

Formal Development of a Network-Centric RTOS

Eric Verhulst • Raymond T. Boute
José Miguel Sampaio Faria • Bernhard H.C. Sputh
Vitaliy Mezhuyev

Formal Development
of a Network-Centric RTOS

Software Engineering for Reliable Embedded
Systems

123

Eric Verhulst
Altreonic NV
Gemeentestraat 61AB1
B3210 Leuven, Belgium
Eric.Verhulst@lancelot.be

José Miguel Sampaio Faria
Rua Sra das Boas Novas 776
4935-490 Mazarefes
Portugal
jmfaria@criticalsoftware.com

Vitaliy Mezhuyev
Open License Society
Zavelstraat 160
3010 Leuven
Belgium
Vitaliy.Mezhuyev@openlicensesociety.org

Raymond T. Boute
Department of Information Technology
Universiteit Gent
Faculty of Engineering
St. Pietersnieuwstraat 41
9000 Gent
Belgium
boute@intec.UGent.be

Bernhard H.C. Sputh
Open License Society
Zavelstraat 160
3010 Leuven
Belgium
bernhard.sputh@openlicensesociety.org

ISBN 978-1-4419-9735-7 e-ISBN 978-1-4419-9736-4
DOI 10.1007/978-1-4419-9736-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011933844

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

How can one improve with a factor of 10 on something that has already the
reputation of being highly optimised? The answer lies in ignoring the most often
wrong assumption that it is already highly optimised and by going back to basics.
This inevitably includes developing a new formalisation of the problem at hand.
In our case, this meant thinking anew about what a distributed RTOS (Real Time
Operating System) is all about. What is the core functionality of an RTOS, of
a distributed RTOS? Is there a clean way to handle task synchronisation and
communication? The result was the unique network-centric OpenComRTOS project
described in this book.

Taking this as an opportunity, we wanted to use formal methods to prove the
final implementation. It turned out that formal methods can help to prove an
implementation, but they really shine when used to model the architecture at an
abstract level before any implementation is done. Their use has shown us again
how much we are all influenced by what we know. After all our brains have a hard
time reasoning without prior knowledge. Hence, our brains tend to look for known
patterns so that known rules can be applied.

Looking for better and new solutions is hampered by prior knowledge. Formal
methods help us because they allow us (or some would say: force us) to think at
a more abstract level, our vision being less cluttered by implementation details.
The result obtained in the project was a very clean and scalable architecture while
verification had almost become trivial. There is also a general assumption that
trustworthy means complex and large. Great was the surprise, however, when
we discovered it resulted in the opposite. The RTOS was measured to be up to
10 times smaller than a previously hand coded version that had been tweaked
over several years and used in demanding systems. This means less resources
and less power are needed. So, to make the world less energy-hungry, use formal
methods.

This project has to some extent reinvented the very concept of what an RTOS is. It
is a way to model, it is a way to simulate, it is a way to verify, it is a way to program
in a scalable and portable way concurrent systems. But our quest does not stop.

v

vi Preface

OpenComRTOS is also an enabler for new functionality that is still being researched
while the book is being written. A lot of the work has to do with researching the
correct semantics to support e.g. composability, dynamic resource scheduling and
fault tolerance. Ultimately, it might result in new hardware.

Last but not least, formal methods have proven not to be so hard to use as
it was assumed to be. The project also demonstrated the strength of team work.
Communication in a well working team is ultimately the way to get rid of the
assumptions our brains involuntary make. Formal methods again help by replacing
intuition by abstraction. This book is not an academic one. It describes aspects that
were explored during a real industrial project to develop a distributed RTOS from
scratch using formal methods. Therefore it contains as well a broad discussion on
the context in which such RTOS are used, as well as deep technical details of some
of the formal models used. But as such, the description is not complete because it
describes a project, not a theory.

The book is organised as follows: In the first two chapters, we sketch the domain
of interest: trustworthy embedded real-time distributed systems. We discuss the
challenges to develop applications and systems in this domain and why formal
methods are becoming essential tools for the engineer working in this field. We
derive from it the requirements and specifications for OpenComRTOS. In the
following two chapters we look at what formal methods and tools are available and
introduce TLA+/TLC that was finally selected and used in the project. Subsequently,
we discuss the formal TLA+ models, as well as the architecture, of OpenComRTOS.
We dwell a bit deeper on the interaction semantics and provide an overview of the
code size and performance results. For the interested user the appendix includes a
usage tutorial, as well as the mathematical and logic foundations behind temporal
logics like TLA+. The appendix also contains the TLA+ and SPIN models used to
compare both formalisms in Chap. 3.

For the interested reader, a free version of OpenComRTOS for PC is available
from www.altreonic.com. This version also acts as a simulator and cross develop-
ment environment for multi-node targets.

Acknowledgements

This work has been made possible by the support of many people and organisations:

• Alexander Keda for developing the verification models and code generators.
• Anatoliy Konovalenko for developing the RTOS unit tests.
• Andrey Nitsenko for developing the graphical event tracer.
• Annie Dejonghe for moral support and administrative support.
• Bernhard Sputh for managing the release of the product and porting the RTOS.
• Dimitry Panfilov for developing the first visual front-end and porting the RTOS.
• Gjalt De Jongh for his conceptual discussions and first implementations.
• José Miguel Faria for developing the first formal models.

Preface vii

• Raymond Boute for his deep knowledge of formal techniques.
• Vitaliy Mezhuyev for his meta-modelling input.

The project was also financially supported by IWT of the Flemish Region and
Melexis NV. Melexis also provided the first target processor.

Linden Eric Verhulst

Contents

List of Figures . xv

List of Tables . xvii

Part I Trustworthy Embedded Systems

1 Introduction: OpenComRTOS Role in a Unified Systems
Engineering Methodology . 3
1.1 Introduction . 3
1.2 A Systematic Engineering Methodology Based

on Unified Semantics and Interacting Entities. 6
1.3 Interacting Entities for the Software Domain . 9

1.3.1 Silicon Technology Advances . 10
1.3.2 Silicon Technology Limitations . 10
1.3.3 The World Becomes Connected .. 11

1.4 A Link with the Work Plan in a Systems Engineering Project 11
1.5 System Engineering Methods and Engineering Standards.. 12
1.6 Where Do Formal Techniques Fit in? . 13

2 Requirements and Specifications for the OpenComRTOS Project 15
2.1 Background of OpenComRTOS . 15
2.2 Early Requirements Derived from the Virtuoso RTOS 17
2.3 Real-Time Embedded Programming .. 19

2.3.1 Why Real-Time? . 19
2.3.2 Why a Simple Loop Is Often not Enough.. 20
2.3.3 Superloops and Static Scheduling .. 21
2.3.4 Rate Monotonic Analysis . 24
2.3.5 Priority based Scheduling in OpenComRTOS 26
2.3.6 The Issue of Priority Inversion and Its

Inadequate Solution . 27
2.4 Next Generation Requirements . 29

ix

x Contents

2.5 Top Level Requirements for OpenComRTOS .. 32
2.6 Specifications Derived from Requirements . 34
2.7 Systems and Application Grammar of OpenComRTOS 36

2.7.1 Base Principles and Definitions . 36
2.7.2 A Note on Typing Conventions .. 37
2.7.3 OpenComRTOS System and Application Grammar 37

Part II Formal Modeling Fundamentals

3 The Choice of TLA+/TLC: Comparing Formal Methods 45
3.1 Formal Methods Survey and Pre-Selection .. 45
3.2 Case Study . 46

3.2.1 Introduction.. 47
3.2.2 The Algorithm.. 47
3.2.3 Remarks . 49
3.2.4 Drawbacks .. 49
3.2.5 Related Work . 50

3.3 TLA+ and TLC . 51
3.3.1 Overview . 51
3.3.2 Model Developed . 53

3.4 Promela and SPIN . 59
3.4.1 Overview . 59
3.4.2 Model Developed . 62

3.5 Comparison . 66
3.5.1 Matching of the Method to the Application.. 66
3.5.2 Human Factors . 66
3.5.3 Widespread Utilization. 66
3.5.4 Licensing/Distribution . 68
3.5.5 Maturity. 68
3.5.6 Performance . 68
3.5.7 Interface . 68
3.5.8 Coverage of the Input Language . 68
3.5.9 Bibliography.. 69
3.5.10 Expressiveness . 69
3.5.11 Readability . 70
3.5.12 Reusability. 71
3.5.13 Scalability . 71
3.5.14 Level of Abstraction . 71
3.5.15 Checking Possibilities . 72
3.5.16 Coverage of the Lifecycle . 72

4 Basic Formal Specification in TLA+ . 73
4.1 Introduction . 73

4.1.1 Goal: Awareness in Specifying Systems . 73
4.1.2 A Two-Step Approach . 73

Contents xi

4.2 Structure of TLA+ Specifications . 74
4.2.1 Basic Structure . 74
4.2.2 Module Structure . 75

4.3 Introducing TLA+ By Example .. 76
4.3.1 Basic TLA+ Notions . 76
4.3.2 Basic Examples: TLA+ Sequences

and OpenComRTOS Lists . 77
4.3.3 An Extended Example: The Module Port 79

4.4 Conclusion . 85

Part III OpenComRTOS Design

5 Formal Modelling of the RTOS Entities . 89
5.1 Introduction . 89
5.2 OpenComRTOS Environment Model . 90

5.2.1 Term Definitions . 91
5.2.2 Constants . 91
5.2.3 Variables Representing the System State 92
5.2.4 The L1-Packet . 92
5.2.5 General Constraint for All Models . 93

5.3 Formal Model of the Semaphore-Entity . 93
5.3.1 Constants . 94
5.3.2 Variables . 94
5.3.3 Initialisation . 94
5.3.4 Signalling the Semaphore.. 95
5.3.5 Testing the Semaphore .. 97
5.3.6 Constraints. 100
5.3.7 Defining the Next State . 101
5.3.8 Properties to Check . 101
5.3.9 Proof Obligations . 102
5.3.10 Checking the Models. 104

5.4 Model Verification . 104
5.5 Conclusion . 105

6 Final Architecture of the RTOS . 107
6.1 The Building Blocks of OpenComRTOS .. 107

6.1.1 The Hub Entity of OpenComRTOS . 108
6.1.2 Tasks . 113
6.1.3 Packets . 114

6.2 The Semaphore Loop .. 115
6.2.1 The Semaphore Loop in Detail . 116
6.2.2 Heterogeneous Multiprocessor Systems and

Their Issues . 118
6.3 OpenComRTOS Development Process for Applications 119
6.4 Summary . 119

xii Contents

7 Task Interaction Models in OpenComRTOS . 121
7.1 Introduction . 121
7.2 Modelling Task Interaction .. 123
7.3 Timing Properties of Task Interactions . 126
7.4 Notes on Asynchronous Interactions.. 128
7.5 Conclusions . 131

8 Results: Code Size and Performance . 133
8.1 Metrics of Success . 133

8.1.1 Code Size . 134
8.1.2 Total Memory Use . 137
8.1.3 Influence of Processor Architecture . 137
8.1.4 Semaphore Loop . 139
8.1.5 Interrupt Latency .. 139

Part IV Appendix

A OpenComRTOS-Suite 1.3 Usage Tutorial . 143
A.1 Developing a Single Node Semaphore-Loop Project 143
A.2 Going Distributed with OpenComRTOS . 153
A.3 Tracing in OpenComRTOS.. 155

A.3.1 How to Enable Tracing . 157
A.3.2 How to Retrieve a Trace . 158
A.3.3 Retrieving and Displaying Traces from

Distributed Systems . 159
A.4 Measuring the Interrupt Latency of OpenComRTOS 160

A.4.1 Designing Distributed Heterogeneous Systems
Using the OpenComRTOS Suite . 160

A.4.2 Presenting the Measurement Results . 162
A.4.3 Specifying the System . 162
A.4.4 Implementation .. 164
A.4.5 Application . 165
A.4.6 Collected Measurement Results . 166

A.5 Summary . 168

B Foundations for TLA+ and Temporal Logic . 169
B.1 Introduction . 169

B.1.1 Goal: Increased Awareness in Specifying Systems 169
B.1.2 Approach and Overview . 170

B.2 A Unifying Formalism. 171
B.2.1 Rationale. 171
B.2.2 Syntax.. 171
B.2.3 Style of Use. 173
B.2.4 Introducing TLA+ Via Funmath.. 178

B.3 Faithful Formalization of Informal Specifications 179
B.3.1 Choice of Proper Data Abstractions . 181

Contents xiii

B.3.2 Auxiliary Functions in Formal Specifications 184
B.4 Calculational Reasoning and Patterns in TLA+ . 186

B.4.1 Capturing Temporal Logics by Temporal Calculi 186
B.4.2 A Functional Temporal Calculus (FTC) . 187
B.4.3 Defining the Temporal Calculus of Actions (TCA) 190
B.4.4 Calculational Reasoning in TCA/TLA+ . 192
B.4.5 Applications to Patterns in TLA+ . 194

B.5 Conclusions . 196

C Comparision of Formal Methods . 199
C.1 TLA+ Model of Harris’ Algorithm . 199
C.2 Promela Model of Harris’ Algorithm . 206

Glossary . 211

References . 213

Index . 217

List of Figures

Fig. 1.1 Unified Systems Engineering Methodology . 7

Fig. 2.1 The context of systems engineering .. 16
Fig. 2.2 Superloop schedule with three interrupt sources . 22
Fig. 2.3 Two periodic tasks scheduled with RMA . 24
Fig. 2.4 Three tasks sharing a resource with and without priority

inheritance support . 30

Fig. 3.1 Example of a specification in TLA+ . 52
Fig. 3.2 Header of the TLA+ model . 56
Fig. 3.3 Bottom of the TLA+ Specification of Harris’ algorithm 57
Fig. 3.4 Definition of Coherence . 57
Fig. 3.5 Definition of action CreateI . 57
Fig. 3.6 Definition of action LocateD . 58
Fig. 3.7 Definition of action CasD2 . 59
Fig. 3.8 Comparison of the formalisms . 67

Fig. 4.1 Rendezvous in SendReceivePacketService . 83

Fig. 6.1 A simple OpenComRTOS application using Port Hubs. 108
Fig. 6.2 Hub diagram.. 109
Fig. 6.3 Application diagram with all Interactions for the

Semaphore Loop . 115

Fig. 7.1 Task interactions with a Hub . 124
Fig. 7.2 Asynchronous Task interactions with Hubs . 129

Fig. A.1 Screenshot of OpenVE’s the ‘New Project’ dialogue 144
Fig. A.2 OpenVE with opened Topology View (no nodes defined yet) 145
Fig. A.3 The dialogue to specify the properties of the new win32-node 145

xv

xvi List of Figures

Fig. A.4 Topology view showing the newly created win32-node 146
Fig. A.5 OpenVE Application Diagram with highlighted Task button 146
Fig. A.6 ‘New Task’ dialogue, with highlighted ‘Task

Entrypoint’ creation button . 147
Fig. A.7 The Task Entrypoint creation dialogue, showing the

source code that will be generated . 147
Fig. A.8 Application diagram showing the newly created Task1 148
Fig. A.9 Application diagram showing both Task1 and Task2 149
Fig. A.10 The ‘New Semaphore’ dialogue of OpenVE . 149
Fig. A.11 Application diagram with all entities, showing the

interaction selection menu . 150
Fig. A.12 Application diagram with all Interactions for the

Semaphore Loop . 150
Fig. A.13 Source code for Task1, the incorrectly placed

interactions highlighted .. 151
Fig. A.14 The ‘New stdioHostServer’ dialogue of OpenVE 151
Fig. A.15 Application diagram with the complete Semaphore-

Loop and the Stdio Host Server . 152
Fig. A.16 Source code of Task1 with Semaphore and Stdio Host

Server Interactions . 152
Fig. A.17 Console output upon running the ‘SemaphoreLoop’ project 153
Fig. A.18 Edit Link Ports Dialogue, with highlighted ‘Add Link

Port’ button . 154
Fig. A.19 OpenVE link configuration dialogue .. 154
Fig. A.20 Topology of the two Win32 Nodes connected with a

bidirectional Link . 155
Fig. A.21 OpenVE with open ‘Properties’ side-pane and

highlighted ‘node’ property . 156
Fig. A.22 Console output of both win32-nodes.. 156
Fig. A.23 OpenVE with open Property Pane . 157
Fig. A.24 Tracing enabled Application Diagram . 159
Fig. A.25 OpenTracer displaying parts of the

SemaphoreTracing_MP_TCPIP example trace . 159
Fig. A.26 Stages of IRQ handling in a typical Microcontroller System 161
Fig. A.27 Screenshot of the Interrupt Latency GUI Application.. 164
Fig. A.28 Interrupt latency measurement system topology . 165
Fig. A.29 Interrupt latency measurement system application diagram 166
Fig. A.30 Measured IRQ to ISR Latency on ARM Cortex M3

50MHz (logarithmic scale) . 167
Fig. A.31 Measured IRQ to Task Latency on ARM Cortex M3

50MHz (logarithmic scale) . 167

Fig. B.1 Numbers of beans .. 182
Fig. B.2 Bag of beans . 183
Fig. B.3 The Bags module from Specifying Systems compressed 185

List of Tables

Table 3.1 Correspondence of TLA+ model with the textual
description in Sect. 3.2.2 . 57

Table 7.1 Time semantics of two Tasks interacting in
OpenComRTOS . 126

Table 8.1 Code size for OpenComRTOS kernel on MLX16 135
Table 8.2 Total memory used for OpenComRTOS on MLX16 138
Table 8.3 Code size figures (in 8 bit Bytes) . 139
Table 8.4 Semaphore Loop times (=2 signals, 2 tests, 4 context

switches) in microseconds . 139

Table B.1 Basic mathematical TLA+ expressions via Funmath
equivalent, part 1 . 179

Table B.2 Basic mathematical TLA+ expressions via Funmath
equivalent, part 2 . 180

Table B.3 Action and temporal operators of TLA+ defined via Funmath . . . 180

xvii

Part I
Trustworthy Embedded Systems

Chapter 1
Introduction: OpenComRTOS Role in a Unified
Systems Engineering Methodology

OpenComRTOS is part of a systematic, formalised systems and software
engineering methodology for embedded systems with a supporting environment
and tools. While OpenComRTOS can be used independently of it, users will benefit
from using the methodology in an integrated way. This methodology is characterised
by two key concepts: unified semantics and interacting entities. When used in
combination, they result in a better control of the engineering process leading to the
development of systems and products. OpenComRTOS plays an important role in
this approach as it is the system software layer allowing the mapping of the abstract
interacting entities at the modeling level into concrete concurrent instances.

1.1 Introduction

Our economy, our social and political environment can be considered as a system
of systems. As citizens, we want these systems to work for us and to improve our
lives. Technology and engineering are playing a growing and important role in it.
The main reason for this fact is that technology allows us to do more with less.
Technology provides us with efficiency. The task of the engineer is to put technology
at work and to develop systems and products that provide us with added value. This
applies to many domains, even in domains where technology only plays a supporting
role and the role of the human is still dominant.

The authors of this book are mostly concerned with the domain of so-called
embedded systems. While there is no unique definition for this domain, think about
it as the domain of devices and systems that have a processor and software inside,
often fully invisible to the user. It came into being when the transistor was invented.
This was the start of the digital electronics era. Digital implies that it became more
and more practical for engineers to start building systems based on the concept
of state machines. What the solid-state transistor changed was that because of its
shrinking size, many of these components could be used together to build very

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 1,
© Springer Science+Business Media, LLC 2011

3

4 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

large scale state machines. A typical example is the processor in a desktop PC, now
containing several of such devices, each having close to a billion transistors. Even
a small processor can contain a few 10,000 to a few 100,000 transistors. On top of
that, engineers made these components programmable. This comes down to using
components whose functionality changes all the time (essentially at the rate of their
clocks, often measured in MHz or GHz). The programs they run are composed of
elementary instructions, meaning that the use of programs increases the size of the
state machine exponentially. How do we ensure that such systems can be trusted to
be correct?

This is not an easy task. Before electronics, most systems were analogue or
mechanical ones. Such systems often require a lot of energy and are bulky, but
usually they are quite trustworthy. The reason for this is that such systems inherently
provide what is called “graceful degradation”. Their state space is continuous and
hence infinite, but when the material properties are affected by e.g. wear and tear, a
mechanical system will keep delivering its function, even when it will have become
less efficient. This is the property of graceful degradation. Of course, at some state,
the system will break down as well, but there will be ample warning (if one cares to
look and listen).

Digital electronic systems are often designed and manufactured in such a way
that each individual transistor remains in a safe domain over its anticipated lifetime,
just like with mechanical system. The difficulty comes from the fact that in an
electronic system, these transistors are connected and therefore they create a large
state machine. When a single transistor or its connections to another transistor fails
for some reason, the system might continue to work but there is also a non-zero
probability that the failure will bring the whole system to a halt. Often this means it
goes into an illegal, read: undefined, state. Fortunately, in (small) digital electronics
the state space is still combinatorial and in principle, one can simulate the system
across all these states or one can even design a test set-up that will exercise all
possible states, allowing to verify that the design prevents the system from reaching
such an illegal state, even if such an event is very unlikely under normal operating
conditions. The issue is that reaching such an illegal state can become very likely
when the operating conditions are no longer “normal” (e.g. because the external
conditions put the device outside its normal operating conditions). Often, the result
will be catastrophic.

The problem really becomes horrendous when we look at embedded software
running on such an electronic component. The issue is that now the size of the
state space is exponentially expanded. This is partly due to the way software
instructions are encoded in the hardware. If a single bit is changed, the behaviour
can become entirely different. In addition, programmable electronic components
are often built as so-called von Neumann machines. The processor instructions are
executed in sequence. The program will also contain branching points, meaning
that the resulting state space can grow very large, even under normal operating
conditions. Moreover, embedded software will often not have the property of
graceful degradation. If for some reason the next instruction is not the right one, the
system can come to a halt in nanoseconds and standard processors cannot recover

1.1 Introduction 5

from such errors. A hard reset and rebooting from the beginning is often the only
sensible option. Most of us are familiar with this notion, often called a “blue screen”,
but very few know that an ordinary PC will have at least one memory bit flipped per
day due to cosmic radiation. While this is often innocent, when such an event occurs
in a safety critical system, lives can be at stake.

Given that the state space is now exponential and that it is physically impossible
to test all possible states, how can we then have confidence in embedded software?
The solution engineers adopt is to prove that the software will be correct (this holds
under the assumption that the hardware is correct as well). This is essentially not
different from what engineers do in other domains. For example, construction and
material engineers will often not test their construction to see when it will fail.
No, they will develop a mathematical model and calculate the breaking point based
on the assumption that their raw materials were correctly manufactured. This allows
them to apply a hefty safety margin to their design. Unfortunately, software cannot
be made robust by adding somewhere a safety margin, hence we must “calculate”
it exactly. This is what the emerging field of formal techniques is all about and this
book is about its application to the development of a crucial embedded software
component: a network centric Real-Time Operating System.

Another aspect is that the development of embedded software is not a “stan-
dalone” activity. Embedded application software has many dependencies, often
on third party input or components. In addition, embedded software is essentially
implementing a real-world context as a computer program. If the description of this
real-world context is erroneous, these errors will be found back in the resulting
application software and there they can result in erroneous products even if the
implementation of the software was done correctly.

Therefore, we need to look at the whole systems engineering process. This is
essential to develop trustworthy products because engineering a product involves a
lot of human activity. It is a complex process with many aspects and many problems
that need to be mastered. One of them is the use of natural language. Because natural
language is not precise enough, often vastly differing between cultures and different
domains, it is the source of many issues in systems engineering. Therefore, we
must try to achieve a common language across all domains that are involved in
the engineering of a product or a system. We called this trying to achieve “unified
semantics”. The only way to do this is to develop a unified “systems grammar” as
we call it, that covers the full domain of systems (or software) engineering. This is
similar to the development of an ontology but it adds the notion of “interaction” to
make the relationships between the concepts concrete from early requirements to
the final release of the product or system being developed.

Just like in a language it defines terms of a vocabulary and relationships between
these terms. Such a systems grammar will also seek orthogonality, essentially trying
to come up with terms that have no overlapping and no ambiguous meaning. Less
is often better in this context. It can be understood as an application of Einstein’s
principle (or occam’s razor if you prefer). Keep things simple, but not too simple.
Essentially, if a solution is complex, it is not because its creators were smart,
but because they did not fully understand the problem at hand. Below follows a

6 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

description of the systems engineering methodology we developed and of which the
OpenComRTOS project was at the same time a test case as well as an important key
component of the supporting environment.

1.2 A Systematic Engineering Methodology Based
on Unified Semantics and Interacting Entities

Generally speaking, systems engineering starts with what is called “requirements
and specifications capturing”. This is a domain where many people, called stake-
holders, are involved. In a first instance they formulate, often more informally
than formally, “requirements”. Requirements are often not precise enough to serve
as a basis for implementation. They will often be contradictory, overlapping and
stretch across multiple, very divergent domains. To find out which requirements are
really relevant and what they really aim for requires a lot of social interaction and
discussions (Fig. 1.1).

Often, the term “requirement” is wrongly used to indicate what good systems
engineering calls “specifications”. A specification is defined as a quantified or
qualified requirement statement. This means it is linked with measurable values,
generally called verifiable properties. When we say “verifiable” we can design the
system to achieve the specified properties. A consequence is that we also have
to specify how we will measure, verify and test the specified properties as the
methods we use will often influence the result. We call this the “test case”. This
is a first domain were standardization might be useful to reduce the guess work
and to increase the repeatability of the process. Another aspect is that we need to
specify the circumstances under which the specifications will be met. The fact that
a specification is linked with measurable values indicates that there must be one
or multiple test cases, which means that the design must take the test conditions
into account. The test case will often only be present when testing but it will often
require the design to have provisions for it.

In normal operating conditions, we speak of the “normal” case. But as we have
seen earlier, undesired behaviour often happens in conditions that are unlikely
and often outside the normal operating parameters. This is called the “fault case”.
Thinking about fault cases is difficult because it requires to think in reverse: “if the
system fails in a certain way, what type of failure could that be and what chain of
events could cause it?”.

Next comes the step where the specifications are realized by a concrete design.
Although often it will be required that the system is implemented using previously
developed or reused components, the difficulty here is not to let the implementation
choice influence the specifications. In the ideal world, the engineer will now build
several “models”. Models are essentially partial implementations that fulfil selected
specified properties of the system. We distinguish here three classes. Simulation
models are essentially virtual prototypes of parts or of the whole of the system as

1.2 A Systematic Engineering Methodology Based on Unified Semantics 7

Fig. 1.1 Unified Systems Engineering Methodology

computer models. Often modelling tools will be used which allow the designer to
develop such a simulation model in a relatively short period of time. Simulation
models are used to verify first of all that the requirements and specifications were
correctly understood and analysed. They also allow to do quick “what-if?” analyses.
Furthermore, this activity will result in improved requirements and specifications as
it will contribute in further insight in how the system will behave under the fault
and test conditions. Simulation models have another benefit: often they are a lot less
expensive to develop than the real system and making a change has a lower cost
than having to change a real prototype or working system.

If the project constraints allow it; one or more architectural models will be
developed. In the ideal case and if the domain and the tools allow it, architectural
models should be deduced automatically from the simulation model. After a trade-
off analysis the best simulation model will become the implementation model.
Architectural modelling will always benefit from being expressed in the highest

8 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

possible level of abstraction, often domain independent, with the lower levels details
being generated by a domain specific “compiler”. It is assumed that this compiler is
efficient enough for its output to be economically acceptable.

Finally, while a simulation and an architectural model allow us to reason and
think about the system, they provide no proof that the system under development
will be trustworthy. To verify this for critical properties (e.g safety related ones),
formal techniques can be used. Formal models can be considered as a special case
of simulation models. Often, formal techniques will result in fairly abstract models
of parts of the system that can be fully automatically analysed and proved by formal
model checkers. Such model checkers automatically traverse the whole state space
and herein lie their strengths as well as their limitations. The formal model must be
small and abstract enough to allow a complete model check in a reasonable amount
of time (and memory resources). In the alternative, formal proving techniques can
be used, but they require higher mathematical skills and are rather labour intensive.
When used however, they can greatly increase the trustworthiness of the system.

Specifications are normally fulfilled by parts of the system being developed. For
example, if the requirement of a radio receiver specifies a quality assessment for
the signal in the presence of noise, the deduced specification will state a signal to
noise ratio with a specific value expressed in dB and to be reached in a certain
frequency band. One of the parts of the system that will be implemented to achieve
these figures could be a filter component. In the methodology we call a subsystem
component that realizes the specification an “entity”, an abstract term for any part
of the system. Developing such a subsystem entity might be a project on itself,
for example a processor chip will be a component of a larger system but when the
package is opened, it will show to be a complex system as well, albeit with much
smaller physical features.

All subsystem entities together create the system because they interact. The
system properties will be the result. Often, it makes sense to distinguish an
interaction as a separate conceptual entity, especially if physical properties have
to be taken into account. In general, entities and interactions can cross many
different domains. For example, a light sensor will transform light energy from
the environment into an electrical current. This sensor might have been mounted
on a mechanical shaft so that it measures a position. The electrical signal can be
used by a programmable controller that transforms the analogue signal into a digital
one, calculates in software (or in hardware) a steering value that is transformed
again into an analogue signal that is applied to an actuator that transforms the
electrical signal into an hydraulic pressure. If one follows this chain, one can easily
differentiate multiple entities and interactions of different types. At an abstract level
however, we only see information, matter or energy being transformed and passed
on between entities. If we would write a software simulator, it would be enough
to have the equations or use the same message passing primitive. One might even
replace the sensor by a software process running on the controller without changing
the functionality of the rest of the system.

The latter is a crucial observation. Requirements and specifications express
properties about the system without a reference to how they are realized. Entities

1.3 Interacting Entities for the Software Domain 9

and interactions express the architectural composition of the system. Expressing
and analysing this is often called modelling. However, for this modelling to work
smoothly, it is clear that it should be straightforward to move from one domain to
another. Given that the real world is naturally expressed as sets of interactions and
entities, it is straightforward to use the same paradigm everywhere, in particular for
developing the architectural models and a selected implementation.

1.3 Interacting Entities for the Software Domain

Given that software programs are essentially computer models of real-world
concurrent systems, and that real-world systems can often be described in terms of
interacting entities, would it not be natural and beneficial that computer programs
reflect this as well? Unfortunately, this is seldom the case. Most programs are written
as a single long sequence of instructions, even if embedded systems technology
allows for asynchronous interactions with the environment through an interrupt
mechanism. One of the reasons for this lack of concurrency in the program is that
the most widely used programming languages (C in the embedded case) have little
or no support for concurrency. The fundamental reason is that processors evolved
all from the sequential von Neuman machine architecture and that programming
languages were developed bottom-up, from the hardware to the software and not
the other way around as good systems engineering would have prescribed. The
underlying issue for developing reliable systems is here again the state space. By
keeping things sequential, the whole state space is exposed to the application layer
and the larger the program, the higher the probability that a single error or fault can
bring the whole system to a halt.

Nevertheless, in the embedded world, solutions were developed that addressed
some of the issues. Concepts like multi-tasking and inter-task synchronization
can be found in what we call RTOS (Real-Time Operating Systems). They were
introduced as a means to decouple the timing behaviour from the functional
behaviour in an embedded system, even at first sight at the cost of a little overhead.
In embedded systems, real-time requirements are measured in microseconds and
achieving predictable real-time properties while using big loops is very difficult,
certainly in an implementation independent way. This must be seen in contrast with
the desktop world, where the available computing power is much more abundant, but
were real-time constraints are often very flexible and measured in terms of human
perception. For vision this is around 40 ms but often even a few seconds can be
acceptable.

Currently, several forces are converging to make concurrency in programming
feasible as well as desirable.

10 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

1.3.1 Silicon Technology Advances

Contrary to may other domains, in electronics the rate of technological progress
has been phenomenal. Engineering has succeeded more or less in quadrupling the
amount of transistors on a given square millimeter of chip surface every two years.
This means that higher clock rates, lower power consumption and functionality have
evolved along similar lines. At the same time, this has made it rather straightforward
to start putting multiple processors in a single device.

However, this has created a software productivity gap. Software is still largely
being developed by the same human brains as 50 years ago using more or less
the same (sequential) programming languages. Concurrent programming helps on
several levels:

• Mastering the complexity: dividing the application in a number of smaller, more
or less independent entities, breaks up the state space into smaller chunks as well.

• Greater reuse: when functions are programmed as concurrent tasks or processes
with clearly defined interfaces (not through a shared state space but through
protocol based message interaction), such software components can be reused
with a plug-and-play technique even across multi-processor systems.

• Increased complexity of applications also means that larger software teams
are needed. Again, concurrent tasks or processes can then be developed as
components allowing to distribute the work.

• Increased need for reliability: as outlined above, the major issue for achieving
reliability is the state space size. By confining the state spaces, we can limit the
impact of an error to a smaller part of the system, especially in combination with
hardware protection mechanisms in the programmable hardware.

1.3.2 Silicon Technology Limitations

The increased processor speeds do not fully result in an equal performance increase
at the application level. Programs essentially transform data that is stored in memory
and save it back to memory. However, memory technology does not scale as well as
processing technology for size and access speed. Hence, when the data is in external
memory, often the CPU will have to wait for hundreds of clock cycles. And while
all kind of micro-architectural ‘tricks’ like caches, pipe-lining and other are in use
to alleviate the performance gap, they do not address the core problem of real-time
predictability and power consumption.

With increasing chip size, a bottleneck also appears on the chip itself. Most chips
still use a single master clock and given the high density of the chips, it becomes
increasingly difficult to distribute the clock signals across the whole chip. A natural
solution is to define multiple concurrent clock domains. As it has become a lot
simpler to implement fast communication channels between processor cores, even
when going off-chip, a concurrent architecture emerges at the hardware level. As a

1.4 A Link with the Work Plan in a Systems Engineering Project 11

result, depending on the computation to communication ratio of the applications as
well as of the available hardware, it becomes feasible to achieve better application
level performance using multiple slower processors rather than using a single very
fast one. It saves on energy and it also saves on connection pins, often one of the
most expensive parts of a packaged chip. The precondition is that applications are
from the start designed in a way that they can easily be distributed over multiple
processors. An additional benefit is that the system will consume less power and
slower technologies, costing less can be used.

1.3.3 The World Becomes Connected

Advances in technology (in the software as well as the hardware domain) have also
resulted in a major change in the way systems are deployed. The world became
wired and internet allows to establish connections to almost any point in the world.
In this world, a lot of existing technology has already been deployed and it is
mandatory to connect with legacy systems in symbiosis. Again, a programming
model that assumes concurrent and distributed platforms from the beginning makes
this a lot easier to achieve.

As a conclusion, we can say that there are many reasons why a concurrent
programming model is a natural one. It fits much better with engineering design
activities like modelling and it fits best with the change in technology. This
book describes a programming model that actually achieved this goal of universal
(concurrent) programmability.

1.4 A Link with the Work Plan in a Systems
Engineering Project

Finally, when all requirements, specifications and models have been developed we
still need to plan to develop the product in a systematic way. The result is a work plan
and typically the subject of “project management”. Often, this work plan will start
when specifications have been frozen and the design has been selected. Note that the
activities we defined above as well as the development will not occur in a sequential
order. A good engineering process should be iterative because every activity will
allow discovering issues that were not considered before. This is also teamwork,
with each team member providing a specific view on the system being developed.
For this iterative process to take place, development should also be grouped into
sufficiently small work packages with each task being small enough to keep an
overview. Given the decomposition into entities, an entity or a group of related
entities becomes a natural way of distributing the work to be done.

12 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

We define a Work Package as a group of related tasks that together achieve the
implementation of a number of entities. We distinguish four main types of tasks,
this distinction is important in the context of formalized development. The first
type is the development task itself. Using specifications and the developed models,
this type of task will develop the subsystems that as a whole result in the final
system. If the modelling tools are powerful enough, then the implementation can
often be generated. If not, a tedious work of manual coding may be needed. In
order to verify that these development tasks were done correctly (e.g. as defined by
a procedure) a verification task is defined. It will not verify the subsystem itself,
but mostly verify that it was correctly developed. Once that is done, the developed
entity can be tested in a test task according to the defined test cases together
with the specifications. Finally, when all developments have been verified and the
results tested and approved, everything can be integrated and validated against the
requirements in a validation task. Again, the architectural paradigm of interacting
entities will help here because it provides separation of concerns and they help to
tackle the complexity.

1.5 System Engineering Methods and Engineering Standards

It is interesting to have a look at how professional engineers today achieve
high reliability. Standards for system (and software) engineering exist and were
developed to meet the requirements of developing complex (and hence costly)
and often safety critical systems. Typical examples are found in the aerospace and
transport sector. The standards were partly developed to achieve a more predictable
and repeatable engineering process. Combine this with the need of certification by
external third parties and most of these standards read like complex and confusing
recipes.

If one reads these standards, one will notice that formal methods are mostly
absent although when using them the developer gets “extra points”. For the highest
safety integrity levels they are a must in the sense that their use is required to prove
for example that the software is correct under all circumstances. Most of these
standards are also not very prescriptive but they list a large number of activities
that should be taken when developing a safety critical system and they are used as
a basis for certification. At this stage one must consider that such standards are first
steps away from fully heuristic development towards fully formalised developments
away from fully heuristic developments. Their use will certainly improve the
resulting trust in the developed product or system but it is not a sufficient condition.
We believe that as experience and education grows, formalisation of the system
engineering process will increase followed by the development of cleaner and leaner
process models. For example while IEC-61508 is considered the mother of safety
engineering standards, it is almost impossible to apply with a lot of guesswork.
On the other had standards like ISO-26262 and DO-178B are a lot more readable
and define a more logical process. In the future we can also expect standards from

1.6 Where Do Formal Techniques Fit in? 13

different domains (e.g. aerospace, defense, railway, automotive) to merge. After
all good systems engineering is not bound by a domain, although domain specific
heuristics remain important as well.

1.6 Where Do Formal Techniques Fit in?

Traditionally, formal techniques (or formal methods) are seen as a technique to
prove that e.g. a certain piece of critical software is correct. It must be understood
that this is only partially possible because there are many dependencies. First of all,
software is most often written in a programming language that was not formally
defined and for which the compilation tools were not formally developed, neither
is the processor developed and verified in a formal way. Hence, the programming
language and the compilation tools are trusted on the basis of real-world use and
extensive testing. A second issue is that the translation between the formal, often
more abstract models and the programming language will never be “perfect”. While
formal techniques force us to specify and think about every fine grain level detail,
at the same time they allow us to abstract away from the real world artefacts
often introduced during a heuristic development process. Hence, one can prove
that the formal model was correct, but that does not prove that the software as an
implementation of the formal model is correct. Nevertheless, using these techniques
can greatly improve the trustworthiness in the final system, partly because formal
techniques force us (or rather allow us) to think more upfront about all possible
states and ways to construct the system.

Considering the iterative systems engineering methodology described above, it
is clear that formal techniques can be used in any stage of the process. The reason is
that they help to reason about the system at a more abstract level with less interfer-
ence from the heuristic knowledge that goes with implementation. This has proven
to be a crucial factor in the formal development of OpenComRTOS. Because formal
techniques were used from the very beginning to develop the architecture, several
issues were detected that would not have been found after the implementation. It
also allowed to develop a much more efficient and cleaner architecture, highlighting
an aspect that is often neglected in systems and software engineering. An efficient
architecture is the equivalent of a better algorithm. Whereas a better algorithm
will often result in more efficiency for a specific property (performance, power
consumption, etc.) a better architecture has often wider ramifications like being
easier to use, easier to reuse and easier to adapt to other purposes. In this project, it
even results in a much smaller code size (5–10 times smaller) than what previously
had been obtained using traditional manual development. This is remarkable as
an RTOS has always been perceived as a complex and difficult piece of software
requiring the use of “hackers” to get it right. The formalized approach we took
using formal methods did better without requiring extra resources and time.

Finally, it must also be said that one has to consider formal techniques as a
crucial but not the only factor contributing to a trustworthy and optimized design.

14 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

After all, engineering is a human activity and there are many aspects and views
that need to come together. Our experience showed that intensive team work is very
beneficial, especially when combined with “formalisation”. Formalisation serves
two purposes. Firstly, it forces the participants to formulate their thoughts clearly
while exposing the hidden assumptions. Secondly, the formulated concepts have to
be made much more concrete and unambiguous. This allows to share the semantics
which means that it becomes easier to discuss the system to be developed without
guesswork filling in the gaps. Formalisation in itself will often be helpful in finding
reasoning errors (typically finding unwritten assumptions) and the same procedure
of formalization is also the necessary step toward the use of formal techniques.
The latter can be considered as the next logical step in formalisation by translating
the model in a format that makes it susceptible to mathematical analysis. This will
in itself restrict the interpretation that can be given to the concepts used in the formal
model but this is necessary to take control and to allow automated model checking.

Chapter 2
Requirements and Specifications
for the OpenComRTOS Project

In this chapter, we discuss the requirements and specifications for the OpenCom-
RTOS project from the point of view of its capabilities to support applications in
meeting real-time requirements. As this is related to a distributed real-time operating
system this is rather unique as most RTOS are designed for single processor systems
and if not, they assume a shared memory architecture whereby the address space is
global. OpenComRTOS on the other hand makes no such assumptions, but assumes
that a processor has local memory and that the hardware allows to communicate
somehow between the processors’ memory. It is a network model, but allowing to
emulate it by shared memory if this is available. Hence the term “network-centric”
RTOS. In this context, we also explain the CSP background that is still present in
the conceptual design of OpenComRTOS.

2.1 Background of OpenComRTOS

The initial purpose for developing OpenComRTOS was to provide a software run-
time environment supporting a coherent and unified systems engineering method-
ology based on “Interacting Entities”. This was originally developed by Open
License Society, (OLS 2011) and currently further developed and commercialised
by Altreonic, (ALT 2010). In this methodology, requirements result in concrete
specifications that are fulfilled in the architectural domain by concrete “entities” or
sets of entities. Entities can be decomposed as well as grouped to fulfil the specifica-
tions. In order to do so, we also need to define “interactions”, basically to coordinate
the entities. In practice these interactions can be seen as being protocols whereby the
entities synchronise and exchange data, at least in the domain of embedded systems.
The approach, however, is universal and the same view holds for other domains as
well, e.g. business processes or mechanical systems. The difference is in the physical
nature of the interactions and entities and in the terminology used. Interactions
and entities are first of all abstractions used during the modelling phase. As such,
a specified functionality can first be simulated as part of a simulation model,

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 2,
© Springer Science+Business Media, LLC 2011

15

16 2 Requirements and Specifications for the OpenComRTOS Project

Fig. 2.1 The context of systems engineering

critical properties can be formally verified using formal techniques and finally an
implementation architecture can be defined using the architectural modelling tools
of the target domain. In our case, we try to keep the semantics unified from early
requirements till implementation. In the targeted embedded systems domain, this
means that the final architecture is likely a concurrent software program running on
one or more programmable processors. Some functionality might be implemented
in specific hardware entities. Such entities will be integrated in the input or output
subsystem or will be designed as co-processing blocks. In most cases, these
hardware entities will be controlled from software running on a processor.

In an embedded system, and in most systems, two additional systems must be
taken into consideration, as illustrated in Fig. 2.1. The first one is the “environment”
in which the embedded system is placed. This will often generate inputs to the
system or accept outputs from it or it will influence the operating conditions, not
necessarily in a fully predictable way. A second system that is often present is
the “operator”, who also will generate inputs or act upon the outputs. If this is a
human operator, we have to deal with an entity who’s behaviour is not necessarily
always predictable. Often, the “operator” might be another embedded system and
then the behaviour should be more predictable, at least if well specified. However,
systems are layered. If we “open” the embedded system or consider the system
under development with its environment and its operator as a new system, we can
see that each system can be a component in a larger system and often it will be
composed itself of “subsystem components”. For this book, we stay at the level
where such components are programmable processors.

The use of a concurrent programming paradigm embodied in an RTOS is
then a natural consequence of the unified semantics paradigm. Programming in
a concurrent way implies that the abstract entities (that fulfil specifications) are
mapped onto RTOS “Tasks” (also called processes or threads in the literature) and
that interactions are mapped onto services used by the tasks to synchronize and
to communicate. In principle, this abstract model equally well maps to hardware
as to software but we focus here on the software. The target domain ranges from
small single chip micro-controllers over multi-core CPUs to widely distributed
heterogeneous systems that include support for legacy technology. OpenComRTOS

2.2 Early Requirements Derived from the Virtuoso RTOS 17

should allow to program in a transparent way such a target system, independently of
the processor or communication medium used. In the context of the OpenComRTOS
project, an additional requirement is related to the process used for developing
OpenComRTOS. Given the importance and generic nature of a RTOS as runtime
layer, we considered it important that the resulting RTOS would be safe, correct and
performing. Hence, it was a requirement to use formal techniques for its design as
well as for its verification.

2.2 Early Requirements Derived from the Virtuoso RTOS

Following the requirements, we can in principle derive the specifications. However,
specifications cannot be fully separated from implementation choices. In our case,
a previously developed RTOS called Virtuoso (Verhulst 1993a,b, 1997a,b, 2002)
served as a guideline.

In this section we first analyse it, highlighting issues as well as benefits of the then
existing architecture. Virtuoso was a distributed RTOS, developed by Eonic Systems
until the technology was sold to Wind River Systems in 2001. Its main target was
parallel DSP systems, although it has been ported to other architectures in single
as well as in multiprocessor versions. Even heterogeneous target systems have been
demonstrated albeit at the expense of a lot of manual integration work. The smallest
system it had been ported to was an 8bit micro-controller in a telephone handset,
the largest system was a system with over 12,000 processing nodes, heterogeneous
but built up as a number of homogeneous clusters. The experience with Virtuoso
was crucial. It also taught us the limits of such a programming environment. These
limits lay not so much in the RTOS itself but in maintaining and supporting it. As
such the porting effort was high because of the complex and optimised architecture
and it was very difficult to add functionality. Nevertheless, its overall functionality
of transparent parallel processing (this was called the “Virtual Single Processor”
runtime model) (Verhulst and De Jong 2007; Verhulst et al. 2008) was a major
driving force to redevelop it in a better way. Hence, to some extent, OpenComRTOS
is conceptually a fourth generation of Virtuoso although it was a clean room
development. At the outset we were curious to see how we could do better but it was
totally unanticipated we would be able to improve it beyond all initial expectations.

The Virtuoso RTOS had its origin in the pioneering INMOS transputer
(Wikipedia 2011; INM 2011), a partial hardware implementation of Hoare’s
Communicating Sequential Processes (CSP) process algebra (Hoare 1985a) master-
minded by Dr. David May. Later on Virtuoso was ported to traditional processors but
mostly parallel DSPs. The transputer was a rather unusual RISC like processor with
unique support for on-chip concurrency and inter-processor communication. On-
chip it had a scheduler with two priority levels, each level supporting round-robin
scheduling between the compile time generated processes. It also had hardware

18 2 Requirements and Specifications for the OpenComRTOS Project

support for inter-process communication and synchronization using “channels”.
For distributed, embedded real-time applications, it raised two major issues:

• Two levels of priority are not enough for hard real-time applications. Typically, at
least 32 levels of priority are needed and full support for pre-emption and priority
inheritance.

• Topology independence: although the transputer had interprocessor links, the
communication between processors had to be manually routed at the application
level. The issue is here mostly one of maintenance. Every little change in the
topology could result in major reprogramming efforts.

Although the transputer hardware and available software (like occam and parallel
C) were derived from the CSP process algebra, the use of processes and channels
was very novel and hence this was a stumbling block for wide adoption by the
embedded market. That and the failure to develop a successor product (there was
one but it was over-specified for the silicon technology available at the time) resulted
in the demise of INMOS, the company developing it. Nevertheless, it lives on as a
set-top box controller from ST Microelectronics and the link technology is now
adopted as a standard by the space sector (IEE1355 enhanced with LVDS signalling
and subsequently called SpaceWire), see (Spa 2011; IEE 2011). One of the closest
successor chips today is the XMOS chip, see (XMO 2011), also a brainchild of
David May. While the CPU is a more convential RISC processor, it has support for
hardware assisted multi-threading (up to 8 threads/core) and a single chip contains
from 2 to 4 CPU cores.

