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Preface

As its title promises, this book provides foundations for software specification and
formal software development from the perspective of work on algebraic specifica-
tion. It concentrates on developing basic concepts and studying their fundamental
properties rather than on demonstrating how these concepts may be used in the prac-
tice of software construction, which is a separate topic.

The foundations are built on a solid mathematical basis, using elements of uni-
versal algebra, category theory and logic. This mathematical toolbox provides a
convenient language for precisely formulating the concepts involved in software
specification and development. Once formally defined, these notions become sub-
ject to mathematical investigation in their own right. The interplay between mathe-
matics and software engineering yields results that are mathematically interesting,
conceptually revealing, and practically useful, as we try to show.

Some of the key questions that we address are: What is a specification? What
does a specification mean? When does a software system satisfy a specification?
When does a specification guarantee a property that it does not state explicitly? How
does one prove this? How are specifications structured? How does the structure of
specifications relate to the modular structure of software systems? When does one
specification correctly refine another specification? How does one prove correctness
of refinement steps? When can refinement steps be composed? What is the role of
information hiding? We offer answers that are simple, elegant and general while at
the same time reflecting software engineering principles.

The theory we present has its origins in work on algebraic specifications starting
in the early 1970s. We depart from and go far beyond this starting point in order to
overcome its limitations, retaining two prominent characteristics.

The first is the use of many-sorted algebras consisting of a collection of sets of
data values together with functions over those sets, or similar structures, as models
of software systems. This level of abstraction fits with the view that the correctness
of the input/output behaviour of a software system takes precedence over all its other
properties. Certain fundamental software engineering concepts, such as information
hiding, have direct counterparts on the level of such models.
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The second is the use of logical axioms, usually in a logical system in which
equality has a prominent role, to describe the properties that the functions are re-
quired to satisfy. This property-oriented approach allows the use of formal systems
of rules to reason about specifications and the relationship between specifications
and software systems. Still, the theory we present is semantics-oriented, regarding
models as representations of reality. The level of syntax and its manipulation, in-
cluding axioms and formal proof rules, merely provide convenient means of dealing
with properties of (classes of) such models.

Our primary source of software engineering intuition is the relatively simple
world of first-order functional programming, and in particular functional program-
ming with modules as in Standard ML. It is simpler than most other programming
paradigms, it offers the most straightforward fit with the kinds of models we use,
and it provides syntax (“functors”) that directly supports a methodology of software
development by stepwise refinement. Even though some aspects of more elaborate
programming paradigms are not directly reflected, the fundamental concepts we
study are universal and are relevant in such contexts as well.

This book contains five kinds of material.

The requisite mathematical underpinnings:
Chapters 1 and 3 are devoted to the basic concepts of universal algebra and cate-
gory theory, respectively. This material finds application in many different areas
of theoretical computer science and these chapters may be independently used
for teaching these subjects. Our aim is to provide a generally accessible sum-
mary rather than an expository introduction. We omit many standard concepts
and results that are not needed for our purposes and include refinements to clas-
sical universal algebra that are required for its use in modelling software. Most
of the proofs are left to the reader as exercises.

Traditional algebraic specifications:
Chapter 2 presents the standard material that forms the basis of work on algebraic
specifications. From the point of view of an algebraist, much of this would be
viewed as part of universal algebra. Additionally, Section 2.7 explores some of
the ways in which these basics may be modified to cope with different aspects
of software systems. Again, this chapter is a summary rather than an expository
introduction, and many proofs are omitted.

Elements of the theory of institutions:
In Chapter 4 we introduce the notion of an institution, developed as a formalisa-
tion of the concept of a logical system. This provides a suitable basis for a general
theory of formal software specification and development. Chapter 10 contains
some more advanced developments in the theory of institutions.

Formal specification and development:
Chapters 5–8 constitute the core of this book. Chapter 5 develops a theory of
specification in an arbitrary institution. Special attention is paid to the issue of
structure in specifications. Chapter 6 is devoted to the topic of parameterisation,
both of algebras and of specifications themselves. Chapter 7 presents a theory of
formal software development by stepwise refinement of specifications. Chapter 8
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introduces the concept of behavioural equivalence and studies its role in software
specification and development.

Proof methods:
Chapter 9 complements the model-theoretic picture from the previous chapters
by giving the corresponding proof methods, including calculi for proving conse-
quences of specifications and correctness of refinement steps.

The dependency between chapters and sections is more or less linear, except that
Chapter 10 does not depend on Chapter 9. This dependency is not at all strict. This
is particularly relevant to Chapter 3 on category theory: anyone who is familiar with
the concepts of category, functor and pushout may omit this chapter, returning to
it if necessary to follow some of the details of later chapters. On first reading one
may safely omit the following sections, which are peripheral to the main topic of the
book or contain particularly advanced or speculative material: 2.6, 2.7, 3.5 except
for 3.5.1, 4.1.2, 4.4.2, 4.5, 6.3, 6.4, 6.5, 8.2.3, 8.5.3, 9.5, 9.6 and Chapter 10.

This book is self-contained, although mathematical maturity and some acquain-
tance with the problems of software engineering would be an advantage. In the
mathematical material, we assume a very basic knowledge of set theory (set, mem-
bership, Cartesian product, function, etc. — see for instance [Hal70]), but we recall
all of the set-theoretic notation we use in Section 1.1. Likewise, we assume a basic
knowledge of the notation and concepts of first-order logic and proof calculi; see for
instance [End72]. In the examples that directly relate to programming, we assume
some acquaintance with simple concepts of functional programming. No advanced
features are used and so these examples should be self-explanatory to anyone with
experience using a programming language with types and recursion.

In an attempt to give a complete treatment of the topics covered without going on
at much greater length, quite a few important results are relegated to exercises with
the details left for the reader to fill in. Fairly detailed hints are provided in many
cases, and in the subsequent text there is no dependence on details of the solutions
that are not explicitly given in these hints.

This book is primarily a monograph, with researchers and advanced students as
its target audience. Even though it is not intended as a textbook, we have success-
fully used some parts of it for teaching, as follows:

Universal algebra and category theory:
A one-semester course based on Chapters 1 and 3.

Basic algebraic specifications:
A one-semester course for undergraduates based on Chapters 1 and 2.

Advanced algebraic specifications:
An advanced course that follows on from the one above based on Chapters 4–7.

Institutions:
A graduate course with follow-up seminar on abstract model theory based on
most of Chapter 4 and parts of Chapter 10.

The material in this book has roots in the work of the entire algebraic specifica-
tion community. The basis for the core chapters is our own research papers, which
are here expanded, unified and taken further. We attempt to indicate the origins of
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the most important concepts and results, and to provide appropriate bibliographi-
cal references and pointers to further reading, in the final section of each chapter.
The literature on algebraic specification and related topics is vast, and we make no
claim of completeness. We apologize in advance for possible omissions and mis-
attributions.
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Introduction

Software is everywhere and affects nearly all aspects of daily life. Software systems
range in size from tiny (for instance, embedded software in simple devices, or the
solution to a student’s first programming exercise) to enormous (for instance, the
World Wide Web, regarded as a single distributed system). The quality of software
systems is highly variable, and everybody has suffered to some extent as a conse-
quence of imperfect software.

This book is about one approach, called algebraic specification, to understanding
and improving certain aspects of software quality. Algebraic specification is one of a
collection of so-called formal methods which use ideas from logic and mathematics
to model, analyse, design, construct and improve software. It provides means for
precisely defining the problem to be solved and for ensuring the correctness of a
constructed solution. The purpose of this book is to provide mathematically well-
developed foundations for various aspects of this activity.

The material presented here is sufficient to support the entirely formal develop-
ment of modular software systems from specifications of their required behaviour,
with proofs of correctness of individual steps in the development ensuring correct-
ness of the composed system. Although such a strict formal approach is infeasible
in practice for real software systems, it serves as a useful reference point for the
evaluation of less formal means for improving quality of software.

The following sections discuss some of the basic motivations which underlie this
approach to formal software specification and development.

0.1 Modelling software systems as algebras

In order to be useful for the intended purpose, a software system should satisfy a
wide range of requirements. For instance, it should be:

Efficient: The system should be tolerably efficient with respect to its usage of time,
memory, bandwidth and other resources.

1
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Robust: Small changes to the system should not dramatically affect its quality.
Reliable: The system should not break down under any circumstances. Incorrect

user input should be recognized and explicitly rejected, and faults in the system’s
environment should be dealt with in a reasonable fashion.

Secure: The system should be protected against unauthorized use. It should be pos-
sible to restore any data that is lost or corrupted by an attack, and confidential
data should be protected from disclosure.

User-friendly: The system should be easy to use, even without extensive prior
knowledge or experience with it.

Well documented: The system’s functionality, design and implementation should
all be appropriately documented.

All of these properties are very important, although in practice some of them may
be sacrificed, or even unachievable in absolute terms. But above all, the system must
be:

Correct: The system must exhibit the required externally visible input/output be-
haviour.

Of course, there are various degrees of correctness, and in practice large systems
contain bugs. In spite of this grim reality, it is clear that correctness — or at least, a
close approximation to correctness — is the primary goal, and this is the property
on which work on formal specification and development concentrates.

Software systems are complex objects. When we are interested in input/output
behaviour only, it is useful to abstract away from the concrete details of code and
algorithms and model software using mathematical functions, focussing solely on
the relationship between inputs and outputs.

For example, consider the following four function definitions:

fun f1(n) =
if n<=1 then 1 else f1(n-1)+f1(n-2)

fun f2(n) =
if n<=1 then 1
else let fun g(n) =

if n=1 then (1,1)
else let val (u,v) = g(n-1) in (u+v,u) end

in let val (u,v) = g(n-1) in u+v end
end

fun f3(n) =
if n<=1 then 1
else let val muv = ref (1,1,1)

in (while let val (m,u,v) = !muv in m < n end do
muv := let val (m,u,v) = !muv in (m+1,u+v,u) end;

let val (m,u,v) = !muv in u end)
end

public static nat f4(nat n) {
nat u = 1, v = 1;
for (nat m = 1; m < n; m++) {



0.1 Modelling software systems as algebras 3

u = u + v;
v = u - v;

}
return u;

}

Each of these definitions of the Fibonacci function over the set of natural numbers
N= {0,1,2, . . .} is different and has different properties. First of all, f1, f2, and f3
are in Standard ML while f4 is in Java; we ignore the fact that neither Standard ML
nor Java has a type of natural numbers. Next, f1 and f2 use recursion and are
purely functional while f3 and f4 are iterative and use assignment. The functions
f3 and f4 actually encode the same algorithm in two different notations, an iterative
version of the recursive algorithm that f2 encodes using a local auxiliary function
g. Also, f1 runs in time that is exponential in n while f2, f3 and f4 require only
linear time. However, the most important feature of these definitions is that they all
encode the Fibonacci function fib:N→ N defined in the usual way:

fib(0) = 1
fib(1) = 1

fib(n+2) = fib(n+1)+fib(n)

Before defining fib, it was natural to indicate that it takes elements of N as input
and delivers elements of N as output. We do not really want to consider fib in isola-
tion from the set of natural numbers; we view the four function definitions above as
defining the function fib over N, bundling data and function together:

N

�

�

�

�� �

� 	
�

fib

This simple example illustrates the way in which we will model every software
system as an algebra, that is, a set of data together with a number of functions
over this set.1 In order to deal with systems that manipulate several kinds or sorts
of data it is necessary to use so-called many-sorted or heterogeneous algebras that
contain a number of different sets of data (rather than just a single set) with functions
between these sets. Functions and data types that are defined and used in a software

1 By software system we mean a collection of type definitions and function definitions in a language
like C or Standard ML. A software system in the sense of a traditional imperative language is a
software system in this sense together with a sequence of statements (the main function, in C)
making reference to the defined types and functions; these are not themselves made available to
the user. In object-oriented languages, a software system is a collection of objects; again, this may
be viewed as a software system in our sense since it essentially defines a family of types and
functions, the latter capturing the objects’ methods by taking the (global) state of the objects as an
additional argument and returning the updated global state as an additional result.
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system have names, such as f2, + and nat above. These names are used to refer
to components of the algebra in order to compute with them, to reason about them
and to build larger systems over them. The set of names associated with an algebra
is called its signature. The formal definitions of these concepts appear in Chapter 1.

Example 0.1.1 (Timetable). A teaching timetable for a university records an as-
signment of lecturers to courses and courses to rooms and time slots. Such a
timetable may be viewed as an algebra with the following sorts:

Course: Data elements of this sort represent courses offered by the university, e.g.
Medieval History.

Lecturer: Data elements of this sort represent lecturers working in the university,
e.g. Kowalski.

Timeslot: Data elements of this sort represent hours during the week, e.g. Thursday
9–10 am.

Room: Data elements of this sort represent lecture rooms in the university, e.g.
JCMB 3315.

The algebra includes functions for operating on this data, for example:

who-teaches:Course → Lecturer
For any course, this gives the lecturer who teaches it.

what-teaches:Lecturer×Timeslot → Course
For any lecturer and time slot, this gives the course taught by the lecturer at that
time.

where-teaches:Lecturer×Timeslot → Room
For any lecturer and time slot, this gives the room where the lecturer is at that
time.

We have been vague about the actual data elements; also there are more functions
than we have listed (e.g. salary:Lecturer→Nat, important for the university and the
lecturers but not for the timetable).

The functions what-teaches and where-teaches unrealistically require that every
lecturer teaches a course in every time slot. This problem may be resolved by adding
an element nothing to the set Course and an element nowhere to the set Room, and
adjusting some of the details below; see Sections 2.7.3–2.7.5 for much more on this
and other options.

Extending this timetable algebra to give timetable and registration information
for students as well would involve adding new sorts and new functions. The new
sorts would be:

Student: Data elements of this sort represent students enrolled in the university.
Bool: The two boolean values true and false.

The new functions would include:

enrolled:Student×Course → Bool
For any student and course, this states whether or not the student is enrolled in
that course.
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what-attends:Student×Timeslot → Course
For any student and time slot, this gives the course attended by the student at that
time.

where-attends:Student×Timeslot → Room
For any student and time slot, this gives the room where the student is supposed
to be at that time.

All of these functions assume a static, fixed timetable with an unchanging as-
signment of lecturers and students to courses and time slots. Adding functions that
change the timetable would require us to introduce a new sort Timetable having
all possible timetables as its data elements, with functions like enrol:Student×
Course× Timetable → Timetable, and then the functions above would take the
timetable as an additional argument. ��

0.2 Specifications

Any attempt to build a software system must begin with some description of the task
the system is supposed to perform. Such a description need not tightly constrain ev-
ery single aspect of the required system; for example, a result is often only required
up to a certain accuracy in numerical problems, the efficiency of a system is usually
constrained only to fall within certain limits, and details of input/output format may
often be left to the programmer. Another example is the description of the task to be
performed by a compiler: the compiler should generate correct code, but the exact
code to be generated is not prescribed. However loose, such a description charac-
terises which actual software systems would be acceptable for the intended purpose
and which would not be.

As discussed in the previous section, we concentrate on the functional behaviour
of software systems, modelling them as algebras. Hence, a description of a class of
systems amounts to a characterisation of a class of algebras. The term specification
is used to refer to a formal object, normally in textual form, that defines such a
class. It is natural to expect that every specification unambiguously defines both a
signature and a class of algebras over that signature, since part of the purpose of
the specification is to indicate the names of the types and functions to be provided.
In this indirect way, a specification describes a class of software systems that are
its acceptable realisations. These are the systems whose functional behaviour is
captured by one of the algebras in the class defined by the specification.

The standard way of describing a class of algebras is by listing the properties they
are to satisfy. Such properties may be expressed as sentences in some logical sys-
tem such as equational logic or first-order logic. These sentences are called axioms.
For any given algebra and axiom, the semantics of the logical system determines
whether the algebra satisfies the axiom or not. A set of axioms thus describes a class
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of algebras, namely the class of all algebras that satisfy all the axioms in that set.2

Work on algebraic specification, to which the material in this book belongs, is based
on these two fundamental principles: first, software systems may be modelled as
algebras; second, properties of algebras may be described using axioms. This style
of specification, which is covered in Chapter 2, naturally separates the issue of de-
scribing what the system is to do (given by the axioms) from that of describing how
those requirements are achieved (given by the algorithms and data structures in the
system).

Example 0.2.1 (Timetable, continued). Consider the project of assigning courses
to rooms and time slots in a university. This can be viewed as the task of construct-
ing an algebra like the one described in Example 0.1.1. The prerequisites for this are
complete lists of the courses, lecturers, time slots and rooms and information con-
cerning which lecturers are able to teach which courses. The latter may be expressed
using axioms such as:

who-teaches(Calculus) = Smith∨who-teaches(Calculus) = Kowalski

The main problem is to make sure that the assignment is done in such a way that no
conflicts arise. The signature given in Example 0.1.1 guarantees that lecturers are
not required to be in two places at once, since what-teaches and where-teaches are
functions, i.e. they map any tuple of inputs (lecturer and time slot, in this case) to
exactly one output (a course or a room respectively). However, we must ensure that:

1. No room is simultaneously occupied by two different courses.
2. Lecturers are sent to the courses they are assigned to teach.
3. All courses have time slots allocated to them.

These requirements are formally expressed by the following axioms:

1. ∀t:Timeslot,c,c′:Course•
where-teaches(who-teaches(c), t) = where-teaches(who-teaches(c′), t)⇒

c = c′
2. ∀l:Lecturer, t:Timeslot• who-teaches(what-teaches(l, t)) = l
3. ∀c:Course• ∃t:Timeslot• what-teaches(who-teaches(c), t) = c

Extending the problem to include timetable and registration information for stu-
dents as well involves adding new axioms expressing the consistency between lec-
turers’ and students’ schedules. That is:

4. Students are sent to the courses in which they are enrolled:
∀s:Student, t:Timeslot• enrolled(s,what-attends(s, t)) = true

5. Students are sent to each course they are enrolled for, each time it is taught:
∀s:Student, l:Lecturer, t:Timeslot•

enrolled(s,what-teaches(l, t)) = true ⇒
what-attends(s, t) = what-teaches(l, t)

2 The use of the two distinct terms “set” and “class” has a mathematical justification, to be dis-
cussed in Section 3.1.1.1.
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6. Students and lecturers are sent to the same place for the same course:
∀l:Lecturer,s:Student, t:Timeslot•

where-teaches(l, t) = where-attends(s, t)⇔
what-teaches(l, t) = what-attends(s, t) ��

The process of constructing such a specification is a subject in itself. Captur-
ing desired properties in the form of axioms is sometimes difficult, as is deciding
when a given set of axioms captures all of the desired properties. It follows that
specifications can contain bugs, just as software systems can, and correctness of a
system with respect to a specification is a matter of consistency between two inde-
pendent definitions, either or both of which may contain errors. But once a set of
axioms has been written down, theorem proving tools can be used to validate them
by exploring their consequences, with unexpected consequences or lack of expected
consequences triggering a revision of the axioms.

Up to now the discussion has concentrated on describing the requirements that
a software system is to fulfill. A specification of this kind plays the role of a con-
tract between a client (the customer) and the programmer (or programming team)
responsible for building the system. On one hand, this contract records the features
that the programmer has to ensure. On the other hand, it records the features of the
system on which the client may rely. It is important that this contract be exhaustive
in the sense that it record all the expected properties of the system; the programmer
is not required to provide any features that are not explicitly stated in the contract,
and the client should not rely on such features either. Any actual system will satisfy
properties that are not mentioned in the contract. For example, some release of a
compiler may happen to ensure that uninitialised variables are set to 0. But if this is
not stated in the language definition (which is the compiler specification) it would
be dangerous to rely on this feature since it may change in the next release of the
compiler.

It is commonly accepted that large systems should be organized into modules
that encapsulate logically coherent units. Such units may be modelled as algebras
in exactly the same way as discussed above for complete systems. Specifications
are required here as well to describe the interfaces between modules. These spec-
ifications constrain the programmer responsible for implementing each module to
providing the required features in the same way as the specification of the overall
system constrains the programming team as a whole. The clients here are other mod-
ules in the system, which may use data and/or functions that this module supplies.

As before, it is important that the interface specification record all the expected
properties of the module. This means that programmers responsible for other mod-
ules are not allowed to take advantage of accidental features of modules on which
they rely. Thus interface specifications serve two main purposes. First, they provide
a means of communication between a module implementor and the outside world.
At the same time, they serve to prevent undesirable communication by defining ex-
actly those details on which others are allowed to depend, thus abstracting away
from the internal details of the module implementation. A special form of such in-
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formation hiding, supported by modern programming languages like Standard ML
and Java, is data abstraction, where the exact representation of data is kept hidden.3

If this discipline is strictly adhered to, then programmers are free to change in-
ternal details of their module implementations without restriction, provided that the
module interface specification is still satisfied. Another practical advantage of care-
fully specifying module interfaces is that these specifications provide the documen-
tation necessary to support the reuse of modules in the construction of other systems.

The problems of scale which led to the introduction of modular structuring of
large software systems affect large specifications as well. The specification of a
large system involves thousands of properties that the system is required to satisfy.
If these properties are simply listed one by one in the form of axioms, the specifi-
cation would be completely unmanageable: it would be difficult to construct, and
nearly impossible to understand and use. It is even a non-trivial task to understand
the relatively short list of axioms in Example 0.2.1 and ensure that all the desired
properties are included. The remedy to this problem is to structure such specifica-
tions into units of logically related properties which are then combined to build more
complex specifications. In the example the list of axioms has been divided into two
groups of related axioms to ease understanding. Mechanisms for structuring speci-
fications are covered in Chapter 5.

The structure of a specification is not just a superficial feature of its presenta-
tion. It is important not only for understanding specifications but also for all aspects
of their use. For example, in proving that certain additional properties are conse-
quences of those explicitly stated in the specification, the structure of the specifi-
cation may be exploited in guiding the search for a proof. Similarly, the structure
of the specification of a software system may play a useful role in the way that the
system is decomposed into modules.

0.3 Software development

As discussed above, and according to the traditional waterfall model of the soft-
ware life cycle, the specification of a system is the starting point for its subsequent
development. Once the specification of a software system is agreed on, the program-
mer is committed to building a system exhibiting a behaviour that conforms to that
required by the specification. The usual way to proceed is to construct the system
by whatever means are available, making informal reference to the specification in
the process, and then verifying in some way that the result does indeed realise the
specification. Other life cycle models take a different view, but in those that do not
reject the need for specifications outright, the role of the specification as the defi-
nition of correct system behaviour remains, along with the need for verification. In

3 In Standard ML, data abstraction is achieved using opaque signature ascription. The term “data
abstraction” tends to be avoided in Java, but interfaces and access modifiers provide the required
support.
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the so-called V-model, the specification has an additional role, that of providing an
abstract view of the final implemented system.

The most widespread verification method is testing, which checks that in cer-
tain selected cases the behaviour exhibited by the system satisfies the constraints
imposed by the specification. Testing a system built to satisfy the timetable specifi-
cation of Example 0.2.1 would involve checking whether the axioms hold for chosen
values of variables. For instance, one might check that the axiom

∀l:Lecturer, t:Timeslot• who-teaches(what-teaches(l, t)) = l

holds for l = Kowalski and t = Thursday 9–10 am. This has the disadvantage that
correctness can be ensured in this fashion only when the system operates on a fixed
and finite set of data and exhaustive testing of all combinations is carried out. Model
checking is one way of rapidly conducting such exhaustive testing.

An alternative to testing is to provide a formal proof that the system is correct
with respect to the specification. For the timetable example this would amount to
proving that the system satisfies the axioms listed above. However, after many years
of work on software verification it now seems to be more or less widely accepted
that full proofs of correctness will probably never be feasible for systems of realistic
size. On the other hand, proofs of selected properties of critical parts of important
systems are done by some software developers.

From a practical point of view, the main ground for pessimism is the huge gap
between the high-level specification of requirements and the low-level details of the
realisation, including the specific data representation and algorithms used and the
coding of these in a particular programming language. The fact that transparency
and readability are usually sacrificed for the sake of efficiency makes the gap even
wider.

This leads to the idea that software systems should be developed from specifi-
cations in such a way that the result is guaranteed to be correct by construction.
The approach we follow here is to develop a system from its specification via a se-
ries of small refinement steps, inspired by the programming discipline of stepwise
refinement. Each refinement step captures a single design decision, for instance a
choice between several functions that satisfy the specification, between several al-
gorithms that implement the same function, or between several ways of efficiently
representing a given data type. If each of these individual refinement steps can be
proved correct then the resulting system is guaranteed to satisfy the original speci-
fication. Each of these proofs is orders of magnitude easier than a correctness proof
for the resulting system since each refinement step is small. In principle it would
be possible to combine all the individual correctness proofs to yield a proof of the
correctness of the system with respect to the specification, but in practice this would
never be necessary. Formal development of systems from specifications is covered
in Chapters 7 and 8.

Even if we consider the very simple problem of developing a software system
that realises the specification given in Example 0.2.1 (disregarding the extension to
handle students), it is difficult and unnatural to come up with the definitions of all
three functions simultaneously. One would tend to define them one after another,
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perhaps starting with the decision of which lecturer will teach which course, then
assigning time slots to the courses, and finally arranging rooms for courses. The
definition of each of these functions constrains the choices available at subsequent
steps since the axioms in the specification impose certain compatibility properties.

This methodology does not prevent us from making bad design decisions. For
example, for some choices of who-teaches and what-teaches there may be no way
to define where-teaches such that the specification is satisfied because of limitations
on the number of rooms. This means that backtracking may be necessary during
software development.

In the course of refining a large specification it will be necessary to decompose it
into appropriately chosen smaller units. The refinement of these units may proceed
separately, possibly involving further decomposition. This will result in a collection
of modules that can be combined to yield a correct software system. Decomposition
and refinement steps may be freely interleaved during the development process.

Once a system has been built in this fashion, the development history which in-
cludes all of the intermediate specifications (and possibly even the proofs of correct-
ness) constitutes very complete design documentation. This facilitates later mainte-
nance of the system. Even if the original specification is changed in the course of
maintenance, it is normally possible to use this documentation to trace which parts
of the system this change affects, localizing the fragment of the system that must be
changed.

The rosy picture painted above neglects the fact that all stages of the software de-
velopment process are arduous and error-prone. Coming up with a formal specifica-
tion that accurately reflects all the vague and informal requirements of the customer
is difficult; ideas for refinement steps are hard to come by and their formalisation is
often a struggle as well; an advantageous decomposition of the problem is often dif-
ficult to find; and proofs of correctness are laborious. This leaves a lot of scope for
the skill of designers and programmers. The scale of the formal objects involved and
the need for meticulous accuracy and attention to detail make these creative tasks
infeasible for humans to perform with pencil and paper. Many of these problems
may be resolved through the use of computer-based tools to support the software
development process. The most obvious candidates for this are mechanical theo-
rem provers and proof checkers as well as some means of keeping track of all the
different bits, how they interrelate and what remains to be done.

0.4 Generality and abstraction

The motivation for focussing on the functional behaviour of software systems and
abstracting away from the concrete details of code and algorithms was discussed in
Section 0.1. This led to the decision to model software systems as algebras. There
are, however, many important aspects of the functional behaviour of systems that
are not captured by this model, for example:
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Non-termination: Systems do not always terminate on all inputs. The functional
behaviour of such a system does not directly determine a (total) function.

Exceptions: Some operations fail on certain inputs, yielding an exceptional result
or an error message. Although such results may be viewed as data values, they
must be distinguished in some way. This is not accommodated by the standard
definition of an algebra.

Input/output: Systems may interact with their environment during execution and
this interaction is part of the functional behaviour of the system. The fact that
input and output may be interleaved means that ordinary functions do not accu-
rately model such systems.

Such aspects of systems, and their combinations (for example in reactive sys-
tems, which are designed to run forever and to react to input stimuli), are modelled
by changing the notion of algebra (e.g. using so-called coalgebras to model reactive
systems). Often only relatively minor enrichments are required. For instance par-
tial algebras, where functions may be undefined on some arguments, can be used to
model non-termination. Such adjustments are also necessary if we want to handle
all of the relevant concepts that are present in programming languages, such as poly-
morphism, higher-order functions, lazy evaluation, imperative features, concurrency
and mobility. Some of these elaborations are discussed in Section 2.7.

Moreover, each of these aspects of behaviour can be specified in different ways.
This amounts to a choice between alternative logical systems for writing the axioms
in specifications. As a very simple example, for specifying partial algebras using
equational axioms there are two standard choices: strong equality with definedness
formulae, or existential equality (see Section 2.7.4). Coalgebras can be specified
using different modal logics. Even for ordinary algebras, there is a choice of whether
to use purely equational axioms or full first-order or even higher-order logic, with
trade-offs between expressive power and ease of reasoning.

There are at least three ways to proceed with the formation of a theory of soft-
ware specification and development given these complications. The first is to start
by devising a notion of algebra that accommodates all of the aspects of system be-
haviour and all relevant concepts of programming languages we can think of, with
a logic for writing axioms that is rich enough to conveniently specify all of these
aspects of behaviour in all of their combinations. Then we erect an appropriate the-
ory on top of this basis. One problem with this approach is that the whole strategy
breaks down when a new aspect of behaviour emerges or a new feature of program-
ming languages becomes popular. For example, we would have to start again from
scratch if we had not taken concurrency into account and it became necessary to add
this later. Another problem is that the huge variety of features that would have to be
considered would make the basic concepts of the theory very complicated indeed.
This would yield an unwieldy theory in which one would be unable to see the forest
for the trees.

Another possibility is to consider each target programming language separately
and design a notion of algebra appropriate for modelling software systems built us-
ing just the particular features of this language, with an appropriate choice of logical
notation for writing axioms. This has the obvious disadvantage that we must start
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afresh for each programming language we consider, or even for different dialects of
the same language.

Many aspects of the theory of system specification and development actually turn
out to be independent of the particular details of the notion of algebra and the logi-
cal system used. This is illustrated by the fact that if we erect a complete theory for
several different programming languages as described above, we will find ourselves
repeating the same work time after time with only relatively minor modifications.
Thus a third possibility is to develop a generic theory which is parameterised by the
notion of algebra to be used and the definition of what it means for an algebra to
satisfy an axiom. Given a particular choice of the notion of algebra, the theory can
simply be instantiated to adapt it to that choice. Analogously, it is possible to param-
eterise the theory by the notion of axiom, which enables the use of different logical
systems in writing specifications, and by the notion of signature to accommodate
different type systems.

This third approach is the one adopted in this book. The theory presented is
almost entirely independent of the particular aspects of functional behaviour of sys-
tems under consideration, of how these are described by axioms, and of the fea-
tures of the underlying type system. This general view leads to reusable concepts
and results and ultimately to reusable tools, which can be instantiated in particular
situations as required. The resulting uniform framework exposes the essential con-
cepts inherent in specification and development, and separates them from the sordid
details of specific situations. The foundations required to support this theory are
developed in Chapter 4 and then applied in subsequent chapters.

Working at this level of generality necessitates the use of mathematical tools that
are appropriate for formulating general definitions and proving general facts. The
language and concepts of category theory are convenient for dealing with the kind
of generality involved. The basic concepts of category theory that are required are
presented in Chapter 3.

Despite the advantages of generality, it is necessary to examine specific instantia-
tions for the purposes of both presentation and motivation. Achieving understanding
requires examination of concrete situations and examples, and these in turn demon-
strate the need for developments in the general theory. Much of the time it will be
sufficient to consider the simple situation in which systems are modelled as “stan-
dard” algebras, ignoring their inadequacy for the aspects of systems mentioned
above, with axioms written using equations and sometimes propositional connec-
tives and first-order quantifiers. This is the situation that is treated in Chapters 1
and 2. Examples that are meant to appeal to the reader’s programming intuition
are sprinkled throughout the later chapters, using an instantiation of the emerg-
ing theory to a context that is akin to a purely functional first-order subset of the
Standard ML programming language, based on definitions and notations in Exam-
ples 4.1.25 and 6.1.9 and Exercise 7.3.5.
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0.5 Formality

Algebraic specification as it is presented here is close to the “hard-core”, uncom-
promising end of the spectrum of existing work on formal methods. Indeed, one
of its advantages over competing approaches is that it has complete mathematical
foundations. Thus, a claim of correctness of a software system or component with
respect to a precise algebraic specification of the problem, when backed with all
the relevant formal proofs, amounts to a complete justification without reliance on
informal reasoning, guesswork or crossed fingers.

Of course, software is almost never developed in this way in practice. One rea-
son is that 100% confidence in correctness is hardly ever necessary, and achieving it
involves an enormous amount of hard work. Furthermore, experience suggests that
failure of a proof of correctness is often the result of an error in the specification
itself. Achieving confidence that the original specification of a problem spells out
what is actually required will generally involve human interaction and other pro-
cesses that are necessarily informal and error-prone.

In practice, shortcuts are normal and formal proofs are rarely attempted. Even
when they are attempted, proofs are often sketched informally to a level of detail
that is sufficient to check the main points of importance rather than done in full de-
tail to completion using a proof assistant. Such a mode of use of formal methods
is referred to as rigorous methods. Sometimes certain critical components of a sys-
tem, or certain important properties, will be selected for special attention. Such a
component might be one containing a complicated and important algorithm, or one
that protects the system from catastrophic failure. An important property might be
exception freedom or freedom from deadlock, or a security property. The degree of
confidence that is justified in the outcome depends on an appropriate choice of the
components and/or properties of greatest importance, and the care that is taken with
informal or incomplete proofs. The above points notwithstanding, the power and
sophistication of automated theorem proving tools and the computing power avail-
able to engineers have increased over time to the point where it is becoming feasible
to formally verify whole systems or components of systems, and such proofs are
increasingly being done in practice, especially for hardware.

From this point of view, the material in this book may be seen as providing a
reference point for less formal means of improving quality of software, including
rigorous methods. Another approach that puts major emphasis on the trade-off be-
tween practical benefits achieved and effort required is called lightweight formal
methods. Here, some of the techniques of formal methods are used to improve the
quality of software via early detection and removal of errors, without any expecta-
tion that they can be entirely eliminated. Lightweight formal methods rely on the
use of automated analysis tools to provide cost-effective programming support.

In this book we will not explicitly point out opportunities for relaxing formal-
ity, and to a large extent that is a matter of engineering judgement in particular
circumstances. Neither will we discuss to what extent the material presented pro-
vides opportunities for the provision of useful automated analyses. In general we do
not provide algorithms or present decidability or complexity results for the decision
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problems discussed. There is a clear trade-off between expressibility of notations on
the one hand and ease of automation on the other; our approach here is firmly on the
side of expressibility, with compromises in favour of automation left as a separate
(but practically important) issue.

0.6 Outlook

In the previous sections we have outlined the motivations that underlie the algebraic
approach to specification and formal software development. We have also discussed
the need for a general approach that abstracts away from specific aspects of software
systems.

This book presents mathematical foundations for algebraic specification and soft-
ware development that support these practically motivated ideas. It concentrates on
developing basic concepts and studying their fundamental properties rather than on
demonstrating how these concepts may be used in the practice of software construc-
tion, which is a separate topic. This provides the necessary foundation for further
work towards practical software production, on at least the following levels:

• More user-oriented notations and theories could be developed on top of the rudi-
ments presented here. For example, high-level user-friendly specification lan-
guages could be defined, based on the primitive operations presented in Chap-
ter 5.

• A computationally tractable and practically useful subset of the notations and
concepts presented here could be selected and used in the style of lightweight
formal methods as discussed above.

• Tools, techniques, hints and heuristics could be developed to support and guide
the user’s specification and development activity.

All of these aspects are beyond the scope of this book, and we deliberately avoid
dealing with problems arising at these levels here. In particular we do not present
“how-to” guidelines for building specifications or for validating them against real-
life requirements, or for coming up with design decisions in software development.
Some of the more substantial examples provide some hints in this direction.

The CASL specification language ([BM04], [Mos04]) is an attempt at a user-
friendly specification notation, underpinned by many of the ideas presented here,
with methodological guidelines for use of the features it provides. The material in
this book and languages like CASL are not the end of the story, and they do not by
any means solve all of the problems encountered in engineering practical software
systems. But they do provide a solid basis for coming to grips with some of the key
technical problems in software development.



Chapter 1

Universal algebra

The most basic assumption in work on algebraic specification is that programs are
modelled as algebras. This point of view abstracts from the concrete details of code
and algorithms, and regards the input/output behaviour of functions and the repre-
sentation of data as of primary importance. Representing programs in terms of sets
(of data values) and ordinary mathematical functions over these sets greatly sim-
plifies the task of reasoning about program correctness. See Section 0.1 for some
illustrative examples and more introductory discussion on this point.

The branch of mathematics that deals with algebras in this general sense (as op-
posed to the study of specific classes of algebras, such as groups and rings) is called
universal algebra or sometimes general algebra. However, work on universal alge-
bra by mathematicians has concentrated almost exclusively on the special case of
single-sorted algebras with first-order total functions. The generalisation to many-
sorted or heterogeneous algebras is required to model programs that manipulate sev-
eral kinds or sorts of data; further generalisations are necessary to handle programs
that fail to terminate on some inputs, that generate exceptions during execution, and
so on. This chapter summarizes the basic concepts and results of many-sorted uni-
versal algebra that will be required for the rest of this book. Some extensions useful
for modelling more complex programs will be discussed later, in Section 2.7. In this
chapter, all proofs are left as exercises for the reader.

1.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts of data,
it is natural to partition the underlying set of values in the algebra so that there is one
set of values for each sort of data. It is often convenient to manipulate such a family
of sets as a unit, in such a way that operations on this unit respect the “typing” of
data values.

The following definitions and notational conventions allow us to manipulate
sorted families of sets (of functions, of relations, etc.) in the same way as ordinary
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16 1 Universal algebra

sets (functions, relations, etc.). Ordinary sets (functions, relations, etc.) correspond
to the degenerate case in which there is just one sort, so these definitions also serve
to recall the notation and terminology of set theory to be used throughout this book.
Let S be a set; the notation 〈Xs〉s∈S is a standard shorthand for the family of objects
Xs indexed by s ∈ S, i.e. the function with domain S which maps each s ∈ S to Xs.

Throughout this section, let S be a set (of sorts).

Definition 1.1.1 (Many-sorted set). An S-sorted set is an S-indexed family of sets
X = 〈Xs〉s∈S, which is empty if Xs is empty for all s ∈ S. The empty S-sorted set will
be written (ambiguously) as ∅. The S-sorted set X is finite if Xs is finite for all s ∈ S
and there is a finite set Ŝ ⊆ S such that Xs =∅ for all s ∈ S\ Ŝ.

Let X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S be S-sorted sets. Union, intersection, Cartesian
product, set difference, disjoint union, inclusion (subset) and equality of X and Y
are defined componentwise as follows:

X ∪Y = 〈Xs∪Ys〉s∈S
X ∩Y = 〈Xs∩Ys〉s∈S
X ×Y = 〈Xs×Ys〉s∈S, with pairs written 〈x,y〉 ∈ Xs×Ys when x ∈ Xs and y ∈ Ys
X \Y = 〈Xs \Ys〉s∈S
X �Y = 〈Xs�Ys〉s∈S (where Xs�Ys = ({1}×Xs)∪ ({2}×Ys))
X ⊆ Y iff (if and only if) Xs ⊆ Ys for all s ∈ S
X = Y iff X ⊆ Y and Y ⊆ X (equivalently, iff X and Y are equal as functions).

We write X ⊂ Y when X ⊆ Y and X �= Y . ��
Exercise 1.1.2. Give a formal explanation of the above statement that “Ordinary
sets . . . correspond to the degenerate case [of many-sorted sets] in which there is
just one sort”. How many ∅-sorted sets are there? ��
Notation. It will be very convenient to pretend that X ⊆ X �Y and Y ⊆ X �Y . Al-
though this is never actually the case, it allows us to treat disjoint union in the same
way as ordinary union, the difference being that when X ∩Y �= ∅, X �Y contains
two “copies” of the common elements and keeps track of which copy is from X and
which is from Y . To see that this does not cause problems, observe that there are in-
jective S-sorted functions (see the next definition) i1:X → X �Y and i2:Y → X �Y
defined by i1s(x) = 〈1,x〉 for all s ∈ S and x ∈ Xs and similarly for i2. A pedant
would be able to correct what follows by simply inserting the functions i1 and/or i2
where appropriate in expressions involving �. ��
Exercise 1.1.3. Extend the above definitions of union, intersection, product and dis-
joint union to operations on I-indexed families of S-sorted sets, for an arbitrary in-
dex set I. For example, the definition for product is (∏〈Xi〉i∈I)s = { f : I →⋃

i∈I(Xi)s |
f (i) ∈ (Xi)s for all i ∈ I} for each s ∈ S. If I = 1, . . . ,n then we use the simpler no-
tation X1 × ·· · ×Xn, with tuples 〈x1, . . . ,xn〉, as a generalisation of the case n = 2
above; for n = 0, the empty tuple is written 〈〉. ��
Definition 1.1.4 (Many-sorted function). Let X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S be S-
sorted sets. An S-sorted function f :X → Y is an S-indexed family of functions f =
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〈 fs:Xs → Ys〉s∈S; X is called the domain (or source) of f , and Y is called its codomain
(or target). Application of f to x∈ |X |s is written as fs(x) or sometimes as f (x); if X
is a product then we write fs(x1, . . . ,xn) or f (x1, . . . ,xn) rather than fs(〈x1, . . . ,xn〉).

An S-sorted function f :X →Y is an identity (an inclusion, a surjection, an injec-
tion, a bijection, etc.) if for every s ∈ S, the function fs:Xs → Ys is an identity (an
inclusion, a surjection, an injection, a bijection, etc.). The identity S-sorted function
on X will be written as idX :X → X . If X ⊆ Y , the inclusion will often be written
X ↪→ Y .

If f :X →Y and g:Y → Z are S-sorted functions then their composition f ;g :X →
Z is the S-sorted function defined by f ;g = 〈 fs;gs〉s∈S. That is, if s ∈ S and x ∈ Xs
then ( f ;g)s(x) = gs( fs(x)).1

Let f :X → Y be an S-sorted function and X ′ ⊆ X , Y ′ ⊆ Y be S-sorted sets. The
image of X ′ under f is the S-sorted set f (X ′) = 〈 fs(X ′

s)〉s∈S ⊆ Y , where fs(X ′
s) =

{ fs(x) | x ∈ X ′
s} ⊆ Ys for all s ∈ S. The coimage of Y ′ under f is the S-sorted set

f−1(Y ′) = 〈 f−1
s (Y ′

s )〉s∈S ⊆ X , where f−1
s (Y ′

s ) = {x ∈ Xs | fs(x) ∈ Y ′
s} ⊆ Xs for all

s ∈ S. ��
All functions in this book are total except where they are explicitly designated as
partial. When f :X → Y is partial, then dom( f ) ⊆ X is the S-sorted set of those
elements x ∈ Xs for which fs(x) is defined, for all s ∈ S.

Definition 1.1.5 (Many-sorted binary relation). Let X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S
be S-sorted sets. An S-sorted binary relation between X and Y , written R ⊆ X ×Y ,
is an S-indexed family of binary relations R = 〈Rs ⊆ Xs×Ys〉s∈S. For s ∈ S, x ∈ Xs
and y ∈ Ys, x Rs y (sometimes written x R y) means 〈x,y〉 ∈ Rs.

If R ⊆ X ×Y is an S-sorted binary relation then its inverse is the S-sorted binary
relation R−1 ⊆Y ×X such that for s ∈ S, 〈y,x〉 ∈ (R−1)s iff 〈x,y〉 ∈ Rs. If Q⊆Y ×Z
is also an S-sorted binary relation, then the composition of R and Q is the S-sorted
binary relation R;Q⊆ X ×Z such that for s ∈ S, 〈x,z〉 ∈ (R;Q)s iff there exists some
y ∈ Ys such that 〈x,y〉 ∈ Rs and 〈y,z〉 ∈ Qs. ��
The generalisation of many-sorted binary relations to n-ary relations, for n ≥ 0, is
obvious. As usual, many-sorted functions may be viewed as special many-sorted
relations. Both may also be viewed as special cases of many-sorted sets, to which
the set-theoretic operations and relations in Definition 1.1.1 apply.

Definition 1.1.6 (Kernel of a many-sorted function). Let f :X →Y be an S-sorted
function. The kernel of f is the S-sorted binary relation ker( f ) = 〈ker( fs)〉s∈S ⊆
X ×X where ker( fs) = {〈x,y〉 | x,y ∈ Xs and fs(x) = fs(y)} ⊆ Xs×Xs is the kernel
of fs for all s ∈ S. ��
Definition 1.1.7 (Many-sorted equivalence). Let X = 〈Xs〉s∈S be an S-sorted set.
An S-sorted binary relation R ⊆ X ×X is an S-sorted equivalence (relation) on X if
it is:

1 This “diagrammatic” order of composition and the semicolon notation will be used consistently
throughout this book.
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• reflexive: x Rs x;
• symmetric: x Rs y implies y Rs x; and
• transitive: x Rs y and y Rs z implies x Rs z

for all s ∈ S and x,y,z ∈ Xs. The symbol ≡ is often used for (S-sorted) equivalence
relations.

Let ≡ be an S-sorted equivalence on X . If s ∈ S and x ∈ Xs then the equivalence
class of x modulo ≡ is the set [x]≡s = {y ∈ Xs | x≡s y}. The quotient of X modulo ≡
is the S-sorted set X/≡= 〈Xs/≡s〉s∈S where Xs/≡s = {[x]≡s | x ∈ Xs} for all s ∈ S.

��
Example 1.1.8. Let S = {s1,s2}, and let X and Y be two S-sorted sets defined as
follows:

X = 〈Xs〉s∈S where Xs1 = {�,�} and Xs2 = {♣,♥,♠},
Y = 〈Ys〉s∈S where Ys1 = {1,2,3} and Ys2 = {1,2,3}.

Let f :X → Y be the S-sorted function such that

fs1 = {� �→ 1,� �→ 3},
fs2 = {♣ �→ 1,♥ �→ 2,♠ �→ 2}.

(i.e. fs1(�) = 1 and fs1(�) = 3; analogously for fs2 ). Then the kernel of f is the
S-sorted equivalence relation ker( f ) = 〈ker( fs)〉s∈S where

ker( fs1) = {〈�,�〉,〈�,�〉},
ker( fs2) = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

The quotient of X modulo ker( f ) is the S-sorted set X/ker( f ) = 〈Xs/ker( fs)〉s∈S
where

Xs1/ker( fs1) = {{�},{�}},
Xs2/ker( fs2) = {{♣},{♥,♠}}. ��

Exercise 1.1.9. Show that if f :X → Y is an S-sorted function, then ker( f ) is an S-
sorted equivalence on X . ��
Exercise 1.1.10. Show that if ≡ is an S-sorted equivalence on X then for all s ∈ S
and x,y ∈ Xs, [x]≡s = [y]≡s iff x ≡s y. ��
Notation. Subscripts selecting components of S-sorted sets (functions, relations,
etc.) are often omitted when there is no danger of confusion. Then Exercise 1.1.10
would read “. . . for all s ∈ S and x,y ∈ Xs, [x]≡ = [y]≡ iff x ≡ y” or even “. . . for all
x,y ∈ X , [x]≡ = [y]≡ iff x ≡ y”. ��
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1.2 Signatures and algebras

The functions and data types defined by a program have names. These names are
used to refer to and reason about the parts of the program, and to build larger pro-
grams which rely on the functionality the program provides. The connection be-
tween a program and an algebra used to model it is provided by these names, which
are attached to the corresponding components of the algebra. The set of names as-
sociated with an algebra is called its signature. The signature of an algebra defines
the syntax of the algebra by characterising the ways in which its components may
legally be combined; the algebra itself supplies the semantics by assigning interpre-
tations to the names in the signature.

Definition 1.2.1 (Many-sorted signature). A (many-sorted) signature is a pair Σ =
〈S,Ω〉, where:

• S is a set (of sort names); and
• Ω is an (S∗ ×S)-sorted set (of operation names)

where S∗ is the set of finite (including empty) sequences of elements of S. We will
sometimes write sorts(Σ) for S and ops(Σ) for Ω . Σ is a subsignature of a signature
Σ ′ = 〈S′,Ω ′〉 if S ⊆ S′ and Ωw,s ⊆ Ω ′

w,s for all w ∈ S∗,s ∈ S. ��
Many-sorted signatures will be referred to as algebraic signatures when it is neces-
sary to distinguish them from other kinds of signatures to be introduced later.

Notation. Saying that f :s1×·· ·× sn → s is in Σ = 〈S,Ω〉 means that s1 . . .sn ∈ S∗,
s ∈ S and f ∈ Ωs1...sn,s. Then f is said to have arity s1 . . .sn and result sort s. The
abbreviation f :s will be used for the constant operation f :ε → s (ε is the empty
sequence). ��

This definition of signature does not accommodate programs containing higher-
order functions, or functions returning multiple results. A possible extension for
handling higher-order functions is briefly discussed in Section 2.7.6. As for func-
tions with multiple results, a function f :s1×·· ·× sn → t1×·· ·× tm may be viewed
as a family of m functions:

f1:s1×·· ·× sn → t1 . . . fm:s1×·· ·× sn → tm.

Generalising the definition of signature to handle such functions in a more di-
rect way is easy but makes subsequent developments somewhat messier in a non-
interesting way.

The definition above does permit overloaded operation names, since it is possible
to have both f :s1 × ·· · × sn → s and f : t1 × ·· · × tm → t in a signature Σ , where
s1 . . .sns �= t1 . . . tmt. A more restrictive definition of signature, adequate for most
purposes, would have a set Ω of operation names (and a set S of sort names) with
functions arity:Ω → S∗ and sort:Ω → S. These two definitions are equivalent if
each operation name in Ω is taken to be tagged with its arity and result sort.

In the rest of this section, let Σ = 〈S,Ω〉 be a signature.
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Definition 1.2.2 (Many-sorted algebra). A Σ -algebra A consists of:

• an S-sorted set |A| of carrier sets (or carriers); and
• for each f :s1 × ·· ·× sn → s in Σ , a function (or operation) ( f :s1 × ·· ·× sn →

s)A: |A|s1 ×·· ·× |A|sn → |A|s. ��
If A is a Σ -algebra and s is a sort name in Σ then |A|s, the carrier set of sort s
in A, is the universe of data values of sort s; accordingly, we often refer to the
elements of carrier sets as values. If f :s1 ×·· ·× sn → s is in Σ then the operation
( f :s1×·· ·× sn → s)A is a function on the corresponding carrier sets of A. If n = 0
(i.e. f :s), then |A|s1 ×·· ·×|A|sn is a singleton set containing the empty tuple 〈〉, and
then ( f :s)A may be viewed as a constant denoting the value ( f :s)A(〈〉)∈ |A|s. Notice
that ( f :s1 × ·· ·× sn → s)A is a total function so algebras as defined here are only
appropriate for modelling programs containing total functions. See Sections 2.7.3–
2.7.5 for several ways of extending the definitions to cope with partial functions.
Note also that there is no restriction on the cardinality of |A|s; in particular, |A|s may
be empty and need not be countable.

Notation. Let A be a Σ -algebra and let f :s1×·· ·×sn → s be in Σ . We always write
fA in place of ( f :s1 × ·· ·× sn → s)A when there is no danger of confusion. When
n = 0 (i.e. f :s), we write ( f :s)A or fA in place of ( f :s)A(〈〉). ��
Exercise 1.2.3. If Ωε,s �=∅ for some s∈ S, then there are no 〈S,Ω〉-algebras having
an empty carrier of sort s. Characterise signatures for which all algebras have non-
empty carriers of all sorts. ��
Example 1.2.4. Let S1= {Shape,Suit} and Ω1ε,Shape = {box}, Ω1ε,Suit = {hearts},
Ω1Shape,Shape = {boxify}, Ω1ShapeSuit,Suit = { f}, and Ω1w,s = ∅ for all other w ∈
S1∗,s ∈ S1. Then Σ1 = 〈S1,Ω1〉 is a signature with sort names Shape and Suit
and operation names box:Shape, hearts:Suit, boxify:Shape→ Shape and f :Shape×
Suit→ Suit. We can present Σ1 in tabular form as follows (this notation will be used
later with the obvious meaning):

Σ1 = sorts Shape,Suit
ops box:Shape

hearts:Suit
boxify:Shape → Shape
f :Shape×Suit → Suit.

We define a Σ1-algebra A1 as follows:

|A1|Shape = {�,�},
|A1|Suit = {♣,♥,♠},
boxA1 = � ∈ |A1|Shape,
heartsA1 =♥ ∈ |A1|Suit,
boxifyA1: |A1|Shape → |A1|Shape = {� �→�,� �→�},

and fA1: |A1|Shape×|A1|Suit → |A1|Suit is defined by the following table:
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fA1 ♣ ♥ ♠� ♣ ♠ ♥
� ♥ ♠ ♠

(NOTE: Reference will be made to Σ1 and A1 in examples throughout the rest of
this chapter.) ��
Definition 1.2.5 (Subalgebra). Let A and B be Σ -algebras. B is a subalgebra of A
if:

• |B| ⊆ |A|; and
• for f :s1 × ·· · × sn → s in Σ and b1 ∈ |B|s1 , . . . ,bn ∈ |B|sn , fB(b1, . . . ,bn) =

fA(b1, . . . ,bn).

B is a proper subalgebra of A if it is a subalgebra of A and |B| �= |A|. A subalgebra of
A is determined by an S-sorted subset |B| of |A| which is closed under the operations
of Σ , i.e. such that for each f :s1 ×·· ·× sn → s in Σ and b1 ∈ |B|s1 , . . . ,bn ∈ |B|sn ,
fA(b1, . . . ,bn) ∈ |B|s. ��
If B is a (proper) subalgebra of A then B is “smaller” than A in the sense that it
contains fewer data values than A. Both A and B are Σ -algebras though, so A and B
contain interpretations for exactly the same sort and operation names.

Exercise 1.2.6. Let A be a Σ -algebra. Show that the intersection of any family of
(carriers of) subalgebras of A is a (carrier of a) subalgebra of A. Use this to show
that for any X ⊆ |A|, there is a least subalgebra of A that contains X . This is called
the subalgebra of A generated by X . Give an explicit construction of this algebra.
HINT: Consider the family of S-sorted sets Xi ⊆ |A|, i≥ 0, where X0 = X and Xi+1 is
obtained from Xi by adding the results of applying the operations of A to arguments
in Xi. ��
Definition 1.2.7 (Reachable algebra). Let A be a Σ -algebra. A is reachable if A has
no proper subalgebra (equivalently, if A is generated by ∅). ��
By Exercise 1.2.6, every algebra has a unique reachable subalgebra.

Example 1.2.8. Let Σ1 = 〈S1,Ω1〉 and A1 be as defined in Example 1.2.4. Define
a Σ1-algebra B1 by

|B1|Shape = {�},
|B1|Suit = {♥,♠},
boxB1 = � ∈ |B1|Shape,
heartsB1 =♥ ∈ |B1|Suit,
boxifyB1: |B1|Shape → |B1|Shape = {� �→�},
fB1: |B1|Shape×|B1|Suit → |B1|Suit = {〈�,♥〉 �→ ♠,〈�,♠〉 �→ ♥}.

B1 is the subalgebra of A1 generated by ∅. That is, B1 is the reachable subalgebra
of A1. ��
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Definition 1.2.9 (Product algebra). Let A and B be Σ -algebras. The product alge-
bra A×B is the Σ -algebra defined as follows:

• |A×B|= |A|× |B|; and
• for each f :s1×·· ·× sn → s in Σ and 〈a1,b1〉 ∈ |A×B|s1 , . . . ,〈an,bn〉 ∈ |A×B|sn ,

fA×B(〈a1,b1〉, . . . ,〈an,bn〉) = 〈 fA(a1, . . . ,an), fB(b1, . . . ,bn)〉 ∈ |A×B|s.
This generalises to the product ∏〈Ai〉i∈I of a family of Σ -algebras, indexed by an
arbitrary set I (possibly empty), as follows:

• |∏〈Ai〉i∈I |= ∏〈|Ai|〉i∈I ; and
• for each f :s1 × ·· · × sn → s in Σ and f1 ∈ |∏〈Ai〉i∈I |s1 , . . . , fn ∈ |∏〈Ai〉i∈I |sn ,

fΠ 〈Ai〉i∈I ( f1, . . . , fn)(i) = fAi( f1(i), . . . , fn(i)) for all i ∈ I. ��
Exercise 1.2.10. Definition 1.2.9 shows how two Σ -algebras can be combined to
form a new Σ -algebra by taking the Cartesian product of their carriers. According
to Exercise 1.2.6, the same can be done (with subalgebras of a fixed algebra) using
intersection. Try to formulate definitions of union and disjoint union of algebras
where |A∪B|= |A|∪ |B| and |A�B|= |A|� |B| respectively. What happens? ��

1.3 Homomorphisms and congruences

A homomorphism between algebras is the analogue of a function between sets, and
a congruence relation on an algebra is the analogue of an equivalence relation on a
set. An algebra has more structure than a set, so homomorphisms and congruences
are required to respect the additional structure (i.e. the behaviour of the operations).
Homomorphisms and congruences are important basic tools for relating algebras
and constructing new algebras from old ones.

Throughout this section, let Σ = 〈S,Ω〉 be a signature.

Definition 1.3.1 (Homomorphism). Let A and B be Σ -algebras. A Σ -homomor-
phism h:A → B is an S-sorted function h: |A| → |B| which respects the operations
of Σ , i.e. such that for all f :s1 × ·· · × sn → s in Σ and a1 ∈ |A|s1 , . . . ,an ∈ |A|sn ,
hs( fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an)). A Σ -homomorphism h:A → B is an
identity (an inclusion, surjective, etc.) if it is an identity (an inclusion, surjective,
etc.) when viewed as an S-sorted function. ��
Notation. If h:A → B is a Σ -homomorphism, then |h|: |A| → |B| denotes h viewed
as an S-sorted function. The only difference between h and |h| is that in the case of
|h| we have “forgotten” that the additional condition required of a homomorphism
is satisfied; in particular, h(a) and |h|(a) are the same for any a ∈ |A|. ��

Informally, the homomorphism condition says that the behaviour of the opera-
tions in A is reflected in that of the operations in B. This condition can be expressed
in the form of a diagram as follows:
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|A|s1 ×·· ·× |A|sn

|A|s

�hs1 ×·· ·×hsn

�
hs

�

fA

|B|s1 ×·· ·× |B|sn

|B|s
�

fB

where we define (hs1 ×·· ·×hsn)(as1 , . . . ,asn) = 〈hs1(as1), . . . ,hsn(asn)〉 for all a1 ∈
|A|s1 , . . . ,an ∈ |A|sn . The homomorphism condition amounts to the requirement that
this diagram commute, i.e. that composing the functions on the top and right-hand
side arrows gives the same result as composing the functions on the left-hand side
and bottom arrows. Such commutative diagrams will be used heavily in later chap-
ters, particularly in Chapter 3.

Example 1.3.2. Let Σ1 = 〈S1,Ω1〉 and A1 be as defined in Example 1.2.4. Define
a Σ1-algebra C1 by

|C1|Shape = |C1|Suit = {1,2,3},
boxC1 = 1 ∈ |C1|Shape,
heartsC1 = 2 ∈ |C1|Suit,
boxifyC1: |C1|Shape → |C1|Shape = {1 �→ 1,2 �→ 3,3 �→ 1},

and fC1: |C1|Shape×|C1|Suit → |C1|Suit is defined by the following table:

fC1 1 2 3
1 1 2 3
2 2 1 2
3 2 2 1

Let h1: |A1| → |C1| be the S1-sorted function such that

h1Shape = {� �→ 1,� �→ 3},
h1Suit = {♣ �→ 1,♥ �→ 2,♠ �→ 2}.

It is easy to verify that h1:A1 → C1 is a Σ1-homomorphism by checking the fol-
lowing:

h1Shape(boxA1) = boxC1
h1Suit(heartsA1) = heartsC1

h1Shape(boxifyA1(�)) = boxifyC1(h1Shape(�))
h1Shape(boxifyA1(�)) = boxifyC1(h1Shape(�))

h1Suit( fA1(�,♣)) = fC1(h1Shape(�),h1Suit(♣))
h1Suit( fA1(�,♥)) = fC1(h1Shape(�),h1Suit(♥))
h1Suit( fA1(�,♠)) = fC1(h1Shape(�),h1Suit(♠))
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h1Suit( fA1(�,♣)) = fC1(h1Shape(�),h1Suit(♣))
h1Suit( fA1(�,♥)) = fC1(h1Shape(�),h1Suit(♥))
h1Suit( fA1(�,♠)) = fC1(h1Shape(�),h1Suit(♠)). ��

Exercise 1.3.3. Let A be a Σ -algebra. Show that id|A|:A → A (the identity S-sorted
function) is a Σ -homomorphism. Let h:A→ B and h′:B→C be Σ -homomorphisms.
Show that |h|;|h′|: |A| → |C| is a Σ -homomorphism h;h′:A →C. ��
Exercise 1.3.4. Let h:A → B be a Σ -homomorphism, and let A′ be a subalgebra of
A. Let the image of A′ under h be the Σ -algebra h(A′) defined as follows:

• |h(A′)|= |h|(|A′|); and
• for each f :s1×·· ·×sn → s in Σ , fh(A′)(hs1(a1), . . . ,hsn(an)) = hs( fA′(a1, . . . ,an))

for all a1 ∈ |A′|s1 , . . . ,an ∈ |A′|sn .

Show that h(A′) is a well-defined Σ -algebra (in particular, that for each f :s1×·· ·×
sn → s in Σ , the function fh(A′): |h(A′)|s1 ×·· ·× |h(A′)|sn → |h(A′)|s is well defined)
and that it is a subalgebra of B. Formulate a definition of the coimage of a subalgebra
B′ of B under h, and show that it is a subalgebra of A. ��
Exercise 1.3.5. Let h:A → B be a Σ -homomorphism, and suppose X ⊆ |A|. Show
that the subalgebra of B generated by |h|(X) ⊆ |B| is the image of the subalgebra
of A generated by X . Show that it follows that if h:A → B is surjective and A is
reachable then B is reachable. ��
Exercise 1.3.6. Let B be a reachable Σ -algebra. Show that for any Σ -algebra A, there
is at most one Σ -homomorphism h:B→ A, and that any Σ -homomorphism h:A→ B
is surjective. ��
Definition 1.3.7 (Isomorphism). Let A and B be Σ -algebras. A Σ -homomorphism
h:A → B is a Σ -isomorphism if it has an inverse, i.e. there is a Σ -homomorphism
h−1:B → A such that h;h−1 = id|A| and h−1;h = id|B|. (Exercise: Show that if h−1

exists then it is unique.) Then A and B are called isomorphic and we write h:A ∼= B
or just A ∼= B. ��
Exercise 1.3.8. Let h:A∼=B and h′:B∼=C be Σ -isomorphisms. Show that their com-
position is a Σ -isomorphism h;h′:A ∼= C. Show that ∼= (as a binary relation on Σ -
algebras) is reflexive and symmetric, and is therefore an equivalence relation. ��
Two isomorphic algebras are typically regarded as indistinguishable for all practi-
cal purposes. It is easy to see why: the only way they can differ is in the particular
choice of data values in the carriers. The size of the carriers and the way the opera-
tions behave on the values in the carriers is exactly the same. For this reason we are
often satisfied with a definition of an algebra “up to isomorphism”, i.e. a description
of an isomorphism class of algebras in a context where one would expect a defini-
tion of a single algebra. An example of this is in Fact 1.4.10 below. The notion of
isomorphism can be generalised to other kinds of structures, where it embodies ex-
actly the same concept of indistinguishability. See Chapter 3 for this generalisation
and for many more examples of definitions of objects “up to isomorphism”.
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Example 1.3.9. Let Σ1 = 〈S1,Ω1〉 and A1 be as defined in Example 1.2.4. Define
a Σ1-algebra D1 by

|D1|Shape = {�,�},
|D1|Suit = {1,2,3},
boxD1 =�∈ |D1|Shape,
heartsD1 = 2 ∈ |D1|Suit,
boxifyD1: |D1|Shape → |D1|Shape = {� �→ �,� �→�},

and fD1: |D1|Shape×|D1|Suit → |D1|Suit is defined by the following table:

fD1 1 2 3� 2 3 3
� 1 3 2

Let i1: |A1| → |D1| be the S1-sorted function such that

i1Shape = {� �→ �,� �→�},
i1Suit = {♣ �→ 1,♥ �→ 2,♠ �→ 3}.

This defines a Σ1-homomorphism i1:A1 → D1, which is a Σ1-isomorphism; so
A1 ∼= D1. ��
Exercise 1.3.10. Show that a homomorphism is an isomorphism iff it is bijective.

��
Exercise 1.3.11. Show that there is an injective homomorphism h:A → B iff A is
isomorphic to a subalgebra of B. ��
Example 1.3.12. Let Σ = 〈S,Ω〉 be the signature

sorts s
ops a:s

f :s → s

and define Σ -algebras A and B by

|A|s = N (the natural numbers),
aA = 0 ∈ |A|s,
fA: |A|s → |A|s = {n �→ n+1 | n ∈ N},
|B|s = {n ∈ N | the Turing machine with Gödel number n halts on all inputs},
aB = the smallest n ∈ |B|s,
fB: |B|s → |B|s = {n ∈ |B|s �→ the smallest m ∈ |B|s such that m > n}.

Let i: |A| → |B| be the S-sorted function such that

is(n) = the (n+1)th smallest element of |B|s
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for all n ∈ |A|s. The function is is well defined since |B|s is infinite. This defines a
Σ -homomorphism i:A → B which is an isomorphism.

Although A ∼= B, the Σ -algebras A and B are not “the same” from the point of
view of computability: everything in A is computable, in contrast to B (|B|s is not
recursively enumerable and fB is not computable). Isomorphisms capture structural
similarity, ignoring what the values in the carriers are and what the operations actu-
ally compute. This example shows that, for some purposes, properties stronger than
structural similarity are important. ��
Definition 1.3.13 (Congruence). Let A be a Σ -algebra. A Σ -congruence on A is an
(S-sorted) equivalence ≡ on |A| which respects the operations of Σ : for all f :s1 ×
·· ·×sn → s in Σ and a1,a′1 ∈ |A|s1 , . . . ,an,a′n ∈ |A|sn , if a1 ≡s1 a′1 and . . . and an ≡sn

a′n then fA(a1, . . . ,an)≡s fA(a′1, . . . ,a
′
n). ��

Exercise 1.3.14. Show that the intersection of any family of Σ -congruences on A is
a Σ -congruence on A. Use this to show that for any S-sorted binary relation R on |A|
there is a least (with respect to ⊆) Σ -congruence on A that includes R.

Show that the kernel of any Σ -homomorphism h:A→ B is a Σ -congruence on A.
Show that a surjective Σ -homomorphism is an isomorphism iff its kernel is the

identity. ��
Definition 1.3.15 (Quotient algebra). Let A be a Σ -algebra, and let ≡ be a Σ -
congruence on A. The quotient algebra of A modulo ≡ is the Σ -algebra A/≡ defined
by:

• |A/≡|= |A|/≡; and
• for each f :s1×·· ·×sn → s, fA/≡([a1]≡s1

, . . . , [an]≡sn ) = [ fA(a1, . . . ,an)]≡s for all
a1 ∈ |A|s1 , . . . ,an ∈ |A|sn . ��

Exercise 1.3.16. Show that A/≡ in Definition 1.3.15 is a well-defined Σ -algebra.
��

Example 1.3.17. Let Σ1 = 〈S1,Ω1〉 and A1 be as defined in Example 1.2.4, and let
≡= 〈≡s〉s∈S1 be the S1-sorted binary relation on |A1| defined by

≡Shape = {〈�,�〉,〈�,�〉},
≡Suit = {〈♣,♣〉,〈♥,♥〉,〈♥,♠〉,〈♠,♥〉,〈♠,♠〉}.

This defines a congruence on A1. A1/≡ is the Σ1-algebra defined by

|A1/≡|Shape = {{�},{�}},
|A1/≡|Suit = {{♣},{♥,♠}},
boxA1/≡ = {�} ∈ |A1/≡|Shape,
heartsA1/≡ = {♥,♠} ∈ |A1/≡|Suit,
boxifyA1/≡: |A1/≡|Shape → |A1/≡|Shape = {{�} �→ {�},{�} �→ {�}},

and fA1/≡: |A1/≡|Shape×|A1/≡|Suit → |A1/≡|Suit is defined by the following table:
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fA1/≡ {♣} {♥,♠}
{�} {♣} {♥,♠}
{�} {♥,♠} {♥,♠} ��

Exercise 1.3.18. Let ≡ be a Σ -congruence on A, and let hs(a) = [a]≡s for s ∈ S,
a∈ |A|s. Show that 〈hs: |A|s → (|A|/≡)s〉s∈S is a Σ -homomorphism h:A→A/≡with
ker(h) =≡. ��
Exercise 1.3.19. Let h:A → B be a Σ -homomorphism. Show that A/ker(h) is iso-
morphic to h(A). HINT: The isomorphism is given by [a]ker(hs) �→ hs(a) for s ∈ S,
a ∈ |A|s. ��
Exercise 1.3.20. Let ≡ be a Σ -congruence on A. Show that for any Σ -homomor-
phism h:A → B such that ≡ ⊆ ker(h), there exists a unique Σ -homomorphism
g:A/≡→ B such that hs(a) = gs([a]≡s) for all s ∈ S, a ∈ |A|s. ��
Exercise 1.3.21. Show that there is a surjective homomorphism h:A→ B iff there is
a congruence ≡ on A such that B is isomorphic to A/≡. ��
Exercise 1.3.22. Let A be a Σ -algebra, let ≡ be a congruence on A and let B be a
subalgebra of A/≡. Show that there is a subalgebra C of A and congruence ≡′ on C
such that B =C/≡′. ��
Exercise 1.3.23. Let h:A → B be a Σ -homomorphism. Show that there is a unique
Σ -congruence ≡ on A and a unique injective Σ -homomorphism g:A/≡→ B such
that hs(a) = gs([a]≡s) for all s ∈ S, a ∈ |A|s. ��

1.4 Term algebras

For any signature Σ there is a special Σ -algebra whose values are just well-formed
terms (i.e. expressions) built from the operation names in Σ . A Σ -algebra of terms
with variables is similarly determined by a signature Σ = 〈S,Ω〉 and an S-sorted
set of variables. These algebras are rather boring insofar as modelling programs is
concerned — the term algebra models a program which does no real computation.
But the homomorphisms from these algebras to other algebras turn out to be very
useful technical tools, as shown by the definitions below.

Throughout this section, let Σ = 〈S,Ω〉 be a signature and let X be an S-sorted
set (of variables), where x∈ Xs for s∈ S means that the variable x is of sort s (written
x:s). Note that “overloading” of variable names is permitted here, since there is no
requirement that Xs and Xs′ be disjoint for s �= s′ ∈ S.

Definition 1.4.1 (Term algebra). The Σ -algebra TΣ (X) of terms with variables X
is the Σ -algebra defined as follows:

• |TΣ (X)| is the least (with respect to ⊆) S-sorted set of words (sequences) over the
alphabet
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S∪
⋃

w∈S∗
s∈S

Ωw,s∪
⋃
s∈S

Xs∪{: ,( , , ,)}

such that:

– the word “x:s” ∈ |TΣ (X)|s for all s ∈ S and x ∈ Xs; and
– for all f :s1×·· ·×sn → s in Σ and all words t1 ∈ |TΣ (X)|s1 , . . . , tn ∈ |TΣ (X)|sn ,

the word “ f (t1, . . . , tn):s” ∈ |TΣ (X)|s.
• for all f :s1 × ·· ·× sn → s in Σ and all words t1 ∈ |TΣ (X)|s1 , . . . , tn ∈ |TΣ (X)|sn ,

fTΣ (X)(t1, . . . , tn) = (the word) “ f (t1, . . . , tn):s” ∈ |TΣ (X)|s.
(Quotation marks are used here solely to emphasize that terms are words, and are
not part of the words they delimit.) If s ∈ S and t ∈ |TΣ (X)|s then t is a Σ -term of
sort s with variables X ; the free variables of t, FV(t) ⊆ X , is the S-sorted set of
variables that actually occur in t: for s ∈ S and x ∈ Xs, x ∈ FV(t)s if t contains the
subword “x:s”.

The Σ -algebra of ground terms is the Σ -algebra TΣ = TΣ (∅) of terms without
variables. If s ∈ S and t ∈ |TΣ |s then t is a ground Σ -term. ��
The values of TΣ (X) are “fully typed” terms formed using the variables in X and
the operation names in Σ , and the operations of TΣ (X) just build complicated terms
from simpler terms. Note that a term t ∈ |TΣ (X)| need not contain all the variables
in X , and that some variables may occur more than once in t. TΣ is also called the
Σ -word algebra, and its carriers |TΣ | are sometimes called the Herbrand universe
for Σ .

Example 1.4.2. Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. Then TΣ1 is the
Σ1-algebra defined by

|TΣ1|Shape = { “box():Shape”,
“boxify(box():Shape):Shape”,
“boxify(boxify(box():Shape):Shape):Shape”,
. . . },

|TΣ1|Suit = { “hearts():Suit”,
“ f (box():Shape,hearts():Suit):Suit”,
“ f (boxify(box():Shape):Shape,hearts():Suit):Suit”,
“ f (box():Shape, f (box():Shape,hearts():Suit):suit):suit”,
. . . }

where the operations of TΣ1 are the term formation operations

boxTΣ1 = “box():Shape” ∈ |TΣ1|Shape,
heartsTΣ1 = “hearts():Suit” ∈ |TΣ1|Suit,
boxifyTΣ1

: |TΣ1|Shape → |TΣ1|Shape
= { “box():Shape” �→ “boxify(box():Shape):Shape”,

“boxify(box():Shape):Shape” �→
“boxify(boxify(box():Shape):Shape):Shape”,

. . . },
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and similarly for f :Shape×Suit → Suit. ��
Notation. Sort decorations (e.g. “:Shape” in “box():Shape”) are often unambigu-
ously determined, and they will usually be omitted when this is the case. When
Ωε,s∩Xs =∅ for some s ∈ S, then variables of sort s cannot be confused with con-
stants (nullary operations) of sort s and so we will usually drop the parentheses “()”
in the latter. We will omit quotation marks whenever it is clear from the context that
we are dealing with terms. Finally, in examples we will use infix notation for binary
operations when convenient. ��
Example 1.4.2 (revisited). We repeat Example 1.4.2, making use of these nota-
tional conventions.

Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. Then TΣ1 is the Σ1-algebra
defined by

|TΣ1|Shape = {box,boxify(box),boxify(boxify(box)), . . .},
|TΣ1|Suit = {hearts, f (box,hearts), f (boxify(box),hearts),

f (box, f (box,hearts)), . . .}
where the operations of TΣ1 are the term formation operations

boxTΣ1 = box ∈ |TΣ1|Shape,
heartsTΣ1 = hearts ∈ |TΣ1|Suit,
boxifyTΣ1

: |TΣ1|Shape → |TΣ1|Shape
= {box �→ boxify(box),boxify(box) �→ boxify(boxify(box)), . . .},

and similarly for f :Shape×Suit → Suit. ��
Example 1.4.3. The notational conventions above will almost always be applicable.
They cannot be adopted from the outset (i.e. in Definition 1.4.1) because of the
relatively rare examples where confusion can arise. For example, let Σ2 = 〈S2,Ω2〉
be the signature with sorts s,s1,s2 and operations a:s1, a:s2, f :s1 → s and f :s2 → s
(no mistake here, repetition of names is deliberate).

According to the definition, |TΣ2|s = {“ f (a():s1):s”,“ f (a():s2):s”}. If all sort
decorations were omitted then both of the terms in this set would become “ f (a())”
and so |TΣ2|s would have just this single element. The “outer” decoration can be
omitted but the “inner” decoration is required; thus, e.g. “ f (a():s1)”.

Similarly, if X is an S2-sorted set of variables such that a ∈ Xs1 , then “ f (a():s1)”
and “ f (a:s1)” are different terms in |TΣ2(X)|s, so the convention of writing “a():s1”
as “a:s1” cannot be used.

Since the definitions permit variables and operation names like f (a():s1) and
even “ or , or (), the custom of writing terms as sequences of symbols without
explicit separators can cause confusion. Luckily, such names never arise in practice
and so for the purposes of this book this problem can safely be forgotten. ��
Fact 1.4.4. For any Σ -algebra A and S-sorted function v:X → |A| there is exactly
one Σ -homomorphism v#:TΣ (X)→ A that extends v, i.e. such that v#

s (ιX (x)) = vs(x)
for all s∈ S, x∈Xs, where ιX :X →|TΣ (X)| is the embedding that maps each variable
in X to its corresponding term.
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S-sorted sets Σ -algebras

X |TΣ (X)|

|A|

�⊂ ιX

�

|v#|

�
�
�
�
�
�
��

v

TΣ (X)

A
�

v#

��
The existence and uniqueness of v# follow easily from the requirements that v#

extends v (this fixes the value of v# for any variable as a term in |TΣ (X)|) and that v#

is a Σ -homomorphism (this determines the value of v# for any term f (t1, . . . , tn) ∈
|TΣ (X)| as a function of the values of v# for its immediate subterms t1, . . . , tn ∈
|TΣ (X)|). The homomorphism which results is the function which evaluates Σ -terms
based on the assignment of values in A to variables in X given by v.

Definition 1.4.5 (Term evaluation). Let A be a Σ -algebra A and let v:X →|A| be an
S-sorted function. By Fact 1.4.4 there is a unique Σ -homomorphism v#:TΣ (X)→ A
that extends v. Let s ∈ S and let t ∈ |TΣ (X)|s be a Σ -term of sort s; the value of t in A
under the valuation v is v#(t) ∈ |A|s. When t ∈ |TΣ |s the value of t does not depend
on v; then the value of t in A is ∅#(t) where ∅:∅ → |A| is the empty function.
To make the algebra explicit, we write tA(v) for v#(t), and tA for tA(∅) when t is
ground. ��
Exercise 1.4.6. Let t ∈ |TΣ (X)| be a Σ -term and let A be a Σ -algebra. Show that if
v:X → |A| and v′:X → |A| coincide on FV(t), then tA(v) = tA(v′). This follows from
another fact: for any t ∈ |TΣ (X)|, X ⊆Y (so that t ∈ |TΣ (Y )|) and v:Y →|A|, we have
tA(v) = tA(ι ;v), where ι :X ↪→ Y is the inclusion (and so ι ;v:X → |A|). ��
Exercise 1.4.7. Define evaluation of terms in an inductive fashion. Convince your-
self that the result is the same as that given by Definition 1.4.5. ��
Exercise 1.4.8. Let h:A → B be a Σ -homomorphism, let v:X → |A| be an S-sorted
function, and let t ∈ |TΣ (X)| be a Σ -term. Using Fact 1.4.4, prove that h(v#(t)) =
(v;h)#(t). Compare this with a proof of the same property based on your inductive
definition of term evaluation from Exercise 1.4.7. ��
Exercise 1.4.9. Functions θ :X → |TΣ (Y )| are sometimes called substitutions (of
terms in TΣ (Y ) for variables in X). Using Fact 1.4.4, define the Σ -term t[θ ]∈ |TΣ (Y )|
resulting from applying the substitution θ to a Σ -term t ∈ |TΣ (X)|. Show that
t[ιX ] = t for any t ∈ |TΣ (X)|, where ιX maps each variable in X to its corresponding
term in |TΣ (X)|. Define the composition θ ;θ ′ of substitutions θ :X → |TΣ (Y )| and
θ ′:Y → |TΣ (Z)|, and show that (t[θ ])[θ ′] = t[θ ;θ ′] for any Σ -term t and substitu-
tions θ and θ ′. ��
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Notation. Suppose u ∈ |TΣ (Y )|s for some sort s ∈ S. Then [x �→ u] (or just x �→ u),
when used as a substitution {x:s}∪X → |TΣ (X ∪Y )|, is shorthand for the function
{x:s �→ u}∪ {z �→ z | z ∈ X ,z �= x:s}. For t ∈ |TΣ ({x:s}∪X)|, t[x �→ u] ∈ |TΣ (X ∪
Y )| thus stands for the term obtained by substituting u for x in t. This notation
generalises straightforwardly to [x1 �→ u1, . . . ,xn �→ un] and t[x1 �→ u1, . . . ,xn �→ un]
provided x1, . . . ,xn are distinct variables. ��
Fact 1.4.10. The property of TΣ (X) in Fact 1.4.4 defines TΣ (X) up to isomorphism:
if B is a Σ -algebra and η :X → |B| is an S-sorted function such that for any Σ -
algebra A and S-sorted function v:X → |A| there is a unique Σ -homomorphism
v$:B→ A such that η ;|v$|= v, then B is isomorphic to TΣ (X), where η#:TΣ (X)→ B
is an isomorphism with inverse ι$

X :B → TΣ (X).

S-sorted sets Σ -algebras
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Fact 1.4.4 says that the definition of TΣ (X) fixes the definition of the term evalu-
ation function “for free” (see Definition 1.4.5). Fact 1.4.10 says that this property
is unique (up to isomorphism) to TΣ (X), so in fact the explicit definition of TΣ (X)
is superfluous — it would be enough to define TΣ (X) as “the” (unique up to iso-
morphism) Σ -algebra for which Definition 1.4.5 makes sense. TΣ (X) is a particular
example of a free object — see Section 3.5 for more on this topic.

Example 1.4.11. Let Σ1 = 〈S1,Ω1〉 be as defined in Example 1.2.4. Then TΣ1 is
the Σ1-algebra described in Example 1.4.2. Let T 1 be the Σ1-algebra defined by

|T 1|Shape = {box,box boxify,box boxify boxify, . . .},
|T 1|Suit = {hearts,box hearts f ,box boxify hearts f ,box box hearts f f , . . .}

where the operations of T 1 are the postfix term formation operations
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boxT 1 = box ∈ |T 1|Shape,
heartsT 1 = hearts ∈ |T 1|Suit,
boxifyT 1: |T 1|Shape → |T 1|Shape

= {box �→ box boxify,box boxify �→ box boxify boxify, . . .},
and similarly for f :Shape× Suit → Suit. Then T 1 satisfies the property of TΣ1 in
Fact 1.4.4 (the fact that X = ∅ here makes this easy to check — there is only one
function v:∅→ |A1| for any Σ1-algebra A1), so by Fact 1.4.10 (where η :∅→ |T 1|
is the empty function) T 1 is isomorphic to TΣ1. The isomorphism ∅#:TΣ1 → T 1
converts a Σ1-term to its postfix form. ��
Exercise 1.4.12. Prove Facts 1.4.4 and 1.4.10. ��
Exercise 1.4.13. Let A be a Σ -algebra and let ∅:∅→ |A| be the empty function.
Show that A is reachable iff the unique homomorphism ∅#:TΣ → A is surjective,
i.e., iff every element in |A| is the value of a ground Σ -term. ��
Exercise 1.4.14. Show that TΣ is reachable. Put this fact together with previous re-
sults to show that a Σ -algebra is reachable iff it is isomorphic to a quotient of TΣ , and
that there is a one-to-one correspondence between isomorphism classes of reachable
Σ -algebras and congruences on TΣ . ��
Exercise 1.4.15. Let G be a context-free grammar over an alphabet T of terminal
symbols. Consider the signature ΣG = 〈SG,ΩG〉, where SG is the set of non-terminal
symbols of G and each production X → Y1 . . .Yn in G corresponds to an operation
in ΩG with result sort X and arity given by the sequence of non-terminal symbols
in Y1 . . .Yn. The ΣG-algebra AG has carriers |AG|X = T ∗ for all X ∈ SG, and for any
p:X1 × ·· · × Xn → X in ΣG and a1, . . . ,an ∈ T ∗, pAG(a1, . . . ,an) is the sequence
obtained by substituting a j for the jth non-terminal symbol on the right-hand side
of the production associated with p. Prove the following:

1. For any X ∈ SG, the carrier of sort X in the reachable subalgebra of AG is the set
of sequences generated from the non-terminal X in G.

2. The algebra TΣG is isomorphic to the algebra of parse trees of G.
3. The grammar G is unambiguous iff the reachable subalgebra of AG is isomorphic

to TΣG . ��

1.5 Changing signatures

A signature morphism defines a mapping from the sort and operation names in one
signature to those in another signature in such a way that the arity and result sort
of operations are respected. (This requirement is analogous to the requirement that
homomorphisms respect the behaviour of the operations.) Signature morphisms will
be used extensively in later chapters to mediate constructions involving multiple
signatures. The crucial point that makes these constructions work is that a signature
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morphism from Σ to Σ ′ induces translations of syntax (terms — later, also logical
formulae) and semantics (algebras and homomorphisms) between Σ and Σ ′.

Two kinds of signature morphisms are introduced in this section. The first kind
will be used throughout the rest of the book. The second kind, derived signature
morphisms, provide one example of a way in which a basic definition could be mod-
ified. Such a modification would not affect later definitions and results, since these
depend only on the induced translations of terms, algebras and homomorphisms.

1.5.1 Signature morphisms

Definition 1.5.1 (Signature morphism). Let Σ = 〈S,Ω〉 and Σ ′= 〈S′,Ω ′〉 be signa-
tures. A signature morphism σ :Σ → Σ ′ is a pair σ = 〈σsorts,σops〉 where σsorts:S→
S′ and σops is a family of functions respecting the arities and result sorts of op-
eration names in Σ , that is σops = 〈σw,s:Ωw,s → Ω ′

σ∗
sorts(w),σsorts(s)

〉w∈S∗,s∈S (where
for w = s1 . . .sn ∈ S∗, σ∗

sorts(w) = σsorts(s1) . . .σsorts(sn)). A signature morphism
σ :Σ → Σ ′ is a signature inclusion σ :Σ ↪→ Σ ′ if σsorts is an inclusion and σw,s is
an inclusion for all w ∈ S∗,s ∈ S. ��
Signature morphisms as defined above will be referred to as algebraic signature
morphisms when it is necessary to distinguish them from other kinds of signature
morphisms to be introduced later. Note that σsorts and (the functions constituting)
σops are not required to be either surjective or injective.

Notation. When σ :Σ → Σ ′, both σsorts and σops (and its components σw,s for all
w ∈ S∗,s ∈ S) will be denoted by σ . ��
Example 1.5.2. Let Σ = 〈S,Ω〉 be the signature

sorts Polygon,Figure,Trump
ops square:Polygon

boxify:Polygon → Polygon
boxify:Polygon → Figure
g:Figure×Trump → Trump

Let Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4.
Define σsorts:S → S1 and σops = 〈σw,s:Ωw,s → Ω1σ∗

sorts(w),σsorts(s)〉w∈S∗,s∈S by

σsorts = {Polygon �→ Shape,Figure �→ Shape,Trump �→ Suit},
σε,Polygon = {square �→ box},
σPolygon,Polygon = {boxify �→ boxify},
σPolygon,Figure = {boxify �→ boxify},
σFigureTrump,Trump = {g �→ f},

and σw,s =∅ for all other w ∈ S∗,s ∈ S. Then σ :Σ → Σ1 is a signature morphism.
��
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Exercise 1.5.3. Given two signature morphisms σ :Σ → Σ ′ and σ ′:Σ ′ → Σ ′′, let
(σ ;σ ′)sorts = σsorts;σ ′

sorts and (σ ;σ ′)ops = σops;σ ′
ops (or rather, to be more precise:

(σ ;σ ′)w,s =σw,s;σ ′
σ∗

sorts(w),σsorts(s)
for w∈ S∗,s∈ S). Show that this defines a signature

morphism σ ;σ ′:Σ → Σ ′′. ��
In the rest of this section, let σ :Σ → Σ ′ be a signature morphism, where

Σ = 〈S,Ω〉 and Σ ′ = 〈S′,Ω ′〉. As will be defined below, any such signature mor-
phism gives rise to a translation of Σ -terms to Σ ′-terms, and of Σ ′-algebras and ho-
momorphisms to Σ -algebras and homomorphisms. Note that the direction of trans-
lation of algebras and homomorphisms is “backwards” with respect to the direction
of the signature morphism, as the following figure indicates.

Syntax

⎧⎪⎨
⎪⎩

Semantics

⎧⎪⎨
⎪⎩

Σ �σ
Σ ′

Σ -terms �σ
Σ ′-terms

Σ -algebras � σ
Σ ′-algebras

Σ -homomorphisms � σ
Σ ′-homomorphisms

Definition 1.5.4 (Reduct algebra). Let A′ be a Σ ′-algebra. The σ -reduct of A′ is the
Σ -algebra A′ σ defined as follows:

• |A′ σ |s = |A′|σ(s) for all s ∈ S; and
• for all f :s1×·· ·× sn → s in Σ ,

fA′ σ : |A′ σ |s1 ×·· ·× |A′ σ |sn → |A′ σ |s =
σ( f )A′ : |A′|σ(s1)×·· ·× |A′|σ(sn) → |A′|σ(s). ��

If Σ is a subsignature of Σ ′, σ :Σ ↪→ Σ ′ is the signature inclusion, and A′ is a Σ ′-
algebra, then A′ σ is just A′ with some carriers and/or operations removed.

Notation. We sometimes write A′ Σ for A′ σ when σ :Σ → Σ ′ is obvious, such as
when σ is a signature inclusion. ��
Example 1.5.5. Let σ :Σ → Σ1 be the signature morphism defined in Example 1.5.2
and let A1 be the Σ1-algebra defined in Example 1.2.4. Then A1 σ is the Σ -algebra
such that

|A1 σ |Polygon = |A1|Shape = {�,�},
|A1 σ |Figure = |A1|Shape = {�,�},
|A1 σ |Trump = |A1|Suit = {♣,♥,♠},
squareA1 σ = boxA1 = �,

boxifyA1 σ : |A1 σ |Polygon → |A1 σ |Polygon

= boxifyA1: |A1|Shape → |A1|Shape = {� �→�,� �→�},
gA1 σ : |A1 σ |Figure×|A1 σ |Trump → |A1 σ |Trump

= fA1: |A1|Shape×|A1|Suit → |A1|Suit = {〈�,♣〉 �→ ♣,〈�,♥〉 �→ ♠, . . .}. ��
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Exercise 1.5.6. A Σ -algebra A can be seen as a function taking names in Σ to their
interpretations, having the composition σ ;A as its σ -reduct; spell out the details. ��
Exercise 1.5.7. Let σ :Σ → Σ ′ be a signature morphism that is surjective on sort
names, and let A′ be a Σ ′-algebra. Show that if A′ σ is reachable then A′ is reachable.
Give counterexamples showing that the opposite implication does not hold, and that
the implication itself does not hold if some sort names in Σ ′ are not in the image of
Σ under σ . ��
Definition 1.5.8 (Reduct homomorphism). Let h′:A′ →B′ be a Σ ′-homomorphism.
The σ -reduct of h′ is the Σ -homomorphism h′ σ :A′ σ → B′ σ defined as the S-sorted
function h′ σ : |A′ σ | → |B′ σ | such that (h′ σ )s = h′σ(s) for all s ∈ S. (Exercise: Show
that h′ σ :A′ σ → B′ σ is indeed a Σ -homomorphism.) ��
Exercise 1.5.9. Define the σ -reduct ≡′

σ of a Σ ′-congruence ≡′ on a Σ ′-algebra A′,
and prove that it is a Σ -congruence on A′ σ . Show that σ -reduct distributes over
quotient, i.e. (A′/≡′) σ = (A′ σ )/(≡′

σ ). ��
The following definition of the translation of terms along a signature morphism

σ :Σ → Σ ′ may look somewhat daunting, but its simple upshot is to translate each
term t ∈ |TΣ (X)| to the Σ ′-term obtained by replacing each operation name from Σ
by its image under σ . Some care must be taken in the treatment of variables: since
variables for different sorts are not required to be distinct, to make sure they are not
inadvertently identified by the translation, for each sort s′ in Σ ′ we have to take a
disjoint union of the sets of variables of sorts mapped to s′.
Definition 1.5.10 (Term translation). Let X be an S-sorted set of variables. Define
X ′ = 〈X ′

s′ 〉s′∈S′ to be the S′-sorted set such that

X ′
s′ =

⊎
σ(s)=s′

Xs for each s′ ∈ S′.

Then (TΣ ′(X ′)) σ is a Σ -algebra. Let i:X → |(TΣ ′(X ′)) σ | be the obvious embedding
(if not for the disjoint union in the definition of X ′ and the explicit decoration of
variables with sorts in terms, i would coincide with ιX , which maps each variable
to its corresponding term). Then by Fact 1.4.4 there is a unique Σ -homomorphism
σ̂ :TΣ (X)→ (TΣ ′(X ′)) σ extending i:

S-sorted sets Σ -algebras

X |TΣ (X)|

|(TΣ ′(X ′)) σ |

�⊂ ιX

�

|σ̂ |

�
�
�
�
�
�
��

i

TΣ (X)

(TΣ ′(X ′)) σ

�

σ̂ = i #
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The translation of a Σ -term t ∈ |TΣ (X)| by σ is the Σ ′-term σ̂(t) ∈ |TΣ ′(X ′)|. To
keep the notation simple, we will write just σ(t) for σ̂(t). ��
Example 1.5.11. Let σ :Σ → Σ1 be the signature morphism defined in Exam-
ple 1.5.2, where Σ = 〈S,Ω〉 and Σ1 = 〈S1,Ω1〉. Let X be the S-sorted set of vari-
ables x:Polygon,x:Figure,y:Figure,z:Trump. The S1-sorted set of variables X ′ in
Definition 1.5.10 is then x1:Shape,x2:Shape,y:Shape,z:Suit, and

σ(g(boxify(x:Polygon),g(x:Figure,z))) = f (boxify(x1), f (x2,z)),
σ(g(x:Figure,g(boxify(boxify(square)),z))) = f (x2, f (boxify(boxify(box)),z)),

and so on. ��
Exercise 1.5.12. Let t ∈ |TΣ | be a ground Σ -term and let A′ be a Σ ′-algebra. Show
that the value of t is invariant under change of signature, i.e. σ(t)A′ = tA′ σ .

Formulate and prove a more general version of this result in which t may contain
variables. ��

1.5.2 Derived signature morphisms

A derived signature morphism from Σ to Σ ′ is like an algebraic signature morphism
from Σ to Σ ′ except that operation names in Σ are mapped to terms over Σ ′. This
allows operation names in Σ to be mapped to combinations of operations in Σ ′, and
also handles the case where the order of arguments of the corresponding operations
in Σ and Σ ′ are different.

Definition 1.5.13 (Derived signature). Let Σ = 〈S,Ω〉 be a signature. For any se-
quence s1 . . .sn ∈ S∗, let Is1...sn be the S-sorted set 1 :s1, . . . , n :sn. The derived
signature of Σ is the signature Σ der = 〈S,Ω der〉 where for each s1 . . .sn ∈ S∗ and
s ∈ S, Ω der

s1...sn,s = |TΣ (Is1...sn)|s. ��
In the derived signature of Σ , a Σ -term t of sort s with variables Is1...sn represents
an operation t:s1 × ·· · × sn → s. The variable i :si in Is1...sn thus stands for the
ith argument of t. Note that a “bare” variable i ∈ |TΣ (Is1...sn)|si is an operation
i:s1×·· ·× sn → si in Σ der, corresponding to a projection function.

Definition 1.5.14 (Derived signature morphism). Let Σ and Σ ′ be signatures. A
derived signature morphism δ :Σ → Σ ′ is an algebraic signature morphism δ :Σ →
(Σ ′)der. ��
Definition 1.5.15 (Derived algebra). Let Σ = 〈S,Ω〉 be a signature, and let A be a
Σ -algebra. The derived algebra of A is the Σ der-algebra Ader defined as follows:

• |Ader|= |A|; and
• for each t:s1 × ·· · × sn → s in Σ der, tAder(a1, . . . ,an) = tA(v) ∈ |Ader|s for all

a1 ∈ |Ader|s1 , . . . ,an ∈ |Ader|sn , where v is the S-sorted function {( 1 :s1) �→
a1, . . . ,( n :sn) �→ an}. ��
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In the rest of this section, let δ :Σ → Σ ′ be a derived signature morphism. The
following corresponds to Definition 1.5.4 for algebraic signature morphisms; later
exercises correspond to Definitions 1.5.8 and 1.5.10 and related results.

Definition 1.5.16 (Reduct algebra w.r.t. a derived signature morphism). Let A′
be a Σ ′-algebra. The δ -reduct of A′ is the Σ -algebra A′ δ defined as follows:

• |A′ δ |s = |A′|δ (s) for all s ∈ S; and
• for all f :s1×·· ·×sn → s in Σ , fA′ δ : |A′ δ |s1×·· ·×|A′ δ |sn →|A′ δ |s = δ ( f )(A′)der .

Equivalently, A′ δ is the Σ -algebra (A′)der
δ , viewing δ as the algebraic signature

morphism δ :Σ → (Σ ′)der. ��
Exercise 1.5.17 (Reduct homomorphism w.r.t. a derived signature morphism).

What is the δ -reduct h′ δ of a Σ ′-homomorphism h′:A′ →B′? Prove that h′ δ :A′ δ →
B′ δ is a Σ -homomorphism. ��
Exercise 1.5.18 (Term translation w.r.t. a derived signature morphism). Let
t ∈ |TΣ (X)| be a Σ -term, where X is an S-sorted set of variables. Define δ (t), the
translation of t by δ (the result should be a Σ ′-term). ��
Example 1.5.19. Let Σ = 〈S,Ω〉 be the signature defined in Example 1.5.2, and let
Σ1 = 〈S1,Ω1〉 be the signature defined in Example 1.2.4. Let δ :Σ → Σ1 be the
derived signature morphism defined by

δsorts = {Polygon �→ Shape,Figure �→ Shape,Trump �→ Suit},
δε,Polygon = {square �→ boxify(box)},
δPolygon,Polygon = {boxify �→ 1 :Shape},
δPolygon,Figure = {boxify �→ boxify(boxify( 1 :Shape))},
δFigureTrump,Trump = {g �→ f (boxify( 1 :Shape), f ( 1 :Shape, 2 :Suit))},

and δw,s =∅ for all other w ∈ S∗,s ∈ S.
Let A1 be the Σ1-algebra defined in Example 1.2.4. Then A1 δ is the Σ -algebra

such that

|A1 δ |Polygon = |A1 δ |Figure = {�,�},
|A1 δ |Trump = {♣,♥,♠},
squareA1 δ

= �,

boxifyA1 δ
: |A1 δ |Polygon → |A1 δ |Polygon = {� �→�,� �→�}

boxifyA1 δ
: |A1 δ |Polygon → |A1 δ |Figure = {� �→�,� �→�},

and gA1 δ : |A1 δ |Figure×|A1 δ |Trump → |A1 δ |Trump is defined by the following table:

gA1 δ ♣ ♥ ♠
� ♣ ♥ ♠
� ♠ ♥ ♥
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Let X be the S-sorted set of variables x:Polygon,x:Figure,y:Figure,z:Trump. A cor-
rect solution to Exercise 1.5.18 would translate g(boxify(x:Polygon),g(x:Figure,z))
(a Σ -term with variables X) to

f (boxify(boxify(boxify(x1))︸ ︷︷ ︸
=δ (boxify(x:Polygon))

), f (boxify(boxify(x1))︸ ︷︷ ︸
=δ (boxify(x:Polygon))

, f (boxify(x2), f (x2,z))︸ ︷︷ ︸
=δ (g(x:Figure,z))

)).

��
Exercise 1.5.20. Repeat Exercise 1.5.12 for the case of derived signature mor-
phisms. ��
Exercise 1.5.21. A more complex definition of derived signature morphism δ :Σ →
Σ ′ would allow a sort name s in Σ to be mapped to a Cartesian product s′1×·· ·× s′n
of sorts s′1, . . . ,s

′
n in Σ ′. Give versions of the above definitions which permit this. ��

Exercise 1.5.22. Another variation on the definition of derived signature morphism
would permit operation names in Σ to be mapped to recursively defined functions
in terms of the operation names in Σ ′. Give versions of the above definitions which
would allow this. HINT: Look at a book like [Sch86] before attempting this exercise.

��

1.6 Bibliographical remarks

This chapter presents the basic notions of universal algebra that are required in the
sequel. There is a vast literature on universal algebra as a branch of mathematics,
and the concepts and results we need here are a tiny fraction of this. Applications of
universal algebra in computer science are widespread, going back at least to [BL69].

For much more on universal algebra, see e.g. [Grä79] or [Coh65] but note that
both of these handle only the single-sorted case. A presentation of some of this
material for a computer scientist audience is [Wec92]; see also [MT92], where ap-
plications to some topics in computer science other than the ones covered in this
book are indicated.

The style of presentation here is relaxed but it might still be too dense for some
readers, who might prefer the gentler style, with proofs of many of the results which
we omit here, in [GTW76], [EM85], [MG85] or [LEW96].

The generalisation from single-sorted to many-sorted algebras originates with
[Hig63] and [BL70]. The first applications to computer science came later [Mai72],
becoming prominent with [GTW76]. The generalisation is straightforward from a
purely mathematical standpoint, but there are a few subtle issues that will surface
in later chapters. For instance, we admit empty carrier sets in Definition 1.2.2, un-
like most logic books and, for instance, [BT87] and [Mos04]. Admitting empty
carrier sets requires more care in the presentation of rules for reasoning — see Ex-
ercises 2.4.9 and 2.4.10 below — but it also makes some results smoother — see
Exercise 2.5.18.
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There are different definitions of many-sorted signature in the literature. The one
here is quite general, allowing overloading of operation names, and originates with
[GTWW73] and [Gog74]. In some early papers, signatures are called “operator do-
mains”. Definitions that do not permit overloading are used in [EM85] and [Wir90],
but as remarked after Definition 1.2.1, these definitions are equivalent if each oper-
ation name is taken to be tagged with its arity and result sort.

Signature morphisms emerged around 1978 in the context of early work on the
semantics of parameterised specifications in the style of Definition 6.3.5 below, see
[Ehr78] and [GB78]; Definition 1.5.1 is from the latter. A number of variants of
and restrictions to this notion have been considered. One possible simplifying as-
sumption is to restrict attention to injective signature morphisms as in [BHK90],
or to bijective signature morphisms, which are sometimes referred to as “renam-
ings”. The notion of reduct, but only with respect to a signature inclusion, arises
in universal algebra. The generalisation from signature morphisms to derived sig-
nature morphisms originates in [GTW76], and is related to the even more general
notion of (theory) interpretation in logic [End72]. Since the 1970s, derived signa-
ture morphisms have made only sporadic appearances in the algebraic specification
literature; see for instance [SB83] and [HLST00].



Chapter 2

Simple equational specifications

A specification is an unambiguous description of a signature Σ and a class of Σ -
algebras. Because we model programs as algebras, a specification amounts to a
characterisation of a class of programs. Each of these programs is regarded as a
correct realisation of the specification.

Given a signature Σ (which, if finite, may be presented by simply listing its sort
names and its operation names with their arities and result sorts), there are two basic
techniques that may be used for describing a class of Σ -algebras. The first is to sim-
ply give a list of all the algebras in the class. Unfortunately, we are almost always
interested in infinite classes of algebras, where this technique is useless (although
sometimes this may be made to work if we can present a finite number of algebras
that in some precise way represent the entire class we want). The second is to de-
scribe the functional behaviour of the algebras in the class by listing the properties
(axioms) they are to satisfy. This is the fundamental specification technique used in
work on algebraic specification and the one that will be studied in this chapter. The
simplest and most common case is when the properties are expressed in the form
of universally quantified equations; in most of this chapter, we restrict attention to
this case. Section 2.7 indicates other forms of axioms that may be of use, along with
some possible variations on the definitions of Chapter 1, and further possibilities
will be discussed in Chapter 4. Since most of the results in this chapter are fairly
standard and proofs are readily available in the literature, most proofs are left as
exercises for the reader.

Chapters 5 and 8 will cover additional techniques for describing classes of alge-
bras. All of these involve taking a class of algebras and performing a simple opera-
tion to obtain another class of algebras, often over a different signature. Using such
methods, complex specifications of classes of complex algebras may be built from
small and easily understood units.
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2.1 Equations

Any given signature characterises the class of algebras over that signature. Although
this fixes the names of sorts and operations, it is an exceedingly limited form of de-
scription since each such class contains a wide range of different algebras. Any two
algebras taken from such a class may have carrier sets of different cardinalities and
containing different elements; even if both algebras happen to have “matching” car-
rier sets, the results produced by applying operations may differ. For most applica-
tions it is necessary to focus on a subclass of algebras, obtained by imposing axioms
which serve as constraints on the permitted behaviour of operations. One particu-
larly simple form of axioms is equations, which constrain behaviour by asserting
that two given terms have the same value. Equations have limited expressive power,
but this disadvantage is to some extent balanced by the simplicity and convenience
of reasoning in equational logic (see Sections 2.4 and 2.6).

Variables in equations will be taken from a fixed but arbitrary infinite set X . We
require X to be closed under finite disjoint union: if 〈Xi〉i∈I is finite and Xi ⊆ X
for all i ∈ I, then

⊎〈Xi〉i∈I ⊆X . We use variable names like x,y,z in examples, and
so we assume that these are all in X . Throughout this section, let Σ = 〈S,Ω〉 be a
signature.

Definition 2.1.1 (Equation). A Σ -equation ∀X • t = t ′ consists of:

• a finite S-sorted set X (of variables), such that Xs ⊆X for all s ∈ S; and
• two Σ -terms t, t ′ ∈ |TΣ (X)|s for some sort s ∈ S.

A Σ -equation of the form ∀∅• t = t ′ is called a ground (Σ -)equation, and will some-
times be written t = t ′. ��
The explicit quantification over X in a Σ -equation ∀X • t = t ′ is essential, as will be-
come clear in Section 2.4. It is nevertheless common practice to leave quantification
implicit, writing t = t ′ in place of ∀FV(t)∪FV(t ′)• t = t ′, but we will not follow
this practice except for ground equations.

Definition 2.1.2 (Satisfaction). A Σ -algebra A satisfies (or is a model of ) a Σ -
equation ∀X • t = t ′, written A |=Σ ∀X • t = t ′, if for every (S-sorted) function
v:X → |A|, tA(v) = t ′A(v).

A satisfies (or is a model of) a set E of Σ -equations, written A |=Σ E , if A |=Σ e
for every equation e ∈ E . A class A of Σ -algebras satisfies a Σ -equation e, written
A |=Σ e, if A |=Σ e for every A ∈A . Finally, a class A of Σ -algebras satisfies a set
E of Σ -equations, written A |=Σ E , if A |=Σ E for every A ∈ A (equivalently, if
A |=Σ e for every e ∈ E , i.e. A |=Σ e for every A ∈A and e ∈ E ). ��
Notation. We sometimes write |= in place of |=Σ when Σ is obvious. ��
Occasionally we will say that an equation e holds in an algebra A when A |= e, and
similarly for sets of equations and classes of algebras.

Exercise 2.1.3. Recall Σ1 and A1 from Example 1.2.4. Give some Σ1-equations
(both ground and non-ground) that are satisfied by A1. Give some Σ1-equations
(both ground and non-ground) that are not satisfied by A1. ��
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Exercise 2.1.4. If ∀X • t = t ′ is a Σ -equation and X ⊆ X ′ (and X ′
s ⊆X for all s ∈ S),

it follows from Definition 2.1.1 that ∀X ′ • t = t ′ is also a Σ -equation. Show that
A |=Σ ∀X • t = t ′ implies that A |=Σ ∀X ′ • t = t ′. Give a counterexample showing that
the converse does not hold. (HINT: Consider Xs =∅ and |A|s =∅ for some s ∈ S.)
Show that it does hold if Σ has only one sort. ��
Exercise 2.1.5. Show that surjective Σ -homomorphisms preserve satisfaction of Σ -
equations: if h:A→ B is a surjective Σ -homomorphism then A |=Σ e implies B |=Σ e
for any Σ -equation e. Show that injective Σ -homomorphisms reflect satisfaction
of Σ -equations: if h:A → B is an injective Σ -homomorphism then B |=Σ e implies
A |=Σ e for any Σ -equation e. Conclude that Σ -isomorphisms preserve and reflect
satisfaction of Σ -equations. ��
Exercise 2.1.6. Give an alternative definition of A |=Σ ∀X • t = t ′ via the satisfac-
tion of t = t ′ viewed as a ground equation over an enlarged signature. HINT: Def-
inition 2.1.2 involves quantification over valuations v:X → |A|. Consider how this
might be replaced by quantification over algebras having a signature obtained from
Σ by adding a constant for each variable in X . ��

A signature morphism σ :Σ → Σ ′ gives rise to a translation of Σ -equations to Σ ′-
equations. This is essentially a simple matter of applying the translation on terms
induced by σ to both sides of the equation.

Definition 2.1.7 (Equation translation). Let ∀X • t = t ′ be a Σ -equation, and let
σ :Σ → Σ ′ be a signature morphism. Recall from Definition 1.5.10 that we then
have σ(t),σ(t ′) ∈ |TΣ ′(X ′)| where

X ′
s′ =

⊎
σ(s)=s′

Xs for each s′ ∈ S′.

The translation of ∀X • t = t ′ by σ is then the Σ ′-equation σ(∀X • t = t ′) =
∀X ′ • σ(t) = σ(t ′). (The fact that X is closed under finite disjoint union guaran-
tees that this is indeed a Σ ′-equation.) ��
An important result which brings together some of the main definitions above is the
following:

Lemma 2.1.8 (Satisfaction Lemma [BG80]). If σ :Σ → Σ ′ is a signature mor-
phism, e is a Σ -equation and A′ is a Σ ′-algebra, then A′ |=Σ ′ σ(e) iff A′ σ |=Σ e. ��
When e is a ground Σ -equation, it is easy to see that this follows directly from the
property established in Exercise 1.5.12. When σ is injective (on both sort and op-
eration names), it seems intuitively clear that the Satisfaction Lemma should hold,
since the domain of quantification of variables is unchanged, the only difference
between e and σ(e) is the names used for sorts and operations, and the only differ-
ence between A′ and A′ σ (apart from sort/operation names) is that A′ might provide
interpretations for sort and operation names which do not appear in σ(e) and so
cannot affect its satisfaction. When σ is non-injective the Satisfaction Lemma still
holds, but this is less intuitively obvious (particularly when σ is non-injective on
sort names).
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Exercise 2.1.9. Take a signature morphism σ :Σ → Σ ′ which is non-injective on sort
and operation names, a Σ -equation involving the sort and operation names for which
σ is not injective, and a Σ ′-algebra, and check that the Satisfaction Lemma holds in
this case. ��
Exercise 2.1.10. Prove the Satisfaction Lemma, using Exercise 1.5.12. ��
Exercise 2.1.11. Define the translation of a Σ -equation by a derived signature mor-
phism δ :Σ → Σ ′, and convince yourself that the Satisfaction Lemma also holds for
this case. ��
The Satisfaction Lemma says that the translations of syntax (terms, equations) and
semantics (algebras) induced by signature morphisms are coherent with the defini-
tion of satisfaction. Said another way, the manner in which satisfaction of equations
by algebras varies according to the signature at hand fits exactly with these transla-
tions. Further discussion of the property embodied in the Satisfaction Lemma may
be found in Section 4.1.

2.2 Flat specifications

A signature together with a set of equations over that signature constitutes a simple
form of specification. We refer to these as flat (meaning unstructured) specifications
in order to distinguish them from the structured specifications to be introduced in
Chapter 5, formed from simpler specifications using specification-building opera-
tions. As we shall see later, it is possible in some (but not all) cases to “flatten”
a structured specification to yield a flat specification describing the same class of
algebras. Throughout this section, let Σ be a signature.

Definition 2.2.1 (Presentation). A presentation (also known as a flat specification)
is a pair 〈Σ ,E 〉 where E is a set of Σ -equations (called the axioms of 〈Σ ,E 〉). A
presentation 〈Σ ,E 〉 is sometimes referred to as a Σ -presentation. ��
The term “presentation” is chosen to emphasize the syntactic nature of the concept.
The idea is that a presentation denotes (or presents) a semantic object which is
inconvenient to describe directly. A reasonable objection to the definition above is
that it fails to include restrictions to ensure that presentations are truly syntactic
objects, namely that Σ and E are finite, or at least effectively presentable in some
other sense (e.g. recursive or recursively enumerable). Although it would be possible
to impose such a restriction, we refrain from doing so in order to avoid placing undue
emphasis on issues of this kind.

Definition 2.2.2 (Model of a presentation). A model of a presentation 〈Σ ,E 〉 is a
Σ -algebra A such that A |=Σ E . Mod[〈Σ ,E 〉] is the class of all models of 〈Σ ,E 〉. ��
Taking 〈Σ ,E 〉 to denote the semantic object Mod[〈Σ ,E 〉] is sometimes called taking
its loose semantics. The word “loose” here refers to the fact that this is not always
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(in fact, hardly ever) an isomorphism class of algebras: A,B ∈Mod[〈Σ ,E 〉] does not
imply that A ∼= B. In Section 2.5 we will consider the so-called initial semantics
of presentations in which a further constraint is imposed on the models of a pre-
sentation, forcing every presentation to denote an isomorphism class of algebras.

Example 2.2.3. Let Bool = 〈ΣBool,EBool〉 be the presentation below.1

spec Bool = sorts Bool
ops true:Bool

false:Bool
¬ :Bool → Bool
∧ :Bool×Bool → Bool
⇒ :Bool×Bool → Bool

∀p,q:Bool
• ¬true = false
• ¬false = true
• p∧ true = p
• p∧ false = false
• p∧¬p = false
• p ⇒ q = ¬(p∧¬q)

Define ΣBool-algebras A1, A2 and A3 as follows:

|A1|Bool = {�} |A2|Bool = {♣,♥,♠} |A3|Bool = {tt, ff}
trueA1 = � trueA2 =♣ trueA3 = tt
falseA1 = � falseA2 =♥ falseA3 = ff

¬A1 = {� �→ �} ¬A2 = {♣ �→ ♥,
♥ �→ ♣,
♠ �→ ♠}

¬A3 = {tt �→ ff ,
ff �→ tt}

∧A1 �
� �

∧A2 ♣ ♥ ♠
♣ ♣ ♥ ♥
♥ ♥ ♥ ♥
♠ ♠ ♥ ♥

∧A3 tt ff
tt tt ff
ff ff ff

⇒A1 �
� �

⇒A2 ♣ ♥ ♠
♣ ♣ ♥ ♣
♥ ♣ ♣ ♣
♠ ♣ ♠ ♣

⇒A3 tt ff
tt tt ff
ff tt tt

1 Here and in the sequel we use notation from OBJ [KKM88] and CASL [Mos04] to introduce
infix, prefix and “mixfix” operations. We also follow CASL by itemizing axioms in specifications,
marking them with • and introducing universal quantification over the variables only once for the
entire list of axioms. Although the meaning of an axiom can be affected by adding quantification
over variables that it does not contain — see Exercise 2.1.4 — this pathology does not arise in any
of our examples.
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Each of these algebras is a model of Bool. (NOTE: Reference will be made to
Bool and to its models A1, A2 and A3 in later sections of this chapter. The name
Bool has been chosen for the same reason as bool is used for the type of truth
values in programming languages; it is technically a misnomer since this is not a
specification of Boolean algebras; see Example 2.2.4 below.)

Exercise. Show that the models defined and in fact all the models of Bool sat-
isfy ∀p:Bool• ¬(p∧¬false) = ¬p. Define a model of Bool that does not satisfy
∀p:Bool• ¬¬p = p. ��
Example 2.2.4. Let BA = 〈ΣBA,EBA〉 be the following presentation.

spec BA = sorts Bool
ops true:Bool

false:Bool
¬ :Bool → Bool
∨ :Bool×Bool → Bool
∧ :Bool×Bool → Bool
⇒ :Bool×Bool → Bool

∀p,q,r:Bool
• p∨ (q∨ r) = (p∨q)∨ r
• p∧ (q∧ r) = (p∧q)∧ r
• p∨q = q∨ p
• p∧q = q∧ p
• p∨ (p∧q) = p
• p∧ (p∨q) = p
• p∨ (q∧ r) = (p∨q)∧ (p∨ r)
• p∧ (q∨ r) = (p∧q)∨ (p∧ r)
• p∨¬p = true
• p∧¬p = false
• p ⇒ q = ¬p∨q

Models of BA are called Boolean algebras. One such model is the following two-
valued Boolean algebra B:

|B|Bool = {tt, ff},
trueB = tt,
falseB = ff ,
¬B = {tt �→ ff , ff �→ tt}

and
∨B tt ff
tt tt tt
ff tt ff

∧B tt ff
tt tt ff
ff ff ff

⇒B tt ff
tt tt ff
ff tt tt

This is essentially the same as A3 in Example 2.2.3. Note that A1 can be turned into
a (trivial) Boolean algebra in a similar way, but this is not the case with A2.
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Exercise. Given a Boolean algebra B, define a relation ≤B ⊆ |B|× |B| by a ≤B b iff
a∨B b = b. Show that ≤B is a partial order with trueB and falseB as its greatest and
least elements respectively, and with a∨B b yielding the least upper bound of a,b
and a∧B b yielding their greatest lower bound. (In fact, 〈|B|,≤B〉 is a distributive
lattice with top and bottom elements and complement ¬B.) ��
Exercise 2.2.5. Show that all Boolean algebras (the models of BA as introduced in
Exercise 2.2.4) satisfy the de Morgan laws:

∀p,q:Bool• ¬(p∨q) = ¬p∧¬q
∀p,q:Bool• ¬(p∧q) = ¬p∨¬q. ��
The following characterisation of the expressive power of flat equational specifi-

cations is one of the classical theorems of universal algebra.

Definition 2.2.6 (Equationally definable class). A class A of Σ -algebras is equa-
tionally definable if A = Mod[〈Σ ,E 〉] for some set E of Σ -equations. ��
Definition 2.2.7 (Variety). A class A of Σ -algebras is closed under subalgebras
if for any A ∈ A and subalgebra B of A, B ∈ A . Similarly, A is closed under
homomorphic images if for any A ∈A and Σ -homomorphism h:A→ B, h(A) ∈A ,
and A is closed under products if for any family 〈Ai ∈A 〉i∈I , ∏〈Ai〉i∈I ∈A .

A non-empty class of Σ -algebras which is closed under subalgebras, homomor-
phic images, and products is called a variety. ��
Proposition 2.2.8. Any equationally definable class A of Σ -algebras is a variety.

��
Exercise 2.2.9. Prove Proposition 2.2.8: show that for any presentation 〈Σ ,E 〉,
Mod[〈Σ ,E 〉] is closed under subalgebras, homomorphic images and products. For
example, formalise the following argument to show closure under subalgebras: if
A |=Σ e and B is a subalgebra of A then B |=Σ e since removing values from the
carriers of an algebra does not affect the truth of universally quantified assertions
about its behaviour. Closure under products and under homomorphic images are not
much more difficult to prove. ��
Theorem 2.2.10 (Birkhoff’s Variety Theorem [Bir35]). If Σ is a signature with a
finite set of sort names then a class A of Σ -algebras is a variety iff A is equationally
definable. ��
The “if” part of this theorem is (a special case of) Proposition 2.2.8. A complete
proof of the “only if” part is beyond the scope of this book; the curious reader
should consult [Wec92].

Example 2.2.11. Consider the signature

Σ = sorts s
ops 0:s

× :s× s → s
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and the class A of Σ -algebras satisfying the familiar cancellation law:

if a �= 0 and a×b = a× c then b = c.

The Σ -algebra A such that |A|s is the set of natural numbers and ×A is ordinary
multiplication is in A . The Σ -algebra B such that |B|s = {0,1,2,3} and ×A is mul-
tiplication modulo 4 is not in A . (Exercise: Why not?) Since B is a homomorphic
image of A, this shows that A is not a variety and hence is not equationally defin-
able. ��
Exercise 2.2.12. Formulate a definition of what it means for a class of Σ -algebras to
be closed under homomorphic coimages. Are varieties closed under homomorphic
coimages? ��
Exercise 2.2.13. Formulate definitions of what it means for a class of Σ -algebras to
be closed under quotients and under isomorphisms. Show that closure under both
quotients and isomorphisms is equivalent to closure under homomorphic images.

��
The assumption in Theorem 2.2.10 that the set of sort names in Σ is finite cannot

easily be omitted:

Exercise 2.2.14. A family B of Σ -algebras is directed if any two algebras B1,B2 ∈
B are subalgebras of some B ∈ B. Define the union

⋃
B of such a family to be

the least Σ -algebra such that each B ∈ B is a subalgebra of
⋃

B (the carrier of⋃
B is the union of the carriers of all algebras in B, and the values of operations

on arguments are inherited from the algebras in B; this is well defined since B is
directed). Prove that since we consider equations with finite sets of variables only,
then for any presentation 〈Σ ,E 〉, Mod[〈Σ ,E 〉] is closed under directed unions, that
is, given any directed family of algebras B ⊆ Mod[〈Σ ,E 〉], its union

⋃
B is also in

Mod[〈Σ ,E 〉].
A generalisation of Theorem 2.2.10 that we hint at here without a proof is that

for any signature Σ , a class of Σ -algebras is equationally definable iff it is a variety
that is closed under directed unions. ��
Exercise 2.2.15. Consider a signature with an infinite set of sort names and no op-
erations. Let Afin be the class of all algebras over this signature that have non-empty
carriers for a finite set of sorts only, and let A be the closure of Afin under products
and subalgebras (this adds algebras where the carrier of each sort is either a single-
ton or empty). Check that A is a variety. Prove, however, that A is not definable by
any set of equations. HINT: Use Exercise 2.2.14. ��
Exercise 2.2.16. Modify the definition of equation (Definition 2.1.1) so that infinite
sets of variables are allowed; it is enough to consider sets of variables that are finite
for each sort, but may be non-empty for infinitely many sorts. Extend the notion
of satisfaction (Definition 2.1.2) to such generalised equations in the obvious way.
Check that the class A defined in Exercise 2.2.15 is definable by such equations.
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HINT: Consider all equations of the form ∀X ∪{x,y:s}• x = y, for all sorts s and sets
X of variables such that Xs′ �=∅ for infinitely many sorts s′.

Another generalisation of Theorem 2.2.10 that we want to hint at here is that for
any signature Σ a class of Σ -algebras is definable by such generalised equations
iff it is a variety. The proof of the “if” part is as easy as for ordinary equations
(Proposition 2.2.8). The proof of the “only if” part is quite similar to that of the
finitary case. ��

A final remark to clarify the nuances in the many-sorted versions of Theo-
rem 2.2.10 is that the theorem holds for any signature (also with an infinite set
of sort names) when we restrict attention to algebras with non-empty carriers of
all sorts: all varieties of such algebras (with closure under subalgebras limited to
subalgebras with non-empty carriers) are definable by equations with a finite set of
variables.

2.3 Theories

Any equationally definable class of algebras has many different presentations; in
practice the choice of presentation is determined by various factors, including the
need for simplicity and understandability and the desire for elegance. On the other
hand, such a class uniquely determines the largest set of equations that defines it,
called its theory. Since this is an infinite set, it is not a useful way of presenting
the class. However, it is a useful set to consider since it contains all axioms in all
presentations of the class, together with all their consequences.

Throughout this section, let Σ be a signature.

Definition 2.3.1 (ModΣ (E ), ThΣ (A ), ClΣ (E ), ClΣ (A )). Given any set E of Σ -
equations, ModΣ (E ) (the models of E ) denotes the class of all Σ -algebras satisfying
all the Σ -equations in E :

ModΣ (E ) = {A | A is a Σ -algebra and A |=Σ E } ( = Mod[〈Σ ,E 〉]).

For any class A of Σ -algebras, ThΣ (A ) (the theory of A ) denotes the set of all
Σ -equations satisfied by each Σ -algebra in A :

ThΣ (A ) = {e | e is a Σ -equation and A |=Σ e}.

A set E of Σ -equations is closed if E = ThΣ (ModΣ (E )). The closure of a set E of
Σ -equations is the (closed) set ClΣ (E ) = ThΣ (ModΣ (E )). Analogously, a class A
of Σ -algebras is closed if A = ModΣ (ThΣ (A )), and the closure of A is ClΣ (A ) =
ModΣ (ThΣ (A )). ��
Proposition 2.3.2. For any sets E and E ′ of Σ -equations and classes A ,B of Σ -
algebras:

1. If E ⊆ E ′ then ModΣ (E )⊇ ModΣ (E
′).
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2. If B ⊇A then ThΣ (B)⊆ ThΣ (A ).
3. E ⊆ ThΣ (ModΣ (E )) and ModΣ (ThΣ (A ))⊇A .
4. ModΣ (E ) = ModΣ (ThΣ (ModΣ (E ))) and ThΣ (A ) = ThΣ (ModΣ (ThΣ (A ))).
5. ClΣ (E ) and ClΣ (A ) are closed.

Proof. Exercise. HINT: Properties 4 and 5 follow from properties 1–3. ��
For any signature Σ , the functions ThΣ and ModΣ constitute what is known in lattice
theory as a Galois connection.

Definition 2.3.3 (Galois connection). A Galois connection is given by two partially
ordered sets A and M (in Proposition 2.3.2, A is the set of all sets of Σ -equations,
and M is the “set” of all classes of Σ -algebras, both ordered by inclusion) and maps
∗:A→M and +:M →A (here ModΣ and ThΣ ) satisfying properties corresponding

to 2.3.2(1)–2.3.2(3). An element a ∈ A (or m ∈ M) is called closed if a = (a∗)+ (or
m = (m+)∗). ��
Some useful properties — including ones corresponding to 2.3.2(4) and 2.3.2(5) —
hold for any Galois connection.

Exercise 2.3.4. For any Galois connection and any a,b ∈ A and m ∈ M, show that
the following properties hold:

1. a ≤A m+ iff a∗ ≥M m.
2. If a and b are closed then a ≤A b iff a∗ ≥M b∗. (Show that the “if” part fails if a

or b is not closed.)

Here, ≤A and ≤M are the orders on A and M respectively. ��
Exercise 2.3.5. For any Galois connection such that A and M have binary least upper
bounds (�A, �M) and greatest lower bounds (�A, �M), and for any a,b ∈ A, show
that the following properties hold:

1. (a�A b)∗ = a∗ �M b∗.
2. (a�A b)∗ ≥M a∗ �M b∗.

HINT: �A satisfies the following properties for any a,b,c ∈ A:

• a ≤A a�A b and b ≤A a�A b.
• If a ≤A c and b ≤A c then a�A b ≤A c.

And analogously for �A, �M and �M .
State and prove analogues to 1 and 2 for any m,n ∈ M, and instantiate all these

general properties for the Galois connection between sets of Σ -equations and classes
of Σ -algebras. ��
Definition 2.3.6 (Semantic consequence). A Σ -equation e is a semantic conse-
quence of a set E of Σ -equations, written E |=Σ e, if e ∈ ClΣ (E ) (equivalently,
if ModΣ (E ) |=Σ e). ��
Notation. We write E |= e instead of E |=Σ e when the signature Σ is obvious. ��
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The use of the double turnstile (|=) here is the same as its use in logic: E |= e if the
equation e is satisfied in every algebra which satisfies all the equations in E . Here,
E is a set of assumptions and e is a conclusion which follows from E . We refer to
this as semantic (or model-theoretic) consequence to distinguish it from a similar
relation defined by means of “syntactic” inference rules in the next section.

Example 2.3.7. Recall Example 2.2.3. The exercise there shows the following:

EBool |=ΣBool ∀p:Bool• ¬(p∧¬false) = ¬p
EBool �|=ΣBool ∀p:Bool• ¬¬p = p

Then, referring to Example 2.2.4, Exercise 2.2.5 shows that the de Morgan laws are
semantical consequences of the set of axioms EBA. ��
Exercise 2.3.8. Prove that semantic consequence is preserved by translation along
signature morphisms: for any signature morphism σ :Σ → Σ ′, set E of Σ -equations,
and Σ -equation e,

if E |=Σ e then σ(E ) |=Σ ′ σ(e).

Equivalently, σ(ClΣ (E )) ⊆ ClΣ ′(σ(E )). Show that neither the reverse implication
nor the reverse inclusion hold in general. ��
Exercise 2.3.9. Let σ :Σ → Σ ′ be a signature morphism and let E ′ be a closed set of
Σ ′-equations. Show that σ−1(E ′) is a closed set of Σ -equations. ��
See Section 4.2 for some further results on semantic consequence and translation
along signature morphisms, presented in a more general context.

Definition 2.3.10 (Theory). A theory is a presentation 〈Σ ,E 〉 such that E is closed.
A presentation 〈Σ ,E 〉 (where E need not be closed) presents the theory 〈Σ ,ClΣ (E )〉.
A theory 〈Σ ,E 〉 is sometimes referred to as a Σ -theory. ��

A theory morphism between two theories is a signature morphism between their
signatures that maps the equations in the source theory to equations belonging to
the target theory.

Definition 2.3.11 (Theory morphism). For any theories 〈Σ ,E 〉 and 〈Σ ′,E ′〉, a the-
ory morphism σ :〈Σ ,E 〉 → 〈Σ ′,E ′〉 is a signature morphism σ :Σ → Σ ′ such that
σ(e) ∈ E ′ for every e ∈ E ; if, moreover, σ is a signature inclusion σ :Σ ↪→ Σ ′ then
σ :〈Σ ,E 〉 ↪→ 〈Σ ′,E ′〉 is a theory inclusion. ��
Exercise 2.3.12. Let σ :〈Σ ,E 〉 → 〈Σ ′,E ′〉 and σ ′:〈Σ ′,E ′〉 → 〈Σ ′′,E ′′〉 be theory
morphisms. Show that σ ;σ ′:Σ →Σ ′′ is a theory morphism σ ;σ ′:〈Σ ,E 〉→ 〈Σ ′′,E ′′〉.

��
Proposition 2.3.13. Let σ :Σ → Σ ′ be a signature morphism, E be a set of Σ -
equations and E ′ be a set of Σ ′-equations. Then the following conditions are equiv-
alent:

1. σ is a theory morphism σ :〈Σ ,ClΣ (E )〉 → 〈Σ ′,ClΣ ′(E ′)〉.
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2. σ(E )⊆ ClΣ ′(E ′).
3. For every A′ ∈ ModΣ ′(E ′), A′ σ ∈ ModΣ (E ).

Proof. Exercise. HINT: Use the Satisfaction Lemma, Lemma 2.1.8. ��
The fact that 2.3.13(2) implies 2.3.13(1) gives a shortcut for checking if a signa-
ture morphism is a theory morphism: one need only check, for each axiom in some
presentation of the source theory, that the translation of that axiom is in the target
theory. The equivalence between 2.3.13(1) and 2.3.13(3) is similar in spirit to the
Satisfaction Lemma, demonstrating a perfect correspondence between translation
of syntax (axioms) along a signature morphism and translation of semantics (mod-
els) in the opposite direction. This equivalence shows that there is a model-level
alternative to the axiom-level phrasing of Definition 2.3.11; in fact, we will take
this alternative in the case of structured specifications (Chapter 5), where there is no
equivalent axiom-level characterisation (Exercise 5.5.4).

Example 2.3.14. Let Σ be the signature

Σ = sorts s,BBool
ops tttt:BBool

ffff :BBool
not:BBool → BBool
and:BBool×BBool → BBool
≤ :s× s → BBool

and recall the presentation Bool = 〈ΣBool,EBool〉 from Example 2.2.3. Define a
signature morphism σ :Σ → ΣBool by

σsorts = {s �→ Bool,BBool �→ Bool},
σε,BBool = {tttt �→ true, ffff �→ false},
σBBool,BBool = {not �→ ¬},
σBBoolBBool,BBool = {and �→ ∧},
σss,BBool = {≤ �→⇒}.

Let E be the set of Σ -equations

E = {∀x:s• x ≤ x = tttt, ∀p:BBool• and(p, tttt) = p}.
Then ClΣ (E ) includes Σ -equations, such as ∀p:BBool,x:s• and(p,x ≤ x) = p, that
were not in E . Similarly, by Example 2.3.7, ClΣBool(EBool) includes the ΣBool-
equation ∀p:Bool• ¬(p∧¬false) = ¬p, but it does not include ∀p:Bool• ¬¬p =
p. The presentations 〈Σ ,ClΣ (E )〉 and 〈ΣBool,ClΣBool(EBool)〉 are theories — the
latter is the theory presented by Bool. The signature morphism σ :Σ → ΣBool is a
theory morphism σ :〈Σ ,ClΣ (E )〉 → 〈ΣBool,ClΣBool(EBool)〉.

Recalling Example 2.2.4, the theory presented by BA is 〈ΣBA,ClΣBA(EBA)〉,
the theory of Boolean algebras, with ClΣBA(EBA) including, for instance, the
de Morgan laws (Exercise 2.2.5). The obvious signature morphism ι :ΣBool → ΣBA
is a theory morphism ι :〈ΣBool,ClΣBool(EBool)〉 → 〈ΣBA,ClΣBA(EBA)〉.

These two theory morphisms can be composed, yielding the theory morphism
σ ;ι :〈Σ ,ClΣ (E )〉 → 〈ΣBA,ClΣBA(EBA)〉. ��
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Exercise 2.3.15. Give presentations 〈Σ ,E 〉 and 〈Σ ′,E ′〉 and a theory morphism
σ :〈Σ ,ClΣ (E )〉 → 〈Σ ′,ClΣ ′(E ′)〉 such that σ(E ) �⊆ E ′. Note that this does not con-
tradict the equivalence between 2.3.13(1) and 2.3.13(2). ��

2.4 Equational calculus

As we have seen, each presentation 〈Σ ,E 〉 determines a theory 〈Σ ,ClΣ (E )〉, where
ClΣ (E ) contains E together with all of its semantic consequences. An obvious ques-
tion at this point is how to determine whether or not a given Σ -equation ∀X • t = t ′
belongs to the set ClΣ (E ), i.e. how to decide if E |=Σ ∀X • t = t ′. The defini-
tion of ClΣ (E ) does not provide an effective method: according to this, testing
E |=Σ ∀X • t = t ′ involves constructing the (infinite!) class ModΣ (E ) and check-
ing whether or not ∀X • t = t ′ is satisfied by each of the algebras in this class, that
is, checking for each algebra A ∈ ModΣ (E ) and function v:X → |A| (there may be
infinitely many such functions for a given A) that tA(v) = t ′A(v). An alternative is
to proceed “syntactically” by means of inference rules which allow the elements of
ClΣ (E ) to be derived from the axioms in E via a sequence of formal proof steps.

Throughout this section, let Σ be a signature.

Definition 2.4.1 (Equational calculus). A Σ -equation e is a proof-theoretic conse-
quence of (or is provable from) a set E of Σ -equations, written E  Σ e, if this can
be derived by application of the following inference rules:

(axiom)
E  Σ ∀X • t = t ′

∀X • t = t ′ ∈ E

(reflexivity)
E  Σ ∀X • t = t

Xs ⊆X for all s ∈ S, and t ∈ |TΣ (X)|

(symmetry)
E  Σ ∀X • t = t ′

E  Σ ∀X • t ′ = t

(transitivity)
E  Σ ∀X • t = t ′ E  Σ ∀X • t ′ = t ′′

E  Σ ∀X • t = t ′′

(congruence)
E  Σ ∀X • t1 = t ′1 · · · E  Σ ∀X • tn = t ′n

E  Σ ∀X • f (t1, . . . , tn) = f (t ′1, . . . , t
′
n)

f :s1×·· ·× sn → s in Σ ,
ti, t ′i ∈ |TΣ (X)|si for i ≤ n

(instantiation)
E  Σ ∀X • t = t ′

E  Σ ∀Y • t[θ ] = t ′[θ ] θ :X → |TΣ (Y )| ��
Exercise 2.4.2 (Admissibility of weakening and cut). Prove that if E  Σ ∀X • t = t ′
and E ⊆ E ′ then E ′  Σ ∀X • t = t ′. (HINT: Simple induction on the structure of the



54 2 Simple equational specifications

derivation of E  Σ ∀X • t = t ′.) This shows that the following rule is admissible2:

(weakening)
E  Σ ∀X • t = t ′

E ∪E ′  Σ ∀X • t = t ′

Prove that if E  Σ e and {e}∪E ′  Σ e′ then E ∪E ′  Σ e′. (HINT: Use induction
on the structure of the derivation of {e}∪E ′  Σ e′; for the case of the axiom rule,
use the fact that weakening is admissible.) This shows that the following rule is
admissible:

(cut)
E  Σ e {e}∪E ′  Σ e′

E ∪E ′  Σ e′

Check that your proof can be generalised to show that if E  e′ and E ′
e  e for each

e ∈ E then
⋃

e∈E E ′
e  e′. ��

Exercise 2.4.3 (Consequence is preserved by translation). Show that for any sig-
nature morphism σ :Σ → Σ ′, set E of Σ -equations, and Σ -equation e, if E  Σ e then
σ(E )  Σ ′ σ(e). ��
Example 2.4.4. Recall the presentation Bool = 〈ΣBool,EBool〉 given in Exam-
ple 2.2.3. The following is a derivation of EBool  ΣBool ∀p:Bool• ¬(p∧¬false) =
¬p:

						
P








EBool  ΣBool ∀p:Bool•

¬(p∧¬false) = ¬(p∧ true)
EBool  ΣBool ∀p:Bool• p∧ true = p

EBool  ΣBool ∀p:Bool• ¬(p∧ true) = ¬p
EBool  ΣBool ∀p:Bool• ¬(p∧¬false) = ¬p

where P is the derivation

EBool  ΣBool ∀p:Bool• p = p
EBool  ΣBool ¬false = true

EBool  ΣBool ∀p:Bool• ¬false = true
EBool  ΣBool ∀p:Bool• p∧¬false = p∧ true

EBool  ΣBool ∀p:Bool• ¬(p∧¬false) = ¬(p∧ true)

Exercise. Tag each step above with the inference rule being applied. ��
Exercise 2.4.5. Give a derivation of EBool  ΣBool ∀p:Bool• p ⇒ p = true.

2 A rule is admissible in a formal system of rules if its conclusion is derivable in the system
provided that all its premises are derivable. This holds in particular if the rule is derivable in the
system, that is, if it can be obtained by composition of the rules in the system.
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A considerably more serious challenge is to give derivations for the de Morgan
laws from the axioms of Boolean algebra (see Example 2.2.4 and Exercise 2.2.5).

��
On its own, the equational calculus is nothing more than a game with symbols;

its importance lies in the correspondence between the two relations |=Σ and  Σ . As
we shall see, this correspondence is exact:  Σ is both sound and complete for |=Σ .
Soundness (E  Σ e implies E |=Σ e) is a vital property for any formal system: it
ensures that the inference rules cannot be used to derive an incorrect result.

Theorem 2.4.6 (Soundness of equational calculus). Let E be a set of Σ -equations
and let e be a Σ -equation. If E  Σ e then E |=Σ e. ��
Exercise 2.4.7. Prove Theorem 2.4.6. Use induction on the depth of the derivation
of E  Σ e, showing that each rule in the system preserves the indicated property. ��
Example 2.4.8. By Theorem 2.4.6, the formal derivation in Example 2.4.4 justifies
the claim in Example 2.3.7 that EBool |=ΣBool ∀p:Bool• ¬(p∧¬false) = ¬p. On
the other hand, since EBool �|=ΣBool ∀p:Bool• ¬¬p = p, there can be no proof in
the equational calculus for EBool  ΣBool ∀p:Bool• ¬¬p = p. ��

It is a somewhat counterintuitive fact (see [GM85]) that simplifying the calculus
by omitting explicit quantifiers in equations yields an unsound system. This is due
to the fact that algebras may have empty carrier sets. Any equation that includes a
quantified variable x:s will be satisfied by any algebra having an empty carrier for s,
even if x appears on neither side of the equation. The instantiation rule is the only
one that can be used to change the set of quantified variables; it is designed to ensure
that quantified variables are eliminated only when it is sound to do so.

Exercise 2.4.9. Formulate a version of the equational calculus without explicit
quantifiers on equations and show that it is unsound. (HINT: Consider the signature
Σ with sorts s,s′ and operations f :s→ s′, a:s′, b:s′, and set E = { f (x)= a, f (x)= b}
of Σ -equations. Show that E  Σ a = b in your version of the calculus. Then give a
Σ -algebra A ∈ ModΣ (E ) such that A �|=Σ a = b.) Pinpoint where this proof of un-
soundness breaks down for the version of the equational calculus given in Defini-
tion 2.4.1. ��
Exercise 2.4.10. Show that the equational calculus without explicit quantifiers is
sound when the definition of Σ -algebra is changed to require all carrier sets to be
non-empty, or when either of the following constraints on Σ is imposed:

1. Σ has only one sort.
2. All sorts in Σ are non-void: for each sort name s in Σ , |TΣ |s �=∅. ��
Exercise 2.4.11. Give an example of a signature Σ which satisfies neither 2.4.10(1)
nor 2.4.10(2) for which the equational calculus without explicit quantifiers is sound.

��
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Completeness (E |=Σ e implies E  Σ e) is typically more difficult to achieve than
soundness: it means that the rules in the system are powerful enough to derive all
correct results. It is not as important as soundness, in the sense that a complete
but unsound system is useless while (as we shall see in the sequel) a sound but
incomplete system is often the best that can be obtained. The equational calculus
happens to be complete for |=Σ :

Theorem 2.4.12 (Completeness of equational calculus). Let E be a set of Σ -
equations and let e be a Σ -equation. If E |=Σ e then E  Σ e.

Proof sketch. Suppose E |=Σ ∀X • t = t ′. Define ≡ ⊆ |TΣ (X)| × |TΣ (X)| by u ≡
u′ ⇐⇒ E  Σ ∀X • u = u′; then ≡ is a Σ -congruence on TΣ (X). TΣ (X)/≡ |=Σ E ,
so TΣ (X)/≡ |=Σ ∀X • t = t ′, and thus t ≡ t ′, i.e. E  Σ ∀X • t = t ′. ��
Exercise 2.4.13. Fill in the gaps in the proof of Theorem 2.4.12. ��

There are several different but equivalent versions of the equational calculus. The
following exercise considers various alternatives to the congruence and instantiation
rules.

Exercise 2.4.14. Show that the version of the equational calculus in Definition 2.4.1
is equivalent to the system obtained when the congruence and instantiation rules are
replaced by the following single rule:

(substitutivity)

E  Σ ∀X • t = t ′

for each x ∈ X , E  Σ ∀Y • θ(x) = θ ′(x)
E  Σ ∀Y • t[θ ] = t ′[θ ′]

θ ,θ ′:X → |TΣ (Y )|

Show that this is equivalent to the system having the following more restricted ver-
sion of the substitutivity rule:

(substitutivity′)
E  Σ ∀X ∪{x:s}• t = t ′ E  Σ ∀Y • u = u′

E  Σ ∀X ∪Y • t[x �→ u] = t ′[x �→ u′]
u,u′ ∈ |TΣ (Y )|s

(HINT: The equivalence relies on the fact that the set of quantified variables in an
equation is finite.) Finally, show that both of the following rules may be derived in
any of these systems:

(abstraction)
E  Σ ∀X • t = t ′

E  Σ ∀X ∪Y • t = t ′
Ys ⊆X for all s ∈ S

(concretion)
E  Σ ∀X ∪{x:s}• t = t ′

E  Σ ∀X • t = t ′
t, t ′ ∈ |TΣ (X)| and |TΣ (X)|s �=∅ ��

A consequence of the soundness and completeness theorems is that the equa-
tional calculus constitutes a semi-decision procedure for |=Σ : enumerating all deriva-
tions will eventually produce a derivation for E  Σ e if E |=Σ e holds, but if E �|=Σ e
then this procedure will never terminate. This turns out to be the best we can achieve:
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Theorem 2.4.15. There is no decision procedure for |=Σ .

Proof. Follows immediately from the undecidability of the word problem for semi-
groups [Pos47]. ��
Mechanised proof search techniques can be applied with considerable success to the
discovery of derivations (and under certain conditions, discussed in Section 2.6, a
decision procedure is possible), but Theorem 2.4.15 shows that such techniques can
provide no more than a partial solution.

2.5 Initial models

The class of algebras given by the loose semantics of a Σ -presentation contains too
many algebras to be very useful in practice. In particular, Birkhoff’s Variety The-
orem guarantees that this class will always include degenerate Σ -algebras having
a single value of each sort in Σ , as well as (nearly always) Σ -algebras that are not
reachable. This unsatisfactory state of affairs is a consequence of the limited power
of equational axioms. A standard way out is to take the so-called initial semantics of
presentations, which selects a certain class of “best” models from among all those
satisfying the axioms. Various alternatives to this approach will be presented in the
sequel.

Throughout this section, let 〈Σ ,E 〉 be a presentation.

Exercise 2.5.1. Verify the above claim concerning Birkhoff’s Variety Theorem, be-
ing specific about the meaning of “nearly always”. ��
There are two features that render certain models of presentations unfit for use in
practice. The mnemonic terms “junk” and “confusion” were coined in [BG81] to
characterise these:

Definition 2.5.2 (Junk and confusion). Let A be a model of 〈Σ ,E 〉. We say that
A contains junk if it is not reachable, and that A contains confusion if it satisfies a
ground Σ -equation that is not in ClΣ (E ). ��
The intuition behind these terms should be readily apparent: “junk” refers to useless
values which could be discarded without being missed, and “confusion” refers to
the values of two ground terms being unnecessarily identified (confused).

Example 2.5.3. Recall the presentation Bool= 〈ΣBool,EBool〉 and its models A1,
A2 and A3 from Example 2.2.3. A1 contains confusion (A1 |=ΣBool true = false �∈
ClΣBool(EBool)) but not junk; A2 contains junk (there is no ground ΣBool-term t
such that tA2 = ♠ ∈ |A2|Bool) but not confusion; A3 contains neither junk nor con-
fusion. There are models of Bool containing both junk and confusion. (Exercise:

Find one.) ��
Exercise 2.5.4. Consider the following specification of the natural numbers with
addition:
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spec Nat = sorts Nat
ops 0:Nat

succ:Nat → Nat
+ :Nat×Nat → Nat

∀m,n:Nat
• 0+n = n
• succ(m)+n = succ(m+n)

List some of the models of Nat. Which of these contain junk and/or confusion?
(NOTE: For reference later in this section, ΣNat refers to the signature of Nat and
ENat refers to its axioms.) ��
Exercise 2.5.5. According to Exercise 1.3.5, surjective homomorphisms reflect junk.
Show that injective homomorphisms preserve junk and reflect confusion, and that
all homomorphisms preserve confusion. It follows that isomorphisms preserve and
reflect junk and confusion. ��

Examples like the ones above suggest that often the algebras of interest are those
which contain neither junk nor confusion. Recall Exercise 1.4.14, which charac-
terised reachable Σ -algebras as those which are isomorphic to a quotient of TΣ .
Accordingly, the algebras we want are all isomorphic to quotients of TΣ ; by Exer-
cise 2.5.5 it is enough to consider just these quotient algebras themselves. Of course,
not all quotients TΣ/≡ will be models of 〈Σ ,E 〉: this will only be the case when ≡
identifies enough terms that the equations in E are satisfied. But if ≡ identifies “too
many” terms, TΣ/≡ will contain confusion. There is exactly one Σ -congruence that
yields a model of 〈Σ ,E 〉 containing no confusion:

Definition 2.5.6 (Congruence generated by a set of equations). The relation
≡E ⊆ |TΣ | × |TΣ | is defined by t ≡E t ′ ⇐⇒ E |=Σ t = t ′, for all t, t ′ ∈ |TΣ |. ≡E

is called the Σ -congruence generated by E . ��
Exercise 2.5.7. Prove that ≡E is a Σ -congruence on TΣ . ��
Theorem 2.5.8 (Quotient construction). TΣ/≡E is a model of 〈Σ ,E 〉 containing
no junk and no confusion. ��
Exercise 2.5.9. Prove Theorem 2.5.8. HINT: Note that TΣ/≡E contains no junk by
Exercise 1.4.14. Then show that for any term t ∈ TΣ (X) and substitution θ :X → TΣ ,
tTΣ /≡E

(θ ′) = [t[θ ]]≡E
, where θ ′(x) = [θ(x)]≡E

for x ∈ X . Use this to show that
TΣ/≡E satisfies all the equations in E and contains no confusion. ��
Example 2.5.10. Recall again the presentation Bool = 〈ΣBool,EBool〉 from Ex-
ample 2.2.3. The model TΣBool/≡EBool of Bool is defined as follows:
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|TΣBool/≡EBool |Bool = {[true]≡EBool
, [false]≡EBool

},
trueTΣBool/≡EBool

= [true]≡EBool
,

falseTΣBool/≡EBool
= [false]≡EBool

,

¬TΣBool/≡EBool
= {[true]≡EBool

�→ [false]≡EBool
, [false]≡EBool

�→ [true]≡EBool
},

∧TΣBool/≡EBool
[true]≡EBool

[false]≡EBool

[true]≡EBool
[true]≡EBool

[false]≡EBool

[false]≡EBool
[false]≡EBool

[false]≡EBool

⇒TΣBool/≡EBool
[true]≡EBool

[false]≡EBool

[true]≡EBool
[true]≡EBool

[false]≡EBool

[false]≡EBool
[true]≡EBool

[true]≡EBool

where

[true]≡EBool
= {true,¬false, true∧ true,¬(false∧ true),

¬(false∧¬false), false ⇒ false, . . .},
[false]≡EBool

= {false,¬true, true∧ false,¬(true∧ true),
¬(true∧¬false), true ⇒ false, . . .}.

The carrier set |TΣBool/≡EBool |Bool has just two elements since the axioms in EBool
can be used to reduce each ground ΣBool-term to true or false, and true �≡EBool
false. Note that the “syntactic” nature of TΣBool is preserved in TΣBool/≡EBool , e.g.
for each x ∈ [true]≡EBool

, “¬x” ∈ [false]≡EBool
= ¬TΣBool/≡EBool

([true]≡EBool
).
��

Exercise 2.5.11. Recall the presentation Nat = 〈ΣNat,ENat〉 from Exercise 2.5.4.
Construct the model TΣNat/≡ENat of Nat. ��
Exercise 2.5.12. Show that ≡E is the only Σ -congruence making Theorem 2.5.8
hold. ��

The special properties of TΣ/≡E described by Theorem 2.5.8 can be captured
very succinctly by saying that TΣ/≡E is a so-called initial model of 〈Σ ,E 〉.
Definition 2.5.13 (Initial model of a presentation). A Σ -algebra A is initial in
a class A of Σ -algebras if A ∈ A and for every B ∈ A there is a unique Σ -
homomorphism h:A → B. An initial model of 〈Σ ,E 〉 is a Σ -algebra that is initial in
Mod[〈Σ ,E 〉]. IMod[〈Σ ,E 〉] is the class of all initial models of 〈Σ ,E 〉. ��
In the next chapter we will see that this definition can be generalised to a much
wider context than that of algebras and homomorphisms.

Theorem 2.5.14 (Initial model theorem). TΣ/≡E is an initial model of 〈Σ ,E 〉.
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Proof sketch. TΣ/≡E is a model of 〈Σ ,E 〉 by Theorem 2.5.8. For B ∈ Mod[〈Σ ,E 〉],
let ∅�:TΣ → B be the unique homomorphism from the algebra of ground Σ -terms
to B. Since B |=Σ E , we have ≡E ⊆ ker(∅�), and by Exercise 1.3.20 there is a
homomorphism h:TΣ/≡E → B which is unique by Exercise 1.3.6. (Exercise: Fill
in the gaps in this proof.) ��
Example 2.5.15. Recall the presentation Bool = 〈ΣBool,EBool〉 and its models
A1, A2 and A3 from Example 2.2.3, and its model TΣBool/≡EBool from Exam-
ple 2.5.10, which is an initial model by Theorem 2.5.14. ΣBool-homomorphisms
from TΣBool/≡EBool to A1, A2 and A3 are as follows:

h1:TΣBool/≡EBool → A1 h1Bool = {[true]≡EBool
�→ �, [false]≡EBool

�→ �},
h2:TΣBool/≡EBool → A2 h2Bool = {[true]≡EBool

�→ ♣, [false]≡EBool
�→ ♥},

h3:TΣBool/≡EBool → A3 h3Bool = {[true]≡EBool
�→ 1, [false]≡EBool

�→ 0}.
(Exercise: Check uniqueness.)

A1 is not an initial model: for example, there is no homomorphism from A1 to
A2, nor from A1 to A3. In general, models containing confusion cannot be initial
since homomorphisms preserve confusion (Exercise 2.5.5). Similarly, A2 is not an
initial model: for example, there is no homomorphism from A2 to A3, since there
is no value in |A3|Bool to which such a homomorphism could map the “extra” value
♠ ∈ |A2|Bool. On the other hand, A3 is initial: for example, there is a unique homo-
morphism g1:A3 → A1 (where g1Bool(1) = g1Bool(0) = �), there is a unique homo-
morphism g2:A3 → A2 (where g2Bool(1) = ♣ and g2Bool(0) = ♥), and there is a
unique homomorphism g:A3→ TΣBool/≡EBool (where gBool(1) = [true]≡EBool

and
gBool(0) = [false]≡EBool

). ��
Exercise 2.5.16. Recall the model you constructed in Exercise 2.5.11 of the specifi-
cation Nat of natural numbers with addition. Show that there is a unique homomor-
phism from this model to each of the models you considered in Exercise 2.5.4. ��
Exercise 2.5.17. Using Theorem 2.5.14, show that TΣ is an initial model of 〈Σ ,∅〉.
Contemplate how this relates to Fact 1.4.4 and Definition 1.4.5. ��
Exercise 2.5.18. Note that initial models of 〈Σ ,E 〉 may have empty carriers for
some sorts. Show that this is necessary: give an example of a presentation 〈Σ ,E 〉
such that no algebra is initial in the class of its models that have non-empty carriers
of all sorts. Link this with Exercise 1.2.3. ��

Taking a presentation 〈Σ ,E 〉 to denote the class IMod[〈Σ ,E 〉] of its initial
models is called taking its initial semantics. We know from Theorem 2.5.14 that
IMod[〈Σ ,E 〉] is never empty. Although the motivation for wishing to exclude mod-
els containing junk and confusion was merely to weed out certain kinds of degener-
ate cases, the effect of this constraint is to restrict attention to an isomorphism class
of models:

Exercise 2.5.19. Show that any two initial models of a presentation are isomorphic.
Conclude that the initial models of a presentation are exactly those containing no
junk and no confusion. ��
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For some purposes, restricting attention to an isomorphism class of models is clearly
inappropriate. The following exercise demonstrates what can go wrong.

Exercise 2.5.20. Consider the addition of a subtraction operation − :Nat ×
Nat→Nat to the specification Nat in Exercise 2.5.4, with the axioms ∀m:Nat• m−
0 = m and ∀m,n:Nat• succ(m)−succ(n) = m−n. These axioms do not fix the value
of m− n when n > m; assume that we are willing to accept any value in this case,
perhaps because we are certain for some reason that it will never arise. Construct an
initial model of this specification. Why is this model unsatisfactory? Can you think
of a better model? What is the problem with restricting to an isomorphism class of
models of this specification? ��
The phenomenon illustrated here arises in cases where operations are not defined
in a sufficiently complete way. Roughly speaking, a definition of an operation is
sufficiently complete when the value produced by the operation is defined for all
of the possible values of its arguments. See Definition 6.1.22 below for a proper
formulation of this property in a more general context.

One may argue that Exercise 2.5.20 is unconvincing, since the lack of sufficient
completeness arises there because we do not really need m− n to be defined as
a natural number when n > m, and that this can be dealt with using one of the
approaches to partial functions below (Sections 2.7.3, 2.7.4, or 2.7.5). However, the
same phenomenon arises in other cases as well:

Exercise 2.5.21. Give a specification of natural numbers with a function that for
each natural number n chooses an arbitrary number that is greater than n. HINT:
You may first extend the specification Nat of Exercise 2.5.4 with a sort Bool with
operations and axioms as in Bool in Example 2.2.3, and add a binary operation
< :Nat×Nat → Bool with the following axioms:

∀n:Nat• 0 < succ(n) = true
∀m:Nat• succ(m)< 0 = false
∀m,n:Nat• succ(m)< succ(n) = m < n

The required function ch:Nat → Nat may now be constrained by the obvious axiom
∀n:Nat• n < ch(n) = true.

Clearly, the definition of ch cannot be sufficiently complete. Construct the initial
model of the resulting specification and check that it is not satisfactory. Referring
to other algebraic approaches presented in Sections 2.7.3, 2.7.4, and 2.7.5 below,
check that none of them offers a satisfactory solution either. ��
The above exercise indicates one of the most compelling reasons for considering
alternatives to initial semantics: requiring specifications to define all operations in
a sufficiently complete way is much too restrictive in many practical cases. Such
a requirement is also undesirable for methodological reasons, since it forces the
specifier of a problem to make decisions which are more appropriately left to the
implementor.

The comments above notwithstanding, there are certain common situations in
which initial semantics is appropriate and useful. In particular, the implicit “no junk”
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constraint conveniently captures the “that’s all there is” condition which is needed
in inductive definitions of syntax.

Example 2.5.22. Consider the following specification of syntax for simple arith-
metic expressions:

spec Expr = sorts Expr
ops x:Expr

y:Expr
0:Expr
plus:Expr×Expr → Expr
minus:Expr×Expr → Expr

∀e,e′:Expr
• plus(e,e′) = plus(e′,e)

The axiom requires the syntax of addition to be commutative. In the initial seman-
tics of Expr, the “no junk” condition ensures that the only expressions (values of
sort Expr) are those built from 0, x and y using plus and minus. The “no confusion”
condition ensures that no undesired identification of expressions occurs: for exam-
ple, the syntax of addition is not associative and the syntax of subtraction is not
commutative. ��
Exercise 2.5.23. Write a specification of (finite) sets of natural numbers. The op-
erations should include ∅:NatSet, singleton:Nat → NatSet and ∪ :NatSet ×
NatSet → NatSet. ��

The “no junk” condition is more powerful than it might appear to be at first
glance. Imposing the constraint that every value be expressible as a ground term
makes it possible to use induction on the structure of terms to prove properties of all
the values in an algebra. This means that for reasoning about models of specifica-
tions containing no junk, such as initial models, it is sound to add an induction rule
scheme to the equational calculus presented in the previous section. Since the form
of the induction rule scheme varies according to the signature of the specification at
hand, this is best illustrated by means of examples.

Example 2.5.24. Recall the presentation Nat = 〈ΣNat,ENat〉 of natural numbers
with addition given in Exercise 2.5.4. To simplify notation, let x and y stand for
variable names such that x:Nat and y:Nat are not in ΣNat and x:Nat does not appear
in the sorts(ΣNat)-sorted set of variables X used below. The following induction
rule scheme is sound for reachable models of Nat (and for reachable models of all
other ΣNat-presentations):

E  ΣNat P(0) E ∪{P(x)}  ΣNat∪{x:Nat} P(succ(x))
E ∪{P(x),P(y)}  ΣNat∪{x,y:Nat} P(x+ y)

E  ΣNat ∀x:Nat• P(x)

Here, P(x) stands for a (ΣNat ∪ {x:Nat})-equation, ∀X • t = t ′; think of this as a
ΣNat-equation with free variable x:Nat. Then P(0) stands for the ΣNat-equation
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∀X • t[x �→ 0] = t ′[x �→ 0], P(succ(x)) stands for the (ΣNat ∪ {x:Nat})-equation
∀X • t[x �→ succ(x)] = t ′[x �→ succ(x)], and analogously for P(y) and P(x+ y), and
∀x:Nat• P(x) stands for the ΣNat-equation ∀X ∪ {x:Nat}• t = t ′. The following
additional inference rule is needed to infer equations over ΣNat ∪ {x:Nat} and
ΣNat∪{x,y:Nat} from ΣNat-equations:

E  Σ ∀X • t = t ′

E  Σ∪Σ ′ ∀X • t = t ′

Exercise. Show that adding the two inference rules above to the equational calculus
gives a system that is sound for reachable models of ΣNat-presentations.

The inference rule scheme above can be used for proving theorems such as as-
sociativity and commutativity of +. But note that the axioms for + fully define it
in terms of 0 and succ: it is possible to prove by induction on the structure of terms
that for every ground ΣNat-term t there is a ground ΣNat-term t ′ such that t ′ does
not contain the + operation and ENat  ΣNat t = t ′. (Exercise: Prove it. Note that
this is a proof at the meta-level about  , not a derivation at the object level using  .)
This shows that the third premise of the above induction rule scheme is redundant.
Eliminating it gives the following scheme, which is more obviously related to the
usual form of induction for natural numbers:

E ∪ENat  ΣNat P(0) E ∪ENat∪{P(x)}  ΣNat∪{x:Nat} P(succ(x))

E ∪ENat  ΣNat ∀x:Nat• P(x)

Taking P(x) to be ∀n, p:Nat• x+(n+ p) = (x+ n)+ p, we have the following
derivation, which proves that addition is associative in initial models of Nat (Ex-

ercise: Supply the derivations P1 and P2):

						
P1








ENat  ΣNat ∀n, p:Nat•

0+(n+ p) = (0+n)+ p

						
P2








ENat∪{∀n, p:Nat• x+(n+ p) = (x+n)+ p}

 ΣNat∪{x:Nat} ∀n, p:Nat•
succ(x)+(n+ p) = (succ(x)+n)+ p

ENat  ΣNat ∀x,n, p:Nat• x+(n+ p) = (x+n)+ p

There are models of Nat containing junk which do not satisfy ∀x,n, p:Nat• x+
(n+ p) = (x+n)+ p. Hence, this equation is not in ClΣNat(ENat) and induction is
required for its derivation. ��
Exercise 2.5.25. Recall again the presentation Bool = 〈ΣBool,EBool〉 from Ex-
ample 2.2.3. Give an induction rule scheme that is sound for reachable models of
ΣBool-presentations. (HINT: There will be five premises, one for each operation in
Bool.) Show that three of the premises are redundant (HINT: eliminate one opera-
tion at a time), which gives the following rule scheme:
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E ∪EBool  ΣBool P(true) E ∪EBool  ΣBool P(false)
E ∪EBool  ΣBool ∀x:Bool• P(x)

Use this to prove that ∀p:Bool• ¬¬p= p holds in initial models of Bool. Prove that
the axiom ∀p:Bool• p∧¬p = false is redundant for the initial semantics of Bool,
that is:

EBool \{∀p:Bool• p∧¬p = false}  ΣBool ∀p:Bool• p∧¬p = false. ��
Adding an induction rule scheme appropriate to the signature at hand to the equa-

tional calculus gives a system that is sound for reasoning about initial models of
specifications, and is more powerful than the equational calculus on its own. How-
ever, the resulting system is not always complete. In fact, it turns out that complete-
ness is unachievable in general: there is no sound proof system that is complete for
reasoning about initial models of arbitrary specifications. In order to prove that this
is the case, it is necessary to formalise what we mean by the term “proof system”.
For our purposes it will suffice to assume that any proof system has a recursively
enumerable set of theorems. See [Chu56] for a discussion of the philosophical con-
siderations (e.g. finiteness of proofs, decidability of the correctness of individual
proof steps) underlying this assumption.

