warfare
3. Modeling/simulation

The figure above shows that there are four levels of applicability of complexity
theory:

• Level-1, consisting of specific analytical and mathematical tools such as cellular
automata, genetic algorithms, genetic programming, and so on

• Level-2, consisting of general simulation systems such as SWARM, within which
complex systems can be modeled

• Level-3, consisting of observations of behavior of specific systems
• Level-4, consisting of sets of universal behaviors, such as the principle of self-

organized criticality

Ideally, of course, one would like to take whatever insights complexity theory
has come up with, or will come with, on the highest level (level-4) and apply them
directly to the issues and problems of land warfare. The fact that this is exceedingly
unlikely to happen in the foreseeable future is due in no small measure to the fact
that, as of this writing, there are precious few “universal behaviors” populating
level-4.

Indeed, as alluded to in an earlier section, self-organized criticality is arguably the
only existing holistic mathematical theory of self-organization in complex systems!

Therefore, if there is anything at all that falls under the rubric of complexity
theory that is generally applicable to the problems of land warfare, it will most likely
consist of specific sets of tools applied to specific problems, along with whatever
insights can be gained by using general-purpose simulators such as SWARM to
act as simulation “engines.” There remains the possibility that complexity theory
might shed some light on how battlefields may be configured (or compelled to self-
organize) to achieve a maximum adaptability to a changing environment.
The figure also shows that there are four levels of land warfare to which the tools
and methodologies of complexity theory can be applied:
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1. Tactical
2. Operational
3. Strategic
4. General strategic, which refers to the sociopolitical strategies that are followed

over long periods of time and which can therefore span over several conflicts

Finally, the figure illustrates that there are three levels on which complexity theory
can be applied to land warfare:

• Level-1. This is the most basic metaphor level to which most general discussions
have been heretofore confined. This level consists of constructing and elabo-
rating upon similar sounding words and images that most strongly suggest a
“philosophical resonance” between behaviors of complex systems and certain
aspects of what happens on a battlefield. The Clauswitzian images of “fog of war”
and “friction” come to mind immediately. There is nothing wrong, per se, with
confining a discussion to this level, but one must always be mindful of the fact
that metaphors are easily abused and “philosophical resonances” do not imply
real connections.

• Level-2. This is the pragmatic and/or experimental level on which real-world data
are mined to confirm or deny that there is more to a possible connection between
complexity theory and land warfare than mere “philosophical resonance” alone.
The best work along these lines has so far been conducted by Tagarev and is
discussed briefly below. Tagarev provides evidence of deterministic chaos in
tactical, operational, and strategic dynamics of a wide class of military behavior.

• Level-3. This is the “workhorse” level on which specific methodology borrowed
from complexity theory is applied directly to specific issues and problems of land
warfare. This might not be as intellectually provocative or satisfying as making



10 Land Warfare and Complexity 131

a direct, one-to-one mapping between universal patterns of behavior of complex
systems in general and patterns of combat on the battlefield (although this is
remotely conceivable in some form); however, using genetic algorithms to evolve
tactics in real-time in the heat-of-battle is impressive nonetheless. Most of the
ideas and conjectures outlined in the following sections fall squarely into this
third level of connections.

10.7 Conclusions

This report concludes that the concepts, ideas, theories, tools, and general method-
ologies of nonlinear dynamics and complex systems theory show enormous, almost
unlimited, potential for not just providing better solutions for certain existing
problems of land combat, but for fundamentally altering our general understanding
of the basic processes of war, at all levels. Indeed, the new sciences’ greatest legacy
may, in the end, prove to be not just a set of creative answers to old questions but an
entirely new set of questions to be asked of what really happens on the battlefield.

The central idea of this paper is that land combat is a complex adaptive
system. That is to say that land combat is essentially a nonlinear dynamical system
composed of many interacting semiautonomous and hierarchically organized agents
continuously adapting to a changing environment.

Military conflicts, particularly land combat, have almost all of the key features
of CAS:

• Combat forces are composed of large numbers of nonlinearly interacting parts
and are organized in a command and control hierarchy; local action, which often
appears disordered, induces long-range order (i.e., combat is self-organized);
military conflicts, by their nature, proceed far from equilibrium; military forces,
in order to survive, must continually adapt to a changing combat environment;
there is no master “voice” that dictates the actions of each and every combatant
(i.e., battlefield action effectively proceeds according to a decentralized control);
and so on. In principle, this means that land combat ought to be amenable to
precisely the same methodological course of study as any other complex adaptive
system, such as the stock market, a natural ecology or the human brain.

Implicitly in this paper is the idea that these largely conceptual links between
properties of land warfare and properties of complex systems in general can be
extended to forge a set of practical connections as well. That is to say, land warfare
does not just look like a complex system on paper, but can be well characterized in
practice using the same basic principles that are used for discovering and identifying
behaviors in complex systems.
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Chapter 11
Wavelet Transform in Remote Sensing
with Implementation in Edge Detection
and Noise Reduction
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Abstract In image processing, the Fourier transform has a serious drawback as
only frequency information remains whilst local information is lost. In order to
involve localization in the analysis, the Short Time Fourier Transform (STFT)
is adapted where the image is windowed. The drawback is that the window is
the same in all frequencies. In principle, a more flexible approach is required
where the window size varies in order to determine more precisely either location
or frequency. Wavelet analysis allows the variation of the window based on the
frequency information. Wavelets have limited duration and an average value of zero
and thus they are irregular and asymmetric with short duration. Wavelets can be
used in the field of edge detection and enhancement, image compression, noise
reduction, and image fusion. In this review paper wavelets are used in quite opposite
applications such as edge detection and noise reduction of remote sensing images.
Thus, the flexibility and versatility of the wavelets is exposed. The challenge is
to choose the appropriate wavelet for a particular application which is not known
a priori.
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11.1 Introduction

The Fourier transform has been the mainstay of transform-based image processing
since the late 1950s. However, Fourier analysis has a serious drawback as only
frequency information remains while the local one is lost. This means that any
modification of the Fourier coefficients has a global effect on the image. In order
to involve localization on the analysis, the Short Time Fourier Transform (STFT)
is adapted [1]. In this case, the image is windowed, and thus the information has a
precision relevant to the size of the window used. The drawback is that the window
is the same in all frequencies. In principle, a more flexible approach is required
in image processing, where the window size varies in order to determine more
precisely either location or frequency.

Wavelet analysis allows the variation of the window based on the frequency infor-
mation. This means that long time intervals are used in low-frequency information
and short time intervals in high-frequency information. In general, wavelets have
limited duration and an average value of zero and they are irregular and asymmetric
with short duration [4].

There are many possible sets of wavelets which are represented by a mother
wavelet and a scaling function. The challenge is to choose the appropriate wavelet
for a particular application something which is not known a priori. Various wavelets
have been introduced along with the suitable threshold level for the adjustment of
the wavelet coefficients, attempting to give better results in various applications.

In this paper this versatility of the wavelets is shown in quite contradictory
applications, the edge detection on one hand and the noise reduction on the other.

11.2 Wavelets

As with the Fourier transform, the same possibilities exist for wavelet transforms:
a continuous wavelet transform (CWT), a wavelet series expansion, and a discrete
wavelet transform (DWT).

11.2.1 The Continuous Wavelet Transform (CWT)-Wavelet
Properties

11.2.1.1 Introduction

Digital images are discrete as series of pixels in two dimensions. However, for
completeness, the CWT is covered in this paragraph giving a direct comparison
to the Fourier transform [1].
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The CWT of a continuous, square-integrable function, f (t) is described as

γ(s, t) =
∫

f (t)ψ∗
s,t (t)dt, (11.1)

where ∗ denotes complex conjugation. This equation shows how a function f (t) is
decomposed into a set of wavelets ψs,τ(t). The variables s and t are the scale and the
translation. The wavelets are generated from a single basic mother wavelet ψ(t), by
scaling and translation:

ψs,t(t) =
1√
s

ψ
(

t − τ
s

)
. (11.2)

The theory of wavelet transforms defines a framework within which a wavelet
is designed in order to fulfil specific criteria. It is not needed to specify the
wavelet basis functions a priori. This is another advantage of the wavelet transform
compared to the Fourier transform, or other transforms.

The most important properties of wavelets are the admissibility and the regularity
conditions. Wavelets should be waves as they are used to analyze and reconstruct a
signal without loss of information (Admissibility condition).

An additional condition on the wavelet functions should be defined in order to
make the wavelet transform decrease quickly with scale s. This is the regularity
condition where the wavelets should have some smoothness and concentration in
both time and frequency domains. Regularity is explained using the concept of
vanishing moments.

To summarize, the “wave” is given by the admissibility condition, while the “let”
or fast decay by the regularity condition, and thus the wavelet is developed [2].

11.2.1.2 The Two-Dimensional CWT

As can be seen from equation (11.1) the wavelet transform of a one-dimensional
function f (t) is two-dimensional. For functions of more than one variable, this
transform also increases the dimensionality by one.

11.2.2 The Discrete Wavelet Transform

11.2.2.1 Introduction

When digital images are to be viewed or processed at multiple resolutions, the
DWT is the mathematical tool of choice [2]. In addition to being an efficient, highly
intuitive framework for the representation and storage of multiresolution images, the
DWT provides powerful insight into image’s spatial and frequency characteristics.
An efficient way to implement DWT using filters was developed by Mallat [4].
The Mallat algorithm is in fact a classical scheme known in the signal-processing
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Fig. 11.1 Fast wavelet transform (source [2])

community as a two-channel subband coder. This very practical filtering algorithm
yields a fast wavelet transform—a box into which a signal passes, and out of which
wavelet coefficients quickly emerge.

11.2.2.2 Fast Wavelet Transform (FWT)

An important consequence of the above properties is that both φ(x) and ψ(x) can be
expressed as linear combinations of double-resolution copies of themselves. That is,
via the series expansions

ϕ(x) = ∑hϕ(n)
√

2ϕ(2x− n)

ψ(x) = ∑hψ(n)
√

2ψ(2x− n),

where hφ and hψ are called scaling and wavelet vectors, respectively. They are
the filter coefficients of the FWT, an iterative computational approach to the DWT
shown in Fig. 11.1. The Wφ ( j,m,n) and W i

ψ( j,m,n) for H,V,D outputs in Fig. 11.1
are the DWT coefficients at scale j. Blocks containing time-reserved scaling and
wavelet vectors are the low-pass and the high-pass decomposition. Finally, blocks
containing a 2 and down arrow represent downsampling.

Each pass thought the filter bank decomposes the input into four lower resolution
components. The W coefficients are created via two low-pass filters and thus
called approximation coefficients. W i

ψ( j,m,n) for H,V,D} are horizontal, vertical,
and diagonal coefficients, respectively. This is the representation of the first
iteration (Fig. 11.1). The second iteration would consider as input the approximation
coefficients.
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11.3 Wavelets in Edge Detection and Noise Reduction

The specifications (resolution, color depth, and geo-location accuracy) of
high-resolution satellite images which have been acquired since 1999 are directly
comparable to airphotos specifications, gives a boost in Remote Sensing to expand
in new fields of applications. In such fields, edges are of great importance as they
determine the boundaries of significant objects like buildings, urban vegetation, and
road networks, river banks, flood influence, etc. However, the key factor is to handle
the image noise in such a way that it is not represented as an edge.

The edge detection problem has traditionally been addressed with the use of the
Canny and Hough transforms. These transforms do not have the ability to handle
the noise reduction procedure, simultaneously. Moreover specific transforms such
as Median filters, Gaussian blur procedure, or even FFT transform eliminate the
noise while they dramatically reduce the details of the image (edges). In recent years
considerable interest has been generated for wavelet transforms which is based on
multiresolution analysis, time-frequency analysis, and pyramid algorithms [2].

In images, edge appears as the point where great changes in brightness are
observed, separating different objects or different conditions. More specifically, it
is of crucial importance in Remote Sensing to determine and detect the boundaries
(lines) of significant objects

Humans can easily distinguish the limits of different objects in an image using
different types of information like brightness, text, color as well as their knowledge
of the world where the noise is isolated. However, this human understanding
procedure is difficult to be automated.

Wavelet analysis may perform well in high-resolution images as it can manage
better their detailed information and simultaneously reduce the noise. Edges of large
objects are maintained in higher level scales whereas edges of smaller objects are
maintained only in smaller levels of wavelet analysis. On the other hand, noise is
usually introduced in the smaller levels. Thus, it is of high importance to establish a
specific threshold policy which is related to the value that characterizes noise against
information (edge) in the levels of wavelet analysis.

Edge detection techniques that are based on Wavelet analysis have been intro-
duced since 1992. Mallat and Zhong [5], Zang and Bao [11], Sun et al. [10], and Shih
and Tseng [9] introduced various methodologies of wavelet implementation where
multiple scales should be employed to describe the variety of the edge structures
along with the choice of the relevant wavelet mother and the threshold level.

It was pointed out that if an edge detector is to detect the zero-crossings as edge
points, it must be symmetric with respect to the origin. On the other hand, if an edge
detector is to detect the local extrema as edge points, it must be antisymmetric with
respect to the origin [3].

Finally, as suggested by Marr and Hildreth [6], multiple scales should be
employed to describe the variety of the edge structures and then these multiscale
descriptions could be synthesized to form an edge map. Thus, wavelet analysis being
a multiscale analysis can be used in edge detection.



140 P.N. Michalis

11.4 Scale Multiplication

The scale multiplication can enhance image structures and suppress noise. An
integrated edge map will be formed efficiently while avoiding the ill-posed edge
synthesis process, unlike other multiscale edge detectors, where the edge maps are
formed at several scales and then synthesized together. It was shown [11] that much
improvement is obtained on the localization accuracy and the detection results are
better than using either one of the two scales independently. Moreover, it will be
improved more combining horizontal, vertical, or diagonal coefficients.

In order to reduce and smooth the existing noise an increase in the filter scale
is required. An edge could disappear or could be dislocated if there is another
edge curve at its neighborhood. It was also found that the scale multiplication will
significantly reduce the interference of neighboring edges.

The peaks due to edges tend to propagate across scales, thus by directly
multiplying the DWT at adjacent scales will enhance the edge structures whereas it
will dilute the noise. With scale varying along dyadic sequence 2 j, j ∈ Z, the support
of wavelet base ψ j(x) will increase rapidly. This is also to say Wj f (x) will become
smoother rapidly along scales. If three or more adjacent scales were incorporated in
the multiplication, edges would not be sharpened more but much edge dislocation
would occur. So it is appropriate to analyze the multiplication using two scales [11].

In Fig. 11.2(a), a block signal g and its noisy version f = g+ ε are illustrated
where ε is Gaussian white noise. Their DWT at the first three scales are given in
Fig. 11.2(b) and (c). It is shown that at the finest scale the wavelet coefficients W1 f
are almost dominated by noise. At the second and third scales, the noise diluted
rapidly. It can also be seen that at the small scales the positions of the step edges
are better localized. But some noise may be falsely considered as edges. At the
large scales, the SNR is improved and edges can be detected more correctly but
with the decrease of the accuracy of the edge location. In Fig. 11.2(d), the product
P f

j , j = 1–3, are illustrated. Apparently the step edges are more observable in P f
j

than in Wj f [11].
In this scheme, the single threshold is preferred for the simplicity, as edges

and noise can be better distinguished in the scale product and a properly chosen
threshold could suppress the noise maxima effectively.

The edges are considered the local maxima in P f
j . A significant edge at abscissa

x0 will occur on both the adjacent scales and the signs of Wj f (x0) and Wj+1 f (x0)

will be the same, so that P f
j (x0) should be nonnegative. If P f

j (x) is less than zero,
the point will be considered as noise and filtered out.

The scale multiplication will improve the detection performance (especially on
the localization accuracy) and reduce the interference of neighboring edges [11] and
thus it reduces the noise of the images.
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Fig. 11.2 (a) A signal g and its noisy version f, (b), (c) DWT of g and f, respectively, in the first
three scales (d) the results of scale multiplication in f. (source: [11])

11.5 Evaluation Process

11.5.1 Introduction

In this paper an IKONOS pan-sharpened image of a suburban area in Agios Stefanos
region (Athens, Greece) was used. Different data sets of this scene, containing man-
made objects were selected and different band combinations were used.

Additionally an ALOS PRISM (panchromatic) image of Antiparos, Greece used
in order to study the capability of wavelet transform in noise reduction field (not
related to edge detection).

The scale multiplication scheme was chosen because it is based on wavelet
analysis and gives better results in noisy images. Considering the non-desired
detailed information of high-resolution satellite images as noise, which is reduced in
higher levels of wavelet transform, the scale multiplication scheme would possibly
perform well.
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Fig. 11.3 Original Image
(IKONOS, SpaceImaging)

11.5.2 Scale Multiplication

The capability of the biorthogonal wavelet rbio3.1 was introduced, as it is asymmet-
ric and resembles the wavelet proposed by Mallat [8].

Scale multiplication was primarily tested in artificial noisy images (containing
straight lines of different directions and curved lines) as it is easier to evaluate the
performance of the method and compare it to other ones in artificial images and then
use it with the real, more complex, satellite images.

These tests showed that the method performs well in the multiplication of lower
levels. In higher levels a significant dislocation of edges occurs. The levels 2–3
showed the best performance, presence of noise, but it was not able to detect edges
which are very close to each other, due to the lower resolution on these levels. Levels
1–2 perform well when noise does not exist. Results from scale multiplication in
noisy images were better than those of the Canny edge detector.

After these general considerations, a more detailed study was carried out using
the IKONOS images from different regions (urban and suburban areas) were used to
evaluate the “scale multiplication” performance in high-resolution satellite images.
The scale multiplication scheme, gave good results in detecting manmade objects
like buildings or road sides, without being disturbed from the detailed information
of high-resolution satellite images. In Fig. 11.3 the image presented is the original
images used, the 321 composite of the pansharpened image transformed in grayscale
(Fig. 11.4). The levels 1,2 of the wavelet transform were used in scale multiplication,
because the buildings and roads in this image are not big enough to use higher
scales. In higher scales, a distortion of their shape is observed or in other cases they
cannot be detected well. Thus small scales were preferred. It was found that edges of
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Fig. 11.4 Detected edges
with rgb-image in the
background

Fig. 11.5 Canny edge
detector

manmade features were detected while in open areas; where small trees exist, trees
edges were not detected. The results were slightly better than those of the Canny
edge detector (Fig. 11.5), but they could be further improved, by better choice of the
mother wavelet (Fig. 11.6).

Four levels of the transform were used as it was observed that using only the
coefficients of lower scales, the results were not really good as the features of
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Fig. 11.6 Edges resulted
from scale multiplication

the reconstructed image usually are broken, because some of the information is
contained in the next level. However, in order to detect big features or objects the
coefficients of lower levels are required.

Then the reconstructed image was thresholded to retain only the most significant
values. The produced image was a binary image that represents the location of high
coefficients in the contourlet domain.

Finally, a further cleaning of the image was performed to retain only the road
network, by using other morphological operators like fill, thin, and shrink.

In the reconstructed image (without the participation of the approximation coef-
ficients), the higher values represent the locations where the radiometry increases
whereas the lower (negative) values represent the location where the radiometry
decreases. Both, high positive and negative values constitute edge points. To
maintain the negative values the threshold should take into consideration the
absolute value. Moreover, two edge images can be created, one for the positive
values and one for the negative, by using different thresholds. The final edge map
would result from the synthesis of the other two maps (Figs. 11.7–11.12).

11.6 The ALOS PRISM Image and the Noise Reduction

This case is very challenging, as ALOS/PRISM images do have radiometric quality
problems, leading to image noise which could be reduced without influence to the
image resolution [7]. This noise can influence in a negative way the geo-reference
procedure (measurements of GCPs and Independent Check Points) the image
matching for DSM generation and the image interpretation procedures general.
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Fig. 11.7 IKONOS
Pansharpened, 321 composite
(SpaceImaging)

Fig. 11.8 Reconstructed
image after coefficient
reduction

PRISM data are separated into odd and even detectors and transmitted from
satellite by different transfer channel. Odd and even detectors are compressed
independently in JPEG compression. The JPEG compresses an image block by
block; a block is 8 pixels by 8 lines. Therefore a block of 16 pixels by 8 lines on
uncorrected image is consists of 2 JPEG blocks: a block of odd pixels and a block
of even pixels.
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Fig. 11.9 Edge map

Fig. 11.10 Edge map after
morphological operations

The noise which appears on ALOS PRISM CCDs is referred as a stripe noise
focus mainly on solving the issue of the brightness difference between odd and even
pixels. This noise could be caused due to independent transfer of data of odd and
even detectors.

This method is based on wavelet analysis with four levels as introduced in the
previous paragraphs, it is possible to match and control the spatial differences



11 Wavelet Transform in Remote Sensing. . . 147

Fig. 11.11 IKONOS, band 4
(SpaceImaging)

Fig. 11.12 Edge map after
morphological operations

between the odd and even detectors, without loss of the image detail and infor-
mation. In Figs. 11.13 and 11.14 crops of the ALOS nadir images are introduced
while in Figs. 11.15 and 11.16 are the images where the specific filter is applied.
The results are very promising as the noise is dramatically reduced, while on the
other hand the textures and the image detail are still there.
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Fig. 11.13 Part of the ALOS
PRISM nadir image. The
noise dominates the image

Fig. 11.14 Part of the ALOS
PRISM nadir image. The
noise dominates the image

11.7 Conclusions

The two main advantages of wavelet analysis are that it is multiscale analysis and
at the same time local analysis. An image can be decomposed into components
containing information of different frequencies or in other words information of
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Fig. 11.15 The image of
Fig. 11.1 after the noise
reduction

Fig. 11.16 The image of
Fig. 11.14 after the noise
reduction

different scales without losing its location. Additionally, the method is really flexible
as it provides the means to use different mother wavelets and also to construct a new
one according to the application. These characteristics constitute the use of wavelet
analysis in remote sensing and image processing an efficient method for denoising,
image fusion, edge detection, etc.
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More precisely wavelet analysis can be used in edge detection and noise
reduction of high-resolution satellite images where the notion of scale is really
important. It was shown that the scale multiplication of wavelet analysis can be
used in detecting the boundaries of buildings or road sides, avoiding the disturbance
of detailed information such as small trees, cars, and other small objects. Also, it is
shown that the wavelets can be an efficient tool for reducing even periodical noise,
as in the case of ALOS PRISM. The performance of the method can be improved by
using more efficient wavelets for specific applications, or different schemes based
on wavelet analysis like those using statistical properties of wavelet coefficients, to
determine edges.
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Chapter 12
Optimal Orbital Coverage of Theater
Operations and Targets

Vasileios Oikonomou

Abstract The use of satellites as a tactical asset to support theater operations is
a desired capability for future space operations. Unlike traditional satellite systems
designed to provide coverage over the entire globe or large regions, tactical satellites
would provide coverage over a small region which can be modeled as a single
ground point defined by a latitude and longitude. In order to provide sufficient
utility as a theater asset, a satellite should be placed in an orbit that provides a
maximum amount of coverage of the target ground point. This study examined the
optimization of orbit parameters to maximize the number of passes made over a
target. An optimization algorithm was developed to maximize the number of passes
made while also minimizing the distance from the satellite to the target. Single
satellite coverage properties as well as two and three satellite constellations were
analyzed.