The above observations resulted in the adoption in the Virtuoso RTOS of the
following architectural principles:

• Use of 255 levels of priority with full pre-emption capability.
• Development of traditional RTOS services like events, semaphores, fifos, mail-

boxes, resource and memory maps.
• System wide identifiers used for transparent system wide routing.
• Use of command and data packets to provide topology independent progra-

mming.
• Packets carrying a priority inherited from the generating task.
• Support for priority inheritance in the scheduler (see further).

When Virtuoso was ported for the first time to a parallel DSP target, it was
found that a major redesign was needed. While the links on the transputer could be
accessed by memory mapping the internal channels to an I/O address, DSPs provide
the programmer with a series of “raw” I/O ports. The challenge here is that the
communication on these ports is interrupt driven, often with DMA engines operating
in the background. On the Texas Instruments TMS320C40 DSP or Analog Devices
21060 DSP for example, this resulted in 12 interrupts and 2 timer interrupts that
were independently enabled. Hence, there was a need to develop a low latency driver
architecture. This was achieved by developing a specific system level nanokernel
that was mainly written in assembler and used a subset of the processor context.
While it provided very fast communication handling, it had the drawback that
porting it to another processor was a major effort.

2.3 Real-Time Embedded Programming 19

Later on, Virtuoso was also extended with new features and services. However,
these were at the expense of performance while the code size was rapidly growing.
Another observation was that this resulted in some errors that could remain dormant
for years until an unanticipated usage triggered them.

Combining all these experiences resulted in some decisions at the architectural
level that are found back in the OpenComRTOS requirements:

• General use of packets at all levels
• Prioritisation at all levels (local scheduling as well as at the communication layer)
• Support for distributed priority inheritance
• Support for traditional RTOS services (events, semaphores, fifos, etc.)
• General use of ANSI-C, minimising the use of assembler (hence no nanokernel)
• Modular architecture allowing to remove or add functionality without affecting

the rest of the system
• All services to be formally modelled and verified

At the start of the OpenComRTOS project, these were not firm requirements.
As the reader will see, the use of formal techniques in the project has allowed it
to go way beyond the functionality of Virtuoso. Although it was known as highly
performant and small in code size, we were not expecting to be able to do much
better, except in having a cleaner and safer RTOS.

2.3 Real-Time Embedded Programming

While most programming is concerned with performance (often expressed in terms
of achievable throughput), real-time is then often equated to “fast enough”. In the
embedded domain, however, the system will often interact with the physical world
whereby stringent time requirements must be met or the system can fail. In such
systems, the reactive behaviour is most important and must always be achieved
independently of the logical correctness of the application. Such systems are
often called “hard” real-time in contrast with “soft” real-time systems where time
properties are statistical.

2.3.1 Why Real-Time?

It can be argued that an architectural paradigm based on entities and interactions
does not need any notion of real-time. Indeed, the time properties can be considered
as mostly orthogonal to the “logical” behaviour of a system. In the embedded
domain (and most of the systems we use have embedded aspects), we are dealing
with real-world interaction and time is part of it. Signals that the embedded system
must process arrive in real-time and must be dealt with before the next set of signals
arrives. Similarly, the embedded system will act on its surroundings and real-time

20 2 Requirements and Specifications for the OpenComRTOS Project

requirements apply. Implicitly, we assume here that sampling theory is applied.
Sampling theory dictates that we should at least sample at twice the bandwidth of
the signal. Similarly, when we apply output or control signals this must also be done
with a rate at least equal to twice the bandwidth. If the controlled subsystem has a
mechanical mass and physical properties such that inertia determines the dynamic
behaviour, we must similarly take into account its time constant. Sometimes, the
output timing can be rather demanding. An example is audio processing. The human
ear is very sensitive to phase-shifts so that even when the bandwidth requirements
are met, the jitter requirements are stringent enough that hardware support might be
needed.

The purpose of an RTOS is to give the engineer the means to meet such real-time
requirements at the same time as he is meeting the architectural ones (as explained
before: mapping abstract entities into concrete tasks). Timely behaviour is then a
property of the tasks in a specific execution context. This allows to design and verify
a real-time system without having to look into the details of the algorithms executed
by the tasks. The only information needed is what resources the tasks use (e.g.
time in the form of processing cycles and memory). Executing the task on another
processor does not change the algorithm, just the timing and memory used. Simi-
larly, a concurrent program in itself does not need to be real-time (it is a matter of
defining the parameters differently). However, it is very convenient that a concurrent
program that was designed to handle real-time, can also handle time-independent
programming, e.g. for simulation purposes. The opposite is often not true.

2.3.2 Why a Simple Loop Is Often not Enough

It is useful for the remainder of this book to present in short our view on embedded
real-time programming. The reader can find a wide range of literature related to real-
time and embedded programming elsewhere if he wants to investigate in more depth.

Let us start with the term “real-time”. The intuitive notion of real-time is often a
subjective one using terms like “fast” or “fast enough”. Such systems can often
be considered as “soft” real-time, because the real-time criteria are not clearly
defined and are often statistical. However, when the system that must be controlled
is physical, often the deadlines will be absolute. An example of a soft real-time
system is a video system. The processing rate is determined by the frame rate, often
a minimum of 25 Hz and determined by the minimum rate needed for the eye to
consider the frames as a continuous image. The human eye will itself filter out
late arriving frames and can even tolerate a missing frame. Even more soft real-
time are on-line transaction systems. Users expect them to respond within e.g. one
second, but accepts that occasionally it takes tens of seconds. Of course, if soft real-
time repeatedly violate the expected real-time properties the Quality of Service will
suffer and at some point that will be considered a failure as well.

Hard real-time systems on the other hand that miss deadlines can cause physical
damage or worse result in deadly consequences if the application is safety critical,

2.3 Real-Time Embedded Programming 21

even when a “fail-safe” mode has been designed in. Typical examples are dynamic
positioning systems, machine control, drive-by-wire and fly-by-wire systems. In
these cases often the term “hard real-time” is used to differentiate them from
the former. From the point of view of the requirements, hard real-time means
“predictable” and “guaranteed” and a single deadline miss is considered a failure.

Two conclusions can be drawn. First of all, a hard real-time system can provide
“soft” real-time behaviour, but the opposite is not true. Secondly, when safety
critical, a hard real-time system must remain predictable even in the presence of
faults. In the worst case it could fail, but the probability of this happening must be
low enough to be considered an acceptable risk.

Strictly speaking, no RTOS is needed to achieve real-time behaviour in an
embedded system. It all depends on the complexity of the application and on the
additional requirements. For example, if the system only has to periodically read
samples from a sensor, do some processing and transmit the processed values, a
simple loop that is executed forever will be sufficient. Sources of complexity are for
example:

• The need to put the processor to sleep in between processing to conserve energy
• Managing several hundreds of sensors
• Executing at the same time a high number of other tasks
• Detecting a failure in the sensor circuit
• Detecting a failure of the processor

Such requirements are difficult if not impossible to handle when a simple polling
loop is used, but as most processors will have support for interrupt handling, the
developer can separate the I/O from the processing. This essentially means that
most embedded systems will have a “hardware” level of priorities and a “software”
level of priorities. The highest priority level is provided by the Interrupt Service
Routines that effectively interrupts the lower priority (background) loop. However,
the extra functionalities listed above might already require multiple interrupts and
priorities. The sleep mode of the processor requires that the circuit generates an
interrupt to wake up the processor and a timer supporting a time-out mechanism
might be needed for detecting a failure. Also the transmission of the processed
values might require some interrupts. Hence, the question arises how each interrupt
must be prioritised. In the simple example given, this is not much of an issue as
long as we assume that the system is periodic and always has spare time between
samples. What happens however if multiple interrupt sources are present and if they
can be triggered at any moment in time, even simultaneously?

2.3.3 Superloops and Static Scheduling

When multiple interrupt sources are present, a simple solution is to distribute
interrupt handling and processing over the available interrupt service routines and
the main polling loop. The separation between “handling” and “processing” of

22 2 Requirements and Specifications for the OpenComRTOS Project

Fig. 2.2 Superloop schedule with three interrupt sources

interrupts is essential because interrupts will be disabled when an Interrupt Service
Routine is entered and worse, the hardware might be designed in such a way that the
data is only available for a short period of time. Hence, while an interrupt is being
handled, the hardware must have a mechanism for holding arriving interrupts, else
they will be lost and in the worst case, the application will fail. Therefore, interrupt
handling should be kept as short as possible. On the other hand in the polling loop,
the program will repeatably test for the presence of the interrupt and when enabled
execute the corresponding processing function (Fig. 2.2).

The issue is that such testing and processing must be done in sequence and
that the program cannot progress unless the interrupt has arrived. Hence, if all
interrupts are to be seen and processed, a static schedule must be calculated and the

2.3 Real-Time Embedded Programming 23

peripheral hardware must be configured to be compatible with it. Such a schedule
is not necessarily feasible, e.g. when the arrival rates of the interrupts have a wide
span and do not follow a harmonic periodicity. In addition, the polling will waste
processing cycles that could be used for useful processing and worst, if for some
reason the interrupt does not arrive, the whole system can block. From a safety
point of view, such a polling loop has no built-in graceful degradation. In addition,
even when no errors occur, a small change in the application can result in the need
to recalculate the whole schedule or in the worst case can result in the application
no longer being scheduleable. What we need is a separation of concerns. The logic
of processing should be made independent of time. With a sequential loop (on a
sequential processor), this is not possible because the state space is shared amongst
all processing functions and in addition the time behaviour depends on the time
behaviour of the rest of the processing functions. What is needed is a mechanism
that divides the global state space into local state spaces.

There are two ways to achieve this:

• To dedicate a processor to each “local” processing function
• To create a mechanism that separates the state spaces, even when executed on the

same processor

The first solution has as side-effect that interprocessor communication can now
become an issue (because communication media are also shared resources). The
second solution creates the concept of “virtualisation”, in essence a mechanism
whereby each local processing function has virtually access to the full state of the
processor. Note that this is only really possible because time is allocated to each
virtual state space and this essentially means that to meet the real-time requirements
at system level, this allocation of time must be carefully done to meet all real-time
constraints.

The two solutions introduce both the notion of “concurrency”, whether physical
or virtual. Most real-time applications will however have “interactions” (e.g. passing
data or synchronisation of a state that was reached) between the local state
spaces. In line with the need for separation of concerns, we need a mechanism
that “virtualises” these interactions independently on whether they take place on
different processors or on the same processor.

And last but not least, while we separated the time behaviour from the logical
behaviour, hard real-time systems still need a mechanism for handling time. This
mechanism is called scheduling. We have seen a static version of it at the beginning
of this chapter, called static scheduling. It assumes perfect knowledge about the
system when it is built and assumes that the system’s operating parameters are static
and will never change. As outlined, this is not always the case, certainly when
failure conditions are taken into account. In general, a more dynamic scheduling
mechanism is preferred. The scheduling can be based on a measurement of time
or on the time already used. The most widely used mechanism is based on
priorities, a ranking of the processing functions based on an analysis that combines
the periodicity and the relative processing load. This mechanism is called Rate
Monotonic Scheduling (RMS). OpenComRTOS is a RTOS based on the assumption

24 2 Requirements and Specifications for the OpenComRTOS Project

Fig. 2.3 Two periodic tasks scheduled with RMA

that a Rate Monotonic Analysis (RMA) is executed, resulting in a priority ranking
of the scheduled application functions. Nevertheless, the design allows for the
implementation of different scheduling policies which is likely to happen in future
versions.

2.3.4 Rate Monotonic Analysis

RMA was first put forward in 1973 by Liu and Layland (1973). Although it does
not solve all issues it provides a good framework that is simple and most of the
time it is applicable. The algorithm states that given N tasks with a fixed workload
that must be active with a fixed periodicity (with the beginning of the next period
being considered as the deadline for the previous period), all deadlines will be met
if the total processor workload remains below a value of about 69% and a pre-
emptive scheduler is used with each task receiving a priority that is higher if the
task has a higher periodicity. The upper bound of 69% is obtained for an infinite
number of tasks. For a finite number of tasks and especially when the periods are
harmonic, the upper bound can be a lot higher, often even observed to be above 95%.
Figure 2.3 illustrates RMA scheduling of two tasks. In general, the RMA scheduling
algorithms is as follows:

n

∑
j=1

(
Cj

Tj

)
≤U (n) = n ·

(
2

1
n −1

)
(2.1)

2.3 Real-Time Embedded Programming 25

with:

• Cj being the worst case execution time of Taskj .
• Tj being the execution time of Taskj .
• U (n) being the worst case utilisation with n Tasks.

According to equation (2.1) a system with one task has a utilisation of
1.0 (U (1) = 1.0). For an unlimited number of tasks the utilisation converges at
0.69 (U (∞) = 0.69).

In practice, the results of the first RMA algorithm are a (pessimistic) approxi-
mation and rely on some assumptions that are seldom met in real applications. For
example, all tasks are assumed to be independent (hence they all are activated on
independent events and do not synchronise or communicate with other tasks, nor
do they share any resources). Also, task activation is assumed to be instantaneous
and the processor provides a fixed processing power (hence no cache effects). Even
if often the 70% level is used as a maximum load in any case, this means that to
remain on the safe side, it is often better to keep the overall CPU load lower than the
figure obtained. On the other hand, if only a few tasks are used and the interactions
are limited, often the application will miss no deadline even if the processing load
is higher than 70%. The CPU load can also be higher if the periodicity of the tasks
is harmonic. Hence, RMA has to be seen as a guideline that must be complimented
with a detailed analysis, profiling and especially measures to give the application
more margin. It also should be pointed out that if a RMA schedule misses deadlines
for the lower priority tasks that the higher priority tasks can meet their deadlines.
This property of preemptive priority based scheduling is e.g. useful for creating a
highest priority task that is only activated when exceptions have to be handled.

A very detailed and comprehensive analysis of RMA is given in Briand and Roy
(1999). It also discusses the follow-up RMA algorithms that were developed later on
and taking into account realities like blocking times (using shared resources), inter-
task dependencies and distributed systems. In all cases this does result in higher
boundaries for the CPU workload. The most important change to the basic RMA
algorithm is that for determining the task priorities, one should not use the full
period but the pseudo period that is derived by taking into account that the deadline
of a task happens often before its period has expired. This is called Deadline
Monotonic Analysis (DMA). More extensive descriptions as well as algorithms for
schedulability analysis for a wide range of RMA scheduling policies can be found
in (Klein et al. 1993).

It must be said, however, that for distributed systems no real RMA algorithm
exists, although tools like MAST (MAS 2011; Harbour et al. 2002), allow to verify
that a given schedule is feasible. In practice, a good system design with priorities
will give good assurances that all deadlines can be met.

An important observation is also that a rigorous and static design might not
always give the safest system if the first missed deadline results in catastrophic
behaviour. In practice, many systems can tolerate missed deadlines if these misses
have a low probability and if they are spread in time (not bursty). Of course, this
means that the system design must takes this into account. A classical example is a

26 2 Requirements and Specifications for the OpenComRTOS Project

brake-by-wire system. It must be designed for the maximum speed of the car and
hence often the maximum rate will be used all the time. Even at this highest rate,
there will be margin as the time constant of the mechanical system will be lower. If
the car then operates at a lower speed, the control rate can be lowered as well and
missing control signals from time to time (but not in continuous bursts) will in the
worst case only lower the “quality” of braking, but this is often not catastrophic.

2.3.5 Priority based Scheduling in OpenComRTOS

In OpenComRTOS, it was decided to support priority based preemptive scheduling
as the standard scheduling policy. In (Briand and Roy 1999), this is called Highest
Priority First. Every Task can be assigned its own priority based on an off-line
Deadline Monotonic Analysis (DMA). It must be said however that DMA assumes
that all tasks execute on a single processor, whereas OpenComRTOS supports multi-
processor systems. Hence, priorities are considered as a system-wide scheduling
parameter and the DMA should still hold locally on each processor.

OpenComRTOS was also designed to clearly separate Interrupt handling (in
ISRs) and interrupt processing (in a task). Good design practice dictates that a
minimum time is spent in interrupt handling to improve the responsiveness of
the system and hence, because interprocessor communication often requires fast
interrupt handling, it will reduce the latencies. The latter is especially important for
multiprocessor systems as the processing can be distributed over several processors
and the scheduling delay includes communication delays. Similarly, in the design
of a network-centric RTOS it was recognised that delays can also be the result from
implementation artefacts. Hence, any activity in the RTOS or systems level drivers
is done in order of priority. This minimises the point-to-point latency. Typical cases
where this can be important are waiting lists and interprocessor communication.
This means that one should be able to ignore the different scheduling latencies as the
communication delay can be more important (especially on slow–speed networks).
This latency is a combination of several factors that are difficult to quantify. Factors
are: communication load, communication driver set-up time, transmission delay and
receiver latency. Therefore, good profiling tools are a necessity. DMA then provides
a good approximation and starting point. For extreme processor loads (typically,
when the task’s individual processing time is of the same order of magnitude as the
system latencies), this assumption does not hold and often only static scheduling or
dedicating processors to such loads is the only acceptable solution.

A small note however on the assignment of the priorities. In our case, these are
assigned at design time and the scheduler is a straightforward Highest Priority First
one. Research on dynamic priority assignment (Styenko 1985) have shown that
algorithms that use Earliest Deadline First (EDF) algorithms (the priority becomes
higher for the tasks whose deadline is the nearest) can tolerate a workload of up to
100%. There are, however, three reasons why this option was not further considered.
The first one is that the implementation of an EDF scheduler is not trivial because

2.3 Real-Time Embedded Programming 27

measuring how far a Task is from its deadline requires that the hardware supports
measuring this. As this is often not the case, one has to fall back on software
based solutions that periodically record the task’s progress. For reasons of software
overhead, this must be done with a reasonable frequency, typically about 1 ms
which means that fine-grain microsecond EDF is not feasible (1 ms can be quite
long for a lot of embedded applications). The second reason is that no algorithms
are known that allow to calculate the EDF schedule on a distributed target. The
third, but fundamental reason is that an EDF schedule has no graceful degradation.
If a task continues beyond its deadline, it can bring the whole system down by
starvation, whereas a static priority scheme will still allow the highest priority task
to run. This task can be activated by a time-out mechanism so that it can terminate
such a run-away task before the other, still well behaving tasks are starved. Hence,
if EDF scheduling is used, it is better to restrict this to a maximum priority level
within a standard priority based scheduling scheme. A similar observation will be
made in the next section when discussing priority inheritance schemes.

A general remark must be made here. A RTOS in itself does not guarantee that
all real-time requirements will be met. Designers must use scheduleability analysis
tools and other analyses like simulation and profiling to verify this before the
application tasks are executed. However, an RTOS must provide the right support
for executing the selected schedule. In general, this means a consequent scheduling
policy based on priorities with pre-emption capability and with support for priority
inheritance. OpenComRTOS provides this complemented with a runtime tracing
function allowing to profile the time behaviour at runtime.

2.3.6 The Issue of Priority Inversion and Its Inadequate Solution

A major issue that has a serious impact on predictability is the presence of shared
resources in an embedded system. A shared resource is often associated with a
critical section or an access protocol. The latter are needed to assure that only one
task at a time can modify the status of the shared resource. Examples are:

• A shared memory buffer that must be read out before new data is written in.
• Hardware status registers that set a peripheral in a specific state.
• A peripheral that can handle only one request at a time.

Note that a shared resource is a concept at a higher level of abstraction than the
physical level but it will often be associated with it. It can be used to protect a critical
section (e.g. the update of pointers in a datastructure) but it is not a critical section
in itself. The critical section is a sequence of steps of the updating algorithm that
must be done in an atomic way to guarantee that the datastructures remain coherent.
It should also not be confused with disabling interrupts on a processor. The latter
is a hardware mechanism that is processor specific and is designed to prevent other
external interrupts from interfering with the intended program sequence.

In the context of a concurrent program, resource locking means that the system
assigns temporarily ownership of the resource to a specific task until the task

28 2 Requirements and Specifications for the OpenComRTOS Project

releases the resource. If more than one task requests to use the same resource, the
second and subsequent requesting tasks cannot continue and will be blocked until
the resource is released by its current owner. During the time a task owns a resource,
it can get descheduled, e.g. because another higher priority task becomes active,
the task requests a second resource, the peripheral associated with the resource is
delayed itself or the task needs to synchronise with another task that has lower
priority. In all cases, the resource owning tasks and other waiting tasks can be
blocked from progressing which means that deadline violations become possible
even if the priorities were correctly assigned and the application is scheduleable
with known blocking times.

A very important conclusion to draw at this point is that a good design will try
to limit the blocking times as much as possible and should avoid needing to protect
shared resources at all. This might require a change in the architecture of the system
but from the reliability and safety point of view this is a cheap preventive measure.

The real issue comes in when we also analyse what can happen as a function of
the assigned priorities. Assume a high priority tasks request a resource that is owned
by a low priority task. As it is a low priority task, middle priority tasks that are ready
to run will pre-empt the lower priority task and if they have lengthy processing
times, they can block the high priority task even if they do not need the resource at
all. This problem is called priority inversion and was made famous in 1997 when the
Mars Pathfinder kept resetting itself as a result of a continuously missed deadline,
which was caused by a classical case of priority inversion as described above.

Is there a cure for this problem assuming that the system architect did his best
in minimising the need for resource locking? The answer is unfortunately no, but
the symptoms can be relieved. The solution is actually very simple. When the
system detects that a task with a higher priority than the one currently owning the
resource is requesting it, it temporarily boosts the priority of the current owner
task, so that it can proceed further. Priority inversion will be avoided. In practice
different algorithms were tried out, but in general the only change made is that the
boosting of the priority is limited to a certain system specific ceiling priority. Else,
the scheduling order of other tasks requiring a different set of resources can be
affected as well and it might prevent that the system as whole achieves its goal.

If we analyse the issue of blocking in the context of a real system, we can see
however that the priority inheritance algorithm does not fully solve the blocking
issue, it relieves the symptoms by reducing the blocking times but a good design
can maybe avoid them in the first place. During this project we found also that the
resource blocking issue is part of a more general issue. In essence, a concurrent real-
time system is full of implicit resource requests. For example, if a high priority task
is waiting to synchronise with a lower priority task, should the kernel not also boost
its priority? To make it worse, if such a task is further dependent on other tasks and
we would boost the priority can this not result in a snowball effect whereby task
priorities are boosted for all tasks and of course, we would have no gain. Or assume
that the task is waiting for a memory block while a lower priority task owns such
a memory block. Or assume that a task acquires a resource, which makes it ready

2.4 Next Generation Requirements 29

and is put on the ready list. But while it waits to be scheduled a higher priority task
becomes ready first and requests the same resource. Which means that the first task
that was ready should be descheduled again and the resource given to the higher
priority one (Fig. 2.4).

While all these observations are correct, often such situations can be contained
by a good architectural design. The major issue is that implementing this extra
resource management functionality is not for free and the tests they require are
executed every time, resulting in a not-negligible overhead. The conclusion is that
in practice resource based protection must be avoided by design and that priority
inheritance support is best limited to the traditional blocking situations. In the
case of the implicit resource blocks, if they pose an issue to the application, they
can be reduced to a classical priority inversion problem by associating a resource
with the implicit resource. For example, if a memory block is critical, associate a
resource at the application level and normal support for priority inheritance will
limit the blocking time. Else make sure that the system has additional memory
blocks available from the beginning.

2.4 Next Generation Requirements

In the previous part of the chapter, we have limited ourselves to the handling of real-
time requirements. An unspoken assumption was that the system is fully defined at
compile time. For most embedded applications this is the case. However, as applica-
tions are becoming more dynamic and adaptive, the complexity is increasing as well.
In such applications, meeting stringent real-time requirements is still often a prime
requirement but it is not sufficient. The real-time requirements will have to be met
when running multiple applications simultaneously with a variable amount of avail-
able resources. In the extreme, this also means in the presence of faults resulting in
a number of resources no longer being available on a permanent or temporary basis.

We will illustrate this with two use cases for which the network-centric Open-
ComRTOS could provide the system level software.

The first use case is a next generation electric car. Such a car will be fully
controlled by software and electronic components (“drive-by-wire”) and likely have
a distributed power and wheel control architecture whereby for each wheel power
control is combined with active suspension control, stability, anti-slip control and
even braking. Many components can fail or show intermittent failures, e.g. sensors
can fail, wires can break, connectors can give micro-cuts (very short absence of
electrical contact due to vibrations), memory can become corrupted, processors can
fail, etc. While the design should be robust enough to make such failures very
low probability events, over the lifetime of the car such occurrences are certain.
Practically speaking, this means that while the system can be designed assuming that
all resources are always available, the designer must provide additional operating
modes that take into account that some resources are not available for meeting all
requirements. In the simplest case, this can mean that when one wheel controller

30 2 Requirements and Specifications for the OpenComRTOS Project

Fig. 2.4 Three tasks sharing a resource with and without priority inheritance support

2.4 Next Generation Requirements 31

fails, the processing is immediately redistributed over the three still fully functional
units. Or this can mean that the system switches to a degraded mode of operation
with a different set of tasks using less compute intensive algorithms.

The second use case is a next generation mobile platform. It is envisioned that
such a platform will have tens of processing nodes, execute multiple applications
with some applications showing a variable processing load depending on the data
being processed (typical for multimedia and image processing). In the worst case,
the processing load can even surpass temporarily the available processing power. On
the other hand such applications can often tolerate a few missed deadlines. However,
such a mobile platform loaded with a dynamic set of tasks, poses additional
constraints. For example, when using wireless connections, bandwidth will vary
over time, processing power might be variable because of voltage and frequency
scaling techniques to minimise power consumption and available memory will vary
depending on the use by other applications.

What these two use cases illustrate is that an embedded real-time application is
becoming more challenging for following reasons:

• All applications can no longer be defined fully statically.
• Some applications have a variable processing load.
• The system software must not only schedule the use of time as a resource, but

also other system resources like bandwidth, processing power, memory and even
power usage.

• The system will have hard real-time constraints as well as soft real-time
constraints.

• The system will have different “modes” (each consisting of a coherent set of
states).

• Fault tolerance is not to be considered as an exception but as a case where the
system has less resources available.

The result is that such an embedded system becomes “layered” and time as a
resource is not the only one that must be scheduled. Such a system will need to
schedule the use of several resources. In the guaranteed mode of operation, we
find back the traditional static scheduling. Rate Monotonic Scheduling provides
for meeting the time properties whereas compile-time analysis assures that all
other resources are available. In the extreme case, this includes providing for fault
tolerance because the system has to be designed with enough redundant resources to
cope with major failures. The next layer is then a best-effort mode in which the
properties are guaranteed most of the time, eventually with degraded service levels.
For the time properties this means we enter the domain of soft real-time, but often
at the application level this means the system offers a statistically defined level
of quality of service level. A typical example is generating an image with less
resolution because not enough processing power was available during the frame
time. In the extreme case this corresponds with a fail-safe mode of operation
whereby the quality of services is reduced to a minimum level that is still sufficient
to stop the system in a safe way. Finally, the last layer is one where essentially
nothing is guaranteed. The system will make only resources available if there are

32 2 Requirements and Specifications for the OpenComRTOS Project

any left. Statistically, this can still be most of the time unless a critical resource like
power is starting to fail, and the system then was designed to put the processor in a
“sleep” mode to e.g. stretch battery time.

What we witness here is a transition from a statically defined hard real-time
system with fully predictable time behaviour, but possibly catastrophically failing,
towards a system where the design goal is defined as a statistical quality of service
(QoS) at the application level. Such a system must still be able to meet hard real-
time constraints in a predictable way but must also offer different operating modes
corresponding with a graceful degradation of the services offered by the system as a
whole. Practically speaking, when a processor fails, it will often be catastrophically
although processors with a MMU (Memory Management Unit) and appropriate
system software can contain the failure to the erroneous process without affecting
the rest of the processes. Most embedded processors however will need a hard reset
to recover from such a fault. Hence, such a system will need redundancy of hardware
resources, be it as part of a distributed system, be it as part of a multicore chip.

These next generation requirements were not addressed in the OpenComRTOS
project discussed in this book, but the fact that OpenComRTOS supports program-
ming a multicore and distributed system in a transparent way facilitates addressing
such requirements.

2.5 Top Level Requirements for OpenComRTOS

OpenComRTOS was developed from scratch as an answer to the need to have a
uniform programming environment fitting within the notions of “unified semantics”
and “interacting entities” we put forward in the introduction as key paradigms for
a systematic systems and software engineering method. Furthermore, we restricted
the application domain to embedded systems, often distributed and operating within
strict boundaries of predictable real-time behaviour and resource constraints.

If we analyse these top level requirements, we can define following top level
properties as requirements for OpenComRTOS. Note however that this is not the
complete list of requirements.

• Scalability: OpenComRTOS shall support the redeployment of applications,
mostly by recompilation of the application source code, from very small single
micro-controller systems to target systems with a large number of distributed
heterogeneous processing nodes. As a result scalability works in two directions.
An application can be remapped on more or less processor resources without the
need to modify the application itself. This capability should be independent of
the underlying processor architecture (from 8 bit to 64 bit CPUs).

• Real-time support: OpenComRTOS shall allow to develop applications that are
predictable in time, including when multiple processors are used. A real-time
capable scheduler with support for priority inheritance shall be included.

2.5 Top Level Requirements for OpenComRTOS 33

• RTOS conformant API: The OpenComRTOS API shall reflect commonly
used services as available with existing RTOS like task management, events,
semaphores, fifos, resource locks, etc.

• Portability: OpenComRTOS should be straightforward to port to another target
system. A precondition is the use of ANSI-C. The C-code shall have no defects
and compile with no warnings.

• Extensible: OpenComRTOS can be extended with application specific services
and entities without the need for the user to develop another middleware layer or
without the need to redevelop the RTOS kernel. Such services are integrated at
the system level.

• Distributed operation: Whether the application tasks and the kernel entities
are placed on a single processing nodes or are mapped onto several ones, the
developer does not need to care about where the tasks and entities are mapped
(except at configuration time and when considering performance issues). The
system itself takes care of the routing and system level communication. As a
result, the application source code is independent of the target’s topology. Note
that a special case of target networks are multi-core chips whereby the CPU cores
are linked with a dedicated NoC (Network-on-chip). Shared memory is allowed
if the right protection mechanisms are used.

• Efficiency: Efficiency can be measured in terms of functionality for a given
code size. Small code size means that less time is spend in executing kernel
services resulting in a lower overhead. As OpenComRTOS is network-centric, a
major measure of efficiency is the latency to set up a communication or to start a
kernel service.

• Safety: On traditional processors it is very hard to provide safety unless the
processor has dedicated hardware support, the latter mainly being available on
high-end processors. The main source or runtime errors is linked with a lack of
available memory and buffer overflow. The architecture should be developed in
such a way to minimise such risks and allowing the use of hardware support when
available.

• Runtime profiling: Support shall be provided for examining the kernel and
application task state at runtime as well as for profiling execution traces.

• Formally verified: In order to minimise the risk of remaining errors in Open-
ComRTOS, the architectural design and the implementation shall be modelled
and verified using formal techniques.

• Automation: As many programming errors are due to manual coding by software
engineers, OpenComRTOS must be supported by a graphical development
environment and other supporting tools providing a higher level of abstraction
and generating the application code as much as possible automatically from a
higher level model description.

34 2 Requirements and Specifications for the OpenComRTOS Project

2.6 Specifications Derived from Requirements

From the rather informal requirement statements, we derive verifiable specifications.
The various terms used will become clear in further chapters.

• Architecture

– The RTOS shall use Packets for service invocation at all levels.
– The Packet structure shall be identical for all processors.
– Packets shall contain a header and a payload section.
– The Packet header shall contain a priority.

• Scalability

– The RTOS shall support at least 64K tasks per node.
– The RTOS shall support at least 64K nodes per system.
– The maximum number of nodes shall be compile time defined.
– The maximum of OpenComRTOS entities shall be compile time defined.
– Shall support single processor targets with the same kernel as multiprocessor

targets.
– Packet management shall be done at system level.
– The nodeID shall be part of the EntityID and shall be transparent for the

application.

• API conformant to RTOS

– The API shall support:

· Task management
· Events
· Semaphores
· Fifos
· Resource locking
· Memory management

– The kernel implementation shall provide:

· Priority based pre-emptive scheduling.
· Priority inheritance support for resource entities.
· Priority inheritance for tasks requesting a shared resource.
· Time-out on service completion.

• Extensibility

– The services shall be implemented independently from the kernel itself.
– The programming environment shall support extensions without the need to

rebuild the kernel.

• Distributed operation

– The application code shall be independent of the nodes topology and entities
mapping.

2.6 Specifications Derived from Requirements 35

– The target system can be heterogeneous, linking processing nodes with
different word lengths, using different compilers and connected using appli-
cation specific communication systems.

– The target system can include third party host-OS.
– On such a node, the OpenComRTOS shall run on top of the host-OS.
– Routing shall be a system level functionality.
– Host services on third party host-OS shall be transparently accessible from any

task on any node.

• Efficiency

– The code size shall be less than 5 KB for single processor and less than 10 KB
for a multi-processor implementations.

– The system shall use a minimum amount of memory for packets and stack
space.

– The compiled code shall not link in unused services.
– The kernel and drivers shall be implemented as application level tasks.
– Compile time switches shall allow the generation of the smallest possible

kernel for application development.

• Safety

– No dynamic memory allocation shall be used in the kernel.
– All datastructures are statically allocated at compile time.
– OpenComRTOS shall use a separate stack space for handling interrupts.
– When the packet pool is exhausted, the system shall not crash but start idling.
– Drivers shall execute as application tasks.
– The kernel shall have assertions enabled in the development version.

• Runtime profiling

– An event trace shall be integrated.
– The kernel shall allow read access of its state variables and datastructures.

• Formally modelled and verified

– All kernel services shall be modelled and verified using a formal model
checker.

– All models shall verify with no reachable illegal states.
– Model checking shall be used to verify the architectural design.
– Model verification shall be done on the basis of the approved source code.

• Automation

– A graphical environment shall be used to define the application.
– A project shall be described in text file for manual or automated processing.
– A meta-modelling concept shall be used to allow redefinition of entities and

interactions.
– It should be possible to run complete applications be recompilation in simula-

tion mode on a host-OS.

36 2 Requirements and Specifications for the OpenComRTOS Project

– All code and datastructures shall be statically generated, unless application
specific.

– The executing code shall be generated automatically and independently of the
target system.

2.7 Systems and Application Grammar of OpenComRTOS

2.7.1 Base Principles and Definitions

An OpenComRTOS application can be constructed from various kernel entities
and interactions between them, commonly called kernel services. Kernel entities
and kernel services differ from one RTOS to another, but remain invariant at the
meta-level of the interacting entities paradigm as instances of the RTOS System
and application meta-model. They can be described in a “grammar”, a textual
representation comparable with an entity-relationship diagram. Such a grammar
defines how correct programs can be constructed (at least at the syntactical level).
The term system grammar is used as in languages whereby the grammar defines
the rules that must be obeyed to create well-formed sentences. In this context, the
sentence is a well formed real-time application or system and hence the system
grammar is like a meta-model of the domain.

The meta-model relies on a typification of the Kernel entities and services. The
base types of the interacting entities paradigm are as follows:

[Kernel Entity IS Entity.]
[Kernel Service IS Interaction.]

Next we can define the attributes:

[Kernel Entity HAS Attributes (2-N) // e.g. name, node, type,
parameters]

[Kernel Entity HAS Functions (0-N // e.g. function]
[Kernel Interaction HAS Attributes (4) // name, subject, object,

direction]

The purpose of the systems grammar is to define the OpenComRTOS system
and application grammar as the minimal set of concepts needed for application
development. This means that the internal mechanisms of how OpenComRTOS
functions will be hidden from the application developer. For example, routing and
scheduling are considered as internal OpenComRTOS kernel mechanisms and hence
the entities and interactions that are involved in providing these services are not
visible for an application developer.

There are two possible ways of modelling interactions:

1. If we define the Kernel Task as a separate entity we can consider kernel services
as direct interactions between application Tasks and the Kernel Task.

2.7 Systems and Application Grammar of OpenComRTOS 37

2. If we hide the kernel entity i.e. consider it as an OpenComRTOS internal
mechanism then all kernel services become interactions between application
tasks by means of intermediate entities (e.g. hubs).

In the OpenComRTOS Open Visual Environment (OpenVE) the Kernel entity is
hidden and the visual programming is done immediately at the application level.
This is more natural as the underlying interactions between kernel entities and
drivers can be complex whereas at the application level, the user is only interested
in the end result.

In general, the concrete implementation of kernel services makes uses of packets
exchanges for services calls or data transfer. Most of the time these packets also
remain invisible.

In reality, we can differentiate five different types of OpenComRTOS Tasks: the
Kernel Task, the Idle Task, RX Driver Tasks, TX Driver Tasks and Application Task.
The application developer only needs to be concerned with application Tasks. This
means that for an application development the Kernel Task is used as an indirect
source of services for the application tasks. RX and TX Driver Tasks are defined at
the level of the nodes topology and are never directly used by the OpenComRTOS
application developer.

An OpenComRTOS application can be constructed from following base entities:
Task, Port, Event, Semaphore, Resource, FIFO, Packet Pool and Memory Pool, each
with associated services. Application development is a definition of interactions
between Tasks through intermediate synchronisation entities, derived from a generic
Hub (see further). The Task management services are considered as interactions
between application Tasks (i.e. the object and the subject of interaction are of the
same type).

2.7.2 A Note on Typing Conventions

In the rest of the book, we will use upper case words like Tasks, Hubs to indicate
that we are talking about OpenComRTOS specific Entities. If the term is used in the
general sense of the word, small case will be used.

2.7.3 OpenComRTOS System and Application Grammar

OpenComRTOS IS_DEFINED_BY
SystemConfiguration (1) AND
ApplicationConfiguration (1)

SystemConfiguration IS_DEFINED_BY
SystemTasks (4) AND
Topology (1)

38 2 Requirements and Specifications for the OpenComRTOS Project

SystemTask CAN_BE // Type of system task
KernelTask OR // Kernel itself
IdleTask OR // Background task
RxTask OR // Link driver receiver task
TxTask // Link driver transmitter task

SystemTask HAS_ATTRIBUTES
EntryPoint (1) AND // Function name
Priority (0-1) AND // Integer 1-255
Arguments (0-N) AND // Set of arguments or NULL pointer
Status (0-1) AND // Task status at creation
StackSize (0-1) // Size of static allocated stack

Topology IS_DEFINED_BY Nodes (1-N) AND
Links (0-N) // Real or virtual connection between

// nodes

Node HAS_ATTRIBUTES Name (1) AND // The Node Id
TraceBufferSize (1) AND // Size of trace buffer
KernelPacketPoolSize (1) AND // Default value 2
RxPacketPoolSize (1) AND // Default value 2
Host (1) // The Name of the hosting Node

Link HAS_ATTRIBUTES Source (1) AND // Originating end-point
Target (1) AND // Terminating end-point
Type (1) // Bi- or unidirectional

LinkType CAN_BE Unidirectional OR
Bidirectional

SystemConfiguration HAS_ATTRIBUTES // XML node parameters
DataSize (0-1) AND // Packet data size
NodeIdSize (0-1) // Length of Node identifier

ApplicationConfiguration IS_DEFINED_BY ApplicationTasks (0-N) AND
Ports (0-N) AND // Port hub
Event (0-N) AND // Event hub
Semaphore (0-N) AND // Semaphore hub
Resource (0-N) AND // Resource hub
FIFO (0-N) AND // FIFO hub
MemoryPool (0-N) AND // Memory Pool hub
PacketPool (0-N) AND // Packet Pool hub
Interactions (0-N) // Hub service

ApplicationTask HAS_ATTRIBUTES Name (0-1) AND // Logical Name
EntryPoint(1) AND // Function name
Priority (1) AND // Integer 2-254
Arguments (0-N) AND // Set of arguments
Status (1) AND // Task status
Node (1) AND // Name host node
StackSize (1) // Size allocated stack

2.7 Systems and Application Grammar of OpenComRTOS 39

TaskStatus CAN_BE L0_INACTIVE OR
L0_STARTED // Default

Port HAS_ATTRIBUTES Name (1) AND
Node (1)

Event HAS_ATTRIBUTES Name (1) AND
Node (1)

Semaphore HAS_ATTRIBUTES Name (1) AND
Node (1)

FIFO HAS_ATTRIBUTES Name (1) AND
Node (1) AND
Size (1) // Default value 1

Resource HAS_ATTRIBUTES Name (1) AND
Node (1) AND

MemoryPool HAS_ATTRIBUTES Name (1) AND
Node (1) AND
NumOfBlocks (1) AND // Default value 1
SizeOfBlocks (1) // Default value 1024

PacketPool HAS_ATTRIBUTES Name (1) AND
Node (1) AND
Size (1) // Default value 1

Interaction HAS_ATTRIBUTES Name (1) AND
Subject (1) AND
Object (1) AND
Service (1) // either a Put or

// Get interaction

InteractionService CAN_BE Put OR Get

This system grammar can be considered as a formalised specification for the
OpenComRTOS implementation. Its elements are found back in the meta-models
used by the application development environment and the code generators. For the
list of specified interaction services, omitted from the systems grammar for reason
of compactness, we give the corresponding extract from the meta-models in XML
format.

<! Acromyms:>
<! Int = Interaction >
<! Subj = Subject>
<! Obj = Object>
<! Serv = Service>

<!-- Task management Services -->
<Int ="L1_StartTask_W" Subj="Task" Obj="Task" Serv="Put"/>
<Int ="L1_StopTask_W" Subj="Task" Obj="Task" Serv="Put"/>

40 2 Requirements and Specifications for the OpenComRTOS Project

<Int ="L1_SuspendTask_W" Subj="Task" Obj="Task" Serv="Put"/>
<Int ="L1_ResumeTask_W" Subj="Task" Obj="Task" Serv="Put"/>
<Int ="L1_SleepTask_WT" Subj="Task" Obj="Task" Serv="Put"/>

<!-- Port based Services -->
<Int ="L1_PutPacketToPort_W" Subj="Task" Obj="Port" Serv="Put"/>
<Int ="L1_GetPacketFromPort_W" Subj="Task" Obj="Port" Serv="Get"/>
<Int ="L1_PutPacketToPort_NW" Subj="Task" Obj="Port" Serv="Put"/>
<Int ="L1_GetPacketFromPort_NW" Subj="Task" Obj="Port" Serv="Get"/>
<Int ="L1_PutPacketToPort_WT" Subj="Task" Obj="Port" Serv="Put"/>
<Int ="L1_GetPacketFromPort_WT" Subj="Task" Obj="Port" Serv="Get"/>

<!-- Event based Services -->
<Int ="L1_RaiseEvent_W" Subj="Task" Obj="Event" Serv="Put"/>
<Int ="L1_TestEvent_W" Subj="Task" Obj="Event" Serv="Get"/>
<Int ="L1_RaiseEvent_NW" Subj="Task" Obj="Event" Serv="Put"/>
<Int ="L1_TestEvent_NW" Subj="Task" Obj="Event" Serv="Get"/>
<Int ="L1_RaiseEvent_WT" Subj="Task" Obj="Event" Serv="Put"/>
<Int ="L1_TestEvent_WT" Subj="Task" Obj="Event" Serv="Get"/>

<!-- Semaphore based Services -->
<Int ="L1_SignalSemaphore_W" Subj="Task" Obj="Semaphore" Serv="Put"/>
<Int ="L1_TestSemaphore_W" Subj="Task" Obj="Semaphore" Serv="Get"/>
<Int ="L1_SignalSemaphore_NW" Subj="Task" Obj="Semaphore"

Serv="Put"/>
<Int ="L1_TestSemaphore_NW" Subj="Task" Obj="Semaphore" Serv="Get"/>
<Int ="L1_SignalSemaphore_WT" Subj="Task" Obj="Semaphore"

Serv="Put"/>
<Int ="L1_TestSemaphore_WT" Subj="Task" Obj="Semaphore" Serv="Get"/>

<!-- Resource related Services -->
<Int ="L1_LockResource_W" Subj="Task" Obj="Resource" Serv="Get"/>
<Int ="L1_UnlockResource_W" Subj="Task" Obj="Resource" Serv="Put"/>
<Int ="L1_LockResource_NW" Subj="Task" Obj="Resource" Serv="Get"/>
<Int ="L1_UnlockResource_NW" Subj="Task" Obj="Resource" Serv="Put"/>
<Int ="L1_LockResource_WT" Subj="Task" Obj="Resource" Serv="Get"/>
<Int ="L1_UnlockResource_WT" Subj="Task" Obj="Resource" Serv="Put"/>

<!-- FIFO Queue related services -->
<Int ="L1_EnqueueFifo_W" Subj="Task" Obj="FIFO" Serv="Put"/>
<Int ="L1_DequeueFifo_W" Subj="Task" Obj="FIFO" Serv="Get"/>
<Int ="L1_EnqueueFifo_NW" Subj="Task" Obj="FIFO" Serv="Put"/>
<Int ="L1_DequeueFifo_NW" Subj="Task" Obj="FIFO" Serv="Get"/>
<Int ="L1_EnqueueFifo_WT" Subj="Task" Obj="FIFO" Serv="Put"/>
<Int ="L1_DequeueFifo_WT" Subj="Task" Obj="FIFO" Serv="Get"/>

<!-- Packet Pool services -->
<Int ="L1_AllocatePacket" Subj="Task" Obj="PacketPool" Serv="Get"/>
<Int ="L1_AllocatePacket_W" Subj="Task" Obj="PacketPool" Serv="Get"/>
<Int ="L1_DeallocatePacket_W" Subj="Task" Obj="PacketPool"

Serv="Put"/>

2.7 Systems and Application Grammar of OpenComRTOS 41

<Int ="L1_AllocatePacket_NW" Subj="Task" Obj="PacketPool"
Serv="Get"/>

<Int ="L1_AllocatePacket_WT" Subj="Task" Obj="PacketPool"
Serv="Get"/>

<!-- Memory Pool related Services -->
<Int ="L1_AllocateMemoryBlock_W" Subj="Task" Obj="MemoryPool"

Serv="Get"/>
<Int ="L1_DeallocateMemoryBlock_W" Subj="Task" Obj="MemoryPool"

Serv="Put"/>
<Int ="L1_AllocateMemoryBlock_NW" Subj="Task" Obj="MemoryPool"

Serv="Get"/>
<Int ="L1_AllocateMemoryBlock_WT" Subj="Task" Obj="MemoryPool"

Serv="Get"/>

Part II
Formal Modeling Fundamentals

Chapter 3
The Choice of TLA+/TLC: Comparing
Formal Methods

This book provides a thorough description of OpenComRTOS and of the formal
models built for its implementation. Such models were written in TLA+ and verified
with the TLC model checker. The choice of TLA+/TLC was one of the fundamental
initial decisions of the project. In effect, over the last years, several languages,
techniques, and tools have been developed and made available by the formal
methods community. Typically, different formalisms are best suited for different
domains of application, and their comparison is not straightforward. It can be a
significantly subjective exercise. This chapter addresses this issue, describing the
selection process followed in this project.

We identified a set of criteria for evaluation and applied the selected formalisms
to a common case study: a non-blocking algorithm for managing linked-lists. There
was no particular reason to select this algorithm as a test case, except that it is
of potential interest in the context of RTOS kernels that often manipulate linked
lists. After a survey and pre-selection phase, the languages and corresponding tools
analysed were TLA+/TLC and Promela/SPIN. The chapter first describes the pre-
selection stage, then describes the algorithm in detail, the selected formalisms, and,
finally, the comparison criteria and evaluation results.

3.1 Formal Methods Survey and Pre-Selection

In classical engineering disciplines (electrical, mechanical, etc.) tools like Maple
and MatLab have a wide scope of utilization and are widely used. This is not yet
the case for tools supporting the formal development of software systems. Instead,
there is a rather large set of languages, methods, and tools with different and more
or less restricted domains of application.

Formal specification languages can be classified with respect to their prime
application domain, i.e., either specialized towards sequential programs, or focusing
on concurrent and distributed systems. Well established and representative examples

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 3,
© Springer Science+Business Media, LLC 2011

45

46 3 The Choice of TLA+/TLC: Comparing Formal Methods

of the first are B, VDM, and Z; whereas CCS, CSP, TLA+, Unity and Petri Nets are
mainly used to specify and reason about concurrent systems.