Theorem 2.5.26 (Incompleteness for initial semantics). There is a presentation
〈Σ ,E 〉 such that there is no proof system which is sound and complete with respect
to satisfaction of equations in the class of initial models of 〈Σ ,E 〉.
Proof. As a consequence of Matiyasevich’s theorem, the set of equations which hold
in the standard model of the natural numbers (with 0, succ, +, × and −, such that
m− n = 0 when n ≥ m) is not recursively enumerable [DMR76, Sect. 8]. There-
fore, this cannot be the set of theorems produced by any proof system. It is easy to
construct a (single-sorted) presentation having this as an initial model. (Exercise:

Construct it.) Since all the initial models of a presentation are isomorphic (Exer-
cise 2.5.19) and since isomorphisms preserve and reflect satisfaction of equations
(Exercise 2.1.5), this completes the proof. ��
The fact that completeness cannot be achieved is of no real importance in practice:
the equational calculus together with induction is perfectly adequate for normal use.
But the failure of completeness does mean that care must be taken to distinguish
between semantic consequence (|=) and provability ( ) in theoretical work. It is
important to recognize that semantic consequence is the relation of primary impor-
tance, since it is based directly on satisfaction, which embodies truth. Provability is
merely an approximation to truth, albeit one that is of great importance for practical
use since it is based on mechanical syntactic manipulation. The failure of complete-
ness means that the approximation cannot be exact, but by being sound it errs on the
side of safety.

Exercise 2.5.27. Show that the equational calculus (without added induction rule
schemes) is complete with respect to satisfaction of ground equations in initial mod-
els of specifications. ��
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The additional specification techniques introduced in Chapter 5 will lead to a widen-
ing of the gap between satisfaction and provability. In particular, even completeness
with respect to satisfaction of ground equations will be impossible to retain.

A generalisation of the concept of initial model is needed to give a fully satis-
factory specification of classes of models that are naturally parametric with respect
to some basic data. An example is the definition of terms in Section 1.4, which is
parametric in an S-sorted set of variables. Another is the specification of sets (see
Exercise 2.5.23): it should be possible to specify sets without building in a specifi-
cation of the kind of values in the sets (in this case, natural numbers).

Exercise 2.5.28. Suppose that all information about the natural numbers is removed
from the specification of sets you gave in Exercise 2.5.23, by deleting operations
on natural numbers like succ and changing the sort name Nat to Elem. Construct an
initial model of the resulting specification. Why is this model unsatisfactory? ��
The required concept is that of a free model extending a given algebra, which cap-
tures the idea of initiality relative to a fixed part of the model. See Section 3.5 for
the details, Section 4.3 for the use of this concept in the context of specifications,
and Chapter 6 for much more on the general topic of parameterisation.

2.6 Term rewriting

Although there is no decision procedure for |=Σ (Theorem 2.4.15), there is a class of
specifications for which consequence can be decided. The idea is similar to the one
behind the strategy used in mathematics for proving that an equation follows from a
set of equational axioms: one applies the axioms in an attempt to reduce both sides
of the equation to a common result, and if this is successful then the equation follows
from the axioms. An essential ingredient of this strategy is the use of equations as
directed simplification or rewrite rules.

Throughout this section, let Σ = 〈S,Ω〉 be a signature, and let X be an S-sorted
set of variables such that Xs ⊆X for all s ∈ S.

Assumption. For simplicity of presentation, we assume throughout this section that
either Σ has only one sort, or all sorts in Σ are non-void (see Exercise 2.4.10). Under
this assumption, the version of the equational calculus without explicit quantifiers
is sound, and all references to the calculus below are to this version. See Exer-
cises 2.6.11 and 2.6.26 for hints on how to do away with this assumption. ��
Definition 2.6.1 (Context). A Σ -context for sort s∈ S is a term C ∈ |TΣ (X�{�:s})|
containing one occurrence of the distinguished variable �. We write C[�] to suggest
that C should be viewed as a term with a hole in it. Substitution of a term t ∈ |TΣ (X)|s
in C[�] gives the term C[�:s �→ t] ∈ |TΣ (X)|, written C[t]. ��
Definition 2.6.2 (Rewrite rule). A Σ -rewrite rule r of sort s ∈ S consists of two Σ -
terms t, t ′ ∈ |TΣ (X)|s, written t → t ′. A Σ -rewrite rule r = t → t ′ of sort s determines
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a set of reduction steps C[t[θ ]] →r C[t ′[θ ]] for all Σ -contexts C[�] for sort s and
substitutions θ :X → |TΣ (X)|; this defines the relation →r ⊆ |TΣ (X)|× |TΣ (X)|, the
one-step reduction relation generated by r. The inverse of one-step reduction →r is
one-step expansion, written r← . ��
A reduction step u →r u′ according to a rewrite rule r = t → t ′ is an application of
an instance t[θ ]→ t ′[θ ] of r to replace the subterm t[θ ] of u (corresponding to the
“hole” in C[�]) by t ′[θ ]. The subterm t[θ ] of u is called a redex (short for “reducible
expression”).

Definition 2.6.3 (Term rewriting system). A Σ -term rewriting system R is a set of
Σ -rewrite rules. The set of Σ -equations determined by R is Eq(R) = {t = t ′ | t →
t ′ ∈ R}; by the assumption, we can dispense with explicit quantification of variables
in equations. The one-step reduction relation generated by R is the relation

→R =
⋃
r∈R

→r (⊆ |TΣ (X)|× |TΣ (X)|).

The inverse of one-step reduction →R is one-step expansion, written R← . ��
Given a set E of Σ -equations, a Σ -term rewriting system R will be of greatest rele-
vance to E when ClΣ (E ) = ClΣ (Eq(R)). One way to obtain such an R is to use the
equations themselves as rewrite rules by selecting an orientation for each equation
t = t ′: either t → t ′ or t ′ → t. For reasons that will become clear below, the most use-
ful orientation is the one in which the right-hand side of the rule is “simpler” than
the left-hand side. It is not always obvious how to measure simplicity of terms — in
fact, this is a major issue in the theory of term rewriting — and sometimes there is
no satisfactory orientation, as in the case of an equation such as n+m = m+n.

In the rest of this section, let R be a Σ -term rewriting system.

Definition 2.6.4 (Reduction →∗
R and convertibility ∼R). The reduction relation

→∗
R ⊆ |TΣ (X)|× |TΣ (X)| generated by R is the transitive reflexive closure of →R. In

other words, t →∗
R t ′ if t = t ′ or there exist terms t1, . . . , tn ∈ |TΣ (X)|, n≥ 0, such that

t →R t1 →R · · ·→R tn →R t ′; then we say that t reduces to t ′. The inverse of reduction
→∗

R is expansion, written ∗
R← . The convertibility relation ∼R ⊆ |TΣ (X)|× |TΣ (X)|

generated by R is the symmetric transitive reflexive closure of →R. In other words,
t ∼R t ′ if t = t ′ or there exist terms t1, . . . , tn ∈ |TΣ (X)|, n ≥ 0, such that t →R t1 or
t R← t1, and t1 →R t2 or t1 R← t2, and . . . , and tn →R t ′ or tn R← t ′; then we say that t
converts to t ′. ��
Exercise 2.6.5. Check that ∼R is a Σ -congruence on TΣ (X). ��
Example 2.6.6. Recall again the presentation Bool= 〈ΣBool,EBool〉 from Exam-
ple 2.2.3. The following ΣBool-term rewriting system RBool obviously satisfies
ClΣBool(EBool) = ClΣBool(Eq(RBool)):

RBool = {¬true → false, ¬false → true, p∧ true → p, p∧ false → false,
p∧¬p → false, p ⇒ q →¬(p∧¬q)}.
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(Observe that in the rule p ⇒ q →¬(p∧¬q), the right-hand side is not obviously
simpler than the left-hand side.) For example, we have (the redex reduced by each
step is underlined)

¬(p∧ (q ⇒¬false)) →RBool ¬(p∧¬(q∧¬¬false))
→RBool ¬(p∧¬(q∧¬true))
→RBool ¬(p∧¬(q∧ false))
→RBool ¬(p∧¬false)
→RBool ¬(p∧ true)
→RBool ¬p

so ¬(p∧ (q ⇒¬false))→∗
RBool ¬p, and

¬(p∧ (q ⇒ false)) RBool← ¬(p∧ (q ⇒¬true))
→RBool ¬(p∧¬(q∧¬¬true))
→RBool ¬(p∧¬(q∧¬false))
RBool← ¬(p∧¬((q∧ true)∧¬false))
→RBool ¬(p∧¬((q∧ true)∧ true))
→RBool ¬(p∧¬(q∧ true))

so ¬(p∧ (q ⇒ false))∼RBool ¬(p∧¬(q∧ true)). ��
Exercise 2.6.7. Recall the presentation Nat = 〈ΣNat,ENat〉 from Exercise 2.5.4.
Looking at the equations in ENat, give a ΣNat-term rewriting system RNat such
that ClΣNat(ENat) = ClΣNat(Eq(RNat)), and practice reducing and converting
some ΣNat-terms using RNat. ��

The convertibility relation generated by R coincides with equality provable from
Eq(R). This fact is captured by the following two theorems.

Theorem 2.6.8 (Soundness of convertibility). If t ∼R t ′ then Eq(R)  Σ t = t ′.

Proof sketch. Consider a reduction step C[t[θ ]]→R C[t ′[θ ]]. This corresponds to a
derivation involving an application of the axiom rule, to derive Eq(R)  t = t ′; an
application of instantiation, to derive Eq(R)  t[θ ] = t ′[θ ]; and repeated applications
of reflexivity and congruence, to derive Eq(R)  C[t[θ ]] = C[t ′[θ ]]. The definition
of ∼R as the symmetric transitive reflexive closure of →R corresponds directly to
applications of the symmetry, transitivity and reflexivity rules. (Exercise: Fill in the
gaps in this proof.) ��
Lemma 2.6.9. Suppose t, t ′ ∈ |TΣ (X)|s for s ∈ S. If t ∼R t ′ then

1. C[t]∼R C[t ′] for any Σ -context C[�] for sort s.
2. t[θ ]∼R t ′[θ ] for any substitution θ :X → |TΣ (X)|.
Proof. Exercise: Do it. ��
Theorem 2.6.10 (Completeness of convertibility). If Eq(R)  Σ t = t ′ then t ∼R t ′.
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Proof sketch. By induction on the depth of the derivation of Eq(R)  Σ t = t ′. The
most interesting case is when the last step is an application of the congruence rule:

Eq(R)  Σ t1 = t ′1 · · · Eq(R)  Σ tn = t ′n
Eq(R)  Σ f (t1, . . . , tn) = f (t ′1, . . . , t

′
n)

where f :s1×·· ·× sn → s. By the inductive assumption, t1 ∼R t ′1 and . . . and tn ∼R
t ′n. Then, by repeated application of Lemma 2.6.9(1), we have f (t1, t2 . . . , tn) ∼R
f (t ′1, t2 . . . , tn)∼R · · · ∼R f (t ′1, t

′
2 . . . , t

′
n) (using first the context f (�:s1, t2 . . . , tn), then

f (t ′1,�:s2, . . . , tn), then . . . , then f (t ′1, t
′
2, . . . ,�:sn)). When the last step of the deriva-

tion of Eq(R)  Σ t = t ′ is an application of the instantiation rule, the result follows
directly by Lemma 2.6.9(2). (Exercise: Complete the proof.) ��
Exercise 2.6.11. Try to get rid of the need for the assumption on Σ made at the
beginning of this section in all the definitions and results above. This will involve
rewriting terms of the form (X)t using rewrite rules of the form ∀X • t → t ′, in both
cases with explicit variable declarations. ��

Given the exact correspondence between convertibility and provable equality, a
decision procedure for t ∼R t ′ amounts to a decision procedure for E  Σ t = t ′, pro-
vided ClΣ (E ) = ClΣ (Eq(R)). The problem with testing t ∼R t ′ by simply applying
the definition is that the “path” from t to t ′ may include both reduction steps and
expansion steps, and may be of arbitrary length. But when R satisfies certain condi-
tions, it is sufficient to test just a single path having the special form t →∗

R t ′′ ∗R← t ′,
which yields a simple and efficient decision procedure for convertibility.

Definition 2.6.12 (Normal form). A Σ -term t ∈ TΣ (X) is a normal form (for R) if
there is no term t ′ such that t →R t ′. ��
Definition 2.6.13 (Termination). A Σ -term rewriting system R is terminating (or
strongly normalising) if there is no infinite reduction sequence t1 →R t2 →R · · · ;
that is, whenever t1 →R t2 →R · · · , there is some (finite) n ≥ 1 such that tn is a
normal form. ��
The usual way to show that a term rewriting system R is terminating is to demon-
strate that each rule in R reduces the complexity of terms according to some care-
fully chosen measure.

Definition 2.6.14 (Confluence). A Σ -term rewriting system R is confluent (or is
Church-Rosser) if whenever t →∗

R t1 and t →∗
R t2, there is a term t3 such that t1 →∗

R t3
and t2 →∗

R t3. ��
Definition 2.6.15 (Completeness). A Σ -term rewriting system R is complete if it is
both terminating and confluent. ��
Completeness of a term rewriting system should not be confused with completeness
of a proof system, as in for example Theorem 2.6.10 above.
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Exercise 2.6.16. Suppose that R is a complete Σ -term rewriting system, and let t ∈
|TΣ (X)| be a Σ -term. Show that there is a unique normal form NFR(t) ∈ |TΣ (X)|
such that t →∗

R NFR(t).
HINT: An abstract reduction system consists of a set A together with a binary

relation → ⊆ A×A. A Σ -term rewriting system R is a particular example, where
A = |TΣ (X)| and → is →R. Concepts such as normal form and confluence make
sense in the context of any abstract reduction system, and the required property
holds in this more abstract setting. ��
Example 2.6.17. The term rewriting system RBool from Example 2.6.6 is both
terminating and confluent, and is therefore complete. As the reduction sequence in
Example 2.6.6 shows, NFRBool(¬(p∧ (q ⇒¬false))) = ¬p.

The term rewriting system RBool′ = RBool∪{p∧ q → q∧ p} is not termi-
nating: p∧q →RBool′ q∧ p →RBool′ p∧q →RBool′ q∧ p →RBool′ · · · .

The term rewriting system RBool′′ = RBool∪{(p∧q)∧ r → p∧ (q∧ r)} is
not confluent: (p∧¬p)∧q→RBool′′ false∧q and (p∧¬p)∧q→RBool′′ p∧(¬p∧
q), and both false∧q and p∧ (¬p∧q) are normal forms. ��
Exercise 2.6.18. Is your term rewriting system RNat from Exercise 2.6.7 com-
plete? If not, find an alternative term rewriting system for Nat that is complete. ��
Exercise 2.6.19. A Σ -term rewriting system R is weakly confluent if whenever
t →R t1 and t →R t2, there is a term t3 such that t1 →∗

R t3 and t2 →∗
R t3. Find a

term rewriting system that is weakly confluent but not confluent. (HINT: Weak con-
fluence plus termination implies confluence, so don’t bother looking at terminating
term rewriting systems.) Weak confluence is a much easier condition to check than
confluence, so the usual way to prove that a term rewriting system is confluent is to
show that it is weakly confluent and terminating. ��

In view of the obvious analogy between reduction and computation, NFR(t) can
be thought of as the value of t; since NFR(t) need not be a ground term, this is a
more general notion of computation than the usual one.

Exercise 2.6.20. Convince yourself that NFR: |TΣ (X)| → |TΣ (X)| is computable for
any finite complete term rewriting system R — perhaps try to implement it in your
favourite programming language. ��
Theorem 2.6.21 (Decision procedure for convertibility). If R is complete, then
t ∼R t ′ iff NFR(t) = NFR(t ′). ��
Exercise 2.6.22. Prove Theorem 2.6.21. HINT: The proof does not depend on the
definition of →R, but only on the assumption that R is complete. ��
Since t ∼R t ′ iff Eq(R)  Σ t = t ′ (by soundness and completeness of convertibility)
iff Eq(R) |=Σ t = t ′ (by soundness and completeness of the equational calculus),
Theorem 2.6.21 constitutes a decision procedure for consequence:

Corollary 2.6.23 (Decision procedure for Eq(R) |=Σ t = t ′). If R is complete, then
Eq(R) |=Σ t = t ′ iff NFR(t) = NFR(t ′). ��
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Example 2.6.24. Since the term rewriting system RBool from Example 2.6.6
is complete (see Example 2.6.17), Corollary 2.6.23 can be used to prove that
Eq(RBool) |=ΣBool ¬(p∧ (q ⇒ ¬false)) = p ⇒ (p∧¬p): this follows since we
have NFRBool(¬(p ∧ (q ⇒ ¬false))) = ¬p = NFRBool(p ⇒ (p ∧ ¬p)). Since
ClΣBool(EBool) = ClΣBool(Eq(RBool)), this proves that EBool |=ΣBool ¬(p∧
(q ⇒¬false)) = p ⇒ (p∧¬p).

Exercise. Give a derivation of EBool  ΣBool ¬(p∧ (q ⇒¬false)) = p ⇒ (p∧¬p)
in the equational calculus. Compare this with the above proof. ��
Exercise 2.6.25. Recall your complete term rewriting system for Nat from Ex-
ercise 2.6.18. Relying on Corollary 2.6.23, use this to prove that ENat |=ΣNat
succ(succ(0)) + succ(n) = succ(succ(succ(n))), and that ENat �|=ΣNat succ(m) +
succ(n) = succ(succ(m+n)). ��
Exercise 2.6.26. Let t → t ′ be a Σ -rewrite rule of sort s. The following restrictions
are often imposed:

• t �∈ Xs; and
• FV(t ′)⊆ FV(t).

Show that, if these restrictions are imposed on rewrite rules, then Corollary 2.6.23
holds even without the assumption on Σ made at the beginning of this section.
(These restrictions seem harmless since almost no complete term rewriting system
contains rules that violate them.) ��
Exercise 2.6.27. Equality of terms in the equational theory of a rewriting systems is
also decidable under somewhat weaker requirements than those in Corollary 2.6.23.
A term rewriting system R is weakly normalising if for each term t there is a finite
reduction sequence in R leading from t to a normal form. R is semi-complete if it is
weakly normalising and confluent.

Generalising Exercise 2.6.16, show that if R is a semi-complete Σ -term rewriting
system, then for any Σ -term t ∈ |TΣ (X)| there is a unique normal form NFR(t) ∈
|TΣ (X)| such that t →∗

R NFR(t). Moreover, convince yourself that the function
NFR: |TΣ (X)| → |TΣ (X)| is then computable. Finally, show that the property cap-
tured by Corollary 2.6.23 holds for all semi-complete term rewriting systems R. ��

By Corollary 2.6.23, the problem of deciding consequence E |=Σ e is reduced to
the problem of finding a finite complete term rewriting system R such that ClΣ (E ) =
ClΣ (Eq(R)). Clearly, by Theorem 2.4.15, this is not always possible. But the Knuth-
Bendix completion algorithm can sometimes be used to produce such an R given E
together with an order relation on terms. The algorithm works by pinpointing causes
of failure of (weak) confluence and adding rules to correct them, where the supplied
term ordering is used to orient these new rules. The algorithm is iterative and may
fail to terminate; it may also fail because the ordering supplied is inadequate.

The Knuth-Bendix completion algorithm can also be used to reason about ini-
tial models of specifications, using a method known as inductionless induction or
proof by consistency. This method is based on the observation that an equation t = t ′
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holds in the initial models of 〈Σ ,E 〉 iff there is no ground equation u = u′ such that
E �|= u = u′ and E ∪{t = t ′} |= u = u′. (Exercise: Prove this fact.) Given a com-
plete term rewriting system R such that ClΣ (E ) = ClΣ (Eq(R)) (perhaps produced
using the Knuth-Bendix algorithm), the Knuth-Bendix algorithm is used to produce
a complete term rewriting system R′ for E ∪{t = t ′} by extending R. It is then pos-
sible to test if R and R′ have the same normal forms for ground Σ -terms; if so, then
t = t ′ holds in the initial models of 〈Σ ,E 〉.

2.7 Fiddling with the definitions

In principle, the specification framework presented in the preceding sections is pow-
erful enough for any conceivable computational application. This is made precise
by a theorem in [BT87] (cf. [Vra88]) which states that for every reachable semi-
computable Σ -algebra A there is a presentation 〈Σ ′,E ′〉 with finite E ′ such that
A = A′ Σ for some initial model A′ ∈ IMod[〈Σ ′,E ′〉]. (See [BT87] for the definition
of semi-computable algebra.) In spite of this fact, there are several reasons why this
framework is inconvenient for use in practice.

One deficiency becomes apparent as soon as one attempts to write specifications
that are somewhat larger than the examples we have seen so far. In order to be un-
derstandable and usable, large specifications must be built up incrementally from
smaller specifications. Specification mechanisms designed to cope with such prob-
lems of scale are presented in Chapter 5. These methods also solve the problem
illustrated by Exercise 2.5.20; see Exercise 5.1.11.

Another difficulty arises from the relatively low level of equational logic as a
language for describing constraints to be satisfied by the operations of an algebra.
When using equational axioms, it is often necessary to write a dozen equations to
express a property that can be formulated much more clearly using a single ax-
iom in some more powerful logic. Some properties that are easy to express in more
powerful systems are not expressible at all using equations. Similar awkwardness
is caused by the limitations of the type system used here, in comparison with the
polymorphic type systems of modern programming languages such as Standard ML
[Pau96]. Finally, the present framework is only able to cope conveniently with al-
gebras comprised of total and deterministic functions operating on data values built
by finitary compositions of such functions, a limitation which rules out its use for
very many programs of interest.

All these difficulties can be addressed by making appropriate modifications to the
standard framework presented in the preceding sections. An example was already
given in Section 1.5.2 where it was shown how signature morphisms could be re-
placed by derived signature morphisms. This section is devoted to a sketch of some
other possible modifications. The presentation is very brief and makes no attempt
to be truly comprehensive; the interested reader will find further details (and further
citations) in the cited references.
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2.7.1 Conditional equations

The most obvious kind of modification is to replace the use of equational axioms
by formulae in a more expressive language. Some care is required since a number
of the results presented above depend on the use of equational axioms. A relatively
unproblematic choice is to use equations that apply only when certain pre-conditions
(expressed as equations) are satisfied.

Let Σ = 〈S,Ω〉 be a signature.

Definition 2.7.1 (Conditional equation). A conditional Σ -equation ∀X • t1 = t ′1 ∧
. . .∧ tn = t ′n ⇒ t0 = t ′0 consists of

• a finite S-sorted set X (of variables), such that Xs ⊆X for all s ∈ S; and
• for each 0 ≤ j ≤ n (where n ≥ 0), two Σ -terms t j, t ′j ∈ |TΣ (X)|s j for some sort

s j ∈ S.

A Σ -algebra A satisfies a conditional Σ -equation ∀X • t1 = t ′1 ∧ . . .∧ tn = t ′n ⇒ t0 =
t ′0 if for every (S-sorted) function v:X → |A|, if (t1)A(v) = (t ′1)A(v) and . . . and
(tn)A(v) = (t ′n)A(v), then (t0)A(v) = (t ′0)A(v). ��
Note that variables in the conditions (t1 = t ′1 ∧ . . .∧ tn = t ′n) that do not appear in
the consequent (t0 = t ′0) can be seen as existentially quantified: for example, the
conditional equation ∀a,b:t • a× b = 1 ⇒ a× a−1 = 1 is equivalent to the formula
∀a:t • (∃b:t • a×b = 1)⇒ a×a−1 = 1 in ordinary first-order logic.

Exercise 2.7.2. Define the translation of conditional Σ -equations by a signature
morphism σ :Σ → Σ ′. ��
The remaining definitions of Sections 2.1–2.5 require only superficial changes, and
most results go through with appropriate modifications.

Let 〈Σ ,E 〉 be a presentation, where E is a set of conditional Σ -equations.
Mod[〈Σ ,E 〉] is not always a variety, as is (almost) shown by Example 2.2.11; in
this sense, the power of conditional equations is strictly greater than that of ordinary
equations.

Exercise 2.7.3. The cancellation law given in Example 2.2.11 is not a conditional
equation. Give a version of this example that uses only conditional equations. HINT:
Equality can be axiomatised as an operation eq:s× s → Bool. ��
In spite of this increase in expressive power, there is a proof system that is sound
and complete with respect to conditional equational consequence [Sel72], and the
quotient construction can be used to construct an initial model of 〈Σ ,E 〉 [MT92] (cf.
Lemma 3.3.12 below). Term rewriting with conditional rewrite rules is possible, but
there are some complications; see [Klo92] and [Mid93].

Exercise 2.7.4. [Sel72] gives a proof system that is sound and complete for condi-
tional equational consequence in the single-sorted case. Extend this to the many-
sorted case, where explicit quantifiers are required for the same reason as in the
equational calculus. ��
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Exercise 2.7.5. Recall Exercise 2.5.21 concerning the specification of a function
ch:Nat → Nat that for each natural number n chooses an arbitrary number that is
greater than n. Modify this, using a conditional equation to make ch choose an arbi-
trary number that is less than n when 0 < n. ��
Example 2.7.6. Let HA = 〈ΣHA,EHA〉 be the following presentation.3

spec HA = sorts Bool
ops true:Bool

false:Bool
¬ :Bool → Bool
∨ :Bool×Bool → Bool
∧ :Bool×Bool → Bool
⇒ :Bool×Bool → Bool

∀p,q,r:Bool
• p∨ (q∨ r) = (p∨q)∨ r
• p∧ (q∧ r) = (p∧q)∧ r
• p∨q = q∨ p
• p∧q = q∧ p
• p∨ (p∧q) = p
• p∧ (p∨q) = p
• p∨ true= true
• p∨ false= p
• (p∨ (r∧q) = p) ⇒ ((q ⇒ p)∨ r = (q ⇒ p))
• ((q ⇒ p)∨ r = (q ⇒ p)) ⇒ (p∨ (r∧q) = p)
• ¬p = (p ⇒ false)

Models of HA are called Heyting algebras.

Exercise. Recall the presentation BA of Boolean algebras in Example 2.2.4. Show
that every Boolean algebra is a Heyting algebra. Then repeat the exercise in Ex-
ample 2.2.4, building for every Heyting algebra H a lattice 〈|H|,≤H〉 with top and
bottom elements. Check that the conditional axioms concerning the implication ⇒
can now be captured by requiring that r∧q≤H p is equivalent to r ≤H q ⇒ p. Show
that the lattice is distributive.

Give an example of a Heyting algebra that is not Boolean. Check which of the
axioms of the presentation BA do not follow from HA.

Prove that an equational presentation with the same models as HA can be given.
HINT: Use Theorem 2.2.10. Or consider the following properties of the implica-
tion: p ⇒ p = true, q∧ (q ⇒ p) = q∧ p, p∨ (q ⇒ p) = q ⇒ p, and q ⇒ (p∧ r) =
(q ⇒ p)∧ (q ⇒ r). ��

3 We use the same symbol ⇒ for implication in conditional equations and for an operation in the
presentation below — the usual symbols are used for other propositional connectives as well, as
in Example 2.2.4. We use extra space around the implication symbol in the conditional equations
below in order to make them easier to read.
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2.7.2 Reachable semantics

In Section 2.5, the motivation given for taking a presentation 〈Σ ,E 〉 to denote the
class IMod[〈Σ ,E 〉] of its initial models was the desire to exclude models containing
junk and confusion. The need to exclude models containing confusion stems mainly
from the use of equational axioms, which make it impossible to rule out degenerate
models having a single value of each sort in Σ . If a more expressive language is used
for axioms, or if degenerate models are ruled out by some other means, then models
containing confusion need not be excluded.

Example 2.7.7. Consider the following specification of sets of natural numbers (a
variant of the one in Exercise 2.5.23):

spec SetNat = sorts Bool,Nat,NatSet
ops true:Bool

false:Bool
∨ :Bool×Bool → Bool

0:Nat
succ:Nat → Nat
eq:Nat×Nat → Bool
∅:NatSet
add:Nat×NatSet → NatSet
∈ :Nat×NatSet → Bool

∀p:Bool,m,n:Nat,S:NatSet
• p∨ true = true
• p∨ false = p
• eq(n,n) = true
• eq(0,succ(n)) = false
• eq(succ(n),0) = false
• eq(succ(m),succ(n)) = eq(m,n)
• n ∈∅= false
• m ∈ add(n,S) = eq(m,n)∨m ∈ S

There are many different models of SetNat, including algebras having a single
value of each sort. Suppose we restrict attention to algebras that do not satisfy the
equation true= false; this excludes such degenerate models (see the exercise below).
Consider the following two equations:

Commutativity of add:
∀m,n:Nat,S:NatSet• add(m,add(n,S)) = add(n,add(m,S))

Idempotency of add:
∀n:Nat,S:NatSet• add(n,add(n,S)) = add(n,S)

The models of SetNat that do not satisfy true = false may be classified according
to which of these two equations they satisfy:

“List-like” algebras: add is neither commutative nor idempotent.
“Set-like” algebras: add is both commutative and idempotent.
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“Multiset-like” algebras: add is commutative but not idempotent.
“List-like” algebras without repeated adjacent entries: add is idempotent but not

commutative.

There are also “hybrid” models of SetNat, e.g. those in which add is commuta-
tive but is only idempotent for n �= 0. The initial models of SetNat are “list-like”
algebras. Adding the commutativity and idempotency requirements to SetNat as
additional axioms would eliminate all but the “set-like” algebras.

Exercise. Show that restricting attention to models of SetNat that do not satisfy
true = false eliminates all but “sensible” realisations of sets of natural numbers, by
forcing eq(succm(0),succn(0)) = true iff m = n iff succm(0) = succn(0), and a ∈
add(a1,add(a2, . . . ,add(ap,∅) . . .)) = true iff eq(a,a1) = true or . . . or eq(a,ap) =
true, for m,n, p ≥ 0. Note that m,n and p are ordinary integers here, not values of
the sort Nat, and succm(0) means succ(. . .succ(︸ ︷︷ ︸

m times

0) . . .). ��

Consideration of examples like the one above suggests various alternatives to
taking the initial semantics of specifications. One choice is to require signatures to
include the sort Bool and the constants true and false, and to exclude models satis-
fying true = false. This might be called taking the non-degenerate loose semantics
of specifications. Another choice is to additionally exclude models containing junk:

Definition 2.7.8 (Reachable semantics). Let Σ = 〈S,Ω〉 be a signature such that
Bool ∈ S and true:Bool and false:Bool are in Ω . A reachable non-degenerate
model of a presentation 〈Σ ,E 〉 is a reachable Σ -algebra A such that A |=Σ E and
A �|=Σ true = false. RMod[〈Σ ,E 〉] is the class of all reachable non-degenerate mod-
els of 〈Σ ,E 〉. Taking 〈Σ ,E 〉 to denote RMod[〈Σ ,E 〉] is called taking its reachable
semantics. ��
The motivation for excluding models containing junk is the same as in the case of
initial semantics. RMod[〈Σ ,E 〉] is not always an isomorphism class of models, as
Example 2.7.7 demonstrates (the classification given there was for all models that
do not satisfy true = false, but it also applies to the reachable models in this class).
There is still a problem when operations are not defined in a sufficiently complete
way, although the problem is less severe than in the case of initial semantics.

Exercise 2.7.9. Reconsider the problem posed in Exercise 2.5.20, by writing a
reachable model specification of natural numbers including a subtraction opera-
tion − :Nat×Nat → Nat together with the axioms ∀m:Nat• m− 0 = m and
∀m,n:Nat• succ(m)− succ(n) = m−n. Recall from Exercise 2.5.20 the assumption
that we are willing to accept any value for m− n when n > m, which is why the
axioms do not constrain the value of m− n in this case. List some of the reachable
non-degenerate models of this specification, and decide whether the models you
considered in Exercise 2.5.20 are reachable non-degenerate models (ignoring the
difference in signatures). From an intuitive point of view, is this an adequate class
of models for this specification? ��
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Exercise 2.7.10. Definition 2.7.8 permits algebras A∈ RMod[〈Σ ,E 〉] with values of
sort Bool other than trueA and falseA. This is ruled out if all operations delivering
results in sort Bool are defined in a sufficiently complete way to yield either true or
false on each argument that is definable by a ground term. Check that the specifi-
cation SetNat in Example 2.7.7 ensures this property, and so all of its reachable
non-degenerate models have a two-element carrier of sort Bool. Give an example of
a specification for which this is not the case. ��
The equational calculus is sound for reasoning about the reachable semantics of
presentations, since RMod[〈Σ ,E 〉] ⊆ Mod[〈Σ ,E 〉] for any presentation 〈Σ ,E 〉. It is
sound to add induction rule schemes such as those given in Section 2.5; these are
sound for any class of reachable models. Completeness is unachievable, for exactly
the same reason as in the case of initial semantics; the proof of Theorem 2.5.26 can
be repeated in this context almost without change. Finally, the techniques of term
rewriting presented in Section 2.6 remain sound.

Initial semantics cannot be used for specifications with axioms that are more
expressive than (infinitary) conditional equations [Tar86b], in the sense that initial
models of such specifications are not guaranteed to exist. To illustrate the problem,
the following example shows what can go wrong when the language of axioms is
extended to permit disjunctions of equations.

Example 2.7.11. Consider the following specification:

spec Status = sorts Status
ops single:Status

married:Status
widowed:Status

• widowed = single∨widowed = married

where disjunction of equations has the obvious interpretation. There are three kinds
of algebras in Mod[Status]:

1. Those satisfying single = widowed = married.
2. Those satisfying single = widowed �= married.
3. Those satisfying single �= widowed = married.

None of these is an initial model of Status: there are no homomorphisms from
algebras in the first class to algebras in either of the other two classes, and no homo-
morphisms in either direction between algebras in the second and third classes. ��
In contrast, reachable semantics can be used for specifications with axioms of any
form (once a definition of satisfaction of such axioms by algebras has been given,
of course).

Another alternative to initial semantics deserves brief mention.

Definition 2.7.12 (Final semantics). Let Σ = 〈S,Ω〉 be a signature such that Bool∈
S and true:Bool and false:Bool are in Ω . A Σ -algebra A ∈ RMod[〈Σ ,E 〉] is a final
(or terminal) model of 〈Σ ,E 〉 if for every B ∈ RMod[〈Σ ,E 〉] there is a unique Σ -
homomorphism h:B → A. Taking 〈Σ ,E 〉 to denote the class of its final models is
called taking its final semantics. ��
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As in the case of initial semantics, the final models of a presentation form an iso-
morphism class. Recall that a model of a presentation is initial iff it contains no
junk and no confusion (Exercise 2.5.19). We can give a similar characterisation
of final models as the models containing no junk and maximal confusion: a final
model A satisfies as many ground equations as possible, subject to the restriction
that A �|= true = false (imposed on all reachable non-degenerate models).

Example 2.7.13. Recall the specification SetNat from Example 2.7.7, and the
classification of models of SetNat according to the commutativity and idempo-
tence of add. The final models of SetNat are in the class of “set-like” algebras, in
which add is both commutative and idempotent. (Exercise: Why?) ��
Not all presentations with equational axioms have final models, but it is possible to
impose conditions on the form of presentations that guarantee the existence of final
models [BDP+79].

Exercise 2.7.14. Find a variation on the specification Status in Example 2.7.11
that has no final models. ��

When reachable or final semantics of presentations is used with equational or
conditional equational axioms, sometimes more operations are required in specifi-
cations than in the case of initial semantics. These additional operations are needed
to provide ways of “observing” values of sorts other than Bool, in order to avoid
models that are degenerate on these other sorts. For example, the presence of the
operation eq in Example 2.7.7 ensures that succm(0) = succn(0) only if m = n in
all models that do not satisfy true = false; it would not be needed if we were in-
terested only in the initial models of SetNat. Such operations are not required if
inequations are allowed as axioms.

Exercise 2.7.15. Recall the presentation Nat given in Exercise 2.5.4. Augment this
with the sort Bool and constants true, false:Bool (to make reachable and final se-
mantics applicable), and show that final models of the resulting specification have
a single value of sort Nat. Add an operation even:Nat → Bool, with the following
axioms:
∀n:Nat
• even(succ(succ(n))) = even(n)
• even(succ(0)) = false
• even(0) = true

Show that final models of the resulting specification have exactly two values of sort
Nat. Replace even with ≤ :Nat×Nat → Bool, with appropriate axioms, and
show that final models of the resulting specification satisfy succm(0) = succn(0) iff
m = n. (We have already seen that this is the case if eq:Nat×Nat → Bool is added
in place of ≤.) ��
Although the inclusion of additional operations tends to make specifications longer,
it is not an artificial device. In practice, one would expect each sort to come with
an assortment of operations for creating, manipulating and observing values of that
sort, so specifications such as Nat are less natural than Nat augmented with oper-
ations like ≤ and/or eq.
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2.7.3 Dealing with partial functions: error algebras

An obvious inadequacy of the framework(s) presented above stems from the use
of total functions in algebras to interpret the operation names in a signature. Since
partial functions are not at all uncommon in computer science applications — a very
simple example being the predecessor function pred:Nat→Nat, which is undefined
on 0 — a great deal of work has gone into ways of lifting this restriction. Three main
approaches are discussed below:

Error algebras (this subsection): Predecessor is regarded as a total function, with
pred(0) specified to yield an error value.

Partial algebras (Section 2.7.4): Predecessor is regarded as a partial function.
Order-sorted algebras (Section 2.7.5): Predecessor is regarded as a total function

on a sub-domain that excludes the value 0.

A fourth approach is to use ordinary (total) algebras, leaving the value of pred(0)
unspecified. This is more an attempt to avoid the issue than a solution, and it is
workable only in frameworks that deal adequately with definitions that are not suf-
ficiently complete; see Exercises 2.5.20, 2.7.9, and 5.1.11.

The most obvious way of adding error values to algebras does not work, as the
following example demonstrates.

Example 2.7.16. Consider the following specification of the natural numbers, where
pred(0) is specified to yield an error:

spec NatPred = sorts Nat
ops 0:Nat

succ:Nat → Nat
pred:Nat → Nat
error:Nat
+ :Nat×Nat → Nat
× :Nat×Nat → Nat

∀m,n:Nat
• pred(succ(n)) = n
• pred(0) = error
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

Initial models of NatPred will have many “non-standard” values of sort Nat, in
addition to the intended one (error). For example, the axioms of NatPred do not
force the ground terms pred(error) and pred(error)+0 to be equal to any “normal”
value, or to error. (Exercise: Give an initial model of NatPred.) A possible so-
lution to this is to add axioms that collapse these non-standard values to a single
point:
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spec NatPred = sorts Nat
ops . . .
∀m,n:Nat

• . . .
• succ(error) = error
• pred(error) = error
• error+n = error
• n+ error = error
• error×n = error
• n× error = error

Unfortunately, NatPred now has only trivial models: error = 0× error = 0, and
so error = succ(error) = succ(0), error = succ(error) = succ(succ(0)), and so on.

��
The above example suggests that a more delicate treatment is required. A number

of approaches have been proposed; here we follow [GDLE84], which is fairly pow-
erful without sacrificing simplicity and elegance. The main ideas of this approach
are:

• Error values are distinguished from non-error (“OK”) values.
• In an error signature, operations that may produce errors when given OK ar-

guments (unsafe operations) are distinguished from those that always preserve
OK-ness (safe operations).

• In an error algebra, each carrier is partitioned into an error part and an OK part.
Safe operations are required to produce OK results for OK arguments, and ho-
momorphisms are required to preserve OK-ness.

• In equations, variables that can take OK values only (safe variables) are distin-
guished from variables that can take any value (unsafe variables). Assignments
of values to variables are required to map safe variables to OK values.

Definition 2.7.17 (Error signature). An error signature is a triple Σ = 〈S,Ω ,safe〉
where

• 〈S,Ω〉 is an ordinary signature; and
• safe is an S∗ ×S-sorted set of functions 〈safew,s:Ωw,s →{tt, ff}〉w∈S∗,s∈S.

An operation f :s1 × ·· ·× sn → s in Σ is safe if safes1...sn,s( f ) = tt; otherwise it is
unsafe. ��
Example 2.7.16 (revisited). An appropriate error signature for NatPred would
be the following:

ΣNatPred = sorts Nat
ops 0:Nat

succ:Nat → Nat
pred:Nat → Nat, unsafe
error:Nat, unsafe
+ :Nat×Nat → Nat
× :Nat×Nat → Nat
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Obviously, error is unsafe, and pred is unsafe since it produces an error when ap-
plied to 0; all the remaining operations are safe. (By convention, the safe operations
are those that are not explicitly marked as unsafe.) ��

In the rest of this section, let Σ = 〈S,Ω ,safe〉 be an error signature.

Definition 2.7.18 (Error algebra). An error Σ -algebra A consists of

• an ordinary Σ -algebra A; and
• an S-sorted set of functions OK = 〈OKs: |A|s →{tt, ff}〉s∈S

such that safe operations preserve OK-ness: for every f :s1×·· ·× sn → s in Σ such
that safes1...sn,s( f ) = tt and a1 ∈ |A|s1 , . . . ,an ∈ |A|sn such that OKs1(a1) = · · · =
OKsn(an) = tt, OKs( fA(a1, . . . ,an)) = tt. A value a ∈ |A|s for s ∈ S is an OK value
if OKs(a) = tt; otherwise it is an error value. ��
Definition 2.7.19 (Error homomorphism). Let A and B be error Σ -algebras. An
error Σ -homomorphism h:A → B is an S-sorted function h: |A| → |B| with the usual
homomorphism property (for all f :s1 × ·· ·× sn → s in Σ and a1 ∈ |A|s1 , . . . ,an ∈
|A|sn , hs( fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an))) such that h preserves OK-ness:
for every s∈ S and a∈ |A|s such that OKs(a) = tt (in A), OKs(hs(a)) = tt (in B). ��
Definition 2.7.20 (Error variable set). An error S-sorted variable set X consists
of an S-sorted set X such that Xs ⊆X for all s ∈ S, and an S-sorted set of functions
safe = 〈safes:Xs →{tt, ff}〉s∈S. A variable x:s in X is safe if safes(x) = tt; otherwise
it is unsafe. An assignment of values in an error Σ -algebra A to an error S-sorted
variable set X is an S-sorted function v:X → |A| assigning OK values to safe vari-
ables: for every x:s in X such that safes(x) = tt, OKs(vs(x)) = tt. ��
Definition 2.7.21 (Error algebra of terms). Let X be an error S-sorted variable set.
The error Σ -algebra ETΣ (X) of terms with variables X is defined in an analogous
way to the ordinary term algebra TΣ (X), with the following partition of the S-sorted
set of terms into OK and error values:

For all sorts s ∈ S and Σ -terms t ∈ |ETΣ (X)|s, if t contains an unsafe variable
or operation then OKs(t) = ff ; otherwise OKs(t) = tt.

We adopt the same notational conventions for terms as before, dropping sort deco-
rations, etc., when there is no danger of confusion. Let ETΣ denote ETΣ (∅). ��
The definitions of term evaluation, error equation, satisfaction of an error equation
by an error algebra, error presentation, model of an error presentation, semantic
consequence, and initial model are analogous to the definitions given earlier in the
standard many-sorted algebraic framework (Definitions 1.4.5, 2.1.1, 2.1.2, 2.2.1,
2.2.2, 2.3.6 and 2.5.13 respectively). Because assignments are required to map safe
variables to OK values, an error equation may be satisfied by an error algebra even
if it is not satisfied when error values are substituted for safe variables.

Exercise 2.7.22. Spell out the details of these definitions. ��
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As before, every error presentation has an isomorphism class of initial models,
and an analogous quotient construction gives an initial model.

Definition 2.7.23 (Congruence generated by a set of equations). Let E be a set of
error Σ -equations. The Σ -congruence ≡E on ETΣ is defined by t ≡E t ′ ⇐⇒ E |=Σ
t = t ′ for all t, t ′ ∈ |ETΣ |. ≡E is called the Σ -congruence generated by E . (NOTE:
A Σ -congruence on an error Σ -algebra A is just an ordinary Σ -congruence on the
ordinary Σ -algebra underlying A.) ��
Definition 2.7.24 (Quotient error algebra). Let A be an error Σ -algebra, and let
≡ be a Σ -congruence on A. The definition of A/≡, the quotient error algebra of
A modulo ≡, is analogous to that of the ordinary quotient algebra A/≡, with the
following partition of congruence classes into OK and error values:

For all sorts s ∈ S and congruence classes [a]≡s ∈ |A/≡|s, if there is some b ∈
[a]≡s such that OKs(b) = tt (in A), then OKs([a]≡s) = tt (in A/≡); otherwise
OKs([a]≡s) = ff . ��

Note that if there are both OK and error values in a congruence class, the class is
regarded as an OK value in the quotient.

Theorem 2.7.25 (Initial model theorem). The error Σ -algebra ETΣ/≡E is an ini-
tial model of the error presentation 〈Σ ,E 〉. ��
Exercise 2.7.26. Sketch a proof of Theorem 2.7.25. HINT: Take inspiration from the
proof of Theorem 2.5.14. ��
Exercise 2.7.27. Try to find conditions analogous to “no junk” and “no confusion”
that characterise the initial models of an error presentation. ��
Example 2.7.16 (revisited). Using the approach outlined above, here is an im-
proved version of the specification NatPred:

spec NatPred = sorts Nat
ops 0:Nat

succ:Nat → Nat
pred:Nat → Nat, unsafe
error:Nat, unsafe
+ :Nat×Nat → Nat
× :Nat×Nat → Nat

∀m,n:Nat
• pred(succ(n)) = n
• pred(0) = error
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n
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(By convention, variables in equations are safe unless otherwise indicated.) In initial
models of NatPred, the error values of sort Nat correspond exactly to “error mes-
sages”, i.e. ground terms containing at least one occurrence of error. These terms
can be regarded as recording the sequence of events that took place since the error
occurred. The record is accurate since the initial models of NatPred do not satisfy
equations like 0×error = 0, in contrast to the initial models of the earlier version. To
collapse the error values to a single point without affecting the OK values, axioms
can be added as follows:

spec NatPred = sorts Nat
ops . . .
∀m,n:Nat,k:Nat:unsafe

• . . .
• pred(error) = error
• succ(error) = error
• error+ k = error
• k+ error = error
• error× k = error
• k× error = error

It is also possible to specify error recovery using this approach:

spec NatPred = sorts Nat
ops . . .

recover:Nat → Nat
∀m,n:Nat,k:Nat:unsafe

• . . .
• recover(error) = 0
• recover(n) = n

In initial models of this version of NatPred, recover is the identity on Nat except
that recover(error) gives the OK value 0. ��

Although only initial semantics of error presentations has been mentioned above,
the alternatives of reachable and final semantics apply as in the standard case. The
key points of the standard framework not mentioned here (e.g. analogues to the
soundness, completeness and incompleteness theorems) carry over to the present
framework as well.

Exercise 2.7.28. Find a definition of error signature morphism which makes the
Satisfaction Lemma hold, taking the natural definition of the σ -reduct A′ σ of an
error Σ ′-algebra A′ induced by an error signature morphism σ :Σ → Σ ′. ��

Although the approach to error specification presented above is quite attractive,
there are examples that cannot be treated in this framework.

Exercise 2.7.29. Consider the following specification of bounded natural numbers:
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spec BoundedNat = sorts Nat
ops 0:Nat

succ:Nat → Nat, unsafe
overflow:Nat, unsafe

• succ(succ(succ(succ(succ(succ(0)))))) = overflow

The intention is to specify a (very) restricted subset of the natural numbers, where an
attempt to compute a number larger than 5 results in overflow. Show that an initial
model of BoundedNat will have only one OK value. Change BoundedNat so
that its initial models have six OK values (corresponding to 0,succ(0), . . . ,succ5(0)).
What if the bound is 232 rather than 5? ��

2.7.4 Dealing with partial functions: partial algebras

An obvious way to deal with partial functions is to simply change the definition of
algebra to allow operation names to be interpreted as partial functions. But for many
of the basic notions in the framework that depend on the definition of algebra, be-
ginning with the concepts of subalgebra and homomorphism, there are several ways
to extend the usual definition to the partial case. Choosing a coherent combination
of these definitions is a delicate matter. Here we follow the approach of [BW82b].

Throughout this section, let Σ = 〈S,Ω〉 be a signature.

Definition 2.7.30 (Partial algebra). A partial Σ -algebra A is like an ordinary Σ -
algebra, except that each f :s1×·· ·× sn → s in Σ is interpreted as a partial function
( f :s1 ×·· ·× sn → s)A: |A|s1 ×·· ·× |A|sn → |A|s. The (total) Σ -algebra underlying
A is the Σ -algebra A⊥ defined as follows:

• |A⊥|s = |A|s�{⊥s} for every s ∈ S; and
• ( f :s1×·· ·× sn → s)A⊥(a1, . . . ,an) =⎧⎨

⎩
⊥s if a j =⊥s j for some 1 ≤ j ≤ n
( f :s1×·· ·× sn → s)A(a1, . . . ,an) if this is defined
⊥s otherwise

for every f :s1×·· ·× sn → s and a1 ∈ |A⊥|s1 , . . . ,an ∈ |A⊥|sn . ��
We employ the same notational conventions as before. Note that according to this
definition, the value of a constant need not be defined: a constant c:s is associated
in an algebra A with a partial function cA:{〈〉} → |A|s, where {〈〉} is the nullary
Cartesian product.

Definition 2.7.31 (Homomorphism). Let A and B be partial Σ -algebras. A weak
Σ -homomorphism h:A → B is an S-sorted (total) function h: |A| → |B| such that for
all f :s1×·· ·× sn → s in Σ and a1 ∈ |A|s1 , . . . ,an ∈ |A|sn ,

if fA(a1, . . . ,an) is defined then fB(hs1(a1), . . . ,hsn(an)) is defined, and
hs( fA(a1, . . . ,an)) = fB(hs1(a1), . . . ,hsn(an)).
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If moreover h satisfies the condition

if fB(hs1(a1), . . . ,hsn(an)) is defined then fA(a1, . . . ,an) is defined

then h is called a strong Σ -homomorphism. ��
Other possibilities would be generated by allowing homomorphisms to be partial
functions.

Exercise 2.7.32. Consider a partial Σ -algebra A and its underlying total Σ -algebra
A⊥. Given any Σ -congruence ≡ on A⊥, removing all pairs involving ⊥ yields a
strong Σ -congruence on A. Check that such strong congruences are exactly kernels
of strong Σ -homomorphisms; cf. Exercises 1.3.14 and 1.3.18. Check that strong
congruences are equivalence relations that preserve and reflect definedness of oper-
ations and are closed under defined operations. Kernels of weak Σ -homomorphisms
are weak Σ -congruences: equivalence relations that are closed under defined oper-
ations. Spell out these definitions in detail. For any partial Σ -algebra A and weak
Σ -congruence ≡ on A, generalise Definition 1.3.15 to define the quotient of A by
≡, written A/≡. Note that an operation is defined in A/≡ on a tuple of equivalence
classes provided that in A it is defined on at least one tuple of their respective ele-
ments. Check which of Exercises 1.3.18–1.3.23 carry over. ��
Definition 2.7.33 (Term evaluation). Let X be an S-sorted set of variables, let A be
a partial Σ -algebra, and let v:X → |A| be a (total) S-sorted function assigning values
in A to variables in X . Since |A| ⊆ |A⊥|, this is an S-sorted function v⊥:X → |A⊥|,
and by Fact 1.4.4 there is a unique (ordinary) Σ -homomorphism v#

⊥:TΣ (X)→ A⊥
which extends v⊥. Let s ∈ S and let t ∈ |TΣ (X)|s be a Σ -term of sort s; the value of t
in A under the valuation v is v#

⊥(t) if v#
⊥(t) �=⊥s, and is undefined otherwise. ��

Satisfaction of an equation ∀X • t = t ′, where the values of t and/or t ′ may be
undefined, can be defined in several different ways. Following [BW82b], we use
strong equality (also known as Kleene equality), whereby the equality holds if (for
any assignment of values to variables) the values of t and t ′ either are both defined
and equal, or are both undefined. The usual interpretation of definitional equations in
recursive function definitions (see for instance Example 4.1.25 and Exercise 4.1.30
below) makes them hold as strong equations. An alternative is existential equality
(where = is usually written e

=), whereby the equality holds only when the values of
t and t ′ are defined and equal. When strong equality is used, there is a need for an
additional form of axiom called a definedness formula: ∀X • def (t) holds if for any
assignment of values to variables, the value of t is defined. These are superfluous
with existential equality since ∀X • def (t) holds iff ∀X • t e

= t holds. Definedness
formulae with X =∅ are called ground and are often written without quantification
as def (t).

Exercise 2.7.34. Formalise the definitions of satisfaction of equations (using strong
equality) and of definedness formulae. ��

Using both equations and definedness formulae as axioms, the definitions of pre-
sentation, model of a presentation, semantic consequence, isomorphism, and initial
model (with respect to weak homomorphisms) are analogous to those given earlier.



2.7 Fiddling with the definitions 85

Exercise 2.7.35. Spell out the details of these definitions. Note though that not all of
the properties of these notions carry over from the standard algebraic framework; for
instance, a (weak) bijective homomorphism need not be an isomorphism of partial
algebras. ��
Theorem 2.7.36 (Initial model theorem). Any presentation 〈Σ ,E 〉 has an initial
model I, characterised by the following properties:

• I contains no junk;
• I is minimally defined, i.e. for all t ∈ |TΣ |, tI is defined only if E |=Σ def (t); and
• I contains no confusion, i.e. for all t, t ′ ∈ |TΣ |s,s ∈ S, tI and t ′I are defined and

equal only if E |=Σ t = t ′.

Proof sketch. Let Σ⊥ be the signature obtained by adding a constant ⊥s:s to Σ for
each sort s ∈ S. Define a congruence ∼⊆ |TΣ⊥|× |TΣ⊥| as follows: for t1, t2 ∈ |TΣ⊥|s
for some s ∈ S, t1 ∼ t2 iff any of the following conditions holds:

1. t1 contains ⊥s′ and t2 contains ⊥s′′ for some s′,s′′ ∈ S;
2. t1 contains ⊥s′ for some s′ ∈ S, t2 ∈ |TΣ |s (so t2 does not contain ⊥s′′ for any

s′′ ∈ S) and E �|= def (t2), or vice versa;
3. t1, t2 ∈ |TΣ |s, and either E �|= def (t1) and E �|= def (t2) or E |= t1 = t2.

I is constructed by taking the quotient of TΣ⊥ by ∼, and then regarding congruence
classes containing the constants ⊥s as undefined values. ��
Exercise 2.7.37. Complete the above proof by showing that

• ∼ is a congruence on TΣ⊥ ;
• I |= E ;
• I is an initial model of 〈Σ ,E 〉; and
• I has the properties promised in Theorem 2.7.36.

Show that any model of 〈Σ ,E 〉 satisfying the properties in Theorem 2.7.36 is iso-
morphic to I and is therefore an initial model of 〈Σ ,E 〉. ��
Exercise 2.7.38. Suppose that we modify Theorem 2.7.36 by replacing the phrase
“tI and t ′I are defined and equal” with “I |=Σ t = t ′”. Give a counterexample showing
that this version of the theorem is false. ��
Exercise 2.7.39. A partial Σ -algebra A ∈ Mod[〈Σ ,E 〉] is a strongly initial model of
〈Σ ,E 〉 if for every minimally defined B∈Mod[〈Σ ,E 〉] containing no junk, there is a
unique strong Σ -homomorphism h:A→ B. Show that I is an initial model of 〈Σ ,E 〉
iff I is a strongly initial model of 〈Σ ,E 〉. ��

Again, reachable and final semantics are applicable for partial algebras as well
as initial semantics, and the key points of the standard framework carry over with
appropriate changes (for instance, the equational calculus must be modified to deal
with definedness formulae as well as equations).
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Example 2.7.16 (revisited). Here is a version of the specification NatPred in
which pred is specified to be a partial function:

spec NatPred = sorts Nat
ops 0:Nat

succ:Nat → Nat
pred:Nat → Nat
+ :Nat×Nat → Nat
× :Nat×Nat → Nat

∀m,n:Nat
• def (0)
• def (succ(n))
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

In initial models of NatPred, all operations behave as expected, and all are total
except for pred, which is undefined only on 0.

Exercise. Show that ∀m,n:Nat• def (m+ n) and ∀m,n:Nat• def (m× n) are conse-
quences of the definedness axioms for 0 and succ and the equations defining + and
× in reachable models of NatPred. You will need to use induction, so first for-
mulate an appropriate induction rule scheme and convince yourself that it is sound.

Exercise. Suppose that the axiom def (0) were removed from NatPred. Describe
the initial models of the resulting presentation. ��

2.7.5 Partial functions: order-sorted algebras

Any partial function amounts to a total function on a restricted domain. The idea of
order-sorted algebra is to avoid partial functions by enabling the domain of each
function to be specified exactly. This is done by introducing subsorts, which cor-
respond to subsets at the level of values, and requiring operations to behave in an
appropriate fashion when applied to a value of a subsort or when expected to deliver
a value of a supersort. A number of different approaches to order-sorted algebra have
been proposed, and their relative merits are a matter for debate. Here we follow the
approach of [GM92].

Definition 2.7.40 (Order-sorted signature). An order-sorted signature is a triple
Σ = 〈S,≤,Ω〉 where 〈S,Ω〉 is an ordinary signature and ≤ is a partial order on the
set S of sort names, such that whenever f :s1×·· ·× sn → s and f :s′1×·· ·× s′n → s′
are operations (having the same name and same number of arguments) in Ω and
si ≤ s′i for all 1 ≤ i ≤ n, then s ≤ s′. When s ≤ s′ for s,s′ ∈ S, we say that s is a
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subsort of s′ (or equivalently, s′ is a supersort of s). The subsort ordering is extended
to sequences of sorts of equal length in the usual way: s1 . . .sn ≤ s′1 . . .s

′
n if si ≤ s′i

for all 1 ≤ i ≤ n. ��
The restriction on Ω ([GM92] calls this condition monotonicity) is a fairly natural
one, keeping in mind that the subsort ordering corresponds to subset on the value
level: restricting a function to a subset of its domain may diminish, but not enlarge,
its codomain. Note that an effect of this restriction is to rule out overloaded con-
stants.

Throughout the rest of this section, let Σ = 〈S,≤,Ω〉 be an order-sorted signature,
and let Σ̂ = 〈S,Ω〉 be the (ordinary) signature underlying Σ .

Definition 2.7.41 (Order-sorted algebra). An order-sorted Σ -algebra A is an or-
dinary Σ̂ -algebra, such that:

• for all s ≤ s′ in Σ , |A|s ⊆ |A|s′ ; and
• whenever f :s1 × ·· · × sn → s and f :s′1 × ·· · × s′n → s′ are operations (having

the same name and same number of arguments) in Ω and s1 . . .sn ≤ s′1 . . .s
′
n,

the function ( f :s1 ×·· ·× sn → s)A: |A|s1 ×·· ·× |A|sn → |A|s is the set-theoretic
restriction of the function ( f :s′1×·· ·× s′n → s′)A: |A|s′1 ×·· ·× |A|s′n → |A|s′ . ��

An effect of the second restriction ([GM92] calls this condition monotonicity as
well) is to prevent ambiguity in the evaluation of terms; see below.

Definition 2.7.42 (Order-sorted homomorphism). Let A and B be order-sorted Σ -
algebras. An order-sorted Σ -homomorphism h:A → B is an ordinary Σ̂ -homomor-
phism such that hs(a) = hs′(a) for all a ∈ |A|s whenever s ≤ s′. When h has an
inverse, it is an order-sorted Σ -isomorphism and we write A ∼= B. ��

Let X be an S-sorted set (of variables) such that Xs and Xs′ are disjoint for s �= s′.

Definition 2.7.43 (Order-sorted term algebra). The order-sorted Σ -algebra TΣ (X)
of terms with variables X is just like TΣ̂ (X), except that for any term t ∈ |TΣ (X)|s
such that s ≤ s′, we also have t ∈ |TΣ (X)|s′ . Let TΣ = TΣ (∅). ��
Exercise 2.7.44. Check that TΣ (X) is an order-sorted Σ -algebra. ��
Example 2.7.45. One way of reformulating NatPred as an order-sorted specifi-
cation (see below) will involve introducing a sort NzNat (non-zero natural numbers)
such that NzNat ≤Nat, with operations 0:Nat and succ:Nat →NzNat. According to
the definition of order-sorted term algebra, the term succ(0) has sort Nat as well as
NzNat, which means that succ(succ(0)) is well formed (and has sort Nat as well as
NzNat). ��

As the above example demonstrates, a given term may appear in more than one
carrier of TΣ (X). The following condition on Σ ensures that this does not lead to
ambiguity.

Definition 2.7.46 (Regular order-sorted signature). Σ is regular if for any f :s1×
·· ·×sn → s in Σ and s′1 . . .s

′
n ≤ s1 . . .sn, there is a least s∗1 . . .s

∗
n s∗ such that s′1 . . .s

′
n ≤

s∗1 . . .s
∗
n and f :s∗1×·· ·× s∗n → s∗ is in Σ . ��
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Theorem 2.7.47 (Terms have least sorts). If Σ is regular, then for every term t ∈
|TΣ (X)| there is a least sort s ∈ S, written sort(t), such that t ∈ |TΣ (X)|s. ��
Exercise 2.7.48. Prove Theorem 2.7.47. What happens when X is an arbitrary S-
sorted set, i.e. if we remove the restriction that Xs and Xs′ are disjoint for s �= s′? ��
Now the definition of term evaluation is analogous to the usual one.

Fact 2.7.49. Suppose that Σ is regular. Then, for any order-sorted Σ -algebra A and
S-sorted function v:X → |A|, there is exactly one order-sorted Σ -homomorphism
v#:TΣ (X)→ A which extends v, i.e. such that v#

s (x) = vs(x) for all s ∈ S, x ∈ Xs. ��
Exercise 2.7.50. Define term evaluation. ��
Definition 2.7.51 (Order-sorted equation; satisfaction). Suppose that Σ is regu-
lar, and let the equivalence relation ≡ be the symmetric transitive closure of ≤.
Order-sorted Σ -equations ∀X • t = t ′ are as usual, except that we require sort(t) ≡
sort(t ′) (in other words, sort(t) and sort(t ′) are in the same connected component of
〈S,≤〉) instead of sort(t) = sort(t ′). An order-sorted Σ -algebra A satisfies an order-
sorted Σ -equation ∀X • t = t ′, written A |=Σ ∀X • t = t ′, if the value of t in |A|sort(t)
and the value of t ′ in |A|sort(t ′) coincide for every S-sorted function v:X → |A|. ��
A problem with this definition is that satisfaction of order-sorted Σ -equations is not
preserved by order-sorted Σ -isomorphisms (compare Exercise 2.1.5). The following
condition on Σ ensures that this anomaly does not arise.

Definition 2.7.52 (Coherent order-sorted signature). 〈S,≤〉 is filtered if for any
s,s′ ∈ S there is some s′′ ∈ S such that s ≤ s′′ and s′ ≤ s′′. 〈S,≤〉 is locally filtered if
each of its connected components is filtered. Σ is coherent if 〈S,≤〉 is locally filtered
and Σ is regular. ��
Exercise 2.7.53. Find Σ , A, B and e such that Σ is regular, A |=Σ e and A ∼= B but
B �|=Σ e. Show that if Σ is coherent then this is impossible. ��

The definitions of order-sorted presentation, model of an order-sorted presenta-
tion, semantic consequence, and initial model are analogous to those given earlier.
For every order-sorted presentation 〈Σ ,E 〉 such that Σ is coherent, an initial model
may be constructed as a quotient of TΣ [GM92]. There is a version of the equational
calculus that is sound and complete for coherent signatures [GM92], and the use
of term rewriting for proof as discussed in Section 2.6 is sound, provided that each
rewrite rule t → t ′ is sort decreasing, i.e. sort(t ′)≤ sort(t) [KKM88].

Example 2.7.16 (revisited). Here is a version of the specification NatPred in
which pred is specified to be a total function on the non-zero natural numbers:
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spec NatPred = sorts NzNat ≤ Nat
ops 0:Nat

succ:Nat → NzNat
pred:NzNat → Nat
+ :Nat×Nat → Nat
× :Nat×Nat → Nat

∀m,n:Nat
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

In this version of NatPred, there are terms that are not well formed in spite of the
fact that each operator application seems to be to a value in its domain. For example,
consider the following “term”:

pred(succ(0)+ succ(0)).

According to the signature of NatPred, succ(0)+ succ(0) is a term of sort Nat;
it is not a term of sort NzNat in spite of the fact that its value is non-zero. In the
term algebra, pred applies only to terms of sort NzNat; thus the application of pred
to succ(0)+ succ(0) is not defined. One way of getting around this problem might
be to add additional operators to the signature of NatPred:

spec NatPred = sorts NzNat ≤ Nat
ops . . .

+ :NzNat×Nat → NzNat
+ :Nat×NzNat → NzNat
× :NzNat×NzNat → NzNat

. . .

Then succ(0)+ succ(0) is a term of sort NzNat, as desired. Unfortunately, this sig-
nature is not regular. (Exercise: Why not? What can be done to make it regular?)

An alternative is to use a so-called retract, an additional operation for converting
from a sort to one of its subsorts:

spec NatPred = sorts NzNat ≤ Nat
ops . . .

r:Nat → NzNat
∀m,n:Nat,k:NzNat

• . . .
• r(k) = k

Now, the term pred(r(succ(0)+ succ(0))) is well formed, and is equal to succ(0)
in all models of NatPred. In the words of [GM92], inserting the retract r into
pred(r(succ(0)+ succ(0))) gives it “the benefit of the doubt”, and the term is “vin-
dicated” by the fact that it is equal to a term that does not contain r. The term
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pred(r(0)) is also well formed, but in the initial model of NatPred this term is
equal only to other terms containing the retract r, and can thus be regarded as an
error message. The use of retracts (which can be inserted automatically) is well
behaved under certain conditions on order-sorted presentations [GM92].

Another version of NatPred is obtained by using an error supersort for the
codomain of pred rather than a subsort for its domain:

spec NatPred = sorts Nat ≤ Nat?
ops 0:Nat

succ:Nat → Nat
pred:Nat → Nat?
+ :Nat×Nat → Nat
× :Nat×Nat → Nat

∀m,n:Nat
• pred(succ(n)) = n
• 0+n = n
• succ(m)+n = succ(m+n)
• 0×n = 0
• succ(m)×n = (m×n)+n

The sort Nat? may be thought of as Nat extended by the addition of an error value
corresponding to pred(0).

Here we have the same problem with ill-formed terms as before; an example
is the term succ(pred(succ(0))). Again, retracts solve the problem. In this case, the
required retract is the operation r:Nat?→Nat, defined by the axiom ∀n:Nat• r(n) =
n. ��
Exercise 2.7.54. Try to view the error algebra approach presented in Section 2.7.3
as a special case of order-sorted algebra. ��

2.7.6 Other options

The previous sections have mentioned only a few of the ways in which the standard
framework can be improved to make it more suitable for particular kinds of applica-
tions. A great many other variations are possible; a few of these are sketched below.

Example 2.7.55 (First-order predicate logic). Signatures may be modified to en-
able them to include (typed) predicate names in addition to operation names,
e.g. ≤ :Nat×Nat. Atomic formulae are then formed by applying predicates
to terms; in first-order predicate logic with equality, the predicate = :s× s is
implicitly available for any sort s. Formulae are built from atomic formulae using
logical connectives and quantifiers. Algebras are modified to include relations on
their carriers to interpret predicate names; the interpretation of the built-in equal-
ity predicate (if available) may be forced to be the underlying equality on values,
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or it may merely be required to be a congruence relation. Homomorphisms are re-
quired to respect predicates as well as operations. The satisfaction of a sentence (a
formula without free variables) by an algebra is as in first-order logic. See Exam-
ple 4.1.12 for details of the version of first-order predicate logic with equality we
will use. Presentations involving predicates and first-order axioms are appropriate
for the specification of programs in logic programming languages such as Prolog,
where the Horn clause fragment of first-order logic is used for writing the programs
themselves. Note that such presentations may have no models at all, but even if they
have some models, they may have no initial models (see Example 2.7.11) or no final
models (see Exercise 2.7.14), or even no reachable models. (Exercise: Give a spec-
ification with first-order axioms having some models but no reachable model.) ��
Example 2.7.56 (Higher-order functions). Higher-order functions (taking func-
tions as parameters and/or returning functions as results) can be accommodated by
interpreting certain sort names as (subsets of) function spaces. Given a set S of
(base) sorts, let S→ be the closure of S under formation of function types: S→ is the
smallest set such that S ⊆ S→ and for all s1, . . . ,sn,s ∈ S→, s1 ×·· ·× sn → s ∈ S→.
Then a higher-order signature Σ is a pair 〈S,Ω〉 where Ω is an S→-indexed
set of operation names. This determines an ordinary signature Σ→ comprised of
the sort names S→ and the operation names in Ω together with operation names
apply:(s1 × ·· · × sn → s)× s1 × ·· · × sn → s for every s1, . . . ,sn,s ∈ S→. Note
that, except for the various instances of apply, all the operations in Σ→ are con-
stants, albeit possibly of “functional” sort. A higher-order Σ -algebra is just an
ordinary (total) Σ→-algebra, and analogously for the definitions of higher-order
Σ -homomorphism, reachable higher-order Σ -algebra, higher-order Σ -term, higher-
order Σ -equation, satisfaction of a higher-order Σ -equation by a higher-order Σ -
algebra, and higher-order presentation. A higher-order Σ -algebra A is extensional if
for all sorts s1×·· ·× sn → s ∈ S→ and values f ,g ∈ |A|s1×···×sn→s, f = g whenever
applyA( f ,a1, . . . ,an) = applyA(g,a1, . . . ,an) for all a1 ∈ |A|s1 , . . . ,an ∈ |A|sn . Any
extensional higher-order algebra is isomorphic to an (extensional) algebra A, where
every carrier |A|s1×···×sn→s is a subset of the function space |A|s1 ×·· ·×|A|sn → |A|s
and all the operations applyA are the usual function application. A higher-order Σ -
algebra A is a model of a presentation 〈Σ ,E 〉 if A |=Σ E , A is extensional, and A
is reachable. The reachability requirement (no junk) means that |A|s1×···×sn→s will
almost never be the full function space |A|s1 ×·· ·× |A|sn → |A|s: only the functions
that are denotable by ground terms will be present in |A|s1×···×sn→s. Higher-order
(equational) presentations always have initial models [MTW88]. ��
Example 2.7.57 (Polymorphic types). Standard ML [Pau96] and some other pro-
gramming languages define polymorphic types such as α list (instances of which
include bool list and (bool list)list) and polymorphic values of those types,
such as head:∀α • α list→ α (which is then applicable to values of types such as
bool list and (bool list)list, yielding results of types bool and bool list,
respectively). To specify such types and functions, signatures are modified to con-
tain type constructors in place of sort names; for example, list is a unary type
constructor and bool is a nullary type constructor. Terms built using these type
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constructors and type variables (such as α above) are the polymorphic types of
the signature. The set Ω of operation names is then indexed by non-empty se-
quences of polymorphic types, where f ∈Ωt1...tn,t means f :∀FV(t1)∪ . . .∪FV(tn)∪
FV(t)• t1×·· ·× tn → t. There are various choices for algebras over such signatures.
Perhaps the most straightforward choice is to require each algebra A to incorporate a
(single-sorted) algebra of carriers Carr(A), having sets interpreting types as values
and with an operation to interpret each type constructor. Then, for each operation
f ∈ Ωt1...tn,t and for each instantiation of type variables i:V → |Carr(A)|, A has to
provide a function fA,i: i#(t1)×·· ·× i#(tn)→ i#(t). Various conditions may be im-
posed to ensure that the interpretation of polymorphic operations is parametric in
the sense of [Str67], by requiring fA,i and fA,i′ to be appropriately related for differ-
ent type variable instantiations i, i′; see Exercise 3.4.40 for a hint in this direction.
Another choice would be to interpret each type as the set of equivalence classes of
a partial equivalence relation on a model of the untyped λ -calculus [BC88]. Ax-
ioms contain (universal) quantifiers for type variables in addition to quantifiers for
ordinary variables, as in System F [Gir89]; alternatively, type variable quantification
may be left implicit, as in Extended ML [KST97]. ��
Example 2.7.58 (Non-deterministic functions). Non-deterministic functions may
be handled by interpreting operation names in algebras as relations, or equivalently
as set-valued functions. Homomorphisms are required to preserve possible values
of functions: for any homomorphism h:A → B and operation f :s1 × ·· · × sn →
s, if a is a possible value of fA(a1, . . . ,an) then hs(a) is a possible value of
fB(hs1(a1), . . . ,hsn(an)). Universally quantified inclusions between sets of possible
values may be used as axioms: t ⊆ t ′ means that every possible value of t is a possi-
ble value of t ′. ��
Example 2.7.59 (Recursive definitions). Following [Sco76], partial functions may
be specified as least solutions of recursive equations, where “least” is with respect to
an ordering on the space of functions of a given type. To accommodate this, we can
use continuous algebras, i.e. ordinary (total) Σ -algebras with carriers that are com-
plete partially ordered sets (so-called cpos) and with operation names interpreted as
continuous functions on these sets. See Example 3.3.14. The “bottom” element ⊥
of the carrier for a sort, if it exists, represents the completely undefined value of that
sort. The order on carriers induces an order on (continuous) functions in the usual
fashion. A homomorphism between continuous algebras is required to be continu-
ous as a function between cpos. It is possible to define a language of axioms that
allows direct reference to least upper bounds of chains (see Example 4.1.22), and/or
to the order relation itself. Such techniques may also be used to specify infinite data
types such as streams. ��
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2.8 Bibliographical remarks

Much of the material presented here is well known, at least in its single-sorted
version, in universal algebra as a branch of mathematics. Standard references are
[Grä79] and [Coh65]. We approach this material from the direction of computer
science — see [Wec92] and [MT92] — and present the fundamentals of equa-
tional specifications as developed in the 1970s ([Zil74], [Gut75], [GTW76]); see
also [EM85] for an extended monograph-style presentation.

The simplest and most limited form of a specification is a “bare” signature,
and this is what is used to characterise classes of algebras (program modules)
in modularisation systems for programming languages — see, e.g., Standard ML
[MTHM97], [Pau96], where such characterisations are in fact called signatures, type
classes in Haskell [Pey03] and concepts in C++ [C++09]. Presentations correspond
to Extended ML signatures [ST85] and to C++ concepts containing axioms.

The first appearance of the Satisfaction Lemma (Lemma 2.1.8) in the algebraic
specification literature was in [BG80], echoing the semantic consequences of the
definition of (theory) interpretations in logic [End72]. This fundamental link be-
tween syntax and semantics will become one of the cornerstones of later develop-
ment starting in Chapter 4.

One topic that is only touched upon here (see, e.g., Theorem 2.2.10) is the ex-
pressive power of specifications. See [BT87] for a comprehensive survey of what is
known about the expressive power of the framework presented in this chapter. The
main theorem is the one mentioned at the beginning of Section 2.7.

We make a distinction between presentations and theories that is not present in
some other work. This distinction surfaces in the definition of theory morphisms
(Definition 2.3.11). For two presentations (not necessarily theories) 〈Σ ,E 〉 and
〈Σ ′,E ′〉, [Gan83] takes a signature morphism σ :Σ → Σ ′ to be a specification mor-
phism σ :〈Σ ,E 〉 → 〈Σ ′,E ′〉 if σ(E ) ⊆ E ′. Such a σ is referred to as an “axiom-
preserving theory morphism” in [Mes89]. Exercise 2.3.15 shows that this is not
equivalent to our definition of theory morphism between the theories presented by
those presentations. Another possibility is to require σ to map only the ground equa-
tions in E to equations in ClΣ ′(E ′), as in [Ehr82]. These alternative definitions seem
unsatisfactory since they make little or no sense on the level of models, in contrast
to the relationship between theory and model levels for theory morphisms given by
Proposition 2.3.13. We will later (Definition 5.5.1) define specification morphisms,
as a generalisation of morphisms between presentations, relying on this relationship.

The many-sorted equational calculus is presented in [GM85] together with a
proof that it is sound and complete. This builds on the standard equational calculus
[Bir35], but the modifications needed to deal with empty carriers in the many-sorted
context came as a surprise at the time. Our choice of rules in Section 2.4 is different
from this standard version but the two systems are equivalent (Exercise 2.4.14) and
the proofs of soundness and completeness are analogous.

The initial algebra approach to specification (Section 2.5) is the classical one. It
originated with the seminal paper [GTW76], and was further developed by Hartmut
Ehrig and his group; see [EM85] for a comprehensive account.
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Example 2.5.24 and Exercise 2.5.25 point at useful ways to make inductive
proofs easier by providing derived induction rule schemes, as possible, for instance,
in the logics of Larch [GH93] and CASL [Mos04] and their proof support systems
(LP [GG89] and HETS [MML07], respectively); see also Chapter 6 of [Far92].

The proof of the incompleteness theorem for initial semantics (Theorem 2.5.26)
from [MS85] follows [Nou81] where it was used to show that the equational calcu-
lus with a specific induction rule scheme is not complete. An alternative to adding
induction rules to the equational calculus is to restrict attention to so-called ω-
complete presentations; these are presentations 〈Σ ,E 〉 for which the equational
calculus itself yields all of the Σ -equations that hold in initial models of 〈Σ ,E 〉
[Hee86]. Then the problem becomes one of finding an ω-complete presentation
corresponding to a given presentation. By the incompleteness theorem, this is not
always possible.

There is a substantial body of theory on term rewriting systems; Section 2.6 is
only the tip of the iceberg. For much more on the topic, and for the details of the
Knuth-Bendix completion algorithm [KB70] that have been omitted in Section 2.6,
see [DJ90], [Klo92], [BN98], [Kir99] and [Ter03]. See [KM87] or [DJ90] for a
discussion of proof by consistency, which originated with [Mus80]. Like most work
in this area, all these restrict attention to the single-sorted case. See [EM85] for a
treatment of the many-sorted case, up to the soundness and completeness theorems
for conversion, without our simplifying assumption (cf. Exercise 2.6.11).

In the case of reachable and final semantics, it is usual to look at reachable or
final extensions of algebras (alternative terminology: hierarchical specifications),
rather than at the reachable or final interpretation of a completed specification. See
[BDP+79] or [WB82] for reachable semantics, and [GGM76] or [Wan79] for fi-
nal semantics. Under appropriate conditions, the reachable models of a presentation
form a complete lattice, with the initial model at one extreme and the final model
at the other; see [GGM76] and [BWP84]. For such hierarchical specifications, an
incompleteness theorem that is even stronger than Theorem 2.5.26 may be proved:
no sound proof system can derive all ground equational consequences of such spec-
ifications; see [MS85].

The first attempt to specify errors by distinguishing error values from OK values
was [Gog78]. More details of the approach outlined in Section 2.7.3 can be found in
[GDLE84]. The final semantics of error presentations is discussed in [Gog85]. See
[BBC86] for an alternative approach which is able to deal with examples like the
one discussed in Exercise 2.7.29.

More details of the approach to partial algebras outlined in Section 2.7.4 can
be found in [BW82b]. Weak Σ -homomorphisms are called total Σ -homomorphisms
there. Alternative approaches to the specification of partial algebras are presented in
[Rei87] and [Kre87], and more recently in [Mos04]. See [Bur86] for a comprehen-
sive analysis of the various alternative definitions of the basic notions.

See [GM92], further refined in [Mes09], for more on the approach to order-
sorted algebra in Section 2.7.5. Alternative approaches include [Gog84], [Poi90]
and [Smo86], which is sometimes referred to as “universal” order-sorted algebra
to distinguish it from “overloaded” order-sorted algebra as presented here. A uni-
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versal order-sorted algebra contains a single universe of values, where a sort cor-
responds to a subset of the universe and each operation name identifies a (single)
function on the universe. A compromise is in rewriting logic [Mes92] as imple-
mented in Maude [CDE+02]. See [Mos93] and [GD94a] for surveys comparing the
different approaches. [GD94a] discusses how some of the definitions and results
in Section 2.7.5 can be generalised by dropping or weakening the monotonicity
requirements on order-sorted signatures and order-sorted algebras. Yet a different
approach to subsorting is taken in CASL [Mos04] where subsort coercions may be
arbitrary injective functions rather than merely inclusions.

First-order predicate logic has been used as a framework for algebraic specifica-
tion in various approaches; see for instance CIP-L [BBB+85] and CASL [Mos04].
See [Poi86], [MTW88], [Mei92] and [Qia93] for different approaches to the alge-
braic specification of higher-order functions. Frameworks that cater for the spec-
ification of polymorphic types and functions are described in [Mos89], [MSS90]
and [KST97]. See [Nip86] for more on algebras with non-deterministic operations;
for a different approach using relation algebra, see [BS93]. See [WM97] for a
comprehensive overview. Soundness and completeness of term rewriting for non-
deterministic specifications is studied in [Hus92]. Continuous algebras and the use
of Scott-style domain-theoretic techniques in algebraic specification were first dis-
cussed in [GTWW77]. See [Sch86] or [GS90] for much more on domain theory
itself. Although these and other extensions to the standard framework have been ex-
plored separately, the few attempts that have been made to combine such extensions
(see, e.g., [AC89] and [Mos04]) have tended to reveal new problems.



Chapter 3

Category theory

One of the main purposes of this book is to present a general, abstract theory of
specifications that is independent of the exact details of the semantic structures (al-
gebras) used to model particular aspects of program behaviour. Appropriate mathe-
matical tools are required to support the development of such a theory. The basics of
category theory provide us with just what we need: a simple, yet powerful language
that allows definitions and results to be formulated at a sufficiently general, abstract
level.

The most fundamental “categorical dogma” is that for many purposes it does not
really matter exactly what the objects we study are; more important are their mutual
relationships. Hence, objects should never be considered on their own; they should
always come equipped with an appropriate notion of a morphism between them. In
many typical examples, the objects are sets with some additional structure imposed
on them, and their morphisms are maps that preserve this structure. “Categorical
dogma” states that the interesting properties of objects may be formulated purely in
terms of morphisms, without referring to the internal structure of objects at all. As
a very simple example, consider the following two definitions.

Definition. Given two sets A and B, the Cartesian product of A and B is the set
A×B that consists of all the pairs of elements from A and B, respectively: A×B =
{〈a,b〉 | a ∈ A,b ∈ B}. ��
Definition. Given two sets A and B, a product of A and B is a set P together with two
functions π1:P → A and π2:P → B such that for any set C with functions f :C → A
and g:C→B there exists a unique function h:C→P such that h;π1 = f and h;π2 = g.
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It is easy to see that the Cartesian product of any two sets is a product in the
sense of the latter definition, where the functions π1 and π2 are the projections on
the first and second components respectively (HINT: Define h:C → A×B by h(c) =
〈 f (c),g(c)〉 for all c ∈C). Moreover, although a product P of two sets A and B does
not have to be their Cartesian product A×B since the elements of P do not have to
be pairs of objects from A and B, P is always isomorphic to A×B: there is a one-to-
one correspondence between elements of P and of A×B. Thus, the two definitions
may be viewed as equivalent for many purposes.

The reader may feel that the former definition (of the Cartesian product) is far
simpler than the latter (of a product). Indeed, to most of us, brought up to consider
set-theoretic concepts as the basis of all mathematics, this is in fact the case. How-
ever, the former definition suffers from a serious deficiency: it is formulated in terms
of elements and the membership relation for sets, which constitute the specific inter-
nal structure of sets. Consequently, it is very specifically oriented towards defining
the Cartesian product of sets and of sets only. If we now wanted to define the Carte-
sian product of, say, algebras (cf. Definition 1.2.9), we would have to reformulate
this definition substantially (in this case, by adding definitions of operations for
product algebras). To define the Cartesian product of structures of yet another kind,
yet another different version of this definition would have to be explicitly stated. It
is desirable to avoid such repetition of the same story for different specific kinds of
objects whenever possible.

The latter definition (of a product) is quite different from this point of view. It
does not refer to the internal structure of sets at all; it defines a product of two sets
entirely in terms of its relationships with these sets and with other sets. To obtain a
definition of a product of two algebras, it is enough to replace “set” by “algebra” and
“function” by “homomorphism”. The same would apply to other kinds of structures,
as long as there is an appropriate notion of a morphism between them.

The conclusion we draw from this example is that, first of all, objects of any
kind should be considered together with an appropriate notion of a morphism be-
tween them, and then that the structure imposed on the collection of objects by
these morphisms should be exploited to formulate definitions at an appropriate level
of generality and abstraction.

Let us have a look at another example:

Definition. A function f :A → B is surjective if for every b ∈ B there exists a ∈ A
such that b = f (a). ��
Definition. A function f :A→B is an epimorphism if for any functions g,g′:B→C,
f ;g = f ;g′ implies g = g′. ��
Definition. A function f :A → B is a retraction if there exists a function g:B → A
such that g; f = idB. ��

All the three definitions above are equivalent: a function is surjective if and only
if it is an epimorphism, if and only if it is a retraction. As with the previous example,
one may argue that the first of these definitions is very much specific to sets, and so
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not abstract and not general enough. The two other definitions lack this deficiency:
they do not refer to the internal structure of sets, but use functions (set morphisms)
to define the concept. However, the two definitions when applied to other kinds of
objects (and their morphisms) may well turn out not to be equivalent. We cannot
say that one of them is “right” and the other is “wrong”; they simply incorporate
different aspects of what for sets is the property of “being surjective”. The lesson to
draw from this is that one has to be cautious when generalising a certain property to
a more abstract setting. An attempt to formulate a definition at a more general level
should provide us with a better understanding of the essence of the property being
defined; it may well turn out, however, that there is more than one essence in it,
giving several non-equivalent ways to reformulate the definition in a more abstract
way.

Finding an adequate generalisation is not always easy. Sometimes even very sim-
ple notions we are accustomed to viewing as fundamental are difficult to formulate
in categorical terms, as they depend in an essential way on the internal structure of
the objects under consideration, which is exactly what we want to abstract from.
The usual set-theoretic union operation is an example of such a notion.

Once we succeed in providing a more general version of a certain notion, it may
be instantiated in many different ways. Often, an adequate generalisation of an im-
portant specific concept leads to interesting instantiations in the contexts of objects
(and morphisms between them) different from the ones we started with. Indeed, in-
teresting instantiations in other contexts may be regarded as a test of the adequacy
of the generalisation.

A more wide-ranging polemic on the advantages of category theory presented at
a rather intuitive level may be found in [Gog91a].

With these remarks in mind, this chapter introduces the basic concepts and results
of category theory. It is not our intention to provide a full-blown introductory text
on category theory; although a few concepts are introduced which will not be used
elsewhere in this book, we consciously refrain from discussing many important but
more involved concepts and results. Our aim in this chapter is to provide a brief but
comprehensive overview of the basics of category theory, both in order to make this
book self-contained and to provide a handy reference.

3.1 Introducing categories

3.1.1 Categories

Definition 3.1.1 (Category). A category K consists of:

• a collection |K| of K-objects;
• for each A,B ∈ |K|, a collection K(A,B) of K-morphisms from A to B; and
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• for each A,B,C ∈ |K|, a composition operation1 ; :K(A,B)× K(B,C) →
K(A,C)

such that:

1. for all A,B,A′,B′ ∈ |K|, if 〈A,B〉 �= 〈A′,B′〉 then K(A,B)∩K(A′,B′) =∅;
2. (existence of identities) for each A ∈ |K|, there is a morphism idA ∈K(A,A) such

that idA;g = g for all morphisms g ∈ K(A,B) and f ;idA = f for all morphisms
f ∈ K(B,A); and

3. (associativity of composition) for any f ∈K(A,B), g∈K(B,C) and h∈K(C,D),
f ;(g;h) = ( f ;g);h. ��

Notation. We will refer to objects and morphisms instead of K-objects and K-
morphisms when K is clear from the context. We write f :A → B (in K) for
A,B ∈ |K|, f ∈ K(A,B). For any f :A → B, we will refer to A as the source or
domain, and to B as the target or codomain of f . The collection of all morphisms of
K will be (ambiguously) denoted by K as well, i.e. K =

⋃
A,B∈|K|K(A,B). ��

The above is just one of several possible equivalent definitions of a category.
For example, the identities, the existence of which is required in (2), are sometimes
considered as part of the structure of a category.

Exercise 3.1.2. Prove that in any category, identities are unique. ��
The notion of a category is very general. Accepting the categorical dogma that

objects of any kind come equipped with a notion of morphism between them, it
is difficult to think of a collection of objects and accompanying morphisms that
do not form a category. Almost always there is a natural operation of morphism
composition, which obeys two of the basic requirements above: it has identities
and is associative. Perhaps the first requirement, which allows us to unambiguously
identify the source and target of any morphism, is the most technical and hence
least intuitively appealing. But even in cases where the same entity may be viewed
as a morphism between different objects, this entity can always be equipped with
an explicit indication of the source and target of the morphism (cf. Example 3.1.6),
thus satisfying this requirement.

In the rest of this subsection we give a number of examples of categories. We
start with some rather trivial examples, mainly of formal interest, and only then de-
fine some more typically considered categories. Further examples, which are often
more complex, may be found in the following sections of this chapter (and in later
chapters; see, e.g., Section 10.3).

Example 3.1.3 (Preorder category). A binary relation ≤⊆ X ×X is a preorder on
X if:

• x ≤ x for all x ∈ X ; and

1 We will use the semicolon ( ; ) to denote composition of morphisms in any category, just as we
used it for composition of functions and homomorphisms in the preceding chapters. Composition
will always be written in diagrammatic order: f ;g is to be read as “ f followed by g”.
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• x ≤ y∧ y ≤ z ⇒ x ≤ z for all x,y,z ∈ X .

A preorder category is a category that has at most one morphism with any given
source and target.

Every preorder ≤⊆ X ×X gives rise to a preorder category K≤ where |K≤|= X
and K≤(x,y) has exactly one element if x ≤ y and is empty otherwise.

This definition does not identify the category K≤ unambiguously, since different
elements may be used as morphisms in K≤(x,y) for x ≤ y. However, we will not
worry here about the exact nature of morphisms (or objects) in a category, and we
will treat this and similar definitions below as sufficient. More formally, all cate-
gories satisfying the above requirements are isomorphic in the technical sense to be
discussed in Section 3.4 (cf. Definition 3.4.69).

Here are some trivial examples of preorder categories:

0: (the empty category)

1:

.

���
��


�

id

2:

.

���
��


�

id

� .

���
��


�

id

3:
. � . � .� �� (+ identities)

4: . � . � . � .� ��� ��
� 	

�
(+ identities)

...
...

Exercise. How many morphisms does n have? ��
Example 3.1.4 (Discrete category). A category K is discrete whenever for all
A,B∈ |K|, K(A,B) is empty if A �= B and contains exactly one element (the identity)
otherwise.

Any collection of objects X gives rise to a discrete category KX where |KX |= X .
��
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Example 3.1.5 (Monoid category). A category K is a monoid if K has exactly one
object.

A set X together with a function ; :X ×X → X and a distinguished element
id ∈ X is a monoid 〈X , ;, id〉 if (x;y);z = x;(y;z) and id;x = x;id = x for all x,y,z ∈ X .
Every monoid 〈X , ;, id〉 gives rise to a monoid (category) having morphisms X and
composition ; . ��
Example 3.1.6 (Set, the category of sets). The category Set of sets with functions
as morphisms is defined as follows:

Objects of Set: sets;
Morphisms of Set: functions; however, to ensure that the requirements stated in

Definition 3.1.1 are satisfied (disregarding the particular mathematical represen-
tation of the concept of a function one uses), we will always consider functions
with explicitly given domain and codomain. Thus, a morphism in the category
Set with source A and target B is a triple 〈A, f ,B〉, where f :A → B is a function.

��
Example 3.1.7 (SetS, the category of S-sorted sets). For any set S, the category
SetS of S-sorted sets is defined as follows:

Objects of SetS: S-sorted sets;
Morphisms of SetS: S-sorted functions (with explicitly given source and target

sets). ��
Example 3.1.8 (Pfn, the category of sets with partial functions). The category
Pfn of sets with partial functions as morphisms is defined as follows:

Objects of Pfn: sets;
Morphisms of Pfn: partial functions (with explicitly given source and target sets).

��
Example 3.1.9 (Alg(Σ), the category of Σ -algebras). For any signature Σ , the cat-
egory Alg(Σ) of Σ -algebras is defined as follows:

Objects of Alg(Σ): Σ -algebras;
Morphisms of Alg(Σ): Σ -homomorphisms (with explicitly given source and target

algebras). ��
Example 3.1.10 (CPO, the category of complete partial orders). The category
CPO of complete partial orders2 and continuous functions between them is defined
as follows:

Objects of CPO: complete partial orders, i.e. partially ordered sets 〈X ,≤〉 such that
any countable chain x0 ≤ x1 ≤ . . . in 〈X ,≤〉 has a least upper bound

⊔
i≥0 xi;

Morphisms of CPO: continuous functions, i.e. functions that preserve least upper
bounds of countable chains. ��

2 Cpos and continuous functions as defined here are often referred to as ω-cpos and ω-continuous
functions, respectively. Note though that we do not require a cpo to have a least element.
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Exercise 3.1.11. Complete the above examples by formalising composition in the
obvious way. Indicate identities and prove associativity of composition. ��
Example 3.1.12 (AlgSig, the category of algebraic signatures). The category
AlgSig of (algebraic) signatures is defined as follows:

Objects of AlgSig: signatures;
Morphisms of AlgSig: signature morphisms;
Composition in AlgSig: for any σ :Σ → Σ ′ and σ ′:Σ ′ → Σ ′′, their composition

σ ;σ ′:Σ → Σ ′′ is given by (σ ;σ ′)sorts = σsorts;σ ′
sorts and (σ ;σ ′)ops = σops;σ ′

ops,
cf. Exercise 1.5.3. ��

Exercise 3.1.13 (AlgSigder, the category of signatures with derived morphisms).

Recall the concept of a derived signature morphism from Definition 1.5.14. Define
the category AlgSigder of algebraic signatures with derived signature morphisms.
Use Exercise 1.5.18 to define composition of derived signature morphisms. ��
Example 3.1.14 (TΣ , the category of substitutions over a signature Σ ). Recall
(cf. Section 1.4) that for any signature Σ = 〈S,Ω〉 and S-sorted set of variables X ,
TΣ (X) is the algebra of terms over Σ with variables X . TΣ (X) is characterised up to
isomorphism by the property that for any Σ -algebra A, any S-sorted map v:X → |A|
uniquely extends to a Σ -homomorphism v#:TΣ (X)→ A (Facts 1.4.4 and 1.4.10).

For any algebraic signature Σ , the category TΣ of substitutions over Σ is defined
as follows (cf. Exercise 1.4.9):

Objects of TΣ : S-sorted sets (of variables);
Morphisms of TΣ : for any sets X and Y , a morphism θ from X to Y is a sub-

stitution of terms with variables Y for variables X , i.e. an S-sorted function
θ :X → |TΣ (Y )|;

Composition in TΣ : given any sets X , Y and Z, and morphisms θ :X → Y and
θ ′:Y → Z in TΣ , i.e. functions θ :X → |TΣ (Y )| and θ ′:Y → |TΣ (Z)|, their com-
position θ ;θ ′:X → Z is the function θ ;θ ′:X → |TΣ (Z)| defined by (θ ;θ ′)s(x) =
(θ ′)#

s (θs(x)) for all s ∈ S, x ∈ Xs. ��
Exercise 3.1.15 (TΣ/E , the category of substitutions over Σ modulo equations

E ). Generalise the above definition of the category of substitutions by considering
terms up to an equivalence generated by a set of equations. That is, for any algebraic
signature Σ = 〈S,Ω〉 and set E of Σ -equations, for any S-sorted set of variables X
define two terms t1, t2 ∈ |TΣ (X)|s (for any sort s∈ S) to be equivalent, written t1 ≡ t2,
if E  Σ ∀X • t1 = t2 (cf. Section 2.4). Now, by analogy with the category of substi-
tutions, define the category TΣ/E to have S-sorted sets as objects and substitutions
modulo E as morphisms. A substitution of terms modulo E with variables Y for vari-
ables X is an S-sorted function θ :X → (|TΣ (Y )|/≡). Composition in TΣ/E is de-
fined analogously as in TΣ , by choosing a representative of each of the equivalence
classes assigned to variables: given θ :X → (|TΣ (Y )|/≡) and θ ′:Y → (|TΣ (Z)|/≡),
θ ;θ ′:X → (|TΣ (Z)|/≡) maps any x ∈ X to (θ ′)#(t), where θ(x) = [t]≡ (show that
the result does not depend on the choice of the representative t ∈ θ(x)). ��
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Exercise 3.1.16 (TΣ ,E , the algebraic 〈Σ ,E 〉-theory). Building on the definition of
the category of substitutions modulo a set of equations sketched above, abstract
away from the actual names of variables used in the objects of TΣ/E by listing them
in some particular order, as in derived signatures (cf. Definition 1.5.13). That is, for
any algebraic signature Σ = 〈S,Ω〉 and set E of Σ -equations, define the category
TΣ ,E with sequences s1 . . .sn ∈ S∗ of sort names as objects. A morphism in TΣ ,E

from s1 . . .sn ∈ S∗ to s′1 . . .s
′
m ∈ S∗ is an n-tuple 〈[t1]≡, . . . , [tn]≡〉 of terms modulo E ,

where the equivalence ≡ is sketched in Exercise 3.1.15 above, and for i = 1, . . . ,n,
ti ∈ |TΣ (Is′1...s′m)|si , with Is′1...s′m = { 1 :s′1, . . . , m :s′m}. The composition in TΣ ,E is
given by substitution on representatives of equivalence classes (the position of a
term in a tuple identifies the variable it is to be substituted for). TΣ ,E is usually
referred to as the algebraic theory over Σ generated by E .3 ��

3.1.1.1 Foundations

In Chapters 1 and 2 we have followed normal mathematical practice and used the
term “class” (as in Bernays-Gödel set theory) for collections that are possibly too
“large” to be sets. In the above, and in the definition of a category in particular, we
have instead very cautiously used the non-technical term collection, and talked of
collections of objects and morphisms. This allowed us to gloss over the issue of the
choice of appropriate set-theoretical foundations for category theory. Even a brief
look at the examples above indicates that we could not have been talking here just of
sets (in the sense of Zermelo-Fraenkel set theory): we want to consider categories
like Set, where the collection of objects consists of all sets, and so cannot be a
set itself. Using classes might seem more promising, since if we replace the term
“collection” by “class” in Definition 3.1.1 then at least examples of categories like
Set would be covered. However, this is not enough either, since even in this simple
presentation of the basics of category theory we will encounter some categories (like
Cat, the category of “all” categories, and functor categories defined later in this
chapter) where objects themselves are proper classes and the collection of objects
forms a “conglomerate” (a collection of classes that is too “large” to be a class; cf.
[HS73]). See [Bén85] for a careful analysis of the basic requirements imposed on a
set theory underlying category theory.

Perhaps the most traditional solution to the problem of set-theoretic foundations
for category theory is sketched in [Mac71]. The idea is to work within a hierarchy of
set universes 〈Un〉n≥0, where each universe Un, n ≥ 0, is closed under the standard
set-theoretic operations, and is an element of the next universe in the hierarchy,
Un ∈ Un+1. Then there is a notion of category corresponding to each level of the
hierarchy, and one is required to indicate at which level of the hierarchy one is
working at any given moment.

3 In the literature, the algebraic theory over Σ generated by E is often defined with substitutions
considered as morphisms in the opposite direction, i.e. as the category T

op
Σ ,E opposite to TΣ ,E

(cf. Definition 3.1.22 below).
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However, in our view such pedantry would hide the intuitive appeal of “naive”
category theory. We will therefore ignore the issue of set-theoretic foundations for
category theory in the sequel, with just one exception: we define what it means for
a category to be (locally) small and use this to occasionally warn the reader about
potential foundational hazards.

Definition 3.1.17 (Small category). A category K is locally small if for any A,B ∈
|K|, K(A,B) is a set (an element of the lowest-level universe U0); K is small if in
addition |K| is a set as well. ��

3.1.2 Constructing categories

In the examples of the previous subsection, each category was constructed “from
scratch” by explicitly defining its objects and morphisms and their composition.
Category theory also provides numerous ways of modifying a given category to
yield a different one, and of putting together two or more categories to obtain a
more complicated one. Some of the simplest examples are given in this subsection.

3.1.2.1 Subcategories

Definition 3.1.18 (Subcategory). A category K1 is a subcategory of a category K2

if |K1| ⊆ |K2| and K1(A,B) ⊆ K2(A,B) for all objects A,B ∈ |K1|, with compo-
sition and identities in K1 the same as in K2. K1 is a full subcategory of K2 if
additionally K1(A,B) = K2(A,B) for all A,B ∈ |K1|. K1 is a wide subcategory of
K2 if |K1|= |K2|. ��

For any category K, any collection X ⊆ |K| of objects of K determines a full
subcategory K X of K, defined by |K X |= X . Whenever convenient, if K is evident
from the context, we will identify collections X ⊆ |K| with K X .

Example 3.1.19 (FinSet, the category of finite sets). The category FinSet of finite
sets is defined as follows:

Objects of FinSet: finite sets;
Morphisms and composition in FinSet: as in Set.

FinSet is a full subcategory of Set. ��
Example 3.1.20. The category of single-sorted signatures is a full subcategory of
the category AlgSig of (many-sorted) signatures.

The discrete category of sets is a subcategory of the category of sets with inclu-
sions as morphisms, which is a subcategory of the category of sets with injective
functions as morphisms, which is a subcategory of Set, which is a wide subcategory
of Pfn (the category of sets with partial functions).
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For any signature Σ and set E of Σ -equations, the class ModΣ (E ) of Σ -algebras
that satisfy E determines a full subcategory of Alg(Σ), which we denote by
ModΣ (E ). ��
Exercise 3.1.21. Give an example of two categories K1, K2 such that |K1| ⊆ |K2|,
K1(A,B) ⊆ K2(A,B) for all objects A,B ∈ |K1|, composition in K1 is the same as
in K2, but K1 is not a subcategory of K2. ��

3.1.2.2 Opposite categories and duality

One of the fundamental theorems of lattice theory (cf. e.g. [DP90]) is the so-called
duality principle. Any statement in the language of lattice theory has a dual, obtained
by systematically replacing greatest lower bounds by least upper bounds and vice
versa. The duality principle states that the dual of any theorem of lattice theory is
a theorem as well. In a sense, this allows the number of proofs in lattice theory to
be cut by half: proving a fact gives its dual “for free”. A very similar phenomenon
occurs in category theory; in fact, the duality principle of lattice theory may be
viewed as a consequence of a more general duality principle of category theory.
Replacing greatest lower bounds by least upper bounds and vice versa is generalised
here to the process of “reversing morphisms”.

Definition 3.1.22 (Opposite category). The opposite category of a category K is
the category Kop where:

Objects of Kop: |Kop|= |K|;
Morphisms of Kop: Kop(A,B) = K(B,A) for all A,B ∈ |Kop|;
Composition in Kop: for f ∈ Kop(A,B) (i.e. f ∈ K(B,A)) and g ∈ Kop(B,C) (i.e.

g ∈ K(C,B)), f ;g ∈ Kop(A,C) is g; f ∈ K(C,A).

Kop: K:

A B C�
“ f ”

�
“g”


 ��
“ f ”;“g”=“g; f ”

A B C�
f

�
g


� �
g; f ��

Exercise 3.1.23. Check that:

1. Kop is a category.
2. (Kop)op = K.
3. Identities in Kop are the same as in K. ��

If W is a categorical concept (property, statement, etc.) then its dual, co-W , is
obtained by reversing all the morphisms in W . This idea may be formalised in two
ways. The first is to introduce a formal language of category theory, and then de-
fine the operation of forming a dual as an operation on formal statements in this
language. The other is to formally interpret co-W in a category K as W in the cat-
egory Kop. Since formalising the language of category theory is beyond the scope
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of this book (but cf. [Mac71] or [Hat82]), we take the second option here and will
rely on an intuitive understanding of duality in the sequel. For example, consider the
following property of objects in a category:

P(X) : for any object Y there is a morphism f :Y → X .

Then:

co-P(X) : for any object Y there is a morphism f :X → Y .

Note that indeed co-P(X) in any category K amounts to P(X) in Kop.
Since any category is the opposite of a certain category (namely, of its opposite),

the following fact holds:

Fact 3.1.24 (Duality principle). If W holds for all categories then co-W holds for
all categories as well. ��

3.1.2.3 Product categories

Definition 3.1.25 (Product category). For any two categories K1 and K2, the prod-
uct category K1×K2 is defined by:

Objects of K1×K2: |K1×K2|= |K1|× |K2| (the Cartesian product);
Morphisms of K1×K2: for all A,A′ ∈ |K1| and B,B′ ∈ |K2|,

K1×K2(〈A,B〉,〈A′,B′〉) = K1(A,A′)×K2(B,B′);
Composition in K1×K2: for f :A → A′ and f ′:A′ → A′′ in K1, g:B → B′ and

g′:B′ → B′′ in K2, 〈 f ,g〉;〈 f ′,g′〉= 〈 f ; f ′,g;g′〉. ��
Exercise 3.1.26. Identify the category to which each semicolon in the above defini-
tion of composition in K1×K2 refers. Then show that K1×K2 is indeed a category.

��
Exercise 3.1.27. Define Kn, where K is a category and n ≥ 1. What would you
suggest for n = 0? ��

3.1.2.4 Morphism categories

Definition 3.1.28 (Morphism category). For any category K, the category K→ of
K-morphisms is defined by:

Objects of K→: K-morphisms;
Morphisms of K→: a morphism in K→ from f :A→ A′ (in K) to g:B→ B′ (in K) is

a pair 〈k,k′〉 of K-morphisms where k:A→B and k′:A′ →B′ such that k;g= f ;k′;
Composition in K→: 〈k,k′〉;〈l, l′〉= 〈k;l,k′;l′〉. ��

The requirement in the definition of a morphism in K→ may be more illustra-
tively restated as the requirement that the following diagram commutes in the cate-
gory K:
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A B

A′ B′

�k

�
k′

�

f

�

g

For now, we will rely on an intuitive understanding of the concept of a diagram in
a category; see Section 3.2.5 for a formal definition. We say that a diagram in a
category commutes (or, is commutative) if for any two paths with the same source
and target nodes, the composition of morphisms along each of the two paths yields
the same result.

Drawing diagrams and “chasing” a diagram in order to prove that it is commuta-
tive is one of the standard and intuitively most appealing techniques used in category
theory. For example, to justify Definition 3.1.28 above it is essential to show that the
composition of two morphisms in K→ as defined there yields a morphism in K→.
This may be done by pasting together two diagrams like the one above along a
common edge, obtaining the following diagram:

A B

A′ B′

�k

�
k′

�

f

�

g

C

C′

�l

�
l′

�

h

A simple argument may now be used to show that if the two simpler diagrams are
commutative then the above diagram obtained by pasting them together along the
edge labelled by g commutes as well:

f ;(k′;l′) = ( f ;k′);l′ = (k;g);l′ = k;(g;l′) = k;(l;h) = (k;l);h.

Definition 3.1.29 (Slice category). Let K be a category with A ∈ |K|. The category
K↓A of K-objects over A (or, the slice of K over A) is defined by:

Objects of K↓A: pairs 〈X , f 〉 where X ∈ |K| and f ∈ K(X ,A);
Morphisms of K↓A: a morphism from 〈X , f 〉 to 〈Y,g〉 is a K-morphism k:X → Y

such that k;g = f :

X Y

A






�

f

�
�

�
�

�
���

g

�k



3.1 Introducing categories 109

Composition in K↓A: as in K. ��
Exercise 3.1.30. Show that K↓A may be constructed as a subcategory of K→. Is it
full? ��
Exercise 3.1.31. Define K↑A, the category of K-objects under A. Compare (K↓A)op,
Kop↓A and (Kop↓A)op with K↑A. ��

3.1.3 Category-theoretic definitions

In this section we will give a few simple examples of how certain special morphisms
may be characterised in a style that is typical for category-theoretic definitions. As
indicated in the introduction to this chapter, the idea is to abstract away from the “in-
ternal” properties of objects and morphisms, characterising them entirely in categor-
ical language by referring only to arbitrary objects and morphisms of the category
under consideration. Such definitions may be formulated for an arbitrary category,
and then instantiated to a particular one when necessary. We will also indicate a few
basic properties of the concepts we introduce that hold in any category.

Throughout this section, let K be an arbitrary but fixed category. Morphisms and
objects we refer to below are those of K, unless explicitly qualified otherwise.

3.1.3.1 Epimorphisms and monomorphisms

Definition 3.1.32 (Epimorphism). A morphism f :A → B is an epimorphism (or is
epi) if for all g:B →C and h:B →C, f ;g = f ;h implies g = h.

A B C�
f �

g
�

h

� 	
�

f ;g

� ��
f ;h ��

Example 3.1.33. In Set, f is epi iff f is surjective. ��
There are “natural” categories in which epimorphisms need not be surjective. For

example:

Exercise 3.1.34. Recall the category CPO of complete partial orders and contin-
uous functions introduced in Example 3.1.10. Give an example of a continuous
function that is an epimorphism in CPO even though it is not surjective. Try to
characterise epimorphisms in this category. ��
Definition 3.1.35 (Monomorphism). A morphism f :B→A is a monomorphism (or
is mono) if for all g:C → B and h:C → B, g; f = h; f implies g = h.
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C B A�
f�

g
�

h

� 	
�

g; f

� ��
h; f ��

Example 3.1.36. In Set, f is mono iff f is injective. ��
Note that mono means the same as co-epi, i.e. f is mono in K iff f is epi in Kop.

Fact 3.1.37.

1. If f :A → B and g:B →C are mono then f ;g:A →C is mono.
2. For any f :A → B and g:B →C, if f ;g:A →C is mono then f is mono.

Proof. The proof is rather straightforward, and significantly more complex proofs
will be omitted in the rest of this chapter. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
exploiting the most basic properties of composition in an arbitrary category.

1. According to Definition 3.1.35, we have to show that for any h,h′:D → A if
h;( f ;g) = h′;( f ;g) then h = h′. So, suppose h;( f ;g) = h′;( f ;g). Then, since com-
position is associative, (h; f );g = (h′; f );g. Consequently, since g is mono, by
Definition 3.1.35, h; f = h′; f . Thus, using the fact that f is mono, we can indeed
conclude that h = h′.

2. Similarly as in the previous case: suppose that for some h,h′:D→ A, h; f = h′; f .
Then also (h; f );g = (h′; f );g, and so h;( f ;g) = h′;( f ;g). Now, since f ;g is mono,
it follows directly from the definition that indeed h = h′.

��
Exercise 3.1.38. Dualise both parts of Fact 3.1.37. Formulate the dual proofs and
check that they are indeed sound. ��

3.1.3.2 Isomorphic objects

Definition 3.1.39 (Isomorphism). A morphism f :A → B is an isomorphism (or is
iso) if there is a morphism f−1:B → A such that f ; f−1 = idA and f−1; f = idB. The
morphism f−1:B → A is called the inverse of f , and the objects A and B are called
isomorphic. We write f :A ∼= B or just A ∼= B.

A B
�

f
�

f−1

�
�

			�





idA

	
�




�

			
idB

��
Exercise 3.1.40. Show that the inverse of a morphism, if it exists, is unique. ��
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Note that iso means the same as co-iso, that is, isomorphism is a self-dual con-
cept.

Exercise 3.1.41. Check that if f :A → B and g:B →C are iso then f ;g:A →C is iso
as well. ��

In Set, a morphism is iso iff it is both epi and mono. However, this property does
not carry over to an arbitrary category:

Exercise 3.1.42. Show that if f is iso then f is both epi and mono. The converse is
not true in general; give a counterexample. ��
Exercise 3.1.43. We say that a morphism f :A → B is a retraction if there is a mor-
phism g:B → A such that g; f = idB. Dually, a morphism f :A → B is a coretraction
if there is a morphism g:B → A such that f ;g = idA. Show that:

1. A morphism is iso iff it is both a retraction and a coretraction.
2. Every retraction is epi.
3. A morphism is iso iff it is an epi coretraction.

Dualise the above facts. ��
It is easy to see that any two isomorphic objects have the same “categorical prop-

erties”. Intuitively, such objects have abstractly the same structure and so are indis-
tinguishable within the given category (which does not mean that isomorphic objects
cannot have different “non-categorical” properties; cf. Example 1.3.12). Indeed, an
isomorphism and its inverse determine one-to-one mappings between morphisms
going into and coming out of isomorphic objects. Hence, categorical definitions of
objects define them only “up to isomorphism”. The following section provides typ-
ical examples of this phenomenon.

3.2 Limits and colimits

In this section we show how certain special objects in an arbitrary category together
with their “characteristic” morphisms may be defined in purely categorical terms by
so-called universal properties; we hope that the reader will recognize the pattern in
the example definitions below. Sections 3.2.1–3.2.4 present some typical instances
of this, introducing the most commonly used cases of the general limit construction
and its dual, which are then presented in their full generality in Section 3.2.5. In
most of the cases in this section we will explicitly spell out the duals of the con-
cepts introduced, since many of them have interesting instances in some common
categories (and are traditionally given independent names).

Throughout this section, let K be an arbitrary but fixed category. Morphisms and
objects we refer to are those of K, unless explicitly qualified otherwise.
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3.2.1 Initial and terminal objects

Definition 3.2.1 (Initial object). An object I ∈ |K| is initial in K if for each A∈ |K|
there is exactly one morphism from I to A. ��
Example 3.2.2. The empty set ∅ is initial in Set, as well as in Pfn. The algebra TΣ
of ground Σ -terms is initial in Alg(Σ), for any signature Σ ∈ |AlgSig|.

Recall the definition of an initial model of an equational specification (Defi-
nition 2.5.13). For any signature Σ and set E of Σ -equations, the initial model
of 〈Σ ,E 〉 (which exists by Theorem 2.5.14) is an initial object in the category
ModΣ (E ) (as defined in Example 3.1.20). ��
Exercise 3.2.3. What is an initial object in AlgSig? Look for initial objects in other
categories. ��
Fact 3.2.4.

1. Any two initial objects in K are isomorphic.
2. If I is initial in K and I′ is isomorphic to I then I′ is initial in K as well.

Proof. The proof is rather straightforward. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
which exploits universality (a special case of which is the property used in the defi-
nition of an initial object). The requirement that there exist a morphism satisfying a
certain property is used to construct some diagrams, and then the uniqueness of this
morphism is used to show that the diagrams constructed commute.

1. Suppose that I, I′ ∈ |K| are two initial objects in K. Then, by the initiality of I,
there exists a morphism f : I → I′. Similarly, by the initiality of I′, there exists a
morphism g: I′ → I. Thus, we have constructed the following diagram:

I I′
�

f
�

g

�
�

			�





idI

	
�




�

			
idI′

Now, by the initiality of I, there is a unique morphism from I to I, and so idI =
f ;g. Similarly, idI′ = g; f . Thus f is an isomorphism (with inverse g) and I and I′
are indeed isomorphic.

2. Suppose that I ∈ |K| is initial in K, and let i: I → I′ be an isomorphism with
inverse i−1: I′ → I. Consider an arbitrary object A ∈ |K|. By the “existence part”
of the initiality property of I, we know that there exists a morphism f : I → A.
Hence, there exists a morphism from I′ to A as well, namely i−1; f : I′ → A. Then,
let f ′: I′ → A be an arbitrary morphism from I′ to A. By the “uniqueness part”
of the initiality property of I, f = i; f ′, and so i−1; f = i−1;(i; f ′) = (i−1;i); f ′ =
idI′ ; f ′ = f ′. This shows that i−1; f is the only morphism from I′ to A, and so I′ is
indeed initial in K. ��
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The last fact indicates that the initiality property identifies an object up to iso-
morphism. As argued in Section 3.1.3.2, in category theory this is the most exact
characterisation of an object we may expect. In the following we will speak of “the”
initial object, meaning an initial object identified up to isomorphism. We adopt the
same convention in the many similar cases introduced in the sequel.

3.2.1.1 Dually:

Definition 3.2.5 (Terminal object). An object 1 ∈ |K| is terminal in K if for each
A ∈ |K| there is exactly one morphism from A to 1. ��

Note that terminal means the same as co-initial.

Exercise 3.2.6. Are there any terminal objects in Set, Alg(Σ) or AlgSig? What
about terminal objects in AlgSigder?

Check that ∅ is terminal in Pfn; hence the initial and terminal objects in Pfn

coincide.
Recall the definition of a terminal (final) model of an equational specification

(Definition 2.7.12). Restate it using the notion of a terminal object as defined above.
��

Exercise 3.2.7. Dualise Fact 3.2.4. ��

3.2.2 Products and coproducts

Definition 3.2.8 (Product). A product of two objects A,B∈ |K| is an object A×B∈
|K| together with a pair of morphisms πA:A×B → A and πB:A×B → B such that
for any object C ∈ |K| and pair of morphisms f :C→ A and g:C→ B there is exactly
one morphism 〈 f ,g〉:C → A×B such that the following diagram commutes:

A

C

A×B B

�
�

�
�

�
���

f

�
�
�
�
�
���

g

�
πA

�
πB

�

〈 f ,g〉

��
Example 3.2.9. In Set, the Cartesian product of A and B is a product A×B, where
πA, πB are the projection functions. For any signature Σ , products in Alg(Σ) are
defined analogously (cf. Definition 1.2.9). ��
Exercise 3.2.10. Define a product of two sets in Pfn. HINT: In general it is not their
Cartesian product; you need to add “pairs” that are missing one element. ��
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Exercise 3.2.11. What is the product of two objects in a preorder category? ��
Exercise 3.2.12. Show that any two products of A,B ∈ |K| are isomorphic. ��
Exercise 3.2.13. Suppose that A,B∈ |K| have a product. Given f :C→A and g:C→
B, and hence 〈 f ,g〉:C → A×B, show that for any h:D → C, h;〈 f ,g〉 = 〈h; f ,h;g〉,
and that for any k:C → A×B, k = 〈k;πA,k;πB〉. ��
Exercise 3.2.14. Prove that:

1. A×B ∼= B×A for any A,B ∈ |K|.
2. (A×B)×C ∼= A× (B×C) for any A,B,C ∈ |K|. HINT: The following diagram

might be helpful:

A B C

A×B B×C

(A×B)×C A× (B×C)

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
���

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
���
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�

��
Exercise 3.2.15. Define the product of an arbitrary family of K-objects. What is the
product of the empty family? ��

3.2.2.1 Dually:

Definition 3.2.16 (Coproduct). A coproduct of two objects A,B ∈ |K| is an object
A+B∈ |K| together with a pair of morphisms ιA:A→ A+B and ιB:B→ A+B such
that for any object C ∈ |K| and pair of morphisms f :A →C and g:B →C there is
exactly one morphism [ f ,g]:A+B→C such that the following diagram commutes:

A

C

A+B B
�
�
�
�
�
�
��

f

�
�

�
�

�
�

��

g

�
ιA

�
ιB

�

[ f ,g]

��
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Example 3.2.17. In Set, the disjoint union of sets A and B is their coproduct A+B,
where ιA, ιB are the injections. Similarly, in AlgSig, the (componentwise) disjoint
union of algebraic signatures Σ and Σ ′ is their coproduct Σ +Σ ′, where ιA, ιB are
the obvious injections. ��
Exercise 3.2.18. Dualise the exercises for products. ��
Exercise 3.2.19. For any algebraic signature Σ = 〈S,Ω〉 and two S-sorted sets X
and Y , show that their disjoint union X �Y is the coproduct of X and Y in the
category TΣ of substitutions over Σ (recall Example 3.1.14), where the coproduct
injections are the identity substitutions (of the corresponding variables from X �Y
for variables in X and in Y , respectively). Generalise this to the category TΣ/E of
substitutions over Σ modulo a set E of Σ -equations (cf. Exercise 3.1.15). Finally,
characterise coproducts in the category TΣ ,E , the algebraic theory over Σ generated
by E (Exercise 3.1.16). ��

3.2.3 Equalisers and coequalisers

We have defined above products and coproducts for arbitrary pairs of objects in a
category. In this section we deal with constructions for pairs of morphisms con-
strained to being parallel, i.e. pairs of morphisms that have the same source and the
same target.

Definition 3.2.20 (Equaliser). An equaliser of two parallel morphisms f :A → B
and g:A → B is an object E ∈ |K| together with a morphism h:E → A such that
h; f = h;g, and such that for any object E ′ ∈ |K| and morphism h′:E ′ → A satisfying
h′; f = h′;g there is exactly one morphism k:E ′ → E such that k;h = h′:

A BE

E ′

�
f

�
g

�
h






�

h′

��

��

��

���

k

��
Exercise 3.2.21. Show that an equaliser of f :A → B and g:A → B is unique up to
isomorphism. ��
Exercise 3.2.22. Show that every equaliser (to be more precise, its morphism part)
is mono, and every epi equaliser is iso. ��
Exercise 3.2.23. Construct equalisers of pairs of parallel morphisms in Set. Then,
for any signature Σ , construct equalisers of pairs of parallel morphisms in Alg(Σ).
HINT: For any two functions f ,g:A→ B consider the set {a∈ A | f (a) = g(a)} ⊆ A.

Define equalisers in Pfn, adapting the hint above if necessary. ��
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3.2.3.1 Dually:

Definition 3.2.24 (Coequaliser). The dual notion to equaliser is coequaliser. The
diagram now looks as follows:

A B Q

Q′

�
f

�
g

�
h

�
�
�
�
�
���

h′







�

k

Exercise. Formulate explicitly the definition of a coequaliser. Then dualise the ex-
ercises for equalisers. ��
Exercise 3.2.25. What is the coequaliser of two morphisms in Set? What is the co-
equaliser of two morphisms in AlgSig? What is the coequaliser of two morphisms
in Alg(Σ)? HINT: Given two functions f ,g:A→ B consider the quotient of B by the
least equivalence relation ≡ on B such that for all a ∈ A, f (a)≡ g(a). ��
Exercise 3.2.26. What is the coequaliser of two morphisms in the category of sub-
stitutions TΣ ? ��

3.2.4 Pullbacks and pushouts

Definition 3.2.27 (Pullback). A pullback of two morphisms f :A→C and g:B→C
having the same codomain is an object P ∈ |K| together with a pair of morphisms
j:P→ A and k:P→ B such that j; f = k;g, and such that for any object P′ ∈ |K| and
pair of morphisms j′:P′ → A and k′:P′ → B satisfying j′; f = k′;g there is exactly
one morphism h:P′ → P such that the following diagram commutes:

C

A B

P

�
�
��

�
�

��

�
�

��

�
�
��

f g

j k

P′

�
h

�

�

j′

�

�

k′

��
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Exercise 3.2.28. Show that a pullback of f :A → C and g:B → C is unique up to
isomorphism. ��
Exercise 3.2.29. Show that if K has products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) then it has pullbacks as well (i.e. all pairs of
morphisms with a common target have pullbacks in K).

HINT: To construct a pullback of f :A→C and g:B→C, first construct the prod-
uct A×B with projections πA:A×B → A and πB:A×B → B and then the equaliser
h:P → A×B of πA; f :A×B →C and πB;g:A×B →C. ��
Exercise 3.2.30. Construct the pullback of two morphisms in Set, and then in
Alg(Σ), AlgSig, and Pfn. ��
Exercise 3.2.31. Prove that if K has a terminal object and all pullbacks (i.e. any pair
of K-morphisms with a common target has a pullback in K) then:

1. K has all (binary) products.
2. K has all equalisers. HINT: Get the equaliser of f ,g:A → B from the pullback of
〈idA, f 〉,〈idA,g〉:A → A×B (see Definition 3.2.8 for notation). ��

Exercise 3.2.32. Show that pullbacks translate monomorphisms to monomorphisms:
if

.

.

.

.

� �

�f

�
g

is a pullback square and g is mono, then f is mono as well. ��
Exercise 3.2.33. Consider the following diagram:

.

.

.

.

.

.

� � �

�

�

�

�

Prove that:

1. If the two squares are pullbacks then the outer rectangle is a pullback.
2. If the diagram commutes and the outer rectangle and right-hand square are both

pullbacks then so is the left-hand square. ��
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3.2.4.1 Dually:

Definition 3.2.34 (Pushout). The dual notion to pullback is pushout. The diagram
now looks as follows:

C

A B

P

�
�

��

�
�
��

�
�
��

�
�

��

f g

j k

P′
�
h

��

j′

��

k′

Exercise. Spell out the definition of a pushout explicitly. Then dualise the exercises
for pullbacks. ��

Pushouts provide a basic tool for putting together structures of various kinds.
Given two objects A and B, a pair of morphisms f :C → A and g:C → B indicates
a common source from which some “parts” of A and B come. The pushout of f
and g puts together A and B while identifying the parts coming from the common
source as indicated by f and g, but keeping the new parts disjoint (cf. the dual of
Exercise 3.2.29).

Example 3.2.35. Working in Set, consider the following:

A = {1,2,3}
B = {3,4,5}
C = {♣}
f = {♣ �→ 2} :C → A
g = {♣ �→ 4} :C → B

Then the pushout object P is (up to isomorphism) given as follows:

P = {1′,{2′=4′′},3′,3′′,5′′}
j = {1 �→ 1′,2 �→ {2′=4′′},3 �→ 3′} :A → P
k = {3 �→ 3′′,4 �→ {2′=4′′},5 �→ 5′′} :B → P ��

Example 3.2.36. The general comments above about the use of pushouts for putting
together objects in categories apply in particular when one wants to combine alge-
braic signatures, as we will frequently do throughout the rest of the book. As a
very simple example of a pushout in the category AlgSig of algebraic signatures,
consider the signature ΣNat of natural numbers defined in Exercise 2.5.4. Then,
let ΣNatfib be its extension by a new operation name fib:Nat → Nat and ΣNatmult

its extension by another operation name mult:Nat×Nat → Nat. We then have two
signature inclusions:
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ΣNatfib ←−↩ ΣNat ↪−→ ΣNatmult

Their pushout in AlgSig yields a signature ΣNatfib,mult which (up to isomorphism)
consists of the shared signature ΣNat (once, no repetitions!) together with each of
the operations added by the two extensions.

This is deceptively simple though, involving only single-sorted signature inclu-
sions that introduce different operation names.

Exercise. Give examples of pushouts in AlgSig with signatures involving more
than one sort, operation names that coincide, and signature morphisms that are not
injective on sorts and/or on operation names. ��

3.2.5 The general situation

The definitions introduced in the previous subsections followed a common, more
general pattern. As an example, consider again the definition of a pullback (Defi-
nition 3.2.27; the notation below refers to the diagram there). Given a diagram in
the category at hand (the two morphisms f and g of which we construct the pull-
back), we consider an object P in this category together with morphisms going from
the object to the nodes of the diagram ( j, k and an implicit c:P →C) such that all
the resulting paths starting from P commute ( j; f = c = k;g — hence c may remain
implicit). Moreover, from among all such objects we choose the one that is in a
sense “closest” to the diagram: for any object P′ with morphisms from it to the dia-
gram nodes ( j′, k′ and an implicit c′) satisfying the required commutativity property
( j′; f = c′ = k′;g), P′ may be uniquely projected onto the chosen object P (via a
morphism h) so that all the resulting paths starting from P′ commute (h; j = j′ and
h;k = k′, which also implies h;c = c′). This is usually referred to as the universal
property of pullbacks and, more generally, of arbitrary limits as defined below. The
(dual) universal property of pushouts and, more generally, of arbitrary colimits as
defined below, may be described by looking at objects with morphisms going from
the nodes of a diagram into them. We will formalise this in the rest of this section.

Definition 3.2.37 (Graph). Let ΣG be the following signature:

sorts Node, Edge
ops source:Edge → Node

target:Edge → Node

A ΣG-algebra is called a graph. (Note that these graphs may have multiple edges be-
tween any two nodes; such graphs are sometimes called multigraphs.) The category
Graph of graphs is Alg(ΣG). Given a graph G, we write e:n→m as an abbreviation
for n,m ∈ |G|Node, e ∈ |G|Edge, sourceG(e) = n and targetG(e) = m. ��
Exercise 3.2.38. Construct an initial object, coproducts, coequalisers and pushouts
in Graph. ��
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Exercise 3.2.39. Define formally the category Path(G) of paths in a graph G,
where:

Objects of Path(G): |G|Node;
Morphisms of Path(G): paths in G, i.e. finite sequences e1 . . .en of elements of
|G|Edge such that sourceG(ei+1) = targetG(ei) for i < n. Notice that we have to
allow for n = 0, for each node. ��
A diagram in K is a graph having nodes labelled with K-objects and edges la-

belled with K-morphisms with the appropriate source and target. Formally:

Definition 3.2.40 (Diagram). A diagram D in K consists of:

• a graph G(D);
• for each node n ∈ |G(D)|Node, an object Dn ∈ |K|; and
• for each edge e:n → m in G(D), a morphism De:Dn → Dm.

A diagram D is connected if its graph G(D) is connected (that is, any two nodes in
G(D) are linked by a sequence of edges disregarding their direction, or, formally, if
the total relation on the set of nodes of G(D) is the only equivalence between the
nodes that links all nodes having an edge between them). ��

Every small category K gives rise to a graph G(K) with all K-objects as nodes
and all K-morphisms as edges, and a diagram D(K) that labels the nodes and edges
of G(K) by themselves.

Definition 3.2.41 (Cone and cocone). A cone α over a diagram D in K is a K-
object X together with a family of K-morphisms 〈αn:X → Dn〉n∈|G(D)|Node

such that
for every edge e:n → m in the graph G(D) the following diagram commutes:

Dn Dm

X
�

�
�
�

�
���

αn






�

αm

�
De

Dually, a cocone α over a diagram D in K is a K-object X together with a family
of K-morphisms 〈αn:Dn → X〉n∈|G(D)|Node

such that for every edge e:n → m in the
graph G(D) the following diagram commutes:

Dn Dm

X

�
�
�
�
�
���

αn








�

αm

�
De ��
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In the following we will write cones simply as families 〈αn:X → Dn〉n∈|G(D)|Node
,

omitting any separate mention of the apex X , and similarly for cocones. The notation
is not quite justified when the diagram (and hence the family) is empty; this will not
lead to any misunderstanding.

Let D be a diagram in K with |G(D)|Node = N and |G(D)|Edge = E.

Definition 3.2.42 (Limit and colimit). A limit of D in K is a cone 〈αn:X → Dn〉n∈N
such that for any cone 〈α ′

n:X ′ → Dn〉n∈N there is exactly one morphism h:X ′ → X
such that for every n ∈ N the following diagram commutes:

X ′ X

Dn






�

α ′
n

�
�

�
�
�

���

αn

�h

If 〈αn:X → Dn〉n∈N is a limit of D, we will refer to X as the limit object of D (or
sometimes just the limit of D), and to the morphisms αn, n ∈ N, as the limit projec-
tions.

Dually, a colimit of D in K is a cocone 〈αn:Dn → X〉n∈N such that for any cocone
〈α ′

n:Dn → X ′〉n∈N there is exactly one morphism h:X →X ′ such that for every n∈N
the following diagram commutes:

X ′ X

Dn








�

α ′
n

�
�
�
�
�
���

αn

� h

If 〈αn:Dn → X〉n∈N is a colimit of D, we will refer to X as the colimit object of D
(or sometimes just the colimit of D), and to the morphisms αn, n ∈ N, as the colimit
injections. ��
Definition 3.2.43 (Completeness and cocompleteness). A category K is (finitely)
complete if every (finite) diagram in K has a limit. Dually, K is (finitely) cocomplete
if every (finite) diagram in K has a colimit. ��
Exercise 3.2.44. Define formally the category Cone(D) of cones over a diagram D,
where:

Objects of Cone(D): cones over D;
Morphisms of Cone(D): a morphism between cones α = 〈αn:X → Dn〉n∈N and

α ′ = 〈α ′
n:X ′ → Dn〉n∈N is a K-morphism h:X → X ′ such that αn = h;α ′

n for
n ∈ N.



122 3 Category theory

Prove that the limit of D is a terminal object in Cone(D). Note that this implies that
a limit of any diagram is unique up to isomorphism.

Present the category of objects over an object (cf. Definition 3.1.29) as the cate-
gory of cones over a certain diagram. ��
Exercise 3.2.45. Show that products, terminal objects, equalisers and pullbacks in
K are limits of simple diagrams in K. ��
Exercise 3.2.46. Construct in Set a limit of the diagram

A0 A1 A2 A3 · · ·� f0 � f1 � f2 � f3 ��
Exercise 3.2.47. Show that all limiting cones are jointly monomorphic: given a limit
〈αn:X → Dn〉n∈|G(D)|Node

of D and morphisms f ,g:Y → X , we have f = g whenever
for all n ∈ |G(D)|Node, f ;αn = g;αn. ��
Exercise 3.2.48. Show that if K has a terminal object, binary products and all
equalisers then it is finitely complete. HINT: Given a finite diagram in K, first build
the product of all its objects, and then gradually turn it into a limit by “equalising”
the triangles formed by product projections and morphisms in the diagram.

Use Exercise 3.2.31 to conclude that if K has a terminal object and all pullbacks
then it is finitely complete. ��
Exercise 3.2.49. Show that if K has products of arbitrary families of objects and all
equalisers then it is complete. HINT: Proceed as in Exercise 3.2.48, but notice that all
the triangles involved may be “equalised” simultaneously in one step; cf. [Mac71],
Theorem V.2.1. ��
Exercise 3.2.50. A wide pullback is the limit of a non-empty family of morphisms
with a common target. Show that if a category has a terminal object and all wide
pullbacks then it has products of arbitrary families of objects, and then conclude
that it is complete. HINT: Generalise Exercise 3.2.31 and use Exercise 3.2.49. ��
Exercise 3.2.51. Recall that for any category K and object A ∈ |K|, K↓A is the slice
category of objects over A (Definition 3.1.29).

Notice that K↓A has a terminal object. Then show that binary products in K↓A are
essentially given by the pullbacks in K (of morphisms to A), and similarly, arbitrary
non-empty products in K↓A are essentially given by wide pullbacks in K. Check
also that any (wide) pullback in K↓A is given by the corresponding (wide) pullback
in K (no morphisms to A added).

Conclude that K↓A is finitely complete if K has all pullbacks, and K↓A is com-
plete if K has all wide pullbacks. ��
Exercise 3.2.52. Dualise the above exercises. ��
Exercise 3.2.53. Show that:

1. Set is complete and cocomplete.
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2. FinSet is finitely complete and finitely cocomplete, but is neither complete nor
cocomplete.

3. Alg(Σ) is complete for any signature Σ . (It is also cocomplete, but the proof is
harder — give it a try!)

4. AlgSig is cocomplete. (Is it complete?)

HINT: Use Exercise 3.2.49 and its dual, and the constructions of (co)products and
(co)equalisers in these categories hinted at in Examples 3.2.9, 3.2.17 and Exer-
cises 3.2.23, 3.2.25. Check that, given a diagram D with nodes N and edges E in
Set, its limit is (up to isomorphism) the set of families 〈dn〉n∈N that are compati-
ble with D in the sense that dn ∈ Dn for each n ∈ N and dm = De(dn) for each edge
e:n→m, with the obvious projections. Check that its colimit is (up to isomorphism)
the quotient of the disjoint union

⊎
n∈N Dn by the least equivalence relation that is

generated by all pairs 〈dn,De(dn)〉 for e:n → m in E and dn ∈ Dn. ��
Exercise 3.2.54. Show that AlgSigder is not finitely cocomplete. HINT: Consider a
morphism mapping a binary operation to the projection on the first argument and
another morphism mapping the same operation to the projection on the second ar-
gument. Can such a pair of morphisms have a coequaliser? ��
Exercise 3.2.55. When is a preorder category (finitely) complete and cocomplete?

��

3.3 Factorisation systems

In this section we will interrupt our presentation of the basic concepts of category
theory and try to illustrate how they can be used to formulate some well-known
ideas at a level of generality and abstraction that ensures their applicability in many
specific contexts.

The concept on which we concentrate here is that of reachability (cf. Section 1.2).
Recall that the original definition of a reachable algebra used the notion of a subalge-
bra (cf. Definition 1.2.7). Keeping in mind that in the categorical framework we deal
with objects identified up to isomorphism, we slightly generalise the standard for-
mulation and, for any signature Σ ∈ |AlgSig|, say that a Σ -algebra B is a subalgebra
of A if there exists an injective Σ -homomorphism from B to A. A dual notion is that
of a quotient: a Σ -algebra B is a quotient of a Σ -algebra A if there exists a surjective
Σ -homomorphism from A to B. Now, a Σ -algebra A is reachable if it has no proper
subalgebra (i.e. every subalgebra of A is isomorphic to A), or equivalently, if it is a
quotient of the algebra TΣ of ground Σ -terms (cf. Exercise 1.4.14). In this formula-
tion, the above definitions may be used to introduce a notion of reachability in an
arbitrary category. However, we need an appropriate generalisation of the concept
of injective and surjective homomorphisms. A first attempt might be to use arbitrary
epimorphisms and monomorphisms for this purpose, but it soon turns out that these
concepts are not “fine enough” to ensure the properties we are after. An appropriate
refinement of these is given if the category is equipped with a factorisation system.
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Definition 3.3.1 (Factorisation system). Let K be an arbitrary category. A factori-
sation system for K is a pair 〈E,M〉, where:

• E is a collection of epimorphisms in K and M is a collection of monomorphisms
in K;

• each of E and M is closed under composition and contains all isomorphisms in
K;

• every morphism in K has an 〈E,M〉-factorisation: for each f ∈K, f = e f ;m f for
some e f ∈ E and m f ∈ K;

·

·

·�

f

��

��

���

e f

��

��

���
m f

• 〈E,M〉-factorisations are unique up to isomorphism: for any e,e′ ∈E and m,m′ ∈
M, if e;m = e′;m′ then there exists an isomorphism i such that e;i = e′ and i;m′ =
m.

·

·

·

·

�

f

�
�

�
���

e

�
�
�
���

m

�
�
�
���

e′

�
�

�
���

m′


 �

�

i

��


 �



i−1 ��
Example 3.3.2. Set has a factorisation system 〈E,M〉, where E is the collection of
all surjective functions and M is the collection of all injective functions. ��
Example 3.3.3. For any algebraic signature Σ , Alg(Σ) has a factorisation system4

〈TEΣ ,TMΣ 〉, where TEΣ is the collection of all surjective Σ -homomorphisms and
TMΣ is the collection of all injective Σ -homomorphisms; see Exercise 1.3.23. ��

Consider an arbitrary category K equipped with a factorisation system 〈E,M〉.
4 “T” in TEΣ and TMΣ indicates that we are dealing with ordinary total algebras here, as opposed
to partial and continuous algebras with the factorisation systems discussed below.
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Lemma 3.3.4 (Diagonal fill-in lemma). For any morphisms f1, f2,e,m in K, where
e ∈ E and m ∈ M, if f1;m = e; f2 then there exists a unique morphism g such that
e;g = f1 and g;m = f2.

Proof sketch. The required “diagonal” is given by g = e f2 ;i;m f 1, as illustrated by the
diagram below; its uniqueness follows easily since e is an epimorphism.
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Exercise 3.3.5. Show that if e ∈ E and e; f ∈ M for some morphism f ∈ K, then e
is an isomorphism. Dually, if m ∈ M and f ;m ∈ E for some morphism f ∈ K, then
m is an isomorphism. ��
Definition 3.3.6 (Subobject and quotient). Let A ∈ |K|. A subobject of A is an
object B ∈ |K| together with a morphism m:B → A such that m ∈ M. A quotient of
A is an object B ∈ |K| together with a morphism e:A → B such that e ∈ E. ��
Definition 3.3.7 (Reachable object). An object A ∈ |K| is reachable if it has no
proper subobject, i.e. if every morphism m ∈ M with target A is an isomorphism.

��
The category Alg(Σ) of Σ -algebras and the notion of a reachable algebra provide

an instance of the general concept of reachability introduced in the above definition.
The following theorem gives more general versions of well-known facts often labo-
riously proved in the standard algebraic framework.

Theorem 3.3.8. Assume that K has an initial object Λ . Then:

1. An object A ∈ |K| is reachable iff it is a quotient of the initial object Λ .
2. Every object in |K| has a reachable subobject which is unique up to isomorphism.
3. If A ∈ |K| is reachable then for every B ∈ |K| there exists at most one morphism

from A to B.
4. If A ∈ |K| is reachable and f ∈ K is a morphism with target A then f ∈ E. ��
Exercise 3.3.9. Prove the theorem and identify the familiar facts about reachable
algebras generalised here. ��

One of the main results of Chapter 2, Theorem 2.5.14, states that any equational
specification has an initial model. This is just a special case of a more general result
which we formulate and prove for an arbitrary category with “reachability structure”
satisfying an additional, technical property that any object has up to isomorphism
only a set of quotients.
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Definition 3.3.10 (Co-well-powered category). K is E-co-well-powered if for any
A ∈ |K| there exists a set of morphisms E ⊆ E such that for every morphism e ∈ E

with source A there exist a morphism e′ ∈ E and an isomorphism i such that e = e′;i.
��

Definition 3.3.11 (Quasi-variety). A collection of objects Q ⊆ |K| is a quasi-
variety if it is closed under subobjects and products of non-empty sets of objects
in Q. ��
Lemma 3.3.12 (Initiality lemma). Assume that K has an initial object and is E-
co-well-powered, and any set of objects in K has a product. Then any non-empty
quasi-variety in K (considered as the corresponding full subcategory of K) has an
initial object which is reachable in K.

Proof. Let Q ⊆ |K| be a non-empty collection of objects closed under subobjects
and products of non-empty sets. Let Qr be a set of reachable objects in Q such that
every reachable object in Q is isomorphic to an element of Qr (such a set exists since
K is E-co-well-powered). The reachable subobject of the product of Qr (which is
unique up to isomorphism) is a reachable initial object in Q. ��

It is now easy to check that in the context of Example 3.3.3 every class of Σ -
algebras definable by a set of Σ -equations is a non-empty quasi-variety, and hence
Lemma 3.3.12 directly implies Theorem 2.5.14.

We conclude this section with two examples of categories naturally equipped
with a notion of reachability which is an instance of the general concept introduced
above.

Example 3.3.13. Recall Definitions 2.7.30 and 2.7.31 of partial Σ -algebras and Σ -
homomorphisms between them. For any signature Σ , define the category of partial
Σ -algebras, PAlg(Σ), as follows:

Objects of PAlg(Σ): partial Σ -algebras;
Morphisms of PAlg(Σ): weak Σ -homomorphisms.

Define also the subcategory PAlgstr(Σ) of partial Σ -algebras with strong homo-
morphisms between them, as follows:

Objects of PAlgstr(Σ): partial Σ -algebras;
Morphisms of PAlgstr(Σ): strong Σ -homomorphisms.

The category PAlg(Σ) of partial Σ -algebras with weak Σ -homomorphisms has a
factorisation system 〈PEΣ ,PMΣ 〉, where PEΣ is the collection of all epimorphisms
in PAlg(Σ) and PMΣ is the collection of all monomorphisms in PAlg(Σ) that are
strong Σ -homomorphisms.

Exercise. Characterise epimorphisms in PAlg(Σ) (they are not surjective in gen-
eral) and prove that 〈PEΣ ,PMΣ 〉 is indeed a factorisation system for PAlg(Σ).
Check then that factorisation of a strong Σ -homomorphism in 〈PEΣ ,PMΣ 〉 con-
sists of strong Σ -homomorphisms. Conclude that strong homomorphisms in PEΣ
and PMΣ , respectively, form a factorisation system for PAlgstr(Σ). ��
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Example 3.3.14. For any signature Σ , define the category of continuous Σ -algebras,
CAlg(Σ), as follows:

Objects of CAlg(Σ): continuous Σ -algebras, which are just like ordinary (total)
Σ -algebras, except that their carriers are required to be complete partial orders
and their operations are continuous functions (cf. Exercise 3.1.10);

Morphisms of CAlg(Σ): continuous Σ -homomorphisms: given any continuous Σ -
algebras A,B ∈ |CAlg(Σ)|, a continuous Σ -homomorphism from A to B is a Σ -
homomorphism h:A → B which is continuous as a function between complete
partial orders. We say that h is full if it reflects the ordering, i.e. for all a,a′ ∈ |A|s,
h(a)≤B h(a′) implies a ≤A a′.

The category CAlg(Σ) of continuous Σ -algebras has a factorisation system
〈CEΣ ,CMΣ 〉, where CMΣ is the collection of all full monomorphisms in CAlg(Σ)
and CEΣ is the collection of all strongly dense epimorphisms in CAlg(Σ). A con-
tinuous Σ -homomorphism h:A→ B is strongly dense if B has no proper continuous
subalgebra which contains the set-theoretic image of |A| under h. (Note that the
expected notion of a continuous subalgebra is determined by the chosen collection
of factorisation monomorphisms CMΣ .) This is equivalent to the requirement that
every element of |B| is the least upper bound of a countable chain of least upper
bounds of countable chains of . . . of elements in the set-theoretic image of |A| un-
der h. Consequently, given a strongly dense continuous homomorphism h:A → B,
every element of |B| is the least upper bound of a subset (not necessarily a chain
though) of the set-theoretic image of |A| under h, which yields the key argument to
show that CAlg(Σ) is CEΣ -co-well-powered.

Exercise. Prove that 〈CEΣ ,CMΣ 〉 is indeed a factorisation system for CAlg(Σ).
Also, try to construct an example of an epimorphism in CAlg(Σ) which is not
strongly dense. ��
Exercise 3.3.15. Characterise reachable algebras in PAlg(Σ) and in CAlg(Σ). In-
stantiate the facts listed in Theorem 3.3.8 to these categories. ��

3.4 Functors and natural transformations

As explained in the introduction to this chapter, for category theorists it is tanta-
mount to heresy to consider objects in the absence of morphisms between them. Up
to now we have departed from this dogma in our study of categories themselves;
in the previous sections of this chapter we have worked with categories without in-
troducing any notion of a morphism between them. We hasten here to correct this
lapse: morphisms between categories are functors, to be introduced in this section.
And to atone we will also introduce natural transformations, which are morphisms
between functors.
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3.4.1 Functors

A category consists of a collection of objects and a collection of morphisms with
structure given by the choice of sources and targets of morphism, by the definition
of composition and by the identities that are assumed to exist. As in other standard
cases of collections with additional structure, morphisms between categories are
maps between the collections of objects and morphisms, respectively, that preserve
this structure.

Definition 3.4.1 (Functor). A functor F:K1 → K2 from a category K1 to a cate-
gory K2 consists of:

• a function FOb j: |K1| → |K2|; and
• for each A,B ∈ |K1|, a function FA,B:K1(A,B)→ K2(FOb j(A),FOb j(B))

such that:

• F preserves identities: FA,A(idA) = idFOb j(A) for all objects A ∈ |K|; and
• F preserves composition: for all morphisms f :A → B and g:B → C in K1,

FA,C( f ;g) = FA,B( f ) ;FB,C(g). ��
Notation. We use F to refer to both FOb j and FA,B for all A,B ∈ |K1|. ��

In the literature, functors as defined above are sometimes referred to as covariant
functors. A contravariant functor is then defined in the same way except that it “re-
verses the direction of morphisms”, i.e. a contravariant functor F:K1 → K2 maps
a K1-morphism f :A → B to a K2-morphism F( f ):F(B)→ F(A). Even though we
will use this terminology sometimes, no new formal definition is required: a con-
travariant functor from K1 to K2 is a (covariant) functor from K1op to K2 (cf.
Examples 3.4.7 and 3.4.29 below).

Example 3.4.2 (Identity functor). A functor IdK:K→K is defined in the obvious
way. ��
Example 3.4.3 (Inclusion functor). If K1 is a subcategory of K2 then the inclusion
I:K1 ↪→ K2 is a functor. ��
Example 3.4.4 (Constant functor). For any A ∈ |K2|, CA:K1 → K2 is a functor,
where CA(B) = A for any B ∈ |K1| and CA( f ) = idA for any K1-morphism f . ��
Example 3.4.5 (Opposite functor). For any functor F:K1→K2, there is a functor
Fop:K1op →K2op which is the “same” as F, but is considered between the opposite
categories. ��
Example 3.4.6 (Power set functor). P:Set → Set is a functor, where P(X) = {Y |
Y ⊆ X} for any set X , and for any function f :X → X ′, P( f ):P(X) → P(X ′) is
defined by P( f )(Y ) = { f (y) | y ∈ Y}. ��
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Example 3.4.7 (Contravariant power set functor). P−1:Setop → Set is a func-
tor, where P−1(X) = {Y | Y ⊆ X} for any set X , and for any morphism f :X → X ′
in Setop (i.e. any function f :X ′ → X), P−1( f ):P−1(X) → P−1(X ′) is defined by
P−1( f )(Y ) = {x′ ∈ X ′ | f (x′) ∈ Y}. ��
Example 3.4.8 (Sequence functor). Seq:Set → Mon is a functor, where Mon is
the category of monoids with monoid homomorphisms as morphisms. For any set
X ∈ |Set|, Seq(X) = 〈X∗,ˆ,ε〉, where X∗ is the set of all finite sequences of elements
from X , ˆ is sequence concatenation, and ε is the empty sequence. Then, for any
function f :X → Y , Seq( f ):Seq(X) → Seq(Y ) is the homomorphism defined by
Seq( f )(x1 . . .xn) = f (x1) . . . f (xn). ��
Example 3.4.9 (Reduct functor). Given an algebraic signature morphism σ :Σ →
Σ ′, σ :Alg(Σ ′)→ Alg(Σ) is a functor that takes each Σ ′-algebra A′ to its σ -reduct
A′ σ ∈ |Alg(Σ)| and each Σ ′-homomorphism h′ to its σ -reduct h′ σ (cf. Defini-
tions 1.5.4 and 1.5.8). ��
Example 3.4.10 (Forgetful functor). For any signature Σ = 〈S,Ω〉, | |:Alg(Σ)→
SetS is the functor that takes each Σ -algebra A ∈ |Alg(Σ)| to its S-sorted carrier set
|A| ∈ |SetS| and each Σ -homomorphism to its underlying S-sorted function. (The
functor | | should really be decorated with a subscript identifying the signature Σ
— we hope that leaving it out will not confuse the reader.) These special reduct
functors | | will be referred to as forgetful functors.

More generally, the term “forgetful functor” is used to refer to any functor that,
intuitively, forgets the structure of objects in a category, mapping any structured
object to its underlying unstructured set of elements. Thus, in addition to covering
examples that exactly fit the above definition (like the functor mapping any monoid
to the set of its elements), this also covers examples like the functor that maps any
topological space to the set of its points and the functor that forgets the metric of a
metric space. ��
Example 3.4.11 (Term algebra). For any signature Σ = 〈S,Ω〉, there is a functor
TΣ :SetS →Alg(Σ) that maps any S-sorted set X to the term algebra TΣ (X), and any
S-sorted function f :X →Y to the unique Σ -homomorphism f #:TΣ (X)→ TΣ (Y ) that
extends f . ��
Exercise 3.4.12. For any signature Σ and set E of Σ -equations, define the quotient
functor /E :Alg(Σ)→ Alg(Σ) such that for any Σ -algebra A, A/E is the quotient
of A by the least congruence & on A generated by E , that is, such that tA(v)& t ′A(v)
for each Σ -equation ∀X • t = t ′ in E and valuation v:X → |A|. Check that what you
define is a functor! ��
Exercise 3.4.13. For any signature Σ , define the restriction functor RΣ :Alg(Σ)→
Alg(Σ) such that for any Σ -algebra A, RΣ (A) is the reachable subalgebra of A.

More generally: let K be an arbitrary category with an initial object and a factori-
sation system, and let KR be the full subcategory of K determined by the collection
of all reachable objects in K (cf. Section 3.3). Define a functor RK:K → KR that
maps any A ∈ |K| to the (unique up to isomorphism) reachable subobject of A. ��



130 3 Category theory

Example 3.4.14 (Projection functor). For any two categories K1 and K2, the pro-
jection functors ΠK1:K1×K2 → K1 and ΠK2:K1×K2 → K2 are defined by
ΠK1(〈A,B〉) = A and ΠK1(〈 f ,g〉) = f , and ΠK2(〈A,B〉) = B and ΠK2(〈 f ,g〉) = g.

��
Example 3.4.15 (Hom-functor). Let K be a locally small category. Hom:Kop ×
K → Set is a functor, where Hom(〈A,B〉) = K(A,B) and

Hom(〈 f :A′ → A,g:B → B′〉︸ ︷︷ ︸
∈Kop×K(〈A,B〉,〈A′,B′〉)

)( h:A → B︸ ︷︷ ︸
∈Hom(〈A,B〉)

) = f ;h;g︸ ︷︷ ︸
∈Hom(〈A′,B′〉)

.

B

A A′

B′�
g

� f

�

h

�

��
Exercise 3.4.16 (Exponent functor). For any set X define a functor [ →X ]:Setop →
Set mapping any set to the set of all functions from it to X . That is, for any set
Y ∈ |Set|, [Y→X ] is the set of all functions from Y to X and then for any morphism
f :Y →Y ′ in Setop, which is a function f :Y ′ →Y in Set, [ f→X ]: [Y→X ]→ [Y ′→X ]
is defined by pre-composition with f as follows: [ f→X ](g) = f ;g. ��
Example 3.4.17 (Converting partial function to total function). Recall the cat-
egory Pfn of sets with partial functions (Example 3.1.8) and let Set⊥ be the sub-
category of Set having sets containing a distinguished element ⊥ as objects and
⊥-preserving functions as morphisms. Then Tot:Pfn → Set⊥ converts partial func-
tions to total functions by using ⊥ to represent “undefined” as follows:

• Tot(X) = X �{⊥}
• Tot( f )(x) =

{
f (x) if f (x) is defined
⊥ otherwise

Exercise. Strictly speaking, the above definition is not well formed: according to the
definition of disjoint union, if X is non-empty then X �⊆X�{⊥}; thus, given a partial
function f :X → Y , Tot( f ) as defined above need not be a function from Tot(X) to
Tot(Y ). Restate this definition formally, using explicit injections ι1:X → X �{⊥}
and ι2:{⊥}→ X �{⊥} for each set X . ��
Example 3.4.18 (Converting partial algebra to total algebra). The same “to-
talisation” idea as used in the above Example 3.4.17 yields a totalisation functor
TotΣ :PAlgstr(Σ)→ Alg(Σ), for each signature Σ , mapping partial Σ -algebras and
their strong homomorphisms to total Σ -algebras and their homomorphisms (cf. Def-
initions 2.7.30 and 2.7.31, and Example 3.3.13).

Let Σ = 〈S,Ω〉 ∈ |AlgSig|. TotΣ :PAlgstr(Σ)→ Alg(Σ) is defined as follows:
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• For any partial Σ -algebra A ∈ |PAlgstr(Σ)|, TotΣ (A) = A⊥ ∈ |Alg(Σ)| is the (to-
tal) Σ -algebra underlying A; see Definition 2.7.30.

• For any strong Σ -homomorphism h:A → B (which is a family of total functions
between the corresponding carriers of A and B), TotΣ (h):TotΣ (A)→ TotΣ (B) is
(the family of functions in) h extended to map ⊥ to ⊥.

Exercise. Check that TotΣ (h):TotΣ (A)→ TotΣ (B) is indeed a Σ -homomorphism
for any strong Σ -homomorphism h:A → B. Can you extend TotΣ to weak Σ -
homomorphisms between partial algebras? ��
Exercise 3.4.19. Do the above functors map monomorphisms to monomorphisms?
What about epimorphisms? Isomorphisms? (Co)cones? (Co)limits? Anything else
you can think of? ��
Definition 3.4.20 (Diagram translation). Given a functor F:K1 → K2 and a dia-
gram D in K1, the translation of D by F is defined as the diagram F(D) in K2 with
the same underlying graph as D and with the labels of D translated by F:

• G(F(D)) = G(D);
• for each n ∈ |G(D)|Node, F(D)n = F(Dn); and
• for each e ∈ |G(D)|Edge, F(D)e = F(De). ��
Exercise 3.4.21 (Diagram as functor). A diagram D in K corresponds to a functor
from the category Path(G(D)) of paths in the underlying graph of D to K. Formalise
this. HINT: Given a diagram D, define a functor that maps each path e1 . . .en in G(D)
to De1 ; . . . ;Den . Do not forget the case where n = 0.

Conversely, any functor into K with small source category may be considered
as a diagram in K: given a small category J, a diagram in K on the underlying
graph G(J) of J may be obtained from any functor D:J → K in the obvious way. In
general though, not every diagram with the underlying graph G(J) is so given by a
functor from J. Show an example of a category K and a small category J such that
all (diagrams given by) functors D:J→K have limits in K but not all diagrams with
the underlying graph G(J) have limits in K. Prove though that K is (co)complete if
and only if (co)limits for all functors D:J → K with small J exist in K.

Then, anticipating Definition 3.4.27, define the translation of a diagram by a
functor in terms of functor composition. ��
Definition 3.4.22 (Functor continuity and cocontinuity). A functor F:K1 → K2

is (finitely) continuous if it preserves the existing limits of all (finite) diagrams in
K1, that is, if for any (finite) diagram D in K1, F maps any limiting cone over D to
a limiting cone over F(D).

A functor F:K1 → K2 is (finitely) cocontinuous if it preserves the existing co-
limits of all (finite) diagrams in K1, that is, if for any (finite) diagram D in K1, F

maps any colimiting cocone over D to a colimiting cocone over F(D). ��
Exercise 3.4.23. Assuming that K1 is (finitely) complete, use Exercise 3.2.49 to
show that a functor F:K1 → K2 is (finitely) continuous if and only if it preserves
(finite) products and equalisers.
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Similarly, show that F:K1 → K2 is finitely continuous if and only if it preserves
terminal objects and all pullbacks, and it is continuous if and only if it preserves
terminal objects and all wide pullbacks. HINT: Exercises 3.2.48 and 3.2.50.

Dually, give similar characterisation of (finitely) cocontinuous functors, for in-
stance as those that preserve (finite) coproducts and coequalisers. ��
Exercise 3.4.24. Given a set X , show that the functor [ →X ]:Setop → Set from Ex-
ercise 3.4.16 is continuous. HINT: Use Exercise 3.4.23: relying on the explicit con-
structions of (co)products and (co)equalisers in Set, show that the functor maps
any coproduct (disjoint union) of sets 〈Xn〉n∈N to a product of sets of functions
[Xn→X ], n ∈ N, and a coequaliser of functions f ,g:X1 → X2 to an equaliser of (pre-
composition) functions ( f ; ),(g; ): [X2→X ]→ [X1→X ].

You may also want to similarly check which of the examples of functors given
above are (finitely) (co)continuous. ��
Exercise 3.4.25. Consider a category K with a terminal object 1 ∈ |K|. Given any
functor F:K → K′, check that F determines a functor F↓1:K → K′↓F(1) from K to
the slice category of K′-objects over F(1) (Definition 3.1.29), where for any object
A ∈ |K|, F↓1(A) = F(!A), with !A:A → 1 being the unique morphism from A to 1,
and F↓1 coincides with F on morphisms.

Suppose now that K has all pullbacks (so that it is finitely complete) and F pre-
serves them (but we do not require F to preserve the terminal object, so it does not
have to be finitely continuous). Show that F↓1:K → K′↓F(1) is finitely continuous.
HINT: Recall Exercise 3.2.51. By the discussion there, since F preserves pullbacks,
F maps products in K, which are pullbacks of morphisms to 1, to pullbacks in K′ of
morphisms to F(1) — and these are essentially products in K′↓F(1). Moreover, by
the construction, F↓1 preserves the terminal object, and the conclusion follows by
Exercise 3.4.23.

Similarly, show that if K has all wide pullbacks (so that it is complete) and F

preserves them then F↓1:K → K′↓F(1) is continuous. ��
Exercise 3.4.26. Recall the definition of the category TΣ ,E , the algebraic theory
generated by a set E of equations over a signature Σ (cf. Exercise 3.1.16). Show
that those functors from T

op
Σ ,∅ to Set that preserve finite products (where products

in T
op
Σ ,E , that is coproducts in TΣ ,E , are given by concatenation of sequences of sort

names — cf. Exercise 3.2.19 — and products in Set are given by the Cartesian
product) are in a bijective correspondence with Σ -algebras in |Alg(Σ)|. Generalise
this correspondence further to product-preserving functors from T

op
Σ ,E to Set and Σ -

algebras in ModΣ (E ). ��
Definition 3.4.27 (Functor composition). The category Cat (the category of all
categories) is defined as follows:

Objects of Cat: categories;5

Morphisms of Cat: functors;

5 To be cautious about the set-theoretic foundations here, we should rather say small categories.
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Composition in Cat: If F:K1→K2 and G:K2→K3 are functors, then F;G:K1→
K3 is a functor defined as follows: (F;G)Ob j = FOb j;GOb j and (F;G)A,B =
FA,B;GF(A),F(B) for all A,B ∈ K1. ��

Example 3.4.28. In the following we will often use the functor | |:Cat → Set6

which for any category K ∈ |Cat| yields the collection |K| of the objects of this cat-
egory and for each functor F:K → K′ yields its object part |F|= FOb j: |K| → |K′|.

��
Example 3.4.29. Alg:AlgSigop → Cat is a functor, where:

• for any Σ ∈ |AlgSig|, Alg(Σ) is the category of Σ -algebras; and
• for any signature morphism σ :Σ → Σ ′ in AlgSig, Alg(σ) is the reduct functor

σ :Alg(Σ ′)→ Alg(Σ). ��

Exercise 3.4.30. Define a functor Algder:(AlgSigder)op → Cat so that Algder(Σ) =
Alg(Σ) for any signature Σ ∈ |AlgSigder|, and for any derived signature morphism
δ , Algder(δ ) is the δ -reduct as sketched in Definition 1.5.16 and Exercise 1.5.17.

��
Exercise 3.4.31. Define the category Poset (objects: partially ordered sets; mor-
phisms: order-preserving functions). Define the functor from Poset to Cat that maps
a partially ordered set to the corresponding (preorder) category (cf. Example 3.1.3)
and an order-preserving function to the corresponding functor. ��
Exercise 3.4.32. Characterise isomorphisms in Cat. Show that product categories
are products in Cat. What are terminal objects, pullbacks and equalisers in Cat?
Conclude that Cat is complete. HINT: Use constructions analogous to those in Set,
as summarized in Exercise 3.2.53. ��
Exercise 3.4.33. Prove that Alg:AlgSigop → Cat (cf. Example 3.4.29) is continu-
ous, that is, that it maps colimits in the category AlgSig of signatures to limits in the
category Cat of all categories.

HINT: By Exercise 3.4.23 it is enough to show that Alg maps coproducts of
signatures to products of the corresponding categories of algebras and coequalisers
of signature morphisms to equalisers of the corresponding reduct functors.

(Coproducts): Recall that by Exercise 3.2.17, a coproduct of signatures is in fact
their disjoint union. Now, it is easy to see that an algebra over a disjoint union
of a family of signatures may be identified with a tuple of algebras over the
signatures in the family. Since a similar fact holds for homomorphisms, the rest
of the proof in this case is straightforward (cf. Exercise 3.4.32). Notice that this
argument covers the coproduct of the empty family of signatures as well.

6 Again, we should restrict attention to small categories here. Alternatively, in place of Set we
could use the category of all discrete categories, inheriting all of the foundational problems of Cat.
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(Coequalisers): Recall (cf. Exercise 3.2.25) that a coequaliser of two signature
morphisms σ ,σ ′:Σ → Σ ′ is the natural projection p:Σ ′ → (Σ ′/≡), where ≡
is the least equivalence relation on Σ ′ such that σ(x) ≡ σ ′(x) for all sort and
operation names x in Σ (this is just a sketch of the construction). Notice now
that (Σ ′/≡)-algebras correspond exactly to those Σ ′-algebras that have iden-
tical components σ(x) and σ ′(x) for all sort and operation names x in Σ , or
equivalently, to those algebras A′ ∈ |Alg(Σ ′)| for which A′ σ = A′ σ ′ . Moreover,
the correspondence is given by the functor p:Alg(Σ ′/≡)→ Alg(Σ ′). Since a
similar fact holds for homomorphisms, it is straightforward now to prove that

p = Alg(p) is an equaliser of σ = Alg(σ) and σ ′ = Alg(σ ′) (cf. Exer-
cises 3.4.32 and 3.2.23). ��

Exercise 3.4.34 (Amalgamation Lemma for algebras). Consider a pushout in the
category AlgSig of signatures:

Σ

Σ1 Σ2

Σ ′

�
�

��

�
�
��

�
�
��

�
�

��

σ1 σ2

σ ′
1 σ ′

2

Conclude from Exercise 3.4.33 above that for any Σ1-algebra A1 and Σ2-algebra A2
such that A1 σ1 = A2 σ2 , there exists a unique Σ ′-algebra A′ such that A′ σ ′

1
= A1 and

A′ σ ′
2
= A2.