Keywords Satellite • Coverage of a theater target • Orbit • Latitude •
Longitude • Analytical approach • The number of daylight passes • The slant
range to the target • Coverage geometry

12.1 Tactical Satellites and Responsive Space Operations

Space assets have become an important and often critical part of military operations.
Satellites are employed in a variety of missions including surveillance, communica-
tion, and navigation. Currently, satellite systems are managed as national assets but
there is a strong interest in developing satellites that would be managed as a tactical
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asset. Using space assets as a tactical tool is part of a strategy termed responsive
space operations. The concept of responsive space operations focuses on the ability
to launch space assets in response to an emerging threat or identified need. A tactical
satellite, launched in support of a planned or ongoing theater operation, would be
under the control of the theater commander and make space capabilities a tactical
asset. Tactical satellites could fill various missions such as providing additional
surveillance of the theater or augmenting communications systems. As stated by
General Cartwright, tactical satellites must “demonstrate that operationally relevant,
rapidly deployable spacecraft can support military operations anywhere on Earth.”
In order to be rapidly deployable, tactical satellites will most likely be launched
into low Earth orbits. This will allow the satellites to begin on-orbit operations in a
minimal amount of time. In order to be operationally relevant, a satellite will need
to provide a sufficient amount of utility for its mission area. For surveillance, an
important measure of a satellite’s utility is the coverage it provides of the target
area. In order to provide the most utility, a satellite should be placed in an orbit
that maximizes the coverage of the theater target. Designing orbits that maximize
the coverage of a specified target is an important research area for the concept of
tactical satellites.

12.2 Research Objectives

The primary objectives of this research were to find methods of optimizing the
coverage of a theater target by a satellite and determining the optimum orbit
parameters for the satellite. A theater target was specified by a latitude and
longitude. Since the latitude of the target will vary, it was also desired that the



12 Optimal Orbital Coverage of Theater Operations and Targets 153

effects of latitude location on coverage optimization be observed. The coverage of
the target was measured as the number of daylight passes made over the target. Since
tactical satellites might be employed as a single satellite or a small constellation,
constellation design was also addressed.
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12.3 Assumptions and Limitations

The use of satellites as a tactical asset imposes a practical limitation on the orbit
altitude. The research included only analysis of low-Earth orbits. Since satellites
designed for tactical use will need to be launched, placed in orbit, and operating in
a timely manner, low Earth orbits are the most practical and suitable choice. Both
circular and elliptical orbits were compared for performance in test cases, but only
circular orbits were optimized and used for constellation design. For the purposes
of this research the primary mission of the satellite was assumed to be collection of
visible imagery of a theater target. Surveillance of a target may take various forms,
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but visible imagery is a common and highly valuable resource for theater operations.
Visible imaging requires that the target be illuminated by the sun, which limits a
satellite to daytime operations. Since this is an important constraint on the imaging
opportunities, only passes made over the target during daylight were included in
the coverage analysis for a satellite. The research focuses on optimizing coverage
over a limited time period. Since the satellites will be providing tactical support for
theater operations, it was assumed the mission duration would be short. A nominal
period of 30 days was chosen as the time period. Since a satellite’s longitude of
ascending node regresses over time due to orbital perturbations, the value selected
for the node represents the initial value at the beginning of the 30 day period. The
value is selected to allow the node to drift through its optimal value during the time
period [1].

12.4 Methodology

In order to analyze the coverage properties of a satellite, an analytical approach was
used to characterize the problem. A satellite’s coverage of a target will be largely
affected by its field of view which in turn is determined by its orbital altitude.
The relationship between a satellite’s field of view, orbital altitude, inclination,
and the latitude of the target is examined analytically. The analysis is limited to
circular orbits and several simplifying assumptions are made. In order to analyze
the problem more accurately a numerical method was used. In order to assess the
coverage performance of a satellite, a computer program was designed to simulate
the scenario. The simulation included an orbit propagator which used a numerical
method to simulate the dynamics of a satellite and measure its position and velocity
over the specified time period. The orbit propagation included the effects of the J2
perturbation caused by the oblateness of the Earth. The simulation propagated the
position of the target site in inertial space by simulating the rotation of the Earth
and propagated the position vector from the sun to the Earth. Using the simulated
scenario, the program determined how many passes the satellite made with the target
visible to the satellite and illuminated by the sun. The program measured the number
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of daylight passes the satellite made over the target, the length of each pass, the
slant range from the satellite to the target during each pass, and the time at which
passes occurred. In order to optimize the performance of a satellite, the number
of daylight passes made was chosen as the primary figure of merit. For a given
orbital altitude and inclination, the longitude of ascending node was optimized to the
value that provided the highest number of daylight passes. For a given altitude, the
inclination which provides the highest number of daylight passes was determined
and the associated trends examined. Constraints including a minimum elevation
angle or a maximum slant range were also examined. The test cases at varying
altitudes revealed a tradeoff between the number of daylight passes and the average
slant range to the target. Since the slant range will affect the resolution of visible
imagery it was added as another figure of merit. The number of daylight passes and
average slant range were selected as the performance criteria for orbit optimization.
Maximizing the number of passes was chosen as one objective in order to provide
the most opportunities for the satellite to capture imagery of the target. Minimizing
the slant range to the target was chosen as the other objective in order to allow
the highest resolution for the imagery. A multi-objective optimization algorithm
using a weighted cost function was designed to select optimal orbits to meet the
coverage objectives. Using one of the optimized orbits, constellation design was
examined. Two satellite constellations were designed by varying the mean anomaly
of the second satellite and by varying the longitude of ascending node of the second
satellite. Three satellite constellations were designed using the same techniques.
A constellation was also designed for extended operations [3].



12 Optimal Orbital Coverage of Theater Operations and Targets 157

12.5 Analytical Analysis

The first approach used to examine the problem was an analytical analysis of the
coverage properties of satellites. Satellites in circular orbits lend themselves well to
analytical analysis because the coverage properties do not vary as the satellite travels
around the Earth. Although an analytical approach provides insight, it also has
limitations. Analytical approximations do not take into account orbital perturbations
or other factors that will play an important role in the coverage properties of a real
satellite.

12.5.1 Coverage Geometry

The coverage geometry for a satellite is depicted in figure.

A satellite’s field of view on the Earth’s surface will be a circle and the size of the
field of view will be determined by the satellite’s altitude. For a satellite in a circular
orbit, the field of view will remain a constant size while a satellite in an elliptical
orbit will have a field of view whose size varies as the satellite’s altitude changes.
The Earth central angle (θ ) can be used to describe the size of half the satellite’s
field of view. For a satellite in a circular orbit and using a simplified spherical Earth
model, the Earth central angle can be determined from the equation. The equation
can also be used to determine the Earth central angle for a point on an elliptical orbit
with a particular altitude, h.

cosθ =
Rθ

Rθ + h
.

The field of view shown in figure is limited only by the satellite’s altitude which
determines where the local horizon is and thus the farthest point that is within the
satellite’s field of view. Many satellites have additional constraints on their field
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of view. There may be a minimum elevation angle required for the satellite to
operate effectively due to obstructions in its line of sight. The satellite might have a
maximum operating slant range for its onboard instruments.

The figure depicts an elevation angle (ε) constraint which creates an effective
field of view limited further than the horizon. If the field of view is constrained by
an elevation angle requirement, the Earth central angle can be determined using the
equation:

cos(θ + ε) =
Rθ cosε
Rθ + h

.

The figure depicts the coverage for a satellite with a maximum slant range (ρ).

If the field of view is constrained by a maximum slant range, the Earth central
can be determined from the equations:

Θ = 180− (η + γ)

sinγ =
(Rθ + h)sinη

Rθ
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cosη =
ρ2 +(Rθ + h)2 −R2

θ
2ρ(Rθ + h)

.

12.6 Target Coverage

A satellite in low Earth orbit which seeks to cover a certain target latitude and
longitude and which has an inclination near the target latitude ((θ −L) to (θ +L))
will follow a pattern in which it makes a series of successive passes during which
it has coverage of the target followed by a number of passes during which it has
no coverage of the target. This pattern will continue to repeat itself. The range of
longitude that the satellite covers will affect the number of successive passes that
have coverage of the target. For a satellite in a given orbit with period, P, the ground
track of the satellite will appear to shift westward in longitude with every orbit pass
because the orbit is fixed in inertial space while the Earth is rotating eastward. The
shift (s) can be measured using the equation:

S = P ·ω .

For an orbit with a longitude range 2φ , if l1 represents the beginning of the
longitude range (eastern most longitude) and l2 = l1 + 2φ represents the end
(western most longitude) of the longitude range, then after one pass

l1 = l1 − s

l2 = l2 − s.

If the target longitude lt was exactly at l1 for a given pass,
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then on the subsequent pass the target would be located at l1 + s

And on the following pass at l1 + 2s

And so on until l1 + xs > l2.

At this point the target longitude is no longer within the longitude range and
cannot be seen by the satellite. For the case described above the number of
successive passes is given by

#Passes =

(
2φ
s

+ 1

)
.

However this is only for the case where the target longitude was initially at l1 If
the target longitude is initially at l1 +σ (where σ < s ).
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then on the following pass the target longitude would be located at l1 + s+σ .

And on the next pass at l1 + 2s+σ .

And so on until it reaches the point where l1 + x · s+σ > l2.

The number of passes will be given by [4]

#Passes =

(
2φ
s

− σ
s
+ 1

)
.

12.7 Computer Simulation

The analytical analysis applies to a simplified case and has various limitations. It
does not take into account whether a target site is in daylight which is critical for
visible imaging systems. It also does not include the effects of orbital perturbations
and allows only for the examination of circular orbits. For further analysis a
computer simulation was used. The simulation propagated a satellite over a thirty
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day time period and measured its coverage of a selected target site. The coverage
was measured as the number of daylight passes made by the satellite while within
view of the target site. The J2 orbital perturbation was simulated to include its orbital
effects. Satellites in both circular and elliptical orbits were simulated as well as
constellations of satellites.

For the computer simulation were used the following quantities.

(a) Sun position vector
In order to determine if the target site was in daylight, the position vector from
the Earth to the sun was needed. The position vector from the Earth to the sun
is an Earth-centered inertial frame.

(b) Site Position vector
In order to determine if the target site was within view of the satellite, the
target site’s position vector was required. The target site’s latitude, longitude,
and altitude were used to determine its position vector in an Earth-centered
Earth-fixed coordinated frame using the semimajor axis and eccentricity of the
Earth.

(c) Site Illumination
To determine whether the target site was illuminated by the sun, the angle
between the sun’s position vector and the site’s position vector was calculated.

(d) Slant Range
The slant range is the distance from the satellite to the target.

(e) Site Visibility
The position vector from the target site to the satellite and the elevation angle
from the site to the satellite were used to determine whether the target site
was within view of the satellite. If the elevation angle was greater than the
minimum required elevation angle (or zero if no minimum elevation angle had
been designated) then the site was considered to be visible to the satellite [5].

12.8 Optimization Algorithm

The number of daylight passes made over the target and the average slant range
from the satellite to the target are two important coverage properties. The maximum
number of daylight passes will provide the maximum number of opportunities for
imaging of the target. The average slant range will affect the resolution of the
imagery and the minimum slant range distance will provide the highest resolution
imagery. An orbit which provides a high number of daylight passes usually also has
a high average slant range. In order to balance the trade-offs between the number of
passes and slant range, an optimization algorithm was developed and implemented
as a computer program.
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Table 12.1 Optimization algorithm input parameters

Target parameters Search span Time parameters Weighting parameters

Target latitude Maximum orbit
altitude

Time span Maximum passes weight

Target longitude Minimum orbit
altitude

Start date Minimum slant range
weight

Target altitude
Minimum elevation

angle

The algorithm takes in a series of inputs as shown in Table 12.1.

• The maximum and minimum altitudes define the span of orbit altitude that the
algorithm will search over to select an optimum orbit.

• The time span specifies the length of time (in days) that the simulation will
optimize over for an orbit and the start date specifies the date on which the time
period will start. The algorithm only examines circular orbits and is intended
only for low Earth orbits. It is also assumed that the target latitude is greater than
the Earth central angle of each altitude in the search span.

• The weighting parameters are used to indicate the importance that should be
given to the number of daylight passes made and to the average slant range [12].

12.8.1 Solution Space

The solution space for the optimization problem is found by determining the
approximate maximum number of daylight passes and corresponding average slant
range as well as the approximate minimum average slant range and corresponding
number of daylight passes.
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In order to find the minimum average slant range, the minimum orbit altitude as
specified by the input parameter is used.

The program simulates a satellite at the minimum orbit altitude and an inclination
equal to the target latitude. The longitude of ascending node is optimized to the value
that provides the maximum number of daylight passes.

The average slant range is calculated as well as the number of daylight
passes made.

The program then increments the inclination value above the target latitude and
again simulates the satellite and measures the average slant range and number of
daylight passes made. The program continues to increment the inclination until a
local minimum value for average slant range is determined for the minimum orbit
altitude. This local minimum is considered the minimum value for average slant



12 Optimal Orbital Coverage of Theater Operations and Targets 165

range (range min) for the solution space and the corresponding number of daylight
passes is considered the minimum number of daylight passes (pass min) for the
solution space.

The maximum number of daylight passes is determined by using the maximum
orbit altitude.

The longitude of the ascending node is optimized to provide the highest number
of daylight passes. The number of daylight passes made is measured as well as
the average slant range. The program then increments the inclination below the
approximated value and simulates a satellite at the maximum orbit altitude and the
new inclination value. This process is repeated until a local maximum value is found
for the number of daylight passes. This local maximum is considered the maximum
number of passes (passmax) for the solution space and the corresponding average
slant range is considered the maximum slant range (rangemax) for the solution
space.
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The maximum and minimum bounds of the solution space are used to determine
the span of passes and span of slant range as shown in the equations:

spanpass = passmax − passminspanrange = rangemax − rangemin.

The spans of average slant range and number of passes are then used to find a
scaling parameter so that changes in range can be compared with changes in the
number of passes. The scaling parameter is used to normalize the slant range and
number of passes. Where δ represents the accuracy of the number of passes as
determined by a simulation and is set at a default value of 5. The δ parameter is
used to set a significance level for the number of passes. An increase of a single
pass may not truly represent a better coverage property but could be the result of
where the simulation stopped so a minimum of five passes is used to ensure that the
difference in coverage is significant.

12.8.2 Optimization Solution Method

The optimization algorithm has two objectives, to maximize the number of daylight
passes and to minimize the average slant range. To satisfy both objectives, a
weighted cost function is used to find an optimal solution. A weighting parameter
for the number of passes and a weighting parameter for the average slant range are
used to determine the importance of each objective (Table 12.2). By changing the
weighting parameters, different solutions can be found. The equation shows the cost
function for the algorithm.
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Table 12.2 Optimization
algorithm output

Orbit parameters Orbit coverage properties

Altitude Number of daylight passes
Inclination Total coverage time
Longitude of

ascending node
Average pass length

Average slant range
Maximum slant range

C =
30

∑
i=1

λ1
x1

δ
−λ2

x2

σ
,

where λ1 = Weighting parameter for number of passes, λ2 = Weighting parameter
for average slant range, x1 = Number of Daylight Passes, and x2 = Average Slant
Range [2].

12.9 Results

12.9.1 Introduction

The test cases presented reveal trends associated with orbit coverage properties.
A key result of the test cases is the trade-off between the number of satellite
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passes made and the slant range from the satellite to the target. Since both of these
properties are important for high resolution imagery, an optimization algorithm was
used which takes into account and weighs the objectives of maximizing the number
of passes and minimizing the slant range. Using one of the optimized orbits, an
examination of constellation properties was performed to design configurations for
constellations of two and three satellites.

12.9.2 Optimum Inclination for Maximum Number
of Daylight Passes

Various test cases were examined to determine the inclination that maximizes the
number of daylight passes made. For visible imaging satellites, an orbit that provides
the most opportunities to capture imagery of the target is desired. The average slant
range to the target was also measured since it is another important consideration
for target coverage. The test cases include varied orbit altitude, target latitude, slant
range constraints, and elevation angle constraints.

12.9.2.1 Analytical Predictions

The analytical analysis showed a direct correlation between the inclination of a
satellite’s orbit and the swath of longitude at a given latitude value that would be
viewed each time the satellite completed an orbit around the Earth. An inclination
at the value of the satellite’s Earth central angle plus the target latitude provided
the largest swath of longitude. In addition a larger longitude swath was shown to
correspond to an increased number of passes over a target latitude and longitude.
These results imply that the maximum number of passes will be made at an
inclination equal to the Earth central angle plus the value of the target latitude. To
test this prediction, various orbit cases were used in the computer simulation.

12.9.2.2 350 km Altitude Circular Orbit, Target Latitude 33◦

In order to determine the optimum inclination for a satellite in a 350 km circular
orbit, a range of inclinations was tested to see where the maximum number of
daylight passes occurs. The tests were run using a 30 day time period and the total
number of daylight passes measured. For each pass counted, the target site was
illuminated by the sun and therefore in daylight and the target site was visible to
the satellite. The target site was considered visible if the elevation angle was greater
than or equal to 0◦. For each inclination tested, the longitude of the ascending node
was optimized to yield the highest number of daylight passes. Figure shows the
results for a target at a latitude of 33◦. As expected, the number of daylight passes
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varies depending on the inclination. The number of passes increases as inclination
is increased until it reaches its maximum at 51◦. This optimum inclination provided
186 passes during the 30 day time period. The number of passes then drops off
steeply as the inclination is increased above 51◦. The optimum inclination occurs
at 18◦ above the target latitude and the Earth-central angle for an orbital altitude of
350 km is 18.56◦. Thus the analytical prediction that the optimum inclination occurs
at the target latitude is consistent with the results.
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12.9.2.3 800 km Altitude Circular Orbit, Target Latitude 33◦

The second case tested was an 800 km altitude circular orbit. The target latitude was
kept at 33◦ and a range of inclinations was tested to determine the inclination at
which the maximum number of daylight passes occurs. The minimum elevation
angle used was 0◦ and the time span 30 days. For each inclination tested the
longitude of the ascending node was optimized to the value that yielded the highest
number of daylight passes. Figure shows the number of daylight passes for the
values of inclination tested.

The maximum number of daylight passes made over the 30 day period is 204
passes which occurs at an inclination of 59◦. The trends shown are consistent
with the 350 km altitude orbit. The number of passes increases as the inclination
is increased above the target latitude until it reaches a maximum at 59◦. As
the inclination is increased above 59◦ the number of passes decreases quickly.
The Earth-central angle for an 800 km altitude orbit is 27.31◦ and the optimum
inclination is 26◦ above the target latitude. In comparison with the 350 km altitude
orbit case, an increased number of daylight passes are made by the 800 km altitude
case. This is an expected result since increasing the altitude of an orbit increases
the satellite’s field of view on the surface of the Earth. The total coverage time
and average pass length have increased in comparison to the 350 km case, but the
average and maximum slant range have also increased. The average slant range
versus inclination for the 800 km case is shown in the next figure.

The average slant range is at its maximum at the optimum inclination for
maximum number of daylight passes. The trend is consistent with the trend seen
for the 350 km altitude orbit case. As the orbital altitude is increased, the number of
daylight passes made over the 30 day period also increases.
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12.9.2.4 350 km Altitude Circular Orbit, Target Latitude 0◦

The case of a target site on the equator was tested over a range of inclinations. Each
test was run for a 30 day time span and the total number of daylight passes recorded.
For each inclination tested the longitude of the ascending node was optimized to
provide the highest number of daylight passes. The minimum elevation angle used
from the target site to the satellite was 0◦. Figure shows the results for a 350 km
altitude circular orbit and a target latitude of 0◦.

As the inclination is increased above the target latitude there is no significant
change in the number of passes until the inclination reaches 18◦, at which point the
number of passes drops off steeply as the inclination is increased. The trend suggests
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there is no improvement in increasing inclination above the target inclination. At an
inclination of 0◦, the satellite makes the maximum number of daylight passes which
is 227 passes. For a satellite in an equatorial 350 km altitude orbit, the latitude of the
target is always within view of the satellite so no additional benefit can be gained by
increasing the inclination. The Earth-central angle is 18.56◦ for a 350 km altitude
circular orbit. As long as the inclination remains at or below 18◦, the latitude of
the target site should always be within view of the satellite. Next figure shows the
average slant range for each of the inclinations tested.

As the inclination is increased the average slant range also increases until it
reaches its maximum at 18◦. Although there is little change in the number of
passes as long as the inclination remains below 18◦, an inclination of zero offers
the additional benefit of having the smallest average slant range to the target site.
Although there may not be a significant decrease in the number of daylight passes
at inclinations greater than zero, there is a significant increase in the average slant
range from the satellite to the target.