The correctness of a system is assessed by confronting the specification of the
system/algorithm with the statement of the properties desired and checking whether
one implies the other. This can be done by writing proofs by hand or using more or
less automated tools. Two main groups of tools can be considered: proof systems
and model checkers.

Proof systems generally require some user interaction. They can check whether
a given proof is valid, according to the rules of deduction of the logic concerned, or,
given a theorem and its premisses, try to discover a proof such that the theorem
follows from the premisses. An hybrid approach can also be utilized: the user
proposes large steps and the systems fills in the gaps and takes care of details.
Examples of proof systems are Coq, HOL, Isabelle, Nuprl, PVS, and B-related tools.

Model checkers are specially suited for analyzing (descriptions of) concurrent
systems. They can differ in many aspects, namely, whether they use branching or
linear temporal logic, symbolic or explicit state verification, breadth-first search or
depth-first search, real-time or timeless verification, etc.

Examples of symbolic model checkers are SMV and NuSMV. Murphi, SPIN
and TLC are explicit-state model-checkers. Kronos and UPPAAL focus on timed
systems. Other relevant model checkers are μCRL and FDR. Model checkers more
frequently take as input specifically developed languages. Relevant exceptions are
FDR, for checking CSP specifications, and TLC (for TLA+ specifications).

Because tool support is of great importance and since most of the problems
that had to be analyzed are related to concurrency issues, model checking is a
particularly suitable technique.

Depending on their design decisions, model checkers can be more appropriate to
verify hardware or software systems. (Naturally, the choice should fall on a model
checker primarily intended for software systems.) SMV, NuSMV, and Murphi
are mainly intended for hardware descriptions verification, which lessens their
suitability. Kronos and UPPAAL are used to verify real-time systems. However,
they take as input rather low-level languages and time constraints are not well
addressed. Moreover, logical correctness and timing requirements are orthogonal
issues. SPIN and TLC are model checkers of widespread utilization. Their input
languages, Promela and TLA+, provide large support for specifying concurrent
systems. The two seemed a good fit for the purpose of the project. At least at the
time of starting this project, because since then research has continued which could
have resulted in a different decision today.

3.2 Case Study

The case study selected was Harris’ “pragmatic implementation of non-blocking
linked-lists” (Harris 2001). In this section, we present a textual description of the
algorithm, complementary to the one in the cited reference, together with an analysis
of the potential problems of the subject.

3.2 Case Study 47

3.2.1 Introduction

Linked-lists are a basic structure used in program design. A single linked list can be
simply defined as a chain of elements which contain a pointer to the next element.
Each element is commonly referred to as a node. Each node contains two fields:
a key field, identifying the node, and a next field, containing a reference (pointer)
to the next node in the list. The two basic operations that a process can do are (a)
inserting and (b) deleting a node to/from the list. Both operations comprise locating
the place where to insert/delete the node to/from the list and then physically perform
the operation. A node is inserted by, after identifying its predecessor and successor
nodes, making it point to the successor and changing the predecessor’s reference
to point to the new node. Deleting a node can simply be achieved by making its
predecessor point to its successor, eliminating the references to itself.

Several problems with concurrent access to the list can arise when, e.g. (a)
different processes try to insert nodes with the same identifier, (b) different processes
try to delete nodes with the same identifier, (c) different processes try to insert nodes
with different identifiers but the same predecessor and successor, and (d) a process
tries to insert a node whose identified successor/predecessor is being deleted by
another process. In more detail, for the last scenario, take for example the case
where two concurrent processes are, respectively, trying to insert and delete a node.
These nodes are such that the node to be inserted has the node to be deleted as
predecessor. If the inserting process terminates first but still late enough that the
deleting process didn’t see it when it was identifying its successor and predecessor
nodes, when the node is deleted the new one that had just been inserted will be lost,
causing a violation of the intended result.

Traditionally, these and similar problems are solved by granting exclusive access
to the shared resources (the linked list in this case), which prevents all other
processes trying to access the same resource from making progress. By contrast,
an implementation is non-blocking (or lock-free) if some process must complete an
operation after the system as a whole takes a finite number of steps, which means
that some process will always make progress despite arbitrary halting failures or
delays by other processes (Herlihy 1993). The algorithm presented by Harris (2001)
is able to deal with linked-list in a non-blocking fashion.

3.2.2 The Algorithm

Harris algorithm makes use of two fundamental features. The first is to use an atomic
compare-and-swap (CAS) primitive. CAS (addr, old, new) atomically compares the
contents of a location addr with an expected value old and, if they match, writes
the value new to that location. CAS returns a boolean value indicating whether the
substitution took place or not.

48 3 The Choice of TLA+/TLC: Comparing Formal Methods

The second is to separate the deletion of a node in two phases. The first to mark1

the node and the second one to remove it from the list. The node is considered
logically deleted after the first stage and physically deleted after the second.
A marked node is still part of the chain of the linked list, but its marking is used
to signal concurrent processes to not introduce new nodes immediately after those
that are logically deleted.

With the CAS operation the problems identified above as (a) and (c) can be
solved straightforwardly. The physical insertion of a node is only achieved when
the reference of its predecessor is changed. This is done atomically with CAS.
If, at the moment when the instruction is executed, some other process made a
significant change to the list, CAS will fail, and the process restarts by relocating
again its predecessor and successor nodes. The separation of the deletion in two
phases allows the overcoming of the problems identified as (b) and (d).

To simplify the management of the list, a typical procedure is used: two special
root nodes, “Head” and “Tail” are added. Head is always kept as the first element
of the list and Tail as the last one. The insertion and deletion are then defined as
follows.

Insertion Procedure:

(Ii) The node to be inserted current is generated;
(IIi) The predecessor left and successor right nodes are identified (all the nodes

have a key and they are stored in the list in ascendant order). The addresses
of these nodes are stored in two variables. The left node is the unmarked node
that has the biggest key strictly smaller than the current node key. The right
node is the unmarked node that has the smallest key greater or equal than the
current node key.

(IIIi) The uniqueness of the node to insert is checked: if the key of the right node
is equal to the one of the current node, the process is aborted; otherwise it
continuous its execution.

(IVi) The current node is made to point to the right node (by a simple assignment
instruction)

(Vi) The physical insertion of the node, utilising the CAS (adr, old, new) operation
is attempted: the node that is being presently pointed at that instant by the left
node [addr] is compared to the one previously identified [old], whose value
has been stored in a variable and:

(i) If they match, the left node is made to point to the current node,
concluding the inserting process.

(ii) If they do not match (which means that some change in the list has been
made in the mean time), the process goes back to (IIi).

1The actual implementation of the marking can be done using an unused bit of the field next of the
node.

3.2 Case Study 49

3.2.2.1 Deletion Procedure

(Id) An identifier key value is selected.
(IId) The list is searched in order to identify the left and right nodes. The rule is

as mentioned just above the left is the unmarked node that has the biggest
key strictly smaller than value; the right is the unmarked node that has the
smallest key greater or equal than value.

(IIId) The identity of the right node is checked: if its key is equal to value the
process continues to execute and the right node is the node to be deleted;
otherwise it aborts.2

(IVd) A new neighborhood node is identified: the immediate successor of the right
node is stored in a variable right next.

(Vd) The marking of the (right) node is attempted (atomically, with a CAS
operation): if the right node next field [addr] is still pointing to the node
previously identified right next [old], then its value is rewritten as marked
[new]. If not the process goes back to (IId). This operation is guarded by
the pre-condition that right next is not a marked node; otherwise the process
goes directly back to (IId).

(VId) The physical deletion of the (right) node is attempted (again atomically, using
the CAS operation): if the left node next field [addr] is still pointing to
the right node [old], then it is made to point to the node identified as its
immediate successor right next [new]. Once again if this fails the process
goes back to (IId).

3.2.3 Remarks

In the original algorithm, the procedure for identifying the left and right nodes –
(IIi) and (IId) – is more elaborate than the description given above. It is executed
using a search routine that incorporates a CAS operation to remove marked nodes
between the left and right nodes, before returning. The simplification introduced
here allows a simplification of the models to develop, while keeping faithful to the
core behaviour of the original algorithm.

3.2.4 Drawbacks

In Harris algorithm, a node may still be accessed after being deleted from the
list. In fact, in some scenarios, this may be necessary. However, it prevents the

2This mail happen for two reasons: (a) another concurrent process could have deleted the node in
the mean time or (b) there was some error in the assignment of the node to delete and it simply
does not belong to the linked list.

50 3 The Choice of TLA+/TLC: Comparing Formal Methods

algorithm from using simple and efficient lock-free memory management methods.
Let’s illustrate the problem with an example.

With memory release:

(1) Process 1 is assigned to delete a node with key k (Id), that belongs to the linked
list.

(2) Process 1 identifies the neighborhood of the node n (IId, IIId, IVd).
(3) Process 2 is assigned to delete a node with the same key k.
(4) Process 2 identifies the same neighborhood of the node n (IId, IIId, IVd).
(5) Process 1 marks the node n (Vd).
(6) Process 1 excises the node n (VId).
(7) Process 2 tries to mark the node n (Vd) but, due to Process 1 releasing the

memory of node n(Vd) its memory location is now empty, causing an error.3

Without (or “with sufficiently delayed”) memory release:

(1)–(6) Same as before.
(7) Process 2 tries to mark node n (Vd), but the comparison of the CAS

operation fails4, and the process is sent back to (IId).
(8) Process 2 identifies the new left and right nodes (IId).
(9) Two different things may happen now: (a) the key of the new right node

is bigger than k and the process ends its execution (IIId), or (b) if, in the
mean time, another process has inserted back a node with that same key k,
process 2 will detect it and continue the normal deletion procedure.

3.2.5 Related Work

Due to the natural advantages of lock-free implementations over the traditional
use of locks, extensive work has been done on this subject. Atomic primitives like
CAS play a central role in this kind of algorithms and modern processors support
them at hardware level.5 Another primitive commonly used is the Load-Link/Store-
Conditional/Validate (LL/SC/VL) (Jayanti and Petrovic 2004; Michael 2004a; Moir
1997).

3“Empty” is not an exact term. Once the memory location has been freed it can be in a multiplicity
of different states that may lead to the referred error. The actual behavior of a process in this
scenario depends on the details of the implementation.
4Recall that the comparison is made between the value of the node’s next field previously recorded
and the present one. Even if the composition of the list has not changed in the mean time, the
values will not match because the present reference is marked while the value previously recorded
is not. This is due to decision of marking a node by a change in an unless unused bit of the next
filed of the node. In any case, if other implementation scheme would not cause this comparison to
fail the process would continue to (VId) and would then forcedly be sent back to (IId), continuing
as announced in (8).
5For example, the CAS primitive is supported as the “CASA” and “CASXA” operations in Sparc
V9 (SPARC International 1994), and as “lock cmpxchg” in Intel Itanium (Intel Corporation 2002).

3.3 TLA+ and TLC 51

In (Michael 2002a), it is pointed out that the memory management6 issues in
Harris’ algorithm are a serious drawback. The same author presents, in (Michael
2002b), what he calls “the reclamation memory” method as a solution.

A problem that affects many lock-free algorithms is the so-called “ABA prob-
lem” (IBM 1983). The atomic primitives LL/SC/VL seem to be a more convenient
way of developing ABA problem free algorithms (Michael 2004b). An algorithm
immune to this problem using LL/SC/VL is presented in (Michael 2004a). A
solution with CAS is given in (Gao and Hesselink 2004).

3.3 TLA+ and TLC

3.3.1 Overview

Formal model checking techniques often consist of a formal language and a model
checker. TLA+ is a specification language for describing and reasoning about
asynchronous, nondeterministic, concurrent systems and TLC is an explicit-state
model checker for specifications written in TLA+. An introduction to the main
concepts of TLA+ will be given in Chap. 4. Here, we give an introduction to the
details of checking TLA+ specifications with TLC.

We take as a running example the model shown in Fig. 3.1. It is a very simple
model that manages a list of elements (keys). The possible operations are to insert
and to delete elements from the list. The list is structured as a sequence. Insertion is
done by appending the new element to the bottom of the sequence. Deletion consists
in simply removing the first element from the top of the list.

The specification starts with
MODULE Intro

that begins a module called Intro. As mentioned, TLA+ specifications can be
partitioned into multiples modules. We use only one in this example.7

Line 2 introduces EXTENDS, to incorporate the Naturals and Sequences
modules. The Naturals module contains the definitions of the “usual operators
on natural numbers”, like ‘+’ or ‘>’. The Sequences module will be described in
Chap. 4.

Line 3 introduces the constant parameters Keys and N . Keys is a set used to
define the elements that can be part of the list. N defines the maximum length of
the list. The model contains only one variable, list . (Again, please note that TLA+

6See Sect. 3.2.4.
7Together with the standard modules Naturals and Extends.

52 3 The Choice of TLA+/TLC: Comparing Formal Methods

Fig. 3.1 Example of a specification in TLA+

is an untyped language: the variables are simply listed, not typed.) The clause
ASSUME (N ∈Nat)∧ (N > 0) asserts that we are assuming that N is a positive
natural number.8

TypeInvariant Δ= list ∈ Seq(Keys) (Line 6)
defines the correctness criteria of the model: at any state, the list has to be a valid
sequence whose elements all belong to the set Keys.

The line

is purely cosmetic, it can appear anywhere.
Once explained, the header of a TLA+ module, a specification is better

understood if we read the rest of it from the bottom to the top. At this stage, going
through it should be straightforward. Line 26 expresses the correctness claim that
we want TLC to verify. Moving up, Spec is the specification of our program. It
tell us that our system is a state machine, whose initial state is Init and that can
evolve through the steps defined in Next , which is defined as the disjunction of the
actions Insert and Delete. The list is initialized empty.

8This has no effect in the definitions made in the module; it can, however, be taken as an hypothesis
in the construction of proofs.

3.3 TLA+ and TLC 53

For a nice and easy to read presentation, all comments in a TLA+ module are
shaded. A module terminates with the symbol

When verifying a model with TLC we need to explicitly define the system
constants. This is due to the fact that TLC (like SPIN) only handles systems with
a finite number of states. The definition is done in a separate configuration file.
Listing 3.1 below illustrates a possible configuration file for this example.

1 (**)
2 (* CONFIG Intro.cfg *)
3 (**)
4

5 SPECIFICATION Spec
6 (* This statement tells TLC that Spec is the specification to be *)
7 (* checked.*)
8

9 INVARIANT TypeInvariant
10 (* This statement tells TLC to check that TypeInvariant is an *)
11 (* invariant of the specification. *)
12

13 (**)
14 (* TLC requires that every declared constant in the specification *)
15 (*be assigned a value by a CONSTANT statement in the configuration*)
16 (*file. *)
17 (**)
18 CONSTANT
19 N = 3
20 Keys = {10, 20, 30}
21 (********************** End of config file **********************)

Listing 3.1 Configuration file

TLC can be run in model checking or simulation mode. In model checking
mode, it tries to find all the reachable states. It is the default mode. In simulation
mode, it randomly generates behaviors up to a specified maximum length.

3.3.2 Model Developed

In this section, we present the developed TLA+ model of Harris algorithm. The
design decisions are explained and some extracts of the model are shown. The full
model is given in Appendix C.1 on Page 199.

The central aspect of writing a (TLA+) specification is choosing the level
of abstraction. This implies choosing the variables that represent the system
and choosing the granularity of the steps that allow the system to evolve. The
granularity chosen is very simple to summarize: it basically follows the textual

54 3 The Choice of TLA+/TLC: Comparing Formal Methods

description made in Sect. 3.2.2, where each of the phases identified as Ii .. Vi and
Id .. VId corresponds to an atomic action in the TLA+ model.9

Two variables were defined: mem and proc. Variable mem represents
the memory model of the system: a series of memory addresses where nodes
can be recorded. The list of addresses is enumerated in the constant Adr and the
nodes are represented as a record of three fields: key , next and mark . The set
of all possible keys is defined in Keys . The next field (when not empty) should
contain an address – to represent the pointer of a node to its successor. mark is a
boolean variable – a node can only be marked or not. mem is defined as a function
of addresses to nodes.

The variable proc encapsulates the information to deal with the behaviour of
the system. This information is, on its turn, encapsulated in four records: ninfo,
procIns , procDel and choice. The record ninfo registers the information that
effectively needs to kept in between intermediate steps, i.e. the key and next values
of the node to insert/delete and its neighborhood.

1 (**)
2 (* CONFIG HarrisR.cfg *)
3 (**)
4

5 SPECIFICATION Spec
6 (* This statement tells TLC that Spec is the specification to be *)
7 (* checked. *)
8

9 INVARIANTS TypeInvariant Coherence
10 (* This statement tells TLC to check that TypeInvariant and *)
11 (* Coherence are invariants of the specification. *)
12

13 (**)
14 (* TLC requires that every declared constant in the specification *)
15 (*be assigned a value by a CONSTANT statement in the configuration*)
16 (*file. *)
17 (**)
18 CONSTANT
19 Keys = {10,20,30,40,50}
20 Adr = {1201,1202,1203,1204,1205,1206,1207,1208}
21 Process = {p1,p2,p3,p4}
22 HEAD = 1
23 TAIL = 100
24 (********************** End of config file **********************)

Listing 3.2 Configuration file of Harris Algorithm TLA+Model

The records procIns , procDel and choice represent “auxiliary variables” of
the model, i.e. they are used to control aspects that are not directly connected to
the algorithm, but to the TLA+ model itself. Because the insertion and deletion
processes were both modeled in several different actions, an extra mechanism
is needed to ensure the correct sequence of execution. This was done using to

9Strictly speaking, there is an exception: IId and IIId were grouped into a single action.

3.3 TLA+ and TLC 55

a variable that registers in what intermediate step the execution is. procIns is the
variable for the insertion process and procDel for the deletion. The variable choice
identifies the commitment of a process (after being committed a process is only set
free when all intermediate steps have terminated).

Because we want to have a system with multiple processes running, the variable
proc is made a function of processes that refers to the four records of this process
(ninfo, procIns , procDel and choice). The set of existing processes is defined in
the constant Process . Figure 3.2 shows the header of the model. Listing 3.2 shows
a possible instance of the configuration file.10

Once we have understood the variable abstraction, we should move to the
bottom of the module (Fig. 3.3). Its reading is straightforward. The theorem of
the model is that our specification implies the invariants TypeInvariant and
Coherence11. The invariant Coherence expresses the order relation that must be
kept in between the nodes. It states that all the nodes registered in mem and that
point to another node, have a key that is strictly smaller than the key of the node
that they point to (Fig. 3.4).

The specification Spec of the system is defined by the initial conditions
expressed in Init and the next-state relation Next . Next is a disjunction of the
actions SetInitNodes , Insert and Delete. SetInitNodes is the “auxiliary action”
where the special root nodes Head and Tail are inserted into the list. Insert and
Delete both take as parameters a process (responsible for the execution) and a key
(identifying the node to insert/delete). Both actions are defined as a disjunction of
five finer grained steps. Table 3.1 shows the correspondence in between them and
the textual description made in Sect. 3.2.2.

As a representative example of all the other actions, we’ll cover the definitions
of CreateI , LocateD and CasD2. CreateI (p,key) in Fig. 3.5, which takes as
parameters a process p, to execute the action, and the key of the node that we want
to insert. It is guarded by the conditions that the setup (insertion of Head and
Tail) was already done (setup = 1) and that the process p is ready to start and not
yet committed to any other action: proc[p].procIns = “readyI”∧proc[p].choice =
“undecided”. An extra “auxiliary” guard is added, stating that there has to be free
memory: the number of free memory locations is greater than the number of
processes executions insertions. The function used here, Cardinality , is defined
in the standard module FiniteSets .

The actualization of a variable in TLA+ may be done in two different forms:
(1) explicitly stating the values of all its fields, or (2) by saying that is the same as
before, except for the fields listed after EXCEPT 12. The actualizations in CreateI
update choice, procIns and register the input parameter key as the key of the
current node to insert.

10Note the use of “possible instance”. In fact, the configuration file may have many instances by
changing the definitions of the constants in it. The TLA+ model remains, however, unchanged.
11More rigorously, it asserts that the formula follows logically from the definitions in this module,
the definitions in the extended modules Naturals, Sequences, and FiniteSets, and the rules of
TLA+.
12In our case, this feature is really useful since variable proc encapsulates many fields.

56 3 The Choice of TLA+/TLC: Comparing Formal Methods

Fig. 3.2 Header of the TLA+ model

3.3 TLA+ and TLC 57

Fig. 3.3 Bottom of the TLA+ Specification of Harris’ algorithm

Fig. 3.4 Definition of Coherence

Table 3.1 Correspondence of TLA+ model with the textual description
in Sect. 3.2.2

Insert Delete

TLA+ model Textual description TLA+ model Textual description

CreateI Ii Identify Id
LocateI IIi LocateD IId & IIId
VerUniq IIIi AssignD IVd
CasI1 IVi CasD1 Vd
CasI2 Vi CasD2 VId

Fig. 3.5 Definition of action CreateI

58 3 The Choice of TLA+/TLC: Comparing Formal Methods

Fig. 3.6 Definition of action LocateD

Action LocateD(p), in Fig. 3.6, identifies the left and right nodes and checks
the key of the right node: if it is equal to the search key, right node is assigned to
be deleted. Otherwise (the node that we want to delete is not in the linked-list) the
process is set free (procDel = “readyD”, choice = “undecided”).

The definition of LocateD introduces the TLA+ LET /IN construct. The LET

clause consists of a sequence of definitions whose scope extends until the end of the
IN clause. These local definitions can be used to shorten expressions by replacing
common subexpressions with an operator. It can also make an expression easier to
read. Nested LET clauses are allowed and are a good idea in large specifications.

Also introduced here is the operator CHOOSE. The statement CHOOSE x : F
equals an arbitrarily chosen value x that satisfies the formula F . Determinism is
achieved if only one value of x satisfies F .

In LocateD , right is chosen to be the smallest element of posr , the set of all
unmarked nodes whose key is greater or equal than the search key; left is chosen to
be the highest element of posl , the set of all unmarked nodes whose key is smaller
than the search key.

Action CasD2(p), in Fig. 3.7, performs the physical deletion of the node from
the linked-list. It is guarded by the pre-condition procDel = “swapedD1”, which
represents that all the other intermediate actions have already been executed.
It models the CAS operation: if the left node is still pointing to the right one
mem[AdrLeft].next = AdrRight , it is made to point to the node identified as
its immediate successor RigNext . Otherwise, it is sent back to the location phase

3.4 Promela and SPIN 59

Fig. 3.7 Definition of action CasD2

(procDel = “identifiedD”). Note that there is no garbage collection. The memory
location is not erased. The is due to the reasons explained in Sect. 3.2.4.

3.4 Promela and SPIN

3.4.1 Overview

Whereas TLA+ was first developed as a specification language on its own, and
TLC came after as a model checker that could handle it, Promela is the specifically
developed input language of SPIN. Promela resembles an imperative language
like C augmented with a few communication primitives. Promela allows the
description of the behavior of each process in a system, as well as the interactions
between them. For communication, the processes may use FIFO communications
channels, rendez-vous or shared variables. SPIN (as TLC) cannot handle infinite
state systems, but provides several state space reduction methods, such as, state
compression, on-the-fly verification, and hashing techniques. SPIN can check
safety and liveness properties of a specification. When a property is violated, SPIN
presents a counter-example.

A Promela model is constructed from three basic types of objects:

• Processes
• Data objects
• Message channels

60 3 The Choice of TLA+/TLC: Comparing Formal Methods

A process is identified by the keyword proctype and can have several instan-
tiations. This can be done with the prefix active [n], where n is the number of
instantiations, or by using the operator run13. Example:

active 2 proctype ProcessA(parameter1)

The description of a system in Promela starts with constants definition and
global variables declarations. Promela is a typed language and all variables must
be declared before being referenced. There are two levels of scope: global and
process local. The global variables can be accessed by all processes, functioning
as the shared memory of the system14.

The types of variables are bit, bool, byte, chan, mtype, pid, short, int and
unsigned.

From the provided basic data types, new ones can be created, in a scalable
fashion, through typedef.

Message channels are used to model the exchange of data between processes.
They are declared through chan and can be either local or global, as any other
kind of variable. Similarly as in CSP, channame! is used to specify the sending
of a message through channel channame, and channame? the reception from the
channel. Communication can be asynchronous or “rendezvous”. The distinction is
made through the size of the buffer of the channel: size zero defines a rendezvous
port. A channel declaration has than the form:

chan name = [buffer size] of { variable(s) type}

With mtype we can introduce variables that can hold symbolic values defined
by the programmer (introduced with one or more mtype declarations). A limitation
is that no distinction of different sets can be made, i.e., the separate declarations:

1 mtype = { data, control, error };
2 mtype = { chair, table, box };

are indistinguishable in SPIN from the single declaration:

1 mtype = { data, control, error, chair, table, box };

A central concept in Promela is executability. Every statement in a model is
either executable or blocked, depending on the system state. This provides the basic
means for modeling process synchronizations. Print and assignment statements
are always executable. Booleans conditions are executable iff15 they are true. Any
statement that is non-executable can block the executing process. Hence, if we
want an action to happen only after certain condition(s) we can simply write:

1 (conditionA == true);
2 /* description of the action */

13For differentiation each process is assigned a unique instantiation number. This is done
automatically, and the user does not need to worry about it. If necessary, each process can refer to
its own instantiation number via the predefined local variable _pid.
14No intermediate levels can created, i.e. the scope of a global variable cannot be restricted to a
subset of processes and the scope of a local one to specific blocks of statements.
15if and only if.

3.4 Promela and SPIN 61

For control flow, Promela supports the selection statement if..fi and the
repetition loop do..od. Examples:

1 if
2 :: (a != b) -> option1
3 :: (a == b) -> option2 fi
4

5 do
6 :: (a > b) -> a = a - b
7 :: (a < b) -> b = b - a
8 :: (a == b) -> break
9 od

The element preceding -> is the guard of the action16. Note that the guards
need not to be mutually exclusive. If more than one guard is executable, one of the
corresponding sequences will be selected nondeterministically.

SPIN can be used to check both safety and liveness properties of a system.
The two main constructs to define the correctness requirements are assertions and
never claims. An assertion statement has the form assert (expression) and is
defined locally to a process, therefore checking the correctness of a system in a
particular state. To define a system invariant – a property that should hold in every
reachable state of the system, a never claim should be used.17

Some properties, like the absence of deadlock and race conditions, are so
basic that they are checked by default. Note that expressing correctness conditions
through never claims, makes one work with negated formulas, i.e. if we want to
express that a property p should always hold, what we actually write is that non p
never occurs. To write a never claim that checks for the invariance of the system
property p we can write:

1 never {
2 do
3 :: !p -> break
4 :: else
5 od
6 }

A never claim can also be used to express properties in linear temporal logic
(LTL). Strictly speaking, Promela does not include syntax for the specification
of LTL formulas; SPIN has a separate parser that mechanically translates such
formulas into Promela syntax, so that LTL can effectively become part of the
language that is accepted by SPIN.

Another construct of Promela to deal with correctness claims are labels: By
default a valid end state is one in which every process that was instantiated has
reached the end of its code. However, if some processes do not reach this point,

16This notation is inspired in (Dijkstra 1975).
17This is not mandatory though, for some properties it can be achieved with an assertion clause
through the construction: proctype monitor() assert (invariant), but this looks a
“dirtier” solution.

62 3 The Choice of TLA+/TLC: Comparing Formal Methods

this may not necessarily be an error.18 Therefore, to identify individual process
states as valid end states the label end can be used. Similarly, there are also the
labels progress and accept. The first to validate potentially infinite execution
cycles, in the case that they visit the labeled state, and the latter to mark states that
should not be part of any potentially infinite execution cycle.

1 #define L 4 /* Length of the memory */
2 #define M 2 /* Number of inserting processes */
3 #define N 2 /* Number of deleting processes */
4 #define HEAD 1 /* Key value of the ’Head’ */
5 #define TAIL 100 /* Key value of the ’Tail’ */
6 typedef Node
7 {
8 byte key;
9 byte next;

10 bool mark
11 }
12 Node mem[L];
13 bool setdone=false

Listing 3.3 Header of the developed Promela model

3.4.2 Model Developed

The developed Promela model of Harris algorithm is now presented. Design
decisions and extracts of the model are explained. The full model is shown in
Appendix B. The model was chronologically developed after (and made as similar
as reasonably advisable to) the one written in TLA+. This description contains
references to the latter so it should be read after Sect. 3.3.2.19

From the three basic Promela types of objects, message channels need not to be
used. Three processes and two global variables were used. The processes defined
were setup, insert and delete. The last two contain all the operations necessary for
the insertion/deletion of a node in/from the list; setup is an “auxiliary process” that
inserts Head and Tail in the list.

The main global variable of the system is mem, defined as an array of nodes.
Node is a user defined type of variable that contains three fields: key, next and mark.
setdone is a boolean variable that equals true once Head and Tail are inserted in
the list. Listing 3.3 shows the header of the model.

The processes in Promela are defined in a sequential manner. SPIN makes
no assumption on the relative speed of processes execution and, when model-
checking the system it automatically generates interleaving sequences of execution

18It can be perfectly valid, for instance, for server processes to enter a wait state after a transition
is completed, immune to the fact that all user processes have terminated.
19And after Sect. 3.4.1, naturally, if you are not familiar with Promela.

3.4 Promela and SPIN 63

of the processes.20 Throughout the processes specification there are comment
lines referring to the equivalent TLA+ action/textual description phase, e.g.
/* CreateI - Ii */.21 The names of the variables are also similar.

The correctness claim of the model – equivalent to Coherence shown in
(Fig. 3.4, page 57), in TLA+ – expresses that all the nodes registered in mem and
that point to another node, have a key that is strictly smaller than the key of the
node that they point to. This was expressed in Promela as show in Listing 3.4.22

1 never
2 {
3 do
4 :: !(!((mem.key != 0) \&\& (mem.next != 0)) ||
5 (mem.key < mem[mem.next].key)) -> break
6 :: else
7 od
8 }

Listing 3.4 Never claim in the developed Promela model

Explanation:
(mem.key != 0) && (mem.next != 0) – nodes registered that point to another
node, elegible.
(mem.key < mem[mem.next].key) – key strictly smaller than the key of the node
that they point to, keysmaller.
We want to express: elegible implies keysmaller, p. This is logically equivalent
to: not elegible or keysmaller, p. The final form comes from Promela syntax.

proctype insert() starts (Listing 3.5) with the statement (setdone==true). This
serves as a synchronization method: an inserting processes can only start to execute
after the setup is done. Till then it is blocked.

The guard (L - nonblank - M) > 0) expresses that an insertion can only
take place if the memory is not full. The generation of the key to insert23 is a
bit archaic. Promela provides no predefined function to generate/select a random
number from a set.

The physical insertion of the node (Listing 3.6) ends the proctype. The node is
registered in mem in the lowest available blank position, pos. atomic { ... }, both
in Listing 3.5 and 3.6, is used to define a fragment of code that is to be executed
atomically.

The definition of proctype delete() brings no new aspects to this description.
It starts with the statement (setdone==true), declaration of the local variables

20Note that operations like reads and writes are executed atomically.
21See also Table 3.1 on page 57.
22Recall that a never claim that checks for the invariance of system property p can be written in
Promela as:

never do :: !p -> break :: else od
23if ::CNkey=10 ... ::CNkey=50 fi

64 3 The Choice of TLA+/TLC: Comparing Formal Methods

1 active [M] proctype insert()
2 {
3 (setdone==true); /* Guarding condition for the executability of any
4 inserting process -- the initial setup has to be finished first */
5 byte CNkey, CNnext, AdrLeft, AdrRight, t, t_next, left_next;
6 byte pos=0, counter=0, nonblank=0;
7 startinsert:
8 /* "CreateI - Ii" */
9 atomic

10 {
11 do /* count the elements in the list */
12 :: (mem[counter].key != 0 \&\& mem[counter].key < TAIL) ->
13 nonblank ++;
14 counter = mem[counter].next;
15 :: else -> break
16 od;
17 if /* an insertion can only happen if there’s space in mem */
18 :: ((L - nonblank - M) > 0) ->
19 if
20 :: CNkey=10
21 :: CNkey=20
22 :: CNkey=30
23 :: CNkey=40
24 :: CNkey=50
25 fi
26 :: else -> goto endinsert
27 fi
28 }

Listing 3.5 Beginning of proctype insert()

1 /* ‘‘CasI2 - Vi’’ */
2 atomic
3 {
4 do
5 :: (mem[pos].key != 0) -> pos++
6 :: else -> break
7 od;
8 }
9 if

10 :: (mem[AdrLeft].next == AdrRight) ->
11 mem[AdrLeft].next = pos;
12 mem[pos].key = CNkey;
13 mem[pos].next = CNnext
14 :: else -> goto searchagain
15 fi;
16 endinsert:
17 skip;
18 } /* End of proctyte insert */

Listing 3.6 End of proctype insert()

3.4 Promela and SPIN 65

1 /* LocateD - IId */
2 searchagainD:
3 t=0;
4 t_next=mem[0].next;
5 left_next=0;
6 pos=0;
7 do
8 :: ((mem[t_next].mark==true) || (mem[t].key < CNkey)) ->
9 if

10 :: (mem[t_next].mark==false) ->
11 AdrLeft = t;
12 left_next = t_next;
13 :: else ->skip
14 fi;
15 t=t_next;
16 if
17 :: (t==1) -> goto endcycleD
18 :: else ->skip
19 fi;
20 t_next = mem[t].next
21 :: else -> break
22 od;
23 endcycleD:
24 AdrRight=t;
25 if
26 :: (left_next == AdrRight) ->
27 if
28 :: ((AdrRight!=1) && (mem[mem[AdrRight].next].mark == true))
29 ->
30 goto searchagainD
31 :: else -> goto endsearchD
32 fi
33 :: else -> goto endsearchD
34 fi;
35 endsearchD:
36 skip;
37 /* Examine - IIId */
38 if
39 :: ((AdrRight!=1) || (mem[AdrRight].key != CNkey)) -> goto
40 enddelete
41 :: else -> skip
42 fi;

Listing 3.7 Identification of the left and right nodes

and the archaic generation of the node to delete. The search of the left and right
nodes (Listing 3.7), in line with the others (proctype insert() and TLA+ model),
implements the simplification stated in the Sect. 3.2.3. The removal of the node
from the linked-list is also executed with no garbage collection.24

24See Sect. 3.2.4.

66 3 The Choice of TLA+/TLC: Comparing Formal Methods

3.5 Comparison

Naturally, both formalisms have strengths and weaknesses over each other. To
make a comparison as objective as possible, several measurable comparison
criteria were defined.25 These criteria were divided into three categories, according
to their scope: global, specific for the tool – SPIN or TLC – and specific for the
language – Promela or TLA+.

Figure 3.8 summarizes the results of the evaluation made. For every criteria, a
classification from 0 (minimum) to 4 (maximum) was given.26 Note that simply
adding up the classifications should not be the basis for a decision, some criteria
may have a considerably different importance depending on the system to model.

3.5.1 Matching of the Method to the Application

As both systems are model checkers they have many aspects in common. They
are both appropriate to analyse concurrent systems and both have support for
mechanisms as the expression of properties in temporal logic.

3.5.2 Human Factors

Compared to other formal approaches that imply the writing of proofs, model
checkers can be considered of easier to use. (Even though, the necessity for
learning and training is, certainly, not negligible.) Because a significant part of the
job is done automatically by the tool, model checkers can be more productive than
techniques like theorem proving.

3.5.3 Widespread Utilization

Model checkers have achieved a relatively good popularity as a technique for
the analysis and verification of concurrent systems. TLA+/ TLC has been used
in the design and validation of protocols at places like Compaq, Intel and, more
recently, Microsoft. SPIN is, however, a more widespread tool, and definitely
a very popular one in the field. One factor that could explain this is that TLC
considerably younger than SPIN.

25Several sources of inspiration were used for this exercise; most notably, Sifakis (2010).
26In the figure, � is used if both systems are given an equivalent classification and � otherwise.

3.5 Comparison 67

Fig. 3.8 Comparison of the formalisms

68 3 The Choice of TLA+/TLC: Comparing Formal Methods

3.5.4 Licensing/Distribution

Both tools are excellent is this aspect. They require no license fee and can be
freely downloaded from the internet. They can also both run in Windows and Unix
systems. (SPIN also in Mac).

3.5.5 Maturity

Both tools are continuously being upgraded. TLC (from 1999) is, however,
considerably younger than SPIN (from 1991).

3.5.6 Performance

Both tools have similar limitations: they are both explicit state model checkers and
cannot handle infinite systems. All the variables have to be bound. Because TLC
is written in Java it is slower than SPIN, whose verifications are executed with a C
compiled file.

3.5.7 Interface

The interfaces of both SPIN and TLC are generally simple. They both run in
batch mode and, when finding an error, produce a counter example reasonably
understandable. SPIN has a very simple graphic interface.

3.5.8 Coverage of the Input Language

Promela is the specifically developed input language of SPIN. Therefore, it is fully
covered by it. On the other hand, TLA+ was first developed than before TLC, as a
high-level specification language. Because TLA+ has such high-level capabilities,
TLC cannot handle all of it. This is not a practical problem, because TLC handles
all the specifications that “arise in describing actual systems” (Lamport 2002a).

3.5 Comparison 69

3.5.9 Bibliography

Both languages have a reference manual, written by their developers: (Holzmann
2003a) for Promela and (Lamport 2002b) for TLA+. Lamport (2002b) can,
however, be freely downloaded from the internet.27

Lamport (2002b) is also a very well written book. It presents TLA+ with a
series of examples growing in complexity and makes a great effort in making the
reader understand the principles of the language, enlightening the fact that TLA+

provides a nice way to formalize the style of reasoning about systems. In Roscoe
(1998), one can find the quote: “In order to use these tools effectively you need a
good grasp of the fundamentals of CSP: the tools are certainly not an alternative
to gaining an understanding of the theory. Therefore, this book is still, in the first
instance, a text on the principles of the language rather than being a manual on
how to apply its tools.” Holzmann (2003a) has not so well succeeded in this aspect.
Also, several dispensable references to similarities with C are constantly present,
as well as “dubious alternative solutions” to problems with a simple clean one.28

3.5.10 Expressiveness

TLA+ is clearly more expressive than Promela. It guides us to think logically and
reason about the system to develop and everything can be expressed as what we
want and not on how to get there, a capability very useful when specifying systems.
Constructions like do .. od loops to compute the value of a variable need not to be
used, they can be more simply expressed as a function. Recall, for instance, the
use of Cardinality in CreateI, the definitions of left and right in LocateD, or the
archaic generation of a node in proctype insert().

Another aspect is the correctness claims of the models. The expression of
Coherence – Fig. 3.4, is more natural and it is easier to derive its equivalent never
claim in Promela – Listing 3.4. As an historical note it can be noted that the latter
was considerably harder to reach. In a first approach and brainwashed by the C
like look of Promela, the result was:

1 never
2 {
3 do
4 :: (mem[index].next != 0) ->
5 if
6 :: (mem[index].key < mem[mem[index].next].key) ->
7 skip;
8 index = mem[index].next;

27http://research.microsoft.com/users/lamport/tla/book.html
28As a curiosity, you can, for instance, see page 51.

70 3 The Choice of TLA+/TLC: Comparing Formal Methods

9 :: else ->
10 index=0;
11 wrong=true;
12 break
13 fi
14 :: wrong -> break
15 :: else
16 od
17 }

3.5.11 Readability

A model of reasonable dimension is more easily read in TLA+ than in Promela.
Understanding the behavior of a system modeled in TLA+ can be achieved
by reading its header and then the bottom of the module. Furthermore, the
automatically generated LATEX documents of the models give them a nice clean
look.

One may refute this idea by aversion to mathematical symbols. This may be
natural because of some unfamiliarity and lack of use in dealing with them, but all
it takes is that initial step. Below is an example on how powerful it can be.

Take a lights system. One property about them is that every time that the light
is yellow, it eventually turns red. In an LTL formula this is expressed as:

�((L = yellow)⇒�(L = red))

It should take no more than being told that � reads always, ⇒ reads implies
and � eventually, to understand the previous and similar expressions.

Now, recall that Promela does not include syntax for the specification of LTL
formulas – SPIN has a separate parser that mechanically translates such formulas
into Promela syntax. Abbreviating the formula as:

�(p⇒�q)

and running this parser produces the result:

1 never /* [] (p -> <> q) */
2 {
3 T0_init:
4 if
5 :: ((! (p)) || (q)) -> goto accept_S20
6 :: (1) -> goto T0_S27
7 fi;
8 accept_S20:
9 if

10 :: ((! (p)) || (q)) -> goto T0_init
11 :: (1) -> goto T0_S27
12 fi;
13 accept_S27:
14 if

3.5 Comparison 71

15 :: (q) -> goto T0_init
16 :: (1) -> goto T0_S27
17 fi;
18 T0_S27:
19 if
20 :: (q) -> goto accept_S20
21 :: (1) -> goto T0_S27
22 :: (q) -> goto accept_S27
23 fi;
24 }

free of the LTL operators but practicably unreadable. Please note that this is not a
criticism to Promela/SPIN – what we want to debate is the aversion that one can
have to mathematical symbols. The result shown is fully automatically generated
by SPIN, by simply typing: spin -f ‘‘[](p -> <> q)’’ in the command line,
and the readable original LTL formula is shown as a comment (between /* */) at
the beginning.

3.5.12 Reusability

Reusability is an issue in computer science. It is achieved by the possibility
of creating modular, parametric or generic descriptions. TLA+ incorporates this
features significantly better than Promela. A specification is easily spread over
different modules, that are then related with the commands EXTENDS and
INSTANCE. This is not possible in Promela.

3.5.13 Scalability

This concerns the possibility of modifying or extending descriptions in an incre-
mental manner. It is also related to modular, parametric and generic descriptions.

3.5.14 Level of Abstraction

In this aspect we can say that TLA+ and Promela have equivalent capabilities. It
is important to be able to specify a system at different levels of abstraction. TLA+

can go to a higher-level than Promela and, in turn, Promela can go to a level closer
to the final implementation solution.

72 3 The Choice of TLA+/TLC: Comparing Formal Methods

3.5.15 Checking Possibilities

Promela and TLA+ have similar capabilities of expressing/checking correctness
claims in combination with their tools, SPIN and TLC.

3.5.16 Coverage of the Lifecycle

None of the languages is appropriate to expressing requirements. TLA+ is a
specification language of excellence. The proximity of a language to the final
implementation may be a very important aspect, depending on the use that we
intend it for. Promela is clearly superior to TLA+ in this aspect. TLA+ is more
suitable for reasoning about protocols, whereas a Promela model can be close to
the final implementation solution. But as we have witnessed in the project, this
results in a tendency to express the models in the implementation language with
all its semantic issues. Hence, TLA+ is better as it helps the user to think in a more
abstract and implementation independent way.

3.5.16.1 Final Remarks

Following the analysis, an important weighting factor that led to the final choice
of TLA+/TLC was the higher importance given to the modelling languages than
to the tools. More specifically, to the well-matched characteristics of the language
with the object of the modelling, than to the performance of the tools, since the later
were not unreasonably different. Because TLA+ is a high-level very expressive
language it was considered the most appropriate solution to start developing and
reasoning about the OpenComRTOS functionality.

Despite the effort in presenting a thorough evaluation, it should again be
emphasized that the presented results can still be considered subjective and that
they represent no more than the authors’ opinion. The successful results of the
project seem to corroborate the decision taken. Nevertheless, had the decision been
different, the formalization and verification capabilities of any other formalism
with would certainly have provided extremely valuable inputs to the project.

Chapter 4
Basic Formal Specification in TLA+

4.1 Introduction

4.1.1 Goal: Awareness in Specifying Systems

Model checking (Clarke et al. 1999; Holzmann 2003b; Lamport 2002a) is a flexible
and powerful technique for verifying systems formally with automated tools. In
principle, it makes this task easy for the user: given a formal system description
and certain conditions to be satisfied, the automated checker either confirms that the
system satisfies the conditions, or provides a counterexample.

However, this simplicity of use is deceptive. Stating the system description as
well as the conditions requires insight and aptitudes of an essentially mathematical
nature. Habrias and Faucou (2004) rightly warn that “‘Click and prove’ without
awareness is nothing but the ruin of formal specifications”. Not only are there many
pitfalls, but “hiding the math” also deprives the designer of one of the most powerful
intellectual tools available. Indeed, the user of automated model or proof checkers
can benefit from mathematical reasoning about both the system descriptions (e.g.,
programs) and the conditions (e.g., invariants, temporal formulas) in various
respects. A detailed discussion of these issues is postponed to Appendix B.

For the reasons outlined above, rather than “hiding the math”, we aim at
making the math very accessible, bringing the benefits within easier reach of the
specifier/designer.

4.1.2 A Two-Step Approach

This chapter provides an introduction-by-example to TLA+, illustrating how basic
mathematics constitutes a flexible specification language. Examples are taken from

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 4,
© Springer Science+Business Media, LLC 2011

73

74 4 Basic Formal Specification in TLA+

the OpenComRTOS project. It is meant for designers interested mainly in reading
specifications; those who also want to build them will find information towards the
next step in Appendix B.

A very gradual introduction to TLA+ is found in Lamport’s book Specifying
Systems (Lamport 2002a). Here, we follow a slightly steeper path, taking examples
directly from the intended application domain. Still, most of this material requires
only high school mathematics and ample comments are given, so some reading
abilities for TLA+ should be obtained by the end of this chapter. For the same
reason, the reader need not worry about the more detailed syntax of TLA+ in this
chapter, as it is introduced in Sect. B.2by embedding TLA+ in a unifying formalism.

4.2 Structure of TLA+ Specifications

Some insight in the overall structure of a TLA+ specification may help understand-
ing by indicating how to read them.

4.2.1 Basic Structure

A TLA+ specification describes the behaviour of a system in terms of changes
of its internal state. This state is by definition the value of the declared variables.
A declaration has the form

VARIABLES var0, . . . ,varn−1.

Variables may denote entities of any complexity, from simple booleans to functions
(including records and sequences).

State changes are expressed by means of guarded actions.
A guard is a proposition about the current state that expresses when the action

can take place. Propositions about the current state contain only variables without
prime (′).

An action is a proposition where variables may occur primed, in which case
they denote components of the next state. For instance, x ′ = x + 1 defines the new
value x ′ to be x + 1. Two brief asides.

• When writing x + 1 one typically assumes that x is a number; otherwise x + 1
can be anything. This issue will be taken up again later.

• An action must involve all state variables; those that do not change must be
captured by a proposition of the form UNCHANGED 〈vark0 , . . . ,varkm−1〉 with
obvious meaning (var′ki = varki for all i in 0 ..m−1).

4.2 Structure of TLA+ Specifications 75

A specification can contain several guarded actions in the following form.

A0
Δ= guard0 ∧action0

· · ·
Aj−1

Δ= guardj−1∧actionj−1

Next
Δ= A0∨ . . .∨Aj−1.

where each actioni may itself be fairly complex. In the overall action Next, an action
Ai that holds for the current state s (abbreviating the tuple 〈var0, . . . ,varn−1〉) and
at least some value s ′ (abbreviating 〈var′0, . . . ,var′n−1〉) for the next state is said to
be enabled. Next holds for specific s and s ′ iff at least one of the Ai holds for that
s and s ′. The guards can be used for synchronization in an interleaving model of
concurrency.

To allow concurrent operation with other modules without forcing a Next step
at every global state change, TLA+ specifications insert stuttering steps by not just
using Next but rather [Next]s , which stands for Next∨ s ′ = s .

A typical complete module specification has the form

Spec
Δ= Init∧ [Next]s .

Here, Init is a proposition characterizing the initial state, and , read “always” or
“henceforth” is a temporal operator specifying that its “argument” [Next]s must be
satisfied at every state transition.

A typical property that one might associate with a module specification is an
invariant, i.e., a state proposition Invar such that

Spec⇒ Invar.

Here, ⇒ is a standard symbol for logical implication. In words, this formula says
the following: if the system satisfies Spec, then Invar always holds (i.e., in every
state encountered in the system’s behaviour). Intuitively, Invar provided (a) Init⇒
Invar and (b) in case the current state s satisfies Invar, then any next state satisfying
[Next]s satisfies Invar′ (which denotes Invar with all state variables primed).