Similarly, for any two homomorphisms h1:A11 → A12 in Alg(Σ1) and h2:A21 →
A22 in Alg(Σ2) such that h1 σ1 = h2 σ2 , there exists a unique Σ ′-homomorphism
h′:A′1 → A′2 such that h′ σ ′

1
= h1 and h′ σ ′

2
= h2. ��

Example 3.4.35. Recall Example 3.2.36 of a simple pushout of algebraic signa-
tures. Let N ∈ |Alg(ΣNat)| be the standard model of natural numbers. Build N1 ∈
|Alg(ΣNatfib)| by adding to N the interpretation of the operation fib as the standard
Fibonacci function, and N2 ∈ |Alg(ΣNatmult)| by adding to N the interpretation of the
operation mult as multiplication. By construction we have N1 ΣNat = N = N2 ΣNat

and so N1 and N2 amalgamate to a unique algebra N′ ∈ |Alg(ΣNatfib,mult)| such that
N′

ΣNatfib
= N1 and N′

ΣNatmult
= N2. Clearly, N′ is the only expansion of N that

defines fib as the Fibonacci function (as N1 does) and mult as multiplication (as N2
does). ��
Exercise 3.4.36. Define initial objects and coproducts in Cat. (HINT: This is easy.)
Try to define coequalisers and then pushouts in Cat. (HINT: This is difficult.) ��
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3.4.2 Natural transformations

Let F:K1 → K2 and G:K1 → K2 be two functors with common source and target
categories.

A transformation from F to G should map the results of F to the results of G. This
means that it should consist of a family of morphisms in K2, one K2-morphism from
F(A) to G(A) for each K1-object A. An extra requirement is that this family should
be compatible with the application of F and G to K1-morphisms, as formalised by
the following definition:

Definition 3.4.37 (Natural transformation). A natural transformation from F to
G, τ:F → G,7 is a family 〈τA:F(A)→ G(A)〉A∈|K1| of K2-morphisms such that for
any A,B ∈ |K1| and K1-morphism f :A → B the following diagram commutes:

K1: K2:

A

B
�

f

F(A)

F(B)

G(A)

G(B)

�τA

�
τB

�

F( f )

�

G( f )

(this property is often referred to as the naturality of the family τ).
Furthermore, τ is a natural isomorphism if for all A∈ |K1|, τA is iso (in K2). ��

Example 3.4.38. The identity transformation idF:F → F, where (idF)A = idF(A), is
a natural isomorphism.

For any morphism f :A → B in a category K2 and for any category K1, there
is a constant natural transformation c f :CA → CB between the constant functors
CA,CB:K1→K2 (cf. Example 3.4.4) defined by (c f )o = f for all objects o ∈ |K1|.

��
Example 3.4.39. The family of singleton functions sing set:IdSet → P, where for
any set X , sing setX :X → P(X) is defined by sing setX (a) = {a}, is a natural trans-
formation.

Let ( )∗ = Seq;| |:Set → Set be the composition of Seq:Set → Mon (Exam-
ple 3.4.8) with the forgetful functor | |:Mon → Set mapping any monoid to its un-
derlying carrier set. The family of singleton functions sing seq:IdSet → ( )∗, where
for any set X , sing seqX :X → X∗ is defined by sing seqX (a) = a (sing seq maps
any element to the singleton sequence consisting of this element only), is a natural
transformation. ��
7 Some authors would use a dotted or double arrow here, writing τ:F →̇ G or τ:F ⇒ G, respec-
tively. We prefer to use the same symbol for all morphisms, and also for natural transformations,
since they are morphisms in certain categories; see Definition 3.4.61 below.
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Exercise 3.4.40. Consider the functor ( )∗:Set → Set mapping any set X to the
set X∗ of sequences over X (cf. Example 3.4.39 above). Show that the following
families of functions (indexed by sets X ∈ |Set|) yield natural transformations from
( )∗ to ( )∗:
• for each k ≥ 0, for n ≥ 0 and x1, . . . ,xn ∈ X ,

stutterk
X (x1 . . .xn) = x1 . . .x1︸ ︷︷ ︸

k times

. . . xn . . .xn︸ ︷︷ ︸
k times

;

• for each k ≥ 0, for n ≥ 0 and x1, . . . ,xn ∈ X ,
repeatk

X (x1 . . .xn) = x1 . . .xn︸ ︷︷ ︸ . . . x1 . . .xn︸ ︷︷ ︸︸ ︷︷ ︸
k times

;

• for n ≥ 0 and x1, . . . ,xn ∈ X ,
reverseX (x1 . . .xn) = xn . . .x1;

• for n ≥ 0 and x1, . . . ,x2n+1 ∈ X ,
oddsX (x1x2x3 . . .x2n) = x1x3 . . .x2n−1 and
oddsX (x1x2x3 . . .x2n+1) = x1x3 . . .x2n+1.

Check which of these functions also yield natural transformations from Seq to Seq

(where Seq:Set → Mon; cf. Example 3.4.8).
The above examples indicate a close link between polymorphic functions as en-

countered in functional programming languages (like Standard ML [MTHM97] or
Haskell [Pey03]) and natural transformations between functors representing poly-
morphic types. This property, often referred to as “parametric polymorphism” (as
opposed to “ad hoc polymorphism”) can be explored to derive some properties of
polymorphic functions directly from their types [Wad89]. ��
Exercise 3.4.41. Recall (Exercise 3.4.26) the correspondence between product-
preserving functors from T

op
Σ ,E to Set and Σ -algebras in |ModΣ (E )|. Show that

this correspondence extends to morphisms: each Σ -homomorphism between alge-
bras gives rise to a natural transformation between the corresponding functors, and
vice versa, each natural transformation between such functors determines a homo-
morphism between the corresponding algebras. HINT: To prove that this yields a
bijective correspondence, first use the naturality condition for product projections
to show that for any natural transformation τ:F → G between product-preserving
functors F,G:T

op
Σ ,E → Set, any sequence s1 . . .sn of sort names (an object in TΣ ,E )

and any 〈a1, . . . ,an〉 ∈ F(s1 . . .sn), τs1...sn(〈a1, . . . ,an〉) = 〈τs1(a1), . . . ,τsn(an)〉. ��
Natural transformations have been introduced as morphisms between functors.

The obvious thing to do next is to define composition of natural transformations.
Traditionally, two different composition operations for natural transformations are
introduced: vertical and horizontal composition. The former is a straightforward
composition of natural transformations between parallel functors. The latter is
somewhat more involved; in a sense, it shows how natural transformations “accu-
mulate” when functors are composed.

Definition 3.4.42 (Vertical composition). Let F1,F2,F3:K1 → K2 be three func-
tors with common source and target categories. Let τ:F1 → F2 and σ :F2 → F3 be
natural transformations:
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�

K1

�






�

K2

F1 �

F2 �

F3 �

�

τ

�

σ

Then the vertical composition of τ and σ , τ;σ :F1 → F3, is defined by (τ;σ)A =
τA;σA (in K2) for all A ∈ |K1|. ��
Exercise 3.4.43. Prove that τ;σ is indeed a natural transformation. ��
Definition 3.4.44 (Horizontal composition). Given two pairs of parallel functors,
F1,F2:K1→K2 and G1,G2:K2→K3, let τ:F1→ F2 and σ :G1→G2 be natural
transformations:�






�
K1

�






�
K2

�






�
K3

F1 �

F2 �

G1 �

G2 �
�

τ
�

σ

Then the horizontal composition of τ and σ , τ·σ :F1;G1 → F2;G2, is defined by
(τ·σ)A = G1(τA);σF2(A) = σF1(A);G2(τA) (in K3) for all A ∈ |K1|:

F1(A)

F2(A)
�

τA

G1(F1(A))

G1(F2(A))
�

G1(τA)

G2(F1(A))

G2(F2(A))
�

G2(τA)

�σF1(A)

�
σF2(A)

		
		

		
		

		
		

		
		

		
		�

(τ·σ)A

��
Exercise 3.4.45. Prove that the above diagram commutes, and so (τ·σ)A is well
defined. Then prove that τ·σ is indeed a natural transformation. HINT:
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A

B G1(F1(B))

G1(F1(A)) G2(F2(A))

G2(F2(B))

G1(F2(A))

G1(F2(B))

�

f

�

G1(F1( f ))

�

G2(F2( f ))

�

G1(F2( f ))

								�
G1(τA)

								�
G1(τB)

�
�
�
��σF2(A)

�
�
���

σF2(B)

�(τ·σ)A

�(τ·σ)B

��
Definition 3.4.46 (Multiplication by a functor). A special case of the horizontal
composition of natural transformations is the multiplication of a natural transforma-
tion by a functor. Under the assumptions of Definition 3.4.44, we define:

• τ·G1 = τ·idG1:F1;G1 → F2;G1, or more explicitly, (τ·G1)A = G1(τA) for A ∈
|K1|;

• F1·σ = idF1·σ :F1;G1 → F1;G2, or more explicitly, (F1·σ)A = σF1(A) for A ∈
|K1|. ��

Exercise 3.4.47. Show that τ·σ = (τ ·G1);(F2·σ) = (F1·σ);(τ·G2). ��
Exercise 3.4.48 (Interchange law). Consider any categories K1, K2, K3, func-
tors F1,F2,F3:K1 → K2 and G1,G2,G3:K2 → K3, and natural transformations
τ:F1 → F2, τ ′:F2 → F3, σ :G1 → G2, and σ ′:G2 → G3:�






�

K1

�






�

K2

�






�

K3

F1 �

F2 �

F3 �

G1 �

G2 �

G3 �

�

τ

�
τ ′

�

σ

�
σ ′

Show that (τ;τ ′)·(σ ;σ ′) = (τ·σ);(τ ′·σ ′). ��
Exercise 3.4.49. Recall (Exercise 3.4.21) that any functor D:J → K with small
source category J may be considered as a diagram in K. Show that cocones over
the diagram (given by) D:J → K are natural transformations from D to constant
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functors. Use (vertical) composition of such cocones with constant natural transfor-
mations (Example 3.4.38) to rephrase the definition of a colimit. Characterise cones
and limits in a similar way. ��

3.4.3 Constructing categories, revisited

3.4.3.1 Comma categories

Definition 3.4.50 (Comma category). Let F:K1→K and G:K2→K be two func-
tors with a common target category. The comma category (F,G) is defined by:

Objects of (F,G): triples 〈A1, f ,A2〉, where A1 ∈ |K1|, A2 ∈ |K2| and f :F(A1)→
G(A2) is a morphism in K;

Morphisms of (F,G): a morphism from 〈A1, f ,A2〉 to 〈B1,g,B2〉 is a pair 〈h1,h2〉
of morphisms where h1:A1→ B1 (in K1) and h2:A2→ B2 (in K2) such that (the
middle part of) the following diagram commutes:

A1

B1
�

h1

F(A1)

F(B1)

G(A2)

G(B2)

�f

�
g

�

F(h1)

�

G(h2)

A2

B2
�

h2

Composition in (F,G): 〈h1,h2〉;〈h1′,h2′〉= 〈h1;h1′,h2;h2′〉. ��
Exercise 3.4.51. Construct the category K→ of K-morphisms and the category K↓A
of K-objects over A ∈ |K| as comma categories (cf. Definitions 3.1.28 and 3.1.29).
HINT: Consider categories (IdK,IdK) and (IdK ,C

1
A), where IdK is the identity func-

tor on K and C1
A:1 → K is a constant functor from the terminal category 1. ��

Example 3.4.52. Another way of presenting the category Graph is as the comma
category (IdSet,CP), where CP:Set → Set is the Cartesian product functor defined
by CP(X) = X ×X and CP( f :X → Y )〈x1,x2〉 = 〈 f (x1), f (x2)〉. To see this, write
an object in |(IdSet,CP)| as 〈E,〈source:E → N, target:E → N〉,N〉. ��
Exercise 3.4.53. Another way to present the category of signatures AlgSig is as the
comma category (IdSet,( )+), where ( )+:Set → Set is the functor which for any
set X ∈ |Set| yields the set X+ of all finite non-empty sequences of elements from
X .

First, complete the definition of the functor ( )+. Then, since X+ = X∗ × X ,
any object in |(IdSet,( )+)| may be written as 〈Ω ,〈arity:Ω → S∗,sort:Ω → S〉,S〉.
Indicate now why the category defined is almost, but not quite, the same as the
category AlgSig of signatures (cf. Section 1.2 and Exercise 3.4.76 below). ��
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Exercise 3.4.54. Prove that if K1 and K2 are (finitely) complete categories, F:K1→
K is a functor, and G:K2→K is a (finitely) continuous functor, then the comma cat-
egory (F,G) is (finitely) complete. Moreover, the obvious projections from (F,G)
to K1 and K2, respectively, are (finitely) continuous. HINT: To construct a limit of
a diagram in (F,G), start by building limits of the projections of the diagram to
K1 and K2, respectively, and then use the continuity property of G to complete the
construction of the limit object in (F,G). If the notation in the proof gets too heavy,
use Exercise 3.2.49 and spell the details out for the construction of products and
equalisers.

Check that this construction of limits in (F,G) works for diagrams of any given
shape (given by the graph, or the class of graphs, underlying the diagrams): if K1

and K2 have limits of diagrams of a given shape, and G preserves them, then (F,G)
has limits of diagrams of this shape, and the projection functors preserve them.

State and prove the analogous facts about cocompleteness of (F,G). HINT:
Clearly, appropriate colimits must exist in K1 and K2, but unlike with limits, it
is F that must preserve them. ��
Exercise 3.4.55. Use Exercises 3.4.51 and 3.4.54 to show that if K is a (finitely)
complete category then so is the category K→ of morphisms in K.

Then, without looking at Exercise 3.2.51, use Exercises 3.4.51 and 3.4.54 to
prove that if a category K has limits of all (finite) non-empty connected diagrams
then so does the slice category K↓A of its objects over A ∈ |K|, and that the obvious
forgetful functor from K↓A to K preserves these limits. Notice though that this does
not generalise to arbitrary (finite) limits that exist in K↓A if K is (finitely) complete
by Exercise 3.2.51.

Check that your proof shows a stronger fact: without assuming the existence of
any limits in K, the forgetful functor from K↓A to K creates limits of all non-empty
connected diagrams, that is, for any such diagram D↓A in K↓A, if its projection D to
K has a limit in K then there is a unique cocone on D↓A in K↓A that projects to this
limit, and this cocone is a limit of D↓A in K↓A. ��
Exercise 3.4.56. Show that if K has all pullbacks and a terminal object (so it is
finitely complete) and a functor F:K → K′ preserves pullbacks, then F also pre-
serves the limits of all finite non-empty connected diagrams. HINT: Put together
Exercises 3.4.25 and 3.4.55.

Similarly, show that if K has all wide pullbacks and a terminal object (so it is
complete) and a functor F:K → K′ preserves wide pullbacks, then F also preserves
the limits of all non-empty connected diagrams. ��

3.4.3.2 Indexed categories

We frequently need to deal not just with a single category, but rather with a family
of categories, “parameterised” by a certain collection of indices. The categories of
S-sorted sets (one for each set S) and the categories of Σ -algebras (one for each
signature Σ ) are typical examples. A crucial property here is that all the categories in
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such a family are defined in a uniform way, and consequently any change of an index
induces a smooth translation between the corresponding component categories. In
typical examples, the translation goes in the opposite direction than the change of
index, which leads to the following definition:

Definition 3.4.57 (Indexed category). An indexed category (over an index category
Ind) is a functor C:Indop → Cat. ��
Example 3.4.58. Alg:AlgSigop →Cat is an indexed category (cf. Example 3.4.29).

��
Definition 3.4.59 (Grothendieck construction). Any indexed category C:Indop →
Cat gives rise to a “flattened” Grothendieck category Groth(C) defined as follows:

Objects of Groth(C): pairs 〈i,A〉 for all i ∈ |Ind| and A ∈ |C(i)|;
Morphisms of Groth(C): a morphism from 〈i,A〉 to 〈 j,B〉 is a pair 〈σ , f 〉:〈i,A〉 →
〈 j,B〉, where σ : i → j is an Ind-morphism and f :A → C(σ)(B) is a C(i)-
morphism;

Composition in Groth(C): 〈σ , f 〉;〈σ ′, f ′〉= 〈σ ;σ ′, f ;C(σ)( f ′)〉. ��
Exercise 3.4.60. Show that if Ind is complete, C(i) is complete for all i∈ |Ind|, and
C(σ) is continuous for all σ ∈ Ind, then Groth(C) is complete.

HINT: Given a diagram in the Grothendieck category Groth(C), first consider
its obvious projection on the index category Ind. Since Ind is complete, this has a
limit l ∈ |Ind|. Using the functors assigned by C to the projection morphism of the
limit, “translate” all the nodes and edges of the diagram to the category C(l), thus
obtaining a diagram in C(l). Since C(l) is complete, it has a limit. Check that the
projection morphisms of the limit of the diagram constructed in Ind when paired
with the corresponding projection morphisms of the limit of the diagram in C(l)
form the limit of the original diagram in Groth(C).

To make the construction manageable, consider only products and equalisers:
this is sufficient by Exercise 3.2.49. ��

3.4.3.3 Functor categories

Definition 3.4.61 (Functor category). Let K1 and K2 be categories.8 The functor
category [K1→K2] is defined by:

Objects of [K1→K2]: functors from K1 to K2;
Morphisms of [K1→K2]: natural transformations;
Composition in [K1→K2]: vertical composition. ��
Exercise 3.4.62. Define the category SetS of S-sorted sets as a functor category. ��
Exercise 3.4.63. For any category K, define its morphism category K→ as the cate-
gory of functors [2→K]. ��
8 To be cautious about set-theoretic foundations, one may want to assume that K1 is small.
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Exercise 3.4.64. Let K1 and K2 be categories. Show that if K2 is (finitely) com-
plete then so is the functor category [K1→K2]. State and show the dual fact as well.
HINT: The limit of any diagram in [K1→K2] may be constructed “pointwise”, for
each object in |K1| separately. More precisely, using Exercise 3.2.49 to simplify
the notational burden: consider any family of functors 〈Fn:K1 → K2〉n∈N . For each
X ∈ |K1|, let Q(X)∈ |K2|with projections (πn)X :Q(X)→ Fn(X), n∈N, be a prod-
uct of 〈Fn(X)〉n∈N in K2. Check that there is a unique way to extend Q to a functor
Q:K1 → K2 so that all πn:Q → Fn, n ∈ N, become natural transformations. Show
that Q with projections 〈πn〉n∈N is a product of 〈Fn:K1 → K2〉n∈N in [K1→K2].
Then proceed similarly with equalisers: consider functors F,F′:K1 → K2 and nat-
ural transformations τ1,τ2:F → F′. For each X ∈ |K1|, let τX :Q′(X) → F(X) be
an equaliser of (τ1)X ,(τ2)X :F(X) → F′(X) in K2. This yields a unique functor
Q′:K1 → K2 such that τ:Q′ → F is a natural transformation, which is an equaliser
of τ1,τ2 in [K1→K2]. ��
Exercise 3.4.65. Let K1, K1′ and K2 be categories. Show how any functor F:K1→
K1′ induces a functor (F; ): [K1′→K2]→ [K1→K2]. Relying on the construction
outlined in Exercise 3.4.64 and assuming that K2 is (finitely) complete, show that
this functor is (finitely) continuous.

Prove also that this yields a functor [ →K2]:Catop →Cat9 (cf. Exercise 3.4.16).
��

Exercise 3.4.66. For any category K, define a category Funct(K) of functors into
K as follows:

Objects of Funct(K): functors F:K′ → K into K;
Morphisms of Funct(K): a morphism from F:K1 → K to G:K2 → K is a pair
〈ΦΦ ,ρ〉, where ΦΦ :K1 → K2 is a functor and ρ:F → ΦΦ ;G is a natural transforma-
tion (between functors from K1 to K);

Composition in Funct(K): 〈ΦΦ ,ρ〉;〈ΦΦ ′,ρ ′〉= 〈ΦΦ ;ΦΦ ′,ρ;(ΦΦ ·ρ ′)〉.
Show how the category Funct(K) arises from the Grothendieck construction of

Definition 3.4.59 for the functor [ →K] as defined in the previous exercise.10 ��
Exercise 3.4.67. Show that if K is a (finitely) complete category then the category
Funct(K) of functors into K is (finitely) complete as well. HINT: You may construct
the limits in Funct(K) directly, perhaps using Exercise 3.2.49. Alternatively, rely on
the construction of Funct(K) via the Grothendieck construction (Definition 3.4.59)
for the functor [ →K]:Catop →Cat and on Exercise 3.4.60; recall that Cat is com-
plete by Exercise 3.4.32, for any category K1, [K1→K] is (finitely) complete by
Exercise 3.4.64, and for every functor F:K1 → K2, (F; ): [K2→K]→ [K1→K] is
(finitely) continuous by Exercise 3.4.65. ��
Exercise 3.4.68. Show that if a category K1 has a factorisation system (cf. Sec-
tion 3.3) then for any category K2, the functor category [K2→K1] has a factorisa-
tion system as well.

9 Requiring K2 to be small would help to resolve potential foundational problems here.
10 So, for foundational reasons, one may prefer to keep all categories small around here as well.
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HINT: Let 〈E1,M1〉 be a factorisation system for K1. Put E = {ε ∈ [K2→K1] |
εA ∈ E1 for A ∈ |K2|} and M = {η ∈ [K2→K1] | ηA ∈ M1 for A ∈ |K2|}. Now,
to construct an 〈E,M〉-factorisation of a natural transformation τ:F → G be-
tween functors F,G:K2 → K1, first for each object A ∈ |K2| obtain an 〈E1,M1〉-
factorisation of τA, say τA = εA;ηA with εA ∈E1 and ηA ∈M1, and εA:F(A)→H(A),
ηA:H(A) → G(A) for some H(A) ∈ |K1|. Then use the diagonal fill-in lemma
(Lemma 3.3.4) to extend the mapping H: |K2| → |K1| to a functor H:K2 → K1

such that ε:F → H and η :H → G are natural transformations. ��

3.4.3.4 Equivalence of categories

Definition 3.4.69 (Isomorphic categories). Two categories K1 and K2 are isomor-
phic if there are functors F:K1 → K2 and F−1:K2 → K1 such that F;F−1 = IdK1

and F−1;F = IdK2. ��
In other words, we say that two categories are isomorphic if they are isomorphic

as objects of Cat. As with isomorphic objects of other kinds, we will view isomor-
phic categories as abstractly the same. It turns out, however, that in this case there
is a coarser relation which allows us to identify categories that have all the same
categorical properties, even though they may not be isomorphic.

Definition 3.4.70 (Equivalent categories). K1 and K2 are equivalent if there are
functors F:K1 → K2 and G:K2 → K1 and natural isomorphisms τ:IdK1 → F;G
and σ :G;F → IdK2. ��

To characterise equivalent categories, we need one more concept:

Definition 3.4.71 (Skeletal category). A category K is skeletal iff any two isomor-
phic K-objects are identical. A skeleton of K is any maximal skeletal subcategory
of K. ��
Exercise 3.4.72. Prove that two categories are equivalent iff they have isomorphic
skeletons. ��

Thus, intuitively, two categories are equivalent if and only if they differ only in
the number of isomorphic copies of corresponding objects.

Example 3.4.73. The category FinSet of all finite sets is equivalent to its full sub-
category of all natural numbers, where any natural number n is defined as the set
{0, . . . ,n− 1} of all natural numbers smaller than n. In fact, the latter is a skeleton
of FinSet. Similarly, the category Set of all sets is equivalent to its full subcategory
of all ordinals. ��
Exercise 3.4.74. Show that for any signature Σ and set E of Σ -equations, the full
subcategory of TΣ/E given by the finite sets of variables is equivalent to the cate-
gory TΣ ,E (cf. Exercises 3.1.15 and 3.1.16). ��
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Exercise 3.4.75. Let K1 and K2 be equivalent categories. Show that if K1 is
(finitely) (co)complete then so is K2. ��
Exercise 3.4.76. Recall Exercise 3.4.53. As indicated there, categories AlgSig and
(IdSet,( )+) are not isomorphic. Show that they are equivalent. Then, using Exer-
cises 3.4.75 and 3.4.54, conclude from this that AlgSig is complete and cocomplete.

��

3.5 Adjoints

Recall Facts 1.4.4 and 1.4.10:

Fact 1.4.4. For any Σ -algebra A and S-sorted function v:X → |A| there is exactly
one Σ -homomorphism v#:TΣ (X) → A which extends v, i.e. such that v#

s (ιX (x)) =
vs(x) for all s ∈ S, x ∈ Xs, where ιX :X → |TΣ (X)| is the embedding that maps each
variable in X to the corresponding term. ��
Fact 1.4.10. This property defines TΣ (X) up to isomorphism: if B is a Σ -algebra
and η :X → |B| is an S-sorted function such that for any Σ -algebra A and S-sorted
function v:X → |A| there is a unique Σ -homomorphism v$:B→ A such that η ;|v$|=
v, then B is isomorphic to TΣ (X). ��

The construction of the algebra of Σ -terms is one example of an adjoint functor
(it is left adjoint to the functor | |:Alg(Σ)→ Setsorts(Σ)). The general concept of an
adjoint functor, to which this section is devoted, has many other important instances.
In fact, [Gog91a] goes so far as to say:

Any canonical construction from widgets to whatsits is an adjoint of another
functor, from whatsits to widgets.

3.5.1 Free objects

Let K1 and K2 be categories, G:K2→K1 be a functor, and A1 be an object of K1.

Definition 3.5.1 (Free object). A free object over A1 w.r.t. G is a K2-object A2
together with a K1-morphism ηA1:A1→G(A2) such that for any K2-object B2 and
K1-morphism f :A1 → G(B2) there is a unique K2-morphism f #:A2 → B2 such
that ηA1;G( f #) = f .
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K1 K2� G

A1 G(A2)

G(B2)

�ηA1

�

G( f #)

�
�
�
�
�
���

f

A2

B2
�

f #

ηA1 is called the unit morphism. ��
Example 3.5.2. Let Σ = 〈S,Ω〉 be an arbitrary signature. Consider the forgetful
functor | |:Alg(Σ)→ SetS. Fact 1.4.4 asserts that for any S-sorted set X , the term
algebra TΣ (X) with the inclusion ηX :X ↪→ |TΣ (X)| is a free object over X w.r.t. | |.

��
Exercise 3.5.3. Define free monoids and the path categories Path(G) as free objects
w.r.t. some obvious functors. Then, look around at the areas of mathematics with
which you are familiar for more examples. For instance, check that free groups and
discrete topologies, (ideal) completion of partial orders, of ordered algebras, and so
on, may be defined as free objects w.r.t. some straightforward functors. ��
Exercise 3.5.4. Prove that any free object over A1 w.r.t. G is an initial object in the
comma category (CA1,G), where CA1:1 → K1 is the constant functor. Conclude
that a free object over A1 w.r.t. G is unique up to isomorphism. ��
Exercise 3.5.5. Prove that if A2∈ |K2| is a free object over A1∈ |K1|w.r.t. G:K2→
K1, then for any B2 ∈ |K2|, the function ( )#:K1(A1,G(B2))→ K2(A2,B2) is a
bijection.

Check that one consequence of this is that two morphisms g,h:A2→ B2 coincide
(in K2) whenever ηA1;G(g) = ηA1;G(h) in K1. ��

3.5.2 Left adjoints

Let K1 and K2 be categories and G:K2 → K1 be a functor. So far we have con-
sidered free objects w.r.t. G one by one, without relating them with each other. One
crucial property is that the construction of free objects, if they exist, is functorial.

Proposition 3.5.6. If for any A1 ∈ |K1| there is a free object over A1 w.r.t. G, say
F(A1) ∈ |K2| with unit morphism ηA1:A1 → G(F(A1)) (in K1), then A1 �→ F(A1)
and f ∈K1(A1,B1) �→ ( f ;ηB1)

# ∈K2(F(A1),F(B1)) determine a functor F:K1→
K2.
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K1 K2� G

A1 G(F(A1))

B1 G(F(B1))

�ηA1

�ηB1

�

f

�

G(F( f ))

F(A1)

F(B1)
�

F( f ) = ( f ;ηB1)
#

Proof. F preserves identities: F(idA1) = (idA1;ηA1)
# = idF(A1) follows from the fact

that the following diagram commutes:

A1

A1

G(F(A1))

G(F(A1))

�

idA1

�

idG(F(A1)) = G(idF(A1))

�ηA1

�ηA1

F preserves composition: Since the following diagram commutes,

A1

B1

G(F(A1))

G(F(B1))
�

f

�

G(F( f ))

�ηA1

�ηB1

C1 G(F(C1))
�

g

�

G(F(g))

�ηC1



��

G(F( f ));G(F(g)) = G(F( f );F(g))

it follows that F( f ;g) = ( f ;g;ηC1)
# = F( f );F(g). ��

Exercise 3.5.7. Check that η :IdK1 → F;G in Proposition 3.5.6 is a natural transfor-
mation. ��
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Definition 3.5.8 (Left adjoint). Let F:K1 → K2 and G:K2 → K1 be functors and
η :IdK1 → F;G be a natural transformation. F is left adjoint to G with unit η if for
any A1∈ |K1|, F(A1) with unit morphism ηA1:A1→G(F(A1)) is a free object over
A1 w.r.t. G. ��

Before we give any examples, let us prove a very important property of left ad-
joints.

Proposition 3.5.9. A left adjoint to G is unique up to (natural) isomorphism: if F

and F′ are left adjoints of G with units η and η ′ respectively, then there is a natural
isomorphism τ:F → F′ such that η ;(τ ·G) = η ′.

A1

G(F(A1))

G(F′(A1))







�ηA1

						�η ′
A1 �

G(τA1) = (τ ·G)A1

F(A1)

F′(A1)
�

τA1

Proof. First notice that for any f ∈ K1(A1,B1), F( f ) = ( f ;ηB1)
# and F′( f ) =

( f ;η ′
B1)

#′ .
Then, for A1 ∈ |K1|, define τA1 = (η ′

A1)
# and τ−1

A1 = (ηA1)
#′ . Then τA1;τ−1

A1 =
idF(A1) since the following diagrams commute,

A1

G(F(A1))

G(F′(A1))

G(F(A1))

�
�
�
�
�
�
��

ηA1

�η ′
A1

�
�
�
�
�
�
��

ηA1

�

G(τA1)

�

G(τ−1
A1 )

	

��

G(τA1;τ−1
A1 )

A1

G(F(A1))

G(F(A1))







�ηA1

						�
ηA1 �

G(idF(A1))

and τ−1
A1 ;τA1 = idF′(A1) by a similar argument.

Finally, for f :A1 → B1 (in K1), the following diagrams commute:
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A1 G(F(A1))

G(F′(A1))

�ηA1

									�
η ′

A1

�

G(τA1)

B1 G(F′(B1))

G(F(B1))

�η ′
B1

									�

ηB1

�

G(τ−1
B1 )

�

f

�

G(F′( f ))

A1 G(F(A1))�ηA1

�

G(F( f ))

B1

G(F(B1))

									�

ηB1

�

f

Thus, F( f ) = τA1;F′( f );τ−1
B1 . This proves that F( f );τB1 = τA1;F′( f ), and hence that

τ:F → F′ is natural. ��
Example 3.5.10. For any signature Σ = 〈S,Ω〉, the functor TΣ :SetS → Alg(Σ)
is left adjoint to the forgetful functor | |:Alg(Σ) → SetS (cf. Examples 3.4.11
and 3.4.9).

The functor Seq:Set → Mon is left adjoint to the forgetful functor | |:Mon →
Set which takes a monoid to its underlying set of elements. The unit is the natural
transformation sing seq:IdSet → Seq;| | (cf. Examples 3.4.8 and 3.4.39).

The “free group” functor F:Set → Grp is left adjoint to the forgetful functor
| |:Grp → Set. Also, the functor taking a set X to the discrete topology on X is left
adjoint to the forgetful functor | |:Top → Set (cf. Exercise 3.5.3). ��
Exercise 3.5.11. Consider any algebraic signature morphism σ :Σ → Σ ′. Prove that
the reduct functor σ :Alg(Σ ′)→ Alg(Σ) has a left adjoint.

HINT: Formalise and complete the following construction. For any Σ -algebra A,
let Σ(A) be an algebraic signature which extends Σ by a constant a:s for each ele-
ment a ∈ |A|s, s ∈ sorts(Σ), and let Σ ′(A) be a similar extension of Σ ′ by a constant
a:σ(s) for each a ∈ |A|s, s ∈ sorts(Σ). Consider the congruence ≡A on TΣ(A) gen-
erated by the identities that hold in A. The congruence ≡A may be translated by σ
to Σ ′(A)-terms, generating a congruence σ(≡A), and the algebra TΣ ′(A)/σ(≡A) is
(almost) the free Σ ′-algebra over A.

Consider then a set E ′ of Σ ′-equations. Recall that ModΣ ′(E ′) is the full subcate-
gory of Alg(Σ ′) with all Σ ′-algebras that satisfy E ′ as objects (cf. Example 3.1.20).
Prove that the reduct functor σ :ModΣ ′(E ′)→ Alg(Σ) has a left adjoint. HINT:
In the construction above, close the congruence σ(≡A) so that for each equation
∀X ′ • t = t ′ in E ′ and substitution θ :X ′ → |TΣ ′(A)|, it identifies the terms t[θ ] and
t ′[θ ] (cf. Exercise 1.4.9 for the notation used here).
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Finally, for any set E of Σ -equations such that E ′ |=Σ ′ σ(E ), prove that the reduct
functor σ :ModΣ ′(E ′)→ ModΣ (E ), which is well defined by Proposition 2.3.13,
has a left adjoint. HINT: This is easy now. ��
Exercise 3.5.12. Generalise Exercise 3.5.11 to derived signature morphisms, with
reduct functors as introduced in Exercise 3.4.30. ��
Example 3.5.13. Let K be a category, and recall that 1 is a category containing a
single object, say a. Let F:1 → K be left adjoint to Ca:K → 1 (note that such a
functor F may not exist). Then F(a) is an initial object in K. ��
Exercise 3.5.14. Let Δ :K → K×K be the “diagonal” functor such that Δ(A) =
〈A,A〉 and Δ( f :A → B) = 〈 f , f 〉:Δ(A)→ Δ(B). Prove that K has all coproducts iff
Δ has a left adjoint. What is the unit? ��
Exercise 3.5.15. Formulate analogous theorems for coequalisers and pushouts and
prove them. Show how this may be done for any colimit. ��
Exercise 3.5.16. Let K be a category with an initial object and a factorisation system
and let KR be its full subcategory of reachable objects. Recall that RK:K→KR is a
functor that maps any object to its reachable subobject (cf. Exercise 3.4.13). Show
that the inclusion functor I:KR → K is left adjoint to RK . ��
Exercise 3.5.17. Show that left adjoints preserve colimits of diagrams. Do they pre-
serve limits as well? ��
Exercise 3.5.18. Let F:K2→K1 be left adjoint to G:K1→K2 with unit η :IdK1 →
F;G. Consider two objects A,B ∈ |K1| and suppose that for some epimorphism
e:A → B there exists a morphism h:B → G(F(A)) such that e;h = ηA. Prove that
F(e):F(A)→ F(B) is an isomorphism.

HINT:

A G(F(A))�
ηA

B G(F(B))�
ηB

�
�
�
�
�
���

e

�

h

G(C)

�
�
�
�
�
���

f

�

G( fA)

�
�

�
�
�

�
�
�

�
�
�

�
�
��

G( fB)
F(A)

C

F(B)

�

fA

�
�
�
�
�
���

F(e)

�
�
�

�
�
�

�
�
�

�
�
�

�
��

fB
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First show that F(B) with e;ηB:A → G(F(B)) as the unit morphism is a free object
over A w.r.t. G. For this, use the following construction: for any C ∈ |K2| and f :A→
G(C), let fB:F(B) → C be the unique morphism such that ηB;G( fB) = h;G( fA),
where in turn fA:F(A)→C is the unique morphism such that ηA;G( fA) = f . Now,
fB satisfies (e;ηB);G( fB) = f , and moreover, it is the only morphism from F(B) to
C with this property (use the fact that e is an epimorphism and the freeness of F(B)
to prove the latter). Then, show that the conclusion holds by following the proof of
the uniqueness of left adjoints; cf. Proposition 3.5.9. ��

3.5.3 Adjunctions

Consider two categories K1 and K2 and functors F:K1 → K2 and G:K2 → K1

such that F is left adjoint to G with unit η :IdK1 → F;G.

Proposition 3.5.19. There is a natural transformation ε:G;F → IdK2 such that

(∗) : (G·η);(ε ·G) = idG

(∗∗) : (η ·F);(F·ε) = idF

K1: K2:

G(A2) G(F(G(A2))) F(G(A2))

G(A2) A2

A1 F(A1)

G(F(A1)) F(G(F(A1))) F(A1)

�
ηG(A2)

											�

idG(A2)

�

G(εA2)
(∗)

�

εA2

�

ηA1

�
εF(A1)

											�

idF(A1)

�

F(ηA1)
(∗∗)

Proof idea.

• (∗) defines εA2:F(G(A2))→ A2 as εA2 = (idG(A2))
#.

• Check naturality: To show that for all g:A2→ B2 in K2, εA2;g = F(G(g));εB2, it
is enough to prove that (in K1) ηG(A2);G(εA2;g) = ηG(A2);G(F(G(g));εB2).

• Check (∗∗): To prove that F(ηA1);εF(A1) = idF(A1), it is enough to show that (in
K1) ηA1;G(F(ηA1);εF(A1)) = ηA1;G(idF(A1)). ��
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Proposition 3.5.20. Consider functors F:K1 → K2 and G:K2 → K1 and natural
transformations η :IdK1 → F;G and ε:G;F → IdK2 such that

(∗) : (G·η);(ε·G) = idG

(∗∗) : (η ·F);(F·ε) = idF

Then F is left adjoint to G with unit η .

Proof. For A1 ∈ |K1|, B2 ∈ |K2|, f :A1 → G(B2), let f # = F( f );εB2:F(A1)→ B2.

• ηA1;G( f #) = ηA1;G(F( f ));G(εB2) = f ;ηG(B2);G(εB2) = f ;idG(B2) = f .
• Suppose that for some g:F(A1)→ B2, ηA1;G(g) = f . Then, f # = F( f );εB2 =

F(ηA1;G(g));εB2 = F(ηA1);F(G(g));εB2 = F(ηA1);εF(A1);g = g. ��
Definition 3.5.21 (Adjunction). Let K1 and K2 be categories. An adjunction from
K1 to K2 is a quadruple 〈F,G,η ,ε〉 where F:K1 → K2 and G:K2 → K1 are func-
tors and η :IdK1 → F;G and ε:G;F → IdK2 are natural transformations such that

(∗) : (G·η);(ε·G) = idG

(∗∗) : (η ·F);(F·ε) = idF ��
Fact 3.5.22. Equivalently, an adjunction may be given as either of the following:

• A functor G:K2 → K1 and, for each A1 ∈ |K1|, a free object over A1 w.r.t. G;
• A functor G:K2 → K1 and its left adjoint. ��
Exercise 3.5.23 (Galois connection). Recall that any partial order gives rise to a
corresponding preorder category (cf. Example 3.1.3). Galois connections (Defini-
tion 2.3.3) arise as adjunctions between preorder categories:

Consider two partially ordered sets 〈A,≤A〉 and 〈B,≤B〉 and two order-preserving
functions f :A→ B and g:B→ A (i.e. for a,a′ ∈ A, if a≤A a′ then f (a)≤B f (a′) and
for b,b′ ∈ B, if b ≤B b′ then g(b)≤A g(b′)).

Show that f and g (viewed as functors) form an adjunction between 〈A,≤A〉 and
〈B,≤B〉 (viewed as categories) if and only if for all a ∈ A and b ∈ B

a ≤A g(b) iff f (a)≤B b.

Then show that this is further equivalent to the requirement that

• a ≤A g( f (a)) for all a ∈ A; and
• f (g(b))≤B b for all b ∈ B.

View the Galois connection between sets of equations and classes of algebras on
a given signature defined in Section 2.3 (cf. Proposition 2.3.2) as a special case of
the above definition. That is, check that for any signature Σ , the function mapping
any set of Σ -equations to the class of all Σ -algebras that satisfy this set of equations
and the function mapping any class of Σ -algebras to the set of all Σ -equations that
hold in this class form an adjunction between the power set of the set of Σ -equations
(ordered by inclusion) and the power class of the class of Σ -algebras (ordered by
containment).
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Then check that the above definition of Galois connection coincides with the
more explicit Definition 2.3.3 of a Galois connection between 〈A,≤A〉 and 〈B,≥B〉
(note the opposite order for B). ��
Exercise 3.5.24. Dualise the development in this section. Begin with the following
definition, dual to Definition 3.5.1:

Definition. Let F:K1 → K2 be a functor and let A2 ∈ |K2|. A cofree object over
A2 w.r.t. F is a K1-object A1 together with a K2-morphism εA2:F(A1)→ A2 (the
counit) such that for any K1-object B1 and K2-morphism f :F(B1)→ A2 there is a
unique K1-morphism f #:B1 → A1 such that F( f #);εA2 = f .

Then dually to Section 3.5.2 show how cofree objects induce right adjoints. Finally,
prove facts dual to Propositions 3.5.19 and 3.5.20, thus proving that right adjoints
and cofree objects give another equivalent definition of adjunction. ��
Exercise 3.5.25. Develop yet another equivalent definition of an adjunction be-
tween locally small categories, centering around the bijection #:K1(A1,G(A2))→
K2(F(A1),A2) using a generalised version of Hom-functors (cf. Example 3.4.15).
HINT:

• For any locally small category K and two functors F1:K1 → K and F2:K2 →
K, define a functor HomF1,F2:K1op × K2 → Set by HomF1,F2(〈A1,A2〉) =
K(F1(A1),F2(A2)) and HomF1,F2(〈 f 1, f 2〉)(h) = F1( f 1);h;F2( f 2).

• Show that if F:K1 → K2 is left adjoint to G:K2 → K1 then #:HomIdK1,G →
HomF,IdK2

is a natural isomorphism.
• Finally, prove that for any two functors F:K1 → K2 and G:K2 → K1, a natural

isomorphism #:HomIdK1,G → HomF,IdK2
shows that F is left adjoint to G. ��

Exercise 3.5.26. Show that adjunctions compose: given any categories K1, K2 and
K3, and adjunctions 〈F,G,η ,ε〉 from K1 to K2 and 〈F′,G′,η ′,ε ′〉 from K2 to K3,
we have an adjunction of the form 〈F;F′,G′;G, , 〉 from K1 to K3. Fill in the
holes! ��

3.6 Bibliographical remarks

Category theory has found very many applications in computer science, and the
material presented here covers just those fragments that we will require in later
chapters. Books on category theory for mathematicians include the classic [Mac71]
as well as the encyclopedic [HS73], with [AHS90] a more recent favourite, the three-
volume handbook [Bor94], the modestly sized textbook [Awo06], and many more.
An early book on category theory directed towards computer scientists is [AM75],
followed by [Pie91], [Poi92] and [BW95]. An interesting angle is in [RB88], where
categorical concepts are presented by coding them in ML.
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Our terminology is mainly based on [Mac71], although we prefer to write com-
position in diagrammatic order, denoted by semicolon. The reader should be warned
that the terminology and notation in category theory is not completely standardized,
and differ from one author to another.

We have decided to keep to the basics, and have not ventured into many more
advanced topics, some of which are quite important for computer science appli-
cations. In particular, Cartesian closed categories [BW95], [Mit96] and the Curry-
Howard isomorphism [SU06], categorical logic [LS86], monads [Man76], [Mog91],
[Pho92], fibrations [Jac99], and topoi [Joh02], [Gol06] all deserve attention.

We have presented somewhat more material than usual on certain topics that will
find application in some of the subsequent chapters. For example, in the material
on factorisation systems (with Section 3.3 taken from [Tar85]) and on indexed cat-
egories (with Section 3.4.3.2 based on [TBG91]), we include some exercises which
formulate facts that we will rely on later. We will work with indexed categories
throughout the book, sometimes implicitly, since we find them more natural for
these applications than equivalent formulations in terms of fibrations [Jac99].

We have deliberately chosen to use a notion of factorisation system based on
[HS73]. The later book [AHS90] uses a somewhat more general concept, where
factorisation morphisms are not required to be epi and mono, respectively, and there-
fore the uniqueness of the isomorphism between different factorisations of the same
morphisms — or equivalently, of the diagonal in Lemma 3.3.4 — must be required
explicitly. Although much of the material carries over, some results are simpler un-
der our assumptions: for instance, we rely on Exercise 3.3.5, which does not hold in
this form in the framework of [AHS90].

Our presentation of signatures, terms and algebras in Chapter 1 was elementary
and set-theoretic, and we retain this style throughout the book. But category theory
offers a whole spectrum of possibilities for doing universal algebra fruitfully in a
different style. Exercises 3.4.26 and 3.4.41 relate to a categorical “Lawvere-style”
presentation of some of the same concepts; see [Law63], [Man76], [BW85]. This
was used in some early papers on algebraic specification, e.g. [GTWW75], but as
it abstracts away from the choice of operation names in the signature, it seems less
useful for applications to program specification. (This argument was put forward in
[BG80], with the notion of “signed theory” from [GB78] called to the rescue.) An
alternative approach to specifications in this framework is given by sketches; see
[BW95], which presents specifications as graphs with indicated diagrams, cones
and cocones that in a functorial model of the graph are mapped to commutative
diagrams, limits and colimits, respectively. Commutative diagrams capture equa-
tional requirements here, with (co)limiting (co)cones offering additional specifica-
tion power. Another related approach takes the general notion of a T -algebra for a
functor T :K → K as its starting point, where a T -algebra on an object A ∈ |K| is a
morphism from T (A) to A. This works smoothly if T is a monad; see [Man76]. Such
abstract approaches offer natural generalisations based on semantic interpretation in
categories other than Set, but again, in our view, abstraction from familiar concepts
and syntactic presentations makes them less convenient for our purposes here.



Chapter 4

Working within an arbitrary logical system

Several approaches to specification were discussed in Chapter 2. Each approach
involved a different logical system as a part of its mathematical underpinnings. We
encountered different definitions of:

Signatures: “ordinary” many-sorted signatures, signatures containing Bool, true
and false (for final and reachable semantics), error signatures, order-sorted sig-
natures;

Algebras (on a signature Σ ): “ordinary” Σ -algebras, error Σ -algebras, partial Σ -
algebras, order-sorted Σ -algebras;

Logical sentences (on a signature Σ ): Σ -equations, conditional Σ -equations, error
Σ -equations (with safe and unsafe variables), Σ -definedness formulae, order-
sorted Σ -equations; and

Satisfaction (of a Σ -sentence by a Σ -algebra): of a Σ -equation by a Σ -algebra, of
an error Σ -equation by an error Σ -algebra, of a Σ -equation by a partial Σ -algebra,
of a Σ -definedness formula by a partial Σ -algebra, of an order-sorted Σ -equation
by an order-sorted Σ -algebra.

All of these choices can be combined to obtain many different logical systems and
hence different approaches to specification, e.g. partial error specifications with con-
ditional axioms. There are also several alternative approaches to the specification of
partial algebras and likewise for the specification of error handling. Furthermore,
there are many other variations that have not been considered, including the follow-
ing (some of them briefly mentioned in Section 2.7.6):

• polymorphic signatures which permit polymorphic type constructors (rather than
just sorts) and operations having polymorphic types;

• continuous algebras to handle infinite data objects such as streams;
• higher-order algebras to handle higher-order functions (i.e. functions taking func-

tions as arguments and/or yielding functions as results);
• relational structures to model specifications containing predicates;
• inequations and conditional inequations;
• first-order formulae, with and without equality;

,
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• various modal logics, including algorithmic, dynamic, and temporal logics, for
formulating properties of (possibly non-functional) programs.

Some of these variations depart quite considerably from the usual algebraic
framework presented in Chapters 1 and 2. But none of them (and very few of the
others considered in the literature) are artificial, resulting merely from a theoreti-
cian’s toying with formal definitions. All of them arise from the practical need to
specify different aspects of software systems, often reflected by diverse features of
different programming languages.

The resulting wealth of choice of definitions of the basic concepts is not a bad
thing. None of the logical systems used in specifications is clearly better than all the
others — and we should not expect that such a “best” system will ever be developed.
In theory, we can imagine putting all of the above concepts together, producing
a single logical system where signatures, algebras, sentences and the satisfaction
relation would cover as special cases all we have considered up to now. But the
result would be so huge and complex as to make it unmanageable. Moreover, what
would we do if one day somebody pointed out that yet another view of software is
important and should be reflected in specifications, and hence included in the logical
system we use? Scrap everything and start again?

Different specification tasks may call for different systems to express most con-
veniently the properties required. Moreover, different logical systems may be appro-
priate for describing different aspects of the same software system, and so a number
of logical systems may be useful in a single specification task. It is thus important
that the designer of a software system be able to choose which logical system(s) to
use.

An unfortunate effect of this necessary wealth of choice is that different re-
searchers have tended to adopt different combinations of basic definitions in their
work, sometimes varying their choices from one paper to the next. This makes it
difficult to build on the work of others, to compare the results obtained for differ-
ent logical systems, and to transfer results from one system to another. Such results
include not only mathematical definitions and theorems, but also practically useful
tools supporting software specification, development and verification produced at
great expense of effort, time and money.

In fact, much of the work done turns out to be independent of the particular choice
of the basic definitions, although this is often not obvious. The main objective of this
chapter, and one of the main objectives of this book, is to lay out the mathematical
foundations necessary to make this independence explicit. We achieve this using the
notion of an institution, which formalises the informal concept of a logical system
devised to fit the purposes of specification theory; see Section 4.1 below for the def-
inition. Our thesis is that building as much as possible on the notion of an institution
brings important benefits to both the theory and the practice of software specifica-
tion and development. On the one hand, this allows much work on theories, results,
and practical tools to be done just once for many different specific logical systems;
on the other hand it forces, via abstraction, a better understanding of and deeper
insight into the essence of the concepts and results.
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A first example of this general approach is given in Section 4.2, where we recast
the fundamental ideas of the standard approach to specification from Chapter 2 in
the framework of an arbitrary institution.

It should be stressed that the notion of an institution captures only certain as-
pects of the informal concept of a logical system. In particular, it takes a model-
theoretic view of logical systems, and no direct attempt is made to accommodate
proof-theoretic concepts. See Section 9.1 for a discussion of how proof fits into the
picture.

When discussing different approaches to specification in Chapter 2, apart from
considering various basic notions of signature, algebra, sentence and satisfaction,
we also considered different kinds of models (algebras satisfying a set of axioms)
as particularly interesting:

• the initial models;
• the reachable models satisfying true �= false;
• the final models in the category of reachable models satisfying true �= false.

These options, although important for the overall style of specification, are of a
different nature than the choice of the basic definitions embodied in the particular
institution used. We show in Section 4.3 how such “interesting models” may be
singled out in an arbitrary institution, thus suggesting that the choice here is in a
sense orthogonal to the choice of the underlying institution.

Our general programme is to strive to work in an arbitrary institution as much
as possible. However, the concepts involved in the basic theory of institutions are
often too general, and hence too weak, to express all that is necessary. When this
happens, it would be premature to give up, and switch to working in a particular
institution. The “game” is then to identify a (hopefully) minimal set of additional
assumptions under which the job can be done, covering most or all of the logical
systems of interest. This gives rise to an enriched notion of institution with some
additional structure that is relevant to the particular purpose we have in mind. A few
examples of this are given in Sections 4.4 and 4.5.

Before proceeding we should warn the reader that although working in an arbi-
trary institution is very important, it is only one side of the story. The other side is
to define an institution appropriate for the needs of the particular task at hand, and
quite often this is far from trivial. Indeed, in many areas of computer science, the
fundamental problem yet to be satisfactorily solved is the development of a logical
system appropriate for the aspects of computing addressed. A number of examples
are given in Section 4.1, and references to many others are in Section 4.6. An ex-
ample of an area for which a satisfactory, commonly accepted solution still seems
to be outstanding (despite numerous proposals and active research) is the theory of
concurrency.
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4.1 Institutions

Following Goguen and Burstall [GB92], we introduce the notion of an institution,
capturing some essential aspects of the informal concept of a “logical system”. The
basic ingredients of an institution are a notion of a signature in the system, and
then for each signature, notions of an algebra with this signature and of a logical
sentence over this signature, and finally a satisfaction relation between algebras and
sentences.

In contrast to classical logic and model theory, we are not content with consid-
ering logical systems “pointwise” for an “arbitrary but fixed” signature. To capture
the process of building a specification and designing a software system, some means
of moving from one signature to another is required, that is, some notion of signa-
ture morphism. These morphisms typically enable signatures to be extended by new
components, renaming and/or identifying others, as well as hiding some compo-
nents used “internally” but not intended to be visible “externally”. Any signature
morphism should give rise to a translation of sentences and a translation of algebras
determined by the change of names involved. Furthermore, these translations must
be consistent with one another, preserving the satisfaction relation. As usual, when
we switch from syntax (signatures, sentences) to semantics (algebras), the direction
of translation is reversed.

The language of category theory is used in the definition to express the above
ideas. This concisely and elegantly captures structure arising from signature mor-
phisms, and forces an appropriate level of generality and abstraction.

Definition 4.1.1 (Institution). An institution INS consists of

• a category SignINS of signatures;
• a functor SenINS:SignINS → Set, giving a set SenINS(Σ) of Σ -sentences for each

signature Σ ∈ |SignINS| and a function SenINS(σ):SenINS(Σ) → SenINS(Σ ′)
which translates Σ -sentences to Σ ′-sentences for each signature morphism σ :Σ→
Σ ′;

• a functor ModINS:Sign
op
INS → Cat, giving a category ModINS(Σ) of Σ -models

for each signature Σ ∈ |SignINS| and a functor ModINS(σ):ModINS(Σ ′) →
ModINS(Σ) which translates Σ ′-models to Σ -models (and Σ ′-morphisms to Σ -
morphisms) for each signature morphism σ :Σ → Σ ′; and

• a family 〈|=INS,Σ ⊆ |ModINS(Σ)|×SenINS(Σ)〉Σ∈|SignINS| of satisfaction rela-
tions, determining satisfaction of Σ -sentences by Σ -models for each signature
Σ ∈ |SignINS|

such that for any signature morphism σ :Σ → Σ ′ the translations ModINS(σ) of
models and SenINS(σ) of sentences preserve the satisfaction relation, that is, for
any ϕ ∈ SenINS(Σ) and M′ ∈ |ModINS(Σ ′)|

M′ |=INS,Σ ′ SenINS(σ)(ϕ) iff ModINS(σ)(M′) |=INS,Σ ϕ
[Satisfaction condition].

��
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The following picture may help us visualise the structure:
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We will freely use standard terminology, and, for example, say that a Σ -model M
satisfies a Σ -sentence ϕ , or that ϕ holds in M, whenever M |=INS,Σ ϕ .

The term “model” (which we use following [GB92]) thereby becomes over-
loaded: it is used to refer both to objects in the category ModINS(Σ) and to the
algebras which satisfy a given set of axioms (we will soon extend the latter termi-
nology to an arbitrary institution in Section 4.2, and then to an arbitrary structured
specification in Chapter 5). Hopefully, this will not lead to confusion as the context
will always determine which of the two meanings is meant. If in doubt, we will use
“a Σ -model” (where Σ is a signature) for the former, and “a model of Φ” (where Φ
is a set of sentences) for the latter meaning of the word.

Notation.

• When there is no danger of confusion, as in the picture above, we omit the sub-
script INS when referring to the components of an institution, writing INS =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉. Similarly, the subscript Σ on the satisfaction re-
lations will often be omitted.

• For any signature morphism σ :Σ → Σ ′, the function Sen(σ):Sen(Σ)→ Sen(Σ ′)
will be denoted by σ :Sen(Σ)→ Sen(Σ ′) and the functor Mod(σ):Mod(Σ ′)→
Mod(Σ) by σ :Mod(Σ ′) → Mod(Σ). Thus for any Σ -sentence ϕ ∈ Sen(Σ),
σ(ϕ) ∈ Sen(Σ ′) is its σ -translation to a Σ ′-sentence, and for any Σ ′-model M′ ∈
|Mod(Σ ′)|, M′

σ ∈ |Mod(Σ)| is its σ -reduct to a Σ -model. We will also refer to
M′ as a σ -expansion of M′

σ . Using this notation, the satisfaction condition of
Definition 4.1.1 may be expressed as follows: M′ |= σ(ϕ)⇐⇒ M′

σ |= ϕ .
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• For any signature Σ , the satisfaction relation extends naturally to sets of Σ -
sentences and classes1 of Σ -models. Namely, for any set Φ ⊆ Sen(Σ) of Σ -
sentences and model M ∈ |Mod(Σ)|, M |= Φ means M |= ϕ for all ϕ ∈Φ . Then,
for any Σ -sentence ϕ ∈ Sen(Σ) and class M ⊆ |Mod(Σ)| of Σ -models, M |= ϕ
means M |= ϕ for all M ∈M . Finally, we will also write M |= Φ with the obvi-
ous meaning.

• For any signature Σ , we will sometimes write Mod(Σ) for the class |Mod(Σ)| of
all Σ -models. ��
The definition of an institution as given above is very general and covers many

logical systems of interest, as illustrated by the examples below. Nevertheless, it
does impose some restrictions which should be discussed before we proceed further.

In some situations it would be natural to relax the requirement of functoriality on
Sen (and perhaps on Mod as well) and assume that it is a functor only “up to some
appropriate equivalence”. For example, given two signature morphisms σ :Σ → Σ ′
and σ ′:Σ ′ → Σ ′′, for any sentence ϕ ∈ Sen(Σ) it follows from the functoriality of
Sen that Sen(σ ;σ ′)(ϕ) = Sen(σ ′)(Sen(σ)(ϕ)) (or using the notational convention
introduced above, (σ ;σ ′)(ϕ) = σ ′(σ(ϕ)) ). This seems overly restrictive when, for
example, local identifiers or bound variables are used in sentences. All we really
care about here is that the two translations of ϕ to a Σ ′′-sentence are semantically
equivalent: (σ ;σ ′)(ϕ) and σ ′(σ(ϕ)) hold in the same Σ ′′-models. A solution is
to consider sentences up to this semantic equivalence, and work in an institution
where sentences simply are the corresponding equivalence classes. This solution
would resemble the usual practice in λ -calculi, where terms are considered “up to
α-conversion” (renaming of bound variables), meaning that terms are really classes
of mutually α-convertible syntactic terms.

The only explicit requirement in the definition of an institution is that the satis-
faction condition holds. Speaking informally, this deals with the situation where a
“small” signature Σ and a “big” signature Σ ′ are related by a signature morphism
σ :Σ → Σ ′, and we have a model M′ ∈ |Mod(Σ ′)| over the “big” signature, and a
sentence ϕ ∈ Sen(Σ) over the “small” signature. There are then two ways to check
whether M′ “satisfies” ϕ: we can either reduce the model M′ to the “small” signa-
ture and check whether the reduct satisfies the sentence ϕ , or translate the sentence
ϕ to the “big” signature and check whether the translated sentence holds in M′.

“small”

“big”

Σ

Σ ′ M′

M′
σ

σ(ϕ)

ϕ

�
σ

|=Σ ′

|=Σ

�

�

1 We will be somewhat more careful about the set-theoretical foundations than in our presentation
of the basics of category theory in Chapter 3: we will refer to collections of sentences as “sets” and
to collections of models as “classes”, as in Chapter 2. This is consistent with the formal definition
of an institution above, and satisfactory for the logical systems formalised as institutions given as
examples (but see Example 4.1.46, footnote 17).
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The satisfaction condition states that these two alternatives are equivalent. This em-
bodies two fundamental assumptions. One is that the meaning of a sentence depends
only on the components used in the sentence, and does not depend on the context
in which the sentence is considered. The other is that the meaning of a sentence is
preserved under translation; as [GB92] states:

Truth is invariant under change of notation.

The latter requirement does not raise much doubt — we are not aware of any natu-
ral system in which it would not hold. The former, however, is sometimes violated.
There are natural logical systems where the meaning of a sentence depends on the
context in which it is used, or in other words on the signature over which the sen-
tence is considered. For instance, in logical systems involving quantifiers, the range
of quantification may implicitly depend on the signature, e.g. with quantified vari-
ables ranging only over reachable values, so that “∃x• . . .” is interpreted as “there
exists an element x which is the value of a ground term, such that . . . ”, and similarly
for universal quantification. For such a logic the satisfaction condition does not hold
unless very strong restrictions are placed on signature morphisms.

Exercise 4.1.2. Give a concrete counterexample to the satisfaction condition for a
logical system similar to equational logic, but with the universally quantified vari-
ables in equations ranging only over reachable values. Show how the logical system
you give may be modified to make the satisfaction condition hold. HINT: The sat-
isfaction condition failed because the interpretation of universal quantification over
reachable values implicitly depends on the signature; try to make this dependence
explicit! ��

4.1.1 Examples of institutions

Example 4.1.3 (Ground equational logic GEQ). The institution GEQ of ground
equational logic is defined as follows:

• The category SignGEQ is just AlgSig, the usual category of algebraic signatures.
• The functor SenGEQ:AlgSig → Set gives:

– the set of ground Σ -equations for each Σ ∈ |AlgSig|; and
– the σ -translation function taking ground Σ -equations to ground Σ ′-equations

for each signature morphism σ :Σ → Σ ′.

• The functor ModGEQ:AlgSigop → Cat is the functor Alg:AlgSigop → Cat as
defined in Example 3.4.29, that is, ModGEQ gives:

– the category Alg(Σ) of Σ -algebras and Σ -homomorphisms for each Σ ∈
|AlgSig|; and

– the reduct functor σ :Alg(Σ ′) → Alg(Σ) which maps Σ ′-algebras and Σ ′-
homomorphisms to Σ -algebras and Σ -homomorphisms for each signature
morphism σ :Σ → Σ ′.
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• For Σ ∈ |AlgSig|, the satisfaction relation |=GEQ,Σ ⊆ |Alg(Σ)|×SenGEQ(Σ) is
the usual relation of satisfaction of a ground Σ -equation by a Σ -algebra.

The Satisfaction Lemma (Lemma 2.1.8) ensures that the required satisfaction con-
dition holds and so the above definition indeed yields an institution. ��
Example 4.1.4 (Equational logic EQ). The institution EQ of (ordinary) equational
logic is defined as follows:

• The category SignEQ is just AlgSig.
• The functor SenEQ:AlgSig → Set gives:

– the set of Σ -equations for each Σ ∈ |AlgSig|; and
– the σ -translation function taking Σ -equations to Σ ′-equations for each signa-

ture morphism σ :Σ → Σ ′.2

• The functor ModEQ is Alg:AlgSigop →Cat, just like ModGEQ for ground equa-
tional logic.

• For each Σ ∈ |AlgSig|, the satisfaction relation |=EQ,Σ ⊆ |Alg(Σ)|×SenEQ(Σ)
is the usual relation of satisfaction of a Σ -equation by a Σ -algebra.

The Satisfaction Lemma (Lemma 2.1.8) again ensures that the required satisfaction
condition holds and so the above definition indeed yields an institution. ��

There is an obvious sense in which GEQ can be regarded as a “subinstitution”
of EQ. We will encounter further such cases below. We refrain from formulating a
notion of subinstitution because the concept turns out to be more subtle than it might
appear at first. We postpone a proper treatment of relationships between institutions
to Chapter 10 (in particular, see Exercise 10.4.9).

Exercise 4.1.5 (Reachable ground equational logic RGEQ). Define an institution
RGEQ of ground equational logic on reachable algebras by modifying the definition
of GEQ so that only reachable algebras are considered as models. Do not forget to
adjust the definition of reduct functors!

Try to extend this to an institution REQ of equational logic on reachable algebras
— and notice that the satisfaction condition cannot be ensured without modifying
the notion of an equation to include “data constructors” to determine the reachable
values for which the equation is to be considered, as already hinted at in Exer-
cise 4.1.2. ��
Example 4.1.6 (Partial equational logic PEQ). The institution PEQ of partial
equational logic is defined as follows (cf. Section 2.7.4):

• SignPEQ is AlgSig again.

2 The exact treatment of variables in equations requires special care to ensure that the translation
of equations along possibly non-injective signature morphisms is indeed functorial. The use of dis-
joint union in the translation of many-sorted sets of variables in Definition 1.5.10 causes problems
here. The simplest way to make this work is to assume that, in each equation, variables of different
sorts are distinct. See [GB92] for details.
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• SenPEQ:AlgSig → Set gives:

– the set of Σ -equations and Σ -definedness formulae for each Σ ∈ |AlgSig|; and
– the σ -translation function taking Σ -equations and Σ -definedness formulae

to Σ ′-equations and Σ ′-definedness formulae for each signature morphism
σ :Σ → Σ ′.3

• ModPEQ:AlgSigop → Cat gives:

– the category PAlg(Σ) of partial Σ -algebras and weak Σ -homomorphisms for
each Σ ∈ |AlgSig| (cf. Example 3.3.13); and

– the reduct functor σ :PAlg(Σ ′)→ PAlg(Σ) defined as in the total case for
each signature morphism σ :Σ → Σ ′.

• For Σ ∈ |AlgSig|, the satisfaction relation |=PEQ,Σ ⊆ |PAlg(Σ)|×SenPEQ(Σ) is
the satisfaction of Σ -equations (with strong equality) and Σ -definedness formu-
lae by partial Σ -algebras.

Exercise. Following the lines of the proof of the Satisfaction Lemma (Lemma 2.1.8),
show that the satisfaction condition holds for PEQ. ��
Example 4.1.7 (Ground partial equational logic PGEQ). The institution PGEQ

of ground partial equational logic is defined just like the institution PEQ of partial
equational logic above, except that only ground equations and ground definedness
formulae are considered. ��
Exercise 4.1.8. Recalling the notion of existential equality for partial algebras from
Section 2.7.4, define institutions PEQe and PGEQe of partial existence equational
logic and ground partial existence equational logic, respectively, modifying the def-
initions in Examples 4.1.6 and 4.1.7 by using existential equations of the form
∀X .t e

= t ′ and their ground versions only. ��
Example 4.1.9 (Propositional logic PROP). The institution PROP of proposi-
tional logic is defined as follows:

• SignPROP is Set, the usual category of sets. In this context, for each “signature”
P ∈ |Set|, we call elements of P propositional variables.

• SenPROP:Set → Set gives

– For each P ∈ |Set|, SenPROP(P) is the least set that contains P, sentences
true and false, and is closed under the usual propositional connectives, that is,
if ϕ,ϕ ′ ∈ SenPROP(Σ) then also ϕ ∨ϕ ′ ∈ SenPROP(Σ), ¬ϕ ∈ SenPROP(Σ),
ϕ ∧ϕ ′ ∈ SenPROP(Σ), and ϕ ⇒ ϕ ′ ∈ SenPROP(Σ).4

3 As in Example 4.1.4, care is needed with the treatment of variables and their translation under
signature morphisms; see footnote 2.
4 We tacitly assume here that true, false, ∨, ∧, ⇒, ¬ are new symbols (not in P), and rely on
the usual precedence rules and parentheses to make sure that no ambiguities in the “parsing” of
propositional sentences arise.
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– For each function σ :P→ P′, SenPROP(σ) extends σ to the translation of arbi-
trary propositional sentences with propositional variables in P to propositional
sentences with propositional variables in P′, preserving the propositional con-
nectives in the obvious way.

• ModPROP:Setop → Cat gives:

– For each set of propositional variables P ∈ |Set|, P-models are all functions
from P to {ff , tt}. These functions can be identified with subsets of P, where
M:P → {ff , tt} yields {p ∈ P | M(p) = tt}). Model morphisms are just in-
clusions of these sets, i.e. given two P-models M1,M2:P → {ff , tt}, we have
a (unique) morphism from M1 to M2 if for all p ∈ P, M2(p) = tt whenever
M1(p) = tt.

– For σ :P→P′, the functor ModPROP(σ):ModPROP(P′)→ModPROP(P) maps
any model M′:P′ → {ff , tt} to σ ;M′:P →{ff , tt}.

• For P ∈ |Set|, the satisfaction relation |=PROP,P ⊆ |ModPROP(P)|×SenPROP(P)
is the usual relation of satisfaction of propositional sentences, that is, for any
P-model M:P →{ff , tt}, p ∈ P and ϕ ,ϕ ′ ∈ SenPROP(P):

– M |=PROP,P p if and only if M(p) = tt,
– M |=PROP,P ϕ ∨ϕ ′ if and only if M |=PROP,P ϕ or M |=PROP,P ϕ ′,
– M |=PROP,P ¬ϕ if and only if M �|=PROP,P ϕ ,
– M |=PROP,P ϕ ∧ϕ ′ if and only if M |=PROP,P ϕ and M |=PROP,P ϕ ′.
– M |=PROP,P ϕ ⇒ ϕ ′ if and only if M |=PROP,P ϕ ′ or M �|=PROP,P ϕ
– M |=PROP,P true, and
– M �|=PROP,P false. ��

Exercise 4.1.10. Recall the specification of Boolean algebras in Example 2.2.4.
Note that one way to view the definitions in Example 4.1.9 is to define the set

of P-sentences as terms of sort Bool with variables from P. Then, one can consider
the two-element Boolean algebra B with the carrier {ff , tt} (with trueB = tt and
falseB = ff ). Furthermore, any propositional model M:P → {ff , tt} induces evalua-
tion of terms M�:SenPROP(P)→ |B|, with M�(ϕ) = tt if and only if M |=PROP,P ϕ
as defined above.

Define another institution of propositional logic, PROPBA, where signatures and
sentences are as in PROP, but models use arbitrary Boolean algebras rather than just
B. That is, for any set P ∈ |Set| of propositional variables, a P-model in PROPBA

consists of a Boolean algebra B together with valuation M:P→|B|, where we define
〈B,M〉 |=

PROPBA,P ϕ if and only if ϕB(M) = trueB (where ϕB(M) is the value of term
ϕ in B under valuation M).

Prove now that the semantic consequence relations (Definition 2.3.6, cf. Defini-
tion 4.2.5 below) in PROP and PROPBA coincide.

HINT: Clearly, if Ψ |=
PROPBA,P ϕ then also Ψ |=PROP,P ϕ for any set P of

propositional variables, Ψ ⊆ SenPROP(P) and ϕ ∈ SenPROP(P). Suppose now that
Ψ �|=

PROPBA,P ϕ . Use the following lemma:5

5 The proof of this lemma is beyond the scope of this book, but see [RS63], I,8.5 and II,5.2,(a)⇒(e).
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Lemma. Given any Boolean algebra B and element b ∈ |B| such that b �= trueB,
there exists a homomorphism h:B → B from B to the two-element Boolean algebra
B such that h(b) = falseB.

Now, given any Boolean algebra B and valuation M:P→|B| such that for all ψ ∈Ψ ,
ψB(M) = trueB and ϕB(M) �= trueB, conclude that (M;h)�(ψ) = tt for all ψ ∈Ψ ,
while (M;h)�(ϕ) = ff , where the homomorphism h:B→ B such that h(ϕB(M)) = ff
is given by the above lemma. ��
Exercise 4.1.11. Define the institution of intuitionistic propositional logic, PROPI,
following the pattern of PROPBA in Exercise 4.1.10, but using arbitrary Heyting
algebras (see Example 2.7.6) rather than just Boolean algebras.

Show that if Ψ |=
PROPI,P ϕ then also Ψ |=PROP,P ϕ for any set P of propositional

variables, Ψ ⊆ SenPROP(P) and ϕ ∈ SenPROP(P), and give a counterexample to
show that the opposite implication fails in general. ��
Example 4.1.12 (First-order predicate logic with equality FOPEQ). The institu-
tion FOPEQ of first-order predicate logic with equality is defined as follows:

• SignFOPEQ, from now on denoted by FOSig, is the category of first-order signa-
tures, where we define:

– A first-order signature Θ is a triple 〈S,Ω ,Π〉, where S is a set (of sort names),
Ω = 〈Ωw,s〉w∈S∗,s∈S is a family of sets (of operation names with their arities
and result sorts indicated — just as in algebraic signatures) and Π = 〈Πw〉w∈S∗
is a family of sets (of predicate or relation names with their arities indicated).

– A first-order signature morphism θ :〈S,Ω ,Π〉 → 〈S′,Ω ′,Π ′〉 consists again
of three components: a function θsorts:S → S′, an (S∗ × S)-indexed family of
functions θops = 〈(θops)w,s:Ωw,s → Ω ′

θ∗sorts(w),θsorts(s)
〉w∈S∗,s∈S (these are as in

algebraic signature morphisms) and θpreds = 〈(θpreds)w:Πw → Π ′
θ∗sorts(w)

〉w∈S∗ .
(As with algebraic signature morphisms, all the components of a first-order
signature morphism θ will be denoted by θ when there is no danger of ambi-
guity.)

• SenFOPEQ:FOSig → Set gives:

– For each first-order signature Θ = 〈S,Ω ,Π〉, SenFOPEQ(Θ) is the set of all
closed (i.e. without unbound occurrences of variables) first-order formulae
built out of atomic formulae using the standard propositional connectives (∨,
∧, ⇒, ⇔, ¬) and quantifiers (∀, ∃). The atomic formulae are: equalities of
the form t = t ′, where t and t ′ are 〈S,Ω〉-terms (possibly with variables) of
the same sort; atomic predicate formulae of the form p(t1, . . . , tn), where p ∈
Πs1...sn and t1, . . . , tn are terms (possibly with variables) of sorts s1, . . . , sn,
respectively; and the logical constants true and false.

– For each first-order signature morphism θ :Θ →Θ ′, SenFOPEQ(θ) is the trans-
lation of first-order Θ -sentences to first-order Θ ′-sentences determined in the
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obvious way by the renaming θ of sort, operation and predicate names in Θ
to the corresponding names in Θ ′.6

• ModFOPEQ:FOSigop → Cat, from now on denoted by FOStr, gives:

– For each first-order signature Θ = 〈S,Ω ,Π〉, the category FOStr(Θ) of first-
order Θ -structures is defined as follows:
· A first-order Θ -structure A ∈ |FOStr(Θ)| consists of a carrier set |A|s for

each sort name s ∈ S, a function fA: |A|s1 × . . .×|A|sn → |A|s for each op-
eration name f ∈ Ωs1...sn,s (these are the same as in 〈S,Ω〉-algebras) and a
relation pA ⊆ |A|s1 × . . .×|A|sn for each predicate name p ∈ Πs1...sn . In the
following we write pA(a1, . . . ,an) for 〈a1, . . . ,an〉 ∈ pA.

· For any first-order Θ -structures A and B, a first-order Θ -morphism between
them, h:A→ B, is a family of functions h = 〈hs: |A|s → |B|s〉s∈S which pre-
serves the operations (as ordinary 〈S,Ω〉-homomorphisms do) and predi-
cates (i.e. for p ∈ Πs1...sn and a1 ∈ |A|s1 , . . . , an ∈ |A|sn , if pA(a1, . . . ,an)
then pB(hs1(a1), . . . ,hsn(an)) as well). A Θ -morphism is strong if it reflects
predicates as well, so that for p ∈ Πs1...sn and a1 ∈ |A|s1 , . . . , an ∈ |A|sn ,
pA(a1, . . . ,an) if and only if pB(hs1(a1), . . . ,hsn(an)).

– For each first-order signature morphism θ :Θ → Θ ′, we have the θ -reduct
functor FOStr(θ):FOStr(Θ ′)→ FOStr(Θ) defined similarly to reduct func-
tors corresponding to algebraic signature morphisms.

• For each Θ ∈ |FOSig|, the satisfaction relation |=FOPEQ,Θ ⊆ |FOStr(Θ)| ×
SenFOPEQ(Θ) is the usual relation of satisfaction of first-order sentences in first-
order structures, determined by the usual interpretation of ∨, ∧, ⇒ and ¬ as
disjunction, conjunction, implication and negation, respectively, of ∀ and ∃ as
universal and existential quantifiers, respectively, of equalities t = t ′ as identity
of the values of t and t ′, of atomic predicate formulae p(t1, . . . , tn) as the value of
the predicate named p in the structure on the values of the terms t1, . . . , tn, and
of true and false.

Exercise. Work out all the details omitted from the above definition. Then, general-
ising the proof of the Satisfaction Lemma, show that the satisfaction condition holds
for FOPEQ. ��
Exercise 4.1.13 (First-order predicate logic FOP, first-order logic with equality

FOEQ). First-order predicate logic with equality contains some standard “sublog-
ics”. Define the institution FOP of first-order predicate logic (without equality) by
referring to the same signatures and models as in FOPEQ, but limiting the sentences
to those that do not contain equality.

Define also the institution FOEQ with signatures and models as in the institution
EQ of equational logic, but with first-order sentences (without predicates). ��
6 As in Example 4.1.4, some care is needed with the exact treatment of quantified variables and
their translation under signature morphisms (cf. footnote 2) — again, the simplest solution is to
assume that, in each formula, variables of different sorts are distinct. See [GB92] for a careful
presentation.
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Exercise 4.1.14 (Infinitary logics). Define an institution Lω1ω of so-called Lω1ω
logic, which extends first-order predicate logic with equality by allowing conjunc-
tions and disjunctions of countable families of formulae (but still only finitary quan-
tification). Extend this further by allowing quantification over countable sets of vari-
ables, obtaining an institution of Lω1ω1 logic. You may also want to define institu-
tions of Lαβ logics, for any infinite cardinal numbers α and β such that β ≤ α , with
conjunctions and disjunctions of sets of formulae of cardinality smaller than α and
quantification over sets of variables of cardinality smaller than β . ��
Exercise 4.1.15 (Higher-order logics). Define an institution SOL of second-order
logic, which extends first-order logic by introducing variables ranging over predi-
cates (which in a model denote subsets of a product of the carrier sets) and quan-
tification over such (first-order) predicates. Then generalise this further to an in-
stitution HOL of higher-order logic, which introduces variables that range over
(second-order) predicates with arities that may include arities of first-order pred-
icates, and predicates with arities that may include arities of second-order predi-
cates, and so on, and allows for quantification over such higher-order predicates.
Without much additional effort, you may want to extend this further, by allowing
variables that range over functions of an arbitrary higher-order type, and quantifi-
cation over such functions. Note though that this will be different from first-order
logic for higher-order algebras as sketched in Example 2.7.56, where quantification
over higher-order function types does not necessarily coincide with quantification
over all functions of this type. ��
Exercise 4.1.16 (First-order equational logic with boolean values FOEQBool).

Define an institution FOEQBool which differs from FOEQ by considering only
signatures that contain a subsignature ΣBool of truth values (ΣBool has a special, dis-
tinguished sort Bool and two constants true, false:Bool) and assuming that signature
morphisms preserve and reflect symbols in ΣBool and that algebras interpret them in
the standard way (the carrier of sort Bool has exactly two distinct elements that are
values of true and false, respectively).

There is now an obvious equivalence between the categories of signatures of
FOPEQ and FOEQBool obtained by mapping each first-order signature to the
algebraic signature it contains with the sort Bool and constants true, false:Bool
added, and with new operation name fp:s1 × . . .× sn → Bool for each predicate
p:s1 × . . .× sn. First-order structures give rise to algebras with the standard inter-
pretation of ΣBool and with functions fp that yield the value of true exactly on those
arguments for which the predicate p holds. Clearly, this yields a one-to-one corre-
spondence between first-order structures and algebras over the corresponding sig-
natures. However, this does not extend to model morphisms in general. (Exercise:

Find a counterexample. Notice though that every strong morphism between first-
order structures extends to a homomorphism between their corresponding alge-
bras.) We then consider translation of atomic sentences p(t1, . . . , tn) to equalities
p(t1, . . . , tn) = true, and extend it further to arbitrary first-order sentences with pred-
icates and equality in the obvious way.
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Prove that such translations of sentences and models preserve and reflect satis-
faction. ��

It is not much more difficult to define, for example, the institution PFOPEQ of
partial first-order predicate logic with equality, or any other institution formalising
one of the many standard variants of the classical notions.

Exercise 4.1.17 (Partial first-order predicate logic with equality PFOPEQ). De-
fine the institution PFOPEQ of partial first-order predicate logic with equality ac-
cording to the following sketch:

• SignPFOPEQ = FOSig.
• For each Θ ∈ |FOSig|, partial first-order Θ -sentences are defined in the same way

as usual first-order Θ -sentences on atomic formulae, which here include atomic
definedness formulae def (t) for any Θ -term t, in addition to equalities and atomic
predicate formulae. The translation of sentences along signature morphisms is
defined in the obvious way.

• For each Θ ∈ |FOSig|, the models in ModPFOPEQ(Θ) are like first-order Θ -
structures except that the operations may be partial. Morphisms between Θ -
models in ModPFOPEQ(Θ) are like first-order Θ -morphisms but are required to
preserve definedness of operations, as weak homomorphisms of partial algebras
do. The reduct functors are defined similarly as for first-order structures.

• For each signature Θ ∈ |FOSig|, the satisfaction relation |=PFOPEQ,Θ is defined
like the usual first-order satisfaction relation, building on the interpretation of
atomic equalities and definedness formulae, which follows the interpretation of
(strong) equations and definedness formulae in partial algebras as defined in the
institution PEQ of partial equational logic, and on the usual interpretation of
atomic predicate formulae p(t1, . . . , tn), which yields false when any of t1, . . . , tn
is undefined. ��

Exercise 4.1.18 (Partial first-order logic with equality PFOEQ). Following Ex-
ercise 4.1.13, define the institution PFOEQ of partial first-order logic with equality
with signatures and models inherited from the institution PEQ of partial equational
logic, but with first-order sentences (without predicates). Similarly, define the insti-
tution PFOP of partial first-order predicate logic (without equality). ��
Exercise 4.1.19 (Partial first-order equational logic with truth PFOEQTruth).

As in Exercise 4.1.16, define now an institution PFOEQBool of partial first-order
logic with equality and built-in boolean values.

However, using partial functions predicates may be modelled differently (and
more faithfully when model morphisms are considered). Namely, define an insti-
tution PFOEQTruth which differs from PFOEQ by assuming that the signatures
contain a subsignature ΣTruth (which has a special, distinguished sort Truth with a
single constant true:Truth), that signature morphisms preserve and reflect symbols
in ΣTruth, and that algebras interpret them in the standard way: the carrier of sort
Truth has exactly one element that is the value of true.
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The equivalence of categories of signatures and the translation of sentences be-
tween PFOPEQ and PFOEQTruth can now be given in essentially the same way
as in Exercise 4.1.16. Moreover, first-order partial structures are in one-to-one cor-
respondence with algebras over the corresponding algebraic signature, and this cor-
respondence may be described exactly as in Exercise 4.1.16 as well. The difference
is that now for arguments for which predicates do not hold, their corresponding op-
erations are undefined instead of yielding a non-true value. This allows us to extend
this correspondence to model morphisms as well.

Prove that such translations of sentences and models preserve and reflect satis-
faction. ��
Exercise 4.1.20. Recall the notion of a strong homomorphism between partial alge-
bras (Definition 2.7.31) and between first-order structures (given in Example 4.1.12).
For each of the institutions above with models that involve partial operations or
predicates (FOPEQ, FOP, PFOPEQ, PEQ, and so on) define a variant in which
all morphisms are strong. We will refer to these institutions as FOPEQstr, FOPstr,
PFOPEQstr, PEQstr, and so on. In particular, model morphisms in PFOPEQstr

preserve and reflect predicates as well as definedness of operations. ��
Exercise 4.1.21. Using the material in Sections 2.7.1, 2.7.3 and 2.7.5, respectively,
define institutions EQ⇒ of conditional equations with signatures and models as in
EQ; Horn of Horn formulae built over signatures and models of FOPEQ, where
sentences have the form ∀X • ϕ1∧ . . .∧ϕn ⇒ ϕ for atomic formulae ϕ1, . . . , ϕn, ϕ;
ErrEQ of error equational logic; and OrdEQ of order-sorted equational logic. ��
Example 4.1.22 (Equational logic for continuous algebras CEQ). We need some
auxiliary definitions. Let Σ = 〈S,Ω〉 be an algebraic signature.

Recall (cf. Example 3.3.14) that a continuous Σ -algebra A ∈ |CAlg(Σ)| consists
of carriers, which are complete partial orders 〈|A|s,≤s〉 for s ∈ S, and operations,
which are continuous functions fA: |A|s1 × . . .×|A|sn → |A|s for f :s1× . . .× sn → s
in Σ .

For any S-sorted set X (of variables), the (S-sorted) set |T ∞
Σ (X)| of infinitary Σ -

terms is the least set such that:7

• X ⊆ |T ∞
Σ (X)|;

• for each f :s1 × . . .× sn → s in Σ , if t1 ∈ |T ∞
Σ (X)|s1 , . . . , tn ∈ |T ∞

Σ (X)|sn then
f (t1, . . . , tn) ∈ |T ∞

Σ (X)|s; and
• for each s ∈ S, if for k ≥ 0, tk ∈ |T ∞

Σ (X)|s, then
⊔〈tk〉k≥0 ∈ |T ∞

Σ (X)|s.
Intuitively, |T ∞

Σ (X)| contains all the usual finitary Σ -terms and in addition is closed
under formal “least upper bounds” of countable sequences of terms. Notice, how-
ever, that we do not provide |T ∞

Σ (X)|with the structure of a continuous Σ -algebra; in
particular, a term

⊔〈tk〉k≥0 is just a formal expression here, not a least upper bound.
Then, for any continuous Σ -algebra A and valuation of variables v:X → |A|, we

define a partial function v#: |T ∞
Σ (X)| → |A| which for any term t ∈ |T ∞

Σ (X)| yields
the value v#(t) of t (if defined):

7 For simplicity, we omit the decoration of terms by their target sorts. Formally, to avoid any
potential ambiguities, the definition should follow the pattern of Definition 1.4.1.



170 4 Working within an arbitrary logical system

• for x ∈ X , v#(x) = v(x);
• for f :s1× . . .× sn → s and t1 ∈ |T ∞

Σ (X)|s1 , . . . , tn ∈ |T ∞
Σ (X)|sn , v#( f (t1, . . . , tn)) is

defined if and only if v#(t1), . . . , v#(tn) are all defined, and then v#( f (t1, . . . , tn))=
fA(v#(t1), . . . ,v#(tn)); and

• for tk ∈ T ∞
Σ (X)s, k ≥ 0, v#(

⊔〈tk〉k≥0) is defined if and only if all v#(tk), k ≥ 0,
are defined and form a chain v#(t0) ≤s v#(t1) ≤s . . ., and then v#(

⊔〈tk〉k≥0) =⊔
k≥0 v#(tk) (where

⊔
on the right-hand side stands for the least upper bound in

the cpo 〈|A|s,≤s〉).
As usual, we write tA(v) for v#(t).

Finally, an infinitary Σ -equation is a triple 〈X , t, t ′〉, written ∀X • t = t ′, where X
is an S-sorted set of variables8 and t, t ′ ∈ |T ∞

Σ (X)|s for some s ∈ S. A continuous Σ -
algebra A satisfies an infinitary Σ -equation ∀X • t = t ′, written A |=CEQ,Σ ∀X • t = t ′,
if for all valuations v:X → |A|, tA(v) and t ′A(v) are both defined and equal.

We are now ready to define the institution CEQ of equational logic for continu-
ous algebras:

• SignCEQ is AlgSig again.
• SenCEQ:AlgSig → Set gives:

– the set of infinitary Σ -equations for each Σ ∈ |AlgSig|; and
– the σ -translation function, mapping infinitary Σ -equations to infinitary Σ ′-

equations in the obvious way, for each signature morphism σ :Σ → Σ ′.

• ModCEQ:AlgSigop → Cat gives:

– the category CAlg(Σ) of continuous Σ -algebras and continuous Σ -homomor-
phisms for each Σ ∈ |AlgSig|; and

– the reduct functor σ :CAlg(Σ ′)→CAlg(Σ), defined similarly as in the case
of usual (discrete) algebras for each signature morphism σ :Σ → Σ ′.

• For Σ ∈ |AlgSig|, the satisfaction relation |=CEQ,Σ ⊆ |CAlg(Σ)|×SenCEQ(Σ)
is the relation of satisfaction of infinitary Σ -equations by continuous Σ -algebras.

Exercise. Proceeding similarly as in the proof of the Satisfaction Lemma, show that
the satisfaction condition holds for CEQ.

Exercise. Show that even though we have introduced only infinitary equations as
sentences in CEQ, infinitary inequalities of the form ∀X • t ≤ t ′ are expressible here
as well. HINT: a ≤ b iff a�b = b. ��
Exercise 4.1.23. For each of the institutions INS defined above, define formally
its version INSder based on the category of signatures with derived signature mor-
phisms as presented in Section 1.5.2 (cf. Exercises 3.1.13 and 3.4.30). ��

8 For s ∈ S, the sets Xs ⊆X come from a fixed vocabulary of variables as in Definition 2.1.1 and
are mutually disjoint as in footnote 2.
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Example 4.1.24 (Three-valued first-order logic 3FOPEQ). We sketch here the
institution 3FOPEQ of three-valued first-order predicate logic with equality as an
example of how the notion of an institution can cope with logical systems based on
multiple truth values, where the interpretation of sentences may yield a number of
values rather than just being true or false.

• Sign3FOPEQ is the category FOSig of first-order signatures.
• Sen3FOPEQ:Sign3FOPEQ → Set gives:

– For each Θ ∈ |FOSig|, Sen3FOPEQ(Θ) is the set of sentences of the form
ϕ is tt, ϕ is ff , or ϕ is undef , where ϕ is a Θ -sentence of partial first-order
predicate logic with equality PFOPEQ (see Exercise 4.1.17).

– For each first-order signature morphism θ :Θ → Θ ′, we define the transla-
tion function Sen3FOPEQ(θ):Sen3FOPEQ(Θ)→ Sen3FOPEQ(Θ ′) in the obvi-
ous way, using the translation of first-order Θ -sentences to Θ ′-sentences in-
duced by the morphism θ .

• Mod3FOPEQ:Sign
op
3FOPEQ → Cat is defined as usual for first-order logic, except

that operations in structures are partial functions and predicates are interpreted
as partial relations, which for any tuple of arguments may yield one of three
logical values: tt (for truth), ff (for falsity) and a “third truth value” undef (for
undefinedness).

• Atomic formulae, propositional connectives and quantifiers may be interpreted
over the three-element set of truth values {tt, ff ,undef} in a number of ways;
see [KTB91] and references there for a discussion. Here, we adopt the following
interpretation:

– Atomic definedness formulae have the expected meaning: def (t) is tt if the
value of t is defined, and is ff otherwise.

– Equalities are interpreted as strict equalities: t = t ′ is tt if the values of t and
t ′ are defined and equal, is ff if they are defined and different, and is undef
otherwise.

– The propositional connectives and quantifiers are interpreted as in Kleene’s
calculus (cf. [KTB91]). For example, ϕ ∨ϕ ′ is tt if either ϕ or ϕ ′ is tt, is ff if
both ϕ and ϕ ′ are ff , and is undef otherwise.

For any ϕ ∈ SenPFOPEQ(Θ) and M ∈ |Mod3FOPEQ(Θ)|, this gives the interpre-
tation of ϕ in M, [[ϕ]]M ∈ {tt, ff ,undef}.
For Θ ∈ |FOSig|, the satisfaction relation |=3FOPEQ,Θ ⊆ |Mod3FOPEQ(Θ)| ×
Sen3FOPEQ(Θ) is now defined in the obvious way: for any M ∈ |Mod3FOPEQ(Θ)|
and ϕ ∈ Sen3FOPEQ(Θ):

– M |=3FOPEQ,Θ ϕ is tt holds if and only if [[ϕ ]]M = tt;
– M |=3FOPEQ,Θ ϕ is ff holds if and only if [[ϕ]]M = ff ; and
– M |=3FOPEQ,Θ ϕ is undef holds if and only if [[ϕ]]M = undef .
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Exercise. Work out all the details omitted from the above definition; notice that, in
particular, model morphisms may be defined in a number of sensible ways. Then
show that the satisfaction condition holds. ��
Example 4.1.25 (A logic for functional programs FPL). The institution FPL of a
logic for a simple functional programming language with a first-order monomorphic
type system is defined as follows:

• A signature SIG= 〈S,Ω ,D〉 consists of a set S of sort names, a family of sets of
operation names Ω = 〈Ωw,s〉w∈S∗,s∈S, and a set D of sorts with value construc-
tors. Elements of D have the form 〈d,F 〉 with d ∈ S and F = 〈Fw,d〉w∈S∗ , where
Fw,d ⊆ Ωw,d for w ∈ S∗, with no sort given more than one set of value construc-
tors, i.e. 〈d,F 〉,〈d,F ′〉 ∈ D implies F = F ′. So SIG consists of an ordinary
algebraic signature 〈S,Ω〉 together with a set of value constructors for some
of the sorts. Sorts with value constructors correspond to algebraic datatypes in
functional programming languages. In examples we use a CASL-like notation,9

for instance,

sort Nat free with 0| succ(Nat)

adds the sort name Nat to S, the operation names 0:Nat and succ:Nat → Nat to
Ω , and 〈Nat,{0:Nat,succ:Nat → Nat}〉 as a sort with value constructors to D.
We assume for convenience that each FPL-signature SIG contains the sort Bool
with value constructors true and false:

sort Bool free with true| false.

• A model over a signature SIG= 〈S,Ω ,D〉 is a partial 〈S,Ω〉-algebra A such that
for each set10 of sorts with value constructors {〈d1,F1〉, . . . ,〈dn,Fn〉} ⊆ D, for
1 ≤ i ≤ n, each value constructor in Fi is total and each element a ∈ |A|di is
uniquely constructed from the values in |A| of sorts other than d1, . . . ,dn using
the value constructors in F1 ∪ ·· · ∪Fn; that is, 〈|A|di〉1≤i≤n is freely generated
by F1∪·· ·∪Fn from the carriers of the other sorts in A.
We assume that all FPL-models interpret the sort Bool and its constructors true
and false in the same standard way.
A SIG-morphism between SIG-models A and B is an 〈S,Ω〉-homomorphism be-
tween A and B viewed as partial 〈S,Ω〉-algebras. It is strong if it is strong when
viewed as a homomorphism between partial algebras; see Definition 2.7.31.

• The set |TSIG(X)| of FPL-terms over SIG= 〈S,Ω ,D〉 with variables X and their
interpretation in an FPL-model A are defined by extending the usual definition

9 CASL notation: this would be written free type Nat ::= 0| succ(Nat) in CASL.
10 This definition is complicated because of the possible presence of mutually dependent sorts with
value constructors. Exercise: Check that imposing the same requirement for each sort with value
constructors separately is more permissive and would not capture the intended meaning. Check
also that it would be sufficient to consider only maximal sets of sorts with value constructors that
are mutually dependent.
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of terms over 〈S,Ω〉 and their interpretation by the following additional func-
tional programming constructs (local recursive function definitions and pattern-
matching case analysis, respectively):11

– let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t is an FPL-term of sort s with variables
in X if:
· s1, . . . ,sn,s′ ∈ S;
· t ′ is an FPL-term of sort s′ over SIG extended by f :s1×·· ·× sn → s′ with

variables in X ∪{x1:s1, . . . ,xn:sn}; and
· t is an FPL-term of sort s over SIG extended by f :s1 ×·· ·× sn → s′ with

variables in X .
The value of such a term under a valuation v:X →|A| is determined as follows:
· extend A to give an algebra Â by interpreting f :s1 × ·· · × sn → s′ as the

least-defined partial function fÂ such that for all a1 ∈ |A|s1 , . . . ,an ∈ |A|sn ,
the value of fÂ(a1, . . . ,an) is the same as the value of t ′ in Â under v mod-
ified by mapping x1 to a1 and . . . and xn to an, whenever the latter is de-
fined.12

· the resulting value is then the value of t in Â under v.
– case t of pat1 => t1 | · · ·| patn => tn is an FPL-term of sort s with variables

in X if:
· t is an FPL-term of some sort s′ over SIG with variables in X ;
· for each 1 ≤ j ≤ n, pat j is a pattern over SIG of sort s′, where a pattern is

an 〈S,Ω〉-term containing only variables and value constructors, with no
repeated variable occurrences; and

· for each 1 ≤ j ≤ n, t j is an FPL-term of sort s with variables in the set X
extended by the variables of pat j.

The value of such a term under a valuation v:X →|A| is determined as follows:
· obtain the value a of t in A under v;
· find the least j such that a matches pat j, yielding a valuation v′ of the

variables in pat j, where matching a value against a pattern proceeds as
follows:
· a variable x is matched by any value a, yielding a valuation {x �→ a};
· a pattern f (p1, . . . , pm) is matched by a yielding a valuation v′ iff13

a = fA(a1, . . . ,am) and each pi (1 ≤ i ≤ m) is matched by ai yielding
v′i, with v′ = v′1∪·· ·∪ v′m;

· if such a j exists then the resulting value is that of t j in A under the exten-
sion of v by v′; otherwise, the resulting value is undefined.

11 We will use additional parentheses and indentation to disambiguate FPL-terms when the syntax
leaves any doubt.
12 The fact that this unambiguously defines fÂ, and that fÂ can be equivalently given via the
natural operational semantics of recursively defined functions, is a standard result of denotational
semantics; see for instance [Sch86].
13 This uniquely determines a result because non-variable patterns are of sorts that are freely gen-
erated by the value constructors and there are no repeated occurrences of variables in patterns.
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• Sentences over SIG are first-order sentences built over atomic formulae that are
equalities between FPL-terms over SIG of the same sort and definedness asser-
tions for such terms. Interpretation of FPL-terms in a model determines satisfac-
tion of such sentences, as in PFOEQ; see Exercises 4.1.17 and 4.1.18. (Recall
that PFOEQ uses strong equality; see Section 2.7.4.)
For convenience, we introduce function definitions of the form

fun f (x1:s1, . . . ,xn:sn):s = t

to abbreviate the formula

∀x1:s1, . . . ,xn:sn
• f (x1, . . . ,xn) = let fun f (x1:s1, . . . ,xn:sn):s = t in f (x1, . . . ,xn).

To make the scopes of identifiers clearer, this can be rewritten using a new oper-
ation name g and new variables x′1, . . . ,x

′
n as

∀x1:s1, . . . ,xn:sn
• f (x1, . . . ,xn) = let fun g(x′1:s1, . . . ,x′n:sn):s = t ′ in g(x1, . . . ,xn)

where t ′ results from t by replacing f by g and xi by x′i, i = 1, . . . ,n. Such a
recursive function definition is different from the equality f (x1, . . . ,xn) = t: for
instance, fun f (x1:s1, . . . ,xn:sn):s = f (x1, . . . ,xn) holds only when f is totally
undefined while f (x1, . . . ,xn) = f (x1, . . . ,xn) trivially always holds.

• Given SIG = 〈S,Ω ,D〉 and SIG′ = 〈S′,Ω ′,D′〉, an FPL-signature morphism
δ :SIG → SIG′ is a derived signature morphism δ :〈S,Ω〉 → 〈S′,Ω ′〉 (using
FPL-terms in place of ordinary terms in Definition 1.5.13), such that for each
〈d,F 〉 ∈ D, we have 〈δ (d),F ′〉 ∈ D′ such that δ restricted to F is determined
by a bijection from F to F ′.
We require all FPL-signature morphisms to preserve the sort Bool and its con-
structors true and false.
Such signature morphisms go well beyond the usual renaming of sort and op-
eration names; here we allow (non-constructor) operations to be mapped to
complicated terms involving programming constructs like recursion and pattern-
matching case analysis. This will be used in Chapters 6–9 to give examples,
starting with Example 6.1.6, that suggest how programs fit into the overall spec-
ification and development framework.
Such a signature morphism determines a translation of SIG-sentences to SIG′-
sentences in the usual manner,14 and the same for the reduct from SIG′-models
to SIG-models.

14 Care is required to avoid unintended clashes of let-bound operation names in SIG-terms with
operation names in SIG′. To avoid consequent problems with functoriality of sentence translation,
we can regard FPL-terms as being defined up to renaming of let-bound operation names.

Moreover, as in FOPEQ (see Example 4.1.12), care is needed with the treatment of bound vari-
ables (which now also include variables in patterns and formal parameters in let-bound operation
definitions); cf. footnote 6.
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Exercise. Prove that the requirements on FPL-signature morphisms concerning
the mapping of sorts with value constructors ensure that the reduct of a SIG′-
model is indeed a SIG-model.

Exercise. Complete the above definition and prove the satisfaction condition. ��
Exercise 4.1.26. The functional programming constructs used above are inspired by
those in Standard ML [Pau96]. Add more constructs from Standard ML to the def-
inition of FPL. Try adding type definitions, polymorphism, higher-order functions,
exceptions.

It is easy to add built-in types other than Bool by basing the definition of FPL on
an arbitrary algebra DT as in IMP (Example 4.1.32 below). ��
Exercise 4.1.27. Mutual recursion need not be added explicitly since it is already
expressible using local definitions of recursive functions. Show how. HINT: It may
be necessary to resort to copying function definitions, to make each function avail-
able for the definitions of the others. ��
Exercise 4.1.28. Consider an FPL-signature SIG containing a sort s with value con-
structors having arities containing only such sorts. Show how an equality operation
eqs:s× s → Bool may be defined using a recursive function definition with pattern-
matching case analysis. Use this to view conditionals of the form

if t1 = t2 then t else t ′

(where t1, t2 are SIG-terms of sort s, and t, t ′ have the same sort) as an abbreviation
for

let fun eqs(x:s,y:s):Bool = . . . in case eqs(t1, t2) of true => t | false => t ′. ��
Exercise 4.1.29. We could also introduce a conditional of the form if ϕ then t else t ′
where ϕ is a formula. Spell out the details. This would be unusual as a programming
construct because branching is controlled by an arbitrary logical formula, allow-
ing terms that would be problematic from a programming point of view, such as
if def (t) then t ′ else t ′′ and if ∀x:s• t1 = t2 then t ′ else t ′′. Note that the meaning of
such a conditional would be different from the one introduced in Exercise 4.1.28
when the check for equality involves a term with no defined value. ��
Exercise 4.1.30. While FPL involves constructs borrowed from functional pro-
gramming languages, it puts them in a logical context involving equality, logical
connectives and quantifiers, which results in sentences capable not only of defining
functions, but also of specifying their properties. Identify the “programming part”
of FPL by defining its “subinstitution” FProg with the same signatures and mod-
els, but with sets of sentences restricted to function definitions (with satisfaction
relations inherited from FPL as well). As function definitions may not be closed
under translation along arbitrary (derived) signature morphisms in FPL, restrict the
class of signature morphisms in FProg to the standard morphisms, where operation
names are mapped to operation names rather than to arbitrary terms.
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The use of strong equality (rather than, say, existential equality; see Sect. 2.7.4)
is essential here to ensure that any function definition has a model (in fact, it defines
the function unambiguously). Check that under existential interpretation of equality
in partial algebras, some function definitions would not be satisfiable. ��
Exercise 4.1.31. FPL and its programming part FProg relate to eager functional
programming languages like Standard ML because partial functions are required to
be strict. Formulate an analogous institution for lazy functional programming as in
Haskell [Pey03]. ��

The institutions FPL and FProg will be used in the sequel to present examples
that are meant to appeal to the reader’s programming intuition. Later on, the connec-
tion with functional programming will be further enhanced by introducing notations
for defining ML-style modules in FPL (see Example 6.1.9 and Exercise 7.3.5 be-
low).

Example 4.1.32 (A simple imperative language IMP). The institution IMP of an
imperative programming language with simple type definitions is parameterised by
an algebra DT on a signature ΣDT of primitive (built-in) data types and functions of
the language. The components of IMPDT are defined as follows:

• A signature Π = 〈T,P〉 consists of a set T of type names and a set P of functional
procedure names with types of the form s1, . . . ,sn → s, where each of s1, . . . ,sn,s
is either a sort in ΣDT or a type name in T . The names in T and P are distinct
from those in ΣDT . Thus Π ∪ΣDT is an algebraic signature — we will denote
it by ΠDT . Signature morphisms map type names to type names and procedure
names to procedure names, preserving their types.

• There are two kinds of sentences over a signature Π = 〈T,P〉.
First, sentences can be type definitions of the form

type s = type-expr

where s ∈ T is a type name and type-expr is a type expression in a simple lan-
guage of types built over the sorts in ΣDT and a unit type unit using the opera-
tors + (disjoint union) and × (Cartesian product). The type expression type-expr
may contain the type name s as well, which provides for recursive type defini-
tions.15

Second, sentences can be procedure definitions of the form

proc p(x1:s1, . . . ,xn:sn) = while-program;result expr:s

where p:s1, . . . ,sn → s is a procedure name in P, expr is a ΠDT -term (with vari-
ables) of sort s, and while-program is a statement in a deterministic programming
language over the built-in data types and functions given in DT (while-program
may be empty, and so the program part of a procedure body may be omitted). We

15 Other type names from T are excluded, to prevent mutual recursion in type definitions — with
some extra work this restriction can be removed.
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assume that the usual iterative program constructions are provided: sequential
statements, conditionals and while loops. This requires that ΣDT contain the sort
Bool with |DT |Bool = {tt, ff}. The basic statements are well-typed assignments
(of expression values to formal parameters or variables scoped within each pro-
cedure body).
Expressions may use projections proj1(v) and proj2(v) for values v of product
types of the form s1× s2 and pairing 〈v1,v2〉 to build values of product types, as
well as boolean tests is-in1(v) and is-in2(v) for values v of union types of
the form s1 + s2 and the constant 〈〉 of type unit denoting the only element of
this type. The usual coercions between union types and their component types
may also be used. With a bit of additional complication we can also allow ex-
pressions to contain (recursive) procedure calls.

• A model M over a signature Π = 〈T,P〉 has a carrier set |M|s for each s ∈ T . We
write |M|s for |DT |s if s is a sort name in ΣDT .
We have the usual notion of state, where each state maps formal parameters and
variables to values of their sorts in M, or marks them as undefined. An obvious
operational semantics may be given that determines, for each statement and state,
a sequence of states that formally captures the execution of that statement starting
in that state.
Then, M assigns to each procedure name p:s1, . . . ,sn → s in P and every sequence
v1 ∈ |M|s1 , . . . ,vn ∈ |M|sn of (actual parameter) values a formal execution which
has one of the following forms:

(Successful termination): a finite sequence of states and a result value v ∈ |M|s;
(Unsuccessful termination): a finite sequence of states; or
(Divergence): an infinite sequence of states.

Given any such model M, for any procedure name p:s1, . . . ,sn → s in P we get
a partial function pM: |M|s1 × ·· · × |M|sn → |M|s, where pM(v1, . . . ,vn) = v if
M(P)(v1, . . . ,vn) is a (finite) formal execution with the result value v.
The models defined in this way form a discrete category.

• For any signature Π = 〈T,P〉 and Π -model M:

– M satisfies a Π -sentence of the form

type s = type-expr

if |M|s is the least set D such that D is the value of the type expression
type-expr in which the type name s is interpreted as D and sort names s′ in
ΣDT are interpreted as |DT |s′ .

– M satisfies a Π -sentence of the form

proc p(x1:s1, . . . ,xn:sn) = while-program;result expr:s

if for all v1 ∈ |M|s1 , . . . , vn ∈ |M|sn , M(p)(v1, . . . ,vn) is the formal execution
of the statement while-program starting in the state {x1 �→ v1, . . . ,xn �→ vn},
and if the execution terminates successfully in a state in which expr has value
v then M(p)(v1, . . . ,vn) contains v as the result value.
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Exercise. Complete the above definition and prove the satisfaction condition. ��
Exercise 4.1.33. Sentences in IMP are essentially programs; they provide no means
of writing loose specifications. Add sentences of PFOPEQ for specifying properties
of the procedures of IMP viewed as partial functions. A different way of achieving
a similar effect will be presented in Examples 10.1.9, 10.1.14 and 10.1.17. ��
Example 4.1.34 (Commutative diagrams CDIAG). The following example is of
a rather non-standard character. We present a simple logical system for stating that
certain diagrams in a category with named objects and morphisms commute. Sen-
tences of the logical system allow one to require that morphisms produced by com-
position of series of (named) morphisms coincide.

• The category of signatures in CDIAG is the category Graph of graphs (see Def-
inition 3.2.37).

• A path equation in a graph G is a pair of paths in G with the same sources and
targets, respectively. For any graph G (a signature in SignCDIAG), G-sentences in
CDIAG are sets of path equations in G.

• A model over a graph G is a (small) category C with a diagram D of “shape”
G, i.e. (via Exercise 3.4.21) a functor D:Path(G)→ C. For any two G-models
D1:Path(G) → C1 and D2:Path(G) → C2, a G-morphism in ModCDIAG(G)
from D1 to D2 is a functor F:C1 → C2 such that D1;F = D2.

• For any G-model D:Path(G)→ C, a path p from s to t in G determines a mor-
phism D(p):D(s)→D(t) in C. We say that a G-model D:Path(G)→C satisfies
a path equation 〈p,q〉 if D(p) = D(q). A G-model satisfies a G-sentence Φ if it
satisfies all path equations ϕ ∈ Φ .

Exercise. Complete the definition and prove the satisfaction condition for CDIAG.

Exercise. Reformulate the above definitions so that a sentence over a graph G would
be a subdiagram of G used to denote the set of path equations in G which make the
subdiagram commute. ��

The last few examples show that the notion of institution covers much more than
what one usually associates with the concept of a logical system.

The next two examples are perhaps even more unusual: we show that the defini-
tion of an institution does not restrict the sentences of a logic to be syntactic objects,
and does not force models to provide semantic domains and operations used to de-
termine the meanings of the syntactic objects. Thus, the notion of an institution
covers systems in which such a distinction is entirely blurred.

Example 4.1.35. Consider an arbitrary category Sign and functor Mod:Signop →
Cat. We think of Sign as a category of signatures and of Mod as yielding categories
of models and reduct functors. To be cautious about foundations, we should make
sure that Mod yields only small categories.

We can now define an institution INSSen(Mod) where “sentences” are classes of
models:
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• The category of signatures of INSSen(Mod) is Sign.
• The “sentence” functor of INSSen(Mod) is defined as follows:

– For any signature Σ ∈ |Sign|, a Σ -“sentence” of INSSen(Mod) is a collection
M ⊆ |Mod(Σ)| of Σ -models.

– For any signature morphism σ :Σ → Σ ′, the σ -translation of any Σ -“sentence”
M ⊆ |Mod(Σ)| to a Σ ′-“sentence” σ(M ) ⊆ |Mod(Σ ′)| is defined as the
coimage of M w.r.t. the σ -reduct functor, i.e. σ(M ) = {M′ ∈ |Mod(Σ ′)| |
Mod(σ)(M′) ∈M }.

• The model functor of INSSen(Mod) is Mod.
• For each signature Σ , the Σ -satisfaction relation of INSSen(Mod) is just the

membership relation: for any Σ -model M ∈ |Mod(Σ)| and Σ -“sentence” M ⊆
|Mod(Σ)|, M |=

INSSen(Mod),Σ M if and only if M ∈M .

Exercise. Complete the definition and check the satisfaction condition. ��
Example 4.1.36. Consider an arbitrary category Sign and functor Sen:Sign → Set.
We think of Sign as a category of signatures and of Sen as yielding sets of sentences
and their translations.

We can now define an institution INSMod(Sen) where “models” are sets of sen-
tences:

• The category of signatures of INSMod(Sen) is Sign.
• The sentence functor of INSMod(Sen) is Sen.
• The “model” functor of INSMod(Sen) is defined as follows:

– For any signature Σ ∈ |Sign|, a Σ -“model” of INSMod(Sen) is a set Φ ⊆ Sen(Σ)
of Σ -sentences. The category of Σ -“models” is just the preorder category
where the set of all such subsets is ordered by inclusion.

– For any signature morphism σ :Σ → Σ ′, the σ -reduct functor of INSMod(Sen)

from the category of Σ ′-“models” to the category of Σ -“models” maps any
Σ ′-“model” Φ ′ ⊆ Sen(Σ ′) to its coimage {ϕ ∈ Sen(Σ) | Sen(σ)(ϕ) ∈ Φ ′} ⊆
Sen(Σ); this obviously extends to a functor between the preorder categories
of Σ ′- and Σ -“models”.

• For each signature Σ , the Σ -satisfaction relation of INSMod(Sen) is (the inverse
of) the membership relation: for any Σ -“model” Φ ⊆ Sen(Σ) and Σ -sentence
ϕ ∈ Sen(Σ), Φ |=

INSMod(Sen),Σ ϕ if and only if ϕ ∈ Φ .

Exercise. Complete the definition and check the satisfaction condition. ��
Let us complete this list of examples by pointing out that the definition of insti-

tution admits a number of trivial situations:

Example 4.1.37 (Trivial institutions).

• Recall that 0 is the empty category. Hence, there is a unique (empty) functor
from 0 to Set and a unique (empty) functor from 0op = 0 to Cat. Together with



180 4 Working within an arbitrary logical system

the empty family of relations, they form an empty institution (no signatures, and
hence no sentences and no models).

• Given any category Sign and functor Mod:Signop → Cat, a trivial institution
with signatures Sign, with models given by Mod, and with no sentences may be
constructed. Formally, the sentences of this institution are given by the functor
Sen∅:Sign → Set which yields the empty set for each signature.

• Given any category Sign and functor Sen:Sign → Set, a trivial institution with
signatures Sign, with sentences given by Sen, and with no models may be
constructed. Formally, the models of this institution are given by the functor
Mod0:Signop → Cat which yields the empty category for each signature.

• Given any category Sign and functors Sen:Sign→ Set and Mod:Signop →Cat,
two trivial institutions with signatures Sign, with sentences given by Sen, and
with models given by Mod may be constructed. One is obtained by making all
sentences false in all models, that is by defining each satisfaction relation to be
empty. The other is obtained by making all sentences hold in all models, that is
by defining each satisfaction relation to be total (i.e. for each Σ ∈ |Sign|, |=Σ =
|Mod(Σ)|×Sen(Σ)). ��

4.1.2 Constructing institutions

In the examples of the previous subsection, each of the institutions was constructed
“from scratch” by explicitly defining its signatures, sentences, models and satis-
faction relations. This is often a rather tedious task (we have simplified it in many
cases by referring to the standard definitions), and then checking the satisfaction
condition is not always easy. In this subsection we will give some examples of con-
structions leading from an institution to a more complex one. The complexity added
by the construction does not necessarily imply that the institution so obtained has
any extra “expressive power”. We start with some examples of “formal juggling”
with institution components, very much in the spirit of Examples 4.1.35 and 4.1.36,
and only then show how adding propositional connectives to a logic may be viewed
as a construction of a new institution from an existing one.

Example 4.1.38. Sets of sentences of any institution may be regarded as single sen-
tences (with the obvious “conjunctive” interpretation).

For any institution INS define the institution INS∧ of sets of INS-sentences as
follows:

• The category of INS∧-signatures is the same as the category Sign of INS-
signatures.

• The sentence functor SenINS∧ is defined as follows:

– For any signature Σ ∈ |Sign|, SenINS∧(Σ) is the set of all sets Φ ⊆ SenINS(Σ)
of Σ -sentences in INS.
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– For any signature morphism σ :Σ → Σ ′, the translation of a Σ -sentence Φ in
INS∧ is its image w.r.t. the σ -translation function in INS: SenINS∧(σ)(Φ) =
{SenINS(σ)(ϕ) | ϕ ∈ Φ} ⊆ SenINS(Σ ′).

• The model functor of INS∧ is the same as the model functor Mod:Signop →Cat

of INS.
• For any signature Σ ∈ |Sign|, the satisfaction relation of INS∧ gives the conjunc-

tive interpretation of (sets of) sentences: for any Σ -model M ∈ |Mod(Σ)| and Σ -
sentence Φ ⊆ SenINS(Σ), M |=INS∧,Σ Φ if and only if for all ϕ ∈Φ , M |=INS,Σ ϕ .

��
Example 4.1.39. Signatures of any institution may be enriched to incorporate sen-
tences which restrict the class of models considered over the given signature.

For any institution INS define the institution INSSign+ with signatures enriched
by sentences as follows:

• Signatures of INSSign+ are pairs 〈Σ ,Φ〉, where Σ ∈ |SignINS| is an INS-signature
and Φ ⊆ SenINS(Σ) is a set of Σ -sentences. Then, an INSSign+ -signature mor-
phism σ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a signature morphism σ :Σ → Σ ′ in SignINS such
that for all ϕ ∈ Φ , σ(ϕ) ∈ Φ ′. This defines a category Sign

INSSign+ of INSSign+ -
signatures (with composition inherited from SignINS).

• Sentences of INSSign+ are the same as INS-sentences: for any INSSign+ -signature
〈Σ ,Φ〉, Sen

INSSign+ (〈Σ ,Φ〉) = SenINS(Σ), with the translation functions inher-
ited from INS as well.

• Models of INSSign+ are again the same as models of INS; we consider, how-
ever, only those models that satisfy the sentences in the given signature. For
any INSSign+ -signature 〈Σ ,Φ〉, Mod

INSSign+ (〈Σ ,Φ〉) is the full subcategory
of ModINS(Σ) consisting of all Σ -models (in INS) that satisfy (according to
|=INS,Σ ) all the sentences in Φ . The reduct functors are again inherited from
INS.

• The satisfaction relations of INSSign+ are inherited from INS.

Exercise. Spell out all the details of the above definition. In particular, check that
the reduct functors of the new institution INSSign+ are well defined (cf. Fact 4.2.26
below). ��
Example 4.1.40. For any institution, we can enlarge its categories of models by
considering models over extended signatures.

For any institution INS, define the institution INSMod+ with categories of models
containing models over extended signatures as follows:

• The category of INSMod+ -signatures is the category Sign of INS-signatures.
• The sentence functor of INSMod+ is the sentence functor Sen:Sign→ Set of INS.
• The model functor Mod

INSMod+ :Signop → Cat is defined as follows:
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– For any signature Σ ∈ |Sign|, a Σ -model of INSMod+ is an INS-model
over an extension of the signature Σ . Formally, a Σ -model in INSMod+ is
a pair 〈σ :Σ → Σ ′,M′ ∈ |ModINS(Σ ′)|〉. A Σ -model morphism between two
such Σ -models is again a pair 〈σ ′, f 〉:〈σ1:Σ → Σ ′

1,M
′
1 ∈ |ModINS(Σ ′

1)|〉 →
〈σ2:Σ → Σ ′

2,M
′
2 ∈ |ModINS(Σ ′

2)|〉, which consists of an INS-signature mor-
phism σ ′:Σ ′

1 → Σ ′
2 such that σ1;σ ′ = σ2 and a model morphism f :M′

1 →
ModINS(σ ′)(M′

2) in ModINS(Σ ′
1).

– For any signature morphism σ :Σ1 →Σ2, the σ -reduct functor Mod
INSMod+ (σ)

maps any Σ2-model 〈σ2:Σ2 → Σ ′
2,M

′
2 ∈ |ModINS(Σ ′

2)|〉 to the Σ1-model given
by pre-composition with σ , namely 〈σ ;σ2:Σ1 → Σ ′

2,M
′
2 ∈ |ModINS(Σ ′

2)|〉,
and Mod

INSMod+ (σ) preserves model morphisms.

• For Σ ∈ |Sign|, the Σ -satisfaction relation of INSMod+ is determined by the Σ -
satisfaction relation of INS: for any Σ -model 〈σ :Σ → Σ ′,M′ ∈ |ModINS(Σ ′)|〉
and Σ -sentence ϕ ∈ Sen(Σ), 〈σ ,M′〉 |=

INSMod+ ,Σ ϕ if and only if M′ |=INS,Σ ′

Sen(σ)(ϕ), which is equivalent to ModINS(σ)(M′) |=INS,Σ ϕ by the satisfaction
condition for INS.

Exercise. Complete the definition and check the satisfaction condition. Try to refor-
mulate the construction of the categories of models of INSMod+ using the Grothen-
dieck construction for indexed categories (Definition 3.4.59) and the machinery of
comma categories (Definition 3.4.50). ��
Example 4.1.41. For any institution INS define the institution INSprop by closing
the sets of its sentences under propositional connectives (with the usual interpreta-
tion) as follows:

• The category of signatures of INSprop is just the category Sign of INS-signatures.
• The sentence functor SenINSprop :Sign → Set is defined as follows:

– For any signature Σ ∈ |Sign|, SenINSprop(Σ) is the least set that contains all
of the Σ -sentences of INS and two special sentences true and false, and
is closed under the usual propositional connectives as introduced in Exam-
ple 4.1.9, that is, if ϕ,ϕ ′ ∈ SenINSprop(Σ) then also ϕ ∨ϕ ′ ∈ SenINSprop(Σ),
¬ϕ ∈ SenINSprop(Σ), ϕ ∧ϕ ′ ∈ SenINSprop(Σ), and ϕ ⇒ ϕ ′ ∈ SenINSprop(Σ).16

– For any σ :Σ → Σ ′, the σ -translation function SenINSprop(σ) coincides with
SenINS(σ) on SenINS(Σ) and preserves the propositional connectives in the
new sentences in the obvious way.

• The model functor of INSprop is the model functor Mod:Signop → Cat of INS.
• For each signature Σ ∈ |Sign|, the Σ -satisfaction relation of INSprop is the same

as the Σ -satisfaction relation of INS for sentences in SenINS(Σ), and then, for
any Σ -model M ∈ |Mod(Σ)|, for the sentences built using the propositional con-
nectives, the satisfaction of such sentences in M is defined inductively as in Ex-
ample 4.1.9.

16 The remarks in footnote 4 apply as appropriate.
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Exercise. Show how PROP, the institution of propositional logic (see Exam-
ple 4.1.9) arises as the propositional closure of a simple institution with proposi-
tional variables as the only sentences. ��

In Section 4.4.2 below we define yet another similar construction on institutions
by showing how quantifiers may be introduced.

The constructions described in the examples above may naturally be viewed as
extensions of the original institution — this will be made formal in Section 10.2;
cf. Example 10.2.5. In Section 10.3 we will discuss how such extensions may be
combined using the limit construction in a suitable category of institutions.

These examples are about adding new sentences built using logical connectives
to an institution. The new sentences are added even if the connectives were already
expressible in the following sense:

Definition 4.1.42. The institution INS has negation if for every signature Σ ∈ |Sign|
and Σ -sentence ϕ , there exists a Σ -sentence ψ such that for every Σ -model M,
M |=Σ ϕ iff M �|=Σ ψ . Any such ψ may be referred to as ¬ϕ .

The properties of having conjunction, having disjunction and having implication
are defined in the analogous way, and similarly for having truth, having falsity,
having infinitary conjunction, and so on. ��
Exercise 4.1.43. Suppose that the institution INS has negation. Using the satisfac-
tion condition, show that for every signature morphism σ :Σ → Σ ′ and Σ -sentence
ϕ , ¬σ(ϕ) may be taken to be σ(¬ϕ). Show a similar property for the other connec-
tives. ��
Example 4.1.44. For any institutions INS1 = 〈Sign1,Sen1,Mod1,〈|=1,Σ1〉Σ1∈|Sign1|〉
and INS2 = 〈Sign2,Sen2,Mod2,〈|=2,Σ2〉Σ2∈|Sign2|〉, their sum INS1 + INS2 puts
INS1 and INS2 side by side without any “interaction”. Formally, INS1 + INS2 is
defined as follows:

• The category of signatures of INS1 + INS2 is the disjoint union Sign1 +Sign2 of
the categories of signatures of INS1 and of INS2.

• The sentence functor SenINS1+INS2 :Sign1 +Sign2 → Set acts as Sen1 on Sign1
and as Sen2 on Sign2 (that is, SenINS1+INS2 is determined by Sen1 and Sen2
according to the coproduct property of Sign1 +Sign2).

• The model functor ModINS1+INS2 :(Sign1 + Sign2)
op → Cat acts as Mod1 on

Sign1 and as Mod2 on Sign2 (that is, ModINS1+INS2 is determined by Mod1 and
Mod2 according to the coproduct property of Sign1 +Sign2).

• The family of satisfaction relations of INS1 + INS2 is the union of the fam-
ilies of satisfaction relations of INS1 and of INS2 (that is, for Σ1 ∈ |Sign1|,
|=INS1+INS2,Σ1 is |=1,Σ1 , and for Σ2 ∈ |Sign2|, |=INS1+INS2,Σ2 is |=2,Σ2 ). ��

Example 4.1.45. Given institutions INS1 = 〈Sign1,Sen1,Mod1,〈|=1,Σ1〉Σ1∈|Sign1|〉
and INS2 = 〈Sign2,Sen2,Mod2,〈|=2,Σ2〉Σ2∈|Sign2|〉, their product INS1 × INS2 is
defined as follows:



184 4 Working within an arbitrary logical system

• The category of signatures of INS1 × INS2 is the product Sign1 ×Sign2 of the
categories of signatures of INS1 and of INS2; thus a signature in INS1× INS2 is
a pair consisting of one signature from INS1 and one from INS2, and similarly
for signature morphisms.

• The sentence functor SenINS1×INS2 :Sign1×Sign2 → Set is defined as follows:

– For any signature 〈Σ1,Σ2〉 ∈ |Sign1×Sign2|, the set SenINS1×INS2(〈Σ1,Σ2〉)=
Sen1(Σ1)+Sen2(Σ2) of 〈Σ1,Σ2〉-sentences is the disjoint union of the sets of
INS1-sentences over Σ1 and of INS2-sentences over Σ2.

– For any signature morphism 〈σ1,σ2〉:〈Σ1,Σ2〉 → 〈Σ ′
1,Σ

′
2〉, the translation of

sentences SenINS1×INS2(〈σ1,σ2〉) = Sen1(σ1) + Sen2(σ2) acts as Sen1(σ1)
on INS1-sentences and as Sen2(σ2) on INS2-sentences over the signature
〈Σ1,Σ2〉.

• The model functor ModINS1×INS2 :(Sign1 × Sign2)
op → Cat is defined as fol-

lows:

– For any 〈Σ1,Σ2〉 ∈ |Sign1 ×Sign2|, the category ModINS1×INS2(〈Σ1,Σ2〉) =
Mod1(Σ1)×Mod2(Σ2) of 〈Σ1,Σ2〉-models is the product of the categories of
INS1-models over Σ1 and of INS2-models over Σ2; thus a model in INS1 ×
INS2 is a pair consisting of one model from INS1 and one from INS2, and
similarly for model morphisms.

– For any signature morphism 〈σ1,σ2〉:〈Σ1,Σ2〉 → 〈Σ ′
1,Σ

′
2〉, the reduct functor

ModINS1×INS2(〈σ1,σ2〉) = Mod1(σ1)×Mod2(σ2) acts as Mod1(σ1) on the
INS1-components of 〈Σ ′

1,Σ
′
2〉-models and model morphisms and as Mod2(σ2)

on the INS2-components of 〈Σ ′
1,Σ

′
2〉-models and model morphisms.

• For any signature 〈Σ1,Σ2〉 ∈ |Sign1 × Sign2|, sentences ϕ1 ∈ Sen1(Σ1) and
ϕ2 ∈ Sen2(Σ2), and model 〈M1,M2〉 ∈ |ModINS1×INS2(〈Σ1,Σ2〉)|, we define
〈M1,M2〉 |=INS1×INS2,〈Σ1,Σ2〉 ϕ1 to hold if and only if M1 |=1,Σ1 ϕ1, and similarly,
〈M1,M2〉 |=INS1×INS2,〈Σ1,Σ2〉 ϕ2 if and only if M2 |=2,Σ2 ϕ2. That is, satisfaction in
INS1 × INS2 is defined as INS1-satisfaction for INS1-sentences (extracting the
INS1-components of (INS1× INS2)-models) and as INS2-satisfaction for INS2-
sentences (extracting the INS2-components of (INS1× INS2)-models). ��
The next example indicates a technically correct but intuitively somewhat arti-

ficial way of dealing with the translation of sentences along signature morphisms.
The simple idea is that instead of actually translating sentences from one signa-
ture to another, we can always keep the original sentence over its original signature
together with a morphism “fitting” it to another signature.

Example 4.1.46. Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution. Con-
sider a function NewSen: |Sign| → |Set| coming together with a family of rela-
tions 〈|=NewSen,Σ ⊆ |Mod(Σ)|×NewSen(Σ)〉Σ∈|Sign|. Intuitively, for any signature
Σ , NewSen(Σ) is a set of new sentences over Σ with the satisfaction relation
|=NewSen,Σ . We define an institution INS+NewSen by adding these new sentences
fitted to other signatures via signature morphisms:
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• The category of signatures of INS+NewSen is just the category Sign of INS-
signatures.

• The sentence functor SenINS+NewSen:Sign → Set is defined as follows:

– For any signature Σ ∈ |Sign|, SenINS+NewSen(Σ) is the (disjoint) union of the
“old” sentences Sen(Σ) and the set17 of “new” sentences fitted to the sig-
nature Σ by a signature morphism. The latter are pairs 〈ϕ ′,θ〉, written as
ϕ ′ through θ , with θ :Σ ′ → Σ and ϕ ′ ∈ NewSen(Σ ′) for an arbitrary signa-
ture Σ ′.

– For any σ :Σ →Σ1, SenINS+NewSen(σ) works as Sen(σ) on the INS-sentences;
for θ :Σ ′ → Σ and ϕ ′ ∈ NewSen(Σ ′), SenINS+NewSen(σ)(ϕ ′ through θ) =
ϕ ′ through θ ;σ .

• The model functor of INS+NewSen is the model functor Mod:Signop →Cat of
INS.

• For each signature Σ ∈ |Sign|, the Σ -satisfaction relation of INS+NewSen is the
same as the Σ -satisfaction relation of INS for the “old” Σ -sentences, and then, for
any Σ -model M ∈ |Mod(Σ)|, θ :Σ ′ → Σ and ϕ ′ ∈ NewSen(Σ ′), M |=INS+NewSen
ϕ ′ through θ if and only if M θ |=NewSen,Σ ′ ϕ ′.

Exercise. Check the satisfaction condition. ��
We conclude this list of constructions on institutions with a sketch of how various

modal (and temporal) logics may be built over an arbitrary institution.

Example 4.1.47 (Linear-time temporal logic LTLINS). For any institution INS =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉, we define the institution LTLINS of linear-time
temporal logic over INS, using sequences of models from INS as models and sen-
tences from INS as “state sentences”, that is:

• The category of signatures of LTLINS is Sign, the same as in INS.
• For each signature Σ , a Σ -model in LTLINS is a countably infinite sequence

M = 〈Mn〉n≥0 of models Mn ∈ |Mod(Σ)| for n≥ 0. Reducts of such models w.r.t.
a signature morphism σ are defined componentwise, using the reduct w.r.t. σ as
defined in INS. (We disregard model morphisms here, taking ModLTLINS

(Σ) to
be the discrete category.)

• For each signature Σ , the set of Σ -sentences in LTLINS is the least set that con-
tains true and all the sentences in Sen(Σ) (called state sentences in this context)
and is closed under negation, written ¬ϕ , conjunction, ϕ ∧ψ , and two modal
operators: next time, Xϕ , and until, ϕ Uψ .

• For each signature Σ , satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given position in the temporal sequence; for each model M =
〈Mn〉n≥0, and j ≥ 0 we define:

17 This may lead to some foundational difficulties, since the collection of all signature morphisms
into Σ , and hence the collection of all new Σ -sentences, need not form a set. One argument for
ignoring these problems here is that we can typically limit the size of the category of signatures of
the institution we start with, for example assuming that the category Sign is small.
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– for any state sentence ϕ , M |= j ϕ if Mj |= ϕ (in INS);
– M |= j ¬ϕ if it is not the case that M |= j ϕ;
– M |= j ϕ ∧ψ if M |= j ϕ and M |= j ψ;
– M |= j Xϕ if M |= j+1 ϕ; and
– M |= j ϕ Uψ if for some k ≥ j, M |=k ψ and for all j ≤ i < k, M |=i ϕ .

We put now M |=LTLINS,Σ ϕ if M |=0 ϕ .

Exercise. Complete the definition and check the satisfaction condition.

Exercise. Add other temporal modalities, like “eventually/finally” and “hence-
forth/globally”, either by defining them explicitly, or as abbreviations, for instance:
Fϕ ≡ trueUϕ , Gϕ ≡ ¬(F(¬ϕ)), and so on.

Also, add “past” temporal modalities (previous, since, sometimes in the past,
always in the past, and so on). ��
Exercise 4.1.48 (Modal logic MDLINS). Proceeding similarly as in Example 4.1.47,
given an institution INS, define the institution MDLINS of modal logic:

• The category of signatures of MDLINS is Sign, the same as in INS.
• For each signature Σ , a Σ -model in MDLINS is a Kripke structure, i.e., a triple
〈W,�,M〉, which consists of a set W (of “possible worlds” or “state names”)
and a relation � ⊆ W ×W (“transition relation”), together with a family M =
〈Mw〉w∈W of Σ -models in INS, Mw ∈ |Mod(Σ)| for w ∈W . Again, we disregard
model morphisms.

• For each signature Σ , the set of Σ -sentences in MDLINS is the least set that
contains true and all the sentences in Sen(Σ) and is closed under negation ¬ϕ ,
conjunction ϕ ∧ψ , and the modal operator �ϕ .

• For each signature Σ , satisfaction is defined in terms of an auxiliary relation of
satisfaction at a given world in a Kripke structure; here is the crucial clause:

– 〈W,�,M〉 |=w �ϕ if for all v ∈W such that w � v, 〈W,�,M〉 |=v ϕ .

Then a model satisfies a sentence in MDLINS if the sentence holds in the above
sense at each of its possible worlds.

Complete the definition and check the satisfaction condition.
To keep the definition closer to LTLINS, you may want to define a somewhat

different version of modal logic, where Kripke structures in addition indicate an
initial world, and then the satisfaction of a sentence in a model is determined by its
satisfaction at this initial world. You may also want to impose requirements on the
transition relation (for instance, that it is transitive, or that all possible worlds can
be reached from the initial world).

Combining the ideas behind MDLINS and LTLINS, define the institution CTL∗INS

of branching-time temporal logic, where signatures and models are as in MDLINS,
but sentences are closed under a variety of temporal operators used to quantify (sep-
arately) over paths in the Kripke structure and over worlds in these paths. HINT:
Distinguish between two kinds of sentences: path sentences that are evaluated for a
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given path in the Kripke structure, and state sentences that are evaluated for a given
world in the Kripke structure — or see [Eme90].

You may also start by defining a simpler institution CTLINS where the use of
temporal operators is limited by requiring that quantification over paths and over
worlds in these paths always happen together, so in fact we have only bundled
path/state temporal operators, as in “for some path, always in this path”, “for some
path, eventually in this path”, and so on. ��
Exercise 4.1.49. Consider the institution MDLFOPEQ of modal logic built over first-
order predicate logic with equality. Note that this is not the institution of first-order
modal logic, since quantification is internal to state sentences only and cannot be
interleaved with the modal operator. Define an institution FOMDL of first-order
modal logic in which such an arbitrary interleaving of quantifiers, propositional con-
nectives and the modal operator is allowed. HINT: The trouble here is with moving
valuations of variables from one world to another in the definition of satisfaction.
At least, define such an institution assuming that the carriers of all models in any
Kripke structure coincide. Discuss possible generalisations.

Similarly, try to define institutions of first-order temporal logics that extend
LTLFOPEQ, CTL∗FOPEQ and CTLFOPEQ, respectively. ��

4.2 Flat specifications in an arbitrary institution

Throughout this section we will deal with an arbitrary but fixed institution. This
means that we will be working with a logical system about which we know nothing
beyond what is given in the definition of an institution. For example, we will not
be able to refer to any particular component of signatures, any particular syntax of
sentences, any particular internal structure of models, or any particular definition
of satisfaction. Indeed, we cannot even be sure that signatures have components,
that sentences are syntactic entities in any sense, or that models have any internal
structure at all.

Given these limitations, one may think that there is very little that can be done.
However, the structure of an institution is rich enough to allow us to recast in these
terms the material on simple equational specifications presented in Sections 2.2
and 2.3 (this will be done in the present section, without repeating the discussion
and motivation) and then to proceed further into the theory of specifications and
software development.

Let us then fix an arbitrary institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉. We
start with the basic concepts built around the notion of satisfaction.

Definition 4.2.1 (ModΣ (Φ), ThΣ (M ), ClΣ (Φ) and ClΣ (M )). Let Σ be a signature.



188 4 Working within an arbitrary logical system

• For any set Φ ⊆ Sen(Σ) of Σ -sentences, the class ModΣ (Φ) ⊆ |Mod(Σ)| of
models of Φ is defined as the class of all Σ -models that satisfy all the sentences
in Φ .18

• For any class M ⊆ |Mod(Σ)| of Σ -models, the theory of M is the set ThΣ (M )⊆
Sen(Σ) of all the Σ -sentences that are satisfied by all the models in M .

• A set Φ ⊆ Sen(Σ) of Σ -sentences is closed if Φ = ThΣ (ModΣ (Φ)). We will
write ClΣ (Φ) for ThΣ (ModΣ (Φ)) and refer to ClΣ (Φ) as the closure of Φ .

• A class M ⊆ |Mod(Σ)| of Σ -models is closed if M = ModΣ (ThΣ (M )). Closed
classes of models will be called definable. The closure of M , written ClΣ (M ),
is the class ModΣ (ThΣ (M )). ��
The basic properties of the above notions follow from the fact that ThΣ and ModΣ

form a Galois connection:

Proposition 4.2.2. For any signature Σ , the mappings ThΣ and ModΣ form a Ga-
lois connection between sets of Σ -sentences and classes of Σ -models ordered by
inclusion.

Proof. The proof is the same (and just as easy) as in the equational case; cf. Propo-
sition 2.3.2. ��
Corollary 4.2.3. For any signature Σ , set Φ ⊆ Sen(Σ) of Σ -sentences, and class
M ⊆ |Mod(Σ)| of Σ -models,

Φ ⊆ ThΣ (M ) iff ModΣ (Φ)⊇M . ��
Exercise 4.2.4. Construct counterexamples that show that under the assumptions of
Corollary 4.2.3 neither of the following implications holds:

ModΣ (Φ)⊆M implies ThΣ (M )⊆ Φ
ThΣ (M )⊆ Φ implies ModΣ (Φ)⊆M .

Prove that the former implication holds if Φ is closed (i.e. if Φ is the theory of a
class of models) and the latter if M is closed (i.e. if M is definable). ��

The satisfaction relation determines in the obvious way a consequence relation
between sentences of the institution:

Definition 4.2.5 (Semantic consequence). Let Σ be an arbitrary signature. A Σ -
sentence ϕ ∈ Sen(Σ) is a semantic consequence of a set Φ ⊆ Sen(Σ) of Σ -
sentences, written Φ |=Σ ϕ , if ϕ ∈ ClΣ (Φ), or equivalently, if ModΣ (Φ) |=Σ ϕ . ��
As usual, the subscript Σ will often be omitted.

In the following we will often implicitly rely on three basic properties of semantic
consequence, namely that it is reflexive, closed under weakening, and transitive, in
the following sense:

18 Note the overloading of the term “model” as discussed after Definition 4.1.1. We continue to
follow the terminology of [GB92], hoping that this will not lead to any confusion.
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Proposition 4.2.6. Let Σ be a signature. Consider any Σ -sentences ϕ,ψ ∈ Sen(Σ),
sets of Σ -sentences Φ ,Ψ ⊆ Sen(Σ), and Ψϕ ⊆ Sen(Σ) for each ϕ ∈ Φ . Then:

1. {ϕ} |=Σ ϕ .
2. If Φ |=Σ ϕ then Φ ∪Ψ |=Σ ϕ .
3. If Φ |=Σ ψ and Ψϕ |=Σ ϕ for each ϕ ∈ Φ then

⋃
ϕ∈Φ Ψϕ |=Σ ψ .

Proof. Directly from the definition. ��
We consider semantic consequence for arbitrary, possibly infinite, sets of sen-

tences. For some (but not all!) standard logical systems it is sufficient to restrict
attention to consequences of finite sets of sentences:

Definition 4.2.7 (Compactness). INS is compact if for every signature Σ and all
Φ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ), whenever Φ |=Σ ϕ then Φfin |=Σ ϕ for some finite
Φfin ⊆ Φ . ��
Exercise 4.2.8. It is well known that classical single-sorted first-order logic and
equational logic are compact; this carries over to the institutions FOPEQ and
EQ of, respectively, first-order and equational logic (Examples 4.1.12 and 4.1.4).
Show, however, that infinitary logics (Exercise 4.1.14) and higher-order logics (Ex-
ercise 4.1.15) are not compact. Check which of the other institutions introduced in
Section 4.1.1 are compact. HINT: You may want to return to this exercise after read-
ing through Section 9.1. ��

Another important property of semantic consequence is that it is preserved by
translation along signature morphisms:

Proposition 4.2.9. For any signature morphism σ :Σ → Σ ′, set Φ ⊆ Sen(Σ) of Σ -
sentences, and Σ -sentence ϕ ∈ Sen(Σ),

Φ |=Σ ϕ implies σ(Φ) |=Σ ′ σ(ϕ).

In other words, σ(ClΣ (Φ))⊆ ClΣ ′(σ(Φ)).

Proof. Let M′ ∈ModΣ ′(σ(Φ)). Then by the satisfaction condition M′
σ ∈ModΣ (Φ),

and so by the definition of the consequence relation M′
σ |= ϕ . Thus, by the satis-

faction condition again, M′ |= σ(ϕ), which shows that indeed σ(Φ) |= σ(ϕ). ��
In general, the reverse implication does not hold, that is, the consequence relation

is not reflected by translation along signature morphisms.

Exercise 4.2.10. Try to prove the opposite implication, and notice where the proof
breaks down. Then construct a counterexample showing that σ(Φ) |= σ(ϕ) does
not imply that Φ |= ϕ even in the standard equational institution EQ. HINT: See
Proposition 4.2.17 below. ��
Corollary 4.2.11. Under the assumptions of Proposition 4.2.9, ClΣ ′(σ(ClΣ (Φ))) =
ClΣ ′(σ(Φ)). ��
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The above corollary implies that when we want to “move” the closure of a set of
sentences from one signature to another, it is enough to move only the set itself; all
its consequences can be derived over the target signature as well.

Another consequence of Proposition 4.2.9 is that closure of a set of sentences is
reflected by translation along signature morphisms:

Corollary 4.2.12. For any signature morphism σ :Σ → Σ ′ and set Φ ′ ⊆ Sen(Σ ′) of
Σ ′-sentences, if Φ ′ is closed then so is σ−1(Φ ′).

Proof. Suppose Φ ′ is closed and let ϕ ∈ ClΣ (σ−1(Φ ′)). First, notice that since
σ(σ−1(Φ ′)) ⊆ Φ ′, ClΣ ′(σ(σ−1(Φ ′))) ⊆ ClΣ ′(Φ ′). Now, by Proposition 4.2.9,
σ(ϕ) ∈ ClΣ ′(σ(σ−1(Φ ′)))⊆ ClΣ ′(Φ ′) = Φ ′. Thus, ϕ ∈ σ−1(Φ ′). ��
Notice that the above does not imply that “closure commutes with inverse image”
in general; only one of the required inclusions holds:

Corollary 4.2.13. For any signature morphism σ :Σ → Σ ′, set Φ ′ ⊆ Sen(Σ ′) of Σ ′-
sentences, and Σ -sentence ϕ ∈ Sen(Σ), if σ−1(Φ ′) |= ϕ then Φ ′ |= σ(ϕ). In other
words, ClΣ (σ−1(Φ ′))⊆ σ−1(ClΣ ′(Φ ′)). ��
Exercise 4.2.14. Show that the reverse inclusion does not hold in the standard equa-
tional institution EQ. ��

Forming the closure of a set of sentences consists of two phases: first taking the
class of models the set defines, and then taking the theory of this class. Separation
of these two phases by translation along a signature morphism preserves the closure
to some extent only:

Proposition 4.2.15. For any signature morphism σ :Σ → Σ ′ and set Φ ′ ⊆ Sen(Σ ′)
of Σ ′-sentences,

ClΣ (σ−1(Φ ′))⊆ ThΣ (ModΣ ′(Φ ′) σ ) = σ−1(ClΣ ′(Φ ′))

where for any class M ⊆ |Mod(Σ ′)|, M σ = {M′
σ | M′ ∈M }.

Proof. For the first part, let ϕ ∈ ClΣ (σ−1(Φ ′)). By Corollary 4.2.13, Φ ′ |=Σ ′ σ(ϕ).
By the satisfaction condition, ModΣ ′(Φ ′) σ |=Σ ϕ , and so ϕ ∈ ThΣ (ModΣ ′(Φ ′) σ ).

We have ModΣ ′(Φ ′) = ModΣ ′(ClΣ ′(Φ ′)), which shows ThΣ (ModΣ ′(Φ ′) σ ) =

ThΣ (ModΣ ′(ClΣ ′(Φ ′)) σ )⊇ClΣ (σ−1(ClΣ ′(Φ ′)))⊇ σ−1(ClΣ ′(Φ ′)), and hence also
proves one inclusion (“⊇”) of the second part. For the opposite inclusion, con-
sider ϕ ∈ ThΣ (ModΣ ′(Φ ′) σ ), that is ModΣ ′(Φ ′) σ |=Σ ϕ . By the satisfaction con-
dition, ModΣ ′(Φ ′) |=Σ ′ σ(ϕ), which means σ(ϕ) ∈ ClΣ ′(Φ ′), and so indeed ϕ ∈
σ−1(ClΣ ′(Φ ′)). ��
Corollary 4.2.16. For any signature morphism σ :Σ → Σ ′ and set Φ ⊆ Sen(Σ) of
Σ -sentences, ClΣ (Φ)⊆ σ−1(ClΣ ′(σ(Φ))). ��
Just as the implication opposite to the one stated in Proposition 4.2.9 does not hold
in general, the inclusion opposite to the one above does not hold in general either.
This changes for signature morphisms that induce surjective reduct functors.
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Proposition 4.2.17. Consider a signature morphism σ :Σ → Σ ′ such that the reduct
functor σ :Mod(Σ ′)→ Mod(Σ) is surjective on models. For any set Φ ⊆ Sen(Σ)

of Σ -sentences and Σ -sentence ϕ ∈ Sen(Σ),

Φ |=Σ ϕ iff σ(Φ) |=Σ ′ σ(ϕ).

Proof. We prove only the implication opposite to that of Proposition 4.2.9. Let M ∈
|Mod(Σ)| be an arbitrary Σ -model, and let M′ ∈ |Mod(Σ ′)| be a σ -expansion of
M, i.e. M′

σ = M (such an M′ exists since σ is surjective on models). If M |=Σ Φ
then by the satisfaction condition M′ |=Σ ′ σ(Φ), and so M′ |=Σ ′ σ(ϕ). Thus, by the
satisfaction condition again, M |=Σ ϕ . ��
Corollary 4.2.18. Under the assumptions of Proposition 4.2.17, we have ClΣ (Φ) =
σ−1(ClΣ ′(σ(Φ))). ��
This shows that the surjectivity of the reduct functor ensures that moving along a
signature morphism is “sound” and “complete” as a strategy for deciding if Φ |=Σ
ϕ by checking whether or not σ(Φ) |=Σ ′ σ(ϕ) — without this property, such a
strategy is still “complete” (the satisfaction condition ensures that no consequences
are lost) but is not always “sound” (new consequences between “old” sentences may
be added).

Exercise 4.2.19. Provide an example showing that surjectivity of σ :Mod(Σ ′)→
Mod(Σ) is not a necessary condition for the conclusions of Proposition 4.2.17 and
Corollary 4.2.18. ��
Exercise 4.2.20. Show that the inclusion ClΣ (Φ) ⊆ σ−1(ClΣ ′(σ(Φ))), for any
σ :Σ → Σ ′ and Φ ⊆ Sen(Σ), directly implies (and, in fact, is equivalent to) Corol-
lary 4.2.13. However, the opposite inclusion ClΣ (Φ)⊇ σ−1(ClΣ ′(σ(Φ))) does not
imply the opposite to the inclusion there: even under the assumptions of Propo-
sition 4.2.17 and Corollary 4.2.18, the inclusion ClΣ (σ−1(Φ ′)) ⊇ σ−1(ClΣ ′(Φ ′))
may fail for a set Φ ′ ⊆ Sen(Σ ′) of Σ ′-sentences. HINT: One way to construct a
counterexample is to add false to the set of sentences of EQ for some, but not all
signatures.

Show, however, that under the assumptions of Proposition 4.2.17, we have
ClΣ (σ−1(Φ ′))=ThΣ (ModΣ ′(Φ ′) σ ) and ClΣ (σ−1(Φ ′))=σ−1(ClΣ ′(Φ ′)) provided
that in addition σ :Sen(Σ)→ Sen(Σ ′) is surjective. Discuss why this fact does not
seem very interesting. ��

The following generalisation of Proposition 4.2.17 underlies the key corollary
below.

Proposition 4.2.21. Let σ :Σ → Σ ′ be a signature morphism. Suppose that a set
Γ ⊆ Sen(Σ) of Σ -sentences exactly characterises the σ -reducts of Σ ′-models that
satisfy a set Γ ′ ⊆ Sen(Σ ′) of Σ ′-sentences, that is, ModΣ (Γ ) = ModΣ ′(Γ ′) σ . Then
for any set Φ ⊆ Sen(Σ) of Σ -sentences and Σ -sentence ϕ ∈ Sen(Σ), Φ ∪Γ |=Σ ϕ
if and only if σ(Φ)∪Γ ′ |=Σ ′ σ(ϕ).
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Proof. For the “if” part, assume that σ(Φ)∪Γ ′ |=Σ ′ σ(ϕ) and let M |=Σ Φ ∪Γ .
Then, since M ∈ ModΣ (Γ ), there exists M′ ∈ ModΣ ′(Γ ′) with M′

σ = M. By the
satisfaction condition, M′ |=Σ ′ σ(Φ), hence M′ |=Σ ′ σ(Φ)∪Γ ′ and so M′ |=Σ ′ σ(ϕ)
as well. Thus, by the satisfaction condition again, M |=Σ ϕ .

For the “only if” part, assume that Φ ∪Γ |=Σ ϕ and let M′ |=Σ ′ σ(Φ)∪Γ ′.
Then by the satisfaction condition, M′

σ |=Σ Φ and moreover, by the assumption,
M′

σ |=Σ Γ . Hence, M′
σ |=Σ Φ ∪Γ , and so M′

σ |=Σ ϕ as well, which by the satis-
faction condition again proves that M′ |=Σ ′ σ(ϕ). ��
Corollary 4.2.22. Let σ :Σ → Σ ′ be a signature morphism. Suppose that a set Γ ⊆
Sen(Σ) of Σ -sentences exactly characterises the σ -reducts of Σ ′-models, that is,
ModΣ (Γ ) = (|Mod(Σ ′)|) σ . Then for any set Φ ⊆ Sen(Σ) of Σ -sentences and Σ -
sentence ϕ ∈ Sen(Σ), Φ ∪Γ |=Σ ϕ if and only if σ(Φ) |=Σ ′ σ(ϕ). ��
Exercise 4.2.23. Show that Proposition 4.2.17 follows from Proposition 4.2.21 (or
Corollary 4.2.22). Generalise Corollary 4.2.18 in a similar way. ��
Definition 4.2.24 (Presentation). For any signature Σ , a Σ -presentation (or flat
specification) is a pair 〈Σ ,Φ〉 where Φ ⊆ Sen(Σ). M ∈ |Mod(Σ)| is a model of
a Σ -presentation 〈Σ ,Φ〉 if M |= Φ . Mod[〈Σ ,Φ〉] denotes the class of all models of
the presentation 〈Σ ,Φ〉, and Mod[〈Σ ,Φ〉] the full subcategory of Mod(Σ) with ob-
jects in Mod[〈Σ ,Φ〉]. ��
Definition 4.2.25 (Category of theories). For any signature Σ , a Σ -theory T is a
Σ -presentation 〈Σ ,Φ〉 where Φ is closed. A Σ -presentation 〈Σ ,Ψ〉 presents the Σ -
theory 〈Σ ,ClΣ (Ψ)〉.

For any theories T = 〈Σ ,Φ〉 and T ′ = 〈Σ ′,Φ ′〉, a theory morphism σ :T → T ′ is
a signature morphism σ :Σ → Σ ′ such that σ(ϕ) ∈ Φ ′ for every ϕ ∈ Φ .

The category ThINS of theories in INS has theories as objects and theory mor-
phisms as morphisms, with identities and composition inherited from the category
SignINS of signatures of INS. ��

The satisfaction condition implies the following important characterisation of
theory morphisms, analogous to that given for equational theory morphisms in
Proposition 2.3.13.

Proposition 4.2.26. For any signature morphism σ :Σ → Σ ′ and sets Φ ⊆ Sen(Σ)
and Φ ′ ⊆ Sen(Σ ′) of sentences, the following conditions are equivalent:

1. σ is a theory morphism σ :〈Σ ,ClΣ (Φ)〉 → 〈Σ ′,ClΣ ′(Φ ′)〉.
2. σ(Φ)⊆ ClΣ ′(Φ ′).
3. For every M′ ∈ ModΣ ′(Φ ′), M′

σ ∈ ModΣ (Φ).

Proof.

1 ⇒ 2: Obvious, since Φ ⊆ ClΣ (Φ).
2 ⇒ 3: Consider M′ ∈ModΣ ′(Φ ′). Then also M′ ∈ModΣ ′(ClΣ ′(Φ ′)), and so for all

ϕ ∈ Φ , M′ |= σ(ϕ) (since σ(ϕ) ∈ ClΣ ′(Φ ′)). Hence, by the satisfaction condi-
tion, M′

σ |= ϕ , and thus indeed M′
σ ∈ ModΣ (Φ).
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3 ⇒ 1: Consider any ϕ ∈ ClΣ (Φ). We have to show that σ(ϕ) ∈ ClΣ ′(Φ ′), that
is that for all M′ ∈ ModΣ ′(Φ ′), M′ |= σ(ϕ). However, if M′ ∈ ModΣ ′(Φ ′) then
M′

σ ∈ ModΣ (Φ). Hence, M′
σ |= ϕ , and the conclusion follows from the satis-

faction condition. ��
Exercise 4.2.27. Define the category PresINS of presentations in INS, with mor-
phisms σ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 that are signature morphisms σ :Σ → Σ ′ such that
Φ ′ |= σ(ϕ) for all ϕ ∈ Φ . Check that ThINS is a full subcategory of PresINS and
that the two categories are equivalent. ��
Exercise 4.2.28. Show that by Proposition 4.2.26 above, the mapping which to any
theory assigns the category of its models extends to a functor ModTh:Th

op
INS →Cat,

where:

• for any theory T = 〈Σ ,Φ〉, Mod[T ] is the full subcategory of Mod(Σ) with ob-
jects in Mod[T ], as in Definition 4.2.24; and

• for any theory morphism σ :T → T ′, Mod(σ) is σ :Mod[T ′]→ Mod[T ], the
σ -reduct functor restricted to the subcategory Mod[T ′] of Mod(Σ ′), where T ′ =
〈Σ ′,Φ ′〉. ��
Many standard properties of theories (and presentations) investigated in the realm

of classical model theory may be formulated in the framework of an arbitrary insti-
tution. For example:

Definition 4.2.29 (Consistency and completeness of a presentation). A presen-
tation 〈Σ ,Φ〉 is consistent if it has a model, i.e. if Mod[〈Σ ,Φ〉] �=∅.

A presentation 〈Σ ,Φ〉 is complete if it is a maximal consistent presentation, i.e.
if it is consistent and no presentation 〈Σ ,Φ ′〉 such that Φ ′ properly contains Φ is
consistent. ��
Proposition 4.2.30. A presentation 〈Σ ,Φ〉 is consistent if and only if the theory
〈Σ ,ClΣ (Φ)〉 is consistent. Any complete presentation is a (consistent) theory. ��
Definition 4.2.31 (Conservative theory morphism). For any theories T = 〈Σ ,Φ〉
and T ′ = 〈Σ ′,Φ ′〉, a theory morphism σ :T → T ′ is conservative if for every Σ -
sentence ϕ , ϕ ∈ Φ whenever σ(ϕ) ∈ Φ ′.

A theory morphism σ :T → T ′ admits model expansion if the corresponding
reduct function σ :ModΣ ′(Φ ′)→ModΣ (Φ) is surjective, that is, for every Σ -model
M such that M |=Σ Φ , there exists a Σ ′-model M′ such that M′ |=Σ ′ Φ ′ and M′

σ =M.
��

Exercise 4.2.32. As in Proposition 4.2.17, show that a theory morphism σ :T → T ′
is conservative if it admits model expansion. Note that the opposite implication does
not hold by Exercise 4.2.19. ��

The careful reader has probably realised that in this section we have not even
mentioned model morphisms. Indeed, everything above works equally well if we
forget about the category structure provided on the collections of models in an in-
stitution. But this proves inadequate for some purposes; see for example the next
section, where the category structure on models is exploited.
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4.3 Constraints

As discussed in Section 2.5, the class of all models that satisfy a given presentation
often contains some models that intuitively are undesirable realisations of the pre-
sentation. Different methods are used to constrain the semantics of presentations so
that from among all its models only the ones that are “desirable” are selected: for
example, one may take its initial semantics, reachable semantics, or final seman-
tics (cf. Sections 2.5 and 2.7.2). How do these fit into the institutional framework
introduced above? Let us consider initiality constraints19 first.

There is clearly no problem with expressing the basic concept of initial model
in an arbitrary institution: models over any signature form a category; hence the
class of models satisfying a given presentation determines a full subcategory of this
category — and we know what initiality means in any category (cf. Section 3.2.1).

Let INS= 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution, fixed throughout this
section.

Definition 4.3.1 (Initial model of a presentation). For any signature Σ ∈ |Sign|
and set Φ ⊆ Sen(Σ) of sentences, the initial model of the presentation 〈Σ ,Φ〉 is the
(unique up to isomorphism) initial object in Mod[〈Σ ,Φ〉]. ��

We might feel tempted to pursue any of a number of ways to incorporate the idea
of initiality into the institutional framework:

• We may hope to be able to modify all institutions of interest so that they yield
initial semantics directly, by changing the model functor Mod to yield only the
initial models as models over any signature. Clearly, this fails: requiring initial-
ity only makes sense relative to a presentation. If sentences are not taken into
account then, for example, the only initial models in the institution EQ of equa-
tional logic are ground term algebras.

• We can attempt to modify the satisfaction relation so that only the initial models
of a sentence will be defined to satisfy it. Quite obviously, this does not work,
since it would then be impossible to adequately define models of presentations
involving more than one sentence. Without modifying the satisfaction relation,
we could modify Definitions 4.2.1 and 4.2.24 and consider only initial models
of presentations by defining ModΣ (Φ) to consist only of the initial models in
{M |M |= Φ} considered as a full subcategory of Mod(Σ). But this would make
the whole theory rather clumsy, and the various definitions would not fit together
as neatly as they do now. For example, Propositions 4.2.9 and 4.2.26 would no
longer hold. Worse, this would not allow the user to write axioms that are to be
interpreted in a loose, non-initial fashion, indicating that only certain parts of a
specification are to be interpreted in an initial way. See Example 4.3.2 below.

19 We use the term “constraint” here following the terminology of [BG80], [GB92]. Initiality and
data constraints as discussed and formally defined below have nothing to do with constraints as
used in “constraint logic programming” [JL87].
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• We can view the requirement of initiality with respect to a presentation as just
another sentence. This would be a rather complicated sentence, as it has to con-
tain other sentences within it, but in view of examples like 4.1.38 (not to men-
tion 4.1.35) there is no reason why this should bother us. This is the approach we
will take.

It is not sufficient to define initiality constraints simply as sets of sentences over
a given signature, and then to define their satisfaction via the notion of an initial
model. The problem is that we do not always want to constrain the entire model of
a presentation. As the following example illustrates, we need to be able to constrain
only a certain part of this model, that is, to impose initiality constraints on its reduct
to a certain subsignature.

Example 4.3.2. Recall Exercise 2.5.21, which concerned the specification of a func-
tion ch:Nat → Nat that for each natural number n chooses an arbitrary number
greater than n. As argued there, we certainly do not want to take the initial model
of the entire specification: the initial model would generate “artificial elements” of
sort Nat (as the results of the function ch), and then artificial elements of sort Bool
as well (as results of comparisons by < that involve the artificial elements of sort
Nat). What one would like is to first interpret the original specification Nat of nat-
ural numbers in an initial way, do the same for the specification Bool, add the
operation < :Nat×Nat → Bool (which is defined by its axioms in a sufficiently
complete way) — it so happens that this would be the same as taking an initial model
of these specifications put together — and only then add an operation ch:Nat→Nat
with the corresponding axiom interpreted in the underlying logic, with no initiality
restrictions intervening in any way at this stage. ��
By allowing initiality requirements to be “fitted” to larger signatures by signature
morphisms, along the lines of the construction presented in Example 4.1.46, we can
impose the initiality requirement on parts of models.

Definition 4.3.3 (Initiality constraint). Let Σ ∈ |Sign| be a signature. A Σ -initiality
constraint is a pair 〈Φ ′,θ〉, written as initial Φ ′ through θ , where θ :Σ ′ → Σ is a
signature morphism and Φ ′ ⊆ Sen(Σ ′) is a set of Σ ′-sentences. A Σ -model M ∈
|Mod(Σ)| satisfies a Σ -initiality constraint initial Φ ′ through θ if its reduct M θ ∈
|Mod(Σ ′)| is an initial model of 〈Σ ′,Φ ′〉. ��

Now, such an initiality constraint may be regarded as just another sentence in a
presentation, and freely mixed with “ordinary” sentences.

Exercise 4.3.4. Redo Exercise 2.5.21 using initiality constraints. Discuss the pos-
sibility of achieving the same effect without the “fitting morphism” component in
initiality constraints. ��

The specification built in Exercise 4.3.4 is not a presentation in FOEQ — we
have to extend this institution by adding initiality constraints first. Indeed, given
an institution INS we can always form a new institution INSinit in which initiality
constraints are allowed as additional sentences. Such a construction is implicitly
involved whenever initiality constraints are used.
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Definition 4.3.5 (Institution with initiality constraints). The institution INSinit

with initiality constraints in INS is defined as follows:

• The category SignINSinit of signatures is just Sign, the same as in INS.
• The functor SenINSinit gives:

– for each signature Σ , the (disjoint) union of the set Sen(Σ) of Σ -sentences in
INS and of the set of Σ -initiality constraints;20 and

– for each signature morphism σ :Σ → Σ1, the translation function SenINSinit(σ)
that works as Sen(σ) on all the “old” Σ -sentences in INS, and for any Σ -
initiality constraint initial Φ ′ through θ , where θ :Σ ′ →Σ and Φ ′ ⊆ Sen(Σ ′),
is defined by SenINSinit(σ)(initial Φ ′ through θ) = initial Φ ′ through θ ;σ .