12.9.2.5 800 km Altitude Circular Orbit, Target Latitude 0◦

An 800 km altitude circular orbit case was also tested with the target site placed on
the equator. A range of inclination values was tested and the number of daylight
passes measured. Each inclination was tested over a 30 day time span and a
minimum elevation angle of 0◦ was used. For each inclination tested the longitude of
the ascending node was optimized to provide the highest number of daylight passes.
The results for the number of daylight passes are shown in figure.
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The maximum number of daylight passes made over the 30 days is 205 passes.
There is no significant variation in the number of passes made as the inclination is
increased from zero to 24◦. As the inclination is increased above 24◦ the number of
daylight passes steadily decreases. The trend shown is consistent with the 350 km
orbit case. As long as the satellite’s inclination is at or below 24◦, the target’s
latitude band will always be within view and there will be little variation in the
number of passes. Above an inclination of 24◦ the number of passes will decrease
as the inclination is increased. Next figure shows the average slant range versus
inclination for this case. The trend is again consistent with the 350 km orbit case.
As the inclination is increased, the average slant range increases until it reaches a
maximum at 28◦. The average slant range is minimized at an inclination of 0◦.
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Table 12.3 Comparison
of Coverage Properties
Equatorial Orbits at 350 km
and 800 km

Orbit altitude (km) 350 800
Number of daylight passes 227 205
Total coverage time (h) 36.6 54.4
Average pass length (min) 9.7 15.9
Average slant range to target (km) 396 830
Maximum slant range to target (km) 2,073 2,945

In comparison with the 350 km altitude orbit case, a fewer number of daylight
passes are made by the satellite in an 800 km altitude orbit. Table 12.3 summarizes
the coverage properties for a satellite in an equatorial orbit at 350 km altitude and at
800 km altitude.

The 800 km altitude orbit provides fewer total passes but does provide a larger
total coverage time due to longer duration passes. The 350 km altitude orbit provides
a greater number of passes and a smaller slant range to the target site.

12.9.2.6 350 km Altitude Circular Orbit, Target Latitude 10◦

Another case tested was a circular orbit at 350 km altitude and a target site at 10◦
latitude. A range of inclinations was tested to determine the inclination that provides
the maximum number of daylight passes. The tests were run using a 30 day time
period and for each inclination tested the longitude of the ascending node was
optimized to provide the highest number of daylight passes. The minimum elevation
angle used was 0◦. Figure shows the results for the number of daylight passes made
during the 30 day period.

The maximum number of daylight passes made over the 30 day period is 236
passes. At an inclination of 0◦ the number of daylight passes made is the maximum
amount. As the inclination increases above 8◦, the number of daylight passes begins
to steadily decrease. The average slant range is shown in the next figure. The slant
range is minimized at an inclination of 14◦.
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12.9.2.7 800 km Altitude Circular Orbit, Target Latitude 10◦

An 800 km altitude orbit was tested with the target placed at a latitude of 10◦. The
tests were run for a time period of 30 days and a minimum elevation angle of 0◦ was
used. The longitude of the ascending node for each orbit was optimized to provide
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the maximum number of daylight passes. For each inclination tested the number of
daylight passes made over the target was measured. Figure shows the results for the
range of inclinations tested. The maximum number of daylight passes made over
the 30 day period is 214 passes. At an inclination of zero the maximum number of
passes is made. The number of passes made remains the same until the inclination
is increased above 16◦, at which point the number of passes decreases and continues
to decrease as the inclination is increased.

Next figure shows the average slant range for each inclination tested. The slant
range is minimized at an inclination of 12◦ [6].
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12.9.3 Optimum Inclination for Maximum Number
of Daylight Passes with Constrained Slant Range

The slant range, measured as the distance from a satellite to a target along its line
of sight, may be an important factor for satellite operations. The surveillance tools
onboard the satellite may have a maximum distance at which they can effectively
operate. When this is the case, any passes made over the target will only be useful
if the slant range to the target is less than the maximum distance required by the
equipment. In order to examine the impact of a maximum slant range on inclination
optimization, several cases were run with a constraint placed on the slant range.
Only satellite passes made with a slant range less than the constraint were counted
during the simulations.

12.9.3.1 350 km Altitude Circular Orbit, Target at Latitude 33◦,
MaximumSlant Range 800 km

The first case tested was a 350 km altitude circular orbit and a target at a latitude
of 33◦. The slant range constraint chosen was a maximum slant range of 800 km. A
range of inclinations was tested to see where the maximum number of daylight
passes occurs. For each inclination tested the longitude of ascending node was
optimized to provide the maximum number of daylight passes. Each test was run
for a time period of thirty days. Figure shows the number of daylight passes made
over the thirty day period.

As the inclination is increased above the latitude of the target, the number
of daylight passes increases until it reaches a maximum at 39◦. The maximum
number of passes made over the 30 days is 114 passes at an inclination of 39◦.
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As the inclination is increased above 39◦, the number of passes made decreases.
The average slant range is 594 km which is well below the constraint of 800 km.
In comparison with the unconstrained case, the number of passes made is less.
At an inclination of 39◦, the unconstrained case of a 350 km altitude orbit would
have yielded 158 passes. With the slant range constraint, 114 passes are made in
which the slant range requirement is met and 44 passes are made at a distance that
exceeds 800 km. The maximum number of passes occurs at an inclination of 39◦
in comparison with 51◦ for the unconstrained case. For a satellite at an altitude of
350 km and using a maximum slant range of 800 km, the effective Earth central
angle is approximately 6.3◦ as depicted in figure and in this case the optimum
inclination occurs at 6◦ above the target latitude; again the results are consistent
with the analytical analysis [10].
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12.9.4 Optimum Inclination for Maximum Number
of Daylight Passes with Constrained Elevation Angle

The elevation angle, measured from the local horizon of the target to the line of
sight vector to the satellite, may have a minimum value that is greater than zero.
All satellites are limited by the horizon but often a higher elevation angle is also
required. For visible imaging satellites, an elevation angle of 90◦ is ideal because the
image will be taken directly overhead. As the elevation angle decreases, the images
will be more difficult to interpret and less useful. At very small elevation angles,
objects may obstruct the line of sight of the satellite to the target and prevent it from
operating. In order to examine the impact of a minimum elevation requirement,
several cases were run with a constraint on the minimum elevation angle required
to view the target. If the elevation angle was smaller than the constraint value, the
target was not considered visible to the satellite.

12.9.4.1 350 km Altitude Circular Orbit, Target at Latitude 33◦,
Minimum Elevation Angle 10◦

The first case examined was a 350 km altitude circular orbit with the target placed at
a latitude of 33◦. A minimum elevation angle of 10◦ was used. In order to determine
the inclination at which the maximum number of daylight passes occurs, a range of
inclinations was tested. A time period of 30 days was used and the longitude of the
ascending node was optimized to provide the maximum number of daylight passes
for each inclination tested. Figure shows the number of daylight passes made at each
inclination tested. The maximum number of daylight passes made over the 30 day
period is 144 and occurs at an inclination of 43◦. As the inclination is increased
above the target latitude, the number of passes increases until it reaches a maximum
at an inclination of 43◦. As the inclination increases above 43◦, the number of
daylight passes decreases.

For a satellite in a circular orbit at an altitude of 350 km and with a minimum
elevation angle requirement of 10◦, the effective Earth central angle is approxi-
mately 11◦ as depicted in the next figure. For this case the optimum inclination
occurs at 10◦ above the target latitude.

12.9.5 Constellation Design

Figure shows the distribution of passes made over a 30 day period for a satellite
in a 500 km circular orbit with a minimum elevation angle of 10◦ and a target at a
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latitude of 33◦. On each day the passes are made in succession with approximately
95 minutes, the period of the orbit, between passes. The number of passes made per
day ranges from a maximum of 6 to a minimum of 4.

12.9.5.1 Distribution of Satellite Passes to 500 km Altitude Circular Orbit,
45 Inclination, Target Latitude 33, Minimum Elevation Angle 10

The time of day when the passes occur drifts as the orbit’s node regresses. At the
beginning of the time period, the passes occur later in the day but on subsequent
days the passes occur at an earlier time of day until at the end of the 30 day period
the passes are occurring in the early portion of the day. The impact of this trend is
that there are fewer passes on days near the beginning and end of the time period.
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Two Satellites Separated by 180◦ in Mean Anomaly

One constellation design is to place two satellites in the same orbit but separated
by mean anomaly. Next figure shows the distribution of satellite passes for two
satellites separated by 180◦ of mean anomaly. Both satellites were in 500 km altitude
circular orbits at an inclination of 45◦ and with a longitude of the ascending node
of 72◦. A minimum elevation angle of 10◦ was used and the target was located at
a latitude of 33◦. The number of passes per day ranges from a maximum of 12 to
a minimum of 7. The passes each day occur successively with approximately 47
minutes between each pass. The number of passes has nearly doubled from 159
passes for one satellite to 316 passes with the additional satellite. Similar to the one
satellite case, there are fewer passes on days at the beginning and end of the 30 day
period [7].

12.9.5.2 Distribution of Passes for Two Satellites Over 30 Days Satellite 1
and 2: 500 km Altitude Circular Orbit, 45 Inclination, 72
Longitude of Ascending Node, Minimum Elevation Angle 10,
Target Latitude 33

12.10 Conclusions

12.10.1 Target Location

The latitude at which a target site is located plays an important role in determining
the appropriate orbit for target coverage. If the target site is on the equator, an
equatorial orbit should be used. In this case the orbit’s inclination will match the
target site’s latitude. In an equatorial orbit, the satellite’s field of view will always be
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over the equator and whenever the target site’s longitude comes within the satellite’s
field of view, the target site will be visible to the satellite. No additional gains are
made by increasing the orbital inclination above the equator. If the inclination is
increased a few degrees but remains below the value of the Earth-central angle for a
given altitude, the equator will still always be within the field of view of the satellite.
However the average slant range from the satellite to the target will be increased
which is undesirable for applications such as high-resolution visible imaging. If the
inclination is increased above the value of the Earth-central angle, the latitude of the
target site will no longer always be within the field of view of the satellite and the
number of daylight passes made will decrease. If the target site is at a latitude that
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is above the equator but at a smaller value than the Earth-central angle, the case is
slightly different. The altitude of the orbit will determine the Earth-central angle for
an altitude range of 200 to 800 km the Earth central angles range from 14 to 27◦.
Thus the latitude range that this case applies to will vary depending on the orbital
altitude, but low latitudes such as 5 or 10◦ will always fall in this category. If the
satellite is placed in an equatorial orbit, the latitude of the target site will always be
within the satellite’s field of view because the latitude value is less than the Earth-
central angle. The satellite’s inclination can be raised above the equator and the
latitude of the target site still always be within the field of view. This will be the
case if the inclination selected is less than the difference between the Earth-central
angle and the target latitude. For example the 350 km altitude orbit has an Earth-
central angle of about 18.6◦. For a target site at a latitude of 10◦, the difference
between the Earth-central angle and target latitude is about 8.6◦. At an inclination
above 8.6◦, the target latitude would no longer always be within the field of view of
the satellite which would mean a decrease in the number of passes. The results for
the 350 km case showed a decrease in the number of passes at inclinations above 8◦.
Since the number of passes does not vary significantly for the range of inclinations
in which the target latitude is always within the flied of view of the satellite, a simple
solution is to just choose an equatorial orbit. However the average slant range will be
minimized at an inclination near the target latitude. In the inclination range where
the latitude is always within the field of view, the average slant range might be
higher at an equatorial orbit than an inclination closer to the target latitude. The
trade-offs between slant range and number of passes will have to be considered
before choosing an orbit. Another case is when the Earth-central angle is less than
the value of the target latitude. Depending on the orbit altitude this range of latitude
would begin around 18–27◦. Since most recent theater operations have occurred at
latitudes above 27◦, this region is of high interest. There are two types of coverage
that can be provided by low altitude orbits for targets in this latitude region. The
first type of coverage is when a satellite makes one pass over the latitude of the
target during each orbital period. This type of coverage will include the range of
inclinations from the latitude of the target up to a value near the Earth-central angle
plus the latitude of the target. The second is when the satellite makes two passes,
one as it is ascending and one as it is descending, over the latitude of the target.
This range will include inclinations higher than the Earth-central angle plus the
latitude of the target. The highest amount of daylight passes will be made by the first
type of coverage and will occur at an inclination near the value of the latitude plus
the Earth-central angle. The results have shown the second case to be undesirable
because the number of daylight passes decreases significantly. The average slant
range also decreases but not enough to compare with the first type of coverage. For
the first type of coverage, as the inclination increases above the target latitude, the
number of daylight passes increases but so does the average slant range. The trade-
off between slant range and passes is an important consideration for orbit selection
[11].
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12.10.2 Orbital Altitude

The altitude of the orbit is another important parameter that affects the target
coverage a satellite provides. For a target site located on the equator and a satellite
in an equatorial orbit, increasing the altitude will decrease the number of daylight
passes made over the target. This trend corresponds with the increased period a
higher altitude orbit will have. The period of the orbit is important because during
the time it takes the satellite to complete an orbit, the Earth will rotate. For a higher
period, there will be fewer successive passes because the Earth will rotate more
during each orbit than for a shorter period and the target will be out of view after
less passes than for a shorter period. Increasing the orbit altitude also increases the
field of view and hence Earth-central angle of the satellite but since the latitude of
the target is always within view, a larger field of view does not add any increase in
the number of passes. Increasing the altitude of the orbit also increases the average
slant range to the target. Since the satellite is at a higher altitude, the distance from
the satellite to the target will also be higher. If the target site is at a latitude of
10◦, the effects of increasing the orbit altitude are similar to the equatorial case. At
a given altitude the number of daylight passes and average slant range vary with
inclination, but there are still overall trends that are evident for varying altitudes.
As the orbit altitude increases, the period of the orbit increases and the number
of daylight passes decreases. The average slant range also increases as the orbit
altitude increases. For a target latitude of 33◦, orbit altitude has several important
effects. At a particular altitude the number of daylight passes and average slant range
will depend on inclination, but there are still general trends that can be observed
for varying altitudes. As the altitude of an orbit is increased, the Earth-central
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angle of the satellite is increased. This corresponds to an increase in the number
of successive passes that are made by a satellite. If the orbit altitude is increased, the
number of daylight passes made increases. The average slant range also increases
with increasing orbit altitude [8, 9].

12.11 Recommendations for Future Work

The satellite propagation included the J2 perturbation which causes a regression
of the node for an orbit. The perturbation was included because it has an important
impact on orbit coverage. Another parameter that could be included is the drag force
on a satellite. Satellites in low Earth orbit experience a significant force due to drag
which could be modeled in order to see its impact on target coverage. The orbit
optimization algorithm included two important coverage properties, the number
of daylight passes and the average slant range. There are various other coverage
properties that could be included in an optimization algorithm. The algorithm could
include the objectives of maximizing the total coverage time over the target or
minimizing the average or maximum time between passes. An algorithm could
also be developed to optimize constellations of satellites. The focus of this research
effort was on orbits which will be used for satellites collecting visible imagery.
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Tactical satellites may also serve other missions such as communications or types
of surveillance other than visible imaging. Since other applications may be able
to operate at night, the requirement for daylight passes would not necessarily be
included. Other requirements such as a minimum time between passes could be
explored [13].
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Chapter 13
A Bird’s-Eye View of Modern Symmetric
Cryptography from Combinatorial Designs

Christos Koukouvinos and Dimitris E. Simos

Abstract In the past few decades, combinatorial design theory has grown to
encompass a wider variety of investigations, many of which are not apparently
motivated by any practical application. Rather, they are motivated by a desire
to obtain a coherent and powerful theory of existence and properties of designs.
Nevertheless, it comes as no surprise that applications in coding theory and
communications continue to arise, and also that designs have found applications
in new areas. Cryptography in particular has provided a new source of applications
of designs, and simultaneously a field of new and challenging problems in design
theory.

In this paper, we present a number of applications of combinatorial designs in
which the connection with modern symmetric (private-key) cryptography appears
to be substantial and meaningful. We survey recent powerful private-key cryptosys-
tems from special classes of combinatorial designs, i.e., orthogonal and Plotkin
arrays, Hadamard matrices which are constructed from one and two circulant
cores, which possess beautiful combinatorial properties. In addition, we present
a new symmetric cryptosystem based on the famous Williamson construction for
Hadamard matrices. Practical aspects of the cryptosystems, in terms of security and
cryptanalysis, are analyzed and examples of real-time encryption and decryption are
provided using cryptographic algorithms. We conclude by providing a state-of-the-
art comparison of private-key block ciphers in the field of modern cryptography.
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13.1 Introduction

In this paper, we survey recent private symmetric key ciphers based on several
constructions that have arisen using binary arrays of combinatorial designs. In
addition, we present a new symmetric cryptosystem for a specific class of combina-
torial designs called Williamson matrices. By the term symmetric we mean that the
same key is used both for encryption and decryption of a message. The respective
cryptographic algorithms for the encryption and decryption process are called
symmetric key block ciphers, and divide the original message which is going to be
encrypted into blocks and encrypt each block separately. In this family of ciphers,
the motivation for using Hadamard and Williamson Matrices, and orthogonal and
Plotkin arrays was that these designs are often hard to find and the algorithms for
encryption and decryption are of reasonable length. For encryption methods based
on combinatorial designs we refer the interested reader to [37]. Applications of
combinatorial designs to communications, cryptography, and networking can be
found in the survey paper, [8].

13.1.1 Specifications

The cipher has similarities to the Hill cipher, i.e., using the incidence matrix of a
combinatorial design for encryption and decryption and to the one time pad [31,46].
For more details regarding the Hill encryption method, see [46]. Moreover, we
present a unified approach for iterated versions of these combinatorial design
ciphers through the use of Kronecker product that approximates a k-round Feistel
cipher or network [31]. Widely known ciphers that use the block structure of a
Feistel network are data encryption standard (DES), Blowfish [38], FEAL [43],
and the LOKI family of ciphers (LOKI89, LOKI91, [6]). A list of typical attacks
and reference of the existing protocols can be found in ([12] and [5]), respectively.
The design goals set for the combinatorial design ciphers include the following:

1. Include randomness in the encryption process
2. Require the key be shared only once
3. Use a relatively small key size
4. Computationally fast
5. The ciphers have good diffusion
6. Robust to most common cryptographic attacks
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The ciphers we survey in this paper implement goals 2, 3, and 4. We shall illustrate
that one variant of them (Plotkin ciphers) includes randomness in the encryption
process and demonstrate that all the ciphers have good diffusion properties and
provide resistance to most common cryptographic attacks.

The encryption process can be described from the following procedure: consider
a communication channel, we divide the channel into two subbands, one which will
carry the message and the other which will carry noise. The message, along with the
noise, is transmitted over the channel. The recipient then filters out the noise, leaving
only the message. This procedure is carried out using combinatorial designs.

This paper can be regarded as a unification and expansion of the proposed
schemes given in [24–26], and it is organized as follows. In Sect. 13.2, we present
the cryptographic algorithms used for all the encryption schemes. In Sect. 13.3 we
design the encryption schemes using combinatorial designs, while in Sect. 13.4 we
consider practical aspects of the proposed ciphers. Finally in Sect. 13.5 we study the
security of all present private-key cryptosystems and conclude with a comparison of
modern symmetric block ciphers in the field of cryptography.

13.2 Cryptographic Algorithms

We assume that the message to be transmitted is a plaintext with n letters, which
is represented by a vector of length n, whereas each coordinate of the vector is a
numerical value of the corresponding letter of the plaintext (i.e., ASCII code). We
note that the design of cryptographic algorithms given here are a generalization of
the ones given in [24], since in this paper we explore the use of orthogonal matrices
generated by combinatorial designs instead of orthogonal arrays.

If the message has more than n letters then the procedure which is given below
is being repeated as much times as needed. If it has less than n letters then we
pad the plaintext with the letter “space” sufficient times. For the requirements of
the proposed encryption method we will make use of a matrix A of order n× n,
of special structure, with entries {±1} where the matrix A satisfies AAT = kIn

for some constant k ∈ IN, where T stands for transposition and In is the identity
matrix of order n. Design theory is rich of such matrices of special structure having
beautiful combinatorial properties, i.e., Hadamard matrices. For more details on the
application of combinatorial designs in cryptography we refer the interested reader
to [8, 37].

If the message we wish to transmit has been converted to a numerical vector m̄,
then the encrypted message which is going to be transmitted over a communication
channel is

c̄ = m̄A+ dēn

where d is a suitable constant and ēn = (1, . . . ,1) is a 1× n vector of ones.
The receiver in order to decrypt the encrypt message has to make use of the
transformation m̄= 1/k(c̄−dēn)AT , where AT is the transpose of the matrix A which
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has been used during the encryption. The encryption method described previously
can be implemented with the following cryptographic algorithm given in [26].

In order for the encryption method to be persistent with respect to the basic
cryptographic principles, the encrypted message c̄ has to be decrypted uniquely.
This requirement is satisfied from the following theorem.

Algorithm 1 Encryption Algorithm

function ENCRALG(msg)
Require: msg in ASCII code � Encode a sample plaintext, msg

SELECT(A,d) � Choose appropriate A and d
k← (A,d) � Form private key k
TRANSMIT(k) � Transmit securely the private key
m̄← CONVERT(msg) � Convert original msg
c̄← m̄A+dēn � Encrypted msg is c̄
return (TRANSMIT(c̄))

end function

Theorem 13.1 (Koukouvinos and Simos [26]). The encrypted message c̄ which
is transmitted with respect to the encryption algorithm is decrypted uniquely as
w̄ = 1/k(c̄− dēn)AT and w̄≡ m̄.

The decryption process uses the previous theorem as its cornerstone and is
implemented with the following cryptographic algorithm, again given in [26].