Example: if Init ensures that x is a number (e.g., Init
Δ= x = 3) and Next entails

x ′ = x + 1, then x will always be a number. A property such as “always being a
number” is called a type invariant. Note that TLA+ itself is untyped, but one can
prove type-related properties of the kind just illustrated.

4.2.2 Module Structure

A module is a named entity that declares constants and variables (called the
parameters) and defines a number of symbols such as the Ai , Init, Next, Spec
introduced in Sect. 4.2.1.

76 4 Basic Formal Specification in TLA+

Modules can be replicated by instantiation, renaming parameters as desired. A
given module M can be instantiated within another module by writing

I Δ= INSTANCE M WITH m0← e0, . . . ,mk−1← ek−1,

where the mi are parameters declared in M and the ei have meaning inside the
current module (usually also declared parameters). This creates within the current
module an instance I of M , which means that every symbol a defined in M is
available within the current module under the name I !a. The definition of I !a is
derived from the definition of a in M by replacing every mi by ei .

Conceptually, the list of mi must contain all parameters of M but, by convention,
omitting parameter mi amounts to writing mi ←mi .

There are some variants whose principles can be inferred from their usage, and
they are also discussed in (Lamport 2002a).

4.3 Introducing TLA+ By Example

We have chosen examples simple enough to explain in detail, yet sufficiently varied
to illustrate the most essential features of TLA+.

4.3.1 Basic TLA+ Notions

In TLA+, most concepts are the same as in mathematics. However, in view of
formalizing them sufficiently for providing computer support, some of them require
a little explanation and notational conventions.

As in mathematics, a function f is a mapping that assigns to every element a in
some given set A exactly one element, written f [a] and called the image of a under
f . The set A is the domain of f , written DOMAIN f . The domain and the mapping
fully define the function. Note that f [a] is considered an error in case a /∈ DOMAIN f .

One writes [A→ B] for the set of all functions from set A to set B .
The expression [a ∈A �→ e], where e is any expression, denotes the function that

maps every a in A to e (which possibly depends on a). Formally,

DOMAIN [a ∈ A �→ e] = A and [a ∈A �→ e][d] = (e with d substituted for a)

assuming the value of d is in A. For instance, [n ∈ Nat �→ n + 1] maps every
natural number to its successor and [n ∈ Nat �→ n + 1][2 ∗m] = 2 ∗m + 1 provided
2 ∗m ∈ Nat.

An expression of the form [a ∈ A �→ e] is called a lambda-expression.
An operator is similar to a function, but different in the sense that an operator

does not have a domain. Furthermore, an operator must always occur in the form

4.3 Introducing TLA+ By Example 77

oper(expr), and oper by itself is illegal. Also, expr may be anything (no domain!),
but if something nonsensical is written, then the value of oper(expr) may be
anything. Conceptually, TLA+ introduces operators to avoid logical paradoxes (sets
that are “too large” in some sense).

In TLA+ there is some preference for operators over functions. However,
complex data structures that are to be used as variables must be denoted by
functions, since a function is a mathematical concept by itself and, if f is a function,
then both f and f [a] are syntactically correct.

4.3.2 Basic Examples: TLA+ Sequences
and OpenComRTOS Lists

Lists are an ubiquitous concept in a RTOS, used for queueing in FIFO fashion or in
order of priority, or other strategies. They are modelled in TLA+ using the module
Sequences, which itself constitutes a very good introductory example.

4.3.2.1 The Module Sequences

This module defines finite sequences, considered as functions with domain 1 ..n for
some natural number n . As in most programming languages, m ..n is the set of
natural numbers starting with m up to and including n (empty if n < m).

Here are the main operators on sequences, expressed formally, in words and with
an example.

Seq(S) Δ= UNION {[1 ..n→S] : n ∈ Nat}.
The set of all finite sequences of elements from set S . Example: if
S = {a,b} then Seq(S) = {〈〉,〈a〉,〈b〉,〈a,a〉,〈a,b〉,〈b,a〉,〈b,b〉, . . .}.

Len(s) Δ= CHOOSE n ∈ Nat : DOMAIN s = 1 ..n .
The length of sequence s . Example: Len(〈2,6,4〉) = 3.

s ◦ t Δ= [i ∈ 1 ..(Len(s)+ Len(t)) �→ IF i ≤ Len(s) THEN s [i]
ELSE t [i −Len(s)]].

The concatenation of sequences s and t .
Example: 〈2,6〉 ◦ 〈4,3〉= 〈2,6,4,3〉.

Head(s) Δ= s [1]. The first element of s . Example: Head(〈2,6,4〉) = 2.

Tail(s) Δ= [i ∈ 1 ..(Len(s)−1) �→ s [i + 1]]. The rest of s .
Example: Tail(〈2,6,4〉) = 〈6,4〉.

We provide a few annotations on the formal definitions.

78 4 Basic Formal Specification in TLA+

For Seq(S). Considering the meaning of [A→B], clearly [1 ..n→S] is the set of all
sequences of length n consisting of elements of S , assuming n ∈ Nat. Taking the
union of all [1 ..n→S] for natural n yields the set of all finite sequences.

For Len(s). In general, the value of (CHOOSE x ∈ X : property) is an element x in
set X that satisfies property. If several x fit, it is not specified which x is taken (but
it is always the same). If no x fit, the value is unspecified. If s is a sequence, exactly
one n in Nat satisfies DOMAIN s = 1 ..n .

For s ◦ t . The concatenation of sequences s and t is again a sequence; hence,
a function. It is specified by a lambda expression, saying that the domain is
1 ..(Len(s)+Len(t)), and that the i-th element is given by a conditional expression
(IF construct), with obvious meaning. Indeed, if the index i ≤ Len(s), then the i-th
element of s ◦ t is s [i]. If i > Len(s), then the i-th element of s ◦ t is t [i −Len(s)].

Observe that this module does not introduce variables, since it does not describe
a system but introduces only mathematical functions to be used elsewhere.

A technicality: as defined in Lamport’s textbook (Lamport 2002a), the script
of this module starts with LOCAL INSTANCE Naturals, thereby instantiating the
module Naturals locally, that is: without exporting any elements from Naturals.
Users of the module Sequences also needing Naturals must incorporate it explicitly.

4.3.2.2 The OpenComRTOS Module Lists

This very small module collects some auxiliary definitions. It starts with the
text EXTENDS Naturals,Sequences to incorporate these modules, and subsequently
declares CONSTANTS PacketData, the set of values allowed in the fields of a packet
(introduced later).

The formal parameter in the operator definitions is arbitrarily named wl , coming
from “waiting list”, but this is mathematically insignificant.

List isEmpty(wl) Δ= wl = 〈〉
List HeadElement(wl) Δ= Head(wl)

List deleteHeadElement(wl) Δ= [i ∈ 1 ..(Len(wl)−1) �→ wl[i + 1]]
List deletePacket(wl, index) Δ= [i ∈ 1 ..(Len(wl)−1) �→ IF i < index THEN wl[i]

ELSE wl[i + 1]]
NoData

Δ= CHOOSE nd : nd /∈ PacketData
EmptyPacket

Δ= [type �→ NoData,RequestingTaskID �→ NoData,

prio �→ NoData,destination �→ NoData,

data �→ NoData]

Compared to the module Sequences, the only new element is the use of a record
structure, namely for EmptyPacket. It defines EmptyPacket to be a function with
domain

{“type”,“RequestingTaskID”,“prio”,“destination”,“data”}.

4.3 Introducing TLA+ By Example 79

The strings in such a set are called the field names of the record. By way of syntactic
sugar, the expression EmptyPacket[“type”] may be written EmptyPacket.type and
so on.

In this example, EmptyPacket maps all field names to NoData.
Packets that are not necessarily empty belong to a set of records that can

be specified as follows. This information will be deducible later from the other
modules, and can be considered as further clarification for these modules:

Packet
Δ= [type : {“SID SendPacket”,“SID ReceivePacket”}∪{NoData},

RequestingTaskID : TaskId∪{NoData},
prio : Priority∪{NoData},
destination : PortId∪{NoData},
data : PacketData∪{NoData}]. (4.1)

Here, TaskId, Priority, PortId are sets defined as constants in the Port module
introduced later. By definition (4.1), each element of the set Packet is a function
specified as follows. The domain is the set of field names specified in (4.1) to
the left of the “:”. The function maps every field name to some value in the set
to the right of the “:” following that field name. For instance, if p ∈ Packet then
p.prio ∈ Priority∪{NoData}.

4.3.3 An Extended Example: The Module Port

Module Port is selected as an example because it consists mainly of the elements
common to all modules at the L1 layer of OpenComRTOS. It represents the
designer’s view of the entity Port.

4.3.3.1 Informal Specification

Tasks synchronize and exchange data via Ports. Tasks and Ports are designated by
their IDs, constituting the sets TaskId and PortId respectively.

A task needing to synchronize issues a Packet to a designated port and thereby
becomes inactive. The Packet can be assigned a send or receive type. As long as
Packets arrived at a Port have the same type, the IDs of the issuing Tasks remain in
a Port waiting list according to priority. When a Packet of different type arrives, its
issuing Task and the Task at the head of the Port waiting list are activated and the
data in the data fields of the Packets of these Tasks are interchanged.

Here, it must be noted that a Packet is identified by the ID of the issuing Task, as
it is preallocated to the Task.

80 4 Basic Formal Specification in TLA+

Furthermore, Packets issued by Tasks do not go directly to the designated Ports,
but their Task ID’s wait according to priority in a Kernel Port waiting list.

It will be somewhat surprising how much detail the formal version of this
informal specification entails.

4.3.3.2 Basic Data Structures

Here, we provide some information that can be useful as a legend to the module as
it is written in TLA+.

The constants of the module Port are the sets TaskId, Priority (numbers), PortId.
The variables of the module Port are listed in the following table. The type

invariant is not in the specification, but is inferred from it. It provides insight in
the structure of the values that may be assumed by the variables, and makes reading
the specification easier. The shorthands in the first column are for later use.

Shorthand Complete variable name and type invariant

RL ReadyList ∈ SUBSET TaskId
KL KernelPortWL ∈ Seq(TaskId)
task task ∈ [TaskId→ [prio : Priority]]
PP PreallocatedPacket ∈ [TaskId→Packet]
PL PortWL ∈ [PortId→Seq(TaskId)]

The variables are put to the following use.

• ReadyList is rather a misnomer, as it not a list but just a set of Task IDs, namely,
of Tasks that are active. Initially, all Tasks are active.

• KernelPortWL is the Kernel waiting list where Tasks that have sent a packet await
treatment according to priority.

• Clearly task is a function that assigns to every Task ID a record indicating its
priority. In particular, if t ∈ TaskId, then task[t].prio ∈ Priority.

• PreallocatedPacket assigns to every Task a Packet, which is a record whose
contents will be changed as needed during its use.

• PortWL assigns to every Port a waiting list, used as explained in the informal
specification, and formalized later.

The initial state is specified as follows:

Init
Δ= ∧ ReadyList = TaskId

∧ KernelPortWL = 〈〉
∧ task ∈ [TaskId→ [prio : Priority]]

∧ PreallocatedPacket = [t ∈ TaskId �→ EmptyPacket]

∧ PortWL = [p ∈ PortId �→ 〈〉].
The ∧ in the first line is for layout. The TLA+ layout conventions are rather self-
explanatory and can also reduce parentheses.

4.3 Introducing TLA+ By Example 81

4.3.3.3 Top-Down Formal Specification

The TLA+ syntax requires that the specifications of operators precede their use.
This usually means that the details precede the overall picture, and the complete
specification is given at the end. For understanding, it is better to start with the
overall picture, which is the Next action and Spec.

Next
Δ= ∨ ∃ t ∈ TaskId : ∃p ∈ PortId : ∨ L0 SendPacket(t ,p)

∨ L0 ReceivePacket(t ,p)

∨ L0 sendreceivePacketService

Spec
Δ= Init∧ [Next]〈task,ReadyList,KernelPortWL,PortWL,PreallocatedPacket〉.

The existential quantifier ∃ is best understood as a means of expanding ∨ over the
elements of the finite sets TaskId and PortId. Here is a small example showing the
principle.

∃x ∈ {a,b} : P(x) ≡ P(a)∨P(b).

In the Next action, we have two kinds of subactions.

(a) First, L0 SendPacket(t ,p) describes the issuing of a Packet by Task t destined
for Port p. Here is the definition.

L0 SendPacket(t ,p) Δ= ∧ t ∈ ReadyList

∧∃pack ∈ [type : {“SID SendPacket”},
Requesting TaskID : {t},prio : {task[t].prio},
destination : {p},data : {NoData}] :

∧ L0 insertPacket(t ,pack)

∧UNCHANGED 〈PortWL, task〉

L0 ReceivePacket(t ,p) is similar, differing only in the type field. Note that the
set of records in this definition contains only one record, as the set corresponding
to each field name is a singleton set. Observe how the Packet inherits its priority
from the issuing Task, and how the specified destination is filled in.

An alternative, perhaps more straightforward style is using LET as shown
next.

L0 SendPacket(t ,p)
Δ= ∧ t ∈ ReadyList

∧LET pack
Δ= [type �→ “SID SendPacket”,

82 4 Basic Formal Specification in TLA+

Requesting TaskID �→ t ,prio �→ task[t].prio,

destination �→ p,data �→ NoData] :

IN L0 insertPacket(t ,pack)

∧UNCHANGED 〈PortWL, task〉

Anyhow, from the UNCHANGED part we deduce that L0 insertPacket(t ,pack)
changes the remaining variables ReadyList,KernelPortWL and Preallocated-
Packet. More specifically, it removes the issuing Task from ReadyList, inserts
this Task’s ID in KernelPortWL according to priority, and puts the specified
content in that Task’s PreallocatedPacket.

The formal specification is simple yet illustrative.

L0 insertPacket(pid,pack) Δ=

∧ ReadyList′ = ReadyList\{pid}
∧ KernelPortWL′ = IF List isEmpty(KernelPortWL)

THEN 〈pid〉
ELSE List insertPacket(KernelPortWL,pid,pack)

∧ PreallocatedPacket′ = [PreallocatedPacket EXCEPT ![pid] = pack].

As a clarification for ReadyList\{pid}, we note that S\T is the set of elements
of set S that are not in T .

For given non-empty list wl (of Packet identifiers), pPacket identifier pid
and Packet pack, the value of List insertPacket(wl,pid,pack) is the list wl
in which pid is inserted according to the priority of pack. Recall that the
Task identifiers are used as Packet identifiers, considering that each Task
has its preallocated Packet. Note how the conditional expression checks for
emptyness. More elegant would have been doing this check inside the definition
of List insertPacket(wl,pid,pack).

A new construct is the expression [PreallocatedPacket EXCEPT ![pid] =
pack]. In general, [f EXCEPT ![d] = e] denotes a function equal to f , except
that it maps the domain value d to the value of e. The expression shown is an
example.

(b) Second, L0 sendreceivePacketService specifies the rendezvous behaviour.
A Packet (Task) identifier is removed from the head of the KernelPortWL
and processed as follows according to the PortWL of the destination port. If
this PortWL is empty, the identifier is placed there. Otherwise, if the type
of the Packet matches that of the head of PortWL, it is inserted according
to priority. If the types differ, “rendezvous” takes place: both Tasks involved
are activated (placed in ReadyList by L0 MakeTaskReady) and the data fields

4.3 Introducing TLA+ By Example 83

Fig. 4.1 Rendezvous in SendReceivePacketService

of their PreallocatedPacket interchanged. The definition is given in Fig. 4.1,
where we use the following abbreviations:

KL for KernelPortWL
PL for PortWL
PP for PreallocatedPacket
Ins for List insertPacket

Head for List HeadElement
Tail for List deleteHeadElement

ReqID for RequestingTaskID

to improve the synoptic view and thereby legibility. Also for legibility, in Fig. 4.1
we wrote the action RL′ = RL∪{p.ReqID,PP[Head(PL[d])].ReqID}, which is
equivalent to the action L0 MakeTaskReady(p.ReqID,PP[Head(PL[d])].ReqID)
actually written in the module Port.

4.3.3.4 A Final Detail

One of the low-level operators to mention here is List insertPacket, as it the only
nontrivial component of Port not yet formally defined in the preceding description.
It also illustrates one more TLA+ construct, namely the use of CASE. Informally: for
given nonempty list wl (of Packet identifiers), Packet identifier pid and Packet pack,

84 4 Basic Formal Specification in TLA+

the value of List insertPacket(wl,pid,pack) is the list wl in which pid is inserted
according to the priority of pack. Here is the formal description.

List insertPacket(wl,pid,pack) Δ=

CASE pack.prio≤ PP[wl[1]].prio→
[i ∈ 1 ..(Len(wl)+ 1) �→ IF i = 1 THEN pid ELSE wl[i −1]]

� pack.prio≥ PP[wl[Len(wl)]].prio→
[i ∈ 1 ..(Len(wl)+ 1) �→ IF i = (Len(wl)+ 1) THEN pid ELSE wl[i]]

� OTHER→ [i ∈ 1 ..(Len(wl)+ 1) �→
CASE i = 1→ wl[1]

� i = Len(wl)+ 1→ wl[i −1]

� OTHER→ IF pack.prio > PP[wl[i]].prio

THEN wl[i]

ELSE IF pack.prio > PP[wl[i −1]].prio

THEN pid

ELSE wl[i −1]]

The CASE construct is a conditional expression. The general form is

CASE p0→ e0 � p1→ e1 � · · · � pn−1→ en−1 � OTHER→ ee

where the various pi are propositions whereas the various ei and ee are any
expressions. The value of the construct is one of the ei for which pi holds; if none
of the ei holds, the value is ee.

4.3.3.5 Checking Potential Issues in the Module

Here are some typical potential issues that were submitted to the model checker
when verifying Port. Note that while we speak of “issues”, in formal modelling
terms what is checked are properties of the system that must hold at all time,
and hence called “invariants”. They were bundled together (using ∧) to a state
proposition somewhat arbitrarily called TypeInvariant, and submitted as

THEOREM Spec⇒ TypeInvariant.

Here are some components of TypeInvariant, preceded by their informal state-
ment.

(1) There are never more Tasks in the ready list than in the system.

Cardinality(ReadyList)≤ Cardinality(TaskId).

4.4 Conclusion 85

(2) There are never more Tasks in a Port’s waiting list than in the system.

∀ p ∈ PortId : Len(PortWL[p])≤ Cardinality(TaskId).

(3) All Tasks waiting at a Port have the same type.

∀ p ∈ PortId : ∀ i , j ∈ 1 ..Len(PL[p]) : PP[PL[p][i]].type = PP[PL[p][j]].type.

(4) All Tasks at the Kernel Port are valid Tasks.

∀ i ∈ 1 ..Len(KernelPortWL) : KernelPortWL[i] ∈ TaskId.

(5) All Tasks at the Kernel Port are sorted by priority. Formally, with shorthands:

∀ i , j ∈ 1 ..Len(KL) : (i ≤ j)⇒ (PP[KL[i]].prio ≤ PP[KL[j]].prio).

(6) All Tasks at a PortWL are identified with their TaskId.

∀ p ∈ PortId : ∀ i ∈ 1 ..Len(PortWL[p]) : PortWL[p][i] ∈ TaskId.

(7) All Tasks at a Port are sorted by priority. Formally, with shorthands:

∀ p ∈ PortId : ∀ i , j ∈ 1 ..Len(PL[p]) :

(i ≤ j)⇒ (PP[PL[p][i]].prio ≤ PP[PL[p][j]].prio).

(8) No Task waiting for a Port can be ready.

∀ p ∈ PortId : ∀ i ∈ 1 ..Len(PortWL[p]) : PortWL[p][i] /∈ ReadyList.

(9) No Task on the ready list can be waiting at a Port.

∀ t ∈ ReadyList : ∀ p ∈ PortId : ∀ i ∈ 1 ..Len(PortWL[p]) : PortWL[p][i] �= t .

These are just examples of what kind of properties can be checked and how they
can be formulated in TLA+.

4.4 Conclusion

In this chapter, we have achieved two goals:

(a) The primary goal was introducing a sufficiently large and representative subset
of TLA+ by way of relatively simple examples. The Port module gave the
opportunity to present the most frequently used constructs of TLA+.

86 4 Basic Formal Specification in TLA+

Readers interested in a systematic overview of TLA+ from the language view-
point are referred to Appendix B,which also exposes some of the mathematics
relevant to the semantics of TLA+ and to writing specifications with temporal
operators.

(b) This chapter also gave an introduction to a representative entity of OpenComR-
TOS together with the associated key concepts and terminology.
Other OpenComRTOS entities will be introduced and discussed in subsequent
chapters.

Part III
OpenComRTOS Design

Chapter 5
Formal Modelling of the RTOS Entities

5.1 Introduction

This chapter describes the formal TLA+ models of the OpenComRTOS Layer 1
Interaction Entities (L1-Entities). The L1-Entities represent the API (Application
Programmer’s Interface) of OpenComRTOS used by the Task entities to build up
the application. There are also so-called Layer 0 entities but these are not accessible
to the user. The L1 Entities are also all derived from a common so-called Hub Entity.
As we will see later, the L1-Entities represent services the operating system offers
to the user. The L1-Entities names represent the type of service they provide. For
instance the L1-Entity ‘Port’ offers a mechanism to exchange data between two
Tasks. OpenComRTOS (Version 1.1) offers the following L1-Entities:

• Port – A rather generic Hub Entity to exchange Packets between Tasks.
• Event – A (binary) Event Entity to synchronise a Task through a single Boolean

Event with another Task. Typically, also used by a specific hardware peripheral
to signal the occurrence of a hardware event to its driver task.

• Semaphore – An Entity used to synchronise tasks based on counting Events.
• Resource – An Entity used to provide exclusive ownership of a logical resource.
• Memory Pool – An Entity providing exclusive ownership of memory blocks of a

predefined size.
• Packet Pool – An Entity providing exclusive ownership of Packets.
• FIFO – An Entity used to pass fixed size data in a buffered way between Tasks.

For the construction of high reliable OpenComRTOS applications the correct
functionality of the L1-Entities is crucial. This is one of the reasons why we
used formal modelling to derive the specifications for the L1-Entities before
implementing them. A specification describes the properties of a system. Deriving a
correct and complete specification is a difficult task which may take as long or even
longer than the actual implementation. The process of deriving a specification for a

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 5,
© Springer Science+Business Media, LLC 2011

89

90 5 Formal Modelling of the RTOS Entities

system from its requirements leads to better understanding of the system. After this
effort the implementation becomes in many cases trivial. Therefore, it is a good idea
to always derive a specification of a system before implementing it!

Formal models can support checking the correct operation and use of an entity
only at a specific level of abstraction. Therefore, a formal model may not hold when
applied at a different level of abstraction. For example, the models of OpenComR-
TOS L1-Entities are not written in and not meant to be C code. Any implementation
language can be used, although C is most often the one used for embedded systems.
The reason for this is that thinking immediately in an implementation language like
C restricts the thinking and will most likely not result in new insights about the
system to be specified. To phrase it more directly, when modelling the specification
with C one is not deriving a specification but is already implementing and the
exercise looses its purpose. The models are only specifications which allow us to
check the properties of the system. Nevertheless, one of the modelling goals was
to be as close as possible to the implementation. Only a high degree of similarity
between the simulation model and the implementation allowed us to transfer the
proven properties of the formal model to the system implementation.

To discuss the complete TLA+ model of all OpenComRTOS L1-Entities in detail
would exceed the scope of this chapter. Therefore, we concentrate on the TLA+

model of the Semaphore-Entity. We chose the Semaphore as example, because it
is a well known synchronisation primitive with no extra functionality. Furthermore,
the complexity of the model is such that some finer points of the modelling process
can be shown without occupying too much space in this book.

The discussion starts by introducing the base concepts used throughout the
TLA+ models of the L1-Entities. Together with the list model given previously
(Sect. 4.3.2), these concepts build the foundation to understand the Semaphore
model discussed in Sect. 5.3. The model is introduced by stating constraints, model
functionality and proof obligations. After this introductory background, the TLA+

model is discussed in detail. The chapter ends with some conclusions.

5.2 OpenComRTOS Environment Model

This section introduces functions and variables which represent the environment
of the L1-Entities models. These functions and variables therefore represent the
OpenComRTOS core.

It is impossible to model the complete OpenComRTOS system with a single
model, because the complexity is too high for a meaningful model. We consider
a model to be meaningful if the proven model properties also hold for the
implementation. To come around this problem, we used the divide and conquer
approach and split the system into smaller, more or less orthogonal parts which

5.2 OpenComRTOS Environment Model 91

could be modelled. However, the drawback of this method is that the state system
as a whole is not reflected in the models. To overcome this, we modelled the
system state using TLA+ actions and variables. This approach also simplifies
the development of the models for the individual L1-Entities, because it provides
the templates to develop the specific models while promoting reuse.

5.2.1 Term Definitions

This section discusses how the OpenComRTOS entities are expressed in TLA+.
First, we define the base terms of the L1 TLA+ models. These terms describe how
OpenComRTOS entities are mapped onto TLA+ expressions. The following list
defines the terms used in the TLA+ models of the L1-Entities:

• Task – Entity which is represented as a record with a unique ID.
• Packet – Entity which is used to model interactions between Tasks and Kernel

services. Section 5.2.4 gives the details of the L1-Packet.
• List – Is a sequence of packet IDs. Each preallocated Packet has the same ID

as the Task to which it belongs. Due to the high usage of Lists throughout the
OpenComRTOS Kernel the model of this element will be detailed in Sect. 4.3.2.

• Kernel (Task) – Represented by actions and system variables (Kernel Port
WL, etc.).

• Waiting List (further called WL) – List sorted according to priority, highest
priority first. If a Packet is in a WL, then the Task, which has sent it, is waiting,
as the Packet acts like a placeholder for the Task’s state.

• Ready List – A set of TaskIDs. If the TaskID of a Task is in a Ready List then
this Task is active1.

5.2.2 Constants

The OpenComRTOS TLA+ models make use of the following constants:

• Priority – set of natural numbers. The priority field of each Task is assigned a
value from this set.

• TaskId – set of all Task IDs. The cardinality of this set is equal to the amount of
Tasks in the system.

• PacketData – a set which represents the data part of a Packet. When a data
transfer occurs then a packet takes a value from this set.

1This is called a Ready List because the implementation will use a priority ordered list, but for the
formal model, the behavior is priority independent, hence Set is sufficient reducing the state space.

92 5 Formal Modelling of the RTOS Entities

• NoData – empty element. It is used when the Packet carries no valid data or
when the Packet is used without data transfer.

5.2.3 Variables Representing the System State

The system variables represent the system state. The following list describes the
System variables in more detail:

• task – record. At this stage of the model development, it consists only of a field
named priority.

• ReadyList – set of active tasks. Contains the IDs of all active tasks.
• KernelPortWL – List which contains the Ids of all waiting tasks that sent a

request to a Kernel Port.
• PreallocatedPacket – Packet function. The domain of this function is the set of

all task IDs, i.e. the Ids of all tasks in the system (constant TaskId). The range of
this function is the set of packets. Each task has one Preallocated Packet. The ID
of the Preallocated Packet is equal to the Task ID, that owns it.

5.2.4 The L1-Packet

OpenComRTOS uses L1-Packets throughout the system to communicate between
different entities. All interactions are L1-Packet exchanges. An L1-Packet consists
of these fields:

• type – Packet type, can be one of the these three values:

– SID SendPacket – marks this packet as one which is sent, its content will be
copied to the corresponding packet of type SID ReceivePacket .

– SID ReceivePacket – this packet will get the data from the packet with the
type SID SendPacket .

– NoData – this means that the Packet is currently not in use.

• RequestingTaskID – the ID of the task which has sent a request to an L1-Entity.
RequestingTaskID is an element of the TaskID set.

• prio – the priority of the task which has sent a packet. Field prio is an element of
the Priority set.

• destination – the ID of destination L1 Entity.
• data – contains the data to be transferred. This field can be empty when it is

not necessary for the desired interaction. For instance to signal a Semaphore
(increment its count) all the Semaphore Entity needs to know is that this packet
represents a request to increment its count. This is encoded by setting the type of
the packet to SID SendPacket .

5.3 Formal Model of the Semaphore-Entity 93

5.2.4.1 Sending and Receiving Packets

OpenComRTOS Tasks communicate with the L1-Entities by exchanging
L1-Packets with them. There are two types of requests a task can send to an
L1-Entity: SendPacket or ReceivePacket, which represent the necessary symmetry
of actions. In the TLA+ models, these two types of requests are represented by the
user actions: L1 SendPacket(t ,p), L1 ReceivePacket(t ,p). Where t is the ID of
the Task and p is the ID of the Entity. These actions generate a Packet (send request
or receive request) and input them into the Kernel InputPort WL.

5.2.4.2 Making a Task Ready to Run

This function marks either one or two tasks as being ready to run, i.e the Kernel is
now able to schedule them:

L1 MakeTaskReady(t1, t2) Δ=

∧ReadyList ′ = IF t2 = NoData

THEN ReadyList ∪ t1

ELSE ReadyList ∪ t1, t2 (5.1)

5.2.5 General Constraint for All Models

A system based on OpenComRTOS always has at least one active task. Therefore
it was necessary to add a constraint which ensures that this applies to the models as
well. In essence this constraint avoids the occurrence of a deadlock. Such a deadlock
condition can be present in all models, because the checker generates all possible
variants and we can have the situation that all tasks sent a request of the same type.
The problem is that in order to synchronize and make further progress a pair, i.e.
two Packets of complementary type are needed. In the situation, described earlier it
is impossible to find a matching pair, therefore no synchronization happens and no
further progress is possible, a classical deadlock. At the application level it is the
responsibility of the developer to assure that deadlocks cannot happen.

5.3 Formal Model of the Semaphore-Entity

This section details the formal modelling process using the Semaphore-Entity as
example.

94 5 Formal Modelling of the RTOS Entities

5.3.1 Constants

1. SemaphoreId – this is a set which contains the IDs of all L1-Semaphores in the
system. The cardinality of this set is the amount of L1-Semaphores in the system.

2. System constants, as defined in Sect. 5.2.2.

5.3.2 Variables

1. SemaphoreWL – this is a list containing the Packets which contain requests for
this specific Semaphore-Entity. The Tasks which sent these request packets are
not ready to run.

2. Count – this is an array which contains the count of each Semaphore defined in
the set SemaphoreId .

3. System variables, as defined in Sect. 5.2.3.

The following services are used to interact with a Semaphore:

1. L1 SignalSemaService – this service increments the Semaphore Count
2. L1 TestSemaService – this service decrements the Semaphore Count.

5.3.3 Initialisation

The initialisation should bring the model into the following state:

• All task IDs are in the Ready List (that means all tasks are in thee active state).
This implies, all tasks are ready to run.

• All Preallocated Packets are empty.
• All Waiting Lists are empty.
• The Semaphore Count of each Semaphore is zero.

The following TLA statement establishes this initialisation:

Init Δ= ∧ReadyList = TaskId

∧task ∈ [TaskId → [prio : Priority]]

∧PreallocatedPacket = [t ∈TaskId �→ EmptyPacket]

∧KernelPortWL = 〈〉
∧SemaphoreWL = [e ∈ SeamphoreID �→ 〈〉]
∧Count = [e ∈ SeamphoreID �→ 0] (5.2)

After initialization each task can send either SID SendPacket or SID ReceivePacket
to the Kernel-Input-Port.

5.3 Formal Model of the Semaphore-Entity 95

5.3.4 Signalling the Semaphore

If a task sent a request of type SID SendPacket then this results in the invocation
of L1 SignalSemaService. The specification of L1 SignalSemaService in plain
English:

• If the Semaphore Waiting list is empty the Semaphore count is incremented. The
requesting Task is put on the Ready List again.

• If the Semaphore Waiting List contains a Packet of type SID ReceivePacket,
i.e. a Task is waiting to be signalled from this Semaphore, then we fulfilled the
synchronisation predicate. Both Tasks become active again, i.e. both Tasks get
inserted into the Ready List. The Semaphore Count does not get modified.

The previously given specification results in the following TLA statements,
representing L1 SignalSemaService.

The first condition which must be fulfilled in order for the service to be performed
is that there is a Packet in the Kernel Port Waiting List:

¬List isEmpty(KernelPortWL) (5.3)

The second precondition is that this packet must be of type “SID SendPacket”. As
all packets in the model are stored in the array PreallocatedPaket , each task has a
packet in this array, the ID of the task acting as index. All Waiting Lists just store
the TaskID instead of a packet itself. The resulting statement is therefore:

PreallocatedPacket [List HeadElement(KernelPortWL)].type =

“SID SendPacket” (5.4)

Next the model determines the number of times the Semaphore has been sig-
nalled after completing this operation (Count ′). If the Semaphore Waiting List
(SemaphoreWL) of this Semaphore does not contain any entries then Count is
incremented by one (Count ′ = @+ 1), otherwise Count stays the same.

Count ′ = IF List isEmpty(SemaphoreWL[

PreallocatedPacket [List HeadElement(

KernelPortWL)].destination])

THEN [Count EXCEPT

![PreallocatedPacket [List HeadElement(

KernelPortWL)].destination] = @+ 1]

ELSE Count (5.5)

96 5 Formal Modelling of the RTOS Entities

This statement calculates the entries of the Semaphore Waiting List after the
operation has completed:

If the Semaphore Waiting List (SemaphoreWL) is empty, all that happens is
that Count is incremented by one. If there are entries in the SemaphoreWL, which
are always packets which try to test the semaphore, the first element of the list is
removed from the SemaphoreWL using the function List deleteHeadElement(),
because subsequently the corresponding Task will be marked are runnable again:

∧SemaphoreWL′ = IF List isEmpty(SemaphoreWL[PreallocatedPacket [

List HeadElement(KernelPortWL)].destination])

THEN SemaphoreWL

ELSE [SemaphoreWL EXCEPT

![PreallocatedPacket [List HeadElement(KernelPortWL)].

destination] = List deleteHeadElement(

SemaphoreWL[PreallocatedPacket [List HeadElement(

KernelPortWL)].destination])] (5.6)

After this operation completes the currently handled packet is removed from the
Kernel Port Waiting List (KernelPortWL):

KernelPortWL′ = List deleteHeadElement(KernelPortWL) (5.7)

The Task that sent the Packet signalling the Semaphore is always ready to run after
this service has completed:

L0 MakeTaskReady(PreallocatedPacket [List HeadElement(

KernelPortWL)].RequestingTaskID ,NoData) (5.8)

The service does not change the contents of the arrays, PreallocatedPacket and
task :

UNCHANGED〈PreallocatedPacket , task〉 (5.9)

Equation (5.10) on page 97 is the uncommented version of the model.

L1 SignalSemaService Δ=

∧¬List isEmpty(KernelPortWL)

∧PreallocatedPacket [List HeadElement(KernelPortWL)].type =

“SID SendPacket”

∧Count ′ = IF List isEmpty(SemaphoreWL[

5.3 Formal Model of the Semaphore-Entity 97

PreallocatedPacket [List HeadElement(

KernelPortWL)].destination])

THEN [Count EXCEPT

![PreallocatedPacket [List HeadElement(

KernelPortWL)].destination] = @+ 1]

ELSE Count

∧SemaphoreWL′ = IF List isEmpty(SemaphoreWL[PreallocatedPacket [

List HeadElement(KernelPortWL)].destination])

THEN SemaphoreWL

ELSE [SemaphoreWL EXCEPT

![PreallocatedPacket [List HeadElement(KernelPortWL)].

destination] = List deleteHeadElement(

SemaphoreWL[PreallocatedPacket [List HeadElement(

KernelPortWL)].destination])]

∧KernelPortWL′ = List deleteHeadElement(KernelPortWL)

∧L0 MakeTaskReady(PreallocatedPacket [List HeadElement(

KernelPortWL)].RequestingTaskID ,NoData)

∧UNCHANGED〈PreallocatedPacket , task〉 (5.10)

5.3.5 Testing the Semaphore

If a Task sent a request of type SID ReceivePacket the operation L1 TestSema-
Service is invoked. Its specification in plain English is:

• If the Semaphore Count is larger than zero, the Semaphore Count is decremented
and the requesting Task is put into the Ready List.

• If the Semaphore Count is zero the Packet is inserted into the Semaphore Waiting
List according to its priority and the Semaphore Count is not modified.

The previous given specification results in the following TLA statements, which
represent the L1 TestSemaService.

One condition which must be fulfilled in order for the service to be performed is
that there is a Packet in the Kernel Port Waiting List:

¬List isEmpty(KernelPortWL) (5.11)

98 5 Formal Modelling of the RTOS Entities

The second precondition is that this packet must be of type “SID ReceivePacket”.
As all packets in the model are stored in the array PreallocatedPaket , each task has
a packet in this array, the ID of the task acting as index. All Waiting Lists just store
the TaskID instead of a packet itself. The resulting statement is therefore:

PreallocatedPacket [List HeadElement(KernelPortWL)].type =

“SID ReceivePacket” (5.12)

The number of times the Semaphore has been signalled may have to be adjusted
once this operation completes. If Count has a value larger than 0 then the
Semaphore is already signalled, and it is necessary to decrement the value of count:
Count ′ = @−1. Otherwise, the value of Count stays the same.

Count ′ = IF Count [PreallocatedPacket [ListHeadElement(

KernelPortWL)].destination] > 0

THEN [Count EXCEPT![PreallocatedPacket [List HeadElement(

KernelPortWL)].destination] = @−1]

ELSE Count (5.13)

This statement counts the entries in the Semaphore Waiting (SemaphoreWL) List
after the operation has completed. If the Semaphore is already signalled, i.e. has
a Count > 0 then the packet does not have to be inserted into the Semaphore
Waiting List. Otherwise, the packet will be inserted into the Kernel Port Waiting
List (KernelPortWL).

SemaphoreWL′ =

IF Count [PreallocatedPacket [List HeadElement(KernelPortWL)].

destination] > 0

THEN;SemaphoreWL

ELSE IF List isEmpty(SemaphoreWL[PreallocatedPacket [

List HeadElement(KernelPortWL)].destination])

THEN [SemaphoreWL EXCEPT ![PreallocatedPacket [

List HeadElement(KernelPortWL)].destination] =

〈List HeadElement(KernelPortWL)〉]
ELSE [SemaphoreWL EXCEPT ![PreallocatedPacket [

List HeadElement(KernelPortWL)].destination] =

List insertPacket(SemaphoreWL[PreallocatedPacket [

5.3 Formal Model of the Semaphore-Entity 99

List HeadElement(KernelPortWL).destination],

List HeadElement(KernelPortWL),

PreallocatedPacket [

List HeadElement(KernelPortWL)])] (5.14)

If after this operation the length of the Semaphore Waiting List (SemaphoreWL′)
has been reduced, then make the Task ready which sent the Packet that got taken off
the SemaphoreWL. Otherwise, mark ReadyList as being unchanged.

IF Len(SemaphoreWL′[PreallocatedPacket [List HeadElement(

KernelPortWL)].destination]) < Len(SemaphoreWL[

PreallocatedPacket [List HeadElement(KernelPortWL)].destination])

THEN L0 MakeTaskReady(PreallocatedPacket [List HeadElement(

KernelPortWL)].RequestingTaskID ,NoData)

ELSE UNCHANGEDReadyList (5.15)

After this operation completes the currently handled Packet is removed from the
Kernel Port Waiting List (KernelPortWL):

KernelPortWL′ = List deleteHeadElement(KenrelPortWL) (5.16)

Identify that this operation modifies neither PreallocatedPackets nor task .

UNCHANGED〈PreallocatedPacket , task〉 (5.17)

Equation (5.18) on page 100 is the uncommented version of the model.

L1 TestSemaService
Δ=

∧¬List isEmpty(KernelPortWL)

∧PreallocatedPacket [List HeadElement(KernelPortWL)].type =

“SID ReceivePacket”

∧SemaphoreWL′ =

IF Count [PreallocatedPacket [List HeadElement(KernelPortWL)].

destination] > 0

THEN SemaphoreWL

ELSE IF List isEmpty(SemaphoreWL[PreallocatedPacket [

List HeadElement(KernelPortWL)].destination])

THEN[SemaphoreWL EXCEPT ![PreallocatedPacket [

100 5 Formal Modelling of the RTOS Entities

List HeadElement(KernelPortWL)].destination] =

〈List HeadElement(KernelPortWL)〉]
ELSE[SemaphoreWL EXCEPT ![PreallocatedPacket [

List HeadElement(KernelPortWL)].destination] =

List insertPacket(SemaphoreWL[PreallocatedPacket [

List HeadElement(KernelPortWL).destination],

List HeadElement(KernelPortWL),

PreallocatedPacket [List HeadElement(KernelPortWL)])]

∧Count ′ = IF Count [PreallocatedPacket [ListHeadElement(

KernelPortWL)].destination] > 0

THEN [CountEXCEPT![PreallocatedPacket [List HeadElement(

KernelPortWL)].destination] = @−1]

ELSE Count

∧KernelPortWL′ = List deleteHeadElement(KenrelPortWL)

∧IF Len(SemaphoreWL′ [PreallocatedPacket [List HeadElement(

KernelPortWL)].destination]) < Len(SemaphoreWL[

PreallocatedPacket [List HeadElement(KernelPortWL)].destination])

THEN L0 MakeTaskReady(PreallocatedPacket [List HeadElement(

KernelPortWL)].RequestingTaskID ,NoData)

ELSE UNCHANGEDReadyList

∧UNCHANGED 〈PreallocatedPacket , task〉 (5.18)

5.3.6 Constraints

There are two constraints placed onto the Semaphore Model. The first constraint is
that there always must be at least one entry on the ReadyList. This guards against
the case that all tasks decided to Test a semaphore and thus the system cannot make
any progress, i.e. deadlocks. In real life it is the task of the developer to ensure this.
The second constraint is that a Semaphore is not signalled more than Limit times,
this is employed to ensure that the state space does not explode, because without
this the maximum value of count is ∞.

Constr Δ= ∧Cardinality(ReadyList) > 0

∧∀s ∈ SemaphoreId : Count [s] < Limit (5.19)

5.3 Formal Model of the Semaphore-Entity 101

The TLA+ syntax requires that the specifications of operators precede their use.
This usually means that the details precede the overall picture, and the complete
specification is given at the end. For understanding, it is better to start with the
overall picture, which is the Next action and Spec.

5.3.7 Defining the Next State

TLA executes the operation called Next to determine the next state of the model.
Here the previously defined actions get combined:

Next
Δ= ∨ ∃ t ∈ tId : ∃p ∈ SemaphoreId :

∨ L1 SendPacket(t ,p)

∨ L1 ReceivePacket(t ,p)

∨ L1 SignalSemaService

∨ L1 TestSemaService (5.20)

Spec Δ= Init ∧ [Next]〈task ,ReadyList ,Count ,KernelPortWL,

SemaphoreWL,PreallocatedPacket

〉

(5.21)

5.3.8 Properties to Check

This section lists the (invariant) properties which the model of the Semaphore must
have. In Sect. 5.3.9 these are translated to TLA proof obligations. Some of the
invariant properties checked for are:

1. There are never more task IDs on the ready list than there are Tasks in the
system.

2. There are never more task IDs in a Semaphore waiting list then there are Tasks
in the system.

3. All Tasks which are waiting on a Semaphore waiting list are of the same type.
4. All Tasks which issue requests to the Kernel Task are valid Tasks, i.e. the Kernel

Port Waiting List must only contain TaskIds.
5. All requests on the Kernel Port are sorted in order of their priority.
6. All entries of the Semaphore Waiting Lists must be valid TaskIds.
7. All Semaphore requests are sorted in order of the priority of the issuing Tasks.
8. No Task waiting for a Semaphore can be ready, i.e. it cannot be on the Ready

List.
9. No Task on the ready list can be waiting for a Semaphore.

102 5 Formal Modelling of the RTOS Entities

10. Any Task that is ready cannot be on the Semaphore waiting list, i.e. no task ID
on the Ready List may at the same time be on any Semaphore waiting list.

11. The Semaphore Waiting List must be empty whenever the semaphore Count is
larger than zero.

12. Only Packets of type “SID ReceivePacket” are allowed on the waiting list, i.e.
Packets to signal the Semaphore must never be put on the Semaphore Waiting
List.

5.3.9 Proof Obligations

The following lists the proof obligations, derived from the properties listed in
Sect. 5.3.8, for the Semaphore model:

1. There are never more task IDs on the Ready List than there are Tasks in the
system:

Cardinality(ReadyList) ≤ Cardinality(TaskId) (5.22)

2. There are never more task IDs in a Semaphore Waiting List then there are Tasks
in the system:

∀p ∈ SemaphoreId : Len(SemaphoreWL[p]) ≤ Cardinality(TaskId) (5.23)

3. All Tasks which are waiting on a Semaphore Waiting List are of the same type:

∀p ∈ SemaphoreId :

∀i , j ∈ 1..Len(SemaphoreWL[p]) :

PreallocatedPacket [SemaphoreWL[p][i]].type =

PreallocatedPacket [SemaphoreWL[p][j]].type (5.24)

4. All Tasks which issue requests to the Kernel Task are valid Tasks, i.e the Kernel
Port Waiting List must only contain TaskIds2:

∀i ∈ 1..Len(KernelPortWL) : KernelPortWL[i] ∈ TaskId (5.25)

5. All requests on the Kernel Port are sorted in order of their priority:

∀i , j ∈ 1..Len(KernelPortWL) :

(i ≤ k) =⇒ (PreallocatedPacket [KernelPortWL[i]].prio ≤
PreallocatedPacket [KernelPortWL[j]].prio) (5.26)

2How safe is this statement if we use integers to differentiate Tasks and Packets, and other things?

5.3 Formal Model of the Semaphore-Entity 103

6. All entries of the Semaphore Waiting Lists must be valid TaskIds:

∀p ∈ SemaphoreId :

∀i ∈ 1..Len(SemaphoreWL[p]) : SemaphoreWL[p][i] ∈TaskId (5.27)

7. All Semaphore requests are sorted in order of the priority of the issuing Tasks:

∀p ∈ SemaphoreId :

∀i , j ∈ 1..Len(SemaphoreWL[p]) :

(i ≤ j) =⇒ (PreallocatedPacket [SemaphoreWL[p][i]].prio ≤
PreallocatedPacket [SemaphoreWL[p][j]].prio) (5.28)

8. No Task waiting for a Semaphore can be ready, i.e. it cannot be on the Ready
List:

∀p ∈ SemaphoreId :

∀i ∈ 1..Len(SemaphoreWL[p]) :

SemaphoreWL[p][i] �∈ReadyList (5.29)

9. No Task on the Ready List can be waiting for a Semaphore:

∀t ∈ ReadyList : ∀p ∈ SemaphoreId :

∀i ∈ 1..Len(SemaphoreWL[p]) : SemaphoreWL[p][i] �= t (5.30)

10. Any Task that is ready cannot be on the Semaphore Waiting List, i.e. no task ID
on the ReadyList may at the same time be on any Semaphore Waiting List:

∀t ∈ TaskId

(t ∈ ReadyList) =⇒ (∀i ∈ SemaphoreId : ∀j ∈ 1..Len(SemaphoreWL[i]) :

PreallocatedPacket[SemaphoreWL[i][j]].RequestingTaskID �= t)∨
(∀i ∈ 1..Len(KernelPortWL) :

PreallocatedPacket[KernelPortWL[i]].RequestingTaskID �= t)

(5.31)

11. The Semaphore Waiting List must be empty whenever the Semaphore Count is
larger than zero:

∀e ∈ SemaphoreId :

(Count [e] > 0) =⇒ (Len(SemaphoreWL[e]) = 0) (5.32)

104 5 Formal Modelling of the RTOS Entities

12. Only Packets of type “SID ReceivePacket” are allowed on the Waiting List, i.e.
Packets to signal the Semaphore must never be put on the Semaphore Waiting
List:

∀e ∈ SemaphoreId :

List isEmpty(SemaphoreWL[e]) =⇒
(∀i ∈ 1..Len(SemaphoreWL[e]) :

PreallocatedPacket [SemaphoreWL[e][i]].type = “SID ReceivePacket”

(5.33)

5.3.10 Checking the Models

Before checking a model a correct configuration file (*.cfg) is needed. The
configuration file allows to check model the model with different parameters and
take into account more or less state.