• The functor ModINSinit is just Mod, the same as in INS.
• For each signature Σ ∈ |SignINSinit |, the Σ -satisfaction relation |=INSinit,Σ is the

same as the Σ -satisfaction relation in INS for the Σ -sentences from INS, and is
given by Definition 4.3.3 for Σ -initiality constraints. ��

Exercise 4.3.6. Present the above definition as an instance of the construction given
in Example 4.1.46. Notice that this is sufficient to conclude that INSinit is indeed an
institution.

Show (referring for example to Exercise 4.3.4) that in general the translation of
an initiality constraint cannot be given without the “fitting morphism” component,
and so we would not be able to define an institution where only initiality constraints
with trivial (identity) fitting morphisms would be allowed. ��
Exercise 4.3.7. Working in the institution EQ, follow Definition 4.3.3 and define
reachability constraints that are satisfied only by algebras having an indicated reduct
that is reachable. Note that axioms used in initiality constraints play no role here,
so you can adopt a syntax like reachable through θ . Following Definition 4.3.5,
define an institution EQreach extending EQ by reachability constraints.

Assuming that each category of models in INS comes equipped with a factorisa-
tion system (Section 3.3), introduce reachability constraints for INS using Defini-
tion 3.3.7 and extend INS correspondingly. ��

The use of initiality constraints as introduced above is not always entirely sat-
isfactory. Often, rather than requiring that a certain part of a model be initial, we
want to require that it be a free extension of some other part. Natural examples arise
when we want to specify data structures built on an arbitrary set of elements, like
lists, sets or bags of arbitrary elements. This involves imposing the requirement that
an algebra modelling the data structure is a free extension of its reduct to the sort of
elements. To formalise this, the concept of a data constraint is introduced below.

Definition 4.3.8 (Data constraint). Let Σ ∈ |Sign| be a signature.

20 As in Example 4.1.46, this may lead to some foundational difficulties which we disregard here;
cf. footnote 17.
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A Σ -data constraint is a triple 〈σ ,Φ ′,θ〉, written as data Φ ′ over σ through θ ,
where σ :Σ1 → Σ ′ and θ :Σ ′ → Σ are signature morphisms and Φ ′ ⊆ Sen(Σ ′) is a
set of Σ ′-sentences.

A Σ -model M∈ |Mod(Σ)| satisfies the data constraint data Φ ′ over σ through θ
if its reduct M θ ∈ |Mod(Σ ′)| to a Σ ′-model is a free model of Φ ′ w.r.t. the reduct
functor σ :Mod[〈Σ ,Φ ′〉]→Mod(Σ1) over (M θ ) σ , with the identity as unit. That
is, M satisfies data Φ ′ over σ through θ if:

• M θ |=Σ ′ Φ ′; and
• for any M′ ∈ModΣ ′(Φ ′) and Σ1-morphism f :M σ ;θ →M′

σ there exists a unique
Σ ′-morphism f #:M θ → M′ such that f #

σ = f . ��
Exercise 4.3.9. Using data constraints, give a specification of finite bags of an arbi-
trary set of elements. ��
Exercise 4.3.10. Following the pattern of Definition 4.3.5 (and of Example 4.1.46),
define the institution INSdata by adding data constraints as additional sentences to
INS. ��

Note that nowhere in the above has it been assumed that initial models of presen-
tations actually exist in general (nor that the reduct functor used in Definition 4.3.8
has a left adjoint). We do know that in some institutions (for example, in the insti-
tution EQ of equational logic and in the institution PEQ of partial equational logic)
any set of sentences over a given signature has an initial model (see Theorem 2.5.14
for the case of EQ). On the other hand, there are institutions in which some sets
of sentences do not have initial models; the institution FOEQ of first-order logic
with equality is an example (see Example 2.7.11). Nevertheless, the above defini-
tions work for an arbitrary institution. If a set Φ ⊆ Sen(Σ) of Σ -sentences has no
initial model, then an initiality constraint initial Φ through θ based on this set has
no model, even if the class ModΣ (Φ) of models of this set of sentences is not empty.

Exercise 4.3.11. Any set of sentences in the equational institution EQ has a model,
and moreover, it has an initial model. Show that neither of these properties carries
over to the institution EQinit of initiality constraints in EQ. That is, give a presenta-
tion in EQinit that has no model. ��
Exercise 4.3.12. Recall the institution Horn of Horn formulae from Exercise 4.1.21
and show that every set of sentences in Horn has an initial model. Discuss the inter-
pretation of predicates in initial models: notice that they hold “minimally”, meaning
that only positive cases, where a predicate is required to hold, need to be explicitly
specified. Extend this analysis to data constraints, and use this to specify the transi-
tive and reflexive closure of an arbitrary binary predicate. ��
Exercise 4.3.13. Working in the institution EQ as in Exercise 4.3.7, follow Defini-
tion 4.3.8 and define generation constraints generated over σ through θ that are
satisfied by algebras A such that A θ is generated in a suitable sense by A σ ;θ . Define
an institution EQgen extending EQ by generation constraints.
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Assuming that each category of models in INS comes equipped with a factori-
sation system (Section 3.3), introduce generation constraints for INS anticipating
Definition 4.5.1 and extend INS correspondingly. ��
Exercise 4.3.14. Following Exercise 3.5.24, dualise the concept of data constraint.
Given an institution INS, write codata Φ ′ over σ through θ , where Φ ′, σ and θ
are as in Definition 4.3.8, for a codata constraint in INS. A Σ -model M ∈ |Mod(Σ)|
satisfies codata Φ ′ over σ through θ if M θ is a cofree model of Φ ′ w.r.t. the
reduct functor σ :Mod[〈Σ ′,Φ ′〉]→ Mod(Σ1) over its σ -reduct, with the identity
as counit, that is, if M θ |=Σ ′ Φ ′ and for any M′ ∈ ModΣ ′(Φ ′) and Σ1-morphism
f :M′

σ →M σ ;θ there exists a unique Σ ′-morphism f #:M′ →M θ such that f #
σ =

f . Extend this definition to build an institution INScodata by adding codata con-
straints as additional sentences to INS.

Explore the use of codata constraints in EQ and FOPEQ. For instance, consider
the following simple presentation:

spec Stream = sorts Elem,Stream
ops hd:Stream → Elem

tl:Stream → Stream
cons:Elem×Stream → Stream

∀x:Elem,s:Stream
• hd(cons(x,s)) = x
• tl(cons(x,s)) = s

Check that any model M of Stream that is cofree over E = |M|Elem (w.r.t. the
reduct functor given by the obvious signature inclusion) is isomorphic to the algebra
Eω of (countably) infinite streams of elements from E, with the operations defined
in the standard way.

Much the same effect is achieved even when we remove the operation cons and
the two axioms from this presentation: check that if Σ is a signature with sorts
Elem,Stream and operations hd:Stream → Elem, tl:Stream → Stream then cofree
Σ -models over their carrier E of sort Elem are (up to isomorphism) the algebras
Eω of (countably) infinite streams of elements from E, with hd and tl defined in
the standard way. Check then that in any such algebra the two axioms in Stream
define the operation cons unambiguously. ��

4.4 Exact institutions

As illustrated in Sections 4.2 and 4.3, institutions provide a sufficient basis for much
of the standard machinery of specifications, without the need for further assump-
tions. Still, the structure and properties of a logical system exposed by the definition
of an institution are very limited, and do not provide an adequate basis for many
other aspects of the theory and practice of software specification and development.
As discussed in the introduction to this chapter, this should not discourage us from
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working within the institutional framework. On the contrary, it is worth trying to find
some adequately abstract additional assumptions that are sufficient for the purpose
at hand. As always in mathematics, the main informal guideline to follow is to keep
the additional assumptions to a minimum. Part of the payoff is that this forces us
to work at a level of generality and abstraction that ensures a deeper understanding
of the essence of the studied phenomena, while at the same time covering as many
cases of potential interest as possible.

In this section and the next we will illustrate this strategy by presenting some
extensions to the notion of an institution by additional structure or properties that
are required to support study of more detailed properties of specifications.

The ways in which specifications (or programs, systems, or structures of any
kind) are put together is the very essence of the theory and methodology of software
specification and development. One of the basic tools for putting things together is
the categorical notion of colimit (cf. Section 3.2), with pushouts as a particularly
important special case; see for instance Section 6.3 below. Putting specifications
together then involves taking colimits in the category of theories. It would be rather
inconvenient to have to establish the existence of a colimit for each diagram of
interest separately, so we normally require the category of theories to be cocomplete
(or at least finitely cocomplete). Checking this directly would be tedious — and this
is why the following general result is useful.

Theorem 4.4.1. For any institution INS, if the category SignINS of signatures in
INS is cocomplete then so is the category ThINS of theories in INS.

Proof. Let D be a diagram in ThINS with |G(D)|Node = N and Dn = 〈Σn,Φn〉 for
n ∈ N. Let D′ be the corresponding diagram in SignINS; hence D′

n = Σn for n ∈
N. By the assumption of the theorem, D′ has a colimit, say 〈αn:Σn → Σ〉n∈N . Let
Φ = ClΣ (

⋃
n∈Nαn(Φn)). Then for each n ∈ N, αn:〈Σn,Φn〉 → 〈Σ ,Φ〉 is a theory

morphism (this is obvious) and 〈αn〉n∈N is a colimit of D in ThINS: first notice that
it is a cocone on D (since it is a cocone on D′ in SignINS), and then consider another
cocone on D, say 〈βn:〈Σn,Φn〉 → 〈Σ ′,Φ ′〉 〉n∈N . By the construction, there exists
a unique signature morphism σ :Σ → Σ ′ such that for each n ∈ N, αn;σ = βn. To
complete the proof, it is sufficient to show that σ :〈Σ ,Φ〉 → 〈Σ ′,Φ ′〉 is a theory
morphism. By Proposition 4.2.26, it is enough to show that σ(

⋃
n∈Nαn(Φn))⊆ Φ ′.

This easily follows from the fact that for each n ∈ N, βn is a theory morphism, and
hence σ(αn(Φn)) = (αn;σ)(Φn) = βn(Φn)⊆ Φ ′. ��

The above proof shows that in fact a stronger property holds: in any institution,
the category of theories has all of the colimits that the category of signatures has:
the forgetful functor mapping theories to their underlying signatures lifts colimits.
So, for instance:

Corollary 4.4.2. For any institution INS, if the category SignINS of signatures in
INS is finitely cocomplete then so is the category ThINS of theories in INS. ��

Notice that the above theorem applies to any institution, regardless of the means
used to construct it. Hence, for example, if the category SignINS of signatures in
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an institution INS is cocomplete, then not only is the category ThINS of theories
in INS cocomplete, but so are the categories ThINSinit , Th

INSdata and Th
INScodata of

theories in the corresponding institutions with initiality constraints, data constraints
and codata constraints respectively (cf. Definition 4.3.5, Exercise 4.3.10 and Exer-
cise 4.3.14).

Exercise 4.4.3. Assume that the category of signatures of a certain institution has
an initial object. What is then an initial object in the category of theories? ��
Example 4.4.4. Working in the institution EQ of equational logic, recall Exam-
ple 3.2.36 of a simple pushout of algebraic signatures, and the set ENat of equational
axioms over the signature ΣNat given in Exercise 2.5.4. Let TNat be the ΣNat-theory
presented by ENat. Let TNatfib be the ΣNatfib -theory presented by the axioms ENatfib

that include ENat plus the following:

fib(0) = succ(0)
fib(succ(0)) = succ(0)
∀n:Nat• fib(succ(succ(n))) = fib(succ(n))+fib(n)

Finally, let TNatmult be the ΣNatmult -theory presented by the axioms ENatmult that
include ENat plus the following:

∀n:Nat• mult(0,n) = 0
∀n,m:Nat• mult(succ(n),m) = mult(n,m)+m

Now, we have theory inclusions:

TNatfib ←−↩ TNat ↪−→ TNatmult

with the corresponding signature inclusions given in Example 3.2.36. Their pushout
is the ΣNatfib,mult -theory TNatfib,mult presented by the union of ENat, ENatfib and
ENatmult .

As in Example 3.2.36, this is deceptively simple, as only single-sorted theory
inclusions that introduce different operation names are involved.

Exercise. Give examples of pushouts in the category of equational theories with
signatures involving more than one sort, extensions with overlapping sets of opera-
tion names, and theory morphisms that are not injective on sort and/or on operation
names. Notice, however, that the extra complications come only from the construc-
tion of signature pushouts; the theories are defined in much the same way.

Exercise. Obviously, when giving the set of axioms for TNatfib,mult , ENat may be
omitted, as it is already included in the other sets of axioms. Try to generalise this
remark to “optimise” the construction of the colimit in the category of theories given
in the proof of Theorem 4.4.1. ��

We have seen how the assumption that the category of signatures of an institution
is (finitely) cocomplete ensures that the institution provides means for putting the-
ories together. It is also interesting to investigate how this relates to putting models
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together, which is what structured programming in the large is all about. There is
an important difference here: in the above, and in general when dealing with spec-
ifications, we were interested in combining theories (sets of sentences). In model-
theoretic terms, this corresponds to combining classes of models. However, when
the specified system is being built, we are interested in expanding and combining
individual models.

Example 4.4.5. Recall Example 4.4.4 of a simple pushout in the category of the-
ories of the institution EQ of equational logic. Consider an arbitrary model N of
TNat, any ΣNatmult -algebra N2 built by adding to N an interpretation of fib such that
the axioms in ENatfib are satisfied, and any ΣNatmult -algebra N2 built by adding to N
an interpretation of mult such that the axioms in ENatmult are satisfied. Then, much
as in Example 3.4.35 where specific such algebras were considered, N1 and N2 may
be uniquely combined to a ΣNatfib,mult -algebra N′ that expands them both. The key
property now is that the algebras built in this way are models of the theory TNatfib,mult ,
and moreover, that all its models may be built in this way. ��
It turns out that the crucial link which ensures that constructions to combine theories
and to combine models work together smoothly, as in the above example, is the
continuity of the model functor in the underlying institution.

Definition 4.4.6 (Exact institution). An institution INS is (finitely) exact when
its category of signatures SignINS is (finitely) cocomplete and its model func-
tor ModINS:Sign

op
INS → Cat is (finitely) continuous, mapping (finite) colimits in

SignINS to limits in Cat. ��
Example 4.4.7. All of the institutions defined in the examples and sketched in the
exercises in Section 4.1.1, with the major exception of FPL (Example 4.1.25) and
perhaps those given in Examples 4.1.35, 4.1.36 and 4.1.37, where we know nothing
about the signature categories, are exact. See Exercises 3.2.53 and 3.4.33 for the
standard algebraic case of the equational institution EQ — all of the other cases
require a similar argument. ��
Exercise 4.4.8. The abstract formulation of exactness above may somewhat hide the
role of this property in putting models together. Consider an exact institution INS

and a diagram D in SignINS with colimit signature Σ ′. Anticipating the crucial case
of preservation of signature pushouts treated in Definition 4.4.12, show that (up to
isomorphism of categories) ModINS(Σ ′) can be defined as follows, where N is the
set of nodes in D:

• Σ ′-models are families 〈Mn ∈ |ModINS(Dn)|〉n∈N that are compatible with signa-
ture morphisms in D in the sense that Mn = Mm De for each edge e:n → m in the
graph of D; and

• Σ ′-morphisms between any such Σ ′-models 〈Mn〉n∈N and 〈M′
n〉n∈N are families

〈hn:Mn → M′
n〉n∈N of morphisms in ModINS(Dn), n∈N, that are compatible with

signature morphisms in D in the sense that hn = hm De for each edge e:n → m in
the graph of D.
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Moreover, for each n ∈ N, the reduct functor w.r.t. the colimit injection from Dn to
Σ ′ is just the projection of such families on the nth component.

HINT: Use Exercise 3.4.32 (and indirectly Exercise 3.2.53). ��
Exercise 4.4.9. Consider a finitely exact institution. Present initiality constraints
(Definition 4.3.3) as a special case of data constraints (Definition 4.3.8). Is the as-
sumption that the institution is finitely exact essential? ��
Exercise 4.4.10. An interesting standard institution with a cocomplete category of
signatures and a model functor that preserves “nearly all” finite colimits of signa-
tures is the institution SSEQ of single-sorted equational logic. Give a precise def-
inition of this institution and indicate which colimits of signature diagrams are not
preserved by the model functor. HINT: Consider the initial single-sorted signature.

��
Definition 4.4.11 (Semi-exact institution). An institution INS is semi-exact if
all pushouts exist in its category of signatures SignINS and its model functor
ModINS:Sign

op
INS

→ Cat preserves pushouts, mapping them to pullbacks in Cat.
��

A consequence of the assumption that the model functor of an institution pre-
serves signature pushouts is the well-known Amalgamation Lemma.

Definition 4.4.12 (Amalgamation). Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be
an institution and consider the following diagram in Sign:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
1 σ ′

2

This diagram admits amalgamation if:

• for any two models M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that M1 σ1 =

M2 σ2 , there exists a unique model M′ ∈ |Mod(Σ ′)| such that M′
σ ′

1
= M1 and

M′
σ ′

2
= M2 (we call such M′ the amalgamation of M1 and M2); and

• for any two model morphisms f1:M11 → M12 in Mod(Σ1) and f2:M21 → M22
in Mod(Σ2) such that f1 σ1 = f2 σ2 , there exists a unique model morphism
f ′:M′

1 → M′
2 in Mod(Σ ′) such that f ′ σ ′

1
= f1 and f ′ σ ′

2
= f2 (we call such f ′

the amalgamation of f1 and f2).

The institution INS has the amalgamation property if all pushouts in Sign exist and
every pushout diagram in Sign admits amalgamation. ��
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Exercise 4.4.13. Show that if a diagram as in Definition 4.4.12 admits amalgama-
tion and is commutative then all models and morphisms in Mod(Σ ′) are amalgama-
tions of pairs of (compatible) models and morphisms from Mod(Σ1) and Mod(Σ2),
respectively. ��
Lemma 4.4.14 (Amalgamation Lemma). Any semi-exact institution has the amal-
gamation property. ��
The proof of the Amalgamation Lemma is based on the construction of pullbacks
in Cat; cf. Exercise 3.4.32. See also Exercise 3.4.34, which is the same result in
the standard algebraic framework. Note that the opposite implication also holds, so
semi-exactness is equivalent to the amalgamation property.

Clearly, every exact institution is finitely exact, and every finitely exact institu-
tion is semi-exact. However, the last property is strictly weaker: for example, the
institution SSEQ of single-sorted equational logic is semi-exact, but not finitely ex-
act (see Exercise 4.4.10). In semi-exact institutions coproducts of signatures need
not exist, or if they exist, need not be preserved by the model functor. However,
if signature coproducts exist, the colimits for a large interesting class of signature
diagrams (exist and) are preserved:

Proposition 4.4.15. In any semi-exact institution, if the category of signatures has
an initial object then it is finitely cocomplete and the model functor maps colimits
of all finite non-empty connected diagrams of signatures to limits in Cat.

Proof sketch. The first part (existence of colimits of finite signature diagrams) fol-
lows as usual, by dualising Exercise 3.2.48; the second part (preservation of limits
of finite non-empty connected signature diagrams) follows by Exercise 3.4.56. ��
Exercise 4.4.16. Define institutions: SSFOPEQ of single-sorted first-order predi-
cate logic with equality, SSPFOPEQ of single-sorted partial first-order predicate
logic with equality, SSCEQ of single-sorted equational logic for continuous alge-
bras, and so on. Check that all of these institutions have cocomplete categories of
signatures and are semi-exact. However, check that their model functors do not map
coproducts of their signatures to products of the corresponding model categories, so
these institutions are not (finitely) exact. ��
Exercise 4.4.17. Let INS be a (finitely) exact institution. Recall that there is a func-
tor ModTh:Th

op
INS → Cat mapping theories to their model categories and theory

morphisms to the corresponding reduct functors (cf. Exercise 4.2.28). Prove that
ModTh preserves (finite) limits.

HINT: First use the satisfaction condition for INS and the Amalgamation Lemma
for signatures (Lemma 4.4.14) to prove the following generalisation of the Amalga-
mation Lemma:

Lemma (Amalgamation Lemma for theories). Let INS be a semi-exact institu-
tion. Consider a pushout in the category ThINS of theories:
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T

T1 T2

T ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
1 σ ′

2

Then, for any two models M1 ∈Mod[T1] and M2 ∈Mod[T2] such that M1 σ1 =M2 σ2 ,
there exists a unique model M′ ∈ Mod[T ′] such that M′

σ ′
1
= M1 and M′

σ ′
2
= M2,

and similarly for morphisms.

To complete the proof that ModTh is finitely continuous, by Exercise 3.2.48 it is
enough to consider the initial theory and its category of models. To show that it
is continuous, by Exercise 3.4.23 it is enough to consider coproducts of arbitrary
families of theories and their categories of models. ��

The trouble with FPL and with other institutions based on derived signature mor-
phisms (see Exercise 4.1.23) is more severe than with single-sorted institutions: they
are not semi-exact since not all pushouts exist in their signature categories; see Ex-
ercise 3.2.54. This motivates the following relaxation of semi-exactness, which is
important for applications later on.

Definition 4.4.18 (I-semi-exact institution). For any institution INS, we say that a
collection I of signature morphisms in INS is closed under pushouts if I contains
all the identities, is closed under composition (so that I is a wide subcategory of
SignINS) and, for any signature morphism σ :Σ → Σ1 and “I-extension of Σ” ι :Σ →
Σ ′ in I, there is a pushout in Sign

Σ

Σ ′

Σ1

Σ ′
1

�

ι

�
σ

�σ ′

�

ι ′

such that ι ′ ∈ I.
Moreover, if all such pushouts with ι , ι ′ ∈ I admit amalgamation (i.e. the model

functor maps them to pullbacks in Cat) we say that INS is semi-exact w.r.t. I (or
I-semi-exact). ��
Exercise 4.4.19. As mentioned above, institutions with derived signature morphisms
do not have cocomplete signature categories. Check, however, that for example the
institution GEQder is semi-exact w.r.t. the class of all inclusions (where inclusions
are derived signature morphisms that map any n-ary operation name f to the term
f ( 1 , . . . , n ); cf. Definition 1.5.14). Similarly, check that GEQder is semi-exact
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w.r.t. the class of inclusions that introduce only new constants. (Notice that in gen-
eral an institution may be I-semi-exact without being I′-semi-exact for some I′ ⊆ I.)

For FPL, consider the class IFPL of signature morphisms δ :SIG→ SIG′ that are
injective renamings of sort and operation names such that no new value constructors
are added for “old” sorts (i.e. sorts in δ (SIG)). Show that FPL is IFPL-semi-exact.
Notice that both parts of the assumption on these morphisms are essential. Give
an example of a non-injective renaming that does not have a pushout with another
FPL-signature morphism. Give an example of an injective renaming that adds value
constructors for an old sort and does not have a pushout with another FPL-signature
morphism. Finally, give an example of a pushout in the category of FPL-signatures
that is not mapped by the FPL-model functor to a pullback in Cat. HINT: Consider
two morphisms that add a new sort and a new unary value constructor for a previ-
ously unconstrained sort, with the new sort as its argument sort. ��
Exercise 4.4.20. To complete the formal picture, note that the category of theories
in FPL is cocomplete even though its category of signatures is not. Discuss why
this is not useful for combining models over different signatures. HINT: Consider a
simple signature with one sort and one binary operation, and two morphisms which
map this operation to the projections on the first and second argument respectively.
Then these two morphisms do not have a coequaliser in SignFPL while in ThFPL

their coequaliser is obtained by adding an equation to assert that the two projections
coincide. ��

We have introduced and studied amalgamation, exactness and semi-exactness as
purely technical properties of institutions. However, as hinted at by Example 4.4.5
and the examples it builds on, amalgamation, and hence semi-exactness and exact-
ness, provide a fundamental tool for combining models over different signatures.
The point is easiest to see in institutions with standard signatures, like FOPEQ

or EQ, when all the morphisms are inclusions. In that case, generalising the simple
example of natural numbers and their extensions by the Fibonacci function and mul-
tiplication in Example 3.2.36, given signatures Σ1 and Σ2 with Σ = Σ1∩Σ2, we get
Σ ′=Σ1∪Σ2 as the pushout signature. Now, the amalgamation property ensures that,
given a Σ1-model M1 and a Σ2-model M2 which give the same interpretation to all
of the common symbols (in Σ ), we can put them together in the obvious way (gen-
eralising Example 4.4.5) to interpret all of the symbols in the combined signature
Σ ′. In the institutional context, this intuition applies as well, but the sharing require-
ment is expressed by insisting on a common reduct along the indicated signature
morphisms, and the combined signature is obtained using the pushout.

4.4.1 Abstract model theory

One of the ideas behind the definition of institution is that it is important to indi-
cate over which signature one is working. In classical logic, there are a number of
theorems in which the signature (or language, as logicians would say) over which
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formulae are constructed must be considered. Here is an example (for this, and for
a classical formulation of the Robinson consistency theorem mentioned below, see
[CK90]):

Theorem (Craig interpolation theorem). In first-order logic, for any two formu-
lae ϕ1 and ϕ2, if ϕ1 |= ϕ2 then there exists a formula θ using only the common
symbols of ϕ1 and ϕ2 — that is, those symbols that occur in both formulae — such
that ϕ1 |= θ and θ |= ϕ2. ��

In our view, this standard formulation is not very elegant: referring to “the com-
mon symbols of ϕ1 and ϕ2” feels rather clumsy, even though it is easy enough to
make it precise in the case of first-order logic. In the institutional framework this
can be expressed in a more general and abstract way using colimits in the category
of signatures.

Definition 4.4.21 (Craig interpolation property). Let INS be an institution with a
finitely cocomplete category Sign of signatures. INS satisfies the Craig interpola-
tion property for the following commutative diagram in Sign

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
1 σ ′

2

if for any Σ1-sentence ϕ1 ∈ Sen(Σ1) and Σ2-sentence ϕ2 ∈ Sen(Σ2), if σ ′
1(ϕ1) |=Σ ′

σ ′
2(ϕ2) then there exists a Σ -sentence θ ∈ Sen(Σ) (called an interpolant for ϕ1 and

ϕ2) such that ϕ1 |=Σ1 σ1(θ) and σ2(θ) |=Σ2 ϕ2. INS satisfies the Craig interpolation
property if it satisfies this property for all pushouts in Sign. ��
Not only has “the common symbols of ϕ1 and ϕ2” been captured by the simple
categorical concept of a pushout here, but we have also been forced to identify the
signatures over which the individual consequence relations are considered. In our
view, this is a much improved statement of the Craig interpolation property! Not
only does it seem clearer — of course, any comparison should be made with a fully
formal statement of the Craig interpolation theorem in the classical framework, not
with the presentation given above — it is also more abstract and may be used for
any logical system formalised as an institution, not just for first-order logic.

Here is another example, which states that consistent extensions of a complete
theory (cf. Definition 4.2.29) combine safely:

Definition 4.4.22 (Robinson consistency property). Let INS be an institution with
a finitely cocomplete category Sign of signatures. INS satisfies the Robinson con-
sistency property for the following commutative diagram in Sign
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Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
1 σ ′

2

if for any complete Σ -theory T = 〈Σ ,Φ〉 and consistent theories T1 = 〈Σ1,Φ1〉 and
T2 = 〈Σ2,Φ2〉 such that σ1:T → T1 and σ2:T → T2 are theory morphisms, the Σ ′-
presentation 〈Σ ′,σ ′

1(Φ1)∪σ ′
2(Φ2)〉 is consistent. INS satisfies the Robinson consis-

tency property if it satisfies this property for all pushouts in Sign. ��
Exercise 4.4.23. Adapt any standard proof of the Craig interpolation theorem to
show that FOPEQ has the Craig interpolation property for those pushouts where
at least one of σ1 or σ2 is injective on sorts. Construct a counterexample which
shows that the proof must break down if neither σ1 nor σ2 is injective on sort names
(injectivity on operation and predicate names does not have to be required). HINT:
See [Bor05].

Show also that the Craig interpolation theorem for FOPEQ implies the analo-
gous result for some of the subinstitutions of FOPEQ (see Exercise 4.1.13), for
instance for FOEQ. Note though that your argument will not work for FOP, first-
order predicate logic without equality — in fact, Craig interpolation may fail in FOP

when one of the morphisms involved is non-injective on operation names, even if all
the morphisms are injective on sort names. Of course, the standard proofs of Craig
interpolation easily adapt to FOP when the morphisms involved are injective (on
sort names as well as on operation names). ��

It is well known that equational logic does not have the interpolation property:

Counterexample 4.4.24. In EQ, consider the signature Σ with three sorts s, s1
and s2, and two constants a,b:s. Let Σ1 and Σ2 extend Σ by a constant e:s1 and
by a unary operation f :s1 → s2 respectively. Let Σ ′ be the union of Σ1 and Σ2
(this is the pushout signature for the two signature inclusions). Consider the sen-
tences ∀x:s2 • a = b ∈ SenEQ(Σ1) and a = b ∈ SenEQ(Σ2). Clearly, over Σ ′ we have
∀x:s2 • a = b |= a = b (since all Σ ′-algebras have non-empty carriers for all sorts).

Suppose that we have an interpolant θ ∈ SenEQ(Σ) for ∀x:s2 • a = b and a = b,
so that ∀x:s2 • a = b |= θ over Σ1 and θ |= a = b over Σ2. Consider a Σ1-algebra A1
with the carrier of sort s2 empty and with aA1 �= bA1 . Clearly, A1 |=Σ1 ∀x:s2 • a = b,
and so also A1 |=Σ1 θ . Hence, A1 Σ |=Σ θ . Take a subalgebra of A1 Σ with the empty
carrier of sort s1, which satisfies θ , and consider its expansion A2 to a Σ2-algebra.
Then A2 |=Σ2 θ but A2 �|=Σ2 a = b. Contradiction. ��
Exercise 4.4.25. It is often stated that equational logic has interpolation (at least for
pushouts w.r.t. injective signature morphisms) if one admits a set of interpolants,
rather than just a single interpolant sentence θ as in Definition 4.4.21. Spell out this
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property following Definition 4.4.21, but using a set of sentences Θ ⊆ Sen(Σ) in
place of a single sentence θ ∈ Sen(Σ). It also makes sense then to replace the single
sentence ϕ1 ∈ Sen(Σ1) by a set Φ1 ⊆ Sen(Σ1).

Unfortunately, equational logic has this property only if we restrict attention to
algebras with non-empty carriers for all sorts. Carry out the proof for this case as-
suming that the signature morphisms considered are injective (HINT: see [Rod91])
and note where the assumption that the carriers are non-empty is important. Give a
counterexample which shows that in general no single interpolant can be sufficient
here. Extend this proof to the case where only one of the signature morphisms (σ2 in
Definition 4.4.21) is injective, and give a counterexample to show that the injectivity
requirement cannot be dropped. HINT: See [RG00], [PŞR09].

Check that Counterexample 4.4.24 shows that the institution EQ of equational
logic (with models that admit empty carriers) does not have the interpolation prop-
erty, not even when sets of interpolants are allowed (and the morphisms involved
are signature inclusions).

Go through other examples of institutions in Section 4.1.1 and check which of
them have the interpolation property, either with a single interpolant, or with a set of
interpolants (at least for pushouts involving signature inclusions, where this notion
makes sense). ��

Of course, we cannot expect to be able to prove that either the Craig interpo-
lation or Robinson consistency properties are satisfied by an arbitrary institution
— they simply do not hold for some logics. However, one may attempt to iden-
tify other conditions on the underlying institution which imply the two properties.
Along these lines, under some further technical assumptions, the two properties are
equivalent: an institution satisfying certain technical assumptions satisfies the Craig
interpolation property if and only if it satisfies the Robinson consistency property.

Exercise 4.4.26. Assume that an institution INS has falsity, implication and appro-
priate conjunction (in general, infinitary conjunction may be needed, but if we as-
sume the institution to be compact — see Definition 4.2.7 — then binary conjunc-
tion suffices). Show that INS satisfies the Craig interpolation property for a given
pushout in Sign if and only if INS satisfies the Robinson consistency property for
that pushout. ��
This reflects what is well known in classical model theory for first-order logic, where
the Craig interpolation and Robinson consistency properties are indeed derivable
from one another. However, for institutions in which some of the required connec-
tives are not available, these properties need not be equivalent. Different versions of
these properties, such as Craig interpolation with sets of interpolants as considered
in Exercise 4.4.25, may bring the two concepts closer again:

Exercise 4.4.27. Given an institution INS with a finitely cocomplete category Sign

of signatures, consider the following version of Craig interpolation with additional
“parameters”. INS satisfies the Craig-Robinson interpolation property for the fol-
lowing commutative diagram in Sign
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Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
1 σ ′

2

if for any Φ1 ⊆ Sen(Σ1), Φ2 ⊆ Sen(Σ2), ϕ2 ∈ Sen(Σ2) such that σ ′
1(Φ1)∪σ ′

2(Φ2) |=
σ ′

2(ϕ2), there exists a set Θ ⊆ Sen(Σ) such that Φ1 |= σ1(θ) for all θ ∈ Θ and
σ2(Θ)∪Φ2 |= ϕ2.

To warm up, show that Craig-Robinson interpolation implies the Craig inter-
polation property with sets of interpolants. Show also that if INS has falsity then
Craig-Robinson interpolation implies the Robinson consistency property. Finally,
show that if INS has falsity, implication and appropriate conjunction (as in Exer-
cise 4.4.26) then all three of these properties are equivalent.

Adapt your proof from Exercise 4.4.25 to show that equational logic has the
Craig-Robinson interpolation property if we restrict attention to algebras with non-
empty carriers and assume that σ2 in the pushout diagram above is injective. ��

4.4.2 Free variables and quantification

In logic, formulae may contain free variables; such formulae are called open, as
opposed to closed formulae, which have no free variables. To interpret an open
formula, one needs not only an interpretation for the symbols of the underlying
signature (a model) but also an interpretation for the free variables (a valuation of
variables in the model). This provides a natural way to deal with quantifiers. The
need for open formulae also arises in the study of specification languages. In fact,
we will use them to abstractly express the basic notion of behavioural equivalence
in Section 8.5.3; see Exercise 8.5.61.

Fortunately we do not have to change the notion of an institution to cope with
free variables — we can provide open formulae in the present framework. Note that
we use here the term “formula” rather than “sentence”, which is reserved for the
sentences of the underlying institution, corresponding to closed formulae.

Consider the institution GEQ of ground equational logic (Example 4.1.3). Let
Σ = 〈S,Ω〉 be an algebraic signature. For any S-indexed family of sets, X = 〈Xs〉s∈S,
define Σ(X) to be the extension of Σ by the elements of X as new constants of the
appropriate sorts. Any sentence over Σ(X) may be viewed as an open formula over
Σ with free variables X . Given a Σ -algebra A, to determine whether an open Σ -
formula with variables X holds in A we have to first fix a valuation of variables X in
|A|. Such a valuation corresponds exactly to an expansion of A to a Σ(X)-algebra.

Given a translation of sentences along an algebraic signature morphism σ :Σ →
Σ ′, we can extend it to a translation of open formulae: we translate an open Σ -
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formula with variables X , which is a Σ(X)-sentence, to the corresponding Σ ′(X ′)-
sentence, which is an open Σ ′-formula with variables X ′. Here X ′ results from X by
an appropriate renaming of sorts determined by σ (we also have to avoid unintended
“clashes” of variables and operation symbols).

The above generalises to any institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
that is semi-exact.

Definition 4.4.28 (Open formula). Let Σ ∈ |Sign| be a signature in INS. Any pair
〈ϕ,θ〉, where θ :Σ → Σ ′ is a signature morphism and ϕ ∈ Sen(Σ ′), is an open Σ -
formula with variables “Σ ′ \θ(Σ)”. For any Σ -model M ∈ |Mod(Σ)|, a valuation of
variables “Σ ′ \θ(Σ)” in M is a Σ ′-model M′ ∈ |Mod(Σ ′)| which is a θ -expansion of
M, i.e. M′

θ = M. We say that 〈ϕ,θ〉 holds in M under valuation M′ iff M′ |=Σ ′ ϕ .
If σ :Σ → Σ1 is a signature morphism then we define the translation of 〈ϕ,θ〉 along
σ as 〈σ ′(ϕ),θ ′〉, where

Σ

Σ ′

Σ1

Σ ′
1

�

θ

�
σ

�σ ′

�

θ ′

is a pushout in Sign. ��
Note the quotation marks around the “set of variables” Σ ′ \θ(Σ) in the above defini-
tion: since Σ ′ \θ(Σ) makes no sense in an arbitrary institution, it is only meaningful
as an aid to our intuition.

In the standard logical framework there may be no valuation of a set of variables
in a model containing an empty carrier. Similarly here, a valuation need not always
exist. For example, in GEQ if a signature morphism θ :Σ → Σ ′ is not injective then
some Σ -models have no θ -expansion.

There is a rather subtle problem with the above definition: pushouts are defined
only up to isomorphism, so strictly speaking the translation of open formulae is not
well defined. The following exercise shows that (at least for semantic analysis) an
arbitrary pushout may be selected and so we may safely accept the above definition
of translation.

Exercise 4.4.29. Consider an isomorphism ι :Σ ′
1 → Σ ′′

1 in Sign, with inverse ι−1.
Since functors preserve isomorphisms, Sen(ι):Sen(Σ ′

1)→ Sen(Σ ′′
1 ) is a bijection

and Mod(ι):Mod(Σ ′′
1 )→Mod(Σ ′

1) is an isomorphism in Cat. Show that moreover,
for any ψ ∈ Sen(Σ ′

1) and M′
1 ∈ |Mod(Σ ′

1)|, M′
1 |=Σ ′

1
ψ ⇐⇒ M′

1 ι−1 |=Σ ′′
1

ι(ψ). ��
Sometimes we want to restrict the class of signature morphisms that may be used

to construct open formulae. In fact, in the above remarks sketching how free vari-
ables may be introduced into GEQ we used just those algebraic signature inclusions
ι :Σ ↪→ Σ ′ where the only new symbols in Σ ′ were constants. To guarantee that the
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translation of open formulae is defined under such a restriction, we consider only
restrictions to a collection I of signature morphisms that is closed under pushouts
(see Definition 4.4.18).

Examples of such collections I in AlgSig include the collection of all algebraic
signature inclusions, the restriction of this to inclusions θ :Σ ↪→ Σ ′ such that Σ ′ con-
tains no new sorts, the further restriction of this by the requirement that Σ ′ contain
new constants only (as above), the collection of all algebraic signature morphisms
which are surjective on sorts, the collection of all identities, and the collection of
all morphisms. Note that most of these permit variables denoting operations or even
sorts.

4.4.2.1 Universal quantification

In the rest of this section we briefly sketch how to universally close the open formu-
lae introduced above.

Let I be a collection of signature morphisms that is closed under pushouts. Let
Σ be a signature and let 〈ϕ,θ〉 be an open Σ -formula such that θ ∈ I. Consider the
universal closure of 〈ϕ,θ〉, written ∀θ • ϕ , as a new Σ -sentence. The satisfaction
relation and the translation of a sentence ∀θ • ϕ along a signature morphism are
defined in the expected way:

• A Σ -model satisfies the Σ -sentence ∀θ • ϕ if 〈ϕ,θ〉 holds in this model under
any valuation of the variables “Σ ′ \θ(Σ)”, that is, for any M ∈ |Mod(Σ)|, M |=Σ
∀θ • ϕ if for all M′ ∈ |Mod(Σ ′)| such that M′

θ = M, M′ |=Σ ′ ϕ .
• For any signature morphism σ :Σ → Σ1, σ(∀θ • ϕ) is ∀θ ′ • σ ′(ϕ), where

Σ

Σ ′

Σ1

Σ ′
1

�

θ

�
σ

�σ ′

�

θ ′

is a pushout in Sign such that θ ′ ∈ I.

Note that in the above we have extended our underlying institution INS. For-
mally:

Definition 4.4.30 (Institution with universally closed formulae). Let INS be an
institution, and let I be a collection of signature morphisms in INS that is closed
under pushouts such that INS is I-semi-exact. The extension of INS by universal
closure w.r.t. I is the following institution INS∀(I):

• Sign
INS∀(I) is SignINS.
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• For any signature Σ , Sen
INS∀(I) (Σ) is the disjoint union of SenINS(Σ) with the

collection21 of all universal closures ∀θ • ϕ of open Σ -formulae, where θ ∈ I;
for any signature morphism σ :Σ → Σ1, Sen

INS∀(I) (σ) is the function induced
by SenINS(σ) on SenINS(Σ) and by the notion of translation defined above on
universally closed open Σ -formulae.

• Mod
INS∀(I) is ModINS.

• The satisfaction relation in INS∀(I) is induced by the satisfaction relation of INS

for INS-sentences and the notion of satisfaction for universally closed open for-
mulae as defined above. ��
The following theorem guarantees that INS∀(I) is in fact an institution, modulo

the above remark about the definition of the translation of open formulae.

Theorem 4.4.31 (Satisfaction condition for INS∀(I)). Let INS and I be as in Def-
inition 4.4.30. For any signature morphism σ :Σ → Σ1, open Σ -formula 〈ϕ,θ〉
(where θ ∈ I), Σ1-model M1 ∈ |Mod(Σ1)|, and pushout

Σ

Σ ′

Σ1

Σ ′
1

�

θ

�
σ

�σ ′

�

θ ′

in Sign such that θ ′ ∈ I,

M1 σ |=Σ ∀θ • ϕ iff M1 |=Σ1 ∀θ ′ • σ ′(ϕ).

Proof.

(⇒): Assume that M1 σ |=Σ ∀θ • ϕ and let M′
1 be a θ ′-expansion of M1. Put

M′ = M′
1 σ ′ . Obviously, M′

θ = M′
1 θ ;σ ′ = M′

1 σ ;θ ′ = M1 σ . Thus, since M1 σ |=Σ

∀θ • ϕ , M′ |=Σ ′ ϕ . Hence, by the satisfaction condition of INS, M′
1 |=Σ ′

1
σ ′(ϕ),

which proves M1 |=Σ1 ∀θ ′ • σ ′(ϕ).
(⇐): Assume that M1 |=Σ1 ∀θ ′ • σ ′(ϕ) and let M′ be a θ -expansion of M1 σ . Since

INS is I-semi-exact, there exists a θ ′-expansion M′
1 of M1 such that M′

1 σ ′ =

M′. Then, since M1 |=Σ1 ∀θ ′ • σ ′(ϕ), M′
1 |=Σ ′

1
σ ′(ϕ). Thus, by the satisfaction

condition, M′ |=Σ ′ ϕ , which proves M1 σ |=Σ ∀θ • ϕ . ��

Example 4.4.32. Let I be the collection of algebraic signature inclusions ι :Σ ↪→ Σ ′
in AlgSig such that Σ ′ \Σ contains a finite set of new constants only. The institution
GEQ∀(I) essentially coincides with the institution EQ of equational logic (modulo
the details of the notation used for sentences), as suggested already in Exercise 2.1.6.

21 As usual, we disregard here the foundational problems which may arise if I is not a set.
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If Σ ′ \Σ is allowed to contain new operation names (not just constants), then quan-
tification along morphisms in I leads to a version of second-order logic. ��

Other quantifiers (there exists, there exists a unique, there exist infinitely many,
for almost all, and so on) may be introduced in the same manner in which we have
just introduced universal quantifiers. Example 4.1.41 illustrates how one may in-
troduce logical connectives. By iterating these constructions one can, for example,
derive the institution of first-order logic from the institution of ground atomic for-
mulae.

4.5 Institutions with reachability structure

An alternative to the standard initial algebra approach to specifications is to take
the reachable semantics of presentations, as discussed in Section 2.7.2, where from
among all the algebras satisfying a presentation only the reachable algebras are
selected. In Section 4.3 we argued that it is important to consider not just initial
algebras, but more generally, algebras that are free extensions of a specified part;
similarly, it is important here to consider not just reachable algebras, but more gen-
erally, algebras that are generated by some specified part. Given an algebraic signa-
ture Σ and a subsignature Σ ′ ⊆ Σ , a Σ -algebra A is reachable from Σ ′ if it has no
proper subalgebra with the same Σ ′-reduct. (Exercise: Show that this is the same as
requiring that the algebra is generated by the set of all its elements in the carriers of
the sorts in Σ ′, as defined in Exercise 1.2.6.) To generalise this notion to the frame-
work of an arbitrary institution we will proceed along the lines suggested by the
“categorical theory of reachability” presented in Section 3.3, based on factorisation
systems.

Definition 4.5.1 (Reachable model). Let 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an in-
stitution. Assume that for each signature Σ ∈ |Sign|, we have a factorisation system
〈EΣ ,MΣ 〉 for the category Mod(Σ) of Σ -models.

Let σ :Σ ′ → Σ be a signature morphism. A Σ -model M ∈ |Mod(Σ)| is σ -
reachable if M has no proper submodel with an isomorphic σ -reduct, that is, if
any factorisation monomorphism m:N →M in MΣ such that m σ is an isomorphism
in Mod(Σ ′) is in fact an isomorphism in Mod(Σ). ��
Example 4.5.2. Recall that for any algebraic signature Σ ∈ AlgSig, the categories
Alg(Σ), PAlg(Σ) and CAlg(Σ) of total, partial and continuous algebras come
equipped with factorisation systems (Examples 3.3.3, 3.3.13 and 3.3.14, respec-
tively). Hence, the above definition makes sense in the institutions EQ of equational
logic, PEQ of partial equational logic and CEQ of equational logic for continuous
algebras, yielding the expected notions. ��
Exercise 4.5.3. Recall that by Definition 3.3.7 a Σ -model is reachable if it has no
proper submodel. Show that if INS is finitely exact then reachability is a special
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case of σ -reachability as defined above. HINT: Use the fact that there is an initial
signature with the singleton category 1 of models. ��

In Section 3.3 it was shown how the notion of reachability introduced there may
be related to an equivalent definition stated in terms of quotients of initial mod-
els (Theorem 3.3.8(1)). In the standard algebraic case, an algebra is reachable if and
only if it is isomorphic to a quotient of the algebra of ground terms (Exercise 1.4.14).
To give an analogous result for σ -reachability we have to be able to build terms over
a specified reduct of the given algebra (cf. Exercise 3.5.11). Given such a construc-
tion, a Σ -algebra A is reachable from Σ ′ ⊆Σ if and only if evaluation in A of Σ -terms
over the Σ ′-reduct of A is surjective, or equivalently, if A is a natural quotient of the
algebra of Σ -terms built over A Σ ′ . We introduce a generalisation of the construction
of term algebras to an arbitrary institution by requiring that reduct functors induced
by signature morphisms have left adjoints. Notice that only signatures are involved
in this definition, and no sentences, and so this requirement indeed corresponds to
the mild assumption that free models (term algebras) may be built along arbitrary
signature morphisms.

Definition 4.5.4 (Institution with reachability structure). An institution with
reachability structure is an institution 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 together with:

• for each signature Σ ∈ |Sign|, a factorisation system 〈EΣ ,MΣ 〉 for the category
Mod(Σ) of Σ -models; and

• for each signature morphism σ :Σ ′ → Σ , a σ -free functor Fσ :Mod(Σ ′) →
Mod(Σ) which is left adjoint to the σ -reduct functor σ :Mod(Σ)→ Mod(Σ ′)
with unit ησ :IdMod(Σ ′) → Fσ ( ) σ .

(As usual, sub- and superscripts will be omitted when convenient.) ��
Example 4.5.5. The institution EQ of equational logic equipped with factorisation
systems for categories of algebras (cf. Example 3.3.3) has reachability structure —
the free functors are given by Exercise 3.5.11. ��
Exercise 4.5.6. Show that the institution PEQ of partial equational logic with the
factorisation systems given by Example 3.3.13 for categories of partial algebras
forms an institution with reachability structure. HINT: Free functors are rather trivial
here.

Similarly, show that the institution CEQ of equational logic for continuous al-
gebras with the factorisation systems given by Example 3.3.14 for categories of
continuous algebras forms an institution with reachability structure. HINT: The con-
struction of free functors is much more difficult here — follow the construction for
ordinary algebras in Exercise 3.5.11, but when defining the new operations in a free
way remember that you have to extend the complete partial order to cover the new
values as well, ensuring continuity of the operations. ��
Exercise 4.5.7. Let INS be a finitely exact institution. Prove that if every reduct
functor in INS has a left adjoint, then for every signature Σ the category ModINS(Σ)
of Σ -models has an initial object. HINT: Use the fact that there is an initial signature
with the singleton category 1 of models. ��
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The following theorem generalises well-known facts from the standard algebraic
setting. Like its “predecessor” Theorem 3.3.8, it confirms our confidence in the ab-
stract definitions by showing how their different versions “click together” nicely.

Theorem 4.5.8. Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution with
reachability structure. Consider a signature morphism σ :Σ ′ → Σ .

1. A Σ -model M ∈ |Mod(Σ)| is σ -reachable if and only if it is a natural quo-
tient of the free object over its σ -reduct, that is, the counit morphism εM =
(idM σ

)#:Fσ (M σ )→ M belongs to EΣ (cf. Exercise 3.5.24).

2. For any σ -reachable model M ∈ |Mod(Σ)|, any model N ∈ |Mod(Σ)| and Σ ′-
model morphism f ′:M σ → N σ , there exists at most one Σ -model morphism
f :M → N that extends f ′ (i.e. f σ = f ′).

3. Every Σ -model has a unique (up to isomorphism) σ -reachable submodel with an
isomorphic σ -reduct.

4. If M ∈ |Mod(Σ)| is σ -reachable then for any Σ -model morphism f :N →M such
that f σ is an isomorphism, f is a factorisation epimorphism (i.e. f ∈ EΣ ).

Proof.

1. (⇒): Let Fσ (M σ )
e−→ N m−→ M be a factorisation of εM:Fσ (M σ )→ M. Ar-

guing dually to Exercise 3.5.18 we can show that m σ :N σ → M σ is an isomor-
phism. Hence, by the σ -reachability of M, m is an isomorphism, which proves
that εM ∈ EΣ .
(⇐): Let m:N →M, m∈MΣ , with m σ being an isomorphism. Let f :Fσ (M σ )→
N be defined by f = ((m σ )

−1)#. Then ηM σ
;( f ;m) σ = idM σ

. By the freeness of

Fσ (M σ ), this implies that f ;m = εM . Thus, by the assumption that εM ∈ EΣ and
by Exercise 3.3.5, m is an isomorphism.

2. Suppose that f1, f2:M→N are such that f1 σ = f2 σ = f ′. Then ηM σ
;(εM; f1) σ =

f ′ = ηM σ
;(εM; f2) σ , and so εM; f1 = εM; f2. Thus, we also have f1 = f2, since by

(1) above εM is an epimorphism.
3. Consider an arbitrary Σ -model M. Let Fσ (M σ )

e−→ N m−→ M be a factorisa-
tion of εM:Fσ (M σ ) → M. Again, arguing dually to Exercise 3.5.18 we can
show that m σ :N σ → M σ is an isomorphism. Moreover, by the naturality of ε ,
Fσ (m σ );εM = εN ;m, that is Fσ (m σ );e;m = εN ;m, and so (since m is a monomor-
phism) εN = Fσ (m σ );e ∈ EΣ . Thus, by (1) again, N is a σ -reachable submodel
of M.
To prove uniqueness up to isomorphism, consider a subobject m1:N1 → M with
m1 σ being an isomorphism and εN1 :Fσ (N1 σ )→N1 in EΣ . Then Fσ (m1 σ );εM =

εN1 ;m1, and since Fσ (m1 σ ) is an isomorphism, we have two factorisations of
εM:Fσ (M σ )→ M, 〈Fσ (m1 σ )

−1;εN1 ,m1〉 and 〈e,m〉, which by the uniqueness
of factorisations implies that N and N1 are isomorphic.

4. Let N e−→ · m−→ M be a factorisation of f :N → M. Then, by naturality of ε ,
εN ;e;m = Fσ ( f σ );εM . Now, since f σ (and hence Fσ ( f σ )) is an isomorphism,
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by σ -reachability of M and (1) above, εN ;e;m ∈ EΣ . Thus, by Exercise 3.3.5, m
is an isomorphism, and so f ∈ EΣ . ��

4.5.1 The method of diagrams

In the standard algebraic framework, reachable algebras enjoy a number of use-
ful properties which make them especially easy to deal with. As a consequence
of the fact that we are able to “name” (using ground terms) all their elements,
reachable algebras are easy to describe using the most elementary logical sentences,
ground equations. To be more precise, for any algebraic signature Σ and reachable
Σ -algebra A, the class

Ext(A) = {B ∈ |Alg(Σ)| | there exists a Σ-homomorphism h:A → B}

is the class of models of the ground Σ -equations that hold in A, that is, Ext(A) =
ModGEQ(ThGEQ({A})), and moreover, A is initial in Ext(A). (We will refer to
classes of algebras of the form Ext(A) for a reachable algebra A as ground vari-
eties.) This gives a one-to-one correspondence between ground equational theories
and isomorphism classes of reachable algebras (and furthermore, congruences on
ground term algebras by Exercise 1.4.14).

Unfortunately, not all algebras are reachable, and it is clear that this correspon-
dence does not carry over to arbitrary algebras: there are algebras that cannot be
characterised as initial models of equational theories. But there is a technical trick
that may help: if a Σ -algebra A is not reachable, then consider the signature Σ(A)
obtained by adding to Σ the elements of |A| as constants of the appropriate sorts.
Now, the algebra A has an obvious expansion to a reachable Σ(A)-algebra E(A),
where the new constants are interpreted as the elements they correspond to. This
expansion has a number of useful properties:

• Any Σ -homomorphism h:A → B determines unambiguously an expansion of B
to a Σ(A)-algebra Eh(B) where each new constant in Σ(A) is interpreted as the
value of h on the corresponding element of |A|. Moreover, this expansion is in-
dependent of any decomposition of h: for any Σ -homomorphisms h1:A →C and
h2:C → B such that h = h1;h2, the homomorphism h2 (or more precisely, its un-
derlying map) is a Σ(A)-homomorphism from Eh1(C) to Eh(B).

• Intuitively, the expansion does not introduce more structure than necessary to
make A reachable; in particular, no new elements are added.

Putting all these together, any Σ -algebra A may be characterised by the set of ground
equations on the signature Σ(A) that hold in E(A). This technique, known as the
method of diagrams, is one of the basic tools of classical model theory (cf. [CK90]).
We have already suggested its use in the construction of the free functor correspond-
ing to a signature morphism in Exercise 3.5.11.

In the following the method of diagrams is formulated in the context of an ar-
bitrary institution with reachability structure. We will assume that the institution
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is finitely exact in order to be able to deal with reachability (not just reachability
relative to signature morphisms; cf. Exercises 4.5.3 and 4.5.7).

Definition 4.5.9 (Method of diagrams). A finitely exact institution with reachabil-
ity structure INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 admits the method of diagrams
if:

• (Definability of ground varieties)
for every signature Σ ∈ |Sign| and reachable Σ -model M ∈ |Mod(Σ)|, the class

Ext(M) = {N ∈ |Mod(Σ)| | there exists a Σ-model morphism h:M → N}

of extensions of M is definable, that is, Ext(M) = ModΣ (Φ) for some set Φ ⊆
Sen(Σ).

• (Existence of diagrams)
for every signature Σ ∈ |Sign| and Σ -model M ∈ |Mod(Σ)|, there exists a signa-
ture Σ(M) ∈ |Sign| and signature morphism ι :Σ → Σ(M) such that:

– M has a reachable ι-expansion E(M): there exists E(M) which is a reachable
Σ(M)-model such that E(M) ι = M;

– ι-reduct is an isomorphism of the slice categories Mod(Σ(M))↑E(M) and
Mod(Σ)↑M (see Exercise 3.1.31), that is, for any Σ -model morphism f :M →
N, there exists a unique ι-expansion of N, E f (N), such that f has an ι-
expansion E( f ):E(M)→E f (N) and such that any Σ -model morphism h:N →
N1 has a unique ι-expansion E(h):E f (N)→ E f ;h(N1); and

– ι-reduct preserves the factorisation system on Mod(Σ(M))↑E(M) as inherited
from Mod(Σ(M)), that is, for any f :E(M)→N′ and h:N′ →N′′, if h∈EΣ(M)

then h ι ∈ EΣ and if h ∈ MΣ(M) then h ι ∈ MΣ .

Then, Σ(M) is called the diagram signature for M (with signature inclusion ι),
E(M) is called the diagram expansion of M, and finally the theory Δ+(M) =
ThΣ(M)(Ext(E(M))) is called the (positive) diagram of M. ��
Example 4.5.10. The institutions EQ of equational logic, PEQ of partial equational
logic, and CEQ of equational logic for continuous algebras admit the method of di-
agrams. Ground varieties in EQ are definable by sets of ground equations; ground
varieties of PEQ are definable by sets of ground equations and ground definedness
formulae; ground varieties in CEQ are definable by sets of ground infinitary equa-
tions. For any (total, partial, or continuous) Σ -algebra A, the diagram signature for
A is formed by adding constants corresponding to all the elements of |A|. The dia-
gram expansion of a partial algebra is formed by requiring that the new constants
are defined and have the expected values. ��
Exercise 4.5.11. Show that in any institution that admits the method of diagrams,
and for any model M, the class of models of the positive diagram of M is the class of
all extensions of the diagram expansion of M: ModΣ(M)(Δ+(M)) = Ext(E(M)). ��
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4.5.2 Abstract algebraic institutions

In Exercise 3.5.11 we suggested the use of the method of diagrams to prove that in
the standard algebraic framework, the reduct functor induced by a signature mor-
phism has a left adjoint. With some more effort, one can generalise this result and
prove that in the standard equational institution the reduct functor induced by a the-
ory morphism has a left adjoint:

Exercise 4.5.12. Prove that in the equational institution EQ, for any theory mor-
phism σ :T → T ′, the reduct functor σ :Mod[T ′]→ Mod[T ] has a left adjoint.

HINT: Formalise and complete the following construction: Let T = 〈Σ ,Φ〉 and
T ′ = 〈Σ ′,Φ ′〉. For any Σ -algebra A ∈ Mod[T ], let Σ(A) be its diagram signature,
and let

Σ(A)

Σ ′Σ

Σ ′(A)�σ ′

�

ι

�

ι ′

�
σ

be a pushout in the category of signatures. Then, let Δ+(A)⊆ SenEQ(Σ(A)) be the
positive diagram of A. Consider the presentation 〈Σ ′(A),σ ′(Δ+(A))∪ ι ′(Φ ′)〉. By
Theorem 2.5.14, this has an initial model. Its ι ′-reduct is a free object over A. (See
also Exercise 3.5.11 for a slightly different line of reasoning.) ��
We will come back to a careful, more abstract analysis of this construction later
(cf. Theorem 4.5.18 below). For now, notice that the construction not only uses the
fact that the equational institution admits the method of diagrams, but also relies
(directly or indirectly) on a number of simple facts about the reachability structure
of the equational institution. We capture some of these additional properties in the
following abstract definition:

Definition 4.5.13 (Abstract algebraic institution). An abstract algebraic institu-
tion is a finitely exact institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 with reach-
ability structure that admits the method of diagrams for which the following addi-
tional conditions hold:

• For any signature Σ ∈ |Sign|, the category Mod(Σ) has all products (of sets of
models) and is EΣ -co-well-powered (Definition 3.3.10).

• For any signature morphism σ :Σ → Σ ′, the σ -reduct functor preserves submod-
els (i.e. for all m′ ∈ MΣ ′ , m′

σ ∈ MΣ ) and products.
• (Abstraction condition) For any signature Σ and Σ -models M,N ∈ |Mod(Σ)|, if

M and N are isomorphic then they satisfy exactly the same Σ -sentences. ��
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Example 4.5.14. The institutions EQ of equational logic, PEQ of partial equational
logic, and CEQ of equational logic for continuous algebras are abstract algebraic
institutions. ��
Exercise 4.5.15. There is a certain asymmetry in the above definition: reduct func-
tors in abstract algebraic institutions are required to preserve submodels but are not
required to preserve quotients. Prove that in EQ, reduct functors preserve quotients
as well: for all σ :Σ → Σ ′ and e′ ∈ EΣ ′ , e′ σ ∈ EΣ . Show, however, that this is not
true in general in PEQ. ��

4.5.3 Liberal abstract algebraic institutions

In Section 4.3 we have shown that it is possible to restrict attention to initial models
of specifications written in an arbitrary institution, even if theories in the institution
are not guaranteed to have initial models in general. Similarly, data constraints make
sense in an arbitrary institution even if reduct functors induced by theory morphisms
are not guaranteed to have left adjoints. This flexibility is useful, but nevertheless it
may be important to know whether or not a theory used in an initiality constraint has
an initial model, or whether a theory morphism used in a data constraint has a cor-
responding free functor. In some institutions this is always the case: the equational
institution EQ is one example (cf. Theorem 2.5.14 and Exercise 4.5.12). In the rest
of this section we present a characterisation of institutions that have this property.
Of course, very little can be done in the framework of an arbitrary institution: how-
ever, abstract algebraic institutions as introduced above provide a sufficiently rich
background.

Definition 4.5.16 (Liberal institution). An institution INS admits initial models if
every theory in INS has an initial model. INS is liberal if for every theory morphism
σ :T → T ′ in INS, the σ -reduct functor σ :Mod[T ′]→ Mod[T ] has a left adjoint.

Then, an abstract algebraic institution INS admits reachable initial models if
every theory in INS has an initial model which is reachable. INS is strongly liberal if
for every theory morphism σ :T → T ′ in INS, the σ -reduct functor σ :Mod[T ′]→
Mod[T ] has a left adjoint Fσ :Mod[T ]→ Mod[T ′] such that for any M ∈ Mod[T ],
Fσ (M) ∈ Mod[T ′] is σ -reachable. ��
In the last part of the definition we have slightly abused notation by using σ as both
a theory morphism and a signature morphism (which in fact it is). It is important that
the notion of σ -reachability used here be taken with respect to signature morphisms
(cf. Definition 4.5.1), without taking into account the theory context.

Exercise 4.5.17. Find an institution that admits initial models but does not admit
reachable initial models. HINT: Consider an algebraic signature Σ with a unary op-
eration symbol f :s → s. Show that the class of Σ -algebras satisfying the axiom
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∃!x:s• f (x)= x has an initial model which is not reachable, where ∃! reads “there ex-
ists a unique”, that is, ∃!x:s• f (x) = x stands for ∃x:s• f (x) = x∧∀x1,x2:s• f (x1) =
x1∧ f (x2) = x2 ⇒ x1 = x2. ��

For abstract algebraic institutions, the conditions introduced in Definition 4.5.16
are pairwise equivalent.

Theorem 4.5.18. Let INS be an abstract algebraic institution. INS is liberal if and
only if it admits initial models.

Proof.

(⇒): Let T = 〈Σ ,Φ〉 be a theory. Let ιΣ :Σ∅ → Σ be the only signature mor-
phism from the initial signature Σ∅ to Σ . Then ιΣ :T∅ → T is a theory mor-
phism, where T∅ = 〈Σ∅,ClΣ∅

(∅)〉 is the initial theory, and so the reduct functor
ιΣ :Mod[T ]→Mod[T∅] has a left adjoint FιΣ :Mod[T∅]→Mod[T ]. Now, there

is exactly one Σ∅-model, say M∅ ∈ |Mod[T∅]|, and moreover, FιΣ (M∅) is an
initial model of T .

(⇐): We follow the proof for the equational institution EQ sketched in Exer-
cise 4.5.12. For any theory morphism σ :T → T ′, where T = 〈Σ ,Φ〉 and T ′ =
〈Σ ′,Φ ′〉, and model M ∈ Mod[T ], we construct a model Fσ (M) ∈ Mod[T ′] with
unit ηM:M → Fσ (M) σ that is free over M w.r.t. σ :Mod[T ′]→ Mod[T ].
Let Σ(M) be the diagram signature for M with signature inclusion ι :Σ → Σ(M),
and let

Σ(M)

Σ ′Σ

Σ ′(M)�σ ′

�

ι

�

ι ′

�
σ

be a pushout in the category of signatures. Then, let Δ+(M)⊆ Sen(Σ(M)) be the
positive diagram of M. Consider the presentation 〈Σ ′(M),σ ′(Δ+(M))∪ ι ′(Φ ′)〉.
By the assumption, it has an initial model, say I. Put Fσ (M) = I ι ′ . Then, since
by the satisfaction condition I σ ′ |=Σ(M) Δ+(M), I σ ′ ∈ Ext(E(M)) (cf. Exer-
cise 4.5.11). Hence, there exists a (unique, since E(M) is reachable) Σ(M)-model
morphism η̂M:E(M)→ I σ ′ . Put ηM = η̂M ι :M → Fσ (M) σ = I ι ;σ ′ .
First, notice that since I |=Σ ′(M) ι ′(Φ ′), Fσ (M) ∈ Mod[T ′]. Then, consider an
arbitrary model N ∈ Mod[T ′] and a Σ -model morphism f :M → N σ .
By the definition of the diagram signature for M, N σ has a unique ι-expansion
to a Σ(M)-model E f (N σ ) such that there exists a Σ(M)-model morphism
E( f ):E(M)→ E f (N σ ) with E( f ) ι = f . Amalgamation yields a unique Σ ′(M)-
model Eσ

f (N σ )∈ |Mod(Σ ′(M))| with Eσ
f (N σ ) σ ′ = E f (N σ ) and Eσ

f (N σ ) ι ′ =

N. Since N |=Σ ′ Φ ′, Eσ
f (N σ ) |=Σ ′(M) ι ′(Φ ′). Then, since E f (N σ ) ∈ Ext(E(M)),
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E f (N σ ) |=Σ(M) Δ+(M), and so Eσ
f (N σ ) |=Σ ′(M) σ ′(Δ+(M)). Consequently, we

get a unique Σ ′(M)-model morphism f̂ ′: I → Eσ
f (N σ ). Put f ′ = f̂ ′ ι ′ :Fσ (M)→

N. Notice that η̂M; f̂ ′ σ ′ :E(M) → E f (N σ ). Hence, since E(M) is reachable,

η̂M; f̂ ′ σ ′ = E( f ), and so we obtain ηM; f ′ σ = f . Moreover, f ′ is the only mor-
phism with this property. To see this, suppose that for some f ′′:Fσ (M) → N,
ηM; f ′′ σ = f . Then, by the amalgamation property (this time for model mor-

phisms) there exists a Σ ′(M)-model morphism f̂ ′′: I →Eσ
f (N σ ) such that f̂ ′′ ι ′ =

f ′′ (and f̂ ′′ σ ′ = E( f ′′ σ ): I σ ′ → E f (N σ )). By initiality of I, f̂ ′′ = f̂ ′, and so
f ′′ = f ′, which completes the proof. ��

Theorem 4.5.19. Let INS be an abstract algebraic institution. INS is strongly lib-
eral if and only if it admits reachable initial models.

Proof. We extend the proof of the previous theorem, relying on the notation intro-
duced there.

(⇒): The only additional remark needed is that FιΣ (M∅) is reachable if it is ιΣ -
reachable (cf. Exercise 4.5.3).

(⇐): We have to additionally prove that Fσ (M) = I ι ′ is σ -reachable whenever
I is reachable. To see this, consider an arbitrary submodel of I ι ′ with an iso-
morphic σ -reduct, say m:N → I ι ′ , where m ∈ MΣ ′ and m σ :N σ → I σ ;ι ′ is an
isomorphism. Put f = ηM;(m σ )

−1:M → N σ . Then f ;m σ = ηM , and so m σ
has an expansion to a Σ(M)-model morphism E(m σ ):E f (N σ )→ EηM (I σ ;ι ′) =

I σ ′ . Then, as in the corresponding part of the proof of Theorem 4.5.18, we
get a unique Σ ′(M)-model Eσ

f (N σ ) ∈ |Mod(Σ ′(M))|, such that Eσ
f (N σ ) σ ′ =

E f (N σ ) and Eσ
f (N σ ) ι ′ = N, and a Σ ′(M)-model morphism f̂ ′: I → Eσ

f (N σ ).
On the other hand, by the amalgamation property again, there exists a unique
Σ ′(M)-model morphism m̂:Eσ

f (N σ )→ I such that m̂ σ ′ = E(m σ ) and m̂ ι ′ = m.

By the initiality of I, f̂ ′;m̂ is the identity, and so is ( f̂ ′;m̂) ι ′ = f̂ ′ ι ′ ;m. Thus, by
Exercise 3.3.5, m is an isomorphism — which completes the proof. ��

4.5.4 Characterising abstract algebraic institutions that admit
reachable initial models

From the very beginning of work on algebraic specifications it has been known that
the standard equational institution EQ admits reachable initial models (cf. Theo-
rem 2.5.14). Moreover, the proof of this property generalises readily to the situation
where conditional equations (even with infinite sets of premises) are permitted as
axioms. On the other hand, Example 2.7.11 shows that if disjunction is permitted,
the property is lost. Indeed, in the standard algebraic framework the infinitary con-
ditional axioms, which define all non-empty quasi-varieties, form in some sense a
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border beyond which one cannot be sure of the existence of reachable initial models.
We generalise this result to the framework of abstract algebraic institutions.

Theorem 4.5.20. Let INS be an abstract algebraic institution. INS admits reach-
able initial models if and only if every class of models definable in INS is closed
under products (of sets of models) and under submodels.

Proof.

(⇐): This follows directly by Lemma 3.3.12; just notice that any class of models
closed under products and submodels is a non-empty quasi-variety (cf. Defini-
tion 3.3.11).

(⇒): Let 〈Σ ,Φ〉 be a presentation in INS. We show the required closure properties
of ModΣ (Φ).

(Submodels): Consider a model M ∈ ModΣ (Φ) and its submodel m:N → M,
m ∈ MΣ . Let Σ(N) be a diagram signature for N with signature inclusion
ι :Σ → Σ(N), and let Δ+(N) ⊆ Sen(Σ(N)) be the positive diagram of N.
Recall that ModΣ(N)(Δ+(N)) = Ext(E(N)), where E(N) ∈ |Mod(Σ(N))| is
the diagram expansion of N. The presentation 〈Σ(N),Δ+(N)∪ ι(Φ)〉 has a
reachable initial model, say I. We show that I ι is isomorphic to N, which in
particular implies N ∈ ModΣ (Φ).
Since I |=Σ(N) Δ+(N), there exists a Σ(N)-model morphism f :E(N) → I.
Moreover, since I is reachable, f ∈ EΣ(N) (by Theorem 3.3.8(4)) and hence
also f ι ∈ EΣ . Then, let Em(M) be the unique expansion of M to a Σ(N)-
model with E(m):E(N) → Em(M) such that E(m) ι = m. Since M |= Φ ,
Em(M) |=Σ(N) ι(Φ), and, since Em(M) ∈ Ext(E(N)), Em(M) |=Σ(N) Δ+(N).
Hence, there is a (unique) morphism g: I →Em(M). Now, since E(N) is reach-
able, there exists at most one morphism from E(N) to Em(M), and so we have
f ;g = E(m), which implies f ι ;g ι = m∈MΣ . Since f ι ∈EΣ , it follows from
Exercise 3.3.5 that f ι :N → I ι is indeed an isomorphism.

(Products): Consider any family Mi ∈ ModΣ (Φ), i ∈ J, where J is any set
(of indices). Let N with projections πi:N → Mi, i ∈ J, be the product of
the family 〈Mi〉i∈J . We proceed similarly as in the previous case: let Σ(N)
be a diagram signature for N with signature inclusion ι :Σ → Σ(N), and
let Δ+(N) ⊆ Sen(Σ(N)) be the positive diagram of N. The presentation
〈Σ(N),Δ+(N)∪ ι(Φ)〉 has a reachable initial model, say I. We show that I ι
is isomorphic to N, which implies that N ∈ ModΣ (Φ).
As in the previous case, there exists f :E(N) → I with f ι ∈ EΣ . Then, for
i ∈ J, let Eπi(Mi) be the unique Σ(N)-model such that there is an expansion of
πi to a Σ(N)-model morphism E(πi):E(N)→ Eπi(Mi). Eπi(Mi) satisfies both
Δ+(N) and ι(Φ), and so there exists a morphism hi: I → Eπi(Mi). Hence, by
the definition of a product, there exists a (unique) Σ -model morphism g: I ι →
N such that for i ∈ J, hi ι = g;πi. Moreover, for i ∈ J, since E(N) is reachable
and so there is at most one morphism from E(N) to Eπi(Mi), f ;hi = E(πi).
Consequently, ( f ι ;g);πi = f ι ;hi ι = ( f ;hi) ι = E(πi) ι = πi. It follows that
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f ι ;g is an isomorphism, and thus f ι ∈ EΣ implies that f ι :N → I ι is an
isomorphism as well. ��

Exercise 4.5.21. As we have mentioned earlier, institutions of single-sorted logics,
like those in Exercises 4.4.10 and 4.4.16, are only semi-exact, rather than finitely
exact.

Call an institution INS almost abstract algebraic if it satisfies all the assump-
tions imposed on abstract algebraic institutions except for the requirement of finite
exactness, instead of which we require that:

• INS is semi-exact; and
• for each signature Σ ∈ |SignINS|, the category ModINS(Σ) of Σ -models has an

initial object.

The above characterisation theorems nearly hold for almost abstract algebraic insti-
tutions:

• By direct inspection of their proofs, check that Theorem 4.5.20 as well as the
“if” parts of Theorems 4.5.18 and 4.5.19 hold for almost abstract algebraic insti-
tutions.

• Prove that the “only if” part of Theorem 4.5.18 holds for almost abstract alge-
braic institutions. HINT: To show that a Σ -theory T has an initial model, consider
the identity signature morphism as a morphism from the empty Σ -theory to T .
Then use Exercise 3.5.17.

• Show that the “only if” part of Theorem 4.5.19 does not hold for almost abstract
algebraic institutions. HINT: In SSEQ, the requirement of σ -reachability is trivial
for any signature morphism σ . Consider the extension of SSEQ by sentences
involving the quantifier “there exists a unique”. ��

4.6 Bibliographical remarks

This chapter has its origins in the seminal work of Goguen and Burstall on insti-
tutions. The reader may have noticed that the main paper on institutions [GB92]
appeared later than many of its applications. The first appearance of institutions
was in the semantics of Clear [BG80], under the name “language”, and early ver-
sions of [GB92] were widely circulated, with [GB84a] an early published ver-
sion. Most of our terminology (signature, sentence, model, liberal institution, and
so on) comes from [GB92]. There is a minor technical difference with respect to
the definition given in [GB92]: we take the contravariant functor ModINS to be
ModINS:Sign

op
INS → Cat rather than ModINS:SignINS → Catop. This is consistent

with the further refinement of this definition in Chapter 10 as well as with the notion
of an indexed category (cf. Section 3.4.3 and [TBG91]).

A large number of variants, generalisations and extensions of the notion of in-
stitution have been considered. In some work where model morphisms are not im-
portant, institutions were considered with classes (rather than categories) of mod-
els, e.g. [BG80]. Somewhat dually, one way to bring deduction into the realm of
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institutions is by considering categories (rather than sets) of sentences, where mor-
phisms capture proofs. These variants were present in some unpublished versions
of [GB92]; see also [MGDT07] for some elaboration on these possibilities.

One line of generalisation is to allow a space of truth values other than just the
standard two-valued set, leading to proposals like galleries [May85] or generalised
institutions [GB86]. General logics [Mes89] add an explicit notion of entailment
and proof to institutions; see Chapter 9 for developments in this direction. Foun-
dations [Poi88] include a similar idea, in addition imposing a rich indexed cate-
gory structure on sentences. Context institutions [Paw96] offer an explicit notion
of context and hence of open formulae and valuation as a part of the institution
structure. There have also been attempts to relax the satisfaction condition, with for
instance pre-institutions ([SS93], [SS96]), where the equivalence in the satisfaction
conditions is split into two separately imposed implications. This captures logical
systems in which one or both of the directions of the satisfaction condition fail, as
discussed before Exercise 4.1.2. This applies to the so-called ultra-loose approach to
algebraic specification [WB89], Extended ML [KST97] and various notions of be-
havioural satisfaction; see Chapter 8. (In [Gog91b], the satisfaction condition holds
for behavioural satisfaction but at the cost of restricting the notion of signature mor-
phism.) Overall though, in spite of all these proposed variants and generalisations,
most research has been based on the original notion, as we present it here.

The theory of institutions adopts a primarily model-theoretic view of logical sys-
tems. This does not preclude proof-theoretic investigation — see Chapter 9 — but
it does exclude logical systems that are inherently not based on the Tarskian notion
of satisfaction of a sentence in a model. Typically such systems are centred around
a notion of logical consequence that is defined via deduction, in contrast to our Def-
inition 4.2.5. One such example would be non-monotonic logics [MT93], where
increasing the set of premises can render consequences invalid. Other examples in-
clude substructural logics such as linear logic [Gir87], where changing the number
of occurrences of premises, or their order, may affect deduction and change the set
of valid consequences. Clearly, such logics cannot be directly represented as insti-
tutions, but see [CM97], which indicates how an institution for linear logic can be
defined by taking linear logic sequents (statements about consequence) as individual
sentences. A view of logic based on proof rules and deduction underlies so-called
“general logical frameworks”, with Edinburgh LF [HHP93] as a prime example. For
proposals in this direction related to institutions, see π-institutions [FS88] and also
entailment systems [Mes89], [HST94], which re-emerge in Definition 9.1.2 below.

Section 4.1.1 gives only the beginning of the long list of examples of logical
systems that have been formalised as institutions. Standard examples of institutions
(EQ, FOP, Horn, Horn without equality, EQ⇒) were presented in [GB92], with
further standard algebraic variants in [Mos96b], and CEQ is from [Tar86b].

Dozens of other logical systems have been formalised as institutions. Some
examples: [Bor00] defines an institution of higher-order logic based on HOL;
[SML05] defines an institution with type class polymorphism; [Roş94] defines an
institution of order-sorted equational logic; [ACEGG91] defines a family of insti-
tutions of multiple-valued logics, including logical systems arising from fuzzy set



4.6 Bibliographical remarks 225

theory; [Dia00] defines an institution of constraint logic; [Cı̂r02] defines an insti-
tution with models that have both coalgebraic and algebraic components, and sen-
tences involving modal formulae; [FC96] defines an institution of temporal logic;
[LS00] defines an institution of hybrid systems based on the specification language
of HYTECH [HHWT97]; and [BH06a] defines the COL constructor-based obser-
vational logic institution based on viewing reachability and observability as dual
concepts. The semantics of basic specifications in CASL [BCH+04] defines an insti-
tution, the rest of the semantics being defined in an institution-independent fashion.
Alternatives to the standard CASL institution include the institution underlying CO-
CASL, which includes cogeneration constraints, cofreeness constraints, and modal
formulae [MSRR06]; the institution underlying HASCASL, with partial higher-order
functions, higher-order subtyping, shallow polymorphism, and type classes, de-
signed for specifying functional programs [SM09]; an institution of labelled tran-
sition logic for specifying dynamic reactive systems [RAC99]; and the institution
underlying CSP-CASL for describing systems of processes [Rog06]. The eight insti-
tutions involved in CafeOBJ [DF98] are defined in [DF02], with their combination
leading to an institution via a version of the Grothendieck construction (Defini-
tion 3.4.59) that is applicable here [Dia02], and the Maude language [CDE+02]
is based on rewriting logic [Mes92] and on the institution of membership equa-
tional logic [Mes98] (with some technical nuances of their relationship pointed out
in [CMRM10]). Institutions for three different UML diagram types are defined in
[CK08a], [CK08b], [CK08c], with the relationships between them given by insti-
tution comorphisms (see Section 10.4 below). A spectrum of institutions capturing
some aspects of Semantic Web languages are defined and linked with each other in
[LLD06]. Different approaches to the specification of objects have led to the defini-
tion of a number of institutions; they include [SCS94], which defines an institution
of temporal logic for specifying object behaviour, [GD94b], which argues that an
institution based on hidden-sorted algebra is relevant, and [Zuc99], which shows
how to construct an institution with features for specifying dynamic aspects of sys-
tems using so-called “d-oids” from an institution for specifying static data. Finally,
some slightly non-standard examples include two institutions for graph colouring in
[Sco04], a way of viewing a database as an institution [Gog11], and a framework
based on institutions for typed object-oriented, XML and other data models [Ala02].

Some of the examples of constructions on institutions in Section 4.1.2 were in-
dependently introduced by others. For instance, [Mes89] constructs an institution
“out of thin air” starting with theories in an entailment system, the idea of which is
presented in Examples 4.1.36 and 4.1.40. Incidentally, a very interesting exercise is
to use the method of diagrams (Definition 4.5.9) to show how the construction of
models from theories recovers the institution for which the entailment system that
generates the theories was built.

Overall though, Section 4.1.2 only hints at the issue of how institutions should
be defined. In particular, we do not discuss here the notion of a parchment [GB86],
which offers one convenient way to present institutions in a concise and uniform
style, at the same time ensuring that the satisfaction condition holds. See also
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[MTP97], [MTP98] and comments in Section 10.5 for variants of this notion and
its use for combining presentations of logical systems.

The idea of data constraints originates in [BG80], but was independently intro-
duced earlier by Reichel [Rei80]; cf. [KR71]. Our treatment in Section 4.3 follows
[GB92]. Definition 4.3.8 is essentially equivalent to the definition there, although
the technicalities are somewhat different; in particular, as in [ST88a], we do not
require the institution to be liberal. Hierarchy constraints [SW82], also known as
generating constraints [EWT83], are like data constraints but require that some car-
riers be generated from other carriers rather than freeness; see Exercise 4.3.13. Ex-
ercise 4.3.14 introduces a way to specify so-called coinductive data types involving
infinitary data. This has been mixed with algebraic techniques both in specifica-
tion — see COCASL [MSRR06] — and in experimental programming languages
— see [Hag87] and Charity [CS92], [CF92]. See [Rut00] for an introduction to a
comprehensive coalgebraic approach to specification which provides an alternative
perspective to the material on behavioural specifications in Chapter 8 below.

Colimits of signatures and theories built over them have been used as tools for
combining theories and specifications at least since [BG77], [GB78]. This follows
the general ideas of [Gog73] and underlies the semantics of Clear [BG80] and the
commercial Specware system [Smi06]; support for the use of colimits to combine
theories in a number of institutions is also offered by the HETS system [MML07].
A category-theoretic approach to software engineering which makes extensive use
of these ideas is [Fia05]. Theorem 4.4.1 originates with [GB92], generalising a non-
institutional version in [GB84b], and Corollary 4.4.2 is from [BG80].

The idea of amalgamation in model theory [CK90] refers to a subtler and deeper
property of certain theories than does the notion defined here. The use of amalga-
mation in algebraic specification, in connection with pushout-style parameterisation
mechanisms, originates with [EM85], following its introduction in [BPP85]; see
also the Extension Lemma in [EKT+83]. In the context of an arbitrary institution, it
was first imposed as a requirement and linked with continuity of the model functor
in [ST88a]; cf. [EWT83].

Limiting the amalgamation property to pushouts along a chosen collection of sig-
nature morphisms, as in Definition 4.4.18, is important not only because of examples
like those in Exercise 4.4.19. The range of relevant cases includes systems emerging
in practice. For instance, the institution of CASL [Mos04] admits amalgamation for
pushouts along most, but not all, CASL signature morphisms, due to problems with
the required unique interpretation of subsorting coercions; see [SMT+05].

There has been some confusion with the terminology surrounding exactness of
institutions in the literature. The term was first used in [Mes89], although for preser-
vation of signature pushouts (the amalgamation property) only. It became widely
used after [DGS93], where it meant that the model functor maps finite colimits of
signatures to limits in Cat, so that neither infinite colimits nor existence of colimits
were covered (the latter also applies to semi-exactness as introduced there). This
was sometimes missed in the literature, leading to subtle mistakes in the presenta-
tion of some results. We decided to put all of these assumptions together under the
single requirement of “exactness”. The notion of an institution “with composable
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signatures” was used in early versions of this chapter and in [Tar99] to mean the
same thing as exactness, and this terminology was adopted by other authors in a
few papers. The notion of exactness as used in category theory is different, although
for functors between so-called Abelian categories it implies preservation of finite
colimits.

The consequences of semi-exactness for preservation of finite connected colimits
of signature diagrams stated in Proposition 4.4.15 appear to be new in the literature
concerning institutions; they had not been clear to us until we were pointed to [CJ95]
and a result there which we give as Exercise 3.4.56.

Institutions with extra structure have been used as the basis for the definition of
the semantics of a number of specification languages, beginning with ASL [ST88a],
which required an exact institution. In [ST86], an institution-independent semantics
for the Extended ML specification language is sketched in terms of an “institution
with syntax”; this requires an additional functor which gives concrete syntactic rep-
resentations of sentences, together with a natural transformation which associates
these concrete objects with the “abstract” sentences they represent. In [BCH+04],
the semantics of CASL is based on an “institution with qualified symbols” [Mos00],
which requires considerable additional structure in order to support the operations
on signatures used in the semantics; these include union of signatures and generation
of signature morphisms from maps between symbols. Similar constructions on sig-
natures are available when the category of signatures is equipped with a so-called
inclusion system, which leads to the concept of an inclusive institution [DGS93],
[GR04] (see also Exercise 5.2.1 below).

Although the theory of institutions emerged originally in the context of algebraic
specification theory, it shares ideas and broad goals with abstract model theory as
pursued within mathematical logic — see [Bar74], [BF85] — which concentrates on
the study of definable classes of algebras (or rather first-order structures), abstract-
ing away from the structure of sentences and from proof-theoretic mechanisms. The
idea of developing an institutional version of abstract model theory, which also ab-
stracts away from the nature of models, was first put forward in [Tar86a], where the
equivalence of the Craig interpolation and Robinson consistency properties (Exer-
cise 4.4.26) was shown.

The Craig interpolation property (Definition 4.4.21) will be used frequently in
the sequel. In this formulation, it originates in [Tar86a]. Interpolation for first-
order logic is a standard result in model theory [CK90] but the delicacy of its sta-
tus in many-sorted first-order logic (see Exercise 4.4.23) was first pointed out in
[Bor05]. There are several variants of the formulation of interpolation, including
Craig-Robinson interpolation (Exercise 4.4.27), discussed extensively in [DM00].
The generalisation to arbitrary pushouts [Tar86a] and then to commutative squares
of signature morphisms [Dia08] and sets of interpolants (see the discussion in
[DGS93]) is especially important. In particular, sets of interpolants may always be
found in the case of equational logic under the assumption that carriers are non-
empty [Rod91], but the necessity of this assumption has been widely disregarded;
see Exercise 4.4.25.
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Our treatment of variables, open formulae and quantification in an arbitrary
institution comes from [Tar86b], [ST88a]; see the concept of syntactic operator
in [Bar74] for an earlier related idea. Section 4.5 is based on [Tar85], following
[MM84], which is in an institutional style but based on the standard notion of log-
ical structure. In [Tar86b], infinitary conditional “equations” were defined for an
arbitrary abstract algebraic institution and it was shown that sets of these sentences
define quasi-varieties — see [Mal71] — thus providing a “syntactic” version of
Theorem 4.5.20. Further developments in institutional abstract model theory, with
results and ideas that refine those in Sections 4.4 and 4.5 and reach much further
into classical model theory than we have done here, are presented in [Dia08].



Chapter 5

Structured specifications

Chapter 2 appears to provide just what is needed to specify programs. A flat specifi-
cation records the required sort and operation names along with the axioms that the
operations must satisfy. Taking its initial interpretation is one way of excluding un-
desirable models, and the equational calculus (together with appropriate induction
schemes, in the case of the initial interpretation) can be used to prove additional
properties of models on the basis of the axioms. Most of this generalises smoothly
to an arbitrary logical system, as discussed in Section 2.7 and Chapter 4.

In practice, it very quickly becomes apparent that these techniques are only suit-
able for writing and reasoning about small specifications containing at most a hand-
ful of sorts and perhaps two dozen operations. A flat specification of a large system
would be impossible to understand or use — imagine trying to decide what a 200-
page list of axioms really specifies!

What is needed is some means of building complex structured specifications by
combining and extending simpler ones. Then, an understanding of a large specifi-
cation may be achieved via an understanding of its components, and components
of large specifications may be reused. Moreover, the structure of a specification
conveys intangible but important aspects of the conceptual structure of the problem
domain, such as the degree to which entities and concepts described in the specifica-
tion are interrelated. As we will see in later chapters, the structure of specifications
can often be exploited in their subsequent use, for instance both in structuring proof
systems for specifications and in guiding proof search.

Building on the specification mechanisms in Chapter 2, this chapter introduces
specification-building operations for use in constructing structured specifications.
It is possible to give a treatment of the particular operations presented at the level
of an arbitrary institution (Chapter 4), abstracting away from the particular details
of the logical system in use. Although these operations are very simple, their ex-
pressive power is sufficient to capture most of the specification-building operations
provided by existing specification languages. There are two exceptions: parameter-
isation mechanisms are treated in Chapter 6; and behavioural abstraction is treated
in Chapter 8.

,
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We deliberately do not define a specification language, or even fix a specific set
of specification-building operations. This is partly because our aim is to study basic
concepts that are common to all such languages, and partly because most of the
sequel does not rely on the choice of language features. For results having such a
dependence, the requirements will be stated explicitly. Examples will use a subset
of the specification-building operations we define. Despite our desire to avoid a
specific choice of language features, we use a notation — already in the preceding
chapters — that is very close to CASL [Mos04]. Even for the part of our framework
that overlaps with CASL, we go beyond what is in CASL and this has forced us to
diverge from CASL notation and terminology in several respects. For the sake of
CASL users, we record these differences in footnotes1 when they first appear. The
first such footnote appeared in Definition 4.1.25.

Some readers will be disturbed by the absence of examples of large and complex
specifications in a chapter devoted to the provision of means for their construction.
The examples that are provided are chosen for simplicity and to illustrate particular
points rather than to motivate the need for mechanisms to deal with large specifica-
tions, which is regarded as self-evident. There is a somewhat more substantial exam-
ple in Section 5.3 to give a taste of how the development of a structured specification
might proceed. Larger examples, expressed using specification-building operations
that are different from but closely related to those presented here, can be found in
(for instance) [GH93], [BM04], [Mos04] and [MHST08].

5.1 Specification-building operations

Flat specifications were introduced in Chapter 2 and then generalised to the context
of an arbitrary institution in Section 4.2. Here we will be dealing with structured
specifications, built from flat specifications using the specification-building oper-
ations introduced below. At this stage, we will not dwell on the syntax of these
operations, using a convenient but ad hoc notation. The main emphasis will be on
the semantics of specifications: for each specification, we define its signature and its
class of models. The signature of a specification defines an interface giving names
to the required program components, while its models represent programs that are
considered to be correct realisations. (There is a subtle issue involved in ensuring
that all such programs are represented; see Chapter 8.) A specification with signa-
ture Σ is called a Σ -specification; it is called consistent if it has a non-empty class of
models. We will write Spec for the class of all specifications, without defining what
this class is, since all that matters is that specifications come with a semantics of the
indicated form. We write Spec(Σ) for the class of Σ -specifications.

While the meaning of a flat specification is given in one step, it is natural to
define the meaning of a structured specification in a way that takes account of its
structure. A compositional semantics is one in which the meaning of a phrase is de-

1 CASL notation: such footnotes look like this.
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termined from the meanings of its immediate constituents. A structured specification
is built by consecutive application of specification-building operations; with a com-
positional semantics, the meaning of a structured specification is obtained by the
consecutive application of functions on signatures and model classes corresponding
to each specification-building operation. Provided these are relatively simple func-
tions, understanding of a large specification can be achieved via an understanding
of its individual components. Indeed, any manipulation of a large specification can
be achieved via manipulation of its individual components, taking account of their
compositional relationship.

In this chapter we focus on the following basic specification-building operations:

• Form the union of two Σ -specifications, combining the constraints imposed by
each.

• Translate a Σ -specification to another signature Σ ′ with a signature morphism
σ :Σ → Σ ′. This together with union allows large specifications to be built from
smaller and more or less independent specifications.

• Hide components of a Σ -specification via a signature morphism σ :Σ ′ → Σ to
obtain a view of the Σ -specification as a Σ ′-specification. This allows auxiliary
components of a specification to be hidden while essentially preserving its col-
lection of models.

These are very representative operations that can be found in some form in prac-
tically all algebraic specification languages in existence, and are a sufficient basis
for expressing the most common ways of combining and modifying specifications.
Still, this choice of operations is somewhat arbitrary. It is easy to define further
operations; some examples are given as exercises at the end of this section.

The semantics of these operations is defined in an arbitrary but fixed institution
INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉. Results in later sections that refer to these
operations are institution-independent as well. Expressing them at this level identi-
fies the basic assumptions required to support them, making the whole theory appli-
cable in a wide range of contexts and lifting our discourse to the appropriate level
of generality.

Of course, any actual application requires the choice of an institution that models
programs at the right level of abstraction, capturing all the features of interest while
avoiding distracting details. Not all specification-building operations can be defined
in an arbitrary institution; it is sometimes necessary to require additional structure;
see, for instance, Exercise 5.1.10.

We now proceed to define the specification-building operations. Each definition
gives the meaning of a specification built using the given operation in terms of the
meanings of its component specifications. This style of presentation gives a compo-
sitional semantics, which for each specification SP defines its signature Sig[SP] and
its class of models Mod[SP]⊆ |Mod(Sig[SP])|. When we need to indicate INS, we
refer to SP as a specification over INS.
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Union

If both SP1 and SP2 are Σ -specifications (so Sig[SP1] = Sig[SP2] = Σ ) then SP1 ∪
SP2 is a specification with the following semantics:2

Sig[SP1∪SP2] = Σ
Mod[SP1∪SP2] = Mod[SP1]∩Mod[SP2]

If both SP1 and SP2 are flat specifications, their union is expressible as a flat specifi-
cation as well: Mod[〈Σ ,Φ1〉∪〈Σ ,Φ2〉] =Mod[〈Σ ,Φ1∪Φ2〉]. This motivates the use
of the name “union” for this operation: intersection of model classes corresponds to
union of requirements.

We give a simple example over the institution EQ. Consider the specification
Group of groups over the signature with sort s and operations + :s× s → s,
0:s and − :s → s and a specification Comm over the same signature requiring
+ to be commutative. Then Group∪Comm specifies Abelian groups. Note that
the signatures of the two specifications are required to match exactly even though
commutativity can be expressed in a smaller signature without 0 or −.

Translation

If SP is a Σ -specification and σ :Σ → Σ ′ is a signature morphism then SP with σ is
a specification with semantics defined as follows:3

Sig[SP with σ ] = Σ ′
Mod[SP with σ ] = {M′ ∈ |Mod(Σ ′)| | M′

σ ∈ Mod[SP]}
If SP is a flat specification 〈Σ ,Φ〉 then SP with σ has exactly the same models as
〈Σ ′,σ(Φ)〉, where σ(Φ) is the image of Φ under σ (i.e. under Sen(σ):Sen(Σ)→
Sen(Σ ′)).

The specification Comm above can be given as follows:

spec SimpleComm = sorts s
ops op:s× s → s
∀x,y:s• op(x,y) = op(y,x)

spec Comm = SimpleComm with σ

where σ :Sig[SimpleComm]→ Sig[Group] maps s to s and op to +.
Using translation with a bijective signature morphism simply changes the names

of symbols. If the signature morphism is not surjective, translation also adds new
symbols without constraining their interpretation. Using translation with a non-
injective signature morphism imposes a requirement that the interpretation of the
symbols that the morphism identifies coincide.

2 CASL notation: union is subsumed by sum (Section 5.2) which is written using and in CASL.
3 CASL notation: σ is required to be surjective in CASL. The effect of translation along a non-
surjective σ would be achieved there using a combination of translation and enrichment.
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Exercise 5.1.1. Give an example of a consistent specification SP and signature mor-
phism σ such that SP with σ is inconsistent. HINT: Use FOEQ. Can you do this in
EQ? ��

Hiding

If σ :Σ ′ → Σ is a signature morphism and SP is a Σ -specification then SP hide via σ
is a specification with the following semantics:4

Sig[SP hide via σ ] = Σ ′
Mod[SP hide via σ ] = {M σ | M ∈ Mod[SP]}

Mod[〈Σ ,Φ〉 hide via σ ] ⊆ Mod[〈Σ ′,σ−1(ClΣ (Φ))〉] ⊆ Mod[〈Σ ′,σ−1(Φ)〉], where
σ−1(Φ) is the coimage of Φ under σ (i.e. under Sen(σ)). Note however that both
inclusions may be proper: concerning the first, sometimes not all the properties
of models of the specification obtained by hiding are expressible using just Σ ′-
sentences; concerning the second, see Exercise 4.2.14.

Let σ be the inclusion of the signature Sig[Group] without the operation “−”
into Sig[Group]. Then Group hide via σ specifies groups having no explicit in-
verse operation. Note that it does not specify the class of all semi-groups: all models
of Group hide via σ admit inverses, while this is of course not the case for some
semi-groups.

Most uses of hiding are to hide auxiliary sorts and operations, and involve a
signature morphism which is an inclusion. Such hiding adds expressive power: an
example of a specification in the institution EQ of equational logic using hiding
that cannot be finitely expressed without it can be found in [TWW82]. This extends
to many institutions with more expressive sentences since second-order existential
quantification may be needed to describe what otherwise can be captured by specifi-
cations with hidden operations. See Section 5.6 for related discussion. An injective
signature morphism that is not an inclusion can be used to combine hiding of sorts
and/or operations with renaming.

The use of hiding with a non-injective signature morphism is less common al-
though this can be used to duplicate sorts and operations: if Σ ′ extends Sig[Group]
by a function inv:s→ s and σ :Σ ′ → Sig[Group] maps inv to “−” and is the identity
otherwise, then Group hide via σ is just like Group, except with two names for
the (same) inverse function.

Exercise 5.1.2. In most institutions, the satisfaction relation is preserved under
isomorphism of models, so the class of models of a flat specification is always
closed under isomorphism. This property (called the abstraction condition in Def-
inition 4.5.13) is not guaranteed by the definition of an institution. Even in institu-
tions like EQ that do satisfy this property, specifications produced by hiding may
violate it: give a flat specification SP over EQ and signature morphism σ such that

4 CASL notation: σ is required to be a signature inclusion in CASL, and then the notation is as for
export in Section 5.2.



234 5 Structured specifications

Mod[SP hide via σ ] is not closed under isomorphism. HINT: Consider a signature
morphism σ that is not injective on sorts. ��

The above definitions enjoy a number of useful properties. All well-formedness
conditions (for example, the requirement that Sig[SP] = Sig[SP′] in SP∪ SP′) are
stated solely in terms of the signatures of constituent specifications. Moreover, the
signature of a specification depends only on the signatures of its constituents:

Exercise 5.1.3. View the specification-building operations defined above as families
of functions indexed by signatures and signature morphisms as appropriate. That is:

Union: ∪ :Spec(Σ)×Spec(Σ)→ Spec(Σ) for each signature Σ ∈ |Sign|;
Translation: with σ :Spec(Σ)→ Spec(Σ ′) for each signature morphism σ :Σ →

Σ ′; and
Hiding: hide via σ :Spec(Σ ′)→ Spec(Σ) for each signature morphism σ :Σ →

Σ ′;

Note that all of these functions are total. View all of the specification-building oper-
ations below in this style. ��
Specification-building operations are monotone on model classes in the sense of the
following exercise:

Exercise 5.1.4. Check that all of the specification-building operations above are
monotone in the sense that for any specification-building operation sbo:Spec(Σ)→
Spec(Σ ′) and Σ -specifications SP,SP′, if Mod[SP]⊆Mod[SP′] then Mod[sbo(SP)]⊆
Mod[sbo(SP′)]. ��
In other words, building a specification from a more restrictive constituent specifi-
cation yields a more restrictive result.

Exercise 5.1.5. It is straightforward to generalise union to an arbitrary indexed fam-
ily of Σ -specifications for any signature Σ , written

⋃
i∈I SPi. (Note that if I =∅, the

signature Σ is still required and then Mod[
⋃

i∈I SPi] = |Mod(Σ)|.)
For operations over families of specifications, two notions of monotonicity make

sense: either fix all but one element in the family and compare the result for dif-
ferent choices of the remaining element; or let all elements in the family vary si-
multaneously. Show that union is monotone in both senses. Show that both notions
coincide for operations which combine finite families of specifications. Define a
specification-building operation (combining an infinite family of specifications) that
is monotone in the former sense but not in the latter. Is the converse possible? ��

The above specification-building operations are only illustrative examples. It is
easy to think of further operations, and some possibilities are discussed in the fol-
lowing exercises.

Exercise 5.1.6. Define an operation SP∩SP′ that is dual to SP∪SP′. ��
Exercise 5.1.7. Recall from Exercise 5.1.2 that the class of models of a specification
need not be closed under isomorphism. Define an operation iso-close SP that can be
used to force this by closing the class of models of SP under isomorphism. ��
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Exercise 5.1.8. The iso-close operation from Exercise 5.1.7 generalises in an ob-
vious way to closure under any family of equivalences on models. Given & =
〈&Σ 〉Σ∈|Sign|, where &Σ ⊆ |Mod(Σ)|× |Mod(Σ)| is an equivalence for any Σ ∈
|Sign|, define an operation close& SP which closes the class of models of SP under
&Sig[SP]. Then prove that for any specifications SP,SP′ over the same signature:

• Closure preserves the original models: Mod[SP]⊆ Mod[close& SP].
• Closure is monotone: Mod[close& SP] ⊆ Mod[close& SP′] whenever Mod[SP] ⊆

Mod[SP′].
• Closure is idempotent: Mod[close& (close& SP)] = Mod[close& SP].
• Closure preserves and reflects consistency: Mod[close& SP] �= ∅ iff Mod[SP] �=

∅. ��
Exercise 5.1.9. Consider the following specification-building operation. If σ :Σ ′ →
Σ is a signature morphism and SP is a Σ -specification then free SP wrt σ is a spec-
ification with the following semantics:5

Sig[free SP wrt σ ] = Σ
Mod[free SP wrt σ ] =

{M ∈ Mod[SP] | for any M1 ∈ Mod[SP] and Σ ′-morphism f :M σ → M1 σ ,

there is a unique Σ -morphism f �:M → M1 with f � σ = f}

In other words, the models of free SP wrt σ are those models of SP that are free
over their σ -reducts with respect to the functor σ :Mod[SP]→ Mod(Σ ′) with the
identity as unit, where Mod[SP] is the full subcategory of Mod(Σ) determined by
the models of SP.

Show how the data constraints introduced in Section 4.3 may be captured using
this operation together with translation of specifications. HINT: Compare the models
of a data constraint data Φ ′ over σ through θ (Definition 4.3.8) and of the specifi-
cation (free 〈Σ ′,Φ ′〉 wrt σ) with θ . You may also consider a generalisation of data
constraints by allowing them to contain an arbitrary specification in place of a set of
axioms.

Introduce an operation initial SP for selecting the initial models of a specification
SP and relate it to the initiality constraints introduced in Definition 4.3.3.

Check that these two specification-building operations are not monotone, unlike
the operations considered so far (cf. Exercise 5.1.4). ��
Exercise 5.1.10. In EQ, introduce a specification-building operation which, given
a specification SP, yields those models of SP that are reachable. Generalise this as
follows.

First, define an operation that imposes reachability with respect to a signature
morphism.6 (A Σ -algebra is reachable with respect to σ :Σ ′ → Σ if it has no proper
subalgebra having the same σ -reduct.) A special case could be written as follows:

5 CASL notation: this is written free {SP} in CASL, where σ is implicitly taken to be the signature
inclusion from the signature of the current context to the signature of the context enriched by SP.
6 CASL notation: this is called generated in CASL, with the same convention for the implicit
signature inclusion as for free.
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reachable SP on S

where S is a set of sorts in Sig[SP], which has as models all those models of SP in
which the carriers of sorts in S are generated from the other carriers.

Second, generalise these operations to an arbitrary institution (with additional
structure) using the apparatus of Section 4.5; cf. Definition 4.5.1.

Finally, show how the reachability and generation constraints introduced in Ex-
ercises 4.3.7 and 4.3.13 may be expressed using this operation. ��
The use of reachable and free in the context of other specification-building opera-
tions brings benefits similar to those of the use of data constraints with morphisms
that “fit” them to larger signatures; see Section 4.3. In both cases, it is possible to
constrain (require reachability or freeness for) selected parts of the specified models
only. This allows specifications to be built up in layers, where the interpretation of
each layer does not interfere with the interpretation of “deeper” layers. This is in
contrast to the initial algebra framework of Section 2.5 where the initiality require-
ment applies to the whole specification.

Exercise 5.1.11. Redo Exercises 2.5.20 or 2.7.9, first using reachable or free to
specify Nat and then adding subtraction. (You might want to redo it again for cos-
metic reasons after enrichment is defined in Section 5.2 below.) What is the value
of 0− succ(0)? ��
Exercise 5.1.12. In EQ, define an operation quotient SP preserving S, where S is
a subset of the sorts of Sig[SP], such that each model of the resulting specification
is a quotient of a model of SP by some congruence that is the identity on sorts in S.
Define the “dual” operation unquotient SP preserving S, such that for each model
M of the resulting specification, there is a congruence ∼ on M such that ∼ is the
identity on sorts in S and M/∼ is a model of SP.

Use the apparatus of Section 4.5 to generalise these operations to an arbitrary
institution with reachability structure. HINT: First replace the set of sorts S by a
signature morphism. ��
Exercise 5.1.13. Prove that all of the above operations, except for free, are mono-
tone in the sense of Exercise 5.1.4. ��
Exercise 5.1.14. Given a class of specifications with semantics in terms of signa-
tures and model classes as above, we can view specifications as sentences of a
(more expressive) logical system developed over the underlying institution. The sat-
isfaction relation for such sentences is obvious: for any specification SP and model
M ∈ |Mod(Sig[SP])|, M |=Sig[SP] SP iff M ∈ Mod[SP]. Use the construction of Ex-
ample 4.1.46 to formally define an institution of specifications over INS. The mor-
phisms that “fit” the new sentences to other signatures may be incorporated into
specifications using translation. (Note that care is required to ensure that translation
of these sentences along signature morphisms is functorial.) Check that semantic
consequence {SP} |= SP′ is simply inclusion of model classes Mod[SP]⊆Mod[SP′].

��
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5.2 Towards specification languages

In the previous section we did not define a formal specification language but merely
a small set of specification-building operations that might underlie such a language.
Nor shall we do so elsewhere in this book. One ingredient that would be required to
promote our operations to a specification language is a carefully designed concrete
syntax. Although we provide a suggestive and unambiguous notation for our opera-
tions, this is not a complete syntax. Without fixing a particular institution, the syntax
for writing down signatures, signature morphisms and (sets of) sentences cannot be
chosen. Another missing ingredient concerns all the features of languages that are
routine from a semantic point of view but are nevertheless required for convenient
use, such as provisions for naming specifications and other entities, for local defini-
tions with the usual rules for visibility and scoping, for comments, and so on. See
CASL [BM04], [Mos04] for an example of a full-blown specification language that
provides all of these. Defining such a language is not our aim. Our concern here
is the basic underlying concepts and operations of specification languages. A well-
developed theory of these basic aspects and their properties is fundamental to the
effective use of any specification language.

The starting point is a minimal set of basic specification-building operations
having a clear and simple semantics such as the ones defined in the last section.
Although these are a little primitive for convenient use in examples, in combina-
tion they have considerable expressive power. Abbreviations can be introduced for
some of their most common combinations and/or to instantiate them to frequently
occurring special cases, perhaps in the context of a specific institution or a class
of institutions equipped with additional structure. These bridge part of the gap to
the specification-building mechanisms in realistic specification languages, allowing
the theory of the basic specification-building operations to be applied in this richer
context.

Export

A very common use of hiding is to “export” the constraints imposed by a specifica-
tion on a subsignature, thus revealing only some of the sorts and operations specified
and indicating that the others are auxiliary; it is convenient to provide syntax for this
special case.

In any institution INS with algebraic signatures (SignINS = AlgSig), if SP is a
Σ -specification and Σ ′ is a subsignature of Σ then SP reveal Σ ′ is a specification
defined by

SP reveal Σ ′ = SP hide via ι

where ι :Σ ′ ↪→ Σ is the signature inclusion. If Σ = 〈S,Ω〉 and Σ ′ = 〈S′,Ω ′〉 then the
same specification will also be written as

SP hide sorts S\S′ ops Ω \Ω ′
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with the obvious notational variants if either S\S′ or Ω \Ω ′ is empty.

Exercise 5.2.1. Generalise revealing to an arbitrary institution with appropriate ex-
tra structure. Make sure that this covers FPL and other institutions with signa-
tures that are similarly based on algebraic signatures. HINT: Use inclusion systems
[DGS93] or institutions with symbols [Mos00]. The idea is to identify an order sub-
category of the category of signatures having morphisms that play the role of in-
clusions, including all identities. This category might be required to enjoy further
properties such as the existence of unions and intersections. ��

Enrichment

In any institution INS with algebraic signatures, let SP be a Σ -specification with
Σ = 〈S,Ω〉, S′ be a set of sort names, Ω ′ be a set of operation names with arities
and result sorts over S∪ S′, and Φ ′ be a set of sentences over the signature Σ ′ =
〈S∪S′,Ω ∪Ω ′〉. Then SP then sorts S′ ops Ω ′ • Φ ′ is a specification that enriches
SP by S′, Ω ′ and Φ ′, defined as follows:

SP then sorts S′ ops Ω ′ • Φ ′ = (SP with ι)∪〈Σ ′,Φ ′〉7

where ι :Σ ↪→ Σ ′ is the signature inclusion. Notational variants are used to enhance
convenience, and to extend this operation to institutions where signatures have other
components. For instance, if S = ∅ we simply omit the “sorts” keyword, and for
institutions with first-order signatures we use “preds Π” to add new predicates. For
FPL (Example 4.1.25), sorts introduced in the enrichment may come with value
constructors, and we also allow the notation fun f (x1:s1, . . . ,xn:sn):s = t8 to be used
to introduce an operation together with its definition, rather than requiring its name,
arity and result sort in the ops part to be separated from its definitional axiom.

Free enrichment

The enrichment operation above is used to add new symbols and axioms to an ex-
isting specification. When the new symbols are to be interpreted freely, we use the
following operation instead.

In any institution INS with algebraic signatures, let SP be a Σ -specification with
Σ = 〈S,Ω〉, S′ be a set of sort names, Ω ′ be a set of operation names with arities
and result sorts over S∪ S′, and Φ ′ be a set of sentences over the signature Σ ′ =
〈S∪S′,Ω ∪Ω ′〉. Then SP then free sorts S′ ops Ω ′ • Φ ′ is a specification defined
by

SP then free sorts S′ ops Ω ′ • Φ ′ =
free (SP then sorts S′ ops Ω ′ • Φ ′) wrt ι

7 CASL notation: curly braces are used in place of parentheses for grouping in CASL.
8 CASL notation: semicolons are used in CASL in place of commas to separate groups of
differently-sorted variables in operation definition parameter lists, and the keyword fun is not used.
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where ι :Σ ↪→ Σ ′ is the signature inclusion and free is defined in Exercise 5.1.9.

Example 5.2.2. The following small example in FOPEQ illustrates the use of spec-
ification enrichments, assuming that a specification Nat of natural numbers is given
(see Exercise 2.5.4, or better, Section 5.3 below).

spec Set = (Nat
then free

sorts NatSet
ops ∅:NatSet

add:Nat×NatSet → NatSet
∀x,y:Nat,S:NatSet9

• add(x,add(y,S)) = add(y,add(x,S))
• add(x,add(x,S)) = add(x,S) )

then

pred ∈ :Nat×NatSet
∀x,y:Nat,S:NatSet

• ¬(x ∈∅)
• x ∈ add(x,S)
• x �= y ⇒ (x ∈ add(y,S)⇔ x ∈ S)

Exercise. Expand this example using the definitions above. Assuming that Nat has
the usual interpretation, convince yourself that all models of Set are isomorphic to
the usual model of finite sets of natural numbers. ��
Exercise 5.2.3. Show that the following specification has the same models as Set
(the discussion of free interpretation of predicates in Exercise 4.3.12 applies here as
well).

spec Set′ = (Nat
then free

sorts NatSet
ops ∅:NatSet

add:Nat×NatSet → NatSet
∀x,y:Nat,S:NatSet

• add(x,add(y,S)) = add(y,add(x,S))
• add(x,add(x,S)) = add(x,S) )

then free

pred ∈ :Nat×NatSet
∀x,y:Nat,S:NatSet

• x ∈ add(x,S)
• x ∈ S ⇒ x ∈ add(y,S) ��

9 CASL notation: semicolons are used in CASL in place of commas to separate groups of
differently-sorted variables in lists of quantified variables, as in ∀x,y:Nat;S:NatSet.
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Sum

In any institution INS with algebraic signatures, if SP is a Σ -specification and SP′
is a Σ ′-specification then SP and SP′ is a specification defined by

SP and SP′ = (SP with ι)∪ (SP′ with ι ′)

where ι :Σ ↪→ Σ ∪Σ ′ and ι ′:Σ ′ ↪→ Σ ∪Σ ′ are the signature inclusions.

Exercise 5.2.4. Generalise sum to an arbitrary institution with the extra structure
hinted at in Exercise 5.2.1, covering at least FPL. ��

The sum operation above provides the simplest way to combine specifications
over different signatures. When a symbol occurs in both SP1 and SP2, the specifica-
tion SP1 and SP2 contains just one copy of that symbol (“same name, same thing”).
Unintended name clashes can be avoided by applying translation before sum. An
alternative is to use a more sophisticated version of sum in which the intended com-
mon subsignature is indicated explicitly.

Sum with explicit sharing

In any institution INS with finitely cocomplete signature category, if SP1,SP2 are
two specifications and Σ is a signature with signature morphisms σ1:Σ → Sig[SP1]
and σ2:Σ → Sig[SP2], then SP1 +σ1,σ2 SP2 is a specification defined by

SP1 +σ1,σ2 SP2 = (SP1 with σ ′
2)∪ (SP2 with σ ′

1)

where σ ′
1 and σ ′

2 are determined by the following pushout diagram:

Σ

Sig[SP1] Sig[SP2]

Sig[SP1 +σ1,σ2 SP2]

�
�

��

�
�
��

�
�
��

�
�

��

σ1 σ2

σ ′
2 σ ′

1

Note that the result signature of SP1 +σ1,σ2 SP2 is only defined to within isomor-
phism, and so strictly speaking some canonical pushout construction should be used.
(See also Exercise 4.4.29.)

Exercise 5.2.5. Specialize the above operation to institutions with algebraic signa-
tures where instead of giving σ1 and σ2, one would indicate a common subsignature
of the two argument specifications, taking σ1 and σ2 to be signature inclusions. Then
SP1 and SP2 would be the same as SP1 +Sig[SP1]∩Sig[SP2] SP2.

Notice also that this can be done in an arbitrary institution with the extra structure
hinted at in Exercise 5.2.1. ��
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5.3 An example

The following sequence of specifications in FOPEQ illustrates the use of many of
the specification-building operations introduced in the last two sections. The aim is
a simplified specification of direct chaining hash tables, with the collision buckets
again as hash tables (using another hash function) but with linear probing [Wik].

The items stored are strings and the only information we seek is whether a given
string has been put into the table or not. Hash tables are built using arrays indexed
by natural numbers.

spec NAT = reachable

sorts Nat
ops 0:Nat

succ:Nat → Nat
+ :Nat×Nat → Nat

preds ≤ :Nat×Nat
∀n,m:Nat

• 0 �= succ(n)∧ (succ(m) = succ(n)⇒ m = n)
• 0+n = n∧ succ(m)+n = succ(m+n)
• 0 ≤ n∧¬(succ(n)≤ 0)∧ (succ(m)≤ succ(n)⇔ m ≤ n)

on Nat

spec STRING = initial

sorts String
ops ε:String

a,b, . . . ,z:String
ˆ :String×String → String

∀s, t,v:String
• sˆε = s
• ε ˆs = s
• sˆ(t ˆv) = (sˆt)ˆv

Exercise 5.3.1. Nat and String above are expressed using different specification-
building operations, reachable (see Exercise 5.1.10) and initial (see Exercise 5.1.9).
Express Nat using initial. Without looking at Section 7.4 below, express Nat in
the institution FPL (see Example 4.1.25) using a sort freely generated by value
constructors.

Try to express String using reachable, adding axioms specifying when strings
are different. How many additional axioms are required? Try to express String in
FPL using a sort freely generated by value constructors; this will require auxiliary
hidden operations. ��

Here is the specification of the arrays used for the hash buckets. The use of “com-
pound names” like Array[String] here and below bears no semantic significance and
in particular has nothing to do with polymorphic types as in Example 2.7.57. They
are just ordinary names, like String. But see Example 6.3.6 for a hint on how such
structure can be exploited in full-blown specification languages.
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spec STRINGARRAY =
STRING and NAT
then

sorts Array[String]
ops empty:Array[String]

put:Nat×String×Array[String]→ Array[String]
get:Nat×Array[String]→ String

preds used:Nat×Array[String]
∀i, j:Nat,s:String,a:Array[String]

• ¬used(i,empty)
• used(i,put(i,s,a))
• i �= j ⇒ (used(i,put( j,s,a))⇔ used(i,a))
• get(i,put(i,s,a)) = s
• i �= j ⇒ get(i,put( j,s,a)) = get(i,a)

The following is a specification of strings with the hashing function that will be
used within the hash buckets. We require that hashing the empty string yields 0 as
an example of a condition that may be imposed, but we make no use of this property
below.

spec STRINGKEY0 =
STRING and NAT
then

ops hash0:String → Nat
• hash0(ε) = 0

Here is the specification of the hash buckets. We begin by adjusting the sort name:

spec BUCKET = STRINGARRAY with σArray[String]�→Bucket

where σArray[String] �→Bucket is a signature morphism from Sig[STRINGARRAY] that is
surjective, renames Array[String] to Bucket, and is the identity otherwise.10

spec STRINGHASHTABLE0 =
STRINGKEY0 and BUCKET
then

ops add:String×Bucket → Bucket
putnear:Nat×String×Bucket → Bucket

preds present:String×Bucket
isnear:Nat×String×Bucket

∀i:Nat,s:String,a,a′:Bucket
• add(s,a) = putnear(hash0(s),s,a)
• putnear(i,s,a) = a′ ⇔

∃ j:Nat• (¬used(i+ j,a)∨get(i+ j,a) = s)∧
(∀k:Nat• ¬( j ≤ k)⇒ used(i+ k,a))∧a′ = put(i+ j,s,a)

10 CASL notation: this signature morphism could be written Array[String] �→ Bucket in CASL, since
identity mappings in signature morphisms can be left implicit.
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• present(s,a)⇔ isnear(hash0(s),s,a)
• isnear(i,s,a)⇔

∃ j:Nat• (∀k:Nat• k ≤ j ⇒ used(i+ k,a))∧get(i+ j,a) = s

Perhaps unexpectedly, STRINGHASHTABLE0 excludes nearly all models having
a value b of sort Bucket and an index n such that used(i,b) whenever i ≥ n. (Exer-

cise: Why are such models excluded? Why aren’t all such models excluded?) As
a property in a requirements specification this is unproblematic; however the issue
will re-emerge when the example is revisited in Section 6.5.

Here is the specification of the array used for the hash table as an array of hash
buckets. (The similarity to STRINGARRAY is not accidental. We will address this in
Section 6.3; see in particular Example 6.3.3.)

spec BUCKETARRAY =
BUCKET
then

sorts Array[Bucket]
ops empty:Array[Bucket]

put:Nat×Bucket×Array[Bucket]→ Array[Bucket]
get:Nat×Array[Bucket]→ Bucket

preds used:Nat×Array[Bucket]
∀i, j:Nat,b:Bucket,a:Array[Bucket]

• ¬used(i,empty:Array[Bucket])
• used(i,put(i,b:Bucket,a))
• i �= j ⇒ (used(i,put( j,b:Bucket,a))⇔ used(i,a))
• get(i,put(i,b,a)) = b:Bucket
• i �= j ⇒ get(i,put( j,b:Bucket,a)) = get(i,a)

In this specification, some of the operation names are overloaded, for instance, get
(we have get:Nat×Bucket → String from BUCKET and get:Nat×Array[Bucket]→
Bucket added here). The context of use of operations usually determines which arity
and result sort is intended, but in this case it is not enough, so we have to attach
some explicit sort information.

The specification of strings with the hashing function that will be used at the top
level of the hash table is the same as STRINGKEY0, except for the name of the hash
function.

spec STRINGKEY = STRINGKEY0 with σhash0�→hash

where σhash0 �→hash is a signature morphism from Sig[STRINGKEY0] that is surjec-
tive, renames hash0 to hash, and is the identity otherwise.

Finally, here is the specification of the hash table with all the auxiliary sorts and
operations introduced so far. Again, we begin by adjusting the sort name:

spec TABLE = BUCKETARRAY with σArray[Bucket]�→Table

where σArray[Bucket] �→Table is a signature morphism from Sig[BUCKETARRAY] that is
surjective, renames Array[Bucket] to Table, and is the identity otherwise.
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spec STRINGHASHTABLE =
STRINGHASHTABLE0 and STRINGKEY and TABLE
then

ops add:String×Table → Table
preds present:String×Table
∀i:Nat,s:String,a:Table

• hash(s) = i∧used(i,a)⇒ add(s,a) = put(i,add(s,get(i,a)),a)
• hash(s) = i∧¬used(i,a)⇒ add(s,a) = put(i,add(s,empty),a)
• hash(s) = i∧used(i,a)⇒ (present(s,a)⇔ present(s,get(i,a)))
• hash(s) = i∧¬used(i,a)⇒¬present(s,a)

Here, despite the overloading of names like add (we have add:String×Bucket →
Bucket and add:String×Table→ Table) the context of use of operations is sufficient
to resolve the ambiguity.

This concludes our specification. It contains many operations that are not relevant
to the end user, for instance putnear:Nat× String×Bucket → Bucket. As a final
touch, we could hide all these, revealing only the sorts and operations of interest:

spec USERSTRINGHASHTABLE =
STRINGHASHTABLE
reveal sorts String,Table

ops empty:Table
add:String×Table → Table
ε:String
a,b, . . . ,z:String

ˆ :String×String → String
pred present:String×Table

Exercise 5.3.2. Redo the specifications above in the institution FPL (see Exam-
ple 4.1.25) following Exercise 4.1.16 (that is, encoding predicates as boolean oper-
ations). Try to use pattern-matching case analysis to simplify some of the axioms.
Don’t forget to add definedness assertions to require that operations are total as they
are in FOPEQ. However, note that in some cases, a better specification is obtained
by allowing some operations to be partial. For instance, there is no need to require
that get above be total. ��

The overall meaning of this specification is a class of models over its signature.
The structure of a specification facilitates its understanding and use, but there is no
trace of such structure in the resulting models. The way that models are built is an
orthogonal issue, which will be treated at length in Chapter 7; this need bear no
relation to the structure of the specification.

The specification USERSTRINGHASHTABLE can be compared with the follow-
ing one:

spec STRINGTABLE =
STRING
then
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sorts Table
ops empty:Table

add:String×Table → Table
preds present:String×Table
∀s,s′:String, t:Table

• ¬present(s,empty)
• present(s,add(s, t))
• s �= s′ ⇒ (present(s,add(s′, t))⇔ present(s, t))

Exercise 5.3.3. The signatures of STRINGTABLE and USERSTRINGHASHTABLE
are the same, and so their model classes may be directly compared. Show that they
are not quite the same, so these two specifications are not equivalent. Try to modify
STRINGTABLE by adding additional axioms to make them equivalent. ��
Despite the fact that STRINGTABLE and USERSTRINGHASHTABLE are not equiva-
lent, all the models of both specifications display the same external behaviour. See
Chapter 8 for how this relationship between the two specifications may be captured.

5.4 A property-oriented semantics of specifications

In Section 5.1, the semantics of structured specifications was given by assigning to
every specification a signature and a class of models over that signature. The need to
assign signatures to specifications is self-evident for the “static” element of specifi-
cation semantics. The use of model classes to assign interpretations to the symbols
in the signature corresponds to a “model-oriented” view where models, represent-
ing programs, are taken as the primary objects of interest. This is in contrast to
a “property-oriented” view where a specification denotes the set of properties that
any realisation is required to satisfy, which ultimately determines a class of mod-
els as well, but in an indirect fashion via this intermediate stage. In the semantics
of flat specifications in Chapter 2 (cf. Section 4.2), both views are present: a flat
specification 〈Σ ,Φ〉 presents the Σ -theory 〈Σ ,ClΣ (Φ)〉 and has all the Σ -algebras
in the class Mod[〈Σ ,Φ〉] as models. These are equivalent for flat specifications be-
cause of the Galois connection between presentations and model classes; see Propo-
sitions 2.3.2 and 4.2.2. The closed elements of this Galois connection are theories,
which are in bijective correspondence with closed (i.e. definable) model classes. For
any flat specification 〈Σ ,Φ〉 this gives an information-preserving translation from
its theory to its class of models and vice versa: ClΣ (Φ) = ThΣ (Mod[〈Σ ,Φ〉]) and
Mod[〈Σ ,Φ〉] = ModΣ (ClΣ (Φ)).

The concepts involved generalise readily to arbitrary specifications:

Definition 5.4.1 (Semantic consequence and theory of specification). For any
specification SP with signature Σ = Sig[SP], we say that a Σ -sentence ϕ is a se-
mantic consequence of SP, written SP |= ϕ , if M |=Σ ϕ for all M ∈ Mod[SP].

The theory of SP is Th[SP] = 〈Σ ,ThΣ (Mod[SP])〉. ��
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Note that we omit the subscript Σ in the notation for semantic consequence and for
the theory of a specification, as it is unambiguously determined by the specification
itself. This also formally resolves the potential confusion between Th (which maps
specifications to theories) and ThΣ (which maps classes of Σ -models to Σ -theories).

As for flat specifications, the following observation links the semantic conse-
quences and the theory of a specification:

Proposition 5.4.2. For any Σ -specification SP, Th[SP] = {ϕ ∈ Sen(Σ) | SP |= ϕ}.
��

The mapping T0 of specifications to theories as defined below is an example of
an alternative semantics for specifications, given in terms of properties (sentences
of the institution) that the specification ensures. Any function that assigns a Sig[SP]-
theory to every specification SP will be referred to as a property-oriented semantics.
This raises the obvious question of whether a property-oriented semantics that for
any specification SP exactly captures its theory Th[SP] can be given to structured
specifications directly, without reference to Mod[SP], in contrast to the definition of
semantic consequence and theory in Definition 5.4.1.

Definition 5.4.3. The following clauses inductively define a compositional property-
oriented semantics that assigns a Σ -theory T0[SP] to any well-formed structured
Σ -specification SP built from flat specifications using union, translation and hiding.

T0[〈Σ ,Φ〉] = ClΣ (Φ)

T0[SP∪SP′] = ClSig[SP](T0[SP]∪T0[SP′])
T0[SP with σ :Sig[SP]→ Σ ] = ClΣ (σ(T0[SP]))
T0[SP hide via σ :Σ → Sig[SP]] = σ−1(T0[SP]) ��

The last clause of the above definition yields a theory by Corollary 4.2.12.

Exercise 5.4.4. Write out the definition of T0 for export, enrichment and sum by
expanding the abbreviations.

An attempt to bring free or reachable into the picture may require the use of
institutions with data constraints or generation constraints; see Section 4.3. ��

The rest of this section is devoted to an analysis of the relationship between this
compositional property-oriented semantics and the “reference” semantics Th.

Definition 5.4.5. Let T be a property-oriented semantics for specifications, assign-
ing to any specification SP a Sig[SP]-theory T [SP].

• T is monotone if T [sbo(SP1, . . . ,SPn)]⊆ T [sbo(SP′1, . . . ,SP′n)] for all specifi-
cations SP1, . . . ,SPn and SP′1, . . . ,SP′n such that Sig[SPi] = Sig[SP′i] and T [SPi]⊆
T [SP′i], for i = 1, . . . ,n, and specification-building operations sbo such that both
sbo(SP1, . . . ,SPn) and sbo(SP′1, . . . ,SP′n) are well formed.

• T is compositional if T [sbo(SP1, . . . ,SPn)] = T [sbo(SP′1, . . . ,SP′n)] for all
specifications SP1, . . . ,SPn and SP′1, . . . ,SP′n such that Sig[SPi] = Sig[SP′i] and
T [SPi] =T [SP′i], for i= 1, . . . ,n, and specification-building operations sbo such
that both sbo(SP1, . . . ,SPn) and sbo(SP′1, . . . ,SP′n) are well formed.
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• T is sound if T [SP]⊆ Th[SP] for every specification SP.
• A sound T is complete if T [SP] = Th[SP] for every specification SP.
• Given a specification-building operation sbo, a sound T is closed complete

for sbo if T [sbo(SP1, . . . ,SPn)] = Th[sbo(SP1, . . . ,SPn)] for all SP1, . . . ,SPn
such that ModSig[SPi](T [SPi]) = Mod[SPi], i = 1, . . . ,n, and sbo(SP1, . . . ,SPn)
is well formed. T is closed complete if it is closed complete for all specification-
building operations.

• T is non-absent-minded if Φ ⊆ T [〈Σ ,Φ〉] for every signature Σ and set Φ of
Σ -sentences.

• T is flat complete if T [〈Σ ,Φ〉] = ClΣ (Φ) for every signature Σ and set Φ of
Σ -sentences. ��

Exercise 5.4.6. Check that monotonicity implies compositionality but not vice versa.
Check that flat completeness is equivalent to non-absent-mindedness for sound T .
Check that completeness implies flat completeness and closed completeness. Check
that closed completeness for flat specifications, viewed as nullary specification-
building operations, is the same as flat completeness. Try to use closed completeness
and flat completeness to prove completeness and see where the proof breaks down.
(The counterexample below shows that this implication doesn’t hold.) ��
Proposition 5.4.7. For structured specifications built from flat specifications using
union, translation and hiding, T0 is monotone, compositional, sound, closed com-
plete, non-absent-minded and flat complete. It is complete for specifications built
from flat specifications using union and translation, and for such specifications with
hiding applied outermost.

Proof sketch. Monotonicity and compositionality follow from the definitions, while
soundness requires a simple inductive proof. Completeness for specifications built
from flat specifications using union and translation follows from the fact that
Mod[SP] = ModSig[SP](T0[SP]) for all such SP, which requires a simple inductive
proof. Closed completeness for hiding remains to be checked; this follows from the
definitions and the satisfaction condition, and can be used to extend completeness
to specifications with hiding applied outermost. ��
Counterexample 5.4.8. T0 is not complete for the following specification SP in
EQ:

spec SP0 = sorts s,s′
ops a:s

b:s′
c:s′

spec SP1 = SP0 hide ops a:s

spec SP = SP1 then ∀x:s• b = c

This example relies on the fact that ∀x:s• b = c does not imply b = c, although it
implies b = c for Sig[SP]-algebras having a non-empty carrier of sort s; see Sec-
tion 2.4.
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Now, Mod[SP0] is the class of all algebras (over the indicated signature) and
Mod[SP1] consists of all algebras that are reducts of Sig[SP0]-algebras. Conse-
quently, Mod[SP1] contains only those algebras having a non-empty carrier of sort s.
Then, selecting from Mod[SP1] the algebras that satisfy ∀x:s• b = c yields the class
Mod[SP] — and all these algebras satisfy b = c (since for the algebras in Mod[SP1],
b = c follows from ∀x:s• b = c). This shows that Th[SP] includes b = c.

On the other hand, T0[SP0] is the trivial theory containing only the equational
tautologies, and so is T0[SP1] (equations cannot express the fact that a carrier is
non-empty). Then, the additional axiom ∀x:s• b = c in the context of T0[SP1] does
not imply the equation b = c. This shows that b = c is not in T0[SP]. ��
Exercise 5.4.9. Use Counterexample 4.4.24 to give another counterexample indi-
cating the incompleteness of T0 in EQ. ��

The above counterexample depends crucially on the use of EQ. In FOEQ, the
class Mod[SP1] becomes definable (by the sentence ∃x:s• x = x) and the discrepancy
between Th[SP] and T0[SP] disappears. In Section 9.2 it will be shown that T0 is
complete over any finitely exact institution that satisfies an interpolation property
(Exercise 9.2.10, or Theorem 9.2.6 when propositional connectives are available).
In general, however, completeness cannot be ensured since T0 is the strongest sound
compositional non-absent-minded property-oriented semantics we can give:

Theorem 5.4.10. Consider two property-oriented semantics T and T ′ for speci-
fications constructed using a set of specification-building operations, including all
flat specifications. Let T be sound, monotone, non-absent-minded and closed com-
plete. Let T ′ be sound, compositional and non-absent-minded. Then T is at least
as strong as T ′: for every SP, T ′[SP]⊆T [SP].

Proof. By induction on the structure of SP. For flat specifications, T ′[〈Σ ,Φ〉] ⊆
ClΣ (Φ) = T [〈Σ ,Φ〉] by soundness of T ′ and flat completeness of T , which fol-
lows from its non-absent-mindedness (or closed completeness). Now, more gener-
ally, consider any well-formed specification sbo(SP1, . . . ,SPn) with Σi = Sig[SPi]
(where i = 1, . . . ,n here and below) and Σ ′ = Sig[sbo(SP1, . . . ,SPn)], and suppose
T ′[SPi]⊆T [SPi]. Then:

T ′[sbo(SP1, . . . ,SPn)]
=T ′[sbo(〈Σ1,T ′[SP1]〉, . . . ,〈Σn,T ′[SPn]〉)]

by compositionality of T ′, since T ′[SPi] = T ′[〈Σi,T ′[SPi]〉] by flat
completeness of T ′ which follows from its non-absent-mindedness

⊆Th[sbo(〈Σ1,T ′[SP1]〉, . . . ,〈Σn,T ′[SPn]〉)]
by soundness of T ′

=T [sbo(〈Σ1,T ′[SP1]〉, . . . ,〈Σn,T ′[SPn]〉)]
by closed completeness (and flat completeness) of T

⊆T [sbo(SP1, . . . ,SPn)]
by monotonicity of T , since
T [〈Σi,T ′[SPi]〉]=T ′[SPi] by flat completeness of T

⊆T [SPi] by the inductive hypothesis. ��
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Exercise 5.4.11. Prove another version of this theorem where T is required to be
compositional and T ′ is required to be monotone rather than the other way around
as above. ��
Corollary 5.4.12. T0 is stronger than any other sound, compositional and non-
absent-minded property-oriented semantics for structured specifications built from
flat specifications using union, translation and hiding. ��
Exercise 5.4.13. Show that in Theorem 5.4.10 the assumption that T ′ is non-
absent-minded cannot be dropped.

HINT: Consider an institution with signatures Σ and Σ ′, and a signature mor-
phism σ :Σ → Σ ′. Let Sen(Σ) = {α}, Sen(Σ ′) = {α ,β}, with σ -translation pre-
serving α , and let |Mod(Σ)| = |Mod(Σ ′)| = {M1,M2,M3}, with the identity σ -
reduct. Suppose M1 |= α , M2 �|= α , M3 |= α , M1 |= β , M2 �|= β , M3 �|= β , and that
we have a Σ -specification SPbad with Mod[SPbad] = {M1}. Then let T ′ be such
that T ′[SPbad] = {α} and T ′[SPbad with σ ] = {α ,β}, and T ′ forgets the axiom
α in all flat specifications. We can then ensure that for all Σ -specifications SP, if
α ∈ T ′[SP] then M3 �∈ Mod[SP]. Then T ′ is sound and compositional, but for the
Σ ′-specification SPbad with σ , it is stronger than the expected sound, monotone and
closed complete property-oriented semantics T , which yields T [SPbad] = {α} and
T [SPbad with σ ] = {α}.

Adapt this example to show that Corollary 5.4.12 does not hold for some insti-
tutions and some property-oriented semantics that are sound and compositional, but
possibly absent-minded. ��

These results show that there is a mismatch between compositional property-
oriented semantics and model-oriented semantics for structured specifications, and
that in general this is unavoidable, even for the small set of simple specification-
building operations defined in Section 5.1. Since the objects of ultimate interest here
are programs, represented as models, while axioms and theories are nothing more
than logical means for describing them, the mismatch demonstrates that theories are
not in general adequate as denotations of specifications.

5.5 The category of specifications

In Sections 2.3 and 4.2 we defined morphisms between theories. With the intro-
duction of specification-building operations, it is natural to consider morphisms be-
tween structured specifications.

Recall that we write Spec for the class of specifications considered, with seman-
tics given by Sig and Mod as discussed in Section 5.1. This could be the class of
specifications built from flat specifications using union, translation and hiding, but
the definitions and results below do not depend on this.

Definition 5.5.1 (Specification morphism). For any SP,SP′ ∈ Spec, a specification
morphism σ :SP → SP′ is a signature morphism σ :Sig[SP]→ Sig[SP′] such that for
each M′ ∈ Mod[SP′], M′

σ ∈ Mod[SP]. ��
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By Proposition 4.2.26, specification morphisms between flat specifications are ex-
actly theory morphisms between the theories they present.

Exercise 5.5.2. Check that for any signature morphism σ :Sig[SP] → Sig[SP′] the
following properties are equivalent:

• σ :SP → SP′ is a specification morphism.
• Mod[SP′ hide via σ ]⊆ Mod[SP].
• Mod[SP′]⊆ Mod[SP with σ ].

Use this equivalence to conclude that hiding and translation w.r.t. any specifica-
tion morphism σ :Σ → Σ ′ form a Galois connection (see Exercise 3.5.23) between
classes of Σ -models and classes of Σ ′-models.

Also note that the following two properties are independent in general:

• Mod[SP]⊆ Mod[SP′ hide via σ ].
• Mod[SP with σ ]⊆ Mod[SP′].

Provide counterexamples for the implications in both directions. ��
Any specification generates a theory, by Definition 5.4.1; it is easy to check that this
extends to morphisms in the obvious way:

Proposition 5.5.3. If σ :SP → SP′ is a specification morphism then for any ϕ ∈
Th[SP], σ(ϕ) ∈ Th[SP′], that is, σ :Th[SP]→ Th[SP′] is a theory morphism. ��
Exercise 5.5.4. It is not the case that σ :SP → SP′ is a specification morphism iff
σ :Th[SP]→ Th[SP′] is a theory morphism. The forward implication holds by Propo-
sition 5.5.3; provide a counterexample to the reverse implication. HINT: Consider a
specification SP such that the theory of SP has more models than SP itself, as given
in Counterexample 5.4.8. ��
Exercise 5.5.5. Check that a specification morphism σ :SP → SP′ need not be a
theory morphism T [SP] → T [SP′] for a property-oriented semantics T that is
“weaker” than Th. In particular, give a counterexample to show that a specification
morphism σ :SP → SP′ between specifications built from flat specifications using
union, translation and hiding need not be a theory morphism σ :T0[SP]→ T0[SP′]
for the compositional property-oriented semantics T0 of specifications introduced
in Definition 5.4.3. HINT: Such a counterexample may be built using the specifi-
cation SP in Counterexample 5.4.8: the identity is a specification morphism to SP
from SP then • b = c.

Using the same idea, show that a sound property-oriented semantics is functorial
if and only if it is complete, under the reasonable assumption that we can enrich any
specification by an axiom over the same signature so that the semantics includes this
axiom in the theory assigned to the enriched specification. ��
Definition 5.5.6 (Conservative specification morphism). We say that a specifi-
cation morphism σ :SP → SP′ is conservative if for all Sig[SP]-sentences ϕ , ϕ ∈
Th[SP] whenever σ(ϕ) ∈ Th[SP′].
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A specification morphism σ :SP → SP′ admits model expansion if the corre-
sponding reduct function σ :Mod[SP′]→ Mod[SP] is surjective, that is, for every
M ∈ Mod[SP], there exists an M′ ∈ Mod[SP′] such that M′

σ = M. ��
Exercise 5.5.7. Following Exercise 4.2.32, show that a specification morphism
σ :SP → SP′ is conservative if it admits model expansion, and that the opposite
implication does not hold. ��
Definition 5.5.8 (Category of specifications). The category Spec has specifications
in Spec as objects and specification morphisms as morphisms, with identities and
composition inherited from the category of signatures. Let Sig:Spec → Sign be the
obvious functorial extension of Sig. ��
Exercise 5.5.9. Check that identities are specification morphisms and that specifi-
cation morphisms compose. ��

The model class semantics for specifications extends to a contravariant functor:

Definition 5.5.10. For any SP ∈ Spec, let Mod[SP] be the full subcategory of
Mod(Sig[SP]) determined by Mod[SP]. For any specification morphism σ :SP →
SP′, let Mod(σ) be the σ -reduct functor σ :Mod[SP′]→ Mod[SP]. This defines a
functor Mod:Specop → Cat. ��

An important result about the category of theories was that it is cocomplete when-
ever the category of signatures is cocomplete (Theorem 4.4.1). This generalises to
structured specifications as follows.

Theorem 5.5.11. Suppose that Spec is closed under union of arbitrary families of
specifications and under translation.11 Then Spec is cocomplete provided that Sign

is so.

Proof. Let D be a diagram in Spec with |G(D)|Node = N, Dn = SPn and Sig[SPn] =
Σn for n∈N. Let D′ be the corresponding diagram in Sign; hence D′

n = Σn for n∈N.
By assumption, D′ has a colimit, say 〈αn:Σn → Σ〉n∈N . Let SP =

⋃
n∈N SPn with αn.

Then for each n ∈ N, αn:SPn → SP is a specification morphism (this is obvious)
and 〈αn〉n∈N is a colimit of D in Spec: it is a cocone on D (since it is a cocone
on D′ in Sign); then consider another cocone on D, say 〈βn:SPn → SP′〉n∈N . By the
construction, there exists a unique signature morphism σ :Σ → Sig[SP′] such that for
each n∈N, αn;σ = βn. To complete the proof, we need to show that σ :SP→ SP′ is a
specification morphism. This follows easily: if M′ ∈Mod[SP′] then M′

σ ∈Mod[SP]
since for each n ∈ N, (M′

σ ) αn = M′
αn;σ = M′

βn ∈ Mod[SPn]. ��
The proof of the theorem shows that a stronger property holds: Sig:Spec → Sign

lifts colimits, and so in any institution, the category of specifications has all the
colimits that the category of signatures has.

11 That is,
⋃

i∈I SPi ∈ Spec whenever for some signature Σ , SPi ∈ Spec(Σ) for i ∈ I, and
SP with σ ∈ Spec whenever SP ∈ Spec and σ :Sig[SP]→ Σ ′.
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Exercise 5.5.12. Check that if Spec is closed under translation and binary union,
and admits empty flat specifications (i.e. for each signature Σ , 〈Σ ,∅〉 ∈ Spec) then
Spec is finitely cocomplete provided that Sign is so. ��
Exercise 5.5.13. Check that the above theorem still holds if union, translation and
empty flat specifications are only expressible in Spec in the following sense: for any
family of Σ -specifications 〈SPi ∈ Spec〉i∈I there exists a Σ -specification SP ∈ Spec
such that Mod[SP] =

⋂
i∈I Mod[SPi], and analogously for translation and empty flat

specifications. ��
Exercise 5.5.14. Show that the proof of Theorem 4.4.1 specializes the proof above,
using the fact that

⋃
i∈I〈Σ ,Φi〉 and 〈Σ ,Φ〉 with σ :Σ → Σ ′ have the same models as

〈Σ ,
⋃

i∈I Φi〉 and 〈Σ ′,σ(Φ)〉 respectively. ��
Theorem 5.5.11 shows that for each underlying signature diagram the colimit

construction in the category of specifications may be viewed as an abbreviation for
a particular combination of union and translation. The “sum with sharing” operation
(Section 5.2) is what we obtain for pushout diagrams.

Exercise 5.5.15. Working in an exact institution with Spec closed under union and
translation, generalise Exercise 4.4.17 to structured specifications, showing that
Mod:Specop → Cat preserves limits. Consequently, given a diagram D with nodes
N and edges E in the category of specifications, the models of its colimit SP are
in bijective correspondence with families of models 〈Mm〉m∈N that are compatible
with D in the sense that Mm ∈ Mod[Dm] for each m ∈ N, and Mn = Mm De for each
e:n → m in E. Use Exercise 5.5.12 to weaken the above requirements and still en-
sure that Mod:Specop → Cat is finitely continuous. ��
Exercise 5.5.16. Proposition 5.5.3 states that the mapping of specifications to their
theories may be extended to morphisms in a natural way. Check that in any institu-
tion INS this yields a functor Th:Spec→ ThINS from the category of specifications
to the category of theories. Moreover, this functor preserves (commutes with) the
obvious projection functors from the categories of specifications and theories, re-
spectively, to the category of signatures.

Show that in general the functor Th:Spec → ThINS does not preserve colim-
its, not even if the institution is exact and the class of specifications is closed under
union and translation. HINT: Consider a diagram D in the category of specifications.
Check that the theory of its colimit as constructed in the proof of Theorem 5.5.11
may be larger than the colimit of the diagram Th(D) of theories, as constructed in
the proof of Theorem 4.4.1. In some institutions it may even happen that specifica-
tions in D are inconsistent (so that the colimit specification is inconsistent as well;
see Exercise 5.5.15), their theories contain all the sentences over their respective
signatures, but some sentences over the colimit signature are not consequences of
the union of their translations. ��
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5.6 Algebraic laws for structured specifications

We have already given a few algebraic laws that might be used to transform specifi-
cations to equivalent ones having a different form. For example, 〈Σ ,Φ〉 with σ :Σ →
Σ ′ is equivalent to 〈Σ ′,σ(Φ)〉. To state such laws it is convenient to have a formal
notion of equivalence of structured specifications, which is the obvious one:

Definition 5.6.1. Two specifications SP and SP′ are equivalent, written SP≡ SP′, if
Sig[SP] = Sig[SP′] and Mod[SP] = Mod[SP′]. ��

We can now restate these equivalences formally, and add some others describ-
ing further interactions between the specification-building operations introduced in
Section 5.1. Throughout this section, when we state an equivalence SP ≡ SP′ there
is a tacit assumption that SP and SP′ are both well-formed specifications.

Proposition 5.6.2.

1. 〈Σ ,Φ1〉∪ 〈Σ ,Φ2〉 ≡ 〈Σ ,Φ1∪Φ2〉
2. 〈Σ ,Φ〉 with σ :Σ → Σ ′ ≡ 〈Σ ′,σ(Φ)〉
3. SP∪SP≡ SP, SP1∪SP2 ≡ SP2∪SP1 and (SP1∪SP2)∪SP3 ≡ SP1∪(SP2∪SP3)
4. SP∪〈Sig[SP],∅〉 ≡ SP
5. SP with idSig[SP] ≡ SP ≡ SP hide via idSig[SP]

6. If ι is an isomorphism then SP with ι ≡ SP hide via ι−1

7. (SP with σ) with σ ′ ≡ SP with σ ;σ ′
8. (SP hide via σ) hide via σ ′ ≡ SP hide via σ ′;σ
9. (SP∪SP′) with σ ≡ (SP with σ)∪ (SP′ with σ) ��
Exercise 5.6.3. In general,

〈Σ ,Φ〉 hide via σ :Σ ′ → Σ ≡ 〈Σ ′,σ−1(ClΣ (Φ))〉

does not hold, since the image of Mod[〈Σ ,Φ〉] under σ -reduct need not be definable
even if Φ =∅, but there is an inclusion of model classes from left to right (this is a
part of Proposition 4.2.15). Check that the same is true of the following:

1. (SP∪SP′) hide via σ vs. (SP hide via σ)∪ (SP′ hide via σ)
2. (SP with σ) hide via σ vs. SP
3. SP vs. (SP hide via σ) with σ

Link the model class inclusions indicated in the last two items with Exercise 5.5.2,
noticing that for any signature morphism σ :Σ → Σ ′, hide via σ and with σ
form a Galois connection between Σ -specifications and Σ ′-specifications considered
up to equivalence and ordered by the inclusion of model classes. ��
Exercise 5.6.4. Justify the claim that for institutions with algebraic signatures, any
use of hiding with an injective signature morphism can be replaced by the use of hid-
ing with a signature inclusion and translation with a bijective signature morphism.
HINT: Use Proposition 5.6.2(6,8) to show that if for some isomorphism ι , σ = ι ;σ ′
then



254 5 Structured specifications

SP hide via σ ≡ (SP hide via σ ′) with ι−1. ��
The interaction between union, translation and hiding is best described in the con-

text of a (finitely) exact institution; see Definitions 4.4.6, 4.4.12 and Lemma 4.4.14.
The key result is the normal form theorem; see Theorem 5.6.10 below. Its proof will
rely on the following two propositions.

Proposition 5.6.5. In any institution INS,

(SP hide via σ) with τ ≡ (SP with σ ′) hide via τ ′

provided that the following pushout in the category of signatures admits amalgama-
tion:

·

Sig[SP] ·

Σ̂

�
�

��

�
�
���

�
�
��

�
�

���

σ τ

σ ′ τ ′

Proof. The fact that both specifications have the same signature is evident. We now
show that their model classes coincide.

(⊆): Let M′ ∈ Mod[(SP hide via σ) with τ]. Then M′
τ ∈ Mod[SP hide via σ ];

hence there exists M ∈ Mod[SP] with M σ = M′
τ . Since the pushout considered

admits amalgamation, there exists M̂ ∈ |Mod(Σ̂)| such that M̂ σ ′ =M and M̂ τ ′ =

M′. Thus M̂ ∈Mod[SP with σ ′] and finally M′ ∈Mod[(SP with σ ′) hide via τ ′].
(⊇): Suppose M′ ∈ Mod[(SP with σ ′) hide via τ ′]. Then M′ = M̂ τ ′ for some M̂ ∈

Mod[SP with σ ′]. We have M̂ σ ′ ∈ Mod[SP] and so M′
τ = M̂ τ;τ ′ = M̂ σ ;σ ′ =

(M̂ σ ′) σ ∈ Mod[SP hide via σ ]. Thus M′ ∈ Mod[(SP hide via σ) with τ]. ��
Exercise 5.6.6. What does this law say in the case where τ is the identity? HINT: It
does not follow that σ ′ is the identity as well. ��
Proposition 5.6.7. In any institution INS,

(SP1 hide via σ1)∪ (SP2 hide via σ2)
≡

((SP1 with σ ′
1)∪ (SP2 with σ ′

2)) hide via σ1;σ ′
1

provided that the following pushout in the category of signatures admits amalgama-
tion:
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·

Sig[SP1] Sig[SP2]

Σ̂

�
�

��

�
�
��

�
�
��

�
�

��

σ1 σ2

σ ′
1 σ ′

2

Proof.

(⊆): Let M ∈ Mod[(SP1 hide via σ1)∪ (SP2 hide via σ2)]. Then there exist M1 ∈
Mod[SP1] with M1 σ1 = M and M2 ∈ Mod[SP2] with M2 σ2 = M. By the as-

sumption, there exists M̂ ∈ |Mod(Σ̂)| such that M̂ σ ′
1
= M1 and M̂ σ ′

2
= M2.

Hence M̂ ∈ Mod[(SP1 with σ ′
1)∪ (SP2 with σ ′

2)] and therefore M = M̂ σ1;σ ′
1
∈

Mod[((SP1 with σ ′
1)∪ (SP2 with σ ′

2)) hide via σ1;σ ′
1].

(⊇): Let M ∈ Mod[(SP1 with σ ′
1) ∪ (SP2 with σ ′

2) hide via σ1;σ ′
1]. Hence there

exists M̂ ∈Mod[SP1 with σ ′
1]∩Mod[SP2 with σ ′

2] such that M̂ σ1;σ ′
1
= M̂ σ2;σ ′

2
=

M. Therefore M̂ σ ′
1
∈ Mod[SP1] and M̂ σ ′

2
∈ Mod[SP2], which finally yields

M ∈ Mod[(SP1 hide via σ1)∪ (SP2 hide via σ2)]. ��
Exercise 5.6.8. Working in EQ, check that Proposition 5.6.7 implies

(SP1 reveal Σ) and (SP2 reveal Σ)≡ (SP1 and SP2) reveal Σ

where Σ = Sig[SP1]∩Sig[SP2]. HINT: First check that the union of two signatures
is a pushout of the inclusions of their intersection.

Generalise this to an institution with the appropriate extra structure using Exer-
cises 5.2.1 and 5.2.4. ��

These equivalences can be combined to give a procedure which reduces (“nor-
malises”) any structured specification built from flat specifications using union,
translation and hiding to an equivalent one that is “almost” a flat specification. First,
an easy result about specifications that do not involve hiding:

Proposition 5.6.9. For every specification built from flat specifications using union
and translation, there is an equivalent flat specification.

Proof. By induction on the structure of specifications, using Proposition 5.6.2(1,2).
��

Theorem 5.6.10 (Normal form theorem). Let INS be a semi-exact institution. For
every specification SP built from flat specifications using union, translation and hid-
ing, there is an equivalent specification of the form 〈Σ ,Φ〉 hide via σ (where Φ is
finite provided the flat specifications involved in SP are finite).

Proof. By induction on the structure of SP.

• For flat specifications, 〈Σ ,Φ〉 ≡ 〈Σ ,Φ〉 hide via idΣ .
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• For union, if SP1 ≡ 〈Σ1,Φ1〉 hide via σ1 and SP2 ≡ 〈Σ2,Φ2〉 hide via σ2 then di-
rectly by Proposition 5.6.7 and Proposition 5.6.2(1,2) it follows that SP1∪SP2 ≡
〈Σ̂ ,σ ′

1(Φ1)∪σ ′
2(Φ2)〉 hide via σ1;σ ′

1 where the following is a pushout in the cat-
egory of signatures:

·

Σ1 Σ2

Σ̂

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
1 σ ′

2

• For translation, if SP ≡ 〈Σ ,Φ〉 hide via σ then by Proposition 5.6.5 and Propo-
sition 5.6.2(2), SP with τ ≡ 〈Σ̂ ,σ ′(Φ)〉 hide via τ ′ where the following is a
pushout in the category of signatures:

·

Σ ·

Σ̂

�
�

���

�
�
���

�
�
���

�
�

���

σ τ

σ ′ τ ′

• Finally, for hiding, use Proposition 5.6.2(8). ��
Counterexample 5.4.8 shows that the use of hiding in the normal form is unavoidable
in general: the structured specifications SP and SP1 there have classes of models that
are not definable by flat specifications in EQ.

Exercise 5.6.11. Working in an exact institution, generalise Theorem 5.6.10 to per-
mit unions of arbitrary families of specifications. HINT: The existence of arbitrary
signature coproducts and their preservation by the model functor are needed, al-
though a weaker requirement — that colimits of arbitrary non-empty families of
signature morphisms with a common source (wide pushouts) exist and be preserved
by the model functor — would be sufficient as well. ��
To use Theorem 5.6.10 to obtain a normal form for a given specification SP, it is
sufficient to require that the pushouts that are needed in the course of applying the
normalisation procedure to SP exist and admit amalgamation. For example, even
though an institution like EQder with algebraic signatures and derived signature
morphisms is not (finitely) exact (see Example 4.4.7), the normal form theorem
can be applied to specifications in EQder that involve hiding only with respect to
signature inclusions, since the necessary pushouts exist and admit amalgamation:

Exercise 5.6.12. Consider an institution INS and a collection I of signature mor-
phisms in INS such that INS is I-semi-exact; see Definition 4.4.18. Prove that for
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any structured specification built from flat specifications using union, translation
and hiding which involves hiding only with respect to morphisms in I, there exists
an equivalent specification of the form 〈Σ ,Φ〉 hide via σ where σ ∈ I. ��
Exercise 5.6.13. Working in the institution EQ, develop a normal form result for
specifications built from flat specifications using union, translation, hiding and
reachable with respect to a signature morphism (Exercise 5.1.10). HINT: The nor-
mal form will require one use of reachable constraining a subsignature of the sig-
nature of the specification inside the hiding. See [EWT83].

Repeat the exercise for free in place of reachable. HINT: As above, but see
[WE87]. ��

The normal form theorem can be used to prove meta-results about specifications;
see, for instance, Section 9.2. It might also be regarded as a generally useful tool
for reducing all structured specifications to a convenient standard form. However,
if the result is intended for human consumption then this is usually inappropriate:
normalising a specification obliterates all trace of its structure, tending to make it
much more difficult to understand. Moreover, the structure of specifications can
provide useful guidance in proving theorems about specifications and in developing
programs from specifications by refinement, so it should not be lightly disregarded.

5.7 Bibliographical remarks

The idea of taking specification-building operations seriously is from the first alge-
braic specification language, Clear [BG77], [BG80], which is also where our hiding
operation originated. Most of the other operations presented in Section 5.1 origi-
nated in the ASL “kernel” specification language [Wir82], [SW83], [Wir86], which
is also where semantics of structured specifications in terms of model classes was
first used. Their institution-independent versions are from [ST88a].

In the work mentioned above, a different notation for translation and hiding was
used, based on the keywords translate and derive, respectively. Some authors also
write σ(SP) and SP σ (or even σ−1(SP)) for our SP with σ and SP hide via σ , re-
spectively. Albeit pleasantly compact, the latter choice makes it too easy to confuse
the specification-building operations with the corresponding semantic-level con-
cepts, and moreover, cannot be maintained when larger examples are to be writ-
ten and read. Instead, we decided to use a notation close to what was chosen in
CASL [BM04], [Mos04]. Our notation for other operations (sum, enrichment, ex-
port, free enrichment, and so on) adheres to the spirit, if not quite always the details,
of CASL syntax as well, giving up for instance the keyword enrich for enrichment.

Many algebraic specification languages have been developed; see [SW99] for
an overview. CASL [BM04], [Mos04] is an attempt to design a common algebraic
specification language that integrates all of their best features into a coherent whole.
There are many aspects of the design of specification languages that are not dis-
cussed here, ranging from the notation used to express signature morphisms (see
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[Wir86], where a small programming language is provided for such purposes) to the
treatment of specification libraries (see CASL, which supports libraries distributed
over the Internet).

The enrichment and sum operations appear in all specification languages in some
form. The need for “hidden operations”, as introduced by hiding, was first noticed
in [Maj77] and studied in [TWW82] in the context of equational specifications. The
issue of shared subspecifications touched on at the end of Section 5.2 and further
developed in Theorem 5.5.11 was given serious attention in the design of Clear
[BG80] via the use of so-called “based theories”, which record the relationships
between any specification and the environment. Although the design of the mod-
ule system for Standard ML [Mac84] and so Extended ML [ST85] was influenced
by this, it was disregarded by most later specification languages, with the excep-
tion of Specware [Smi06] and CASL. A related view, in which constructions apply
to components taken from a background environment and produce a result which
contributes to that environment, is in [BST08]; see also Section 8.4.4 below.

Section 5.4 analyses the discrepancy, noticed already in [San82], between the
semantics for structured specifications given in terms of model classes versus one
given in terms of theories. The view we take is that the interpretation in terms of
model classes should be regarded as primary. This issue has been somewhat con-
troversial, with the opposite point of view taken in (for instance) [DGS93]. Com-
patibility between the first and second levels of the semantics of ACT ONE [EM85]
shows that no such discrepancies arises there, which is due to the fact that ACT ONE
contains no specification-building operation corresponding to hiding. The subtleties
of the relationship between theory-level and model-level semantics do not appear to
have been analysed to the depth of Section 5.4 before, but see [HST94] for Coun-
terexample 5.4.8 and a related discussion. An analysis of similar issues in a different
setting is carried out in [GR04], leading to seemingly different conclusions.

The generalisation from theory morphisms and the cocompleteness of the cate-
gory of theories (Definition 4.2.25 and Theorem 4.4.1) to specification morphisms
and the cocompleteness of the category of structured specifications (Definition 5.5.8
and Theorem 5.5.11) originates with [ST88a].

The systematic study of algebraic laws for specification-building operations orig-
inated in [BHK90], although some algebraic laws were given earlier in [Wir82] and
[SW83]. The earliest version of the normal form theorem (Theorem 5.6.10), corre-
sponding to Exercise 5.6.13, appeared in [EWT83], while Theorem 5.6.10 is from
[BHK90]. One question raised by [BHK90] concerned the distributive law for hid-
ing over union, which does not hold in general (see Exercise 5.6.3). This was taken
up in [DGS93], where several variants were considered, with Proposition 5.6.7 cap-
turing the “middle distributive law”; cf. Exercise 5.6.8.

This chapter studies mechanisms for structuring specifications that are not tar-
geted at any particular programming language or paradigm. Our view is that struc-
ture at specification level and structure at program level serve different purposes and
need not correspond. See Chapters 6 and 7 for more on this topic. Other views of
the connection between specification and programming formalisms have been taken
in Larch [GH93] and Extended ML [ST89].



Chapter 6

Parameterisation

In the previous chapter, devoted to mechanisms for structuring specifications, dis-
cussion of the most important structuring mechanism of all — parameterisation, or
genericity — was deferred to this chapter.

Parameterisation allows a definition or expression to be abstracted partly or fully
from its context, the result of such abstraction being treated as an entity in its own
right. Selected dependencies on the context are made explicit via an interface which
describes the range of permissible parameters. The exercise of spelling out such
dependencies often suggests ways in which they can be minimised, leading to in-
creased generality. Subsequent instantiation, by supplying an appropriate parameter,
then allows the parameterised entity to be (re)used as required. An example of pa-
rameterisation in mathematics is the way in which one defines linear equations, and
the Gauss-Jordan method for solving such equations, using coefficients taken from
an arbitrary field, rather than specifically from the rationals or the real numbers. In
programming we build compilers using lexical analysers constructed by plugging
a set of regular expressions describing the lexical structure of the language at hand
into a tool like lex. In logic, inference rules are schematic (given Γ  ϕ ⇒ ψ and
Γ ′  ϕ , conclude Γ ∪Γ ′  ψ). And the theory presented in Chapters 5–9 of this
book is parameterised by an arbitrary institution.

This book is concerned both with algebras, modelling programs, and with speci-
fications, and this chapter will focus on the use of parameterisation at both of these
levels. Parameterised specifications, which take specifications as parameters and
deliver specifications as results, correspond to (user-defined) specification-building
operations. Parameterised algebras, which take algebras as parameters and deliver
algebras as results, correspond to generic program modules as found in languages
like Standard ML and Modula-3. Specifying a parameterised algebra involves de-
scribing its admissible parameters and the properties of the algebra that is produced
when it is instantiated; this is not the same thing as a parameterised specification.
It is possible and useful to extend parameterisation to higher order, where parame-
terised entities are themselves used as parameters.

,
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For the sake of generality (via parameterisation!) we work in an arbitrary but
fixed institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 as in the last chapter, requir-
ing additional structure only when necessary.

6.1 Modelling generic modules

The use of algebras to model programs was explained in Section 0.1 (and gener-
alised to models in the underlying institution in Chapter 4). This view is adequate
for complete programs or self-contained program modules. However, it does not
cover generic modules [Nel91] (functors in Standard ML [Pau96], parameterised
programs in [Gog96]), which take a module as a parameter and produce a module
as a result, where the definition of components in the result module may rely on the
components of the parameter. To use the components provided by a generic mod-
ule, it must first be instantiated by applying it to an argument module; this yields a
(non-generic) module.