Algorithm 2 Decryption Algorithm

function DECRALG(c̄)
Require: given ciphertext c̄ � Decode a given ciphertext

RECEIVE(A,d) � Receive the securely transmitted private key
k← (A,d) � Set private key k
m̄← 1/k(c̄−dēn)AT � Decrypt ciphertext c̄
msg← CONVERT(m̄) � Original plaintext is msg
return (msg)

end function

13.3 Private-key Ciphers

In this section, we provide several constructions for encryption schemes using one
array of special structure. We give some necessary notations and definitions that we
shall use throughout this paper. We note that all arrays that are used below can be
considered as binary array bits with the aid of the following {1,−1}-bit notation
taken from [28].

Definition 13.2 ({1,−1}-bit Notation). Sometimes, we find it convenient to view
bits as being {1,−1}-valued instead of {0,1}-valued. If b∈ {0,1} then b̄ ∈ {1,−1}
is defined to be b̄ = (−1)b. If x ∈ {0,1}n then x̄ ∈ {1,−1}n is defined as the string
where the ith bit is x̄i.
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A cipher’s strength is determined by the computational power needed to break
it. The computational complexity of an algorithm is measured by two variables: T
for time complexity which specifies how the running time depends on the size of
the input and S for space complexity or memory requirement. Both T and S are
commonly expressed as functions of n, when n is the size of the input.

Generally, the computational complexity of an algorithm is expressed in what is
called “big O” notation; the order of magnitude of the computational complexity.
We use O-notation to give an upper bound on a function, to within a constant
factor [9].

Definition 13.3 (O-Notation). For a given function g(n) we denote by O(g(n)) the
set of functions O(g(n)) = { f (n) : there exist positive constants c and n0 such that
0≤ f (n)≤ cg(n) for all n≥ n0}.
We give a necessary brief definition for an encryption scheme.

Definition 13.4 (Boyd and Mathuria [5]). An encryption scheme consists of three
sets: a key set K, a message set M, and a ciphertext set C together with the following
three algorithms.

1. A key generation algorithm, which outputs a valid encryption key k ∈ K and a
valid decryption key k−1 ∈ K.

2. An encryption algorithm, which takes an element m ∈M and an encryption key
k ∈ K and outputs an element c ∈C defined as c = Ek(m).

3. A decryption function, which takes an element c ∈ C and a decryption key
k−1 ∈ K and outputs an element m ∈M defined as m = D−1

k (c). We require that
D−1

k (Ek(m)) = m.

Remark 13.5. We note that although we have used as a private key the pair (A,d),
in terms of computational complexity, henceforth we can refer to the private key
using only the encryption matrix A since d is of size O(1).

It is clear that since we have an encryption algorithm and a decryption function
we need a key generation algorithm in order to construct an encryption scheme. This
key generation algorithm will be derived each time from a class of combinatorial
designs; thus in the following sections, we name the ciphers after the respective
combinatorial structure used.

13.3.1 OA Ciphers

Orthogonal arrays were introduced by Rao [35, 36] over half a century ago.
Applications of them have arisen in many areas of discrete mathematics and
statistics. For further details on orthogonal arrays we refer the interest reader to [20].
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Definition 13.6. An orthogonal array OA(n,q,s, t) is an n× q array with entries
from a set of s distinct symbols arranged so that, for any collection of t columns of
the array, each of the st row vectors appears equally often.

In the case of s = 2 we can use as the set of the symbols the set S = {−1,1}.
Then for any t ≥ 2 (we will always think and use t as 2), by definition, it is easy
to verify that for any selection of two distinct columns of an orthogonal array the
usual inner product of the columns is zero. As an encryption matrix we will use the
transpose of an orthogonal array with parameters (n,q,2, t).

Definition 13.7. Two orthogonal arrays based on s symbols are said to be isomor-
phic if one can be obtained from the other by a sequence of row permutations,
column permutations, and permutations of symbols in each column.

It is a hard combinatorial problem to find a complete set of non-isomorphic
orthogonal arrays with certain parameters, [1,7,11]. Also much work has been done
towards the enumeration of non-isomorphic orthogonal arrays [48].

Example 13.8. Below we present an orthogonal array: OA(12,4,2,2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1
−1 1 1 −1
−1 1 −1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 1 −1
−1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this case the key k will be the orthogonal array, A, OA(n,q,2, t), which consists
by n×q bits. In terms of computational complexity, since q < n, the size of the key
is of orderO(n2).

Proposition 13.9 (Koukouvinos et al. [24]). There exist a family of private-key
ciphers using orthogonal arrays with parameters OA(n,q,2, t), t ≥ 2, which will be
called OA ciphers.

Remark 13.10. It is obvious that the use of two non-isomorphic or different (maybe
isomorphic) orthogonal arrays with the same parameters will result in two different
ciphertexts.

Theorem 13.11 (Hedayat et al. [20]). For every n multiple of 4 there exists a two-
level orthogonal array with parameters OA(n,q,2, t) for some q and t ≥ 2.
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13.3.2 Hadamard Ciphers

Hadamard matrices are named after Jacques Hadamard, who found square matrices
of orders 12 and 20, with entries ±1, which had all their rows (and columns)
orthogonal [18].

Definition 13.12. A Hadamard matrix of order n is a square n×n matrix H whose
elements are +1’s and −1’s, with the property

HHT = nIn

where T stands for transposition and In is the identity matrix of order n.

The Hadamard property entails that the rows (and columns) of a Hadamard
matrix are pairwise orthogonal. It is well known that if n is the order of a Hadamard
matrix then n is necessarily 1,2 or a multiple of 4. Hadamard matrices are used
in Combinatorics, Statistics, Coding Theory, Telecommunications, and other areas.
More details on Hadamard matrices can be found in [10, 42].

As an encryption matrix for this scheme we will use a Hadamard matrix of
order n. In the case of Hadamard matrices it is obvious that the use of two different
Hadamard matrices of the same order will result in two different ciphertexts, due to
the presence of the H-equivalence property described below.

Two Hadamard matrices are called equivalent (or Hadamard equivalent or
H-equivalent) if one can be obtained from the other by a sequence of row negations,
row permutations, column negations, and column permutations. More specifically,
two Hadamard matrices are equivalent if one can be obtained by the other by a
sequence of the following transformations:

• Multiply rows and/or columns by −1.
• Interchange rows and/or columns.

Two Hadamard matrices are called inequivalent, if they are not equivalent. There-
fore, the choice of inequivalent Hadamard matrices as encryption matrices ensures
that two inequivalent Hadamard matrices will result in two different ciphertexts.
Otherwise one could transform the one encryption matrix to another, following the
transformations mentioned above.

It is vital for our application to have large databases of inequivalent matrices
to our disposal. As of release 2.13, Magma contains a database of inequivalent
Hadamard matrices. There exist several thousands (even millions) of inequivalent
Hadamard matrices for some orders. As an example for order 32 which is a
reasonable length for the encryption process there are more than 3,578,006
inequivalent Hadamard matrices [32].

The private key k used in the encryption process will be the Hadamard matrix of
order n, A = Hn, which consists of n×n bits. In terms of computational complexity,
the size of the key is O(n2).

Proposition 13.13 (Koukouvinos and Simos [26]). There exist a family of private-
key ciphers using Hadamard matrices of order n, which will be called Hadamard
ciphers.
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There are some special constructions of Hadamard matrices which enable us to
reduce the size complexity of the private key.

13.3.2.1 Hadamard Core Ciphers

A Hadamard matrix of order p+1 which can be written in one of the two equivalent
forms

1 1 · · ·1
1
... C
1

or

1
... C
1
1 −1 · · ·− 1

where C = (ci j) is a circulant matrix of order p, i.e., ci j = c1, j−i+1(mod p) is said to
have a circulant core. The following matrices are examples for order 12.

1 1 1 1 1 1 1 1 1 1 1 1
1 - 1 - 1 1 1 - - - 1 -
1 - - 1 - 1 1 1 - - - 1
1 1 - - 1 - 1 1 1 - - -
1 - 1 - - 1 - 1 1 1 - -
1 - - 1 - - 1 - 1 1 1 -
1 - - - 1 - - 1 - 1 1 1
1 1 - - - 1 - - 1 - 1 1
1 1 1 - - - 1 - - 1 - 1
1 1 1 1 - - - 1 - - 1 -
1 - 1 1 1 - - - 1 - - 1
1 1 - 1 1 1 - - - 1 - -

1 1 - 1 - - - 1 1 1 - 1
1 1 1 - 1 - - - 1 1 1 -
1 - 1 1 - 1 - - - 1 1 1
1 1 - 1 1 - 1 - - - 1 1
1 1 1 - 1 1 - 1 - - - 1
1 1 1 1 - 1 1 - 1 - - -
1 - 1 1 1 - 1 1 - 1 - -
1 - - 1 1 1 - 1 1 - 1 -
1 - - - 1 1 1 - 1 1 - 1
1 1 - - - 1 1 1 - 1 1 -
1 - 1 - - - 1 1 1 - 1 1
1 - - - - - - - - - - -
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Where − stands for −1 to conform with the customary notation for Hadamard
matrices. The two forms are equivalent as described earlier.

The scheme is constructed by using the previous Hadamard matrix A = Hn of
order n = 4m = p+ 1 as an encryption matrix. However, in this case the circulant
structure of the Hadamard matrix gives us the opportunity to use a key of a
significant less size than previously as follows.

Let Ac = [a1,a2, . . . ,ap] denote the first row of the circulant matrix, C, used in
the one circulant core construction previously. The private key k for this scheme is
the binary vector, Ac, which consists of p bits. Therefore, when a Hadamard matrix
of order n = p+ 1 is used as an encryption matrix the key is of size O(n), since it
consists of p = n− 1 bits.

Proposition 13.14 (Koukouvinos and Simos [26]). There exist a family of private-
key ciphers using Hadamard matrices with one circulant core of order n = p+ 1,
which will be called Hadamard core ciphers.

Four families of these kinds of Hadamard matrices have been found by Pa-
ley [33], Stanton, Sprott and Whiteman [45, 54], Singer [44] and Marshall Hall
[19], which can be used in the previous proposition and give rise to infinite families
of encryption schemes based on Hadamard matrices with one circulant core. The
following theorem was given in [21].

Theorem 13.15 (Circulant Core Hadamard Construction Theorem). A
Hadamard matrix of order p+ 1 with circulant core can be constructed if

1. p ≡ 3(mod 4) is a prime [33]
2. p = q(q+ 2) where q and q+ 2 are both primes [45, 54]
3. p = 2t − 1 where t is a positive integer [44]
4. p = 4x2 + 27 where p is a prime and x a positive integer [19]

13.3.2.2 Hadamard Cores Ciphers

A Hadamard matrix of order 2�+ 2 (for � odd) which can be written in one of the
two equivalent forms (− stands for −1 and + stands for +1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− − + · · · + + · · · +
− + + · · · + − ·· · −
+ +
...

... A B
+ +

+ −
...

... BT −AT

+ −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ +
... A B
+ +

+ −
... BT −AT

+ −
− − + · · ·+ + · · ·+
− + + · · ·+ −·· ·−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where A = (ai j), B = (bi j) are two circulant matrices (with±1 elements) of order �,
i.e., ai j = a1, j−i+1(mod �), bi j = b1, j−i+1(mod �), is said to have two circulant cores.

As before the scheme is constructed by using the previous Hadamard matrix
A = Hn of order n = 2�+ 2 as an encryption matrix. However, in this case the
circulant structure of the Hadamard matrix gives us the opportunity to use a key
of a significant less size than previously as follows.

Let Ac = [a1,a2, . . . ,a�] and Bc = [b1,b2, . . . ,b�] denote the first row of the
circulant matrices, A and B, used in the two circulant core construction, respectively.
The private key k for this scheme is the concatenation of the two vectors, Ac and Bc,
denoted by Ac⊕Bc which consists of �+� bits. Therefore, when a Hadamard matrix
of order n = 2�+ 2 is used as an encryption matrix the key is of size O(n), since it
consists of 2�= n− 2 bits.

Proposition 13.16 (Koukouvinos and Simos [26]). There exist a family of private-
key ciphers using Hadamard matrices with two circulant cores of order n = 2�+ 2,
which will be called Hadamard cores ciphers.

Since 2�+ 2 must be equal to a multiple of 4 we have that � must be an odd
integer for this construction to yield a Hadamard matrix.

Georgiou, Koukouvinos and Seberry [15] point out that GL-pairs, which can be
used to construct Hadamard matrices of order 2�+ 2 with two circulant cores, exist
for many cases. These matrices can be used in the previous proposition and give
rise to infinite families of encryption schemes based on Hadamard matrices with
two circulant cores. The following theorem was given in [22].

Theorem 13.17 (Two Circulant Cores Hadamard Construction Theorem).
A Hadamard matrix of order 2� + 2 with with two circulant cores can be
constructed if

1. � is a prime (see, for example, [13])
2. 2�+ 1 is a prime power (these arise from Szekeres difference sets, see, for

example, [13] or [16])
3. �= 2k− 1, k ≥ 2 (two Galois sequences are a GL-pair, see, for example, [40])
4. � = p(p+ 2) where p and p+ 2 are both primes (two such sequences are a GL-

pair,see, for example, [45, 54])
5. �= 49,57 (these have been found by a non-exhaustive computer search that uses

generalized cyclotomy and master-switch techniques, see [16, 17])
6. � = 3,5, . . . ,45 (these have been found and classified by exhaustive computer

searches, see [13])
7. � = 47,49,51,53, and 55 (these have been found and classified by partial

computer searches, see [13])
8. �= 143 (also verified the results for �= 3, 5, 7, 11, 13, 15, 17, 19, 23, 25, 31, 35,

37, 41, 43, 53, 59, 61, 63 see [14])
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13.3.3 Plotkin Ciphers

Definition 13.18. An orthogonal design of order n and type (s1,s2, . . . ,sk) denoted
OD(n;s1, s2, . . . ,sk) in the commuting variables x1,x2, . . . ,xk is a square matrix D
of order n with entries from the set {0,±x1,±x2, . . . ,±xk} satisfying

DDT =
k

∑
i=1

(six
2
i )In,

where In is the identity matrix of order n.

Orthogonal designs are used in Combinatorics, Statistics, Coding Theory,
Telecommunications and other areas. More details on orthogonal designs and
Hadamard matrices can be found in [41, 42]. The last definitions give us the
following insights:

1. In any row there are s1 entries ±x1, s2 entries ±x2, . . . ,sk entries ±xk, and
similarly for the columns.

2. The rows and columns are pairwise orthogonal, respectively.

The choice of orthogonal designs for constructing orthogonal matrices and after-
wards encryption schemes enable us to choose between a large variety of classes
of orthogonal designs with different structure. Plotkin [34] showed that, if there
is a Hadamard matrix of order 2t, then there is an OD(8t; t, t, t, t, t, t, t, t). It is
conjectured that there is an OD(8n;n,n,n,n,n,n,n,n) for each odd integer n. These
orthogonal designs are called Plotkin arrays.

We initiate the construction of the encryption scheme based on Plotkin arrays.
Note that this cipher implements in addition the design goal of adding randomness
during the encryption process. As an example, we illustrate the construction based
on the Plotkin array of order 8 and type (1,1,1,1,1,1,1,1). The corresponding
orthogonal design is the following:

OD(8;1,1,1,1,1,1,1,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B C D E F G H
−B A D −C F −E −H G
−C −D A B G H −E −F
−D C −B A H −G F −E
−E −F −G −H A B C D
−F E −H G −B A −D C
−G H E −F −C D A −B
−H −G F E −D −C B A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13.1)

If we call the above matrix P, we have that PPT = f I8 whereas f = A2 +
B2 + · · ·+H2. The Plotkin arrays allow easy construction of matrices needed in
our encryption schemes. For the encryption process we have only to compute the
matrix P. The encryption process starts with a message m of arbitrary length,
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and dividing m into blocks m1, . . . ,mq of length 4 (padding the last block with
zeros if necessary). Then random vectors g1, . . . ,gq of length 4 are chosen. For the
construction of noise vectors g1, . . . ,gq pseudorandom generators were constructed
using techniques from [28]. Finally, the matrix P is applied successively to mi⊕ gi.
The ciphertext is then c = P(m1⊕g1)⊕·· ·⊕P(mq⊕gq). The notation m⊕g means
that m is concatenated with g.

The message is then decrypted by dividing c into blocks c1, . . . ,cq of size 8,
computing PT ci/ f for i = 1, . . . ,q and reconstructing the message using the first
four entries of these blocks.

Remark 13.19. The key for the recipient is the chosen entries for P; hence in this
case is the entries A,B, . . . ,H of the matrix P. Therefore, the matrix P is used as
an encryption matrix and the size of key is of O(n2) since the matrix P consists of
n× n bits.

Since the Plotkin array we used so far is relatively small, we continued by
modifying appropriate the encryption process using the Plotkin array of orders 16
and 24. We note that the use of Plotkin arrays of different orders does not result
in an increase to the key search space since the number of variables that appear
in the aforementioned orthogonal designs remains the same. The aforementioned
orthogonal designs can be found in the book [16].

Proposition 13.20 (Koukouvinos and Simos [25]). There exist a family of private-
key ciphers using Plotkin arrays of order n, which will be called Plotkin ciphers.

13.3.4 Williamson Ciphers

In this section, we use Williamson’s construction for Hadamard matrices as the
basis of our construction for a new private-key symmetric cryptosystem. We briefly
describe the theory of Williamson’s construction below.

Theorem 13.21 (Williamson [52]). Suppose there exist four (1,−1) matrices A,
B, C, D of order n which satisfy

XY T =Y XT,X ,Y ∈ {A,B,C,D}
Further, suppose

AAT +BBT+CCT +DDT = 4nIn (13.2)

Then

H =

⎡
⎢⎢⎣

A B C D
−B A −D C
−C D A −B
−D −C B A

⎤
⎥⎥⎦ (13.3)

is a Hadamard matrix of order 4n constructed from a Williamson array.
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Let the matrix T given below be called the shift matrix:

T =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · .

0 0 0 · · · 1
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(13.4)

and note

T n = I, (T i)T = T n−i (13.5)

If n is odd, T is the matrix representation of the nth root of unity ω , ωn = 1.
Let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
n−1

∑
i=0

aiT
i, ai =±1,an−i = ai

B =
n−1

∑
i=0

biT
i, bi =±1,bn−i = bi

C =
n−1

∑
i=0

ciT
i, ci =±1,cn−i = ci

D =
n−1

∑
i=0

diT
i, di =±1,dn−i = di

(13.6)

Then matrices A,B,C,D may be represented as polynomials. The requirement that
xn−i = xi,x ∈ {a,b,c,d} forces the matrices A,B,C,D to be symmetric.

Since A,B,C,D are symmetric, (13.2) becomes

A2 +B2 +C2 +D2 = 4nIn

and the relation XY T = Y XT becomes XY =Y X which is true for polynomials.

Definition 13.22. Williamson matrices are (1,−1) symmetric circulant matrices.
As a consequence of being symmetric and circulant they commute in pairs.

The scheme is constructed by using the Williamson Hadamard matrix A = H4m

of order n = 4m as an encryption matrix. However, in this case the circulant
structure of symmetric matrices involved in the Williamson’s construction gives us
the opportunity to use a key of a significant less size than previously as follows.

In detail, for the encryption process is needed to construct the (1,−1) circulant
matrices:

A = [a0,a1, . . . ,am−1], B = [b0,b1, . . . ,bm−1],

C = [c0,c1, . . . ,cm−1], D = [d0,d1, . . . ,dm−1],



202 C. Koukouvinos and D.E. Simos

such that

A2 +B2 +C2 +D2 = 4mIm. (13.7)

The symmetry requirement gives vi = vm−i, i = 1,2, . . . , 1
2(m − 1), vi ∈

{ai,bi,ci,di}.
The private key k for this scheme is the concatenation of the four vectors, A,B,C,

and D, denoted by A⊕B⊕C⊕D which consists of m+m+m+m bits. Therefore,
when a Williamson Hadamard matrix of order n = 4m is used as an encryption
matrix the key is of size O(n), since it consists of n = 4m bits.

Proposition 13.23. There exist a family of private-key ciphers using Williamson
Hadamard matrices of order n = 4m, which will be called Williamson ciphers.

Proof. The encryption scheme using a Williamson Hadamard matrix A of order
n = 4m, will use a key A⊕B⊕C⊕D of size O(n), as described previously, and can
be encrypted–decrypted using the algorithms of Sect. 13.2 since AAT = nIn. �	

An infinite family of Hadamard matrices of Williamson type has been proved to
exist under certain conditions [50, 53]:

Theorem 13.24. If q is a prime power, q≡ 1 (mod 4), q+1 = 2t, then there exists
a Williamson matrix of order 4t; we have C = D, and A and B differ only on the
main diagonal.

This theorem gives examples of Hadamard matrices of Williamson type for orders
4t, t = 31,37,41,45,49,51,55, . . ., for example.

Results for Hadamard matrices of Williamson type can be found on the web
site of C. Koukouvinos [23] and in [15]. For example, using the {1,−1}-bit
notation and the four vectors A = [1,−1,−1,−1,−1], B = [1,−1,−1,−1,−1],
C = [1,1,−1,−1,1], and D= [1,−1,1,1,−1] of length 5 from [23] we can construct
a Williamson Hadamard matrix of order 20; which in the continuum will be used
as an encryption matrix in Proposition 13.23 with a key k = A⊕ B⊕C⊕D =
01111011110011001001 of length equal to 20 bits to generate the corresponding
Williamson cipher.

13.3.5 Iterated Combinatorial Design Block Ciphers

Most block ciphers are constructed by repeatedly applying a simpler function. This
approach is known as iterated block cipher (or product cipher). Each iteration is
termed a round, and the repeated function is termed the round function; anywhere
between 4 and 32 rounds are typical. We present here a unified approach for all the
combinatorial design block ciphers using Kronecker product. The product cipher
will consist of a series of Kronecker products applied between the encryption
matrices of the same type of the combinatorial design ciphers we have presented
so far. Our goal is to achieve that the resulting cipher will be more secure than the
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individual components, thus making it resistant to cryptanalysis. We note that this
approach shares many similarities with the design of a k-round Feistel network of
ciphers.