To run TLC for checking the model, enter into model’s directory and type:

java tlc.TLC name

name - name of the TLA model file

Example:
cd Semaphore
java tlc.TLC Semaphore.tla

5.4 Model Verification

Contrary to a typical formal verification approach, in the OpenComRTOS project
formal models were developed prior to any implementation. As such these formal
models were used to support the architectural design for example to discuss the
required properties or the algorithm to be used. The benefit of this approach is
that the engineers have a common abstract model to reason about in absence of
implementation artefacts. In addition, the models were incremental allowing to start
from a simple, very abstract model with few details to one that at the end was very
close to what would be implemented. The benefit was that each incremental model
was already verified before the next slightly more complex one was developed.
This also gave fast turn around times between discussions. Another benefit is that
once the models were finalised a first running implementation was reached in very
short time, basically because most design decisions had already been taken and

5.5 Conclusion 105

improved upon. The resulting code was also very stable and efficient because the
formal modelling resulted in a clean architecture, much cleaner than what can be
obtained with ad-hoc bottom-up coding.

Nevertheless, implementation is to be done in an available programming lan-
guage (ANSI C in our case) using an available compiler. There is no a priori
guarantee that the implementation is still provable. For this reason a reverse
operation was undertaken after implementation: new models were developed that
reflected the implementation and model checked again. Very few issues, mostly
due to implementation choices, were found and given the clean architecture, model
checking of the different entities was straightforward.

5.5 Conclusion

Modelling the OpenComRTOS Entities drives home the point that formal modelling
is a very important part of software development. Invariant properties we have
checked with the models prove that the system needs only one waiting list in each
Entity. Furthermore, we showed that the Semaphore does not have deadlock and
matches all properties we required.

But modelling with TLA+ has some drawback. In a system with many constants
or with large valued constants, we experience state explosion and the checker can
not finish the calculation on a PC or any other processing machine.

In view of the above it is clear that verification of the properties of systems must
combine several approaches. The next step of formal modelling of OpenComRTOS
Entities is using automated theorem proving like used in abstract interpretation
approaches (see, for example, Cousot (2008)). In contrast to TLA+ modelling, this
approach is based on symbolic interpretation using axioma’s and theorems. To some
extent, model checkers are sophisticated simulators that traverse the whole concrete
state space and verify that all invariant properties remain valid. In reality, this is
not needed especially when numerical values are processed. For the model checker
every bit in the numeral value corresponds to a different state. In reality, often only
the boundary values can result in a violation of the properties.

Chapter 6
Final Architecture of the RTOS

This chapter discusses the implementation architecture of OpenComRTOS. This is
done by using a small test program, called the Semaphore Loop. It follows a top
down approach by first explaining the Semaphore Loop itself, including a definition
of the Semaphore in terms of OpenComRTOS. This is followed by an explanation of
what happens when a Task sends a request to the OpenComRTOS Kernel, taking as
example the signalling and testing of a Semaphore. This example then is extended
to a system consisting of two processing nodes, connected via a link, each of which
executing part of the Semaphore Loop example. While the logical behaviour is the
same, the resulting changes in the execution are discussed.

6.1 The Building Blocks of OpenComRTOS

Before explaining how the Semaphore Loop works in OpenComRTOS, it is
necessary to first explain the basic elements OpenComRTOS consists of:

1. Tasks – they do the actual work in OpenComRTOS, any computation is
performed in the context of a Task.

2. Hubs – a form of a guarded action. Tasks synchronise and communicate using
intermediate Hubs. Hubs are available in different types like Events, Semaphores,
Resources, FIFOs, Packet and Memory Pools.

3. Packets – while most of the time not directly visible to the application software
engineer, Packets are used in OpenComRTOS as the main datastructure at the
system level.

An OpenComRTOS program is an implementation model of a more abstract
architectural model that is composed of entities and interactions. In OpenComR-
TOS, we mainly have two types of entities: Tasks and Hubs. Tasks are sequential
program segments that can be pre-empted (by a higher priority Task) separated
by de-scheduling points. The latter are points in the execution of a Task where

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 6,
© Springer Science+Business Media, LLC 2011

107

108 6 Final Architecture of the RTOS

Fig. 6.1 A simple OpenComRTOS application using Port Hubs

they can interact with other Tasks through Hubs. Hubs have specific semantics,
mainly consisting of a guarded synchronisation step followed by an action when the
synchronisation predicate has been satisfied. Implementation wise, OpenComRTOS
uses Packets as containers for the synchronisation and communication data.

Figure 6.1 on page 108 depicts an OpenComRTOS application consisting of a
number of Tasks, different Port Hubs and a Packet Pool.

The following sections detail each of these core elements.

6.1.1 The Hub Entity of OpenComRTOS

6.1.1.1 What Is the OpenComRTOS Hub?

Tasks synchronise in a Hub following specific semantics. At an abstract level,
a Hub can be seen as a guarded interaction entity. The functional code for this
behaviour is executed in the context of the Kernel Task (the highest priority Task

6.1 The Building Blocks of OpenComRTOS 109

Fig. 6.2 Hub diagram

in the system) and hence is executed in a protected section guaranteeing state
consistency. OpenComRTOS provides a number of predefined Hubs corresponding
to what is commonly provided in most RTOS, like Events, counting Semaphores,
FIFOs, Resources, Ports, Memory Pools and Packet Pools. In principle, the user
can create his own Hub entities as long as they adhere to the hub semantics. Real-
time constraints however dictate that such Hub functionality must be kept short in
duration as its execution in the context of the Kernel Task impacts on the scheduling
latency of higher priority Tasks.

Figure 6.2 on page 109 is a visual representation of a generic OpenComRTOS
Hub.

6.1.1.2 How a Hub Can Be Used

When programming a concurrent system, there is the implicit assumption that the
program is composed of independent entities, often called processes or Tasks as in
the case of OpenComRTOS. These Tasks also have to interact to achieve a common
behaviour at the system level. While they interact, some information is exchanged.
What OpenComRTOS achieves is that this happens in a target topology independent
way. Therefore, the Hub entities have been decoupled from the interacting Task
entities. The behaviour is exactly the same whether the Tasks and Hubs are placed
on the same processing node or whether they are placed on different nodes. We
call this the logical behaviour. On the other hand, the timing behaviour will differ
but this also applies when e.g. the node processor is changed to another type or is
running with a different clock rate or memory configuration.

110 6 Final Architecture of the RTOS

What type of Hub is used depends on the semantics of the behaviour one wants
to achieve or needs to achieve. For example, a simple synchronisation on a boolean
event can be achieved by using an event Hub. The boolean event semantics however
impose restrictions if the behaviour needs to be consistent at all times. Tasks only
synchronise when the boolean event is true, hence in all other cases, they must block
(“keep waiting”). The semantics also imply that each event is associated with a very
specific condition in time. If this condition can be relaxed, a counting semaphore
can be used. The semaphore counter will “remember” that the event has happened
hence the signalling Task can continue without blocking. On the other hand this
implies that all semaphore events are “equal” and no assumption should be made on
when the semaphore was signalled.

The Hub entities can provide more complex semantics as well. For example, with
a FIFO Hub data will be transferred and buffered until the FIFO buffer is full. Using
a Resource Hub, logical critical sections can be created.

The Hub implementation achieves this as follows: When a Task reaches a
descheduling point, it issues a Kernel service request, for example it wants to signal
a semaphore. While at the application level this looks like a function call, in reality
this function call will use a preallocated Packet, composed of a header and a payload
section. The header fields that are relevant for the service request are filled in and
the Packet is passed on to the Kernel Task. The Kernel Task will become active
(as it has a higher priority) and it was waiting on a service request on its Kernel
input Port (this is the start of the Kernel loop). The Kernel Task will inspect the
Packet header and see that it concerns a particular Hub. The Kernel will inspect the
state of the Hub and verify the synchronisation predicate. For example, if another
Task is waiting on the semaphore to be signalled, then this other Task becomes
active again. If not, the semaphore count is incremented and the signalling Task is
made active again. The semaphore counter allows us to introduce a degree of asyn-
chronous behaviour. At least as long as the maximum counter value has not been
reached.

The table below gives an overview of the standard Hub types supported in
OpenComRTOS. Note that this describes only part of the functionality and only
the case with waiting interaction semantics.

6.1.1.3 The Hub as Generic Programming Concept

As a Hub is a generic entity it has a generic structure. It will have some generic
elements like a waiting list, additional helper variables for extending the generic
behaviour (for example a boolean for event handling, a counter for a semaphore)
and two functions. The first is the synchronisation predicate. It is checked whenever
a service request is made to the Hub. If the synchronisation predicate is true, the
synchronisation action is called. For example, to make the waiting Task active
again. A specific type of Hub is a Port Hub. The Port Hub is used to exchange
Packets between a sending Task and a receiving Task. When a send request and a

6.1 The Building Blocks of OpenComRTOS 111

Request
Hub type type Guard Action

Port Put Waiting Get request Both Task rescheduled,
Packet exchanged

Port Put No waiting Get request Task enters WAIT state
Port Get Waiting Put request Both Tasks rescheduled,

Packet exchanged
Port Get No waiting Put request Task enters WAIT state
Event Put Event = FALSE Event = TRUE, Task

rescheduled
Event Put Event = TRUE Task enters WAIT state
Event Get Event = TRUE Event = FALSE, Task

rescheduled,
Event Get Event = FALSE Task enters WAIT state
Semaphore Signal Semaphore count <MAXINT Semaphore incremented,

Task rescheduled
Semaphore Signal Semaphore count = MAXINT Task enters WAIT state
Semaphore Get Semaphore count >0 Semaphore decremented,

Task rescheduled
Semaphore Get Semaphore count = MAXINT Task enters WAIT state
Resource Lock Resource has no owner Task Task becomes owner,

Task rescheduled
Resource Lock Resource has owner Task Task enters WAIT state,

priority inheritance
applied

Resource Unlock Resource has no owner Task Task rescheduled,
return code RC FAIL

Resource Unlock Resource has owner Task Task rescheduled,
return code RC FAIL
if owner Task different

from self
FIFO Enqueue Count FIF0 entries Task reschedules,

between 1 and maximum data enqueued
FIFO Enqueue Count FIF0 entries = maximum Task enters WAIT state
FIFO Dequeue Count FIF0 entries Task reschedules,

between 1 and maximum data dequeued
FIFO Dequeue Count FIF0 entries = zero Task enter WAIT state
Packet Pool Get Packet available Task reschedules,

Packet removed from
Pool

Packet Pool Get No Packet available Task enters WAIT state
Packet Pool Put Task reschedules,

Packet returned to Pool
Memory Pool Get Memory block available Task reschedules,

block removed from Pool
Memory Pool Get Memory block available Task enters WAIT state
Memory Pool Put Memory block available Task reschedules,

block returned to Pool

112 6 Final Architecture of the RTOS

receive request are both present – we say we have a matching pair – both Tasks are
made active again. The Packets are also used to keep track of the waiting Tasks in
the waiting list. From above, it is trivial to see that by decoupling the Hubs from the
Tasks (and hence also from the Kernel Task even if the Hub functions are executed
in the context of the Kernel Task) and by decoupling the Hub datastructure from
the Hub functions, one can essentially create any type of Hub, independently of the
Kernel Task of OpenComRTOS. It is sufficient to create a Hub with the necessary
helper variables, to define the service request and its semantics and the two Hub
functions. For example, one could create a Hub that when a sensor Task detects
that a certain average temperature has been reached for a certain period of time
(for example by keeping track of the last 3 time-stamped measurements), a function
is called that activates a motor controller Task with specific parameters. What we
witness here is that the OpenComRTOS Hubs allows to develop an application
specific concurrent programming environment. This was made possible because the
formal development gave insight in the architecture and functionality so that the
generic mechanisms could be discovered. As a result, even the Kernel Task does not
need to be recompiled when adding a user defined type of Hub.

6.1.1.4 The Special Case of the Port Hub

In a pure CSP context, processes synchronise using blocking channels. Upon
synchronisation, information can be passed over the channel. The Hub generalises
this concept at several levels:

• Tasks do not need to be blocking, allowing also for non blocking, blocking with
time-out and asynchronous semantics.

• Hubs are decoupled from the Tasks, allowing arbitrary Tasks to synchronise over
a given Hub (we call this N to N semantics).

• Hubs allow to synchronise on any synchronisation predicate as long as it is a
valid boolean expression.

• The resulting action can be any function valid in the application and OpenCom-
RTOS domain.

• Hub interaction is independent of the topology of the underlying node network
and mapping. This is also true for pure CSP as it is an abstract process algebra,
but often not for practical implementations like occam.

The Hub type in OpenComRTOS that comes closest to a CSP channel is called a
Port. Tasks can send a Packet to a Port and Tasks can receive a Packet from a Port.
Whenever there is a matching send–receive pair, synchronisation happens and the
Packet is passed from sender to receiver Task. Note that in the implementation, only
the relevant fields (like the data) are copied while the Packets remain linked with
the original requesting Tasks. Hence, in principle such a Port Hub can be used to
emulate almost any other of the Hub interaction types. If no data is passed, it acts
like an event or semaphore depending on whether synchronous or asynchronous

6.1 The Building Blocks of OpenComRTOS 113

semantics are used. If data is passed as well, it can act like a FIFO Hub. It can even
be used as simple Resource lock by passing a Packet around as a token.

So why create other Hub types as well? The main reason is that when using the
Port Hub, the application developer must add himself the additional semantics and
remember what he wanted to achieve as behaviour. For example, he can add a type
field but that type field has to be tested upon in the receiver Task. Hence, for standard
Hub types, the little extra code in the implementation outweights the drawbacks. The
code becomes more readable and it is easier to generate trusted code automatically.

6.1.2 Tasks

A Task in OpenComRTOS can be compared to a process or thread in common
operating systems. This statement is not fully correct and is only made to give the
reader a rough idea what a Task is. In truth a Task in OpenComRTOS is not a thread,
it is much closer to a CSP Process. In OpenComRTOS, all the application processing
is done in the context of a Task, this means that the Kernel, the drivers and the
user applications are all Tasks. This is comparable with a microkernel architecture,
but given the very small size of the Tasks in OpenComRTOS, one could call it a
nanokernel architecture.

6.1.2.1 The Kernel Task

The Kernel Task is, like most other Tasks, implemented as a never terminating
Task. It waits until an application sends a request (using a Packet) to the Kernel
input Port. The Kernel Task retrieves the Packet from the Kernel input port. If the
Packet is addressed to a local entity the Kernel Task will inspect the Packet and
call the corresponding services, for example to inspect the Hub state and call the
corresponding Hub functions as outlined above for the event and semaphore Hub. If
the entity is on another node in the network, the Kernel router is called to determine
over which link to send the Packet to bring it closer to its destination and then
forwards it to the corresponding link-driver Task.

Although it is possible to develop the RTOS with the Kernel Task not having the
highest priority (e.g. assigning the highest priority to a driver Task), in practice it
simplifies the implementation. In addition, any Task interaction requires the use of
the Kernel Task and assigning it the highest priority will reduce overall latency.

6.1.2.2 Link-Driver Tasks

A link-driver Task controls a point-to-point communication channel, over which
it exchanges Packets with another node which runs OpenComRTOS. This forms
the basis for the Virtual Single Processor Programming model of OpenComRTOS.

114 6 Final Architecture of the RTOS

Such a driver Task is simple as its only function is to receive and to send Packets
over a physical communication medium. Of course, depending on the hardware
this can be rather complex especially if the hardware (often a shared medium in
such cases) handles several simultaneous Packet transfers. In that case the point-to-
point communication is virtual. The benefit is that OpenComRTOS can make use
of almost any type of communication medium, including virtual ones, for example
by tunnelling through existing network infrastructures. This is the case for ethernet
based TCP/IP based communication. Also when shared memory is the communi-
cation medium, OpenComRTOS will use it as set of virtual communication links,
avoiding many of the issues shared memory presents to the developer.

6.1.2.3 Application Tasks

An application Task, sometimes called a user Task, will be specific for a particular
application and hence is often developed for every application specifically, although
the OpenComRTOS development environment allows to define service modules that
can be reused across multiple applications. Application Tasks are, hence, the weak
links in terms of reliability as they are most of the time not formally developed.
Application Tasks are also the ones that need to be composed and scheduled so that
together they achieve the specified behaviour. The sequential code segments can be
verified using standard formal verification tools whereas scheduleability analysis
requires specialised tools that take their input from profiling the application.

6.1.2.4 Idle Task

The idle Task is the lowest priority Task on each processing node. It is automatically
scheduled when none of the other Tasks are all de-scheduled. The system then looks
idling, hence the name. This Task still consumes CPU cycles, but it can be modified
to perform power management Tasks like putting the processor in one of its low
power modes or it can be used with a calibrated loop to indirectly measure the
processor load.

6.1.3 Packets

OpenComRTOS is designed and implemented as a Packet switching system. Packets
are not only used to carry data and information, they are also used to keep track of
the system status and to transfer control from one module to another. Packets are
used consistently at all levels. A Packet in OpenComRTOS consists of a header-
and a data-part. The header-part contains the addresses of the Task that issues the
service request and of the Hub the Task will use to interact with another Task of
with the rest of the system. Each Task in the system has one Packet available which
it can use to issue service requests, hence it is also referred to as a RequestPacket.

6.2 The Semaphore Loop 115

A Task sends each request to the Kernel input Port, after which it is de-scheduled
and the Kernel Task becomes active to process the request. The Kernel Task then
processes the Packet and forwards it to the Hub the Packet is destined to go to. The
Hub functions will be called in the context of the Kernel Task after which the Packet
is returned (with a return code) to the Task that issued the service request.

In case the Hub is located on a different node than the Task that wants to request
a service from the Hub, the Kernel passes the RequestPacket to the corresponding
linkDriver, which translates the Packet into a standardised TransferPacket and
sends it over its link to the destination node. Once at the destination node the
TransferPacket gets translated into a local Packet and injected into the local Kernel
Task. The request is then handled like a local request described above.

The Packet organisation is standardised across all nodes within an OpenCom-
RTOS Virtual Single Processor system. This allows the developer to construct
heterogeneous systems where different types of processors cooperatively work on
one problem.

6.2 The Semaphore Loop

Figure 6.3 on page 115 shows two user Tasks (T1 T2), synchronising using two
semaphores (S1, S2).

Listings 6.1 and 6.2 show the source code for the two Tasks that represent the
semaphore loop in the application Diagram of Fig. 6.3.

Fig. 6.3 Application diagram with all Interactions for the Semaphore Loop

116 6 Final Architecture of the RTOS

�

void T1 (L1_TaskArguments Arguments){
2 while(1) {

L1_SignalSemaphore_W(S1);
4 L1_TestSemaphore_W(S2);

}
6 }
�� �

Listing 6.1 Souce code for Task T1

�

void T2 (L1_TaskArguments Arguments){
2 while(1) {

L1_TestSemaphore_W(S1);
4 L1_SignalSemaphore_W(S2);

}
6 }
�� �

Listing 6.2 Source code for Task T2

Listing 6.1 shows the code for Task T1 which represents T1. The Arguments of
the function call are not used. All the work is done within the infinite loop, starting
from Line 2. The code block signals semaphore S1 before it tests semaphore S1.
Both signalling and testing of the semaphores are done using waiting semantics,
indicated by the postfix ‘_W’.

Listing 6.2 shows the source code for T2 which represents T2. Similarly to T1 the
Task is represented by a function whose parameters are not used. Within the while-
loop, from Line 2 to 5, semaphore S1 is tested before semaphore S2 is signaled.
Again both testing and signalling are done using waiting semantics.

After this high level description of the Semaphore-Loop it is time to
investigate what happens during a system call in OpenComRTOS using
L1_SignalSemaphore_() as example.

6.2.1 The Semaphore Loop in Detail

6.2.1.1 Single Processor Case

A Kernel service request like signalling or testing a semaphore is essentially a de-
scheduling point for the calling Task. What essentially happens then is that the
calling Task issues a function call. In this function call three things happen:

• The call parameters are copied into the Task’s private system Packet.
• The Packet is put into the Kernel input Port (a priority sorted linked list).
• Context is switched to the Kernel Task.

6.2 The Semaphore Loop 117

This mechanism is used consistently when Tasks interact, even when the service
request comes from an Interrupt Service Routine (ISR) that has no context on itself.
In the latter case the Packet is inserted without waiting, imposing the restriction that
only non-waiting services are meaningfully used.

As a result the Kernel Task becomes active and will process all Packets on its
Kernel input Port in order of priority. Note here that we are in a multiprocessor
context and that Packets coming from other processing nodes might have been added
by the driver Tasks. In this case the Kernel will inspect the header fields of the
Packet and determine the Hub and its location in the network. If local, it will verify
the synchronisation function of the Hub and then call the synchronisation action.
As a result, the semaphore count will be incremented. If there was a waiting Task,
the semaphore count will decremented. Depending on the outcome, header fields
are modified (e.g. with a return code), the Packet is inserted in the requesting Task’s
input Port and the Task is made active again. If it is still the highest priority one on
the ready list, the Kernel Task will switch context to it before de-scheduling itself.
When the requesting resumes execution, the service request will return with the
return code.

6.2.1.2 Multiprocessor Case

What happens when the service requests involves Tasks and Hubs on remote
processing nodes? This is actually quite simple. The destination node field (that is
part of the entity’s identifier) is used to look up how the node can be reached. Often,
this simple means that a communication link is returned. The Packet is then inserted
in the Task input Port of the driver Task handling this link and when this driver Task
becomes active it simply copies the Packet into a transfer Packet and puts it onto the
communication link. At the receiving side, the contents will be received into another
local transfer Packet that is then passed on to the Kernel Task input Port and we are
back in the single processor scenario.

6.2.1.3 Why Priority Sorting and the Use of Packets Is Important

In a real-time system, priority is used to determine when a Task will run. In
combination with scheduleability analysis and real-time profiling, this provides for
an effective means to meet hard real-time constraints. There are however a few
real world issues that are not very well covered in the theoretical models. For
example, in single processor systems the use of cache memories will result in time
distribution for the execution time of Tasks. Practically speaking, this means that
often the application becomes soft real-time unless one designs only with the Worst
Case Execution Times (WCET). Given the growing speed gap between CPU’s en
memory (a factor of over 100 on GHz range processors), one can see that for real-
time applications the cache is often better disabled and replaced with local memory
(typically SRAM) that has known (typically fast) timings at all times.

118 6 Final Architecture of the RTOS

In a multiprocessor system, other phenomena will influence the timing behaviour.
Communication media are shared between processing nodes and while in use,
they block other Tasks introducing scheduling delays. Therefore prioritised Packets
provide relief. First of all as Packets have a finite length, the blocking time can be
limited by adjusting the size of the Packet. Smaller Packets will however result in
lower Task-to-Task bandwidths. If in addition, the Packets are transmitted in order
of priority we guarantee that the highest priority Task are never blocked longer than
the time a Packet is transmitted.

Prioritisation is also needed for all waiting lists and Task input Ports (specifically
the Kernel Task) because in a multiprocessor system, service requests can come
from any node. Hence, multiple requests can be present simultaneously. By sorting
them in order of priority, we assure that the highest priority Tasks will always
experience least latencies. A particular requirement for any real-time system is
support for priority inheritance. This will boost temporarily the priority of a Task
that is blocking a high priority Task. While this is trivial to implement in a single
processor RTOS, in a distributed RTOS this will affect the priority of Tasks on other
nodes and requires as well that waiting list are resorted. This is also supported in
OpenComRTOS.

Note that a careful analysis is needed to determine at design time the expected
timings. This is outside the scope of this project. Nevertheless, it is clear that good
profiling can remove many of the uncertainties. It should also be clear that shared
communication media with complex arbitration policies should be avoided as well.
A simple point to point communication is often inherently faster and simpler, hence
using less energy as well.

6.2.2 Heterogeneous Multiprocessor Systems and Their Issues

In the architecture of OpenComRTOS, no assumption is made about the target
system. In principle a system can be composed of several types of processors
that are physically connected over several types of communication media. When
implementing it on real target systems, some dependencies have to be taken into
account:

First of all, given the wide availability of C compilers on embedded targets, a
stable and reliable ANSI-C compiler must be available. Nothing prevents imple-
menting OpenComRTOS using other programming languages, at least as long as
they have themselves no hidden default runtime system.

Data representation differences, while the C datastructures use standard C types,
C compilers will handle them slightly differently from processor to processor. There
is the famous little endian versus big endian issue, but there are also data alignment
issues. All such differences must be taken into account to guarantee the portability
across different compilers and processors but also to guarantee that when Packets
travel across a network of processors, they are interpreted correctly on all.

6.4 Summary 119

An important issue is the communication infrastructure. In order to improve the
real-time behaviour in a distributed system, priorities act system-wide. Hence, while
the communication is Packet based, each Packet carries a priority inherited from
its generating Task. As a result, mainly the communication delay of one Packet
will put a lower boundary on the scheduling latency introduced by interprocessor
communication. A major issue however is that some communication media that can
be shared by multiple processing nodes are blocking or do not allow priority based
arbitration. This is the case for the well known ethernet based communication that
in addition suffers heavily when a certain communication load is surpassed. Note
however that most of these problems disappear when the communication is reduced
to point-to-point connections. The drivers can then perfectly put the Packets in order
of priority, minimising any access conflicts.

6.3 OpenComRTOS Development Process for Applications

Given that OpenComRTOS separates the logical behaviour from the temporal
behaviour, in principle any target processor can be used to develop an application.
For OpenComRTOS two target systems are of particular interest as they can be used
for development, simulation as well as real nodes in a system. These systems are
a port of the RTOS on top of MS Windows (Win32) and Posix (Linux). A typical
development cycle will hence start by developing the program on a single Win32
or Posix node. Additional vertical nodes can be added and Task and Hubs can be
remapped to them. The benefit of developing in such an environment is that it is well
supported by development tools and no harm can be done when an error is made.
Real data input and output can also be simulated using wrapper Tasks. Subsequently
one or more embedded node can be attached to the Win32 or Posix machine and
Tasks and Hubs can be remapped to them. Another benefit of this approach is that
such a Win32 or Posix node can be kept in the system providing “host” services to
the often memory constrained embedded target processors. This allows embedded
nodes for example to read and write files on the host system, to interact with a human
user or to display data graphically. Another benefit is that an OpenComRTOS node
can be accessed across the worldwide internet with no changes to the application
code.

6.4 Summary

In this chapter, we described the implementation architecture of OpenComRTOS. In
particular, we highlighted the use of Packet switching, the generic Hub entity and the
specific Port Hub entity. Differences between single processor and multiprocessor
functionality were discussed and some important issues related to a multiprocessor
implementation were discussed.

Chapter 7
Task Interaction Models in OpenComRTOS

Tasks in OpenComRTOS interact using an intermediate Hub entity. This way the
interaction is decoupled from the Tasks themselves. Different temporal semantics
(waiting, non-waiting, and waiting with timeout) of Tasks synchronization are
formalised. Conclusions are drawn on correct usage confirming the correctness of
the original CSP semantics.

7.1 Introduction

Previous chapters discussed the rationale for developing OpenComRTOS and how
its architecture was developed using formal modelling. In OpenComRTOS, Tasks
represent processing entities and Hubs represent interaction entities. Tasks can only
interact through Hubs, while the Hub entities implement the interactions.

The benefit of this approach is that the Hubs decouple the individual Tasks.
While a Task is an active entity, a Hub is an entity with a predefined behaviour
that mediates between Tasks. By decoupling we mean that a Task does not need
to know about the other Tasks it interacts with. During an interaction a copy of
part of the internal state of a Task is passed or received and this protects the state
of the Tasks. The mechanism is also independent of the location of the Tasks and
of the Hubs in the networked or shared memory multiprocessor system, resulting
in transparent parallel programming. Although Hubs and Tasks reside at specific
memory locations, OpenComRTOS addresses them using their identifying IDs and
not using their address pointers. Similarly, when an entity passes data in memory,
a copy of its values are passed, not the address pointers. Also data is passed using
a copy, although the programmer can if he protects the data accordingly. When
optimising, the program can be adapted to exploit the local property that memory is
shared and hence OpenComRTOS will not prevent software engineers from passing
pointers. Protection can be achieved using resource locking. It is the responsibility
of the developer to ensure their validity. They also must be aware that such optimised
code can no longer safely be scaled to run on multiple processing nodes.

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 7,
© Springer Science+Business Media, LLC 2011

121

122 7 Task Interaction Models in OpenComRTOS

All this results in turning an OpenComRTOS Task into a component. By
combining components it is possible to create more complex systems glued together
by the Hub-interactions. In other words, the interacting entities modelling paradigm
gives us a compositional process view. To use a component, we do not need to have
access to its internal state – it is sufficient to know its interfaces (i.e. the protocols it
obeys).

This view was first formalized in Hoare’s Communicating Sequential Processes
(CSP) process algebra (Hoare 1985b). In CSP, a system is composed of Processes
and Channels. A process executes a possibly infinite number of sequential steps. The
sequences of individual steps (called traces of processes) are separated by channel
communications. A channel communication can be seen as the simplest form of
interaction. It is fully synchronous and when processes synchronize on a channel,
data can be transferred over it. This mechanism is very powerful and provides a
mechanism for formal construction and verification of large systems. However, the
CSP channel communication is simple in its semantics. CSP channels are also time-
agnostic although later on this was remedied with the formulation of Timed CSP
(Davies and Schneider 1989; Dong et al. 2006).

The Hubs generalize the functionality of a CSP channel. The basic functionality
of a Hub is synchronization between Tasks, just like in CSP. A Hub synchronizes
Tasks using a boolean guard that can be a lot more complex. The resulting behaviour
in CSP is to allow each process to continue. This basic behaviour is also present
in the Hub concept. The difference is that a Hub can be specialized because its
behaviour is allowed to be user defined. Specific Hub types (i.e. Event, Semaphore,
FIFO, Resource etc.) define a well defined superset of the basic CSP semantics.
This also allows a Hub to act as an intermediate entity for a larger number of Tasks
whereas a CSP channel is a point-to-point connection between two processes only.
Note that in CSP the behaviour of a Hub can be achieved as well, by inserting a
dedicated intermediate process between Tasks. As discussed, while adequate for
formal modelling, from a programmer’s point of view abstraction is lost as the
mechanism or interaction becomes visible again at the application level.

An important advantage of the Hub is that the interaction behaviour can be
customized. This allows the application designer to express the system in a way
which matches its intended behaviour. For example, the OpenComRTOS kernel pro-
vides standard support for blocking, non-blocking, blocking with a timeout or fully
asynchronous interaction. Application specific Hubs can be created by customizing
the synchronization and action functions, and this is possible without having to
modify the kernel itself. It is also supported by the OpenComRTOS metamodel,
used for code generation and for the visual development of applications. This is
different from traditional approaches, that either require a complete rebuilding of the
kernel, or the creation of a middle-ware layer that emulates the required behaviour
using standardized kernel services.

Using guards before actions makes it amendable to formal reasoning, e.g. by
using TLA (Temporal Logic of Actions) (Lamport 1983). The Hub structure consists
of a logical proposition (the synchronization condition) and the synchronization
action. The synchronization action is invoked once the synchronization condition

7.2 Modelling Task Interaction 123

is true. We expand the Hub model by decomposing the synchronization proposition
into the pre and the post conditions. In this chapter, we also will show the analogy
between Hoare triples {P}C{Q} and the Hub.

Section 7.2 of this chapter expands the semantics of the CSP interprocess
communication by creating a model of Task interactions via intermediate Hub
entities. A sequence of such interactions creates a protocol for intertask interaction.
Section 7.3 explores the time properties of the proposed Task interaction model.
This is followed in Sect. 7.4 with a detailed description of asynchronous interac-
tions. The conclusions and references sections finalize the chapter.

7.2 Modelling Task Interaction

Dividing a system into entities and interactions is not new. It represents the natural
way of human thinking. Accordingly, existing modelling techniques emphasise the
use of objects and their relationships. Currently, the most prominent examples are
Object Oriented Design (OOD) and Object Oriented Programming (OOP) (Booch
et al. 2007). The common object model, that encapsulates the internal properties and
methods, however, pays less attention to the interactions between such objects and
as result its view is fairly static.

Embracing interacting entities as an architectural modelling approach is much
better at expressing the dynamic interactions between objects. By using the term
interaction we express that Tasks take actions in a mutual way, which is often
considered just a side effect of their communication. But the mutual way of actions
does not mean that Tasks perform actions in cooperation toward some predefined
goal. This is the difference to the agent-based approach.

Interactions take place when two or more entities have an effect upon one another.
So, the basic idea of interaction consists of a two-way effect, as opposed to a one-
way causal effect. Figure 7.1 presents such an interaction scheme.

From this simple model follows that an interaction should incorporate at least two
mutually linked actions in opposite directions, named here Action1 and Action2.
A Hub also supports N–N Task interactions scheme.

In this model, an interaction between Tasks is composed of two sub-interactions
between each Task and the intermediate Hub entity. The sub-interaction between
a Task and a Hub also consists of two complementary interactions, that is also
reflected in the layered implementation of OpenComRTOS where Packets are used
to implement the interactions. An interaction is composed of a send–receive pair of
Packets. Each of these send–receive actions can be seen as a request to synchronise
via a Hub followed by an acknowledgement, expressing success or failure of the
interaction (called return values when using function calling). This is an essential
property in the context of embedded real-time systems that must be predictable.
Note, that in other approaches the return values of services are not always considered
or it is assumed, that the interaction is always successful. Hence, many programmers
do not test the return values.

124 7 Task Interaction Models in OpenComRTOS

Fig. 7.1 Task interactions with a Hub

To simplify the analysis, we abstract away these sub-interactions and only
consider the top level Task interactions. Such a Task interaction consists of two
symmetric actions, which we call Put- and Get-actions. These terms are just place
holders for the actual Packets, that are interchanged in the Hub. No interaction order
is implicitly defined in the names. An interaction is hence divided into a matching
pair of Put (that we will call P) and Get (that we call G) actions leading to an
effect S , i.e. the synchronization between Tasks. Note that we do not state anything
regarding action timing and order, nor are any guards attached to these actions.

7.2 Modelling Task Interaction 125

We only express that the mutual actions between two Tasks are mandatory for
synchronization.

(P ∧G)∨ (G ∧P) =⇒ S (7.1)

where ∧ represents the logical AND symbolising that both actions must have
happened for the synchronization S to take place. We use here the concept of action
correspondingly to the TLA definition of (Lamport 2002a, p.16): “an action is an
ordinary mathematical formula, except that it contains primed as well as unprimed
variables... An action is true or false on a step.”

Equation (7.1) follows from one of the design principles of OpenComRTOS –
the symmetry of the synchronization mechanism. The symmetry principle results
in using a synchronisation entity in between Tasks. This principle is used to verify
the properties of OpenComRTOS applications – i.e. for a Task synchronization to
happen (7.1) must be satisfied.

Tasks in a concurrent system have equal communication rights in the system.
Thus by default, there is no master Task, which causes effects upon other Tasks. A
Task sending a Packet to a Hub knows nothing about the other Task(s) interacting
with this Hub, i.e. there is no cause-effect relationship between the interacting Tasks.

The model, defined in (7.1), states that only the mutual actions of two Tasks lead
to its synchronization, and that’s why we classify it as an interaction. An important
case to consider occurs when only one action (Put or Get) happens. If an external
observer detects only the first phase of the interaction, then the synchronization has
started, but has not yet finished. In case of blocking services, the Task which initiated
the action, is prevented from making progress. In other words, the Task has to wait
for the second phase of the interaction. Sometimes this is also called blocking.

Equations (7.2) and (7.3) model the scenario when Task1 executes the blocking
action P1, but Task2 did not yet initiate action G2. This results in the Task1 being
blocked. Similarly, Task2 is blocked after it has executed G2 and Task1 did not
initiate P1 yet.

P1 ∧¬G2 =⇒ Task1 blocked (7.2)

¬P1 ∧G2 =⇒ Task2 blocked (7.3)

Note that (7.2) and (7.3) reflect the usual semantics of processes communication on
a blocking CSP channel1. A blocked Task becomes unblocked if the corresponding
action occurs. Corresponding means here that the actions types should be matching:
if the first action is of the Put type, then it follows that the second action must be
of the Get type. Synchronization is the only way to allow blocked Tasks to make
progress again.

1Note, in OpenComRTOS Tasks are never blocked when using non-waiting services.

126 7 Task Interaction Models in OpenComRTOS

7.3 Timing Properties of Task Interactions

Equation (7.3) states that only matching actions of Tasks lead to synchronization.
In this section, we discuss the meaning of the term matching with respect to time.
OpenComRTOS implements three possible time related semantics for interactions
using a Hub: Waiting (W), Non Waiting (NW), and Waiting with Timeout (WT).
Let’s define the effects (i.e. synchronisation or the absence of it) when the
sub-actions have different timing properties. In general, the semantics of Task
interactions depend on the Hub type and its boundary conditions (e.g. a FIFO list
size). To simplify the discussion this section will use the concept of synchronisation
in the CSP sense whereby upon synchronisation data is transferred between two
Tasks. The OpenComRTOS entity closest to a CSP channel is the Port Hub. Its
semantics are that Packets are exchanged between Tasks by sending and receiving
Packets. In the following the Port Hub is taken as the example because it is the most
general case.

Table 7.1 shows the nine possible cases of time semantics for the interaction of
two Tasks.

The W semantics synchronisation is not dependent on time. The symmetry cases,
located at the diagonal of Table 7.1, occur when both Tasks use the same type of
service. In these cases, synchronisation does not depend on the relative order of the
interactions. For completeness, however, we must mention that synchronisation will
still depend on the priority, at least when multiple Tasks end up in de waiting lists as
a Task is inserted in order of priority in the waiting list. However, this has no impact
on the specified logical behaviour.

In case of any of the following enumerated interaction pairs, the synchronization
depends on the time ordering of the interactions. Temporal logic operators should
be used to express the time semantics of the synchronization mechanism in such a
case:

1. <W, WT> – If the W action happens before the WT action, then the synchro-
nization will occur. If the WT action happens first, then to have synchronization
the W action must happen inside the time interval T.

2. <W, NW> – If the W action happens before the NW action, the synchronization
will occur. If the NW action happens first, then the synchronization will not
occur.

3. <WT, NW> – If the WT action happens before the NW action, then to have
synchronization the NW interaction should happen inside the time interval T . If
the NW action happens before the WT action, the synchronization will not occur.

Table 7.1 Time semantics
of two Tasks interacting in
OpenComRTOS

Time semantics W WT NW

W Symmetry <W, WT> <W, NW>

WT <WT, W> Symmetry <WT, NW>

NW <NW, W> <NW, WT> Symmetry

7.3 Timing Properties of Task Interactions 127

By extension, a W action is a WT action with T = ∞ and a NW action is a
WT action with T = 0. Hence, it should be clear that a Task using the NW action
in an application is not deterministic as it depends on whether the other Task it
synchronises with was waiting or not. Hence, the NW action should not be used
unless the application takes into account this uncertainty. For the same reason, an
interaction pair <NW, NW> can never synchronise because processors operate in
sequence on their instructions.

Note that in any implementation there is a small uncertainty on the interval T .
As the actions take time (in the form of a finite number of instructions), the
synchronisation will depend on when the T timer event is seen by the kernel Task.
For the sake of the analysis, we ignore this uncertainty as it does not impact on the
logical behaviour and in a correctly parametrised real-time system this uncertainty
will be significantly less than T .

Such basic sequences of interactions can be applied to analyse more complex
interactions by means of composition. Therefore, we formulate them as temporal
formulas in TLA. The next state of the system will depend on the resulting state of
previous interactions (leading to synchronization or to blocking of the application).

Let’s formalize and consider the time properties of the symmetry cases of
OpenComRTOS synchronisation semantics.

An NW Task interaction has the following semantics:

(Pt=t1 ∧Gt=t2)∧ (t1 = t2) =⇒ S (7.4)

Equation (7.4) defines that, in case of NW services, we have synchronization S if
and only if both Tasks exhibit their respective actions, P and G , at the same time2

Therefore, <NW,NW> synchronisation works under no circumstances - NW
services will always fail because of the sequential execution on the CPU (which
is a sequential von Neuman machine). The kernel, where the Hub is located,
strictly serialises the access to the Hub, therefore, the Hub will never see two
complementary NW-requests at the same time, thus NW synchronisation at the Hub
is not possible.

Equation (7.4) can only be true when one of actions (of the Put or Get type)
was buffered in the waiting list of a Hub. For example, we can get a Packet from a
FIFO using NW semantics if it was already put in the FIFO using NW semantics.
So the NW synchronisation semantics will only succeed when the interactions are
“buffered” in the Hub which transforms the semantics in a waiting one. It expresses
the fact that Task synchronisation is a secondary effect from successful completion
of the sub-interactions between a Hub and a Task and not directly between Tasks.

Hence, the only safe semantics for interactions is the waiting variant. Therefore,
this is the usual way for using Task synchronization in an application program (as
e.g. in CSP). The NW services can only be used as a way to check whether or
not synchronization is possible. This can only be successful when the Hub has a

2The discrete time t , defines the timestamps of actions P and G.

128 7 Task Interaction Models in OpenComRTOS

buffering capacity. Needless to say that using the NW action in a (polling) loop until
success is not only wasting processing cycles, but also makes the Task unpredictable
in the real-time sense.

WT Task interaction (synchronization) has the following semantics:

(Pt=t1 ∧Gt=t2)∧ (t2− t1 < T) =⇒ S (7.5)

where T stands for the timeout interval. The interaction for NW and W can be
considered as the partial case of WT with T = 0 and T = ∞.

Equation (7.5) defines that, with WT services the synchronization occurs when
the time difference between actions P and G is less than the interval T . Such
formula can be applied to NW services, with condition that T = 03.

This leads to the following synchronization semantics for W Task interaction:

(Pt=t1 ∧Gt=t2)∧ (t2− t1 < ∞) =⇒ S (7.6)

For the case of using W services, the time, during which Task synchronization can
happen, is infinite. So, (7.6) can be simplified to (7.1), i.e. there is no real time
dependency – the synchronization occurs in case of matching actions irrespectively
of their time. This type of synchronization here is the same as for a CSP channel.
Note, however, that W action can also wait forever if the synchronising Task never
reaches its synchronisation point. So, for safety programming, one must always use
WT actions and test on success or failure.

7.4 Notes on Asynchronous Interactions

Fully asynchronous interactions are also possible in OpenComRTOS, although such
interactions are really synchronous interactions whereby the synchronisation is
delayed and decoupled from the processing a Task is executing when the interaction
was initiated. The semantics of asynchronous-in-time interactions can be defined as
two phase interaction semantics in Fig. 7.1. While in the previous section the Task
is made waiting between the two sub-actions (hence it is a one-phase interaction),
when using an asynchronous interaction, the Task can continue after it has issued
the first sub-action to synchronise later on. The latter is mandatory because real
systems always have limited resources whereas asynchronous interactions could
require an unlimited number of resources (e.g. for data storage). This imposes
serious limitations on the verifiability of applications. Therefore, asynchronous
interactions must be restricted and must resynchronise before the resources are
depleted. Figure 7.2 shows how asynchronous interactions between Tasks and Hubs
take place. Asynchronous interactions were not fully formally verified in this project

3In real systems the communication delay defines a minimum meaningful timeout value.

7.4 Notes on Asynchronous Interactions 129

Fig. 7.2 Asynchronous Task interactions with Hubs

and hence an in-depth discussion is left out. Nevertheless, it is useful to discuss
them further as it highlights some issues mainly in the context of interacting with
the processing hardware.

On a physical processor, the software level has to interact with the real-world
environment. Often this will be achieved by using interrupt signals at the hardware

130 7 Task Interaction Models in OpenComRTOS

level. In general, the hardware implementation will force the processor to transfer
control to a specific Interrupt Service Routine (ISR). We say that the processor was
interrupted and this happens at a higher priority than the RTOS kernel. Once the ISR
has started it can only be interrupted by a higher priority interrupt (if the hardware
supports such prioritisation of interrupts, else other interrupts can only start when
the current ISR has terminated). Termination of an ISR to resume the interrupted
processing is also under control of the ISR. Hence, ISRs must be kept as short
as possible as they will block any other processing. Therefore, an ISR should be
designed with the hardware restrictions in mind and transfer further processing to a
higher level, but pre-emptive driver Task. In OpenComRTOS, this can be done by
having the ISR collecting the interrupt relevant data in the a Packet and pass it on to
a Hub, e.g. an Event or Port Hub. An ISR, however, cannot ‘wait’ to synchronise,
hence it inserts the Packet asynchronously. As the driver Task and the ISR operate
at two different rates, the ISR needs to use a number of Packets that is sufficient to
handle the worst case. When the driver Task synchronises, the Packet will again
become available for the ISR and we can effectively consider this as a delayed
synchronisation.

The decoupling functionality of a Hub provides another way to implement
asynchronous behaviour. For example, for a FIFO, we will have waiting semantics
only if the FIFO is full (the limit of the FIFO list size (Size) is reached) and we
have a sending Task: (P ∧Count = Size)); or if the FIFO is empty (FIFO list size
is zero) and we have a receiving Task: (G ∧Count = 0).

Equations (7.7)–(7.9) detail the conditions when the FIFO converts from
Asynchronous Interactions back to synchronous behaviour, for W, WT, and NW
interactions.

(P ∧Count = Size)∨ (G ∧Count = 0) =⇒ Wait (7.7)

((P ∧Count = Size)∨ (G ∧Count = 0))∧ (|t2− t1 < T |) =⇒ Wait (7.8)

(P ∧Count = Size)∨ (G ∧Count = 0) =⇒ ¬S (7.9)

Hence, the normal behaviour of such a service is asynchronous, switching to a
synchronous behaviour only when the FIFO is full (or empty). This behaviour is de-
sirable because it allows limiting the use of resources. Otherwise, following (7.10),
synchronization on a FIFO Hub takes place irrespectively of the time for all types
of interactions (i.e. W, NW, WT).

¬((PwedgeCount = Size)∨ (G ∧Count = 0)) =⇒ S (7.10)

Outside this asynchronous domain, we have all restrictions of the synchronous Hub
services: NW services are not to be used and waiting is in order of priority.

7.5 Conclusions 131

Similar properties can be formulated for the Event4 and Semaphore Hub
functionality, which also exhibits an asynchronous behaviour. For the Event Hub,
size = 1 and for the Semaphore, size is equal to an implementation specific large
number (typically 232− 1 for a 32bit processor). But as these Hub interactions do
not pass data, the buffer space can be reduced to the counter value. The difference
is that for an Event the maximum Count = 1 (representing a Boolean) and for a
Semaphore Hub the maximum Count is machine dependent.

In the same context, it was also decided not to implement a Hub with the
functionality of a “pipe” (as found e.g. in Unix systems) because the pipe semantics
assume an infinite buffer to be available, resulting in a system failure, if the receiving
side becomes blocked.

7.5 Conclusions

This chapter discussed OpenComRTOS as an interaction oriented programming
paradigm. The proposed approach results in the unification of different forms of syn-
chronization methods into the unique Hub concept. The Hub allows the application
designer to express the synchronization mechanism as best matching the behaviour
of a system, for example, by using different forms of time synchronization semantics
or by defining domain specific synchronisation predicates and actions. Building the
Hub on a formalised base links programming techniques with formal methods, and
therefore, offers the possibility of designing formally proven programs.

4The Event Hub is a Semaphore Hub with a maximum count value of 1.

Chapter 8
Results: Code Size and Performance

We briefly show that the resulting architecture generates very small code (5 KB for
the distributed version) resulting in better performance and better safety properties.