Such generic modules correspond to functions taking models over one signature
(for the parameter) to models over another (for the result), with instantiation corre-
sponding to function application. In general such a function will be partial — we
will consider cases in which the result is not defined for all models over the param-
eter signature, but only for those that satisfy additional constraints. This matches
Standard ML: instantiation of a functor involves computation which may diverge,
although it rarely does in practice. We will call such partial functions constructors.1

Definition 6.1.1 (Constructor). Given signatures Σ and Σ ′, Σ ⇒ Σ ′ is a constructor
signature, with Mod(Σ ⇒ Σ ′) standing for the class of all partial functions mapping
Σ -models to Σ ′-models. A partial function F ∈ Mod(Σ ⇒ Σ ′) is called a construc-
tor. ��
An obvious additional requirement to impose on constructors is that they be effec-
tive functions in a suitable formal sense. Just as we did not take computability into
account when modelling programs as algebras, we do not impose such a require-
ment on constructors either. It does not seem to add anything significant (except
complexity) to the theory, and furthermore, in the context of an arbitrary institution
the concept of effective function seems problematic.

The use of the word “functor” in Standard ML for a generic module as well as the
examples of constructors below might suggest that constructors should be functors
between model categories rather than functions between model classes. This addi-
tional structure will not be needed here although it will re-emerge in Section 8.4.4.

1 Constructors should not be confused with value constructors in Standard ML and similar pro-
gramming languages and in the institution FPL; see Example 4.1.25.
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Exercise 6.1.2. Show that all of the constructors given below, except for amalga-
mation, can be extended to functors on the full subcategory determined by their
domain. ��
Example 6.1.3 (Reduct). For any signature morphism σ :Σ → Σ ′, the object part
of the σ -reduct functor is a function σ :Mod(Σ ′)→ Mod(Σ). This is a (total) con-
structor σ ∈ Mod(Σ ′ ⇒ Σ).2

In institutions like EQ, this constructs Σ -models from Σ ′-models by forgetting
and/or renaming their components. In institutions like EQder or PEQder (see Exer-
cise 4.1.23), where derived signature morphisms are used (see Section 1.5.2), this
constructor can be used as a definitional mechanism, where operations in Σ are de-
fined via terms over Σ ′.

This may be taken even further by generalising derived signature morphisms to
allow conditional definitions and recursion (see Exercise 1.5.22), and to define car-
rier sets for sorts in Σ in terms of those in Σ ′ using product, disjoint union, recursion,
and so on (see Exercise 1.5.21). Enriching this with appropriate syntactic sugar gives
a language that approaches the expressive power of Standard ML functors. This is
done below for the institution FPL (Example 4.1.25); see Examples 6.1.6, 6.1.8
and 6.1.9 below. ��
Example 6.1.4. Let Σ ′ be a signature with a sort Bool and two boolean con-
nectives, conjunction (∧) and negation (¬), and let Σ extend Σ ′ by adding dis-
junction (∨). Then the derived signature morphism δ :Σ → Σ ′ given by (recall
the notation for derived terms introduced in Definition 1.5.13) δ (Bool) = Bool,
δ (∧) = ( 1 :Bool) ∧ ( 2 :Bool), δ (¬) = ¬( 1 :Bool), δ (∨) = ¬(¬( 1 :Bool) ∧
¬( 2 :Bool)) determines the constructor δ ∈ Mod(Σ ′ ⇒ Σ) which adds to any
Σ ′-model a disjunction operation defined as usual in terms of conjunction and nega-
tion. ��
Exercise 6.1.5. Observe that the use of reducts w.r.t. derived signature morphisms
to define constructors may be essentially replaced by the use of the corresponding
“definitional” equations (and vice versa).

For instance, in the standard algebraic framework with derived signature mor-
phisms introduced in Section 1.5.2, consider an algebraic signature Σ and let Σ f be
its extension by a new operation name f :s1×·· ·×sn → s (for some sorts s1, . . . ,sn,s
in Σ ). Let δ :Σ f → Σ be a derived signature morphism which is the identity on the
symbols in Σ and maps f to a Σ -term, δ f ( f ) = t ∈ |TΣ ( 1 :s1, . . . , n :sn)|s. Then
the “definitional” axiom ∀ 1 :s1, . . . , n :sn • f ( 1 , . . . , n ) = t captures the con-
struction given by the reduct w.r.t. δ f : check that for any Σ -algebra A, A δ f is the
unique expansion of A to a Σ f -algebra that satisfies this definitional equation.

Extend this characterisation to any derived algebraic signature morphism δ :Σ ′ →
Σ such that ι ;δ = idΣ for some signature morphism ι :Σ → Σ ′. ��

2 CASL notation: reduct is written in CASL using the same reveal/hide notation as export for
specifications (Section 5.2), with the same restriction on σ .
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Example 6.1.6. Consider the following signatures in the institution FPL (see Ex-
ample 4.1.25).

TREE =
sorts Nat free with 0| succ(Nat)

Tree
ops empty:Tree

node:Tree×Nat×Tree → Tree
sum:Tree → Nat

RAWTREEWITHOP =
sorts Nat free with 0| succ(Nat)

Tree free with empty|node(Tree,Nat,Tree)3

ops op:Nat → Nat

Consider the signature morphism δ :TREE → RAWTREEWITHOP such that

δ (sum) =
let fun plus(x:Nat,n:Nat):Nat =

case x of 0 => n | succ(m) => succ(plus(m,n))
in let fun sum(t:Tree):Nat =

case t of empty => 0
| node(t1,n, t2) => plus(plus(op(n),sum(t1)),sum(t2))

in sum( 1 :Tree)

and δ is the identity on the remaining names. This determines the constructor
δ ∈ Mod(RAWTREEWITHOP ⇒ TREE), which implements the sum operation

(sum of the results of applying the operation op to the node labels in a tree) over
a representation of trees generated by empty and node as value constructors. ��

The intuition behind the reduct constructor is that it builds a model by providing
an explicit definition for each of its components in terms of the components of
the argument model. This is only intuition, which applies to institutions like those
mentioned above; it is possible to concoct institutions in which this intuition does
not apply. (Exercise: Find one.) An alternative is to select a “standard” model from
a specified range of possibilities. Taking the initial model of a specification or the
free extension of the argument model to a model of a specification are examples of
this.

Example 6.1.7 (Free extension). For any signature morphism σ :Σ → Σ ′ and Σ ′-
specification SP′ and for M ∈ Mod(Σ), let Fσ ,SP′(M) be the free object over M with
respect to the reduct functor σ :Mod[SP′]→Mod(Σ), if it exists, where Mod[SP′]
is the full subcategory of Mod(Σ ′) determined by the models of SP′. This yields a
constructor Fσ ,SP′ ∈Mod(Σ ⇒ Σ ′). (Strictly speaking, the above definition requires
a canonical choice of the free object since otherwise Fσ ,SP′(M) is only defined up to

3 CASL notation: semicolons are used in place of commas to separate arguments of value construc-
tors in CASL.
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isomorphism. Consequently, when we compare such constructors in the sequel the
use of equality actually refers to natural isomorphism.) In general this constructor
is partial since the free object need not exist, but, for instance, in EQ or any other
liberal institution (see Definition 4.5.16 and Exercise 3.5.11 or 4.5.12) it is total if
SP′ is a flat specification.

An important special case of free extension Fσ ,SP′ is when SP′ = 〈Σ ′,∅〉; then
we use the abbreviation Fσ . This corresponds to algebraic datatype definitions in
functional languages like Standard ML, sometimes referred to as the anarchic or
absolutely free extension; cf. sorts freely generated by value constructors in the
institution FPL, as in Example 6.1.6. In FPL, the constructor Fδ for δ :SIG→ SIG′

is total provided that δ is an injective renaming of sort and operation names such
that no operations are added that yield results of “old” sorts (i.e. sorts in δ (SIG))
and no old operations are promoted to the status of value constructors. (This is a
proper subclass of IFPL as defined in Exercise 4.4.19.) This covers the case of FPL-
signature morphisms that simply add new sorts with new value constructors, which
will be of particular interest below. ��
Example 6.1.8. Consider the following version of the signature RAWTREEWITHOP
in the institution FPL from Example 6.1.6

SIMPLERAWTREEWITHOP =
sorts Nat free with 0| succ(Nat)

Tree
ops empty:Tree

node:Tree×Nat×Tree → Tree
op:Nat → Nat

and its subsignature

NATWITHOP =
sorts Nat free with 0| succ(Nat)
ops op:Nat → Nat

with the signature inclusion j:NATWITHOP → SIMPLERAWTREEWITHOP. The
free extension Fj ∈ Mod(NATWITHOP ⇒ SIMPLERAWTREEWITHOP) is a (total)
constructor which adds a realisation of trees freely generated by empty and node to
any model over NATWITHOP.

Alternatively, consider the signature RAWTREEWITHOP as given in Exam-
ple 6.1.6 and the inclusion ι :NATWITHOP → RAWTREEWITHOP. Declaring Tree
as a sort with value constructors empty and node “internalizes” the free extension
requirement: Fι ∈ Mod(NATWITHOP ⇒ RAWTREEWITHOP) essentially coincides
with Fj and is, up to isomorphism, the only constructor in Mod(NATWITHOP ⇒
RAWTREEWITHOP) that extends its argument models without modification. The
latter property can be expressed without reference to freeness by requiring persis-
tency; see Definition 6.1.16 below. ��
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Example 6.1.9 (FPL-constructor notation). Recall from Example 6.1.8 above
the constructor Fι ∈ Mod(NATWITHOP ⇒ RAWTREEWITHOP) and from Exam-
ple 6.1.6 the reduct constructor δ ∈Mod(RAWTREEWITHOP ⇒ TREE). The com-
position Fι ;( δ ) ∈ Mod(NATWITHOP ⇒ TREE) is an instance of a pattern that is
typical for constructors over the institution FPL, whereby one introduces new sorts
freely generated by value constructors and then new operations defined by FPL-
terms over those sorts. The composed constructor can be written using a notation
that suggests a connection with functors in Standard ML, as follows:

constructor K : NATWITHOP ⇒ TREE =
sorts Tree free with empty|node(Tree,Nat,Tree)
ops fun sum(t:Tree):Nat =

let fun plus(x:Nat,n:Nat):Nat =
case x of 0 => n | succ(m) => succ(plus(m,n))

in case t of empty => 0
| node(t1,n, t2) => plus(plus(op(n),sum(t1)),sum(t2))

This defines a total constructor with the given name (here K) and the given param-
eter signature (here NATWITHOP) and result signature (here TREE) as the compo-
sition of two steps. The first step introduces the new sorts, each freely generated by
a set of (new) value constructors (here, Tree with empty and node), giving a free
extension from the parameter signature to an intermediate signature consisting of
the parameter signature enlarged by the new sorts and value constructors. Some
of the sort and operation names in the result signature (here, Nat, 0, succ, Tree,
empty and node) are already in the intermediate signature. The second step intro-
duces definitions for the additional sorts (here, none) and operations (here, sum) of
the result signature in terms of those in the intermediate signature. The definitions
must be well formed with compatible argument and result sorts so as to determine
an FPL-signature morphism from the result signature to the intermediate signature,
and hence a reduct constructor.

Abstracting away from the details of this particular example, we have the follow-
ing diagram:

SIGparameter
ι−→ SIGintermediate

δ←− SIGresult

where ι is an FPL-signature inclusion which introduces only new sorts with value
constructors, and δ is an FPL-signature morphism which preserves the sort and
operation names in SIGparameter∩SIGresult. Then the constructor defined is Fι ;( δ )∈
Mod(SIGparameter ⇒ SIGresult).

In the examples below, we will allow ourselves to go beyond the term constructs
that are explicitly introduced for FPL in Example 4.1.25, making use of conditional
terms as in Exercise 4.1.28, and occasionally using local definitions of values (not
just functions).

Exercise. Add a new construct let x = t in t ′ to the syntax of terms of FPL. This
captures local definitions of values of arbitrary sorts. Define its semantics. ��
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Exercise 6.1.10. Redo Exercise 6.1.5 for derived signature morphisms in the insti-
tution FPL. Notice that the “definitional” equations needed are exactly function def-
initions, that is, axioms available in FProg, the subinstitution of FPL that captures
its “programming” fragment (introduced in Exercise 4.1.30).

Now, referring to the constructor notation introduced in Example 6.1.9 above,
assume that we have an inclusion ι ′:SIGintermediate → SIGresult such that ι ′;δ is
the identity on SIGintermediate. Construct then a SIGresult-specification Codeι ,δ in
FProg which captures the construction described in Example 6.1.9. That is, for any
SIGparameter-model A, Fι(A) δ is the unique (up to isomorphism) model of Codeι ,δ
that is a (ι ;ι ′)-expansion of A. (The fact that it is unique only up to isomorphism
is related to the possible choice of representation of the new constrained sorts in-
troduced by Fι .) Note that the specification Codeι ,δ required is in fact just what
we actually write as the “body” of the constructor in this notation (perhaps modulo
some syntactic details).

In case not all the sorts and operations of SIGintermediate are included in SIGresult,
so that ι ′ needed above cannot be given directly, show that the required specifica-
tion in FProg can be given over a signature that comprises the symbols from both
SIGintermediate and SIGresult, and then that the overall construction is captured as a
unique expansion given by the “code”, as above, followed by a simple “hiding” step
(reduct to a subsignature). ��
Example 6.1.11 (Quotient). Another special case of free extension Fσ ,SP is when
σ :Σ → Sig(SP) is the identity signature morphism. This yields a constructor that we
will write as /SP ∈ Mod(Σ ⇒ Σ). In the institution EQ this is a total constructor
when SP is a flat specification and yields the usual quotient by the least congruence
generated by the equations in SP; see Exercise 3.4.12. ��
Exercise 6.1.12. Work out the conditions under which Fσ ,SP′ can be defined as the
composition of the absolutely free extension Fσ and the quotient /SP′. ��
Example 6.1.13 (Restriction to sort-generated subalgebra). In EQ and similar
institutions, for any signature Σ , the object part of the restrict functor (cf. Exer-
cise 3.4.13) is a (total) constructor RΣ ∈ Mod(Σ ⇒ Σ) which returns the reachable
subalgebra of any Σ -algebra. For any set S⊆ sorts(Σ) of sorts, there is a constructor
RS ∈ Mod(Σ ⇒ Σ) such that for A ∈ |Alg(Σ)|, RS(A) is the subalgebra of A that is
generated by its carriers of sorts not in S. Obviously, RΣ = Rsorts(Σ). ��
Exercise 6.1.14. Generalise RΣ and RS to an arbitrary institution (with additional
structure) using the apparatus of Section 4.5; see also Exercise 5.1.10. ��
Exercise 6.1.15. Any constructor F ∈ Mod(Σ ⇒ Σ ′) gives rise to a specification-
building operation which takes a Σ -specification SP to a Σ ′-specification F(SP)
having the image of Mod[SP] under F as its models.

Link the examples of constructors above with the specification-building opera-
tions of Section 5.1. Be careful though: for instance, RS(SP) is in general not equiva-
lent to reachable SP on S (but the equivalence does hold if Mod[SP] is closed under
subalgebras).



266 6 Parameterisation

Find an example of a specification-building operation in Section 5.1 that cannot
arise in this way from a constructor. In particular, consider with σ : show that in
typical institutions (like FOEQ) it does arise from a constructor if σ is surjective
and that this constructor is total if σ is an isomorphism.

Consider constructors given as reducts w.r.t. (derived) signature morphisms.
Show that in typical institutions, under the circumstances given in Exercise 6.1.5,
the specification-building operation determined by such a constructor may be ex-
pressed as an enrichment. In particular, by Exercise 6.1.10, for constructors in the
institution FPL that are expressible in the notation of Example 6.1.9, the corre-
sponding specification-building operation may be given as an enrichment by “code”
— function definitions from FProg, the subinstitution of FPL which captures its
programming fragment — followed by a simple “hiding” step (in case not all sorts
and operations of the intermediate signature constructed in Example 6.1.9 are in-
cluded in the result signature). ��

Constructors are often considered “along” a signature morphism which connects
the source signature to the target signature; typically this signature morphism is an
inclusion. Intuitively, such a constructor extends the model to which it is applied
with some additional components to build the result. This intuition is not accurate
unless the constructor is required to preserve the part of the result that corresponds
to the argument.

Definition 6.1.16 (Persistent constructor). For any signature morphism ι :Σ → Σ ′
and class of models M ⊆Mod(Σ), a constructor F ∈Mod(Σ ⇒ Σ ′) is persistent on
M along ι if for every Σ -model M ∈M we have M ∈ dom(F) and F(M) ι =M; we

write Mod(Σ ι
==⇒M Σ ′) for the class of all such constructors. F is persistent along

ι if it is persistent on dom(F); we write Mod(Σ ι
==⇒ Σ ′) for the class of all such

constructors. ��
It is trivial to see that the composition of persistent constructors is a persistent con-
structor.

A typical example of a persistent constructor is given in Example 6.1.4 where
disjunction is defined in terms of conjunction and negation. This is an instance of
the following general situation.

Proposition 6.1.17. If ι :Σ → Σ ′ and σ :Σ ′ → Σ are such that ι ;σ = idΣ then σ ∈
Mod(Σ ι

==⇒ Σ ′). ��
Exercise 6.1.18. Observe that the above proposition applies to the constructor in
Example 6.1.6. Prove the following more general observation: in the institution
FPL, for any constructor

constructor K : SIG⇒ SIG′ = . . .

defined in the notation of Example 6.1.9 such that SIG′ ⊇ SIG, K is persistent along
the inclusion ι :SIG→ SIG′. ��
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The following easy fact concerns the common situation, arising in the above exer-
cise, where a persistent constructor introduces auxiliary components, some of which
are subsequently forgotten.

Fact 6.1.19. Consider a persistent constructor F ∈Mod(Σ σ
==⇒ Σ ′) where σ :Σ → Σ ′

is a signature morphism. Let ι :Σ ′′ → Σ ′ and σ ′:Σ → Σ ′′ be signature morphisms

such that σ = σ ′;ι . Then F ; ι ∈ Mod(Σ σ ′
==⇒ Σ ′′) is a persistent constructor. ��

Persistency of free extensions is a more complicated issue. In fact, mixing per-
sistency and freeness properties naturally leads to a stronger concept:

Definition 6.1.20 (Naturally persistent free extension). Given a signature mor-
phism σ :Σ → Σ ′ and Σ ′-specification SP′, the free extension Fσ ,SP′ (Example 6.1.7)
is naturally persistent if for each M ∈ dom(Fσ ,SP′), Fσ ,SP′(M) is the free object
over M with respect to the reduct functor σ :Mod[SP′]→ Mod(Σ) with the unit
ηM:M → Fσ ,SP′(M) σ being the identity. ��
Note that, trivially, natural persistency implies persistency of the free extension. The
opposite implication does not hold in general:

Exercise 6.1.21. Let Σ be an algebraic signature with the single sort s and no op-
erations, and let Σ ′ be its extension by a constant a:s with the inclusion σ . Show
that the absolutely free extension Fσ ∈Mod(Σ ⇒ Σ ′) is persistent (strictly speaking,
only up to isomorphism, but it can be chosen to be persistent) on algebras having
an infinite carrier of sort s. Show that it is not naturally persistent on any of these
algebras. ��
Persistency of free extensions strongly depends on the details of the underlying
institution. In EQ, natural persistency is ensured by the following two conditions:

Definition 6.1.22 (Sufficient completeness and hierarchy consistency). In EQ,
consider σ :Σ → Σ ′ and a set E ′ of Σ ′-equations. 〈Σ ′,E ′〉 is sufficiently complete
w.r.t. σ if for any set X of variables of sorts in Σ , sort s ∈ sorts(Σ) and term
t ′ ∈ |TΣ ′(X ′)|σ(s), where X ′ is the translation of X along σ as given in Defini-
tion 1.5.10, there exists a term t ∈ |TΣ (X)|s such that E ′ |=Σ ′ ∀X ′ • σ(t) = t ′. 〈Σ ′,E ′〉
is hierarchically consistent w.r.t. σ if there is no Σ -equation ∀X • t1 = t2 with distinct
t1 and t2 such that E ′ |=Σ ′ ∀X ′ • σ(t1) = σ(t2). ��
Exercise 6.1.23. Look at Exercises 2.5.20, 2.7.9 and 2.7.10 in the light of the above
definition of sufficient completeness. ��
Proposition 6.1.24. In EQ, if 〈Σ ′,E ′〉 is sufficiently complete and hierarchically
consistent w.r.t. σ :Σ → Σ ′ then the free extension Fσ ,〈Σ ′,E ′〉 is persistent up to nat-
ural isomorphism. Moreover, if σ is injective on sorts then Fσ ,〈Σ ′,E ′〉 may be chosen

to be naturally persistent, and so Fσ ,〈Σ ′,E ′〉 ∈ Mod(Σ σ
==⇒ Σ ′). ��

Exercise 6.1.25. Prove this proposition. HINT: See Exercise 3.5.11 for the construc-
tion of the free extension.



268 6 Parameterisation

Then consider a Σ -specification SP. For σ injective on sorts, natural persistency
of the constructor Fσ ,〈Σ ′,E ′〉 ∈ Mod(Σ ⇒ Σ ′) restricted to Mod[SP] follows from
weaker versions of the sufficient completeness and hierarchical consistency condi-
tions. Formulate these requirements and show that they are sufficient. HINT: Suf-
ficient completeness may be limited to models of the equational consequences of
SP and hierarchical consistency need only consider equations that are not such con-
sequences. Try to construct a counterexample to show that limiting sufficient com-
pleteness to the models of SP would be too weak.

Show that all the above facts remain valid for the institution EQ⇒ of conditional
equations. ��
Exercise 6.1.26. In some institution (e.g. in FOEQ), give an example of a signature
morphism σ :Σ → Σ ′ and Σ ′-specification SP′ such that SP′ is sufficiently complete
and hierarchically consistent w.r.t. σ (under the obvious generalisation of Defini-
tion 6.1.22) and Fσ ,SP′ is a total constructor, but Proposition 6.1.24 fails for SP′.
Can you produce a similar example in EQ? HINT: See Exercise 4.5.17. In EQ, SP′
cannot be equivalent to a flat specification. Hiding may be used to simulate existen-
tial quantification, and free extension to ensure uniqueness. ��
Exercise 6.1.27. In FPL, let ι :SIG → SIG′ be an injective renaming of sort and
operation names such that no operations are added that yield results of old sorts and
no old operations are promoted to the status of value constructors, as at the end of
Example 6.1.7. Check that the free extension Fι is total and naturally persistent. ��

Exercise 6.1.25 hinted at one way of building a constructor from another one,
namely by restricting to a smaller domain. Another obvious way is to compose two
constructors as we did in Example 6.1.9. Both ways preserve persistency. There is
also a natural way of “lifting” a persistent constructor along a signature morphism
that fits its source signature into a larger context.

Example 6.1.28 (Translation of a constructor).Suppose that the following pushout
diagram in Sign admits amalgamation

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

and that F ∈Mod(Σ ι
==⇒ Σ ′) is a persistent constructor. Then for any MG ∈Mod(ΣG)

such that MG σ ∈ dom(F), define σ(F)(MG) to be the unique Σ ′
G-model such that

σ(F)(MG) σ ′ = F(MG σ ) and σ(F)(MG) ι ′ = MG.4 Thus we have defined a persis-

tent constructor σ(F) ∈ Mod(ΣG
ι ′
==⇒ Σ ′

G) which we call the translation of F along

4 CASL notation: σ(F)(MG) would be written F [MG fit σ ] in CASL, and σ can sometimes be left
implicit.



6.1 Modelling generic modules 269

σ . Intuitively, σ(F) performs the “local” construction F on the “Σ part” of a “global
context” given as a ΣG-model, and leaves the rest unchanged. ��
Exercise 6.1.29. Show that translation of constructors preserves composition in the
following sense. Suppose that the following two pushout diagrams in Sign admit
amalgamation:

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

Σ ′

Σ ′
G

Σ ′′

Σ ′′
G

�

σ ′

�
γ

�
γ ′

�

σ ′′

Consider constructors F ∈Mod(Σ ι
==⇒ Σ ′) and F ′ ∈Mod(Σ ′ γ

==⇒ Σ ′′). Then prove that

σ(F ;F ′) = σ(F);σ ′(F ′) ∈ Mod(ΣG
ι ′;γ ′
===⇒ Σ ′′

G). ��
Exercise 6.1.30. Suppose that the following pushout diagram in Sign admits amal-
gamation

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

and let SP′ be a Σ ′-specification such that the free extension Fι ,SP′ is naturally persis-
tent and total. Show that Fι ′,SP′ with σ ′ is naturally persistent and total as well, and
moreover coincides with σ(Fι ,SP′). HINT: Amalgamation of morphisms is crucial.

Conclude that in EQ, σ(Fι ,〈Σ ′,E ′〉) = Fι ′,〈Σ ′
G,σ ′(E ′)〉 for any set E ′ of Σ ′-equations

such that Fι ,〈Σ ′,E ′〉 is naturally persistent.
Generalise this property to free extensions restricted to a class of Σ -models. ��

Example 6.1.31 (Amalgamated union of constructors). Suppose that the follow-
ing pushout diagram in Sign admits amalgamation:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1
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Given two persistent constructors F1 ∈ Mod(Σ σ1==⇒ Σ1) and F2 ∈ Mod(Σ σ2==⇒ Σ2),
for any Σ -model M ∈ dom(F1)∩dom(F2), define (F1 +F2)(M) to be the unique Σ ′-
model such that (F1 +F2)(M) σ ′

1
= F2(M) and (F1 +F2)(M) σ ′

2
= F1(M). We have

thus defined a persistent constructor F1 +F2 ∈ Mod(Σ σ
==⇒ Σ ′), where σ = σ1;σ ′

2 =
σ2;σ ′

1.
Note that this can be expressed in terms of translation along a signature morphism

as follows: F1 +F2 = F2;σ2(F1) = F1;σ1(F2). ��
Amalgamation may alternatively be considered as a two-argument constructor.

This relies on an informal generalisation of constructors to multiple arguments; see
Section 7.3.

Example 6.1.32 (Amalgamated union of models). Suppose that the following
pushout diagram in Sign admits amalgamation:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1

Define a two-argument constructor +σ1,σ2 : Mod(Σ1)×Mod(Σ2) → Mod(Σ ′)
by (M1 +σ1,σ2 M2) σ ′

1
= M2 and (M1 +σ1,σ2 M2) σ ′

2
= M1 for M1 ∈ Mod(Σ1) and

M2 ∈ Mod(Σ2) such that M1 σ1 = M2 σ2 (so, typically this constructor is not total).
In examples, we will omit the subscripts when they are evident. For instance, in

FOPEQ and similar institutions we write M1 +M2 for M1 +ι1,ι2 M2 where ι1:Σ1 ∩
Σ2 → Σ1 and ι2:Σ1∩Σ2 → Σ2 are the signature inclusions.5 ��
Exercise 6.1.33. Generalise this to an arbitrary diagram in Sign: define a constructor
that combines a family of models over signatures in the nodes of the diagram to give
a model over its colimit signature. ��
Exercise 6.1.34. Generalise Exercise 6.1.15 to multi-argument constructors and
show that union arises from amalgamated union of models (over a diagram of iden-
tities). ��

6.2 Specifying generic modules

Just as we provided means for specifying algebras, we will now provide means for
specifying constructors. The specifications in Chapter 5 described classes of models,

5 CASL notation: M1 +M2 would be written M1 and M2 in CASL.



6.2 Specifying generic modules 271

so analogously these specifications will describe classes of constructors. The basic
idea is that we need to specify separately the conditions that the argument is required
to satisfy and those that the result should then guarantee. This leads to the following
definition.

Definition 6.2.1 (Constructor specification, first version). Given specifications
SP and SP′, SP ⇒ SP′ is a constructor specification with the following semantics:

Sig[SP ⇒ SP′] = Sig[SP]⇒ Sig[SP′]
Mod[SP ⇒ SP′] = {F ∈ Mod(Sig[SP]⇒ Sig[SP′]) |

for all M ∈ Mod[SP],M ∈ dom(F) and F(M) ∈ Mod[SP′]}
��

Example 6.2.2. A signature morphism σ :Sig[SP]→ Sig[SP′] is a specification mor-
phism σ :SP → SP′ iff σ ∈ Mod[SP′ ⇒ SP].

Let σ :Sig[SP] → Sig[SP′]. Suppose that for every model M ∈ Mod[SP] there
exists a free object over M with respect to the reduct functor σ :Mod[SP′] →
Mod(Sig[SP]). Then Fσ ,SP′ ∈ Mod[SP ⇒ SP′]. In particular, for liberal institutions
and flat specifications SP′, Fσ ,SP′ ∈ Mod[SP ⇒ SP′] for every specification SP. ��
Exercise 6.2.3. Using Exercise 5.1.10, show that in EQ, for any Σ -specification
SP such that Mod[SP] is closed under subalgebras, we have RΣ ∈ Mod[SP ⇒
reachable SP on sorts(Σ)], where RΣ is the constructor mapping any algebra to its
reachable subalgebra; see Example 6.1.13.

Generalise this to any institution with appropriate additional structure — cf. Sec-
tion 4.5 — as in Exercises 5.1.10 and 6.1.14. ��
Fact 6.2.4. Suppose Sig[SP] = Sig[SP1] and Sig[SP′] = Sig[SP′1]. If Mod[SP1] ⊆
Mod[SP] and Mod[SP′]⊆ Mod[SP′1] then Mod[SP ⇒ SP′]⊆ Mod[SP1 ⇒ SP′1]. ��
Fact 6.2.5. If F ∈Mod[SP⇒ SP′] and F ′ ∈Mod[SP′ ⇒ SP′′] then F ;F ′ ∈Mod[SP⇒
SP′′]. ��

Constructor specifications of the form SP ⇒ SP′ do not provide any way of
requiring dependency between the argument of a constructor and its result. In
particular, even if SP′ extends SP via an inclusion ι :SP → SP′, constructors in
Mod[SP ⇒ SP′] need not be persistent in general.

Example 6.2.6. Recall Example 6.1.4, which defined a constructor δ extending
models of booleans with conjunction and negation by the addition of disjunction. If
SP is a Σ -specification of booleans without disjunction and SP′ is a Σ ′-specification
of booleans with disjunction, then δ ∈Mod[SP⇒ SP′]. However, Mod[SP⇒ SP′]
also admits the constructor that disregards its argument, mapping all models of SP
to the same model of SP′.

A related example would be a constructor specification for a sorting module
where SP would specify a type with an order relation and SP′ would specify a func-
tion to sort lists of elements with respect to an order relation; SP ⇒ SP′ does not
require that the lists being sorted contain elements of the type provided by the argu-
ment, or that the order relation used for sorting be the one provided by the argument.

��
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This problem can be circumvented by imposing a persistency requirement, for ex-
ample using the notation SP ι

==⇒ SP′ to specify constructors in Mod[SP ⇒ SP′] that
are persistent along ι :Sig[SP]→ Sig[SP′]. Unfortunately there appears to be no way
of extending this idea to higher-order constructors — see Section 6.4 — so we take
a different, more flexible, solution. Namely, we allow the specification of the result
to explicitly depend on the argument to which the constructor is applied. But so far
we have no construct which allows a specification to refer to a model and thus we
need to add this as well.

Definition 6.2.7 (Singleton specification). Given a signature Σ and a model M ∈
Mod(Σ), {M} is a specification with the following semantics:6

Sig[{M}] = Σ
Mod[{M}] = {M} ��

Definition 6.2.8 (Constructor specification). Given a specification SP and a spec-
ification SP′[X ] that may contain a free variable7 X ranging over Sig[SP]-models,
ΠX :SP• SP′[X ] is a constructor specification with the following semantics:

Sig[ΠX :SP• SP′[X ]] = Sig[SP]⇒ Sig[SP′[X ]]
Mod[ΠX :SP• SP′[X ]] = {F ∈ Mod(Sig[SP]⇒ Sig[SP′[X ]]) |

for each M ∈ Mod[SP],
M ∈ dom(F) and F(M) ∈ Mod[SP′[M/X ]]}

A constructor specification ΠX :SP• SP′[X ] is consistent if Mod[ΠX :SP• SP′[X ]] �=
∅. ��
Some of the concepts and notations used in this definition have not been formally
introduced. Π is a binding construct and in order to give a completely formal defini-
tion of its syntax we would need to give a typing system for specifications in context
in which specifications are expressions built using specification-building operations,
perhaps involving variables that range over models. (In Section 6.3, we will need
variables ranging over specifications as well.) Then SP′[M/X ] stands for the spec-
ification SP′ in which all occurrences of the variable X are replaced by the model
M; to do this more formally one needs to interpret specification expressions in an
environment. See Section 6.4 below for the details; in the meantime the meaning
should be clear enough.

The above definition properly generalises Definition 6.2.1: SP ⇒ SP′ is equiva-
lent to ΠX :SP• SP′, where X does not occur in SP′.

Example 6.2.9 (Persistent constructor specification). The requirement of persis-
tency can be captured as promised above. Let SP and SP′ be specifications with a
signature morphism ι :Sig[SP]→ Sig[SP′]. Then SP ι

==⇒ SP′ is a constructor specifi-
cation defined by

6 CASL notation: curly braces are only used for grouping in CASL.
7 So far we have systematically used the meta-variable X for sets of variables as may occur in terms
and formulae in institutions like EQ; the use of X also as a variable in specification expressions
here and below should cause no confusion.
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SP ι
==⇒ SP′ = ΠX :SP• ({X} with ι)∪SP′.

It is easy to check that

Mod[SP ι
==⇒ SP′] = Mod[SP ⇒ SP′]∩Mod(Sig[SP] ι

==⇒Mod[SP] Sig[SP′]). ��
Example 6.2.10. The problem indicated in Example 6.2.6 can now be resolved by
using the constructor specification SP ι

==⇒ SP′ where SP and SP′ are as sketched there
and ι :Sig[SP]→ Sig[SP′] is the signature inclusion.

In this case, a tight specification of the constructor δ can be given, namely

ΠX :SP• {X} hide via δ ,

and the same applies to any reduct constructor. (However, there is little point in
writing a specification that admits a single constructor and is so close to a program
via Exercise 6.1.5; one normally starts from loose requirements; see Chapter 7.) ��
Example 6.2.11. Recall the specifications STRINGARRAY and BUCKETARRAY in
Section 5.3. Constructors that implement such arrays in a generic fashion can be
specified as follows.

spec ELEM∃ =
sorts Elem
∃x:Elem• x = x

spec CONSARRAY =
ΠX :ELEM∃ • {X} and NAT

then

sorts Array[Elem]
ops empty:Array[Elem]

put:Nat×Elem×Array[Elem]→ Array[Elem]
get:Nat×Array[Elem]→ Elem

preds used:Nat×Array[Elem]
∀i, j:Nat,s:Elem,a:Array[Elem]

• ¬used(i,empty)
• used(i,put(i,s,a))
• i �= j ⇒ (used(i,put( j,s,a))⇔ used(i,a))
• get(i,put(i,s,a)) = s
• i �= j ⇒ get(i,put( j,s,a)) = get(i,a)

This specifies constructors which, when given a model of ELEM, combine it with
a model of NAT and expand the result by some realisation of Nat-indexed arrays
storing elements of the sort Elem.8

Exercise. The axiom in ELEM∃ guarantees that there is at least one value of sort
Elem. Otherwise CONSARRAY would be inconsistent. Explain why.

8 CASL notation: this would be written unit spec CONSARRAY = ELEM∃ → . . . in CASL, where
the result is implicitly a persistent extension of the argument; see the notation ELEM∃

ι
==⇒

ELEMARRAY∃ below.
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The explicit dependency of the specification of the result on the model of ELEM
given as argument ensures persistency of the specified constructors. So, exactly the
same thing may be written as follows:

CONSARRAY ≡ ELEM∃
ι
==⇒ ELEMARRAY∃

where ELEMARRAY is defined in the obvious way

spec ELEMARRAY∃ =
ELEM∃ and NAT
then

sorts Array[Elem]
ops empty:Array[Elem]

. . .
preds used:Nat×Array[Elem]
∀i, j:Nat,s:Elem,a:Array[Elem]

• ¬used(i,empty)
• . . .

and ι is the signature inclusion. ��
Exercise 6.2.12. Give a version of CONSARRAY in the institution FPL along the
lines of Example 5.3.2. Then the following is a constructor in FPL that realises it
(see Example 6.1.9):

constructor A : CONSARRAY =
sorts Nat free with 0| succ(Nat)

Array[Elem] free with empty|put(Nat,Elem,Array[Elem])
ops fun used(i:Nat,a:Array[Elem]):Bool =

case a of empty => false
| put(n,e,a′) => if n = i then true else used(i,a′)

fun get(i:Nat,a:Array[Elem]):Elem =
case a of put(n,e,a′) => if n = i then e else get(i,a′)

Check that this definition indeed yields a constructor in Mod[CONSARRAY]. Notice
that the requirement on the argument model to contain at least one element of sort
Elem may be dropped here.

Use the extensions to FPL suggested in Exercise 4.1.26 to provide another such
constructor, for instance one in which arrays are represented as functions from Nat
to Elem. ��
Fact 6.2.13. Mod[SP ι

==⇒ SP′]⊆ Mod[SP ι
==⇒ SP′ ∪ (SP with ι)]. ��

Exercise 6.2.14. It follows that Mod[SP ι
==⇒ SP′] = Mod[SP ι

==⇒ SP′ ∪ (SP with ι)]
since the opposite inclusion to the one in the fact is trivial; cf. Fact 6.2.4. So we can
always assume that in a persistent constructor specification SP ι

==⇒ SP′, ι :SP → SP′

is a specification morphism. Show that SP ι
==⇒ SP′ is consistent iff ι :SP→ SP′ admits

model expansion, and then ι :SP → SP′ is conservative by Exercise 5.5.7. ��
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Fact 6.2.15. Given F ∈ Mod[SP ι
==⇒ SP′] and F ′ ∈ Mod[SP′ ι ′

==⇒ SP′′], we also have

F ;F ′ ∈ Mod[SP ι ;ι ′
===⇒ SP′′]. ��

Exercise 6.2.16. Prove the following generalisation of Fact 6.2.5 to arbitrary con-
structor specifications: if F ∈ Mod[ΠX :SP• SP′1[X ]], F ′ ∈ Mod[ΠY :SP′2 • SP′′[Y ]]
and for each M ∈ Mod[SP], Mod[SP′1[M/X ]]⊆ Mod[SP′2] then we also have F ;F ′ ∈
Mod[ΠX :SP• SP′′[F(X)/Y ]]. (See Section 6.4 for clarification of the notation used
in case it is not self-evident.) Use this to prove Fact 6.2.15. ��
Fact 6.2.17. Consider a persistent constructor F ∈ Mod(SP σ

==⇒ SP′) with a sig-
nature morphism σ :Sig[SP]→ Sig[SP′]. Let ι :SP′′ → SP′ be a specification mor-
phism and σ ′:Sig[SP] → Sig[SP′′] be a signature morphism such that σ = σ ′;ι .

Then F ; ι ∈ Mod(SP σ ′
==⇒ SP′′) is a persistent constructor. ��

Fact 6.2.18. Suppose that the following pushout diagram in Sign admits amalga-
mation

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

and that F ∈Mod[SP ι
==⇒ SP′] where Sig[SP] =Σ and Sig[SP′] =Σ ′. Furthermore, let

SPG be a specification such that Sig[SPG] = ΣG and σ :SP → SPG is a specification

morphism. Then σ(F) ∈ Mod[SPG
ι ′
==⇒ (SP′ with σ ′)∪ (SPG with ι ′)]. ��

Fact 6.2.19. Suppose that the following pushout diagram in Sign admits amalga-
mation:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1

Given two persistent constructors F1 ∈Mod[SP
σ1==⇒ SP1] and F2 ∈Mod[SP

σ2==⇒ SP2],
F1 +F2 ∈ Mod[SP σ

==⇒ (SP1 with σ ′
2)∪ (SP2 with σ ′

1)] where σ = σ1;σ ′
2 = σ2;σ ′

1.
��

Fact 6.2.20. ΠX :SP• SP′[X ] is inconsistent iff for some M ∈ Mod[SP], SP′[M/X ] is
inconsistent. In particular, SP ⇒ SP′ is inconsistent iff SP is consistent and SP′ is
inconsistent. ��
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Fact 6.2.21. SP ι
==⇒ SP′ is consistent iff Mod[SP]⊆ Mod[SP′ hide via ι ]. ��

Exercise 6.2.22. Give an example of specifications SP, SP′ in FOEQ and a sig-
nature morphism ι :Sig[SP] → Sig[SP′] such that SP ⇒ SP′ is consistent while
SP ι

==⇒ SP′ is inconsistent. ��
Exercise 6.2.23. Give an example of specifications SP, SP′ in FOEQ and a signa-
ture morphism ι :Sig[SP]→ Sig[SP′] such that SP ι

==⇒ SP′ is consistent but there is
no persistent functor from Mod[SP] to Mod[SP′]. HINT: Consider an axiom of the
form a = b ⇔ c �= d where a,b are constants in SP, and c,d are new constants in
SP′. ��

6.3 Parameterised specifications

In Chapter 5 we presented various means for structuring specifications. This in-
volved specification-building operations which are functions mapping specifications
to specifications. More complex functions of this kind may be defined as combina-
tions of the operations provided. Some examples of these were given in Section 5.2
where a few commonly occurring combinations of the basic specification-building
operations were given concise notation. Here we generalise this further and provide
λ -abstraction for user-defined abbreviations, with β -reduction for application, with
variables now ranging over specifications; see the comments after Definition 6.2.8.

Definition 6.3.1 (Parameterised specification). Given a signature Σ and a spec-
ification SP′[X ] that may contain a free variable X ranging over Σ -specifications,
λX :Spec(Σ)• SP′[X ] is a parameterised specification.9 The result of applying such
a parameterised specification to a Σ -specification SP is defined as follows:

(λX :Spec(Σ)• SP′[X ])(SP) = SP′[SP/X ]

where SP′[SP/X ] is SP′[X ] with all occurrences of X replaced by SP. ��
A characteristic feature of the specification-building operations we have defined is
that the signature of SP′[SP/X ] does not depend on SP, so there is a common sig-
nature Σ ′ = Sig[SP′[SP/X ]] for all Σ -specifications SP. Thus λX :Spec(Σ)• SP′[X ]
determines a function mapping Σ -specifications (denoting classes of Σ -models)
to Σ ′-specifications (denoting classes of Σ ′-models). Another property of most
specification-building operations (in particular, all those in Section 5.1 except free)
is monotonicity with respect to model class inclusion; see Exercises 5.1.4 and
5.1.13. This carries over to parameterised specifications that involve only such
specification-building operations.

9 CASL notation: generic specifications in CASL have the same motivation but they are done dif-
ferently; see Definition 6.3.5.
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Exercise 6.3.2. Generalise the above definition of parameterised specifications to
allow one to narrow the class of admissible arguments by requiring that all the mod-
els of the argument satisfy a given specification. ��
Example 6.3.3. The example in Section 5.3 introduced two closely related versions
of arrays: STRINGARRAY and BUCKETARRAY. Their similarity can be made ex-
plicit by introducing a specification of arrays that is parameterised by a specification
of the elements to be stored in arrays.

spec ELEM =
sorts Elem

spec ARRAY =
λX :Spec(Sig[ELEM])•

X and NAT
then

sorts Array[Elem]
ops empty:Array[Elem]

put:Nat×Elem×Array[Elem]→ Array[Elem]
get:Nat×Array[Elem]→ Elem

preds used:Nat×Array[Elem]
∀i, j:Nat,s:Elem,a:Array[Elem]

• ¬used(i,empty)
• used(i,put(i,s,a))
• i �= j ⇒ (used(i,put( j,s,a))⇔ used(i,a))
• get(i,put(i,s,a)) = s
• i �= j ⇒ get(i,put( j,s,a)) = get(i,a)

Now

STRINGARRAY ≡ STRING and (ARRAY(STRING hide via σElem�→String)
with σElem�→String,Array[Elem]�→Array[String])

where σElem �→String is the unique morphism from Sig[ELEM] to Sig[STRING] (map-
ping Elem to String) and σElem �→String,Array[Elem] �→Array[String] is the surjective mor-
phism from Sig[ARRAY(ELEM)] that maps Elem to String and Array[Elem] to
Array[String] and is the identity otherwise.

BUCKETARRAY may be expressed in a similar fashion. ��
A parameterised specification often extends its argument as a constructor does

by adding some additional components and axioms. Then it can be expressed in
the form λX :Spec(Σ)• X then (· · ·) with no use of X in “(· · ·)”; see ARRAY above.
When P is in this form there is an inclusion between Σ and the result signature, and
then for any Σ -specification SP, the application P(SP) gives SP then (· · ·).
Exercise 6.3.4. Check that if P is of the form λX :Spec(Σ)• X then (· · ·) then for
any Σ -specification SP, P(SP)≡ P(〈Σ ,∅〉) and SP.

Use this fact to show that
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STRINGARRAY ≡ STRING and (ARRAY(ELEM)
with σElem�→String,Array[Elem]�→Array[String]).

The equivalence above does not hold when P does not merely enrich its parame-
ter. An example is a specification of ordered lists where the order relation, given as
a parameter, is used in the specification of insertion but is not included in the result.
Work out the details of this example. ��

It is often the case that the argument SP arises from a larger specification SPG
by “cutting it down” to fit the signature Σ . A common idiom is then to restore
what has been cut out by adding it back to the result, as in the equivalent presen-
tation of STRINGARRAY in Example 6.3.3 above. Generalising this to allow for
an arbitrary signature morphism between parameter and result rather than only an
inclusion, while constraining the choice of argument specification as suggested in
Exercise 6.3.2, we obtain the following.

Definition 6.3.5 (Pushout-style parameterised specification). In an institution
with a cocomplete category of signatures, a specification morphism p:SP → SP′
may be considered as a parameterised specification. Application of p to an argu-
ment specification SPG via a specification morphism σ :SP → SPG results in the
specification p(SPG[σ ])10 defined by the following pushout diagram in the category
of specifications:

SPG

SP′SP

p(SPG[σ ])�
p′

�

σ

�

σ ′

�
p

Here, the specification morphism σ is called the fitting morphism. ��
Note that p(SPG[σ ]) is (SPG with p′)∪ (SP′ with σ ′) where the following is the
pushout in the category of signatures with p and σ viewed as signature morphisms
(cf. Theorem 5.5.11):

·

·

·

·
�

σ

�
p

�
p′

�

σ ′

10 CASL notation: if p is an inclusion than this would be written P[SPG fit σ ] in CASL for an ap-
propriate generic specification P corresponding to p. The fitting morphism σ can sometimes be left
implicit, and CASL has special treatment of compound names like Array[Elem]; see Example 6.3.6.
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Example 6.3.6. Example 6.3.3 may be simplified by the use of pushout-style pa-
rameterisation. Let PARRAY:ELEM → ARRAY(ELEM) be the inclusion. Then

STRINGARRAY ≡ PARRAY(STRING[σElem�→String])

where σElem �→String is the unique morphism from Sig[ELEM] to Sig[STRING] (map-
ping Elem to String). To be precise, this equivalence depends on the choice of names
in the signature of the instantiation, since the pushout is defined up to isomorphism.
It holds when we follow the convention that names like Array[Elem] are mapped to
Array[String] when the fitting morphism maps Elem to String; see [Mos04].

BUCKETARRAY may be expressed in a similar fashion. ��
A specification morphism p:SP → SP′ may also be viewed as a persistent con-

structor specification SP
p
==⇒ SP′.

Exercise 6.3.7. Check that in any semi-exact institution, using the notation of Def-

inition 6.3.5, if F ∈ Mod[SP
p
==⇒ SP′] then σ(F) ∈ Mod[SPG

p′
==⇒ p(SPG[σ ])] (cf.

Fact 6.2.18). Then it easily follows that for any specification morphism q:SP0 →
SPG and G ∈ Mod[SP0

q
==⇒ SPG] we get G;F ∈ Mod[SP0

q;p′
===⇒ p(SPG[σ ])]. ��

The point of this exercise is that lifting of constructors specified in this way is
compatible with pushout-style instantiation. This must not be taken as a directive
to identify parameterised specifications with specifications of constructors. The two
concepts serve inherently different methodological purposes, and semantically they
give rise to objects of different types: a parameterised specification determines a
function from specifications (denoting classes of models) to specifications (denoting
classes of models), while a constructor specification denotes a class of constructors,
that is, a class of functions from models to models.

If Σ and Σ ′ are the parameter and result signatures respectively, then a param-
eterised specification determines a function from specifications (denoting classes
of models) to specifications (denoting classes of models), that is, P:P(Mod(Σ))→
P(Mod(Σ ′)) (where P(Mod(Σ)) is the class of all classes of Σ -models). In con-
trast, a constructor specification denotes a class of constructors, that is, a class of
functions from models to models, Q ⊆ Mod(Σ ⇒ Σ ′).

The following exercise sheds some light on the relationship between the two
concepts.

Exercise 6.3.8. Given signatures Σ and Σ ′, consider the following two semantic
domains

• ConstSpec: all classes of total constructors in Mod(Σ ⇒ Σ ′), ordered by inclu-
sion

• ParSpec: all monotone functions from classes of Σ -models to classes of Σ ′-
models, ordered by pointwise containment

and define the following functions:

• For Q ∈ ConstSpec, define Q† ∈ ParSpec by Q†(C) = {F(A) | F ∈Q,A ∈C}
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• For P ∈ParSpec, define P# ∈ConstSpec by P# = {F ∈Mod(Σ)→Mod(Σ ′) |
F(A) ∈P({A}) for all A ∈ Mod(Σ)}.

Show that † and # form a Galois connection (see Exercise 3.5.23) between
ConstSpec and ParSpec. Characterise closed elements of the Galois connection
(HINT: If you get stuck, have a look at [SST92]) and relate them to (total) functions
mapping Σ -models to classes of Σ ′-models.

Give examples of objects in ConstSpec and ParSpec that are not closed in this
sense. HINT: For the former, consider objects that are not expressible using a con-
structor specification. For the latter, try using the parameter variable more than once.

��
Exercise 6.3.9. Recall the constructor specification CONSARRAY and the parame-
terised specification ARRAY from Examples 6.2.11 and 6.3.3, respectively. Check
that the class of constructors that CONSARRAY denotes and the function on classes
of models that ARRAY determines arise from a function mapping models of ELEM
to classes of ARRAY(ELEM)-models. But note that they are not related by the Ga-
lois connection in Exercise 6.3.8. (HINT: The trouble is that CONSARRAY specifies
partial constructors which are not defined on algebras with the empty carrier on
sort Elem.) A simple remedy is to add a constant noelem:Elem to the signature of
ELEM∃ in CONSARRAY and to the signature of ELEM in ARRAY. Check that then
the expected relationship holds. Alternatively, work out a Galois connection as in
Exercise 6.3.8 for classes of partial constructors that are defined at least on models
in a pre-specified class. ��

6.4 Higher-order parameterisation

The material in the preceding sections extends naturally to higher-order parame-
terisation, both for constructors and for parameterised specifications. Higher-order
constructors, which take constructors as arguments and produce constructors as re-
sults, correspond to higher-order generic modules in programming languages, and
constructor specifications as introduced in Definition 6.2.8 extend easily to this case.

However, so far (see Definitions 6.2.8 and 6.3.1) we have been rather informal
about the exact syntax of specifications involving variables. Such informality is po-
tentially dangerous for higher-order languages with binding operators, so we give
a system of formal typing rules for the syntactic constructs involved. We start by
generalising the notion of constructor signature.

Definition 6.4.1 (Constructor signature and context). A constructor signature S
is either a signature Σ ∈ |Sign| or has the form S1 ⇒ S2, where S1 and S2 are
constructor signatures. We generalise the notation used so far by writing Mod(S1 ⇒
S2) for the class of all partial functions from Mod(S1) to Mod(S2). A context Γ
is a sequence of the form X1:S1, . . . ,Xn:Sn where X1, . . . ,Xn are distinct variables
and S1, . . . ,Sn are constructor signatures. We write dom(Γ ) for {X1, . . . ,Xn} and
identify contexts with the obvious mappings, writing Γ (Xi) for Si. ��



6.4 Higher-order parameterisation 281

Definition 6.4.2 (Constructor and constructor specification). For any construc-
tor signature S , elements in Mod(S ) are called constructors. This extends Def-
inition 6.1.1 and also covers models in Mod(Σ) which we view here as nullary
constructors.

The following typing rules introduce syntax for expressions that are well formed
in a given context. We use the judgement form Γ �W : G where Γ is a context
(which may be empty, as in �W : G ), W is an expression, and G is either a con-
structor signature S or is a specification type of the form Spec(S ) where S is
a constructor signature; this will be generalised in Definition 6.4.5 below. Con-
structor expressions, that is, expressions E of type S , will also be called construc-
tors, and specification expressions, that is, expressions SP of type Spec(S ), will be
called constructor specifications. As usual, we regard α-convertible11 expressions
as equal, where the binding constructs are λ and Π .

Γ � 〈Σ ,Φ〉 : Spec(Σ)
Σ ∈ |Sign|,Φ ⊆ Sen(Σ)

Γ �SP : Spec(Σ)

Γ �SP with σ : Spec(Σ ′)
σ :Σ → Σ ′

Γ �SP′ : Spec(Σ ′)
Γ �SP′ hide via σ : Spec(Σ)

σ :Σ → Σ ′

. . .and similarly for other specification-building operations . . .

Γ �SP1 : Spec(S ) Γ �SP2 : Spec(S )

Γ �SP1∪SP2 : Spec(S )

Γ �E : S

Γ �{E} : Spec(S )

Γ �SP : Spec(S ) Γ ,X :S �SP′ : Spec(S ′)
Γ �ΠX :SP• SP′ : Spec(S ⇒S ′)

Γ �X : Γ (X)
X ∈ dom(Γ )

Γ �SP : Spec(S ) Γ ,X :S �E ′ : S ′

Γ �λX :SP• E ′ : S ⇒S ′
Γ �E : S1 ⇒S2 Γ �E1 : S1

Γ �E(E1) : S2

Γ � [F ]S : S
F ∈ Mod(S )

As before, SP ⇒ SP′ stands for ΠX :SP• SP′ where X does not occur in SP′. We
adopt the usual notational convention that ⇒ associates to the right, so that SP ⇒
SP′ ⇒ SP′′ stands for SP ⇒ (SP′ ⇒ SP′′). ��

11 Two expressions are α-convertible if they are the same up to capture-avoiding renaming of
bound variables.
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The final rule above is of a different character from the rest since F in its side
condition is a semantic object used as an expression in the formal typing judgement
in its conclusion. This is a deliberate choice in order to avoid prescribing any syntax
for defining individual models and constructors. We tag these objects with their
constructor signatures in order to avoid any ambiguity. A reasonable option is to
limit this rule to models only,

Γ � [M]Σ : Σ
M ∈ Mod(Σ),

and introduce a particular set of constructors either as constants, with their typing
defined by rules like

Γ � σ : Σ ′ ⇒ Σ
σ :Σ → Σ ′

or as additional syntax, with rules like

Γ �E : Σ ′

Γ �E σ : Σ
σ :Σ → Σ ′.

Exercise 6.4.3. Devise similar rules for the free extension constructor as defined in
Example 6.1.7. For instance, the second rule might be

Γ �E : Σ Γ �SP′ : Spec(Σ ′)
Γ �Fσ ,SP′(E) : Σ ′ σ :Σ → Σ ′. ��

Exercise 6.4.4. Suppose that the following pushout diagram in Sign admits amal-
gamation:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1

Example 6.1.32 defines a two-argument constructor of amalgamated union which
we will write in curried form, taking its arguments one at a time rather than as a
pair, +σ1,σ2 :Σ1 ⇒ (Σ2 ⇒ Σ ′); cf. Exercise 6.4.16 below. Devise similar rules for
this constructor. For instance, the second rule might be

Γ �E1 : Σ1 Γ �E2 : Σ2

Γ �E1 +σ1,σ2 E2 : Σ ′ given the pushout diagram above.

��
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Higher-order parameterised specifications are harder to motivate but their syntax
and semantics present no difficulties. We extend the form of specification types and
contexts and use these to accommodate syntax for parameterised specifications.

Definition 6.4.5 (Parameterised specification). A specification type T is either
of the form Spec(S ) for a constructor signature S , as above, or has the form
T1 → T2. We extend the notion of context to allow variables typings to be spec-
ification types T as well as constructor signatures S , and judgements to allow ex-
pressions to be typed to arbitrary specification types. Expressions P of type T are
referred to as T -specifications. When T has the form Spec(S ), these are construc-
tor specifications, as before; when T has the form T1 →T2, they are parameterised
specifications. We add the following typing rules to those in Definition 6.4.2.

Γ ,X :T �P′ : T ′

Γ �λX :T • P′ : T →T ′
Γ �P : T1 →T2 Γ �P1 : T1

Γ �P(P1) : T2

We write [[T ]] for the class of all subclasses of Mod(S ) when T has the form
Spec(S ), and for the class of all functions from [[T1]] to [[T2]] when T has the form
T1 →T2. ��
Exercise 6.4.6. Replace the rules for specification-building operations in Defini-
tion 6.4.2 by introducing these operations as constants as in

Γ � hide via σ : Spec(Σ ′)→ Spec(Σ)
σ :Σ → Σ ′. ��

Exercise 6.4.7. Check that any typing judgement has at most one derivation in the
system above, and that, in any context, every expression has at most one typing.
Check that the type of an expression depends only on the types that the context
assigns to its free variables. In particular, a closed expression (i.e. one with no free
variables) has at most one type, which does not depend on the choice of the context.

��
Exercise 6.4.8. Check that the following substitutivity properties hold in the system
above:

• If Γ ,X :S ′�E : S and Γ �E ′ : S ′ then Γ �E[E ′/X ] : S .
• If Γ ,X :S ′�P : T and Γ �E ′ : S ′ then Γ �P[E ′/X ] : T .
• If Γ ,X :T ′�E : S and Γ �P′ : T ′ then Γ �E[P′/X ] : S .
• If Γ ,X :T ′�P : T and Γ �P′ : T ′ then Γ �P[P′/X ] : T .

For each of these cases, find expressions to which it is applicable. Check that the fol-
lowing property captures all four cases, where G and G ′ range over both constructor
signatures and specification types:

• If Γ ,X :G ′�W : G and Γ �W ′ : G ′ then Γ �W [W ′/X ] : G . ��
Exercise 6.4.9. λ -abstraction and application are subject to β -reduction, defined by
the rewrite rule (see Section 2.6)
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(λX :G •W )(W ′)→β W [W ′/X ],

which may be applied to reduce any occurrence of the redex within an expression;
the resulting relation on expressions is also written →β .

Using Exercise 6.4.8, show that the following subject reduction properties hold
in the system above:

• If Γ �E : S and E →β E ′ then Γ �E ′ : S .
• If Γ �P : T and P →β P′ then Γ �P′ : T .

The relation of η-reduction is defined in a similar way by the rewrite rule

λX :G •W (X)→η W

whenever X is not free in W . Show that:

• If Γ �E : S and E →η E ′ then Γ �E ′ : S .
• If Γ �P : T and P →η P′ then Γ �P′ : T . ��
We now give semantics to the expressions introduced in Definitions 6.4.2 and 6.4.5.

• Nullary constructors E : Σ will denote models in Mod(Σ).
• Constructors E : S1 ⇒ S2 will denote partial functions from Mod(S1) to

Mod(S2).
• Constructor specifications SP : Spec(S ) will denote classes of S -constructors.
• Parameterised specifications P : T1 → T2 will denote functions mapping deno-

tations of T1-specifications to denotations of T2-specifications.

Even well-typed expressions may fail to denote. This is due solely to the partiality
of constructors as functions.

Definition 6.4.10. A Γ -environment ρ is a function that assigns values to variables
in dom(Γ ) in a way that is consistent with their types. That is, for X ∈ dom(Γ ), if
Γ (X) is a constructor signature S then ρ(X) ∈ Mod(S ); and if Γ (X) is a specifi-
cation type T then ρ(X) ∈ [[T ]]. ��
Definition 6.4.11. For any context Γ and Γ -environment ρ , the following semantics
gives a meaning to each expression that is well typed in Γ .

[[Γ � 〈Σ ,Φ〉 : Spec(Σ)]]ρ = Mod[〈Σ ,Φ〉]
[[Γ �SP with σ : Spec(Σ ′)]]ρ = {M ∈ Mod(Σ ′) | M σ ∈ [[Γ �SP : Spec(Σ)]]ρ}

where σ :Σ → Σ ′
[[Γ �SP′ hide via σ : Spec(Σ)]]ρ = {M σ | M ∈ [[Γ �SP′ : Spec(Σ ′)]]ρ}

where σ :Σ → Σ ′
. . . and similarly for other specification-building operations . . .

[[Γ �SP1∪SP2 : Spec(S )]]ρ = [[Γ �SP1 : Spec(S )]]ρ ∩ [[Γ �SP2 : Spec(S )]]ρ
[[Γ �{E} : Spec(S )]]ρ = {[[Γ �E : S ]]ρ}
[[Γ �ΠX :SP• SP′ : Spec(S ⇒S ′)]]ρ =

{F ∈ Mod(S ⇒S ′) | for all G ∈ [[Γ �SP : S ]]ρ ,G ∈ dom(F)
and F(G) ∈ [[Γ ,X :S �SP′ : S ′]]ρ[X �→G]}
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[[Γ �X : Γ (X)]]ρ = ρ(X)
[[Γ �λX :SP• E ′ : S ⇒S ′]]ρ =

{F �→ [[Γ ,X :S �E ′ : S ′]]ρ[X �→F ] | F ∈ [[Γ �SP : Spec(S )]]ρ}
[[Γ �E(E1) : S2]]ρ = [[Γ �E : S1 ⇒S2]]ρ([[Γ �E1 : S1]]ρ)

if [[Γ �E1 : S1]]ρ ∈ dom([[Γ �E : S1 ⇒S2]]ρ)
[[Γ � [F ]S : S ]]ρ = F

where F ∈ Mod(S )

[[Γ �λX :T • P′ : T →T ′]]ρ = {F �→ [[Γ ,X :T �P′ : T ′]]ρ[X �→F ] | F ∈ [[T ]]}
[[Γ �P(P1) : T2]]ρ = [[Γ �P : T1 →T2]]ρ([[Γ �P1 : T1]]ρ)

Here, ρ [Z �→ v] is the environment that results from ρ by assigning v to the variable
Z and leaving the values of other variables unchanged. ��
We will sometimes leave the context Γ and type G implicit and then abbreviate
[[Γ �W : G ]]ρ as [[W ]]ρ , as justified by Exercise 6.4.7. We use the notation Mod[SP]
to stand for [[SP]]∅, where ∅ is the empty environment, when �SP : Spec(S ). This
properly extends the notation used for specifications SP as introduced before this
section, for which we have �SP : Spec(Σ) or �SP : Spec(Σ ⇒ Σ ′).

Exercise 6.4.12. Check that the following substitution property holds: if Γ ,X :G ′�
W : G and Γ �W ′ : G ′, then [[W [W ′/X ]]]ρ = [[W ]]ρ[X �→[[W ′]]ρ ] for any Γ -environment
ρ , provided that X has a free occurrence in W . The final proviso is needed because
[[W ]]ρ[X �→[[W ′]]ρ ] is undefined when [[W ′]]ρ is undefined, whether X is free in W or
not. ��
Exercise 6.4.13. Check that the typing system in Definitions 6.4.2 and 6.4.5 is
sound with respect to the semantics in Definition 6.4.11. That is, show that for
any context Γ and any Γ -environment ρ , whenever Γ � E : S and [[Γ � E : S ]]ρ
is defined then [[Γ � E : S ]]ρ ∈ Mod(S ), and similarly, whenever Γ � P : T and
[[Γ � P : T ]]ρ is defined then [[Γ � P : T ]]ρ ∈ [[T ]]. Proceed by induction on the
structure of the derivation, first showing that each rule is sound in the obvious sense.
Note that the definedness proviso cannot be dropped, as it is not in general ensured
by the typing rules. ��
Exercise 6.4.14. Lift the Galois connection in Exercise 6.3.8 to the higher-order
case. You may want to take partiality of constructors into account, as suggested at
the end of Exercise 6.3.9. ��
Exercise 6.4.15. Show that, for any constructor signature S , there exists a specifi-
cation lift(S ) such that � lift(S ) : Spec(S ) and [[lift(S )]] = Mod(S ). The base
case is easy: lift(Σ) = 〈Σ ,∅〉. But the induction step also requires a specification
with no models over the argument signature, because Mod(S ⇒S ′) is the partial
function space. This requires an assumption on the underlying institution. ��
Exercise 6.4.16. The extension to higher order admits constructors and parame-
terised specifications with multiple arguments via the usual currying convention:
if Γ �E : Σ1 ⇒ Σ2 ⇒ Σ , Γ �E1 : Σ1 and Γ �E2 : Σ2, then Γ �E(E1)(E2) : Σ , so E
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may be regarded as a two-argument constructor. Extend the notions of constructor
signature, specification type and specification to cover explicit multi-argument func-
tions taking tuples of arguments, with constructor signatures of the form S1×·· ·×
Sn ⇒ S , and modify the syntax, typing rules and semantics accordingly. Show,
however, that the natural embedding that maps any two-argument constructor in
Mod(S1×S2 ⇒S ) to its curried form in Mod(S1 ⇒S2 ⇒S ) is not surjective
in general. HINT: Constructors are partial functions. ��
Exercise 6.4.17. Present amalgamation of persistent constructors having a common
source signature (Example 6.1.31), application of a constructor to an argument,
composition of constructors and lifting of a persistent constructor along a signa-
ture morphism (Example 6.1.28) as higher-order constructors. ��
Exercise 6.4.18. Given an institution INS, define an institution with constructor
signatures as signatures, constructors as models, and other components as appro-
priate. HINT: A morphism from S1 ⇒ S ′

1 to S2 ⇒ S ′
2 is a pair of morphisms

〈σ :S2 →S1,σ ′:S ′
1 →S ′

2〉. Use discrete model categories if you can’t think of a
good notion of morphism between constructors. Try using constructor specifications
as sentences. If you have trouble with translation, see Example 4.1.46. ��
Exercise 6.4.19. For “first-order” constructor signatures Σ1 ⇒ Σ ′

1 and Σ2 ⇒ Σ ′
2, Ex-

ercise 6.4.18 suggests that a morphism 〈σ ,σ ′〉:(Σ1 ⇒ Σ ′
1)→ (Σ2 ⇒ Σ ′

2) consists of
INS-signature morphisms σ :Σ2 →Σ1 and σ ′:Σ ′

1 →Σ ′
2. Try to give natural examples

in FOEQ. It is likely that σ will turn out to be an isomorphism or at least surjec-
tive in all of these examples. In typical examples, there are inclusions ι1:Σ1 → Σ ′

1
and ι2:Σ2 → Σ ′

2. Then, when Σ1 is larger than Σ2, the additional components of Σ1,
which are preserved in Σ ′

1, cannot easily be mapped to components in Σ ′
2 (in such a

way that σ ;ι1;σ ′ = ι2).
For semi-exact INS, consider a generalisation of the concept of first-order con-

structor signature morphism 〈σ ,σ ′〉:(Σ1 ⇒ Σ ′
1)→ (Σ2 ⇒ Σ ′

2) in which σ is as be-
fore but σ ′:Σ ′

1 → Σpo where Σpo is given by the pushout of σ and ι2

Σ2

Σ1

Σ ′
2

Σ ′
1

Σpo

�

σ

�
ι2

�ι1

����������
ι ′2

�
��
σ ′

�
���

with ι1;σ ′ = ι ′2. Show how any persistent constructor F ∈ Mod(Σ2
ι2==⇒ Σ ′

2) deter-
mines a persistent constructor F 〈σ ,σ ′〉 ∈ Mod(Σ1

ι1==⇒ Σ ′
1).

Try to lift this idea to give an improved notion of morphism between higher-order
constructor signatures. ��
Exercise 6.4.20. The system above is stratified, with a clear separation between
constructor signatures and specification types. Combine the two notions into a sin-
gle more general notion of type: a generalised type G is either a signature Σ , or of
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the form Spec(G ′), or of the form G1 → G2. Constructor types correspond to gen-
eralised types with no occurrences of Spec; what do specification types correspond
to? Generalised types include new forms like:

• Σ → Spec(Σ ′), for functions from Σ -models to classes of Σ ′-models (functions
from Σ -models to Σ ′-specifications);

• Spec(Σ → Spec(Σ ′)), for classes (specifications) of such functions;
• Spec(Spec(Σ)), for classes of classes of Σ -models (specifications of Σ -specifica-

tions).

Extend the syntax, typing rules and semantics correspondingly. Write down some
examples of expressions having types like those above. ��

6.5 An example

Recall the example of a structured specification in Section 5.3. Here we provide
specifications for constructors that might be used to build models for the specifica-
tions introduced there. We begin by rewriting the specification CONSARRAY from
Example 6.2.11, which specified a generic constructor for arrays of arbitrary ele-
ments, to make explicit its dependency on the choice of a model for NAT.

spec CONSARRAY =
ΠN:NAT• ΠX :ELEM∃ •
{N +X}
then

sorts Array[Elem]
ops empty:Array[Elem]

put:Nat×Elem×Array[Elem]→ Array[Elem]
get:Nat×Array[Elem]→ Elem

preds used:Nat×Array[Elem]
∀i, j:Nat,s:Elem,a:Array[Elem]

• ¬used(i,empty)
• used(i,put(i,s,a))
• i �= j ⇒ (used(i,put( j,s,a))⇔ used(i,a))
• get(i,put(i,s,a)) = s
• i �= j ⇒ get(i,put( j,s,a)) = get(i,a)

Note that {N + X}, employing the amalgamated union constructor from Exam-
ple 6.1.32, is equivalent to {N} and {X}, employing the sum specification-building
operation from Section 5.2 (assuming as usual the obvious choice of pushout signa-
ture). In this case amalgamation and sum are especially simple since the signatures
of N and X are disjoint.

spec CONSBUCKET =
ΠN:NAT• ΠS:STRING• ΠA:CONSARRAY•
{(A(N)(S σElem�→String)+S) σ−1

Array[String]�→Bucket
}
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where σElem�→String:Sig[ELEM] → Sig[STRING] is as introduced in Example 6.3.3
and σ−1

Array[String]�→Bucket:Sig[BUCKET] → Sig[STRINGARRAY] is the inverse of the
morphism σArray[String]�→Bucket introduced in Section 5.3. We use the + construc-
tor, omitting the signature morphism subscripts. (Their common source would be
Sig[ELEM], and the morphisms would be the signature inclusion and σElem�→String
respectively.) Proposition 5.6.2(6) implies that {(· · ·) σ−1

Array[String]�→Bucket
} is equivalent

to {(· · ·)} with σArray[String] �→Bucket. This is a tight specification which specifies the
single constructor

FBucket =
λN:NAT• λS:STRING• λA:CONSARRAY•

(A(N)(S σElem�→String)+S) σ−1
Array[String]�→Bucket

We will treat this as a constructor definition, making FBucket available for use in
subsequent definitions.

Exercise 6.5.1. Express A(N)(S σElem�→String) + S in FBucket by means of the con-
structor σElem �→String(A(N)). Do the same for FTable below. ��

spec CONSSTRINGKEY0 =
ΠN:NAT• ΠS:STRING•
{N +S}
then

ops hash0:String → Nat
• hash0(ε) = 0

spec CONSSTRINGHASHTABLE0 =
ΠN:NAT• ΠS:STRING• ΠA:CONSARRAY• ΠK0:CONSSTRINGKEY0•
{K0(N)(S)+FBucket(N)(S)(A)}
then

ops add:String×Bucket → Bucket
putnear:Nat×String×Bucket → Bucket

preds present:String×Bucket
isnear:Nat×String×Bucket

∀i:Nat,s:Elem,a,a′:Bucket
• add(s,a) = putnear(hash0(s),s,a)
• putnear(i,s,a) = a′ ⇔

∃ j:Nat• (¬used(i+ j,a)∨get(i+ j,a) = s)∧
(∀k:Nat• ¬( j ≤ k)⇒ used(i+ k,a))∧a′ = put(i+ j,s,a)

• present(s,a)⇔ isnear(hash0(s),s,a)
• isnear(i,s,a)⇔

∃ j:Nat• (∀k:Nat• k ≤ j ⇒ used(i+ k,a))∧get(i+ j,a) = s

Exercise 6.5.2. Perhaps unexpectedly, CONSSTRINGHASHTABLE0 is an inconsis-
tent specification. There is an implicit requirement, as remarked following the spec-
ification STRINGHASHTABLE0 in Section 5.3, that excludes nearly all models hav-
ing a value b of sort Bucket and an index n such that used(i,b) whenever i ≥ n.
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In Section 5.3 this was not a problem, even though it amounts to an additional
requirement on buckets that is not in the specification BUCKET but rather in the
later specification STRINGHASHTABLE0. The problem here is that constructors sat-
isfying CONSSTRINGHASHTABLE0 must be able to extend an arbitrary model of
BUCKET, which does not exclude those that violate this additional requirement.

Repair the problem by adjusting the specification CONSARRAY, for example to
exclude arrays that are used at infinitely many positions. ��

spec CONSSTRINGKEY =
ΠN:NAT• ΠS:STRING•
{N +S}
then

ops hash:String → Nat
• hash(ε) = 0

A specification CONSTABLE for constructors that builds models of TABLE would
be similarly tight as CONSBUCKET above. We give only the definition of the cor-
responding constructor. The definition allows the use of different constructors sat-
isfying CONSARRAY, one for building the arrays realising buckets and another for
arrays realising tables. This makes sense for efficiency reasons because different
operations on these arrays will have to be provided.

FTable =
λN:NAT• λS:STRING• λA:CONSARRAY• λA′:CONSARRAY•
(A(N)(FBucket(N)(S)(A′) σElem�→Bucket)+FBucket(N)(S)(A′)) σ−1

Array[Bucket]�→Table

where σElem�→Bucket:Sig[ELEM]→ Sig[BUCKET] is the morphism mapping Elem to
Bucket and σ−1

Array[Bucket]�→Table:Sig[TABLE]→ Sig[BUCKETARRAY] is the inverse of
σArray[Bucket] �→Table introduced in Section 5.3.

spec CONSSTRINGHASHTABLE =
ΠN:NAT• ΠS:STRING• ΠA:CONSARRAY• ΠK0:CONSSTRINGKEY0•

ΠT 0:CONSSTRINGHASHTABLE0• ΠK:CONSSTRINGKEY•
ΠA′:CONSARRAY•
{T 0(N)(S)(A)(K0)+K(N)(S)+FTable(N)(S)(A)(A′)}
then

ops add:String×Table → Table
preds present:String×Table
∀s:String, i:Nat,a:Table

• hash(s) = i∧used(i,a)⇒
add(s,a) = put(i,add(s,get(i,a)),a)

• hash(s) = i∧¬used(i,a)⇒
add(s,a) = put(i,add(s,empty),a)

• hash(s) = i∧used(i,a)⇒
(present(s,a)⇔ present(s,get(i,a)))

• hash(s) = i∧¬used(i,a)⇒¬present(s,a)
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Finally, we define a constructor that builds models of USERSTRINGHASHTABLE.

FUserStringHashTable =
λN:NAT• λS:STRING• λA:CONSARRAY• λK0:CONSSTRINGKEY0•

λT 0:CONSSTRINGHASHTABLE0• λK:CONSSTRINGKEY•
λA′:CONSARRAY•

λT :CONSSTRINGHASHTABLE•
T (N)(S)(A)(K0)(T 0)(K)(A′) ι

where ι is the signature inclusion corresponding to the final hiding (or rather, re-
vealing) step in the specification USERSTRINGHASHTABLE in Section 5.3.

The above presentation may seem overly complex. This is largely due to the
need to handle the flow of dependencies explicitly, rather than to a conceptual fault.
In Section 7.4, a style of presentation will be used that makes the management
of dependencies less intrusive. The conventions used there to handle dependencies
behind the scenes can be built into a formal notation for presenting developments;
see [BST02].

6.6 Bibliographical remarks

Language features giving the power of generic modules have been available in pro-
gramming languages for quite some time, in support of what has come to be known
as “generic programming” [GJL+03]. The first language to provide generic modules
in full generality as functions from modules to modules was Standard ML [Mac84].
Generic modules modelled as total functions on algebras appear in [ST88b], where
they were used to capture a general notion of specification implementation; see
Chapter 7. Constructors as partial functions, as they are defined here, appear in
[ST89] and [Asp97].

Constructor specifications correspond to Extended ML functors [ST89], [KST97]
and generic package specifications in Goguen’s approach to parameterised program-
ming [Gog96]. They first appear in the form of Π -specifications in [SST92] using
notation from the theory of dependent types [AH05], with similar ideas appearing
earlier in a programming language context in Pebble [LB88].

For specifying persistent constructors as discussed in Section 6.2, there appear
to be two alternatives to the use of singleton specifications in constructor specifica-
tions, both of which can be viewed as special cases of the approach taken here. The
first alternative is to use SP ι

==⇒ SP′ directly without considering this as an abbrevia-
tion, as in CASL [Mos04]; unfortunately it does not appear to be possible to extend
this smoothly to the specification of higher-order constructors. The second alterna-
tive is to allow specifications to refer to the components of parameters using a form
of “dot notation” as in Extended ML and [ST97]. Our use of singleton specifications
is from [SST92]; singleton types also appear in [Hay94] and were studied in depth
in [Asp95], and singleton kinds later found use in the context of typed intermediate
languages [SH00].
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The issue of functoriality of constructors (cf. Exercise 6.2.23) was perhaps first
raised in [Ber87]; it will come up again in Section 8.4.4.

Parameterised specifications in the λ -calculus style of Section 6.3 originate
in [Wir82] and [SW83]; see also [Wir86]. For the sake of simplicity we take
λX :Spec(Σ)• SP′[X ] with the argument required to have a given signature, as in
[ST88a], rather than λX :Spec(SP)• SP′[X ] where it is required to match a given
specification, as in [SST92]. Further generalisations have been considered, for ex-
ample passing the fitting morphism itself as an additional parameter [SW83], which
may even result in dependency of the result signature on the actual argument; see
also [Wir86], where anything is allowed as a parameter, including e.g. formulae.

Extensions of Standard ML [MT94], [Rus98], [RRS00] and Objective Caml
[LDF+10] provide higher-order generic modules. For a practical example, see Chap-
ter 10 of [Oka98] where they are used for “data-structural bootstrapping”. Specifica-
tions of higher-order constructors as in Section 6.4 first appeared in [SST92], while
higher-order parameterised specifications, including recursive ones, are available in
ASL [Wir82], [SW83], [Wir86].

The system of rules in Section 6.4 amounts to a stratified version of a system in
[SST92]. The calculus there includes rules for satisfaction of specifications which
generalise these typing rules. The Spec operator on types is available there as an
operator on specifications and is used to eliminate the need for an explicit subtyping
relation (which there amounts to model class inclusion rather than structural typing);
this device was also used in [Car88]; see [Asp00]. This calculus was investigated in
depth in [Asp97], where it was extended by a simple functional language that is
similar to what we use here to define constructors in the institution FPL, and related
to systems of dependent types with subtyping; see [AC01].

Pushout-style parameterised specifications originate in Clear [BG77], with other
early papers being [TWW82] and [Ehr82]; this line has been pursued in a series
of papers culminating in a monograph presentation [EM85]. In this approach, con-
structor specifications and parameterised specifications are regarded as two sides
of the same coin. The main results concern the relationship between translation of
free constructions along signature morphisms and pushout-style parameter passing,
under the rubric “correctness of parameter passing”; see the Extension Lemma of
[EM85] and results based on it. The essence of these results is captured by a com-
bination of Example 6.1.28, Exercise 6.1.30, and Exercise 6.3.7. The problem of
ensuring persistency naturally arises here; the requirements of sufficient complete-
ness and hierarchy consistency (Proposition 6.1.24) are due to [Gan83] and [Pad85],
based on [GH78]. “Parameterised parameter passing” amounts to composition of
parameterised specifications, not to be confused with higher-order parameterised
specifications as treated in Section 6.4. A generalisation of the pushout approach to
the situation where the parameter occurs more than once in the body is [JOE95];
this can be regarded as an intermediate step towards parameterised specifications in
the λ -calculus style. A first step towards generalisation of pushout-style parameter-
isation to higher order, where the basic notion of a morphism between constructor
signatures is as given in Exercise 6.4.19, is in [Lin03].
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Our view, which is built into the presentation of this chapter, is that it is conceptu-
ally and methodologically important to keep a clear distinction between constructor
specifications and parameterised specifications, despite the fact that there is an in-
timate semantical correspondence between subclasses of these, which include most
common examples (Exercises 6.3.8 and 6.4.14, from [SST92]). This point of view
was put forward in [SST92] with the slogan

parameterised (program specification) �= (parameterised program) specification.



Chapter 7

Formal program development

The previous chapters have described a powerful and flexible specification frame-
work. The point of constructing a specification is so that it may be used to define a
programming task by precisely delimiting the range of program behaviours that are
to be regarded as permissible. This presupposes an appropriate choice of institution
providing models that adequately reflect the computational phenomena of interest
for the problem at hand. Then, as we have seen, a specification describes a class
of models in this institution, and programs correspond to individual models. Thus,
the goal of producing a program that satisfies a specification SP has been achieved
when a program P in the desired target programming language has been obtained
such that the model corresponding to P is in the class of models of SP. This chapter
describes a framework which supports the gradual step-by-step development of a
program from a specification of requirements.

In keeping with the previous chapters, this is a model-theoretic framework which
takes no account of the details of the target programming language: we assume the
existence of programs (like P above) and a semantics that maps programs to mod-
els of the underlying institution, but refrain from making explicit reference to the
syntax of the programming language or its semantics. This view entirely ignores
many issues involved in the design of algorithms, not to mention efficiency aspects.
Its advantage is that issues concerned with the overall modular design of programs
and with the representation of data are addressed on a level at which the features of
particular programming languages do not intrude. On the other hand, it is possible
to put the programming language explicitly into the picture by using an institution
that incorporates programming constructs; see Examples 4.1.25 and 6.1.9 and Ex-
ercise 6.2.12. Another way of achieving the same effect is to appropriately link an
institution used for specifying with an institution used for programming, as will be
described in Section 10.1; see Example 10.1.9 and Exercise 10.1.10, followed by
Examples 10.1.17 and 10.1.18.

One way or another, there will always be a formal gap between the target pro-
gramming language and the specification language, even when the latter admits
specifications that describe individual models, i.e. denote classes that consist of a
single model. The size of the gap, and how easy it is to make the transition from a
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sufficiently detailed specification to a program, depends on the choice of institution
and the relationship between the syntax of axioms and the phrases of the target pro-
gramming language. The gap is very small in cases like Example 4.1.25, where the
axioms essentially incorporate programming constructs, and large in cases where
an abstract logical formalism is used for specification and a low-level language for
programming. The benefits of using high levels of abstraction in specification are
conciseness and more powerful reasoning tools, while the benefit of using low lev-
els of abstraction in programming is increased efficiency. Keeping the gap small
means sacrificing one or more of these benefits to some extent.

The framework presented here formalises the basic notion of refinement step
as an implementation of one specification by another, and then proceeds to define
what it means for such a refinement step to be correct, and under what conditions
correct individual refinement steps may be composed to lead ultimately to a cor-
rect realisation of an entire requirements specification. The focus is on correctness,
compositionality and generality. This leads to a methodology of stepwise refine-
ment involving modular decomposition into components connected via explicit in-
terfaces. A different topic, and one that is not addressed here at all, is that of pro-
viding techniques and heuristics that assist in coming up with individual refinement
steps; these will often be oriented towards specific problem areas and programming
technologies. The soundness of such techniques should ultimately be justified by
reference to the framework we present. In any case, since the power of our spec-
ification framework is such that there is no way to proceed automatically from an
arbitrary specification to a correct program, such techniques can only offer a partial
solution.

7.1 Simple implementations

There is a wide gulf between the realm of high-level user-oriented requirements
specifications and that of programs full of technical decisions and algorithmic de-
tails. The programming discipline of stepwise refinement suggests that a program be
evolved from a high-level specification by working gradually via a series of succes-
sively more detailed lower-level intermediate specifications. Each successive spec-
ification is called an implementation of the previous specification in the sequence.
The process is complete when a specification is obtained which involves only types
and functions that are already available in the target programming language. This
gives rise to a program that is guaranteed to be correct (that is, to satisfy the origi-
nal specification) provided all the implementation steps involved in its creation are
correct.

Development of a program from a specification thus proceeds via a sequence of
small, easy to understand and easy to verify steps:

SP0 ���SP1 ���· · · ���SPn.
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In such a chain, SP0 is the original requirements and SPn is a specification that is
detailed enough that its conversion into a program is relatively straightforward.

A formalisation of this approach requires a precise definition of the concept of
implementation, and of what it means for an implementation to be correct. We will
use the notation SP ���SP′ as above to mean that the specification SP′ is a correct
implementation of the specification SP; the wiggly arrow points from the higher-
level specification SP to the lower-level specification SP′. The specification SP′ is
obtained from SP by incorporating additional design decisions, typically in the form
of local modifications, each of which restricts the class of acceptable realisations.
These will include decisions concerning the concrete representation of abstractly
defined data types, decisions about how to compute abstractly specified functions,
and decisions about options of behaviour left open by the specification.

The following very simple formal notion of implementation captures this general
idea in its most basic form.

Definition 7.1.1 (Simple implementation). Given specifications SP and SP′ with
Sig[SP] = Sig[SP′], we say that SP′ is a simple implementation of SP, written
SP ���SP′, if Mod[SP]⊇ Mod[SP′]. ��
Note that, for simplicity, the definition of simple implementation requires the sig-
natures of both specifications to be the same. The hiding operation may be used to
adjust the signatures (for example, by removing auxiliary functions from the signa-
ture of the implementing specification — see Example 7.1.4 below) if this is not the
case.

The definition of simple implementation ensures that the correctness of the fi-
nal outcome of stepwise development may be inferred from the correctness of the
individual implementation steps:

Proposition 7.1.2. Given a chain SP0 ���SP1 ���· · ·���SPn of simple implemen-
tation steps and a model M ∈ Mod[SPn], we have M ∈ Mod[SP0]. ��
This is what we seek: if SPn is detailed enough that its conversion into a program
P determining a model M ∈ Mod[SPn] is straightforward, then M ∈ Mod[SP0] and
thus P is a solution to the original program development task.

An indirect way to prove the correctness of the final outcome is to notice that
the simple implementation relation is (obviously) transitive; this is referred to as
vertical composability.

Proposition 7.1.3 (Vertical composition). If SP ���SP′ and SP′ ���SP′′ then
SP ���SP′′. ��
Example 7.1.4. The following specifications are given in the institution FPL; see
Example 4.1.25.

spec Nat =
sorts Nat free with 0| succ(Nat)
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spec NatOrd =
Nat
then

ops le:Nat×Nat → Bool
∀m,n, p:Nat

• def (le(m,n))
• le(m,m) = true
• le(m,n) = true∧ le(n,m) = true ⇒ m = n
• le(m,n) = true∧ le(n, p) = true ⇒ le(m, p) = true
• le(m,n) = true∨ le(n,m) = true

spec NatList =
NatOrd
then

sorts NatList free with nil| cons(Nat,NatList)
ops fun append(l:NatList, l′:NatList):NatList =

case l of nil => l′ | cons(n, l′′) => cons(n,append(l′′, l′))
fun is in(n:Nat, l:NatList):Bool =

case l of nil => false
| cons(m, l′) => if n = m then true else is in(n, l′)

spec Sort1 =
NatList
then

ops sort:NatList → NatList
is sorted:NatList → Bool

∀n:Nat, l:NatList
• def (is sorted(l))
• is sorted(nil) = true
• is sorted(cons(n, l)) = true ⇔

(∀m:Nat• is in(m, l)⇒ le(n,m) = true)∧ is sorted(l) = true
• is sorted(sort(l)) = true
• is in(n, l) = true ⇔ is in(n,sort(l)) = true

spec Sort =
Sort1 hide ops is sorted:NatList → Bool

Note that Sort deliberately does not require sort to preserve repetitions in its
input, leaving this decision to the implementor. Any choice that is consistent with
the rest of Sort would be deemed acceptable. Apart from the obvious possibilities
(preserving repetitions, removing repetitions) it would be possible, for instance, to
require all prime numbers in the input to occur exactly twice in the output. The
following adds to Sort the requirement that sort preserve repetitions in its input,
delivering a permutation of its argument:
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spec SortCount =
Sort
then

ops fun count(n:Nat, l:NatList):Nat =
case l of nil => 0

| cons(m, l′) => if n = m then succ(count(n, l′))
else count(n, l′)

∀n:Nat, l:NatList
• count(n, l) = count(n,sort(l))

spec SortPerm =
SortCount hide ops count:Nat×NatList → Nat

Then we choose the algorithm (insertion sort) and “code” sort but, for illustrative
purposes, we refrain at this stage from giving the “code” for the additional operation
insert and leave it specified only.

spec Ins =
NatList
then

ops insert:Nat×NatList → NatList
∀n:Nat, l:NatList

• def (insert(n, l))
• ∃l1, l2:NatList•

insert(n, l) = append(l1,cons(n, l2))∧ l = append(l1, l2)
∧ (∀l′1:NatList• ∀m:Nat• l1 = append(l′1,cons(m,nil))⇒

le(m,n) = true)
∧ (∀l′2:NatList• ∀m:Nat• l2 = cons(m, l′2)⇒ le(n,m) = true)

spec SortByInsert =
Ins
then

ops fun sort(l:NatList):NatList =
case l of nil => nil | cons(n, l′) => insert(n,sort(l′))

spec SortIns =
SortByInsert hide ops insert:Nat×NatList → NatList

Finally, we “code” insert, preserving the “code” for sort:

spec InsDone =
NatList
then

ops fun insert(n:Nat, l:NatList):NatList =
case l of nil => cons(n,nil)

| cons(m, l′) => if le(n,m) = true then cons(n, l)
else cons(m, insert(n, l′))
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spec SortByInsertDone =
InsDone
then

ops fun sort(l:NatList):NatList =
case l of nil => nil | cons(n, l′) => insert(n,sort(l′))

spec SortDone =
SortByInsertDone hide ops insert:Nat×NatList → NatList

The above constitutes a sequence of simple implementation steps:

Sort ���SortPerm ���SortIns ���SortDone

With SortDone, development may be considered complete since the axioms in
NatList, InsDone and SortByInsertDone amount to code in FProg (Exer-
cise 4.1.30), the “programming part” of FPL; this disregards the fact that le is only
specified as a linear order, rather than being coded as a specific order relation. We
will make this more explicit in the next section; see Example 7.2.8.

The simple implementation steps above satisfy the correctness criteria stated in
the definition. This is trivial for Sort���SortPerm, since SortPerm just adds
a constraint on the class of models of Sort. For SortPerm ���SortIns, it is
necessary to prove that to each model of SortIns, we can add count and is sorted
so that the axioms of SortPerm are satisfied. Since count and is sorted are deter-
mined by the corresponding axioms in SortPerm, this amounts to proving that the
axioms of SortPerm follow from the “code” for sort in SortIns, assuming that
insert satisfies the axioms in Ins and that count and is sorted satisfy their axioms.
Finally, SortIns ���SortDone requires a proof that the axiom in Ins follows
from the “code” for insert in InsDone. (Exercise: Check the details.) Issues of
formal proof of correctness of implementation steps will be addressed in full in
Section 9.3, where we revisit this example; see Examples 9.3.8, 9.3.10 and 9.3.13.

��
In Example 7.1.4, Mod[SortPerm] = Mod[SortIns] = Mod[SortDone]

(even though Mod[Ins] �=Mod[InsDone], and count, hidden in SortPerm, is not
even mentioned in SortIns and SortDone); this means that the last two imple-
mentation steps are semantically trivial (but does not mean that justifying their cor-
rectness is trivial). It then follows that, for example, SortDone ���SortPerm.
The notion of simple implementation is not fine enough to capture the sense in which
SortDone is “closer” to a program than SortPerm is. A more elaborate notion
of implementation, which provides a place to record “progress” towards a program,
will be presented in Section 7.2.

An issue which may seem worrying is that the definition of implementation does
not guarantee preservation of consistency: any specification is implemented by an
inconsistent one. This can be seen as a problem, since any inconsistent specification
opens a blind alley in the development process. From this point of view, it would
be worthwhile to be able to check consistency of every specification as soon as it
is formulated. Unfortunately, in general (for any sufficiently powerful specification
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framework) this is an undecidable property. Fortunately, inconsistency of specifica-
tions cannot lead to incorrect programs: if at any point in the development process
we are able to convert the specification at hand into a program, then by definition
this specification is consistent, and therefore all the specifications leading to it must
have been consistent as well.

Apart from inconsistencies, there are many other sources of blind alleys and fail-
ures in the development process: there might be no computable realisation of a spec-
ification, there might be no “computationally feasible” realisation, we might not be
clever enough to find a realisation, we might run out of money to finish the project,
and so on.

Example 7.1.5. Consider a specification of the natural numbers with a pre-order ≺
characterised as follows:

m ≺ n ⇔∀x:Nat• Mm ↓ x ⇒ Mn ↓ x

where for all natural numbers k and x, the predicate Mk ↓ x is specified to mean that
the Turing machine with Gödel number k terminates on input x. This specification is
consistent but it has no computable models since the halting problem is undecidable.

��
The main feature of the development framework we really do ensure is its safety: if
we arrive at a program, then it is a correct realisation of the original specification.

Some implementation steps are more or less routine. For instance, there are stan-
dard ways of implementing many data abstractions (e.g. sets, queues) and standard
ways of decomposing problems into simpler subproblems (e.g. “divide and con-
quer”). Such implementation steps can sometimes be described schematically by
means of so-called transformation rules such that any instance is guaranteed to be
correct provided certain conditions are met.

One way to make development more routine is to retain the structure of the origi-
nal requirements specification and concentrate on refining the representation of data
and providing algorithmic details. Then correctness of implementation steps can of-
ten be established easily using the following fact, which is referred to as “horizontal
composability”:

Proposition 7.1.6 (Horizontal composition). For any n-argument monotone spec-
ification-building operation sbo (see Exercises 5.1.4 and 5.1.5), if SP1 ���SP′1 and
. . . and SPn ���SP′n then sbo(SP1, . . . ,SPn) ���sbo(SP′1, . . . ,SP′n). ��
Even though most of the specification-building operations we use are monotone
(see Exercise 5.1.13), horizontal composability should not be misread as a direc-
tive to retain the structure of the original requirements specification throughout the
development process, thus effectively decomposing the task of realising any speci-
fication SP = sbo(SP1, . . . ,SPn) into separate tasks to realise each of SP1, . . . ,SPn.
Requiring the structure of the initial specification to be preserved in its implemen-
tation would be unrealistic and unreasonable. The aims of structuring requirements
specifications are often contradictory with the aims of structuring software.
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Example 7.1.7. The implementations in Example 7.1.4 illustrate the point that
the structure of the final implementation differs from that of the original spec-
ification, even though the difference is only that different auxiliary operations
are used (is sorted versus insert). The essential change takes place in the step
SortPerm ���SortIns. There is no way to build this implementation using
the horizontal composability rule: stripping off the hiding operations from both
SortPerm and SortIns (naively disregarding the fact that different things are
hidden) yields two incomparable specifications. ��
Another problem is that when attempting to retain the structure of sbo(SP1, . . . ,SPn)
and build its implementation from implementations of SP1, . . . ,SPn, it is possible for
the design decisions taken in the solutions of these separate tasks to be in conflict
with each other so that their combination is inconsistent.

Example 7.1.8. Consider the following specification (taking mild liberties with
what Nat provides):

spec Natc = (Nat
then

ops c:Nat
• 10 < c < 15 )

then

• 12 < c < 27

Since⎛
⎜⎜⎝

Nat
then

ops c:Nat
• 10 < c < 15

⎞
⎟⎟⎠ ���

⎛
⎜⎜⎝

Nat
then

ops c:Nat
• 10 < c < 12

⎞
⎟⎟⎠

and⎛
⎜⎜⎝

Nat
then

ops c:Nat
• 12 < c < 27

⎞
⎟⎟⎠ ���

⎛
⎜⎜⎝

Nat
then

ops c:Nat
• 14 < c < 20

⎞
⎟⎟⎠

we also have

Natc ���

⎛
⎜⎜⎜⎜⎜⎜⎝

(Nat
then

ops c:Nat
• 10 < c < 12 )

then

• 14 < c < 20

⎞
⎟⎟⎟⎟⎟⎟⎠

However, even though Natc is consistent, and both of the resulting component spec-
ifications are consistent as well, the resulting composed specification to which Natc
is refined is inconsistent!
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This happens because the two specification arguments to the enrichment oper-
ation implicitly share a loosely specified part (c:Nat in the example). If the deci-
sions constraining this common part in separate developments of the two specifica-
tions are different, as above, then putting the resulting specifications together may
yield inconsistency. This is of course a contrived example but the same phenomenon
arises in more realistic situations.

Exercise. Expand Natc using the definition of enrichment in Section 5.2 and apply
horizontal composability to derive the implementation steps sketched above. ��

The material in this section applies just as well to constructor specifications as
introduced in Section 6.2 and their extension to higher-order constructors as intro-
duced in Definition 6.4.2. All that is required is a trivial change to the definition
of simple implementation and to Proposition 7.1.2, and then the rest carries over
without alteration.

Definition 7.1.9 (Simple implementation for constructor specifications). Given
specifications SP and SP′ with SP,SP′ : Spec(S ) for some constructor signature S ,
we say that SP′ is a simple implementation of SP, written SP���SP′, if Mod[SP]⊇
Mod[SP′]. ��
Proposition 7.1.10. Given a chain SP0 ���SP1 ���· · · ���SPn of simple imple-
mentation steps and a constructor F ∈ Mod[SPn], we have F ∈ Mod[SP0]. ��
Example 7.1.11. Recall the specification CONSSTRINGKEY from Section 6.5. We
might want to add further constraints on the hash function such as the requirement
that it is injective on strings of length 3:

spec BETTERCONSSTRINGKEY =
ΠN:NAT• ΠS:STRING•
{N +S}
then

ops hash:String → Nat
length:String → Nat

∀s,s′:String
• length(ε) = 0
• length(aˆs) = succ(length(s))
• · · ·
• length(zˆs) = succ(length(s))
• hash(ε) = 0
• length(s) = length(s′) = succ(succ(succ(0)))∧ s �= s′ ⇒

hash(s) �= hash(s′)
hide ops length:String → Nat

Then clearly CONSSTRINGKEY ���BETTERCONSSTRINGKEY. ��
This is a very typical example which can be derived from the following general fact:

Proposition 7.1.12. If SP1 ���SP and SP′ ���SP′1 then (SP ⇒ SP′) ���(SP1 ⇒
SP′1). ��
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Exercise 7.1.13. Generalise the above proposition to the forms of constructor speci-
fications in Example 6.2.9 and then in Definitions 6.2.8 and 6.4.2. Use this to justify
the simple implementation in Example 7.1.11. Remember to take into account the
fact that constructors satisfying SP1

ι
==⇒ SP′1 yield models that extend models of SP1,

which allows one of the premises in the proposition to be weakened. ��

7.2 Constructor implementations

The notion of simple implementation is powerful enough (in the context of a suf-
ficiently rich specification language) to handle all concrete examples of interest.
However, it is not very convenient to use in practice. During the process of devel-
oping a program, the successive specifications incorporate more and more details
arising from successive design decisions. Thereby, some parts become fully deter-
mined, and remain unchanged as a part of the specification until the final program
is obtained. For instance, in Example 7.1.4 we had consecutive simple implemen-
tations SortPerm ���SortIns ���SortDone, where the “code” for sort in-
troduced in SortIns and the hiding of insert are still present in the same form
in SortDone. The following diagram is a visual representation of this situation,
where κ1, . . . ,κn label the parts that become determined at consecutive steps:�

�

�

�
SP0 ���

κ1

�
�

�
�SP1 ���

κ1
κ2

�
�

	
�SP2 ���· · · ���

κ1
κ2

· · · κn•

It is more convenient to avoid such clutter by separating the finished parts from
the specification, putting them aside, and proceeding with the development of the
unresolved parts only:�

�

�

�
SP0 κ1

����

�
�

�
�SP1 κ2
����

�
�

	
�SP2 κ3
����· · · κn

����• SPn = Empty

where Empty is a specification for which a standard model empty is available.
For instance, in finitely exact institutions the obvious choice for Empty is the flat
specification over the initial signature Σ∅ having no axioms, which has a unique
model by the continuity of the model functor. In an institution like FOEQ, the ini-
tial signature Σ∅ is empty and empty is its unique (trivial) model, while in IMPDT
(Example 4.1.32) the unique model empty over the initial signature provides a stan-
dard realisation of some primitive (built-in) data types and functions. Similarly for
FPL (Example 4.1.25), where the only built-in data type is Bool with constructors
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true and false. One way or another, we can consider that Empty and empty are
given.

It is important for the finished parts κ1, . . . , κn to be independent of the par-
ticular choice of realisation for what is left: they should extend any realisation of
the unresolved part to a realisation of what is being implemented. Thus, they are
simply constructors in the sense of Definition 6.1.1, and may be specified as in Def-
initions 6.2.1 and 6.2.8. This motivates a more elaborate version of the notion of
implementation:

Definition 7.2.1 (Constructor implementation). Given specifications SP and SP′,
we say that SP′ is a constructor implementation of SP via κ , written SP κ���SP′, if
κ ∈ Mod[SP′ ⇒ SP]. ��
In the development diagram above, we have κi:Mod(Sig[SPi])→ Mod(Sig[SPi−1])
with κi ∈ Mod[SPi ⇒ SPi−1] for 1 ≤ i ≤ n; that is, each κi corresponds to a generic
module with input interface SPi and output interface SPi−1. Given a model M of
SPi, κi may be applied to yield a model κi(M) of SPi−1.

Exercise 7.2.2. Check that constructor implementations are a special case of simple
implementations, since each constructor gives rise to a specification-building oper-
ation, see Exercise 6.1.15: SP κ���SP′ iff SP ���κ(SP′) and Mod[SP′] ⊆ dom(κ).
A trivial consequence of this is that κ(SP′) κ���SP′ whenever Mod[SP′]⊆ dom(κ).

��
Once the development process is finally complete (that is, when nothing is left

unresolved, as above) we can successively apply the constructors to obtain a correct
realisation of the original specification. The correctness of the final outcome follows
from the correctness of the individual constructor implementation steps:

Proposition 7.2.3. Given a chain of constructor implementation steps

SP0 κ1
����SP1 κ2

����· · · κn
����SPn = Empty

we have κ1(κ2(. . .κn(empty) . . .)) ∈ Mod[SP0], where empty ∈ Mod[Empty]. ��
The proof is by induction on n using the simple observation that constructor im-
plementations reflect realisations: if SP κ���SP′ and M′ ∈ Mod[SP′] then κ(M′) ∈
Mod[SP].

As in the case of simple implementations, a slightly stronger but still easy fact is
that constructor implementations vertically compose:

Proposition 7.2.4 (Vertical composition). If SP κ���SP′ and SP′
κ ′����SP′′ then

SP
κ ′;κ
�����SP′′. ��

Then given a chain SP0 κ1
����SP1 κ2

����· · · κn
����SPn =Empty of constructor imple-

mentations, we obtain (κn; · · · ;κ2;κ1)(empty) ∈ Mod[SP0]. Semantically, this is the
same as Proposition 7.2.3 but its use in connection with a programming language
offering generic modules to code constructors is potentially problematic since it
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requires a composition operation on such modules. In Standard ML, there is no ex-
plicit functor composition operation but the composite of two functors may easily
be defined using functor instantiation and abstraction. In the notation we have been
using for defining constructors in the institution FPL — see Example 6.1.9 — a
stronger property holds: it is possible to replace the composition of two construc-
tors by a single constructor defined in the same notation, without using constructor
application.

Lemma 7.2.5. Consider the following signature diagram

Σ1 Σ

Σ ′
1 Σ ′

2

Σ̂

Σ2
�

�
���

�
�

���

�
�
���

�
�
���

�
�

���

�
�

���σ1
δ1 σ2

σ ′
2 δ ′1

δ2

where the central square is a pushout which admits amalgamation, and the free
extension Fσ2 ∈Mod(Σ ⇒ Σ ′

2) — see Example 6.1.7 — is a total constructor that is
naturally persistent along σ2. Then the following equality between constructors in
Mod(Σ1 ⇒ Σ2) holds:

Fσ1 ;( δ1);Fσ2 ;( δ2) = Fσ1;σ ′
2
;( δ2;δ ′1).

Proof. First note that Fσ ′
2
= δ1(Fσ2), as in Exercise 6.1.30, and so ( δ1);Fσ2 =

Fσ ′
2
;( δ ′1). Then the conclusion follows easily, since Fσ1;σ ′

2
= Fσ1 ;Fσ ′

2
(see Exer-

cise 3.5.26) and ( δ2;δ ′1) = ( δ ′1);( δ2). ��
Exercise 7.2.6. Use Lemma 7.2.5 to show that in the institution EQ, any composi-
tion of reduct and naturally persistent free extension constructors can be presented
as a composition of a single free extension followed by a single reduct constructor.

��
Exercise 7.2.7. Check that the institution FPL is semi-exact w.r.t. FPL-signature in-
clusions that only add new sorts with value constructors; this is a proper subclass of
IFPL, defined in Exercise 4.4.19. The notation introduced in Example 6.1.9 defines
constructors in FPL that involve free extensions along such signature inclusions,
which are total and naturally persistent (see Exercise 6.1.27). Use Lemma 7.2.5 to
show that any composition of constructors defined using this notation can be ex-
pressed in the same notation as a single constructor. ��
Example 7.2.8. Recall the consecutive simple implementation steps

Sort ���SortPerm ���SortIns ���SortDone

in Example 7.1.4.
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Consider the simple implementation SortPerm���SortIns in which “code”
for sort is first introduced. Using the notation of Example 6.1.9, the constructor
corresponding to this step can be expressed as follows:

constructor K1 : Sig[Ins]⇒ Sig[SortPerm] =
ops fun sort(l:NatList):NatList =

case l of nil => nil | cons(n, l′) => insert(n,sort(l′))

Recall that Ins is the part of SortIns that remains after “peeling off” sort and
the operation of hiding insert, the part of the specification whose implementation is
fixed in this step. The relationship between the specification SortPerm (as built
on Ins) and the constructor K1 introduced above is exactly as explained in Exer-
cises 6.1.10 and 6.1.15. By moving

fun sort(l:NatList):NatList = . . .

from SortIns to the body of K1, its status changes from an axiom that resembles
code, which constrains the interpretation of sort, to actual code that defines sort.
Notice that the constructor definition provides not only code for sort but also (im-
plicitly) realises the hiding of insert since insert is not present in the result signature.
Similar remarks apply to other constructors below.

The next simple implementation step, SortIns ���SortDone, which intro-
duces code for insert, corresponds to the following constructor:

constructor K2 : Sig[NatList]⇒ Sig[Ins] =
ops fun insert(n:Nat, l:NatList):NatList =

case l of nil => cons(n,nil)
| cons(m, l′) => if le(n,m) = true then cons(n, l)

else cons(m, insert(n, l′))

The code for sort, which in the original simple implementation step was still present
in SortDone, has been dealt with in the previous step. Thus in this step we are
able to focus on what remains, namely the insert operation, without the distraction
of the surrounding context.

The definitional axioms in NatList may be translated directly into code, and
we can choose a particular realisation to implement le, giving the following:

constructor K3 : Σ∅ ⇒ Sig[NatList] =
sorts Nat free with 0| succ(Nat)

NatList free with nil| cons(Nat,NatList)
ops fun le(m:Nat,n:Nat):Bool =

case m of 0 => true
| succ(m′) => case n of 0 => false

| succ(n′) => le(m′,n′)
fun append(l:NatList, l′:NatList):NatList =

case l of nil => l′ | cons(n, l′′) => cons(n,append(l′′, l′))
fun is in(n:Nat, l:NatList):Bool =

case l of nil => false
| cons(m, l′) => if n = m then true else is in(n, l′)
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Here, Σ∅ is the “empty” FPL-signature (containing only the built-in sort Bool with
its constructors).

To finish the example, we need to provide a constructor corresponding to the
simple implementation step Sort���SortPerm. Since all that is done in this step
is to impose a (non-constructive) restriction on the class of permissible realisations
of sort, this is trivial:

constructor K0 : Sig[SortPerm]⇒ Sig[Sort] =

(This is not a typo: there is nothing in the body!)
To sum up, we have the following constructor implementations:

Sort
K0
����SortPerm

K1
����Ins

K2
����NatList

K3
����Empty.

The justification requires proofs similar to those sketched in Example 7.1.4 for the
corresponding simple implementation steps. Then

K0(K1(K2(K3(empty))))

yields an FPL-model satisfying Sort, where empty is the unique FPL-model over
Σ∅.

Alternatively, as suggested by Exercise 7.2.7, we can put together all the con-
structors involved, defining their composition explicitly as follows

constructor K3 K2 K1 K0 : Σ∅ ⇒ Sig[Sort] =
sorts Nat free with 0| succ(Nat)

NatList free with nil| cons(Nat,NatList)
ops fun le(m:Nat,n:Nat):Bool = . . .

fun append(l:NatList, l′:NatList):NatList = . . .
fun is in(n:Nat, l:NatList):Bool = . . .
fun insert(n:Nat, l:NatList):NatList = . . .
fun sort(l:NatList):NatList = . . .

and then K3 K2 K1 K0(empty) ∈ Mod[Sort]. ��
Section 6.1 introduced a number of constructors corresponding to standard con-

structions on algebras used throughout earlier chapters. Among those, free extension
and reduct have been used in the examples of constructor implementation above.
Other constructors introduced there include quotient and restriction to the reachable
subalgebra. These constructors typically arise in examples involving data refinement
in which a high-level abstract representation of data (for instance sets or dictionar-
ies) is implemented in terms of a lower-level “machine-oriented” representation (for
instance lists or arrays).

Example 7.2.9 (Data refinement). We present an implementation of sets of natural
numbers by lists of natural numbers, working in the institution FPL. We refer to the
specifications Nat and NatList from Example 7.1.4. We begin by specifying sets
of natural numbers:
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spec NATSET =
Nat
then

sorts NatSet
ops empty:NatSet

add:Nat×NatSet → NatSet
∈ :Nat×NatSet → Bool

∀n,m:Nat,S:NatSet
• (n ∈ empty) = false
• (n ∈ add(n,S)) = true
• n �= m ⇒ (n ∈ add(m,S)) = (n ∈ S)
• add(n,add(m,S)) = add(m,add(n,S))
• add(n,add(n,S)) = add(n,S)

The implementation of NATSET by NatList proceeds via three constructors.
The first adds an idempotent addition operation to lists, adjusts the names of NatList,
nil and is in, and hides cons, append and le. The operations append and le are en-
tirely superfluous for sets, while cons can be hidden once it has been used to define
addition.

constructor ListSet : Sig[NatList]⇒ Sig[NATSET] =
sorts NatSet = NatList
ops empty = nil

fun add(n:Nat, l:NatList):NatList =
if is in(n, l) = true then l else cons(n, l)

∈= is in

The next step is to remove the unreachable values of sort set, which correspond to
lists having multiple occurrences of one or more elements. Note that such values are
reachable using cons and nil, but not using the operations available in NATSET.

RSig[NatSet] : Sig[NATSET]⇒ Sig[NATSET]

See Example 6.1.13 and Exercise 6.1.14.
Finally, we quotient (see Exercise 2.7.32) the resulting FPL-models, viewed as

partial algebras, by a congruence which identifies lists that differ only in the order
of their elements, noting that a quotient by this congruence yields an FPL-model:

/SP : Sig[NATSET]⇒ Sig[NATSET]

where SP is a flat Sig[NATSET]-specification with the axiom add(n,add(m,S)) =
add(m,add(n,S)); see Example 6.1.11.

The overall outcome is a constructor implementation

NATSET κ���NatList

using a constructor formed by composition: κ = ListSet;RSig[NatSet];( /SP). This
is an implementation of sets as equivalence classes of lists. The lists have no re-
peated elements and the equivalence identifies lists having the same elements but in
a different order.
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This is one possible implementation of sets in terms of lists. There are many
other possibilities. One is a simpler variant of the above implementation with just
two steps, the first renaming cons to add instead of coding it and adjusting the other
names as above, and the second quotienting by both idempotence and commutativ-
ity of add. Another is to use ordered lists without duplicates, coding a version of
add that inserts new elements into the appropriate position; this does not require a
quotient step. ��

A complete development chain that connects the initial requirements specifica-
tion to Empty does not reflect the process of developing a system from a specifi-
cation, which normally involves false starts, blind alleys and backtracking. It docu-
ments only the final outcome of this process. An incomplete development chain may
be used to record a stage in the development process, so the development process
corresponds to a sequence of such chains which culminates in a complete chain.
Ideally, each chain in the sequence is an expansion of the previous one, but back-
tracking corresponds to deletion or alteration of parts of the chain that have already
been filled in.

Related to this is the issue of whether to proceed in a completely top-down man-
ner (i.e. left to right, in our development chains), by attempting to gradually reduce
the problem stated in the requirements specification to simpler and simpler prob-
lems, or in a bottom-up manner, building up more and more complex programs in
an incremental fashion in an attempt to obtain a solution to the original problem. The
definitions and results do not actually prescribe either of these. What matters is that
at the end a chain of correct implementation steps emerges which links the require-
ments specification with Empty. In reality a mixture of top-down and bottom-up,
or even “middle-out”, is common. But even if top-down refinement were to be pre-
scribed, it is possible to represent bottom-up and middle-out development using an
obvious generalisation of constructor implementations to constructor specifications.

Definition 7.2.10 (Constructor implementation for constructor specifications).

Given specifications SP and SP′ with SP : Spec(S ) and SP′ : Spec(S ′) for con-
structor signatures S and S ′, we say that SP′ is a constructor implementation of
SP via κ , written SP κ���SP′, if κ ∈ Mod[SP′ ⇒ SP]. ��
Example 7.2.11. Recall the specifications and constructors of Example 7.2.8. We
then have, for instance:

Sort
F1
����(NatList⇒ SortPerm)

F2
����(Ins⇒ SortPerm)

where

F1(K:NatList⇒ SortPerm) = K0(K(K3(empty)))
F2(K:Ins⇒ SortPerm) = K2;K

and then realising Ins⇒ SortPerm by K1 yields F1(F2(K1)) ∈ Mod[Sort].
This amounts to an “outside-in” step, providing
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Sort
K0
����SortPerm

???
�����NatList

K3
����Empty

as a partial solution to Sort
???
�����Empty, followed by a bottom-up step, provid-

ing
SortPerm

???
�����Ins

K2
����NatList

as a partial solution to SortPerm
???
�����NatList.

Exercise. Capture a “middle-out” step that provides

Sort
???
�����Ins

K2
����NatList

???
�����Empty

as a partial solution to Sort
???
�����Empty. HINT: The most obvious way is to use

a two-argument constructor — see the next section — but try to do without it. ��

7.3 Modular decomposition

When developing a large program it is crucial to progressively decompose the job
into smaller tasks that can be handled separately. Each task is defined by a spec-
ification, and solving a task means producing a program component that satisfies
this specification. Once all tasks are solved, producing the final system is a simple
matter of appropriately assembling these components.

A development step involving the decomposition of a programming task into
separate subtasks is modelled using a constructor implementation with a multi-
argument constructor.

Definition 7.3.1 (Constructor implementation with decomposition). Given spec-
ifications SP and SP′1, . . . ,SP′n, we say that the tuple 〈SP′1, . . . ,SP′n〉 is a constructor
implementation of SP via κ , written SP κ���〈SP′1, . . . ,SP′n〉, if κ ∈Mod[SP′1 ⇒·· ·⇒
SP′n ⇒ SP]. ��
Constructor implementations as introduced earlier are obviously a special case of
these, identifying 〈SP′〉 with SP′. Notice that κ takes its arguments in curried form,
so κ(M′

1) · · ·(M′
n) ∈Mod[SP] if M′

1 ∈Mod[SP′1], . . . ,M′
n ∈Mod[SP′n], and recall that

⇒ is right-associative.
Now the development takes on a tree-like shape. It is complete once a tree is

obtained that has Empty as its leaves:

SP κ���

⎧⎪⎪⎨
⎪⎪⎩

SP1 κ1
����Empty

...

SPn κn
����

⎧⎨
⎩

SPn1 κn1
����

{
SPn11 κn11

�����Empty
· · ·

SPnm κnm
�����Empty

Then an appropriate application of the constructors in the tree yields a realisation
of the original requirements specification. The above development tree yields
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κ(κ1(empty)) · · ·(κn(κn1(κn11(empty))) · · ·(κnm(empty))) ∈ Mod[SP].

Our discussion following Proposition 7.2.4 concerning the modularisation facilities
of the programming language at hand and whether they are sufficient to express such
a composition directly still applies here.

The structure of the final realisation is determined by the shape of the develop-
ment tree, which is in turn determined by the decomposition steps. Each such step
corresponds to what software engineers call a design specification, or sometimes an
organizational specification: it defines the structure of the system by specifying its
components and describing how they fit together. This style of development leads
to modular programs, built from fully specified, correct and reusable components.

Decisions concerning the structure of the final realisation, recorded in the de-
velopment tree, need have no relation to the structure of the requirements speci-
fication. Nevertheless, given a structured specification κ(SP1, . . . ,SPn) where κ is
the specification-building operation corresponding to a constructor κ — see Exer-
cise 6.1.15 — we may reuse its structure in the design of its final realisation as
follows

κ(SP1, . . . ,SPn) κ���〈SP1, . . . ,SPn〉
provided that for all M1 ∈Mod[SP1], . . . , Mn ∈Mod[SPn], κ(M1) · · ·(Mn) is defined.

Exercise 7.3.2. Recall the horizontal composability property of simple implemen-
tations in Proposition 7.1.6. Reformulate it (and prove it) for constructor implemen-
tations, where sbo arises from a constructor as above. Discuss the case of arbitrary
monotone specification-building operations, referring to Example 7.1.8. ��
Example 7.3.3. Recall Example 7.1.4, which defined a specification Sort for sort-
ing lists of natural numbers, and Example 7.2.8, which gave a chain of successive
constructor implementations leading to a realisation of the sorting function that pre-
serves the number of occurrences of elements in its argument list.

Let us try to construct another realisation, this time with a sorting function that
removes multiple occurrences of elements. We begin by giving a simple implemen-
tation of Sort that captures this requirement.

spec SortOnce =
Sort
then

ops all once:NatList → Bool
∀x:Nat, l:NatList

• def (all once(l))
• all once(nil) = true
• all once(cons(x, l)) = true ⇔ (all once(l) = true∧ is in(x, l) = false)
• all once(sort(l)) = true

hide ops all once:NatList → Bool

Clearly, Sort ���SortOnce.
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Consider an additional specification that introduces a function that is specified to
build a maximal strictly increasing sublist of its argument (note that there may be
many such sublists and we do not require that the result be the longest among them):

spec MaxIncSubList =
NatList
then

ops increasing:NatList → Bool
sublist:NatList×NatList → Bool
max inc sublist:NatList → NatList

∀n:Nat, l, l′:NatList
• def (increasing(l))∧def (sublist(l, l′))∧def (max inc sublist(l))
• increasing(nil) = true
• increasing(cons(n, l)) = true ⇔

(∀m:Nat• is in(m, l) = true ⇒ le(m,n) = false)∧
increasing(l) = true

• sublist(nil, l′) = true
• sublist(cons(n, l), l′) = true ⇔

∃l1, l1′:NatList• l′ = append(l1,cons(n, l1′))∧
sublist(l, l1′) = true

• increasing(max inc sublist(l)) = true
• sublist(max inc sublist(l), l) = true
• (increasing(l′) = true∧ sublist(l′, l) = true∧

sublist(max inc sublist(l), l′) = true)⇒ max inc sublist(l) = l′
hide ops increasing:NatList → Bool

sublist:NatList×NatList → Bool

Now, the problem of implementing the specification SortOnce may be de-
composed (not very efficiently!) into the problems of implementing SortPerm
and MaxIncSubList,

SortOnce
K4
����〈SortPerm,MaxIncSubList〉,

where given models M1 of SortPerm and M2 of MaxIncSubList, the construc-
tor K4 : Sig[SortPerm] ⇒ Sig[MaxIncSubList] ⇒ Sig[SortOnce] builds a
model M of SortOnce by adding a sort function that first performs sorting as
given in M1 and then selects its maximal strictly increasing sublist by applying
max inc sublist from M2. In essence, M is given by the reduct with respect to the sig-
nature morphism δ :Sig[SortOnce]→ Sig[SortPerm and MaxIncSubList],
where δ (sort) = max inc sublist(sort( 1 :NatList)) and δ is the identity on other
names.1

Since we already have a realisation for SortPerm (Example 7.2.8), it remains
to provide one for MaxIncSubList. We will do this using an auxiliary function

1 This glosses over some of the details for expository reasons; see below for another version that
is fully correct.
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that removes initial elements from the list that are smaller than a given element, as
captured by the following specification:

spec RemList =
NatList
then

ops rem:Nat×NatList → NatList
∀n:Nat, l, l′:NatList

• def (rem(n, l))
• rem(n, l) = l′ ⇔

∃l1:NatList• l = append(l1, l′)∧
(∀p:Nat• is in(p, l1)⇒ le(p,n) = true)∧
(l′ = nil∨ (l′ = cons(m, l2)∧ le(m,n) = false))

A realisation for MaxIncSubList may come from the following constructor im-
plementation steps:

MaxIncSubList
K5
����RemList

K6
����NatList

K7
����Empty

where

constructor K5 : Sig[RemList]⇒ Sig[MaxIncSubList] =
ops fun max inc sublist(l:NatList):NatList =

case l of nil => nil
| cons(m, l′) =>

case rem(m, l′) of nil => cons(m,nil)
| ll′ => cons(m,max inc sublist(ll′))

constructor K6 : Sig[NatList]⇒ Sig[RemList] =
ops fun rem(n:Nat, ll:NatList):NatList =

case ll of nil => nil
| cons(m, l′) => if le(m,n) = true then rem(n, l′) else ll

constructor K7 : Σ∅ ⇒ Sig[NatList] =
sorts Nat free with 0| succ(Nat)

NatList free with nil| cons(Nat,NatList)
ops fun le(m:Nat,n:Nat):Bool =

case n of 0 => true
| succ(n′) => case m of 0 => false

| succ(m′) => le(m′,n′)
fun append(l:NatList, l′:NatList):NatList =

case l of nil => l′ | cons(n, l′′) => cons(n,append(l′′, l′))
fun is in(n:Nat, l:NatList):Bool =

case l of nil => false
| cons(m, l′) => if n = m then true else is in(n, l′)

So we should have

K4(K1(K2(K3(empty))))(K5(K6(K7(empty)))) ∈ Mod[SortOnce],
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but this doesn’t work! (Exercise: Describe sort in this model, and check which
axioms of SortOnce are not satisfied.) ��

The trouble with the above example is that the decomposition step

SortOnce
K4
����〈SortPerm,MaxIncSubList〉

is incorrect. Informally, SortPerm and MaxIncSubList share the part that is
specified by NatList, and this decomposition allows it to be realised differently
in the models of SortPerm and MaxIncSubList that are constructed by the
subsequent independent developments, as in K3 and K7 above (where le is defined
differently).2 This means that SortPerm and MaxIncSubList cannot be de-
veloped independently. This is a general problem that will arise whenever a task
is decomposed into subtasks that are not entirely independent. The only time that
decomposition is entirely unproblematic is when the axioms of both subtask speci-
fications force a unique implementation of the common part; when the signatures of
the subtask specifications are disjoint, this requirement holds trivially.

One way to capture the required sharing in our framework is to make the re-
lationship between subtasks explicit using parameterisation. A typical schema for
expressing a decomposition of a task SP into subtasks SP1 and SP2 is

SP κ���〈SP0,SP0
ι1==⇒ SP1,SP0

ι2==⇒ SP2〉

where Sig[SP1]∩Sig[SP2] = Sig[SP0], ι1 and ι2 are the inclusions, κ(M)(F1)(F2) =
F1(M)+F2(M) and SP���(SP1 and SP2). The persistency of F1 and F2 ensures that
κ is well defined and the last condition ensures that it yields a result in Mod[SP].

Example 7.3.4. We replace the decomposition step in Example 7.3.3 by:

SortOnce
K4′
�����〈NatList,NatList ι

==⇒ SortPerm,

NatList ι ′
==⇒MaxIncSubList〉

where ι and ι ′ are the obvious signature inclusions and the constructor K4′ builds a
model M of SortOnce from a model N of NatList and persistent constructors

F ∈ Mod[NatList ι
==⇒ SortPerm], G ∈ Mod[NatList ι ′

==⇒ MaxIncSubList]
by adding to F(N)+G(N) a sort function that first performs sorting as given in F(N)
and then applies max inc sublist from G(N). Then, rearranging the development
steps in Example 7.3.3 above to make it explicit that K2;K1 ∈ Mod[NatList ι

==⇒
SortPerm] and K6;K5 ∈ Mod[NatList ι ′

==⇒MaxIncSubList], we obtain

K4′(K3(empty))(K2;K1)(K6;K5) ∈ Mod[SortOnce].

We also have

K4′(K7(empty))(K2;K1)(K6;K5) ∈ Mod[SortOnce].

2 That was the source of our trouble in describing K4 above, where the models M1 and M2 need
not amalgamate to give a model of SortPerm and MaxIncSubList.
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This builds another model with a function to sort lists of natural numbers w.r.t. le as
defined in K7. ��
Constructors like K4′ in Example 7.3.4 cannot be expressed in the notation we
have been using to write constructors in the institution FPL without extending it
by adding names for parameters.

Exercise 7.3.5 (FPL-constructor extended notation). Modify and extend the no-
tation of Example 6.1.9 by allowing multiple named parameters; first-order con-
structor parameters; use of parameter names to refer to parameters; use of construc-
tor application, giving the result a name; use of “dot notation” like N. f to refer to
components of named models; and replacing the implicit import of the parameter
into the intermediate model by explicit inclusion of all the components of the named
models.

The resulting notation should allow K4′ from Example 7.3.4 to be defined as
follows:

constructor K4′(NL : NatList)
(F : NatList ι

==⇒ SortPerm)

(G : NatList ι ′
==⇒MaxIncSubList) : SortOnce =

let S = F(NL)
let M = G(NL)
include M
ops fun sort(l:NatList):NatList = max inc sublist(S.sort(l))

A subtle point is that the persistency of the constructor parameters is needed in
order to justify the well-formedness of the definitions in the body. These issues
become considerably more involved when higher-order constructors are allowed as
parameters. Extend this notation to cater for higher-order constructor parameters,
but without attempting to give a fully adequate treatment of persistency for higher-
order parameters. ��
Exercise 7.3.6. Use the extended notation to provide realisations of all the specifi-
cations in Section 6.5. You may want to compare the outcome with the development
in Section 7.4 below. ��
Once we consider decomposition steps into subtasks involving development of
(higher-order) constructors, it is possible to limit the constructors κ used in the
implementation relation κ���to be of a particularly simple form, merely combin-
ing the subtask realisations using a few standard combinators, where those listed in
Exercise 6.4.17 seem to be all that are required. For instance, the very decision of
implementing a specification SP by SP′ via an as-yet-unknown constructor may now
be recorded by the decomposition step SP app�����〈SP′ ⇒ SP,SP′〉 where app is the
application combinator, turning the choice of a specific constructor into a separate
development task. See also Example 7.2.11.

Example 7.3.7. We can redo Example 7.3.4 in this style as follows.
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SortOnce
C
���〈 NatList,

NatList ι
==⇒ SortPerm,

NatList ι ′
==⇒MaxIncSubList,

NatList⇒ (NatList ι
==⇒ SortPerm)⇒

(NatList ι ′
==⇒MaxIncSubList)⇒ SortOnce 〉

where C(NL)(F)(G)(H) = H(NL)(F)(G) and then

C(K3(empty))(K2;K1)(K6;K5)(K4′) ∈ Mod[SortOnce]. ��
Exercise 7.3.8. Continue the above example by the following constructor imple-
mentation step:(

NatList⇒ (NatList ι
==⇒ SortPerm)⇒

(NatList ι ′
==⇒MaxIncSubList)⇒ SortOnce

)
C′����

(SortPerm and MaxIncSubList)⇒ SortOnce

where for H ′ ∈ Mod[(SortPerm and MaxIncSubList)⇒ SortOnce]

C′(H ′) = λNL:NatList•
λF :NatList ι

==⇒ SortPerm•

λG:NatList ι ′
==⇒MaxIncSubList•

H ′(F(NL)+G(NL)).

Adapt vertical composability (Proposition 7.2.4) to constructor implementations
with decomposition, and use this to justify

SortOnce
C′′����〈 NatList,

NatList ι
==⇒ SortPerm,

NatList ι ′
==⇒MaxIncSubList,

(SortPerm and MaxIncSubList)⇒ SortOnce 〉
where C′′(NL)(F)(G)(H ′) = H ′(F(NL)+G(NL)). Finally, conclude

C′′(K3(empty))(K2;K1)(K6;K5)(K4′′) ∈ Mod[SortOnce]

where3

constructor K4′′(SM : SortPerm and MaxIncSubList) : SortOnce =
include SM
ops fun sort(l:NatList):NatList = max inc sublist(SM.sort(l)). ��

3 We assume that a new definition of a name (function, sort) overwrites the previous meaning, if
any, for this name — as with sort here. You may need to adjust your definition for Exercise 7.3.5
to take this into account.
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7.4 Example

We now present a development of a realisation of the specification STRINGTABLE
from Section 5.3. This is a standard specification of sets of strings. The strategy of
implementing these by two-level hash tables will be gradually “discovered” in the
course of the development. Constructors like those specified in Section 6.5 will arise
in the process.

As we develop a realisation of STRINGTABLE, we will also reuse other specifica-
tions from Section 5.3 without further reference. All these specifications are in the
institution FOPEQ. Here we will work in FPL in order to facilitate coding construc-
tor definitions, making use of the notations of Example 6.1.9 and Exercise 7.3.5. To
translate specifications in FOPEQ into specifications in FPL, predicates need to be
replaced by total boolean functions and definedness requirements need to be added
for other operations; see Exercise 5.3.2. We will refer to specifications from Sec-
tion 5.3 as if this transformation had been performed. In addition, we rewrite Nat
and String to make the generated nature of natural numbers and strings explicit:

spec NAT =
sorts Nat free with 0| succ(Nat)
ops + :Nat×Nat → Nat

≤ :Nat×Nat → bool
∀m,n:Nat

• m+n = case m of 0 => n | succ(m′) => succ(m′+n)
• m ≤ n = case m of 0 => true

| succ(m′) => case n of 0 => false
| succ(n′) => m′ ≤ n′

spec STRING =
sorts String free with ε |aˆ(String)| · · · |zˆ(String)

A more principled way to handle the switch from one institution to another will be
presented in Section 10.1 below.

The development is presented as a sequence of tasks, with later tasks resulting
from decomposition in earlier steps; see the end of the section for a summary. The
components that emerge are given names for ease of reference in later development
steps. While describing subsequent development steps, we indicate which of the
components specified earlier are to be considered given. Such “imports” do not in-
troduce a dependency on the specific realisation of the specification of the imported
component; correctness is required for an arbitrary realisation. This is illustrated in
the fully explicit version of the first step below.

Task 1: Build HT : STRINGTABLE

The first design decision is to use direct chaining hash tables to represent sets. This
involves introducing hash functions, and arrays that store sets of strings at the posi-
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tion determined by the application of the hash function. At this stage, all decisions
concerning the treatment of these sets are left open; we simply require arrays to
store “buckets” of strings having the same hash value.

This leads to the following subtasks:

• N : NAT
• S : STRING
• SK : STRINGKEY given N,S
• B : SIMPLEBUCKET given S

where

spec SIMPLEBUCKET = STRINGTABLE with σTable�→Bucket

where σTable �→Bucket is a surjective signature morphism from Sig[STRINGTABLE]
that renames Table to Bucket and is the identity otherwise.

• BA : SIMPLEBUCKETARRAY given N,B
where (see Example 6.3.3 for the definition of ARRAY, translated here to a spec-
ification in FPL, but exceptionally without the requirement on get to be total, as
hinted at in Exercise 5.3.2)

spec SIMPLEBUCKETARRAY =
SIMPLEBUCKET and (ARRAY(ELEM)

with σElem�→Bucket,Array[Elem]�→Array[Bucket])

where σElem�→Bucket,Array[Elem]�→Array[Bucket] is a surjective signature morphism from
Sig[ARRAY(ELEM)] that maps Elem to Bucket and Array[Elem] to Array[Bucket]
and is the identity otherwise.

Now, the implementation of HT may use all the components specified above. We
present it as follows:

HT = sorts Table = BA.Array[Bucket]
String = S.String

ops empty = BA.empty
fun add(s:String, t:Table):Table =

let i = SK.hash(s)
in if BA.used(i, t) = true then BA.put(i,B.add(s,BA.get(i, t)), t)

else BA.put(i,B.add(s,B.empty), t)
fun present(s:String, t:Table):Bool =

let i = SK.hash(s)
in if BA.used(i, t) = true then B.present(s,BA.get(i, t))

else false

The “given” notation for imports used in the specifications above can be translated
to the higher-order constructor notation of Section 6.4 (in essence, by adding an ad-
ditional parameter for the specified constructor and immediately instantiating it with
the given component, as illustrated below). Presenting lists of subtasks as above al-
lows us to avoid making all of the parameters explicit, which would also involve
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repeating their specifications. The informal notation used in the definition of HT is
like the one introduced in Example 6.1.9 and Exercise 7.3.5, but again omits ex-
plicit mention of parameters corresponding to the subtasks and their specifications.
Making everything fully explicit gives the following implementation step:

STRINGTABLE KHT
�����〈 NAT,

STRING,
ΠN:NAT• ΠS:STRING• {N +S} and STRINGKEY,
ΠS:STRING• {S} and SIMPLEBUCKET,
ΠN:NAT• ΠB:SIMPLEBUCKET•

{N +B} and SIMPLEBUCKETARRAY 〉
where

constructor KHT(N : NAT)
(S : STRING)
(SK??? : ΠN:NAT• ΠS:STRING• {N +S} and STRINGKEY)
(B??? : ΠS:STRING• {S} and SIMPLEBUCKET)
(BA??? : ΠN:NAT• ΠB:SIMPLEBUCKET•

{N +B} and SIMPLEBUCKETARRAY)
: STRINGTABLE =

let SK = SK???(N)(S)
let B = B???(S)
let BA = BA???(N)(B)
sorts Table = BA.Array[Bucket]
· · ·

Notice that, as one would expect, we require constructors to provide persistent ex-
tensions of their parameters. This is expressed in the explicit form of the subtask
specifications above by the use of singleton specifications as in Example 6.2.9.

Imports that are generic will arise later in this section. For such imports, the
persistency requirement will not be imposed, in accordance with the comments at
the end of Exercise 7.3.5.

Exercise 7.4.1. Expand the “given” notation as explained above for all of the steps
below. Some care will be needed in the case of specifications of generic modules
with imports, where persistency is required over both imports and parameters. ��
We can now proceed with the subtasks above independently, and in any order we
choose. Realisations of NAT and STRING can be given easily; we will not pursue
this here. The development of a hash function for given realisations of STRING and
NAT to give a realisation of STRINGKEY is left to the reader.

Task 2: Build B : SIMPLEBUCKET given S

We have various options. One would be to simply implement buckets as lists; this
corresponds to HT implementing standard direct chaining hash tables. A more elab-
orate solution is to use hash tables again to implement buckets, using a different
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hash function. Of course, the second hash function may again yield collisions, and
we must decide how to resolve them. One possibility would be to repeat the design
from the top level, and defer the problem to the sub-buckets. But unless we can find
a finite collection of hash functions that collectively give perfect hashing — that
is, determine an injection from strings to tuples of natural numbers — some other
technique must be used sooner or later. In Section 5.3, linear probing was used at
this second level to resolve collisions. We make the same decision here, modulo an
adjustment to the specification of arrays hinted at in Exercise 6.5.2. This leads to the
following subtasks:

• N′ : NAT
• SK′ : STRINGKEY given N′,S
• SA : STRINGFINITEARRAY given N′,S

where

spec STRINGFINITEARRAY =
STRINGARRAY
then

∀a:Array[String] • ∃n:Nat• ∀ j:Nat• (n ≤ j) = true ⇒ used( j,a) = false

• LP : LINEARPROBING given SA
where

spec LINEARPROBING =
STRINGFINITEARRAY
then

ops putnear : Nat×String×Array[String]→ Array[String]
isnear : Nat×String×Array[String]→ Bool

∀i:Nat,s:String,a,a′:Array[String]
• def (putnear(i,s,a))∧def (isnear(i,s,a))
• putnear(i,s,a) = a′ ⇔

∃ j:Nat• (used(i+ j,a) = false∨get(i+ j,a) = s)∧
(∀k:Nat• ( j ≤ k) = false ⇒ used(i+ k,a) = true)∧
a′ = put(i+ j,s,a)

• isnear(i,s,a) = true ⇔
∃ j:Nat• (∀k:Nat• (k ≤ j) = true ⇒ used(i+ k,a) = true)∧

get(i+ j,a) = s

We then implement B as follows:

B = include S
sorts Bucket = SA.Array[String]
ops empty = SA.empty

fun add(s:String,b:Bucket):Bucket = LP.putnear(SK′.hash(s),s,b)
fun present(s:String,b:Bucket):Bool = LP.isnear(SK′.hash(s),s,b)

As before, we do not pursue the realisation of NAT except to note that this need not
be the same as in Task 1 above. The realisation of SK′ is again left to the reader.
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(Note that using the same function as in SK is not a good idea, although correctness
of the development presented here does not depend on this.)

Exercise 7.4.2. The specification LINEARPROBING above requires putnear and
isnear to probe successive positions in the bucket. Modify it to require probing
at fixed intervals, with the length of the “hop” depending on the string in question
rather than always being 1. (This is so-called “double hashing”.) Adjust the devel-
opment in Task 4 below accordingly. ��

Task 3: Build SA : STRINGFINITEARRAY given N′,S

This requires implementation of arrays of strings in which only a finite number of
positions are used. We recognize that arrays are a general data structure and imple-
ment them for arbitrary kinds of data values. This leads to the following subtask:

• A : ELEM
ι
==⇒ ELEMFINITEARRAY given N′

where

spec ELEMFINITEARRAY =
ARRAY(ELEM)
then

∀a:Array[Elem]
• ∃n:Nat• ∀ j:Nat• (n ≤ j) = true ⇒ used( j,a) = false

and ι is the signature inclusion.

We then implement SA as follows:

SA = let SA′ = A(S σ )

sorts Array[String] = SA′.Array[Elem]
include S
include SA′

where σ = {Elem �→ String}.
Using Example 6.1.28, SA can alternatively be written as SA = σ(A)(S), with the

choice of names in the result (pushout) signature as hinted at in Example 6.3.6; see
Exercise 6.5.1. The same applies to the implementation BA in Task 5 below.

A may be realised in a number of ways; see for instance Exercise 6.2.12. In
reality, an implementation of arrays would of course be available from a library. So
this completes Task 3.

Task 4: Build LP : LINEARPROBING given SA

This can be implemented directly:
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LP = include SA
ops fun putnear(n:Nat,s:String,a:Array[String]):Array[String] =

if used(n,a) = false then put(n,s,a)
else if get(n,a) = s then a else putnear(succ(n),s,a)

fun isnear(n:Nat,s:String,a:Array[String]):Bool =
if used(n,a) = false then false
else if get(n,a) = s then true else isnear(succ(n),s,a)

This completes Task 4, which discharges the last remaining subtask of Task 2. We
are left with one more subtask from Task 1.

Task 5: Build BA : SIMPLEBUCKETARRAY given N,B

Here we could again give an implementation from scratch. However, an obvious
alternative is to simply reuse the generic implementation of arrays from Task 3,
even though SIMPLEBUCKETARRAY does not require arrays to satisfy the extra
finiteness condition imposed there. Then BA can be implemented using the same
pattern as SA in Task 3:

BA = let BA′ = A[B σ ′ ]

sorts Array[Bucket] = BA′.Array[Elem]
include B
include BA′

where σ ′ = {Elem �→ Bucket}.
Note that this decision actually requires the current design to be restructured to

make the generic module A available both here, for implementing BA, and in Task 3,
for implementing SA. Consequently, a common realisation of NAT must be used in
both Task 1 and Task 2.

This gives the following in place of the list of subtasks in Task 1:

• N : NAT
• S : STRING
• SK : STRINGKEY given N,S
• A : ELEM

ι
==⇒ ELEMFINITEARRAY given N

• B : SIMPLEBUCKET given N,S,A
• BA : SIMPLEBUCKETARRAY given N,B,A

Then the subtask

• A : ELEM
ι
==⇒ ELEMFINITEARRAY given N

disappears from Task 3, and the subtasks of Task 2 become

• SK′ : STRINGKEY given N,S
• SA : STRINGFINITEARRAY given N,S,A
• LP : LINEARPROBING given SA
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Exercise 7.4.3. Revisit the developments affected by this restructuring, and check
that all the realisations of subtasks remain valid. ��

This completes the development. The resulting development tree is as follows:

HT
: STRINGTABLE

K
HT

�
�
�
�
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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�· · ·
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�· · ·
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given N

�
�
�· · ·

B : SIM
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K
B

�
�
�
�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
SK ′

: STRINGK
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,S
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�
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�
�
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given SA

K
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7.5 Bibliographical remarks

Most of the material in this chapter is taken from [ST88b] where simple imple-
mentation was called refinement. Simple implementation has been used in [SW83],
[ST85] and [ST87] among other places. Constructor implementation is related to
the notion of implementation in [Ehr81] — although the latter dealt with implemen-
tations of algebras rather than of specifications — and [Lip83]. A type-theoretic
formulation of [ST88b] is presented in [Luo93].
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The question of the “right” definition of implementation received a great deal of
attention in the late 1970s and early 1980s, starting with the seminal paper [Hoa72],
on which the approach in VDM [Jon80] is based. This corresponds to implemen-
tations using the pattern of Example 7.2.9, consisting of a free construction (to de-
fine new sorts and operations), followed by a reduct, a restriction to the reachable
subalgebra (imposing a so-called “representation invariant”), and finally a quotient
(where the natural quotient homomorphism corresponds to the so-called “retrieve
function”). A representative sample of relevant papers at the time of this discussion
is [GB80], [Ehr81], [Ehr82], [EKMP82], [GM82], [Wan82], [Gan83], [Lip83] and
[Ore83], of which [EKMP82] is probably the most influential and well developed.
From the perspective of our definition of constructor implementations, all of these
approaches can be seen as special cases using specific patterns of constructors, typ-
ically (using 1980s terminology) forget-restrict-identify (i.e. a reduct to the signa-
ture of the implemented specification, then a restriction to the reachable subalgebra,
and finally a quotient) as in [SW82], or forget-identify-restrict, as in [GTW76], or
synthesize-restrict-identify, as in [EKMP82]. Vertical composition of two such im-
plementations was required to yield an implementation of the same form, but this is
not always possible except under additional assumptions about the specifications in-
volved. Exercises 7.2.6 and 7.2.7 show that this can be achieved for certain patterns,
and see [Ehr81] for some transformations between patterns of different forms. In
the proof-oriented notion of implementation in [TM87], there is an interesting link
between composability and Craig interpolation (see Definition 4.4.21).

In addition to these problems with vertical composability, a problem with each
of these early definitions is that it fails to cover certain naturally arising examples,
and most approaches are not able to cope with loose specifications. The approach
described here is a unifying and generalising one which subsumes most of these
early definitions; see the next chapter for a still more general version which sub-
sumes the rest. Problems with the vertical composability of these early notions of
implementation can be viewed as an artefact of the unnecessarily inflexible style of
definition: the requirement that the composition of generic modules be forced into
some given normal form corresponds to requiring programs to be written in a rather
restricted programming language that provides no way of defining the composition
of two generic modules without syntactically combining their actual code.

Probably the most influential unpublished paper in the algebraic specification
literature is [GB80], which introduced the notions of vertical and horizontal com-
posability as fundamental properties to be satisfied by any adequate definition of
implementation. It observes that this gives rise to a two-dimensional structure and
suggests that different ways of composing implementations should give rise to the
same result, as in Exercise 3.4.48. Given the difficulty of achieving vertical com-
posability, most early approaches to implementation did not tackle the related ques-
tion of horizontal composability. Even [GB80] speculates that this property may not
hold for some specification-building operations. Indeed, the horizontal structure of
a specification may well be quite different from the modular structure of the final
program that implements it; see [FJ90] for a convincing concrete example. Thus,
although horizontal composition will sometimes be relevant, it cannot be the only
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way to implement structured specifications. We need separate means to explicitly
mark design decisions that fix the final modular structure of the program under de-
velopment. Once such a design specification [AG97] has been fixed, this top-level
horizontal structure is to be preserved in programs resulting from the development
process, and further development proceeds for each component specification sepa-
rately. The final result is then obtained by applying the top-level constructors to the
outcomes of these separate developments. Section 7.3 presents foundations for such
an approach, with an example in Section 7.4. Explicit notation to support this style
of modular development is provided by architectural specifications and their refine-
ment in CASL [BST02], [Mos04], [MST04]. See [ST06] for an in-depth discussion
of these issues.

So-called “wide-spectrum languages” [BW82a], which can be used to express
specifications, programs, and intermediate stages in program development, include
CIP-L [BBB+85] and Extended ML [ST85]. One proposal for developing pro-
grams from specifications in such a language is by application of transformation
rules which replace specification/program fragments by equivalent or more refined
fragments [BD77], [PS83]; such rules correspond to pre-packaged implementation
schemes where correctness of a given instantiation follows from given enabling con-
ditions.

A programming language that supports stepwise development in the style sug-
gested here needs to provide syntax and modularisation facilities for defining
generic modules and their instantiations. One good example of such a language
is Standard ML [MTHM97]. As discussed in Section 7.3 and illustrated by the ex-
ample in Section 7.4, decomposition of a task into subtasks needs to take account of
required sharing between the resulting modules. Our treatment here makes these de-
pendencies explicit using higher-order parameterisation; this is sometimes referred
to as sharing by parameterisation and was advocated in Pebble [LB88]. Unfortu-
nately, this approach soon becomes notationally unwieldy. Standard ML deals with
the same issues in a neater way, using so-called sharing specifications, where shar-
ing requirements between arguments of a constructor are given explicitly in the
form of equations. These can be regarded as a convenient shorthand for sharing via
parameterisation, but the full details, especially in combination with higher-order
parameterisation, are problematic; see for instance [MT94].



Chapter 8

Behavioural specifications

In this chapter we present a behavioural view of specifications and discuss the role
of behavioural equivalence in software specification and development. In the con-
text of algebraic specification the “behaviour” of a program is fully determined by
the results of computations that the program may perform. When a program is mod-
elled as an algebra over an algebraic signature Σ , a computation is described by a
Σ -term and its result is the value of the term in the algebra. However, not all such
results can be directly observed: values of only certain observable sorts may be
directly returned to the user. Two Σ -algebras are behaviourally equivalent with re-
spect to the observable sorts if any Σ -term of an observable sort has the same value
in both algebras.

For instance, consider an algebraic signature Σ with sorts Nat, Bool, and Bunch
and operations empty:Bunch, add:Nat×Bunch→Bunch and ∈ :Nat×Bunch→
Bool (as well as the usual operations on Nat and Bool), and suppose that A and B
are Σ -algebras with carriers

|A|Bunch = the set of finite sets of natural numbers,
|B|Bunch = the set of finite lists of natural numbers,

and with the remaining carriers and operations defined in the expected way. (In par-
ticular, B implements add(n,b) by adding the element n to the front of the list b, but
it does not provide list operations like hd and tl.) Then A and B are behaviourally
equivalent w.r.t. Bool as the only observable sort since every term of sort Bool has
the same value in A as in B — the important terms here are those of the form
n ∈ add(n1, . . .add(nk,empty) . . .), and these have the same value in A and B. In-
deed, from the user’s point of view both algebras display identical behaviour if the
user is unable to directly observe the actual values of “bunches” constructed in com-
putations — all that can be observed, via the membership operation ∈, is whether
particular elements are contained in such bunches. This is the essential idea behind
data abstraction: we encapsulate a data type together with operations to be used by a
client, hiding the actual data representation and any representation-level operations.
Then different representations that exhibit the same behaviour (in our terminology:

,
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are behaviourally equivalent with respect to the unencapsulated sorts) can be used
interchangeably.

As we have argued earlier, to adequately capture the user’s initial requirements
and to provide sufficient information barriers between the modules of a system to be
developed, specifications should describe the whats of the system in a sufficiently
abstract way, without constraining its hows at all. Even the above simple example in-
dicates that the initial semantics of equational specifications (cf. Section 2.5), which
always yields a single isomorphism class of algebras, is not good enough from this
point of view: algebras A and B above are not isomorphic, so no specification can
have both of them as initial models. As we will indicate in Section 8.1 below, taking
the loose semantics of specifications (cf. Section 2.2) is not always good enough
either.

What is needed is an interpretation of specifications which makes them suffi-
ciently abstract, where abstraction means that the system is described only via its
observable behaviour. Under such an interpretation, specifications should not dis-
tinguish between algebras that are behaviourally equivalent. As explained in Sec-
tion 8.2 below, this may be ensured by explicitly closing the class of models of a
specification under behavioural equivalence. Consequently, abstract model specifi-
cations are possible, where the required system behaviour is prescribed by giving a
specific model (see Section 8.2.2). A viable alternative, presented in Section 8.3, is
to relax the interpretation of equality in sentences so that indistinguishable values of
non-observable sorts are regarded as equal. The behavioural view of specifications
leads to a more permissive notion of implementation, as discussed in Section 8.4.

For most of this chapter we will abandon working in an arbitrary institution and
instead consider the standard case of algebraic signatures and many-sorted total
algebras. We leave open the choice of a particular institution having these signatures
and models since sentences and their satisfaction are irrelevant for the developments
here except in part of Section 8.3 and in examples. Partial algebras as used in FPL

(Example 4.1.25) are considered in Section 8.5, with possible generalisations to the
framework of an arbitrary institution outlined in Section 8.5.3.

8.1 Motivating example

Let us consider the following rather well-known example, where the standard loose
interpretation of a specification turns out to be inadequate.

We start with a specification of stacks of strings. We build on the specification
String from Section 5.3 and on a specification Bool of booleans. In the exam-
ple here and throughout this chapter (except for Section 8.5, where we switch to
a different institution) we will assume for presentational convenience that standard
realisations of String and of Bool are given, and that all the algebras considered
use these to interpret strings, booleans, and their operations in the same way. When
we later use the specification Nat, we similarly assume a standard realisation of
natural numbers.
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spec STRINGSTACK =
Bool and String
then

sorts Stack
ops empty:Stack

isempty:Stack → Bool
push:String×Stack → Stack
top:Stack → String
pop:Stack → Stack

∀x:String,s:Stack
• isempty(empty) = true
• isempty(push(x,s)) = false
• top(push(x,s)) = x
• pop(push(x,s)) = s

Exercise 8.1.1. Rewrite the above specification of stacks of strings to obtain a spec-
ification of a generic module that builds stacks of arbitrary data elements. ��
Exercise 8.1.2. STRINGSTACK leaves the result of applying pop and top to the
empty stack totally unconstrained. When necessary, we will adopt in the following
the simplest possible approach, defining the operations to yield a standard default
value in this case. Try to reinterpret this specification and the rest of the example in
this section in the more appropriate framework of partial algebras as introduced in
Section 2.7.4; see Section 8.5 below. ��

Let ΣSS = Sig[STACKSTRING] be the signature of STACKSTRING. In one “stan-
dard” model of STACKSTRING — call it SS — stacks are lists of strings and the
operations are defined as follows:

• emptySS is the empty list;
• isemptySS(s) checks whether the list s is empty;
• pushSS(x,s) adds x to the front of the list s;
• topSS(s) yields the first element of the list s, and the empty string if the list s is

empty; and
• popSS(s) removes the first element from the list s, and does nothing if s is empty.

We will attempt to implement stacks of strings as specified above using infi-
nite arrays of strings indexed by natural numbers — see STRINGARRAY in Sec-
tion 5.3 — but with predicates replaced by boolean functions; see Exercise 4.1.16.
Let ΣSA = Sig[STRINGARRAY] be the signature of this specification.

Define a constructor AwP:ΣSA ⇒ ΣSS (i.e. a function AwP: |Alg(ΣSA)| →
|Alg(ΣSS)|; see Definition 6.1.1), which for any ΣSA-algebra SA ∈ |Alg(ΣSA)|
builds a ΣSS-algebra AwP(SA) ∈ |Alg(ΣSS)| as follows:

• |AwP(SA)|Stack = |SA|Array[String]×|SA|Nat;
• emptyAwP(SA) = 〈emptySA,0SA〉;
• isemptyAwP(SA)(〈a, i〉) = trueSA if i= 0SA and isemptyAwP(SA)(〈a, i〉) = falseSA oth-

erwise;
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• pushAwP(SA)(x,〈a, i〉) = 〈putSA(i,x,a),succSA(i)〉;
• popAwP(SA)(〈a,succSA(i)〉) = 〈a, i〉 and popAwP(SA)(〈a,0SA〉) = 〈a,0SA〉; and
• topAwP(SA)(〈a,succSA(i)〉) = getSA(i,a) and topAwP(SA)(〈a,0SA〉) = εSA.

Informally, the constructor AwP provides the usual “array-with-pointer” realisa-
tion of stacks, where each stack is represented as an array storing in its initial
segment the elements on the stack together with a pointer indicating the length
of the relevant array segment. In other words, a pair 〈a, i〉 represents the stack
push(get(i− 1,a), . . . ,push(get(0,a),empty) . . .). This is a rather standard realisa-
tion of stacks, which works well and is commonly used in practice.

However, consider any model SA∈Mod[STRINGARRAY]. For a∈ |SA|Array[String],
x ∈ |SA|String and i ∈ |SA|Nat, popAwP(SA)(pushAwP(SA)(x,〈a, i〉)) = 〈putSA(i,x,a), i〉,
which of course in general is distinct from 〈a, i〉. Consequently,

AwP(SA) �|= ∀x:String,s:Stack• pop(push(x,s)) = s,

and so, AwP(SA) �∈ Mod[STRINGSTACK]. Thus, according to Definition 7.2.1, the
attempted constructor implementation of STRINGSTACK by STRINGARRAY via the
constructor AwP:ΣSA ⇒ ΣSS is incorrect!

The discrepancy between the formal definition of implementation, which ren-
ders the implementation of STRINGSTACK by STRINGARRAY via AwP incorrect,
and practice, which in spite of this formal incorrectness views this implementation
as quite satisfactory, has its origin in the way in which the models of STRINGSTACK
are to be used. Intuitively, users will never be able to directly observe stack val-
ues. They can print out elements on a stack one by one, but not print its underlying
representation; similarly, they can check whether two stacks contain the same ele-
ments in the same order, but not whether their underlying representations are iden-
tical. Therefore, even though the specification STRINGSTACK contains the axiom
pop(push(x,s)) = s, it is not really relevant for the users whether the axiom holds or
not. What is important is that all its observable consequences hold (quantification is
omitted for simplicity):

isempty(pop(push(x,s))) = isempty(s)
top(pop(push(x,s))) = top(s)

isempty(pop(pop(push(x,s)))) = isempty(pop(s))
top(pop(pop(push(x,s)))) = top(pop(s))

isempty(pop(pop(pop(push(x,s))))) = isempty(pop(pop(s)))
top(pop(pop(pop(push(x,s))))) = top(pop(pop(s)))

...

Let STRINGSTACK∞ be the infinitary specification that results from STRINGSTACK
by replacing the single axiom pop(push(x,s)) = s with the set of its observ-
able consequences as listed above. Of course, any model of STRINGSTACK is a
model of STRINGSTACK∞, but not vice versa: there are models of STRINGSTACK∞,
for instance those produced by the constructor AwP when applied to models of
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STRINGARRAY, that are not models of STRINGSTACK. In practice, the user will
not be able to distinguish between the additional models of STRINGSTACK∞ and
models of STRINGSTACK. For instance, all observable results are the same in mod-
els produced by the constructor AwP when applied to models of STRINGARRAY
as in the standard stack model SS described above. In a sense, the original spec-
ification STRINGSTACK may be viewed as insufficiently abstract: it differentiates
between algebras that cannot be distinguished by the user.

One may wonder therefore why the specification of stacks is usually given with
the axiom pop(push(x,s)) = s, the satisfaction of which we have just argued is not
the real issue, rather than directly with the above family of its observable conse-
quences since these are what we really want to hold. There are at least two reasons:
first, it is often very convenient to treat any implementation of stacks as if it satis-
fied this single axiom. We will discuss this in more detail in Section 8.4.2. Second,
the above list of observable consequences of this single axiom is infinite, and in
first-order logic it cannot be equivalently replaced by a finite presentation.

Exercise 8.1.3. Try to state and prove the theorem that there is no finite first-order
presentation with the same class of models as STRINGSTACK∞. HINT: See [Sch92].

��
We may overcome the latter difficulty by resorting to a more powerful specification
formalism. For instance, a finitary specification that is equivalent to STRINGSTACK∞

may be given in higher-order logic, or even in first-order logic via the use of an
auxiliary function from natural numbers to enumerate all the contexts that appear in
the list of observable consequences above. However, neither of these specifications
would be as clear, simple and intuitively appealing as STRINGSTACK.

In the rest of this chapter we will describe an alternative interpretation of specifi-
cations like STRINGSTACK, under which all models of STRINGSTACK∞ are admit-
ted as acceptable realisations of STRINGSTACK, mitigating in this way the discrep-
ancy between practical usefulness and formal correctness of implementations that
is illustrated by this example.

8.2 Behavioural equivalence and abstraction

Given a software system modelled as an algebra over an algebraic signature Σ =
〈S,Ω〉, the sorts S name the sorts of data that can be constructed and manipulated
when the system is used. Some of these sorts are rather special: they classify data
that can be directly seen and exactly identified by the user of the system. Typically,
these are just built-in elementary data types of the programming language used to
code the system, with built-in procedures to input and output the data and with a
built-in equality test, which can be used in programs. They will be shared by all sys-
tems coded in the given programming language. Integers, characters and boolean
values are the most standard examples here. We will call these data, as well as the
sorts that classify them, observable. Other data cannot be observed so directly. They
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can be constructed and manipulated using the operations provided by the system, of
course, but they can be observed only by extracting their observable components.
Stacks and arrays (as discussed in Section 8.1) may be used as examples here. All
we can do is to traverse their structure and print one by one the observable elements
they contain, or input these observable elements one by one and build a complex data
structure out of them. Comparison, if needed, can again only be defined by travers-
ing two data structures and directly comparing the observable data they contain.
Consequently, two quite different systems, represented as non-isomorphic algebras,
can still display the same behaviour.

These comments concerning non-observable data relate not only to structured
data, but to any data type whose representation is hidden from the user, being ac-
cessible only by means of a number of pre-specified operations. An example would
be stacks of natural numbers where each stack is represented using a single natural
number, coding the stack as the product of consecutive primes to the power deter-
mined by the consecutive elements on the stack. These natural numbers representing
stacks will not be directly observable if we allow the user to apply only the usual
stack operations (which deal appropriately with the coded representation) to stacks.

8.2.1 Behavioural equivalence

Consider an algebraic signature Σ = 〈S,Ω〉 together with a distinguished set of
observable sorts OBS ⊆ S.

In the sequel we will use the following notational convention: given an S-sorted
set X , by XOBS we mean the S-sorted set which coincides with X on sorts s ∈ OBS
and is empty on all other sorts:

(XOBS)s =

{
∅ for s ∈ S\OBS
Xs for s ∈ OBS

In particular, for any S-sorted set of variables X , XOBS is a set containing variables of
observable sorts only, and given a Σ -algebra A, |A|OBS contains the carriers of A of
observable sorts only (and is empty on the other sorts). Then, an S-sorted function
v:XOBS → |A| is determined by its observable components, and will be identified
with the same function, v:XOBS → |A|OBS.

Definition 8.2.1 (Compatible algebras). Two Σ -algebras A,B∈ |Alg(Σ)| are OBS-
compatible (or simply, compatible, if OBS is clear) if they have the same observable
carriers, that is, |A|OBS = |B|OBS. ��

Following the above motivation, given a Σ -algebra A modelling a system with
observable sorts OBS, all the user of this system can observe are the values of terms
of sorts in OBS under valuations of variables of the sorts in OBS (which correspond
to supplying inputs of these sorts). Consequently, algebras where the corresponding
values of all such terms coincide can be viewed as equivalent.
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Definition 8.2.2 (Behavioural equivalence). OBS-compatible Σ -algebras A,B ∈
|Alg(Σ)| are behaviourally equivalent w.r.t. OBS, written A ≡OBS B (or simply, be-
haviourally equivalent, written A ≡ B, if OBS is clear), if for every set of variables
XOBS (of observable sorts), term t ∈ |TΣ (XOBS)|OBS of observable sort, and valuation
v:XOBS → |A|OBS (so that v:XOBS → |B|OBS as well), tA(v) = tB(v). ��
Exercise 8.2.3. Check that the behavioural equivalence is indeed an equivalence
relation on any class of Σ -algebras. ��
Example 8.2.4. Recall the specifications and constructions from Section 8.1. For
any SA ∈Mod[STRINGARRAY], SS and AwP(SA) are behaviourally equivalent with
respect to the observable sorts {String,Bool}. This holds even though they are not
isomorphic, and the “internal” data of sort Stack are represented quite differently in
the two algebras.

To see that AwP(SA)≡{String,Bool} SS, consider the relation ρ ⊆ |AwP(SA)|× |SS|
defined as the identity on (the carriers of sorts) String and Bool, and on Stack given
by

〈a,nSA〉 ρStack [getSA(nSA,a),getSA(n−1SA,a), . . . ,getSA(0SA,a)]

where for any natural number n, nSA = succSA(. . .succSA(︸ ︷︷ ︸
n times

0SA) . . .). Now, for any

set of variables X{String,Bool} and valuation v:X{String,Bool} → |SS|{String,Bool}, by
a simple induction on the structure of a term t ∈ |TΣSS(X{String,Bool})|, we can
show that tAwP(SA)(v) ρ tSS(v); this implies that tAwP(SA)(v) = tSS(v) for terms t ∈
|TΣSS(X{String,Bool})|{String,Bool} of observable sorts. ��

The technique used in the above example to show behavioural equivalence of the
two models SS and AwP(SA) works in the general case as well.

Definition 8.2.5 (Correspondence). Given two OBS-compatible Σ -algebras A,B ∈
|Alg(Σ)|, an OBS-correspondence (or simply, a correspondence, if OBS is clear)
between A and B, written ρ:A ��OBS B, is a relation ρ ⊆ |A|× |B| such that:

• ρ is the identity on observable carriers, that is, for each observable sort o ∈OBS,
ρo = id|A|o = id|B|o ; and

• ρ is closed under the operations, that is, for each operation f :s1×·· ·× sn → s
in Σ and elements a1 ∈ |A|s1 , . . . , an ∈ |A|sn and b1 ∈ |B|s1 , . . . , bn ∈ |B|sn , if
a1 ρs1 b1, . . . , an ρsn bn then also fA(a1, . . . ,an) ρs fB(b1, . . . ,bn). ��

Exercise 8.2.6. Check that the identity relation on the carrier of a Σ -algebra is
an OBS-correspondence, that the inverse of an OBS-correspondence is an OBS-
correspondence, and that the composition of two OBS-correspondences is an OBS-
correspondence. ��
Exercise 8.2.7. Consider an algebraic signature morphism σ :Σ → Σ ′, with distin-
guished sets OBS and OBS′ of observable sorts in Σ and Σ ′, respectively, such that
σ(OBS) ⊆ OBS′. Show that the reduct σ of an OBS′-correspondence (defined in
the obvious way) is an OBS-correspondence. ��
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Theorem 8.2.8. Two Σ -algebras A,B∈ |Alg(Σ)| are behaviourally equivalent w.r.t.
OBS if and only if there exists an OBS-correspondence between A and B.