In particular, we apply the “blow-up” construction of encryption schemes first
given in [24], which relies on the previous encryption schemes and the Kronecker
product as its main characteristics. We first define the Kronecker product A⊗ B
between two matrices A and B, a crucial definition for the construction of this family
of product ciphers.

Definition 13.25 ([27]).

Let A =

⎛
⎜⎝

a11 a12 . . . a1n
...

. . .

am1 am2 . . . amn

⎞
⎟⎠

Then A⊗B :=

⎛
⎜⎝

a11B a12B . . . a1nB
...

. . .

am1B am2B . . . amnB

⎞
⎟⎠

If A is an m× n and B is an p× q matrix, then A⊗B is an mp× nq matrix. We note
that if A and B are orthogonal matrices, then A⊗B is also an orthogonal matrix. We
specialize in the case of combinatorial designs, where the round function is one use
of the Kronecker product.

13.3.5.1 Kronecker OA Ciphers

Proposition 13.26 (Koukouvinos et al. [24]). Let A, B be two OA(n1,q1,2,2),
OA(n2,q2, 2,2). Then the Kronecker product A ⊗ B is an orthogonal array
OA(n1n2,q1q2,2, t), t ≥ 2.

Remark 13.27. We can repeat the previous construction using p orthogonal ar-
rays A1,A2, . . . ,Ap, where each Ai is an OA(ni,qi,2,2) for i = 1, . . . , p. Thus
the Kronecker product

⊗p
i=1 Ai := A1 ⊗ A2 ⊗ ·· · ⊗ Ap is an orthogonal array

OA(∏p
i=1 ni,∏p

i=1 qi,2,2).

We illustrate the construction of a Kronecker OA cipher with the following example.

Example 13.28. Let Ai, i = 1, . . . ,k be orthogonal arrays with parameters
(ni,qi,2,2). Each Ai is the private key in the case of encrypting only with Ai.
If we consider the Kronecker product

⊗k
i=1 Ai of these matrices, the generated

orthogonal arrays has parameters (∏k
i=1 ni,∏k

i=1 qi,2,2). The matrix generated by
the kronecker product can be used as an encryption matrix where its private key⊕k

i=1 Ai is the concatenation of the private keys Ai, which consists of ∑k
i=1 niqi

bits. We denote with n the maximum value ni, qi, i.e., n = maxi{ni,qi}. In terms
of computational complexity ∏k

i=1 niqi ≤∏k
i=1 n2 = n2k, the size of the encryption

matrix is of exponential growth O(n2k). However, the size of the private key grows
slower since ∑k

i=1 niqi < ∑k
i=1 n2 = kn2; therefore its growth is of size O(n2).
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13.3.5.2 Kronecker Hadamard Core Ciphers

Proposition 13.29 (Sylvester [49]). Let H1 and H2 be Hadamard matrices of
orders m and n, respectively. Then the Kronecker product H1⊗H2 is a Hadamard
matrix of order mn.

Remark 13.30. We can repeat the previous construction using p Hadamard matrices
H1,H2, . . . ,Hp of orders n1,n2, . . . ,np. Thus the Kronecker product

⊗p
i=1 Hi :=H1⊗

H2⊗·· ·⊗Hp is a Hadamard matrix of order ∏p
i=1 ni.

We illustrate the construction of a Kronecker Hadamard core cipher with the
following example.

Example 13.31. Let Hi, for i = 1, . . . ,k be Hadamard matrices with one circulant
core of orders ni = pi + 1, for i = 1, . . . ,k, respectively. These matrices associated
with their corresponding encryption keys Aci = [a1i ,a2i , . . . ,api ] for i = 1, . . . ,k,
where each private key Aci consists of pi bits, form a k-family of encryption schemes
or a k-round product cipher. If we consider the Kronecker product

⊗k
i=1 Hi of these

matrices, the generated matrix is a Hadamard matrix of order ∏k
i=1 ni. Since a

recipient can construct each individual Hadamard matrix Hi by assuming knowledge
of the corresponding private key Aci , the matrix generated by the Kronecker
product can be used as an encryption matrix where its private key

⊕k
i=1 Aci is the

concatenation of the private keys Aci , which consists of ∑k
i=1 pi bits. Let n denote

the largest order of the Hadamard matrices we have used, i.e., n = maxi{ni}. In
terms of computational complexity, since ∏k

i=1 ni ≤ ∏k
i=1 n = nk, the size of the

encryption matrix is of exponential growth O(nk). However, the size of the private
key grows linearly since ∑k

i=1 pi = ∑k
i=1(ni− 1) = ∑k

i=1(ni)− k ≤ ∑k
i=1(n)− k =

kn− k = k(n− 1); therefore its growth is of size O(n).

13.3.5.3 Kronecker Hadamard Cores Ciphers

Similar, we illustrate the construction of a Kronecker Hadamard cores cipher with
the following example.

Example 13.32. Let Hi, for i = 1, . . . ,k be Hadamard matrices with two circu-
lant cores of orders ni = 2�i + 2, for i = 1, . . . ,k, respectively. These matrices
associated with their corresponding encryption keys Aci ⊕Bci = [a1i ,a2i , . . . ,a�i ]⊕
[b1i ,b2i , . . . ,b�i ] = [a1i ,a2i , . . . ,a�i ,b1i ,b2i , . . . ,b�i ] for i = 1, . . . ,k, where each pri-
vate key Aci ⊕ B�i consists of 2�i bits, form a k-family of encryption schemes or
a k-round product cipher. If we consider the Kronecker product

⊗k
i=1 Hi of these

matrices, the generated matrix is a Hadamard matrix of order ∏k
i=1 ni. Since a

recipient can construct each individual Hadamard matrix Hi by assuming knowledge
of the corresponding private key Aci ⊕Bci , the matrix generated by the Kronecker
product can be used as an encryption matrix where its private key

⊕k
i=1(Aci ⊕Bci)
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is the concatenation of the private keys Aci ⊕ Bci , which consists of ∑k
i=1 2�i =

2k ∑k
i=1 �i bits. Let n denote the largest order of the Hadamard matrices we have

used, i.e., n = maxi{ni}. In terms of computational complexity, since ∏k
i=1 ni ≤

∏k
i=1 n = nk, the size of the encryption matrix is of exponential growth O(nk).

However, the size of the private key grows linearly since ∑k
i=1 2�i = ∑k

i=1(ni− 2) =
∑k

i=1(ni)− 2k ≤ ∑k
i=1(n)− 2k = nk− 2k = k(n− 2); therefore its growth is of size

O(n).

13.3.5.4 Kronecker Plotkin Ciphers

The generation of a Kronecker Plotkin cipher can be implemented with the
following algorithm.

Algorithm 3 EncoderScheme Function

function ENCODERSCHEME(Encodes a sample plaintext)

Step 1. Compute the encryption matrix M
Step 1a. Convert the corresponding characters of the plaintext to ASCII
values.
Step 1b. Input the possible range of entries for the matrices Pi.
Step 1c. Choose the corresponding Plotkin arrays that will form the matrices
Pi.
Step 1d. Compute the tensor product M := P1⊗P2⊗·· ·⊗Pp.

Step 2. Encode the input message
Step 2a. Compute m⊕g by converting the message to ASCII values and filling
the noise vector g with random numbers.
Step 2b. Compute M(m⊕ g)

end function

For the encryption process we choose p Plotkin arrays P1,P2, . . . ,Pp. Each array
may have different size, let say ei× ei for 1 ≤ i≤ p where each ei may be 8,16, or
24. We then construct an e1e2 · · ·ep-sized matrix M by the tensor product of these p
matrices:

M =
⊗

Pi := P1⊗P2⊗·· ·⊗Pp.

The ciphertext then is c = M(m⊕ g). With this construction we eliminate any
possible sparsity of zeros in the encryption matrix M. We note that the key in this
case is the entries of the first rows of P1 to Pp, hence is an array of numbers of size
e1 + e2 + · · ·+ ep and therefore it is relatively small. The notation m⊕ g means that
m is concatenated with g.
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13.4 Encryption in Practice

In this section, we consider practical aspects of the cryptosystems we have presented
so far in terms of encryption and decryption. In particular, we encrypt the same
plaintext M =“SBASBA” of length 6 bits with a Hadamard cipher generated by a
Hadamard matrix of order 16.

• C = ENCRYPT(’SBASBA’,16) “Encrypt with H16”⇒
• C = kaia?gcakaia?gca “Identical ciphertext blocks”

It can easily observed that same plaintext blocks results in the same ciphertext
blocks and this fact possesses a significant weakness of this cipher when encrypting
in ECB mode. However, when we encrypt the same plaintext M with a Hadamard
cipher generated by a Hadamard matrix of order 24 = 4 · 6 we can see that the
encryption process does not result in any repetition blocks.

• C = ENCRYPT(’SBASBA’,24) “Encrypt with H24”⇒
• C = ftaberhzia?wsteinbdarsfa “No repetition blocks”

13.4.1 Electronic Codebook (ECB) Mode

We can now discuss in detail this weakness in the design of the combinatorial
design ciphers which in some cases can be eliminated using their iterated versions of
product ciphers. As already noted, in cases the plaintext has more than n letters, we
repeat the encryption process. This method is also known as the electronic codebook
mode or ECB in the literature [12, 29, 31, 47]. A disadvantage of this method is that
if two plaintext blocks are the same, then the corresponding ciphertext blocks will
be identical, and that is visible to the attacker.

The “blow-up” construction can reduce the amount of information that can be
retrieved from a potential attacker when using ECB mode by restricting the available
choices for combinatorial designs (Hadamard and Williamson Hadamard matrices,
orthogonal and Plotkin arrays) Ai, i = 1, . . . ,k to be A f �= Ag for i ≤ f ,g ≤ k with
f �= g. In general, if we choose the Ai encryption matrices to have ∑k

i=1 ni = n, where
n is the size of the plaintext this weakness is eliminated since the encryption process
does not have any repetition blocks (Fig. 13.1).
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Fig. 13.1 Illustration of the encryption process in ECB mode

13.4.2 Diffusion

Diffusion means that the output bits of the ciphertext should depend on the input
bits of the plaintext in a very complex way. In a cipher with good diffusion, if one
bit of the plaintext is changed, then the ciphertext should change completely, in an
unpredictable or pseudorandom manner. In particular, for a randomly chosen input,
if one flips the ith bit, then the probability that the jth output bit will change should
be one half, for any i and j. This is termed the strict avalanche criterion, see [51].
More generally, one may require that flipping a fixed set of bits should change each
output bit with probability one half. In practice, if one bit of the plaintext is changed,
then the ciphertext should change in 2–5 bits in an unpredictable manner. We study
the diffusion properties of the Hadamard cipher below.

• C1 = ENCRYPT(’1000 0001’,8)⇒ C1 = 1100 1100
• C2 = ENCRYPT(’0000 0001’,8)⇒ C2 = 1000 1000
• HAMMINGDISTANCE(C1,C2) = 2

We can easily see that a change in one bit of the original plaintext results
in a change of two ciphertext bits using a Hadamard cipher (as this is verified
by calculating the Hamming distance of the resulting ciphertext blocks); thus it
incorporates the diffusion property.

13.5 Cryptanalysis

The main cryptographic attacks can be classified in the following three categories:

• Brute-force attack
• Plaintext attack
• Ciphertext attack
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In this section we demonstrate that our ciphers are robust against brute-
force attacks and ciphertext-only attacks, whilst considering some restrictions
the corresponding encryption schemes are secure under known-plaintext attacks,
chosen-plaintext attacks, and chosen-ciphertext attacks.

13.5.1 Cryptanalysis of Brute-Force Attacks

Definition 13.33 (Brute-Force Attack). A brute-force attack is a method of de-
feating a cryptographic scheme by trying a large number of possibilities. For most
ciphers, a brute-force attack typically means a brute-force search of the key space;
that is, testing all possible keys in order to recover the plaintext used to produce a
particular ciphertext.

13.5.1.1 Cryptanalysis of Brute-Force Attacks for OA Ciphers

For a given orthogonal array A, with parameters (n,q,2, t), we can perform n!
permutations of rows, q! permutations of columns, and 2q permutations of the
symbols of the columns. Thus we can create n!q!2q isomorphic representatives
for an orthogonal array. We note that the different ones that can result in different
ciphertext (see Remark 13.10) are

n!q!2q

Aut(A)

where with Aut(A) is the automorphism group of A. It is easy to verify that column
permutations and the permutations of the symbols would create create different
representatives, in other words for a given OA(n,q,2, t) there are at least q!2q

different isomorphic orthogonal arrays.
If we denote with A(n,q) the number of non-isomorphic OA(n,q,2, t) then we can

create at least A(n,q) ·q!2q different orthogonal arrays of such parameters. We should
mention that for n > 40 and q > 6 there are no known full lists of non-isomorphic
orthogonal arrays. Therefore, it is almost impossible for an adversary to attack on
such system using brute force.

Example 13.34. The number of non-isomorphic orthogonal arrays with given pa-
rameters OA(36,6,2, t) is A(36,6) = 3352528, [2]. So we can generate A(36,6) ·6!26≈
1.5× 1012 different representatives. The probability of breaking the system via a
brute-force attack for this case is less than P = 1

1.5×1012 ≈ 0.6× 10−12.

Lemma 13.35 (Koukouvinos et al. [24]). The OA ciphers based on orthogonal
arrays with large n,q are secure against brute-force attacks.
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13.5.1.2 Cryptanalysis of Brute-Force Attacks for Hadamard Ciphers

One way for an adversary to break any of the proposed systems using brute-force
attack is to generate all possible matrices with elements ±1, that is 2n2

matrices,
having in mind that Hadamard matrices of order n are represented by n2 bits.
However due to the structure of these matrices there exists a more sophisticated
method that would be developed next.

13.5.1.3 Cryptanalysis of Brute-Force Attacks for Hadamard
Core Ciphers

In order for an adversary to break this system using a brute force attack, he
would have to deduce the encryption key k = Ac, which is the binary vector
Ac = [a1,a2, . . . ,ap] of length p by trying a large number of possibilities.

In our case, an adversary would have to simulate a brute-force search of the
key space. Assuming the adversary has knowledge of the encryption protocol he
would have to search on p binary variables. Since the encryption key consists of
binary variables using enumerative combinatorics, the size of the key space, K(Hp),
is | K(Hp) |= 2p; therefore its computational complexity is of exponential growth
O(2n) as n = p+ 1 increases. Furthermore, the possibility a solution obtained from
a brute-force search of the key space to be an encryption key is given by the total
number of Hadamard matrices with one circulant core that exists in a specific order
divisible by the size of the key space in that order.

For example, if we consider schemes that are using the Hadamard matrices of
order 24 = 23+ 1, the key space consists of 23 binary variables while the total
number of Hadamard matrices that exist in that order are 46; therefore we have 46
possible encryption keys. As can be seen in the following table, the probability of
breaking the system via a brute-force attack for this case is P= 46

223 ≈ 0.00002, only.
It is worthwhile to note that using a key of length only 23 bits, we almost provide
total security against brute-force attacks for this scheme.

We summarize in the following table the available Hadamard matrices with
one circulant core, denoted by | V (Hp) |, for orders n = p + 1 whereas � =
3,7,11,15,19,23 using the results obtained via exhaustive searches in [21], the
cardinality of the key space |K(Hp) |, and the probability PBA of breaking the cipher
via a brute-force attack for each order.

p Matrix order |V (Hp) | | K(Hp) |= 2p PBA =
|V (Hp)|
|K(Hp)|

3 4 3 23 P = 3
23 ≈ 0.375

7 8 14 27 P = 14
27 ≈ 0.1

11 12 22 211 P = 22
211 ≈ 0.01

15 16 30 215 P = 30
215 ≈ 0.0009

19 20 38 219 P = 38
219 ≈ 0.00007

23 24 46 223 P = 46
223 ≈ 0.00002
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As it can be seen from the previous table the sequence of probabilities PBA is
strictly decreasing. Based on these computational results we deduce the following
remark, when the order n is large enough.

Remark 13.36. The encryption scheme based on Hadamard matrices with one
circulant core is secure against brute-force attacks.

Modern cryptographic hardware breakers have the ability to perform a brute-force
search for 2128 keys. This gives us an estimate of the security needed against brute-
force attacks. Clearly, the usage of any Hadamard matrix of order n > 128, which
can easily be constructed from Theorem 13.15 for large orders, as an encryption
matrix justifies our previous claim.

13.5.1.4 Cryptanalysis of Brute-Force Attacks for Hadamard
Cores Ciphers

In order for an adversary to break this system using a brute-force attack, he would
have to deduce the encryption key k = Ac⊕Bc, which is the concatenation of the
binary vectors Ac = [a1,a2, . . . ,a�] and Bc = [b1,b2, . . . ,b�], of total length 2� by
trying a large number of possibilities.

In our case, an adversary would have to simulate a brute-force search of the
key space. Assuming the adversary has knowledge of the encryption protocol he
would have to search on 2� binary variables. Since the encryption key consists of
binary variables using enumerative combinatorics, the size of the key space, K(H�),
is | K(H�) |= 22�; therefore its computational complexity is of exponential growth
O(2n) as n = 2�+2 increases. Furthermore, the possibility a solution obtained from
a brute-force search of the key space to be an encryption key is given by the total
number of Hadamard matrices with two circulant cores that exist in a specific order
divisible by the size of the key space in that order.

For example, if we consider schemes that are using the Hadamard matrices of
order 28 = 2× 13 + 2, the key space consists of 26 binary variables while the
total number of Hadamard matrices that exist in that order are 7,098; therefore
we have 7,098 possible encryption keys. As can be seen in the following table,
the probability of breaking the system via a brute-force attack for this case is
P = 42×132

226 ≈ 0.0001, only. It is worthwhile to note that using a key of length only
26 bits we almost provide total security against brute-force attacks for this scheme.

We summarize in the following table the available Hadamard matrices with two
circulant cores, denoted by | V (H�) |, for orders n = 2�+ 2 whereas � = 3, . . . ,25
using the results obtained via exhaustive searches in [13, 22], the cardinality of the
key space | K(H�) |, and the probability PBA of breaking the cipher via a brute-force
attack for each order.

As it can be seen from the previous table the sequence of probabilities PBA is
strictly decreasing and using (cf. [22, Property 1.]) is upper bounded from 1. In
addition, asserting the truth of [22, Conjecture 1.] that for every odd �= 3, . . . there
exists a Hadamard matrix of order 2�+ 2 with two circulant cores and that the
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� Matrix order |V (H�) | | K(H�) |= 22� PBA = |V (H�)|
|K(H�)|

3 8 9 = 1×32 26 P = 1×32

26 ≈ 14 ·10−2

5 12 50 = 2×52 210 P = 2×52

210 ≈ 4 ·10−2

7 16 196 = 4×72 214 P = 4×72

214 ≈ 10 ·10−3

9 20 972 = 12×92 218 P = 12×92

218 ≈ 4 ·10−3

11 24 2,904 = 24×112 222 P = 24×112

222 ≈ 7 ·10−4

13 28 7,098 = 42×132 226 P = 42×132

226 ≈ 10 ·10−5

15 32 38,700 = 172×152 230 P = 172×152

230 ≈ 3 ·10−5

17 36 93,058 = 322×172 234 P = 322×172

234 ≈ 5 ·10−6

19 40 161,728 = 448×192 238 P = 488×192

238 ≈ 5 ·10−7

21 44 433,944 = 984×212 242 P = 984×212

242 ≈ 10 ·10−8

23 48 1,235,744 = 2336×232 246 P = 2336×232

246 ≈ 2 ·10−8

25 52 2,075,000 = 3320×252 250 P = 3320×252

250 ≈ 2 ·10−9

sequence of |V (H�) | will continue to increase we can conclude that the limit of the

sequence of probabilities lim�→∞ PBA = lim�→∞
|V (H�)|
|K(H�)| converges to zero. Note that

Conjecture 1 of [22] would settle the general Hadamard conjecture. In particular,
we quote the following lemma.

Lemma 13.37 (Koukouvinos and Simos [26]). Assume the following two condi-
tions hold,

(i) There exists a Hadamard matrix of order 2�+ 2 with two circulant cores for
every odd �= 3, . . .

(ii) The sequence of |V (H�) | is increasing for every odd �= 3, . . .

Then, the encryption scheme based on Hadamard matrices with two circulant cores
is secure against brute-force attacks.

13.5.1.5 Simulation of Brute-Force Attacks for Plotkin Ciphers

To carry a brute-force attack on the Plotkin cipher we carried the following steps for
each simulation.

1. We used a sample plaintext of 384 characters and a random noise vector of the
same length.

2. We considered the entries of A,B, . . . ,H as binary variables.
3. We decoded the ciphertext using every key combination of key entry and key

entry value equal to ±1.

From the experimental results we received from the first encryption scheme we
obtained the following information:

1. For the Plotkin arrays OD(8t;t, t, t, t, t, t, t, t) for t = 8,16,24 a brute-force
attack resulted in a thorough defeat of the cipher. We mention though that the
computational time grows in a nonlinear way.
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Table 13.1 Experimental results received from a brute-force attack on
the Plotkin cipher

Design Key search space Elapsed CPU time (h)

OD(8;1,1,1,1,1,1,1,1) 28 4
OD(16;2,2,2,2,2,2,2,2) 28 12
OD(24;3,3,3,3,3,3,3,3) 28 34

Algorithm 4 AnalyzerScheme Function

function ANALYZERSCHEME(Receives the output from the HackerFunction and calculates the
frequency of occurrence of every ASCII symbol)

Step. 1 For each line of text, count number of appearances of each ASCII value.
Step. 2 Output information to text file.

end function

2. Since this scheme is not robust against brute attacks we have a complete violation
to one of the design properties we set in the introduction for this encryption
scheme.

Table 13.1 presents the computational results for the simulations we conducted. For
each orthogonal design we give the size of the key search space and the elapsed
CPU time needed for a brute-force attack to break the system.