8.1 Metrics of Success

When developing an RTOS or porting it to a new processor, it is paramount that
the RTOS is “stable”. In other words, when the application is correctly developed,
it can in principle only fail because either the environment injected erroneous data
(but a safe application should anticipate this) or the kernel still has an unknown
error. The purpose of the formal development of OpenComRTOS was to reduce
this probability to a minimum. On real targets however, there are still other
dependencies. For example, the compiler can generate erroneous code. The latter
can happen in particular when optimisation switches are enabled. Some of the errors
will be due to data alignment issues but with careful coding the kernel implementer
can force the compiler to always generate correctly aligned data structures. A final
source of failures has its root cause in the hardware itself. We ignore here permanent
errors due to design errors or production issues. While hardware is designed with
significant robustness margins, the processor will at runtime experience a constantly
varying load. This has become even more important as modern processors and
micro-controllers will have several blocks that can operate in parallel and access
I/O and memory in parallel. If such a heavy load condition is encountered, even if
only for a few clock pulses, short term peak current can be very high and the external
as well as the internal circuits must be able to supply the current. It is very hard, if
not impossible to generate test signals that can stimulate a processor in such a way
that the worst case condition is created. Therefore, the only solution is to create a
stress test application that is designed so that it exercises all blocks in parallel but
with small time shifts so that when the test is run long enough, the condition is
bound to happen. In our experience, using a multi-tasking RTOS is therefore also a

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 8,
© Springer Science+Business Media, LLC 2011

133

134 8 Results: Code Size and Performance

good means of detecting lurking silicon ‘bugs’. While such stress test are sometimes
run for days, one should keep in mind that even one hour of testing for a 100 MHz
processor produces a multiple of several trillion state transitions. If there is an error,
it is bound to happen.

Assuming all such compiler and hardware issues have been tackled, the major
metrics for measuring the quality of the final implementation of an RTOS are
often expressed in terms of memory requirements, speed performance, real-time
predictability as well as various other metrics like the quality of the code itself as
this reflects how difficult it could be to port and maintain the RTOS. We discuss the
main metrics and how they are related followed by measured data.

8.1.1 Code Size

Every processing system requires memory. Part of the memory will be used for
program code (e.g. the RTOS kernel and the application tasks) whereas another part
will be used to hold data. The latter can be local variables and datastructures but also
data that is related to the application. Most processors today have a much higher
clock speed than the bulk memory that is available; hence, processor manufacturers
implement a memory hierarchy. The fastest memory are the internal registers. They
can be read and written to at the speed of the processor (assuming each instruction
takes one clock cycle). These registers might be complemented with some on-chip
SRAM or a first level cache memory. Bigger processors will have second and third
level caches and often external memory. Faster means more expensive and less
density; hence, the external memory can be GBytes but operating with 100s of
waitstates. All other types of memory are somewhere in between. For real-time
systems this is not very good as the memory access times become statistical. If
the code and the data is cached in level one cache, performance will be best. But as
form time to time there will be cache misses, Worst Case Execution Times can be a
few 100 times worse. Therefore, code size still matters as it will allow to use slower
processors with less external memory and as a side-effect, also energy consumption
will be reduced (Table 8.1).

In the project, we have in detail analysed the contribution of the various
functional parts to the memory requirements. The processor was a small Melexis
16bit micro-controller, using a back-end port of the GNU compiler. This version
of OpenComRTOS was still limited in functionality to prioritised task scheduling
and port hubs (hence the prefic L0). Using compile time switches variants were
generated of the kernel to analyse the influence of leaving out more or less
functionality. This resulted in code sizes ranging from 3,510 bytes to 904 bytes
when using the -Os (compiler switch for obtaining smallest code size, often resulting
in best performance as well) compiler option. The results are listed below, also
showing the important influence of the compiler options used.

8.1 Metrics of Success 135

T
ab

le
8.

1
C

od
e

si
ze

fo
r

O
pe

nC
om

R
T

O
S

ke
rn

el
on

M
L

X
16

Ta
rg

et
G

C
C

co
m

pi
le

r
S

P
M

P

M
L

X
81

00
1-

27
M

H
z

0.
20

be
ta

T
in

y

S
en

dP
ac

ke
t−

R
ec

ei
ce

Pa
ck

et
+

S
ta

rt
+

sm
al

l
A

ll
se

rv
ic

e,
no

W
T

A
ll

se
rv

ic
es

,
N

W
,W

T,
A

sy
nc

S
en

dP
ac

ke
t−

R
ec

el
ce

Pa
ck

et
+

S
ta

rt
+

sm
al

l
A

ll
se

rv
ic

es
no

W
T

A
ll

se
rv

ic
es

N
W

,W
T,

A
sy

nc

O
pt

io
ns

−0
3

−0
s

−0
3

−0
s

−0
3

−0
s

−0
3

−0
s

−0
3

−0
s

−0
3

−0
s

−0
3

−0
s

K
er

na
l

co
de

si
ze

(B
yt

es
)

1,
03

8
90

4
1,

11
2

1,
01

2
1,

97
4

1,
82

0
3,

02
4

2,
70

6
1,

96
0

1,
75

6
2,

91
8

2,
62

4
4,

00
4

3,
51

0

re
ad

on
ly

da
te

(B
yt

es
)

0
0

0
0

20
20

24
24

12
12

20
20

24
24

W
or

k
sp

ac
e

da
ta

si
ze

20
20

26
26

40
40

52
52

34
34

46
46

58
58

A
pp

lic
at

io
n

w
ith

2
Ta

sk
s

an
d

2
se

m
ap

ho
re

s

co
de

si
ze

(B
yt

es
)

25
8

14
4

35
4

20
2

35
4

20
2

35
4

20
2

35
4

20
2

35
4

20
2

35
4

20
2

re
ad

on
ly

da
te

(B
yt

es
)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

W
or

k
sp

ac
e

da
te

si
ze

0
0

4
4

4
4

4
4

4
4

4
4

4
4

To
ta

lc
od

e
si

ze
(B

yt
es

)
1,

42
5

1,
12

0
1,

64
3

1,
31

5
2,

50
5

2,
12

3
3,

55
5

3,
00

9
2,

49
1

2,
05

9
3,

44
9

2,
92

7
4,

53
5

3,
81

3

To
ta

ls
ta

tic
ap

pl
da

te
si

ze
(b

yt
es

)
98

98
17

8
17

8
58

2
58

2
62

4
62

4
39

0
39

0
84

2
84

2
92

8
92

8

D
at

a
si

ze
(B

yt
es

)
pe

r
ite

m

P
or

t
2

2
6

6
6

6
6

6
6

6
6

6
6

6

Pa
ck

et
16

16
22

22
26

26
28

28
24

24
26

26
28

28

Ta
sk

6
6

16
16

22
22

22
22

18
18

22
22

22
22

Ta
sk

in
pu

t
P

or
ts

2
2

6
6

6
6

6
6

6
6

6
6

6
6

Ta
sk

co
nt

ex
t

0
0

0
0

6
6

6
6

0
0

6
6

6
6

T
im

er
6

6
6

6

R
ou

tin
g

ta
bl

e
2

2
2

2
2

2

136 8 Results: Code Size and Performance

Notes:

1. MP = distributed, i.e. multi-processor (multi-node), version of OpenComR-
TOS. All services are transparent of the topology and processor independent.

2. SP = single-processor (single-node) version of OpenComRTOS.
3. SPTiny = special derived variant of SP Small for MelexCM (MLX16x8)

limited to 16 tasks (each with different priority) and 16 local ports.
4. Full = variant of OpenComRTOS supporting all services, i.e. currently:

• L0 StartTask W
• L0 StopTask W
• L0 SuspendTask W
• L0 ResumeTask W
• L0 SendPacket W, L0 SendPacket NW, L0 SendPacket WT, L0 Send-

Packet A
• L0 ReceivePacket W, L0 ReceivePacket NW, L0 ReceivePacket WT,

L0 ReceivePacket A
• L0 AllocatePacket W, L0 AllocatePacket NW, L0 AllocatePacket WT
• L0 DeallocatePacket W
• L0 WaitForPacket W, L0 WaitForPacket NW, L0 WaitForPacket WT
• Note: the two phase services (L0 SID A, and L0 WaitForPacket) were only

implement in the SP variant.

5. Full, No WT = variant of OpenComRTOS supporting all services (see Full),
except:

• L0 SendPacket WT
• L0 ReceivePacket W
• L0 AllocatePacket WT
• L0 WaitForPacket WT

6. Small = variant of OpenComRTOS, supporting:

• L0 StartTask W
• L0 SendPacket W
• L0 ReceivePacket W
• Note: no support for Task arguments, using a restricted Task context or

workspace, which may limit the debugging of tasks. (only StackPointer).
Typically used with specific node configuration files eliminating non-
essential static memory usage.

7. SPTiny = special derived variant of SP Small for MelexCM (MLX16x8)
limited to 16 tasks (each with different priority) and 16 local ports.

8. Global ID size for TaskIDs and PortIDs:

• MP Full, ML Small, SP Full: 16 bits (Local ID + Node ID, no SiteID nore
ClusterID)

• SP Small, SP Tiny: 8 bits (Local ID only)

8.1 Metrics of Success 137

9. Static allocated stack frames not included in Task context above (configurable
per task).

10. Packet data size not included in above (compile-time configurable).
11. MP L0 StopTask W does not include clean-up of state on remote nodes, only

on local node.
12. Implementation of L0 EnterCriticalSection and L0 LeaveCriticalSection

included as inline macros (mixed ASM and C).
13. Interrupt Service Routines (ISR) use a dedicated stack.

8.1.2 Total Memory Use

As memory requirements are determined not only by the code size, but also
by the data requirements (static variables, stack space for each task, and global
system datastructures), a further analysis was made to analyse the total memory
requirements. Again the influence of the compiler options is important (Table 8.2).

Notes:

1. Measurements on MLX81001A TBC evaluation board configured without LIN
driver.

2. MP Small, SP Small, and SP Tiny used with node configuration files eliminating
non-essential static memory usage.

3. Packet data size of 8 bytes.
4. MP Full and SP Full include static kernel packet pool of 10 packets (280 bytes

for above packet data size) (configurable).
5. MP Full and MP Small include static packet pool for Rx driver tasks of 5 packets.

(140 bytes resp. 120 bytes for above packet data size) (configurable).

8.1.3 Influence of Processor Architecture

While above analysis gave indications on the relative contributions of selected
functionalities and compiler options, by porting the RTOS to different processor
architectures, one can also see the influence of processor instruction sets and in-
struction length. The measurements were done using GNU-C as front-end compiler
with target specific back-ends. The measurements were also done using a complete
kernel with all hub functions to evaluate how each specific hub type adds additional
memory requirements on top of the generic hub. The figures demonstrate that the
architecture is indeed much more code size efficient. One can also see the influence
of the instruction length (Table 8.3).

138 8 Results: Code Size and Performance

T
ab

le
8.

2
To

ta
lm

em
or

y
us

ed
fo

r
O

pe
nC

om
R

T
O

S
on

M
L

X
16

To
ta

l
K

er
ne

l
A

pp
li

ca
ti

on
st

at
ic

ap
pl

/B
yt

es
O

pt
io

ns
C

od
e

si
ze

R
ea

d
O

nl
y

da
ta

D
at

a
si

ze
C

od
e

si
ze

R
ea

d
O

nl
y

da
ta

D
at

a
si

ze
To

ta
lc

od
e

si
ze

da
ta

si
ze

M
P

Fu
ll

−O
s

3,
51

0
24

58
20

2
0

2
3,

71
2

92
6

0
4,

00
4

24
58

35
4

0
2

4,
35

8
92

6
Fu

ll
,

−O
s

2,
62

4
20

46
20

2
0

2
2,

82
6

84
0

N
o

W
T

0
2,

91
8

20
46

35
4

0
2

3,
27

2
84

0
Sm

al
l

−O
s

1,
75

6
12

34
20

2
0

2
1,

95
8

38
8

0
1,

96
0

12
34

35
4

0
2

2,
31

4
38

8

SP
Fu

ll
−O

s
2,

70
6

24
52

20
2

0
2

2,
90

8
65

2
0

3,
02

4
24

52
35

4
0

2
3,

37
8

65
2

Fu
ll

,
−O

s
1,

82
0

20
40

20
2

0
2

2,
02

2
58

0
N

o
W

T
0

1,
97

4
20

40
35

4
0

2
2,

32
8

58
0

Sm
al

l
−O

s
1,

01
2

0
26

20
2

0
2

1,
21

4
17

6
0

1,
11

2
0

26
35

4
0

2
1,

46
6

17
6

T
in

y
−O

s
90

4
0

20
14

4
0

0
1,

04
8

98
0

1,
03

8
0

20
25

8
0

0
1,

29
6

98

8.1 Metrics of Success 139

Table 8.3 Code size figures (in 8 bit Bytes)

Service MLX16 MB Xilinx Leon3 ARM (M3) XMOS

Hub shared 400 4,756 4,904 2,192 4,854
Port 4 8 8 4 4
Event 70 88 72 36 54
Semaphore 54 92 96 40 64
Resource 104 96 76 40 50
FIFO 232 356 332 140 222
Total 1,048 5,692 5,756 2,572 5,414

Table 8.4 Semaphore Loop times (=2 signals, 2 tests, 4 context switches)
in microseconds

MLX16 MB Xilinx Leon3a ARM (M3) XMOS

Clock (MHz) 6 100 40 50 100
100.8 33.3 136.1 52.7 26.8

a
Using external memory

8.1.4 Semaphore Loop

Another relevant test is called the semaphore loop test (explained in Appendix A).
While simple, it is an adequate test as it measures more or less the minimum time
needed to switch from one task to another. When done in a loop, it is also an
adequate stress test for e.g. measuring interrupt latency (explained in Appendix A)
because every context switch has to be atomically protected, hence interrupts are
disabled. In the table below, we show the time taken for a full loop measures in
microseconds but the reader should keep in mind the relative merit of the measured
figures as they are dependent on the processor clock frequency and the access speed
to program and data memory (Table 8.4).

8.1.5 Interrupt Latency

Another relevant test is called the interrupt latency test (explained in Appendix A).
This test must be done with great care as it measures the reaction delay between
a hardware event occuring (typically the raising of an interrupt by an external
device, called IRQ below) and the moment the processor can start acting on it
at the application level. Therefore, the measurement is processor specific but also
application specific. Each application can have its interrupt system being set up
differently, but the latency also depends on how the rest of the application is written
(typically disabling interrupts because of context switches or the need for atomic
access to certain hardware functions). Hence, the result of the test cannot be a single
figure as some RTOS vendors proclaim.

140 8 Results: Code Size and Performance

What is important for a hard real-time system is that the interrupt latency remains
below a reasonable low but strictly maximum value. In other words, when interrupt
latency is measured, its histogram should a nice block diagram, but with a very high
peak value at the beginning. For the test set-up, interrupt latency is the defined at
two levels. The first level measures the time it takes from the hardware interrupt to
the first “useful” instruction in the Interrupt Service Routine and the second level
measures the time to the first “useful” statement in a waiting Task. As first useful
statement we define the point where that data can be read. This measurement set-up
is meaningful as it is realistic. Often hardware will trigger an interrupt related to data
becoming available in a register. In the test set-up, a period hardware timer is used
to create these conditions. The data will not remain forever in this register as it will
be overwritten at the next interrupt (or sometimes even sooner if the hardware was
not designed for it). Hence it is important to know how much time an application
running an RTOS on a specific processor needs to safely read the data. This also
determines the maximum “sampling” rate for a particular I/O channel. In order
to make the test even more realistic, a worst case small application is running in
the background. We used here the semaphore look test described in the previous
paragraph as it results in continuous context switches.

The measured IRQ to ISR latency on ARM Cortex M3 50 MHz are as follows:

• Minimal: 300 ns
• Maximal: 2,140 ns
• 50% of samples less or equal: 400 ns

The measured IRQ to Task latency on ARM Cortex M3 50 MHz are as follows:

• Minimal: 12 μs
• Maximal: 25 μs
• 50% of samples less or equal: 17 μs

The reader can verify these figures and the resulting histogram in Appendix A.

Part IV
Appendix

Appendix A
OpenComRTOS-Suite 1.3 Usage Tutorial

The previous chapters of this book concentrated the theoretical foundations of
OpenComRTOS and the formal modelling effort that was done in order to develop
a trustworthy Real Time Operating System (RTOS). This chapter concentrates on
the development of applications which utilise OpenComRTOS, as provided by
OpenComRTOS-Suite 1.3. It is designed as a tutorial the reader can follow step by
step. Section A.1 gives a detailed introduction to OpenVE (the main development
tool of the OpenComRTOS-Suite) to develop a Semaphore-loop executing on a
single win32-node. The resulting project is then extended in Sect. A.2, to utilise
multiple nodes (MP), by introducing a second win32-node and connecting the two
win32-nodes using TCP/IP. This illustrates how easy it is to construct distributed
systems using the OpenComRTOS-Suite. One important aspect of the system
development process is validating that the system operates as expected, especially
with respect to timing constraints. For this purpose, OpenComRTOS provides a
tracing mode which gathers the execution trace of a node, and the OpenTracer tool
is used to display the gathered execution traces. Section A.3 illustrates how to gather
an execution trace from an embedded ARM-Cortec-M3 node, save it on a win32-
node for examination, and then display it using OpenTracer. The last tutorial in
this chapter in Sect. A.4, illustrates how to measure the Interrupt Request (IRQ) to
Interrupt Service Routine (ISR) and IRQ to task latencies of an ARM-Cortex-M3
node and display them using a native win32 application.

The interested reader can freely download a win32 version of OpenComRTOS
from the altreonic website.

A.1 Developing a Single Node Semaphore-Loop Project

This section guides the reader step by step on how to develop a Semaphore-Loop
executing on a single win32-node, using OpenComRTOS-Suite 1.3.

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 9,
© Springer Science+Business Media, LLC 2011

143

144 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.1 Screenshot of OpenVE’s the ‘New Project’ dialogue

1. Creating a new Project:

a. Click on the entry ‘New Project’ from the ‘File’ Menu.
b. The ‘New Project’ dialogue will open, see Fig. A.1. This dialogue defines the

following project wide settings:

• Name: The name of the project, in this example ‘SemaphoreLoop’ was
chosen as project name.

• RTOS TOPDIR: This option defines which OpenComRTOS Kernel-Image
should be used for this project.

• Location: The directory in which the project should be created in.

For ‘RTOS TOPDIR’ and ‘Location’ OpenVE selects useful default values
which should not be changed at this point in time.

c. Once all settings are as desired click on the button labelled ‘Finish’, to create
the new project.

2. Create a new Win32 Node: After creating the new project, OpenVE automatically
opens the Topology view, where the user can create new nodes to represent the
topology. To create a new Win32-Node perform the following operations:

a. Click on the icon labelled ‘win32’, see Fig. A.2, and then onto the canvas.
b. This opens up the dialogue shown in Fig. A.3, where we will give the node

the name ‘Win32 Node’.

Figure A.4 shows the resulting topology with one a node called ‘Win32 Node’.

A.1 Developing a Single Node Semaphore-Loop Project 145

Fig. A.2 OpenVE with opened Topology View (no nodes defined yet)

Fig. A.3 The dialogue to specify the properties of the new win32-node

3. Create two Tasks: Task1 and Task2: Tasks are elements of the ‘Application
Diagram’ thus we have to switch to the Application view of the project, using the
tabs on top of the canvas. To create a new task click on the icon symbolising a
Task, see Fig. A.5, and then click on the canvas. The ‘New Task’ dialogue shown
in Fig. A.6 will appear and ask you to specify the following things:

• Name: The name of the new Task, fill in ‘Task1’.
• Node: On which Node should this Task run, in our case there is only one node,

thus select ‘Win32 Node’.

146 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.4 Topology view showing the newly created win32-node

Fig. A.5 OpenVE Application Diagram with highlighted Task button

A.1 Developing a Single Node Semaphore-Loop Project 147

Fig. A.6 ‘New Task’ dialogue, with highlighted ‘Task Entrypoint’ creation button

Fig. A.7 The Task Entrypoint creation dialogue, showing the source code that will be generated

• Stack Size: How many bytes of stack does the new Task have. On win32
technically not necessary to fill in, but it is custom to give a task 1,024 bytes.

• Task Entry Point: The function that represents the new Task. Add a new one
here using the button with the plus sign. This will open the ‘New Entry Point’
dialogue, shown by Fig. A.7. Call the new entry point ‘Task1 EP’.

148 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.8 Application diagram showing the newly created Task1

After acknowledging everything the Application Diagram of your project should
look similar to the one shown in Fig. A.8. Now repeat these steps to create Task2.
Figure A.9 shows the resulting Application diagram.

4. Create two Semaphore Hubs: Sema1 and Sema2 To create a new Semaphore Hub
click on the Semaphore icon, marked in Fig. A.9, and then click on the canvas.
OpenVE then presents the ‘New Semaphore’ dialogue, shown in Fig. A.10.
Similar to a Task a Hub must be mapped onto a node, also it must be given
a name.

5. Establish the following interactions:

a. Task1 signals Sema1, using ‘ W’ semantics (L1_SignalSemaphore_W(Sema1));
b. Task2 tests Sema1, using ‘ W’ semantics (L1_TestSemaphore_W(Sema1));
c. Task2 signals Sema2, using ‘ W’ semantics;
d. Task1 tests Sema2, using ‘ W’ semantics;

To create an interaction select the interaction symbol and then draw
a line either from a Task to a Hub (put interactions, in this example
L1_SignalSemaphore_W(Sema1)) or from a Hub to a Task (get interactions,
L1_TestSemaphore_W(Sema1)). Upon releasing the left mouse button OpenVE
presents a properties menu from which the valid interactions can be chosen
(interaction selection menu). An example of this menu is shown in Fig. A.11.
The resulting line of source code gets immediately inserted in the corresponding
Task Entry Point. In the end the Application Diagram should look similar to the
one shown in Fig. A.12.

A.1 Developing a Single Node Semaphore-Loop Project 149

Fig. A.9 Application diagram showing both Task1 and Task2

Fig. A.10 The ‘New Semaphore’ dialogue of OpenVE

6. Move the interactions into the while-loop in the source code of Task1_EP and
Task2_EP. Figure A.13 marks the two interactions to be moved into the while
loop.

7. Add an Stdio Host Server to the System, and adjust the Task Entrypoints to print
messages after every iteration of their loop. Adding StdioHostService is similar
to adding a Semaphore Hub, Fig. A.14, shows the corresponding dialogue.

150 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.11 Application diagram with all entities, showing the interaction selection menu

Fig. A.12 Application diagram with all Interactions for the Semaphore Loop

A.1 Developing a Single Node Semaphore-Loop Project 151

Fig. A.13 Source code for Task1, the incorrectly placed interactions highlighted

Fig. A.14 The ‘New stdioHostServer’ dialogue of OpenVE

Map the Stdio Host Server onto the Win32 Node and give it the name ‘Shs’.
Now add the interaction ‘Shs_putString()’ to both Task Entrypoints, see the
resulting Application diagram in Fig. A.15. Let each of the task print a newline
terminated string onto the console, using the Stdio Host Server, Fig. A.16 shows
the resulting code for Task1 EP.

8. Build and Run the project as you did in the previous section. If everything is OK,
you should see a console output similar to the one shown in Fig. A.17.

152 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.15 Application diagram with the complete Semaphore-Loop and the Stdio Host Server

Fig. A.16 Source code of Task1 with Semaphore and Stdio Host Server Interactions

A.2 Going Distributed with OpenComRTOS 153

Fig. A.17 Console output upon running the ‘SemaphoreLoop’ project

A.2 Going Distributed with OpenComRTOS

This section turns the system developed in the previous section into a distributed
system. To achieve this, follow these steps:

1. Add another Win32 Node to the topology of the project and call it
‘Win32 Node2’.

2. To establish a communication link between the two nodes, they must be
configured to offer a Link-Port. Add to each of the nodes an TCP-IP Link-Port
following these steps:

a. Right click on the node to open its properties menu.
b. In the properties menu select the entry called ‘Edit Link Ports’. This will open

the Link-Port editing dialogue, shown in Fig. A.18.
c. In this dialogue select the Link-Port type ‘tcp’ and press the ‘Add Link Port’

button (the button labelled ‘+’, highlighted in Fig. A.18) to add the Link-Port.
Give the Link-Port a name, the other settings chosen for this Link-Port should
not be changed.

d. Press OK to close the dialogue.

3. Now the Link between the two Nodes must be established, this is done by
selecting the ‘bidirectional Link icon’ (the arrow with arrow heads at both ends),
and drawing a line between the two nodes. OpenVE will now present the link
configuration dialogue, pictured in Fig. A.19. There you select the two Link-
Ports and press OK to create the Link. Figure A.20 shows the resulting Topology
Diagram, with both Nodes linked.

4. To make this a real distributed system it is necessary to map at least one of
the Application Diagram entities onto the newly created node, in this example

154 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.18 Edit Link Ports Dialogue, with highlighted ‘Add Link Port’ button

Fig. A.19 OpenVE link configuration dialogue

I chose to map Task2 and Sema2 onto the newly created Node ‘Win32 Node2’.
To do this follow these steps:

a. Change to the Application Diagram.
b. Open the ‘Properties’ side-pane on the right hand side and pin it, so it stays

open permanently.

A.3 Tracing in OpenComRTOS 155

Fig. A.20 Topology of the two Win32 Nodes connected with a bidirectional Link

c. Select the entity to remap. The ‘Properties’ side-pane will now show all the
properties of the entity, including the property ‘node’. See Fig. A.21 for a
screen-shot of OpenVE with opened ‘Properties’ side-pane.

d. In the combo-box for ‘node’ select the Node ‘Win32 Node2’.

Repeat the last two steps for each entity that should be remapped.
5. The system is now ready to be rebuilt and run, and ‘Win32 Node’ will provide

the same console output as previously, shown in Fig. A.17. This is caused by the
fact that OpenComRTOS has been designed for exactly these systems and great
care has been taken to make it scalable. This means that the logical behaviour
does not change independently of whether the system consists of only one node
or 1,000 nodes. The only thing that will change is the execution speed, caused by
the fact that communication links always introduce a certain latency, and there is
nothing we can do about this, except optimising the hardware and the drivers.

In contrast ‘Win32 Node2’ does only show some Link debugging messages,
see Fig. A.22 for a screen shot of the console outputs of both Win32 Node and
Win32 Node2.

A.3 Tracing in OpenComRTOS

OpenComRTOS allows the user to examine which operations it performed at what
time. This is called tracing. Naturally, not every instruction can be traced, and
this is also not necessary to understand of what has happened in the system.

156 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.21 OpenVE with open ‘Properties’ side-pane and highlighted ‘node’ property

Fig. A.22 Console output of both win32-nodes

The OpenComRTOS kernel has a tracing mode, in which it collects the following
events:

• Scheduling Events – which task ran at what time.
• Service Requests by Tasks – at what time did a task issue a specific service

request. Naturally, the nature of the service request is captured as well.

A.3 Tracing in OpenComRTOS 157

Fig. A.23 OpenVE with open Property Pane

• Hub interactions – when did the kernel perform an interaction with a hub.
• Node interactions – these information are used by the tracer to combine multiple

traces that represent (parts) of a multi node system.

A.3.1 How to Enable Tracing

To enable the tracing mode you have to set node specific properties (node-
properties). To set a node-property, open the node-property pane by double clicking
on a node in the topology-diagram, your OpenVE window should now look similar
to Fig. A.23.

There are two node-properties relevant to tracing:

• debugopt must be set to 1 or 2 – debugopt defines the debug-mode a node runs
in. The property debugopt may have the following values:

– 0: tracing disabled – no trace information gets recorded at all.
– 1: limited tracing mode – all trace information except ‘Service Request by

Tasks’ gets recorded. This is used to reduce the overhead caused by the tracing
operations.

– 2: full tracing mode – all trace information gets generated.

• traceBufferSize – traceBufferSize defines how many past events get
recorded on a particular node. It defaults to ‘1024’, its upper limit is defined
by the amount of memory available on the Node.

158 A OpenComRTOS-Suite 1.3 Usage Tutorial

The Node now collects trace-information in its trace-buffer, but these trace
information are not yet available to the OpenTracer application. For this, it first
needs to be written to a file, i.e. the trace-buffer needs to be dumped, only then, the
OpenTracer application can interpret the trace. The following section explains how
to retrieve trace information from a Node to generate a trace-file.

A.3.2 How to Retrieve a Trace

An embedded Node has usually no file system available which could be used to store
a trace. Instead, OpenComRTOS Nodes can transfer the contents of the trace-buffer
to a StdioHostServer which will then write the retrieved trace information into a file
for the OpenTracer application.

1. Add a StdioHostServer to the application diagram and place it on a Node of type
Win32. The added StdioHostServer will be referred to as ‘Shs’ in this example.
A StdioHostServer is a task which offers a range of stdio functionalities to
embedded Nodes, such as the ARM Node. One of which is to receive the contents
of a trace-buffer and write it onto a disk.

2. Add the instruction DumpTraceBuffer(Shs) to one of the tasks. This is the
actual instruction which will transfer the contents of the trace-buffer to the
StdioHostServer with the name ‘Shs’. The retrieved trace information are then
written to a file with the extension ‘trace1’ (in the following this file will be
referred to as trace1-file).

A.3.2.1 Extending the Semaphore Example with Tracing

The project ‘Semaphore Tracing’ is a tracing enabled version of the previously
shown Semaphore-Example. In addition to the changes explained in Sects. A.3.1
and A.3.2, the following has been changed:

1. All Tasks and Hubs of the Semaphore Loop have been mapped onto the ARM
node.

2. In one of the two tasks of the Semaphore-Loop a for-loop which lets the loop
execute for 500 times, has been added

3. Before writing out the trace-buffer a message is displayed on the StdioHostServer
announcing that the dumping of the trace takes place.

4. The task calls the function DumpTraceBuffer() to write the contents of the trace
buffer into a file;

5. After the dumping of the trace is completed another message is displayed which
asks the user to press enter to continue the execution. This is necessary because
otherwise the system would continuously overwrite the trace file it generated.

A.3 Tracing in OpenComRTOS 159

Fig. A.24 Tracing enabled Application Diagram

Fig. A.25 OpenTracer displaying parts of the SemaphoreTracing_MP_TCPIP example trace

Depending on your application you may need to perform similar changes.
Figure A.24 shows the resulting Application Diagram for the Semaphore Example.

Execute the generated binaries. To display the retrieved trace open the trace-file
(extension ‘trace’) with OpenTracer, this should give you an output similar to the
one shown in Fig. A.25.

A.3.3 Retrieving and Displaying Traces from Distributed Systems

The natural habitat of OpenComRTOS are distributed heterogeneous systems. This
section will explain the steps to display traces from such systems. The procedure

160 A OpenComRTOS-Suite 1.3 Usage Tutorial

for acquiring the trace buffer contents from multiple Nodes simultaneously is
similar to acquiring the trace information from a single Node. Thus the steps are
similar:

1. Add a StdioHostServer Shs to the application diagram and place it on a Node of
type Win32.

2. Add the instruction DumpTraceBuffer(Shs) in at least one Task per Node. The
tricky bit is that one must ensure that all nodes dump almost simultaneously,
otherwise the tracer cannot interconnect the collect trace information.

The Example: SemaphoreTracing_MP_TCPIP demonstrate the collection and dump-
ing of trace information for a distributed heterogeneous system. Figure A.25, shows
a part of the expected display from OpenTracer when opening both Trace files. Note
the red lines connecting both traces, these mark the way a Packet travels from one
Node to another.

A.4 Measuring the Interrupt Latency of OpenComRTOS

A.4.1 Designing Distributed Heterogeneous Systems Using
the OpenComRTOS Suite

This section demonstrates how to design distributed heterogeneous systems using
the OpenComRTOS Suite, by developing a system that measures the interrupt
latencies of an ARM-Cortex-M3 running OpenComRTOS. Before starting this
it is first necessary to define the requirements of the system we are trying to
develop.

Most peripheral devices inside a micro controller or even a standard PC use
hardware interrupts to signal that they require the attention of the Central Processing
Unit (CPU), this is called the devices send an IRQ. Examples of IRQs are: the user
pressed a button, the Universal Asynchronous Receiver/Transmitter (UART) RX-
buffer is full, the UART TX-buffer is empty, a timer has expired, and so on. Once the
CPU has detected the occurrence of an interrupt it stops what is currently doing and
instead executes the code that handles the interrupt, afterwards execution resumes
where the CPU was interrupted. Due to this it is the custom for most Operating
Systems to disable the handling of interrupts when modifying global data structures,
the CPU is then said to be in a critical section. This means that if an IRQ occurs
while the CPU is in a critical section the interrupt will only be handled after the
critical section has been completed. Depending on the length of the critical section
quite some time might expire between the occurrence of an IRQ and its handling by
the CPU.

A.4 Measuring the Interrupt Latency of OpenComRTOS 161

Fig. A.26 Stages of IRQ handling in a typical Microcontroller System

A.4.1.1 How Micro Controllers Handle Interrupts

This section gives background information on how IRQ handling takes place on
standard micro-controllers that runs an RTOS. Figure A.26, shows the hardware and
software entities involved from generating an IRQ in a hardware device, to signal
the occurrence of a hardware event, to the handling of the IRQ in an application
task, i.e. a task provided by the developer of the application that runs on top of the
RTOS. There are a number of individual stages involved:

1. Hardware Device – which has previously been programmed to generate an IRQ.
This usually happens by asserting a pin on the CPU.

2. Interrupt Controller – keeps track of pending IRQ and whether or not interrupts
are permitted at the moment. Many interrupt controllers allow the CPU fine
grain control which IRQs it permits and which not, this is commonly referred
to as interrupt masking. Interrupts that cannot be masked, typically the timer
interrupt, are referred to as Non Maskable Interrupts (NMIs). In case of multiple
pending IRQs the interrupt controller determines which to signal first to the
CPU. Interrupt controllers can be inside the CPU or outside the CPU. Most
micro controllers have the interrupt controller built in, because it reduces the
component count and makes developing software easier. One exception of this is
the Xilinx Microblaze Softcore, which only offers one interrupt pin and requires
for anything more an external interrupt controller. This setup requires interrupt
dispatching (which IRQ occurred, and which ISR to call) which increases the
interrupt latency drastically.

3. Interrupt Service Routine – the piece of code that the CPU executes once it has
been interrupted. Usually, the developer registers a separate ISR for each IRQ.
ISRs are meant to be as short as possible, this means that any complex processing
is deferred to a later point in time, outside an ISR. The ISR itself only does the
bare minimum to ensure that the hardware device can continue its operation.
This means that the ISR signals the Operating System (OS) kernel about the
occurrence of the IRQ. For this purpose it is custom to immediately schedule the
OS kernel after an ISR occurred.

162 A OpenComRTOS-Suite 1.3 Usage Tutorial

4. OS Kernel – responsible for determining which ISR task to inform about the
occurrence of the IRQ, and then schedule it.

5. ISR Task – a normal application task, but with a high priority, which does
perform the necessary processing to complete the handling of the IRQ.

For a developer of real time systems it is very interesting to know how long it
takes after an IRQ until the ISR respectively the ISR task get executed. This section
develops an OpenComRTOS system which measures the IRQ to ISR respectively
the IRQ to Task latencies on an ARM Cortex M3 microcontroller.

A.4.2 Presenting the Measurement Results

The previous section defined what we want to measure. The interrupt latencies
depend on whether or not the CPU was inside a critical section at the time the
hardware device issued the IRQ. Thus, there is not a single figure, but a range of
latencies and how often they occurred. Therefore, we will have to perform a statis-
tical analysis of the measured data, and present it in from of a histogram to the user.
This kind of display operation requires a decent display, something an embedded
micro-controllers and their evaluation/development kits usually does not provide.

A.4.2.1 Requirements

Our analysis has determined the following requirements:

• R1: Measurement application running on an ARM-Cortex-M3 micro controller,
which is able to measure the following:

– IRQ to ISR Latency.
– IRQ to Task Latency.

• R2: GUI Application for statistical analysis and histogram display.
• R3: Communication between the micro controller and the GUI Application.

A.4.3 Specifying the System

The following give the specification of the system, for each requirement there will
be a sub specification.

A.4 Measuring the Interrupt Latency of OpenComRTOS 163

A.4.3.1 S1: The Specification for R1

The following list represents the specification S1, which represents require-
ment R1:

• An OpenComRTOS ARM-Cortex-M3 node: ArmNode.
• Automatic Reload Counter to be used as IRQ Source. An automatic reload

counter is available in almost all micro controllers to be used as a periodic timer.
The one on the chosen ARM-Cortex-M3, counts backwards from a predefined
value towards zero. Once it reaches zero, it generates an IRQ to inform the CPU
about this and then reloads a predefined value. In OpenComRTOS we use it to
generate a 1 ms periodic timer tick.

• Automatic Reload Counter ISR to be modified to do the following:

– Store the value of the Automatic Reload Counter in a global Variable once it
has been started. This is the IRQ to ISR Latency.

– Signal an OpenComRTOS Event using ‘ NW’ semantics.

• A high priority task to represent the ISR task, which does the following:

– Waits for an OpenComRTOS Event to become signalled and then acquires the
current value of the Automatic Reload Counter in a local variable, this is then
the IRQ to Task Latency.

– Stores the previously measured IRQ to ISR Latency in a local variable.
– Send the collected latencies to an OpenComRTOS Port using ‘ W’ semantics

(Communicating Sequential Processes (CSP)-Channel).

• The CPU executes a Semaphore Loop to ensure that it performs constant context
switching. The semaphore loop consists of two tasks and two OpenComRTOS
Semaphores, which are connected in such a way to achieve constant context
switching between the two tasks.

A.4.3.2 S2: The Specification for R2

The following list represents the specification S2, which is a refinement of R2:

• An application that displays a histogram for each of the measured latencies, later
on referred to as ‘Latency-GUI’.

• The Latency-GUI performs the following statistical analysis, for each of the
latencies:

– Minimal Latency
– Maximal Latency
– 50% Latency – this is the latency below which 50% of all measured laten-

cies are.

• The Latency-GUI application is a normal MS-Windows program written in C++
using QT. Figure A.27 shows the user interface of this application.

164 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.27 Screenshot of the Interrupt Latency GUI Application

• Measurements get send to the Application using a local TCP-IP connection. The
Latency-GUI listens on port 4004 for connections from a local application.

A.4.3.3 S3: The Specification for R3

The following list represents the specification S3, which refines requirement R3:

• An OpenComRTOS Win32 Node: Win32Node.
• This node connects with the ArmNode using a TCP-IP link.
• The Win32Node contains a port which is used to exchange data between the

Collector Task and the Receiver Task.

A.4.4 Implementation

A.4.4.1 Topology

Based on the specifications we can now develop the topology. There are three
different entities in our Topology:

• ArmNode: This entity performs the measurements. It is connected over an
OpenComRTOS TCP-IP link with the Win32Node.

A.4 Measuring the Interrupt Latency of OpenComRTOS 165

Fig. A.28 Interrupt latency measurement system topology

• Win32Node: This entity acts as interface between the ArmNode and the Latency
GUI application.

• Latency GUI application: This acts as a data sink for the measurement data and
displays them.

Figure A.28 shows the graphical representation of the topology.

A.4.5 Application

The application consists of the following entities:

• Entities related to taking and processing the measurement:

– Automatic Reload Counter ISR – takes the IRQ to ISR latency measurement
and signals the ISR Event.

– ISR Event – synchronises the ISR and the Collector Task.
– Collector Task – waits for the ISR Event to become signalled and then takes

the IRQ to Task latency measurement. Send the collected measurement data
to the Data Port.

– Data Port – acts as data exchange and synchronisation primitive between the
Collector Task and the Receiver Task.

– Receiver Task – waits for a packet to become available on the Data Port, and
then sends the resulting data to the Latency GUI application.

– SemaTask1 – executes the following in a loop: signal Sema1, then test
Sema2

– SemaTask2 – executes the following in a loop: test Sema1, then signal
Sema2

– Sema2 – synchronisation of SemaTask1 and SemaTask2
– Sema1 – synchronisation of SemaTask1 and SemaTask2

Figure A.29 shows the resulting Application diagram and the mapping of the entities
onto the different OpenComRTOS Nodes.

166 A OpenComRTOS-Suite 1.3 Usage Tutorial

Fig. A.29 Interrupt latency measurement system application diagram

A.4.6 Collected Measurement Results

Figure A.30 shows the collected measurements for the IRQ to ISR latency:

• Minimal: 300 ns
• Maximal: 2,140 ns
• 50% of samples less or equal: 400 ns

Figure A.31 shows the collected measurements for the IRQ to task latency:

• Minimal: 12 μs
• Maximal: 25 μs
• 50% of samples less or equal: 17 μs

A.4 Measuring the Interrupt Latency of OpenComRTOS 167

Fig. A.30 Measured IRQ to ISR Latency on ARM Cortex M3 50MHz (logarithmic scale)

Fig. A.31 Measured IRQ to Task Latency on ARM Cortex M3 50MHz (logarithmic scale)

168 A OpenComRTOS-Suite 1.3 Usage Tutorial

A.5 Summary

This chapter illustrated how to use the tools provided by the OpenComRTOS-Suite
1.3 can be used to develop single node, Sect. A.1, and multi node applications,
Sect. A.2. Furthermore, Sect. A.3 demonstrated how to gather and display trace
information using the provided tools. The chapter closed with Sect. A.4 illustrating
the complete development process of a distributed heterogeneous system to measure
the IRQ to ISR and Task latencies.

Appendix B
Foundations for TLA+ and Temporal Logic

B.1 Introduction

B.1.1 Goal: Increased Awareness in Specifying Systems

As mentioned in Chap. 4, mathematics is the main intellectual tool for the genuine
systems designer. In particular, the user of automated model or proof checkers
can benefit from mathematical reasoning about both the system descriptions
(e.g. programs) and the conditions (e.g. invariants, temporal formulas) in various
respects. Here we mention only a few.

a. The link between informal specifications and formal descriptions, often consid-
ered the weak link, can be considerably strengthened by formalizing different
informal views and then formally exploring their relationships (Boute 2006a,b).
The formalizations can even be (advantageously) in different notations, captured
by a unifying framework (Boute 2005) for the purpose of reasoning (e.g. about
correspondences and disparities).

b. More specifically, in model checking the conditions to be met are usually
expressed by temporal formulas, but these are often unintuitive and even con-
fusing, as also observed by Lamport (2002a). This difficulty can be alleviated by
patterns (Dwyer et al. 1998, 1999; Dwyer and Hatcliff 2002), i.e. fixed temporal
formulas “known” to express some property of interest. Such an approach is
used in the Bandera project (Ban 2003; Dwyer and Hatcliff 2002) for model
checking concurrent Java software. However, there is no “complete” collection of
patterns, and the specifier/designer must be able to understand existing patterns
and design new ones. Clarifying the intuitive meaning of patters, exploring the
relationship between them and designing new ones, is again most conveniently
done via mathematics (Boute and Verlinde 2003).

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 10,
© Springer Science+Business Media, LLC 2011

169

170 B Foundations for TLA+ and Temporal Logic

So, rather than “hiding the math”, we aim at making the math very accessible,
bringing the opportunities just outlined within easier reach of the specifier/
designer.

B.1.2 Approach and Overview

Chapter 4 provided an introduction-by-example to TLA+, illustrating how basic
mathematics constitutes a flexible specification language. Examples were taken
from the RTOS design project.

This appendix supplies a mathematical basis for readers interested in going
beyond just reading specifications, but also want to build them. To achieve this, we
follow a general and very efficient approach. An introduction to TLA+ presenting
its many constructs separately would require several dozens of pages, and can be
found in Lamport’s book (Lamport 2002a). Here, we use a generic formalism that
is designed orthogonally and can be covered in a few pages. It can then be used for
presenting other formalisms simply and succinctly, as will be done for TLA+ in a
few tables. It also supports calculational reasoning about formal specifications.

A related formalism that turned out to offer the required expressivity and
reasoning power in general is a functional predicate calculus (Boute 2005). It allows
engineers to calculate with predicates and quantifiers (∀, ∃) as fluently as they were
taught to do with derivatives and integrals. In other words, reasoning is calculational,
as also advocated by Dijkstra (1990), Gries (1991), Gries and Schneider (1993) and
others.

This appendix achieves similar benefits for specification/design by an approach
that is formal, yet very accessible and suitable as a tool for discovery and developing
intuition. It is organized as follows.

Section B.2 briefly presents a unifying formalism usable for reasoning about
specifications, views and designs, and for capturing various tool-supported lan-
guages. After half a dozen pages of basic mathematics and some conventions for
operator design clarified by examples, this formalism enables covering TLA+ in
two convenient tables.

In view of the aforesaid goal (a), Sect. B.3 discusses style issues in faithfully
reflecting informal specifications and arguments in a formal way, together with
illustrations.

In view of goal (b), Sect. B.4 is devoted to deriving a temporal calculus,
establishing a convenient style of derivation, and showing applications in reasoning
about temporal formulas expressing liveness issues in TLA+. The power of the
approach is illustrated by calculational derivations that are much simpler than
classical proofs (Lamport 2002a), and often discover stronger results without
knowing them in advance.

B.2 A Unifying Formalism 171

B.2 A Unifying Formalism

B.2.1 Rationale

A formal mathematical language is valuable insofar as it supports the design of
precise calculation rules that are convenient in everyday practice.

In this sense, common mathematical conventions are strong in Algebra and
Analysis (e.g. rules for

∫
in every introductory Analysis text), weaker in Discrete

Mathematics (e.g. rules for ∑ only in very few texts), and poor in Predicate Logic
(e.g. disparate conventions for ∀ and ∃, rules in most logic texts not suited for
practice). This is reflected in the degree to which everyday calculation in the
respective areas can be called “formal”, and inversely proportional to the needs in
Computing Science.

Entirely deficient are the conventions for set comprehension. Common expres-
sions such as

{m ∈ N |m < n} and {2 ·n | n ∈ Z}
may look innocuous, but exposing their structure as

{v ∈ X | p} and {e | v ∈X }

(with the metavariables below) reveals the ambiguity: the example

{n ∈ N | n ∈ Z}

matches both. Calculation rules are nonexistent.
Funmath (Functional Mathematics) is not “yet another computer language”

but an approach to structure formalisms by conceiving mathematical objects as
functions whenever convenient – which is quite more often than common practice
reflects. Four constructs suffice for synthesizing most (all?) common conventions
without their ambiguities and inconsistencies, and also yield new yet useful new
forms of expression, such as point-free expressions. This section summarizes
only the syntax and main definitions; the calculation rules are treated extensively
in (Boute 2005).

B.2.2 Syntax

To facilitate adoption of this design in other formalisms, we avoid a formal grammar.
Instead, we use the following metavariables: i for a (tuple of) identifiers, and for
expressions: v , w : (tuple of) variable(s); d , e: arbitrary; p, q , r : boolean; X , Y : set;
f , g: function; P , Q : predicate; F , G: family of functions; S , T : family of sets. By
“family of X ” we mean “X -valued function”. Here are the four constructs.

172 B Foundations for TLA+ and Temporal Logic

1. An identifier can be any (string of) symbol(s) except markers (binding colon and
filter mark, abstraction dot), parentheses (), and a few keywords (def, spec).

Identifiers are introduced by bindings

i :X ∧. p,

read “i in X satisfying p”. The filter ∧. p (or with p) is optional, e.g.

n :N and n :Z∧. n ≥ 0

are interchangeable.
Definitions, of the form

def binding,

introduce constants, with global scope. Existence and uniqueness are proof
obligations. This is not the case for specifications, of the form

spec binding.

Example:
def roto :R≥0 with roto2 = 2.

Well-established symbols (e.g. B,⇒, R, +,
√

) are seen as predefined constants.
2. A function application has the form f e in the default prefix syntax. A function

identifier is called an operator and clearly must not be confused with a TLA+

operator. For an operator other affix conventions can be specified by dashes
in its binding, e.g. — � —:x 2→X for infix. Prefix has precedence over infix.
Parentheses are used for overriding precedence rules, never as an operator.
Application may be partial: if � is an infix operator, then (a�) and (�b) satisfy

(a�)b = a � b = (�b)a.

Variadic application, of the form

e � e ′ � e ′′ � e ′′′,

is explained below.
3. An abstraction of the form

binding .expression

denotes a function. The identifiers introduced are variables, with scope limited
to the abstraction. Using f as an abbreviation with

f :=v :X ∧. p .e,

B.2 A Unifying Formalism 173

the domain axiom is
d ∈D f ≡ d ∈ X ∧p[vd

and the mapping axiom
d ∈D f ⇒ f d = e[vd .

Here, e[vd is e with d substituted for v . Example: n :Z .2 ·n .
4. Tupling, of the form e,e′,e ′′ (any length n), denotes a function with domain

0..n−1 and mapping illustrated by (e,e ′,e ′′)0 = e and (e,e ′,e ′′)1 = e ′ etc. The
conditional expression (p ?e ′ e) is defined via tuples by

(p ?e ′ e) = (e,e ′)p.