Proof.

(⇒): Consider the relation ρ ⊆ |A|× |B| given by

ρ = {〈tA(v), tB(v)〉 | t ∈ |TΣ (XOBS)|, XOBS is a set of variables, v:XOBS → |A|OBS}.

It is easy to check that ρ is closed under the operations (directly from its defini-
tion) and that it is the identity on observable sorts (since A ≡OBS B).

(⇐): Let ρ:A ��OBS B be an OBS-correspondence. For any set of variables XOBS
and valuation v:XOBS → |A|OBS, by an easy induction on the structure of a term
t ∈ |TΣ (XOBS)| we can show that tA(v) ρ tB(v), which implies tA(v) = tB(v) for
terms of observable sorts. ��
A special case of a correspondence between compatible Σ -algebras is a Σ -

homomorphism between them that is the identity on observable carriers. Such a
homomorphism may even be partial, that is, defined only on a subalgebra.

Definition 8.2.9 (Behavioural subalgebra and homomorphism). A subalgebra A′
of a Σ -algebra A ∈ |Alg(Σ)| is behavioural (w.r.t. OBS) if A′ and A are OBS-
compatible, that is, |A′|OBS = |A|OBS. A′ is OBS-generated if it is the least be-
havioural subalgebra of A (or equivalently, of itself). The OBS-generated subalgebra
of a Σ -algebra A ∈ |Alg(Σ)| will be denoted by 〈A〉OBS.

A Σ -homomorphism h:A → B is behavioural (w.r.t. OBS) if it is the identity on
carriers of observable sorts (it follows that A and B are OBS-compatible then). ��
Corollary 8.2.10. For any A,B ∈ |Alg(Σ)|, if there exists a behavioural homomor-
phism h:A′ → B where A′ is a behavioural subalgebra of A, then A and B are be-
haviourally equivalent.

Proof. Easy by Theorem 8.2.8, since h is a correspondence between A and B. ��
The above corollary describes perhaps the most typical case of behaviourally

equivalent algebras, corresponding to what is sometimes referred to as data refine-
ment, where B is an “abstract” data model, and A provides a more concrete data
representation; then A′ is given by a representation invariant and each “concrete”
data value a ∈ |A′| represents h(a) ∈ |B|. Of course, any abstract data value b ∈ |B|
may have more than one concrete representation in |A|. Moreover, every data value
in the OBS-generated subalgebra of B has at least one such concrete representation,
and every data value in |B|OBS is represented by itself only.

Example 8.2.11. Recall Example 8.2.4. The correspondence ρ between AwP(SA)
and SS given there is in fact a behavioural homomorphism ρ:AwP(SA) → SS. If
we used integers rather than natural numbers as pointers to the top of arrays in
the array-with-pointer representation of stacks, the requirement that the pointer be
non-negative would provide an appropriate representation invariant to identify a be-
havioural subalgebra of the so-modified AwP(SA) representing the standard stack
model SS. ��
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Exercise 8.2.12. Recall Example 7.2.9. Give a behavioural homomorphism that
captures the restrict and quotient steps in that data refinement example. ��

Of course, not all correspondences are of such a simple form, and there exist be-
haviourally equivalent algebras with no behavioural homomorphisms between them.

Example 8.2.13. We rely again on specifications and constructions from Section 8.1.
We modify the standard stack model SS by recording whether or not a pop opera-
tion was performed on an empty stack in the course of constructing each stack value,
defining SSerr ∈ Mod[STRINGSTACK] as follows:

• |SSerr|Stack is the set of all pairs 〈s,err〉, where s is a list of strings and err is a
boolean value (either tt or ff );

• all stack operations in SSerr act on the first component of such “stacks” as they
do in the standard stack model SS, ignoring the err component; and

• the second component of the result of the stack operations is determined as fol-
lows:

– emptySSerr sets err to ff ;
– pushSSerr(〈s,err〉) leaves err unchanged; and
– popSSerr(〈s,err〉) sets err to tt if s is empty, and leaves it unchanged otherwise.

(Exercise: Check that indeed SSerr ∈ Mod[STRINGSTACK].)
For any SA∈Mod[STRINGARRAY], AwP(SA) and SSerr are behaviourally equiv-

alent w.r.t. the observable sorts {String,Bool}. To show this, a correspondence
ρerr ⊆ |AwP(SA)|× |SSerr| between AwP(SA) and SSerr may be given by slightly
modifying the definition from Example 8.2.4:

〈a,nSA〉 ρerr
Stack 〈[getSA(nSA,a),getSA(n−1SA,a), . . . ,getSA(0SA,a)],err〉

for err ∈ {tt, ff} (and nSA as before). The fact that there is no operation that extracts
the “error flag” from a stack is essential here; ρerr would not be closed under such
an operation.

However, no behavioural homomorphism between (any subalgebras of) AwP(SA)
and SSerr exists. We have AwP(SA) |= pop(empty) = empty and so there is no ho-
momorphism from AwP(SA) to SSerr since SSerr �|= pop(empty) = empty. We also
have SSerr |= pop(push(t,empty)) = empty for all terms t of sort String, and so there
is no homomorphism in the opposite direction since for some terms t of sort String,
AwP(SA) �|= pop(push(t,empty)) = empty. ��

Even though there is no behavioural homomorphism between AwP(SA) and SSerr

in the above example, it is easy to see that there are behavioural homomorphisms
from each of these algebras to the standard stack model SS. It turns out that this is
an instance of a general fact:

Theorem 8.2.14. Two Σ -algebras A,B ∈ |Alg(Σ)| are behaviourally equivalent
w.r.t. OBS if and only if there exist behavioural subalgebras A′ of A and B′ of B, a Σ -
algebra C ∈ |Alg(Σ)| and behavioural homomorphisms hA:A′ →C and hB:B′ →C.
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A ←−↩ A′ hA−−→C
hB←−− B′ ↪−→ B

Proof. The “if” part easily follows from Corollary 8.2.10 by Exercise 8.2.3.
For the “only if” part, consider a correspondence ρ:A ��OBS B (such a correspon-

dence exists by Theorem 8.2.8). Define a Σ -algebra C as follows:

• |C|OBS = |A|OBS (= |B|OBS);
• for each sort s ∈ S\OBS, |C|s = {[〈a,b〉]&s | a ρs b}, where &s ⊆ ρs×ρs is the

least equivalence relation on the set of pairs ρs such that 〈a,b〉 &s 〈a′,b〉 and
〈a,b〉 &s 〈a,b′〉 for all 〈a,b〉,〈a′,b〉,〈a,b′〉 ∈ ρs;

• for each operation f :s1×·· ·× sn → s in Σ , for p1 ∈ |C|s1 , . . . , pn ∈ |C|sn ,
let ai = bi = pi if si ∈ OBS and pi = [〈ai,bi〉]&si

otherwise, i = 1, . . . ,n. Put
fC(p1, . . . , pn) = p, where p = fA(a1, . . . ,an) = fB(b1, . . . ,bn) if s ∈ OBS and
p = [〈 fA(a1, . . . ,an), fB(b1, . . . ,bn)〉]&s otherwise. (Exercise: Check that fC is
well defined.)

Note now that since ρ is closed under the operations, so are its domain and codomain
(as subsets of |A| and |B|, respectively). Therefore, there are subalgebras A′ of A
and B′ of B such that |A′|= {a ∈ |A| | a ρ b for some b ∈ |B|}, and |B′|= {b ∈ |B| |
a ρ b for some a ∈ |A|}. Moreover, since ρ is the identity on observable carriers, A′
and B′ are behavioural subalgebras of A and B, respectively.

Finally, for each s ∈ S\OBS define |hA|s: |A′|s → |C|s and |hB|s: |B′|s → |C|s as
follows:

• for a ∈ |A′|s, |hA|s(a) = [〈a,b〉]&s for any b ∈ |B| such that a ρs b, and
• for b ∈ |B′|s, |hB|s(b) = [〈a,b〉]&s for any a ∈ |A| such that a ρs b.

It is easy to check now that for s ∈ S\OBS, |hA|s and |hB|s are well defined and to-
gether with the identities on observable carriers form behavioural homomorphisms
hA:A′ →C and hB:B′ →C. ��
Exercise 8.2.15. A dual characterisation of behavioural equivalence follows from
the fact that any correspondence may be presented as a “span” of two behavioural
homomorphisms: two Σ -algebras A,B∈ |Alg(Σ)| are behaviourally equivalent w.r.t.
OBS if and only if there exists a Σ -algebra C with behavioural homomorphisms
hA:C → A and hB:C → B. The “if” direction follows by Corollary 8.2.10. Complete
the following proof sketch of the “only if” direction: for behaviourally equivalent
A,B ∈ |Alg(Σ)|, by Theorem 8.2.8 there is a correspondence ρ:A ��OBS B; define C
to have the set of pairs ρ as its carrier and its operations defined componentwise (for
sorts s ∈OBS, identify pairs 〈a,a〉 ∈ ρs with a), and hA and hB to be the projections.

Remark: Note that ρ = (hA)
−1;hB. ��

Exercise 8.2.16. We have presented the notion of behavioural equivalence with re-
spect to an arbitrary but fixed set of observable sorts. Investigate how behavioural
equivalence varies when the set of observable sorts changes. Given an algebraic sig-
nature Σ = 〈S,Ω〉, characterise the behavioural equivalences≡∅, where no sorts are
observable, and ≡S, where all sorts are observable. Show that if OBS ⊆ OBS′ ⊆ S
then ≡OBS′ ⊆ ≡OBS. Show also that for OBS1 ⊆ S and OBS2 ⊆ S, ≡OBS1∪OBS2 ⊆
≡OBS1 ∩≡OBS2 but in general the inclusion may be proper. ��
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Exercise 8.2.17. The definition of behavioural equivalence above tacitly assumes
that the observable computations take inputs from and produce outputs in the same
set OBS of observable sorts. It is possible to use two different sets of sorts instead,
say, IN and OUT , respectively. Define behavioural equivalence w.r.t. IN,OUT . De-
fine (IN,OUT)-correspondences and prove a counterpart of Theorem 8.2.8. Make
sure that when IN = OUT = OBS, the definitions coincide with those above. HINT:
An (IN,OUT)-correspondence should include the identity on IN-carriers and be
included in the identity on OUT-carriers.

Spell this out for the cases IN = ∅ (no inputs allowed) and IN = S (arbitrary
inputs allowed). ��

8.2.2 Behavioural abstraction

We have argued earlier that it is desirable that specifications not distinguish be-
tween algebras that cannot be distinguished by the user. The notion of behavioural
equivalence was introduced to capture what it means exactly for two algebras to be
indistinguishable from the user’s point of view. Unfortunately, typical specifications
that can be built using specification techniques provided so far (Chapter 5) deter-
mine classes of models that need not be closed under behavioural equivalence, as
shown by the example of STRINGSTACK in Section 8.1.

To alleviate this problem, we provide a new specification-building operation that
closes the class of models of a specification under behavioural equivalence. This
amounts to abstracting away from the details of the specifications that cannot be
observed by the user of the specified system.

As before, let Σ = 〈S,Ω〉 be an algebraic signature with a distinguished set of
observable sorts OBS ⊆ S.

Definition 8.2.18 (Behavioural closure and abstraction). For any class A ⊆
|Alg(Σ)| of Σ -algebras, its behavioural closure (w.r.t. OBS) is

AbsOBS(A ) = {B ∈ |Alg(Σ)| | B ≡OBS A for some A ∈A }.

If SP is a Σ -specification then abstract SP wrt OBS is a specification with the fol-
lowing semantics:

Sig[abstract SP wrt OBS] = Σ
Mod[abstract SP wrt OBS] = AbsOBS(Mod[SP]) ��
A few simple facts follow immediately from the definition; cf. Exercise 5.1.8:

Proposition 8.2.19. Let A ,A ′ ⊆ |Alg(Σ)| be classes of Σ -algebras.

1. Behavioural closure preserves the original models: A ⊆ AbsOBS(A ).
2. Behavioural closure is monotone: if A ⊆A ′ then AbsOBS(A )⊆ AbsOBS(A ′).
3. Behavioural closure is idempotent: AbsOBS(AbsOBS(A )) = AbsOBS(A ).
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4. Behavioural closure preserves and reflects consistency: AbsOBS(A ) �= ∅ if and
only if A �=∅. ��

Exercise 8.2.20. Derive from Proposition 8.2.19 the analogous properties of speci-
fications built using behavioural abstraction. ��
Example 8.2.21. When presenting the example specification STRINGSTACK in Sec-
tion 8.1 we have argued that what we really want is a specification of stacks that
prescribes only the required behaviour. We would like to disregard properties like
∀x:String,s:Stack• pop(push(x,s)) = s that cannot be directly observed, as long as
the observable behaviour implied by them is guaranteed. Using the operation of be-
havioural abstraction, we can now define a specification that captures exactly what
we want:

spec STRINGSTACKBEH = abstract STRINGSTACK wrt {Bool,String}.
We can now explain why the array-with-pointer realisation of stacks, as encoded
in the constructor AwP:ΣSA ⇒ ΣSS (see Section 8.1), provided a perfectly satis-
factory implementation even though the attempted constructor implementation of
STRINGSTACK by STRINGARRAY via AwP is not correct. Namely, the point is that
the constructor AwP:ΣSA ⇒ ΣSS provides a correct constructor implementation of
STRINGSTACKBEH by STRINGARRAY:

STRINGSTACKBEH
AwP
�����STRINGARRAY.

The role of behavioural abstraction in implementation and development will be fur-
ther discussed in Section 8.4. ��

Behavioural abstraction can be used to express a rather different specification
technique than those based on axiomatic presentations and specification-building
operations to manipulate them. Abstract model specifications describe the required
behaviour of a system by explicitly defining a particular reference model — an al-
gebra — which displays the desired behaviour.1 This is not meant to suggest that
the final system will be built in the same way as the reference model — any algebra
which is behaviourally equivalent to that model is accepted. We can capture this
by a combination of behavioural abstraction and singleton specifications from Def-
inition 6.2.7: for any Σ -algebra M ∈ |Alg(Σ)|, abstract {M} wrt OBS defines the
class of models that are behaviourally equivalent to M.

Example 8.2.22. Instead of attempting to specify stacks of strings axiomatically, as
in STRINGSTACK, we could simply give a particular model of stacks of strings. For
instance, we could just define the standard stack model SS ∈ |Alg(ΣSS)|, and then
put

spec STANDARDSTRINGSTACK = abstract {SS} wrt {Bool,String}.

1 The word “abstract” refers to the fact that rather high-level constructions that are not found in
most programming languages may be used to build the reference model.
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However, the resulting specification is more restrictive than STRINGSTACKBEH,
since it fixes the result of applying the top and pop operations to the empty stack —
which is left unconstrained by STRINGSTACKBEH. ��
Exercise 8.2.23. Following Exercise 8.2.16, for any class A ⊆ |Alg(Σ)| of Σ -
algebras, characterise Abs∅(A ) and AbsS(A ), and prove that if OBS ⊆ OBS′ ⊆ S
then AbsOBS′(A ) ⊆ AbsOBS(A ). State consequences of these facts for behavioural
abstraction. ��

8.2.3 Weak behavioural equivalence

In the above we discussed behavioural equivalence between compatible algebras,
which share the interpretation of observable sorts. Even though there are good argu-
ments for this — typically, observable sorts are built-in data types of the program-
ming language used to code the programs — one may feel that it is overly restric-
tive for use in connection with loose specifications. In this subsection we briefly
generalise the previous developments to the case where observable carriers may be
distinct, and provide results which in fact indicate that such a generalisation may
not be needed.

As before, let Σ = 〈S,Ω〉 be an algebraic signature with a distinguished set of
observable sorts OBS ⊆ S.

Definition 8.2.24 (Weak behavioural equivalence).Two Σ-algebras A,B∈|Alg(Σ)|
are weakly behaviourally equivalent w.r.t. OBS, written A

w≡OBS B (or simply, weakly
behaviourally equivalent, written A

w≡ B, if OBS is clear), if there exist a set of vari-
ables XOBS (of observable sorts) and two surjective valuations vA:XOBS → |A|OBS
and vB:XOBS → |B|OBS such that for each pair of terms t, t ′ ∈ |TΣ (XOBS)|o of a com-
mon observable sort o ∈ OBS, tA(vA) = t ′A(vA) if and only if tB(vB) = t ′B(vB). ��
Exercise 8.2.25. Check that weak behavioural equivalence is an equivalence on
|Alg(Σ)|. ��
Definition 8.2.26 (Weak correspondence). Given two Σ -algebras A,B ∈ |Alg(Σ)|,
a weak OBS-correspondence (or simply, a weak correspondence, if OBS is clear)
between A and B, written ρ:A

w
��OBS B, is a relation ρ ⊆ |A|× |B| such that:

• ρ is bijective on observable carriers, that is, for each observable sort o ∈ OBS,
ρo ⊆ |A|o×|B|o is a bijection; and

• ρ is closed under the operations, that is, for each operation f :s1×·· ·× sn → s
in Σ and elements a1 ∈ |A|s1 , . . . , an ∈ |A|sn and b1 ∈ |B|s1 , . . . , bn ∈ |B|sn , if
a1 ρs1 b1, . . . , an ρsn bn then also fA(a1, . . . ,an) ρs fB(b1, . . . ,bn). ��

Exercise 8.2.27. Check that isomorphisms, inverses of weak correspondences and
compositions of weak correspondences are weak correspondences. ��
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Theorem 8.2.28. Two Σ -algebras A,B ∈ |Alg(Σ)| are weakly behaviourally equiv-
alent w.r.t. OBS if and only if there exists a weak OBS-correspondence between A
and B.

Proof.

(⇒): Let XOBS, vA:XOBS →|A|OBS and vB:XOBS →|B|OBS be as in Definition 8.2.24
of weak behavioural equivalence. Consider a relation ρ ⊆ |A|× |B| given by

ρ = {〈tA(vA), tB(vB)〉 | t ∈ |TΣ (XOBS)|}.
It is easy to check that ρ is closed under the operations (directly from its defi-
nition). Moreover, for each observable sort o ∈ OBS, ρo ⊆ |A|o×|B|o is a bijec-
tion: first, since vA:XOBS → |A|OBS is surjective, ρo is total on |A|o. Then sup-
pose that for some a ∈ |A|o and b,b′ ∈ |B|o, a ρo b and a ρo b′, that is, for terms
t, t ′ ∈ |TΣ (XOBS)|o, a = tA(vA) and b = tB(vB), and a = t ′A(vA) and b′ = t ′B(vB).
But then b = b′, since tA(vA) = t ′A(vA) implies tB(vB) = t ′B(vB). Hence, ρo is a
total function from |A|o to |B|o. By symmetry, ρ−1

o is a total function from |B|o
to |A|o, and it follows that ρo is indeed a bijection.

(⇐): Let ρ:A
w
��OBS B be a weak OBS-correspondence. Let XOBS = |A|OBS and let

the valuation vA:XOBS → |A|OBS be the identity and the valuation vB:XOBS →
|B|OBS be ρOBS. By an easy induction on the structure of a term t ∈ |TΣ (XOBS)|,
we can show that tA(vA) ρ tB(vB). Therefore, for any observable sort o ∈ OBS,
since ρo is a bijection, for any terms t ′, t ′′ ∈ |TΣ (XOBS)|o, t ′A(vA) = t ′′A(vA) if and
only if t ′B(vB) = t ′′B(vB). ��

Corollary 8.2.29. Behavioural equivalence of algebras implies their weak equiva-
lence: for any Σ -algebras A,B ∈ |Alg(Σ)|, if A ≡OBS B then A

w≡OBS B.

Proof. Follows by Theorems 8.2.8 and 8.2.28, since any correspondence is a weak
correspondence. ��
Lemma 8.2.30. For any Σ -algebras A,B ∈ |Alg(Σ)|, if A

w≡OBS B then there exists
a Σ -algebra C ∈ |Alg(Σ)| that is isomorphic to A and OBS-compatible with B such
that C ≡OBS B.

Proof. Assume A
w≡OBS B and let ρ:A

w
��OBS B be a weak correspondence, which

exists by Theorem 8.2.28. Define a Σ -algebra C ∈ |Alg(Σ)| as follows:

• for each sort s ∈ S, |C|s = |B|s if s ∈ OBS and |C|s = |A|s otherwise; and
• for each operation f :s1×·· ·× sn → s in Σ and elements a1 ∈ |A|s1 , . . . , an ∈
|A|sn , put fC(|ι |s1(a1), . . . , |ι |sn(an)) = |ι |s( fA(a1, . . . ,an)), where the function
|ι |: |A| → |C| is a bijection such that for each sort s ∈ S, |ι |s = ρs if s ∈ OBS
and |ι |s = id|A|s otherwise.

Then ι :A→C is a Σ -isomorphism and the composition ι−1;ρ ⊆ |C|× |B| is a weak
correspondence (by Exercise 8.2.27) which is the identity on observable carriers (by
the construction), and so it is a correspondence between OBS-compatible algebras.
Thus, C ≡OBS B by Theorem 8.2.8, and so indeed A is isomorphic to an algebra that
is behaviourally equivalent to B. ��
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Corollary 8.2.31. Two Σ -algebras are weakly behaviourally equivalent if and only
if they are isomorphic to behaviourally equivalent Σ -algebras.

Proof. The “if” part easily follows from Theorems 8.2.8 and 8.2.28, by Exer-
cise 8.2.27; Lemma 8.2.30 directly implies the “only if” part. ��
The above lemma and corollary seem to be of crucial importance: informally, in
any context where algebras are only identified up to isomorphism, working with
behavioural equivalence is the same as working with weak behavioural equivalence.

Corollary 8.2.32. Two Σ -algebras A,B ∈ |Alg(Σ)| are weakly behaviourally equiv-
alent w.r.t. OBS if and only if there exist behavioural subalgebras A′ of A and B′ of
B, a Σ -algebra C ∈ |Alg(Σ)| and homomorphisms hA:A′ →C and hB:B′ →C that
are bijective on carriers of observable sorts.

Proof. Follows from Corollary 8.2.31 and Theorem 8.2.14. ��
An alternative form of behavioural abstraction can be based on weak behavioural

equivalence:

Definition 8.2.33 (Weak behavioural closure and abstraction). For any class
A ⊆ |Alg(Σ)| of Σ -algebras, its weak behavioural closure (w.r.t. OBS) is

WAbsOBS(A ) = {B ∈ |Alg(Σ)| | B
w≡OBS A for some A ∈A }.

If SP is a Σ -specification then weak abstract SP wrt OBS is a specification with
the following semantics:

Sig[weak abstract SP wrt OBS] = Σ
Mod[weak abstract SP wrt OBS] = WAbsOBS(Mod[SP]) ��

Corollary 8.2.34. For any class A ⊆ |Alg(Σ)| of Σ -algebras, if A is closed under
isomorphism then AbsOBS(A ) = WAbsOBS(A ).

In particular, if the class Mod[SP] of models of a Σ -specification SP is closed
under isomorphism then

Mod[abstract SP wrt OBS] = Mod[weak abstract SP wrt OBS].

Proof. The inclusion “⊆” always holds by Corollary 8.2.29. Under the assumption
that A (respectively, Mod[SP]) is closed under isomorphism, Lemma 8.2.30 directly
implies the inclusion “⊇”. ��
Exercise 8.2.35. Study Section 8.4 below and redo it, replacing behavioural equiv-
alence, closure and abstraction by weak behavioural equivalence, closure and ab-
straction, respectively. Are there any important changes? HINT: Feel free to assume
that classes of models of all the specifications involved are closed under isomor-
phism and that constructors preserve isomorphisms. But also, feel obliged to check
that this is indeed the case for the specifications and constructions used in examples
there. ��
Exercise 8.2.36. Building on Exercise 8.2.17, define a weak version of behavioural
equivalence and of correspondence w.r.t. possibly different sets IN and OUT of input
and output sorts, respectively. Adapt the results in this section for these notions. ��
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8.3 Behavioural satisfaction

In this section we will discuss an alternative view of behavioural abstraction. The
overall idea is that instead of introducing a behavioural equivalence between alge-
bras, considering the usual semantics of specifications and then closing the class
of admissible models of a specification under the behavioural equivalence, we may
want to attempt to describe the resulting class of models more directly. However, as
indicated in Section 8.1, this cannot typically be done within the usual institutions.

Recall again the specification STRINGSTACK from Section 8.1. One way of look-
ing at the problematic equation ∀x:String,s:Stack• pop(push(x,s)) = s is that we do
not really want to require the values of pop(push(x,s)) and s to be identical, but
only to be indistinguishable in the models of the specification. We will formally in-
troduce such an indistinguishability relation between algebra elements and use it to
define a new notion of satisfaction of formulae in algebras.

As before, let Σ = 〈S,Ω〉 be an algebraic signature with a distinguished set of
observable sorts OBS ⊆ S.

The indistinguishability relation should surely be compatible with the operations
of the algebra: applying operations to indistinguishable values yields indistinguish-
able results. Moreover, it should identify as many elements as possible, without
identifying directly observable data.

Definition 8.3.1 (Behavioural congruence). A congruence & ⊆ |A|× |A| on a Σ -
algebra A ∈ |Alg(Σ)| is behavioural (w.r.t. OBS) if &OBS is the identity. ��
Exercise 8.3.2. Show that any relation & ⊆ |A|× |A| on a Σ -algebra A ∈ |Alg(Σ)|
is a behavioural congruence w.r.t. OBS iff it is a reflexive OBS-correspondence
&:A ��OBS A. ��
Proposition 8.3.3. For any Σ -algebra A ∈ |Alg(Σ)|, there is a largest behavioural
congruence on A.

Proof. There is at least one behavioural congruence on A: the identity relation. Con-
sider the family of all behavioural congruences on A. Let ∼⊆ |A|× |A| be the tran-
sitive closure of the union of this family. Then ∼ is a congruence on A and it is the
identity on the observable carriers. So, ∼ is a behavioural congruence on A, and it
is the largest such congruence on A. ��

The above proposition provides a good candidate for the indistinguishability re-
lation in an algebra. However, the simple proof given does not really reflect the
intuition underlying this concept, which should relate directly to the possible obser-
vations of an element in a Σ -algebra. Intuitively, such observations are computations
starting from this element, leading to an observable result, and perhaps using addi-
tional inputs from observable sorts. This can be modelled by restricting the notion
of a context; cf. Definition 2.6.1.

Definition 8.3.4 (Observable context). A Σ -context C ∈ |TΣ (X �{�:s})| for sort
s is observable (w.r.t. OBS) if it contains only variables in XOBS and is of a sort in
OBS.
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For any Σ -algebra A ∈ |Alg(Σ)| and valuation v:X → |A|, the value of the
context C on a ∈ |A|s under valuation v, written Cv

A[a], is CA(va) ∈ |A| where
va:(X �{�:s})→ |A| extends v by va(�) = a. ��
Exercise 8.3.5. Show that for any Σ -context C ∈ |TΣ (X � {�:s})|, Σ -term t ∈
|TΣ (X)|s and valuation v:X → |A|, Cv

A[tA(v)] = (C[t])A(v). ��
Definition 8.3.6 (Behavioural indistinguishability). Consider any Σ-algebra A ∈
|Alg(Σ)|. Behavioural indistinguishability on A w.r.t. OBS (or simply, indistin-
guishability on A) is the relation ∼OBS

A ⊆ |A|× |A| defined as follows: for s ∈ S
and a,b ∈ |A|s, a ∼OBS

A b if and only if for all observable contexts C ∈ |TΣ (XOBS �
{�:s})|OBS and valuations v:XOBS → |A|OBS, Cv

A[a] = Cv
A[b]. ��

We omit the set OBS of observable sorts if it is clear from the context, and write
simply ∼A, or even ∼ if A is clear as well, for behavioural indistinguishability on A.

Theorem 8.3.7. For any OBS-generated Σ -algebra A ∈ |Alg(Σ)|, the behavioural
indistinguishability relation ∼ ⊆ |A|× |A| on A is the largest behavioural congru-
ence on A.

Proof. First, note that since for any observable sort o ∈ OBS, �:o is an observable
context for o, so ∼ is the identity on |A|OBS.

Then, let &⊆ |A|× |A| be a congruence on A, and let a,b∈ |A|s for some sort s∈
S be such that a&s b. By an easy induction on the structure of a term t ∈ |TΣ (XOBS�
{�:s})|, for any valuation v:XOBS →|A|OBS, we can show that tA(va)& tA(vb), where
va,vb:(XOBS �{�:s})→ |A| extend v by va(�) = a and vb(�) = b, respectively. If
& is behavioural, this implies that Cv

A[a] = Cv
A[b] for any observable context C ∈

|TΣ (XOBS�{�:s})|OBS, and so a ∼s b, which proves &⊆∼.
To show that∼ is a congruence on A, consider an operation f :s1×·· ·× sn → s in

Σ and elements a1,a′1 ∈ |A|s1 , . . . , an,a′n ∈ |A|sn such that a1 ∼s1 a′1, . . . , an ∼sn a′n.
Since A is OBS-generated, all its elements are values of terms with variables of
observable sorts under some valuation of these variables in |A|OBS. Choosing the
variables appropriately, we can assume that there are terms t1, t ′1 ∈ |TΣ (YOBS)|s1 , . . . ,
tn, t ′n ∈ |TΣ (YOBS)|sn and a valuation w:YOBS → |A|OBS such that a1 = (t1)A(w), a′1 =
(t ′1)A(w), . . . , an = (tn)A(w), a′n = (t ′n)A(w). Consider now an observable context
C ∈ |TΣ (XOBS �{�:s})|OBS and a valuation v:XOBS → |A|OBS. We can assume that
YOBS and XOBS are disjoint. Let (v + w):(XOBS ∪YOBS) → |A|OBS be the obvious
valuation that extends v and w. Then:

Cv
A[ fA(a1,a2, . . . ,an)]

= Cv+w
A [ fA(a1, t2, . . . , tn)] since a2 = (t2)A(w), . . . ,an = (tn)A(w)

= Cv+w
A [ fA(a′1, t2, . . . , tn)] since a1 ∼s1 a′1 and

C(�:s1, t2, . . . , tn) is an observable context
= Cv+w

A [ fA(t ′1,a2, . . . , tn)] since a′1 = (t ′1)A(w) and a2 = (t2)A(w)
= Cv+w

A [ fA(t ′1,a
′
2, . . . , tn)] since a2 ∼s1 a′2 and

C(t ′1,�:s2, . . . , tn) is an observable context
. . .
= Cv+w

A [ fA(t ′1, t
′
2, . . . ,a

′
n)] . . .

= Cv
A[ fA(a′1,a

′
2, . . . ,a

′
n)] since a′1 = (t ′1)A(w), . . . ,a′n−1 = (t ′n−1)A(w)
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Thus fA(a1,a2, . . . ,an)∼s fA(a′1,a
′
2, . . . ,a

′
n) and so ∼ is indeed a congruence on A.

��
Exercise 8.3.8. Construct a Σ -algebra A ∈ |Alg(Σ)| such that the behavioural indis-
tinguishability relation ∼A ⊆ |A|× |A| is not a congruence on A (so, A cannot be
OBS-generated). Modify the definition of ∼ so that a characterisation of the largest
behavioural congruence on any algebra is obtained. (HINT: Admit computations
with non-observable inputs; see Exercise 8.2.17.) Check that the two definitions co-
incide on OBS-generated algebras, but if a Σ -algebra A is not OBS-generated, they
may yield different relations, even on the OBS-generated subalgebra 〈A〉OBS of A.

��
The above exercise demonstrates that considering elements outside the OBS-

generated subalgebra may influence properties of OBS-generated elements. Since
only the latter may occur in observable computations performed in an algebra, we
will disregard all such “non-observable junk”. Consequently, we define a new no-
tion of behavioural satisfaction of equations using the indistinguishability relation
to interpret equality and restricting attention to OBS-generated data.

Definition 8.3.9 (Behavioural satisfaction). A Σ -algebra A behaviourally satisfies
(w.r.t. OBS) a Σ -equation ∀X • t = t ′, written A |=OBS ∀X • t = t ′, if for all valuations
v:X → |〈A〉OBS| into the OBS-generated subalgebra of A, (t)A(v) ∼OBS

A (t ′)A(v). In
this situation we will sometimes say that ∀X • t = t ′ behaviourally holds in A (w.r.t.
OBS). ��
Exercise 8.3.10. Extend the above definition to behavioural satisfaction of first-
order formulae without predicates (cf. Exercise 4.1.13). Follow the usual inductive
definition of satisfaction of a first-order formula with respect to a valuation of vari-
ables, but:

• restrict valuations, and hence the possible values of quantified variables, to the
OBS-generated part of the algebra; and

• use behavioural indistinguishability to interpret equality.

Check that the resulting definition coincides with the one above for equations
viewed as universally quantified first-order sentences. ��

The new notion of satisfaction of equations (and first-order sentences) extends as
usual to sets of sentences and classes of algebras. It may be used to reinterpret flat
specifications as follows:

Definition 8.3.11 (Behavioural semantics of presentation). Given a presentation
〈Σ ,Φ〉 in equational logic (or first-order logic) and a set of observable sorts OBS in
Σ , the behavioural model class of 〈Σ ,Φ〉 (w.r.t. OBS) is defined as follows:

ModOBS(〈Σ ,Φ〉) = {A ∈ |Alg(Σ)| | A |=OBS Φ}. ��
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Example 8.3.12. Recalling again specifications and constructions from Section 8.1,
for any model SA ∈ Mod[STRINGARRAY] of the specification of arrays of natural
numbers, AwP(SA), the array-with-pointer realisation of stacks it determines, is a
behavioural model of all the axioms in STRINGSTACK. In particular, AwP(SA) |=OBS
∀x:String,s:Stack• pop(push(x,s)) = s. ��
Exercise 8.3.13. Check that ordinary satisfaction of equations implies behavioural
satisfaction, and that the behavioural model class of an equational presentation is
a variety and hence is equationally definable under ordinary satisfaction (but not
necessarily finitely, even if the original presentation is finite; see Exercise 8.1.3).

��
We have so far considered behavioural satisfaction w.r.t. a fixed signature Σ =

〈S,Ω〉 and a fixed set OBS ⊆ S of observable sorts.

Exercise 8.3.14. Investigate how behavioural satisfaction varies when the set of
observable sorts changes. In particular, for any Σ -equation e and Σ -algebra A ∈
|Alg(Σ)|, characterise satisfaction A |=S e and A |=∅ e, and prove that if OBS ⊆
OBS′ ⊆ S then A |=OBS′ e implies A |=OBS e. Compare this with Exercise 8.2.16 and
its consequences for behavioural closure and abstraction in Exercise 8.2.23. HINT:
See Corollary 8.3.33 below. ��
Proposition 8.3.15. For any signature morphism σ :Σ → Σ ′, Σ -equation e and Σ ′-
algebra A′ ∈ |Alg(Σ ′)|, if A′ |=σ(OBS) σ(e) then A′ σ |=OBS e. ��
Exercise 8.3.16. Give a counterexample to the converse of the implication in Propo-
sition 8.3.15. Conclude that behavioural satisfaction (of equations by algebras over
algebraic signatures with their usual morphisms) does not directly give rise to an in-
stitution. The situation is even worse for first-order logic: show that even the forward
implication may fail for sentences of first-order logic. Show that Proposition 8.3.15
applies to conditional equations with premises of observable sorts. ��
Exercise 8.3.17. Try to characterise (behavioural) theory morphisms σ :〈Σ ,Φ〉 →
〈Σ ′,Φ ′〉 such that for any model A′ ∈ Modσ(OBS)(〈Σ ′,Φ ′〉) and Σ -equation e,
A′ |=σ(OBS) σ(e) if and only if A′ σ |=OBS e. HINT: This holds when in Σ ′ there
are no essentially new observable contexts for old sorts (that is, all observable con-
texts in Σ ′ for sorts in σ(Σ) are observable contexts from Σ translated by σ ). For
signature morphisms this is difficult to ensure in typical examples. Here, however,
this may be defined modulo the identification of contexts induced by the axioms in
Φ ′, which allows for some non-trivial applications. You may find Exercise 8.3.35
below useful in justifying the characterisation you develop. ��

8.3.1 Behavioural satisfaction vs. behavioural abstraction

In Section 8.2, behavioural interpretation of specifications was given by behavioural
abstraction, based on behavioural equivalence of algebras. In the above, similar mo-
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tivation led to a new notion of behavioural satisfaction, and consequently to a be-
havioural interpretation of flat specifications given by the class of their behavioural
models. Are these two approaches equivalent? We will show here that this is indeed
the case for many typical specifications.

We will need to generalise two standard concepts of universal algebra (cf. Defi-
nitions 1.3.13 and 1.3.15):

Definition 8.3.18 (Partial congruence and quotient). Let A ∈ |Alg(Σ)| be a Σ -
algebra. A relation&⊆ |A|× |A| is a partial congruence on A if dom(&) = {a ∈ |A| |
a & a′ for some a′ ∈ |A|} is (the carrier of) a subalgebra of A and & is a congruence
on this subalgebra. That is, a partial congruence is a transitive and symmetric (but
not necessarily reflexive) relation on |A| that is closed under the operations of A.

A quotient of a Σ -algebra A by a partial congruence & on A, written A/&, is the
quotient of the subalgebra of A having carrier dom(&) by the congruence &. ��

As before, let Σ = 〈S,Ω〉 be an algebraic signature with a distinguished set of
observable sorts OBS ⊆ S.

Definition 8.3.19 (Partial behavioural indistinguishability congruence). Given a
Σ -algebra A ∈ |Alg(Σ)|, the partial behavioural indistinguishability congruence on
A is ≈OBS

A = ∼OBS
A ∩ (|〈A〉OBS|× |〈A〉OBS|), the restriction of the behavioural indis-

tinguishability relation on A to the OBS-generated subalgebra 〈A〉OBS of A. ��
Corollary 8.3.20. For any Σ -algebra A ∈ |Alg(Σ)|, the partial behavioural indis-
tinguishability congruence ≈OBS

A on A is the largest behavioural congruence on the
OBS-generated subalgebra 〈A〉OBS.

Proof. Follows directly from Theorem 8.3.7, since by Definition 8.3.6, ∼〈A〉OBS co-
incides with ∼A on |〈A〉OBS|. ��

We will aim first at a direct characterisation of (weak) behavioural equivalence in
terms of partial behavioural indistinguishability. A special role will be played here
by algebras in which all elements are OBS-generated and distinguishable from each
other.

Definition 8.3.21 (Fully abstract algebra). A Σ -algebra A ∈ |Alg(Σ)| is fully ab-
stract (w.r.t. OBS) if the partial indistinguishability relation≈OBS

A on A is the identity
on |A|. ��
The class of all fully abstract Σ -algebras will be denoted by FAlgOBS(Σ). For any
class A ⊆ |Alg(Σ)| of Σ -algebras, we will write FAOBS(A ) for A ∩FAlgOBS(Σ).

Lemma 8.3.22. Fully abstract algebras are weakly behaviourally equivalent if and
only if they are isomorphic.

Proof. The “if” part is trivial. For the “only if” part, let A,B ∈ |Alg(Σ)| be such that
A

w≡OBS B. Since fully abstract algebras are OBS-generated, by Corollary 8.2.32,
there exists an OBS-generated Σ -algebra C ∈ |Alg(Σ)| and surjective behavioural
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homomorphisms hA:A →C and hB:B →C. Then, the kernels of hA and hB are be-
havioural congruences on A and B, respectively, and so, since A and B are fully
abstract, the kernels are identities. Consequently, hA and hB are isomorphisms, and
A and B are isomorphic. ��
Lemma 8.3.23. For any Σ -algebra A ∈ |Alg(Σ)|, its quotient A/≈A by partial be-
havioural indistinguishability is fully abstract.

Proof. First, recall that dom(≈A) coincides with (the carrier of) the OBS-generated
behavioural subalgebra 〈A〉OBS of A. Therefore A/≈A is OBS-generated as well, and
so the partial behavioural indistinguishability congruence ≈(A/≈A) is in fact a total
congruence on A/≈A. Then, notice that the relation & ⊆ |〈A〉OBS|× |〈A〉OBS| given
by a& a′ if and only if [a]≈A ≈(A/≈A) [a

′]≈A is a congruence on 〈A〉OBS, since it is the
kernel of the composition of quotient homomorphisms (cf. Exercise 1.3.18) from
〈A〉OBS to A/≈A and then to (A/≈A)/≈(A/≈A). Moreover, it is behavioural, since
both ≈A and ≈(A/≈A) are behavioural. Consequently, by Corollary 8.3.20, &⊆≈A,
which proves that ≈(A/≈A) is indeed the identity. ��
Theorem 8.3.24. Two Σ -algebras A,B ∈ |Alg(Σ)| are weakly behaviourally equiv-
alent if and only if A/≈A and B/≈B are isomorphic.

Proof. The “if” part follows directly from Corollary 8.2.32. For the “only if” part
notice that if A and B are weakly behaviourally equivalent then also A/≈A and B/≈B
are weakly behaviourally equivalent. Thus, by Lemmas 8.3.23 and 8.3.22, they are
isomorphic. ��

We proceed now to link behavioural satisfaction with ordinary satisfaction.

Lemma 8.3.25. In any fully abstract Σ -algebra A ∈ |Alg(Σ)|, behavioural satisfac-
tion coincides with ordinary satisfaction.

Proof. Follows directly from the definitions. ��
Theorem 8.3.26. For any Σ -algebra A ∈ |Alg(Σ)|, behavioural satisfaction in A
coincides with ordinary satisfaction in A/≈A. That is, for any Σ -equation e,

A |=OBS e iff A/≈A |= e.

Proof. For any set of variables X and valuation v:X → |〈A〉OBS|, let v:X → |A/≈A|
be the valuation defined by v(x) = [v(x)]≈A for all x ∈ X . Note that all valuations in
|A/≈A| are of this form. Then, since the quotient homomorphism preserves values
of terms (cf. Exercise 1.4.8), for any term t ∈ |TΣ (X)| and valuation v:X →|〈A〉OBS|,
tA/≈A(v) = [tA(v)]≈A . It follows that for any terms t ′, t ′′ ∈ |TΣ (X)|s of the same sort
s ∈ S and valuation v:X → |〈A〉OBS|, t ′A(v) ≈A t ′′A(v) if and only if t ′A/≈A

(v) ≈(A/≈A)

t ′′A/≈A
(v), that is (by Lemma 8.3.23) t ′A/≈A

(v) = t ′′A/≈A
(v). Consequently, A |=OBS

∀X • t ′ = t ′′ if and only if A/≈A |= ∀X • t ′ = t ′′. ��
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Exercise 8.3.27. Generalise this theorem to first-order sentences. HINT: Prove that
for any first-order formula ϕ with free variables X , ϕ behaviourally holds in an
algebra A under a valuation v:X → |〈A〉OBS| if and only if ϕ holds in the usual sense
in A/≈A under the valuation v:X → |A/≈A| as defined in the above proof. ��
Exercise 8.3.28. Recall (Exercise 8.3.13) that if an algebra satisfies an equation in
the usual sense, then it also satisfies this equation behaviourally (w.r.t. any set of ob-
servable sorts). Re-prove this using Theorem 8.3.26 and show that the proof carries
over to conditional equations with premises of observable sorts.

Show, however, that for arbitrary first-order sentences this property may fail: give
an example of a sentence and an algebra which satisfies it in the usual sense but does
not satisfy it behaviourally. ��
Corollary 8.3.29. Weakly behaviourally equivalent algebras are logically equiva-
lent w.r.t. behavioural satisfaction, that is, if Σ -algebras A,B ∈ |Alg(Σ)| are weakly
behaviourally equivalent then for any first-order Σ -sentence ϕ ,

A |=OBS ϕ iff B |=OBS ϕ.

Proof. Follows directly from Theorems 8.3.24 and 8.3.26 and Exercise 8.3.27, since
satisfaction of sentences is preserved under isomorphism. ��

Finally, we can directly characterise the relationship between the behavioural
models of a flat specification and the behavioural closure of its class of models. Two
auxiliary concepts first:

Definition 8.3.30 (Behavioural expansion and closedness). The behavioural ex-
pansion (w.r.t. OBS) of a class A ⊆ |Alg(Σ)| of Σ -algebras is

BehOBS(A ) = {A ∈ |Alg(Σ)| | A/≈A ∈A }.

A class A ⊆ |Alg(Σ)| of Σ -algebras is behaviourally closed (w.r.t. OBS) if for all
A ∈A , A/≈A ∈A as well. ��
Corollary 8.3.31. For any set Φ of first-order Σ -sentences, ModOBS(〈Σ ,Φ〉) =
BehOBS(Mod[〈Σ ,Φ〉]).
Proof. Directly from Definition 8.3.30, by Theorem 8.3.26 and Exercise 8.3.27. ��
Theorem 8.3.32. Let A ⊆ |Alg(Σ)| be a class of Σ -algebras closed under isomor-
phism. Then:

1. BehOBS(A )⊆ AbsOBS(A ),
2. BehOBS(A ) = AbsOBS(FAOBS(A )),
3. BehOBS(A ) = AbsOBS(A ) if and only if A is behaviourally closed.

Proof. First, note that since A is closed under isomorphism, so is FAOBS(A )
and by Corollary 8.2.34, WAbsOBS(A ) = AbsOBS(A ) and WAbsOBS(FAOBS(A )) =

AbsOBS(FAOBS(A )). Also, by Corollary 8.2.32, A
w≡OBS A/≈A for all A ∈ |Alg(Σ)|.

Then:
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1. Follows directly from the definitions by the above remark.
2. If A/≈A ∈A then A/≈A ∈FAOBS(A ) by Lemma 8.3.23. Therefore, by the above

remark, if A ∈ BehOBS(A ) then also A ∈ AbsOBS(FAOBS(A )).
On the other hand, if A ∈ AbsOBS(FAOBS(A )) then A/≈A ∈ AbsOBS(FAOBS(A )),
which by Lemma 8.3.22 implies that A/≈A ∈ FAOBS(A ) ⊆ A , and so A ∈
BehOBS(A ).

3. By the previous items, we have to show that AbsOBS(A ) ⊆ AbsOBS(FAOBS(A ))
if and only if A is behaviourally closed.
For the “if” part, suppose that A ∈ AbsOBS(A ), that is, by Theorem 8.3.24,
A/≈A is isomorphic to B/≈B for some B ∈ A . Since A is behaviourally
closed, B/≈B ∈A , and so by Lemma 8.3.23, B/≈B ∈ FAOBS(A ). Hence, since
A ≡OBS B/≈B, A ∈ AbsOBS(FAOBS(A )).
For the “only if” part, suppose that AbsOBS(A ) ⊆ AbsOBS(FAOBS(A )). Then,
for any A ∈ A ⊆ AbsOBS(A ), A ∈ AbsOBS(FAOBS(A )) as well, and so, by
Theorem 8.3.24 and Definition 8.3.21, A/≈A is (isomorphic to) an algebra in
FAOBS(A ). Consequently, A/≈A ∈ A , which proves that A is behaviourally
closed. ��
An important corollary of the above theorem, which sums up the developments

of this section, is that behavioural satisfaction and behavioural abstraction result in
the same behavioural interpretation of flat equational specifications.

Corollary 8.3.33. For any set E of Σ -equations, Mod[abstract 〈Σ ,E 〉 wrt OBS] =
ModOBS(〈Σ ,E 〉).
Proof. Follows from Corollary 8.3.31 and Theorem 8.3.32(3), since Mod[〈Σ ,E 〉] is
closed under isomorphism, and for equational axioms E , it is behaviourally closed,
since it is closed under arbitrary quotients by Proposition 2.2.8. ��
Exercise 8.3.34. Try to generalise the above corollary to first-order logic. First, con-
clude from Theorem 8.3.32 that for any set Φ of first-order Σ -sentences, we have
Mod[abstract 〈Σ ,Φ〉 wrt OBS] = ModOBS(〈Σ ,Φ〉) if (and only if) Mod[〈Σ ,Φ〉] is
behaviourally closed. Give a first-order sentence with a class of models that is not
behaviourally closed. Then find a class of first-order sentences, going beyond equa-
tions, such that presentations with axioms from that class are behaviourally closed.

��
Exercise 8.3.35. Study the interaction between reducts along signature morphisms
and quotients by the partial behavioural indistinguishability congruence. In partic-
ular, for any signature morphism σ :Σ → Σ ′, set OBS of observable sorts in Σ , and
Σ ′-algebra A′ ∈ |Alg(Σ ′)|, show that ≈σ(OBS)

A′ σ ⊆ ≈OBS
A′ σ

. It follows that there is a

natural Σ -homomorphism h:(A′/≈σ(OBS)
A′ ) σ → (A′ σ )/≈OBS

A′ σ
provided that for ev-

ery sort s in Σ , for all a′ ∈ |〈A′〉σ(OBS)|σ(s), there exists a ∈ |〈A′ σ 〉OBS|s such that

a′ ≈σ(OBS)
A′ a. Moreover, h is surjective. Then show that h is injective provided that
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for every sort s in Σ , for all a,b ∈ |〈A′ σ 〉OBS|s, if a ≈OBS
A′ σ

b then a ≈σ(OBS)
A′ b (and

show that the opposite implication always holds). Conclude that if both of these
conditions are satisfied then (A′ σ )/≈OBS

A′ σ
and (A′/≈σ(OBS)

A′ ) σ are isomorphic.

Re-examine the failure of the satisfaction condition for behavioural satisfaction
(Exercise 8.3.16) in the light of these semantic conditions. ��

8.4 Behavioural implementations

The behavioural abstraction operation plays a rather special role in the software
specification and development process. In several ways it is quite different from
the other specification-building operations presented earlier. For instance, unlike
the others2 it “enlarges” the class of models of the specification to which it is ap-
plied. One consequence is that the theory of the resulting specification is generally
smaller than the theory of the specification to which it is applied: in a sense, prop-
erties are lost. Another is that the interaction of behavioural equivalence with other
specification-building operations is unclear. This power of behavioural abstraction
calls for some caution, and in practice turns it more into a tool for the designers
of specification languages and development methodologies than into an operation
directly offered to the user. Example 8.2.21 motivates and illustrates a typical situa-
tion in which behavioural abstraction should be used, namely to justify correctness
of (constructor) implementations in the software development process. So instead
of regarding it as a general-purpose specification-building operation, we will build
it into a behavioural version of the implementation relation.

8.4.1 Implementing specifications up to behavioural equivalence

Perhaps the most naive approach to behavioural implementation would be to re-
gard every specification in the development chain as implicitly surrounded by an
appropriate application of the behavioural abstraction operation. Then a constructor
implementation SP κ���SP′ would really stand for

abstract SP wrt OBS κ���abstract SP′ wrt OBS′

where the sets of observable sorts OBS and OBS′ are chosen appropriately. The cor-
responding correctness condition would require then that κ(A′)∈ AbsOBS(Mod[SP])
for every A′ ∈ AbsOBS′(Mod[SP′]). A direct proof of this condition is often difficult
because we have little information about the properties of A′ from which to rea-
son about κ(A′); we cannot rely on the axioms in SP′ as they need not hold in

2 The only exception is closure under isomorphism. But in typical institutions, where satisfaction
is preserved under isomorphism, this is unproblematic.
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AbsOBS′(Mod[SP′]). As we will see, under certain conditions it turns out to be sound
to pretend that A′ ∈ Mod[SP′], which makes such proofs much easier.

Example 8.4.1. Consider the following trivial specification:

spec ID =
String and Nat
then

ops id:String×Nat → String
∀n:Nat,x:String • id(x,n) = x

Let Σ ID = Sig[ID]. An odd but correct realisation of ID in terms of stacks of strings
as specified in Section 8.1 is given by a constructor SID:ΣSS ⇒ Σ ID that maps any
algebra SS ∈ |Alg(ΣSS)| to the following algebra SID(SS) ∈ |Alg(Σ ID)|:
• idSID(SS)(x,n) = topSS(multipop(n,multipush(n,pushSS(x,emptySS)))), where

– multipop: |SS|Nat ×|SS|Stack → |SS|Stack is defined recursively3 by:

multipop(0SS,s) = s
multipop(succSS(n),s) = multipop(n,popSS(s)),

– multipush: |SS|Nat ×|SS|Stack → |SS|Stack is defined recursively by:

multipush(0SS,s) = s
multipush(succSS(n),s) = pushSS(aˆnˆyˆε,multipush(n,s)).

To verify that STRINGSTACK implements ID via the constructor SID:ΣSS ⇒ Σ ID,
that is, that SID(SS) ∈ Mod[ID] for any model SS ∈ Mod[STRINGSTACK], it is
crucial to know that SS |= ∀x:String,s:Stack• pop(push(x,s)) = s. Given this, a
simple proof by induction (on the second argument of id) justifies that indeed
SID(SS) |= ∀n:Nat,x:String• id(x,n) = x, and so SID(SS)∈Mod[ID]. The reasoning
for the induction step goes as follows (the obvious algebra subscripts for operations
are omitted):

id(x,succ(n)) = top(multipop(succ(n),multipush(succ(n),push(x,empty))))
= top(multipop(n,pop(push(aˆnˆyˆε ,multipush(n,push(x,empty))))))
= top(multipop(n,multipush(n,push(x,empty))))
= id(x,n)
= x

where the final step follows by the induction hypothesis. However, verifying that
SID(SS) ∈ Mod[ID] for SS ∈ Abs{String,Stack}(Mod[STRINGSTACK]) is much harder.
Since now SS need not satisfy the axiom ∀x:String,s:Stack• pop(push(x,s)) = s, the
crucial step in the above inductive argument fails. (Instead, we would have to use
the fact that SS behaviourally satisfies this axiom; see Sections 8.3 and 9.6.)

This is of course an extremely contrived example, but it is easy to come up with
realistic programs using stacks where properties like this need to be proved. ��
3 Recall that |SS|Nat is freely generated by 0SS and succSS.



350 8 Behavioural specifications

These considerations lead to the following generalisation of the notion of con-
structor implementation (cf. Definition 7.2.1):

Definition 8.4.2 (Behavioural implementation). Given specifications SP and SP′,
a constructor κ:Sig[SP′]⇒ Sig[SP] and a set OBS of observable sorts in Sig[SP], we
say that SP′ behaviourally implements SP via κ w.r.t. OBS, written SP OBS

κ���SP′,
if AbsOBS(Mod[SP])⊇ κ(Mod[SP′]) and dom(κ)⊇ Mod[SP′]. ��
In other words, SP OBS

κ���SP′ provided that the constructor κ transforms ev-
ery model A′ ∈ Mod[SP′] to a model κ(A′) ∈ Mod[abstract SP wrt OBS], that is,
κ ∈Mod[SP′ ⇒ abstract SP wrt OBS]. For instance, from Example 8.2.21 we have
STRINGSTACK {String,Bool}

AwP
�����STRINGARRAY.

Proposition 8.4.3. Constructor implementations are behavioural implementations,
that is, SP κ���SP′ implies SP OBS

κ���SP′ for any specifications SP and SP′, con-
structor κ:Sig[SP′]⇒ Sig[SP] and set OBS of observable sorts in Sig[SP].

Proof. Follows directly from the definitions by Proposition 8.2.19(1). ��
Hence, all the examples of constructor implementations from Chapter 7 are exam-
ples of behavioural implementations as well, and ID {String}

SID
�����STRINGSTACK

(see Example 8.4.1).

8.4.2 Stepwise development and stability

The alert reader will have noticed that there is a problem with the application
of the notion of behavioural implementation (Definition 8.4.2) in the process of
stepwise development as presented in Section 7.1. Behavioural implementation
SP OBS

κ���SP′ ensures only that algebras in Mod[SP′] give rise to realisations of
SP that are correct up to behavioural equivalence; this says nothing about the mod-
els in AbsOBS(Mod[SP′]) that are not in Mod[SP′] but may arise from subsequent
behavioural implementations of SP′.

Example 8.4.1 (continued)
Recall that ID {String}

SID
�����STRINGSTACK and STRINGSTACK {String,Bool}

AwP
�����

STRINGARRAY. We might hope to deduce from this that for any model SA ∈
Mod[STRINGARRAY], SID(AwP(SA)) is a realisation of ID that is correct up to
behavioural equivalence. Unfortunately, this does not follow: neither the property
embodied by ID {String}

SID
�����STRINGSTACK (that SID(SS) ∈ Abs{String}(ID) for

SS ∈ Mod[STRINGSTACK]), nor its suggested proof, tells us anything about the
application of SID to the algebra AwP(SA) �∈ Mod[STRINGSTACK], even though
AwP(SA) ∈ Abs{String,Bool}(Mod[STRINGSTACK]) and we have already identified
AwP(SA) as an acceptable realisation of STRINGSTACK.

In this case, it may be shown that SID(AwP(SA)) ∈ Abs{String}(Mod[ID]). The
most obvious proof involves the non-elementary fact that for any natural number n,
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multipop(n,s) = popAwP(SA)(. . .(popAwP(SA)︸ ︷︷ ︸
n times

(s)) . . .)

and similarly for multipushAwP(SA), and then relies on the fact that since AwP(SA) ∈
Abs{String}(Mod[STRINGSTACK]), all observable computations in AwP(SA) yield
the same results on s and on pop(push(z,s)), for any stack s and string z.

Consider, however, another trivial realisation of ID in terms of STRINGSTACK,
given by a constructor SID′:ΣSS ⇒ Σ ID defined as a function which to any algebra
SS ∈ |Alg(ΣSS)| assigns the following algebra SID′(SS) ∈ |Alg(Σ ID)|:
• idSID′(SS)(x,n) = x if popSS(pushSS(x,emptySS)) = emptySS
• idSID′(SS)(x,n) = nˆoˆtˆx otherwise.

Then SID′(SS) ∈ Mod[ID] for all SS ∈ Mod[STRINGSTACK], and so we still have
a (behavioural) implementation ID {String}

SID′�����STRINGSTACK. However, the new
constructor may not yield expected results on algebras that are not models of
STRINGSTACK, even on those in Abs{String}(Mod[STRINGSTACK]), and in fact it
is easy to see that SID′(AwP(SA)) �∈ Abs{String}(Mod[ID]). ��

It might seem that all is lost: behavioural implementations do not vertically com-
pose. But there is a way out, which relies on the observation that the constructor SID′
in the example above could not be coded in any standard programming language, as
it involves a test for identity of non-observable data values. As a consequence, it dis-
tinguishes between models that are not supposed to be distinguishable by the user:
that is, it maps behaviourally equivalent models to models that are not behaviourally
equivalent. The following definition captures the essential property of constructors
that prevents this:

Definition 8.4.4 (Stable constructor). Let Σ and Σ ′ be algebraic signatures with
distinguished sets OBS and OBS′ of observable sorts in Σ and Σ ′, respectively. Let
A ′ ⊆ |Alg(Σ ′)| be a class of Σ ′-algebras.

A constructor κ:Σ ′ ⇒ Σ is stable on A ′ w.r.t. OBS′ and OBS if for every algebra
A′ ∈A ′ and B′ ∈ |Alg(Σ ′)|, whenever A′ ≡OBS′ B′ then also κ(A′)≡OBS κ(B′).

We say that κ is stable (w.r.t. OBS′ and OBS) if it is stable on the class dom(κ).
��

In particular, if κ is stable on A ′ w.r.t. OBS′ and OBS then AbsOBS′(A
′)⊆ dom(κ).

Example 8.4.1 (continued)
It may be shown that the constructor SID:ΣSS⇒ Σ ID is stable (w.r.t. the observ-

able sorts {String,Bool} and {String}) while SID′:ΣSS ⇒ Σ ID is not. ��
Under the assumption that the constructor is stable, behavioural implementation

turns out to be equivalent to constructor implementation between abstracted speci-
fications, which ensures vertical composability.

Proposition 8.4.5. Assume that the constructor κ:Sig[SP′]⇒ Sig[SP] is stable on
Mod[SP′] w.r.t. sets OBS′ and OBS of observable sorts in Sig[SP′] and Sig[SP], re-
spectively. Then

SP OBS
κ���SP′
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iff
abstract SP wrt OBS κ���abstract SP′ wrt OBS′.

Proof. The “if” part is obvious by Proposition 8.2.19(1). For the “only if” part,
assume that A′ ∈ AbsOBS′(Mod[SP′]), that is, for some B′ ∈ Mod[SP′], A′ ≡OBS′ B′.
Then, by the definition of behavioural implementation, κ(B′) ∈ AbsOBS(Mod[SP])
and, since κ is stable, κ(A′)≡OBS κ(B′). Thus, κ(A′) ∈ AbsOBS(Mod[SP]). ��

Theorem 8.4.6 (Vertical composition). Let SP OBS
κ���SP′ and SP′ OBS′

κ ′����SP′′

be behavioural implementations such that the constructor κ:Sig[SP′]⇒ Sig[SP] is
stable on Mod[SP′] w.r.t. OBS′ and OBS. Then SP OBS

κ ′;κ
�����SP′′.

Proof. Follows directly from the definition of behavioural implementation by Propo-
sition 8.4.5. ��
Corollary 8.4.7. Given a chain of behavioural implementations

SP0
OBS0

κ1
����SP1

OBS1
κ2
����· · · OBSn−1

κn
����SPn

such that the constructors κi:Sig[SPi] ⇒ Sig[SPi−1] are stable on Mod[SPi] w.r.t.
OBSi and OBSi−1, for i = 1, . . . ,n−1, we have

SP0
OBS0

κn; · · · ;κ1
���������SPn.

In particular, if SPn = Empty is the empty specification over the empty alge-
braic signature, and empty is its unique model, then κ1(κ2 . . .(κn(empty)) . . .) ∈
AbsOBS0(Mod[SP0]). ��

8.4.3 Stable and behaviourally trivial constructors

The results of Section 8.4.2 state that behavioural implementations via stable con-
structors compose and can therefore be safely used in stepwise development of pro-
grams, just as illustrated in Chapter 7 for simple implementations and constructor
implementations. Of course, the crucial issue is the stability of the constructors we
have available, so we now discuss, one by one, the constructors introduced in Sec-
tion 6.1. The following technical lemma will be used:

Lemma 8.4.8. Consider algebraic signatures Σ and Σ ′ with sets OBS and OBS′
of observable sorts in Σ and Σ ′, respectively, and a class A ⊆ |Alg(Σ)| of Σ -
algebras. Let F:Alg(Σ) → Alg(Σ ′) be a functor that maps OBS-behavioural Σ -
homomorphisms between algebras in AbsOBS(A ) to Σ ′-homomorphisms that are
OBS′-behavioural. Then the object part of F, F :Σ ⇒ Σ ′, is a constructor which is
stable on A w.r.t. OBS and OBS′.

Proof. Consider two behaviourally equivalent Σ -algebras A ∈A and B ∈ |Alg(Σ)|,
A ≡OBS B. By Exercise 8.2.15, there exists a Σ -algebra C ∈ |Alg(Σ)| and OBS-
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behavioural Σ -homomorphisms hA:C → A and hB:C → B. Then, by the assump-
tion, Σ ′-homomorphisms F(hA):F(C)→ F(A) and F(hB):F(C)→ F(B) are OBS′-
behavioural, which proves F(A)≡OBS′ F(B). ��
Example 8.4.9 (Reduct). As in Example 6.1.3 consider an algebraic signature mor-
phism σ :Σ → Σ ′, now with sets OBS and OBS′ of observable sorts in Σ and Σ ′, re-
spectively, such that σ(OBS) ⊆ OBS′. Then, by Lemma 8.4.8 or by Exercise 8.2.7,
the object part of the σ -reduct functor is a constructor σ :Σ ′ ⇒ Σ which is stable
w.r.t. OBS′ and OBS. ��

Quotients and restrictions to reachable subalgebras (Examples 6.1.11 and 6.1.13,
respectively) are constructors that are not typically provided by programming lan-
guages. Therefore one might guess that they are not really necessary, even though
they arose in Example 7.2.9. The point, however, is that not only do they not change
the signature of models, they typically do not change their behaviour either; see
Exercise 8.2.12.

Definition 8.4.10 (Behaviourally trivial constructor). Consider an algebraic sig-
nature Σ with a distinguished set OBS of observable sorts and a class A ⊆ |Alg(Σ)|
of Σ -algebras.

A constructor κ:Σ ⇒ Σ is behaviourally trivial w.r.t. OBS on A if for every
algebra A ∈A , A ≡OBS κ(A). κ:Σ ⇒ Σ is behaviourally trivial (w.r.t. OBS) if it is
so on the class |Alg(Σ)|. ��
Proposition 8.4.11. Let Σ be an algebraic signature with a distinguished set of ob-
servable sorts OBS, and let A ⊆ |Alg(Σ)|. Any constructor κ:Σ ⇒ Σ that is be-
haviourally trivial on AbsOBS(A ) w.r.t. OBS is stable on A w.r.t. OBS.

Proof. Easily follows from the fact that behavioural equivalence is an equivalence
(Exercise 8.2.3). ��
However, behavioural triviality on AbsOBS(A ) is in general a stronger requirement
than behavioural triviality on A , and a constructor that is behaviourally trivial on
A need not be stable on A .

Proposition 8.4.12. Let SP and SP′ be Σ -specifications, and SP OBS
κ���SP′ be a

behavioural implementation via the constructor κ:Σ ⇒ Σ that is behaviourally
trivial on Mod[SP′] w.r.t. OBS. Then we also have a behavioural implementation
SP OBS

id
���SP′ via the identity constructor id|Alg(Σ)|:Σ ⇒ Σ .

Proof. By the assumptions, id|Alg(Σ)|(A) ≡OBS κ(A) ∈ AbsOBS(Mod[SP]), and so
id|Alg(Σ)|(A) ∈ AbsOBS(Mod[SP]) as well for any A ∈ Mod[SP′]. ��

The above proposition means that whenever a behaviourally trivial constructor
is used in the development process, it may be omitted entirely, and a correct be-
havioural implementation is still obtained. Note that the stability of behaviourally
trivial constructors is not required:
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Proposition 8.4.13. Given behavioural implementations SP1
OBS

κ���SP2
OBS

κ ′����

SP′ with Sig[SP1] = Sig[SP2] and such that the constructor κ:Sig[SP2]⇒ Sig[SP1]
is behaviourally trivial on Mod[SP2] w.r.t. OBS, we also have the behavioural im-
plementation SP1

OBS
κ ′����SP′.

Proof. Trivial, for instance by Proposition 8.4.12 and Theorem 8.4.6. ��
Consequently, given a chain of behavioural implementations

SP OBS
κ���SP′1

OBS′
κ ′����SP′2

OBS′
κ ′′����SP′′

such that Sig[SP′1] = Sig[SP′2] and κ ′:Sig[SP′2]⇒ Sig[SP′1] is behaviourally trivial on
Mod[SP′2] w.r.t. OBS′, we can simplify it to

SP OBS
κ���SP′1

OBS′
κ ′′����SP′′.

If moreover κ:Sig[SP′1]⇒ Sig[SP] is stable on Mod[SP′1] w.r.t. OBS′ and OBS, we
obtain a behavioural implementation of SP by SP′′ via κ ′′;κ:Sig[SP′′]⇒ Sig[SP].
This explains why behaviourally trivial constructors may be dropped from any
development chain. Note that this is possible and correct even if the constructor
κ ′:Sig[SP′2] ⇒ Sig[SP′1] is not stable on Mod[SP′2], which might render incorrect
the behavioural implementation of SP by SP′′ via κ ′′;κ ′;κ:Sig[SP′′]⇒ Sig[SP], sug-
gested in the original chain of behavioural implementations.

Another view of this situation is that we may implicitly insert behaviourally triv-
ial constructors in order to facilitate proofs of correctness of behavioural implemen-
tation steps. Namely, to prove correctness of

SP OBS
κ���SP′

where κ is stable w.r.t. OBS′ and OBS (here, OBS′ is the set of observable sorts
in Sig[SP′] to be used in the behavioural implementation of SP′) we can intro-
duce behaviourally trivial constructors as follows: let κ1:Sig[SP]⇒ Sig[SP] be be-
haviourally trivial on Mod[κ(SP′)] w.r.t. OBS, and κ2:Sig[SP′] ⇒ Sig[SP′] be be-
haviourally trivial on Mod[SP′] w.r.t. OBS′. Then the correctness of the above be-
havioural implementation step follows from the correctness of

SP OBS
κ;κ1
�����κ2(SP′).

(Exercise: Explain why this works.) The resulting task is often easier; see Exer-
cise 8.4.15 below.

Example 8.4.14 (Restriction to sort-generated subalgebra). Consider an alge-
braic signature Σ with a distinguished set OBS of observable sorts, and let S be
a set of sorts in Σ that is disjoint from OBS. Then the constructor RS:Σ ⇒ Σ which
restricts any Σ -algebra to its subalgebra generated by its carriers of sorts not in S
(see Example 6.1.13) is behaviourally trivial w.r.t. OBS (this easily follows from
Corollary 8.2.10). ��
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Exercise 8.4.15. Consider a putative behavioural implementation step SP OBS
κ���

SP′ and a set OBS′ of observable sorts in Sig[SP′], where κ is stable with respect to
OBS′ and OBS. Show that this step is correct provided that for any A′ ∈ Mod[SP′],
〈κ(〈A′〉OBS′)〉OBS ∈ AbsOBS(Mod[SP]). Discuss how this allows the use of induction
in the proof of correctness, even when models of SP′ need not be OBS′-generated
and the results of κ are not guaranteed to be OBS-generated, and link this with
the use of representation invariants in data refinement proofs; see Examples 8.2.11
and 7.2.9. ��
Example 8.4.16 (Quotient). Consider an algebraic signature Σ with a distinguished
set OBS of observable sorts. An observable Σ -equation is a Σ -equation of the form
∀XOBS • t = t ′ where t, t ′ ∈ |TΣ (XOBS)|o for some o ∈ OBS. Consider a set E of Σ -
equations and a Σ -algebra A ∈ |Alg(Σ)| which satisfies all of the observable conse-
quences of E , that is, for every observable Σ -equation e, if E |= e then A |= e. If A
is OBS-generated then A ≡OBS A/E .4 To see this, recall from Exercise 3.4.12 that
A/E is the quotient of A by the least congruence & such that tA(v) & t ′A(v) for all
equations ∀X • t = t ′ in E and valuations v:X →|A|. It is then easy to check that & is
included in the behavioural indistinguishability relation on A — see Definition 8.3.6
— and so & is behavioural.

It follows that if every model in Mod[SP] satisfies all of the observable conse-
quences of E then the quotient constructor /E :Σ ⇒ Σ (see Example 6.1.11) is
behaviourally trivial w.r.t. OBS on OBS-generated subalgebras of the models of SP.
Note that the required restriction to the OBS-generated subalgebras of the models
of SP may be obtained by inserting a behaviourally trivial restrict constructor; see
Example 8.4.14. ��
Exercise 8.4.17. Give an example of a Σ -specification SP and a set E of Σ -
equations such that every model of SP satisfies all of the observable consequences of
E but the quotient constructor /E :Σ ⇒ Σ is not behaviourally trivial on Mod[SP].
(HINT: Junk of non-observable sorts might influence the congruence induced by a
set of equations. See also Exercise 8.3.8.) Notice that, consequently, this quotient
constructor is not stable on Mod[SP].

Modify the definition of observable equation by allowing variables of arbitrary
sorts. Check that then for any Σ -algebra A — not necessarily OBS-generated —
A ≡OBS A/E provided that A satisfies all of the so-modified observable conse-
quences of E . But note that this requirement is stronger and therefore more re-
strictive than the one in Example 8.4.16. ��
Exercise 8.4.18. Generalise Example 8.4.16 to quotient constructors as defined in
Example 6.1.11 for any specification having a quasi-variety as its model class, and
discuss behavioural triviality of the quotient constructor in this case. ��
4 Actually, since behavioural equivalence applies only to OBS-compatible algebras, we have to
redefine the quotient construction so that on sorts where the congruence relation is the identity,
singleton equivalence classes are replaced by their unique elements. Since on the one hand, quo-
tients may be defined up to isomorphism anyway, and on the other hand, we could always switch
to working with weak behavioural equivalence as in Section 8.2.3, this is an unimportant detail.
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Exercise 8.4.19. Consider a putative behavioural implementation step SP OBS
κ���

SP′ and a set OBS′ of observable sorts in Sig[SP′], where κ is stable with respect to
OBS′ and OBS. Show that this step is correct provided that for any A′ ∈ Mod[SP′],
κ(A′/≈A′)/≈κ(A′/≈A′ ) ∈ AbsOBS(Mod[SP]). In other words, it is possible to restrict
attention to fully abstract quotients of the models of SP′ as arguments to κ and fully
abstract quotients of its results, even when SP′ does not ensure full abstraction and
the results of κ are not guaranteed to be fully abstract either. ��

In the light of the above examples and results, Propositions 8.4.12 and 8.4.13
explain why the quotient and restriction constructors are not necessary in program-
ming languages. Assuming that the observable sorts are built-in data types of the
programming language in use, we can neither restrict them nor quotient them, and
so quotient and restriction constructors used in a correct chain of developments can
be omitted since they are always behaviourally trivial — otherwise we would arrive
at a specification that is inconsistent with the built-in interpretation of the observable
data types. On the other hand, Exercises 8.4.15 and 8.4.19 show how the quotient
and restriction constructions may be used as model-theoretic tools for proving cor-
rectness of behavioural implementations.

Example 8.4.20 (Free extension). Given a signature morphism σ :Σ → Σ ′ and set
E ′ of Σ ′-equations, the free extension constructor Fσ ,E ′ :Σ ⇒ Σ ′, as defined in Ex-
ample 6.1.7, need not be stable.

However, if the free extension Fσ ,E ′ :Σ ⇒ Σ ′ is naturally persistent (see Defini-
tion 6.1.20 but note that Fσ ,E ′ is total here), then for any set OBS of observable sorts
in Σ , Fσ ,E ′ is stable with respect to OBS and σ(OBS). This follows by Lemma 8.4.8
since Fσ ,E ′ is the object part of a functor Fσ ,E ′ , which makes all diagrams of the
following form commute:

Fσ ,E ′(A) σA

B Fσ ,E ′(B) σ

�idA

�

h

�

Fσ ,E ′(h) σ

�
idB

Thus, sufficient completeness and hierarchy consistency may be used to ensure sta-
bility of free extensions via Proposition 6.1.24. ��
Exercise 8.4.21. Give an example of a free extension that is not stable (and hence is
not naturally persistent). ��
Non-example 8.4.22 (Translation of a stable constructor). Consider the follow-
ing pushout diagram in AlgSig
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Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

and a persistent constructor F ∈ Mod(Σ ι
==⇒ Σ ′) that is stable with respect to OBS

and OBS′ of observable sorts in Σ and Σ ′ respectively. Recall from Example 6.1.28

that the translation of F along σ is a persistent constructor σ(F)∈Mod(ΣG
ι ′
==⇒ Σ ′

G).
However, σ(F) need not be stable with respect to σ(OBS) and σ ′(OBS′) since ΣG
may introduce new observable contexts for sorts from Σ . ��
Exercise 8.4.23. Give an example of a pushout as above, a persistent constructor
F ∈Mod(Σ ι

==⇒ Σ ′) and a set OBS of observable sorts in Σ such that F is stable w.r.t.
OBS and ι(OBS) but σ(F) is not stable w.r.t. σ(OBS) and ι ′(σ(OBS)). ��
The fact that stability is not preserved under translation is a serious problem, since
this construction is involved whenever a generic module is instantiated with an ar-
gument that originates from a richer context than is required by the parameter sig-
nature, as for example in Tasks 3 and 5 in Section 7.4. Conditions under which
translation preserves stability may be given but they would exclude many of the
situations of practical interest.

What is required is a more refined treatment of generic modules. In the non-
behavioural case, studied in Chapter 7, constructors as used in implementation steps
corresponded exactly to generic modules. In the behavioural case, there is a subtle
difference. The constructor in a behavioural implementation of a Σ -specification by
a Σ ′-specification comes with a fixed context of use: it is always applied to a Σ ′-
algebra. In contrast, a generic module which is to be implemented as a subtask in
the course of modular decomposition is used together with other modules, perhaps
instantiated in a number of different contexts. Each of these contexts may include
(different) extra operations, beyond those in its argument and result signatures, that
allow observations of components in its argument and result. Therefore its imple-
mentation must be (behaviourally) correct in each of these contexts. This requires
stronger correctness and stability conditions that are robust under change of appli-
cation context.

8.4.4 Global stability and behavioural correctness

One conclusion from the way that generic modules are used is that the stability
requirement in Section 8.4.2 needs to be strengthened to characterise constructors
that are not merely stable in themselves but remain stable when instantiated in an
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arbitrary global context — that is, when translated along any signature morphism.
Hence the following definition:

Definition 8.4.24 (Globally stable constructor). Let ι :Σ → Σ ′ be an algebraic sig-
nature morphism and OBS and OBS′ be sets of observable sorts in Σ and Σ ′, respec-
tively. Let A ⊆ |Alg(Σ)| be a class of Σ -algebras.

A persistent constructor F ∈ Mod(Σ ι
==⇒ Σ ′) is globally stable on A w.r.t. OBS

and OBS′ if for every pushout diagram in AlgSig

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

and set OBSG of observable sorts in ΣG such that σ(OBS) ⊆ OBSG, the transla-

tion of F along σ , σ(F) ∈ Mod(ΣG
ι ′
==⇒ Σ ′

G), is stable on AG = {AG ∈ |Alg(ΣG)| |
AG σ ∈A } w.r.t. OBSG and OBS′G, where OBS′G = ι ′(OBSG)∪σ ′(OBS′). We say
that F is globally stable (w.r.t. OBS and OBS′) if it is globally stable on the class
dom(F). ��
Obviously, global stability implies stability: just take σ to be identity and OBS =
OBSG.

Exercise 8.4.25. Show that global stability is preserved by composition, translation
of a constructor along a signature morphism (Example 6.1.28), and amalgamation
of two constructors having a common source signature (Example 6.1.31). ��

Establishing global stability of a constructor directly from the definition would
be very difficult because of the quantification over all possible global contexts of
use (that is, every signature morphism σ :Σ → ΣG and every set OBSG of observ-
able sorts from ΣG). Exercise 8.4.25 indicates how this task may be reduced to
proving the global stability of “basic” constructors. For these there is fortunately a
sufficient condition for global stability that is expressed entirely in local terms and
that covers all the examples of interest (in fact, it covers all practical examples, by
Exercise 8.4.33 below):

Theorem 8.4.26. A constructor F ∈Mod(Σ ι
==⇒ Σ ′) is globally stable w.r.t. OBS and

OBS′ on A ⊆ |Alg(Σ)| if it extends correspondences on A , that is, for any corre-
spondence ρ:A ��OBS B with A ∈A there is a correspondence ρ ′:F(A) ��OBS′ F(B)
such that ρ = ρ ′

ι .

Proof. Consider the pushout diagram
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Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

and set OBSG of observable sorts in ΣG such that σ(OBS) ⊆ OBSG, with OBS′G =
ι ′(OBSG) ∪ σ ′(OBS′), and two ΣG-algebras AG and BG that are behaviourally
equivalent w.r.t. OBSG with AG σ ∈ A . By Theorem 8.2.8, there exists a corre-
spondence ρG:AG ��OBSG BG. Then we have ρG σ :AG σ ��OBS BG σ and so by the
assumption there exists a correspondence ρ ′:F(AG σ ) ��OBS′ F(BG σ ) such that
ρG σ = ρ ′

ι . Amalgamation of correspondences ρG and ρ ′ yields a correspondence
ρ ′

G:σ(F)(AG) ��OBS′G σ(F)(BG). Thus σ(F)(AG) and σ(F)(BG) are behaviourally
equivalent w.r.t. OBS′G. ��
Exercise 8.4.27. Check that the Amalgamation Lemma for homomorphisms (Exer-
cise 3.4.34) extends to correspondences, as used in the proof above. ��
Exercise 8.4.28. Show that the property of extending correspondences is preserved
by composition, translation of a constructor along a signature morphism (Exam-
ple 6.1.28), and amalgamation of two constructors having a common source signa-
ture (Example 6.1.31). ��

The following lemma is a version of Lemma 8.4.8 for global stability, as required
to prove global stability of constructors below.

Lemma 8.4.29. Consider two algebraic signatures Σ and Σ ′ with sets OBS and
OBS′ of observable sorts in Σ and Σ ′ respectively with a signature morphism ι :Σ →
Σ ′, and a class of Σ -algebras A ⊆ |Alg(Σ)|. Let F:Alg(Σ)→Alg(Σ ′) be a functor
that extends behavioural homomorphisms on AbsOBS(A ), that is, for each OBS-
behavioural Σ -homomorphism h between algebras in AbsOBS(A ), F(h) is an OBS′-
behavioural Σ ′-homomorphism such that F(h) ι = h. Then the object part of F,
F :Σ ⇒ Σ ′, is a persistent constructor which is globally stable on A w.r.t. OBS and
OBS′.

Proof. First note that F is persistent on AbsOBS(A ) by applying the assumption to
the identity homomorphism. Then, consider an OBS-correspondence ρ:A ��OBS B
on Σ -algebras A ∈ A and B ∈ |Alg(Σ)|. By Exercise 8.2.15, there exists an al-
gebra C ∈ |Alg(Σ)| and Σ -homomorphisms hA:C → A and hB:C → B that are be-
havioural w.r.t. OBS such that ρ =(hA)

−1;hB. By the assumption, and since A,B,C∈
AbsOBS(A ), we have Σ ′-homomorphisms F(hA):F(C)→ F(A) and F(hB):F(C)→
F(B) that are behavioural w.r.t. OBS′ such that F(hA) ι = hA and F(hB) ι = hB. Thus,
ρ ′ = (F(hA))

−1;F(hB) is an OBS′-correspondence ρ ′:F(A) ��OBS′ F(B), and more-
over ρ ′

ι = ρ . So by Theorem 8.4.26, F is globally stable on A . ��
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Exercise 8.4.30. Check that from the lemma above, total naturally persistent free
extensions (Example 8.4.20) are globally stable. ��
Exercise 8.4.31. For reducts (Example 8.4.9), consider an algebraic signature mor-
phism σ :Σ ′ →Σ and sets OBS and OBS′ of observable sorts in Σ and Σ ′ respectively
such that σ(OBS′) ⊆ OBS. Then for any OBS-correspondence ρ , the σ -reduct ρ σ

is an OBS′-correspondence as well. Join this with Proposition 6.1.17 to check that
given ι :Σ → Σ ′ such that ι ;σ = idΣ , the persistent constructor σ ∈Mod(Σ ι

==⇒ Σ ′)
is globally stable w.r.t. OBS and OBS′. ��
The restrict and quotient constructors (Examples 8.4.16 and 8.4.16) are rarely per-
sistent, let alone globally stable, but that makes no difference since they are super-
fluous in development chains as argued in Section 8.4.3.

Exercise 8.4.32. According to Theorem 8.4.26, the property of extending corre-
spondences is a sufficient condition for global stability. Imposing an additional re-
quirement on the correspondences involved yields a condition that is both sufficient
and necessary.

Consider a signature Σ with a set OBS of observable sorts. A correspondence
ρ:A ��OBS B is closed if whenever a ρs b, a ρs b′ and a′ ρs b, then also a′ ρs b′ for
each sort s in Σ , a,a′ ∈ |A|s and b,b′ ∈ |B|s. Check that for any correspondence
ρ:A ��OBS B there is a least closed correspondence ρ̂:A ��OBS B that contains ρ .
Consequently, two Σ -algebras are behaviourally equivalent w.r.t. OBS iff there is a
closed correspondence between them.

A constructor F ∈ Mod(Σ ι
==⇒ Σ ′) extends closed correspondences on A ⊆

|Alg(Σ)| if for any closed correspondence ρ:A ��OBS B with A ∈ A there exists
a closed correspondence ρ ′:F(A) ��OBS′ F(B) such that ρ = ρ ′

ι , where OBS′ is a
set of observable sorts in Σ ′. Check that the proof of Theorem 8.4.26 may be reused
to show that if F extends closed correspondences on A then it is globally stable on
A with respect to OBS and OBS′.

Then check that given correspondences ρ ′:F(A) ��OBS′ F(B) and ρ:A ��OBS B,
if ρ ′

ι = ρ then ρ̂ ′ ι = ρ̂ as well. One consequence of this is that if F extends
correspondences (on A ), it extends closed correspondences (on A ) as well.

Consider now a closed correspondence ρ̂:A ��OBS B. Construct the extension ΣG
of Σ by a new sort Bool and the following new operations:

• true, false:Bool;
• for each sort s in Σ and 〈a,b〉 ∈ ρ̂s, !a,b:s;
• for each sort s in Σ and b ∈ |B|s, ?b:s → Bool; and
• for each sort s in Σ , ?:s → Bool

and let σ :Σ → ΣG be the signature inclusion. Let OBSG = OBS∪{Bool}. Construct
the following expansions AG and BG of A and B respectively:

• |AG|Bool = |BG|Bool = {tt, ff}, trueAG = trueBG = tt and falseAG
= falseBG

= ff ;
• for each sort s in Σ and a ρ̂s b, !a,b

AG
= a and !a,b

BG
= b;
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• for each sort s in Σ and b ∈ |B|s, ?b
AG
(a) = tt if a ρ̂s b, and ?b

AG
(a) = ff otherwise;

?b
BG
(b′) = tt if there exists a ∈ |A|s such that a ρ̂s b and a ρ̂s b′, and ?b

BG
(b′) = ff

otherwise;
• for each sort s in Σ and a ∈ |A|s, ?AG(a) = tt; and for each b ∈ |B|s, ?BG(b) = tt if

there exists a ∈ |A|s such that a ρ̂s b and ?BG(b) = ff otherwise.

Check that ρ̂ extended by the identity on |AG|Bool = |BG|Bool is the only OBSG-
correspondence between AG and BG.

Use this to prove that if F ∈ Mod(Σ ι
==⇒ Σ ′) is globally stable on A w.r.t. OBS

and OBS′ then it extends closed correspondences on A . ��
Exercise 8.4.33. Prove that extending correspondences on a class of algebras closed
under behavioural equivalence is a sufficient and necessary condition for a construc-
tor to be globally stable on that class. HINT: It is a sufficient condition by Theo-
rem 8.4.26. To prove that it is also necessary, start with Exercise 8.4.32. Then notice
that behavioural homomorphisms and their inverses are closed correspondences, and
use Exercise 8.2.15 to show that if a constructor extends closed correspondences on
the behavioural closure of a class of algebras then it extends arbitrary correspon-
dences on that class. ��

Let us turn now to the issue of behavioural correctness of generic modules.

Definition 8.4.34 (Behaviourally correct constructor). Let ι :Σ → Σ ′ be a signa-
ture morphism, let SP and SP′ be Σ - and Σ ′-specifications respectively, and let OBS′

be a set of observable sorts in Σ ′. A persistent constructor F ∈ Mod(Σ ι
==⇒ Σ ′) is be-

haviourally correct along ι w.r.t. SP and SP′ for OBS′ if for every A ∈ Mod[SP]
there exists a model A′ ∈Mod[SP′] and correspondence ρ ′:A′ ��OBS′ F(A) such that
ρ ′

ι = id|A|. ��
The definition of behavioural correctness does not take into account which sorts
of the argument specification SP are to be regarded as observable, requiring be-
havioural correctness of the result while taking all of the sorts in SP (in addition
to those in OBS′) as observable. Informally, this is because the application context
may make arbitrary observations on the argument sorts and hence any of them may
become fully observable.

This also restricts the use of behaviourally trivial constructors in verifying be-
havioural correctness as suggested in Exercises 8.4.15 and 8.4.19. While they can
be meaningfully used to (for instance) restrict the result to an ι(sorts(Σ))∪OBS′-
generated subalgebra, trying to do the same on the argument brings no advantage
since we take all the argument sorts as observable.

Exercise 8.4.35. Under the notation of Definition 8.4.34, consider a persistent con-
structor F ∈ Mod(Σ ι

==⇒ Σ ′). Show that the following conditions are equivalent:

• F is behaviourally correct along ι w.r.t. SP and SP′ for OBS′.
• There exists F ′ ∈Mod[SP ι

==⇒ SP′] such that F ′(A)≡ι(sorts(Σ))∪OBS′ F(A) for each
A ∈ Mod[SP].

• F(Mod[SP])⊆ Absι(sorts(Σ))∪OBS′(SP′) and Mod[SP]⊆ dom(F). ��
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A conclusion from the above is that “good” models of a constructor specification
are those that are both behaviourally correct and globally stable:

Definition 8.4.36 (Behavioural model of a constructor specification). Let ι :Σ →
Σ ′ be a signature morphism, let SP and SP′ be Σ - and Σ ′-specifications respectively,
and let OBS and OBS′ be sets of observable sorts in Σ and Σ ′ respectively. We write
Mod[SP OBS

ι
==⇒OBS′ SP′] for the class of all behavioural models of SP ι

==⇒ SP′ w.r.t.
OBS and OBS′, that is, constructors that are globally stable w.r.t. OBS and OBS′ and
are behaviourally correct along ι w.r.t. SP and SP′ for OBS′. ��

It may happen that a consistent constructor specification has no behavioural mod-
els:

Exercise 8.4.37. Give an example of a consistent constructor specification of the
form SP ι

==⇒ SP′ and sets OBS and OBS′ of observable sorts in Sig[SP] and Sig[SP′]
respectively such that Mod[SP OBS

ι
==⇒OBS′ SP′] is empty. See also Exercise 6.2.23.

HINT: Consider a specification SP with non-observable sort s and constants a,b:s
and its extension SP′ by a new observable sort s′ with constants c,d:s′ and axiom
c �= d ⇔ a = b. ��
Exercise 8.4.38. Consider a signature morphism ι :Σ → Σ ′, Σ -specifications SP and
SP1, and Σ ′-specifications SP′ and SP′1. Show that for any behavioural model F ∈
Mod[SP OBS

ι
==⇒OBS′ SP′], we also have F ∈ Mod[SP1 OBS

ι
==⇒OBS′ SP′1] provided that

Mod[SP1]⊆ AbsOBS(Mod[SP]) and Mod[SP′]⊆ Absι(sorts(Σ))∪OBS′(Mod[SP′1]). ��

Exercise 8.4.39. Consider behavioural models F1 ∈ Mod[SP1 OBS1

ι1==⇒OBS′1 SP′1] and

F2 ∈ Mod[SP2 OBS2

ι2==⇒OBS′2 SP′2]. Check that if SP′1 ≡ SP2 and OBS′1 = OBS2 then

F1;F2 ∈ Mod[SP1 OBS1

ι1;ι2===⇒OBS′2 SP′2]. Check also that this holds under weaker as-
sumptions, namely that Sig[SP′1] = Sig[SP2], Mod[SP′1] ⊆ AbsOBS2(Mod[SP2]) and
OBS′1 ⊇ OBS2. ��
Proposition 8.4.40. Given specifications SP, SP′, signature morphism σ :Sig[SP]→
Sig[SP′], and sets OBS, OBS′ of observable sorts in Sig[SP] and Sig[SP′], respec-
tively, consider a behavioural model F ∈ Mod[SP OBS

σ
==⇒OBS′ SP′]. Let ι :SP′′ → SP′

be a specification morphism and OBS′′ be a set of observable sorts in Sig[SP′′] such
that ι(OBS′′)⊆OBS′. Let σ ′:Sig[SP]→ Sig[SP′′] be a signature morphism such that

σ = σ ′;ι , Then F ; ι ∈ Mod[SP OBS
σ ′
==⇒OBS′′ SP′′]. ��

Exercise 8.4.41. Carry out the proof of Proposition 8.4.40, building on Fact 6.2.17.
��

Lemma 8.4.42. Let ι :Σ → Σ ′ be a signature morphism, let SP and SP′ be Σ - and
Σ ′-specifications respectively, and let OBS and OBS′ be sets of observable sorts in
Σ and Σ ′ respectively. Consider a behavioural model F ∈ Mod[SP OBS

ι
==⇒OBS′ SP′]

and a pushout diagram



8.4 Behavioural implementations 363

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

with a set OBSG of observable sorts in ΣG such that σ(OBS) ⊆ OBSG, and let
OBS′G = ι ′(OBSG)∪σ ′(OBS′). We then have:

σ(F) ∈ Mod[(SP with σ)OBSG
ι ′
==⇒OBS′G(SP′ with σ ′)].

Proof. σ(F) is globally stable by Exercise 8.4.25. To prove behavioural correctness,
consider AG ∈ Mod[SP with σ ]. Then AG σ ∈ Mod[SP], and so by behavioural cor-
rectness of F there exists A′ ∈Mod[SP′] and a correspondence ρ ′:A′ ��OBS′ F(AG σ )

with identity reduct ρ ′
ι = idAG σ

. Consider the unique Σ ′
G-algebra A′G such that

A′G ι ′ =AG and A′G σ ′ =A′. Then amalgamation of the identity idAG :AG ��sorts(ΣG) AG

and ρ ′:A′ ��OBS′ F(AG σ ) yields a correspondence ρ ′
G:A′G ��OBS′G σ(F)(AG), which

completes the proof since A′G ∈ Mod[SP′ with σ ′]. ��
By the above lemma, whenever F ∈ Mod[SP OBS

ι
==⇒OBS′ SP′] and given a pushout

diagram as above, σ(F) may be used as a stable constructor to behaviourally imple-
ment Σ ′

G-specifications by ΣG-specifications. Namely, if SPG and SP′G are ΣG- and
Σ ′

G-specifications respectively, then SP′G
OBS′G

σ(F)
������SPG provided that:

(i) Mod[SPG]⊆ AbsOBSG(Mod[SP with σ ]); and
(ii) Mod[SP′ with σ ′]⊆ AbsOBS′G(Mod[SP′G]).

But while condition (i) is acceptable, condition (ii) is too strong since it requires all
the requirements in SP′G to follow (up to behavioural equivalence) from the result
specification SP′ for the generic module. We need a condition that takes into account
both SP′ and the specification SPG of the application context in ensuring SP′G.

Theorem 8.4.43. Let ι :Σ → Σ ′ be a signature morphism, let SP and SP′ be Σ - and
Σ ′-specifications respectively, and let OBS and OBS′ be sets of observable sorts in
Σ and Σ ′ respectively. Consider a behavioural model F ∈ Mod[SP OBS

ι
==⇒OBS′ SP′]

and a pushout diagram

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′
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with a set OBSG of observable sorts in ΣG such that σ(OBS) ⊆ OBSG, and let
OBS′G = ι ′(OBSG)∪σ ′(OBS′). If

(i) Mod[SPG]⊆ AbsOBSG(Mod[SPG∪ (SP with σ)]); and
(ii) Mod[SP′+ι ,σ SPG]⊆ AbsOBS′G(Mod[SP′G])

then σ(F) is stable w.r.t. OBSG and OBS′G, and SP′G
OBS′G

σ(F)
������SPG.

Proof. Recall that SP′+ι ,σ SPG stands for (SP′ with σ ′)∪ (SPG with ι ′); see Sec-
tion 5.2. Stability of σ(F) follows as before. Let AG ∈ Mod[SPG]. Then by (i),
AG ≡OBSG BG for some BG ∈ Mod[SPG ∪ (SP with σ)]. By Lemma 8.4.42, for
some B′G ∈ Mod[SP′ with σ ′] with B′G ι ′ = BG ∈ Mod[SPG], σ(F)(BG) ≡OBS′G B′G.
Hence B′G ∈ AbsOBS′G(Mod[SP′G]) by (ii). By stability of σ(F), σ(F)(AG) ≡OBS′G
σ(F)(BG)≡OBS′G B′G, and so σ(F)(AG) ∈ AbsOBS′G(Mod[SP′G]). ��
Requirement (i) is perhaps stronger than expected. But note that it straightforwardly
follows from the inclusion of model classes Mod[SPG]⊆Mod[SP with σ ] (or equiv-
alently, Mod[SPG] σ ⊆ Mod[SP]), which is often easy to verify.

Exercise 8.4.44. Show that (i) in Theorem 8.4.43 is strictly stronger than

(i′) Mod[SPG]⊆ AbsOBS(Mod[SP with σ ]).

Check that the weaker condition (i′) is not sufficient for the above theorem, but if
the model classes Mod[SPG] and Mod[SP with σ ] are behaviourally closed — see
Definition 8.3.30 — then (i′) is equivalent to (i) and therefore sufficient.

Check that even when Mod[SPG] and Mod[SP with σ ] are not both behaviourally
closed, the conclusion of the theorem follows from (i′) together with the following
stronger version of (ii):

(ii′) AbsOBS′G(Mod[SP′ with σ ′])∩Mod[SPG with ι ′]⊆ AbsOBS′G(Mod[SP′G]).

An informal conclusion is that some way of passing information from SPG to
SP′G that is independent of the behavioural interpretation of the generic module and
its correctness is needed; this results in some inconvenience of verification on either
the argument side or the result side. ��
Corollary 8.4.45. Under the notation of Theorem 8.4.43, if

(i) Mod[SPG]⊆ Mod[SP with σ ]; and
(ii) Mod[SP′+ι ,σ SPG]⊆ AbsOBS′G(Mod[SP′G])

then σ(F) ∈ Mod[SPG OBSG
ι ′
==⇒OBS′G SP′G]. ��

Exercise 8.4.46. Modify the proof of Theorem 8.4.43 to justify the stronger conclu-
sion of Corollary 8.4.45. HINT: Under (i) of Corollary 8.4.45, we may take BG =AG.

��
Corollary 8.4.45 offers a behavioural version of Fact 6.2.18. The following propo-
sition for amalgamated union of constructors plays the same role for Fact 6.2.19:
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Proposition 8.4.47. Consider the following pushout diagram:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1

Let SP,SP1 and SP2 be Σ -, Σ1- and Σ2-specifications respectively, and let OBS,OBS1
and OBS2 be sets of observable sorts in Σ ,Σ1 and Σ2 respectively. Consider be-
havioural models F1 ∈Mod[SP OBS

σ1==⇒OBS1 SP1] and F2 ∈Mod[SP OBS
σ2==⇒OBS2 SP2].

Then the amalgamated union constructor of F1 and F2 as defined in Example 6.1.31
is a behavioural model F1 +F2 ∈ Mod[SP OBS

σ
==⇒OBS′ SP′] where σ = σ1;σ ′

2, SP′ =
SP1 +σ1,σ2 SP2 and OBS′ = σ ′

2(OBS1)∪σ ′
1(OBS2).

Proof. F1 + F2 is a persistent and globally stable constructor by Exercise 8.4.25.
To show behavioural correctness, consider any A ∈ Mod[SP]. By the assump-
tions, there are models A1 ∈ Mod[SP1] and A2 ∈ Mod[SP2] and correspondences
ρ1:A1 ��OBS1 F1(A) and ρ2:A2 ��OBS2 F2(A) such that ρ1 σ1 = id|A| and ρ2 σ2 = id|A|.
Then amalgamating A1 and A2 yields a model A′ ∈ Mod[SP′] and amalgamating ρ1
and ρ2 yields a correspondence ρ ′:A′ ��OBS′ (F1 +F2)(A) such that ρ ′

σ = id|A|. ��

8.4.5 Summary

The conclusion from this section is that to systematically develop a correct real-
isation of a specification of requirements, one should proceed via a sequence of
behavioural implementation steps, using constructors that are behaviourally correct
and stable. Behavioural correctness needs to be checked for each constructor on a
case-by-case basis, relying in particular on Theorem 8.4.43 and Corollary 8.4.45 for
the use of generic modules in a global context.

Stability is another matter: it should be viewed as a directive for language design,
rather than as a condition to be checked for each constructor separately. Ultimately,
constructors are generic modules defined in a programming language; recall the
motivation for constructors as models of generic modules from Chapter 6. In a pro-
gramming language with good modularisation facilities, all constructions that one
can code should be (globally) stable. Technically, this is achieved by ensuring that
basic generic modules extend correspondences and that this property is preserved
by the various means we have for combining modules. The analysis and examples
in Sections 8.4.3 and 8.4.4 do this for the examples of basic constructors and com-
binators from Chapter 6.

Stability corresponds to the programming language design principle that generic
modules should respect encapsulation boundaries. That is, such modules may use
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the components provided by their imported parameters, but they must not take ad-
vantage of their particular internal properties: any branching in the code must be
governed by directly observable properties. This is most directly visible in the richer
context of FPL discussed below, with notation that is closer to the syntax of pro-
gramming languages, where Corollary 8.5.21 imposes exactly this condition (“OBS-
admissibility”) to ensure stability.

8.5 To partial algebras and beyond

In the previous sections, we studied behavioural specifications in the simple frame-
work of standard algebraic signatures and total algebras.

We will now consider other frameworks, beginning in Section 8.5.1 with the in-
stitution FPL; see Example 4.1.25. FPL provides a richer language of terms, and
allows us to write more interesting examples than the standard algebraic framework
considered so far in this chapter; see Section 8.5.2. However, before we can con-
sider examples, we need to provide the infrastructure required for a behavioural
view of FPL-specifications. The basic definitions of notions such as behavioural
equivalence will require adjustment, and there are some subtle points that deserve
special attention. Nevertheless, much of the material on behavioural specifications
in FPL is repetitive with respect to the developments of the previous sections. We
therefore often refrain from restating exactly those definitions and results for FPL

that carry over directly from the previous sections. We then try to capture such com-
monalities by moving these developments to the context of an arbitrary institution,
in Section 8.5.3.

8.5.1 Behavioural specifications in FPL

There are two crucial changes in FPL with respect to the standard algebraic frame-
work that we have considered up to this point. First, we have a richer notion of
model, where operations may be partial and some sorts are constrained to have car-
riers that are freely generated by sets of value constructors. Then we have a richer
term language which includes recursive definitions and pattern matching on values
of sorts constrained by sets of value constructors.

These changes need to be taken into account in giving a behavioural view of
FPL-specifications. Some of the definitions will have to do this explicitly: for in-
stance, the definition of behavioural equivalence will explicitly take undefinedness
into account. Even where there is no change in wording, the notion captured may
not be the same. For instance, behavioural equivalence is still defined via term eval-
uation, but now the language of terms is much richer. This gives more observational
power, leading to a finer notion of behavioural equivalence; see Exercise 8.5.3 be-
low.
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Consider an FPL-signature SIG = 〈S,Ω ,D〉 and a set OBS ⊆ S of observable
sorts.

Exercise 8.5.1 (Compatible models). As in Definition 8.2.1, define two SIG-models
to be OBS-compatible if their carriers of sorts in OBS coincide.

We will deal below with behavioural equivalence of OBS-compatible models.
Check that the “weak” versions of the concepts and results from Section 8.2.3 carry
over to FPL. We will use them below whenever convenient without further explicit
reference. ��
Definition 8.5.2 (Behavioural equivalence). Two OBS-compatible SIG-models A,B
are behaviourally equivalent w.r.t. OBS, written A≡OBS B (or simply, behaviourally
equivalent, written A ≡ B, if OBS is clear), if for all sets of variables XOBS (of ob-
servable sorts), terms t ∈ |TSIG(XOBS)|, and valuations v:XOBS → |A|OBS (so that
v:XOBS → |B|OBS as well), tA(v) is defined iff tB(v) is defined, and if so then more-
over tA(v) = tB(v) when t is of a sort in OBS. ��
This definition presumes that definedness of an arbitrary term is observable. While
definedness of terms of observable sorts should clearly be observable, it is not so
clear that definedness of other terms should be observable as well. But under the
mild assumption that there is at least one observable sort o ∈ OBS having a non-
empty carrier, definedness of a term t of an arbitrary sort s is captured by the de-
finedness of the following term of sort o: let fun f (x:s):o = y in f (t). (Exercise:

Spell this out, taking explicit account of free variables.) This mild assumption may
be discharged by requiring, for instance, that Bool be observable (recall that Bool
with its constructors is in all FPL-signatures, and that all FPL-models are {Bool}-
compatible); under such an assumption the free variable y in the above term may be
replaced by one of the constructors of sort Bool.

Another point is that under certain conditions, testing definedness of terms sub-
sumes testing whether the values of terms of observable sorts coincide. Namely,
consider any two compatible SIG-models A and B, and suppose that SIG includes an
equality test on an observable sort o ∈ OBS in the form of an operation eq:o×o →
Bool that yields the value of true iff it is applied to identical arguments in both
A and B. Then, for any term t of sort o with variables of observable sorts only,
consider the term t ′ = case eq(t,x) of true => x | false => undef where undef is
let fun f (y:o):o = f (y) in f (t) and x is a new variable of sort o. Now, if there ex-
ists a valuation v such that both tA(v) and tB(v) are defined but tA(v) �= tB(v), then
t ′A(v

′) = tA(v) while t ′B(v′) is undefined, where v′ extends v by v′(x) = tA(v). This
reduction requires an equality test on observable sorts, which seems like a strong
assumption to make. But there is no loss of generality in assuming this for observ-
able sorts that are generated from other generated sorts; see Exercise 4.1.28.

Summarizing, under reasonable technical requirements we could define be-
havioural equivalence solely in terms of definedness of terms of observable sorts.
We refrain from introducing such requirements, and instead use the above definition
simply because it makes the following developments a little smoother.
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Exercise 8.5.3. Any FPL-signature SIG = 〈S,Ω ,D〉 contains an algebraic signa-
ture 〈S,Ω〉. Moreover, some SIG-models, namely those with total operations, are
〈S,Ω〉-algebras. Show that any such SIG-models that are behaviourally equivalent
according to Definition 8.5.2 above are also behaviourally equivalent as 〈S,Ω〉-
algebras. Show that the opposite implication does not hold by giving an FPL-
signature SIG = 〈S,Ω ,D〉 and two SIG-models with total operations that are not
behaviourally equivalent as SIG-models, but are behaviourally equivalent as 〈S,Ω〉-
algebras. HINT: Recall that FPL-terms may use pattern matching for values of sorts
with value constructors.

A similar observation may be stated within FPL: given any FPL-signature SIG=
〈S,Ω ,D〉 and D′ ⊆ D, let SIGD′ = 〈S,Ω ,D′〉 be the FPL-signature obtained from
SIG by forgetting about the value constructor status of constructors not in D′. Then
the identity on the underlying algebraic signature is an FPL-signature morphism
ιD′ :SIGD′ → SIG and the ιD′ -reduct functor preserves but does not necessarily reflect
behavioural equivalence of FPL-models w.r.t. any set OBS ⊆ S of observable sorts.

View the above comparison with behavioural equivalence in the standard alge-
braic framework as a special case of what happens within FPL for D′ =∅. ��
Definition 8.5.4 (Correspondence). Given two OBS-compatible SIG-models A,B,
an OBS-correspondence (or simply, a correspondence, if OBS is clear) between A
and B, written ρ:A ��OBS B, is a relation ρ ⊆ |A|× |B| such that:

• ρ is the identity on observable carriers, that is, for each observable sort o ∈OBS,
ρo = id|A|o = id|B|o ;

• ρ is closed under the operations, that is, for each operation f :s1×·· ·× sn → s
in SIG and elements a1 ∈ |A|s1 , . . . , an ∈ |A|sn and b1 ∈ |B|s1 , . . . , bn ∈ |B|sn , if
a1 ρs1 b1, . . . , an ρsn bn then fA(a1, . . . ,an) is defined iff fB(b1, . . . ,bn) is defined
and if so then fA(a1, . . . ,an) ρs fB(b1, . . . ,bn); and

• ρ respects constructors, that is, for all sorts with value constructors 〈d,〈Fw,d〉w∈S∗〉
in SIG, for c ∈ Fs1...sn,d and c′ ∈ Fs′1...s′n′ ,d

and elements a1 ∈ |A|s1 , . . . , an ∈ |A|sn

and b1 ∈ |B|s′1 , . . . , bn′ ∈ |B|s′
n′

, if cA(a1, . . . ,an) ρd c′B(b1, . . . ,bn′) then c= c′ with
s1 . . .sn = s′1 . . .s

′
n′ and a1 ρs1 b1, . . . , an ρsn bn. ��

The requirement that ρ respects constructors is needed because implicit (partial)
“selector” and “discriminator” operations are introduced by FPL-terms with case
analysis using pattern matching.

Theorem 8.5.5. Two SIG-models A,B are behaviourally equivalent w.r.t. OBS if and
only if there exists an OBS-correspondence between A and B.

Proof.

(⇒): As in the proof of Theorem 8.2.8, except for the minor complication of check-
ing definedness of operations and the need to exhibit terms playing the role of
selectors and discriminators to ensure that the relation defined respects construc-
tors. (Exercise: Give such terms.)
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(⇐): Let ρ:A ��OBS B be an OBS-correspondence. For any signature SIG′ that ex-
tends SIG by new operations, any SIG′-models A′ and B′ that extend A and B,
respectively, such that ρ is a correspondence between A′ and B′, and any set of
variables X and term t ∈ |TSIG′(X)|, we show by induction on the structure of t
that for all valuations vA:X → |A| and vB:X → |B| such that vA(x) ρ vB(x) for all
x∈ X , tA′(vA) is defined iff tB′(vB) is defined, and if so then tA′(vA) ρ tB′(vB). This
implies the required definedness condition for terms having observable variables,
and the required equality condition for such terms that are of observable sort.
The stronger formulation of the induction hypothesis than in the proof of The-
orem 8.2.8 is needed to handle terms of the form let fun f (x1:s1, . . . ,xn:sn):s′ =
t ′ in t, where we need to prove that ρ is closed under the new operation corre-
sponding to f and then use this fact when discussing the values of term t. ��
Value constructors with pattern matching add observational power, as reflected in

the requirement in the definition of correspondences above that value constructors
be respected. For any signature SIG and set OBS of observable sorts in SIG, let
ÔBS be the least set of sorts in SIG containing OBS such that for each set of sorts
with value constructors {〈d1,F1〉, . . . ,〈dn,Fn〉} in SIG, d1, . . . ,dn ∈ ÔBS provided
that for 1 ≤ i ≤ n, each value constructor in Fi has all its argument sorts other than
d1, . . . ,dn in ÔBS.5 In particular, notice that ÔBS always includes Bool, so Bool∈ ∅̂.
The same holds for any other sort s with value constructors having argument sorts
among {s}∪OBS.

Proposition 8.5.6. Given a signature SIG and a set OBS of observable sorts in SIG,
any two SIG-models that are behaviourally equivalent w.r.t. OBS are also weakly
behaviourally equivalent w.r.t. ÔBS.

Proof. Since the carriers of sorts in ÔBS are freely generated by the corresponding
constructors from the carriers of sorts in OBS, every OBS-correspondence is a weak
ÔBS-correspondence. ��
If we assume that the values of sorts with value constructors are represented in some
standard way, for instance as formal terms built using value constructor names (as
in the semantics of Standard ML), then behavioural equivalence w.r.t. OBS also
implies behavioural equivalence w.r.t. ÔBS. The opposite implication is immediate,
so ≡OBS then coincides with ≡ÔBS.

A related fact is that we can express equality between terms of sorts in ÔBS in
terms of equality tests on terms of sorts in OBS.

Exercise 8.5.7. Assume that for each observable sort o ∈ OBS there is an operation
eq:o×o→ Bool. For any sort s∈ ÔBS, by induction on the definition of ÔBS define
a term t ∈ |TSIG({x,y : s})|Bool such that in any SIG-model A where eqA(c,d) = trueA
iff c = d for all o ∈OBS and c,d ∈ |A|o, we have tA(x �→ a,y �→ b) = trueA iff a = b
for all a,b ∈ |A|s. To handle mutually dependent sorts with value constructors, you
will need to solve Exercise 4.1.27 first.
5 This definition is a little complicated because of the possible presence of mutually dependent
sorts with value constructors; cf. Example 4.1.25.
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Do the same using a sort unit generated by a single constant in place of Bool. ��
Exercise 8.5.8. If o ∈ OBS is a sort with value constructors and one of the value
constructors for o is unary with argument sort s, then every OBS-correspondence is
bijective on s, even if s �∈ ÔBS. Generalise this to n-ary value constructors (HINT:
watch out for empty generated sorts such as sort empty free with c(s,empty)), ex-
pand the definition of ÔBS correspondingly so that Proposition 8.5.6 still holds, and
redo Exercise 8.5.7. ��
Definition 8.5.9 (Behavioural submodel and morphism). Given an FPL-signature
SIG, a set OBS of observable sorts in SIG and SIG-models A,B, a SIG-morphism
h:A → B is behavioural (w.r.t. OBS) if it is strong and is the identity on carriers of
observable sorts; it then follows that A and B are OBS-compatible. A is a behavioural
submodel (w.r.t. OBS) of B if |A| ⊆ |B| and the inclusion is a behavioural morphism.
A is OBS-generated if it is the least behavioural submodel of B (or equivalently, of
itself). The OBS-generated submodel of A will be denoted by 〈A〉OBS. ��
Exercise 8.5.10. Check that behavioural morphisms are correspondences and so are
their kernels. State and prove analogues to Corollary 8.2.10, Theorem 8.2.14 and
Exercise 8.2.15 for FPL. ��
Exercise 8.5.11. Investigate how behavioural equivalence varies when the set of ob-
servable sorts changes, considering the cases where no sorts are observable and
where all sorts are observable. Compare with the standard algebraic case; see Ex-
ercise 8.2.16. Check that your proof that OBS ⊆ OBS′ implies ≡OBS′ ⊆ ≡OBS from
that exercise is still valid. ��
Exercise 8.5.12. Confirm that Definition 8.2.18 of behavioural closure and be-
havioural abstraction, and their basic properties in Proposition 8.2.19, carry over
to FPL. ��
Definition 8.5.13 (Partial behavioural congruence). Let SIG be an FPL-signature
and let OBS be a set of sorts in SIG. A partial behavioural congruence w.r.t.
OBS on a SIG-model A is a relation & ⊆ |A|× |A| that is an OBS-correspondence
&:A ��OBS A. ��
Exercise 8.5.14. Spell out the above definition explicitly without making reference
to the notion of correspondence. Check that for any SIG-model A there is a largest
partial behavioural congruence on A (see Proposition 8.3.3) and that any partial
behavioural congruence on A is reflexive on 〈A〉OBS. ��
Exercise 8.5.15. Generalise Definition 8.3.18 and Exercise 2.7.32, defining partial
congruences on a partial algebra A (as transitive and symmetric relations on |A| that
are closed under defined operations in A) and the quotient of A by such a congruence.
Notice that partial behavioural congruences must preserve and reflect definedness
of operations and respect value constructors. Prove that a quotient of a SIG-model
(viewed as a partial algebra) by a partial behavioural congruence is a SIG-model.
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(A minor point is that you will need to define the quotient in such a way that the
interpretation of the sort Bool is preserved.) We will call such quotients behavioural.

��
Definition 8.5.16 (Contexts and behavioural indistinguishability). Let (observ-
able) contexts and the value of a context on an element of a model under a valua-
tion be as defined in Definitions 2.6.1 and 8.3.4 (but using FPL-terms, of course).
Given an FPL-signature SIG with a set OBS of observable sorts and a SIG-model A,
behavioural indistinguishability on A w.r.t. OBS is the relation ∼OBS

A ⊆ |A|× |A| de-
fined as follows: for s∈ S and a,b∈ |A|s, a∼OBS

A b if and only if for all contexts C ∈
|TSIG(XOBS�{�:s})| with observable variables and all valuations v:XOBS → |A|OBS,
Cv

A[a] is defined iff Cv
A[b] is defined, and if so then moreover Cv

A[a] = Cv
A[b] when C

is of a sort in OBS. ��
Exercise 8.5.17. Prove that for any OBS-generated SIG-model A, behavioural in-
distinguishability is the largest partial behavioural congruence on A. (See Theo-
rem 8.3.7.) ��
Exercise 8.5.18. Define behavioural satisfaction and behavioural semantics of pre-
sentations along the lines of Definition 8.3.9, Exercise 8.3.10 and Definition 8.3.11.
Check that Section 8.3.1 carries over, including the definitions of fully abstract
model as well as behavioural expansion and behavioural closedness of a class of
FPL-models. ��
Exercise 8.5.19. Totality of an operation is not preserved under behavioural equiv-
alence: if A ≡OBS B then a total operation in A may be undefined in B on non-
observable junk values. However, show then that the formula ∀x• ∃y• f (x) = y be-
haviourally holds in A iff it behaviourally holds in B, since behavioural satisfaction
quantifies over OBS-generated values only; see Corollary 8.3.29 via Exercise 8.5.18.

��
Given the above definitions, the concept of behavioural implementation (Defini-

tion 8.4.2) can be used in FPL as stated there. Then Proposition 8.4.3 trivially holds
in the present context. Furthermore, the ideas related to stability of constructors
presented in Section 8.4.2 together with the specific results given there — Proposi-
tion 8.4.5, Theorem 8.4.6 (vertical composition) and Corollary 8.4.7 — carry over
as well.

The concept of behaviourally trivial constructors (Definition 8.4.10) can also be
adopted without essential change here. Typical examples of behaviourally trivial
constructors are restriction to behavioural submodels and quotients via partial be-
havioural congruences as in Examples 8.4.14 and 8.4.16. The analysis of the role
of behaviourally trivial constructors in behavioural implementations as captured by
Propositions 8.4.12 and 8.4.13, and Exercises 8.4.15 and 8.4.19, could also be re-
peated here.

Exercise 8.5.20. Recall Example 7.2.9, which gives a constructor implementation

NATSET κ���NatList
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using the constructor κ = ListSet;RSig[NatSet];( /SP) as defined there. Show that
NATSET {Bool,Nat}

ListSet
�������NatList since RSig[NatSet] and /SP are behaviourally

trivial. ��
As in the standard algebraic framework — see Non-example 8.4.22 — translation

of a stable constructor need not be stable here either. The situation in the framework
of FPL is even more subtle since pushouts in the category of FPL need not exist.
Consequently, translation of a persistent constructor may not even be well defined.
However, there is an important class IFPL of signature morphisms, namely injective
renamings of sorts and operations that do not introduce value constructors for old
sorts, which covers the cases of interest. As explained in Exercise 4.4.19, FPL is
IFPL-semi-exact. Given a persistent constructor F ∈ Mod(SIG ι

==⇒ SIG′), with ι ∈
IFPL, for any FPL-signature morphism δ :SIG→ SIGG, the translation of F by δ ,

δ (F) ∈ Mod(SIGG
ι ′
==⇒ SIG′G), is defined as in Example 6.1.28, where ι ′ and SIG′G

come from the following pushout diagram:

SIGG

SIG′SIG

SIG′G�ι ′

�

δ

�

δ ′

�
ι

Under the assumption that ι ∈ IFPL, the definition of globally stable constructors
— Definition 8.4.24 — carries over. Due to Proposition 8.5.6, we may relax the
condition σ(OBS)⊆OBSG, replacing it with σ(OBS)⊆ ÔBSG. Then the character-
isation of globally stable constructors as those that extend correspondences (Theo-
rem 8.4.26) still holds; this uses the fact that correspondences amalgamate over the
pushout considered, as in Exercise 8.4.27. Further developments carry over as well,
including Exercise 8.4.28, Lemma 8.4.29, and Exercises 8.4.30, 8.4.32 (but you
might want to somewhat simplify the construction given there, exploiting the possi-
bility of using partial operations and sorts with value constructors) and 8.4.33. This
leads, as in Section 8.4.4, to the conclusion that we wish to work with constructors
that are persistent (along a morphism in IFPL) and extend correspondences.

Exercise 8.4.31 carries over as well. However, it is worth refining it further by
considering FPL-signature morphisms mapping operation names to FPL-terms that
may additionally contain conditionals as introduced in Exercise 4.1.28, generalised
to permit equalities between terms of sorts in ÔBS as conditions. We call such FPL-
signature morphisms OBS-admissible. The following corollary may be proved along
the lines of Exercise 8.4.31, starting with Proposition 8.5.6.

Corollary 8.5.21. Let δ :SIG′ → SIG and ι :SIG → SIG′ be FPL-signature mor-
phisms such that ι ∈ IFPL and ι ;δ = idSIG. Let OBS and OBS′ be sets of observable
sorts in SIG and SIG′ respectively such that δ (OBS′)⊆ ÔBS. If δ is OBS-admissible
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then the δ -reduct of FPL-models δ ∈Mod(SIG ι
==⇒ SIG′) extends correspondences

and hence is globally stable w.r.t. OBS and OBS′. ��
Exercise 8.5.22. Give an example which shows that the OBS-admissibility require-
ment in Corollary 8.5.21 cannot be dropped. ��

Corollary 8.5.23. Let K ∈ Mod(SIG
j
==⇒ SIG′) be defined using the notation of Ex-

ample 6.1.9, where SIG is a subsignature of SIG′ and j is the signature inclusion.
Recall that K is the composition of a free extension and a reduct, K = Fι ;( δ ),

SIG
ι−→ SIGintermediate

δ←− SIG′

where ι and δ are introduced by the notation in use, with ι = j;δ . Then K is glob-
ally stable with respect to sets of observable sorts OBS and OBS′ in SIG and SIG′

respectively, provided that δ (OBS′) ⊆ ̂ι(OBS) and that formulae in conditionals
within the body are equalities between terms of sorts in ̂ι(OBS).

Proof. The notation in use ensures that ι is an FPL-signature inclusion that only
introduces new sorts with value constructors. Therefore, the free extension Fι is total
and naturally persistent by Exercise 6.1.27. The rest follows by Corollary 8.5.21 and
a version of Exercise 8.4.30 for FPL. ��

The definitions of behavioural correctness for (persistent) constructors (Defi-
nition 8.4.34) and of a behavioural model of a constructor specification (Defini-
tion 8.4.36) can be reused in the present context. It is easy to see that Exercise 8.4.39
and Proposition 8.4.40 carry over as well. So do the results providing conditions
which ensure correctness of the use of behavioural models in a global context:
Lemma 8.4.42, Theorem 8.4.43 and Corollary 8.4.45, where we assume as usual
that ι as used there is in IFPL. Finally, Proposition 8.4.47 concerning amalgamated
union of behavioural models holds here as well, although its scope is limited to
FPL-signature morphisms σ1 and σ2 for which the pushout exists. In particular,
this holds when σ1 or σ2 is in IFPL.

8.5.2 A larger example

We will now present the development of a realisation of a specification of sets of
strings in terms of two-level hash tables, working in the institution FPL. The de-
velopment is closely related to the one in Section 7.4 but it exploits the flexibility
of behavioural interpretation of specifications, with some steps being behaviourally
correct, i.e. constituting behavioural implementations, but not being “literally” cor-
rect, i.e. constituting constructor implementations in the sense of Chapter 7. We
use many of the same names to facilitate comparison but the reader should be aware
that some of the specifications are different. The diagram in Figure 8.1, which shows
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String
==============⇒

ιN
KN

String and Nat=
=
=
=⇒ ι ′′AσElem �→String(A)

StringArray=
=
=
=⇒ ιLPKLP

LinearProbing=
=
=
=⇒ ι ′SKσString and Nat(K′

SK)

LinearProbing and StringKey=
=
=
=⇒ ιBKB

SimpleBucketPlus

��������
ιSimpleBucket

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=⇒

ιSBKSB

SimpleBucket

� �

=================⇒
ιSK

KSK

StringKey

��SimpleBucket and StringKey=
=
=
=⇒ ι ′AσElem �→Bucket(A)

SimpleBucketArray=
=
=
=⇒KHT

StringSet

Fig. 8.1 Specifications, constructors and signature morphisms involved in the development

most of the constructors, specifications and signature morphisms that will arise, may
be helpful in following the development.

In this example, all behavioural implementations will be with respect to the
empty set of observable sorts. This is quite typical in institutions like FPL, but it
departs from standard approaches to behavioural equivalence in the usual algebraic
framework, where choosing a non-empty set of observable sorts is crucial for hav-
ing any observations at all (cf. Exercises 8.2.16 and 8.5.11). In particular, recall
from Proposition 8.5.6 and the discussion preceding it that generated sorts such as
Nat, String and Bool can always be treated as observable. Moreover, even though
it may seem necessary to vary observable sorts in the process of modular develop-
ment, where some sorts must be locally considered as observable, we achieve the
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required effect with the empty set of observable sorts via the notions of behavioural
correctness and behavioural model (Definitions 8.4.34 and 8.4.36).

Recall the FPL-specifications Nat and String from Section 7.4:

spec NAT =
sorts Nat free with 0| succ(Nat)
ops + :Nat×Nat → Nat

≤ :Nat×Nat → Bool
∀m,n:Nat

• . . .

spec String =
sorts String free with ε |aˆ(String)| · · · |zˆ(String)

We start with a specification of sets of strings:

spec StringSet =
String
then

sorts NatSet
ops empty:NatSet

add:String×NatSet → NatSet
present:String×NatSet → Bool

∀s,s′:String,S:NatSet
• def (empty)∧def (add(s,S))∧def (present(s,S))
• add(s,add(s,S)) = add(s,S)
• add(s,add(s′,S)) = add(s′,add(s,S))
• present(s,empty) = false∧present(s,add(s,S)) = true
• s �= s′ ⇒ present(s,add(s′,S)) = present(s,S)

Note that this specification imposes stronger requirements on add than those stated
in the specification StringTable that we started with in Section 7.4. Also note
that, even though the axioms require all the operations to be total, this requirement
is not preserved under behavioural equivalence: in models that are behaviourally
equivalent to models of StringSet, the operations need only be defined on reach-
able arguments; see Exercise 8.5.19. A similar comment applies to all of the speci-
fications below.

The first design decision is to use direct chaining hash tables to represent these
sets. This will lead to an implementation of StringSet by the specification
SimpleBucketArray below.

spec StringKey =
Nat and String
then

ops hash:String → Nat
∀s:String • def (hash(s))∧hash(ε) = 0

spec SimpleBucket = StringSet with σNatSet �→Bucket
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where σNatSet �→Bucket is a surjective signature morphism from Sig[StringSet] that
renames NatSet to Bucket and is the identity otherwise.

spec SimpleBucketArray =
SimpleBucket and StringKey
then

sorts Array[Bucket]
ops empty:Array[Bucket]

put:Nat×Bucket×Array[Bucket]→ Array[Bucket]
get:Nat×Array[Bucket]→ Bucket
used:Nat×Array[Bucket]→ Bool

∀i, j:Nat,b,b′:Bucket,a:Array[Bucket]
• def (empty)∧def (put(i,b,a))∧def (used(i,b))
• put(i,b,put(i,b′,a)) = put(i,b,a)
• i �= j ⇒ put(i,b,put( j,b′,a)) = put( j,b′,put(i,b,a))
• used(i,empty:Array[Bucket]) = false
• used(i,put(i,b,a)) = true
• i �= j ⇒ used(i,put( j,b,a)) = used(i,a)
• get(i,put(i,b,a)) = b

Some of the operation names are overloaded in this specification, for instance empty
(we have empty:Bucket and empty:Array[Bucket]). The context of use helps to dis-
ambiguate, but in cases here and below where the overloading might be confusing
we attach some explicit sort information. We have deliberately omitted a require-
ment of definedness for get because we do not want to require it to be defined, for
instance, for the empty array. However, the last axiom, in combination with the third
axiom, ensures that it is defined when a value has been put into the relevant position
in the array.

Exercise 8.5.24. Prove that if BA is a reachable model of SimpleBucketArray
then

BA |= ∀i:Nat,a:Array[Bucket]• used(i,a) = true ⇒
∃b:Bucket;a′:Array[Bucket]• a = put(i,b,a′)

and so also

BA |= ∀i:Nat,a:Array[Bucket]• used(i,a) = true ⇒ def (get(i,a)).

(Actually, it is sufficient to require that the carrier |BA|Array[Bucket] is generated from
the other carriers.) Give a model of SimpleBucketArray that does not satisfy
these properties. ��

We will now proceed to give a behavioural implementation of StringSet by
SimpleBucketArray with respect to the empty set of observable sorts. We will
establish

StringSet ∅

KHT
�����SimpleBucketArray

where the constructor KHT is defined using the notation of Example 6.1.9 as follows:
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constructor KHT : Sig[SimpleBucketArray]⇒ Sig[StringSet] =
sorts NatSet = Array[Bucket]
ops empty:NatSet = empty:Array[Bucket]

fun add(s:String,S:NatSet):NatSet =
let i = hash(s)
in if used(i,S) = true then put(i,add(s,get(i,S):Bucket),S)

else put(i,add(s,empty:Bucket),S)
fun present(s:String,S:NatSet):Bool =

let i = hash(s)
in if used(i,S) = true then present(s,get(i,S):Bucket)

else false

In fact, we nearly have a normal constructor implementation here. Namely, for
any reachable model BA∈Mod[SimpleBucketArray], KHT(BA) satisfies all the
axioms in StringSet and so indeed, by the FPL version of Exercise 8.4.15,

StringSet ∅

KHT
�����SimpleBucketArray.

Exercise 8.5.25. Check the above claim for models BA of SimpleBucketArray
that are reachable (notice that the reachability requirement cannot be omitted; see
Exercise 8.5.24). To prove the idempotency and commutativity of add on sets we
need both idempotency and commutativity of add on buckets as well as the cor-
responding properties of put on arrays. Conclude that correctness of the above be-
havioural implementation follows, since KHT is globally stable (and therefore stable)
by Corollary 8.5.21. ��

Let specifications Elem and ElemArray be defined as follows:

spec Elem =
sorts Elem

spec ElemArray =
Elem and Nat
then

sorts Array[Elem]
ops empty:Array[Elem]

put:Nat×Elem×Array[Elem]→ Array[Elem]
get:Nat×Array[Elem]→ Elem
used:Nat×Array[Elem]→ Bool

∀i, j:Nat,e:Elem,a:Array[Elem]
• def (empty)∧def (put(i,e,a))∧def (used(i,a))
• used(i,empty) = false
• used(i,put(i,e,a)) = true
• i �= j ⇒ used(i,put( j,e,a)) = used(i,a)
• get(i,put(i,e,a)) = e
• i �= j ⇒ get(i,put( j,e,a)) = get(i,a)
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Let us assume that we have (perhaps from a software library) a behavioural model
of Elem and Nat

ιA==⇒ElemArray,

A ∈ Mod[Elem and Nat∅

ιA==⇒∅ElemArray]

where ιA is the signature inclusion. Recall that this implies that A is persistent,
globally stable, and behaviourally correct. The next implementation step uses A,
lifted to take any model of SimpleBucket and StringKey as argument. This
will be given by translation of A (see Example 6.1.28) by the signature morphism
σElem�→Bucket from Sig[Elem and Nat] to Sig[SimpleBucket and StringKey]
which maps Elem to Bucket and is the inclusion otherwise. We can choose the target
(pushout) signature for σElem�→Bucket(A) to be Sig[SimpleBucketArray]:

Elem and Nat ElemArray

SimpleBucket and StringKey SimpleBucketArray
σElem�→Bucket(A):

A: ιA===========⇒

ι ′A=========⇒
�

σElem�→Bucket

�

σ ′
Elem�→Bucket

Then σElem �→Bucket(A) is a (globally) stable persistent constructor since A is globally
stable. Moreover, we claim that σElem�→Bucket(A) is a behavioural model of

SimpleBucket and StringKey
ι ′A==⇒ SimpleBucketArray

and therefore

SimpleBucketArray ∅

σElem�→Bucket(A)
�������������SimpleBucket and StringKey.

Exercise 8.5.26. Prove the above claim, using Corollary 8.4.45 adapted for FPL.
HINT: The first requirement of the corollary follows trivially. The second one
amounts to proving that, for any Sig[SimpleBucketArray]-model M formed by
amalgamating models of ElemArray and SimpleBucket and StringKey,
there is a behaviourally equivalent model N ∈ Mod[SimpleBucketArray]. The
model N can be built by quotienting M by the congruence induced by

put(i,b,put(i,b′,a)) = put(i,b,a)
i �= j ⇒ put(i,b,put( j,b′,a)) = put( j,b′,put(i,b,a)).

The axioms of ElemArray ensure that this congruence is the identity on sorts
other than Array[Bucket]. ��
The specification of the constructor A is not sufficient to ensure that σElem�→Bucket(A)
is a model of SimpleBucket and StringKey ⇒ SimpleBucketArray be-
cause the axioms of ElemArray are not sufficient to guarantee that the second
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and third axioms of SimpleBucketArray hold: there may be models BA ∈
Mod[SimpleBucket and StringKey] such that σElem�→Bucket(A)(BA) does not
satisfy one or both of these two axioms, even if we additionally assume reachability.
But never mind: any computation in σElem�→Bucket(A)(BA) yielding a result that we
can directly test (using, for instance, pattern matching on Nat, String or Bool) pro-
duces a result that is correct according to SimpleBucketArray. The stability of
KHT ensures, by Theorem 8.4.6 for FPL, that the two behavioural implementation
steps can be composed, yielding

StringSet ∅

σElem �→Bucket(A);KHT
����������������SimpleBucket and StringKey.

We will now implement SimpleBucket and StringKey by implementing
each of the component specifications separately and applying Proposition 8.4.47 for
FPL to obtain an implementation of their sum. The shared part of SimpleBucket
and StringKey is String, so the implementations of these components will take
models of String as arguments. A realisation of String can be given easily; as
in Section 7.4, we will not pursue this here.

For both components, we begin by providing a model N for Nat; again, details
are omitted. This is clearly necessary to build a model for StringKey, and it will
be useful in our construction of a model for SimpleBucket as in Section 7.4.
Viewing the model N as a construction from the initial FPL-signature to Nat, a
simple application of Proposition 8.4.47 for FPL yields a behavioural model KN of
String

ιN==⇒ String and Nat where ιN is the obvious signature inclusion.
For StringKey, the development of a hash function for given realisations of

String and Nat to give a realisation of StringKey is left to the reader as
in Section 7.4. This yields a behavioural model KSK of String and Nat

ιSK===⇒
StringKey where ιSK is the obvious signature inclusion.

For SimpleBucket, as in Section 7.4, we use hash tables with linear probing
to resolve collisions.

spec StringArray =
String and Nat
then

sorts Array[String]
ops empty:Array[String]

put:Nat×String×Array[String]→ Array[String]
get:Nat×Array[String]→ String
used:Nat×Array[String]→ Bool

∀i, j:Nat,s,s′:String,a:Array[String]
• def (empty)∧def (put(i,s,a))∧def (used(i,s))
• put(i,s,put(i,s′,a)) = put(i,s,a)
• i �= j ⇒ put(i,s,put( j,s′,a)) = put( j,s′,put(i,s,a))
• used(i,empty) = false
• used(i,put(i,s,a)) = true
• i �= j ⇒ used(i,put( j,s,a)) = used(i,a)
• get(i,put(i,s,a)) = s
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spec LinearProbing =
StringArray
then

ops putnear:Nat×String×Array[String]→ Array[String]
isnear:Nat×String×Array[String]→ Bool

∀i:Nat,s:String,a,a′:Array[String]
• def (putnear(i,s,a))∧def (isnear(i,s,a))
• putnear(i,s,a) = a′ ⇔

∃ j:Nat• (used(i+ j,a) = false∨get(i+ j,a) = s)∧
(∀k:Nat• ( j ≤ k) = false ⇒ used(i+ k,a) = true)∧
a′ = put(i+ j,s,a)

• isnear(i,s,a) = true ⇔
∃ j:Nat• (∀k:Nat• (k ≤ j) = true ⇒ used(i+ k,a) = true)∧

get(i+ j,a) = s

We will separate the behavioural implementation of SimpleBucket in terms of
LinearProbing and StringKey into two steps. The intermediate specification
will be

spec SimpleBucketPlus =
SimpleBucket and LinearProbing and StringKey

Let ιSimpleBucket:SimpleBucket → SimpleBucketPlus be the obvious in-
clusion. We proceed now with the implementation of SimpleBucketPlus.

constructor KB : Sig[LinearProbing and StringKey]⇒
Sig[SimpleBucketPlus] =

sorts Bucket = Array[String]
ops empty:Bucket = empty:Array[String]

fun add(s:String,b:Bucket):Bucket = putnear(hash(s),s,b)
fun present(s:String,b:Bucket):Bool = isnear(hash(s),s,b)

We claim that KB is a behavioural model of LinearProbing and StringKey
ιB==⇒

SimpleBucketPlus (where ιB is the obvious signature inclusion) and therefore

SimpleBucketPlus ∅

KB
����LinearProbing and StringKey.

Exercise 8.5.27. Prove the above claim. HINT: Consider an arbitrary model M of
LinearProbing and StringKey. First check that the following three axioms

∀s:String• present(s,empty) = false
∀s:String,b:Bucket• present(s,add(s,b)) = true
∀s,s′:String,b:Bucket• s �= s′ ⇒ (present(s,add(s′,b)) = present(s,b))

hold in KB(M), using the definition of empty, add and present on Bucket via empty,
putnear and isnear on Array[String], and using axioms for putnear and isnear as
well as for StringArray, which M and therefore KB(M) satisfy. Then, consider
the least congruence on KB(M) induced by
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∀s:String,b:Bucket• add(s,add(s,b)) = add(s,b)
∀s,s′:String,b:Bucket• add(s,add(s′,b)) = add(s′,add(s,b)).

Prove that this congruence is the identity on all sorts other than Bucket. Quotient-
ing KB(M) by this congruence yields a model of SimpleBucketPlus with a be-
havioural correspondence between it and KB(M) which extends the identity on M.
Persistency and global stability of KB follow as usual. ��

Now, similarly as before, we need an implementation (a behavioural model)
for String and Nat

ιSK===⇒ StringKey. If we use KSK again then all of the
strings in a bucket will have the same hash value, so we assume being given
another behavioural model K′

SK ∈ Mod[String and Nat∅

ιSK===⇒∅StringKey].
We lift this to the context of LinearProbing via the specification inclusion
σString and Nat:String and Nat→ LinearProbing.

String and Nat StringKey

LinearProbing LinearProbing and StringKey

σString and Nat(K′
SK):

K′
SK : ιSK===========⇒

ι ′SK=========⇒
�

σString and Nat

�

Choosing the pushout signature appropriately, we thus obtain a behavioural model
σString and Nat(K′

SK) of

LinearProbing
ι ′SK===⇒ LinearProbing and StringKey

and therefore

LinearProbing and StringKey ∅

σString and Nat(K
′
SK)

�������������������LinearProbing.

Now we proceed with the implementation of LinearProbing as in Section 7.4:

spec StringFiniteArray =
StringArray
then

∀a:Array[String]• ∃n:Nat• ∀ j:Nat• (n ≤ j) = true ⇒ used( j,a) = false

constructor KLP : Sig[StringFiniteArray]⇒ Sig[LinearProbing] =
ops fun putnear(n:Nat,s:String,a:Array[String]):Array[String] =

if used(n,a) = false then put(n,s,a)
else if get(n,a) = s then a else putnear(succ(n),s,a)

fun isnear(n:Nat,s:String,a:Array[String]):Bool =
if used(n,a) = false then false
else if get(n,a) = s then true else isnear(succ(n),s,a)
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KLP is a model of StringFiniteArray
ιLP===⇒ LinearProbing (where ιLP is

the obvious signature inclusion). Moreover, by Corollary 8.5.23, KLP is glob-
ally stable and therefore stable. Consequently, KLP is a behavioural model of
StringFiniteArray

ιLP===⇒ LinearProbing. This yields

LinearProbing ∅

KLP
�����StringFiniteArray.

Exercise 8.5.28. Show thaat we have LinearProbing ∅

KLP
�����StringArray

as well, since up to behavioural equivalence, it doesn’t matter that putnear may
be undefined on some unreachable arrays. However, show that KLP is not be-
haviourally correct and therefore not a behavioural model of StringArray

ιLP===⇒
LinearProbing. ��

Recall that we have a behavioural model A of Elem and Nat
ιA==⇒ElemArray,

where ιA is the signature inclusion. Similarly as above, we now lift A to ob-

tain a behavioural model of String and Nat
ι ′′A==⇒ StringFiniteArray. Let

σElem�→String:Elem and Nat→ String and Nat be the signature morphism that
maps Elem to String and is the inclusion otherwise; it is clearly a specification
morphism as well. Choosing the pushout signature as appropriate, we obtain a be-

havioural model σElem�→String(A) of String and Nat
ι ′′A==⇒ StringArray.

Elem and Nat ElemArray

String and Nat StringArrayσElem �→String(A):

A: ιA==========⇒

ι ′′A==========⇒
�

σElem�→String

�

Moreover, σElem �→String(A) is also a behavioural model of String and Nat
ι ′′A==⇒

StringFiniteArray since any model of StringArray is behaviourally equiv-
alent to a model of StringFiniteArray (for instance to its submodel generated
by String, Nat and Bool), with the behavioural equivalence witnessed by a corre-
spondence which reduces to the identity on Sig[String and Nat].

We now have a sequence of behavioural models that can be composed to yield a

behavioural model of String
ιN ;ι ′′A ;ιLP;ι ′SK ;ιB
==========⇒ SimpleBucketPlus, namely

KSBP = KN ;σElem�→String(A);KLP;σString and Nat(K′
SK);KB.

By Proposition 8.4.40 for FPL, the constructor KSB = KSBP; ιSimpleBucket is a be-

havioural model of String
ιSB===⇒ SimpleBucket, where ιSB is the signature inclu-

sion. Next, by Proposition 8.4.47 for FPL, KSB +(KN ;KSK) is a behavioural model
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of String ι
==⇒ SimpleBucket and StringKey (where ι is the signature inclu-

sion), which gives

SimpleBucket and StringKey ∅

KSB +(KN ;KSK)
�������������String and Nat.

Composing this with earlier implementation steps gives

StringSet ∅

(KSB +(KN ;KSK));σElem �→Bucket(A);KHT
������������������������������String.

To wrap up the example, we can choose any (behavioural) realisation S of String.
This finally yields a model

((KSB +(KN ;KSK));σElem�→Bucket(A);KHT)(S)
where KSB = KN ;σElem�→String(A);KLP;σString and Nat(K′

SK);KB; ιSimpleBucket .

Up to behavioural equivalence (with respect to the empty set of sorts) this is a model
of StringSet.

Exercise 8.5.29. Consider the following version of the KLP constructor, which im-
plements putnear in such a way that the most recently added elements are kept
closest to the hash position:

constructor K′
LP : Sig[StringFiniteArray]⇒ Sig[LinearProbing] =

ops fun putnear(n:Nat,s:String,a:Array[String]):Array[String] =
let fun shift(m:Nat,v:String,a:Array[String]):Array[String] =

if used(m,a) = false then put(m,v,a)
else if get(m,a) = s then put(m,v,a)

else put(m,v,shift(succ(m),get(m,a),a))
in shift(n,s,a)

fun isnear(n:Nat,s:String,a:Array[String]):Bool = . . .

Now, K′
LP is not behaviourally correct along ιLP with respect to LinearProbing

and StringFiniteArray. Show, however, that the composed constructor used
above, where KLP is replaced by K′

LP, namely

K′
SB = KN ;σElem�→String(A);K′

LP;σString and Nat(K′
SK);KB; ιSimpleBucket

is a behavioural model of String
ιSB===⇒ SimpleBucket.

HINT: Notice that K′
LP is persistent and globally stable. Show that for any model

SA of StringFiniteArray, there is a relation between KLP(SA) and K′
LP(SA)

that is the identity on String, Nat and Bool and is closed under “derived opera-
tions” putnear(hash(s),s,a), isnear(hash(s),s,a) and empty. Extend this to the cor-
responding property of the composed constructors with KLP and K′

LP respectively.
Try to generalise the notions of correspondence, behavioural abstraction, be-

havioural implementation, stability, and so on, to a setting where we give a set
of “observable contexts” rather than a set of observable sorts. This generalisation
should capture the behavioural correctness of K′

LP with respect to an appropriate set
of observable contexts. ��
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Exercise 8.5.30. The above example deliberately avoids the higher-order construc-
tors of Section 6.4 used in the version of the example presented in Section 7.4. It
is an interesting research topic to develop a theory of behavioural equivalence for
higher-order constructors. Try this. Redo the example above in the style of Sec-
tion 7.4 and use your framework to study it. ��

8.5.3 Behavioural specifications in an arbitrary institution

In this subsection we will sketch a generalisation of the preceding material to the
context of an arbitrary institution. We will proceed in three stages. First, we will dis-
cuss specifications and their implementations in the presence of an arbitrary equiv-
alence relation on models. Second, we will introduce concepts that play the role of
correspondences in witnessing such an equivalence relation on models, via a gener-
alised notion of behavioural morphism. Finally, we will discuss general properties
that may be used to characterise behavioural morphisms.

Throughout this section we will work in an arbitrary but fixed institution INS =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉. We will gradually impose requirements for further
structure and properties as needed.

8.5.3.1 INS-behavioural abstraction and implementations

We have introduced two particular notions of behavioural equivalence on models
above: Definition 8.2.2 for standard algebras, and Definition 8.5.2 for FPL-models.
Both of these definitions were parameterised by a set of observable sorts and were
expressed via term evaluation. In an arbitrary institution, we have neither sorts nor
terms. Therefore for each signature Σ ∈ |Sign|, instead of working with respect to a
given set of observable sorts in Σ as hitherto, we will work directly with respect to
a given equivalence relation on Σ -models. We will occasionally refer to this equiv-
alence as an INS-behavioural equivalence in order to stress its intended role, and
use a similar prefix to distinguish the abstract notions introduced here from their
standard versions. Even in this very general framework, many of the definitions and
results in Sections 8.2.2 and 8.4 carry over, so that their original versions are spe-
cial cases of those below. The source of this equivalence is a matter that will be
discussed below.

Definition 8.2.18 can be restated in a general form as follows:

Definition 8.5.31 (INS-behavioural closure and abstraction). For any class M ⊆
|Mod(Σ)| of Σ -models, its INS-behavioural closure w.r.t. an equivalence ≡ ⊆
|Mod(Σ)|× |Mod(Σ)| is

Abs≡(M ) = {N ∈ |Mod(Σ)| | N ≡ M for some M ∈M }.
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If SP is a Σ -specification then abstract SP wrt ≡ is a specification with the follow-
ing semantics:

Sig[abstract SP wrt ≡] = Σ
Mod[abstract SP wrt ≡] = Abs≡(Mod[SP]). ��

Exercise 8.5.32. Check that the simple properties of the behavioural closure oper-
ation given in Proposition 8.2.19 carry over, including analogous properties for the
abstraction operation. ��
Exercise 8.5.33. Following Exercise 8.2.23, for any class M ⊆ |Mod(Σ)| of Σ -
models, characterise its INS-behavioural closures with respect to two trivial equiv-
alences: the identity, and the total relation on |Mod(Σ)|. Prove that for any equiva-
lences ≡ and ≡′ on |Mod(Σ)|, if ≡ ⊆ ≡′ then Abs≡(M ) ⊆ Abs≡′(M ). State con-
sequences of these facts for abstraction. ��

The following definition of INS-behavioural implementations captures in the
present context the essence of behavioural implementations (Definition 8.4.2).

Definition 8.5.34 (INS-behavioural implementation). A specification SP is INS-
behaviourally implemented by a specification SP′ via a constructor κ:Sig[SP′]⇒
Sig[SP] w.r.t. an equivalence≡ on |Mod(Sig[SP])|, written SP≡

κ���SP′, if dom(κ)⊇
Mod[SP′] and Abs≡(Mod[SP])⊇ κ(Mod[SP′]). ��
As before (see Proposition 8.4.3), constructor implementations in the sense of Defi-
nition 7.2.1 are INS-behavioural implementations with respect to an arbitrary equiv-
alence on models.

As with behavioural implementations, INS-behavioural implementations via ar-
bitrary constructors do not vertically compose (see Example 8.4.1 in Section 8.4.2).
Again, stability of constructors comes to the rescue.

Definition 8.5.35 (INS-stable constructor). Let Σ ,Σ ′ ∈ |Sign| be signatures and
let ≡ and ≡′ be equivalences on |Mod(Σ)| and |Mod(Σ ′)|, respectively. Let M ′ ⊆
|Mod(Σ ′)| be a class of Σ ′-models.

A constructor κ:Σ ′ ⇒ Σ is INS-stable on M ′ w.r.t. ≡′ and ≡ if for all models
M′ ∈M ′ and N′ ∈ |Mod(Σ ′)|, whenever M′ ≡′ N′ then also κ(M′)≡ κ(N′).

We say that κ is INS-stable (w.r.t. ≡′ and ≡) if it is INS-stable on the class
dom(κ). ��
Exercise 8.5.36. Notice that, as in Proposition 8.4.5, any INS-behavioural imple-
mentation via an INS-stable constructor amounts to a constructor implementation
between the behavioural abstractions of the corresponding specifications. Then re-
formulate and prove the vertical composition property (Theorem 8.4.6 and Corol-
lary 8.4.7). ��

The concept of a behaviourally trivial constructor carries over as well.
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Definition 8.5.37 (INS-behaviourally trivial constructor). Consider a signature
Σ ∈ |Sign|, an equivalence ≡ on |Mod(Σ)|, and a class M ⊆ |Mod(Σ)| of Σ -
models.

A constructor κ:Σ ⇒ Σ is INS-behaviourally trivial w.r.t. ≡ on M if for every
model M ∈M , M ≡ κ(M). κ:Σ ⇒ Σ is INS-behaviourally trivial (w.r.t. ≡) if it is
so on the class |Mod(Σ)|. ��
INS-behaviourally trivial constructors are INS-stable (see Proposition 8.4.11). The
role of behaviourally trivial constructors for behavioural implementations and their
compositions carries over as well, and can be embodied by the appropriate adaptions
of Propositions 8.4.12 and 8.4.13.

We will refrain from attempting to present general versions of restriction to a
sort-generated subalgebra and of quotient that would correspond to the two standard
examples of behaviourally trivial constructors in Section 8.4.3; see Examples 8.4.14
and 8.4.16 and Exercises 8.4.15 and 8.4.19. Even though their definitions can be
given in institutions where model categories come equipped with the structure de-
scribed in Section 4.5, their INS-behavioural triviality can only be justified for spe-
cific equivalences. But see Exercise 8.5.50 below.

Translation of an INS-stable constructor to a larger context need not be INS-
stable here for reasons similar to those explained in Non-example 8.4.22. Again, a
possible solution is to concentrate on constructors that are globally INS-stable in
the following sense.

Let I be a class of morphisms in Sign such that INS is I-semi-exact; see Defini-
tion 4.4.18.

Notation. For any signature morphism σ :Σ → Σ ′ and equivalence≡ on |Mod(Σ)|,
≡ −1

σ is an equivalence on |Mod(Σ ′)| such that M′ ≡ −1
σ N′ iff M′

σ ≡ N′
σ . ��

Definition (Globally INS-stable constructor, first version). Let ι :Σ → Σ ′ be a
signature morphism in I and let and ≡ and ≡′ be equivalences on |Mod(Σ)| and
|Mod(Σ ′)|, respectively. Let M ⊆ |Mod(Σ)| be a class of Σ -models.

A persistent constructor F ∈Mod(Σ ι
==⇒ Σ ′) is globally INS-stable on M w.r.t. ≡

and ≡′ if for every pushout diagram in Sign

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

that admits amalgamation, and equivalence ≡G on |Mod(ΣG)| such that ≡G σ ⊆≡,

the translation of F along σ , σ(F) ∈ Mod(ΣG
ι ′
==⇒ Σ ′

G), is INS-stable on MG =

{MG ∈ |Mod(ΣG)| | MG σ ∈M } w.r.t. ≡G and ≡′
G, where ≡′

G = ≡G
−1
ι ′ ∩≡′ −1

σ ′ .
We say that F is globally INS-stable (w.r.t. ≡ and ≡′) if it is globally INS-stable on
the class dom(F). ��
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This definition is based on Definition 8.4.24, replacing conditions that relate sets
of observable sorts over different signatures with conditions that directly relate the
equivalences these sets would determine in the standard case. We will now compare
what this definition yields in the standard algebraic framework with the original
definition.

Let σ :Σ →ΣG be an algebraic signature morphism and let OBS and OBSG be sets
of observable sorts in Σ and ΣG respectively. By Example 8.4.9, if σ(OBS)⊆OBSG
then ≡OBSG σ ⊆ ≡OBS, that is, ≡OBSG ⊆ ≡OBS

−1
σ . The opposite implication holds

as well: suppose that σ(o) �∈ OBSG for some o ∈ OBS. Let AG be the ΣG-algebra
with singleton carriers for all sorts. Let A′G extend AG by adding a new element to
the carrier |AG|σ(o), with all the operations continuing to yield results in the carrier
of |AG| for all arguments. Then AG is an OBSG-behavioural subalgebra of A′G but
AG σ �≡OBS A′G σ . And so ≡OBSG σ �⊆ ≡OBS.

Moreover, under the notation introduced in Definition 8.4.24, for any Σ ′
G-models

A′G and B′G, if A′G ≡OBS′G B′G then A′G ι ′ ≡OBSG B′G ι ′ and A′G σ ′ ≡OBS′ B′G σ ′ , by a
similar argument. Unfortunately, here the opposite implication fails.

Exercise 8.5.38. Recall from Exercise 8.2.16 that in general ≡OBS1∪OBS2 �=≡OBS1 ∩
≡OBS2 . Study what properties of the morphisms and sets of sorts involved would be
required to ensure ≡OBS′G =≡OBSG

−1
ι ′ ∩≡OBS′

−1
σ ′ . ��

A conclusion is that, in the standard algebraic framework, if a persistent con-
structor F ∈ Mod(Σ ι

==⇒ Σ ′) is globally stable w.r.t. OBS and OBS′ then it is also
globally INS-stable w.r.t. ≡OBS and ≡OBS′ . But the two notions do not coincide, as
the following counterexample demonstrates.

Counterexample 8.5.39. Let Σ be the algebraic signature with sorts s,s′ and con-
stant a:s, with OBS = ∅. Let Σ ′ extend Σ by the constants b,c:s with ι :Σ → Σ ′
being the signature inclusion and OBS′=∅. Consider the following two Σ -algebras:

A : |A|s = {0,1,∗}, |A|s′ = {♣},aA = ∗
B : |B|s = {0,1,∗}, |B|s′ = {♦},aB = ∗

Define a (total) persistent constructor F ∈ Mod(Σ ι
==⇒ Σ ′) so that bF(A) = 0 and

cF(A) = 1, while bF(B) = 1 and cF(B) = 0, with F extending arbitrarily other Σ -
algebras.

Now, F does not extend correspondences and so it is not globally stable w.r.t.
OBS and OBS′. For instance, let ΣG extend Σ by the constant z:s, with σ :Σ → ΣG
being the inclusion and OBSG = {s}, and let AG and BG extend A and B respec-
tively by interpreting z:s as 0. Then AG ≡OBSG BG but σ(F)(AG) �≡OBS′G σ(F)(BG),
where OBS′G = ι ′(OBSG)∪σ ′(OBS′) = {s} (choosing the pushout signature Σ ′

G =
ΣG ∪Σ ′ with ι ′ and σ ′ being the obvious signature inclusions), since z = b holds
in σ(F)(AG) but does not hold in σ(F)(BG). (Alternatively, instead of making s
directly observable we could have added an observable sort Bool with an operation
p:s → Bool that in AG and BG would distinguish between 0 and 1.)
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On the other hand, F is globally INS-stable w.r.t. ≡OBS and ≡OBS′ . To see
this, consider any algebraic signature morphism σ :Σ → ΣG with set OBSG of ob-
servable sorts in ΣG. Then for any two ΣG-algebras AG and BG, if AG ≡OBSG BG
then (σ(F)(AG)) ι ′ ≡OBSG (σ(F)(BG)) ι ′ by persistency of σ(F) (Example 6.1.28).
Furthermore, (σ(F)(AG)) σ ′ ≡OBS′ (σ(F)(BG)) σ ′ since OBS′ = ∅. Thus indeed
(σ(F)(AG))≡′

G (σ(F)(BG)) where ≡′
G =≡OBSG

−1
ι ′ ∩≡OBS′

−1
σ ′ . ��

Similar troubles arise in FPL. The above counterexample applies there as well,
but we cannot even directly conclude that global stability of a persistent constructor
w.r.t. sets of observable sorts implies its global INS-stability w.r.t. the behavioural
equivalences they determine.

Exercise 8.5.40. Consider an FPL-signature morphism σ :SIG → SIGG with ob-
servable sorts OBS and OBSG in SIG and SIGG respectively. If σ(OBS) ⊆ OBSG
then ≡OBSG σ ⊆ ≡OBS. But the opposite implication does not hold. Give a coun-
terexample. Replace the requirement that σ(OBS) ⊆ OBSG by a weaker condition
which ensures ≡OBSG σ ⊆ ≡OBS, for instance σ(OBS) ⊆ ÔBSG. Show that in gen-

eral σ(OBS)⊆ ÔBSG is still not equivalent to ≡OBSG σ ⊆≡OBS. ��
In principle, it is possible to generalise the definitions of behavioural correctness

(Definition 8.4.34) and behavioural model (Definition 8.4.36) to the current frame-
work, and then obtain results about correctness of behavioural models when used in
a global context (Theorem 8.4.43 and Corollary 8.4.45). However, we view Coun-
terexample 8.5.39 as rendering this line of development pointless since it shows
that we would admit constructors that break encapsulation boundaries by varying
their results depending on hidden properties of their arguments. Indeed, global INS-
stability is a rather weak requirement which does not go beyond INS-stability.

Exercise 8.5.41. Check that if a persistent constructor F ∈ Mod(Σ ι
==⇒ Σ ′) is INS-

stable on M w.r.t. ≡ and ≡′ (see Definition 8.5.35) then it is also globally INS-
stable on M w.r.t. ≡ and ≡′. HINT: Under the notation of the definition of global
INS-stability above, for MG,NG ∈ MG such that MG ≡G NG, σ(F)(MG) ι ′ = MG

and σ(F)(NG) ι ′ = NG, so that σ(F)(MG)≡G
−1
ι ′ σ(F)(NG), and σ(F)(MG) σ ′ =

F(MG σ ) and σ(F)(NG) σ ′ = F(NG σ ), so that σ(F)(MG)≡′ −1
σ ′ σ(F)(NG). ��

Consequently, rather than trying to further refine this line of definitions, we will
switch to a less abstract notion of INS-behavioural equivalence, adding enough extra
structure to bring these results closer to the standard cases considered earlier.

8.5.3.2 INS-behavioural morphisms

In the above we have disregarded entirely the question of how an INS-behavioural
equivalence over a given model class is determined. As a result, INS-behavioural
equivalences as considered above came with no notion of witness to play a role
comparable to that of correspondences for behavioural equivalence in the standard
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algebraic framework (Theorem 8.2.8) and in FPL (Theorem 8.5.5). To provide such
witnesses, we will exploit the characterisation of correspondences in the standard
algebraic framework as spans of certain model morphisms (Exercise 8.2.15). We
will therefore base our definitions on a choice of morphisms in model categories
of INS which we will view as INS-behavioural morphisms. We will use subclasses
of these, corresponding to our choices of sets of observable sorts in the standard
algebraic case, to define particular INS-behavioural equivalences.

Definition 8.5.42 (INS-behavioural morphism). A family of INS-behavioural
morphisms is a |Sign|-indexed family H = 〈HΣ ⊆ Mod(Σ)〉Σ∈|Sign| where for each
signature Σ , HΣ is a class of morphisms between Σ -models that contains all the
identities and is closed under composition (so that it forms a wide subcategory of
Mod(Σ)). Moreover, H is required to be closed under reducts and amalgamation:

• For any signature morphism σ :Σ → Σ ′, HΣ ′ σ ⊆HΣ ; and
• For any pushout in Sign

Σ

Σ1

Σ2

Σ ′

�

σ1

�
σ2

�
σ ′

2

�

σ ′
1

that admits amalgamation and any Σ ′-morphism h ∈Mod(Σ ′), we have h ∈HΣ ′
provided that both h σ ′

1
∈HΣ2 and h σ ′

2
∈HΣ1 . ��

We will henceforth assume that INS is equipped with a family H of INS-
behavioural morphisms.

Definition 8.5.43 (INS-behavioural equivalence). Given a signature Σ ∈ |Sign|
and a class B ⊆HΣ of INS-behavioural Σ -morphisms, the INS-behavioural equiv-
alence defined by B is the least equivalence ≡B ⊆ |Mod(Σ)| × |Mod(Σ)| on Σ -
models such that for any two Σ -models M,N ∈ |Mod(Σ)|, M ≡B N whenever we
have a Σ -model C ∈ |Mod(Σ)| and a span of morphisms hM:C →M and hN :C → N
with hM,hN ∈B. ��
In the following we will assume that all classes B of INS-behavioural Σ -morphisms
we consider include all identities on Σ -models.

Exercise 8.5.44. Simplify the above definition of INS-behavioural equivalence gen-
erated by a class of behavioural morphisms by noticing that ≡B is the least equiv-
alence on |Mod(Σ)| such that M ≡B N whenever there is a behavioural morphism
h:M → N in B. Check if this helps to simplify further developments and proofs
below in any essential way. ��

The definition of INS-behavioural equivalence above could be given simply in
terms of an arbitrary class B of Σ -morphisms, and so introducing the family H of
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INS-behavioural morphisms may seem superfluous at this stage. However, restrict-
ing the choice of classes B to INS-behavioural morphisms only becomes important
in later developments; see for instance Definition 8.5.51 below, where considering
arbitrary classes of morphisms would yield a more restrictive notion, with some
standard examples excluded. Typically the choice of B is determined by some ad-
ditional parameter (like the set of observable sorts) and the class of INS-behavioural
morphisms is the union of all such B, over all choices of such a parameter. In frame-
works like EQ and FPL, INS-behavioural morphisms are those that are behavioural
with respect to the empty set of observable sorts:

Example 8.5.45. For the standard algebraic framework, for any algebraic signature
Σ , take all Σ -homomorphisms to be INS-behavioural. Then, for any set OBS of ob-
servable sorts in Σ , let BOBS be the class of all Σ -homomorphisms that are identities
on the carriers of sorts in OBS. Then ≡BOBS coincides with ≡OBS, the behavioural
equivalence with respect to OBS, by Exercise 8.2.15.

For FPL, for any FPL-signature SIG, take all strong SIG-morphisms to be INS-
behavioural. Then, for any set OBS of observable sorts in SIG, let BOBS be the
class of all strong SIG-morphisms that are identities on the carriers of sorts in OBS.
Then≡BOBS coincides with≡OBS, the behavioural equivalence on FPL-models with
respect to OBS, by Exercise 8.5.10.