13.5.1.6 Simulation of Brute-Force Attacks for Kronecker
Plotkin Ciphers

To carry a brute-force attack on the Kronecker Plotkin ciphers we carried the
following steps for each simulation.

1. We used a sample plaintext of 23 characters.
2. We encoded the plaintext using the second scheme by approximating the entry

size for the Plotkin arrays and approximate size of the noise vector g.
3. We used the Plotkin arrays of order 8 to compute the encryption matrix M.
4. We decoded the ciphertext using every key combination of key entry and key

entry value equal to ±1.
5. We converted the decoded ciphertext found in the previous step to ASCII values.
6. We counted the frequency of each value that appears in the resulting combina-

tions.

We provide also the following cryptographic algorithms if someone wants to
implement the previous simulation procedure in an efficient manner.
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Table 13.2 Experimental results received from a brute-force attack on the Kronecker Plotkin
cipher

ASCII values occurrences×105

key size noise size 0−25 26−50 51−75 76−100 101−127

10–14 128 25 5 5 7 8
10–14 1024 10 12 8 6 14
30–34 128 120 30 40 30 50
30–34 1024 65 90 45 50 40
50–54 128 310 50 70 30 40
50–54 1024 110 100 90 80 120

Algorithm 5 HackerScheme Function

function HACKERSCHEME(Simulation of a brute force attack method to a ciphertext)

Step 1. Input min, max, and range of key guesses.
Step 2. Input ciphertext.
Step 3. Exhaustive key search with respect to Step 1.
For all possible values of the variables of the orthogonal designs chosen for encryption
perform the following steps.
Step 3a. Generate the matrices using as entries the possible values from previous step.
Step 3b. Compute the tensor product of the matrices created in previous step.
Step 3c. Calculate possible text messages.
Step 3d. Output text to file for later examination.

end function

From the experimental results we received for the Kronecker Plotkin cipher we
obtained the following information:

1. A brute-force attack is not a feasible way of defeating the cipher.
2. One advantage of the one time pad is that a brute-force attack results in all

possible plaintext messages, forcing an adversary to choose which was the
original message. We wanted to determine if this was also true for our cipher.
The computational results indicate that the answer is no.

3. Finally we wanted to determine if the size of the entries of the noise vector g
played a significant role in the decryption process. The computations showed
that the answer is yes.

4. All design goals are fulfilled for this encryption scheme.

The above Table 13.2 presents the computational results for the simulations we
conducted. For each simulated brute-force attack we give the number of occurrences
of the ASCII values in their corresponding range and the approximate key and noise
vector sizes. The table shows that most of the characters that appear in the simulated
brute-force attack are those that have been encoded using the sample plaintext.



214 C. Koukouvinos and D.E. Simos

13.5.2 Cryptanalysis of Known-Plaintext Attacks
for Hadamard and Plotkin Ciphers

Definition 13.38 (Known-plaintext Attack). A known-plaintext attack is one
where the adversary has a quantity of plaintext and corresponding ciphertext. This
type of attack is typically only marginally more difficult to mount.

Supposing a n× n matrix A is used for encryption, as described previously.
In order to recover the matrix A = Hn of a Hadamard cipher or A = P for a
Plotkin cipher without knowing the private key, we will need n mi’s, where with
mi = (mi

1,m
i
2, . . . ,m

i
n), i = 1, . . . ,n we denote the vector consisting of n letters of the

message that have been converted to its numerical values, and n ci’s, where each
ci = (ci

1,c
i
2, . . . ,c

i
n) is the encryption of mi. We can retrieve the ith column of A,

A(i) = (a1,i,a2,i, . . . ,an,i), by solving the following n-linear systems, for i = 1, . . . ,n:

m1
1a1,i +m1

2a2,i + · · ·+m1
nan,i = c1

i

m2
1a1,i +m2

2a2,i + · · ·+m2
nan,i = c2

i

...
...

mn
1a1,i +mn

2a2,i + · · ·+mn
nan,i = cn

i

or equivalently we denote the previous system

MA(i) =C(i),

where C(i) = (c1
i ,c

2
i , . . . ,c

n
i ).

Proposition 13.39 (Koukouvinos and Simos [25, 26]). Hadamard and Plotkin
ciphers are secure against known-plaintext attacks under the assumption that the
adversary has knowledge of less than n messages of length n of the plaintext and the
corresponding ciphertext.

13.5.3 Cryptanalysis of Chosen-Plaintext Attacks
for Hadamard and Plotkin Ciphers

Definition 13.40 (Chosen-Plaintext Attack). A chosen-plaintext attack is one
where the adversary chooses plaintext and is then given corresponding ciphertext.
Subsequently, the adversary uses any information deduced in order to recover
plaintext corresponding to previously unseen ciphertext.

In this type of attack the extra advantage of the adversary having knowledge of
the encryption mechanism does not reveal any further information with respect to a
known-plaintext attack since the adversary in order to compromise the system still
has to solve n linear systems,
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MA(i) =C(i)

for i = 1, . . . ,n as described in Sect. 13.5.2.

Remark 13.41. The adversary should take under account that the matrix M of the
chosen plaintext must not be singular. This note restricts the choice of the available
plaintexts for an adversary since mi �= λ m j, in other words the vectors mi must be
linear independent.

Proposition 13.42 (Koukouvinos and Simos [25, 26]). Hadamard and Plotkin
ciphers are secure against chosen-plaintext attacks, since the schemes are secure
against known-plaintext attacks.

13.5.4 Cryptanalysis of Chosen-Ciphertext Attacks
for Hadamard and Plotkin Ciphers

Definition 13.43 (Chosen-Ciphertext Attack). A chosen-ciphertext attack is one
where the adversary selects the ciphertext and is then given the corresponding
plaintext. One way to mount such an attack is for the adversary to gain access to the
equipment used for decryption (but not the decryption key, which may be securely
embedded in the equipment). The objective is then to be able, without access to such
equipment, to deduce the plaintext from (different) ciphertext.

Similar, in this type of attack the extra advantage of the adversary having
knowledge of the encryption mechanism, does not reveal any further information
with respect to a known-plaintext attack since the adversary in order to compromise
the system still has to solve n linear systems,

MA(i) =C(i)

for i = 1, . . . ,n as described in Sect. 13.5.2.

Proposition 13.44 (Koukouvinos and Simos [25, 26]). Hadamard and Plotkin
ciphers are secure against chosen-ciphertext attacks, since the schemes are secure
against known-plaintext attacks.

13.5.5 Cryptanalysis of Known-Plainext, Chosen-Plaintext
and Ciphertext Attacks for Kronecker Hadamard
and Plotkin Ciphers

An intriguing question is if the security provided by the Hadamard and Plotkin
ciphers is enough for standard applications (i.e., banking transactions) in prac-
tice. Clearly, the security is a function of the value n of the plaintext’s length.
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For example, with a plaintext of n = 64 bits an attacker which can deduce 64 = 26

messages of the same length can break the ciphers and of course this is totally
impractical!

The solution to this problem is to use the Kronecker Hadamard and Plotkin
ciphers. For example, using 16 rounds of encryption, i.e., the Kronecker product of
16 Hadamard matrices or Plotkin arrays of order 16 the size of the encryption matrix

is 2416
= 264, while the key size is 16×15= 240 bits. Therefore, using a key of 240

bits we provide security for 264 known and chosen-plaintexts and ciphertexts. We
compare now this result with the security of a widely known modern block cipher,
i.e., DES.

1. To break the full 16-rounds of DES Bilham and Shamir showed that differential
cryptanalysis requires 247 chosen plaintexts (see [3, 4]).

2. Linear cryptanalysis discovered by Matsui needs 243 known plaintexts to achieve
similar results (see [30]).

13.5.6 Cryptanalysis of Ciphertext-Only Attacks for Hadamard
and Plotkin Ciphers

Definition 13.45 (Ciphertext-only Attack). A ciphertext-only attack is one where
the adversary (or cryptanalyst) tries to deduce the decryption key or plaintext by
only observing ciphertext. Any encryption scheme vulnerable to this type of attack
is considered to be completely insecure.

Two letters of the original message, m, correspond to different values of the
ciphertext, c. Analyzing the worst-case scenario for this type of attack, we suppose
that all letters of the plaintext are the same. Then in the corresponding ciphertext all
their numerical values are all different. Therefore an adversary cannot observe any
further information regarding the encryption key or the plaintext, since any value of
the encrypted message is a function of n values of the plaintext and one column of
the encryption matrix A. Hence, two or more same values of the encrypted message
does not represent the same letter in the plaintext. We note that, as n increases it
is more difficult for an adversary to retrieve the encryption key or the plaintext by
simple observation.

Proposition 13.46 (Koukouvinos and Simos [25, 26]). Hadamard and Plotkin
ciphers are secure against ciphertext-only attacks.

13.5.7 Security Comparison for Combinatorial Design Ciphers

As we have seen, for example, a chosen-plaintext attack can break the Hadamard
and Plotkin ciphers. However, with a key length ≥ 128 bits we provide security
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Table 13.3 Security comparison for combinatorial design-based ciphers

Cipher family Block size Key length Key size

OA cipher n bits qn bits O(n2)

Hadamard cipher n bits n2 bits O(n2)

Hadamard core cipher n bits (n−1) bits O(n)
Hadamard cores cipher n bits (n−2) bits O(n)
Williamson cipher n bits n bits O(n)
Plotkin cipher n bits n2 bits O(n2)

against brute-force attacks. For 3DES (Triple DES or three rounds of encryption of
DES) there exists a meet-in-the-middle attack that provides security only for 112
bits, when using a key of 168 bits (three 56 bit DES keys), for more details see [12].
While Blowfish uses a variable-key size of length up to 448 bits [39].

We conclude this survey paper by giving a comparison of the security provided
by the presented combinatorial design ciphers in terms of key length and size under
the assumption that all ciphers operate with an encryption matrix of order n (thus
the block size of the plaintext is of length n due to ECB mode of encryption)
(Table 13.3).

Asides of the iterated combinatorial block ciphers, whose advantages were
illustrated in Sect. 13.5.5, from the previous comparison is clear that the Hadamard
cores cipher is the most efficient when compared with the whole class of the
combinatorial design-based ciphers we presented in this paper.
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Chapter 14
On the Weak Convergence of an Empirical
Estimator of the Discrete-Time Semi-Markov
Kernel

Stylianos Georgiadis and Nikolaos Limnios

Abstract In this chapter, we consider the discrete-time semi-Markov processes
with finite state space and the empirical estimator of the semi-Markov kernel. The
basic definitions concerning the semi-Markov processes are presented. We study
the weak convergence of the empirical estimator of the discrete-time semi-Markov
kernel. Next, we present the corresponding weak convergence theorem for the
empirical estimator of some related measures. The proofs of our results are based
on semimartingales.

Keywords Discrete-time semi-Markov kernel • Empirical estimator • Weak
convergence • Invariance principle • Semimartingales
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14.1 Introduction

Semi-Markov processes constitute a generalization of Markov jump processes
and renewal processes. For a Markov process, the sojourn time in each state is
exponentially distributed (in discrete time, geometrically distributed), while for
the semi-Markov case, the sojourn-time distribution can be any distribution on
R+ (in discrete time, N). In recent literature, semi-Markov models have achieved
significant importance in probabilistic and statistical modeling especially the ones
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Laboratoire de Mathématiques Appliquées, Université de Technologie de Compiègne,
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with a finite space state. Possible application fields are survival analysis, reliability
theory, DNA analysis, statistical seismology, etc. The random evolution of a semi-
Markov process is completely characterized by a semi-Markov kernel. In addition,
all relative measures in application topics can be expressed as functionals of the
semi-Markov kernel. Consequently, the estimation of the semi-Markov kernel has
been of foremost importance in the problem of statistical inference for semi-Markov
processes.

The basic theory of semi-Markov processes was introduced by Pyke [13, 14].
Nonparametric empirical estimation for semi-Markov kernels has been presented in
several works. In finite case, Moore and Pyke [10] studied empirical and maximum
likelihood estimators for semi-Markov kernel while Gill [5] gave an estimator using
counting processes. Greenwood and Wefelmeyer [6] studied efficiency of empirical
estimators for linear functionals in the case of general state space. Ouhbi and
Limnios [11, 12] studied empirical estimators for nonlinear functionals of semi-
Markov kernel (including Markov renewal matrices and reliability functionals)
and their asymptotic properties. Limnios [8] studied the invariance principle for
the empirical estimator of semi-Markov kernel and Georgiadis and Limnios [4]
extend these results in a multidimensional form. Limnios and Oprişan [9] present a
total study of semi-Markov processes on continuous time and their applications in
reliability.

In this work, we consider the discrete-time semi-Markov processes. So on, we
will use the term chain for a discrete-time process. A thorough presentation on the
semi-Markov chains is given toward applications by Barbu and Limnios [2].

Generally, the manipulation of semi-Markov chains seems more convenient
than the continuous ones, especially for applications. In discrete time, the Markov
renewal function is expressed as a finite series of semi-Markov kernel convolution
product, instead of a finite series in the continuous case. Furthermore, a semi-
Markov chain makes only a finite number of transitions in a finite time interval.
As a result, discrete-time semi-Markov models have more accurate computations
and numerical results. Moreover, the semi-Markov chain can be a good support
for the numerical calculus of the continuous-time semi-Markov processes, after
their discretization. Semi-Markov chains are less studied but, recently, there is a
growing literature concerning their inference problems. Barbu et al. [3] introduce the
discrete-time SMP, propose a computation procedure for solving the corresponding
Markov renewal equation, and, then, compute some reliability measurements. Barbu
and Limnios [1] consider a discrete-time finite state space semi-Markov model,
introduce an empirical estimator of the DTSMK and other measurements, and study
the strong consistency and asymptotic normality for these estimators.

The weak convergence of the discrete-time semi-Markov kernel presented in this
work consists of the discrete-time analogous of the results presented in [4]. The
present chapter is organized as follows. In Sect. 14.2, the necessary mathematical
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background of semi-Markov chains and semimartingales is introduced. Next, the
main results on the weak convergence of the discrete-time semi-Markov kernel are
given. Finally, in Sect. 14.4, we examine the weak convergence of some kernels and
functions of the semi-Markov kernel.

14.2 Preliminaries

In this section, we give all the necessary preliminaries concerning the semi-Markov
chains and the semimartingales. From now on we will use the following notation:
N
∗ = N\ {0}, and R

∗
+ = (0,∞).

14.2.1 Semi-Markov Chains

Consider a finite set E and an E-valued stochastic chain (Zk)k∈N. Let (Jn)n∈N be the
successive visited states of (Zk) with state space E and (Sn)n∈N are the jump times
of (Zk) with values in N and 0= S0 ≤ S1 ≤ ·· · ≤ Sn ≤ Sn+1 ≤ ·· · . Also, let us denote
Xn := Sn − Sn−1, n ∈ N

∗, as the sojourn times in these states with values in N.

Definition 14.1. The stochastic process (Jn,Sn)n∈N, with state space E , is said to
be a Markov renewal chain (MRC), if, for all j ∈ E , k ∈N and n ∈N, it satisfies a.s.
the following equality:

P(Jn+1 = j,Xn+1 = k|J0, . . . ,Jn;S1, . . . ,Sn) = P(Jn+1 = j,Xn+1 = k|Jn), n ∈ N.

In this case, (Zk) is called a semi-Markov chain (SMC).

Actually, (Zk) gives the state of the process at time k. We assume that the MRC
(Jn,Sn) is time homogeneous, i.e., the above probability is independent of n and
Sn. The process (Jn) is a Markov chain with state space E and transition kernel
p := (pi j; i, j ∈ E), where

pi j := P(Jn+1 = j|Jn = i), (14.1)

called the embedded Markov chain (EMC) of (Zk). The SMC (Zk) is associated with
the MRC (Jn,Sn) by

Zk = Jn, Sn ≤ k < Sn+1,

Jn = ZSn , n ∈ N.
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We denote by N(k), k ∈N, the process which counts the number of jumps of (Zk)
in the interval [1,k], defined by N(k) := max{n ≥ 0 : Sn ≤ k}. The process (Zk) then
can be written as

Zk := JN(k), k ∈N.

Let Ni(k) be the number of visits of (Zk) to state i ∈ E up to time k, and Ni j(k)
the number of direct jumps of (Zk) from state i to state j up to time k. To be specific,

Ni(k) :=
N(k)

∑
m=1

1{Jm−1=i} and Ni j(k) :=
N(k)

∑
m=1

1{Jm−1=i,Jm= j},

where 1A is the indicator function of the set A. Considering the renewal process
(Si

n)n∈N of successive times of visits to state i, Ni(k) is the counting process
of renewals.

Definition 14.2. The transition kernel q(k) := (qi j(k); i, j ∈ E), k ∈N, is called the
discrete-time semi-Markov kernel (DTSMK) of the SMC (Zk) and is defined by

qi j(k) := P(Jn+1 = j,Xn+1 = k|Jn = i), (14.2)

pi j := Qi j(∞) := lim
k→∞

Qi j(k),

We give the definition of some quantities related to the DTSMK.

Definition 14.3. For all i, j ∈ E and k ∈ N, the entries of the transition kernel p in
terms of the DTSMK are written as

1. Q(k) = (Qi j(k); i, j ∈ E), the cumulative DTSMK:

Qi j(k) := P(Jn+1 = j,Xn+1 ≤ k|Jn = i) =
k

∑
l=0

qi j(l), (14.3)

2. f (k) := ( fi j(k); i, j ∈ E), the conditional distribution function of the sojourn time
in state i, given that the next visited state is j, j �= i:

fi j(k) := P(Xn+1 = k|Jn = i,Jn+1 = j) =

{qi j(k)
pi j

, if pi j �= 0,

1{k=∞}, if pi j = 0,
(14.4)

3. F(k) := (Fi j(k); i, j ∈ E), the conditional cumulative distribution function of the
sojourn time in state i, given that the next visited state is j, j �= i:

Fi j(k) := P(Xn+1 ≤ k|Jn = i,Jn+1 = j) =

{Qi j(k)
pi j

, if pi j �= 0,

1{k=∞}, if pi j = 0,
(14.5)
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4. h(k) := (hi(k); i ∈ E), the sojourn time distribution function in state i:

hi(k) := P(Xn+1 = k|Jn = i) = ∑
j∈E

qi j(k), (14.6)

5. H(k) := (Hi(k); i ∈ E), the sojourn time cumulative distribution function in
state i:

Hi(k) := P(Xn+1 ≤ k|Jn = i) =
k

∑
l=0

hi(l) =
k

∑
l=0

∑
j∈E

qi j(l), (14.7)

Let us denote by μii the mean recurrence times of (Si
n), i.e., μii := E[Si

2 −Si
1] and

by π = (πi; i ∈ E) and ν = (νi; i ∈ E), the stationary distribution of the SMC (Zk)
and the EMC (Jn), respectively. Let us, also, define the mean sojourn time of (Zk)
as m̄ := ∑i∈E νimi with mi to be the mean sojourn time of (Zk) in state i ∈ E , i.e.,
mi := ∑n∈N[1−Hi(n)]. For an arbitrary state i ∈ E , the following properties hold:

νi =
m̄
μii

and πi =
mi

μii
.

For the whole article, we assume that the EMC (Jn) is irreducible and m̄ < ∞.
A useful lemma in the proof of our results is the following.

Lemma 14.4 [8]. If the EMC (Jn) is irreducible with finite stationary distribution
ν and m̄ < ∞, then, for any i, j ∈ E, we have

1. Ni(k)
k

a.s.−−→ 1
μii

2. N(k)
k

a.s.−−→ 1
m̄

3.
Ni j(k)

k
a.s.−−→ pi j

μii

as k → ∞.

Definition 14.5 [2]. Let A(k) := (Ai j(k); i, j ∈ E), B(k) := (Bi j(k); i, j ∈ E) be two
matrix-valued functions. The discrete-time matrix convolution product A ∗B(k) is
the matrix-valued C(k) := (Ci j(k); i, j ∈ E) defined by

Ci j(k) := ∑
r∈E

k

∑
l=0

Air(k− l)Br j(l), k ∈ N,

or, in matrix form,

C(k) :=
k

∑
l=0

A(k− l)B(l), k ∈ N.

The discrete-time n-fold convolution q(n)(k), n,k ∈ N, of q(k) by itself can be
defined recursively by
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q(0)i j (k) :=

{
1, if i = j and k = 0,

0, elsewhere,

q(1)i j (k) := qi j(k),

q(n)i j (k) := ∑
r∈E

k

∑
l=0

q(l)ir (k)q
(n−1)
r j (k− l), n ≥ 2,

or, in matrix form,

q(0)(k) :=

{
I, if k = 0,

0, elsewhere,

q(1)(k) := q(k),

q(n)(k) := q ∗ q(n−1)(k), n ≥ 2.

For any i, j ∈ E and any n,k ∈ N, the n-fold convolution q(n)i j (k) can be written as

q(n)i j (k) := P(Jn = j,Sn = k|J0 = i),

Definition 14.6. The Markov renewal function ψ(k) := (ψi j(k); i, j ∈ E), is
defined by

ψi j(k) :=
k

∑
n=0

q(n)i j (k), k ∈N,

Remark 14.7. The fact that the Markov renewal function can be expressed as a
finite sum, contrary to the case of continues time, provides more accurate numerical
results.

Definition 14.8. Let L(k) :=(Li j(k); i, j ∈E), be an unknown matrix-valued matrix
and G(k) := (Gi j(k); i, j ∈ E) be a known matrix-valued function. the equation

L(k) = G(k)+ q ∗L(k), k ∈ N,

is called a discrete-time Markov renewal equation.

It has been proved (Proposition 5 [3]) that the Markov renewal equation has a
unique solution

L(k) = ψ ∗G(k), k ∈ N.