One can define shorthands (“macros”) or sugaring in terms of the basic syntax, but
very few suffice. Shorthands are de for d ↑e (exponent) and de for d ↓e (filtering,
see below). Sugaring macros are

e | v :X ∧. p for v :X ∧. p .e,

v :X | p for v :X ∧. p .v ,

v :=e for v : ι e.

The last formula uses the singleton set injector ι with axiom

d ∈ ι e ≡ d = e.

B.2.3 Style of Use

B.2.3.1 Functions

A function f is fully defined by its domain D f and its mapping (unique image
for every domain element). Skipping a technicality, function equality can be
expressed by

f = g ≡ D f = D g ∧ f c©g,

where f c©g expresses that f and g are compatible, that is:

f c©g ≡ ∀x :D f ∩D g . f x = g x .

Example: the constant function definer • with

X • e = v :X .e

(v not free in e). It is near-trivial, but very useful.

174 B Foundations for TLA+ and Temporal Logic

Special instances: the empty function

ε := /0• e

(any e; exercise) and the one-point function definer �→ with

d �→e = ι d • e.

Predicates are B-valued functions. We let B = {0,1}; some may prefer
B = {F,T}.

B.2.3.2 Operator Design

We show how to exploit the functional mathematics principle and (re)-synthesise
common notations, issues that are not evident from mere syntax.

(a) Elastic operators originally are functionals designed to obviate common ad hoc
abstractors such as ∑n

i=m , ∀v :X , limx→a , but the idea leads to other designs
as well.

The quantification operators (∀, ∃) are defined by

∀P ≡ P = D P • 1 and ∃P ≡ P �= D P • 0.

Observe synthesis of familiar expressions in

∀P ≡ ∀x :D P .P x and ∀x :R .x 2 ≥ 0

but also new forms as in

∀(p,q) = p∧ q and ∃(p,q) = p∨ q.

For every common infix operator � an elastic extension E is designed
such that

x � y = E (x ,y).

Evident are
⋃

and
⋂

for ∪ and ∩, e.g.

e ∈⋂
S ≡ ∀x :D S .e ∈ S x ,

more interesting are ∑ for + (see below) and the following extensions for =
and �=.

The constancy predicate con and the injectivity predicate inj with

con f ≡ ∀x :D f .∀y :D f . f x = f y

inj f ≡ ∀x :D f .∀y :D f . f x = f y ⇒ x = y

B.2 A Unifying Formalism 175

follow the same design principle. Properties are

con(d ,e) ≡ d = e and inj (d ,e) ≡ d �= e.

The (function) range operator R has axiom

e ∈R f ≡ ∃x :D f . f x = e.

Using {—} as a synonym for R synthesizes set notations such as

{m :N |m < n} and {2 ·n | n :Z}.

Since we never abuse “∈” for binding,

{n :N | n ∈ Z} and {n ∈ N | n :Z}

are unambiguous. Expressions like {e,e ′,e ′′} also have their usual meaning.
Rules are derived via ∃. We use R in defining the function arrow→ by

f ∈ X→Y ≡ D f = X ∧R f ⊆Y .

Variadic function application is alternating an infix operator with arguments.
We uniformly take this as standing for the application of a matching elastic
operator to the argument list. Examples:

p∧ q ∧ r ≡ ∀(p,q,r) and e = e ′ = e ′′ ≡ con(e,e ′,e ′′).

An example of a new opportunity is

e �= e ′ �= e ′′ ≡ inj(e,e ′,e ′′).

Traditional ad hoc abstractors have a “range” attached to them, as in ∑n
i=m .

Elastic operators subsume this by the domain of the argument. This domain
modulation principle obtains additional flexibility from he generic function/set
filtering operator ↓ defined by

fP = x :D f ∩D P ∧. P x . f x and XP = {x :X ∩D P | P x}.

(b) Generic functionals by design are applicable to arbitrary functions. Some
extend existing functionals by lifting restrictions. For instance, function inver-
sion f − traditionally requires inj f and composition f ◦g traditionally requires

176 B Foundations for TLA+ and Temporal Logic

R g ⊆D f . We discard all restrictions on the arguments by defining the domain
of the result such that its image definition is free of out-of-domain applications,
e.g.

f ◦g = x :D g∧. g x ∈D f . f (g x).

Other generic functionals have no classical counterpart (Boute 2003). Examples
are the function override (<©) and the function merge (∪·):

f <©g = x :D f ∪D g .x ∈D g ?g x f x

f ∪· g = x :D f ∪D g ∧. (x ∈D f ∩D g ⇒ f x = g x) .(f <©g)x .

(c) Two design examples For function types, a useful refinement of → is the
Functional Cartesian Product×with

×T = {f :D T→⋃
T | ∀x :D f ∩D T . f x ∈ T x}.

Some properties:

(i) ×−X x = {f x | f :X } for nonempty X :R×and x :D (×−X);
(ii) X→Y =×(X •Y);

(iii) X ×Y =×(X ,Y) where X ×Y is the usual Cartesian product defined
by

x ,y ∈ X ×Y ≡ x ∈ X ∧y ∈ Y .

Hence, we define variadic application of × by

X ×Y ×Z =×(X ,Y ,Z)

etc. Often we write X �v→Yv for×v :X .Yv (known as a dependent type).
A a generalized and formal definition of ∑ is given via the generic function

merge ∪· . We define ∑ recursively by:

The empty rule ∑ ε = 0.
The one-point rule ∑(e �→c) = c.
The merge rule ∑ (f ∪· g) = ∑ f + ∑ g

for any numeric c and any number-valued functions f and g with finite
nonintersecting domains. The function domains may happen to be numeric. As
expected, variadic application of + is defined by x + y + z = ∑ (x ,y,z).

With —..— defined as in Pascal by m ..n = {i :Z |m ≤ i ≤ n} for integer
n and m, we formalize

n

∑
i=m

e as standing for ∑ i :m ..n .e.

This formally yields all rules, less the many pitfalls in common conventions.

B.2 A Unifying Formalism 177

B.2.3.3 Sequences, Sequence Types and Operators

Tuples, arrays, lists, here jointly called sequences, are the most ubiquitous aggregate
data structures in discrete mathematics. Here we recast them in a functional mold.
Letting

N
′ :=N∪ ι ∞,

we define the block operator

:N′→P N by n = {m :N |m < n},

for instance, 0 = /0 and 2 = B and ∞ = N.
A sequence is any function with domain n for some n :N′. The length operator

is defined by

#x = n ≡ D x = n

for any sequence x and n :N′. The empty sequence is ε, and the singleton sequence
injector τ is defined by τ e = 0 �→e.

An array of length n over set A is a function of type n→A, written A↑n
or An . Note that

An =×(n •A).

Finite lists over A are functions of type

⋃
n :N .An ,

written A∗. Note that A∞ = N→A and A∗ ∩A∞ = /0. We define Aω as A∗ ∪A∞.
Arbitrary tuple types are covered by×. If T is a list of sets,×T ⊆ (

⋃
T)#T .

An important operator on sequences is concatenation ++. For any sequences
x and y , we define x ++y to be the sequence with domain and mapping given
respectively by

#(x ++y) = #x + #y and (x ++y) i = (i < #x)?x i y (i −#x)

for all i :D (x ++y). Useful properties are

identity: x ++ε = x = ε ++x and associativity: (x ++y)++z = x ++(y ++z).

Derived operators are prefixing >− and postfixing−< with

e >−x = τ e ++x and x −<e = x ++τ e.

178 B Foundations for TLA+ and Temporal Logic

Alternatively, we can let >− be defined as the basic operator via its mapping and
define ++ recursively by

ε ++y = y and (a >−x)++y = a >−(x ++y).

Induction for lists is expressed as follows: for any P :A∗→B

∀P ≡ P ε ∧∀x :A∗ .P x ⇒∀a :A .P (a >−x).

B.2.3.4 Formal Calculation Rules

Readers with some experience in abstract algebra can infer the rules from the various
definitions given; others can find an overview in (Boute 2005).

B.2.4 Introducing TLA+ Via Funmath

Funmath is designed as a mathematical language without restrictions imposed by
implementation concerns. As a result it is a good vehicle for introducing the syntax
and semantics of TLA+. The reader will notice how small the differences are.
This is due to the fact that TLA+ was also designed “close” to mathematics, and
explains why it is preferable over program-like notations where restrictions inherited
from implementation concerns are the rule. This closeness also allows describing
the syntax by juxtaposition of equivalent expressions rather than using the full
machinery of a formal grammar.

In the tables that follow, TLA+ notations are organized in the order of their
appearance on pages 268–269 of Specifying Systems by Leslie Lamport (2002a).
The Funmath equivalents are expressed by means of functions and generic func-
tionals defined above. The only function not listed there is the choice operator ,
specified by

R f �= /0⇒ f ∈R f .

In Funmath terminology, an operator is an identifier for a function (a mathemat-
ical object, having a domain). In TLA+, an operator is not a mathematical object
and has no domain; pages 69–72 of Functions versus Operators by Leslie Lamport
(2002a).

Tables B.1 (page 179) and B.2 (page 180) cover the basic mathematical
expressions. Left columns pertain to TLA+, right columns to Funmath. PF is the
point-free variant, available in Funmath only, where it is the basis for the definition.
Indices in 0 ..n− 1 and ellipsis (. . .) are just metanotation. In TLA+ and Funmath,
function applications (hence indexing) are not allowed in bindings, and ellipsis is
illegal nonsense.

B.3 Faithful Formalization of Informal Specifications 179

Table B.1 Basic mathematical TLA+ expressions via Funmath equivalent, part 1

TLA+ Funmath

Logic
∧ ∨ ¬ ⇒ ≡ ∧ ∨ ¬ ⇒ ≡
TRUE FALSE BOOLEAN 1 0 B

∀x : p ∃x : p ∀x∈S : p ∃x∈S : p ∀x :S .p ∃x :S .p PF: ∀P ∃P

CHOOSE x : p CHOOSE x ∈ S : p x :S | p PF: f

Sets
= �= ∈ /∈ ∩ ∪ ⊆ \ = �= ∈ /∈ ∩ ∪ ⊆ \
{e0, . . .,en−1} {e0, . . . ,en−1} PF: R s

{x ∈ S : p} {x :S | p} PF: R f

{e : x ∈ S} {e | x :S} PF: R f

SUBSET S P S

UNION S (here S is a set of sets)
⋃

T (here T is a family of sets)

Functions
f [e] f e

DOMAIN f D f

[x ∈ S �→ e] x :S .e

[S → T] S→T

[f EXCEPT ![d] = e] f <©d �→e PF: f <©g

The leftmost column comes from Leslie Lamport, Specifying Systems (Lamport 2002a,
pp. 268–269)

We also recall that, in Funmath, x ,y is always a tuple (notational consistency);
hence,

TLA+ binding Funmath binding

x ,y ∈ S x ,y :S2

〈x ,y〉 ∈ T x ,y :T e.g. if T = X ×Y

x ∈ X ,y ∈ Y x :X ;y :Y

The main action operators and temporal operators are listed with their definition in
Table B.3 (page 180) and are further explained in Sect. B.4.3.

B.3 Faithful Formalization of Informal Specifications

One can hardly overemphasize the importance of faithful formalization of informal
statements or arguments. Indeed, many mistakes are made in “jumping ahead” by
skipping [parts of] sentences or by translation into inadequate data structures. A for-
mal specification that faithfully reflects the informal description is the best reference
for later analysis or discussion to discover ambiguities, omissions, inconsistencies,

180 B Foundations for TLA+ and Temporal Logic

Table B.2 Basic mathematical TLA+ expressions via Funmath equivalent, part 2

TLA+ Funmath

Records
e.h as shorthand for e[“h”] e h (see note b. below)
[h0 �→ e0, . . .,hn−1 �→ en−1] h0 �→e0∪· · · · ∪· hn−1 �→en−1

[h0 : S0, . . . ,hn−1 : Sn−1] Rcrd (h0 �→S0, . . .,hn−1 �→Sn−1)
[r EXCEPT !.h = e] r <©(h �→e)

Notes on the Funmath column:
a. Point-free versions of the last 3 lines:

⋃· (h ̂�→ e) Rcrd (h ̂�→ S) r <©s

b. The field name h is from an enumeration set; one can also use strings as in e“h”.

c. Rcrd (h0 �→S0, . . .,hn−1 �→Sn−1) =×(h0 �→S0∪· · · · ∪· hn−1 �→Sn−1)
Tuples

e[i] e i

〈e0, . . . ,en−1〉 e0, . . .,en−1 PF: e

S0× . . .×Sn−1 S0× ·· · ×Sn−1 PF:×S

Strings and numbers
“c0 . . .cn−1” “c0 . . .cn−1”
STRING A

∗ (for character set A)
dn−1 . . .d0 dn−1 . . .d0 . d−1 . . .d−m dn−1 . . .d0 dn−1 . . .d0 . d−1 . . .d−m

Miscellaneous
IF p THEN e1 else e0 p ?e1 e0

CASE p0 → e0 � . . . � pn−1 → en−1 i : n∧. pi .ei PF: (f ↓P)
CASE p0 → . . .→ en−1 � OTHER→ d PF: ∃P ? ((f ↓P)) d

LET c0
Δ= e0 . . . cn−1

Δ= en−1 IN d let c0 :=e0; . . . ;cn−1 :=en−1 in d

d where c0 :=e0; . . . ;cn−1 :=en−1

Note: in Funmath, a function CASE can be defined supporting any desired arrangement of
conditions and expressions, e.g. CASE (p0 �→e0, . . . ,pn−1 �→en−1) (exercise).

The leftmost column comes from Leslie Lamport, Specifying Systems (Lamport 2002a,
pp. 268–269)

Table B.3 Action and temporal operators of TLA+ defined via Funmath

Action operators
e ′ e ′ = e[ss ′
[A]e [A]e ≡A∨ e ′ = e

〈A〉e 〈A〉e ≡A∧ e ′ �= e

ENABLED A ENABLED A≡∃s ′ :S .A

UNCHANGED e UNCHANGED e ≡ e ′ = e

A ·B A ·B ≡∃ t :S .A[s
′

t ∧B [st
Temporal operators: primitive operators and patterns

F β F ≡∀n :N .σnβ F�F β �F ≡∃n :N .σnβ F

WFe(A) WFe(A)≡ ((ENABLED〈A〉e)⇒�〈A〉e)
SFe(A) SFe(A)≡ �ENABLED〈A〉e ⇒ �〈A〉e
∀∀x : F β ∀∀x : F ≡∀γ :S∞

F . (�γ)T
�=i = (�β)T

�=i where i :=∼s
− x

∃∃x : F β ∃∃x : F ≡∃γ :S∞
F . (�γ)T

�=i = (�β)T
�=i where i :=∼s

− x

The leftmost column comes from Leslie Lamport, Specifying Systems (Lamport 2002a,
pp. 268–269)

B.3 Faithful Formalization of Informal Specifications 181

inaccuracies and, most importantly, useful relationships (differences, equivalences)
between formulations that are different in viewpoint or in the formal language used.

We start with simple examples of a non-technical nature, which best illustrate the
point because no distracting technical side-issues are present.

B.3.1 Choice of Proper Data Abstractions

B.3.1.1 A Simple Example: The Coffee Bean Puzzle

At various places on the web, one finds the following puzzle, most likely originating
from David Gries.

Consider a coffee can which contains an unknown number of brown beans and an unknown
number of white beans. Repeat the following process until exactly one bean remains. Select
two beans from the can at random. If they are both the same color, throw them both out,
but insert another brown bean. If they are different colours, throw the brown one away, but
return the white one. What can you deduce about the colour of the last bean as a function
of the initial number of black and white beans? Hint: find a useful invariant maintained by
the process.

Here is the usual informal solution: the obvious invariant is the parity (i.e., being
even or odd) of the number of white beans, so the one remaining bean is white iff
the original number of white beans was odd. Clearly many steps are skipped – to
appear “clever”.

B.3.1.2 Faithful Formalization: The Inversion Criterion

How faithfully an informal text is formalized is to some extent a matter of taste.
However, there is a reasonable working criterion: how well can the informal
statement be reconstructed from the formalized one? For obvious reasons, we call
this the inversion criterion.

The essence of faithful renderings is in using proper abstractions. Here, “proper
abstraction” does not mean: away from the problem (to the contrary), but: away
from the restrictions due to the specification language or its implementation.

Hence the crucial limiting factor is the expressiveness of the language. For
instance, the statement of the bean problem indicates that non-deterministic choice
must be supported. However, as we shall see, more is needed.

B.3.1.3 Formalization in the Guarded Command Language

Here is a possible rendering in Dijkstra’s Guarded Command Language (Dijkstra
1997; Dijkstra and Scholten 1990).

182 B Foundations for TLA+ and Temporal Logic

Fig. B.1 Numbers of beans

do w + b > 1 -> if w >= 2 -> w := w - 2 ; b := b + 1
[] b >= 2 -> b := b - 1
[] w >= 1 and b >= 1 -> b := b - 1 fi od

It deserves at least two relevant criticisms.
First, since this language supports non-determinism only via an if-statement, the

random choice in the problem statement had to be “forced” into this shape.
Second, this rendering starts directly with numbers, which is coding-oriented and

hence not a proper abstraction: the inversion criterion is far from being met.
Still, this program provides a nice and simple exercise for proving termination

and invariants in a short classroom session or in an exam. For this purpose, we
recommend the “checklist” given in (Gries and Schneider 1993) and proven in detail
in (Boute 2006c).

B.3.1.4 Low-Level Formalization in TLA+

Figure B.1 (Nob standing for “number of beans”) formalizes the beans puzzle in
TLA+ (Lamport 2002a) in a low-level representation, that is: using numbers.

B.3 Faithful Formalization of Informal Specifications 183

Fig. B.2 Bag of beans

The central definition in this module is CBnxt. The example shows how to
express procedural specifications by relations. Even before becoming proficient in
formal calculation with relations, beginning students soon get some feeling for this
different style of expression as compared to C++ or Java.

On the other hand, here is some style criticism. Note how the “meaningful
identifiers” (SlctAnyTwo etc.) create the illusion of a faithful rendering (Dijkstra
1989), but the real test by the inversion criterion is after replacing these identifiers
with their definitions a few lines earlier. All that remains then is some mumbo-
jumbo with numbers, far removed from the problem statements. This is where data
abstraction enters the picture, as illustrated in the following paragraph.

B.3.1.5 Formalization in TLA+ Using Bags

Figure B.2 (Bob standing for “bag of beans”) uses the datastructure Bags to model
both the contents of the can c and the bean sample bs.

The central definition CBnxt is unchanged w.r.t. Fig. B.1 mainly for educational
reasons: emphasizing what is different, without possibly distracting other changes.
However, replacing the “meaningful identifiers” with their definitions a few lines
earlier now results in a procedure specification meeting the inversion criterion.

184 B Foundations for TLA+ and Temporal Logic

The only difference is that the generic data abstraction is called a “bag” whereas
the problem statement talks about a “can”. For instance,

bs ′ = CHOOSE p ∈ SubBag(c) : size(p) = 2

reads as: “[the sample] bs′ comes from choosing any subbag from c of size 2”.

B.3.2 Auxiliary Functions in Formal Specifications

In the preceding example modules, state transitions (from s to s ′) were very
prominent, as is typical in TLA+ specifications. However, the discussions showed
the importance of the auxiliary data structures and operators, since these made the
difference.

In experimenting with TLA+, Funmath turns out to be a very good formalism
for reasoning about function definitions. Here we illustrate two issues: styles of
function definition for matching informal descriptions, and styles of definition for
making definitions acceptable to TLC while preserving elegance and clarity. We
start with the latter for the sake of continuity with the preceding section.

B.3.2.1 Redesigning TLA+-Definitions for Acceptability to TLC

Whereas TLA+ as a language imposes no restrictions beyond its syntax, TLC
accepts only definitions that do not require exploring infinite structures.

For instance, Fig. B.3 shows the basic Bags module from (Lamport 2002a,
p. 343), compressed by omitting some details that do not affect this discussion.
A pleasant feature of TLA+ is that it is using a mathematical rather than a program-
ming notation. Hence, readers with a minimal general mathematical background
(not specialist familiarity with some programming language) should be able to
understand these definitions with a little bit of study.

Consider, however, the definition of SubBag in Fig. B.3, a function used in the
Bob module (Fig. B.2). When model checking BoB using TLC, an error message
indicated that the definition in Fig. B.3 leads TLC to exploring the natural numbers.

Here, we show how to develop a TLC-acceptable variant using the concepts of
Funmath, in particular the Generalized Functional Cartesian Product (Sect. B.2),
which is our “workhorse” for function typing (Boute 2003, 2005). We recall that,
for any set-valued function T ,

×T = {f :D T→⋃
T | ∀x :D T ∩D f . f x ∈ T x}. (B.1)

The set of subbags of a given bag B is built as follows. The domain of any subbag
of B is a subset of D B , say S . A little reflection shows that the set of subbags of B

B.3 Faithful Formalization of Informal Specifications 185

Fig. B.3 The Bags module from Specifying Systems compressed

with domain S is×s :S .1 ..B s and hence the set of all subbags of B is the union
of these sets as S ranges over all subsets of B , that is:

SubBagB =
⋃

S :P (D B) .×s :S .1 ..B s (B.2)

where P X is the powerset of set X . Expanding×s :S .1 ..B s ,

×(s :S .1 ..B s)

= 〈Def.×(B.1)〉 {b :S→⋃
(s :S .1 ..B s) | ∀s :S .b s ∈ 1 ..B s}

= 〈Calculations〉 {b :S→1 ..nlub(B s | s :S) | b � B}

where nlub is the l.u.b. operator for N under ≤. We omit detail in “calculations”.
Substituting in (B.2) and translating the result into TLA+ yields the following
replacement for SubBag in Fig. B.3, bringing it within the capabilities of TLC.

B.3.2.2 Defining TLA+ Functions at a More General Level

Once more we address faithful formalization of informal statements, taking an
example relevant to temporal logic.

Here is the informal statement: Given a sequence of symbols, replace successive
appearances of the same symbol (aptly called stuttering in the context of temporal
logic) by a single appearance of that symbol. We call this stuttering elimination. It
is informative trying to formalize this before reading any further.

186 B Foundations for TLA+ and Temporal Logic

In (Lamport 2002a) one finds the following formal specification: for any infinite
sequence σ ,

�σ Δ= LET f [n ∈ Nat] Δ= IF n = 0 THEN 0
ELSE IF σ [n] = σ [n−1]

THEN f [n−1]
ELSE f [n−1]+ 1

S Δ= {f [n] : n ∈ Nat}
IN [n ∈ S �→ σ [CHOOSE i ∈ Nat : f [i] = n]]

This definition is not evident and covers infinite sequences only.
A formula reflecting the intuitive simplicity of the specification is designed as

follows (Boute 2006b). The basic idea is that any function can be decomposed as
f =

⋃· x :D f .x �→ f x . Hence for any finite or infinite sequence β we can write β =⋃· n :D β .n �→β n . Re-indexing the domain points by skipping duplicates yields the
definition

�.β =
⋃· n :D β .∑(k : n .β (k + 1) �= β k) �→β n,

where we wrote �. to indicate that the argument can be any sequence (finite or
infinite). One can prove (exercise) that � equals �. restricted to infinite sequences.
An even simpler formula is the following: for any sequence β ,

�.β = ++ n :D β .(n > 0∧β (n−1) = β n)?ε τ (β n), (B.3)

where++ is the concatenation operator, ε the empty sequence and τ e the sequence
of length one containing just the element e.

B.4 Calculational Reasoning and Patterns in TLA+

B.4.1 Capturing Temporal Logics by Temporal Calculi

The usual formulations of formal temporal logic (Manna and Pnueli 1991) follow
the style of traditional formal logic oriented towards metamathematical issues.
However, for introducing concepts of temporal logic to the practicing engineer, it
is more appropriate casting them into a calculus with the smooth algebraic flavor so
appreciated in classical mathematics, and presenting them as just another theory in
the common framework.

A simple approach is viewing temporal operators as an algebra of functions on
infinite sequences. Here, so-called linear time is assumed. So-called branching time
yields a calculus where some rules are slightly different, but these are derived in the
same way.

B.4 Calculational Reasoning and Patterns in TLA+ 187

Starting from the model rather than pure axiomatics reflects the systems
viewpoint, yet the usual axioms of temporal logic (Manna and Pnueli 1991) can
still be made into textually identical theorems (Boute 1986), thus providing equal
abstraction.

Different styles are possible, also depending on other desiderata. For instance, to
support awareness when using a model checking tool, the calculus should be able
to capture the tool’s language. We illustrate later how to do this for TLA+. Yet, it is
also conceptually helpful to start with a very elementary form of temporal calculus
that captures the common concepts, independently of tools, re-using the results in
calculi for specific tools.

B.4.2 A Functional Temporal Calculus (FTC)

B.4.2.1 Principle and Operator Definitions

A very basic temporal calculus is obtained by defining temporal operators as
predicate transformers, the predicates of interest pertaining to system behaviors
(infinite sequences of system states).

Formally, let S be the state space (instantaneous values). Behaviors (infinite
sequences) are functions of type N→S, also written S∞. The predicates of interest
are Boolean-valued functions over S∞, hence of type BP :=S∞→B.

Logical operators of FTC are just pointwise extensions of the usual propositional
operators: for any infix operator � (say, ∧, ∨,⇒, ≡) and any β in S∞,

(P �Q)β ≡ P β �Q β . (B.4)

Operators of type B
2→B (for ∧, ∨,⇒,≡) or B→B (for ¬) are thereby overloaded

to type BP2→BP or BP→BP (“predicate transformers”). Extension can be made
explicit if desired (Boute 2003), but it is unambiguous here.

Temporal operators of FTC are predicate transformers of type BP→BP, e.g.

� (“next”) defined by �P β ≡ P (σ β) (B.5)

(“henceforth”) defined by P β ≡ ∀n :N .P (σnβ) (B.6)

� (“eventually”) defined by �P β ≡ ∃n :N .P (σnβ) (B.7)

By convention in functional formalisms, f x y is read (f x)y , so P β = (P)β .
Also, σ is the shift operator defined on any sequence s by σ s m = s (m + 1).
Informally: σ drops the first symbol, e.g. σ (a,b,c,d) = b,c,d . The n-th power
of a function is n-fold composition: f 0 x = x and f n+1 x = f (f n x) inductively.

By these definitions, FTC reduces temporal reasoning to predicate calculus.
Convention As in functional predicate calculus, ∀P expresses that predicate

P is satisfied by all elements in its domain (Boute 2005). However, to highlight

188 B Foundations for TLA+ and Temporal Logic

analogy with expressions of the form ϕ in typical temporal logics (Manna and
Pnueli 1991), we define for predicates P in BP by P ≡ ∀P (in pointwise
form, P ≡ ∀β :S∞ .P β).

Aside: in formal logic, is usually a metasymbol for “theoremhood”. Adopting
within the language, as done here, adds flexibility for elucidating analogies and

paradigm shifts. Also, to the “working mathematician” provability and validity
are tantamount. Lamport (2002a, p. 92) simply states “A temporal theorem is a
temporal formula that is satisfied by all behaviors”.

B.4.2.2 Illustration: Deriving Point-Free Theorems in FTC

By point-free style we mean avoiding references to domain elements of func-
tions (Boute 2003). Here the domain elements are the behaviours, typically ref-
erenced by a variable β (of type S∞).

The point-free style allows writing formulas looking formally identical to the
meta-theorems and axioms of typical temporal logics (Manna and Pnueli 1991).

The first stage in building this collection is deriving formulas by predicate
calculus and getting rid of the variable β along the way. The second stage is using
only point-free formulas already obtained, as a matter of style.

To convey the flavour, here are a few first-stage examples, selected assuming only
little knowledge of predicate calculus, yet each yielding some interesting insight.

Example A Showing (P) ≡ P .

(P) ≡ 〈Definition 〉 ∀β :S∞ . P β

≡ 〈Definition 〉 ∀β :S∞ .∀n :N .P (σnβ) (∗)

(∗) ⇒ 〈Inst. n :=0〉 ∀β :S∞ .P (σ 0β)

≡ 〈f 0x = x 〉 ∀β :S∞ .P β

≡ 〈Definition 〉 P

(∗) ⇐ 〈Inst. β :=σ nβ〉 ∀β :S∞ .∀n :N .∀β :S∞ .P β

≡ 〈Definition 〉 ∀β :S∞ .∀n :N . P

⇐ 〈Const. pred.〉 P .

In better taste than such a ‘ping-pong’ argument, is an equational proof, but this
requires a little more experience (exercise).

B.4 Calculational Reasoning and Patterns in TLA+ 189

Example B, “temporal instantiation”: P ⇒ P .
A basic proof would consist in showing (P ⇒ P) to be equivalent to 1

(exercise). Observe that P ⇒ P is not a theorem (try β n = n and P β ≡ β 0 = 0).

Remark Whereas such a takes 6 steps, a theorem of the form Q can be proven
more compactly by proving Q β for arbitrary β . For the P ⇒ P example,

P β ≡ 〈Definition 〉 ∀n :N .P (σnβ)

⇒ 〈Inst. n := 0〉 P (σ0)

≡ 〈Definition f n 〉 P β ,

which shows P β ⇒ P β and hence, by point-wise extension (B.4), (P ⇒ P)β .

Example C: induction This example involves a nice generalization of the weak
induction principle over natural numbers (WIN). A typical form of WIN is the
following: for any predicate Q :N→B,

∀(n :N .Q n ⇒Q (n + 1))⇒ (Q 0⇒∀m :N .Q m). (B.8)

The converse does not hold (try Q n ≡ n = 1). However, calculation (exercise) also
yields a strengthened weak induction principle over N (SWIN):

∀(n :N .Q n ⇒Q (n + 1)) ≡ ∀(n :N .Q n ⇒∀m :N .Q (n +m)), (B.9)

from which WIN (B.8) is easily recovered by instantiating the r.h.s. with n :=0.
SWIN also yields a temporal counterpart in FTC by showing calculationally that

(P ⇒ �P)β ≡ (P ⇒ P)β (exercise). Hence (P ⇒ �P) = (P ⇒ P)
as function equality or, in temporal theorem style, the strengthened (weak) temporal
induction principle (STI).

((P ⇒ �P) ≡ (P ⇒ P)). (B.10)

The two sides are a first instance of what can be considered a pattern, i.e., a
composite temporal formula with some general nontrivial useful property. Here is
another pattern.

Example D, “infinitely often” Writing �ϕ is typical in specifications to express
that a formula ϕ is satisfied “infinitely often”. Note that this is a model-centric
statement. More importantly, it is nearly always given without justification, perhaps
assuming the intuitive interpretation “no matter how often ϕ has already happened,
it will happen again”. So a formal proof is all the more revealing.

In mathematics, the usual characterization of finiteness is by correspondence
to the set of the first n natural numbers for some n , or a subset thereof: for any
predicate Q ,

FinQ ≡ ∃n :N .∃ f :N<n→D Q .(D Q)Q ⊆R f . (B.11)

Infiniteness is just the negation of finiteness, so we define ∃∞ Q ≡ ¬(FinQ).

190 B Foundations for TLA+ and Temporal Logic

Specializing to predicates on natural numbers (D Q = N) allows showing that
∃∞ Q ≡ ∀n :N .∃m :N .Q (m +n). The proof is quite instructive (exercise).

It simply follows that, for any temporal predicate P in BP and any β in S∞,

(�P)β ≡ ∃∞ n :N .P (σnβ). (B.12)

This formally proves that (�P) is indeed equivalent to P being satisfied “in-
finitely often” according to the common mathematical characterization.

Example E, distributivity(-like) properties An important batch is

Distribut. /∧: (P ∧Q) ≡ P ∧ Q Dual: �(P ∨Q) ≡ �P ∨�Q

Dispatch. �/∧: �(P ∧Q)⇒�P ∧�Q Dual: (P ∨Q)⇐ P ∨ Q

Equal predic.: (P ≡ Q)⇒ (P ≡ Q) Also: (P ≡ Q)⇒ (�P ≡ �Q)
Weaker predic.: (P ⇒Q)⇒ P ⇒ Q Also: (P ⇒ Q)⇒�P ⇒�Q

These are similar to certain properties in functional predicate calculus (Boute 2005).
A noteworthy addition is ∃∞(P ∨Q) ≡ ∃∞P ∨∃∞Q for general predicates P and Q
satisfying D P =D Q . For temporal predicates P and Q in BP, this yields (�(P∨
Q)) ≡ (�P)∨ (�Q); dual: �((P ∧Q)) ≡ �(P)∧�(Q).

We conclude this subsection with two important observations.

(a) FTC is entirely formulated within functional predicate calculus, without a
separate temporal logic language. The operators are predicate transformers.

(b) FTC captures the essence of temporal logic, and can thereby serve as an
archetype for studying existing temporal logics, an issue addressed next. As
an example, we chose Lamport’s Temporal Logic of Actions (Lamport 2002a)
or TLA+, and show how the aforementioned approach captures it as TCA.
Since (Lamport 2002a) is readily available on the web, no detailed account of
TLA+ is necessary here.

B.4.3 Defining the Temporal Calculus of Actions (TCA)

B.4.3.1 Types

When dealing with functions, it is convenient to have their types at hand.
Although TLA+ is untyped, types for the variables follow from an initial state

and a next state specification. Moreover, as in (Lamport 2002a), a well-structured
specification is documented by a type invariant stating types explicitly. Hence in the
sequel we pretend that variables have been declared with a type.

Let T :I→T be the family of types for the variables in the specification. The
index set I is for bookkeeping, and can be tuned to the desired style. Then the state
space is S :=×T , a Cartesian product. Behaviours have type S∞.

B.4 Calculational Reasoning and Patterns in TLA+ 191

We assume that basic arithmetic, relational and logical operators are available on
these types (language-dependent, but details not needed), and categorize expressions
as follows.

E state expressions B state propositions
E ′ transition expressions A transition propositions, called “actions”
X temporal expressions F temporal propositions (“temporal formulas”)

In state expressions, state variables occur unprimed, in transition expressions they
can also be primed, and in temporal expressions temporal operators (see below) can
occur, so E ⊂ E ′ ⊂X . Propositions are just boolean-valued expressions, so B⊂ E ,
A ⊂ E ′, F ⊂X .

B.4.3.2 Conventions

Substituting an expression d for variable v in expression e is written e[v := d]
as in (Gries and Schneider 1993), or as e[vd (saving scarce horizontal space). For
multiple substitution, d and v can be tuples (of the same length), for instance,
(y + x)[x ,y

z ·y,a ·x= a · x + z ·y .
As in (Boute 2006c), s is a syntactic shorthand standing in all bindings and

mathematical expressions for the tuple formed by all state variable names in some
fixed order (e.g. as declared). The tuple of the names of the variables as syntactic
elements is written ∼s . The set of variables is then V :=R∼s and we let I :=D ∼s .
So, for n state variables, the state space S is a set of n-tuples. Furthermore, for any
expression e, we write e′ for e[ss ′ , noting also that s ′ = s [ss ′ .

Example: given the declaration VAR num :Z;cond :B, then S :=Z×B and s liter-
ally stands for num,cond, e.g. ∀s :S .p stands for ∀(num,cond) :S .p (parentheses
optional).

B.4.3.3 Operators

In the tables, the leftmost columns describe the syntax via the syntactic categories
(unusual but self-explanatory). The rightmost columns give translation into common
notation.
a. Action operators

— ·—:A ×A →A a · b ≡ ∃ t :S .a[s
′

t ∧b[st
[—]— :A ×E →A [a]e ≡ a ∨ e = e ′

〈—〉— :A ×E →A 〈a〉e ≡ a ∧ e �= e ′

UNCHANGED :E →A UNCHANGED e ≡ e = e ′

ENABLED :A →B ENABLEDa ≡ ∃s ′ :S .a

(B.13)

192 B Foundations for TLA+ and Temporal Logic

b. Temporal operators are characterized using the endosemantic function ,
defined recursively on the structure of expressions. In view of E ⊂ E ′ ⊂ X , the
recursion basis are the state and transition expressions e in E and E ′, for which

β e = e[s,s ′
β 0,β 1.

Since state expressions contain no primed state variables, e[s,s ′
β 0,β 1= e[sβ 0.

For temporal expressions (in X) and formulas (in F).

�:X →X β �e = σ β e (�is not part of TLA+)

:F→F β ϕ ≡ ∀n :N .σn β ϕ

� :F→F β �ϕ ≡ ∃n :N .σn β ϕ
∀∀— :V →F→F β ∀∀v ϕ ≡ ∀γ :S∞

ϕ .(�γ)T
�=i = (�β)T

�=i i = ∼s
− v

∃∃— :V →F→F β ∃∃v ϕ ≡ ∃γ :S∞
ϕ .(�γ)T

�=i = (�β)T
�=i i = ∼s

− v

(B.14)

The temporal quantifiers ∀∀ and ∃∃ are given for completeness only and may be
skipped. The rather terse notation uses generic transposition from (Boute 2003):
f Ty x = f x y), and the compacting operator � removes successive duplicates
(stuttering); see Sect. B.3.2.

Boolean combinations of temporal formulas are defined by pointwise
distributivity:

β ¬ϕ ≡ ¬(β ϕ) β ∀(x :X .ϕ) ≡ ∀x :X .β ϕ
β (ϕ � ψ) ≡ β ϕ � β ψ β ∃(x :X .ϕ) ≡ ∃x :X .β ϕ

(B.15)

Here, � is any infix logical operator in {⇒,≡,≡/ ,⊕,∧,∨}.
At the left-hand sides of the equivalences, �, ¬, ∀, ∃ are TCA/TLA+ operators,

and at the right-hand side they are the “normal” logical operators. Risk of confusion
is minor, since the calculation rules will be fully analogous. Because temporal
formulas appear only syntactically, we can adopt the syntax of the target language,
e.g. for optional parentheses, �ϕ stands for (�ϕ) etc.

B.4.4 Calculational Reasoning in TCA/TLA+

B.4.4.1 Introduction

For any ϕ , the partial application ϕ is a predicate of type BP. This differs from
FTC predicates only in using postfix notation (β stands before ϕ in β ϕ , but after
P in P β). Up to this lexical detail, all calculation rules are inherited from FTC.

B.4 Calculational Reasoning and Patterns in TLA+ 193

The operator from is adapted (or overloaded) to temporal formulas ϕ by

ϕ ≡ ∀β :S∞ .β ϕ. (B.16)

Hence, ϕ expresses the fact that ϕ is a (temporal) theorem in Lamport’s
sense (Lamport 2002a).

A (temporal) tautology is a (temporal) theorem containing only arbitrary formu-
las, which can be instantiated by specific ones as desired.

“Proving ϕ” then means “proving ϕ” but, as for FTC, expanding ϕ in
pointwise form according to (B.16) is necessary only in proving the basic theorems.

B.4.4.2 A Calculational Style for TCA/TLA+

First, all calculations from FTC are inherited. It suffices replacing P β by β ϕ
and, when desired, removing optional parentheses, e.g. duality �P ≡ ¬((¬P))
becomes �ϕ ≡ ¬ ¬ϕ .

Basic tautologies are named correspondingly, again (as in FTC) borrowing the
terminology from similar rules in general predicate calculus (Boute 2005), for
instance

(ϕ ∧ψ) ≡ ϕ ∧ ψ (Dist. /∧) (ϕ ∨ψ)⇐ ϕ ∨ ψ (Coll. /∨)

�(ϕ ∨ψ) ≡ �ϕ ∨�ψ (Dist. �/∨) �(ϕ ∧ψ)⇒�ϕ ∧�ψ (Disp. �/∧)
(B.17)

We also recall the extra equational distributivity rules due to the underlying model
(behaviours) and based on properties of the natural numbers, e.g.

�(ϕ ∨ψ) ≡ �ϕ ∨ �ψ (Dist. �/∨)
� (ϕ ∧ψ) ≡ � ϕ ∧� ψ (Dist. � /∧).

(B.18)

Rules for “equal/weaker predicates”, e.g. ∀(P ⇒̂ Q) ⇒ ∀P ⇒ ∀Q (WKP\∀)
from general predicate calculus (Boute 2005) and rule (P ⇒ Q)⇒ P ⇒ Q
(WKP\) from FTC are renamed with “formula”, as in (ϕ ⇒ ψ)⇒ ϕ ⇒ ψ
(WKF\).

Even when calculating directly with β ϕ , the remark after Example B in
Sect. B.4.2 shows how to omit repetitive parts, such as the prelude “We calculate,
for arbitrary β :S∞,” and the postlude “Hence β ϕ �β ψ which yields (ϕ �ψ)”,
where � is implication or equivalence as in the calculation chain.

Finally, we establish a calculational style within TCA/TLA+ as follows. Thus
far, all steps in all derivations were linked by propositional equivalences and
implications, and β appeared explicitly. However, after deriving the /�-related
tautologies, further calculations typically contain (only) steps of the form

β ϕ ⇒ 〈Justification for β ϕ ⇒ β ψ〉 β ψ

β ϕ ≡ 〈Justification for β ϕ ≡ β ψ〉 β ψ .

194 B Foundations for TLA+ and Temporal Logic

The justifications can be temporal tautologies of the form ϕ ⇒ ψ or ϕ ≡ ψ , since
these can be instantiated for β :S∞ using (B.16). There are more tautologies than just

/�-related ones. Every rule from propositional calculus yields a temporal tautology
by substituting β ϕ , β ψ etc. for p, q etc., distributivity (B.15) for every operator
to bring β in front, and generalization for ∀.

As β appears in every line in the same position, we omit it as a matter of
convention, linking the steps by temporal equivalences and implications.

All these observations are illustrated in the following calculation, yielding the
interesting modus ponens-like property � ϕ ∧� (ϕ ⇒ ψ)⇒� ψ .

� ϕ ∧� (ϕ ⇒ ψ) ≡ 〈Dist. � /∧〉 � (ϕ ∧ (ϕ ⇒ ψ))

≡ 〈MP equiv.〉 � (ϕ ∧ψ)

≡ 〈Dist. � /∧〉 � ϕ ∧� ψ

⇒ 〈Weakening〉 � ψ .

Rule 〈MP equiv.〉 is “Modus Ponens as an equivalence”: ϕ ∧ (ϕ ⇒ ψ) ≡ ϕ ∧ψ .
The redundancy is to obtain � ϕ ∧� (ϕ ⇒ ψ) ≡ � ϕ ∧� ψ in passing.

Calculation is now fully within TCA. When possible, we use this style as it
reduces writing, makes patterns conspicuous, and raises the abstraction level.

B.4.5 Applications to Patterns in TLA+

This section is an extended chain of examples about patterns related to liveness
and fairness. The patterns are taken from Chap. 8 in Specifying Systems (Lamport
2002a), which is readily available on the web. We show how TCA yields sig-
nificantly simpler proofs and how the theorems themselves are discovered by
calculation, sometimes even in a stronger form. Formulas are labeled as in the cited
reference.

B.4.5.1 Weak Fairness

From (Lamport 2002a, pp. 97–98), we quote the following equivalent patterns
for “weak fairness”, denoted WFv (A). The motivation is discussed in the cited
reference.

(ENABLED 〈A〉v ⇒�〈A〉v) (8.7) in (Lamport 2002a) (B.19)

�(¬(ENABLED 〈A〉v)∨ �〈A〉v (8.8) in (Lamport 2002a) (B.20)

� (ENABLED 〈A〉v)⇒ �〈A〉v (8.8) in (Lamport 2002a) (B.21)

These will be the basis for the following calculational TCA/TLA+-derivations.

B.4 Calculational Reasoning and Patterns in TLA+ 195

B.4.5.2 Application Example A

The motivation of (8.7) in (Lamport 2002a, p. 97) went via the intermediate form
(ENABLED 〈A〉v ⇒ �〈A〉v), later giving rise (Lamport 2002a, p. 99) to the

question under which condition this form is equivalent to (8.7).
The answer in (Lamport 2002a, p. 99) is given in the form of a theorem:

(E ⇒ E ∨�A) ⇒ ((E ⇒�A) ≡ (E ⇒�A)).

(8.11) in (Lamport 2002a) (B.22)

Formula (8.11) was designated as “complicated” and unfavorable to a proof by
calculation, and a classical proof taking about one page was given.

Here follows a calculational derivation, which differs from a proof in the sense
that the desired condition is discovered without knowing it in advance.

(E ⇒�A) ≡ (E ⇒�A) ⇐ 〈Equal form.\ 〉 (E ⇒�A ≡ E ⇒�A)

≡ 〈RSDist.⇒/≡〉 (¬(E ≡ E)⇒�A)

≡ 〈Inst. ϕ ⇒ ϕ〉 (¬(E ⇒ E)⇒�A)

≡ 〈From⇒ to ∨〉 ((E ⇒ E)∨�A)

≡ 〈From⇒ to ∨〉 (¬E ∨ E ∨�A)

≡ 〈From ∨ to ⇒〉 (E ⇒ E ∨�A)

The “Right SemiDistributivity⇒/≡” rule is ¬(p ≡ q)⇒ r ≡ p⇒ r ≡ q ⇒ r .

B.4.5.3 Application Example B

In (Lamport 2002a, p. 101 ff.), the question is asked when separate fairness
conditions can be combined in a single one, more specifically, When can WFv (A)∧
WFv (B) be written as WFv (A∨B)?

The answer in (Lamport 2002a, p. 102) is given in the form of a theorem:

DR1∧DR2 ⇒ (WFv (A)∧WFv (B) ≡ WFv (A∨B)) (8.20) in (Lamport 2002a)

where

DR1
Δ= (ENABLED 〈A〉v ⇒ ¬ENABLED〈B〉v ∨�〈A〉v)

DR2
Δ= (ENABLED 〈B〉v ⇒ ¬ENABLED〈A〉v ∨�〈B〉v).

The classical proof in (Lamport 2002a, p. 102 ff.) takes two and a half pages.
It uses contradiction, which also requires knowing the result. Here, we proceed
calculationally, and by discovery, which happens to yield a stronger result along
the way.

196 B Foundations for TLA+ and Temporal Logic

To avoid clutter in formulas and calculations, we introduce W defined by the
following equivalent expressions for WA, from which to choose as convenient.

(EA⇒�A) �¬E A∨ �A � E A⇒ �A (B.23)

Obviously WFv (A) ≡ W〈A〉v . Note also that E and 〈 〉v distribute over ∨.
The central question is when WFv (A∨B) captures WFv (A)∧WFv (B). Hence,

we investigate W (A∨B)⇒ WA∧WB by calculating equationally

W (A∨B)⇒ WA ≡ 〈Exercise〉 �B ⇒ WA (B.24)

and, therefore, W (A∨B)⇒ WA∧WB ≡ (�B ⇒ WA)∧ (�A⇒ WB).
The r.h.s. is sufficient for W (A∨B)⇒ WA∧WB but also necessary and hence

the weakest condition possible. Hence, the essential goal is amply met.
Just for completeness, one can investigate W A∧W B⇒W (A∨B) by calculating

WA⇒ WB ⇒ W (A∨B)

⇐ 〈Exercise〉 (EA⇒ ¬E B ∨�A)∧ (EB ⇒ ¬EA∨�B)

≡ 〈Introd. D〉 D (A,B)∧D (B ,A).

The operator D is defined by D(A,B) ≡ (EA⇒ ¬E B ∨�A).
Clearly, DR1 ≡ D(〈A〉v ,〈B〉v) and similarly DR2 ≡ D(〈B〉v ,〈A〉v).
Finally, one can check the relationship with (B.24) by calculating

�B ⇒ WA ⇐ 〈Exercise〉 D (A,B).

Many calculations were left as exercises to let the reader enjoy the feel of discovery.

B.5 Conclusions

Awareness in the use of model checking requires a higher mathematical standard
than often suggested when advocating the use of tools. To make this standard more
accessible, we have made the “user-friendliness” of the calculational style available
in reasoning about specifications in general and temporal formulas in particular.
To unify the various tool- or language-dependent temporal logics, a generic form
(FTC) was used, which is pure predicate calculus. Specific logics are then captured
in a very direct and simple way, illustrated in detail for TLA+.