In both cases, allowing morphisms in BOBS to be bijective on the carriers of
sorts in OBS yields weak behavioural equivalence w.r.t. OBS; see Definitions 8.2.24
and 8.2.26 and Theorem 8.2.28. ��
Exercise 8.5.46. Recall Exercise 8.2.17. For any algebraic signature Σ and sets IN
and OUT of its sorts, let BIN,OUT be the class of Σ -homomorphisms that are sur-
jective on the carriers of sorts in IN and injective on the carriers of sorts in OUT .
Check that the equivalence≡BIN,OUT coincides with the weak version of behavioural
equivalence with respect to IN,OUT you defined in that exercise. ��
Exercise 8.5.47. In the examples above, the existence of a span of behavioural mor-
phisms defined an equivalence directly. Give an example of a class of morphisms
where this is not the case, and the relation given by the existence of spans needs to
be closed (under reflexivity and/or transitivity) to yield an equivalence. Check that
if B ⊆ HΣ is closed under pullbacks in Mod(Σ) then M ≡B N iff there exists a
span of morphisms hM:C → M and hN :C → N with hM,hN ∈ B. Notice however
that it would not be sufficient to introduce similar assumptions about the class HΣ
only. ��

All of the definitions and results above concerning INS-behavioural abstrac-
tion and implementations can be parameterised by classes of INS-behavioural
morphisms which determine INS-behavioural equivalences, rather than by INS-
behavioural equivalences directly. For instance:

Definition 8.5.48 (INS-behavioural closure and abstraction). For any class M ⊆
|Mod(Σ)| of Σ -models, its INS-behavioural closure w.r.t. B ⊆HΣ is

AbsB(M ) = {N ∈ |Mod(Σ)| | N ≡B M for some M ∈M }.
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If SP is a Σ -specification then abstract SP wrt B is a specification with the follow-
ing semantics:

Sig[abstract SP wrt B] = Σ
Mod[abstract SP wrt B] = Abs≡B

(Mod[SP]) ��
Exercise 8.5.49. Apply a similar transformation to the other definitions and results.
Check that choosing the classes of behavioural morphisms for sets of observable
sorts as in Example 8.5.45 yields the corresponding specific notions and results in
the standard algebraic framework and in FPL. ��
Exercise 8.5.50. Suppose we impose the reachability structure defined for an arbi-
trary institution in Definition 4.5.4 in the current context. In the resulting frame-
work, introduce notions of INS-behavioural submodel (Definition 8.2.9) and INS-
behavioural quotient (the former as the source of a behavioural factorisation mono-
morphism, the latter as the target of a behavioural factorisation epimorphism), as
well as partial INS-behavioural quotient (i.e. an INS-behavioural quotient of an
INS-behavioural submodel). Define constructors for restriction to the behavioural
generated submodel (Example 8.4.14) and behavioural quotient (Example 8.4.16)
in this framework, and check that they are INS-behaviourally trivial.

Define a model to be INS-fully abstract (Definition 8.3.21) when it has no non-
trivial partial INS-behavioural quotient, and require that every model have a par-
tial INS-fully abstract behavioural quotient (Lemma 8.3.23). Strengthen the as-
sumptions on INS and INS-behavioural morphisms in order to ensure that Theo-
rem 8.3.24 carries over.

Then define INS-behavioural satisfaction as normal satisfaction in the partial
INS-fully abstract behavioural quotient, thus using Theorem 8.3.26 as a definition.
Reformulate Definition 8.3.30 in the resulting framework and check that the proofs
of Corollaries 8.3.29 and 8.3.31 and Theorem 8.3.32 carry over, introducing further
assumptions on the institution INS when necessary. ��

We are now ready to retry generalising the definition of global stability, assuming
again that I is a class of morphisms in Sign such that INS is I-semi-exact; see
Definition 4.4.18.

Notation. For any signature morphism σ :Σ → Σ ′ and class B ⊆ HΣ of INS-
behavioural Σ -morphisms, B −1

σ = {h ∈HΣ ′ | h σ ∈B}, that is, B −1
σ is the coim-

age of B under the reduct restricted to INS-behavioural morphisms, σ :HΣ ′ →
HΣ . ��
Definition 8.5.51 (Globally INS-stable constructor). Let ι :Σ → Σ ′ be a signature
morphism in I and let and B ⊆ HΣ and B′ ⊆ HΣ ′ be classes of INS-behavioural
morphisms in Mod(Σ) and Mod(Σ ′), respectively. Let M ⊆ |Mod(Σ)| be a class
of Σ -models.

A persistent constructor F ∈ Mod(Σ ι
==⇒ Σ ′) is globally INS-stable on M w.r.t.

B and B′ if for every pushout diagram in Sign
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Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

that admits amalgamation, and class BG ⊆HΣG of INS-behavioural ΣG-morphisms,

such that BG σ ⊆ B, the translation of F along σ , σ(F) ∈ Mod(ΣG
ι ′
==⇒ Σ ′

G), is
INS-stable on MG = {MG ∈ |Mod(ΣG)| | MG σ ∈M } w.r.t. BG and B′

G, where
B′

G = BG
−1
ι ′ ∩B′ −1

σ ′ . We say that F is globally INS-stable (w.r.t. B and B′) if it
is globally INS-stable on the class dom(F). ��
Exercise 8.5.52. Instantiate this definition to the standard algebraic framework and
to FPL via Example 8.5.45, defining a constructor F ∈Mod(Σ ι

==⇒ Σ ′) to be globally
stable w.r.t. sets OBS and OBS′ of sorts in Σ and Σ ′, respectively, if it is globally
INS-stable w.r.t. BOBS and BOBS′ . Show that this yields a notion that is at least as
strong as that given by Definition 8.4.24 (carried over to FPL as well): a constructor
that is globally stable in this sense is also globally stable in the sense of Defini-
tion 8.4.24. HINT: Under the notation of Definition 8.4.24 and Example 8.5.45, if
σ(OBS)⊆ OBSG then BOBSG σ ⊆BOBS and BOBS′G = BOBSG

−1
ι ′ ∩BOBS′

−1
σ ′ .

Prove that in fact these two notions coincide, at least on model classes that are
closed under behavioural equivalence. HINT: Use Exercise 8.4.33 (and its analogue
for FPL), and the fact that if F ∈ Mod(Σ ι

==⇒ Σ ′) extends correspondences then for
any behavioural Σ -morphism h:A→ B there is a span of behavioural Σ ′-morphisms
h′′:C′ → F(A), h′:C′ → F(B) such that h′′ ι = idA and h′ ι = h. ��

The key fact is now that Theorem 8.4.26 carries over as follows.

Theorem 8.5.53. A constructor F ∈ Mod(Σ ι
==⇒ Σ ′) is globally stable on M ⊆

|Mod(Σ)| w.r.t. B ⊆ HΣ and B′ ⊆ HΣ ′ if it extends INS-behavioural morphisms
on AbsB(M ), that is, for any INS-behavioural morphism h:M → N with M,N ∈
AbsB(M ), if h ∈ B then there exists an INS-behavioural morphism h′:F(M)→
F(N) such that h′ ∈B′ and h = h′ ι . ��
Exercise 8.5.54. Check that the proof of Theorem 8.4.26 may be adapted to prove
Theorem 8.5.53. HINT: First use the assumption that INS-behavioural morphisms
are closed under amalgamation (see Definition 8.5.42) to show that for σ :Σ → ΣG,
σ(F) extends INS-behavioural ΣG-morphisms hG:MG → NG such that hG σ ∈ B

and MG σ ,NG σ ∈ AbsB(M ). ��
Exercise 8.5.55. Adapt Exercise 8.4.28, Lemma 8.4.29, Exercise 8.4.30 and Exer-
cise 8.4.31 to the current framework. ��

The following definitions generalise Definitions 8.4.34 and 8.4.36.
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Definition 8.5.56 (INS-behaviourally correct constructor). Let ι :Σ → Σ ′ be a
signature morphism, let SP and SP′ be Σ - and Σ ′-specifications respectively, and
let B′ ⊆ HΣ ′ be a class of INS-behavioural Σ ′-morphisms. A persistent construc-
tor F ∈ Mod(Σ ι

==⇒ Σ ′) is INS-behaviourally correct along ι w.r.t. SP and SP′ for
B′ if for every M ∈Mod[SP] there exist M′

0,C
′
1,M

′
1,C

′
2, . . . ,C

′
n,M

′
n ∈ |Mod(Σ ′)| and

INS-behavioural Σ ′-morphisms in B′

F(M) = M′
0

h′1←−C′
1

h′′1−→ M′
1

h′2←−C′
2

h′′2−→ ·· · h′n←−C′
n

h′′n−→ M′
n ∈ Mod[SP′]

such that all of h′1 ι ,h′′1 ι , . . . ,h′n ι ,h′′n ι are the identity (on M). ��
Note that under additional assumptions about B, the sequence of spans in the above
definition may be replaced by a single span; see Exercise 8.5.47.

Definition 8.5.57 (INS-behavioural model of a constructor specification). Let
ι :Σ → Σ ′ be a signature morphism in I, let SP and SP′ be Σ - and Σ ′-specifications
respectively, and let B ⊆ HΣ and B′ ⊆ HΣ ′ be classes of INS-behavioural mor-
phisms. We write Mod[SPB

ι
==⇒B′ SP′] for the class of all INS-behavioural models

of SP ι
==⇒ SP′ w.r.t. B and B′, that is, constructors that are globally INS-stable w.r.t.

B and B′ and are INS-behaviourally correct along ι w.r.t. SP and SP′ for B′. ��
The results about correctness of behavioural models when used in a global con-

text (Theorem 8.4.43 and Corollary 8.4.45) may now be restated in the present con-
text as follows.

Theorem 8.5.58. Let ι :Σ → Σ ′ be a signature morphism in I, let SP and SP′
be Σ - and Σ ′-specifications respectively, and let B ⊆ HΣ and B′ ⊆ HΣ ′ be
classes of INS-behavioural morphisms. Consider an INS-behavioural model F ∈
Mod[SPB

ι
==⇒B′ SP′] and a pushout diagram

Σ

ΣG

Σ ′

Σ ′
G

�

σ

�
ι

�ι ′

�

σ ′

that admits amalgamation. Let BG ⊆ HΣG be a class of INS-behavioural ΣG-
morphisms such that BG σ ⊆B and let B′

G = BG
−1
ι ′ ∩B′ −1

σ ′ . If:

(i) Mod[SPG]⊆ AbsBG(Mod[SPG∪ (SP with σ)]); and
(ii) Mod[SP′+ι ,σ SPG]⊆ AbsB′

G
(Mod[SP′G])

then σ(F) is stable w.r.t. BG and B′
G, and SP′G

B′
G

σ(F)
������SPG. ��

Corollary 8.5.59. Under the notation of Theorem 8.5.58, if:
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(i) Mod[SPG]⊆ Mod[SP with σ ]; and
(ii) Mod[SP′+ι ,σ SPG]⊆ AbsB′

G
(Mod[SP′G])

then σ(F) ∈ Mod[SPG BG
ι ′
==⇒B′

G
SP′G]. ��

Exercise 8.5.60. Prove Theorem 8.5.58 and Corollary 8.5.59 adapting the proofs
of Theorem 8.4.43 and of Corollary 8.4.45 as appropriate. In a similar way, adapt
Proposition 8.4.47 and its proof to the current framework. ��

8.5.3.3 Observing computations

The original motivation for behavioural specifications was phrased in terms of iden-
tifying models that displayed the same behaviour, understood as results obtained
by observing computations in these models. The definitions of behavioural equiva-
lence reflect this. In the standard algebraic case, we observe the values of computa-
tions given as algebraic terms of observable sorts. In FPL, we observe termination
of computations given as FPL-terms, and the values of terminating computations
given as FPL-terms of observable sorts. Even these two standard cases show that
the notions of computations and observations we make on them may considerably
differ from one framework to another. So far, the abstract definitions given above
did not rely explicitly on any similar concept, even though it has clearly been our
intention that the INS-behavioural equivalences morphisms considered be somehow
linked to this informal idea.

Looking for the means to make such a concept precise, an obvious possibility is
to consider observations as given by a set of sentences of the institution in question.
Informally, we choose sentences that capture the elementary facts about computa-
tion in the given model that the user is able to directly observe. In the standard
algebraic framework, these observable sentences are equations between terms of
observable sorts. In FPL, the observable sentences are definedness assertions for
arbitrary FPL-terms and equations between such terms of observable sorts. (As ex-
plained after Definition 8.5.2, this may typically be limited to definedness assertions
for FPL-terms of observable sorts.) Given such a set of observable sentences, the
natural choice for the class of behavioural morphisms would be the class of all
model morphisms that preserve and reflect satisfaction of sentences in this set. Al-
ternatively, we could go directly to the behavioural equivalence which links models
that satisfy exactly the same observable sentences.

These ideas would lead to yet another version of the material above, this time
parameterised by sets of sentences. The following exercise captures some of the
possibilities in this direction and indicates some of the potential problems.

Exercise 8.5.61 (INS-behavioural morphisms from observable formulae). In the
standard algebraic framework, for any algebraic signature Σ and set OBS of observ-
able sorts in Σ , consider the set ΦOBS

Σ of all equations between ground Σ -terms
of sorts in OBS to be the set of observable sentences. Then a Σ -homomorphism
preserves and reflects satisfaction of sentences in ΦOBS

Σ iff it is injective on the
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reachable elements of the carriers of sorts in OBS. Taking this to be the class of
behavioural morphisms determines a behavioural equivalence on Σ -algebras: two
Σ -algebras are equivalent iff they satisfy exactly the same equations in ΦOBS

Σ . (So
in this case the behavioural equivalence determined by the set of behavioural mor-
phisms and the one determined directly by the set of observations coincide.) Check
that this behavioural equivalence is exactly behavioural equivalence w.r.t. IN,OUT
as introduced in Exercise 8.2.17 for IN =∅ and OUT = OBS.

For other choices of IN, e.g. IN = OBS, the resulting behavioural equivalence
w.r.t. IN,OUT cannot in general be characterised by a set of Σ -sentences in a similar
way. Check for instance that taking Σ -equations between terms of sorts in OBS with
variables of sorts in OBS does not yield the standard behavioural equivalence. One
solution to the problem this mismatch poses is to consider sets of observable open
formulae in place of sets of observable sentences. For instance, here we can consider
the setΨ OBS

Σ which consists of all Σ(XOBS)-equalities between terms of sorts in OBS,
where XOBS is a set of variables of sorts in OBS, and Σ(XOBS) is the extension of Σ
with these variables as constants. Then a Σ -homomorphism is Ψ OBS

Σ -behavioural if
all of its expansions to Σ(XOBS)-homomorphisms preserve and reflect satisfaction
of Σ(XOBS)-sentences in Ψ OBS

Σ .
Using the machinery of free variables in Section 4.4.2, such a definition may be

rephrased in an arbitrary institution, subject to mild technical assumptions. Try to
devise requirements on the family of sets of observable open formulae so that the
family of classes of morphisms that preserve and reflect satisfaction of observable
formulae satisfy the requirements in the definition of INS-behavioural morphisms
(Definition 8.5.42).

Unfortunately, even in the standard framework, the definition above does not
yield the standard notion of behavioural homomorphism w.r.t. OBS: the Ψ OBS

Σ -
behavioural morphisms are injective but not necessarily surjective on carriers of
sorts in OBS. Try to strengthen the definition of Ψ OBS

Σ -behavioural morphisms so
that surjectivity on carriers of sorts in OBS is ensured as well. Make a similar ad-
justment to the institution-independent version of the definition.

Try to provide a similar treatment of behavioural morphisms and behavioural
equivalence in FPL. ��
Exercise 8.5.62 (INS-behavioural morphism as open morphism). An alternative
to the logical view of behavioural equivalence sketched above is to take as primary
the behaviour of a model, understood as a morphism from certain special models
describing formal computations to the model in question. The first step is therefore
to indicate, for each signature Σ ∈ |Sign|, a subcategory CΣ ⊆Mod(Σ) of Σ -models
that capture formal computations. Given such a subcategory, the class of behavioural
morphisms may then be determined by the requirement that they preserve (which
is trivial) as well as reflect the actual computations in the models. This informal
requirement is made precise by the notion of an “open morphism” as follows.

A Σ -morphism h:M → N is CΣ -open if for any commutative square in Mod(Σ)
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C1

C2

M

N

�

m

�
p

�
q

�

h

where m:C1 → C2 is in CΣ , there exists a morphism q′:C2 → M in Mod(Σ) such
that q′;h = q and m;q′ = p. (This captures the intuition that h reflects the behaviour
q of N to the behaviour q′ of M.)

For instance, in the standard algebraic framework, for any algebraic signature
Σ and set OBS of observable sorts in Σ , the formal computations we may want
to observe are captured by Σ -term algebras with variables of sorts in OBS. For-
mally, we take COBS

Σ to have objects of the form TΣ (XOBS), with morphisms gen-
erated by renamings of variables. Check that COBS

Σ -open morphisms are exactly Σ -
homomorphisms that are bijective on the carriers of sorts in OBS. Conclude that
INS-behavioural equivalence generated by taking this class as the INS-behavioural
Σ -morphisms coincides with the standard behavioural equivalence w.r.t. OBS.

Come up with a similar notion of observing subcategory to generate the standard
behavioural equivalences in FPL.

Try to devise requirements on 〈CΣ 〉Σ∈|Sign| so that the induced classes of open
morphisms satisfy the requirements in the definition of INS-behavioural morphisms
(Definition 8.5.42). ��

8.6 Bibliographical remarks

The literature on behavioural aspects of specifications and related topics is vast,
including for instance indistinguishability of states in a deterministic automaton
[Moo56] as used in the minimisation algorithm, bisimilarity and testing equiva-
lences in process algebra [Mil89], contextual equivalence in λ -calculus [Mit96],
and universal coalgebra [Rut00]. Giving comprehensive references to all of this ma-
terial would take us far beyond the scope of these notes, and we therefore restrict
ourselves to comments on directly relevant work in algebraic specification.

There is no standard terminology for the concepts that we refer to here using the
terms “behavioural equivalence” and “behavioural indistinguishability”. This ap-
plies also to our own work; for instance, the terminology in [BST08] clashes with
that used here. The reader should be aware that these terms (and their variants with
“observational” in place of “behavioural”) are sometimes used in the algebraic spec-
ification literature to refer to similarly motivated but technically different concepts.

Ideas concerning behavioural interpretation of specifications originated with
[GGM76] and [Rei81]. The former was a reaction to work on the initial algebra
approach to specification in [GTW76] — see [ST08] for a retrospective discussion



8.6 Bibliographical remarks 397

— while the latter was motivated by regarding algebras as a natural generalisation of
finite state automata; see also [GM82]. Similar ideas were behind work on the final
algebra approach to specification [Wan79]. Other early work includes [SW83] and
the proof-oriented approach in [Gan83]. The presentation here is based on our own
work [ST87], [ST88b], [ST89], [ST97], [BST08], which was heavily influenced by
the work of Schoett [Sch87], and that of Bidoit and Hennicker [BHW95], [BH06a].
The latter paper describes the “constructor-based observational logic” COL which
nicely marries reachability and observability aspects of algebraic specifications. An-
other perspective on some of this material is in the work on hidden algebra, which
started with [Gog91b], [GD94b] and [GM00] and took a restricted view in which
observers have at most one argument of non-observable sort. The hidden algebra
approach was later generalised in [RG98] and [Roş00] to remove this restriction.

The presentation of behavioural equivalence in Section 8.2.1 follows [Sch87],
including the notion of correspondence (Definition 8.2.5) and the characterisation
of behavioural equivalence in terms of correspondences in Theorem 8.2.8 and via
spans of behavioural homomorphisms in Exercise 8.2.15. Precursors to the notion
of correspondence include weak homomorphisms in [Gin68] and simulations in
[Mil71]. An extension of correspondences to multialgebras is presented in [Nip86].
For a higher-order version of correspondences developed later, making a connec-
tion with the notion of logical relations in λ -calculus [Mit96], see prelogical rela-
tions [HS02]. Correspondences are presented as a method for proving behavioural
equivalence in [Sch90].

Exercises 8.2.17 and 8.3.8 hint at some of the variations on the definition of be-
havioural equivalence that have been considered. In particular, two extremes have
been studied, both of which we now consider inappropriate. In the first, no inputs
are allowed (IN =∅, in the notation of Exercises 8.2.17) as in [ST87], which has to
be overridden when the use of generic constructions in a larger context is taken into
account, as in Theorem 8.4.43. In the second, arbitrary inputs are allowed (IN = S)
as in [Rei85], which fails to identify algebras that differ only in their behaviour
on “junk” elements of non-observable sorts. This problem is shared by the defini-
tion of behavioural equivalence in [Rei81] and [GM82], which requires a “sink” of
surjective behavioural homomorphisms (compare this with Theorem 8.2.14). The
same behavioural equivalence is used in some later papers for the sake of simplic-
ity as a stepping stone to our definition of behavioural equivalence — see for in-
stance [BHW94], which is a preliminary version of [BHW95] — since the notion
of behavioural indistinguishability to which it corresponds, in the sense of Theo-
rem 8.3.24, is an ordinary congruence rather than a partial congruence.

Behavioural abstraction first appeared in ASL [SW83]. The same essential idea is
implicit in work on abstract model specifications; see Z [Spi92] and VDM [Jon80].
One advantage of using abstract model specifications is the availability of a possi-
ble model of the system under development as an aid to intuition and to validate the
requirements imposed on the system’s behaviour. Disadvantages are that the observ-
able behaviour of the specified system needs to be completely defined at an early
stage, and that the intuition provided by the model may be misleading.
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The distinction between behavioural and weak behavioural equivalence has not
been belaboured in the literature; one definition or the other has simply been used
without discussion of the other alternative. And rightly so, according to our analysis
in Section 8.2.3, provided that all of the classes of algebras considered are closed
under isomorphism (Corollary 8.2.34 and Exercise 8.2.35).

The notions of indistinguishability and behavioural satisfaction originate with
[Rei85]. Results such as Theorems 8.3.24, 8.3.26 and 8.3.32 that link these with be-
havioural equivalence for the case of first-order logic (Exercises 8.3.27 and 8.3.34)
are due to [BHW95], with precursors for (conditional) equational logic in [Rei85]
and [NO88]. The notion of full abstraction (Definition 8.3.21) is originally from the
study of the relationship between denotational semantics and operational semantics
[Mil77], [Plo77].

The fact that behavioural satisfaction does not lead in a natural way to an institu-
tion (Exercise 8.3.16) has been (re)discovered several times beginning with [Rei85].
Various devices have been used to circumvent this problem; one is weaker notions
of institution, including specification logics [EPO89] and pre-institutions [SS93],
[SS96]. The other approach is to restrict signature morphisms to the unproblematic
cases but stopping short of Exercises 8.3.17 and 8.3.35 by limiting attention to sig-
nature morphisms that introduce no new observers for old sorts; see [Gog91b] and
[BH06a].

The presentation of behavioural implementation in Section 8.4.1 follows [ST88b],
where the term “abstractor implementation” was used. A related notion is used in
[ONS93] to classify various earlier approaches to implementation of specifications.
The idea of allowing implementation steps to realise specifications up to behavioural
equivalence is from [SW83], where it was the main motivation behind the inclusion
of behavioural abstraction as a specification-building operation. A number of ear-
lier approaches implicitly incorporated this possibility to some extent via the use
of quotient steps or surjective homomorphisms in the notion of implementation,
starting with [Hoa72]. This is captured here by the concept of behavioural homo-
morphism; see Definition 8.2.9, Corollary 8.2.10 and the subsequent discussion. Ex-
ample 8.2.13 shows that the use of behavioural implementation gives a more general
approach.

The material on stability in Sections 8.4.2–8.4.5, originates in [Sch87], having
been further elaborated on in the context of specific specification frameworks in
[ST89] and [BST08]; the presentation here follows the latter. The notion of be-
havioural triviality (Definition 8.4.10) and the elimination of behaviourally trivial
constructors from chains of behavioural implementation steps are from [ST88b].
The phenomenon in Exercise 8.4.37 was first pointed out in [Ber87].

Behavioural equivalence in the context of partial algebras was considered by
[Rei85], and an appropriate notion of correspondence is given in [Sch87]. The pre-
sentation of behavioural equivalence and behavioural implementation in FPL in
Section 8.5.1 largely follows the presentation for CASL in [BST08], where partial-
ity was also an issue. The generalisation hinted at towards the end of Exercise 8.5.29
originates in [SW83], [ST87] and [ST88b], where equivalence was determined by
an arbitrary set of terms as observers.
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The material in Section 8.5.3 on behavioural specifications in an arbitrary insti-
tution is more speculative than that in the rest of the chapter and should be viewed
largely as suggestions for future research. A first attempt in this direction was in
[ST87], which was based on elementary equivalence of models with respect to a
set of observable formulae, an idea which emerges here in Exercise 8.5.61. An ab-
stract view of the material relating behavioural satisfaction and behavioural equiv-
alence in Section 8.3 was given in [BT96]. A generalisation to the specific case of
higher-order logic is presented in [HS96]. Exercise 8.5.62 originates in [JNW96]
via [Las98].

Some further topics remain for future research. One is to give an account of be-
havioural equivalence for (higher-order) constructors as introduced in Section 6.4;
see Exercise 8.5.30. It seems clear that the notion of logical relations [Mit96] is
relevant, whereby behavioural equivalence would lift to arbitrary constructor signa-
tures by defining F1 ≡ F2 for F1,F2 ∈Mod(S1 ⇒S2) iff for all A1,A2 ∈Mod(S1),
A1 ≡ A2 implies F1(A1) ≡ F2(A2). From the form of the definition, there is already
an obvious connection with stability, but further ramifications are unclear.

Another open issue concerns the interplay between non-determinism and under-
specification, especially in the context of changes in the level of abstraction arising
in the course of implementation steps involving data representation. A paradigmatic
example is the operation choose : set → elem in the specification of sets with the
requirement that S �=∅⇒ choose(S) ∈ S. Now, consider an implementation step in
which sets are represented by unordered lists, in which choose returns the first el-
ement in its argument. A corresponding constructor implementation would require
a quotient step by an equivalence that is not compatible with choose. Essentially,
choose is not a function when viewed on the abstract level of sets but is one only
when viewed on the underlying representation in terms of lists. An attempt to view
this as a behavioural implementation runs into the same problem, with the indistin-
guishability relation that is determined by the rest of the signature not being compat-
ible with choose. We know no satisfactory answer to this conundrum, but one pos-
sible approach is via multialgebras [Nip86], in which a non-deterministic operation
delivers a set of possible outcomes; another would involve relaxing the requirement
that indistinguishability be a congruence with respect to operations like choose; see
[QG93].



Chapter 9

Proofs for specifications

The approach throughout the preceding chapters has been overwhelmingly semantic
and model-theoretic: specifications describe classes of models, refinement between
specifications is captured by model class inclusion, programs are identified with
models, and correctness of a program P with respect to a specification SP refers to
membership of the model corresponding to P in the class of models of SP.

This is mathematically precise, pleasingly elegant and abstract, but it lacks a cru-
cial dimension. What is missing are formal proofs, whereby syntax of specifications,
sentences and programs are directly manipulated, without reference to models, to es-
tablish specification properties, specification refinements, and program correctness.
Such proofs are of obvious central importance in actually using specifications in
software engineering. For example, in order to be convinced that an implementation
step SP ���SP′ is correct, a proof is required; since a direct comparison of model
classes is infeasible, this must be based on manipulation of SP and SP′ as formal
expressions and comparison of the properties required by SP with those guaran-
teed by SP′. Given the complexity of practical specifications, such activity requires
machine support, for example using a theorem prover which applies proof rules,
decision procedures and heuristic search methods to specifications and sentences.

We need proofs at four levels, at least. First, we need to know how to prove that
a sentence follows from a set of axioms: Φ  ϕ . Second, we need to extend this to
the level of (structured) specifications: SP  ϕ . Third, we need entailment between
specifications, to support proofs of correctness of simple implementations: SP SP′.
Finally, we need a proof system for proving correctness of constructor implemen-
tations: SP  κ SP′. These notations will be formally defined below. In addition, in
order to take the developments of Chapter 8 into account, at each of these levels we
need to consider both a “literal” version, written with  , and a behavioural version,
written with  OBS. (In fact, it turns out to be a little more complicated than that;
details below.) In line with our institution-based treatment, we show how a basic
proof system for an institution (proving Φ  ϕ) “lifts” to proof systems at the other
levels. For the behavioural version, this lifting is much more difficult; in general,
the increased power of behavioural specifications must be paid for in significantly
increased difficulty of proofs.

,
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In software engineering practice, specifications and programs are written in dif-
ferent languages. It then seems that none of the above four levels deals with the issue
of proving that a program satisfies a specification, which would require a separate
program logic. However, in our framework this is covered by proofs of correctness
of constructor implementations, since programs arise by composing constructors. A
specific example which is reminiscent of the Standard ML programming language
is given by the institution FPL (Example 4.1.25), with constructors corresponding
to ML functors (Example 6.1.9). Proofs of correctness of such constructor imple-
mentations will emerge largely from the institution-independent lifting of a proof
system Φ  ϕ for FPL (which incorporates a program logic for functional programs
encoded as FPL-terms) through SP  ϕ to SP  SP′ and SP  κ SP′.

Some proof-theoretic aspects of our framework have been covered earlier, in
Section 2.4 on the equational calculus, in Section 2.6 on term rewriting, and in
Section 5.4 on a property-oriented semantics of structured specifications. Here we
proceed further by studying the problem of giving proof calculi for the four levels
mentioned above. In each case our starting point is a corresponding model-theoretic
relation that has been introduced in earlier chapters, which serves as a standard that
we aim to soundly approximate by proof-theoretic means.

The deliberate decision to build a theory of specification and formal development
on a model-theoretic basis, with proofs taking a subordinate role, might appear to
some readers to lead to an imbalance which becomes most apparent in this chapter.
Although, as Section 9.6.5 below will demonstrate, the proof methods presented are
adequate to deal with non-trivial examples, there are a few specification constructs
for which we have no adequate proof-theoretic treatment, while for others there are
proof methods that are useful in many cases but not all. Our excuse for this situation
is our conviction that “reality” is on the level of models, with any mismatch between
models and proof techniques being unfortunate but unavoidable. One reason it is
unavoidable is that completeness results for formal logical systems are unobtainable
under all circumstances of practical interest: by Gödel’s incompleteness theorem,
it is already impossible to provide a sound and complete proof system for ordinary
arithmetic, and we show that similar impossibility results apply for different reasons
to other specification constructs. Beyond soundness, which is non-negotiable, all
that we can expect is to minimise the number of cases that cannot be handled, and
(sometimes) to provide easily checkable conditions that allow the problematic cases
to be recognized.

9.1 Entailment systems

The starting point of our proof-theoretic development is the abstract concept of en-
tailment, expressing the relationship between a set of assumptions and a conclusion
that can be drawn from them.

Definition 9.1.1 (Entailment relation). An entailment relation on a set S of sen-
tences is a binary relation  ⊆ P(S)×S satisfying the following properties:
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1. (reflexivity) {ϕ}  ϕ;
2. (weakening) if Φ  ϕ then Φ ∪Ψ  ϕ; and
3. (transitivity) if Φ  ψ and Ψϕ  ϕ for each ϕ ∈ Φ then

⋃
ϕ∈Φ Ψϕ  ψ

for all sentences ϕ,ψ ∈ S and sets of sentences Φ ,Ψ ⊆ S. ��
The properties required by an entailment system are exactly the basic properties of
the semantic consequence relation in an arbitrary institution; see Proposition 4.2.6.

Entailment systems are signature-indexed families of entailment relations closed
under translation along signature morphisms.

Definition 9.1.2 (Entailment system). Let Sen:Sign → Set be a functor. By an
entailment system for Sen we mean a |Sign|-indexed family of entailment rela-
tions 〈 Σ ⊆ P(Sen(Σ))×Sen(Σ)〉Σ∈|Sign| such that for each morphism σ :Σ → Σ ′
in Sign, sentence ϕ ∈ Sen(Σ) and set Φ ⊆ Sen(Σ), if Φ  Σ ϕ then Sen(σ)(Φ)  Σ ′
Sen(σ)(ϕ), where Sen(σ)(Φ) denotes the image of Φ under Sen(σ).

Given an institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉, an entailment system
for INS is an entailment system 〈 Σ 〉Σ∈|Sign| for Sen that is sound with respect
to semantic consequence, that is, for each signature Σ , sentence ϕ ∈ Sen(Σ) and
set Φ ⊆ Sen(Σ), if Φ  Σ ϕ then Φ |=Σ ϕ . It is complete for INS if the opposite
implications hold as well, that is, if Φ |=Σ ϕ then Φ  Σ ϕ . ��

The following examples outline entailment systems for some of the institutions
encountered in earlier chapters. The presentation is necessarily sketchy and incom-
plete, as the engineering of proof systems is a topic that is orthogonal to the main
concerns of this book. Our aim is merely to provide examples that are sufficient to
illustrate the definitions and to support reasoning in the concrete verification exam-
ples that come later.

Example 9.1.3. The equational calculus of Definition 2.4.1 defines a complete en-
tailment system for the institution EQ of equational logic. Exercise 2.4.2 shows
that for any Σ ∈ |AlgSig|,  Σ as defined there is an entailment relation, and Exer-
cise 2.4.3 together with Theorem 2.4.6 shows that 〈 Σ 〉Σ∈|AlgSig| is an entailment
system for EQ. Theorem 2.4.12 gives its completeness. ��
Example 9.1.4. An entailment system for the institution PEQ of partial equational
logic is obtained from the equational calculus by replacing the instantiation rule
with

Φ  Σ ∀X • t = t ′ Φ  Σ ∀Y • def (θ(x)) for all x ∈ X
Φ  Σ ∀Y • t[θ ] = t ′[θ ] θ :X → |TΣ (Y )|

and adding the following rules for definedness:
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Φ  Σ ∀X • def (x)
Xs ⊆X for all s ∈ S, and x ∈ X

Φ  Σ ∀X • def ( f (t1, . . . , tn))
Φ  Σ ∀X • def (ti)

i = 1, . . . ,n

Φ  Σ ∀X • t = t ′ Φ  Σ ∀X • def (t)
Φ  Σ ∀X • def (t ′)

Φ  Σ ∀X • def (t) Φ  Σ ∀Y • def (θ(x)) for all x ∈ X
Φ  Σ ∀Y • def (t[θ ]) θ :X → |TΣ (Y )|

It is easy to verify that this yields an entailment system for PEQ by modifying the
proofs for EQ as appropriate. (Exercise: Do this!) ��
Exercise 9.1.5. Consider a signature Σ with sort s, constant a:s and unary opera-
tions f ,g:s → s. Show that whenever a partial Σ -algebra satisfies ∀x:s• f (x) = g(x),
it also satisfies f (a) = g(a). However, there is no way to derive {∀x:s• f (x) =
g(x)}  Σ f (a) = g(a) using the rules suggested in Example 9.1.4, which shows
that the entailment system defined there is not complete for the institution PEQ

of partial equational logic. It is possible to adjust the modified instantiation rule in
Example 9.1.4 to take care of cases like this (essentially allowing substitution of
all terms for variables that occur on both sides of an equation), but we will take a
different route, postponed until Exercise 9.1.10.

For now, adapt the equational calculus to the institution PEQe of partial existence
equational logic; see Exercise 4.1.8. Among the rules of the equational calculus in
Definition 2.4.1, reflexivity has to be limited to equations between variables only,
with the symmetry, transitivity and congruence rules remaining as they are there.
The substitutivity rule requires an adjustment similar to that in Example 9.1.4, where
definedness of a term t can be captured as t e

= t. Additional rules are required to as-
sert that whenever an (existential) equation can be derived, both sides of the equation
are defined, and all their subterms are defined as well. Check that these rules define
a (sound) entailment system for PEQe. Prove that it is complete. HINT: Proceed
similarly as in the proof sketch for Theorem 2.4.12 (completeness of equational
calculus) but limit consideration to minimally defined partial algebras of terms, i.e.
partial algebras built on terms t such that t e

= t can be proved. ��
Example 9.1.6. An entailment system for the institution PROP of propositional
logic may be defined in a number of possible ways. Perhaps the simplest is to re-
fer almost directly to the definition of semantic consequence and define entailment
by considering directly all possible valuations of propositional variables in {⊥,*}.
That is, for each set P ∈ |Set| of propositional variables, set Φ ⊆ SenPROP(P) of
propositional sentences, and sentences ϕ ∈ SenPROP(P), define Φ  P ϕ to hold ex-
actly when for all valuations M:P → {⊥,*}, either M |=P ϕ or M �|=P ψ for some
ψ ∈ Φ . Note that if P is finite then we have only a finite (although exponential in
the size of P) number of valuations to check, and for finite Φ this yields a finitary
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decision procedure for entailment. Clearly, this defines an entailment system that is
sound and complete for PROP.

However, it may be more convenient to present the entailment relation for propo-
sitional logic in a more standard way, for instance using the following rules:1

(axiom) Φ  P ϕ ϕ ∈ Φ

(true-I) Φ  P true

(false-I)
Φ1  ϕ Φ2  P ¬ϕ

Φ1∪Φ2  P false

(false-E)
Φ  P false

Φ  P ψ

(∧-I)
Φ1  P ϕ Φ2  P ψ

Φ1∪Φ2  P ϕ ∧ψ

(∧-E)
Φ  P ϕ ∧ψ

Φ  P ϕ
Φ  P ϕ ∧ψ

Φ  P ψ

(∨-I)
Φ  P ϕ

Φ  P ϕ ∨ψ
Φ  P ψ

Φ  P ϕ ∨ψ

(∨-E)
Φ  P ϕ1∨ϕ2 Ψ1∪{ϕ1}  P ψ Ψ2∪{ϕ2}  P ψ

Φ ∪Ψ1∪Ψ2  P ψ

(⇒-I)
Φ ∪{ϕ}  P ψ
Φ  P ϕ ⇒ ψ

(⇒-E)
Φ  P ϕ ⇒ ψ Φ  P ϕ

Φ  P ψ

(¬-I)
Φ ∪{ϕ}  P false

Φ  P ¬ϕ

(¬¬-E)
Φ  P ¬¬ψ

Φ  P ψ

Exercise. Show that the rules given above define an entailment relation  P ⊆
P(SenPROP(P))×SenPROP(P), that is, that  P is closed under weakening and tran-
sitivity. Then show that these entailment relations are closed under renamings of
propositional variables, and are sound w.r.t. semantic consequence |=PROP,P, so that

1 The names for the rules indicate the connective concerned and whether it is “introduced” or
“eliminated” by the rule.
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they form an entailment system 〈 P〉P∈|Set| for PROP. HINT: All these claims fol-
low by induction on the derivation of Φ  P ϕ .

Exercise. Show that the entailment system 〈 P〉P∈|Set| for PROP is complete. HINT:
To prove that if Φ � P ϕ then Φ �|=P ϕ , build a Boolean algebra with elements that
are equivalence classes of propositional sentences with variables in P w.r.t. the re-
lation ⇔Φ defined by ψ1 ⇔Φ ψ2 iff Φ  P (ψ1 ⇒ ψ2)∧ (ψ2 ⇒ ψ1). Check that this
defines an equivalence relation on SenPROP(P), and moreover, that all propositional
connectives preserve⇔Φ . Check that the equivalence classes of⇔Φ with the propo-
sitional connectives as operations form a Boolean algebra (that is, that the axioms
listed in Example 2.2.4 hold in the resulting algebra). Show that ψ ⇔Φ true iff
Φ  P ψ . Suppose Φ � P ϕ; then ϕ �⇔Φ true. Now, use Exercise 4.1.10: consider the
function that maps each propositional variable to its equivalence class to show that
in PROPBA, and hence in PROP as well, Φ �|=P ϕ . ��
Exercise 9.1.7. Exercise 4.1.11 defines the institution PROPI of intuitionistic propo-
sitional logic. Check that the rules in Example 9.1.6 with the important exception
of double-negation elimination (¬¬-E) remain sound for intuitionistic propositional
logic and yield a sound entailment system for PROPI. In fact, this entailment sys-
tem is also complete for PROPI; see Chapter 2 in [SU06]. ��
Example 9.1.8. Recall the institution FOP of first-order predicate logic, which uses
propositional connectives and quantifiers to build sentences out of atomic predicate
formulae. It is no surprise that an entailment system for this institution may be built
by extending the rules for propositional connectives as given in Example 9.1.6 by
rules to deal with quantifiers. We will refrain from repeating here the rules that are
essentially in Example 9.1.6, but note that formally they have to be rephrased now
for entailments indexed by first-order signatures and applied to sentences of first-
order predicate logic.

Before we present the rules for quantifiers, recall that for any first-order signature
Θ = 〈S,Ω ,Π〉, we write TΘ for the algebra of terms over the algebraic signature
〈S,Ω〉. Then, for any S-sorted set of variables X (with sets of variables for different
sorts that are mutually disjoint and that are disjoint from the operation and predicate
names in Θ ), Θ(X) is the signature Θ extended by the variables X as constants of the
appropriate sorts. We tacitly identify terms and sentences over Θ(X) with terms and
open formulae over Θ with variables from X . Finally, we rely on the usual notion
of substitution of terms for free variables in first-order logic formulae, written ϕ[θ ],
where ϕ is a first-order formula and θ maps some variables to Θ -terms, preserving
their sorts. This is defined so that no clashes of free variables in terms in the range
of θ with bound variables in ϕ occur; for instance, require that the bound variables
in ϕ are distinct from the variables used in the terms in the range of θ .

Equipped with these notations, we can add rules for quantified formulae to the
rules for propositional connectives:
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(∀-I)
Φ  Θ({x:s}) ϕ
Φ  Θ ∀x:s• ϕ Φ ⊆ SenFOP(Θ),ϕ ∈ SenFOP(Θ({x:s}))

(∀-E)
Φ  Θ ∀x:s• ϕ
Φ  Θ ϕ[x �→ t]

t ∈ |TΘ |s

(∃-I)
Φ  Θ ϕ[x �→ t]
Φ  Θ ∃x:s• ϕ t ∈ |TΘ |s

(∃-E)
Φ1  Θ ∃x:s• ϕ Φ2∪{ϕ}  Θ({x:s}) ψ

Φ1∪Φ2  Θ ψ
Φ1,Φ2,{ψ} ⊆ SenFOP(Θ),
ϕ ∈ SenFOP(Θ({x:s}))

We vary the signature over which the entailment is defined to capture the standard
assumptions on variables that can be quantified over when a universal quantification
is introduced in (∀-I) or used as “free variables” when an existential quantification
is eliminated in (∃-E). In particular, this means that rather than defining here an
entailment relation for each signature separately, we define a family of such relations
simultaneously for all signatures.

Exercise. Prove that the above rules generate an entailment system that is sound
and complete for FOP. A warning: any completeness proof here is considerably
more complex than in Example 9.1.6. HINT: Given a set Φ of formulae such that
Φ � ϕ , provide a universe of terms that is rich enough to witness all existential sen-
tences that follow from Φ , by simultaneously extending Φ to Φ ′ such that we still
have Φ ′ � ϕ and adding a new constant c:s for each formula ψ such that whenever
Φ ′  ∃x:s• ψ , we have Φ ′  ψ[x �→ c]. Then build a model for Φ ′ on this universe
in which ϕ does not hold. A considerably more detailed sketch may be found in
[Sha08], and a complete proof in any monograph on logic, for instance [RS63]. ��
Exercise 9.1.9. Expand further the system of rules from Examples 9.1.6 and 9.1.8
to introduce equational reasoning as required for consequence in the institution
FOPEQ of first-order logic with equality. For this, adapt the rules from Defini-
tion 2.4.1 as appropriate. Notice though that this time we do not need to deal ex-
plicitly with quantification over (finite) sets of variables, as the rules to introduce
and eliminate quantification are already available (as (∀-I) and (∀-E) respectively in
Example 9.1.8). In particular, no new rule for instantiation is needed. However, an
additional rule to ensure that equal terms may be substituted for each other in atomic
predicate formulae is necessary. This extra rule together with the usual congruence
rule from Definition 2.4.1 may be equivalently replaced by a single rule that allows
for substitution of “equals for equals” in an arbitrary formula.

Check that the obtained system of rules does indeed yield a (sound) entailment
system for FOPEQ. Its completeness is again more difficult to prove, although only
a relatively straightforward modification of the completeness proof sketched in the
hint in Example 9.1.8 above is needed. ��
Exercise 9.1.10. The rules for propositional logic in Example 9.1.6 remain valid
also for the versions of first-order logic with partial operations introduced in Ex-
ercises 4.1.17 and 4.1.18. This is not true though for the rules for quantifiers in
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Example 9.1.8 — the rule (∀-E) that eliminates universal quantification by substi-
tuting a term for the quantified variable must in addition require that the term have a
defined value, and a similar problem affects the rule (∃-I), where the term witnessing
the existential formula must be proved to be defined as well. Modify these rules as
in Example 9.1.4, and adapt the rules for definedness of terms given there to obtain
a (sound) entailment system for the institution PFOP of partial first-order predicate
logic. Prove its completeness. HINT: The proof essentially follows the completeness
proof for first-order predicate logic outlined in Example 9.1.8, viewing definedness
as an additional predicate and then limiting the model constructed to only those
terms for which definedness can be derived.

Then extend the proof system further by the rules for equational reasoning to ob-
tain a (sound) entailment system for the institution PFOPEQ of partial first-order
logic with equality. Unfortunately, the counterexample in Exercise 9.1.5 applies here
as well, and so such an entailment system is not complete for PFOPEQ. As men-
tioned in Exercise 9.1.5, adjustments to the substitutivity rule are possible, but it is
perhaps simpler to resort to existential equations.

Consider a version of partial first-order predicate logic with existential equality
— this can easily be defined as an institution PFOPEQe. (Exercise: Do this!) Now,
adapt the rules for existential equations sketched in Exercise 9.1.5 to the context of
PFOPEQe and combine them with the rules for PFOP to obtain a (sound) entail-
ment system for PFOPEQe. Prove its completeness. HINT: The hints above and in
Exercise 9.1.5 apply.

Strong equality may be added to PFOPEQe as an abbreviation, with t = t ′ stand-
ing for (t e

= t ′)∨ (¬def (t)∧¬def (t ′)), so that a sound and complete entailment sys-
tem for PFOPEQ may be obtained from the sound and complete entailment system
for PFOPEQe. ��
Example 9.1.11. An entailment system for FPL can be built on top of the entail-
ment system for PFOEQ by adding rules to deal with value constructors and the
two additional term forms in FPL.

Sorts freely generated by value constructors require axioms which state that con-
structors are total, injective, and have disjoint ranges (Exercise: Spell this out!).
Moreover, for each set of sorts with value constructors {〈d1,F1〉, . . . ,〈dn,Fn〉} in
SIG and family of formulae Ps with free variable x:s, for each s ∈ S, where Ps(x) is
a true formula (for instance, ∀y:s• y = y) for s �∈ {d1, . . . ,dn}, we add the following
structural induction rules for proving properties of elements of sort d j, j = 1, . . . ,n:

for each i = 1, . . . ,n and f :s1×·· ·× sk → di ∈Fi,
Φ  SIG ∀x1:s1 • · · ·∀xn:sn • (Ps1(x1)∧·· ·∧Psk(xk)⇒ Pdi( f (x1, . . . ,xk)))

Φ  SIG ∀x:d j • Pd j(x)

Exercise. Check that the standard induction rule for natural numbers is an instance
of this rule for any signature that contains the sort declaration

sort Nat free with 0| succ(Nat).
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Exercise. Show that the soundness of the above induction rule relies on the fact that
value constructors are total.

Under the assumption that the patterns pat1, . . . ,patn do not overlap — meaning
that in every SIG-model, no value matches both pati and pat j for i �= j — the fol-
lowing rule captures the computational behaviour of pattern-matching case analysis:

Φ  SIG ∀X • t = pati[θi]

Φ  SIG ∀X • (case t of pat1 => t1 | · · ·| patn => tn) = ti[θi]

where Xi is the set of all variables occurring in pati, θi:Xi → |TSIG(X)|, and i =
1, . . . ,n. (Exercise: Generalise this rule to take account of overlapping patterns.)

The following rules deal with the use of locally defined functions. They allow,
respectively, declarations of unused functions to be removed, function calls to be
expanded to the function body, and local declarations to be moved to the place they
are used (thus permitting evaluation of terms containing function calls).

Φ  SIG ∀X • (let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t) = t

where t ′ ∈ |TSIG( f )(X ∪{x1:s1, . . . ,xn:sn})|s′ , t ∈ |TSIG(X)|, and f is not in SIG.

Φ  SIG( f ) ∀X • t ′[x1 �→ t1, . . . ,xn �→ tn] = t̂

Φ  SIG ∀X • let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in f (t1, . . . , tn)
= let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t̂

where SIG( f ) is SIG extended by f :s1 × ·· · × sn → s′, t̂ ∈ |TSIG( f )(X)|s′ , t ′ ∈
|TSIG( f )(X ∪{x1:s1, . . . ,xn:sn})|s′ , and t1 ∈ |TSIG( f )(X)|s1 , . . . , tn ∈ |TSIG( f )(X)|sn .

Φ  SIG( f ) ∀X • t[z �→ let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in f (t1, . . . , tn)] = t̂

Φ  SIG ∀X • let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t[z �→ f (t1, . . . , tn)]
= let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t̂

where SIG( f ) is SIG extended by f :s1×·· ·× sn → s′, t ∈ |TSIG( f )(X ∪{z:s′})|, t̂ ∈
|TSIG( f )(X)|s′ , t ′ ∈ |TSIG( f )(X ∪{x1:s1, . . . ,xn:sn})|s′ , and t1 ∈ |TSIG( f )(X)|s1 , . . . , tn ∈
|TSIG( f )(X)|sn .

Finally, the rules of the equational calculus need to be modified to take account
of the fact that the two additional term forms in FPL add a number of new contexts.
Apart from the usual congruence rule we need the following rule for terms with
local function definitions (Exercise: Spell out the signature and variables for each
of the terms occurring in these rules)

Φ  SIG( f ) ∀X ∪{x1:s1, . . . ,xn:sn}• t ′ = t ′1 Φ  SIG( f ) ∀X • t = t1
Φ  SIG ∀X • let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t

= let fun f (x1:s1, . . . ,xn:sn):s′ = t ′1 in t1
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and the following rule for terms with pattern-matching case expressions:

Φ  SIG ∀X • t = t ′ Φ  SIG ∀X ∪X1 • t1 = t ′1 · · · Φ  SIG ∀X ∪Xn • tn = t ′n
Φ  SIG ∀X • case t of pat1 => t1 | · · ·| patn => tn

= case t ′ of pat1 => t ′1 | · · ·| patn => t ′n

where Xi is the set of all variables occurring in pati, for i = 1, . . . ,n.
The above rules use the notation |TSIG(X)| for the set of all SIG-terms with vari-

ables X . The instantiation rule of PFOPEQ has to be adapted accordingly. They
also require an obvious generalisation of the notion of substitution of FPL-terms for
variables, which takes proper account of the scope of variables and local function
names in terms with local function definitions and pattern-matching case expres-
sions. Moreover, the obvious rules of α-conversion (renaming bound identifiers,
e.g. variables bound by patterns, variables naming local function parameters, names
of locally defined functions) should be added. (Exercise: Spell this out.)

Exercise. The following equality (over a one-sorted signature in which f and g are
constructors, h is a unary function and a is a constant) is not derivable using the
rules above: case a of f (g(x)) => h(x) = case a of f (y) => case y of g(x) => h(x).
Try to devise additional (sound) rules for manipulating case expressions that would
allow equations like this one to be derived.

In spite of our best efforts, the entailment system given by the proof rules outlined
above is not complete. The presence of sorts freely generated by value constructors
implies that there is no finitary rule-based entailment system that is complete for
FPL, as in Theorem 2.5.26. ��
Example 9.1.12. We illustrate the use of the above entailment system for FPL using
a specification from Example 7.1.4.

Let SIG = Sig[Ins] and let Φ be the set containing all the axioms concerning
le, append and is in listed in NatOrd and NatList, together with the following
definitional axiom for insert (as in constructor K2 in Example 7.2.8):

fun insert(n:Nat, l:NatList):NatList =
case l of nil => cons(n,nil)

| cons(m, l′) => if le(n,m) = true then cons(n, l)
else cons(m, insert(n, l′))

Recall that this axiom is an abbreviation for the following:

∀n:Nat, l:NatList
• insert(n, l) =

let fun insert′(n′:Nat, l′:NatList):NatList =
case l′ of nil => cons(n′,nil)

| cons(m, l′′) =>
case le(n′,m) of true => cons(n′, l′)

| false => cons(m, insert′(n′, l′′))
in insert′(n, l)
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We will now prove a number of consequences of Φ . Formal derivations for these
proofs would be incomprehensible and would not fit on the page. We therefore give
rigorous arguments from which the reader is encouraged to reconstruct the formal
proofs employing solely the proof rules given above.

As a warming-up exercise, we prove the following lemma:

Φ  SIG ∀n:Nat• insert(n,nil) = cons(n,nil)

The essence of the proof is the following chain of equalities:

insert(n,nil)
= let fun insert′(n′:Nat, l′:NatList):NatList =

case l′ of nil => cons(n′,nil)
| cons(m, l′′) =>

case le(n′,m) of true => cons(n′, l′)
| false => cons(m, insert′(n′, l′′))

in insert′(n,nil)
= let fun insert′(n′:Nat, l′:NatList):NatList = . . .

in case nil of nil => cons(n′,nil)
| cons(m, l′′) =>

case le(n,m) of true => cons(n,nil)
| false => cons(m, insert′(n, l′′))

= let fun insert′(n′:Nat, l′:NatList):NatList = . . .
in cons(n,nil)

= cons(n,nil)

Now we prove the following lemma:

Φ  SIG ∀l:NatList,k,n:Nat•
insert(n,cons(k, l)) = case le(n,k) of true => cons(n,cons(k, l))

| false => cons(k, insert(n, l))

Again, this essentially follows from the following chain of equalities:

insert(n,cons(k, l))
= let fun insert′(n′:Nat, l′:NatList):NatList =

case l′ of nil => cons(n′,nil)
| cons(m, l′′) =>

case le(n′,m) of true => cons(n′, l′)
| false => cons(m, insert′(n′, l′′))

in insert′(n,cons(k, l))
= let fun insert′(n′:Nat, l′:NatList):NatList = . . .

in case cons(k, l) of nil => cons(n,nil)
| cons(m, l′′) =>

case le(n,m) of true => cons(n,cons(k, l))
| false => cons(m, insert′(n, l′′))

= let fun insert′(n′:Nat, l′:NatList):NatList = . . .
in case le(n,k) of true => cons(n,cons(k, l))

| false => cons(k, insert′(n, l))
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= let fun insert′(n′:Nat, l′:NatList):NatList = . . .
in case le(n,k) of true => cons(n,cons(k, l))

| false =>
cons(k, let fun insert′(n′:Nat, l′:NatList):NatList = . . .

in insert′(n, l))
= case le(n,k) of true => cons(n,cons(k, l))

| false =>
cons(k, let fun insert′(n′:Nat, l′:NatList):NatList = . . .

in insert′(n, l))
= case le(n,k) of true => cons(n,cons(k, l))

| false => cons(k, insert(n, l)

Exercise. Check that all equalities in these chains can be justified by the rules in
Example 9.1.11 (and the definitional axiom for insert).

We will now prove

Φ  SIG ∀l:NatList,n:Nat• def (insert(n, l)).

The proof proceeds by induction on l. From the first lemma above, using one of
the definedness rules, we immediately obtain the premise of the induction rule for
l = nil:

Φ  SIG ∀n:Nat• def (insert(n,nil)).

The premise of the induction rule for l = cons(k, l′) is

Φ  SIG ∀k:Nat, l′:NatList• (∀n:Nat• def (insert(n, l′))⇒
∀n:Nat• def (insert(n,cons(k, l′)))).

This follows, since by assuming ∀n:Nat• def (insert(n, l′)) and applying the second
lemma above, we get ∀n:Nat• def (insert(n,cons(k, l′))). Notice that this relies on
definedness of le(n,k) and follows by case analysis on its value, justified in turn by
the induction rule for sort Bool. The conclusion

Φ  SIG ∀l:NatList,n:Nat• def (insert(n, l))

follows now by the induction rule for sort NatList.
We now prove

Φ  SIG ∀l:NatList• P(l)

where P(l) is the following formula:

∀n:Nat• ∃l1, l2:NatList•
insert(n, l) = append(l1,cons(n, l2))∧ l = append(l1, l2)
∧ (∀l′1:NatList,m:Nat• l1 = append(l′1,cons(m,nil))⇒ le(m,n) = true)
∧ (∀l′2:NatList,m:Nat• l2 = cons(m, l′2)⇒ le(n,m) = true)

Again, the proof proceeds by induction on l. The two premises of the induction rule
are P(nil) and ∀k:Nat, l′:NatList• (P(l′)⇒ P(cons(k, l′))).

For P(nil), notice that:
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• append(nil,cons(n,nil)) = cons(n,nil)
• nil = append(nil,nil)
• ∀l′1:NatList,m:Nat• ¬(nil = append(l′1,cons(m,nil)))
• ∀l′2:NatList,m:Nat• ¬(nil = cons(m, l′2))

(Formal proofs of these rely on the definitional axiom for append.) Thus, putting
l1 = nil and l2 = nil, we obtain P(nil) using the first lemma above.

For the second premise, ∀k:Nat, l′:NatList• (P(l′)⇒ P(cons(k, l′))), given k and
l′ we assume P(l′), so that for any n:Nat we have l′1:NatList and l′2:NatList such that:

(a) insert(n, l′) = append(l′1,cons(n, l′2));
(b) l′ = append(l′1, l

′
2);

(c) ∀l′′1 :NatList,m:Nat• l′1 = append(l′′1 ,cons(m,nil))⇒ le(m,n) = true; and
(d) ∀l′′2 :NatList,m:Nat• l′2 = cons(m, l′′2 )⇒ le(n,m) = true.

Now, for arbitrary n:Nat, we consider two cases.

Assume le(n,k) = true: Then, by the second lemma above, insert(n,cons(k, l′)) =
cons(n,cons(k, l′)). Moreover:

• append(nil,cons(n,cons(k, l′))) = cons(n,cons(k, l′));
• cons(k, l′) = append(nil,cons(k, l′));
• ∀l′′1 :NatList,m:Nat• ¬(nil = append(l′′1 ,cons(m,nil))); and
• ∀l′′2 :NatList,m:Nat• cons(k, l′) = cons(m, l′′2 )⇒ le(n,m) = true

which shows P(cons(k, l′)) by putting l1 = nil and l2 = cons(k, l′).
Assume le(n,k) = false: Then, by the second lemma above, insert(n,cons(k, l′)) =

cons(k, insert(n, l′)). Moreover:

(a′) append(cons(k, l′1),cons(n, l′2)) = cons(k, insert(n, l′));
(b′) cons(k, l′) = append(cons(k, l′1), l

′
2);

(c′) ∀l′′1 :NatList,m:Nat• cons(k, l′1)= append(l′′1 ,cons(m,nil))⇒ le(m,n)= true;
and

(d′) ∀l′′2 :NatList,m:Nat• l′2 = cons(m, l′′2 )⇒ le(n,m) = true.

(a′) and (b′) follow from (a) and (b), respectively, using the following fact about
append:

∀u,v:NatList, i:Nat• append(cons(i,u),v) = cons(i,append(u,v))

Similarly, by the axioms for append, if cons(k, l′1) = append(l′′1 ,cons(m,nil))
then either l′1 = nil = l′′1 and k = m, and then le(n,m) = false, and hence
le(m,n) = true; or l′′1 = cons(k,u) and l′1 = append(u,cons(m,nil)), and hence
by (c), le(m,n) = true. In both cases, (c′) follows. Finally, (d′) is just (d).
This shows P(cons(k, l′)) by putting l1 = cons(k, l′1) and l2 = l′2.

From the induction rule, we now conclude

Φ  SIG ∀l:NatList• P(l). ��
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Exercise 9.1.13. The final paragraph of Example 9.1.11 attributes the incomplete-
ness of the entailment system for FPL to the presence of sorts freely gener-
ated by value constructors. But there are also other sources of incompleteness.
Convince yourself that it is not possible to prove that ¬def ( f (5)) follows from
fun f (x:Nat):Nat = f (x) using the rules given in Example 9.1.11. (Note, however,
that ¬def (g(5)) does follow from fun g(x:Nat):Nat = succ(g(x)).) Add rules to fix
this. HINT: See [Pau87], but note that completeness for sentences of this form is un-
achievable because divergence of general recursive functions is not semi-decidable.

��
The standard way of presenting an entailment relation is via proof rules, and that

is what we have done in the examples above. This is not the only way to define an
entailment system though, as the following exercise illustrates.

Exercise 9.1.14. Given any institution INS, the family of semantic consequence re-
lations forms an entailment system which is sound and complete for INS, by Propo-
sitions 4.2.6 and 4.2.9. Show that any entailment system can be obtained in this way
from some institution. HINT: See Example 4.1.36, but consider only sets of sen-
tences that are closed under entailment. ��

Throughout the rest of this section, let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be
an institution with entailment system 〈 Σ 〉Σ∈|Sign|.

All of the concepts that have been defined in a model-theoretic style in previous
chapters using the semantic consequence relation |= have proof-theoretic variants,
obtained by replacing semantic consequence by entailment  . If the entailment sys-
tem in question is complete, then the proof-theoretic and model-theoretic concepts
coincide; otherwise discrepancies may arise. The notions of theory and (conserva-
tive) theory morphism provide an example.

Exercise 9.1.15. Show that a theory as defined in Definition 4.2.1 is closed under
entailment. Choose an institution with an (incomplete) entailment system and give
an example of a set of sentences closed under entailment (that is, a “theory” in a
proof-theoretic sense) that is not a theory in the sense of Definition 4.2.1. ��
Exercise 9.1.16. Consider a signature morphism σ :Σ → Σ ′ and sets Φ ⊆ Sen(Σ)
and Φ ′ ⊆ Sen(Σ ′). Consider the following properties:

1. For all ϕ ∈ Sen(Σ), Φ |=Σ ϕ implies Φ ′ |=Σ ′ σ(ϕ).
2. For all ϕ ∈ Sen(Σ), Φ  Σ ϕ implies Φ ′  Σ ′ σ(ϕ).
3. For all ϕ ∈ Sen(Σ), Φ ′ |=Σ ′ σ(ϕ) implies Φ |=Σ ϕ .
4. For all ϕ ∈ Sen(Σ), Φ ′  Σ ′ σ(ϕ) implies Φ  Σ ϕ .

Property 1 is that σ :ClΣ (Φ)→ ClΣ ′(Φ ′) is a theory morphism; if property 3 also
holds then σ is conservative. Properties 2 and 4 capture the corresponding proof-
theoretic concepts. Show that these model-theoretic and proof-theoretic properties
are independent of each other in general. ��
Definition 9.1.17 (Compactness). An entailment system 〈 Σ 〉Σ∈|Sign| for a functor
Sen:Sign → Set is compact if for every signature Σ and all Φ ⊆ Sen(Σ) and ϕ ∈
Sen(Σ), whenever Φ  Σ ϕ then Φfin  Σ ϕ for some finite Φfin ⊆ Φ . ��
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Clearly, if an entailment system is given by a system of finitary rules, it is necessarily
compact.

Exercise 9.1.18. Show that the model-theoretic and proof-theoretic notions of com-
pactness in Definitions 4.2.7 and 9.1.17, respectively, are independent of each other:
give an example of an institution INS with an entailment system 〈 Σ 〉Σ∈|Sign| for
INS such that INS is compact but 〈 Σ 〉Σ∈|Sign| is not; give another example show-
ing that the opposite implication may fail. ��

We have deliberately refrained from formalising the notion of proof rule and how
an entailment system is generated from a set of proof rules. Clearly, there may be
many sets of proof rules that generate the same entailment system, and there may
be many entailment systems for a given institution. The following exercise indicates
that interaction between various entailment systems for the same institution (and
between the proof rules they may be generated by) is more delicate than it might
appear to be at first glance.

Exercise 9.1.19. Show that if 〈 Σ 〉Σ∈|Sign| and 〈 ′Σ 〉Σ∈|Sign| are entailment systems
for INS, then 〈 Σ ∩  ′Σ 〉Σ∈|Sign| is also an entailment system for INS. Generalise
this to an arbitrary collection of entailment systems, and conclude that for any fam-
ily R = 〈RΣ ⊆ P(Sen(Σ))×Sen(Σ)〉Σ∈|Sign| there exists a least entailment system
that (componentwise) includes R. This allows us to define the union of entailment
systems 〈 Σ 〉Σ∈|Sign| and 〈 ′Σ 〉Σ∈|Sign| as the least entailment system that includes
〈 Σ ∪  ′Σ 〉Σ∈|Sign|. Prove that the union of any family of sound entailment systems
for INS is sound for INS as well.

Notice that if entailment systems  and  ′ are generated by sets of proof rules
R and R ′, respectively, in the style used in the examples above, then the entailment
system generated by R ∪R ′ may be larger than the union of  and  ′. Find R
and R ′ which (separately) generate entailment systems that are sound for some
institution INS, but R ∪R ′ generates an unsound entailment system. ��
There are properties other than soundness and completeness that are of interest in
practical proof systems, such as efficiency (size of proofs) and clarity, that we do
not touch on here.

9.2 Proof in structured specifications

The previous section introduced entailment systems as a proof-theoretic counterpart
of the notion of semantic consequence for sets of sentences, or, equivalently, for flat
specifications. Now we consider structured specifications as introduced in Chap-
ter 5. We fix an arbitrary institution INS= 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 equipped
with an entailment system 〈 Σ 〉Σ∈|Sign|.

We now provide rules for the proof-theoretic counterpart of the semantic conse-
quence relation, as introduced in Definition 5.4.1. This defines a (signature-indexed)
relation  between specifications and sentences, called entailment for specifications
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and written SP  ϕ , which requires ϕ to be a Sig[SP]-sentence. Unlike in the pre-
vious section, many of these rules are institution-independent since they make no
reference to any particular form of sentences, exploiting the institution-independent
nature of our specification-building operations.

Definition 9.2.1 (Soundness and completeness of entailment for specifications).

A relation  of entailment for specifications is sound if SP ϕ implies SP |=ϕ for all
specifications SP and Sig[SP]-sentences ϕ . It is complete if the opposite implications
hold. ��
Soundness is typically proved by showing that each rule is sound in the following
sense: a rule of the form2

SP1  ϕ1 · · · SPn  ϕn

SP  ϕ

is sound if, whenever SP1 |= ϕ1 and . . . and SPn |= ϕn, we also have SP |= ϕ . Then
it is easy to see that a set of sound rules gives rise to a sound relation of entailment
for specifications. Completeness is a more delicate matter and typically cannot be
proved on a rule-by-rule basis.

First of all, any system of rules for entailment for specifications must be based
on an entailment system for the underlying institution. The following rule provides
the natural connection between the two systems:

SP  ϕ1 · · · SP  ϕn {ϕ1, . . . ,ϕn}  Sig[SP] ϕ
SP  ϕ

(∗)

It is obvious that this rule is sound since the underlying entailment system is sound
by definition. Strictly speaking, completeness of the underlying entailment relation
is not necessary, even to achieve completeness of entailment for specifications: rules
for entailments for specifications that manipulate sentences without reference to
the underlying entailment system are possible in principle. However, it is hard to
imagine building a good proof system that way, so for the analysis of completeness
of entailment for specifications we will focus on the case where the underlying
entailment system is complete.

Moreover, most of the time we will also require that the underlying entailment
system be compact. This is consistent with the standard decision to restrict attention
to finitary proof rules and finitary proofs. Most facts below that rely on compactness
could be generalised by dropping this assumption, provided that the rule (∗) above
is replaced by the following infinitary version:

SP  ϕ for each ϕ ∈ Φ Φ  Sig[SP] ϕ
SP  ϕ

2 We will also use rules with side conditions and with premises involving other judgement forms,
for which the notion of soundness extends in the obvious way.
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Any relation  of entailment for specifications determines a property-oriented
semantics T of specifications in the sense of Section 5.4, as follows:

Definition 9.2.2 (T ). Given an entailment relation  for specifications, we define
a function T taking Σ -specifications to Σ -theories for each Σ ∈ |Sign| as follows:

T [SP] = ClSig[SP]({ϕ | SP  ϕ}).

Then,  is monotone, compositional, closed complete for a specification-building
operation sbo, non-absent-minded, and flat complete, respectively, if T is so in the
sense of Definition 5.4.5. ��
The closure in the definition of T is only required in order to guarantee that the re-
sult is indeed a theory and so may be omitted in the presence of the rule (∗) above,
provided that the underlying entailment system is complete and compact. Compo-
sitionality may then be ensured by defining  using proof rules in which conse-
quences of any specification are determined only by consequences of its immediate
constituents.

Exercise 9.2.3. According to Definition 9.2.2,  is closed complete for a unary
specification-building operation sbo if for all specifications SP such that sbo(SP)
is well formed and ModSig[SP](T [SP]) = Mod[SP], T [sbo(SP)] = Th[sbo(SP)].
Spell out what closed completeness means in terms of  and |=, without using T 
or Th. ��

Any complete relation  of entailment for specifications is closed complete for
all specification-building operations. This fact suggests that one way of structuring
a proof of completeness for  might be to consider closed completeness for each
specification-building operation separately, and reason about how the rules allow
consequences of specifications built using that operation to be derived from conse-
quences of its immediate constituent specifications. However, this may fail: closed
completeness of  for all specification-building operations is not in general suffi-
cient to guarantee completeness of  . Nevertheless, given a complete and compact
entailment system for the underlying institution and the rule (∗) above to incorporate
it into entailment for specifications, a closed complete  is the best that is soundly
achievable using a compositional and non-absent-minded (see Exercise 5.4.13) en-
tailment relation for specifications, according to Theorem 5.4.10. If such an entail-
ment relation is incomplete in general, it may still be complete if we restrict attention
to a certain class of institutions — or even to a particular institution of interest —
and/or to a certain class of specifications.

We use the following rules for proving consequences of specifications built from
flat specifications using union, translation and hiding:

〈Σ ,Φ〉  ϕ
ϕ ∈ Φ
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SP1  ϕ
SP1∪SP2  ϕ

SP2  ϕ
SP1∪SP2  ϕ

SP  ϕ
SP with σ  σ(ϕ)

SP  σ(ϕ)
SP hide via σ  ϕ

Proposition 9.2.4 (Soundness). The rules above define a sound relation of entail-
ment for specifications. ��
Proposition 9.2.5. Entailment for specifications, as defined by the rules above, is
closed complete for flat specifications (viewed as nullary specification-building op-
erations), union, translation and hiding, provided that the underlying entailment
system is complete and compact. ��
The presence of the rule (∗) above, and completeness and compactness of the un-
derlying proof system, are essential for closed completeness for flat specifications
and hiding.

If the underlying entailment system is complete and compact then the above sys-
tem of rules determines the property-oriented semantics T0 of specifications built
from flat specifications using union, translation and hiding given in Definition 5.4.3,
in the sense that T = T0. Then Counterexample 5.4.8 shows that this system is
incomplete for EQ. Therefore, by Corollary 5.4.12, there can be no sound and com-
plete compositional and non-absent-minded (see Exercise 5.4.13) proof system for
structured specifications over EQ. On the other hand, when the specification SP in
that counterexample is taken to be a specification in FOEQ, the critical sentence
b = c is easily derivable, as explained there; see Example 9.2.14 below. In fact, the
above system of rules yields a complete relation of entailment for specifications in
institutions that satisfy some basic properties (although FOEQ does not satisfy these
properties as stated here — see Exercise 4.4.23 — a similar and quite satisfactory
completeness result may be derived for it; see Exercise 9.2.9):

Theorem 9.2.6 (Completeness). Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an
institution equipped with an entailment system 〈 Σ 〉Σ∈|Sign|. Suppose that INS is
finitely exact (Definition 4.4.6) and has the Craig interpolation property (Defini-
tion 4.4.21), truth, implication and conjunction (Definition 4.1.42). If 〈 Σ 〉Σ∈|Sign| is
complete for INS then entailment for specifications, as defined by the rules above, is
complete for specifications built from finitary flat specifications using union, trans-
lation and hiding.

Proof. Assume that SP |= ϕ for a finitary specification SP built from flat specifica-
tions using union, translation and hiding, with Sig[SP] = Σ and ϕ ∈ Sen(Σ). We
show that SP  ϕ by induction on the structure of SP:
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• Let SP be 〈Σ ,Φ〉 for some finite Φ ⊆ Sen(Σ). Then Φ |=Σ ϕ and so, since
〈 Σ 〉Σ∈|Sign| is complete for INS, we get Φ  Σ ϕ . Using the rule for flat spec-
ifications and (∗), we obtain SP  ϕ .

• Let SP be SP′ hide via σ for some finitary specification SP′ with Sig[SP′] = Σ ′
and σ :Σ → Σ ′. Then SP′ |= σ(ϕ). By the inductive hypothesis, SP′  σ(ϕ), and
so using the rule for hiding, we obtain SP  ϕ .

• Let SP be SP′ with σ for some finitary specification SP′ with Sig[SP′] = Σ ′ and
σ :Σ ′ → Σ . By Theorem 5.6.10, SP′ ≡ 〈Σ1,Φ1〉 hide via σ1 for some signature
Σ1 ∈ |Sign|, finite set Φ1 ⊆ Sen(Σ1) of Σ1-sentences, and σ1:Σ ′ → Σ1. Let

∧
Φ1

be the conjunction of Φ1 (or true if Φ1 is empty). Then, as in the proof of Theo-
rem 5.6.10, SP≡ 〈Σ̂ ,{σ ′(

∧
Φ1)}〉 hide via σ ′

1, where the following is a pushout
in Sign:

Σ ′

Σ1 Σ

Σ̂

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ

σ ′ σ ′
1

SP |= ϕ implies σ ′(
∧

Φ1) |=Σ̂ σ ′
1(ϕ). Hence, by the Craig interpolation property,

there is an interpolant θ ∈ Sen(Σ ′) such that
∧

Φ1 |=Σ1 σ1(θ) and σ(θ) |=Σ ϕ .
The former yields SP′ |= θ , so by the inductive hypothesis, SP′  θ , and using
the rule for translation we get SP  σ(θ). Since 〈 Σ 〉Σ∈|Sign| is complete for INS,
the latter yields σ(θ)  Σ ϕ , and so using the rule (∗), we get SP  ϕ .

• Let SP be SP1 ∪ SP2 for finitary specifications SP1 and SP2 with Sig[SP1] =
Sig[SP2] = Σ . By Theorem 5.6.10, SP1 ≡ 〈Σ1,Φ1〉 hide via σ1 for some sig-
nature Σ1 ∈ |Sign|, finite set Φ1 ⊆ Sen(Σ1) of Σ1-sentences, and σ1:Σ → Σ1,
and SP2 ≡ 〈Σ2,Φ2〉 hide via σ2 for some signature Σ2 ∈ |Sign|, finite set Φ2 ⊆
Sen(Σ2) of Σ2-sentences, and σ2:Σ → Σ2. Let

∧
Φ1 be the conjunction of Φ1

(or true if Φ1 is empty), and
∧

Φ2 be the conjunction of Φ2 (or true if Φ2 is
empty). Then SP ≡ 〈Σ̂ ,{σ ′

2(
∧

Φ1),σ ′
1(
∧

Φ2)}〉 hide via σ2;σ ′
1, as in the proof

of Theorem 5.6.10, where the following is a pushout in Sign:

Σ

Σ1 Σ2

Σ̂

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1

SP |=ϕ implies {σ ′
2(
∧

Φ1),σ ′
1(
∧

Φ2)} |=Σ̂ σ ′
1(σ2(ϕ)). Then, by Exercise 4.1.43,

σ ′
2(
∧

Φ1) |=Σ̂ σ ′
1(
∧

Φ2 ⇒ σ2(ϕ)). Hence, by the Craig interpolation property,
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there is an interpolant θ ∈ Sen(Σ) such that
∧

Φ1 |=Σ1 σ1(θ) and σ2(θ) |=Σ∧
Φ2 ⇒σ2(ϕ). The former yields SP1 |= θ , so by the inductive hypothesis, SP1  

θ , and using the rule for union we get SP  θ . Using Exercise 4.1.43 again (and
the properties of implication), the latter gives

∧
Φ2 |=Σ σ2(θ ⇒ ϕ), which yields

SP2 |= θ ⇒ ϕ . Thus, by the inductive hypothesis, SP2  θ ⇒ ϕ , and using the
rule for union we get SP  θ ⇒ ϕ . Since {θ ,θ ⇒ ϕ} |=Σ ϕ , and 〈 Σ 〉Σ∈|Sign| is
complete for INS, we have {θ ,θ ⇒ ϕ}  Σ ϕ , and so using the rule (∗) we obtain
SP  ϕ . ��

Exercise 9.2.7. Give a counterexample to show that Theorem 9.2.6 does not hold
for infinitary specifications.

Check that if the institution INS is compact (Definition 4.2.7) then the assump-
tion that specifications considered in Theorem 9.2.6 are finitary may be dropped.
That is, under the other assumptions of the theorem, entailment for specifications,
as defined by the rules above, is complete for specifications built from arbitrary flat
specifications using union, translation and hiding.

Similarly, check that the same conclusion holds if instead of compactness we
assume that INS has infinitary conjunctions and use the infinitary version of the rule
(∗). ��
Exercise 9.2.8. Consider an institution INS and a collection I of signature mor-
phisms in INS such that INS is I-semi-exact (see Definition 4.4.18) and has the
Craig interpolation property for all pushouts along morphisms in I. Prove that if INS

has truth, implication and conjunction and 〈 Σ 〉Σ∈|Sign| is complete for INS then
entailment for specifications, as defined by the rules above, is complete for specifi-
cations built from finitary flat specifications using union, translation and hiding that
involve hiding only with respect to morphisms in I. HINT: Use Exercise 5.6.12 and
check that the proof above goes through. ��
Exercise 9.2.9. Consider the institution FOPEQ equipped with the complete en-
tailment system outlined in Exercise 9.1.9. Show that entailment for specifications,
as defined by the rules above, is complete for specifications built from finitary flat
specifications using union, translation and hiding that involve hiding only with re-
spect to morphisms that are injective on sorts. HINT: Use the exercise above and
Exercise 4.4.23. ��
Theorem 9.2.6 cannot be used directly for institutions where propositional connec-
tives are not available. However, this can be compensated for by the use of a different
version of the interpolation property and by a different style of reasoning.

Exercise 9.2.10. Let INS be a finitely exact institution that satisfies the Craig-
Robinson interpolation property (Exercise 4.4.27) and comes equipped with a sound
and complete entailment system. Assume in addition that semantic consequence in
INS is reflected by translation of sentences along signature morphisms (for instance
because all of its reduct functors are surjective on models; cf. Proposition 4.2.17).
Adapt the proof of Theorem 9.2.6 to show that entailment defined by the proof rules
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above with the infinitary version of (∗) is complete for specifications built from flat
specifications using union, translation and hiding.

Construct a counterexample to show that the assumption that entailment is re-
flected by translation of sentences cannot be dropped in general. ��
Exercise 9.2.11. Rather than proving consequences of specifications, one may want
to carry out proofs of entailment between sentences in the context of specifications.
For any institution INS, given a Σ -specification SP, set Φ ⊆ Sen(Σ) of Σ -sentences
and Σ -sentence ϕ ∈ Sen(Σ), write SP then Φ  ϕ to mean that ϕ is a consequence
of Φ in the context of SP, i.e. for all models M ∈ Mod[SP], if M |= Φ then M |= ϕ
as well. In general this cannot be captured by entailment for specifications as dis-
cussed above, but for institutions that have appropriate conjunction and implication,
it should be equivalent to SP  ∧

Φ ⇒ ϕ .
Adapt the above compositional rules defining entailment for specifications to

prove judgements of the above form as follows:

〈Σ ,Φ〉 then ∅  ϕ
ϕ ∈ Φ

SP1 then Φ  ϕ
(SP1∪SP2) then Φ  ϕ

SP2 then Φ  ϕ
(SP1∪SP2) then Φ  ϕ

SP then Φ  ϕ
(SP with σ) then σ(Φ)  σ(ϕ)

SP then σ(Φ)  σ(ϕ)
(SP hide via σ) then Φ  ϕ

Add a rule to assert SP then Φ  ϕ for ϕ ∈ Φ and a rule corresponding to (∗), thus
incorporating entailment as given for the underlying institution. Show that the proof
system so built is sound.

Then adapt the proof of Theorem 9.2.6 to show that in any finitely exact institu-
tion equipped with a complete entailment system and satisfying the Craig-Robinson
interpolation property, this proof system is complete for entailment between sen-
tences in the context of specifications built from flat specifications using union,
translation and hiding. ��

The following exercise shows that the interaction of hiding with union and trans-
lation is responsible for all difficulties with completeness:

Exercise 9.2.12. Let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 be an institution with a
complete entailment system 〈 Σ 〉Σ∈|Sign|. Show that, under no further assumptions,
entailment for specifications as defined by the rules above is complete for specifica-
tions built from finitary flat specifications using union and translation. Relate this to
Proposition 5.6.9.

Generalise this further by allowing successive outermost applications of hiding.
HINT: This follows from closed completeness of entailment, since any number of
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successive applications of hiding may be equivalently replaced by a single such
application, preserving derivability of sentences. ��
Exercise 9.2.13. Recall the specification-building operations (export, enrichment,
sum) defined in Section 5.2 in terms of flat specifications, union, translation and
hiding. Check that the definition of enrichment justifies the following proof rules
by composition of the rules above for flat specifications, union and translation, un-
der the assumption that sentences do not change under translation along signature
inclusions:

SP  ϕ
SP then sorts S′ ops Ω ′ • Φ ′  ϕ

SP then sorts S′ ops Ω ′ • Φ ′  ϕ ′ ϕ ′ ∈ Φ ′

Provide rules for export and sum. ��
Example 9.2.14. Consider the following specifications in FOEQ:

spec SP0 = sorts s,s′
ops a:s

b:s′
c:s′

spec SP1 = SP0 hide ops a:s

spec SP = SP1 then ∀x:s• b = c

These specifications are exactly the same as in Counterexample 5.4.8, but consid-
ered in a different institution. We get

 Sig[SP0] ∃x:s• x = x

SP0  ∃x:s• x = x
SP1  ∃x:s• x = x
SP  ∃x:s• x = x SP  ∀x:s• b = c

{∃x:s• x = x,
∀x:s• b = c}  Sig[SP] b = c

SP  b = c

Exercise: Identify the rules used in the above derivation. ��
Example 9.2.15. Recall the specifications in Example 7.1.4, written in the institu-
tion FPL. We will derive

InsDone  ∀l:NatList,n:Nat• def (insert(n, l))
InsDone  ∀l:NatList• P(l)

where P(l) is the following formula:

∀n:Nat• ∃l1, l2:NatList•
insert(n, l) = append(l1,cons(n, l2))∧ l = append(l1, l2)
∧ (∀l′1:NatList,m:Nat• l1 = append(l′1,cons(m,nil))⇒ le(m,n) = true)
∧ (∀l′2:NatList,m:Nat• l2 = cons(m, l′2)⇒ le(n,m) = true)
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The essence of these proofs is in Example 9.1.12, but there we did not make refer-
ence to the structured specifications from which the axioms used were obtained.

The derivation proceeds as follows. We first extract the axioms listed in NatOrd
using the second rule for enrichment, obtaining

NatOrd  ∀m,n:Nat• def (le(m,n))
NatOrd  ∀m:Nat• le(m,m) = true

and similarly for the other three axioms. This is also the place to derive some of
the consequences of these axioms that will be needed later, using the rule (∗) and
referring to the underlying entailment system. For instance,

NatOrd  ∀m,n:Nat• le(m,n) = false ⇒ le(n,m) = true.

Then the consequences of NatOrd are promoted to consequences of NatList,
using the first rule for enrichment, obtaining for instance

NatList  ∀m,n:Nat• def (le(m,n))
NatList  ∀m:Nat• le(m,m) = true
NatList  ∀m,n:Nat• le(m,n) = false ⇒ le(n,m) = true.

We can also derive properties of lists. For instance, since

 Sig[NatList] ∀l′2:NatList,m:Nat• ¬(nil = cons(m, l′2)),

by the rule (∗) we get

NatList  ∀l′2:NatList,m:Nat• ¬(nil = cons(m, l′2)).

Moreover, the definitional axiom for append can be extracted:

NatList  fun append(l:NatList, l′:NatList):NatList =
case l of nil => l′ | cons(n, l′′) => cons(n,append(l′′, l′))

Consequences of this axiom may now be derived in the underlying entailment sys-
tem for FPL and promoted to consequences of NatList using the rule (∗). For
instance,

NatList  ∀l:NatList• append(nil, l) = l
NatList  ∀l′1:NatList,m:Nat• ¬(nil = append(l′1,cons(m,nil)))
NatList  ∀u,v:NatList, i:Nat• append(cons(i,u),v) = cons(i,append(u,v)).

Now that we have derived these consequences of the definitional axiom for append,
we will not need to make further reference to it.

These consequences of NatList are promoted to consequences of InsDone
using the first rule for enrichment, for instance,

InsDone  ∀l:NatList• append(nil, l) = l
InsDone  ∀l′1:NatList,m:Nat• ¬(nil = append(l′1,cons(m,nil)))
InsDone  ∀u,v:NatList, i:Nat• append(cons(i,u),v) = cons(i,append(u,v))

and similarly for the properties of le:
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InsDone  ∀m,n:Nat• def (le(m,n))
InsDone  ∀m:Nat• le(m,m) = true
InsDone  ∀m,n:Nat• le(m,n) = false ⇒ le(n,m) = true

The definitional axiom for insert may be extracted using the second rule for enrich-
ment, giving

InsDone  fun insert(n:Nat, l:NatList):NatList =
case l of nil => cons(n,nil)

| cons(m, l′) => if le(n,m) = true then cons(n, l)
else cons(m, insert(n, l′))

Finally, as sketched in Example 9.1.12, the entailment system for FPL allows us
to derive ∀l:NatList,n:Nat• def (insert(n, l)) and ∀l:NatList• P(l) from the above
consequences of InsDone. The desired conclusions then follow by rule (∗). ��

The lack of completeness of the set of rules above for consequences of structured
specifications in institutions like EQ may be a cause for concern. One alternative is
to give up compositionality and use the normal form theorem (Theorem 5.6.10)
to extract a set of sentences from SP, and then use the entailment system for the
underlying institution to prove that the sentence of interest is a consequence of that
set. This strategy is captured by the following non-compositional rule:

Φ  Σ σ(ϕ)
SP  ϕ

nf(SP) = 〈Σ ,Φ〉 hide via σ

where nf denotes the construction in the proof of the normal form theorem.

Theorem 9.2.16. Let INS be a finitely exact institution equipped with an entailment
system 〈 Σ 〉Σ∈|Sign|. The relation of entailment for specifications given by the single
rule above is sound. Moreover, it is complete for specifications built from flat specifi-
cations using union, translation and hiding provided that the underlying entailment
system is complete for INS.

Proof. Recall from Theorem 5.6.10 that SP ≡ nf(SP). Soundness is then straight-
forward. For completeness, let ϕ be such that SP |= ϕ . Then nf(SP) |= ϕ and by
the satisfaction condition, Φ |=Σ σ(ϕ). Hence, by completeness of the underlying
entailment system, Φ  Σ σ(ϕ), and so SP  ϕ . ��
Example 9.2.17. Consider once again the specification in Counterexample 5.4.8, in
the institution EQ. We have

spec nf(SP) =
sorts s,s′
ops a:s

b:s′
c:s′

∀x:s • b = c
hide ops a:s
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Since we have ∀x:s• b = c  Σ b = c, where Σ is the signature of the specification
inside the application of hiding in nf(SP) above (with the constant a:s), the non-
compositional rule above yields SP  b = c. ��

A disadvantage of this approach is that the set of axioms Φ that is collected in
the normal form of a specification SP may be large since it contains sentences cor-
responding to all the axioms in SP. An advantage of compositional proof is that that
a proof of SP  ϕ follows the structure of SP. This suggests the possibility of using
the structure of SP to guide the search for a proof. As Example 9.2.15 above illus-
trates, proof in a structured specification can involve frequent changes of context,
where proof fragments in the context of “small” specifications correspond to the
proofs of lemmas which are then brought to bear on the main proof via translation
to the context of an appropriate “larger” specification. In contrast, proving a lemma
via the normal form construction involves gathering together all of the axioms in
the specification, even if only a few of them are required for the proof. In present-
ing proofs like the one in Example 9.1.12, it is good style to draw attention only
to relevant premises, but the formal system makes no distinction between what is
relevant and what is irrelevant. Specification structure provides the scaffolding for
making such distinctions, and the use of compositional rules focuses proof search
on relevant contexts.

The rule above derived from the normal form theorem is justified by the obvious
fact that equivalent specifications have the same consequences. Therefore, whenever
we can show that SP ≡ SP′, it is sound to conclude from SP  ϕ that SP′  ϕ . Here,
≡ is equivalence of specifications as defined in Section 5.6, and so each of the
algebraic laws there (see e.g. Proposition 5.6.2) gives rise to a corresponding rule.

Exercise 9.2.18. The following rule

Φ  Σ σ(ϕ)
SP  ϕ

SP ≡ 〈Σ ,Φ〉 hide via σ

is sound in any institution INS. Moreover, when the underlying entailment system
is complete for INS, the relation of entailment for specifications given by this single
rule is complete for all specifications SP for which a “normal form” of the shape
〈Σ ,Φ〉 hide via σ can be given.

In particular, consider a collection I of signature morphisms in INS such that INS

is I-semi-exact; see Definition 4.4.18. Use Exercise 5.6.12 to show that the above
rule is sound and complete for structured specifications built from flat specifications
using union, translation and hiding which involve hiding only with respect to mor-
phisms in I, provided the underlying entailment system is complete for INS. ��

Sometimes we have only inclusion of model classes rather than specification
equivalence; see Exercise 5.6.3. This is enough: if Sig[SP] = Sig[SP′] then in order
to infer SP′  ϕ from SP  ϕ , it is enough to require Mod[SP]⊇ Mod[SP′]. Another
way of checking that two specifications satisfy this condition is by using a proof
system for entailment between specifications, discussed in the next section.
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Exercise 9.2.19. Show that

(SP hide via σ)∪SP′ ≡ (SP∪SP′ with σ) hide via σ

where σ :Sig[SP′] → Sig[SP]. (This equivalence can be seen as a special case of
Proposition 5.6.7.) Use this to justify the soundness of the following:

SP  ϕ SP′  ϕ ′ {ϕ,σ(ϕ ′)}  Sig[SP] σ(ψ)

(SP hide via σ)∪SP′  ψ

Use this rule to show that the specification in Counterexample 5.4.8 entails b = c,
noting that the use of enrichment there does not change the signature. Conclude that
this rule cannot be derived from the compositional rules above. ��
Exercise 9.2.20. Use Proposition 5.6.5 to justify the soundness of the following
rule:

SP  ϕ1 · · · SP  ϕn {σ ′(ϕ1), . . . ,σ ′(ϕn)}  Σ̂ τ ′(ψ ′)
(SP hide via σ) with τ  ψ ′

where Sig[SP] = Σ and the following pushout of signatures admits amalgamation:

·

Σ Σ ′

Σ̂

�
�

���

�
�
���

�
�
���

�
�

���

σ τ

σ ′ τ ′

Check that given the signature pushout as above and Sig[SP′] = Σ ′, by Proposi-
tion 5.6.7 we obtain the following rule:

SP  ϕ1 · · · SP  ϕn SP′  ϕ ′
1 · · · SP′  ϕ ′

m
{σ ′(ϕ1), . . . ,σ ′(ϕn),τ ′(ϕ ′

1), . . . ,τ
′(ϕ ′

m)}  Σ̂ σ ′(σ(ψ))

(SP hide via σ)∪ (SP′ hide via τ)  ψ ��
Exercise 9.2.21. Justify the following rule:

SP  ϕ1 · · · SP  ϕn SP′  ϕ ′
1 · · · SP′  ϕ ′

m
{σ ′(ϕ1), . . . ,σ ′(ϕn),τ ′(ϕ ′

1), . . . ,τ
′(ϕ ′

m)}  Σ̂ τ ′(ψ ′)
((SP hide via σ) with τ)∪SP′  ψ ′

where the morphisms and Σ̂ are as in the pushout diagram (required to admit amal-
gamation) in Exercise 9.2.20. ��
Example 9.2.22. Consider the following specification in the institution FPL:
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spec SortInsCount =
SortIns
then

ops fun count(n:Nat, l:NatList):Nat =
case l of nil => 0

| cons(m, l′) => if n = m then succ(count(n, l′))
else count(n, l′)

where SortIns is as in Example 7.1.4; for future reference let ϕcount be the
definitional axiom for count, as it occurs above as well as in the specification
SortCount given in that example.

We will derive

SortInsCount  ∀n:Nat, l:NatList• count(n, l) = count(n,sort(l)).

Unfortunately, this derivation cannot easily be done using only the compositional
proof rules given earlier. Informally, to derive the conclusion we need both the ax-
iom for count and the definitional axiom for sort. The latter also involves insert, so
its axioms will be needed as well. No subspecification of SortInsCount has a
signature that includes all of these operations. (Exercise: Can you think of a way to
circumvent these difficulties using a local function definition?)

We appeal instead to a rule that allows information to be extracted from multi-
ple subspecifications. Luckily, the rule in Exercise 9.2.21 is exactly what is needed
here. The structure of SortInsCount (after expanding the enrichment and export
buried in SortIns) matches the form of specification in the conclusion of this rule.
All the signature morphisms involved are inclusions in IFPL, with no new value con-
structors added for old sorts — this is entirely typical, if care is taken to avoid name
clashes. By Exercise 4.4.19, the required pushout exists and admits amalgamation.
The pushout signature Σ̂ expands the signature of NatList by the operations insert,
sort and count. The instance of the rule that is required is the following (omitting
translation of sentences by signature inclusions):

SortByInsert  ϕ1 · · · SortByInsert  ϕn
〈Sig[SortInsCount],{ϕcount}〉  ϕ ′

1 · · · 〈Sig[SortInsCount],{ϕcount}〉  ϕ ′
m

{ϕ1, . . . ,ϕn,ϕ ′
1, . . . ,ϕ

′
m}  Σ̂ ψ ′

SortInsCount  ψ ′

For ϕ ′
1, . . . ,ϕ

′
m we will take just ϕcount with m = 1. For ϕ1, . . . ,ϕn we will take what-

ever is needed from SortByInsert, derived as in Example 9.2.15: the definitional
axioms for sort from SortByInsert, the axioms for insert from Ins, properties
of append from NatList, and so on. Then it is enough to derive in the underlying
entailment system for FPL that

{ϕ1, . . . ,ϕn,ϕcount}  Σ̂ ∀n:Nat, l:NatList• count(n, l) = count(n,sort(l)).

The (rather complicated) proof by induction uses techniques similar to those in Ex-
ample 9.1.12, and is omitted here. ��
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For the specification-building operations that have been discussed so far, it was
possible to give proof rules that are institution-independent in the sense that they ap-
ply in any institution, or in any institution that satifies only mild additional assump-
tions. This is not always possible; in some cases the only institution-independent
rules available are too weak to be useful.

Definition 9.2.23 (Selection operation). A unary specification-building operation
sbo is a selection operation if Sig[sbo(SP)] = Sig[SP] and Mod[sbo(SP)]⊆Mod[SP]
for any SP such that sbo(SP) is well formed. ��
Then we have the following proof rule for any selection operation sbo:

SP  ϕ
sbo(SP)  ϕ

This rule is obviously sound, but typically it is too weak to capture the properties
that are used to make the selection.

One such selection operation is free; see Exercise 5.1.9. The corresponding proof
rule is the following:

SP  ϕ
free SP wrt σ  ϕ

This seems to be all that can be provided in an institution-independent way. Much
more can be said for specific institutions and under assumptions concerning the form
of the specification at hand. For instance, in FOEQ, if SP is a flat specification in
which the axioms involve only outermost universal quantification, an induction rule
would be sound.

Exercise 9.2.24. Prove that, under the above assumptions on SP, every model of
free SP wrt σ is reachable with respect to σ (see Exercise 5.1.10). Follow the pat-
tern of the induction rule for FPL in Example 9.1.12 to formulate an appropriate
induction rule, and show that it is sound. HINT: The new sorts are the generated
ones, with all operations taken as value constructors.

Note that the same rule is sound for the reachable specification-building opera-
tion, with no assumptions required on the form of SP. ��

The induction rule cannot lead to a complete entailment system for specifications
containing the free specification-building operation. A special case of free is initial,
and Theorem 2.5.26 says that there is no complete proof system for equational spec-
ifications of the form initial 〈Σ ,Φ〉. The proof of this theorem applies to any specifi-
cation language that is powerful enough to specify the standard model of the natural
numbers up to isomorphism, or a class of models having the same theory, so it also
applies to non-equational Φ , to specifications of the form reachable 〈Σ ,Φ〉 on S,
and so to practically any specification language involving either reachable or free.

Exercise 9.2.25. For quotient in EQ (see Exercise 5.1.12), check that the following
rule is sound and closed complete
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SP  e
quotient SP preserving S  e

even though quotient is not a selection operation. Notice that this rule is not sound
in institutions with the same signatures and models as EQ but with more powerful
sentences, for instance FOEQ.

For unquotient in EQ, check that the following rule is sound and closed com-
plete:

SP  e
unquotient SP preserving S  e

e is an equation between
terms of a sort in S

��
Exercise 9.2.26. Recall (Exercise 5.1.8) the close& specification-building operation
that closes the class of models of a Σ -specification SP under an equivalence &Σ ⊆
|Mod(Σ)|× |Mod(Σ)|. Assume that satisfaction in INS is preserved under &, that
is, for any Σ ∈ |Sign| and M,M′ ∈ |Mod(Σ)| such that M &Σ M′, for all sentences
ϕ ∈ Sen(Σ), we have M |=Σ ϕ iff M′ |=Σ ϕ . Show that the following rule is then
sound and closed complete:

SP  ϕ
close& SP  ϕ

In particular, for institutions in which satisfaction is preserved under model iso-
morphism (this is the abstraction condition of Definition 4.5.13) we have the fol-
lowing sound and closed complete rule:

SP  ϕ
iso-close SP  ϕ ��

9.3 Entailment between specifications

As before, we work within an institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
equipped with an entailment system 〈 Σ 〉Σ∈|Sign|.

It is now time to switch to the next level of proofs, entailment between specifica-
tions, written SP SP′ where Sig[SP] = Sig[SP′]. The semantic relationship between
specifications that this is designed to approximate is given by inclusion of model
classes, Mod[SP]⊆Mod[SP′]. This corresponds to SP′ ���SP (see Definition 7.1.1,
and note the change of order!), so in fact this yields a system for proving correct-
ness of simple implementations, and in the discussion below we will switch freely
between these two terminologies. Inclusion of model classes generalises semantic
consequence for specifications since SP |= ϕ iff Mod[SP] ⊆ Mod[〈Sig[SP],{ϕ}〉]
for any specification SP and Sig[SP]-sentence ϕ . By analogy with this case, given
SP  SP′ we refer to SP′ as a consequence of SP; we also sometimes refer to SP as
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the antecedent of SP  SP′. We will also say that SP′ is a semantic consequence of
SP whenever Mod[SP]⊆ Mod[SP′].

Definition 9.3.1 (Soundness and completeness of entailment between specifica-

tions). A relation  of entailment between specifications is sound if for all spec-
ifications SP and SP′ such that Sig[SP] = Sig[SP′], SP  SP′ implies Mod[SP] ⊆
Mod[SP′]. It is complete if the opposite implications hold. ��
In other words, entailment between specifications is sound if every consequence of
any specification is its semantic consequence, and vice versa for completeness. As
before, soundness is typically proved by showing soundness of each rule separately,
while completeness is relevant to sets of rules.

Proof rules for the relation of entailment between specifications build on entail-
ment for specifications (SP  ϕ) as discussed in the previous section, so we assume
that this is given, and that it is sound. Completeness of entailment for specifications
is difficult to achieve, so we will assume it only when required in the analysis of
completeness of entailment between specifications. In fact it will emerge that very
little can be said about completeness at the level of entailment between specifica-
tions, with Theorem 9.3.3 below as a notable exception.

The link between the two entailment relations is provided by the following rule:

SP  ϕ1 · · · SP  ϕn

SP  〈Sig[SP],{ϕ1, . . . ,ϕn}〉
That this rule is sound follows directly from the definition. Clearly, it only allows the
proof of entailments with finitary flat specifications as consequences. The following
infinitary version is needed to derive entailments with arbitrary flat specifications as
consequences:

SP  ϕ for each ϕ ∈ Φ
SP  〈Sig[SP],Φ〉

We use the following rules for proving entailment between specifications with
consequences built using union, translation and hiding:

SP  SP1 SP  SP2

SP  SP1∪SP2

SP′ hide via σ  SP
SP′  SP with σ

ŜP  SP′

SP  SP′ hide via σ
σ :SP → ŜP admits

model expansion

The side condition on the last rule that the specification morphism σ :SP → ŜP ad-
mits model expansion (see Definition 5.5.6) is discussed below.

Proposition 9.3.2 (Soundness). The rules above define a sound relation of entail-
ment between specifications. ��
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Theorem 9.3.3 (Completeness). Given a sound and complete relation  of entail-
ment for specifications, the relation of entailment between specifications, as defined
by the rules above, is complete for consequences built from finitary flat specifica-
tions using union, translation and hiding.

Proof. Assume that Mod[SP]⊆ Mod[SP′] for specifications SP and SP′ with a com-
mon signature Sig[SP] = Sig[SP′] = Σ , where SP′ is built from finitary flat specifi-
cations using union, translation and hiding. We show that SP  SP′ by induction on
the structure of SP′:

• Let SP′ be 〈Σ ,Φ〉 for some finite Φ ⊆ Sen(Σ). Since Mod[SP] ⊆ Mod[SP′], for
each ϕ ∈Φ , SP |=ϕ , and so, by completeness of entailment for specifications, we
have SP ϕ . Using the (finitary) rule for consequences built as flat specifications,
we obtain SP  SP′.

• Let SP′ be SP1∪SP2 for specifications SP1 and SP2 with Sig[SP1] = Sig[SP2] =
Σ . Since Mod[SP] ⊆ Mod[SP′] and Mod[SP′] = Mod[SP1]∩Mod[SP2], we have
Mod[SP]⊆Mod[SP1] and Mod[SP]⊆Mod[SP2]. Hence, by the inductive hypoth-
esis, SP  SP1 and SP  SP2, and so, by the rule for consequences built by union,
SP  SP′.

• Let SP′ be SP1 with σ for some specification SP1 with Sig[SP1] = Σ1 and
σ :Σ1 → Σ . Since Mod[SP] ⊆ Mod[SP′] and Mod[SP′ hide via σ ] ⊆ Mod[SP1]
(see Exercise 5.6.3(2)) it follows that Mod[SP hide via σ ]⊆Mod[SP1] by mono-
tonicity of hiding (see Exercise 5.1.4). Hence, by the inductive hypothesis,
SP hide via σ  SP1, and using the rule for consequences built by translation,
we obtain SP  SP′.

• Let SP′ be SP1 hide via σ for some specification SP1 with Sig[SP1] = Σ1 and
σ :Σ → Σ1. Consider the Σ1-specification ŜP defined as (SP with σ)∪SP1. Then
σ :SP → ŜP is a specification morphism (since if M1 ∈ Mod[ŜP] then M1 ∈
Mod[SP with σ ] and so M1 σ ∈ Mod[SP]) and admits model expansion (since if
M ∈Mod[SP]⊆Mod[SP′] then there is M1 ∈Mod[SP1] with M1 σ =M; moreover

M1 ∈ Mod[SP with σ ] and so M1 ∈ Mod[ŜP]). Trivially, Mod[ŜP] ⊆ Mod[SP1].
Thus, by the inductive hypothesis, ŜP  SP1, and so using the rule for conse-
quences built by hiding, we obtain SP  SP′. ��

Exercise 9.3.4. Check that with the infinitary version of the rule for consequences
built as flat specifications, the assumption that the specifications considered as con-
sequences in Theorem 9.3.3 are finitary may be dropped. That is, under the other
assumptions of the theorem, the relation of entailment between specifications, as
defined by the rules above, is complete for consequences built from arbitrary flat
specifications using union, translation and hiding. ��
Exercise 9.3.5. As in Exercise 9.2.9, consider the institution FOPEQ equipped with
the complete entailment system outlined in Exercise 9.1.9 and entailment for speci-
fications as defined by the rules in Section 9.2. Show that the relation of entailment
between specifications, as defined by the rules above, is complete for entailment



432 9 Proofs for specifications

between specifications built from finitary flat specifications using union, translation
and hiding which involve only morphisms that are injective on sorts.

Note that completeness holds under a restriction of the form of specifications on
both sides of the entailment relation. While Theorem 9.3.3 restricts the specification-
building operations used in the consequence only, Theorem 9.2.6 additionally
restricts the specification-building operations used in the antecedent, and Exer-
cise 9.2.9 requires injectivity on sorts of signature morphisms used in applications
of hiding in the antecedent and (via the rule above for translation) in applications of
translation in the consequence. ��
Exercise 9.3.6. Recall the export, enrichment and sum operations defined in Sec-
tion 5.2 in terms of flat specifications, union, translation and hiding. Check that the
definition of enrichment justifies the following proof rule by composition of the
rules above for flat specifications, union and translation, under the assumption that
sentences do not change under translation along signature inclusions:

SP hide sorts S′ ops Ω ′  SP′
SP  ϕ ′

1 · · · SP  ϕ ′
n

SP  SP′ then sorts S′ ops Ω ′ • {ϕ ′
1, . . . ,ϕ

′
n}

names from S′ or Ω ′
are not in Sig[SP′]

Provide rules for export and sum. ��
The rules above are compositional with respect to the structure of the conse-

quence: when read backwards, each rule reduces the task of proving that SP  SP′
to proving that immediate subspecifications of SP′ are consequences of specifica-
tions built from SP. Thus, simplification of the consequence is achieved by means
of possible additional complication of the antecedent. Eventually this reduces the
proof task to entailment for specifications, for a specification that is typically more
complex than the original antecedent.

Although at the surface no new axioms are added to the antecedent in the rules
above, the essential additional complexity comes from the use of the rule for hid-
ing via the side condition. This requires construction of a specification ŜP so that
σ :Sig[SP]→ Sig[SP′] becomes a specification morphism σ :SP → ŜP that admits
model expansion. (An apparently weaker requirement, namely that every model
of SP have a σ -expansion to a model of ŜP — dropping the requirement that
σ :SP → ŜP is a specification morphism — would be equally good here; however,
given a specification that satisfies this weaker requirement, we can consider its union
with the translation of SP, obtaining a specification that satisfies the side condition
of the rule as stated.) Discharging this condition is outside the formal system we
present. In general it is as hard as proving entailment between specifications, so
where possible we attempt to ensure it by construction of ŜP. The construction used
in the proof of Theorem 9.3.3, which takes ŜP = SP′ ∪ (SP with σ), is useless in
practice since discharging the side condition amounts to proving the entailment at
hand, SP  SP′ hide via σ . But typically, in SP′ hide via σ , hiding is used to re-
move auxiliary components (sorts and operations, in algebraic signatures) that are
introduced only to specify the components of actual interest. Then, ŜP adds these
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auxiliary components to SP in such a way that the model expansion property is en-
sured — this is often guaranteed by the form of their defining axioms in SP′, which
can be reused in ŜP — and the proof task is reduced to showing that, under these
definitions, the other properties required by SP′ hold.

Exercise 9.3.7. Consider a specification SP in FPL. Let ŜP be its enrichment by a
new operation f :s1×·· ·× sn → s together with a definitional axiom of the form

fun f (x1:s1, . . . ,xn:sn):s = t

where t ∈ |TSig[ŜP]({x1:s1, . . . ,xn:sn})|s. Show that the inclusion SP ↪→ ŜP is a spec-
ification morphism that admits model expansion. Generalise this to extensions by
a sequence of operations (not a set, to allow for hierarchical dependencies between
the new operations) and by new sorts. Link this with the notation introduced in
Example 6.1.9.

State similar facts for institutions with standard signatures, like EQ, FOPEQ,
etc., where a notion of definitional axiom can be easily given as well. ��
Example 9.3.8. Recall the specifications in Example 7.1.4. We sketch a derivation
for SortIns  SortPerm, which proves SortPerm ���SortIns.

Recall that

spec SortPerm = SortCount hide ops count:Nat×NatList → Nat.

To use the corresponding rule for hiding we need a specification ̂SortIns which
expands SortIns with the operation count so that model expansion is admitted. As
suggested above, such a specification can be obtained by taking the definitional
axiom for count from SortCount. So, we put ̂SortIns = SortInsCount,
reusing the specification SortInsCount introduced in Example 9.2.22. The spec-
ification inclusion from SortIns to SortInsCount admits model expansion be-
cause the axiom is definitional (see Exercise 9.3.7).

Then we have to derive SortInsCount  SortCount. By the rule for en-
richment, this requires:

• SortInsCount ϕcount, where ϕcount is the definitional axiom for count — this
follows trivially by the rule for enrichment (for entailment for specifications);

• SortInsCount  ∀n:Nat, l:NatList• count(n, l) = count(n,sort(l)) — which
was derived in Example 9.2.22; and

• SortIns′  Sort, where

spec SortIns′ = SortInsCount hide ops count:Nat×NatList → Nat

We derive this now. (Note that SortIns′ is equivalent to SortIns, but we will
not make use of the equivalence in order to stay within the realm of the proof
rules above.)
To show that SortIns′  Sort we need again to come up with an enrichment
̂SortIns′ of SortIns′ by is sorted that admits model expansion, such that
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̂SortIns′  Sort1. Unfortunately, the axioms for is sorted in Sort1 are not
definitional. We could try to prove that they ensure the model expansion property,
but in effect this would involve the same work as giving a definitional axiom for
is sorted and then showing that the definition entails the axioms for is sorted in
Sort1. This can be done as follows:

spec ̂SortIns′ =
SortIns′
then

ops fun is sorted(l:NatList):Bool =
let fun check(n:Nat, l′:NatList):Bool =

case l′ of nil => true
| cons(m, l′′) =>

if le(n,m) = true then check(n, l′′) else false
in case l of nil => true

| cons(n, l′) =>
if check(n, l′) = true then is sorted(l′) else false

We now need to show that ̂SortIns′  Sort1. The following premises are suf-
ficient to apply the rule for enrichment and complete the proof:

– ̂SortIns′ hide ops sort, is sorted  NatList — although formally this re-
quires traversing the structure of NatList, it is obvious that it will work
since NatList is already a part of ̂SortIns′. Additional proof methods that
allow such cases to be dealt with more directly are discussed below (see Ex-
ercise 9.3.9).

– ̂SortIns′  ϕ for each of the five axioms ϕ in the enrichment that de-
fines Sort1 in Example 7.1.4 — here, techniques similar to those in Ex-
ample 9.2.15 and Example 9.1.11 need to be used, referring to the definitional
axioms for is sorted, sort, is in and append as well as the axioms for insert
and le. (Exercise: Do the proof.) ��

When proving entailment between specifications, it is always possible to replace
the specifications at hand, both in the consequence and in the antecedent, by equiv-
alent ones. In this way, a number of useful rules may be obtained by applying the
algebraic laws in Section 5.6. Similarly, this allows specifications to be reduced to
normal form. Such reduction might be useful on the side of the consequence, since
it allows structure to be eliminated in one step rather than transferred, layer by layer,
to the antecedent. Such a one-step elimination of the structure of the consequence
specification is captured by the following rule:

ŜP  Φ ′

SP  SP′
nf(SP′) = 〈Σ ′,Φ ′〉 hide via σ , where
σ :SP → ŜP admits model expansion

When the algebraic laws in Section 5.6 provide model class inclusions rather
than equalities, they can be usefully exploited here as well. For example:
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Exercise 9.3.9. Use Exercise 5.6.3(2) to justify the following rule:

(SP with σ) hide via σ  SP
σ :Sig[SP]→ Σ ′

Combine this with other rules to obtain the following:

(SP then sorts S′ ops Ω ′ • Φ ′) hide sorts S′ ops Ω ′  SP ��
Example 9.3.10. Referring to specifications in Example 7.1.4 again, the rule above
allows one to show directly that SortPerm  Sort; this proves the simple imple-
mentation step Sort ���SortPerm. ��
Entailment between specifications may be used to show equivalence between spec-
ifications:

SP  SP′ SP′  SP
SP ≡ SP′

Proving algebraic laws like those stated in Section 5.6 would sometimes also involve
the use of induction on the structure of specifications. Such algebraic laws, and the
proof rules that are derived from them, would be limited to specifications built using
the specification-building operations considered.

The above discussion of entailment between specifications and the proof rules
we gave largely concern specifications built from flat specifications using union,
translation and hiding. For this class of specifications we have a proof system for
the relation of entailment between specifications that is sound (Proposition 9.3.2)
and complete under reasonable assumptions (Theorem 9.3.3).

The situation with other specification-building operations is much less elegant.
We can state sound rules — see below — but these are far from what would be
necessary to ensure completeness. The reachable and free operations are serious
stumbling blocks: once either of these is present, completeness is not achievable in
standard institutions as Theorem 2.5.26 made clear. In the presence of such opera-
tions, the strategy described above of reducing a proof task SP  SP′ to entailment
for specifications may fail. In such cases it is sometimes possible to succeed by
adopting a more ad hoc strategy. For this purpose we state below a number of addi-
tional rules. Many of them are useful as shortcuts even in the context of the complete
proof system above.

For instance, for any monotone specification-building operation sbo (see Exer-
cises 5.1.4 and 5.1.5) the following rule is clearly sound:

SP1  SP′1 · · · SPn  SP′n
sbo(SP1, . . . ,SPn)  sbo(SP′1, . . . ,SP′n)

The rule is nicely compositional, but its applicability is limited to cases where
the structure of the antecedent and of the consequence match. The discussion on
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horizontal composability of simple implementations in Section 7.1 (see Proposi-
tion 7.1.6 and Examples 7.1.7 and 7.1.8) is relevant here and shows that the rule
above, although useful in many cases, cannot be sufficient in general.

The following “identity rule” is clearly sound:

SP  SP

Another useful rule is that of transitivity of entailment between specifications:

SP  SP′ SP′  SP′′

SP  SP′′

Suppose that sbo is a selection operation (Definition 9.2.23). Then we have the
following:

SP  SP′

sbo(SP)  SP′

Selection operations used in the consequence specification cause more trouble: we
need to take the “selection condition” explicitly into account. So, suppose that the
selection operation sbo is defined by a property P of models, i.e. Mod[sbo(SP)] =
{M ∈ Mod[SP] | P(M)}. Then we have the following:

SP  SP′

SP  sbo(SP′)
P(M) for all M ∈ Mod[SP]

Methods for discharging the side condition depend on the nature of P. Sometimes
it may be internalized as a set of sentences Φ of INS; for instance, in an algebraic
signature with a finite number of terms {t1, . . . , tn} of sort s, reachability on s as used
in the reachable specification-building operation (Exercise 5.1.10) is captured by
the single sentence ∀x:s• x = t1∨ ·· ·∨ x = tn in FOEQ. In such a case, discharging
the side condition amounts to proving SP  ϕ for each ϕ ∈ Φ . Sometimes it may
be convenient to extend the underlying institution to make these side conditions
expressible. For instance, to deal with reachability in the general case we may extend
FOEQ to include infinitary disjunction. Even if P cannot be internalized, for some
forms of SP the side condition can be discharged using model-theoretic reasoning,
leading to rules like the following sound rule for the reachable operation:

reachable SP on S  SP′

reachable SP on S  reachable SP′ on S′
S ⊇ S′

In some cases, the selection property depends on the argument specification; then
the rule must take the following more general form:

SP  SP′

SP  sbo(SP′)
PSP′(M) for all M ∈ Mod[SP]
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For instance, the rule for the free operation (Exercise 5.1.9) would be as follows:

SP  SP′

SP  free SP′ wrt σ

for all M ∈ Mod[SP], for
M′ ∈ Mod[SP′], f :M σ → M′

σ ,

f = f � σ for unique f �:M → M′

An institution of higher-order logic would internalize the freeness side condition as
a sentence that would need to be a consequence of SP, in the same sense as infinitary
disjunction may be used to internalize reachability.

Exercise 9.3.11. FPL internalizes the “absolute freeness” of ML-style datatypes,
but in its signatures rather than its sentences. Show how to use the rule above to re-
duce entailments of the form SP  free 〈Σ ,∅〉 wrt ι in FPL for any signature inclu-
sion ι :Σ0 →Σ to the requirement that the specification morphism j:SP→ SP with j
admit model expansion, with j adding to the signature of SP the requirement that
the sorts not in Σ0 come with the appropriate value constructors. ��
Exercise 9.3.12. Check that the following rules for closure under model equivalence
(cf. Exercise 5.1.8) are sound:

SP  close& SP
SP  SP′

close& SP  close& SP′

In particular, these rules apply to the iso-close operation; see Exercise 5.1.7. ��
Example 9.3.13. We build on Example 9.2.15 to show the entailment SortDone 
SortIns between specifications from Example 7.1.4; this proves the simple imple-
mentation SortIns ���SortDone.

Both specifications, SortDone and SortIns, arise by application of hiding of
the insert operation. Since hiding is monotone, by the general rule for monotone
specification-building operations it is enough to derive SortByInsertDone  
SortByInsert. Then, relying on the monotonicity of enrichment, this can be
shown by deriving InsDone  Ins.

Using the rule for enrichment, this requires showing the two entailments for
InsDone proved in Example 9.2.15, and SortByInsertDone hide ops insert  
NatList, which follows easily by Exercise 9.3.9.

The proof above and the proofs in Examples 9.3.8 and 9.3.10 justify the simple
implementations claimed at the end of Example 7.1.4:

Sort ���SortPerm ���SortIns ���SortDone

Notice how the proofs here formalise the semantic arguments given in Exam-
ple 7.1.4. ��
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9.4 Correctness of constructor implementations

We continue to work within an institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
equipped with an entailment system 〈 Σ 〉Σ∈|Sign|.

We now turn to proving constructor entailment between specifications, writ-
ten SP  κ SP′, for any specifications SP,SP′ and constructor κ ∈ Mod(Sig[SP]⇒
Sig[SP′]). This is designed to approximate the semantic correctness of constructor
implementations, that is, κ ∈Mod[SP⇒ SP′], which corresponds to SP′ κ���SP (see
Definitions 6.2.1 and 7.2.1). Inclusion of model classes as discussed in the previous
section is covered as a special case by taking the identity constructor.

Definition 9.4.1 (Soundness and completeness of constructor entailment). A
(ternary) relation  of constructor entailment between specifications is sound if
SP  κ SP′ implies κ(Mod[SP])⊆ Mod[SP′] and Mod[SP]⊆ dom(κ) for all specifi-
cations SP and SP′ with κ ∈Mod(Sig[SP]⇒ Sig[SP′]). It is complete if the opposite
implications hold. ��

A proof system for proving constructor entailments between specifications may
be obtained directly from a proof system for entailments between specifications via
the following rule:

κ(SP)  SP′

SP  κ SP′
Mod[SP]⊆ dom(κ)

where, in κ(SP), the constructor κ is regarded as a specification-building operation;
see Exercise 6.1.15.

The side condition is necessary: without it, the rule is unsound. We regard it as
outside the scope of the system we provide here, since treating it formally would
require us to develop an institution-independent modular “programming language”
for defining constructors.

However, two important special cases dominate in practice, and these are not
difficult to handle. The first is when the constructor κ is total on the class of models
over its argument signature. Then the side condition amounts to a “static” check that
the signatures match, and the rule takes the following form:

κ(SP)  SP′

SP  κ SP′
κ ∈ Mod(Sig[SP]⇒ Sig[SP′]) is total

Some of the constructors presented in Section 6.1 are always total. One example is
reducts, including reducts along derived signature morphisms; cf. Example 6.1.3. A
particularly simple case is that of the identity constructor, with SP  id SP′ following
from SP  SP′. On the other hand, free extension constructors (cf. Example 6.1.7)
need not be total, not even when the specification involved has no axioms. This
includes the case of FPL where, however, it is possible to give a simple syntactic
condition on the signatures involved which guarantees that the free extension for
specifications without axioms is total; see Example 6.1.7. The notation in Exam-
ple 6.1.9 and its extension in Exercise 7.3.5 always yields total constructors.
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The second case is when κ comes with its specification as discussed in Sec-
tion 6.2, either as a hypothesis or derived using the system in Section 9.5 below,
where for closed specifications SP and SP′, a judgement Γ � E : SP ⇒ SP′ yields
[[E]]ρ ∈ Mod[SP ⇒ SP′] for any Γ -environment ρ — see Exercise 9.5.4 — which
amounts to SP  [[E]]ρ SP′.

The following weakening rule allows a constructor’s interface specifications to
be adjusted to fit the context of use:

SP  κ SP′ SP1  SP SP′  SP2

SP1  κ SP2

This can be derived from the following transitivity rule by taking (twice) one of the
constructors to be the identity:

SP  κ SP′ SP′  κ ′ SP′′

SP  κ;κ ′ SP′′

Notice that this rule is another way of asserting that constructor implementations
compose vertically; see Proposition 7.2.4.

Constructor entailment is closed under specification equivalence, so the algebraic
laws of Section 5.6 for specification equivalence and model class inclusion give rise
to rules for constructor entailment in a way similar to that in the previous sections.

The main idea in proofs of constructor entailment between specifications is to re-
duce the problem to proving entailment between specifications. But unfortunately,
the rules in Sections 9.2 and 9.3 do not explicitly deal with antecedents of the
form κ(SP). We will rely on the fact that specifications of this form will typically
be equivalent to specifications built using other specification-building operations.
There are two ways to exploit this fact. The first way would be to extend the system
for entailment between specifications in Section 9.3 to capture these equivalences
as additional rules, and use the first rule in this section to derive corresponding con-
structor entailments. The second way, which we will follow below, is to use these
equivalences to justify additional rules for constructor entailment between specifi-
cations for various constructors, without explicitly referring to specifications of the
form κ(SP).

We now consider how to do this for the two most important classes of construc-
tors κ . Reducts are simple:

Exercise 9.4.2. Let κ be the reduct constructor determined by a signature morphism
σ :Σ → Σ ′; see Example 6.1.3. Check that for any Σ ′-specification SP′, κ(SP′) ≡
SP′ hide via σ . Since reduct is a total constructor, this justifies the following rule:

SP′ hide via σ  SP
SP′  σ SP ��

Exercise 9.4.3. Consider the free extension constructor Fσ ,SP′ determined by a sig-
nature morphism σ :Σ → Σ ′ and Σ ′-specification SP′; see Example 6.1.7. Check that
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the following equivalence holds for any Σ -specification SP:

iso-close (Fσ ,SP′(SP))≡ (free SP′ wrt σ)∪ (SP with σ)

Convince yourself that there is no specification expression that is equivalent to
Fσ ,SP′(SP) that does not involve Fσ ,SP′ itself, in general. (This is a somewhat delicate
point which is related to the fact that even though free extension is defined only up
to isomorphism, a constructor is a function on models and so it chooses some par-
ticular element in this isomorphism class — and so the closure under isomorphism
in the above equivalence is necessary.)

The equivalence above does not appear to be entirely satisfactory, since we give a
specification that is equivalent not to Fσ ,SP′(SP), but only to iso-close (Fσ ,SP′(SP)).
But this is not a problem: we have Fσ ,SP′(SP)  iso-close (Fσ ,SP′(SP)) by Exer-
cise 9.3.12, and so if we can prove iso-close (Fσ ,SP′(SP))  SP′′ then we also get
Fσ ,SP′(SP)  SP′′. Since dom(Fσ ,SP′) is specified by (free SP′ wrt σ) hide via σ ,
this justifies the following rule:

SP  (free SP′ wrt σ) hide via σ (free SP′ wrt σ)∪ (SP with σ)  SP′′

SP  Fσ ,SP′ SP′′ ��
The rule in the above exercise involves the free specification-building operation for
which no closed complete rule is available; see Exercise 9.2.24 and the surrounding
discussion. Fortunately, this problem can often be resolved satisfactorily in particu-
lar institutions, at least for the cases that arise in practice.

Exercise 9.4.4. The FPL-constructor notation introduced in Example 6.1.9 gives
rise to constructors of the form Fι ;( δ ) where ι :SIG→ SIG′′ is an FPL-signature
inclusion which adds new sorts, each with a set of value constructors, and δ :SIG′ →
SIG′′ is an FPL-signature morphism. Here, Fι is the absolutely free extension con-
structor Fι ,〈SIG′′,∅〉, which is total; see Example 6.1.7. Similarly as in the discussion
above, notice that for any SIG-specification SP, Fι(SP) δ  (iso-close Fι(SP)) δ and
so it will be sufficient to eliminate the constructors in the consequence of this en-
tailment. To this end, show that

(iso-close Fι(SP)) δ ≡ ((free 〈SIG′′,∅〉 wrt ι)∪ (SP with ι)) hide via δ .

But since ι :SIG→ SIG′′ merely introduces new sorts, each with a set of value con-
structors, every SIG′′-model is a free extension of its ι-reduct. Show that then

(iso-close Fι(SP)) δ ≡ (SP with ι) hide via δ

which justifies the following rule:

(SP with ι) hide via δ  SP′

SP  Fι ;( δ )
SP′
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This achieves our goal since the rules in Section 9.3 suffice for dealing with the
entailment in the premise, building on the rules in Section 9.2 for proving entailment
for specifications and the rules in Example 9.1.11 for entailment in FPL.

Taking this further, it is sometimes convenient to take advantage of the partic-
ular way that δ arises in the FPL-constructor notation of Example 6.1.9. Namely,
consider

constructor K : SIG⇒ SIG′ = body

and suppose that SIG⊆ SIG′ and body lists new sorts, each with a set of value con-
structors, and defines new operations, all in SIG′, so all the new sorts and operations
in SIG′ are defined and no auxiliary sorts or operations are introduced. Show that
for any SIG-specification SP,

iso-close K(SP)≡ SP then body.

Under those assumptions on the form of body, this yields the following rule:

SP then body  SP′

SP  K SP′

In the general situation, when SIG contains, or body introduces, auxiliary sorts
and/or operations which are not in SIG′, check that we have

iso-close K(SP)≡ (SP then body) reveal SIG′

which yields the following rule:

(SP then body) reveal SIG′  SP′

SP  K SP′

Check that the previous rule is derivable from this version when no auxiliary sorts
or operations are introduced. ��

This situation is typical: often κ(SP) (or its closure under isomorphism) amounts
to an enrichment of SP by definitions that are more or less explicit in the form of κ .

Example 9.4.5. Recall the chain of constructor implementations in Example 7.2.8,
relating specifications in FPL introduced in Example 7.1.4. We can now prove the
correctness of the consecutive constructor implementations using the techniques and
rules discussed above.

• The trivial constructor K0 has the form

constructor K0 : Sig[SortPerm]⇒ Sig[Sort] = body

where body is empty. Then from SortPerm then body  SortPerm (triv-
ially) and SortPerm  Sort (by Example 9.3.10), by transitivity of entailment
between specifications and the penultimate rule in Exercise 9.4.4 above, we get
SortPerm  K0 Sort, i.e. Sort

K0
����SortPerm.
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• The constructor K1 has the form

constructor K1 : Sig[Ins]⇒ Sig[SortPerm] =
ops fun sort(l:NatList):NatList = . . .

and Ins then ops fun sort(l:NatList):NatList = . . . is SortByInsert while
SortByInsert hide ops insert is SortIns. Since SortIns  SortPerm
(by Example 9.3.8), by the final rule in Exercise 9.4.4 above we get Ins  K1
SortPerm, that is, SortPerm

K1
����Ins.

• The constructor K2 has the form

constructor K2 : Sig[NatList]⇒ Sig[Ins] =
ops fun insert(n:Nat, l:NatList):NatList = . . .

and NatList then ops fun insert(n:Nat, l:NatList):NatList = . . . is InsDone.
Since InsDone  Ins (from the derivation within Example 9.3.13), by the
penultimate rule in Exercise 9.4.4 above we get NatList  K2 InsDone, that
is, InsDone

K2
����NatList.

This differs from the reasoning in Example 9.3.13 by allowing us to avoid proving
that SortDone  SortIns: we can stop with InsDone  Ins, in which the con-
structor K1 has been “peeled off” as in the diagram at the beginning of Section 7.2.

In Example 7.2.8, we go one step further and choose an implementation for
NatList:

• The constructor K3 has the form

constructor K3 : Sig[NatList]⇒ Sig[Ins] =
sorts Nat free with 0| succ(Nat)

NatList free with nil| cons(Nat,NatList)
ops fun le(m:Nat,n:Nat):Bool = . . .

fun append(l:NatList, l′:NatList):NatList = . . .
fun is in(n:Nat, l:NatList):Bool = . . .

Let us now put

spec NatListLe =
Empty
then

sorts Nat free with 0| succ(Nat)
NatList free with nil| cons(Nat,NatList)

ops fun le(m:Nat,n:Nat):Bool = . . .
fun append(l:NatList, l′:NatList):NatList = . . .
fun is in(n:Nat, l:NatList):Bool = . . .

Now, using the techniques from Sections 9.2 and 9.3, one can easily derive
NatListLe  NatList. The non-trivial part of the derivation is an inductive
proof that le as defined by the code in NatListLe satisfies the axioms within
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NatList that require le to be a linear order. By the penultimate rule in Exer-
cise 9.4.4 above, this gives Empty  K3 NatList, i.e. NatList

K3
����Empty.

��

9.5 Proof and parameterisation

In this section we build on the proof systems in the previous sections to give a
system of rules for proving correctness of higher-order constructors with respect
to constructor specifications as presented in Section 6.4. We disregard the (higher-
order) parameterised specifications of Definition 6.4.5, but see Exercise 9.5.5 below.
This material is somewhat more tentative than that in the previous sections of this
chapter.

We continue to work within an institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
equipped with an entailment system 〈 Σ 〉Σ∈|Sign|.

We will be deriving three main forms of judgement:

• Γ � SP  ϕ for entailment for specifications, slightly generalising the system in
Section 9.2.

• Γ �SP  SP′ for entailment between constructor specifications, generalising the
system in Section 9.3; and

• Γ �E : SP for correctness of constructors with respect to specifications, general-
ising the system for constructor entailment between specifications in Section 9.4.

We will also use two other judgement forms, having an auxiliary role:

• Γ is well formed for well-formedness of contexts; and
• Γ � SP : Spec(S ) for well-formedness of specifications (as constructor specifi-

cations for constructor signature S ).

The two well-formedness judgements above generalise the corresponding concepts
in Section 6.4, but capture more complex properties, which may depend on the cor-
rectness and entailments expressed by the other judgements. As a result, the system
of rules for each of the judgement forms refers to the others, and relies on auxiliary
definitions which are introduced in Exercise 9.5.4 below, which in turn refer to the
judgements. Therefore the rules, definitions and properties below constitute a single
large definition/theorem. For ease of understanding, we present it in chunks that can
be understood in relative isolation.

Contexts

A context Γ is a sequence of the form X1:SP1, . . . ,Xn:SPn, n≥ 0, where X1, . . . ,Xn
are distinct variables and each SPi is a specification (which includes constructor
signatures, via Exercise 6.4.15). We write dom(Γ ) for {X1, . . . ,Xn} and Γ (Xi) for
SPi. Well-formedness of contexts is given by the judgement: Γ is well formed.

is well formed

Γ is well formed Γ �SP : Spec(Sany)

Γ ,X :SP is well formed
X �∈ dom(Γ )
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The first rule states that the empty context is well formed. In the second rule, we
use the premise Γ �SP : Spec(Sany) to capture the requirement that SP be a well-
formed constructor specification in the context Γ (for an arbitrary constructor
signature Sany).

Well-formedness of specifications

Γ is well formed

Γ � 〈Σ ,Φ〉 : Spec(Σ)
Σ ∈ |Sign|,Φ ⊆ Sen(Σ)

Γ �SP : Spec(Σ)

Γ �SP with σ : Spec(Σ ′)
σ :Σ → Σ ′

Γ �SP′ : Spec(Σ ′)
Γ �SP′ hide via σ : Spec(Σ)

σ :Σ → Σ ′

. . . and similarly for other specification-building operations . . .

The system in Section 6.4 provides three new forms of constructor specifica-
tions for arbitrary constructor signatures: union, which subsumes the union of
Σ -specifications, singleton, and Π -specifications. We provide rules for well-
formedness of such specifications:

Γ �SP1 : Spec(S ) Γ �SP2 : Spec(S )

Γ �SP1∪SP2 : Spec(S )

Γ �E : SP Γ �SP : Spec(S )

Γ �{E} : Spec(S )

Γ �SP : Spec(S ) Γ ,X :SP�SP′ : Spec(S ′)
Γ �ΠX :SP• SP′ : Spec(S ⇒S ′)

It may be shown (see Exercise 9.5.1 below) that the second premise in the rule
for well-formedness of singleton specification is superfluous in the sense that
whenever Γ � E : SP can be derived then Γ � SP : Spec(S ) can be derived for
a unique constructor signature S . We leave this premise here just to directly
indicate the generalised signature to be used in the conclusion. A similar remark
applies to some of the rules below as well.

Entailment for Σ -specifications

Γ � 〈Σ ,Φ〉 : Spec(Σ)

Γ � 〈Σ ,Φ〉  ϕ ϕ ∈ Φ

Γ �SP : Spec(Σ) Γ �SP  ϕ
Γ �SP with σ  σ(ϕ) σ :Σ → Σ ′,ϕ ∈ Sen(Σ)
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Γ �SP′ : Spec(Σ ′) Γ �SP′  σ(ϕ)
Γ �SP′ hide via σ  ϕ σ :Σ → Σ ′,ϕ ∈ Sen(Σ)

. . . and similarly for other proof rules in Section 9.2 . . .

The last remark covers, for instance, the rule (∗) of Section 9.2, which now takes
the following form:

Γ �SP  Spec(Σ) Γ �SP  ϕ1 · · · Γ �SP  ϕn {ϕ1, . . . ,ϕn}  Σ ϕ
Γ �SP  ϕ

With respect to Section 9.2, a new form of Σ -specifications is singleton specifi-
cations. For a singleton specification of the form {[M]Σ} where M is a Σ -model,
we need to resort to semantic reasoning:

Γ is well formed

Γ �{[M]Σ}  ϕ
M |=Σ ϕ

From the rules below for entailment between specifications with a singleton spec-
ification as antecedent and for transitivity of entailment, we can derive the fol-
lowing:

Γ �E : SP Γ �SP  ϕ
Γ �{E}  ϕ

This justifies why the semantic rule for entailment for singleton specifications
above was limited to Σ -models, whose syntax is external to the system. There
should be no need to resort to semantic reasoning for other constructor expres-
sions: we offer rules below for deriving specifications for such expressions, and
then the last rule applies.

Entailment between specifications

Γ �SP : Spec(Σ) Γ �SP  ϕ for each ϕ ∈ Φ
Γ �SP  〈Σ ,Φ〉

Γ �SP′ hide via σ  SP
Γ �SP′  SP with σ

Γ �SP : Spec(Σ) Γ �SP′ : Spec(Σ ′)
Γ � ŜP  SP′

Γ �SP  SP′ hide via σ

σ :Σ → Σ ′, for each
Γ -environment ρ ,
[[SP]]ρ = ([[ŜP]]ρ) σ

. . . and similarly for other proof rules in Section 9.3 . . .
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The side condition for the last rule above captures the side condition of the corre-
sponding rule in Section 9.3 that σ :SP → ŜP is a specification morphism which
admits model expansion. We refer here to the semantics of specification expres-
sions as defined in Definition 6.4.11, which is justified below by Exercise 9.5.4.
The comments in Section 9.3 relating to methods for discharging this side con-
dition still apply here.
By Exercise 9.5.1 below, the premise of the second rule above (for translation)
ensures that SP and SP′ are well-formed specifications of signatures in |Sign|,
and that σ is a signature morphism between their signatures.

Γ �SP  SP1 Γ �SP  SP2

Γ �SP  SP1∪SP2

Γ �SP1  SP Γ �SP1∪SP2 : Spec(Sany)

Γ �SP1∪SP2  SP

Γ �SP2  SP Γ �SP1∪SP2 : Spec(Sany)

Γ �SP1∪SP2  SP

Γ �E : SP
Γ �{E}  SP

Γ �SP  SP1 Γ ,X :SP�SP′1  SP′

Γ �ΠX :SP1 • SP′1  ΠX :SP• SP′

Constructor correctness

The judgement Γ � E : SP1 generalises constructor entailment between speci-
fications as studied in Section 9.4: SP  κ SP′ corresponds to the judgement� E : ΠX :SP• SP′ where X does not occur in SP′ and [[E]]∅ = κ . We will not
directly import the rules given in Section 9.4. One reason is that we refrain from
extending the syntax for specifications given in Section 6.4 to explicitly cover
specifications of the form κ(SP), as used in the main rule in that section. Rules
for specific constructors (see Exercises 9.4.2, 9.4.3 and 9.4.4) will take a different
form here.

Γ is well formed

Γ �X : Γ (X)
X ∈ dom(Γ )

Γ �E : SP1 Γ �E : SP2

Γ �E : SP1∪SP2

Γ �E : SPany

Γ �E : {E}
Γ ,X :SP�E ′ : SP′

Γ �λX :SP• E ′ : ΠX :SP• SP′
Γ �E : ΠX :SP1 • SP′1 Γ �E1 : SP1

Γ �E(E1) : SP′1[E1/X ]

Γ �SP : Spec(S )

Γ � [F ]S : SP
F ∈ Mod(S ), and for each
Γ -environment ρ,F ∈ [[SP]]ρ
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The side condition in the last rule calls for external semantic reasoning to verify
correctness of the constructor F ∈ Mod(S ) against the specification SP. This
allows us to use the techniques developed in Section 9.4 for constructor entail-
ment between specifications to justify correctness judgements for first-order con-
structors: given a Σ -specification SP and Σ ′-specification SP′, if SP  κ SP′ for
κ ∈ Mod(Σ ⇒ Σ ′), then κ ∈ [[SP ⇒ SP′]], and so by the above rule we have
� [κ]Σ⇒Σ ′

: SP ⇒ SP′. (As before, SP ⇒ SP′ stands for ΠX :SP• SP′, where X
does not occur in SP′.)
Similarly as discussed in Section 6.4, an alternative is to limit this rule to Σ -
models only

Γ �SP : Spec(Σ)

Γ � [M]Σ : SP
M ∈ Mod(Σ), and for each
Γ -environment ρ, M ∈ [[SP]]ρ

and introduce a particular set of constructors either as constants, with their spec-
ifications defined by rules like

Γ is well formed

Γ � σ : ΠX :〈Σ ′,∅〉• {X} hide via σ
σ :Σ → Σ ′

or as additional syntax, with rules like this:

Γ �E : SP′ Γ �SP′ : Spec(Σ ′)
Γ �E σ : SP′ hide via σ

σ :Σ → Σ ′

Note that each of these two rules subsumes the rule for constructor entailment
for reduct in Exercise 9.4.2.

Exercise. Devise similar rules for the free extension constructor as defined in
Example 6.1.7 and introduced into our syntax in Exercise 6.4.3. For instance, the
second rule might be the following:

Γ �E : SP Γ �SP′ : Spec(Σ ′)
Γ �SP  (free SP′ wrt σ) hide via σ

Γ �Fσ ,SP′(E) : (free SP′ wrt σ)∪ (SP with σ)
σ :Σ → Σ ′

Compare these rules with the one in Exercise 9.4.3.

Exercise. Suppose that the following pushout diagram in Sign admits amalga-
mation:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1
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Devise similar rules for the amalgamated union constructor as defined in Exam-
ple 6.1.32 and introduced into our syntax in Exercise 6.4.4. For instance, the first
rule might be the following:

Γ is well formed

Γ � +σ1,σ2 : ΠX1:〈Σ1,∅〉• ΠX2:({X1} hide via σ1) with σ2 •
({X1} with σ ′

2)∪ ({X2} with σ ′
1)

for above
pushout

Transitivity and reflexivity

Finally, for each of the main judgement forms, we add rules that capture (reflex-
ivity and) transitivity of entailment between constructor specifications:

Γ �SP  SP′ Γ �SP′  ϕ
Γ �SP  ϕ

Γ �SP : Spec(Sany)

Γ �SP  SP
Γ �SP  SP′ Γ �SP′  SP′′

Γ �SP  SP′′

Γ �E : SP Γ �SP  SP′

Γ �E : SP′

Whenever convenient we will simply write a judgement rather than explicitly spell
out that it is derivable by the above rules.

Exercise 9.5.1. We can now relate the verification system given above to the typing
system of Definition 6.4.2 (with judgements of the form Γ �W : G , for a simpler
notion of context). By induction on derivations in the entire system for all judgement
forms in use, define a function that for each well-formed context Γ yields a (well-
formed) context strip(Γ ) in the sense of Definition 6.4.1, and prove the following:

• If Γ is the empty context, then strip(Γ ) stands for the empty context as well.
If Γ ,X :SP is well formed, then define strip(Γ ,X :SP) to be strip(Γ ),X :S where
Γ �SP : Spec(S ); such a constructor signature S is unique by the next property
and Exercise 6.4.7.

• If Γ �SP : Spec(S ) then strip(Γ )�SP : Spec(S ).
• If Γ � SP  ϕ then Γ � SP : Spec(Σ) for some signature Σ ∈ |Sign| and ϕ ∈

Sen(Σ).
• If Γ � SP  SP′ then Γ � SP : Spec(S ) and Γ � SP′ : Spec(S ) for some con-

structor signature S (common for SP and SP′).
• If Γ �E : SP then Γ �SP : Spec(S ) and strip(Γ )�E : S for some constructor

signature S (common for SP and E).

However, well-formedness in the current system is more demanding than typability
defined by the system in Definition 6.4.2. Give an example of a constructor expres-
sion E such that � E : S holds but � E : SPany does not hold for any specifica-
tion SPany. Similarly, give an example of a specification expression SP such that�SP : Spec(S ) holds but �SP : Spec(S ) does not hold. ��
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Exercise 9.5.2. Mimicking Exercise 6.4.8, try to check that the following substi-
tutivity properties hold in the system above. One problem is that since specifica-
tions used in contexts may now contain variables, contexts cannot be arbitrarily
permuted (in contrast with the contexts of Definition 6.4.1). Only a limited form
of permutation is available: show that if a judgement may be derived for a context
Γ ,X :SP,X ′:SP′,Γ ′ and the variable X is not free in SP′, then the same judgement
may be derived for the context Γ ,X ′:SP′,X :SP,Γ ′. Even with this, stronger proper-
ties than in Exercise 6.4.8 are required here:

• If Γ ,X :SP1,Γ ′ is well formed and Γ �E1 : SP1 then Γ ,Γ ′[E1/X ] is well formed,
where Γ ′[E1/X ] is the context obtained from Γ ′ by substituting E1 for X in all
the specifications for variables in Γ ′, i.e. dom(Γ ′[E1/X ]) = dom(Γ ′) and for X ′ ∈
dom(Γ ′), Γ ′[E1/X ](X ′) = Γ ′(X ′)[E1/X ].

• Γ ,Γ ′[E1/X ]� SP[E1/X ] : Spec(S ) whenever Γ ,X :SP1,Γ ′ � SP : Spec(S ) and
Γ �E1 : SP1.

• Γ ,Γ ′[E1/X ]�SP[E1/X ]  ϕ whenever Γ ,X :SP1,Γ ′�SP  ϕ and Γ �E1 : SP1.
• Γ ,Γ ′[E1/X ]�SP[E1/X ]  SP′[E1/X ] whenever Γ ,X :SP1,Γ ′�SP  SP′ and Γ �

E1 : SP1.
• Γ ,Γ ′[E1/X ] � E[E1/X ] : SP[E1/X ] whenever Γ ,X :SP1,Γ ′ � E : SP and Γ �

E1 : SP1. ��
Exercise 9.5.3. In the spirit of Exercise 6.4.9, check that the following subject re-
duction properties hold for the fragment of the system obtained by excluding sin-
gleton specifications:

• If Γ �E : SP and E →β E ′ then Γ �E ′ : SP.
• If Γ �E : SP and E →η E ′ then Γ �E ′ : SP.

Give an example of a constructor expression E in the full system such that Γ �
E : {E} but for some E ′ with E →β E ′, Γ � E ′ : {E} does not hold. The essence
of the problem here is that the judgement Γ � E ′ : {E} captures equality between
E and E ′, but the system does not contain rules that deal properly with equality,
whether via β -reduction or otherwise. (But note that if E and E ′ are over a signature
Σ ∈ |Sign|, then semantic equality between them can be used to discharge the side
condition needed to obtain Γ �{E ′}  {E} hide via idΣ , which with Γ �E ′ : {E ′}
and Γ �{E} hide via idΣ  {E} yields Γ �E ′ : {E}.)

One remedy would be to extend the system with rules for equality. Investigate
this, making reference to [Asp97].

Another possibility is to relegate reasoning about equality to an external system
via the use of a semantic side condition as in the following rule, which properly
generalises the corresponding one above:

Γ �E : SPany Γ �E ′ : SPany

Γ �E ′ : {E}
[[E]]ρ = [[E ′]]ρ for each

Γ -environment ρ

Check that adding this rule does not violate the properties in Exercises 9.5.1
and 9.5.4. Check that all judgements in the extended system are preserved under
β -reduction as well as well-formed β -expansion.
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Note that η-reduction may change the semantics of a constructor by enlarging
its domain: for a closed specification SP with Mod[SP] ⊂ dom(F), λX :SP• F(X)
restricts the domain of F to Mod[SP]. Thus it would be unsound to derive (we omit
decoration on the uses of F as a constructor expression) �F : {λX :SP• F(X)} from�λX :SP• F(X) : {λX :SP• F(X)} or vice versa, and the rule above does not permit
this. ��
Exercise 9.5.4. Show that the system of rules above is sound with respect to the
semantics in Definition 6.4.11. That is, by induction on derivations in the entire
system for all judgement forms in use, and relying on Exercise 9.5.1 above, define
a notion of an environment for a well-formed context and prove the following:

• If Γ is the empty context then define any (partial) assignment of construc-
tors to variables to be a Γ -environment. If Γ ,X :SP is well formed then define
Γ ,X :SP-environments to be all environments of the form ρ [X �→ F ] for Γ -
environment ρ and F ∈ [[SP]]ρ . [[SP]]ρ is defined by the next property, since we
have Γ � SP : Spec(S ) for a (unique) constructor signature S . Moreover, all
Γ -environments are strip(Γ )-environments in the sense of Definition 6.4.10.

• If Γ �SP : Spec(S ) then for any Γ -environment ρ , [[SP]]ρ is defined and [[SP]]ρ ⊆
Mod(S ).

• If Γ �SP  ϕ then for any Γ -environment ρ , [[SP]]ρ is defined, [[SP]]ρ ⊆Mod(Σ),
and [[SP]]ρ |=Σ ϕ , where Γ �SP : Spec(Σ).

• If Γ �SP  SP′ then for any Γ -environment ρ , [[SP]]ρ and [[SP′]]ρ are defined, and
[[SP]]ρ ⊆ [[SP′]]ρ ⊆ Mod(S ), where Γ �SP : Spec(S ) and Γ �SP′ : Spec(S ).

• If Γ � E : SP then for any Γ -environment ρ , [[E]]ρ and [[SP]]ρ are defined, and
[[E]]ρ ∈ [[SP]]ρ ⊆ Mod(S ), where Γ �SP : Spec(S ) and strip(Γ )�E : S .

The use of abbreviated notation for the semantics of specification and constructor
expressions, e.g. [[SP]]ρ rather than [[strip(Γ )� SP : Spec(S )]]ρ , is justified by Ex-
ercise 6.4.7. ��

This concludes the large definition/theorem that started at the beginning of the
section.

Exercise 9.5.5. Extend the system above by adding parameterised specifications,
following Definition 6.4.5, with no attempt to provide specifications for (parame-
terised) specifications other than specification types. This requires extending con-
texts by allowing variables to be mapped to specification types, and adding a new
judgement form Γ � P : T . Explicit rules for β - and η-reduction and well-formed
β - and η-expansion of expressions involving parameterised specifications will be
required; they do not arise from the rule discussed in Exercise 9.5.3, and for in-
stance the judgements Γ �E : (λX :T • P)(P′) and Γ �E : P[P′/X ] are independent
of each other (assuming well-formedness of (λX :T • P)(P′) in the context Γ ). ��
Exercise 9.5.6. Try extending the system obtained in the last exercise by dropping
the stratification between constructor signatures and specification types, as sug-
gested in Exercise 6.4.20. ��
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Example 9.5.7. Suppose that the following pushout diagram in Sign admits amal-
gamation:

Σ

Σ1 Σ2

Σ ′

�
�

���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ ′
2 σ ′

1

Note that the specification for the amalgamated union constructor

� +σ1,σ2 : ΠX1:〈Σ1,∅〉• ΠX2:({X1} hide via σ1) with σ2 •
({X1} with σ ′

2)∪ ({X2} with σ ′
1)

captures the expected requirement of sharing between its arguments. To verify any
application, we have to check that this requirement is satisfied. A typical way to
ensure this is by using persistent constructors to build these arguments from the
common shared part, thus ensuring that they share this common part and so can be
put together. Here is a schematic example which illustrates how this works.

Consider the following context Γ :

F1:SP
σ1==⇒ SP1,F2:SP

σ2==⇒ SP2,X :SP

where � SP : Spec(Σ), � SP1 : Spec(Σ1) and � SP2 : Spec(Σ2). We will show
that in this context, F1(X) +σ1,σ2 F2(X) is well formed and that the constructor
λX :SP• F1(X)+σ1,σ2 F2(X) is correct with respect to the expected specification.

Recall from Example 6.2.9 that SP σ
==⇒ SP′ abbreviates ΠX :SP• ({X} with σ)∪

SP′. Hence, from Γ �F1(X) : SP
σ1==⇒ SP1 we get

Γ �F1(X) : ({X} with σ1)∪SP1

from which it follows that

Γ �F1(X) : {X} with σ1 and Γ �F1(X) : SP1.

The latter yields

Γ �F1(X) : 〈Σ1,∅〉
and so

Γ �F1(X)+σ1,σ2 : ΠX2:({F1(X)} hide via σ1) with σ2 •
({F1(X)} with σ ′

2)∪ ({X2} with σ ′
1).

From the former we get

Γ �F1(X) σ1 : ({X} with σ1) hide via σ1
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and since Γ � ({X} with σ1) hide via σ1  {X}, we derive

Γ �F1(X) σ1 : {X}.
This implies that for every Γ -environment ρ , [[{X}]]ρ = {ρ(X)} = [[{F1(X)}]]ρ σ1 ,
which together with Γ �{F1(X)}  {F1(X)} yields

Γ �{X}  {F1(X)} hide via σ1.

For the application of F2, we similarly get

Γ �F2(X) : {X} with σ2 and Γ �F2(X) : SP2.

The former entails now

Γ �F2(X) : ({F1(X)} hide via σ1) with σ2.

Consequently

Γ �F1(X)+σ1,σ2 F2(X) : ({F1(X)} with σ ′
2)∪ ({F2(X)} with σ ′

1)

from which we get

Γ �F1(X)+σ1,σ2 F2(X) : (SP1 with σ ′
2)∪ (SP2 with σ ′

1),

that is, using sum with explicit sharing as defined in Section 5.2,

Γ �F1(X)+σ1,σ2 F2(X) : SP1 +σ1,σ2 SP2.

We also get

Γ �F1(X)+σ1,σ2 F2(X) : ({X} with σ1) with σ ′
2∪ ({X} with σ2) with σ ′

1

and thus

Γ �F1(X)+σ1,σ2 F2(X) : {X} with σ1;σ ′
2,

which gives

Γ �F1(X)+σ1,σ2 F2(X) : ({X} with σ1;σ ′
2)∪ (SP1 +σ1,σ2 SP2).

Putting all this together, we conclude

F1:SP
σ1==⇒ SP1,F2:SP

σ2==⇒ SP2 �
λX :SP• F1(X)+σ1,σ2 F2(X) : SP

σ1;σ ′
2====⇒ SP1 +σ1,σ2 SP2.

Exercise. Identify the rules used in the above derivation. Some of them have not
been given explicitly in this section but are inherited from Section 9.3 (e.g. rules
for monotonicity of specification-building operations and rules corresponding to the
algebraic laws in Section 5.6). ��
Exercise 9.5.8. Recall the specifications and constructors introduced in Section 6.5.
Proceeding similarly as in Example 9.5.7 above, show that
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• �FBucket : CONSBUCKET
• FBucket:CONSBUCKET �FTable : CONSTABLE

(this requires you to spell out the definition of CONSTABLE)
• �FUserStringHashTable : SP

where SP is an appropriate Π -specification. ��
Exercise 9.5.9. Recall the specifications and constructors given in Examples 7.2.8
and 7.3.3. Write out specifications for the constructors K4–K7, adding appropriate
sharing requirements for the arguments of K4. Prove the correctness of the construc-
tors with respect to your specifications and then verify that

�K4(K1(K2(K7(empty))))(K5(K6(K7(empty)))) : SortOnce.

Then, assuming that the constructor K4′ of Example 7.3.4 satisfies the specifica-
tion that is implicit in the constructor implementation step in that example, write out
specifications for C, C′ and C′′ of Example 7.3.7 and Exercise 7.3.8 and prove the
correctness of the constructors with respect to your specifications.

Finally, try to provide proof rules that are appropriate for the notation for higher-
order constructors in FPL introduced in Exercise 7.3.5. Make sure that the rules are
sufficient to prove the correctness of the constructor K4′. ��

9.6 Proving behavioural properties

The preceding sections in this chapter dealt with proof systems corresponding to the
standard satisfaction relation between models and sentences. Chapter 8 introduced
a more permissive interpretation of sentences and specifications whereby additional
models are admitted provided they exhibit the same externally observable behaviour
as that of the usual models. Along with such a change of interpretation of sentences
and specifications comes the need for a corresponding change in proof systems.

We will proceed similarly as in the preceding sections, starting with a discussion
of (behavioural) entailment between sentences, and then proceeding to entailment
for behavioural specifications, and finally to entailment between behavioural speci-
fications and correctness of behavioural implementations.

As in Chapter 8, we will abandon working in an arbitrary institution and instead
consider the standard case of algebraic signatures and many-sorted total algebras,
looking in particular at the institution FOEQ of first-order equational logic, some-
times restricting attention just to equations. We then move to the institution FPL in
Section 9.6.5.

In this section we will refrain from explicitly introducing notation for the various
levels of proof-theoretic entailment. Instead, we will study properties of the corre-
sponding notions of semantic consequence, and leave it as an exercise for the reader
to turn these properties into proof rules.
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9.6.1 Behavioural consequence

In Definition 8.3.9 we introduced behavioural satisfaction between standard alge-
bras and equations. This was extended to first-order equational sentences (without
predicates) in Exercise 8.3.10. Recall that for an arbitrary signature Σ and set OBS
of observable sorts in Σ , we write A |=OBS ϕ when a Σ -algebra A behaviourally
satisfies (w.r.t. OBS) a Σ -sentence ϕ . (We extend this to classes of Σ -algebras as
usual: A |=OBS ϕ if A |=OBS ϕ for all A ∈A .) As with any satisfaction relation, this
induces a natural semantic consequence relation.

Definition 9.6.1 (Behavioural consequence Φ |=OBS ϕ). For any signature Σ with
observable sorts OBS, set Φ of first-order Σ -sentences, and first-order Σ -sentence ϕ ,
we define Φ |=OBS ϕ to mean that for every Σ -algebra A, A |=OBS Φ implies A |=OBS
ϕ . Equivalently, Φ |=OBS ϕ iff ModOBS(〈Σ ,Φ〉) |=OBS ϕ; see Definition 8.3.11. ��

Before we launch into a study of this notion of consequence, let us remark that
we will later need a different relation for proving correctness of behavioural im-
plementations, where the premises are interpreted literally and only the consequent
is interpreted behaviourally, written Φ ||=OBS ϕ . We will study this relation in the
second part of this section. Similar mixed relations will also be of interest in subse-
quent sections. The reason for this is that the methods we use to reduce behavioural
consequence and correctness of behavioural implementations to simpler relations
all yield relations of this kind.

Exercise 9.6.2. Show that behavioural consequence is not compact, even for equa-
tional logic: give a signature Σ with observable sorts OBS, an infinite set E of
Σ -equations, and a Σ -equation e, such that E |=OBS e but there is no finite sub-
set E ′ ⊆ E such that E ′ |=OBS e. Conclude that there can be no finitary sound and
complete proof system for behavioural consequence, either in equational logic or in
first-order logic. ��
Exercise 9.6.3. Use Exercise 8.3.16 to show that Φ |=OBS ϕ is not always closed
under translation along signature morphisms, even for equational logic. Using Exer-
cise 8.3.17, try to characterise the signature morphisms σ :Σ → Σ ′ with sets of ob-
servable sorts OBS and OBS′ in Σ and Σ ′, respectively, such that E |=OBS e implies
σ(E ) |=OBS′ σ(e) for any set E of Σ -equations and Σ -equation e. Would consider-
ing arbitrary first-order sentences change anything here? ��

By Theorem 8.3.26 (and Exercise 8.3.27), Φ |=OBS ϕ is the same as requiring
that for every Σ -algebra A, if A/≈A |= Φ then A/≈A |= ϕ . This gives us one way
of reducing the problem of proving behavioural consequence to that of proving or-
dinary entailments between sentences. Other such reductions will follow, and this
will be our strategy in the development of proof techniques for behavioural conse-
quence. One straightforward observation is that if Φ |= ϕ then Φ |=OBS ϕ , which
means that all the proof techniques of Section 9.1 that apply to institutions EQ and
FOEQ are sound here as well. The opposite implication fails in general.
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Exercise 9.6.4. Give an example of a signature Σ with observable sorts OBS and
Σ -equation e such that ∅ |=OBS e but ∅ �|= e. Try to think of an example for which
OBS �=∅. ��

This gap is easy to fill in the case of EQ, albeit with an infinitary proof rule.

Theorem 9.6.5. Consider any signature Σ with observable sorts OBS, set E of Σ -
equations and Σ -equation ∀X • t = t ′. Then E |=OBS ∀X • t = t ′ iff for all substitu-
tions θ :X → |TΣ (XOBS)| and all observable contexts C ∈ |TΣ (XOBS � {�:s})|OBS,
E |= ∀XOBS • C[t[θ ]] = C[t ′[θ ]].

Proof. For the “only if” part, consider A ∈Mod(E ). By Exercise 8.3.13, A |=OBS E ,
and hence A |=OBS ∀X • t = t ′, i.e. (by Definition 8.3.9) for all valuations v:X →
|〈A〉OBS| into the OBS-generated subalgebra of A, tA(v) ∼OBS

A t ′A(v). Now, consider
vOBS:XOBS → |A| and a substitution θ :X → |TΣ (XOBS)|. Define vθ :X → |〈A〉OBS| by
vθ (x) = θ(x)A(vOBS). Then (t[θ ])A(vOBS) = tA(vθ ) ∼OBS

A t ′A(vθ ) = (t ′[θ ])A(vOBS).
Hence, for any observable context C ∈ |TΣ (XOBS � {�:s})|OBS, CvOBS

A [tA(vθ )] =
CvOBS

A [t ′A(vθ )]. This yields (C[t[θ ]])A(vOBS) = (C[t ′[θ ]])A(vOBS), which proves A |=
∀XOBS • C[t[θ ]] = C[t ′[θ ]].

For the “if” part, let A |=OBS E . Then A/≈A |= E by Theorem 8.3.26, and so
for all substitutions θ :X → |TΣ (XOBS)| and all observable contexts C ∈ |TΣ (XOBS �
{�:s})|OBS, A/≈A |= ∀XOBS • C[t[θ ]] = C[t ′[θ ]]. Since A/≈A is OBS-generated, this
implies that for all valuations v:X → |A/≈A| and for all observable contexts C ∈
|TΣ (XOBS �{�:s})|OBS, Cv

A/≈A
[tA/≈A(v)] = Cv

A/≈A
[t ′A/≈A

(v)]. Hence tA/≈A(v)∼OBS
A/≈A

t ′A/≈A
(v). Now, since A/≈A is fully abstract by Lemma 8.3.23, this yields tA/≈A(v) =

t ′A/≈A
(v) and so A/≈A |= ∀X • t = t ′; thus A |=OBS ∀X • t = t ′ by Theorem 8.3.26.

��
The above theorem can be split into two equivalences, one dealing with restricting
valuations to the OBS-generated part of algebras, and the other dealing with the use
of contexts to determine indistinguishability.

Corollary 9.6.6. Consider any signature Σ with observable sorts OBS, set Φ of
first-order Σ -sentences and Σ -sentence of the form ∀XOBS • ∀x:s• ϕ for a sort s �∈
OBS, where ϕ is a first-order Σ -formula with free variables in XOBS ∪{x:s}. Then
Φ |=OBS ∀XOBS • ∀x:s• ϕ iff for all terms t ∈ |TΣ (XOBS)|s, Φ |=OBS ∀XOBS • ϕ[x �→
t]. Similarly, Φ |=OBS ∀XOBS • ∃x:s• ϕ if (not iff in general!) for some term t ∈
|TΣ (XOBS)|s, Φ |=OBS ∀XOBS • ϕ[x �→ t]. ��
Corollary 9.6.7. Consider any signature Σ with observable sorts OBS, set E of
Σ -equations and Σ -equation ∀XOBS • t = t ′. Then E |=OBS ∀XOBS • t = t ′ iff for all
observable contexts C ∈ |TΣ (XOBS�{�:s})|OBS, E |= ∀XOBS • C[t] = C[t ′]. ��
Exercise 9.6.8. Prove the above corollaries by extracting appropriate arguments
from the proof of Theorem 9.6.5, and then prove the theorem as a direct conse-
quence of these two corollaries, at least for the case where the set X is finite. ��
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Exercise 9.6.9. Show that the extension of Theorem 9.6.5 as well as Corollary 9.6.7
to FOEQ fails: in general we cannot allow the set E to contain arbitrary first-order
sentences; see Exercise 8.3.28. ��

Corollary 9.6.6 justifies the use of induction when proving behavioural conse-
quences.

Exercise 9.6.10. Formulate a proof rule to capture such inductive arguments. For
inspiration, see Example 9.1.11 for an induction rule formulated in the context of
sorts with value constructors in FPL. ��

Corollary 9.6.7 justifies the use of context induction for proving behavioural con-
sequences in equational logic.

Lemma 9.6.11 (Context induction). Given a signature Σ with observable sorts
OBS, let ξ be a property of observable contexts C ∈ |TΣ (XOBS�{�:s})|OBS. If:

• ξ holds for the contexts �:s with s ∈ OBS; and
• for all operations f :s1 × ·· · × si × ·· · × sn → o with o ∈ OBS, contexts C ∈
|TΣ (XOBS � {�:s})|si , and terms t1 ∈ |TΣ (XOBS)|s1 , . . . , ti−1 ∈ |TΣ (XOBS)|s1−1 ,
ti+1 ∈ |TΣ (XOBS)|s1+1 , . . . , tn ∈ |TΣ (XOBS)|sn , whenever ξ holds for all observ-
able contexts C′ that are subterms of C, then ξ also holds for the context
f (t1, . . . , ti−1,C, ti+1, . . . , tn),

then ξ holds for all observable contexts. ��
Exercise 9.6.12. Justify the soundness of the above context induction principle by
noticing that the subterm relation is a well-founded (Noetherian) ordering. ��
Exercise 9.6.13. Show how context induction can be used to prove behavioural con-
sequences in equational logic. HINT: Use Corollary 9.6.7, taking the property ξ of
an observable context C to be E |= ∀XOBS • C[t] = C[t ′]. ��
Exercise 9.6.14. Generalise Corollary 9.6.7 to conditional equations with premises
of observable sorts and show that the context induction principle can be used for
proving behavioural consequences for such sentences as well. ��

In spite of the last exercise, the proof techniques for behavioural consequence
presented above do not apply much beyond equational logic. In particular (see Ex-
ercise 9.6.9) some of them are already unsound for FOEQ.

An alternative to techniques based on context induction is to explicitly exploit
the definition of behavioural satisfaction (Definition 8.3.9) by encoding the indistin-
guishability predicate.