14.2.2 Semimartingales

We give now a short introduction to the martingale and semimartingale theory
(see, e.g., Jacod and Shiryaev [7]). Let us consider a complete probability space
(Ω ,F ,P). On continuous time, we can define the filtraton F=(Ft)t∈R+ with respect
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to a nonempty space Ω contained in F , i.e., an increasing and right-continuous fam-
ily of sub-σ -algebras of F . Moreover, we assume that F0 contains all P-null sets of
F . Consider the continuous-time filtered probability space with respect to filtration
F as the quadruple B = (Ω ,F ,F,P). For each n ∈ N, let Bn = (Ω n,Fn,Fn,Pn),
Fn = (Fn

t )t∈R+ , be a stochastic basis. In our case, consider the continuous-time
filtrationFn

t =FN(�nt	) =σ(J0,Ji,Xi;1≤ i≤N(�nt	)) with F0 =σ(J0). On discrete
time, the filtration is denoted as F̃ = (Fk)k∈N. Notice that the right-continuity has no
meaning here. Therefore, the discrete-time filtered probability space with respect to
filtration F̃ is accordingly the quadruple B̃ = (Ω ,F , F̃,P). Respectively, consider,
for all n ∈ N, a discrete-time stochastic basis B̃n = (Ω n,Fn, F̃n,Pn). We assume
that, for any n ∈ N

∗, it holds Fn
k = Fk = σ(J0,Ji,Xi;1 ≤ i ≤ k).

Definition 14.9. 1. For each n ∈ N
∗, a martingale is defined as an adapted process

(Un
t )t∈R+ , n ∈ N

∗, on the filtered probability space Bn whose P-almost all paths
are càdlàg such that every Un

t is integrable and that E[Un
t |Fn

s ] = Un
s , s ≤ t.

A discrete-time martingale is defined as an adapted process (Un
m)m∈N, n ∈ N

∗,
on the space B̃ such that E[Un

m|Fn
l ] =Un

l , l ≤ m.
2. An R

d-valued martingale (Un
t )t∈R+ , n ∈ N

∗, is said to be a Gaussian martingale
on Bn if Un

0 = 0 and the distribution of any finite family (Un
t1 , . . . ,U

n
tk) is Gaussian.

Every Gaussian martingale is characterized by a triple (ν,C,B).
3. A stochastic process (Un

m)m∈N∗ , n ∈ N
∗, is a martingale difference on B̃n, if its

expectation with respect to the filtration F̃, is zero, i.e., E[Un
m|Fn

m−1] = 0, for all
n ∈ N

∗.
4. A semimartingale defined on the filtered probability space Bn, as an adapted

process (Xn
t )t∈R+ , n ∈ N

∗, that it can be decomposed as Xn
t = Mn

t +An
t , where

(Mn
t )t∈R+ , n ∈ N

∗, is a local martingale and (An
t )t∈R+ , n ∈ N

∗, a càdlàg-adapted
process of local bounded variation.

Conditional Lindeberg Condition : Let, for each n ∈ N
∗, (Un

m)m∈N∗ be a martin-
gale difference on B̃n. For any ε > 0, t ∈ R

∗
+, we have

N(nt)

∑
m=1

E[‖Un
m‖21{‖Un

m‖>ε}|Fn
m−1]

P−→ 0, n → ∞, (14.8)

where ‖ · ‖ is the euclidean norm.

14.3 Basic Results

We consider the finite set E = {1, . . . ,d}, d ∈ N
∗, and an observation of an SMC

(Zk), with state space E , up to a fixed censoring time k ∈ N
∗ as follows:

Hk := {Zu,0 ≤ u ≤ k}=
{
{J0,X1, . . . ,JN(k),Uk}, if N(k) > 0,

{J0,Uk = k}, if N(k) = 0,

where Uk := k− SN(k) is the backward recurrence time.
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The empirical estimator q̂(x,k) := (q̂i j(x,k); i, j ∈ E), x ∈ {0, . . . ,k}, k ∈ N
∗, of

the DTSMK (14.2) is defined by the following equation:

q̂i j(x,k) :=
1

Ni(k)

N(k)

∑
n=1

1{Jn−1=i,Jn= j,Xn=x}, (14.9)

Remark 14.10. We notice that the backward recurrence times are neglected by the
empirical estimators. As t tends to infinity, Uk adds no significant information to the
asymptotic properties of the estimators.

We denote by �α	 the integer part of a positive real number α and by δ the
Kronecker’s delta, i.e., δi j = 1, if i = j, and 0, if i �= j.

For any states i, j ∈ E , any fixed time x ∈ N, we set Ym = (Y i j
m ; i, j ∈ E) ∈ R

d2
,

where (Y i j
m )m∈N∗ are random sequences on B̃ defined by

Y i j
m := 1{Jm−1=i,Jm= j,Xm=x} − 1{Jm−1=i}qi j(x), (14.10)

Let us define the double sequence (Y n
m)m∈N∗ , n ∈N

∗, on B̃n, by

Y n
m :=

Ym√
n
, (14.11)

Also, for any t ∈ R
∗
+, we denote the stochastic processes

Sn,i j
t :=

N(�nt	)
∑

m=1
Y n,i j

m =
1√
n

N(�nt	)
∑

m=1
Y i j

m , n ∈ N
∗. (14.12)

Making use of the notation above, we have the sequence of stochastic processes
on Bn

Sn
t = (Sn,i j

t ; i, j ∈ E), t ∈ R
∗
+, n ∈N

∗. (14.13)

Our results hold in the Skorohord space D[0,∞). We denote by
a.s.−→ the almost

sure convergence, by ⇒ the weak convergence in this space and by
D−→ the

convergence in distribution of a sequence of random variables. Wt := (W i j
t ; i, j ∈ E)

is the d2-dimensional standard Wiener process.

Lemma 14.11. The conditional Lindeberg condition (14.8) holds for the random
sequences (Y n

m)m∈N∗ , n ∈ N
∗, defined in (14.10),(14.11), i.e., for any ε > 0 and any

t ∈ R
∗
+,

1
n

N(�nt	)
∑

m=1

E[‖Ym‖21{‖Ym‖>ε
√

n}|Fm−1]
a.s.−−→ 0, n → ∞,

where ‖ · ‖ is the euclidean norm on R
d2

.
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Proof. First, we must show that the random sequences (Y n
m)m∈N∗ , n ∈N

∗, are (Fm)-
martingale differences on B̃n. For any i, j ∈ E and any fixed x ∈ N

∗, we have

E[Y i j
m |Fm−1] = E[1{Jm−1=i,Jm= j,Xm=x} − 1{Jm−1=i}qi j(x)|Fm−1]

= E[1{Jm−1=i,Jm= j,Xm=x}|Fm−1]−E[1{Jm−1=i}qi j(x)|Fm−1]

= E[1{Jm−1=i,Jm= j,Xm=x}|Jm−1]−E[1{Jm−1=i}qi j(x)|Jm−1]

= 1{Jm−1=i}P(Jm = j,Xm = x|Jm−1)− 1{Jm−1=i}qi j(x)

= 1{Jm−1=i}qi j(x)− 1{Jm−1=i}qi j(x) = 0.

So, for any n ∈N
∗, (Y n

m)m∈N∗ are (Fm)-martingale differences. As a direct outcome,
the processes (Sn

t )t∈R∗
+

is a martingale on Bn.

Now, for all i, j ∈ E and all m ∈ N, |Y i j
m | ≤ 1. So, ‖Ym‖ ≤ d. Using Markov’s

inequality, for any ε > 0 and any t ∈ R
∗
+, we get

1
n

N(�nt	)
∑

m=1

E[‖Ym‖21{‖Ym‖>ε
√

n}|Fm−1]≤ 1
n

N(�nt	)
∑

m=1

E[d21{‖Ym‖>ε
√

n}|Fm−1]

=
d2

n

N(�nt	)
∑

m=1
E[1{‖Ym‖>ε

√
n}|Fm−1]

=
d2

n

N(�nt	)
∑

m=1

P(‖Ym‖> ε
√

n|Fm−1)

≤ d2

n

N(�nt	)
∑

m=1

E[‖Ym‖|Fm−1]

ε
√

n

≤ d2

n

N(�nt	)
∑

m=1

d
ε
√

n

=
d3

ε n
√

n
N(�nt	) a.s.−−→ 0, n → ∞,

since, by Lemma 14.4, N(�nt	)/n
a.s.−−→ t/m̄, as n → ∞. �

Remark 14.12. In Lemma 14.11, we have the stronger a.s. convergence instead of
the convergence in probability required in the conditional Lindeberg condition.

Lemma 14.13. For any t ∈ R
∗
+, the following a.s. convergence holds:

1
n

N(�nt	)
∑

m=1
E[Y i j

m Y lr
m |Fm−1]

a.s.−−→ t C i j,lr, n → ∞, (14.14)
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where

C i j,lr = δil
1

μii
qi j(x)(δir − qir(x)), (i, j),(l,r) ∈ E ×E.

Proof. We distinguish the following cases:

1. For i �= l, we have Y i j
m Y lr

m = 0. Consequently,

E[Y i j
m Y lr

m |Fm−1] = 0. (14.15)

2. For i = l and j �= r, for any x ∈N

Y i j
m Y lr

m = Y i j
m Y ir

m =− 1{Jm−1=i,Jm= j,Xm=x}qir(x)

− 1{Jm−1=i,Jm=r,Xm=x}qi j(x)

+ 1{Jm−1=i}qi j(x)qir(x).

So, we get that

E[Y i j
m Y lr

m |Fm−1] =−qir(x)P(Jm−1 = i,Jm = j,Xm = x|Jm−1)

− qi j(x)P(Jm−1 = i,Jm = r,Xm = x|Jm−1)

+ qi j(x)qir(x)P(Jm−1 = i|Jm−1)

=−qi j(x)qir(x)1{Jm−1=i}

Now, we can write

1
n

N(�nt	)
∑

m=1
E[Y i j

m Y lr
m |Fm−1] =−1

n

N(�nt	)
∑

m=1
1{Jm−1=i}qi j(x)qir(x).

We mention that ∑N(�nt	)
m=1 1{Jm−1=i} = Ni(�nt	). From Lemma 14.4, we conclude

that

1
n

N(�nt	)
∑

m=1

E[Y i j
m Y lr

m |Fm−1]
a.s.−−→− t

μii
qi j(x)qir(x), n → ∞. (14.16)

3. For i = l and j = r, for any x ∈N

Y i j
m Y lr

m = (Y i j
m )2 =+ 1{Jm−1=i,Jm= j,Xm=x}

+ 1{Jm−1=i}q2
i j(x)

− 21{Jm−1=i,Jm= j,Xm=x}qi j(x).
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Consequently,

E[Y i j
m Y lr

m |Fm−1] = P(Jm−1 = i,Jm = j,Xm = x|Jm−1)

+ q2
i j(x)P(Jm−1 = i|Jm−1)

− 2qi j(x)P(Jm−1 = i,Jm = j,Xm = x|Jm−1)

= 1{Jm−1=i}qi j(x)(1− qi j(x))

Now,

1
n

N(�nt	)
∑

m=1
E[Y i j

m Y lr
m |Fm−1] =

1
n

N(�nt	)
∑

m=1
1{Jm−1=i}qi j(x)(1− qi j(x)).

From Lemma 14.4, we have

1
n

N(�nt	)
∑

m=1
E[Y i j

m Y lr
m |Fm−1]

a.s.−−→ t
μii

qi j(x)(1− qi j(x)), n → ∞. (14.17)

So, from (14.15), (14.16), and (14.17), the a.s. convergence (14.14) holds, where

C i j,lr =

⎧⎪⎪⎨
⎪⎪⎩

1
μii

qi j(x)(1− qi j(x)), if i = l and j = r,

− 1
μii

qi j(x)qir(x), if i = l and j �= r,

0, if i �= l.

�
Consider the d2×d2-dimensional matrix C=(C i j,lr)(i, j),(l,r)∈E×E . It may be more

convenient to present the matrix C as a diagonal matrix in block form

C =

⎛
⎜⎜⎜⎝
C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cd

⎞
⎟⎟⎟⎠

with Ci, for any i ∈ E , to be the block

Ci =
1

μii
qi j(x)(δ jr −qir(x)), j,r ∈ E

=
1

μii

⎛
⎜⎜⎜⎜⎜⎜⎝

qi1(x)(1−qi1(x)) −qi1(x)qi2(x) −qi1(x)qi3(x) · · · −qi1(x)qid(x)
−qi2(x)qi1(x) qi2(x)(1−qi2(x)) −qi2(x)qi3(x) · · · −qi2(x)qid(x)
−qi3(x)qi1(x) −qi3(x)qi2(x) qi3(x)(1−qi3(x)) · · · −qi3(x)qid(x)

...
...

...
. . .

...
−qid(x)qi1(x) −qid(x)qi2(x) −qid(x)qi3(x) · · · qid(x)(1−qid(x))

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Lemma 14.14. The d2 × d2-dimensional matrix C is a covariance matrix, i.e., it is
symmetric and positive semi-definite.

Proof. Every block of C is symmetric and, consequently, the whole matrix C is also
symmetric. To show that it is positive semi-definite, it suffices to prove that

z�Cz =
s

∑
i, j=1

s

∑
l,r=1

zi jC i j,lrzlr ≥ 0,

for any nonzero z = [z11z12 · · ·z1dz21z22 · · · z2d · · · zd1zd2 · · · zdd ]
� ∈R

d2
. Thus,

z�Cz = ∑
i∈E

[
t

μii
∑

j,r∈E
qi j(x)(δ jr − qir(x))zi jzir

]

= ∑
i∈E

t
μii

∑
j∈E

⎡
⎢⎣qi j(x)(1− qi j(x))z

2
i j − ∑

r∈E
j�=r

qi j(x)qir(x)zi jzir

⎤
⎥⎦.

For any x ∈N, we have that ∑ j∈E qi j(x)≤ 1. That is, for any i ∈ E ,

1− qil(x)≥ ∑
j∈E
j�=l

qi j(x).

Moreover, we take advantage of the symmetry of every block of C and aggregate the
elements of the second part in the parenthesis. So, we get that

z�Cz ≥ ∑
i∈E

1
μii

∑
j∈E

⎡
⎢⎣qi j(x)∑

l∈E
l�= j

qil(x)z
2
i j − 2 ∑

r∈E
r> j

qi j(x)qir(x)zi jzir

⎤
⎥⎦.

After some computations, we derive that

z�Cz ≥ ∑
i∈E

t
μii

∑
j,r∈E
r> j

qi j(x)qir(x)(zi j − zir)
2 ≥ 0.

So, the matrix C is a covariance matrix. �
Theorem 14.15. Let Sn

t be the processes defined in (14.12),(14.13). Then, for any
fixed x ∈ N, the following weak convergence holds:

(Sn
t ; t ∈ R

∗
+)⇒ (C1/2Wt ; t ∈R

∗
+), n → ∞,

where

C = (C il,lr)(i, j),(l,r)∈E×E =

(
δil

1
μii

qi j(x)(δ jr − qir(x))

)
(i, j),(l,r)∈E×E

is the covariance matrix.



14 On the Weak Convergence of an Empirical Estimator... 233

Proof. We recall that (Sn
t )t∈R∗

+
is a martingale on Bn and therefore a semimartingale.

Following Lemmas 14.4, 14.11, 14.13 and 14.14, and from VIII Theorem 3.33,
Jacod and Shiryaev [7], we get that

(
Sn

t ; t ∈ R
∗
+

)⇒ (
St ; t ∈ R

∗
+

)
, n → ∞,

where (St)t∈R∗
+

is a d2-dimensional continuous Gaussian martingale with pre-
dictable characteristics (0, t C,0).

A Gaussian martingale on the filtered probability space Bn with characteristics
(0, t C,0) is a standard Brownian motion (II Theorem 4.36, Jacod and Shiryaev [7]).
Furthermore, its variance function is σ2(x, t) = 〈W,W 〉t = t C. So, we get the final
result. �

For Ξ a quantity to be estimated, we will denote by ΔΞ the difference between the
estimator of Ξ and the true value of Ξ . For instance, for any i, j ∈E and x ∈ [0,�nt	],
n ∈N

∗, t ∈R
∗
+, we set Δqi j(x,�nt	) := q̂i j(x,�nt	)−qi j(x). Under this notation, we

proceed to the following weak convergence theorem.

Theorem 14.16. For any fixed x ∈N, it holds the weak convergence

(√
nΔqi j(x,�nt	); i, j ∈ E, t ∈ R

∗
+

)⇒ (Gi j(t); i, j ∈ E, t ∈R
∗
+

)
, n → ∞,

where Gt,i j = μii

√
C i j,lrW i j

t is a continuous Gaussian process.

Proof. The processes Δqi j(x,nt), x ∈ [0,nt], n ∈ N
∗, t ∈R

∗
+, can be written as

Δqi j(x,�nt	) = 1
Ni(�nt	)

N(�nt	)
∑

m=1

[
1{Jm−1=i,Jm= j,Xm=x} − 1{Jm−1=i}qi j(x)

]

=
1

Ni(�nt	)
N(�nt	)
∑

m=1
Y i j

m , i, j ∈ E.

So, we can write

(
√

nΔqi j(x,nt); i, j ∈ E) =

( √
n

Ni(nt)

N(nt)

∑
k=1

Y i j
k ; i, j ∈ E

)

=

(
n

Ni(nt)
1√
n

N(nt)

∑
k=1

Y i j
k ; i, j ∈ E

)

=

(
n

Ni(nt)
Sn,i j

t ; i, j ∈ E

)
.
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From Theorem 14.15 and the Slutsky Lemma, we conclude that

(
√

nΔqi j(x,�nt	); i, j ∈E, t ∈R
∗
+)⇒

(
μii

√
C i j,lr W i j

t

t
; i, j ∈ E, t ∈ R

∗
+

)
, n→∞,

since by Lemma 14.4, Ni(�nt	)/n
a.s.−−→ t/μii, as n → ∞. It is easy to see that, for

t ∈ R
∗
+, Gt,i j = μii

√
C i j,lrW i j

t is a continuous Gaussian process. �
Remark 14.17. In fact, the result of Theorem 14.16 is the invariance principle in
multidimensional form for the empirical estimator (14.9) of a DTSMK (14.2).

Corollary 14.18. For any fixed x ∈N we have

(
√

nΔqi j(x,k); i, j ∈ E)
D−→N (0,Σq), k → ∞,

where N (0,Σq) is a d2-dimensional normal random variable and Σq =
(μ2

iiC i j,lr)(i, j),(l,r)∈E×E

Proof. Setting t = 1, we have that W1 ∼ N (0,1). Then, we replace n with k. As
G1,i j = μii

√
C i j,lrW i j

1 , we have the desired result. �

14.4 Asymptotics for Kernels and Functionals

We can verify all the necessary conditions as described in Lemmas 14.11, 14.13,
and 14.14 for the following kernels and functionals. We give the empirical esti-
mators and then we present directly the corresponding weak convergence for these
measures without proofs. For simplicity, some symbols have not been not changed.

14.4.1 Transition Kernel

The empirical estimator P̂(k) = (p̂i j(k); i, j ∈ E), k ∈ N, of the transition kernel
(14.1) is defined by

p̂i j(k) :=
1

Ni(k)

N(k)

∑
m=1

1{Jm−1=i,Jm= j},

For any states i, j ∈ E , we set Ym = (Y i j
m ; i, j ∈ E) ∈ R

d2
, where (Y i j

m )m ∈ N
∗ are

random sequences on B̃ defined by

Y i j
m := 1{Jm−1=i,Jm= j} − 1{Jm−1=i}pi j,
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Theorem 14.19. The following weak convergence holds:(√
nΔ pi j(�nt	); i, j ∈ E, t ∈ R

∗
+

)⇒ (Gi j(t); i, j ∈ E, t ∈ R
∗
+

)
, n → ∞,

where Gt,i j = μii

√
C i j,lrW i j

t is a continuous Gaussian process with

C = (C i j,lr)(i, j),(l,r)∈E×E =

(
δil

1
μii

pi j(δir − pir)

)
(i, j),(l,r)∈E×E

.

Corollary 14.20. The following convergence holds:

(
√

nΔpi j(k); i, j ∈ E)
D−→N (0,ΣP), k → ∞,

where N (0,ΣP) is a d2-dimensional normal random variable and ΣP =
(μ2

iiC i j,lr)(i, j),(l,r)∈E×E.

14.4.2 Cumulative DTSMK

The empirical estimator Q̂(x,k) = (Q̂i j(x,k); i, j ∈ E), x ∈ {0, . . . ,k}, k ∈ N, of the
cumulative DTSMK (14.3) is defined by

Q̂i j(x,k) :=
1

Ni(k)

N(k)

∑
m=1

1{Jm−1=i,Jm= j,Xm≤x},

For any states i, j ∈ E , any fixed time x ∈ N, we set Ym = (Y i j
m ; i, j ∈ E) ∈ R

d2
,

where (Y i j
m )m∈N∗ are random sequences on B̃ defined by

Y i j
m := 1{Jm−1=i,Jm= j,Xm≤x} − 1{Jm−1=i,Jm= j}Qi j(x),

Theorem 14.21. For any fixed x ∈N it holds the weak convergence

(√
nΔQi j(x,�nt	); i, j ∈ E, t ∈ R

∗
+

)⇒ (Gi j(t); i, j ∈ E, t ∈ R
∗
+

)
, n → ∞,

where Gt,i j = μiiC1/2Wt/t is a continuous Gaussian process with

C = (C i j,lr)(i, j),(l,r)∈E×E =

(
δil

1
μii

Qi j(x)(δir −Qir(x))

)
(i, j),(l,r)∈E×E

.