Note that Lamport’s Specifying Systems (Lamport 2002a) concentrates on writing
specifications. Proofs are considered in one chapter only, since introducing a
temporal proof style (as in Manna and Pnueli (1991)) and meeting more proof
obligations would have doubled the size of the book. Yet, not surprisingly, the proofs
given concern patterns.

B.5 Conclusions 197

Reasoning about patterns helps keeping the complexity of temporal specifica-
tions manageable and within the grasp of intuition. The calculational approach
makes this easier, and even supports discovery by newcomers in the field.

Still, in an educational environment, predicate calculus clearly remains a prereq-
uisite, which is compensated by its very wide usefulness.

Appendix C
Comparision of Formal Methods

C.1 TLA+ Model of Harris’ Algorithm

1 MODULE HarrisR

This model represents the algorithm presented by Harris for the implementation of non-
blocking linked-lists.
In this model the nodes inserted to the list are stored in the global variable “mem”. The
actions of deleting and inserting nodes to the list are divided, for a finer-grained solution in

several intermediate steps.
For ’artificial’ (to be seen in some comments bellow) we mean all the aspects that are not
directly connected to the algorithm, but that represent adaptations of it to be possible/more
easily modeled.

10 EXTENDS Naturals, Sequences, FiniteSets

11 CONSTANT Adr , the set of addresses
12 Keys, the set of keys
13 Process, the set of processes
14 HEAD , TAIL values of the keys of ’Head’ and ’Tail’

16 VARIABLES mem, ’state of the memory’, with all the nodes inserted in the Linked List
17 proc, auxiliary variable – information for the intermediate stages
18 setup ’artificial’ variable for the initial insertion of ’Head’ and ’Tail’

20 ASSUME HEAD has to be smaller than any element of the set Keys, and TAIL has to
be bigger

21 ∀k ∈Keys : HEAD < k ∧ k < TAIL
22

25 TypeInvariant
Δ= mem stores all the nodes inserted into the list. It’s a function that assigns

26 nodes to addresses. Each node as a key, a next field pointing to the
address of the next node, and can be marked or not.

28 ∧mem ∈ [Adr → [key : Keys ∪{0, 1, 100},
29 next : Adr ∪{0},
30 mark : {0, 1}]]
32 “setup” is 0 before the insertion of Head and Tail into the list, and 1

after that.
33 ∧ setup ∈ {0, 1}

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4 11,
© Springer Science+Business Media, LLC 2011

199

200 C Comparision of Formal Methods

35 “proc” is a function of each process
36 ∧proc ∈ [
37 Process → [ninfo is a record that keeps track of the

information regarding
38 the current node to be inserted/deleted, like its key and position

in the list.
39 ninfo : [CNkey : Keys∪{0}, CNnext :

Adr ∪{0},
40 AdrLeft : Adr ∪{0}, AdrRight :
40 Adr ∪{0},
41 RigNext : Adr ∪{0}],
43 procIns and procDel state the finer-grained

steps of the insert
38 and delete actions
45 procIns : {“readyI”, “createdI”, “locatedI”,
46 “unique , swapedI1”},
48 procDel : {“readyD”, “identifiedD”, “locatedD”,
49 “assignedD”, “swapedD1”},
51 A process can only start inserting/deleting a

new node if it’s
52 still free. Once it’s committed to a certain action it should carry

it till the
53 end. “choice” is used to represent that. A simple 2 bit variable,

e.g . {“free”,
54 “committed”}, would be a more elegant solution. The

distinction between ’insert’
55 and ’delete’ is necessary for ’artificial reasons′ − see

step “CreateI (p, key)”.
56 choice : {“undecided”, “toinsert”, “todelete”}]]

59 Coherence
Δ= “The key of the node that one node points to has to smaller than its own key”

60 LET set of all nodes pointing to another one
61 nodp

Δ= {j ∈ Adr : (mem[j].key �= 0∧mem[j].next �= 0)}
62 IN Claim:
63 ∀ i ∈ nodp : mem[i].key < mem[mem[i].next].key

66

Initially all memory is blank (’Head’ and ’Tail’ haven’t been inserted) and the processes are
ready to start

71 Init
Δ= ∧mem = [a ∈Adr 	→ [key 	→ 0, next 	→ 0, mark 	→ 0]]

73 ∧ setup = 0

75 ∧proc = [p ∈ Process 	→ [

77 ninfo 	→ [CNkey 	→ 0, CNnext 	→ 0, AdrLeft 	→ 0, AdrRight 	→ 0,
78 RigNext 	→ 0],

C.1 TLA+ Model of Harris’ Algorithm 201

80 procIns 	→ “readyI”,

82 procDel 	→ “readyD”,

84 choice 	→ “undecided”]]

87

88 Insertion of ’Head’ and ’Tail’ in the memory

90 SetInitNodes
Δ= ∧ setup = 0

91 The Head is inserted in the first element of the memmory and the Tail in
the second.

92 ∧ LET fst
Δ= CHOOSE a ∈ Adr : ∀ i ∈Adr : a ≤ i

93 scd
Δ= CHOOSE a ∈Adr \{fst} : ∀ i ∈Adr \{fst} : a ≤ i

94 IN

95 mem ′ = [mem EXCEPT ![fst].key = HEAD , ![fst].next = scd ,
96 ![scd].key = TAIL]
97 ∧ setup′ = 1
98 ∧UNCHANGED 〈proc〉
87

This is the beginning of the ’Insertion process’. It’s divided in 5 steps: ’CreateI’, ’LocateI’,

’VerUniq’, ’CasI1’ and ’CasI2’.

’Creation of the node’ to insert to insert: a key (from the set of possible keys) is assigned as
the node key.

109 CreateI (p, key) Δ= ∧ setup = 1
110 ∧proc[p].procIns = “readyI”
111 ∧proc[p].choice = “undecided”
112 Checks if there’s still space in memmory
113 ∧ (Cardinality({a ∈Adr : mem[a].key = 0})−Cardinality(
114 {i ∈ Process : proc[i].choice = “toinsert”})) > 0

116 ∧proc′ = [proc EXCEPT ![p].ninfo.CNkey = key ,
117 ![p].procIns = “createdI”,
118 ![p].choice = “toinsert”]
119 ∧UNCHANGED 〈mem, setup〉

’Location of the node’ – The relative position of the node is determined and registered in
“AdrLeft” and “AdrRight” - the addresses of the nodes that are, respectively, at the left
and right of the new node. The order is determined by the value of “key” and the nodes are
connected in ascending order.

125 LocateI (p) Δ= ∧proc[p].procIns = “createdI”

127 ∧ LET elemr
Δ= {j ∈Adr : (mem[j].key �= 0∧mem[j].mark = 0∧

128 mem[j].key ≥ proc[p]
.ninfo.CNkey)}

130 eleml
Δ= {j ∈Adr : (mem[j].key �= 0∧mem[j].mark = 0∧

131 mem[j].key < proc[p].ninfo
.CNkey)}

202 C Comparision of Formal Methods

134 right
Δ= CHOOSE a ∈ elemr : ∀ i ∈ elemr : mem[a].key

≤mem[i].key

136 left
Δ= CHOOSE a ∈ eleml : ∀ i ∈ eleml : mem[a].key
≥mem[i].key

139 adj
Δ= mem[left].next = right Check if nodes are adjacent

141 IN

142 IF adj = TRUE THEN proceed

144 ∧proc′ = [proc EXCEPT ![p].ninfo.AdrLeft = left ,
145 ![p].ninfo.AdrRight = right ,
146 ![p].procIns = “locatedI”]
147 ∧UNCHANGED 〈mem, setup〉
149 ELSE search again
150 ∧proc′ = [proc EXCEPT ![p].procIns = “createdI”]
151 ∧UNCHANGED 〈mem, setup〉

’Verification of uniqueness’ – Checks if the node already exists in the list. This is the case
when the key value of the right node is the same as the key value of the node to be inserted

158 VerUniq(p) Δ= ∧proc[p].procIns = “locatedI”

160 ∧ IF mem[proc[p].ninfo.AdrRight].key �= proc[p].ninfo.CNkey THEN

162 proc′ = [proc EXCEPT ![p].procIns = “unique”] proceed

164 ELSE If the key already exists, the process is aborted
165 proc ′ = [proc EXCEPT ![p].procIns = “readyI”,
166 ![p].choice = “undecided”]

168 ∧UNCHANGED 〈mem, setup〉

The current node is made to point to the right node:
173 CasI1(p) Δ= ∧proc[p].procIns = “unique”
174 ∧proc′ = [proc EXCEPT ![p].ninfo.CNnext = proc[p].ninfo.AdrRight ,
175 ![p].procIns = “swapedI1”]
176 ∧UNCHANGED 〈mem, setup〉

The physical insertion of the node, recurring to CAS (addr, old, new), is attempted: the node
that is being presently pointed at that instant by the left node [addr] is compared to the one
previously identified [old], whose value has been stored in a variable and :

− If they match, the left node is made to point to the current node, concluding the

inserting process.
− If they don’t match (which means that some change in the list has been made in the
mean time), the process goes back to LocateI).

185 CasI2(p) Δ= ∧proc[p].procIns = “swapedI1”

C.1 TLA+ Model of Harris’ Algorithm 203

187 ∧ IF mem[proc[p].ninfo.AdrLeft].next = proc[p].ninfo.AdrRight THEN

190 LET pos
Δ= CHOOSE a ∈ {b ∈Adr : mem[b].key = 0} :

191 ∀ i ∈ {j ∈Adr : mem[j].
key = 0} : a ≤ i

192 IN insert in mem

193 ∧mem ′ = [mem EXCEPT ![pos].key = proc[p].ninfo.CNkey ,
194 ![pos].next = proc[p]

.ninfo.CNnext ,
195 ![proc[p].ninfo.AdrLeft]

.next = pos]

197 and Reset the procedure
198 ∧proc′ = [proc EXCEPT ![p].ninfo.CNkey = 0,
199 ![p].ninfo.CNnext = 0,
200 ![p].ninfo.AdrLeft = 0,
201 ![p].ninfo.AdrRight = 0,
202 ![p].ninfo.RigNext = 0,
203 ![p].procIns = “readyI”,
204 ![p].choice = “undecided”]

206 ∧UNCHANGED 〈setup〉

209 ELSE search again

211 ∧proc′ = [proc EXCEPT ![p].procIns = “createdI”]

213 ∧UNCHANGED 〈mem, setup〉

End of the insertion process

219

This is the beginning of the ’Deletion process’. It’s divided in 5 steps: ’Identify’, ’LocateD’,
’AssignD’, ’CasD1’ and ’CasD2’.

’Creaction of the node to insert’ – an identifier key is selected
226 Identify(p, key) Δ= ∧ setup = 1
227 ∧proc[p].procDel = “readyD”
228 ∧proc[p].choice = “undecided”
229 ∧proc′ = [proc EXCEPT ![p].ninfo.CNkey = key ,
230 ![p].procDel = “identifiedD”,
231 ![p].choice = “todelete”]
232 ∧UNCHANGED 〈mem, setup〉

The list is searched in order to identify the left and right nodes: the left is the unmarked node
that has the biggest key strictly smaller; the right is the unmarked node that has the smallest
key greater or equal (than the current’s node key).

237 LocateD(p) Δ= ∧proc[p].procDel = “identifiedD”

239 ∧ LET posr
Δ= {j ∈Adr : (mem[j].key �= 0∧mem[j].mark = 0∧

240 mem[j].key ≥ proc[p]
.ninfo.CNkey)}

204 C Comparision of Formal Methods

242 posl
Δ= {j ∈ Adr : (mem[j].key �= 0∧mem[j].mark = 0∧

243 mem[j].key < proc[p]
.ninfo.CNkey)}

245 right
Δ= CHOOSE a ∈ posr : ∀ i ∈ posr : mem[a]

.key ≤mem[i].key

247 left
Δ= CHOOSE a ∈ posl : ∀ i ∈ posl : mem[a]

.key ≥mem[i].key

249 IN

250 Check the identity of the right node: if its key is equal to the current
one the process

251 continuous to execute and the right node is the node to be deleted;
otherwise it aborts.

252 IF mem[right].key = proc[p].ninfo.CNkey THEN

254 ∧proc′ = [proc EXCEPT ![p].ninfo.AdrLeft = left ,
255 ![p].ninfo.AdrRight = right ,
256 ![p].procDel = “locatedD”]
257 ∧UNCHANGED 〈mem, setup〉
259 ELSE abort (key doesn’t exist)
260 ∧proc′ = [proc EXCEPT ![p].ninfo.CNkey = 0,
261 ![p].procDel = “readyD”,
262 ![p].choice = “undecided”]
263 ∧UNCHANGED 〈mem, setup〉

The immediate successor of the right node is stored in ’RigNext’
268 AssignD(p) Δ= ∧proc[p].procDel = “locatedD”
269 ∧proc′ = [proc EXCEPT ![p].ninfo.RigNext = mem[proc[p]

.ninfo.AdrRight].next ,
270 ![p].procDel = “assignedD”]
271 ∧UNCHANGED 〈mem, setup〉

Marking of the node: if the right node next field is still pointing to the node previously
identified, then the node is marked. If not the process goes back to ’LocateD’.

276 CasD1(p) Δ= ∧proc[p].procDel = “assignedD”
277 The operation is guarded by the pre-condition that RigNext is not a

marked node; otherwise the process goes directly back to ’LocateD’
278

279 ∧ IF mem[proc[p].ninfo.RigNext].mark = 0 THEN

281 IF mem[proc[p].ninfo.AdrRight].next = proc[p].ninfo
.RigNext THEN

283 ∧ mem′ = [mem EXCEPT ![proc[p].ninfo.AdrRight]
.mark = 1]

284 ∧ proc′ = [proc EXCEPT ![p].procDel = “swapedD1”]
285 ∧ UNCHANGED 〈setup〉
287 ELSE search again
288 ∧proc′ = [proc EXCEPT ![p].procDel = “identifiedD”]

C.1 TLA+ Model of Harris’ Algorithm 205

289 ∧UNCHANGED 〈mem, setup〉
291 ELSE search again
292 ∧proc′ = [proc EXCEPT ![p].procDel = “identifiedD”]
293 ∧UNCHANGED 〈mem, setup〉

Removal of the node from the linked-list: if the left node next field is still pointing to the
right node, then it is made to point to the node identified as its immediate successor. If the
comparison fails, the process goes back to ’LocateD’.

298 CasD2(p) Δ= ∧proc[p].procDel = “swapedD1”

300 ∧ IF mem[proc[p].ninfo.AdrLeft].next = proc[p].ninfo.AdrRight THEN

302 ∧mem ′ = [mem EXCEPT ![proc[p].ninfo.AdrLeft].next = proc[p]
.ninfo.RigNext]

304 ∧proc′ = [proc EXCEPT ![p].ninfo.CNkey = 0,
305 ![p].ninfo.CNnext = 0,
306 ![p].ninfo.AdrLeft = 0,
307 ![p].ninfo.AdrRight = 0,
308 ![p].ninfo.RigNext = 0,
309 ![p].procDel = “readyD”,
310 ![p].choice = “undecided”]

312 ∧UNCHANGED 〈setup〉
314 ELSE search again
315 ∧proc ′ = [proc EXCEPT ![p].ninfo.AdrLeft = 0,
316 ![p].ninfo.AdrRight = 0,
317 ![p].ninfo.RigNext = 0,
318 ![p].procDel = “identifiedD”]
319 ∧UNCHANGED 〈mem, setup〉

End of the deletion process
324

“Summary” of the specification

329 Insert(i , k) Δ= CreateI (i, k)∨LocateI (i)∨VerUniq(i)∨CasI1(i)∨CasI2(i)

331 Delete(i , k) Δ= Identify(i , k)∨LocateD(i)∨AssignD(i)∨CasD1(i)∨CasD2(i)

334 Next
Δ= ∨SetInitNodes

336 ∨∃ i ∈ Process : ∃k ∈Keys : Insert(i , k)∨Delete(i , k)

339 Spec
Δ= Init ∧�[Next]〈mem,proc,setup〉

340

341 THEOREM Spec =⇒ �(TypeInvariant ∧Coherence)
342

206 C Comparision of Formal Methods

C.2 Promela Model of Harris’ Algorithm

1 #define L 4 /* Lenght of the memmory */
2 #define M 2 /* Number of inserting processes */
3 #define N 2 /* Number of deleting processes */
4 #define HEAD 1 /* Key value of the ’Head’ */
5 #define TAIL 100 /* Key value of the ’Tail’ */
6 typedef Node {
7 byte key;
8 byte next;
9 bool mark

10 }
11 Node mem[L];
12 bool setdone=false
13 /*|========|=========|=========|=========|=========| */
14 /* setup - Insertion of ’Head’ and ’Tail’ */
15 active proctype setup()
16 {
17 if
18 ::setdone == false ->
19 atomic{
20 mem[0].key=HEAD;
21 mem[0].next=1;
22 mem[1].key=TAIL;
23 setdone=true;
24 }
25 ::else->skip
26 fi
27 }
28 /* ========|=========|=========|=========|=========|
29 Insert process
30 ========|=========|=========|=========|=========| */
31 active [M] proctype insert()
32 {
33 (setdone==true); /* Guarding condition for the executability of
34 any inserting process */
35 /* - the initial setup has to be finished firt
36 */\ \
37 byte CNkey, CNnext, AdrLeft, AdrRight, t, t_next, left_next;
38 byte pos=0, counter=0, nonblank=0;\
39 startinsert:\
40 /* "CreateI - Ii" */\
41 atomic{\
42 do /* count the elements in the list */
43 :: (mem[counter].key != 0 \&\& mem[counter].key < TAIL) ->
44 nonblank ++;
45 counter = mem[counter].next;
46 :: else -> break
47 od;\
48 if /* an insertion can only happen if there’s space in mem */
49 ::((L - nonblank - M) > 0) ->
50

C.2 Promela Model of Harris’ Algorithm 207

51 if
52 :: CNkey=10
53 :: CNkey=20
54 :: CNkey=30
55 :: CNkey=40
56 :: CNkey=50
57 fi
58 :: else -> goto endinsert
59 fi
60 }\ \
61 /* "LocateI - IIi" */\
62 searchagain:\
63 t=0;
64 t_next=mem[0].next;
65 left_next=0;
66 pos=0;\ \
67 do
68 :: ((mem[t_next].mark==true) || (mem[t].key < CNkey)) ->\
69 if
70 :: (mem[t_next].mark==false) ->
71 AdrLeft = t;
72 left_next = t_next;
73 :: else ->skip
74 fi;\
75 t=t_next;\
76 if
77 :: (t==1) -> goto endcycle
78 :: else ->skip
79 fi;\
80 t_next = mem[t].next;\
81 :: else -> break
82 od;\ \
83 endcycle:
84 AdrRight=t;\ \
85 if
86 :: (left_next == AdrRight) ->
87 if
88 :: ((AdrRight!=1) $\&\&$ (mem[mem[AdrRight].next].
89 mark == true)) ->
90 goto searchagain
91 :: else -> goto endsearch
92 fi
93 :: else -> goto endsearch
94 fi;\ \
95 endsearch:
96 skip;\ \
97 /* "VerUniq - IIIi" */\
98 if
99 :: ((AdrRight!=1) $\&\&$ (mem[AdrRight].key == CNkey))

100 -> goto endinsert
101 :: else -> skip
102 fi;\ \
103 /* "CasI1 - IVi" */\

208 C Comparision of Formal Methods

104 CNnext = AdrRight;\ \
105 /* "CasI2 - Vi" */\
106 atomic{
107 do
108 :: (mem[pos].key != 0) -> pos++
109 :: else -> break
110 od;
111 }\ \
112 if
113 :: (mem[AdrLeft].next == AdrRight) ->
114 mem[AdrLeft].next = pos;
115 mem[pos].key = CNkey;
116 mem[pos].next = CNnext
117 :: else -> goto searchagain
118 fi;\
119 endinsert:
120 skip;\ \
121 } /* End of proctyte insert */ \ \
122 /* ========|=========|=========|=========|=========|
123

124 Delete process
125

126 ========|=========|=========|=========|=========| */\ \
127 active [N] proctype delete()
128 {
129 (setdone==true); /* Guarding condition for the executability of
130 any deleting process - the initial setup has to be finished
131 first */\ \
132 byte CNkey, AdrLeft, AdrRight, RigNext, pos;
133 byte t=0;
134 byte t_next=mem[0].next;
135 byte left_next=0;\
136 /* Identify - Id */\
137 if
138 :: CNkey=10
139 :: CNkey=20
140 :: CNkey=30
141 :: CNkey=40
142 :: CNkey=50
143 fi;\ \
144 /* LocateD - IId */\
145 searchagainD:\
146 t=0;
147 t_next=mem[0].next;
148 left_next=0;
149 pos=0;\ \
150 do
151 :: ((mem[t_next].mark==true) || (mem[t].key < CNkey)) ->
152 if
153 :: (mem[t_next].mark==false) ->
154 AdrLeft = t;
155 left_next = t_next;
156 :: else ->skip

C.2 Promela Model of Harris’ Algorithm 209

157 fi;\
158 t=t_next;\
159 if
160 :: (t==1) -> goto endcycleD
161 :: else ->skip
162 fi;\
163 t_next = mem[t].next\
164 :: else -> break
165 od;\ \
166 endcycleD:
167 AdrRight=t;\ \
168 if
169 :: (left_next == AdrRight) ->
170 if
171 :: ((AdrRight!=1) $\&\&$ (mem[mem[AdrRight].next]
172 .mark == true)) ->
173 goto searchagainD
174 :: else -> goto endsearchD
175 fi
176 :: else -> goto endsearchD
177 fi;\ \
178 endsearchD:
179 skip;\ \
180 /* Examine - IIId */\
181 if
182 :: ((AdrRight!=1) || (mem[AdrRight].key != CNkey)) -> goto
183 enddelete
184 :: else -> skip
185 fi;\ \
186 /* AssignD - IVd */\
187 RigNext = mem[AdrRight].next;\ \
188 /* CasD1 - Vd */\
189 if
190 :: (mem[RigNext].mark == false) ->
191 if
192 :: (mem[AdrRight].next == RigNext) -> mem[AdrRight].
193 mark = true
194 :: else -> goto searchagainD
195 fi;
196 :: else -> goto searchagainD
197 fi;\ \
198 /* CasD2 - VId */\
199 if
200 :: (mem[AdrLeft].next == AdrRight) -> mem[AdrLeft].next
201 == RigNext
202 :: else -> goto searchagainD
203 fi;
204 enddelete:
205 skip;
206 } /* End of proctyte delete */ \ \
207 /* ========|=========|=========|=========|=========|
208 Correctness Claim
209 ========|=========|=========|=========|=========| */

210 C Comparision of Formal Methods

210 never {
211 do
212 :: !(!((mem.key != 0) \&\& (mem.next != 0)) || (mem.key <
213 mem[mem.next].key)) -> break
214 :: else
215 od
216 }
217 /* End of model */

Listing C.1 Configuration file

Glossary

CPU Central Processing Unit. 160–163
CSP Communicating Sequential Processes. 163
Event An Event Hub synchronises Tasks using a boolean. 107, 109
FIFO A FIFO Hub buffers and transfers data between Tasks in FIFO

order.. 107, 109
Hub A Hub is the interaction entity used by Tasks to cooperate. 107,

108
IRQ Interrupt Request. 143, 160–163, 165, 166, 168
ISR Interrupt Service Routine. 143, 161–163, 165, 166, 168
LTL linear temporal logic. 61, 70, 71
Memory Pool A Memory Pool Hub manages a Pool of Memory Blocks. 107, 109
NMI Non Maskable Interrupt. 161
OS Operating System. 161, 162
Packet A Packet is the standardised datastructure used in OpenComRTOS

to implement the services. 107
Packet Pool A Packet Pool Hub manages a Pool of Packets. 109
Port A Port Hub allows to transfer Packets between Tasks. 109
Resource A Resource Hub provides exclusive access to a logical resource.

107, 109
RTOS Real Time Operating System. 143, 161
Semaphore A Semaphore Hub synchronises Tasks using a counter. 107, 109
Task A function with its own workspace (stack) and priority scheduled

in OpenComRTOS. 107
UART Universal Asynchronous Receiver/Transmitter. 160

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4,
© Springer Science+Business Media, LLC 2011

211

References

Ban (2003). Bandera home page (2003). http://bandera.projects.cis.ksu.edu/. [Online; accessed
1-December-2010].

ALT (2010). Altreonic. http://www.altreonic.com, last visited: 20.01.2011.
IEE (2011). Ieee std 1355-1995 standard for heterogeneous interconnect (hic). http://grouper.ieee.

org/groups/1355/index.html, last visited: 20.01.2011.
INM (2011). Inmos. http://www.inmos.com, last visited: 20.01.2011.
MAS (2011). Mast. http://mast.unican.es, last visited: 20.01.2011.
OLS (2011). Ols. http://www.openlicensesociety.org, last visited: 20.01.2011.
Spa (2011). Spacewire. http://spacewire.esa.int, last visited: 20.01.2011.
XMO (2011). Xmos. http://www.xmos.com, last visited: 20.01.2011.
Booch, G., Maksimchuk, R. A., Engel, M. W., Young, B. J., Conallen, J., and Houston, K. A.

(2007). Object-Oriented Analysis and Design with Applications. Addison-Wesley, third edition.
Boute, R. (1986). A calculus for reasoning about temporal phenomena. In Proceedings 4th NGI-

SION Symposium, pages 405–411.
Boute, R. (2005). Functional declarative language design and predicate calculus: a practical

approach. ACM Trans. Program. Lang. Syst., 27(5):988–1047.
Boute, R. (2006a). Microsemantics as a bootstrap in teaching formal methods. In Boca, P. and

Duce, D., editors, Teaching Formal Methods: Practice and Experience. http://www.bcs.org/
server.php?show=conWebDoc.9094.

Boute, R. (2006b). Using domain-independent problems for introducing formal methods. In Misra,
J., Nipkow, T., and Sekerinski, E., editors, FM 2006: Formal Methods, volume 4085 of Lecture
Notes in Computer Science / Programming and Software Engineering. Springer.

Boute, R. and Verlinde, H. Functionals for the semantic specification of temporal formulas for
model checking. In Hartmut König, Monika Heiner, A. W., editor, FORTE 2003 Work-in-
Progress Papers.

Boute, R. T. (2003). Concrete generic functionals: Principles, design and applications. In Gibbons,
J. and Jeuring, J., editors, Generic Programming, volume 115 of IFIP Advances in Information
and Communication Technology, pages 89–119. Springer.

Boute, R. T. (2006c). Calculational semantics: Deriving programming theories from equations by
functional predicate calculus. ACM Trans. Program. Lang. Syst., 28(4):747–793.

Briand, L. P. and Roy, D. M. (1999). Meeting Deadlines in Hard Real-Time Systems: The Rate
Monotonic Approach. IEEE.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. The MIT Press.
Cousot, P. (2008). Abstract Interpretation. http://www.di.ens.fr/∼cousot/AI/.
Davies, J. and Schneider, S. (1989). Introduction to Timed CSP, University of Oxford Computing

Lab, Programming Research Gp. ISBN: 0902928570.

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4,
© Springer Science+Business Media, LLC 2011

213

214 References

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457.

Dijkstra, E. W. (1989). To hell with “meaningful identifiers”! circulated privately.
Dijkstra, E. W. (1990). How Computing Science created a new mathematical style. EWD 1073

http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1073.PDF.
Dijkstra, E. W. (1997). A Discipline of Programming. Prentice Hall PTR, Upper Saddle River, NJ,

USA.
Dijkstra, E. W. and Scholten, C. S. (1990). Predicate calculus and program semantics. Springer-

Verlag New York, Inc., New York, NY, USA.
Dong, J. S., Zhang, X., Sun, J., and Hao, P. (2006). Reasoning about timed csp models. Technical

report, School of Computing, National University of Singapore.
Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1998). Property specification patterns for finite-

state specification. In Proceedings of FMSP’98, Second Workshop on Formal Methods in
Software Practice.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999). Patterns in property specications for
finite-state verication. In In Proceedings of the 21st International Conference on Software
Engineering ICSE’99.

Dwyer, M. B. and Hatcliff, J. (2002). Bandera temporal specification patterns. internet. tutorial pre-
sentation at ETAPS’02 (Grenoble) and SMF’02 (Bertinoro), http://santos.cis.ksu.edu/bandera/
Talks/SFM02/02-SFM-Patterns.ppt.

Gao, H. and Hesselink, W. H. (October 2004). A general lock-free algorithm using compare-and-
swap.

Gries, D. (1991). Improving the curriculum through the teaching of calculation and discrimination.
Communications of the ACM, 34(3):45–55.

Gries, D. and Schneider, F. B. (1993). A Logical Approach to Discrete Math. Springer, 1st edition.
Habrias, H. and Faucou, S. (2004). Linking paradigms, semi-formal and formal notations. In Dean,

C. N. and Boute, R. T., editors, Teaching Formal Methods, volume 3294 of Lecture Notes
in Computer Science, pages 166–184. Springer. CoLogNET/FME Symposium, TFM 2004,
Ghent, Belgium, November 18-19, 2004.

Harbour, M. G., Medina, J., Gutirrez, J., Palencia, J., and Drake., J. (2002). Mast: An open
environment for modeling, analysis, and design of real-time systems. 1st carts workshop,
aranjuez, spain, october 2002.

Harris, T. L. (2001). A pragmatic implementation of non-blocking linked-lists. In DISC ’01:
Proceedings of the 15th International Conference on Distributed Computing, pages 300–314,
London, UK. Springer-Verlag.

Herlihy, M. (1993). A methodology for implementing highly concurrent objects. ACM Trans.
Program. Lang. Syst., 15(5):745–770.

Hoare, C. (1985a). C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall.
Hoare, C. A. R. (1985b). Communicating sequential processes. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA.
Holzmann, G. (2003a). The SPIN Model Checker: Primer and Reference Manual. Pearson

Education.
Holzmann, G. (2003b). Spin model checker, the: primer and reference manual. Addison-Wesley

Professional.
IBM (1983). IBM System/370 Extended Architecture, Principles of Operation. Publication No.

SA22-7085.
Intel Corporation (2002, Revision 2.1). Intel Itanium Architecture Software Developer’s Manual.

Volume 1: Application Architecture.
Jayanti, P. and Petrovic, S. (2004). Efficient Wait-Free Implementation of Multiword LL/SC

Variables. Technical Report TR2004-523, Dartmouth College, Computer Science, Hanover,
NH.

Klein, M., Ralya, T., Pollak, B., Obenza, R., and Harbour, M. G. (1993). A Practitioner’s Handbook
for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. Springer.

Lamport, L. (1983). Specifying concurrent program modules. ACM Trans. Program. Lang. Syst.,
5(2):190–222.

References 215

Lamport, L. (2002a). Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Lamport, L. (2002b). Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20:46–61.

Manna, Z. and Pnueli, A. (1991). The Temporal Logic of Reactive and Concurrent Systems –
Specification. Springer, 1st edition.

Michael, M. (2004a). Practical lock-free and wait-free LL/SC/VL implementations using 64-bit
cas. In Guerraoui, R., editor, Distributed algorithms, volume 3274/2004 of Lecture Nodes in
Computer Science, pages 144–158.

Michael, M. M. (2002a). High performance dynamic lock-free hash tables and list-based sets. In
SPAA ’02: Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and
architectures, pages 73–82, New York, NY, USA. ACM Press.

Michael, M. M. (2002b). Safe memory reclamation for dynamic lock-free objects using atomic
reads and writes. In PODC ’02: Proceedings of the twenty-first annual symposium on Principles
of distributed computing, pages 21–30, New York, NY, USA. ACM Press.

Michael, M. M. (2004b). ABA prevention using single-word instructions. Technical Report
RC23089, IBM Research Division.

Moir, M. (1997). Practical implementations of non-blocking synchronization primitives. In PODC
’97: Proceedings of the sixteenth annual ACM symposium on Principles of distributed
computing, pages 219–228, New York, NY, USA. ACM Press.

Roscoe, A. W. (1998). The Theory and Practice of Concurrency. Pearson Education Limited,
Essex, CM20 2JE, England.

Sifakis, J. (2010). Formal methods and their evaluation. www-verimag.imag.fr/∼sifakis/RECH/
FEMSYS/paper.ps. [Online; accessed 1-December-2010].

SPARC International (1994). The SPARC architecture manual: Version 9. Prentice-Hall.
Styenko, A. (1985). Real-Time Systems: Scheduling and Structure Af.Sc. Thesis. University of

Toronto.
Verhulst, E. (1993a). Beyond the von neumann machine: communication as the driving design

paradigm for mp-soc from software to hardware.
Verhulst, E. (1993b). Virtuoso : providing sub-microsecond context switching on dsps with

a dedicated nanokernel. in international conference on signal processing applications and
technology, santa clara september, 1993.

Verhulst, E. (1997a). Beyond transputing : fully distributed semantics in Virtuoso’s Virtual Single
Processor programming model and it’s implementation on of-the-shelf parallel DSPs. In
Bakkers, A. W. P., editor, Proceedings of WoTUG-20: Parallel Programming and Java, pages
77–86.

Verhulst, E. (1997b). Non-sequential processing: bridging the semantic gap left by the von
neumann architecture. In Signal Processing Systems SIPS’97, pages 35–49.

Verhulst, E. (2002). The rationale for distributed semantics as a topology independent embedded
systems design methodology and its implementation in the virtuoso rtos. Design Automation
for Embedded Systems, 6:277–294. 10.1023/A:1014018820691.

Verhulst, E. and De Jong, G. (2007). Opencomrtos: an ultra-small network centric embedded
rtos designed using formal modeling. In Proceedings of the 13th international SDL Forum
conference on Design for dependable systems, SDL’07, pages 258–271, Berlin, Heidelberg.
Springer-Verlag.

Verhulst, E., de Jong, G., and Mezhuyev, V. (2008). An industrial case: Pitfalls and benefits
of applying formal methods to the development of a network-centric rtos. In Cuellar, J.,
Maibaum, T., and Sere, K., editors, FM 2008: Formal Methods, volume 5014 of Lecture Notes
in Computer Science, pages 411–418. Springer Berlin / Heidelberg. 10.1007/978-3-540-68237-
0 29.

Wikipedia (2011). Transputer – wikipedia, the free encyclopedia. [Online; accessed 1-February-
2011].

Index

Symbols
[. . .] (various forms), 179

, 178
⇒, 179
〈A〉e , 180
\, 179
·, 180
∩, 179
◦, 77
++ , 177
∪, 179
≡, 179
∃, 81, 174, 179
∀, 174, 179
∈, 179
∪· , 176
¬, 179
/∈, 179
<©, 176
[A]e , 180
⊆, 179
∨, 179
∧, 179
SF, 180
WF, 180�, 180

, 75, 180
Bags module, 184
Bob module, 183
Lists module, 78
Nob module, 182
Port module, 79
Sequences module, 77
BOOLEAN, 179
CASE, 84, 180
CHOOSE, 78, 179

DOMAIN, 179
ENABLED, 180
EXCEPT, 82, 179
FALSE, 179
IF, 78, 180
LET, 81, 180
SUBSET, 179
TRUE, 179
UNCHANGED, 74, 180
UNION, 179
TLA+, 74
TLA+specification, 74

A
abstraction, 172
action, 74
action operators of TLA+, 179
action operators of TCA, 191
affix conventions, 172
architectural model, 7
asynchronous interactions, 128

B
bags, 183
behaviors, 187
binding, 172

C
choice operator, 178
coffee bean puzzle, 181
concatenation, 77, 177
CSP, 17, 122
CSP Process, 113

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4,
© Springer Science+Business Media, LLC 2011

217

218 Index

D
declaration, 74
development task, 12
domain, 76, 173

E
Earliest Deadline First, 26
elastic operator, 174
embedded systems, 3
enabled, 75
Event, 110
existential quantifier, 81

F
fairness, 194
faithful formalization, 181
fault case, 6
field name, 79
FIFO, 110
filtering, 175
formal method, 13
formal model, 8
formal technique, 13
formalisation, 14
FTC, 187
function, 76, 173, 179
function application, 172
function merge, 176
function override, 176
functional Cartesian product, 176
functional temporal calculus, 187
Funmath, 171

G
generic functionals, 175
graceful degradation, 4
guard, 74
guarded actions, 74
guarded command language, 181

H
head, 77
Hoare, 17, 122
host server, 151
Hub, 107, 110
Hubs:overview, 110

I
identifier, 172
image, 76, 173
implementation model, 7

Indle Task, 114
infinitely often, 189
initial state, 75
instantiation, 76
interacting entities, 6
Interrupt latency, 139
invariant, 75
inversion criterion, 181
IRQ, 160

K
KernelPort, 92

L
L0 Entities, 89
L1 Entities, 89
lambda expression, 76
Lamport, 74
layout, 80
Link Driver Task, 113
List, 91
lists, 77
liveness, 194
logic, 179

M
mapping, 173
Memory Pool, 110
metrics, 133
MLX16, 136
model, 6
module, 75

N
normal case, 6
number, 180

O
OpenComRTOS code size, 133
OpenComRTOS performance, 133
OpenComRTOS:architecture, 107
OpenTracer, 158
OpenVE, 37, 143
operator, 76, 172

P
Packet, 107, 114
Packet Pool, 110

Index 219

Packet type, 79
parameters, 75
partial function application, 172
patterns, 169, 180, 194
point-free style, 188
pointwise distributivity, 192
pointwise extension, 187
Port, 79, 110
Port Hub, 112
pre-emptive scheduling, 26
Preallocated Packet, 92
predicate, 174
Priority, 91
Priority Inheritance, 28
priority inversion, 27

Q
quantifier, 174

R
range (of a function), 175
Rate Monotonic Scheduling, 23
ReadyList, 92
real-time, 19
ReceivePacket, 92
record, 78, 180
requirement, 6
Resource, 110

S
Semaphore, 110
Semaphore Loop, 107
Semaphore loop timings, 139
Semaphore model, 93
SendPacket, 92
sequences, 77, 177
set, 179
simulation model, 6
software productivity gap, 10
SpaceWire, 18
specification, 6, 75
state, 74
state space, 10
StdioHostServer, 160
string, 180
strong fairness, 180
stuttering, 75
stuttering elimination, 185

superloop, 21
Systems and application grammar,

36
systems engineering, 13
systems grammar, 5

T
tail, 77
Task, 79, 107
TaskID, 91
TCA, 190
temporal calculus of actions, 190
temporal induction, 189
temporal instantiation, 189
temporal operator, 75
temporal operators of TLA+, 179
temporal operators of FTC, 187
temporal operators of TCA, 192
temporal tautology, 193
temporal theorem, 193
test case, 6
test task, 12
topology, 164
total memory use, 137
tracing, 155
transputer, 17
tuple, 180
tupling, 173
tutorial, 143
type invariant, 75

U
unified semantics, 5

V
validation task, 12
van Neuman machine, 9
variables, 74
variadic function application, 172, 175
verification task, 12
Virtual Single Processor, 17
Virtuoso, 17

W
Waiting List, 91
weak fairness, 180, 194
work plan, 11

	Cover
	Formal Development of a Network-Centric RTOS
	Preface
	Contents
	List of Figures
	List of Tables

	Part I: Trustworthy Embedded Systems

	Chapter 1: Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

	1.1 Introduction
	1.2 A Systematic Engineering Methodology Based on Unified Semantics and Interacting Entities
	1.3 Interacting Entities for the Software Domain
	1.3.1 Silicon Technology Advances
	1.3.2 Silicon Technology Limitations
	1.3.3 The World Becomes Connected

	1.4 A Link with the Work Plan in a Systems Engineering Project
	1.5 System Engineering Methods and Engineering Standards
	1.6 Where Do Formal Techniques Fit in?

	Chapter 2: Requirements and Specifications for the OpenComRTOS Project

	2.1 Background of OpenComRTOS
	2.2 Early Requirements Derived from the Virtuoso RTOS
	2.3 Real-Time Embedded Programming
	2.3.1 Why Real-Time?
	2.3.2 Why a Simple Loop Is Often not Enough
	2.3.3 Superloops and Static Scheduling
	2.3.4 Rate Monotonic Analysis
	2.3.5 Priority based Scheduling in OpenComRTOS
	2.3.6 The Issue of Priority Inversion and Its Inadequate Solution

	2.4 Next Generation Requirements
	2.5 Top Level Requirements for OpenComRTOS
	2.6 Specifications Derived from Requirements
	2.7 Systems and Application Grammar of OpenComRTOS
	2.7.1 Base Principles and Definitions
	2.7.2 A Note on Typing Conventions
	2.7.3 OpenComRTOS System and Application Grammar

	Part II: Formal Modeling Fundamentals

	Chapter 3: The Choice of TLA+/TLC: Comparing Formal Methods

	3.1 Formal Methods Survey and Pre-Selection
	3.2 Case Study
	3.2.1 Introduction
	3.2.2 The Algorithm
	3.2.2.1 Deletion Procedure

	3.2.3 Remarks
	3.2.4 Drawbacks
	3.2.5 Related Work

	3.3 TLA+ and TLC

	3.3.1 Overview
	3.3.2 Model Developed

	3.4 Promela and SPIN
	3.4.1 Overview
	3.4.2 Model Developed

	3.5 Comparison
	3.5.1 Matching of the Method to the Application
	3.5.2 Human Factors
	3.5.3 Widespread Utilization
	3.5.4 Licensing/Distribution
	3.5.5 Maturity
	3.5.6 Performance
	3.5.7 Interface
	3.5.8 Coverage of the Input Language
	3.5.9 Bibliography
	3.5.10 Expressiveness
	3.5.11 Readability
	3.5.12 Reusability
	3.5.13 Scalability
	3.5.14 Level of Abstraction
	3.5.15 Checking Possibilities
	3.5.16 Coverage of the Lifecycle
	3.5.16.1 Final Remarks

	Chapter 4: Basic Formal Specification in TLA+

	4.1 Introduction
	4.1.1 Goal: Awareness in Specifying Systems
	4.1.2 A Two-Step Approach

	4.2 Structure of TLA+ Specifications
	4.2.1 Basic Structure
	4.2.2 Module Structure

	4.3 Introducing TLA+ By Example

	4.3.1 Basic TLA+ Notions
	4.3.2 Basic Examples: TLA+ Sequences and OpenComRTOS Lists
	4.3.2.1 The Module Sequences
	4.3.2.2 The OpenComRTOS Module Lists

	4.3.3 An Extended Example: The Module Port
	4.3.3.1 Informal Specification
	4.3.3.2 Basic Data Structures
	4.3.3.3 Top-Down Formal Specification
	4.3.3.4 A Final Detail
	4.3.3.5 Checking Potential Issues in the Module

	4.4 Conclusion

	Part III: OpenComRTOS Design

	Chapter 5: Formal Modelling of the RTOS Entities

	5.1 Introduction
	5.2 OpenComRTOS Environment Model
	5.2.1 Term Definitions
	5.2.2 Constants
	5.2.3 Variables Representing the System State
	5.2.4 The L1-Packet
	5.2.4.1 Sending and Receiving Packets
	5.2.4.2 Making a Task Ready to Run

	5.2.5 General Constraint for All Models

	5.3 Formal Model of the Semaphore-Entity
	5.3.1 Constants
	5.3.2 Variables
	5.3.3 Initialisation
	5.3.4 Signalling the Semaphore
	5.3.5 Testing the Semaphore
	5.3.6 Constraints
	5.3.7 Defining the Next State
	5.3.8 Properties to Check
	5.3.9 Proof Obligations
	5.3.10 Checking the Models

	5.4 Model Verification
	5.5 Conclusion

	Chapter 6: Final Architecture of the RTOS

	6.1 The Building Blocks of OpenComRTOS
	6.1.1 The Hub Entity of OpenComRTOS
	6.1.1.1 What Is the OpenComRTOS Hub?
	6.1.1.2 How a Hub Can Be Used
	6.1.1.3 The Hub as Generic Programming Concept
	6.1.1.4 The Special Case of the Port Hub

	6.1.2 Tasks
	6.1.2.1 The Kernel Task
	6.1.2.2 Link-Driver Tasks
	6.1.2.3 Application Tasks
	6.1.2.4 Idle Task

	6.1.3 Packets

	6.2 The Semaphore Loop
	6.2.1 The Semaphore Loop in Detail
	6.2.1.1 Single Processor Case
	6.2.1.2 Multiprocessor Case
	6.2.1.3 Why Priority Sorting and the Use of Packets Is Important

	6.2.2 Heterogeneous Multiprocessor Systems and Their Issues

	6.3 OpenComRTOS Development Process for Applications
	6.4 Summary

	Chapter 7: Task Interaction Models in OpenComRTOS

	7.1 Introduction
	7.2 Modelling Task Interaction
	7.3 Timing Properties of Task Interactions
	7.4 Notes on Asynchronous Interactions
	7.5 Conclusions

	Chapter 8: Results: Code Size and Performance

	8.1 Metrics of Success
	8.1.1 Code Size
	8.1.2 Total Memory Use
	8.1.3 Influence of Processor Architecture
	8.1.4 Semaphore Loop
	8.1.5 Interrupt Latency

	Part IV: Appendix

	Appendix A: OpenComRTOS-Suite 1.3 Usage Tutorial

	A.1 Developing a Single Node Semaphore-Loop Project
	A.2 Going Distributed with OpenComRTOS
	A.3 Tracing in OpenComRTOS
	A.3.1 How to Enable Tracing
	A.3.2 How to Retrieve a Trace
	A.3.2.1 Extending the Semaphore Example with Tracing

	A.3.3 Retrieving and Displaying Traces from Distributed Systems

	A.4 Measuring the Interrupt Latency of OpenComRTOS
	A.4.1 Designing Distributed Heterogeneous Systems Using the OpenComRTOS Suite
	A.4.1.1 How Micro Controllers Handle Interrupts

	A.4.2 Presenting the Measurement Results
	A.4.2.1 Requirements

	A.4.3 Specifying the System
	A.4.3.1 S1: The Specification for R1
	A.4.3.2 S2: The Specification for R2
	A.4.3.3 S3: The Specification for R3

	A.4.4 Implementation
	A.4.4.1 Topology

	A.4.5 Application
	A.4.6 Collected Measurement Results

	A.5 Summary

	Appendix B: Foundations for TLA+ and Temporal Logic

	B.1 Introduction
	B.1.1 Goal: Increased Awareness in Specifying Systems
	B.1.2 Approach and Overview

	B.2 A Unifying Formalism
	B.2.1 Rationale
	B.2.2 Syntax
	B.2.3 Style of Use
	B.2.3.1 Functions
	B.2.3.2 Operator Design
	B.2.3.3 Sequences, Sequence Types and Operators
	B.2.3.4 Formal Calculation Rules

	B.2.4 Introducing TLA+ Via Funmath

	B.3 Faithful Formalization of Informal Specifications
	B.3.1 Choice of Proper Data Abstractions
	B.3.1.1 A Simple Example: The Coffee Bean Puzzle
	B.3.1.2 Faithful Formalization: The Inversion Criterion
	B.3.1.3 Formalization in the Guarded Command Language
	B.3.1.4 Low-Level Formalization in TLA+
	B.3.1.5 Formalization in TLA+ Using Bags

	B.3.2 Auxiliary Functions in Formal Specifications
	B.3.2.1 Redesigning TLA+-Definitions for Acceptability to TLC
	B.3.2.2 Defining TLA+ Functions at a More General Level

	B.4 Calculational Reasoning and Patterns in TLA+
	B.4.1 Capturing Temporal Logics by Temporal Calculi
	B.4.2 A Functional Temporal Calculus (FTC)
	B.4.2.1 Principle and Operator Definitions
	B.4.2.2 Illustration: Deriving Point-Free Theorems in FTC

	B.4.3 Defining the Temporal Calculus of Actions (TCA)
	B.4.3.1 Types
	B.4.3.2 Conventions
	B.4.3.3 Operators

	B.4.4 Calculational Reasoning in TCA/TLA+
	B.4.4.1 Introduction
	B.4.4.2 A Calculational Style for TCA/TLA+

	B.4.5 Applications to Patterns in TLA+
	B.4.5.1 Weak Fairness
	B.4.5.2 Application Example A
	B.4.5.3 Application Example B

	B.5 Conclusions

	Appendix C: Comparision of Formal Methods

	C.1 TLA+ Model of Harris' Algorithm
	C.2 Promela Model of Harris' Algorithm

	Glossary
	References
	Index