Corollary 14.22. For any fixed x ∈N, we have

(
√

nΔQi j(x,k); i, j ∈ E)
D−→N (0,ΣQ), k → ∞,

where N (0,ΣQ) is a d2-dimensional normal random variable and ΣQ =
(μ2

iiC i j,lr)(i, j),(l,r)∈E×E.
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14.4.3 Conditional Sojourn Time Distribution Function

The empirical estimator f̂ (x,k) = ( f̂i j(x,k); i, j ∈ E), x ∈ {0, . . . ,k}, k ∈ N, of the
conditional sojourn time distribution function (14.4) is defined by

f̂i j(x,k) :=
1

Ni j(k)

N(k)

∑
m=1

1{Jm−1=i,Jm= j,Xm=x},

For any states i, j ∈ E , any fixed time x ∈ N, we set Ym = (Y i j
m ; i, j ∈ E) ∈ R

d2
,

where (Y i j
m )m∈N∗ are random sequences on B̃ defined by

Y i j
m := 1{Jm−1=i,Jm= j,Xm=x} − 1{Jm−1=i,Jm= j} fi j(x),

Theorem 14.23. For any fixed x ∈N, it holds the convergence(√
nΔ fi j(x,�nt	); i, j ∈ E, t ∈ R

∗
+

)⇒ (Gi j(t); i, j ∈ E, t ∈R
∗
+

)
, n → ∞,

where Gt,i j =
μii
pi j
C1/2Wt/t is a continuous Gaussian process with

C = (C i j,lr)(i, j),(l,r)∈E×E =

(
δilδir

1
μii

qi j(x)(1− fi j(x))

)
(i, j),(l,r)∈E×E

.

Corollary 14.24. For any fixed x ∈N, we have

(
√

nΔ fi j(x,k); i, j ∈ E)
D−→N (0,Σ f ), k → ∞,

where N (0,Σ f ) is a d2-dimensional normal random variable and Σ f =(
μ2

ii
p2

i j
C i j,lr

)
(i, j),(l,r)∈E×E

.

14.4.4 Conditional Sojourn Time Cumulative Distribution
Function

The empirical estimator F̂(x,k) = (F̂i j(x,k); i, j ∈ E), x ∈ {0, . . . ,k}, k ∈ N, of the
conditional sojourn time cumulative distribution function (14.5) is defined by

F̂i j(x,k) :=
1

Ni j(k)

N(k)

∑
m=1

1{Jm−1=i,Jm= j,Xm≤x},

For any states i, j ∈ E , any fixed time x ∈ N, we set Ym = (Y i j
m ; i, j ∈ E) ∈ R

d2
,

where (Y i j
m )m∈N∗ are random sequences on B̃ defined by

Y i j
m := 1{Jm−1=i,Jm= j,Xm≤x} − 1{Jm−1=i,Jm= j}Fi j(x),
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Theorem 14.25. For any fixed x ∈N, it holds the convergence

(√
nΔFi j(x,�nt	); i, j ∈ E, t ∈ R

∗
+

)⇒ (Gi j(t); i, j ∈ E, t ∈ R
∗
+

)
, n → ∞,

where Gt,i j =
μii
pi j
C1/2Wt/t is a continuous Gaussian process with

C = (C i j,lr)(i, j),(l,r)∈E×E =

(
δilδir

1
μii

Qi j(x)(1−Fi j(x))

)
(i, j),(l,r)∈E×E

.

Corollary 14.26. For any fixed x ∈N, we have

(
√

nΔFi j(x,k); i, j ∈ E)
D−→N (0,ΣF ), k → ∞,

where N (0,ΣF ) is a d2-dimensional normal random variable and ΣF =(
μ2

ii
p2

i j
C i j,lr

)
(i, j),(l,r)∈E×E

.

14.4.5 Sojourn Time Distribution Function

The empirical estimator ĥ(x,k) = (ĥi(x,k); i ∈ E), x ∈ {0, . . . ,k}, k ∈ N, of the
sojourn time distribution function (14.6) is defined by

ĥi(x,k) :=
1

Ni(k)

N(k)

∑
m=1

1{Jm−1=i,Xm=x},

For any states i ∈ E , any fixed time x ∈ N, we set Ym = (Y i
m; i ∈ E) ∈ R

d , where
(Y i

m)m∈N∗ are random sequences on B̃ defined by

Y i
m := 1{Jm−1=i,Xm=x} − 1{Jm−1=i}hi(x),

Theorem 14.27. For any fixed x ∈N, it holds the convergence(√
nΔhi(x,�nt	); i ∈ E, t ∈ R

∗
+

)⇒ (Gi(t); i ∈ E, t ∈ R
∗
+

)
, n → ∞,

where Gt,i = μiiC1/2Wt/t is a continuous Gaussian process with

C = (C i,l)i,l∈E =

(
δil

1
μii

hi(x)(1− hi(x))

)
i,l∈E

.

Corollary 14.28. For any fixed x ∈N, we have

(
√

nΔhi(x,k); i ∈ E)
D−→N (0,Σh), t → ∞,

where N (0,Σh) is a d2-dimensional normal random variable and Σh =(μ2
iiC i,l)i,l∈E .
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14.4.6 Sojourn Time Cumulative Distribution Function

The empirical estimator Ĥ(x,k) = (ĥi(x,k); i ∈ E), x ∈ {0, . . . ,k}, k ∈ N, k ∈ N, of
the sojourn time cumulative distribution function (14.7) is defined by

Ĥi(x,k) :=
1

Ni(k)

N(k)

∑
m=1

1{Jm−1=i,Xm≤x},

For any states i ∈ E , any fixed time x ∈ N, we set Ym = (Y i
m; i ∈ E) ∈ R

d , where
(Y i

m)m∈N∗ are random sequences on B̃ defined by

Y i
m := 1{Jm−1=i,Xm≤x} − 1{Jm−1=i}Hi(x),

Theorem 14.29. For any fixed x ∈N, it holds the convergence

(√
nΔHi(x,�nt	); i ∈ E, t ∈ R

∗
+

)⇒ (Gi(t); i ∈ E, t ∈ R
∗
+

)
, n → ∞,

where Gt,i = μiiC1/2Wt/t is a continuous Gaussian process with

C = (C i,l)i,l∈E =
(

δil
1

μii
Hi(x)(1−Hi(x))

)
i,l∈E

.

Corollary 14.30. For any fixed x ∈N, we have

(
√

nΔHi(x,k); i ∈ E)
D−→N (0,ΣH), t → ∞,

where N (0,ΣH) is a d2-dimensional normal random variable and ΣH =
(μ2

iiC i,l)i,l∈E.

Conclusion

The DTSMK constitute a key role in the probabilistic and statistical study of a SMC
as the majority of the relative measures can be expressed directly in terms of it.
Consequently, the thorough study of the DTSMK is of foremost importance in the
further analysis of SMC.

The multidimensional invariance principle presented in this chapter is an in-
teresting theoretical result oriented to applications. It seems rather useful for
estimating various kernels and functions, observing a semi-Markov system up to
fixed censoring time. For exemple, in dependability theory, we are interested in
estimating measures such as the reliability, availability or failure rate functions,
which are directly written in function of the DTSMK.



14 On the Weak Convergence of an Empirical Estimator... 239

References

1. Barbu, V.S., Limnios, N.: Empirical estimation for discrete-time semi-Markov processes with
applications in reliability. Nonparametric Stat. 8(78), 483–498 (2006)

2. Barbu, V.S., Limnios, N.: Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications. Springer, New York (2008)

3. Barbu, V.S., Boussemart, M., Limnios, N.: Discrete-time semi-Markov model for reliability
and survival analysis. Comm. Stat. Theor. Meth. 33(11), 2833–2868 (2004)

4. Georgiadis, S., Limnios, N.: A multidimensional functional central limit theorem for an
empirical estimator of a continuous-time semi-Markov kernel. Nonparametric Stat. (submitted)

5. Gill, R.D.: Nonparametric estimation based on censored observations of a Markov renewal
process, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 53, 97–116 (1980)

6. Greenwood, P.E., Wefelmeyer, W.: Empirical estimators for semi-Markov processes. Math.
Methods Statist. 5(3), 299–315 (1996)

7. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes. 2nd edn, Springer, Berlin
(2003)

8. Limnios, N.: A functional central limit theorem for the empirical estimator of a semi-Markov
kernel. Nonparametric Stat. 16(1-2), 13–18 (2004)
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Chapter 15
Analysis Methods for Unreplicated Factorial
Experiments

P. Angelopoulos, C. Koukouvinos, and A. Skountzou

Abstract The analysis of unreplicated designs concentrates much of interest, since
these designs enable us to estimate the factorial effects using contrasts, while no
degrees of freedom are left to estimate the error variance, so conventional ANOVA
techniques cannot be applied to detect the active effects. In this paper we review
two effective methods (Angelopoulos and Koukouvinos, J. Appl. Statist 35:277–
281, 2008; Angelopoulos et al., Qual. Reliab. Eng. Int 26:223–233, 2010) for the
identification of active factors in unreplicated experiments. An illustrative example
of the application of the two methods is presented, as also a comparative simulation
study, revealing the effectiveness of the two methods.

Keywords Two-level factorial designs • Unreplicated experiments • Outliers
• Projective property • Power

AMS Subject Classification: Primary 62K15, Secondary 62J20

15.1 Introduction

Factorial designs are widely used in screening experiments where the effect of
several factors on a response variable needs to be studied. A special class of
these designs is 2k factorial designs, where k factors are involved, each at only
two levels. These levels can be quantitative, such as two values of temperature,
high and low, or qualitative, such as two machines or two operators. In such
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Table 15.1 A 23 full
factorial design with
interactions

I A B C AB AC BC ABC

(1) +1 −1 −1 −1 +1 +1 +1 −1
a +1 +1 −1 −1 −1 −1 +1 +1
b +1 −1 +1 −1 −1 +1 −1 +1
ab +1 +1 +1 −1 +1 −1 −1 −1
c +1 −1 −1 +1 +1 −1 −1 +1
ac +1 +1 −1 +1 −1 +1 −1 −1
bc +1 −1 +1 +1 −1 −1 +1 −1
abc +1 +1 +1 +1 +1 +1 +1 +1

designs we usually code the two levels as −1 and +1 and call them low and high
setting. A 2k full factorial design consists of k factors or treatments (columns) and
2k experimental runs (rows), where each row of the design corresponds to each
treatment combination. A full factorial design includes all possible combinations
of the factor levels. In Table 15.1 we see the example of a 23 full factorial design.
The first column with all elements +1 corresponds to the general mean. The next
three columns correspond to the three main effects A, B, and C, and the four
last columns correspond to the factors interactions, which are expressed by the
product of the involved factors. As the number of experimental factors increases,
the number of runs grows exponentially, and in many cases only a single replicate
of the design may be allowed. A single replicate of a 2k factorial design is usually
called an unreplicated factorial design. These designs are saturated, that is, the
number of the parameters to be estimated equals the number of the total runs,
and no degrees of freedom are available for an independent estimation of the error
variance. Unreplicated factorial designs are often employed in the initial stages of an
experiment in order to identify the active factors among a large number of potential
active variables and pose them in further investigation. These designs are widely
used in engineering, technological, industrial, or military processes, where every
experimental trial is highly expensive and only a limited number of experimental
runs are available.

The analysis of unreplicated designs is a complicated problem, since these
designs enable the estimation of the 2k − 1 factorial effects using contrasts, but no
degrees of freedom are left to estimate the error variance, and conventional ANOVA
techniques cannot be applied to detect the active effects. Many methods have been
proposed for the analysis of unreplicated factorial designs and their performance has
been evaluated and reported in the literature (see, for example, the detailed review
article of Hamada and Balakrishnan [10] and the book by Voss and Wang [14]).
A normal or half-normal plot of the effect estimates, as introduced by Daniel [7],
is the most commonly used method in testing the effects significance. Box and
Meyer [5], Lenth [11], Benski [4], Dong [8], Chen and Kunert [6], Aboukalam [1],
Miller [12], Voss and Wang [15], and many other authors have proposed analysis
techniques for unreplicated designs. In this context we review two methods [2, 3]
for the identification of the true active effects in unreplicated factorial designs.
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15.2 Two Analysis Methods for 2k Unreplicated Designs

Consider the following model for testing the significance of p = 2k − 1 effects in
two-level unreplicated factorial designs:

y =
p

∑
i=0

βixi + e (15.1)

where y= (y1, . . . ,yn) is the response vector, n is the number of runs, xi, i = 1, . . . , p,
are the effects vectors with levels ±1, x0 = 1n is the n-dimensional vector of 1’s
which corresponds to the general mean, βi, i = 0, . . . , p are unknown parameters,
and e = (e1, . . . ,en) is a random error term. The global null hypothesis under testing
is H0 : β1 = · · ·= βk = 0.

15.2.1 A Method Based on Outliers Detection

Motivated by the subjective nature of a Daniel plot [7], the authors proposed a
formal test for the identification of active effects in [2]. Consider that θ̂i are the
ordered factorial effect estimates (main and interactions) and li = Φ−1([i− 0.5]/p)
their corresponding normal probability values. Then, the following data set is
obtained:

Xi l1 l2 . . . lp

Yi θ̂1 θ̂2 . . . θ̂p

and a linear regression model of the form:

Yi = β0 +β1Xi + εi (15.2)

can be fitted to this data set, where β0, β1 are the regression coefficients and εi is
the random error. Following Daniel’s idea the active factors under model (15.2) can
be detected as outliers values. The algorithm proposed by Hadi and Simonoff [9] is
used for the outliers identification.

The Hadi and Simonoff Algorithm is a four steps procedure. The first step is
denoted as Step 0, in which an initial basic subset M of no outliers is defined.

• Step 0 Find a basic subset M with no outliers. Order the p effects according to
|ai|, where ai are the adjusted residuals given by ai = ei/

√
1− pii, where pii is

the i diagonal element of the matrix P = X(XT X)−1XT . The initial size of the set
M will be 2, consisting of the effects corresponding to the smallest |ai|.
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• Step 1 Compute and order the p effects according to:

|yi−xT
i β̂M |√

1−xT
i (X

T
MXM)−1xi

if xi ∈ M

|yi−xT
i β̂M |√

1+xT
i (X

T
MXM)−1xi

if xi /∈ M
. (15.3)

Form a new basic subset that contains the first s+1 effects, where s is the number
of effects in the previous basic subset. Continue this process until the basic subset
contains h = [p/2] effects.

• Step 2 Compute

di =

⎧
⎪⎨

⎪⎩

yi−xT
i β̂M

σ̂M
√

1−xT
i (X

T
MXM)−1xi

if xi ∈ M

yi−xT
i β̂M

σ̂M

√
1+xT

i (X
T
MXM)−1xi

if xi /∈ M
(15.4)

where M is a basic subset with no active effects originally of size h.
• Step 3 Arrange the effects in ascending order according to |di|, and let d(s+1) be

the (s+ 1)-ordered statistic of |di|, and s the size of the current subset M.

1. If d(s+1) ≥ t(a/2(s+1),s−k) then declare all effects satisfying |di| ≥ t(a/2(s+1),s−k)
as active and stop.

2. Otherwise, form a new basic subset M with the first (s+1)-ordered effects. If
s+ 1 = p, then stop and declare no active effects; otherwise go to Step 2.

The observations declared as outliers according to the above procedure correspond
to the active effects under model (15.1).

15.2.2 A Method Based on the Projection Property

The second method [3] is based on the projection property of factorial designs, i.e.,
such designs can be projected into smaller designs by the significant factors. The
authors suggest determining first a set of inactive effects, in order to take advantage
of the projective property, and project the factorial design in those factors that appear
to be active and use the classical ANOVA techniques to perform tests. Suppose that
A is the set of all factorial effects of a factorial design with k main effects, and
Pi, i = 1, . . . ,k are the k subsets of factorial effects obtained after projecting the
unreplicated design into all possible choices of k−1 factors. Each projection design
can be viewed as a new experiment, which can be analyzed since there are 2k−1

degrees of freedom left to estimate the experimental error. The active and inactive
effects in each Pi can be identified using an analysis of variance. If a factorial effect is
found to be active in any projection design analysis, then it appears to be a potential
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Table 15.2 Critical values Error rate

p 0.01 0.05 0.1

7 0.00266 0.01112 0.0204
15 0.0009 0.0027 0.0055
31 0.00066 0.002 0.00383
63 0.000167 0.00084 0.00167
127 0.00016 0.0003 0.00071

active effect for the original unreplicated design. Similarly, if a factorial effect is
found to be inactive in all k projection design analysis, then this effect is highly
unlikely to be active for the unreplicated design.

Consider that ACi, i = 1, . . . ,k, are the sets containing the active effects of each
subset Pi. Then, the potential set AC of active effects is AC =

⋃k
i=1 ACi, while the

set of inert effects is IN =
⋃k

i=1 Pi − AC. The next step is to test the significance
of the effects belonging to the set A− IN and extract conclusions for the original
unreplicated design. The authors propose that, in order to control the experimental
error at a desired level, the critical value at each projection should be equal to 0.01,
while the critical value for the whole experiment should be chosen according to the
values in Table 15.2.

15.2.3 An Illustrative Example

Montgomery described in [13] a real experiment where the effect of four factors
in the filtration rate of a chemical process is studied. A 24 full factorial design
in a single replicate is used to conduct the experiment and data are presented in
Table 15.3. Various analysis techniques have identified the effects A, C, D, AC, AD
being the only active effects in the experiment. The application of the two methods
described above results to the same conclusions.

First, we analyze the example using the method based on outliers presented in
Sect. 15.2.1. We calculate the estimates of the factorial effects and their correspond-
ing normal probability values, as in Table 15.4. We apply a simple linear regression
model to the data set of Table 15.4 and form the basic subset corresponding to the
effects with the two smallest adjusted residual values, which are B and ABD. We
apply the first step of the method until the basic subset has seven effects. At the end
of the first step, AB, ABCD, BD, ABC, CD, BC, ACD are added to the basic subset.
Proceeding to the second step, we calculate the di statistics. In step 3 we compare
the s+ 1 di statistic with the value of the t-distribution. For the first iteration of the
method we compare the eighth-ordered statistic. This process is repeated until a di,
such that |di| is greater than the value of the t-distribution, is found. This is done
after the fourth iteration and the effects A, C, D, AC, AD are declared active.
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Table 15.3 Data of the
chemical process example

Run A B C D y

1 − − − − 45
2 + − − − 71
3 − + − − 48
4 + + − − 65
5 − − + − 68
6 + − + − 60
7 − + + − 80
8 + + + − 65
9 − − − + 43
10 + − − + 100
11 − + − + 45
12 + + − + 104
13 − − + + 75
14 + − + + 86
15 − + + + 70
16 + + + + 96

Table 15.4 Estimates and normal probability values

Effect Estimate Φ−1([i−0.5])/p Effect Estimate Φ−1([i−0.5])/p

AC −18.125 −1.83391 BC 2.375 0.167894
BCD −2.625 −1.28155 B 3.125 0.340695
ACD −1.625 −0.967422 ABD 4.125 0.524401
CD −1.125 −0.727913 C 9.875 0.727913
BD −0.375 −0.524401 D 14.625 0.967422
AB 0.125 −0.340695 AD 16.625 1.28155
ABCD 1.375 −0.167894 A 21.625 1.8339
ABC 1.875 0

Next, we analyze the data from Table 15.3 using the method based on
the projection property of the factorial designs (see Sect. 15.2.2). The four
projections of the 24 full factorial design are P1 = {B,C,D,BC,BD,CD,BCD},
P2 = {A,C,D,AC,AD,CD,ACD}, P3 = {A,B,D,AB,AD,BD,ABD}, P4 =
{A,B,C,AB,AC,BC,ABC}. Each projection consists of seven effects and the
general mean and eight degrees of freedom are available for the estimation of
the error variance. We apply regular ANOVA to each projection by setting the
critical value equal to 0.01 as suggested by the authors. The active set ACi of
every subset Pi is defined by comparing the corresponding p-values with 0.01.
The resulted p-values in each projection are reported in Table 15.5. The sets of
active effects are AC1 = {}, AC2 = {A,C,D,AC,AD}, AC3 = {A}, AC4 = {A}.
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Table 15.5 P-values of the
effects in each of the four
projection designs

Effect P1 P2 P3 P4

A – 0 0.00202 0.0027
B 0.79 – 0.6872 0.708
AB – – 0.9871 0.988
C 0.42 0.003 0.2555
AC – 0.0001 0.0547
BC 0.844 – 0.7758
ABC – – 0.822
D 0.247 0.0003 0.0864 –
AD – 0.0001 0.057 –
BD 0.975 – 0.9613 –
ABD – – 0.5965 –
CD 0.925 0.647 – –
ACD – 0.512 – –
BCD 0.828 – – –
ABCD – – – –

So, the set of possible active effects is AC = {A,C,D,AC,AD}, while the set of inert
effects is IN = {B,AB,BC,BD,CD,ABC,ABD,ACD,BCD,ABCD}. Proceeding in
an ANOVA, excluding the effects in the set IN, results in the identification of A, C,
D, AC, AD (have p-values less than 0.0027) as active effects.

15.3 Evaluation of the Methods

We use the notion of Power in three forms for the comparison of the two methods
and Lenth’s test [11]. Power is defined as the expected fraction of active effects that
are declared active and has been used by many authors (see [6, 10]) as a measure of
performance. Power I expresses the probability of rejecting the null hypothesis that
all the factorial effects are inactive. Power II is defined as the probability that the
effects declared being active include all really active contrasts.

Ten thousand simulated experiments are conducted for each case, where a
response vector y is generated according to model (15.1) for each experiment, the 24

unreplicated factorial design serves as the design matrix, the errors are i.i.d.’s with
N(0,σ ) and σ is set equal to 1. We consider the cases for p = 1 up to seven active
factorial effects involving in the experiments having the same magnitude equal to
2σ and the results are presented in Figs. 15.1–15.3. It is shown that both methods
outperform Lenth’s method with respect to the values of Power, and the second
method achieves the higher values among the three methods. The two methods
denote high values of Power I even in the cases of 6 and 7 factors. They also
appear very powerful in Fig. 15.3, where clearly they have better values than Lenth’s
method.
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Fig. 15.1 Power of the two methods compared to Lenth’s test

Fig. 15.2 Power I of the two methods compared to Lenth’s test

Fig. 15.3 Power II of the two methods compared to Lenth’s test
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