Definition 9.6.15 (Behavioural relativisation). For any algebraic signature Σ , let
�Σ� be its extension to a first-order signature by the addition of a predicate symbol
+s:s× s for each sort s in Σ . Then for each first-order formula ϕ , let �ϕ� denote the
behavioural relativisation of ϕ , obtained by replacing equality by+ and relativising
quantifiers to the domain of + as follows:
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• �t = t ′� is t +s t ′ for terms t, t ′ of sort s;
• �ϕ1∧ϕ2� is �ϕ1�∧�ϕ2�, and analogously for other connectives; and
• �∀x:s• ψ� is ∀x:s• x +s x ⇒ �ψ� and �∃x:s• ψ� is ∃x:s• x +s x∧�ψ�.

For a set Φ of first-order Σ -sentences, �Φ� is the set obtained by taking the be-
havioural relativisation of all of the sentences in Φ . ��

For any signature Σ = 〈S,Ω〉 with observable sorts OBS, each �Σ�-model con-
sists of a Σ -algebra A and a family of binary relations +A= 〈+A,s⊆ |A|s×|A|s〉s∈S.
We write such a �Σ�-model as a pair 〈A,+A〉.

The following lemma follows directly from the definition of behavioural satis-
faction; see Exercise 8.3.10.

Lemma 9.6.16. For any signature Σ with observable sorts OBS, Σ -algebra A and
first-order Σ -sentence ϕ , A |=OBS ϕ iff 〈A,≈OBS

A 〉 |= �ϕ�, where ≈OBS
A is the partial

behavioural indistinguishability congruence on A; see Definition 8.3.19. ��
The idea is now to axiomatise + so as to capture the partial behavioural indistin-

guishability congruence. The axiomatisation consists of five parts:

• EQUIV(+) states that + is a partial equivalence:
∧

s in Σ
(∀x,y:s• x +s y ⇒ y +s x)∧ (∀x,y,z:s• x +s y∧ y +s z ⇒ x +s z)

This is a first-order �Σ�-sentence provided that Σ has finitely many sorts.
• CONG(+) asserts the Σ -congruence property for +:

∧
f :s1×···×sn→s in Σ

∀x1,y1:s1, · · · ,xn,yn:sn • x1 +s1 y1∧·· ·∧ xn +sn yn ⇒
f (x1, . . . ,xn)+s f (y1, . . . ,yn)

This is a first-order �Σ�-sentence provided that Σ has finitely many operations.
• IDOBS(+) states that + is identity on observable sorts:

∧
s∈OBS

∀x,y:s• x +s y ⇔ x = y

Again, this is a first-order �Σ�-sentence provided that OBS is finite.
• OBSREACH(+) states that the domain of + is OBS-generated:

∧
s in Σ

∀x:s• x +s x ⇔
∨

XOBS finite
t∈|TΣ (XOBS)|s

∃XOBS • x = t

This is a �Σ�-sentence in the infinitary logic Lω1ω which extends first-order logic
by allowing countably infinite conjunction and disjunction; see Exercise 4.1.14.
It is not a first-order sentence because even for finite signatures Σ the disjunction
involved is in general (countably) infinite: there may be infinitely many Σ -terms
of some sort s, even when terms are considered up to renaming of variables. In
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some cases the set of terms involved may be finite (up to renaming of variables),
and then we can rewrite the formula to limit the choice of variables XOBS to
variables from a pre-defined finite set, yielding a first-order �Σ�-sentence.

• INDIST (+) links + with indistinguishability by observable contexts:

∧
s in Σ

∀x,y:s• x +s y ⇔

⎛
⎜⎜⎝x +s x∧ y +s y∧

∧
XOBS finite, x,y �∈XOBS

C∈|TΣ (XOBS�{�:s})|OBS

∀XOBS • C[x] = C[y]

⎞
⎟⎟⎠

The same comments apply as for OBSREACH(+); here the source of infinite-
ness is the potentially infinite number of observable contexts for a given non-
observable sort. Again, in some cases this set of contexts is finite (up to renaming
of variables), and then this amounts to a first-order �Σ�-sentence.

Lemma 9.6.17. For any signature Σ with observable sorts OBS and �Σ�-model
〈A,+A〉, 〈A,+A〉 satisfies the �Σ�-sentence EQUIV(+)∧CONG(+)∧ IDOBS(+)∧
OBSREACH(+)∧ INDIST (+) iff +A is the partial indistinguishability congruence
on A. ��
Exercise 9.6.18. Convince yourself that the sentences above directly capture the
definition of ≈OBS

A ; this proves the lemma. ��
Corollary 9.6.19. For any signature Σ with observable sorts OBS and �Σ�-model
〈A,+A〉, 〈A,+A〉 |= OBSREACH(+)∧ INDIST (+) iff +A is the partial indistin-
guishability congruence on A.

Proof. Follows from Lemma 9.6.17, since

OBSREACH(+), INDIST (+) |= EQUIV(+)∧CONG(+)∧ IDOBS(+). ��
Putting Lemma 9.6.16 and Corollary 9.6.19 together, we obtain:

Theorem 9.6.20. Consider any signature Σ with observable sorts OBS, set Φ of
first-order Σ -sentences and first-order Σ -sentence ϕ . Then Φ |=OBS ϕ iff

�Φ�,OBSREACH(+), INDIST (+) |= �ϕ�. ��
Example 9.6.21. In Example 2.7.7 we gave a specification of sets of natural num-
bers. Here is a variant of that specification, assuming a specification Bool of
booleans such that all models of Bool are isomorphic to the standard model, and a
specification Nat of natural numbers:
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spec SetNat =
Bool and Nat
then

ops ∅:NatSet
add:Nat×NatSet → NatSet
∈ :Nat×NatSet → Bool

∀n,m:Nat,S:NatSet
• n ∈∅= false
• n ∈ add(n,S) = true
• m �= n ⇒ m ∈ add(n,S) = m ∈ S

As discussed in Example 2.7.7, neither commutativity nor idempotency of add is
a consequence of SetNat. However, both of these properties are behavioural con-
sequences of the axioms in SetNat if we take Bool and Nat as the only observable
sorts. We will prove commutativity using Theorem 9.6.20. Let Σ = Sig[SetNat]
and OBS = {Bool,Nat}, and let Φ be the axioms of SetNat, including those in-
herited from Nat and Bool.

We have to show

�Φ�,OBSREACH(+), INDIST (+) |=
�∀m,n:Nat,S:NatSet• add(m,add(n,S)) = add(n,add(m,S))�

where �∀m,n:Nat,S:NatSet• add(m,add(n,S)) = add(n,add(m,S))� is

∀m,n:Nat,S:NatSet• (m +Nat m∧n +Nat n∧S +NatSet S)⇒
add(m,add(n,S))+NatSet add(n,add(m,S)).

So, assume �Φ�, OBSREACH(+), INDIST (+), m +Nat m, n +Nat n and S +NatSet
S. First note that by OBSREACH(+) and INDIST (+), +Nat and +Bool are the
identities. It follows that m +Nat m and n +Nat n are superfluous. All observ-
able Σ -contexts for NatSet are boolean combinations of terms of the form n0 ∈
add(n1, . . .add(nk,�:NatSet) . . .) where k ≥ 0 and n0,n1, . . . ,nk are terms of sort
Nat. Given that Bool unambiguously determines the interpretation of the boolean
connectives, by INDIST (+), add(m,add(n,S)) +NatSet add(n,add(m,S)) holds iff
for all k ≥ 0 and terms n0,n1, . . . ,nk of sort Nat,

n0 ∈ add(n1, . . .add(nk,add(m,add(n,S))) . . .) =
n0 ∈ add(n1, . . .add(nk,add(n,add(m,S))) . . .).

By repeated use of the axioms in �Φ� that link ∈ and add, and relying on the fact
that +Nat and +Bool are the identities as well as on the assumption S +NatSet S, one
can easily show that

n0 ∈ add(n1, . . .add(nk,add(m,add(n,S))) . . .) = true

iff

n0 = n1∨·· ·∨n0 = nk ∨n0 = m∨n0 = n∨n0 ∈ S = true,

and likewise (because disjunction is commutative) for
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n0 ∈ add(n1, . . .add(nk,add(n,add(m,S))) . . .) = true.

This completes the proof.

Exercise. Prove idempotency of add in a similar way. ��
Exercise 9.6.22. Using higher-order logic, in which one can quantify over rela-
tions, give an alternative definition of OBSREACH(+) which states that + is de-
fined on the least set that contains all values of observable sorts and is closed
under the application of the operations. Similarly, give an alternative definition of
INDIST (+) which states that+ is the largest partial behavioural congruence satisfy-
ing OBSREACH(+). Redo Example 9.6.21 using these versions of OBSREACH(+)
and INDIST (+). ��

Exercise 9.6.23. For any Σ -algebra A, show that A is fully abstract iff 〈A,=|A|〉 |=
OBSREACH(+)∧ INDIST (+). Combine this with Lemma 8.3.23, Theorem 8.3.26
and Exercise 8.3.27 to show that Φ |=OBS ϕ iff Φ ,OBSREACH(=), INDIST (=) |=
ϕ . Here, OBSREACH(=) and INDIST (=) are the infinitary equational formulae
obtained by syntactically replacing +s by =, for each sort s, in OBSREACH(+) and
INDIST (+) respectively. ��

As stated at the beginning of the section, we will also need a different notion of
consequence, whereby the premises are interpreted literally instead of behaviourally.

Definition 9.6.24 (Behavioural consequence Φ ||=OBS ϕ). For any signature Σ
with observable sorts OBS, set Φ of first-order Σ -sentences, and first-order Σ -
sentence ϕ , we define Φ ||=OBS ϕ to mean that for every Σ -algebra A, A |=Φ implies
A |=OBS ϕ . Equivalently, Φ ||=OBS ϕ iff Mod[〈Σ ,Φ〉] |=OBS ϕ . ��
Proposition 9.6.25. For any signature Σ with observable sorts OBS, set Φ of first-
order Σ -sentences, and first-order Σ -sentence ϕ , if Φ ||=OBS ϕ then Φ |=OBS ϕ .

Proof. For any Σ -algebra A, if A |=OBS Φ then A/≈OBS
A |= Φ and so A/≈OBS

A |=OBS
ϕ . Since A/≈OBS

A is fully abstract, we have A/≈OBS
A |= ϕ and so A |=OBS ϕ . ��

Exercise 9.6.26. Show that a sufficient condition for the opposite implication is that
Mod(Φ) is behaviourally closed (Definition 8.3.30): if Mod(Φ) is behaviourally
closed then Φ |=OBS ϕ implies Φ ||=OBS ϕ for any sentence ϕ . Conclude that the
two notions of behavioural consequence introduced in Definitions 9.6.1 and 9.6.24
coincide for equational logic, which allows for the use of e.g. context induction
(Lemma 9.6.11) for proving Φ ||=OBS ϕ in EQ. ��
Exercise 9.6.27. Show that behavioural closure of Mod(Φ) is also a necessary con-
dition for Φ |=OBS ϕ and Φ ||=OBS ϕ to coincide for all ϕ . ��
Exercise 9.6.28. Show that ||=OBS is also distinct from the usual consequence re-
lation, |=. Give an example of a set Φ of sentences and a sentence ϕ such that
Φ ||=OBS ϕ but not Φ |= ϕ , and another example of Φ and ϕ such that Φ |= ϕ but
not Φ ||=OBS ϕ . The former example can easily be given in equational logic; the
latter requires a set Φ such that Mod(Φ) is not behaviourally closed. ��
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Although ||=OBS and |= do not coincide in general, there is an important class of
consequences for which they are the same.

Definition 9.6.29 (Observable sentence). Consider a signature Σ with set OBS
of observable sorts. A Σ -sentence ϕ is observable if for some Σ -sentence ψ , ϕ
is equivalent to �ψ� on the class of �Σ�-models that satisfy OBSREACH(+)∧
INDIST (+), that is, A |= ϕ iff 〈A,+A〉 |= �ψ� for all �Σ�-models 〈A,+A〉 such that
〈A,+A〉 |= OBSREACH(+)∧ INDIST (+). ��
Exercise 9.6.30. Show that all equations between terms of observable sorts that in-
volve only variables of observable sorts are observable. Then show that observable
first-order sentences are closed under propositional connectives. What about quan-
tifiers? ��
Proposition 9.6.31. Let Σ be a signature with a set OBS of observable sorts. For
any set Φ of observable Σ -sentences, ModΣ (Φ) is behaviourally closed and closed
under behavioural expansion.

Proof. It is enough to prove that for any observable Σ -sentence ϕ and Σ -algebra A,
A |= ϕ iff A/≈OBS

A |= ϕ . So, assume that ϕ is equivalent to �ψ� on �Σ�-models
that satisfy OBSREACH(+)∧ INDIST (+). Since by Corollary 9.6.19, 〈A,≈OBS

A 〉 |=
OBSREACH(+)∧ INDIST (+), we have A |= ϕ iff 〈A,≈OBS

A 〉 |= �ψ� iff A |=OBS ψ
iff A/≈OBS

A |= ψ iff 〈A/≈OBS
A ,=〉 |= �ψ� iff A/≈OBS

A |= ϕ . ��
Consequently, observable sentences are preserved under behavioural equivalence,
which justifies the use of the same terminology (“observable sentence”) here and in
Section 8.5.3.3.

Proposition 9.6.32. A Σ -sentence ϕ is observable iff for all Σ -algebras A, A |= ϕ is
equivalent to A |=OBS ϕ .

Proof. The “only if” part follows by Proposition 9.6.31, since A/≈OBS
A |= ϕ iff

A |=OBS ϕ . For the “if” part, suppose that for all Σ -algebras A, A |= ϕ is equiv-
alent to A |=OBS ϕ . We show that ϕ is equivalent to �ϕ� on all �Σ�-models that
satisfy OBSREACH(+) ∧ INDIST (+). Let 〈A,+A〉 be such a model; by Corol-
lary 9.6.19, +A coincides with ≈OBS

A and therefore we have A |= ϕ iff A |=OBS ϕ
iff 〈A,≈OBS〉 |= �ϕ� iff 〈A,+A〉 |= �ϕ�. ��
Corollary 9.6.33. If all of the sentences in Φ are observable then Φ |=OBS φ is
equivalent to Φ ||=OBS φ . ��

There can be no finitary sound and complete proof system for ||=OBS because it
is not compact, see Exercise 9.6.2, where a counterexample can be given using an
infinite set Φ of observable sentences.

The analogue of Theorem 9.6.20 now takes the following form:

Theorem 9.6.34. Consider any signature Σ with observable sorts OBS, set Φ of
first-order Σ -sentences and first-order Σ -sentence ϕ . Then Φ ||=OBS ϕ iff

Φ ,OBSREACH(+), INDIST (+) |= �ϕ�. ��
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In many examples, the above axiomatisation of indistinguishability may be con-
siderably simplified by eliminating redundancy in the infinite sets (of terms and
contexts, respectively) involved in OBSREACH(+) and INDIST (+).
Exercise 9.6.35. Consider a signature Σ with observable sorts OBS and a set Φ
of first-order Σ -sentences. Let T be a family of sets of terms with TXOBS,s ⊆
|TΣ (XOBS)|s for each finite set XOBS of observable variables and sort s �∈OBS. Define
OBSREACHT(+) by limiting the infinite disjunction OBSREACH(+) to terms in T

for sorts s �∈ OBS, and explicitly requiring + to be total on sorts in OBS:
( ∧

s∈OBS

∀x:s• x +s x

)
∧

∧
s in Σ ,
s�∈OBS

∀x:s• x +s x ⇔
∨

XOBS finite
t∈TXOBS ,s

∃XOBS • x = t

Suppose that

Φ ,OBSREACHT(+) |=
∧

f :s1×···×sn→s in Σ
∀x1:s1, · · · ,xn:sn • x1 +s1 x1∧·· ·∧ xn +sn xn ⇒

f (x1, . . . ,xn)+s f (x1, . . . ,xn)

Under this assumption, prove that Lemma 9.6.17 still holds for �Σ�-models 〈A,+A〉
such that A |= Φ if we replace OBSREACH(+) by OBSREACHT(+). ��
Exercise 9.6.36. Consider a signature Σ with observable sorts OBS and a set Φ
of first-order Σ -sentences. Let C be a family of sets of contexts with CXOBS,s ⊆
|TΣ (XOBS �{�:s})|OBS for each finite set XOBS of observable variables and sort s �∈
OBS.

Define INDISTC(+) by limiting the infinite conjunction in INDIST (+) to con-
texts in C for sorts s �∈OBS, and explicitly requiring + to be the identity for sorts in
OBS:

IDOBS(+)∧
∧

s in Σ ,
s�∈OBS

∀x,y:s• x +s y ⇔

⎛
⎜⎜⎜⎝x +s x∧ y +s y∧

∧
XOBS finite
C∈CXOBS ,s

∀XOBS • C[x] = C[y]

⎞
⎟⎟⎟⎠

Suppose that

Φ ,OBSREACH(+), INDISTC(+) |= CONG(+).

Under this assumption, prove that Lemma 9.6.17 still holds for �Σ�-models 〈A,+A〉
such that A |= Φ if we replace INDIST (+) by INDISTC(+). ��
Exercise 9.6.37. Use Exercises 9.6.35 and 9.6.36 to show that, under the assump-
tions in the exercises, we can replace OBSREACH(+) by OBSREACHT(+) and
INDIST (+) by INDISTC(+) in Theorem 9.6.34. ��
Example 9.6.38. We revisit Example 9.6.21, adding an operation for union of sets:
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spec SetNat′ =
Bool and Nat
then

ops ∅:NatSet
add:Nat×NatSet → NatSet
∪ :NatSet×NatSet → NatSet
∈ :Nat×NatSet → Bool

∀n,m:Nat,S,S′:NatSet
• n ∈∅= false
• n ∈ add(n,S) = true
• m �= n ⇒ m ∈ add(n,S) = m ∈ S
• ∅∪S = S
• add(n,S)∪S′ = add(n,S∪S′)

Commutativity of ∪ is not a consequence of SetNat′. However, it is a behavioural
consequence of the axioms in SetNat′ if we take Bool and Nat as the only ob-
servable sorts. One way of proving this is to use Theorem 9.6.34 directly, but Exer-
cise 9.6.37 allows the proof to be simplified considerably. Let Σ ′ = Sig[SetNat′]
and OBS = {Bool,Nat}, and let Φ ′ be the axioms of SetNat′, including those
inherited from Nat and Bool.

OBSREACH(+) can be simplified using Exercise 9.6.35. First we replace the
conjuncts for the observable sorts Bool and Nat by ϕBool = ∀x:Bool• x +Bool x and
ϕNat = ∀x:Nat• x +Nat x, respectively. For Bool, this replaces

∀x:Bool• x +Bool x ⇔
(x = true∨ . . .∨∃b:Bool• x = b∨∃b:Bool• x = ¬b∨ . . .
∨∃n:Nat• x = (n ∈∅)∨∃n,m:Nat• x = (n ∈ add(m,∅))∨ . . .)

and similarly for Nat. Next, and more significantly, we can take

TNatSet = {∅,add(n1,∅), . . . ,add(nk, . . .add(n1,∅) . . .), . . .},
with variables n1, . . . ,nk:Nat. This excludes terms involving ∪ as well as the addi-
tional clutter of operations from Nat. We can now replace the conjunct for NatSet
by

ϕNatSet = ∀x:NatSet• x +NatSet x ⇔
(x =∅∨∃n1:Nat• x = add(n1,∅)∨ . . .∨
∃n1, . . . ,nk:Nat• x = add(nk, . . .add(n1,∅) . . .)∨ . . .)

where the disjunction refers to the terms in TNatSet. This follows from the fact that
in the context of the axioms of SetNat′, ϕNatSet implies that

∀x1,x2:NatSet• x1 +NatSet x1∧ x2 +NatSet x2 ⇒ (x1∪ x2)+NatSet (x1∪ x2).

To see this, note that we get x1 = add(nk, . . .add(n1,∅) . . .) for some n1, . . . ,nk from
ϕNatSet and x1 +NatSet x1. Then, repeated use of the axioms for ∪ in SetNat′ yields
x1∪ x2 = add(n1, . . .add(nk,x2) . . .). Using ϕNatSet again (in the opposite direction)
yields (x1∪x2)+NatSet (x1∪x2). This proves the condition in Exercise 9.6.35. Then
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OBSREACHT(+) = ϕBool∧ϕNat ∧ϕNatSet.

INDIST (+) can be likewise simplified using Exercise 9.6.36. First we replace
the conjuncts for the observable sorts Bool and Nat by ψBool = ∀x,y:Bool• x +Bool
y⇔ x = y and ψNat = ∀x,y:Nat• x+Nat y⇔ x = y. For Bool, this replaces a formula
which involves all observable contexts for Bool, and similarly for Nat. Next, and
more significantly, we can take

CNatSet = {m ∈�:NatSet}
for some variable m:Nat. This excludes infinitely many contexts which start by ma-
nipulating the set to which the context is applied, and only then test for membership,
as well as the additional clutter of operations from Nat and Bool. The conjunct of
INDIST (+) for NatSet can now be replaced by

ψNatSet = ∀x,y:NatSet• x +NatSet y ⇔
(x +NatSet x∧ y +NatSet y∧∀n:Nat• (n ∈ x) = (n ∈ y)).

This follows from the fact that in the context of the axioms of SetNat′ and
OBSREACHT(+),

INDISTC(+) = ψBool∧ψNat ∧ψNatSet

implies the congruence property for +, which we now show for each of the opera-
tions in Σ ′.

For the operations in Nat and Bool, the congruence property is trivial since
+Bool and +Nat are then the identities. The remaining operations are ∅ (for which
the congruence property follows from ϕNatSet),∈ (for which the congruence property
follows directly from ψNatSet and the fact that +Nat is the identity), add and ∪.

For add, we need to show that (for any x and y such that x+NatSet x and y+NatSet y)
if ∀n:Nat• (n ∈ x) = (n ∈ y) then ∀n,m:Nat• (n ∈ add(m,x)) = (n ∈ add(m,y)),
which follows from the axioms that link ∈ and add in SetNat′.

For ∪, we first show an auxiliary fact, namely that for any x:NatSet such that
x +NatSet x, any y:NatSet, and any n:Nat, the axioms of SetNat′ together with
OBSREACHT(+) entail that

n ∈ (x∪ y) = true iff n ∈ x = true or n ∈ y = true.

This follows since we have x = add(nk, . . .add(n1,∅) . . .) for some n1, . . . ,nk from
x+NatSet x and OBSREACHT(+), and repeated use of the axioms for ∪ in SetNat′
yields x∪ y = add(n1, . . .add(nk,y) . . .). Then, by the axioms that link ∈ and add in
SetNat′, n ∈ (x∪ y) = true iff n = n1 or · · · or n = nk or n ∈ y = true, which is
equivalent to n ∈ x = true or n ∈ y = true.

The congruence property for ∪ then follows easily. Suppose that x +NatSet x′ and
y +NatSet y′, that is, for all n:Nat, n ∈ x = true iff n ∈ x′ = true, and likewise for
y and y′. By the above fact, we get n ∈ (x∪ y) = true iff n ∈ (x′ ∪ y′) = true, and
so by ψNatSet, (x∪ y) +NatSet (x′ ∪ y′). This concludes the proof of the condition in
Exercise 9.6.36.

Now, to show Φ ′ ||=OBS ∀S,S′:NatSet• S∪S′ = S′ ∪S, it is enough to show that
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Φ ′,OBSREACHT(+), INDISTC(+) |= �∀S,S′:NatSet• S∪S′ = S′ ∪S�

where �∀S,S′:NatSet• S∪S′ = S′ ∪S� is

∀S,S′:NatSet• S +NatSet S∧S′ +NatSet S′ ⇒ (S∪S′)+NatSet (S′ ∪S).

Assuming S +NatSet S and S′ +NatSet S′, by INDISTC(+), (S∪S′) +NatSet (S′ ∪S) is
the same as m∈ (S∪S′) = true iff m∈ (S′ ∪S) = true for all m:Nat. By the auxiliary
fact above, both m ∈ (S∪S′) = true and m ∈ (S′ ∪S) = true hold iff m ∈ S = true or
m ∈ S′ = true, which completes the proof.

Exercise. Prove associativity and idempotency of ∪ in a similar way. ��
Exercise 9.6.39. Following the pattern of the simplifications spelled out in Exer-
cises 9.6.35, 9.6.36 and 9.6.37, modify Theorem 9.6.20 to state that Φ |=OBS ϕ if
and only if

�Φ�,OBSREACHT(+), INDISTC(+) |= �ϕ�

under conditions analogous to those in Exercises 9.6.35 and 9.6.36. Check if this can
be used to show that Φ |=OBS ∀S,S′:NatSet• S∪ S′ = S′ ∪ S. Independently of this,
note that Φ |=OBS ∀S,S′:NatSet• S∪S′ = S′ ∪S follows directly from the conclusion
of Example 9.6.38 by Proposition 9.6.25. ��
Exercise 9.6.40. Note that for any signature Σ with observable sorts OBS and �Σ�-
model 〈A,+A〉, 〈A,+A〉 |= EQUIV(+)∧CONG(+)∧ IDOBS(+)∧OBSREACH(+)
iff +A is a behavioural congruence on 〈A〉OBS. Use Corollary 8.3.20 to show that if

Φ ,EQUIV(+), IDOBS(+),CONG(+),OBSREACH(+) |= �e�

then Φ ||=OBS e for any set Φ of first-order sentences and equation e. Informally,
if we can prove that an equation holds up to a congruence that is finer than the
behavioural indistinguishability relation, then it also holds up to behavioural indis-
tinguishability. This argument breaks down if equality is used in a negative context,
e.g. is negated or is the left-hand side of an implication.

Formalise the notion of negative and positive positions in a first-order formula,
and use this to generalise the above result to first-order sentences φ where all equa-
tions used in a negative position are of observable sorts.

Check that the simplification spelled out in Exercise 9.6.35 can be applied here
as well. ��

9.6.2 Behavioural consequence for specifications

We now turn to reasoning about behavioural consequences for structured specifica-
tions.
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Definition 9.6.41 (Behavioural consequence for specifications). We say that a Σ -
sentence ϕ is a behavioural consequence of a Σ -specification SP w.r.t. OBS, written
SP ||=OBS ϕ , if Mod[SP] |=OBS ϕ . ��
As above, there are other possible definitions of behavioural consequence that differ
from this one, and from each other.

Exercise 9.6.42. Define SP |=OBS ϕ by AbsOBS(Mod[SP])⊆ AbsOBS(Mod[〈Σ ,ϕ〉]),
and SP |||=OBS ϕ by AbsOBS(Mod[SP]) |=OBS ϕ . Show that these coincide with
SP ||=OBS ϕ provided that Mod[SP] and Mod[〈Σ ,ϕ〉] are behaviourally closed, but
may differ otherwise. ��
Exercise 9.6.43. Note that, in general, SP |= ϕ does not imply SP ||=OBS ϕ . (Find
a counterexample.) Show that the implication holds if the class of models of ϕ is
behaviourally closed, for instance, when ϕ is an equation or conditional equation
with premises of observable sorts. ��

Compositional proofs of consequence for structured specifications make use of
the rules given in Section 9.2 for deriving consequences of complex specifications
from consequences of their constituents. We now examine the applicability of these
rules for deriving behavioural consequences.

Flat specifications

By definition, 〈Σ ,Φ〉 ||=OBS ϕ iff Φ ||=OBS ϕ , and then methods from Section 9.6.1
apply.

Union

It is easy to see that the rules for union from Section 9.2 carry over, that is, if
SP1 ||=OBS ϕ then SP1 ∪ SP2 ||=OBS ϕ for all Σ -specifications SP1,SP2 and Σ -
sentences ϕ , and likewise when SP2 ||=OBS ϕ .

Translation

The rule for translation from Section 9.2 does not carry over.

Exercise 9.6.44. Show that SP with σ ||=σ(OBS) σ(ϕ) does not necessarily hold
even when SP ||=OBS ϕ . HINT: Use Exercise 8.3.16. ��
The essence of the problem is that for some signature morphisms, reducts of models
and translation of sentences are not compatible with behavioural satisfaction. Given
a signature morphism σ :Σ → Σ ′, Σ -specification SP, a set OBS of observable sorts
in Σ and a Σ -equation e, a sufficient condition to ensure that SP ||=OBS e implies



9.6 Proving behavioural properties 467

SP with σ ||=σ(OBS) σ(e) is to require that all observable contexts in Σ ′ for sorts in
σ(Σ) are observable contexts from Σ translated by σ . To generalise this to arbitrary
first-order sentences, we would also have to assume that every Σ ′-term of a sort in
σ(Σ) with variables in σ(OBS) is a σ -translation of a Σ -term. Both requirements
rarely hold in typical examples. Fortunately, they can be relaxed somewhat when
the translation is immediately joined with another specification that links the new
operations with the old ones, as is often the case when the translation arises from an
application of enrichment.

Exercise 9.6.45. Consider σ :Σ → Σ ′, SP and OBS as above. Assume that we have
a Σ ′-specification SP′ such that for every observable context C′ ∈ |TΣ ′(σ(XOBS)�
{�:σ(s)})|σ(o) there exists C ∈ |TΣ (XOBS�{�:s})|o such that SP′ ∪ (SP with σ) |=
∀�:σ(s)• ∀σ(XOBS)• C′ = σ(C). Here, s is a sort in Σ , XOBS is a set of variables of
observable sorts in Σ as usual, and σ(XOBS) is the same set of variables of observable
sorts with the sorts renamed by σ ; for simplicity, we assume that Xo1 and Xo2 are
disjoint for all distinct o1,o2 ∈OBS. Show that this is a sufficient condition to ensure
that for any Σ -equation e, SP ||=OBS e implies SP′ ∪ (SP with σ) ||=σ(OBS) σ(e).

Show that the sufficient condition can be slightly weakened by limiting quan-
tification over �:σ(s) to values generated from sorts in OBS by operations in Σ ,
replacing the universally quantified formula above with the infinitary conjunction

∧
t∈|TΣ (YOBS)|

∀σ(XOBS∪YOBS)• C′[σ(t)] = σ(C[t]).

Try to refine the condition further to allow the choice of the context C to depend
on the term t. Formulate a similar condition to guarantee that the implication holds
for first-order Σ -sentences. Check that these conditions can be further simplified
using the techniques of Exercises 9.6.35 and 9.6.36. HINT: Start by looking at Ex-
ercise 8.3.35. ��
Exercise 9.6.46. Use Exercise 9.6.45 to formulate a rule for proving behavioural
consequences for specifications of the form SP then body′. ��

Hiding

In view of the difficulties with translation above, it is perhaps surprising that the
rule for hiding from Section 9.2 carries over for equational logic. Given a signature
morphism σ :Σ → Σ ′, a Σ ′-specification SP′, a set OBS of observable sorts in Σ
and a Σ -equation e, SP′ ||=σ(OBS) σ(e) implies SP′ hide via σ ||=OBS e by Proposi-
tion 8.3.15. The same holds by Exercise 8.3.16 if e is a conditional equation with
premises of observable sorts.

Exercise 9.6.47. Following Exercise 9.6.45, devise a sufficient condition which en-
sures that SP′ ||=σ(OBS) σ(ϕ) implies SP′ hide via σ ||=OBS ϕ for any first-order
sentence ϕ . ��
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We can use normalisation (Theorem 5.6.10) to reduce any specification built from
flat specifications using union, translation and hiding to an equivalent one of the
form 〈Σ ,Φ〉 hide via σ . This gives a (non-compositional) proof system for struc-
tured specifications as in the discussion preceding Theorem 9.2.16. But, in contrast
to the situation with ordinary consequence for specifications, the resulting proof
system is not complete, since the hiding rule is not closed complete for behavioural
consequence (Definition 9.2.2): in general, SP′ hide via σ ||=OBS ϕ does not imply
that SP′ ||=σ(OBS) σ(ϕ), even when ϕ is a Σ -equation.

Exercise 9.6.48. Study conditions which ensure closed completeness of the rule for
hiding for behavioural consequence, in the style of Exercise 9.6.45. ��

Recall from Section 9.2 that the rules for particular specification-building oper-
ations had to be augmented by a rule called (∗) that made a connection between
entailment for specifications and entailment in the underlying institution. The fol-
lowing implication plays the same role for behavioural consequence:

SP ||=OBS ϕ1 · · · SP ||=OBS ϕn {ϕ1, . . . ,ϕn} |=OBS ϕ
SP ||=OBS ϕ

(∗∗)

This refers to behavioural consequence of the form {ϕ1, . . . ,ϕn} |=OBS ϕ rather than
{ϕ1, . . . ,ϕn} ||=OBS ϕ . The latter can also be used since it implies {ϕ1, . . . ,ϕn} |=OBS
ϕ by Proposition 9.6.25. In general the resulting implication would be weaker,
but sometimes the two relations coincide, for instance when Mod({ϕ1, . . . ,ϕn}) is
behaviourally closed (Exercise 9.6.26), or in particular when all of the sentences
ϕ1, . . . ,ϕn are observable (Proposition 9.6.31). Note also that when ϕi is observable
we can take SP |= ϕi instead of SP ||=OBS ϕi, for any i = 1, . . . ,n. Similar remarks
apply to the use of {ϕ1, . . . ,ϕn} |= ϕ instead of {ϕ1, . . . ,ϕn} |=OBS ϕ .

Exercise 9.6.49. Check that Corollary 9.6.6 can be generalised to entailments of
the form SP ||=OBS ∀XOBS • ∀x:s• ϕ and SP ||=OBS ∀XOBS • ∃x:s• ϕ . As in Exer-
cise 9.6.10, formulate a proof rule to capture the corresponding inductive arguments.

Using Example 8.4.14, prove the following somewhat more general reformu-
lation of the above: for any signature Σ with set OBS of observable sorts, Σ -
specification SP, Σ -sentence ϕ and set S of sorts in Σ that is disjoint from OBS,
SP ||=OBS ϕ if RS(SP) ||=OBS ϕ . (Here RS is the specification-building operation cor-
responding to the constructor that restricts any Σ -algebra to its subalgebra generated
by its carriers of sorts not in S; see Example 6.1.13 and Exercise 6.1.15.)

Generalise this further to any behaviourally trivial constructor (Definition 8.4.10).
��

Exercise 9.6.50. Show that the relativisation techniques for proving behavioural
consequence, as captured by Theorem 9.6.34, apply here as well: SP ||=OBS ϕ iff

(SP with ι)∪〈�Σ�,{OBSREACH(+), INDIST (+)}〉 |= �ϕ�

where Σ = Sig[SP] and ι :Σ → �Σ� is the signature inclusion.
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Furthermore, the simplifications spelled out in Exercises 9.6.35, 9.6.36 and 9.6.37
can be adapted for use here as well to replace OBSREACH(+) and/or INDIST (+)
by OBSREACHT(+) and INDISTC(+) respectively, under the conditions in Exer-
cises 9.6.35 and 9.6.36, adjusted in the obvious way.

Repeat Example 9.6.38 to show that SetNat′ ||={Bool,Nat} ∀S,S′:NatSet• S∪S′=
S′ ∪S, viewing SetNat′ as a structured specification. ��

9.6.3 Behavioural consequence between specifications

The next level of reasoning concerns behavioural consequence between structured
specifications.

Definition 9.6.51 (Behavioural consequence between specifications). Given a sig-
nature Σ with a set OBS of observable sorts, we say that a Σ -specification SP′ is a
behavioural consequence of a Σ -specification SP w.r.t. OBS, written SP ||=OBS SP′,
if Mod[SP]⊆ AbsOBS(Mod[SP′]). ��
The condition Mod[SP] ⊆ AbsOBS(Mod[SP′]) is equivalent to AbsOBS(Mod[SP]) ⊆
AbsOBS(Mod[SP′]); see Proposition 8.2.19.

Although trivial, the following fact is probably the most useful in practice, al-
lowing the use of methods developed in Section 9.3 for proving behavioural conse-
quence between specifications.

Proposition 9.6.52. Given any signature Σ with set OBS of observable sorts and
Σ -specifications SP and SP′, if SP  SP′ then SP ||=OBS SP′. ��
In general, reasoning about behavioural consequence between specifications is dif-
ficult. The rules in Section 9.3 carry over only under restrictive conditions.

Flat specifications

The rule for flat specifications from Section 9.3 carries over.

Proposition 9.6.53. Given any signature Σ with set OBS of observable sorts, Σ -
specification SP and Σ -sentences ϕ1, . . . ,ϕn, if SP ||=OBS ϕ1 and . . . and SP ||=OBS
ϕn then SP ||=OBS 〈Σ ,{ϕ1, . . . ,ϕn}〉.
Proof. Let A ∈ Mod[SP]. Then, by the assumptions and Theorem 8.3.26 with Exer-
cise 8.3.27, we get A/≈OBS

A ∈Mod[〈Σ ,{ϕ1, . . . ,ϕn}〉]. Hence, since A
w≡OBS A/≈OBS

A
and Mod[〈Σ ,{ϕ1, . . . ,ϕn}〉] is closed under isomorphism, we conclude that A ∈
AbsOBS(Mod[〈Σ ,{ϕ1, . . . ,ϕn}〉]). ��
Note that the argument in the proof above would not work if, instead of SP ||=OBS ϕi,
we had assumed SP |=OBS ϕi; see Exercise 9.6.42.
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Union

The rule for union from Section 9.3 carries over only under additional assumptions
about the specifications involved.

Proposition 9.6.54. For any signature Σ with set OBS of observable sorts and Σ -
specifications SP,SP1,SP2, assume that SP ||=OBS SP1, SP ||=OBS SP2 and both
Mod[SP1] and Mod[SP2] are behaviourally closed and closed under isomorphism.
Then SP ||=OBS SP1∪SP2.

Proof. Let A ∈ Mod[SP]. By the assumptions, there is A1 ∈ Mod[SP1] such that
A≡OBS A1. Since Mod[SP1] is behaviourally closed, A1/≈OBS

A1
∈Mod[SP1]. By The-

orem 8.3.24, A/≈OBS
A and A1/≈OBS

A1
are isomorphic, and so since Mod[SP1] is closed

under isomorphism A/≈OBS
A ∈Mod[SP1]. Similarly, A/≈OBS

A ∈Mod[SP2]. Therefore
A/≈OBS

A ∈ Mod[SP1∪SP2], which yields A ∈ AbsOBS(Mod[SP1∪SP2]). ��
Exercise 9.6.55. Give a counterexample showing that the requirement that Mod[SP1]
and Mod[SP2] be behaviourally closed in Proposition 9.6.54 cannot be dropped in
general. ��

Translation

The rule for translation from Section 9.3 carries over only under additional assump-
tions about the specifications involved.

Proposition 9.6.56. For any signature Σ with set OBS of observable sorts, signa-
ture morphism σ :Σ → Σ ′, Σ -specification SP and Σ ′-specification SP′, whenever
SP′ hide via σ ||=OBS SP then SP′ ||=σ(OBS) SP with σ provided that

1. Mod[SP] is behaviourally closed and closed under isomorphism; and
2. for each A′ ∈ Mod[SP′], (A′ σ )/≈OBS

A′ σ
and (A′/≈σ(OBS)

A′ ) σ are isomorphic.

Proof. Let A′ ∈ Mod[SP′]. Then A′ σ ∈ Mod[SP′ hide via σ ] and so by the assump-
tions, for some A∈Mod[SP], A′ σ ≡OBS A. It follows that A′ σ/≈OBS

A′ σ
∈Mod[SP]. By

(2), (A′/≈σ(OBS)
A′ ) σ ∈ Mod[SP] since Mod[SP] is closed under isomorphism. Con-

sequently, A′/≈σ(OBS)
A′ ∈Mod[SP with σ ] and so A′ ∈ Absσ(OBS)(Mod[SP with σ ]),

since Mod[SP with σ ] is closed under isomorphism whenever Mod[SP] is. ��
Exercise 9.6.57. Use the technique of Exercise 9.6.45 to replace requirement (2) in
Proposition 9.6.56 above by a more proof-theoretic condition. ��
Exercise 9.6.58. Give counterexamples showing that the implication in Proposi-
tion 9.6.56 may fail when either of the requirements does not hold. ��
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Hiding

The rule for hiding from Section 9.3 carries over only under additional assumptions
about the specifications involved.

Proposition 9.6.59. For any signature Σ with set OBS of observable sorts, signa-
ture morphism σ :Σ → Σ ′ which is injective on sorts, Σ -specifications SP and Σ ′-
specifications SP′ and ŜP, such that σ :SP → ŜP is a specification morphism ad-
mitting model expansion, if ŜP ||=σ(OBS) SP′ then SP ||=OBS SP′ hide via σ provided
that

1. Mod[SP′] is behaviourally closed and closed under isomorphism; and
2. for each Â ∈ Mod[ŜP], (Â σ )/≈OBS

Â σ
and (Â/≈σ(OBS)

Â
) σ are isomorphic.

Proof. Let A ∈ Mod[SP]. Let Â ∈ Mod[ŜP] be such that Â σ = A. It follows that

Â/≈σ(OBS)
Â

∈Mod[SP′], and so (Â/≈σ(OBS)
Â

) σ ∈Mod[SP′ hide via σ ]. Since Â σ =

A and the assumptions imply that Mod[SP′ hide via σ ] is closed under isomorphism,
A/≈OBS

A ∈Mod[SP′ hide via σ ] by (2), yielding A ∈ AbsOBS(Mod[SP′ hide via σ ]).
��

The injectivity of σ is a technical assumption to ensure that Mod[SP′ hide via σ ] is
closed under isomorphism. We could get rid of this assumption by explicitly closing
the class of models of this specification under isomorphism; see Exercise 5.1.7. The
requirement that σ :SP → ŜP admit model expansion is the same as in Section 9.3
and all comments there apply in the present context as well.

Exercise 9.6.60. Use the technique of Exercise 9.6.45 to replace requirement (2) in
Proposition 9.6.59 above by a more proof-theoretic condition. ��
Exercise 9.6.61. Give counterexamples showing that the implication in Proposi-
tion 9.6.59 may fail when either of the requirements does not hold. ��

This completes the study of the rules for consequence between structured speci-
fication using our core specification-building operations.

Exercise 9.6.62. Section 9.3 lists a number of auxiliary rules for entailment between
structured specifications. Check that at least the identity and transitivity rules and
the rule for selection operations carry over to the current context as well. ��
Exercise 9.6.63. Given a signature Σ with set OBS of observable sorts and be-
haviourally trivial constructor F :Σ ⇒ Σ (Definition 8.4.10), show that for any Σ -
specifications SP and SP′, SP ||=OBS SP′ if F(SP) ||=OBS SP′, where F is viewed
as the specification-building operation defined by the constructor F ; see Exer-
cise 6.1.15.

As an example, take F to be RS:Σ ⇒ Σ , the constructor that restricts any Σ -
algebra to its subalgebra generated by its carriers of sorts not in S — see Exam-
ple 6.1.13 — with a set S of sorts in Σ that is disjoint from OBS. ��
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The conditions on the implications in Propositions 9.6.54, 9.6.56 and 9.6.59 are
quite restrictive in practice. In particular, the assumption that the class of models
of a specification is behaviourally closed essentially requires the specification to
be built in equational logic. Attempts at a proof-theoretic treatment of behavioural
consequence between structured specifications have not been fruitful beyond this
rather simple case. In the general case, we often need to resort to an essentially
model-theoretic technique. Assuming as usual that SP and SP′ are specifications
over a signature Σ with a set OBS of observable sorts, to show that SP ||=OBS SP′,
for each model A ∈ Mod[SP] one has to exhibit a model A′ ∈ Mod[SP′] together
with a correspondence ρ:A ��OBS A′. This technique can be turned into a formal
proof method by internalizing the semantic requirement above as a specification.

Theorem 9.6.64. Let Σ be a finite signature with a set OBS of observable sorts. For
any Σ -specification SP such that Mod[SP] is closed under isomorphism, there is a
Σ -specification �SP� such that Mod[�SP�] = AbsOBS(Mod[SP]).

Proof. Let i:Σ → Σ ′ be an isomorphism such that all the symbols in Σ ′ are distinct
from those in Σ = 〈S,Ω〉. Let Θ be the first-order signature that extends Σ ∪ Σ ′
by a predicate symbol ps:s× i(s) for each sort s in Σ . It is now easy to write out
axioms which state that for each sort s ∈ OBS, ps is a bijection and that the family
of predicates 〈ps〉s∈S is closed under the operations in Σ and Σ ′ respectively:

• BIJOBS(p) is
∧

s∈OBS

∀x:s• ∃y:i(s)• (ps(x,y)∧∀y′:i(s)• ps(x,y′)⇒ y = y′)∧
∀y:i(s)• ∃x:s• (ps(x,y)∧∀x′:s• ps(x′,y)⇒ x = x′)

• CORR(p) is
∧

f :s1×···×sn→s in Σ
∀x1:s1,y1:i(s1), · · · ,xn:sn,yn:i(sn)• ps1(x1,y1)∧·· ·∧ psn(xn,yn)⇒

ps( f (x1, . . . ,xn), i( f )(y1, . . . ,yn))

Let ι :Σ →Θ and ι ′:Σ ′ →Θ be the signature inclusions. Let �SP� be the following
specification:

((SP with ι)∪〈Θ ,{BIJOBS(p),CORR(p)}〉) hide via i;ι ′

Every model in Mod[(SP with ι)∪ 〈Θ ,{BIJOBS(p),CORR(p)}〉] essentially con-
sists of a model A∈Mod[SP], an algebra A′ ∈ |Alg(Σ ′)|, and an interpretation of the
predicates ps which forms a (weak) OBS-correspondence between A and A′. Conse-
quently, models of �SP� are Σ -algebras A′ such that for some model A ∈ Mod[SP]
there exists a weak OBS-correspondence between A and A′. ��
Exercise 9.6.65. �SP� as constructed above is a structured specification in FOPEQ,
even if SP is an equational specification. Using Exercise 8.2.15, give an alternative
construction of �SP� which is algebraic in the sense that it does not use signatures
containing predicates, and involves only conditional equations as additional axioms.

��
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Corollary 9.6.66. Let Σ be a signature with a set OBS of observable sorts. For
any Σ -specifications SP and SP′ such that Mod[SP] is closed under isomorphism,
SP′ ||=OBS SP iff SP′ |= �SP� where �SP� is given by Theorem 9.6.64. ��
Exercise 9.6.67. Convince yourself that the above corollary really captures the
model-theoretic proof method discussed above by checking the following. To prove
that SP′ |= �SP�, one exhibits a Θ -specification ŜP′ such that i;ι ′:SP′ → ŜP′ is
a specification morphism that admits model expansion, and ŜP′  (SP with ι)∪
〈Θ ,{BIJOBS(p),CORR(p)}〉, using the notation of the proof of Theorem 9.6.64.
To show that i;ι ′ admits model expansion, in practice ŜP′ has to be given as a defini-
tional extension of SP′ where for each model A′ ∈ Mod[SP′] the additional explicit
definitions define a model A ∈ Mod[SP] and a weak OBS-correspondence between
A and A′. ��

9.6.4 Correctness of behavioural implementations

The motivation for the behavioural interpretation of specifications was the desire
to permit more flexibility in developing programs from specifications. For that pur-
pose, behavioural implementations were introduced in Section 8.4. The ultimate
goal of behavioural reasoning is thus to prove the correctness of such implementa-
tions. The practical importance of the developments in Sections 9.6.1–9.6.3 is in the
use of these methods to support such proofs.

Let SP and SP′ be specifications, OBS′ be a set of observable sorts in Sig[SP′],
and κ:Sig[SP]⇒ Sig[SP′] be a constructor. Using a similar notation as in the pre-
ceding sections, we write SP ||=OBS′,κ SP′ whenever SP′ is behaviourally imple-
mented by SP via κ w.r.t. OBS′, that is if Mod[SP] ⊆ dom(κ) and κ(Mod[SP]) ⊆
AbsOBS′(Mod[SP′]); see Definition 8.4.2.

Constructor implementations are behavioural implementations, which justifies
the following easy fact.

Proposition 9.6.68. Let SP and SP′ be specifications, OBS′ be a set of observable
sorts in Sig[SP′], and κ:Sig[SP] ⇒ Sig[SP′] be a constructor. If SP  κ SP′ then
SP ||=OBS′,κ SP′. ��
Although trivial, this deals with the most frequent case encountered in practice.

The basic method of proving correctness of constructor implementations in Sec-
tion 9.4 was to reduce the problem to entailment between specifications. This carries
over to the present context as well.

Proposition 9.6.69. Let SP and SP′ be specifications, OBS′ be a set of observable
sorts in Sig[SP′], and κ:Sig[SP]⇒ Sig[SP′] be a constructor. If Mod[SP]⊆ dom(κ)
and κ(SP) ||=OBS′ SP′ then SP ||=OBS′,κ SP′. Here, in κ(SP), the constructor κ is
regarded as a specification-building operation; see Exercise 6.1.15. ��
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Exercise 9.6.70. Show that the rule from Exercise 9.4.2 concerning the reduct con-
structor adapts directly to the context of behavioural implementations. ��
The weakening and transitivity rules from Section 9.4 carry over in the expected
way, assuming stability of constructors (see Definition 8.4.4) where appropriate.

Exercise 9.6.71. Check that the stability assumption cannot be dropped in any of
the propositions below. ��
Proposition 9.6.72. Let SP,SP′,SP1 and SP2 be specifications such that Sig[SP] =
Sig[SP1] and Sig[SP′] = Sig[SP2], let OBS be a set of observable sorts in Sig[SP]
and OBS′ be a set of observable sorts in Sig[SP′], and let κ:Sig[SP]⇒ Sig[SP′] be
a constructor that is stable on Mod[SP] w.r.t. OBS and OBS′. If SP ||=OBS′,κ SP′,
SP1 ||=OBS SP and SP′ ||=OBS′ SP2 then SP1 ||=OBS′,κ SP2. ��
Proposition 9.6.73. Let SP,SP′ and SP′′ be specifications, let OBS′ be a set of ob-
servable sorts in Sig[SP′] and OBS′′ be a set of observable sorts in Sig[SP′′], and
let κ:Sig[SP] ⇒ Sig[SP′] be a constructor and κ ′:Sig[SP′] ⇒ Sig[SP′′] be a con-
structor that is stable on Mod[SP′] w.r.t. OBS′ and OBS′′. If SP ||=OBS′,κ SP′ and
SP′ ||=OBS′′,κ ′ SP′′ then SP ||=OBS′′,κ;κ ′ SP′′. ��
Note that Proposition 9.6.73 is just vertical composability of behavioural implemen-
tations; see Theorem 8.4.6.

In Section 7.3, we have discussed the possibility of constructor implementation
proceeding along the structure of a specification when the top-level specification-
building operation in use arose from a constructor. For correctness of constructor
implementations, the rule

SP  SP′

SP  κ κ(SP′)
Mod[SP]⊆ dom(κ)

can be easily derived by monotonicity of κ regarded as a specification-building op-
eration. For behavioural implementations, we have to additionally impose a stability
requirement.

Proposition 9.6.74. Let SP1 and SP2 be specifications such that Sig[SP1] = Sig[SP2],
let OBS be a set of observable sorts in Sig[SP1] and OBS′ be a set of observable sorts
in Σ ′, and let κ:Sig[SP1]⇒Σ ′ be a constructor that is stable on Mod[SP2] w.r.t. OBS
and OBS′. If SP1 ||=OBS SP2 then SP1 ||=OBS′,κ κ(SP2). ��
Exercise 9.6.75. Let SP,SP′ be specifications, let OBS be a set of observable sorts
in Sig[SP] and OBS′ be a set of observable sorts in Sig[SP′], and let κ:Sig[SP]⇒
Sig[SP′] be a constructor that is stable on Mod[SP] w.r.t. OBS and OBS′. As in Exer-
cise 9.6.63, consider a behaviourally trivial constructor F :Σ ⇒Σ (Definition 8.4.10)
and show that SP ||=OBS′,κ SP′ if F(SP) ||=OBS′,κ SP′, where F is viewed as the
specification-building operation defined by the constructor F ; see Exercise 6.1.15.

As an example, take F to be RS, the constructor that restricts any Sig[SP]-algebra
to its subalgebra generated by its carriers of sorts not in S — see Example 6.1.13
— with a set S of sorts in Sig[SP] that is disjoint from OBS. Put this together with
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Exercise 9.6.63 to show that SP ||=OBS′,κ SP′ if RS′(κ(RS(SP))) ||=OBS′ SP′ where S′

is a set of sorts in Sig[SP′] that is disjoint from OBS′. Link this with Exercise 8.4.15.
��

Correctness of behavioural implementations as discussed here covers behavioural
correctness of constructors — see Definition 8.4.34, via Exercise 8.4.35 — since
SP ||=ι(sorts(Σ))∪OBS′,F SP′ exactly captures F(Mod[SP]) ⊆ Absι(sorts(Σ))∪OBS′(SP′)
and Mod[SP] ⊆ dom(F). It does not cover persistency or global stability, and so it
does not yield a proof that a constructor is a behavioural model of a constructor
specification; see Definition 8.4.36. However, as discussed in Section 8.4.5, these
properties are often introduced by the programming language notation used to de-
fine constructors, and so are satisfied by all constructors rather than needing to be
checked on a case-by-case basis. In particular, for FPL, these properties are satisfied
by constructors defined using the notation of Example 6.1.9, under the (syntactic)
conditions spelled out in Corollary 8.5.23.

Exercise 9.6.76. Given the comments above, adapt Exercises 8.4.38 and 8.4.39,
Proposition 8.4.40, Lemma 8.4.42, Theorem 8.4.43, Corollary 8.4.45 and Propo-
sition 8.4.47 to the current context. ��

9.6.5 A larger example, revisited

We will now revisit the example of Section 8.5.2 and argue about correctness of
the developments there somewhat more formally using the methods presented in
the preceding sections. An immediate issue is that the example is in FPL while so
far in Section 9.6 our attention has been restricted to institutions EQ and FOEQ.
Given the machinery and terminology developed in Section 8.5.1, all of the preced-
ing developments carry over straightforwardly with no special adaptation necessary,
at least for the purposes of the example at hand. Some facts specific to the notation
used for defining FPL-constructors are the only exception.

The arguments in Section 8.5.2 concerning translation, composition and amalga-
mation of constructors and their correctness were already rather formal, so there is
no need to repeat them here, taking advantage of Exercise 9.6.76. What we will do,
however, is to prove that constructors used in this example defined using the notation
of Example 6.1.9 are indeed behaviourally correct, as argued in Section 8.5.2 using
semantic reasoning. That is, we will outline the proofs of the following properties,
where all of the specifications and constructors are as given in Section 8.5.2.

1. StringSet ∅

KHT
�����SimpleBucketArray.

2. σElem�→Bucket(A) is a behavioural model of

SimpleBucket and StringKey
ι ′A==⇒ SimpleBucketArray

and so
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SimpleBucketArray ∅

σElem �→Bucket(A)
�������������SimpleBucket and StringKey.

3. KB is a behavioural model of

LinearProbing and StringKey
ιB==⇒ SimpleBucketPlus

and so SimpleBucketPlus ∅

KB
����LinearProbing and StringKey.

4. KLP is a behavioural model of

StringFiniteArray
ιLP===⇒ LinearProbing

and so LinearProbing ∅

KLP
�����StringFiniteArray.

5. σElem�→String(A) is a behavioural model of

String and Nat
ι ′′A==⇒ StringFiniteArray

and so StringFiniteArray ∅

σElem�→String(A)
�������������String and Nat.

Even though we take here the empty set of observable sorts, by Proposition 8.5.6
the sorts String, Nat, and Bool, which are in ∅̂, can be regarded as observable; we
will do so throughout this section.

Some of these proofs will be based on the following facts which adapt the rules
for such constructors from Section 9.4:

Proposition 9.6.77. Let K:SIG ⇒ SIG′ be defined using the notation of Exam-
ple 6.1.9. Recall that K is the composition of a free extension and a reduct,
K = Fι ;( δ )

SIG
ι−→ SIGintermediate

δ←− SIG′

where ι and δ are introduced by the notation in use. Then for any SIG-specification
SP and SIG′-specification SP′, and set OBS′ of observable sorts in SIG′, SP ||=OBS′,K
SP′ provided that

(SP with ι) hide via δ ||=OBS′ SP′.

Proof. Given a model M ∈ Mod[SP], K(M) ∈ Mod[(SP with ι) hide via δ ] by the
argument in Exercise 9.4.4. Hence, by the assumption, K(M) ∈ AbsOBS′(SP′). ��
Exercise 9.6.78. Under the notation of Proposition 9.6.77, assume that there is a sig-
nature inclusion ι ′:SIG→ SIG′ such that ι ′;δ = ι . Show that K is then a behavioural
model of SP ι ′

==⇒ SP′ w.r.t. OBS′ provided

(SP with ι) hide via δ ||=ι ′(sorts(SIG)∪OBS′) SP′. ��
Exercise 9.6.79. Modify Proposition 9.6.77 to take advantage of the particular way
that δ arises in the FPL-constructor notation of Example 6.1.9, as in Exercise 9.4.4.
Namely, consider

constructor K : SIG⇒ SIG′ = body
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and suppose that SIG⊆ SIG′ (with the signature inclusion ι ′) and that body lists new
sorts, each with a set of value constructors, and defines new operations. Show that,
for any SIG-specification SP and SIG′-specification SP′, and set OBS′ of observable
sorts in SIG′, SP ||=OBS′,K SP′ provided that

(SP then body) reveal SIG′ ||=OBS′ SP′.

Following Exercise 9.6.78, strengthen the requirements so that they guarantee that

K is a behavioural model of SP ι ′
==⇒ SP′ w.r.t. OBS′. ��

We begin by proving StringSet ∅

KHT
�����SimpleBucketArray. By Exer-

cise 9.6.75, it is enough to prove

RArray[Bucket](SimpleBucketArray) ||=
∅,KHT

StringSet.

By Proposition 9.6.68, this follows from

RArray[Bucket](SimpleBucketArray)  KHT StringSet

which can be derived using the techniques of Sections 9.4, following the semantic
argument in Section 8.5.2 (in and around Exercise 8.5.25). Note that the application
of the restriction constructor RArray[Bucket] ensures that Exercise 8.5.24 applies.

We now turn to the proof that σElem�→Bucket(A) is a behavioural model of

SimpleBucket and StringKey
ι ′A==⇒ SimpleBucketArray

where A is a behavioural model of Elem and Nat
ιA==⇒ElemArray, and ιA is the

signature inclusion.
We first refine the specification for A by showing that any behavioural model of

Elem and Nat
ιA==⇒ ElemArray is a behavioural model of Elem and Nat

ιA==⇒
ElemArray′, where

spec ElemArray′ =
ElemArray
then

∀i, j:Nat,b,b′:Elem,a:Array[Elem]
• put(i,b,put(i,b′,a)) = put(i,b,a)
• i �= j ⇒ put(i,b,put( j,b′,a)) = put( j,b′,put(i,b,a))

By Exercise 8.4.38, it is enough to show that ElemArray ||={Elem} ElemArray′.
ElemArray′ is the union of ElemArray and a flat specification containing
the two axioms in ElemArray′ above. Since the axioms involved in both of
these specifications are equations or conditional equations with premises of observ-
able sorts, their model classes are behaviourally closed, and therefore by Proposi-
tions 9.6.54 and 9.6.53 it is enough to prove:
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• ElemArray ||={Elem} ElemArray, which is trivial;
• ElemArray ||={Elem} ∀i:Nat,e,e′:Elem,a:Array[Elem]•

put(i,e,put(i,e′,a)) = put(i,e,a); and
• ElemArray ||={Elem} ∀i, j:Nat,e,e′:Elem,a:Array[Elem]•

i �= j ⇒ put(i,e,put( j,e′,a)) = put( j,e′,put(i,e,a)).

The last two facts can be proved in the same style as illustrated in Example 9.6.38,
with the small twist discussed in Exercise 9.6.50.

Exercise. Carry out the proofs. Take the simplified set of contexts

C= {used(i,�:Array[Elem]),get(i,�:Array[Elem])}. ��
This shows that A ∈ Mod[Elem and Nat∅

ιA==⇒∅ElemArray′]. Now, the proof
that σElem�→Bucket(A) is a behavioural model of

SimpleBucket and StringKey
ι ′A==⇒ SimpleBucketArray

relies on Corollary 8.4.45. The first requirement of the corollary holds here trivially.
The second amounts to

ElemArray′+ιA,σElem�→Bucket (SimpleBucket and StringKey) ||=
∅

SimpleBucketArray.

SimpleBucketArray has the form

SimpleBucket and StringKey then sorts Array[Bucket] ops ΩSBA • ΦSBA

where ΩSBA introduces the operations empty, put, get and used, and ΦSBA lists their
axioms. Luckily, all the axioms involved in SimpleBucketArray are equa-
tions or conditional equations with premises of observable sorts. Consequently,
the class of models of SimpleBucket and StringKey, translated to the sig-
nature SIGSBA = Sig[SimpleBucketArray], as well as the class of models of
〈SIGSBA,ΦSBA〉, are behaviourally closed, which allows for the use of Proposi-
tion 9.6.54. Therefore, it is enough to show that

ElemArray′+ιA,σElem�→Bucket (SimpleBucket and StringKey) ||=
∅

(SimpleBucket and StringKey) with ι ′A
and

ElemArray′+ιA,σElem�→Bucket (SimpleBucket and StringKey) ||=
∅

〈SIGSBA,ΦSBA〉.
The former requirement follows easily by Proposition 9.6.52 since we trivially have

ElemArray′+ιA,σElem�→Bucket (SimpleBucket and StringKey)  
(SimpleBucket and StringKey) with ι ′A

because ElemArray′+ιA,σElem�→Bucket (SimpleBucket and StringKey) stands
for
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(ElemArray′ with σ ′
Elem�→Bucket)∪

((SimpleBucket and StringKey) with ι ′A)

(where σ ′
Elem�→Bucket and ι ′A were defined in Section 8.5.2 as the pushout morphisms

for ιA and σElem�→Bucket).
For the latter requirement, let Φ be the set of all axioms in ElemArray′,

SimpleBucket and StringKey (translated to SIGSBA via the appropriate sig-
nature morphisms, which rename only sort names). We trivially have

ElemArray′+ιA,σElem�→Bucket (SimpleBucket and StringKey)  Φ .

Moreover, since all of the sentences in Φ are equations or conditional equations
with premises of observable sorts, it follows by Exercise 9.6.43 that

ElemArray′+ιA,σElem�→Bucket (SimpleBucket and StringKey) ||=
∅

Φ .

By Proposition 9.6.53 and the implication (∗∗) of Section 9.6.2, to conclude the
proof we have to show that Φ |=∅ ϕ for all ϕ ∈ ΦSBA, but this is trivial since all of
the axioms in ΦSBA are included in Φ .

We now show that KB is a behavioural model of

LinearProbing and StringKey
ιB==⇒ SimpleBucketPlus.

Recall that SimpleBucketPlus is

SimpleBucket and LinearProbing and StringKey.

Given the form of the definition of KB, by Exercise 9.6.78 it is enough to show that
for OBS = sorts(LinearProbing and StringKey)

(LinearProbing and StringKey) hide via δ ||=OBS
SimpleBucketPlus

where δ is an FPL-signature morphism that maps Bucket to Array[Elem], empty,
add and present to their defining terms as given in the body of KB and is identity
on the signature of LinearProbing and StringKey. Even though not all of the
axioms in the constituents of SimpleBucketPlus are equations or conditional
equations with premises of observable sorts — see, for instance, LinearProbing
— the classes of models of these constituents are behaviourally closed with respect
to OBS. Therefore, by Proposition 9.6.54 it is now enough to prove

(LinearProbing and StringKey) hide via δ ||=OBS
(LinearProbing and StringKey) with ι2

and

(LinearProbing and StringKey) hide via δ ||=OBS
SimpleBucket with ι1
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where ι1 and ι2 are the obvious FPL-signature inclusions.
The former is easy: since ι2;δ = idSig[LinearProbing and StringKey], by the com-

positional rule for translation in Section 9.3, we get

(LinearProbing and StringKey) hide via δ |=
(LinearProbing and StringKey) with ι2.

By Proposition 9.6.52, this yields

(LinearProbing and StringKey) hide via δ ||=OBS
LinearProbing and StringKey with ι2.

As for the latter, first recall that SimpleBucket, and hence its translation by
ι1, is essentially a flat specification with the following axioms:

Ψ :

⎧⎪⎪⎨
⎪⎪⎩
∀s:String,b:Bucket• def (empty)∧def (add(s,b))∧def (present(s,b))
∀s:String• present(s,empty) = false
∀s:String,b:Bucket• present(s,add(s,b)) = true
∀s,s′:String,b:Bucket• s �= s′ ⇒ (present(s,add(s′,b)) = present(s,b))

α1 : ∀s:String,b:Bucket• add(s,add(s,b)) = add(s,b)
α2 : ∀s,s′:String,b:Bucket• add(s,add(s′,b)) = add(s′,add(s,b))

By Proposition 9.6.53, it is enough to show that each of these axioms is a be-
havioural consequence of (LinearProbing and StringKey) hide via δ w.r.t.
OBS. Since for each ψ in Ψ we have LinearProbing and StringKey |= δ (ψ)
(Exercise: Prove this) we obtain

(LinearProbing and StringKey) hide via δ |= ψ.

By Exercise 9.6.43, this implies

(LinearProbing and StringKey) hide via δ ||=OBS ψ

since each ψ ∈Ψ is an equation or conditional equation with premises of observable
sorts.

The remaining two axioms are translated by δ to equations between terms of a
sort in OBS which do not follow from LinearProbing and StringKey, and so
a different approach is required here.

We will use Exercise 9.6.50 to obtain

(LinearProbing and StringKey) hide via δ ||=OBS α1.

Since

(LinearProbing and StringKey) hide via δ |=Ψ ,

it is enough to show

Ψ ,OBSREACH(+), INDISTC(+) |= CONG(+)
and
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Ψ ,OBSREACH(+), INDISTC(+) |= �α1�

where C = {present(s,�:Bucket)}. The former follows easily. For the latter, first
note that Ψ |= ϕ1 where ϕ1 is the sentence

∀s,s′:String,b:Bucket• present(s′,add(s,add(s,b))) = present(s′,add(s,b))

and then ϕ1, INDISTC(+) |= �α1� (Exercise: Prove this).
The proof of

(LinearProbing and StringKey) hide via δ ||=OBS α2

follows the same pattern. This completes the proof of correctness of KB.

We now show that KLP is a behavioural model of

StringFiniteArray
ιLP===⇒ LinearProbing.

For this we need to show that

StringFiniteArray ||=sorts(StringFiniteArray),KLP
LinearProbing.

Indeed, KLP is a model of StringFiniteArray ⇒ LinearProbing, as indi-
cated in Section 8.5.2 and earlier in Section 7.4.

Exercise. Use the techniques of Section 9.4, as illustrated in Example 9.4.5, to
prove StringFiniteArray  KLP LinearProbing. ��
An application of Proposition 9.6.68 now completes the proof of correctness of KLP.

Finally, we show that σElem�→String(A) is a behavioural model of

String and Nat
ι ′′A==⇒ StringFiniteArray.

To begin with, using Corollary 8.4.45, we get that σElem�→String(A) is a behavioural
model of

String and Nat
ι ′′A==⇒ StringArray.

(Exercise: Check that no difficulties arise in the proof.) By Exercise 8.4.38, it is
now enough to show that StringArray ||=

∅
StringFiniteArray. By Corol-

lary 9.6.66, this follows if StringArray |= �StringFiniteArray�, which can
be proved using the techniques of Section 9.3, formalising the corresponding argu-
ment in Section 8.5.2. (Exercise: Carry out the proof.)

Exercise 9.6.80. Recall Exercise 8.5.30, concerning behavioural equivalence for
higher-order constructors. Enrich the theory you developed there by adding an ac-
count of proofs, and use this to formalise the behavioural correctness arguments in
the corresponding version of the example. ��
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9.7 Bibliographical remarks

The organization of this chapter is different from that of traditional work on proof
systems because our emphasis is on dealing with the issues raised by structured
specifications, and on proofs of relationships between such specifications. In logic
and in nearly all work on automated reasoning, reasoning takes place in the context
of a fixed and unstructured set of axioms, ignoring the problems covered in Sec-
tions 9.2–9.5. Our emphasis on the complications introduced by structured speci-
fications means that we devote relatively little space to Section 9.1, which is the
area where there is by far the largest quantity of related work. See [BCH99] for a
presentation along similar lines which touches on many of the topics that we cover
here.

The notion of entailment relation is rather standard; see [Avr91] (where the term
is “consequence relation”) for a survey. The way in which entailment relations are
indexed by signatures to form an entailment system (Definition 9.1.2) is taken from
[Mes89]; see also [FS88] and [HST94]. Specific entailment relations, and the en-
gineering of proof systems that give rise to them, are a central focus of study in
logic, with their efficient mechanisation a major topic in Artificial Intelligence; see
for instance the Journal of Automated Reasoning. See also [Pad99]. We avoid any
in-depth study of this topic here, omitting discussion of (semi-)decision procedures
that support or automate reasoning within particular logical systems (for instance
those based on the DPLL algorithm [DLL62] for propositional logic, or on resolu-
tion [BG01] or tableaux [Häh01] methods for propositional and first-order logics)
and just provide rules and entailment systems for some specific institutions that will
feature in later examples.

An exhaustive exposition of partial algebra, including rules for equational logic
with existential equality (PEQe) as hinted at in Exercise 9.1.5, is in [Bur86]; the
rules for partial equational logic with strong equality (PEQ) in Example 9.1.4 may
be derived from these. The problem of dealing with partial functions arises in most
logics for reasoning about programs, and an alternative approach is via the use of
three-valued logic; see for instance [KTB91] and [Fit08]. The rules for PROP in
Example 9.1.6 are standard — see for instance [Sha08] — and similarly for the
rules for FOP in Example 9.1.8. Example 9.1.11 relates to work on reasoning about
functional programs; see for instance [BD77] and [Tho89]. For an entry point to the
literature on formalisations of the notion of proof rule, see [HHP93].

The idea of generalising entailment from the form Φ  ϕ to the form SP  ϕ ,
replacing the set of assumptions on the left-hand side of the turnstile with a struc-
tured specification, is from [SB83], where the main topic was how proof search can
take advantage of specification structure; see also [HST94]. Closely related to this
are problems arising in theorem proving systems that have facilities for building a
library of theories with dependencies between them; see [FGT92] and [MAH06].
The institution-independent compositional proof rules given near the beginning of
Section 9.2 for translation, hiding and union are from [ST88a]. The completeness
proof (Theorem 9.2.6) is from [Bor02], which is an institution-independent version
of a proof for a PFOPEQ-like institution in [Cen94]. The notion of consequence in
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the context of specifications sketched in Exercise 9.2.11 comes from [Dia08], where
the completeness result based on Craig-Robinson interpolation is given. Use of this
form of interpolation in connection with Theorem 9.2.6 (Exercise 9.2.10) appears
to be new. The suggestion to use the normal form theorem to give a proof system
that is complete even for institutions in which interpolation fails (Theorem 9.2.16)
is from [Wir93]. The disadvantage of this approach is that it completely flattens the
structure of the specification in question. An intermediate possibility is to perform
local transformations on the specification as in Exercises 9.2.18–9.2.21. Interpola-
tion still seems to be required to achieve completeness in this approach, but this
obstacle can be overcome via rules that “reach arbitrarily deeply” into the struc-
ture of specifications. A systematic approach along these lines is the development
graphs of [MAH06]. Another non-compositional approach, which uses additional
axioms and rules that are derived from the form of the specification in question, is
[HWB97].

Entailment between specifications SP  SP′ has received comparatively little at-
tention in the literature, except for the simple case in which SP′ is a flat specifica-
tion, in which case the problem reduces immediately to repeated use of entailment
for specifications SP  ϕ . The problem of proving correctness of specification mor-
phisms [Smi93] may be reduced to that of entailment between specifications, and
the problem of proving correctness of simple implementations is equivalent since
SP  SP′ iff SP′ ���SP. The first works to deal in a systematic way with the case
where SP′ is a structured specification are [Far89], [Far90] and [Far92], which fo-
cused on specifications SP′ of the form SP′′ hide via σ , and, somewhat indepen-
dently, [Wir93] followed by [Cen94]. The same basic ideas may be described using
development graphs [MAH06]. Theorem 9.3.3 is from [Bor02], which is based on
a proof in [Cen94]. Algebraic laws for transforming specifications to specifications
with the same or a smaller class of models are given in [Wir82] and [SW83], with
a systematic study in [BHK90]; see Exercise 9.3.9 and the preceding discussion for
their relevance to proof of entailment between specifications.

Methods for proving correctness of implementation steps are an essential com-
ponent of any comprehensive approach to formal development of software from
specifications. Many implementation concepts (see Section 7.5 for an assortment of
references) include some work on this topic, with [Gan83] giving a proof-oriented
formulation of (behavioural) implementation. As discussed earlier, each of these
approaches can be seen as a special case of our notion of constructor implementa-
tion, and so these methods address constructor entailment between specifications
SP  κ SP′ for specific kinds of constructors κ . VDM [Jon80] provides an ex-
plicit recipe for verifying the correctness of implementation steps in the style of
[Hoa72], where the constructor involves a composition of a restrict step and a quo-
tient step. The general problem of proving correctness of constructor implementa-
tions is addressed in [Far89] and [Far92]. By definition, a constructor implemen-
tation SP κ���SP′ is correct iff κ ∈ Mod[SP′ ⇒ SP], which makes a link to work
on proving correctness of generic modules in Goguen’s approach to parameterised
programming [Tra93] and Extended ML [KST97].
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The material in Section 9.5 on proving correctness of higher-order constructors
with respect to constructor specifications is from [SST92], but we build on a strati-
fied version (Section 6.4) of the system given there. The original system was inves-
tigated in [Asp97], and there is some related material in the COLD-K specification
language [Jon89] — see [Fei89] — and in [Cen94], but neither of these contains
Π -abstraction. Clearly, the overall approach and presentation here are strongly in-
fluenced by work on dependent type theories; see, e.g., [HHP93], [AH05].

Proof of behavioural properties (Section 9.6) is a topic of active research. Our
main influences have been [ST87], [HS96], and especially [BH96] and [BH98];
see also proof techniques developed for Bidoit and Hennicker’s constructor-based
observational logic COL [BH06a], [BH06b]. Context induction (Lemma 9.6.11) is
from [Hen91]. The circular coinduction proof method [GLR00] corresponds to con-
text induction with an appropriately chosen context induction scheme; see [BH06a].
The idea hinted at in Exercise 9.6.22 is from [HS96]. Exercise 9.6.40 hints at coin-
ductive techniques for proving indistinguishability; see [Gor95] and [JR97]. The
idea of using correspondences as a method for proving behavioural equivalence
in [Sch90] underlies the proof method expressed by Corollary 9.6.66. The com-
bination of higher-order parameterisation and behavioural equivalence hinted at in
Exercises 8.5.30 and 9.6.80 has not yet received attention in the literature. An in-
teresting issue there concerns the consequences of global stability (which, via Ex-
ercise 8.4.33, is equivalent to what has been called “local stability” in the literature;
see [BST08]), where additional properties may emerge when constructors are re-
quired to be globally stable; see [Pet10].



Chapter 10

Working with multiple logical systems

The preceding chapters dealt with various issues in the theory and methodology of
software specification and development in the context of an arbitrary logical system
formalised as an institution. As argued in the introduction to Chapter 4, the possibil-
ity of choosing the logical system most appropriate for the task at hand, without the
need to rebuild the entire framework from scratch, is of considerable importance.
Formulating definitions and proving theorems at this level of abstraction also lends
crucial insight by tending to expose the issues of fundamental importance, unclut-
tered by extraneous details pertaining to the logical system at hand.

One advantage of this way of proceeding has not yet been exploited. Namely, all
developments have been presented in the context of an arbitrary but fixed institution.
However, it should also be possible to move smoothly between different logical
systems and to work with a number of logical systems simultaneously. The purpose
of this chapter is to examine some issues related to this idea.

The possibility of using more than one institution in a single specification or de-
velopment task is potentially of great practical importance. Different institutions are
often relevant to the description of different aspects of a system, or to the construc-
tion or description of its different parts. For example, we might want to combine
the full expressive power of first-order logic with the “constructiveness” of equa-
tional logic under initial semantics. To take another example, we might want to use
the framework of continuous algebras as a technical tool to describe infinitary ob-
jects like infinite lists or trees, but then forget the underlying ordering on carriers
when dealing with non-continuous or even non-monotone operations. Perhaps most
importantly, we want to implement systems in executable programming languages
but specify them beforehand by means of some non-executable logic. We discuss
this issue in Section 10.1 and propose mechanisms that enable the use of different
institutions in the same specification and development process.

Using multiple institutions in the same task in a non-trivial way requires the
institutions in question to be somehow related to each other. In Section 10.2 we
present the notion of an institution morphism as an attempt to capture one way
of comparing and relating institutions. This notion proves too rich and hence too
restrictive for the purpose of using multiple institutions in a single specification or
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development task. Therefore, Section 10.1 is based on institution semi-morphisms,
a simpler notion of maps between (parts of) institutions.

Institutions and their morphisms form a category, the basic properties of which
are studied in Section 10.3. As an interesting side remark and a convenient techni-
cal tool, a more compact (albeit less transparent) definition of an institution is given.
The category of institutions provides a rudimentary framework for putting institu-
tions together: the limit construction may be used to combine a number of simpler
logical systems related by institution morphisms, much as colimits in the category
of specifications over any particular institution may be used for putting together sim-
pler specifications to obtain more complex ones (cf. Sections 5.5 and 6.3). Although
this is one possibility, it seems that it is more useful to combine logical systems at
the level of their presentations; see Section 10.5 for hints on this.

There are many possible notions of a map between institutions, other than insti-
tution morphisms. We suggest a possible classification in Section 10.4, and focus
there on one such notion, institution comorphisms, comparing institution comor-
phisms with institution morphisms and using them to move specifications and their
consequences from one institution to another.

This chapter is not much more than a teaser: many of the topics discussed here
are still areas of active ongoing research, and are far from being fully explored and
from achieving much stability. Pointers to some recent related work are given in
Section 10.5.

10.1 Moving specifications between institutions

The purpose of this section is to introduce some tools for using specifications (and
in particular, sentences) of one institution to describe models of another institution.
The key observation is that, of course, the two institutions involved must be some-
how related to each other, but this relationship does not have to cover all of the
institution components. Consistently with our overall view that the ultimate mean-
ing of a specification is given by the class of its models (over its signature), in order
to reinterpret specifications from one institution in another institution it is necessary
and sufficient to relate the signatures and models of the two institutions. Intuitively,
we will require that models of one institution INS, which is viewed as a richer,
more detailed framework, be mapped to models of the other institution INS′, which
is viewed as a more primitive, less detailed, and hence more abstract framework. It
may help to think of this mapping as extracting simpler models belonging to INS′

from the more complex models belonging to INS. We will need a family of such
mappings indexed by signatures, and again, signatures of INS will be mapped to
signatures of INS′. Note, however, that this “gradation of detail” applies only to
the semantic components required by signatures and provided by models, and not
necessarily to the logical notation available to describe properties of models: we
will not require any relationship between the sentences of the two institutions. This
may be considered unsatisfactory for the purposes of relating institutions viewed as
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complete logical systems. In Section 10.2 we will introduce the notion of institution
morphism, relating not just the signatures and models, but also the sentences of two
institutions. For now, a simpler notion will be sufficient.

10.1.1 Institution semi-morphisms

Definition 10.1.1 (Institution semi-morphism). Consider two institutions INS =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and INS′ = 〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉.
An institution semi-morphism μ:INS →semi INS′ consists of:

• a functor μSign:Sign → Sign′; and
• a natural transformation μMod:Mod → (μSign)op;Mod′,1 that is, for each Σ ∈
|Sign|, a functor μMod

Σ :Mod(Σ)→ Mod′(μSign(Σ)) such that the following dia-
gram commutes for every σ :Σ1 → Σ2 in Sign:

Σ2

Σ1

�

σ

Mod′(μSign(Σ2))Mod(Σ2)

Mod(Σ1) Mod′(μSign(Σ1))

�
μMod

Σ2

�

Mod(σ)

�

Mod′(μSign(σ))

�
μMod

Σ1

��
Let us start with a few simple examples of institution semi-morphisms, each of

which leads from an obviously richer institution to a more primitive one. We will
present their extensions to full institution morphisms, covering also translations of
sentences, in Section 10.2.

Example 10.1.2. There is an obvious institution semi-morphism μ:FOPEQ →semi
EQ mapping structures of first-order logic to algebras of equational logic (Exam-
ples 4.1.12 and 4.1.4), where:

• μSign:FOSig → AlgSig is the functor that maps any first-order signature Θ =
〈S,Ω ,Π〉 ∈ |FOSig| to the algebraic signature μSign(Θ) = 〈S,Ω〉 ∈ |AlgSig|,
and any first-order signature morphism θ :〈S,Ω ,Π〉 → 〈S′,Ω ′,Π ′〉 to the al-
gebraic signature morphism μSign(θ) = 〈θsorts,θops〉:〈S,Ω〉 → 〈S′,Ω ′〉, where
θ = 〈θsorts,θops,θpreds〉.

• For each first-order signature Θ ∈ |FOSig|, μMod
Θ :FOStr(Θ)→ Alg(μSign(Θ))

is the functor that maps any first-order Θ -structure A ∈ |FOStr(Θ)| to the
μSign(Θ)-algebra μMod

Θ (A) ∈ |Alg(μSign(Θ))| having the same carrier sets and

1 Recall that the functor (μSign)op:Signop → (Sign′)op is the “same” as μSign:Sign → Sign′ but
considered between the opposite categories (Example 3.4.5).
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the same interpretation of operation names as A, ignoring the interpretation of
predicate names. Then, any first-order Θ -morphism h:A → B is mapped to the
μSign(Θ)-homomorphism μMod

Θ (h): μMod
Θ (A) → μMod

Θ (B) which is identical to
h:A → B viewed as a family of maps between carrier sets.

It is easy to check that the family of functors μMod
Θ :FOStr(Θ)→ Alg(μSign(Θ)),

for Θ ∈ |FOSig|, forms a natural transformation μMod:FOStr→ (μSign)op;Alg. ��
Example 10.1.3. Another obvious institution semi-morphism is μ:CEQ→semi EQ,
mapping continuous algebras as models in the institution CEQ of equational logic
for continuous algebras (Example 4.1.22) to algebras of equational logic:

• μSign:SignCEQ → SignEQ is the identity functor (SignCEQ = SignEQ = AlgSig).
• For each algebraic signature Σ ∈ |AlgSig|, μMod

Σ :CAlg(Σ) → Alg(Σ) is the
functor that forgets the ordering on carriers: it maps any continuous Σ -algebra
A ∈ |CAlg(Σ)| to the Σ -algebra μMod

Σ (A) ∈ |Alg(Σ)| whose carriers are the un-
derlying sets of the cpo carriers of A and whose operations are the same functions
as the operations of A. This mapping extends trivially to continuous homomor-
phisms.

The family of functors μMod
Σ :CAlg(Σ)→Alg(Σ), for Σ ∈ |AlgSig|, forms a natural

transformation μMod:CAlg → Alg. ��
Exercise 10.1.4. Define an institution semi-morphism from the institution PFOPEQ

of partial first-order predicate logic with equality (Exercise 4.1.17) to the institution
PEQ of partial equational logic (Example 4.1.6). Also, define an institution semi-
morphism from the institution 3FOPEQ of three-valued first-order predicate logic
with equality (Example 4.1.24) to PEQ. In both cases, the translations of signatures
would be the same as in Example 10.1.2, and the translations of models would be
similar. ��
Example 10.1.5. A more interesting (certainly less obvious) example of an institu-
tion semi-morphism arises from the idea of “totalisation” of partial algebras (Exam-
ple 3.4.18).

Consider the institution PEQstr of partial equational logic with strong homomor-
phisms (Example 4.1.6 and Exercise 4.1.20) and the institution EQ of equational
logic (Example 4.1.4). An institution semi-morphism μ:PEQstr →semi EQ may be
defined as follows:

• μSign:AlgSig → AlgSig is the identity functor.
• For each algebraic signature Σ ∈ |AlgSig|, μMod

Σ :PAlgstr(Σ) → Alg(Σ) is the
totalisation functor TotΣ defined in Example 3.4.18. ��

Example 10.1.6. There is also a trivial institution semi-morphism μ:EQ →semi
PEQ mapping total algebras to partial algebras:

• μSign:AlgSig → AlgSig is the identity functor.
• For each algebraic signature Σ ∈ |AlgSig|, μMod

Σ :Alg(Σ)→PAlg(Σ) is the inclu-
sion of the category of (total) Σ -algebras into the category of partial Σ -algebras.
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Note that this also yields μ:EQ →semi PEQstr. ��
As we have already mentioned, each of the above examples of institution semi-

morphisms will be extended in Section 10.2 to sentences. There are, however, situ-
ations where we can relate models of two institutions without any hope of relating
their sentences. First, a trivial observation:

Example 10.1.7. Given two institutions INS and INS′ such that SignINS = SignINS′
and ModINS = ModINS′ , there is a trivial institution semi-morphism from INS to
INS′ (and vice versa) consisting of the identity functor on the common category of
signatures and the identity natural transformation on the common model functor.
The sentences of INS and INS′ need not be related in any way. Thus, in particular,
such trivial institution semi-morphisms exist, in both directions, between GEQ and
EQ (Examples 4.1.3 and 4.1.4), PGEQ and PEQ (Examples 4.1.7 and 4.1.6), and
so on. For any institution INS, there are such trivial institution semi-morphisms,
again in both directions, between INS and its closure under conjunction INS∧ (Ex-
ample 4.1.38) and under other logical connectives INSprop (Example 4.1.41), as
well as its extensions by initiality constraints INSinit (Definition 4.3.5) and by data
constraints INSdata (Exercise 4.3.10).

Moreover, if we then have an institution semi-morphism relating some institu-
tion INS′′ with INS, the same institution semi-morphism relates INS′′ with INS′.
For example, the institution semi-morphism μ:FOPEQ →semi EQ defined in Ex-
ample 10.1.2 is also an institution semi-morphism from FOPEQ to GEQ, EQ∧,
EQdata, and so on. ��

Somewhat more surprisingly, there also exist institution semi-morphisms taking
the signatures and models of an intuitively simpler institution to those of a richer
one. Here again we cannot expect that an extension to a translation of sentences
would be possible.

Example 10.1.8. There exists an institution semi-morphism μ:EQ →semi FOPEQ,
where μSign:AlgSig → FOSig is the inclusion of the category of algebraic signa-
tures into the category of first-order signatures (formally, adding to any algebraic
signature the empty set of predicate names), and then μMod:Alg→ (μSign)op;FOStr

is the identity natural transformation (the category of first-order Σ -structures coin-
cides with the category of Σ -algebras for any algebraic signature Σ ∈ |AlgSig| ⊆
|FOSig|).

Similarly, there is an institution semi-morphism μ:PEQ→semi PFOPEQ, which
again consists of the inclusion of signature categories and of the identity natural
transformation on model functors. ��

Perhaps the most important examples of institution semi-morphisms that cannot
be extended to sentences arise when we relate institutions describing programming
languages with the more usual logical systems of specification frameworks:

Example 10.1.9. Recall the institution IMPDT of a simple imperative programming
language with types over an algebra DT of built-in data types (Example 4.1.32).
There is an institution semi-morphism μ:IMPDT →semi PEQ from IMPDT to the
institution PEQ of partial equational logic:
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• μSign:SignIMPDT
→AlgSig maps any signature Π ∈ |SignIMPDT

| to the algebraic
signature μSign(Π) = ΣDT ∪Π , where ΣDT is the algebraic signature of the alge-
bra DT of built-in data types; μSign(Π) was written as ΠDT in Example 4.1.32.
This extends to signature morphisms in the obvious way: for any signature mor-
phism σ :Π →Π ′ in SignIMPDT

, μSign(σ):ΣDT ∪Π → ΣDT ∪Π ′ is the algebraic
signature morphism that extends σ by the identity on ΣDT .

• Consider a signature Π = 〈T,P〉 ∈ |SignIMPDT
|. Any model M ∈ |ModIMPDT (Π)|

determines a carrier |M|s for each sort s in μSign(Π) (|M|s = |DT |s if s is a sort
in ΣDT ) and maps any procedure name p:s1, . . . ,sn → s in P to the set of possible
computations of p on admissible arguments, which determines a partial function
pM: |M|s1 ×·· ·×|M|sn →|M|s. This allows us to define μMod

Π (M)∈ |PAlg(ΣDT ∪
Π)| as the unique partial (ΣDT ∪Π)-algebra such that μMod

Π (M) ΣDT = DT ,
|μMod

Π (M)|s = |M|s for each s ∈ T , and for each p ∈ P, pμMod
Π (M) = pM .

There is no natural translation of an arbitrary equation over ΣDT ∪Π , where
Π ∈ |SignIMPDT

|, to type and procedure definitions (Π -sentences in IMPDT ) which
would determine exactly the functions that satisfy the equation; nor is it possible
to replace an arbitrary set of type and procedure definitions by a set of algebraic
equations. This shows that we cannot hope here for an extension of μ:IMPDT →semi
PEQ to sentences. ��
Exercise 10.1.10. Recall the institution FPL of a simple functional language (Ex-
ample 4.1.25) and the institution FProg which captures its “programming fragment”
(Exercise 4.1.30).

Define an institution semi-morphism μ:FProg →semi PEQ from FProg to the
institution PEQ of partial equational logic that extracts algebraic signatures out of
FPL-signatures (omitting the sets of value constructors) and is just an inclusion on
model categories. Again, we cannot expect any extension to sentences.

The above institution semi-morphism does not extend to an institution semi-
morphism from FPL, where quite complex derived signature morphisms are used
in the category of signatures. Define another institution FPLstnd, a version of
FPL with signature morphisms limited to “standard” morphisms that map op-
eration names essentially to operation names (as in FProg), and check that the
above definition of μ:FProg →semi PEQ also yields an institution semi-morphism
μ:FPLstnd →semi PEQ. ��

As expected, institution semi-morphisms may be composed, and in fact, institu-
tions with institution semi-morphisms form a complete category. We will not, how-
ever, treat this topic in detail here. All the relevant definitions and constructions
are quite straightforward, and may be extracted from the corresponding parts of the
study of institution morphisms in Sections 10.2 and 10.3.

Exercise 10.1.11. Define composition of institution semi-morphisms. Check that
your definition coincides with the appropriate fragments of Definition 10.3.1 below.
Prove that composition is associative and has identities, giving a category INSsemi of
institutions with their semi-morphisms. Try to characterise isomorphisms in INSsemi
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(HINT: Institution semi-morphisms disregard sentences). Give a construction of
products and equalisers in INSsemi and conclude that INSsemi is complete. HINT:
See Exercise 3.4.67. ��

10.1.2 Duplex institutions

An institution semi-morphism μ:INS →semi INS′ gives a way of extracting INS′-
models from INS-models. This is sufficient to allow INS′-sentences to be used to
describe the properties of INS-models: an INS′-sentence ϕ may be defined to hold
in an INS-model if ϕ holds in its translation under μ . Since the sentences of INS

and INS′ need not be related at all, reinterpreting the sentences of INS′ in this way
may increase the specification power of INS.

Definition 10.1.12 (Duplex institution). Consider an institution semi-morphism
μ:INS1 →semi INS2. We define the duplex institution INS1 plus INS2 via μ =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉, which enriches INS1 by INS2-sentences reinter-
preted via μ , as follows:

• INS1 plus INS2 via μ has the same signatures as INS1: Sign = SignINS1
.

• For each Σ ∈ |Sign|, the set Sen(Σ) of Σ -sentences of INS1 plus INS2 via μ
includes Σ -sentences of INS1 as well as μSign(Σ)-sentences of INS2, where the
latter are written in the form ϕ2 via μ , for ϕ2 ∈ SenINS2(μ

Sign(Σ)) (we assume
that sentences of this form do not occur in SenINS1(Σ)).
For each σ :Σ →Σ ′ in Sign, Sen(σ):Sen(Σ)→Sen(Σ ′) is defined as SenINS1(σ)
on Σ -sentences in SenINS1(Σ)⊆ Sen(Σ), and then for any ϕ2 via μ ∈ SenINS(Σ),
where ϕ2 ∈ SenINS2(μ

Sign(Σ)), Sen(σ)(ϕ2 via μ) = μSign(σ)(ϕ2) via μ .
• INS1 plus INS2 via μ has the same models as INS1: Mod = ModINS1 .
• For each signature Σ ∈ |Sign|, the satisfaction relation |=Σ is defined to coincide

with |=INS1,Σ for Σ -sentences in SenINS1(Σ), while for ϕ2 ∈ SenINS2(μ
Sign(Σ))

and M ∈ |Mod(Σ)|, M |=Σ ϕ2 via μ iff μMod
Σ (M) |=INS2,μSign(Σ) ϕ2.

Exercise. Check that the satisfaction condition for INS1 plus INS2 via μ follows
from the satisfaction conditions for INS1 and INS2. ��
Example 10.1.13. An institution semi-morphism μ:FOPEQ →semi EQ mapping
first-order structures of first-order logic to algebras of equational logic is given in
Example 10.1.2. Thus, we can construct a new institution FOPEQ plus EQ via μ ,
which allows equations to be used to specify properties of first-order structures. Of
course, there is little that is interesting about this, since equations are in fact already
present in FOPEQ, as will be formalised by the extension of μ to an institution
morphism in Example 10.2.2 below.

However, as remarked in Example 10.1.7, μ is also an institution semi-morphism
from FOPEQ to the institution EQdata of data constraints in EQ. Thus, we can
form another duplex institution FOPEQ plus EQdata via μ , which in addition to the
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usual first-order sentences allows equational data constraints to be used to specify
first-order structures. This is quite interesting: unlike FOPEQ, the institution EQ of
equational logic is liberal, and so it provides a more natural framework for dealing
with initiality and data constraints (even though they can in fact be expressed di-
rectly as data constraints over FOPEQ in the institution FOPEQdata). In particular,
EQ might be equipped with powerful term rewriting and inductive reasoning tools
which are not available for theories of first-order logic.

Exercise. Simulate the equational data constraints of FOPEQ plus EQdata via μ by
data constraints of FOPEQdata using the obvious embedding of μSign(Θ)-equations
into the set of first-order Θ -sentences, for any first-order signature Θ ∈ |FOSig|.
HINT: This is not quite trivial, as the naive translation may yield data constraints in
FOPEQdata that restrict the interpretation of predicates in Θ more severely than the
original equational data constraints in FOPEQ plus EQdata via μ . ��
Example 10.1.14. Example 10.1.9 introduces an institution semi-morphism from
the institution IMPDT of a simple imperative programming language to the insti-
tution PEQ of partial equational logic. We can compose this with the institution
semi-morphism from PEQ to the institution PFOPEQ of partial first-order logic
given in Example 10.1.8, obtaining an institution semi-morphism μ:IMPDT →semi
PFOPEQ. The duplex institution IMPDT plus PFOPEQ via μ allows for an arbi-
trary mixture of explicit definitions of functional procedures using the sentences of
IMPDT and their loose specifications using (partial) first-order sentences.

Similarly, by Exercise 10.1.10 we have an institution semi-morphism from the
institution FProg of simple functional programs to PEQ, which can be com-
posed with a semi-morphism to PFOPEQ as above, yielding an institution semi-
morphism μ ′:FProg →semi PFOPEQ. This can be used to build the duplex insti-
tution FProg plus PFOPEQ via μ ′ which allows for an arbitrary mixture of func-
tion definitions from FProg and their loose specifications using (partial) first-order
sentences. This is already present in the institution FPL, which in fact offers con-
siderably richer sentences that may involve in their terms quite complex functional
“code”, rather than just use functions with “code” provided separately as in the
duplex institution FProg plus PFOPEQ via μ ′. Thus, the duplex institution is a
weaker (but in some sense also cleaner) mixture of functional programs and log-
ical formulae than FPL. ��
Exercise 10.1.15. For any institution semi-morphism μ1:INS →semi INS1, adding
to INS the sentences of INS1 reinterpreted via μ1 does not change its category
of signatures or its model functor. Thus, as remarked in Example 10.1.7, any
other institution semi-morphism μ2:INS →semi INS2 is also an institution semi-
morphism μ2:INS plus INS1 via μ1 →semi INS2, and so we can form the institution
(INS plus INS1 via μ1) plus INS2 via μ2, which extends INS by adding sentences
of both INS1 and INS2 reinterpreted via μ1 and μ2 respectively. By iterating this
construction, for any finite set of institution semi-morphisms μi:INS →semi INSi,
i = 1, . . . ,n, define the “multiplex” institution INS plus INS1 . . .INSn via μ1 . . .μn.

This can be generalised using the constructions hinted at in Exercise 10.1.11.
Given an arbitrary diagram D in INSsemi with nodes INSi, i = 1, . . . ,n (we restrict
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attention to finite diagrams only for notational convenience), construct in INSsemi
its limit INS with projections μi:INS→semi INSi. Intuitively, each signature of INS

is a combination of the signatures of INSi, i = 1, . . . ,n, that is compatible with the
institution semi-morphisms in D , and similarly for models. A combination of the
institutions in D may be defined as INS plus INS1 . . .INSn via μ1 . . .μn. Compare
this construction with the construction of limits in the category INS of institutions
with full institution morphisms to be given in Section 10.3 (Theorem 10.3.9). ��

10.1.3 Migrating specifications

As shown in the definition of a duplex institution, an institution semi-morphism
μ:INS →semi INS′ can be used to reinterpret in INS the sentences of INS′. This
cannot be lifted immediately to an arbitrary structured specification over INS′.
Any Σ ′-sentence ϕ ′ ∈ SenINS′(Σ ′) may give rise to many sentences ϕ ′ via μ in
the duplex institution INS plus INS′ via μ , one for each signature Σ ∈ |SignINS|
such that μSign(Σ) = Σ ′. The choice of the signature Σ is implicit in the classifi-
cation of the sentences in INS plus INS′ via μ by their signatures. When dealing
with specifications, this choice must be made explicit. This leads to the following
inter-institutional specification-building operation of translation by an institution
semi-morphism.

Definition 10.1.16 (Translating specifications by an institution semi-morphism).

Let μ:INS →semi INS′ be an institution semi-morphism, SP′ an INS′-specification
with signature Sig[SP′] ∈ |SignINS′ | and models Mod[SP′] ⊆ |ModINS′(Sig[SP′])|,
and Σ ∈ |SignINS| an INS-signature with μSign(Σ)= Sig[SP′]. Then SP′ with μ to Σ
is a specification over INS with the following semantics:

Sig[SP′ with μ to Σ ] = Σ
Mod[SP′ with μ to Σ ] = {M ∈ |ModINS(Σ)| | μMod

Σ (M) ∈ Mod[SP′]}.
Thus, extending the notation introduced in Section 5.1 to identify explicitly the in-
stitution over which specifications are interpreted,

with μ to Σ :SpecINS′(μ
Sign(Σ))→ SpecINS(Σ). ��

This operation may be used together with other specification-building operations
to construct specifications with structure that spans a number of institutions related
by institution semi-morphisms. The construction of such a specification may “mi-
grate” through a number of institutions, join specifications coming from different
institutions, and so on. The resulting specifications are heterogeneous in the sense
that they use a number of institutions linked by institution semi-morphisms. How-
ever, each such specification eventually focuses on a single institution in which it
“ends up”. This is the institution where the overall semantics, given as before in
terms of the specification’s signature and model class, resides. In a way, the other
institutions involved may be viewed as auxiliary, used only to conveniently describe
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some parts (or rather, the signature and model class) of the final specification. As in
Definition 10.1.16 above, we say that a (heterogeneous) specification SP is over an
institution INS to indicate the institution in which the semantics of SP is given; the
notation SpecINS (perhaps with the obvious extra qualification by a signature) stands
for the class of all specifications over INS considered. Since the semantics of such
specifications is given via signatures and model classes in INS, all the concepts and
results presented for specifications (so far presumably built entirely in INS) in terms
of their semantics still apply to heterogeneous specifications over INS as well.

For example, recall the institution semi-morphism μ:IMPDT →semi PFOPEQ

used in Example 10.1.14 to build the institution IMPDT plus PFOPEQ via μ . We
may now move specifications over PFOPEQ to IMPDT , thus obtaining specifica-
tions of functional procedures in terms of the logical notation of PFOPEQ, which
is rather more convenient for writing requirement specifications than that provided
by the institution IMPDT . This is similar to building specifications over the duplex
institution IMPDT plus PFOPEQ via μ , but is still more flexible.

Example 10.1.17. Consider the following simple specification (over the institution
PFOPEQ of partial first-order logic) of finite bags of natural numbers, built assum-
ing some standard specifications Nat and Bool of natural numbers and booleans
respectively and using the reachable specification-building operation introduced in
Exercise 5.1.10 to restrict to reachable models.

spec BagNat =
reachable

Nat and Bool
then

sorts Bag
ops ∅:Bag

add:Nat×Bag → Bag
isempty:Bag → Bool
count:Nat×Bag → Nat

∀a,b:Nat,B:Bag
• def (∅)∧def (add(a,B))
• add(a,add(b,B)) = add(b,add(a,B))
• isempty(∅) = true
• isempty(add(a,B)) = false
• count(a,∅) = 0
• count(a,add(a,B)) = 1+ count(a,B)
• a �= b ⇒ count(b,add(a,B)) = count(b,B)

on {Bag}
Let μ:IMPDT →semi PFOPEQ be the institution semi-morphism sketched in Ex-

ample 10.1.14. We would like to translate the specification BagNat to the insti-
tution IMPDT , obtaining a specification of a set of functional procedures in the
programming language underlying IMPDT . The necessary prerequisite for this is
that we have a signature Π ∈ SignIMPDT

such that μSign(Π) = Sig[BagNat]. Since
μSign:SignIMPDT

→ FOSig always yields signatures containing the signature ΣDT
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of the underlying data type of the programming language, Sig[BagNat] may not
be in the range of μSign. We can, however, translate the specification BagNat to
the “closest” signature in PFOPEQ of the required form, simply by adding (un-
constrained) the types and operations of DT . To avoid this extra step, for simplicity
of presentation here, let us assume that the built-in data types of the programming
language are just the natural numbers and booleans with operations as in Nat and
Bool and that the algebra DT is a (standard) model of Nat and Bool. Then the
types and operations of BagNat which have to be implemented are given in the
following signature in IMPDT :

ΠBagNat = types Bag
procedures ∅: → Bag

add:Nat,Bag → Bag
isempty:Bag → Bool
count:Nat,Bag → Nat

We now have μSign(ΠBagNat) = Sig[BagNat] and so can form the following spec-
ification over IMPDT :

spec BagNatIMP = BagNat with μ to ΠBagNat

BagNatIMP is an IMPDT -specification with signature ΠBagNat and with mod-
els which implement the type Bag and operations ∅, add, isempty and count so that
the (partial) functions they determine satisfy the axioms in BagNat. More pre-
cisely, the models of BagNatIMP must determine partial algebras that are models
of BagNat, which in particular requires them to be reachable on the sort Bag. No-
tice that the (discrete) categorical structure of models in IMPDT , and hence in the
duplex institution IMPDT plus PFOPEQ via μ , is not rich enough to capture this
property (in the style of Section 4.5).

BagNatIMP may be used in the same way as any other specification in IMPDT .
In particular, it may be combined with other specifications using all the available
specification-building operations. Perhaps most importantly, it may also be further
refined in IMPDT . Consider:

spec ListNat-for-BagNatIMP =
types List
procedures nil: → List

null:List → Bool
nth:Nat,List → Nat
incr:Nat,List → List

• type List = unit+Nat×List
• proc nil = result 〈〉:List
• proc null(L:List) = result is-in1(L):Bool
• proc nth(n:Nat,L:List) =

while n > 0 and is-in2(L) do
n :=n−1; L :=proj2(L) od;

if is-in1(L) then r :=0 else r :=proj1(L) fi;
result r:Nat
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• proc incr(n:Nat,L:List) =
L1:=〈〉;
while n > 0 and is-in2(L) do

L1:=〈proj1(L),L1〉; n :=n−1; L :=proj2(L) od;
if is-in1(L) then

v :=0; while n > 0 do n :=n−1; L1:=〈0,L1〉 od
else v :=proj1(L); L :=proj2(L) fi;
L :=〈v+1,L〉;
while is-in2(L1) do

L :=〈proj1(L1),L〉; L1:=proj2(L1) od;
result L:List

For help reading the above “code”, note that in many conventional languages, list
would be a built-in data type of lists of natural numbers, with 〈〉 typically written as
nil, is-in1(L) as null(L), proj1(L) as head(L), proj2(L) as tail(L), and
〈v,L〉 as cons(v,L).

The overall idea here is to consider lists of natural numbers, with nth(n,L) ex-
tracting the (n+ 1)th element from the list L (or 0 if no such element exists) and
incr(n,L) increasing the (n+ 1)th element of L by 1 (padding the list with 0’s if
the length of L is smaller than n). Such lists can be used directly to represent bags
of natural numbers by storing the number of occurrences of n in a bag B at the nth
position of the list that represents B. To state this intention formally, let ΠLN-for-BN =
Sig[ListNat-for-BagNatIMP] and let σ :ΠBagNat → ΠLN-for-BN be the signa-
ture morphism given by the map {Bag �→ List,∅ �→ nil,add �→ incr, isempty �→
null,count �→ nth}. We then have the following simple implementation (see Sec-
tion 7.1):

BagNatIMP ���ListNat-for-BagNatIMP hide via σ

This formally captures the claim that ListNat-for-BagNatIMP provides an im-
plementation for BagNat built in IMPDT . ��
Example 10.1.18. Example 10.1.17 can be redone in a functional programming
style using the institution FProg. Recall the institution semi-morphism μ ′:FProg→
PFOPEQ introduced in Example 10.1.14. Consider the FPL-signature SIGBagNat,
which is essentially the signature Sig[BagNat] with no value constructors (other
than those for sort Bool). Since (μ ′)Sign(SIGBagNat) = Sig[BagNat], we can form
the following specification over FProg:

spec BagNatFProg = BagNat with μ to SIGBagNat

BagNatFProg may be used in the same way as any other specification in FProg;
most importantly, it may be further refined to build an implementation of BagNat
in FProg. Consider:
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spec ListNat-for-BagNatFProg =
sorts Nat free with 0| succ(Nat)

List free with nil| cons(Nat,List)
. . . operations from Nat and Bool and their definitions omitted . . .

ops fun null(L:List):NatList =
case L of nil => true | cons(n,L′) => false

fun nth(n:Nat,L:List):Nat =
case L of nil => 0

| cons(k,L′) => case n of 0 => k
| succ(m) => nth(m,L′)

fun incr(n:Nat,L:List):List =
case n of 0 => case L of nil => cons(succ(0),nil)

| cons(k,L′) => cons(succ(k),L′)
| succ(m) => case L of nil => cons(0, incr(m,nil))

| cons(k,L′) => cons(k, incr(m,L′))

This is a version of the “imperative code” from Example 10.1.17 in a functional
programming style.

Let SIGLN-for-BN = Sig[ListNat-for-BagNatFProg] and let σ ′:SIGBagNat →
SIGLN-for-BN be the signature morphism determined by the map {Bag �→ List,∅ �→
nil,add �→ incr, isempty �→ null,count �→ nth}. We then have

BagNatFProg ���ListNat-for-BagNatFProg hide via σ ′.

This formally captures the claim that ListNat-for-BagNatFProg provides an
implementation for BagNat built in FProg. ��

Translation by an institution semi-morphism μ:INS →semi INS′ allows us to
change the institution in which specifications are built by reinterpreting any speci-
fication dealing with simpler INS′-models in the richer framework of INS-models.
There is a dual operation which translates specifications over INS to the simpler
context of INS′.

Definition 10.1.19 (Hiding specifications via an institution semi-morphism). Let
μ:INS →semi INS′ be an institution semi-morphism, SP an INS-specification with
signature Sig[SP] ∈ |SignINS| and models Mod[SP] ⊆ |ModINS(Sig[SP])|. Then
SP hide via μ is a specification over INS′ with the following semantics:2

Sig[SP hide via μ] = μSign(Sig[SP])
Mod[SP hide via μ] = {μMod

Sig[SP](M) | M ∈ Mod[SP]}.

Thus, for each signature Σ ∈ |SignINS|,

hide via μ :SpecINS(Σ)→ SpecINS′(μ
Sign(Σ)). ��

2 CASL notation: if μ is an institution morphism, see Definition 10.2.1, then this is written
SP hide μ in HETCASL, the language of HETS [MML07].
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This yields another specification-building operation which may be arbitrarily
mixed with other operations to stretch the structure of specifications over a num-
ber of institutions. As indicated in Examples 10.1.17 and 10.1.18, this allows us to
consider developments via simple implementations which, although formally taking
place in a single institution, may in fact involve complex specifications from other
institutions as well. It is perhaps more desirable to explicitly change institution in
the course of the development process. This may be captured analogously to change
of signature during the development process as enabled by constructor implemen-
tations (Definition 7.2.1), by generalising in a rather obvious way the notion of a
constructor from Definition 6.1.1.

Definition 10.1.20 (Generalised constructor). Consider two institutions INS =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and INS′ = 〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉.
• A constructor κ:〈INS′,Σ ′〉 ⇒ 〈INS,Σ〉, where Σ ′ ∈ |Sign′| and Σ ∈ |Sign|, is a

partial function mapping Σ ′-models in INS′ to Σ -models in INS, κ: |Mod′(Σ ′)|→
|Mod(Σ)|.

• A specification SP over INS is implemented by a specification SP′ over INS′

via a constructor κ:〈INS′,Sig[SP′]〉 ⇒ 〈INS,Sig[SP]〉, written SP κ���SP′, if
Mod[SP′]⊆ dom(κ) and Mod[SP]⊇ κ(Mod[SP′]).

• A constructor operation determined by a constructor κ:〈INS′,Σ ′〉 ⇒ 〈INS,Σ〉,
where Σ ′ ∈ |Sign′| and Σ ∈ |Sign|, is a specification-building operation which for
any Σ ′-specification SP′ over INS′ yields a specification κ(SP′) over INS with
the following semantics:

Sig[κ(SP′)] = Σ
Mod[κ(SP′)] = κ(Mod[SP′]). ��

It should be obvious that this is indeed a generalisation of the corresponding defi-
nitions in Sections 6.1 and 7.2: if INS = INS′ then we obtain the concepts discussed
there in the framework of an arbitrary but fixed institution. It should also be clear
that the discussion about the role of constructor implementations in the develop-
ment process as well as the results presented there carry over to the present more
general framework, where the development process may gradually migrate from one
institution to another. Typically, constructors leading from one institution to another
are components of an institution semi-morphism and extract simpler models from
more complex ones. Consequently, development will proceed from institutions with
a simpler notion of a model to those in which models carry gradually more and more
information.

Example 10.1.21. For any institution semi-morphism μ :INS′ →semi INS and any
signature Σ ′ ∈ |SignINS′ |, μMod

Σ ′ :ModINS′(Σ ′)→ModINS(μSign(Σ ′)) is a constructor
μMod

Σ ′ :〈INS′,Σ ′〉 ⇒ 〈INS,μSign(Σ ′)〉. These constructors are total functions, so we
do not need to check the requirement concerning their definedness when using them
in implementation steps. The constructor operation determined by μMod

Σ ′ coincides
with hide via μ .
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For example, recall the institution semi-morphism μ :IMPDT →semi PFOPEQ

and the specifications and notation introduced in Example 10.1.17. Then

BagNat κ���ListNat-for-BagNatIMP

where the constructor κ:〈IMPDT ,ΠLN-for-BN〉⇒ 〈PFOPEQ,Sig[BagNat]〉 is given
by composition of the following two constructors:

σ : 〈IMPDT ,ΠLN-for-BN〉 ⇒ 〈IMPDT ,ΠBagNat〉
μMod

ΠBagNat
: 〈IMPDT ,ΠBagNat〉 ⇒ 〈PFOPEQ,Sig[BagNat]〉.

Similarly, given the institution semi-morphism μ ′:FProg →semi PFOPEQ and
the specifications and notation introduced in Example 10.1.18, we have

BagNat
κ ′����ListNat-for-BagNatFProg

with the constructor κ ′:〈FProg,SIGLN-for-BN〉 ⇒ 〈PFOPEQ,Sig[BagNat]〉 given
by composition of the following two constructors:

σ ′ : 〈FProg,SIGLN-for-BN〉 ⇒ 〈FProg,SIGBagNat〉
(μ ′)Mod

SIGBagNat
: 〈FProg,SIGBagNat〉 ⇒ 〈PFOPEQ,Sig[BagNat]〉. ��

Exercise 10.1.22. In the spirit of Section 5.6, check if the two operations of chang-
ing institution via institution semi-morphisms commute with other specification-
building operations. For example, for any institution semi-morphism μ :INS →semi
INS′, prove that (under appropriate assumptions about the signatures of specifica-
tions and the signature morphisms involved)

(SP′1 with μSign(σ)) with μ to Σ2 ≡ (SP′1 with μ to Σ1) with σ
(SP2 hide via σ) hide via μ ≡ (SP2 hide via μ) hide via μSign(σ).

Show that we also have

Mod[(SP1 with σ) hide via μ ]⊆ Mod[(SP1 hide via μ) with μSign(σ)]
Mod[(SP′2 hide via μSign(σ)) with μ to Σ1]⊇

Mod[(SP′2 with μ to Σ2) hide via σ ].

Check that the opposite inclusions hold as well if the “naturality squares” for μMod

(see Definition 10.1.1) are pullbacks in Cat.
Since sentences are not related at all by institution semi-morphisms, we can-

not expect any result relating the operation of changing institution via an insti-
tution semi-morphism to flat specifications. Show, however, that if the institu-
tion semi-morphism extends to a full institution morphism as described in Def-
inition 10.2.1 below then the situation is analogous to that with the translation
and hiding specification-building operations within a single institution (cf. Proposi-
tion 5.6.2(2) and Exercise 5.6.3).

We also have, as in Exercise 5.6.3, for any specification SP over INS with
Sig[SP] = Σ and specification SP′ over INS′ such that μSign(Σ) = Sig[SP′],
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Mod[(SP′ with μ to Σ) hide via μ ]⊆ Mod[SP′],
Mod[(SP hide via μ) with μ to Σ ]⊇ Mod[SP].

Show that the first inclusion (but in general not the second) may be reversed if μMod
Σ

is surjective. ��
Exercise 10.1.23. Show — for instance using the last two inclusions indicated
in Exercise 10.1.22 above — that given an institution semi-morphism μ:INS →
INS′, the specification-building operations with μ to Σ and hide via μ form
a Galois connection between classes of Σ -specifications over INS and μSign(Σ)-
specifications over INS′, considered up to equivalence and ordered by the inclusion
of model classes.

In particular this implies that for any specifications SP over INS and SP′ over
INS′ such that μSign(Sig[SP]) = Sig[SP′], SP′ with μ to Sig[SP] ���SP if and only
if SP′ ���SP hide via μ . Conclude then (informally) that translation of specifica-
tions by an institution semi-morphism when used on its own does not add new
possibilities to the development process beyond those given by the constructor

hide via .
Show that when translation by an institution semi-morphism is used in combina-

tion with other specification-building operations, it may not be possible to similarly
replace the use of with μ to by appropriate applications of hide via μ . ��

The concepts and results on behavioural implementations in Section 8.4 carry
over to this more general framework as well.

Example 10.1.24. Recall the specification of bags of natural numbers built in the
institution PFOPEQ in Example 10.1.17 and its constructor implementation built
essentially in Example 10.1.18 using the institution semi-morphism μ ′:FProg →
PFOPEQ, as presented in Example 10.1.21.

Consider another attempt at implementing BagNat in FProg:

spec ListNat-for-BagNat′FProg =
sorts Nat free with 0| succ(Nat)

List free with nil| cons(Nat,List)
. . . operations from Nat and Bool and their definitions omitted . . .

ops fun eq(n:Nat,m:Nat):Bool =
case n of 0 => case m of 0 => true

| succ(m′) => false
| succ(n′) => case m of 0 => false

| succ(m′) => eq(n′,m′)
fun null(L:List):NatList =

case L of nil => true | cons(n,L′) => false
fun count(n:Nat,L:List):Nat =

case L of nil => 0
| cons(k,L′) => case eq(k,n) of true => succ(count(n,L′))

| false => count(n,L′)
fun add(n:Nat,L:List):List = cons(n,L)
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Let SIG′LN-for-BN = Sig[ListNat-for-BagNat′FProg], with the signature inclusion
ι :SIGBagNat → SIG′LN-for-BN. Consider the constructor κ ′′ given by composition of
the following two constructors:

ι : 〈FProg,SIG′LN-for-BN〉 ⇒ 〈FProg,SIGBagNat〉
(μ ′)Mod

SIG′BagNat
: 〈FProg,SIGBagNat〉 ⇒ 〈PFOPEQ,Sig[BagNat]〉.

It is easy to check now that for any model M ∈Mod[ListNat-for-BagNat′FProg],
κ ′′(M) does not satisfy add(0,add(succ(0),∅)) = add(succ(0),add(0,∅)) and so
is not a model of BagNat. Consequently, we do not have a constructor implemen-
tation BagNat

κ ′′����ListNat-for-BagNat′FProg.
Recall, however, the behavioural interpretation of specifications of partial alge-

bras as presented in Section 8.5.1.3 It is easy to see that κ ′′(M) is a behavioural
model of BagNat, κ ′′(M) ∈ Abs{Bool,Nat}(Mod[BagNat]), so that, as intuitively
expected, we do have a behavioural implementation:

BagNat {Bool,Nat}
κ ′′����ListNat-for-BagNat′FProg.

Exercise. Prove the correctness of this behavioural implementation, relying as much
as possible on the proof techniques presented in Chapter 9. Good luck! ��

10.2 Institution morphisms

Institution semi-morphisms entirely disregard the sentences and satisfaction rela-
tions of the institutions involved. Therefore they are not really satisfactory as a tool
to relate and compare different logical systems presented as institutions. For this
purpose, we will introduce here the concept of an institution morphism, which ex-
tends an institution semi-morphism by adding translations of sentences subject to
the requirement that satisfaction be preserved.

Let us first have a closer look at the archetypical relationship between the in-
stitution FOPEQ of first-order logic with equality (cf. Example 4.1.12) and the
institution EQ of equational logic (cf. Example 4.1.4). FOPEQ is a “richer” logical
system, which may be intuitively viewed as some kind of an enrichment obtained
by building on top of the “more primitive” logical system EQ. Very informally, we
build FOPEQ from EQ by adding some extra components to signatures, then ex-
panding models to interpret these new components, and finally enlarging the sets
of sentences. This indicates three parts of such a relationship, which we will now
consider in more detail.

First, any first-order signature is “built on top of” an algebraic signature: from
any first-order signature we can extract the algebraic signature it is “built on top of”

3 The presentation in Section 8.5.1 was given in the institution FPL. This is directly applicable
to models in PFOPEQ, since the PFOPEQ signatures involved have no predicates and can be
considered as FPL-signatures with no value constructors.
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by simply forgetting all the predicate symbols, and this mapping extends to signature
morphisms in the obvious way. Similarly, any first-order structure is “built on top
of” an algebra: from any first-order structure we can extract the algebra it is “built
on top of” (which is over the algebraic signature extracted from the first-order sig-
nature of this structure) by simply forgetting all the predicates. Again, this extends
to structure morphisms in the obvious way; no change at all is needed in this case.
This is captured by the institution semi-morphism from FOPEQ to EQ presented in
Example 10.1.2. In addition, any equation may be viewed as a first-order sentence
by simply regarding the universal quantifier used in the notation for equations as
the universal quantifier of first-order logic (iterated in an arbitrary order for all the
variables involved). Thus, the correspondence between FOPEQ and EQ consists of
three essential components: a mapping from FOPEQ-signatures to EQ-signatures;
a family of mappings (one for each FOPEQ-signature) from FOPEQ-models to
EQ-models; and a family of mappings (one for each FOPEQ-signature) from EQ-
sentences to FOPEQ-sentences — notice the change of direction. A crucial property
of these mappings is that they are compatible with the translations of sentences and
models induced by signature morphisms in each of the institutions, and that they
preserve the satisfaction relations.

These three mappings constitute an institution morphism from FOPEQ to EQ.

Definition 10.2.1 (Institution morphism). An institution morphism μ:INS→ INS′

from an institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 to an institution INS′ =
〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉 consists of:

• a functor μSign:Sign → Sign′,
• a natural transformation μSen: μSign;Sen′ → Sen, that is, for each Σ ∈ |Sign|, a

function μSen
Σ :Sen′(μSign(Σ))→ Sen(Σ) such that the following diagram com-

mutes for every σ :Σ1 → Σ2 in Sign

Σ2

Σ1

�

σ

Sen(Σ2)Sen′(μSign(Σ2))

Sen′(μSign(Σ1)) Sen(Σ1)

�
μSen

Σ2

�

Sen′(μSign(σ))

�

Sen(σ)

�
μSen

Σ1

• a natural transformation μMod:Mod → (μSign)op;Mod′, that is, for each Σ ∈
|Sign|, a functor μMod

Σ :Mod(Σ)→ Mod′(μSign(Σ)) such that the following dia-
gram commutes for every σ :Σ1 → Σ2 in Sign
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Σ2

Σ1

�

σ

Mod′(μSign(Σ2))Mod(Σ2)

Mod(Σ1) Mod′(μSign(Σ1))

�
μMod

Σ2

�

Mod(σ)

�

Mod′(μSign(σ))

�
μMod

Σ1

such that for any signature Σ ∈ |Sign|, the translations μSen
Σ :Sen′(μSign(Σ)) →

Sen(Σ) of sentences and μMod
Σ :Mod(Σ)→Mod′(μSign(Σ)) of models preserve the

satisfaction relation, that is, for any ϕ ′ ∈ Sen′(μSign(Σ)) and M ∈ |Mod(Σ)|
M |=Σ μSen

Σ (ϕ ′)⇐⇒ μMod
Σ (M) |=′

μSign(Σ)
ϕ ′ [Satisfaction condition].

��
We say that the institution morphism μ:INS→ INS′ as above extends the institution
semi-morphism 〈μSign,μMod〉:INS →semi INS′. Whenever convenient, we will use
an institution morphism μ in contexts where the institution semi-morphism that μ
extends is required, as for instance in inter-institutional specification-building oper-
ations as introduced by Definitions 10.1.16 and 10.1.19.

Example 10.2.2. As indicated in the remarks preceding the above definition, there
is a natural institution morphism relating first-order logic to equational logic,
μ:FOPEQ→EQ. It extends the semi-morphism 〈μSign,μMod〉:FOPEQ→semi EQ

defined in Example 10.1.2 as follows:

• For Θ ∈ |FOSig|, μSen
Θ :SenEQ(μSign(Θ))→ SenFOPEQ(Θ) maps any μSign(Θ)-

equation of the form ∀X • t = t ′ to the corresponding first-order Θ -sentence
∀x1:s1, · · · ,xn:sn • t = t ′, where X is the family of variables {x1:s1, . . . ,xn:sn}.
(This relies on the assumption that only finite sets of variables are used in equa-
tions — cf. Definition 2.1.1. Moreover, the order of variables used in this trans-
lation, albeit arbitrary, must be chosen consistently for all equations.)

It is easy to check that the family μSen
Θ :SenEQ(μSign(Θ))→ SenFOPEQ(Θ), for Θ ∈

|FOSig|, forms a natural transformation μSen: μSign;SenEQ → SenFOPEQ.
The satisfaction condition follows from the trivial observation that the value of

a term in a first-order structure does not depend on the interpretation of predicate
symbols. ��
Example 10.2.3. A similarly obvious institution morphism μ:CEQ → EQ extends
as follows the institution semi-morphism 〈μSign,μMod〉:CEQ →semi EQ defined in
Example 10.1.3:

• For each algebraic signature Σ ∈ |AlgSig|, μSen
Σ :SenEQ(Σ)→ SenCEQ(Σ) is the

inclusion of the (finitary) Σ -equations into the set of infinitary Σ -equations.

The family μSen
Σ :SenEQ(Σ)→ SenCEQ(Σ), Σ ∈ |AlgSig|, forms a natural transfor-

mation μSen:SenEQ → SenCEQ. The satisfaction condition is easy to check using the
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observation that the value of any finitary term in a continuous algebra, and hence
the meaning of any finitary equation, does not depend on the ordering. ��
Exercise 10.2.4. Following Example 10.2.2, extend the institution semi-morphism
〈μSign,μMod〉:PFOPEQ→semi PEQ of Exercise 10.1.4 to define an institution mor-
phism μ:PFOPEQ → PEQ. ��
Example 10.2.5. Here are a number of rather straightforward examples of institu-
tion morphisms:

1. There is a trivial institution morphism from EQ to GEQ extending the trivial
institution semi-morphism mentioned in Example 10.1.7: the translations of sen-
tences are inclusions of the set of ground equations into the set of all equations
over a given algebraic signature.

2. For any institution INS, there is an institution morphism from INS∧ (Exam-
ple 4.1.38) to INS extending the trivial institution semi-morphism mentioned
in Example 10.1.7: the translations of sentences map any sentence ϕ of INS to
the one-element set {ϕ}, which is a sentence of INS∧. Similarly, there is an
institution morphism from INSprop (Example 4.1.41) to INS which extends the
trivial institution semi-morphism mentioned in Example 10.1.7 by translations
of sentences which are just inclusions.

3. For any institution INS, there is an institution morphism from INS to the insti-
tution INSSign+ with signatures enriched by sentences (cf. Example 4.1.39): the
translation of signatures “enriches” any signature of INS by the empty set of sen-
tences, thus yielding a signature of INSSign+ ; the translations of sentences and of
models are just the identities.
Notice that the signature translation functor here is not surjective.
There is also an institution morphism going in the opposite direction, from
INSSign+ to INS: the signature translation extracts the original signature com-
ponent of the enriched signatures of INSSign+ , the sentence translations are the
identities, and the model translations are inclusions.

4. For any institution INS, there is an institution morphism from INS to the insti-
tution INSMod+ with enlarged model categories (cf. Example 4.1.40): the trans-
lations of signatures and sentences are just the identities, and for any signature
Σ , the translation of Σ -models of INS to Σ -models of INSMod+ maps any model
M ∈ |ModINS(Σ)| to its trivial expansion 〈idΣ ,M〉 ∈ |Mod

INSMod+ (Σ)|.
Notice that the translations of models here are not surjective.
Perhaps more interestingly, there is an institution morphism going in the opposite
direction, from INSMod+ to INS: the translations of signatures and sentences are
the identities, and for any signature Σ , the translation of Σ -models of INSMod+

to Σ -models of INS maps any “model” 〈σ :Σ → Σ ′,M′ ∈ |ModINS(Σ ′)|〉 in
|Mod

INSMod+ (Σ)| to M′
σ in |ModINS(Σ)| (this obviously extends to a functor).

The proof of the satisfaction condition for the institution morphisms listed above
amounts essentially to the remark that the satisfaction relations in the “richer” insti-
tution (the source of the institution morphism) extend the corresponding satisfaction
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relations in the “more primitive” institution (the target of the institution morphism).
��

Exercise 10.2.6. For any institution INS with model functor Mod, Example 4.1.35
introduced the institution INSSen(Mod), where “sentences” are classes of INS-models.
Define an institution morphism from INSSen(Mod) to INS.

In a sense dually, for any institution INS with a sentence functor Sen, Exam-
ple 4.1.36 introduced the institution INSMod(Sen), where “models” are sets of INS-
sentences. Try to define an institution morphism from INS to INSMod(Sen) which
would map any model to its theory. Does this always work? HINT: Show that the
mapping of models to their theories extends to a functor for the institution GEQ,
but does not naturally extend to a functor for the institution EQ.

Give a sufficient condition under which a homomorphism between algebras in-
duces an inclusion of their equational theories. Formulate an analogous condition
for morphisms between first-order structures and their first-order theories. Are the
conditions you have given necessary? ��
Example 10.2.7. In Example 10.1.5 we have defined an institution semi-morphism
〈μSign,μMod〉:PEQstr →semi EQ, using the idea of “totalisation” of partial func-
tions. We will not extend this to an institution morphism from PEQstr to EQ —
see the exercise below. However, by Example 10.1.7, it is also an institution semi-
morphism 〈μSign,μMod〉:PEQstr →semi GEQ, which extends to an institution mor-
phism μ:PEQstr → GEQ in the obvious way:

• For each algebraic signature Σ ∈ |AlgSig|, μSen
Σ :SenGEQ(Σ)→ SenPEQstr

(Σ) is
the inclusion of the set of ground Σ -equations into the set of all Σ -equations and
Σ -definedness formulae.

Proving the satisfaction condition relies on the fact that for any algebraic signature
Σ ∈ |AlgSig|, the value of a Σ -term in a partial Σ -algebra A ∈ |PAlg(Σ)| is defined
if and only if its value in the Σ -algebra μMod

Σ (A) ∈ |Alg(Σ)| is not ⊥, and moreover,
if this is the case, then the value of this term is the same in A and in μMod

Σ (A). Given
this, the proof of the satisfaction condition proceeds by simple case analysis: an
equation t = t ′ holds in A if and only if either the values of t and t ′ in A are defined
and equal — and then they are also equal in μMod

Σ (A) — or the values of t and t ′
are undefined in A — and then the values of t and t ′ in μMod

Σ (A) are equal to ⊥ (and
hence equal as well).

Exercise. Complete the proof of the satisfaction condition. Try to generalise the
above institution morphism to an institution morphism from PEQstr to EQ, and
point out where the proof of the satisfaction condition would break down. HINT:
See Example 10.2.8. ��
Example 10.2.8. Consider a new institution PEQpval which is just like PEQstr

except that the satisfaction relation takes into account partial valuations of vari-
ables as well. That is, for any algebraic signature Σ ∈ |AlgSig|, partial Σ -algebra
A ∈ |PAlg(Σ)| and Σ -equation ∀X • t = t ′, A |=PEQpval,Σ ∀X • t = t ′ if for all partial
functions v:X → |A|, either the values of both t and t ′ under v in A are undefined
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or they are defined and equal. The satisfaction of definedness formulae is defined
analogously. Notice that this yields a different satisfaction relation than |=PEQstr,Σ .

The institution semi-morphism 〈μSign,μMod〉:PEQstr →semi EQ presented in Ex-
ample 10.1.5 is also an institution semi-morphism 〈μSign,μMod〉:PEQpval →semi EQ

(by Example 10.1.7). It extends to an institution morphism μ:PEQpval →EQ in the
obvious way, so that the satisfaction condition is ensured:

• For each algebraic signature Σ ∈ |AlgSig|, μSen
Σ :SenEQ(Σ)→ SenPEQpval

(Σ) is
the inclusion of Σ -equations into the set of Σ -equations and Σ -definedness for-
mulae.

Exercise. Following the same pattern, define a new institution PFOPEQpval of
partial first-order logic with equality based on partial valuations of variables, and
then construct an institution morphism μ:PFOPEQpval → FOPEQ. ��
Example 10.2.9. There is also an institution morphism μ:EQ → PEQ which ex-
tends the institution semi-morphism 〈μSign,μMod〉:EQ →semi PEQ defined in Ex-
ample 10.1.6 as follows:

• For each algebraic signature Σ ∈ |AlgSig|, μSen:SenPEQ(Σ) → SenEQ(Σ) is
the identity on Σ -equations and maps each Σ -definedness formula of the form
∀X • def (t) to the Σ -equation ∀X • t = t (in fact, any trivially true Σ -equation
would do).

The satisfaction condition obviously holds, since in any algebra in the range of the
translation of models — that is, in any partial algebra in which all operations are
totally defined — equations are interpreted in the same way in EQ and in PEQ, and
definedness formulae are always satisfied. ��
Example 10.2.10. There is an institution morphism μ:3FOPEQ→ PEQ which ex-
tends the institution semi-morphism 〈μSign,μMod〉:3FOPEQ →semi PEQ of Exer-
cise 10.1.4 as follows:

• For each Θ ∈ |FOSig|, the translation of sentences μSen
Θ :SenPEQ(μSign(Θ))→

Sen3FOPEQ(Θ) is defined as follows:

– Each definedness statement ∀X • def (t) ∈ SenPEQ(μSign(Θ)) is translated to
the sentence (∀x1:s1, · · · ,xn:sn • def (t)) is tt ∈ Sen3FOPEQ(Θ), where X is
{x1:s1, . . . ,xn:sn}.4

– Each equation ∀X • t = t ′ ∈ SenPEQ(μSign(Θ) is translated to the sentence

(∀x1:s1, · · · ,xn:sn • t = t ′ ∨ (¬def (t)∧¬def (t ′))) is tt ∈ Sen3FOPEQ(Θ)

where again X is {x1:s1, . . . ,xn:sn}.

The proof of the satisfaction condition relies on the property that for every first-
order signature Θ ∈ |FOSig|, the value (whether defined or not) of a term t in a

4 As in Example 10.2.2, the order of variables may be chosen in an arbitrary but uniform way.
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partial first-order Θ -structure A ∈ |Mod3FOPEQ(Θ)| does not depend on the inter-
pretation of predicates in A. Notice that because of the different interpretation of
equations in PEQ and in 3FOPEQ, we had to use an appropriate “encoding” of
(strong) equations in PEQ as disjunctions of formulae in 3FOPEQ. ��
Exercise 10.2.11. Recall the institution semi-morphism 〈μSign,μMod〉:IMPDT →semi
PEQ defined in Example 10.1.9. Show that it cannot be extended to an institution
morphism.

Similarly, show that the institution semi-morphisms from EQ to FOPEQ and
from PEQ to PFOPEQ defined in Example 10.1.8 cannot be extended to institution
morphisms. ��
Exercise 10.2.12. Recall the institution semi-morphism 〈μSign,μMod〉:FProg→semi
PEQ defined in Exercise 10.1.10. Show that it cannot be extended to an institution
morphism. However, as mentioned in Exercise 10.1.10 as well, this is also an institu-
tion semi-morphism 〈μSign,μMod〉:FPLstnd →semi PEQ, and so by Example 10.1.7,
also an institution semi-morphism 〈μSign,μMod〉:FPLstnd →semi PFOPEQ. Show
that this extends to an institution morphism μ:FPLstnd → PFOPEQ, with first-
order sentences (with algebraic terms only) viewed as a subset of FPL-sentences.

Show also that the trivial semi-morphism from FPLstnd to FProg (given by Ex-
ample 10.1.7) also extends to an institution morphism in an obvious way. ��

For the rest of this section, let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and INS′ =
〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉 be institutions linked by an institution morphism
μ:INS → INS′.

Using the consequences of the satisfaction condition for institution morphisms
in much the same way as we did in Section 4.2 for the satisfaction condition in a
single institution, one can show that the semantic consequence relation is preserved
when sentences are translated by an institution morphism. A number of related facts
then follow in a similar way.

Proposition 10.2.13. Consider an INS-signature Σ ∈ |Sign| and let Σ ′= μSign(Σ)∈
|Sign′|. Then, for any sets Φ ′ ⊆ Sen′(Σ ′) of Σ ′-sentences and Φ ⊆ Sen(Σ) of Σ -
sentences, and Σ ′-sentence ϕ ′ ∈ Sen′(Σ ′), we have:

1. μSen
Σ (ClΣ ′(Φ ′))⊆ClΣ (μSen

Σ (Φ ′)). In other words, if Φ ′ |=′
Σ ′ ϕ ′ then μSen

Σ (Φ ′) |=Σ
μSen

Σ (ϕ ′).
2. ClΣ (μSen

Σ (ClΣ ′(Φ ′))) = ClΣ (μSen
Σ (Φ ′)).

3. ClΣ ′((μSen
Σ )−1(Φ))⊆ (μSen

Σ )−1(ClΣ (Φ)).
4. ClΣ ′((μSen

Σ )−1(Φ))⊆ ThΣ ′(μMod
Σ (ModΣ (Φ))).

Proof. The straightforward proof in each case proceeds exactly as the proof of a cor-
responding proposition or corollary in Section 4.2, using the satisfaction condition
for institution morphisms in place of the satisfaction condition for institutions.

Exercise. Prove each of the above statements directly. Then identify the correspond-
ing results in Section 4.2 and compare the proofs. ��
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The preservation of theories (closed sets of sentences) of INS under institution
morphisms deserves special attention:

Proposition 10.2.14. Consider any INS-signature Σ ∈ |Sign|, μSign(Σ) = Σ ′, and
set Φ ⊆Sen(Σ) of Σ -sentences. Then (μSen

Σ )−1(ClΣ (Φ))=ThΣ ′(μMod
Σ (ModΣ (Φ))).

Consequently, if Φ is closed then (μSen
Σ )−1(Φ) ⊆ Sen′(Σ ′) is a closed set of Σ ′-

sentences in INS′.

Proof. Again, we refer to the proof of Proposition 4.2.15. ��
The above proposition determines a mapping of theories in INS to theories in

INS′. Moreover, the naturality of the translations of sentences ensures that this map-
ping extends to a functor.

Definition 10.2.15 (Theory functor induced by an institution morphism). Ev-
ery institution morphism μ:INS→ INS′ determines a functor μTh:ThINS → ThINS′
between the categories of theories of INS and of INS′, respectively:

• For any INS-theory 〈Σ ,Φ〉 ∈ |ThINS|, μTh(〈Σ ,Φ〉) = 〈μSign(Σ),(μSen
Σ )−1(Φ)〉 ∈

|ThINS′ |.
• For any INS-theory morphism σ :T1 →T2, μTh(σ)= μSign(σ): μTh(T1)→ μTh(T2)

is an INS′-theory morphism. ��
As in Section 4.2, none of the implications or inclusions in Proposition 10.2.13

may be reversed in general. However, the situation is again different if model trans-
lation is surjective (by this we refer to the surjectivity of the translation functors on
models; surjectivity on model morphisms is not required).

Proposition 10.2.16. Consider an INS-signature Σ ∈ |Sign| and let Σ ′= μSign(Σ)∈
|Sign′|. Suppose that the translation of models μMod

Σ :Mod(Σ)→ Mod′(Σ ′) is sur-
jective on models. Then, for any set Φ ′ ⊆ Sen′(Σ ′) of Σ ′-sentences and Σ ′-sentence
ϕ ′ ∈ Sen′(Σ ′), we have:

1. Φ ′ |=′
Σ ′ ϕ ′ if and only if μSen

Σ (Φ ′) |=Σ μSen
Σ (ϕ ′).

2. ClΣ ′(Φ ′) = (μSen
Σ )−1(ClΣ (μSen

Σ (Φ ′))).

Proof. See the proof of Proposition 4.2.17 for part (1). Part (2) corresponds to Corol-
lary 4.2.18. ��

The last proposition suggests that institution morphisms in which all translations
of models are surjective may be especially useful. In particular, not only do semantic
consequences in the more primitive institution INS′ remain valid when translated to
the richer institution INS (this is Proposition 10.2.13(1)), but also whatever we can
deduce in the richer logic INS about the sentences of the more primitive logic INS′

is valid in the context of the more primitive logic INS′ as well. This means that any
proof system or theorem prover developed for INS may be used for INS′ as well;
for instance, a resolution-based theorem prover for first-order logic with equality
may be used for deriving consequences in equational logic. The following example
illustrates that this is not possible for an arbitrary institution morphism.
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Example 10.2.17. Example 10.2.9 defines an institution morphism μ:EQ → PEQ.
The translation of PEQ-sentences to EQ preserves semantic consequence, but does
not reflect it. For example, let Σ be an algebraic signature with a sort s and a constant
a:s. Consider the Σ -definedness formula def (a). Then μSen

Σ (def (a)) is the equation
a = a, and we trivially have ∅ |=EQ,Σ a = a. Consequently, we can deduce that
def (a) holds in any partial Σ -algebra in the range of the model translation functor
μMod

Σ :Alg(Σ) → PAlg(Σ) (which is trivial to check directly as well). It does not
follow that the same is true for all partial Σ -algebras; indeed, ∅ �|=PEQ,Σ def (a). ��
Exercise 10.2.18. Consider the institution morphism μ:PEQpval → EQ sketched
in Example 10.2.8, where PEQpval is the institution of partial equational logic with
partial valuations of variables. Show that the translation of sentences does not reflect
semantic consequence. HINT: The sentence ∀x:s• x= a, where a is a constant of sort
s, defines in PEQpval those models having an empty carrier of sort s. ��

The following generalisation of Proposition 10.2.16(1) corresponds to Proposi-
tion 4.2.21.

Proposition 10.2.19. Consider an INS-signature Σ ∈ |Sign| and let Σ ′= μSign(Σ)∈
|Sign′|.

Suppose that the translations of Σ -models in INS that satisfy a set ΓΣ ⊆ Sen(Σ)
of Σ -sentences are exactly characterised in INS′ by a set Γ ′

Σ ⊆ Sen′(Σ ′) of Σ ′-
sentences: that is, ModΣ ′(Γ ′

Σ ) = μMod
Σ (ModΣ (ΓΣ )). Then for any set Φ ′ ⊆ Sen′(Σ ′)

of Σ ′-sentences and Σ ′-sentence ϕ ′ ∈ Sen′(Σ ′), Φ ′ ∪Γ ′
Σ |=′

Σ ′ ϕ ′ if and only if
μSen

Σ (Φ ′)∪ΓΣ |=Σ μSen
Σ (ϕ ′).

Proof. See the proof of Proposition 4.2.21. ��
Corollary 10.2.20. Consider an INS-signature Σ ∈ |Sign| and let Σ ′ = μSign(Σ) ∈
|Sign′|.

Suppose that the translations of Σ -models are exactly characterised in INS′ by a
set Γ ′

Σ ⊆ Sen′(Σ ′) of Σ ′-sentences: that is, ModΣ ′(Γ ′
Σ ) = μMod

Σ (|Mod(Σ)|). Then for
any set Φ ′ ⊆ Sen′(Σ ′) of Σ ′-sentences and Σ ′-sentence ϕ ′ ∈ Sen′(Σ ′), Φ ′ ∪Γ ′

Σ |=′
Σ ′

ϕ ′ if and only if μSen
Σ (Φ ′) |=Σ μSen

Σ (ϕ ′). ��
In the same way as the surjectivity of the reduct functor was not sufficient in

Section 4.2 to ensure that the coimage of sets of sentences w.r.t. a signature mor-
phism commutes with the closure operator (Exercise 4.2.20), the coimage of sets of
sentences w.r.t. an institution morphism does not commute with the closure operator
either, even if the translations of models are surjective. It is also somewhat disap-
pointing to notice that the functor on theories determined by an institution morphism
(Definition 10.2.15) does not preserve colimits of theories in general.

Example 10.2.21. Recall the institution morphism μ:FOPEQ→EQ defined in Ex-
ample 10.2.2. Notice that for any first-order signature Θ ∈ |FOSig|, the correspond-
ing translation of models μMod

Θ :FOStr(Θ) → Alg(μSign(Θ)) is surjective (every
μSign(Θ)-algebra may be expanded to a Θ -structure, for example by interpreting



510 10 Working with multiple logical systems

the predicates as always false). Notice also that FOPEQ is an exact institution and
moreover the translation of signatures μSign:FOSig → AlgSig is cocontinuous.

Inconsistent sets of first-order sentences Φ ⊆ SenFOPEQ(Θ) (for some first-
order signature Θ with Σ = μSign(Θ)) provide counterexamples which show that in
general ClΣ ((μSen

Θ )−1(Φ)) �= (μSen
Θ )−1(ClΘ (Φ)) (and hence ClΣ ((μSen

Θ )−1(Φ)) �=
ThΣ (μMod

Θ (ModΘ (Φ)))), and that the translation of theories μTh:ThFOPEQ →ThEQ

does not preserve colimits. For example:
Let Θ be a first-order signature with a sort s, two constants a,b:s, and a unary

predicate p:s, and let Σ = μSign(Θ). Let Φ = {¬p(a), p(a)} ⊆ SenFOPEQ(Θ). Then
ClΘ (Φ) = SenFOPEQ(Θ), while (μSen)−1(Φ) = ∅, and so ClΣ ((μSen

Θ )−1(Φ)) �=
(μSen

Θ )−1(ClΘ (Φ)). Similarly, ClΣ ((μSen
Θ )−1(Φ)) �= ThΣ (μMod

Θ (ModΘ (Φ))) (since
ModΘ (Φ) =∅).

Then, consider Φ0 = ∅, Φ1 = {p(a)}, and Φ2 = {¬p(a)}. The identity on
Θ is a theory morphism from ClΘ (Φ0) to ClΘ (Φ1) as well as from ClΘ (Φ0)
to ClΘ (Φ2). The pushout of these two morphisms in ThFOPEQ yields the theory
ClΘ (Φ) (again over Θ ). Then, μTh(〈Θ ,ClΘ (Φ〉) = 〈Σ ,SenEQ(Σ)〉. However, since
μTh(〈Θ ,ClΘ (Φ1)〉) = μTh(〈Θ ,ClΘ (Φ2)〉) = 〈Σ ,ClΣ (∅)〉 (which is easy to check
directly), the pushout of the corresponding diagram in ThEQ yields 〈Σ ,ClΣ (∅)〉,
which is distinct from the image of the pushout in ThFOPEQ. ��

The essence of the problem indicated by the above example is that given an
institution morphism μ:INS→ INS′ we have tried to “simulate” a construction per-
formed in the richer institution INS by the same construction in the more primitive
institution INS′ — and this cannot really be expected to work. On the other hand,
whenever a construction in the more primitive framework of INS′ can be embedded
into the richer framework of INS, the results should be preserved. The following
exercise illustrates how this might work; see also Section 10.4, Proposition 10.4.25.

Exercise 10.2.22. Consider an institution morphism μ:INS→ INS′ together with a
functor inv:Sign′ → Sign such that inv;μSign = IdSign′ (think of inv(Σ ′) ∈ |Sign| as
a “canonical” choice of expansion of each INS′-signature Σ ′ ∈ |Sign′| to an INS-
signature).

Define a functor on theories μTh
inv:ThINS′ → ThINS which maps any INS′-theory

〈Σ ′,Φ ′〉 ∈ |ThINS′ | to the INS-theory 〈inv(Σ ′),Clinv(Σ ′)(μSen
inv(Σ ′)(Φ

′))〉 ∈ |ThINS|.
This map extends to theory morphisms by the naturality of μSen: μSign;Sen′ → Sen

and by Proposition 4.2.26.
Prove that if inv:Sign′ → Sign is (finitely) cocontinuous then so is μTh

inv:ThINS′ →
ThINS. HINT: Use the explicit construction of colimits in the category of theories
given in the proof of Theorem 4.4.1, and then rely on the naturality of the transla-
tions of sentences and on Proposition 10.2.13(1, 2) as well as Proposition 4.2.9.

Look through the examples of institution morphisms μ:INS→ INS′ given earlier
in this section and check for which of them such a “canonical” choice of signature
expansions inv:Sign′ → Sign may be given. ��
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10.3 The category of institutions

It is easy to see that institution morphisms as introduced in Section 10.2 compose
in a natural, componentwise way, and in fact institutions with institution morphisms
form a category:

Definition 10.3.1 (Category of institutions). Consider three institutions INS =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉, INS′= 〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉, INS′′=
〈Sign′′,Sen′′,Mod′′,〈|=′′

Σ ′′ 〉Σ ′′∈|Sign′′|〉. Given institution morphisms μ1:INS→ INS′

and μ2:INS′ → INS′′, their composition μ1;μ2:INS → INS′′ is defined as follows:

• The translation of signatures is defined as the composition of the translation of
signatures of the two institution morphisms:

(μ1;μ2)
Sign = μSign

1 ;μSign
2 :Sign → Sign′′

• The translations of sentences are defined by the pointwise composition of the
translations of sentences of the two institution morphisms, where the translation
of signatures is used to identify the appropriate components:5

(μ1;μ2)
Sen = (μSign

1 ·μSen
2 );μSen

1 : μSign
1 ;μSign

2 ;Sen′′ → Sen

That is, for each Σ ∈ |Sign|,
(μ1;μ2)

Sen
Σ = (μSen

2 )μSign
1 (Σ)

;(μSen
1 )Σ :Sen′′(μSign

2 (μSign
1 (Σ)))→ Sen(Σ).

• The translations of models are defined by the pointwise composition of the trans-
lations of models of the two institution morphisms, where the translation of sig-
natures is used to identify the appropriate components:5

(μ1;μ2)
Mod = μMod

1 ;((μSign
1 )op·μMod

2 ) :Mod → (μSign
1 ;μSign

2 )op;Mod′′

That is, for each Σ ∈ |Sign|,
(μ1;μ2)

Mod
Σ = (μMod

1 )Σ ;(μMod
2 )μSign

1 (Σ)
:Mod(Σ)→ Mod′′(μSign

2 (μSign
1 (Σ))).

This yields a category INS of institutions and their morphisms. ��
Exercise 10.3.2. Prove that the composition of institution morphisms does indeed
yield an institution morphism (in particular, prove the satisfaction condition). Check
that composition is associative. What are the identities in INS? ��

The category INS of institutions and their morphisms may be viewed as a frame-
work for putting together institutions, in much the same way as we viewed the cat-
egory of theories as a framework for putting together theories (Theorem 4.4.1), and

5 See Definitions 3.4.42 and 3.4.46 for vertical composition of natural transformations and for
multiplication of a natural transformation by a functor.
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similarly for structured specifications (Theorem 5.5.11). In particular, we show be-
low that the category INS of institutions is complete, and hence limits are available
as a tool for combining institutions. Since we have chosen — somewhat arbitrar-
ily — to define institution morphisms so that they go from a richer, more powerful
institution to a simpler, more primitive one, it is the limit construction which is of
interest here; in the case of specifications and theories, morphisms go from simpler
to richer objects, and so objects are put together via the colimit construction.

The proof of completeness of INS is not very difficult in principle. However,
institutions and their morphisms as presently defined are rather complex, and using
these definitions directly in the proof would entail quite a heavy notational burden.
We therefore use some simple categorical concepts to reformulate the definition of
the category of institution in a much more compact (but also less transparent) form.

Consider an institution INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉. For any signature
Σ ∈ |Sign|, the satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) may be identified
with a function satΣ : |Mod(Σ)|→ [Sen(Σ)→B], where B= {ff , tt} is a two-element
set and [Sen(Σ)→B] stands for the set of all functions from Sen(Σ) to B, as in Exer-
cise 3.4.16. For any Σ -model M ∈ |Mod(Σ)|, satΣ (M) ∈ [Sen(Σ)→B] is a function
which maps any Σ -sentence ϕ ∈ Sen(Σ) to its boolean meaning in M:

satΣ (M)(ϕ) =
{

tt if M |=Σ ϕ
ff otherwise.

Then, for any signature morphism σ :Σ → Σ ′, we have a functor σ :Mod(Σ ′)→
Mod(Σ) and a function σ :Sen(Σ) → Sen(Σ ′) such that for any Σ ′-model M′ ∈
|Mod(Σ ′)| and Σ -sentence ϕ ∈ Sen(Σ) we have satΣ (M′

σ )(ϕ) = satΣ ′(M′)(σ(ϕ))
(the satisfaction condition). The translation of sentences σ :Sen(Σ) → Sen(Σ ′)
determines by “pre-composition” a function σ ;( ): [Sen(Σ ′)→B]→ [Sen(Σ)→B]
(written as [σ→B] in Exercise 3.4.16), and the satisfaction condition may then be
expressed as the requirement that the following diagram commute:

|Mod(Σ)|

[Sen(Σ ′)→B]|Mod(Σ ′)|

[Sen(Σ)→B]�satΣ

�

| σ |
�

σ ;( )

�
satΣ ′

In other words, for any signature Σ ∈ |Sign|, the triple 〈Mod(Σ),satΣ ,Sen(Σ)〉 is an
object of the comma category (| |, [ →B]) (see Definition 3.4.50), where | |:Cat→
Set is the functor which for any category yields the collection of its objects (see
Example 3.4.28) and [ →B]:Setop → Set is the functor which for any set X yields
the set of all functions from X to B; see Exercise 3.4.16. Moreover, for any signature
morphism σ :Σ → Σ ′, the pair 〈 σ :Mod(Σ ′)→ Mod(Σ),σ :Sen(Σ)→ Sen(Σ ′)〉
is a morphism from 〈Mod(Σ ′),satΣ ′ ,Sen(Σ ′)〉 to 〈Mod(Σ),satΣ ,Sen(Σ)〉 in this
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comma category. We will refer to the triples 〈Mod(Σ),satΣ ,Sen(Σ)〉 as boolean
rooms, and to their morphisms as room morphisms.

Definition 10.3.3 (Category of boolean rooms). The category of (boolean) rooms
Room(B) is the comma category (| |, [ →B]). ��

Summing up the above discussion, any institution INS is (i.e. may be viewed as)
a functor

INS:Signop → Room(B).

Exercise 10.3.4. Show the converse: any functor I:Sign
op
I → Room(B) is (i.e. may

be viewed as) an institution.
HINT: For any comma category (F,G), where F:K1 → K and G:K2 → K,

define two functors Left:(F,G) → K1 and Right:(F,G) → K2, and a mapping
Middle: |(F,G)| → K in the obvious way. Then put ModI = I;Left:Sign

op
I →

Cat, SenI = (I;Right)op:SignI → Set, and satI,Σ = Middle(I(Σ)): |ModI(Σ)| →
[SenI(Σ)→B] for Σ ∈ |SignI|. Check the satisfaction condition! ��

Consider institutions INS:Signop → Room(B) and INS′:(Sign′)op → Room(B)
explicitly given as, respectively, INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and INS′ =
〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉 and an institution morphism μ:INS → INS′

between them. Then μ consists of a functor μSign:Sign → Sign′ and a family
of pairs 〈μMod

Σ :Mod(Σ)→ Mod′(μSign(Σ)),μSen
Σ :Sen′(μSign(Σ))→ Sen(Σ)〉, for

Σ ∈ |Sign|, such that the satisfaction condition holds. As in the case of the satisfac-
tion condition in an institution, the satisfaction condition for μ may be expressed by
requiring the following diagram to commute, where we put Σ ′ = μSign(Σ), and satΣ
and sat′Σ ′ represent |=Σ and |=′

Σ ′ , respectively:

|Mod′(Σ ′)|

[Sen(Σ)→B]|Mod(Σ)|

[Sen′(Σ ′)→B]�sat′Σ ′

�

|μMod
Σ |

�

μSen
Σ ;( )

�
satΣ

This means that the pair 〈μMod
Σ ,μSen

Σ 〉 is a morphism in the comma category
Room(B) from 〈Mod(Σ),satΣ ,Sen(Σ)〉 to 〈Mod′(Σ ′),sat′Σ ′ ,Sen′(Σ ′)〉. Moreover,
since μMod and μSen are natural transformations, these pairs form a natural transfor-
mation from INS:Signop →Room(B) to (μSign)op;INS′:Signop →Room(B). Thus,
the institution morphism μ:INS → INS′ is (i.e. may be viewed as) a pair: a functor
μSign:Sign → Sign′ and a natural transformation μnt:INS → (μSign)op;INS′.

Exercise 10.3.5. For any functors I:Sign
op
I →Room(B) and I′:Sign

op
I′ →Room(B),

show that any functor ΦΦ :SignI → SignI′ together with a natural transformation
τ:I → ΦΦop;I′ is (i.e. may be viewed as) an institution morphism from I to I′ viewed
as institutions (Exercise 10.3.4). ��
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Recall that in Exercise 3.4.66, for any category K, we have defined the category
Funct(K) of functors into K. Objects of Funct(K) are functors from an arbitrary
category to K, and morphisms in Funct(K) from a functor F:K1 → K to a functor
G:K2 → K consist of a functor ΦΦ :K1 → K2 and a natural transformation τ:F →
ΦΦ ;G.

The view of institutions as functors into the category of rooms and of institution
morphisms as morphisms between such functors may thus be summed up by the
following definition:

Definition 10.3.6 (Category of institutions (revisited)). The category INS of in-
stitutions and their morphisms is the category Funct(Room(B)) of functors into the
category Room(B) of boolean rooms. ��
Exercise 10.3.7. Using Exercises 10.3.4 and 10.3.5, show that the above definition
is equivalent to Definition 10.3.1. ��
Exercise 10.3.8. It is quite natural to generalise the above construction by replacing
boolean rooms by V-rooms for an arbitrary set V (or even, for an arbitrary category
V) where the category Room(V) of V-rooms is the comma category (| |, [ →V]).
Work out this generalisation in detail. Show how this yields a notion of institution
with multi-valued satisfaction relations. Present the institution 3FOPEQ of three-
valued logic (Example 4.1.24) as an institution based on V = {tt, ff ,undef}. Try
to think of situations in which it would be natural to use such multi-valued logical
systems. ��

The reformulated definition of the category INS of institutions given above offers
a convenient way to prove completeness:

Theorem 10.3.9 (Completeness of the category of institutions). The category
INS is complete.

Proof. By Exercise 3.4.24 the functor [ →B]:Setop → Set is continuous. Since
Set is both complete and cocomplete (Exercise 3.2.53(1)), by Exercise 3.4.54 the
category Room(B) = (| |, [ →B]) of boolean rooms is complete. Thus, the cate-
gory Funct(Room(B)) of functors into Room(B) is complete by Exercise 3.4.67.
This completes the proof, as by Definition 10.3.6 (and Exercise 10.3.7) INS =
Funct(Room(B)).

Exercise. Complete the proof outlined above. In particular, you may want to go
through the exercises involved and use the hints given there to complete proofs of
the results we rely on here. ��

The above result ensures that any diagram of institutions has a limit in INS. The
construction of this limit may be described informally as follows:

• First, construct the limit in Cat of the categories of signatures of the institutions
involved.

• Then, for each signature in the resulting category, construct a boolean room for
it as a limit of the corresponding diagram in Room(B), that is:
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– The category of models is given as a limit in Cat of the corresponding diagram
of the categories of models of the institutions involved.

– The set of sentences is given as a colimit in Set of the corresponding diagram
of the sets of sentences of the institutions involved.

– The satisfaction relation is determined by the satisfaction relations of the in-
stitutions involved and by the satisfaction condition for institution morphisms.

• Finally, for each signature morphism in the resulting category, the induced trans-
lation of boolean rooms is given by the limit property of the room for the source
signature:

– The reduct functor on models is given by the limit property of the category of
models over the source signature.

– The translation of sentences is given by the colimit property of the set of
sentences over the source signature.

Exercise 10.3.10. Check in detail that the above informal description coincides with
the construction implied by the proof of Theorem 10.3.9. ��
Example 10.3.11. The product institution INS1 × INS2 defined in Example 4.1.45
for any institutions INS1 and INS2 is their categorical product in INS. ��
Example 10.3.12. Consider two simple extensions of the institution EQ:

• EQinh: an extension of EQ by statements that a particular carrier set is inhab-
ited. More formally, EQinh has the same signatures and models as EQ, and then
for each algebraic signature Σ ∈ |AlgSig|, a Σ -sentences of EQinh is either an
ordinary equation (with translations along signature morphisms and satisfaction
inherited from EQ) or an inhabitation assertion of the form inh(s) for some sort
name s in Σ . For any Σ -algebra A ∈ |Alg(Σ)|, A |=

EQinh inh(s) if and only if
|A|s �= ∅. The translation of inhabitation assertions along signature morphisms
is defined in the obvious way, and it is trivial to check the satisfaction condition.
There is an obvious institution morphism, μinh:EQinh → EQ.

• EQonto: an extension of EQ by statements that a given operation is surjective
(this is expressible in FOEQ, but not in EQ). More formally, EQonto has the
same signatures and models as EQ, and then for each algebraic signature Σ ∈
|AlgSig|, a Σ -sentence of EQonto is either an ordinary equation (with translations
along signature morphisms and satisfaction inherited from EQ) or a surjectivity
assertion of the form f is onto for some operation name f in Σ . For any Σ -
algebra A∈ |Alg(Σ)|, A |=

EQinh f is onto if and only if fA is a surjective function.
The translation of surjectivity assertions along signature morphisms is defined in
the obvious way, and it is trivial to check the satisfaction condition. There is an
obvious institution morphism μonto:EQonto → EQ.

It is easy to construct the pullback of μinh:EQinh → EQ and μonto:EQonto → EQ

in INS:
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EQ

EQinh EQonto

EQinh,onto

�
���

�
���

�
���

�
���

μinh μonto

The pullback institution EQinh,onto has the same signatures and models as EQ (and
as EQinh and EQonto). A sentence of EQinh,onto is either an ordinary equation (with
translation along signature morphisms and satisfaction inherited from EQ), an in-
habitation assertion (with translation along signature morphisms and satisfaction
inherited from EQinh), or a surjectivity assertion (with translation along signature
morphisms and satisfaction inherited from EQonto). ��
Example 10.3.13. For any institution INS, its closure under (infinite) conjunction
INS∧ was defined in Example 4.1.38 and its closure under (finitary) propositional
connectives INSprop in Example 4.1.41.

These extensions of INS come with institution morphisms μ∧:INS∧ → INS and
μprop:INSprop → INS; see Example 10.2.5(2). Consider the pullback of μ∧ and μprop
in INS:

INS

INS∧ INSprop

INS∧,prop

�
���

�
���

�
���

�
���

μ∧ μprop

The result, which may be described similarly as in Example 10.3.12, is not very
satisfactory. The pullback institution INS∧,prop contains the original sentences of
INS, their infinite conjunctions (or sets) and their negations, disjunctions, negations
of their disjunctions, and other propositional combinations, but not, say, negations
of the infinite conjunctions or infinite conjunctions involving the negations. ��
Exercise 10.3.14. Notice that for any institution INS the construction in Exam-
ple 10.3.13 resulted in a new institution INS∧,prop together with an institution mor-
phism μINS∧,prop:INS∧,prop → INS. Iterate this construction to obtain the following
chain of institution morphisms in INS:

INS �
μINS∧,prop

INS∧,prop �
μINS∧,prop
∧,prop

(INS∧,prop)∧,prop�
μ(INS∧,prop)∧,prop

∧,prop · · ·

Calculate the limit of this diagram in INS. HINT: The resulting sets of sentences
need not be closed under all infinite conjunctions. ��
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Example 10.3.15. Recall the institution morphisms μFOEQ:FOPEQ→EQ (Exam-
ple 10.2.2) and μCEQ:CEQ → EQ (Example 10.2.3).

EQ

FOPEQ CEQ

EQFOPEQ,CEQ

�
���

�
���

�
���

�
���

μFOEQ μCEQ

The pullback in INS of these two morphisms is the institution EQFOPEQ,CEQ, to
be explicitly defined below; this can be calculated using the informal description of
limits in INS following Theorem 10.3.9.

The category of signatures of EQFOPEQ,CEQ is SignFOPEQ, the category of first-
order signatures (since the signatures of CEQ coincide with those of EQ and μSign

CEQ

is the identity functor).
Let Θ = 〈S,Ω ,Π〉 ∈ |FOSig| be a first-order signature, and let Σ = 〈S,Ω〉 ∈

|AlgSig| be the algebraic signature it contains. Recall that μSign
FOEQ(Θ) = Σ . Then:

• The set of Θ -sentences in EQFOPEQ,CEQ is the union of the set of Θ -sentences
in FOPEQ with the set of Σ -sentences in CEQ modulo the identification of
Σ -sentences in EQ. That is, Θ -sentences in EQFOPEQ,CEQ are either closed first-
order formulae over Θ or infinitary Σ -equations, where universally quantified
equalities of first-order logic and infinitary equations which happen to be finitary
are identified (and are identified with the corresponding Σ -equations). Notice
that, much as Example 10.3.13 above, infinitary equations cannot occur as atomic
formulae in the first-order sentences of EQFOPEQ,CEQ.

• Θ -models in EQFOPEQ,CEQ are pairs 〈M,A〉, where M ∈ |FOStr(Θ)| is a first-
order Θ -structure and A ∈ |CAlg(Σ)| is a continuous Σ -algebra such that for-
getting the orderings in A yields the same algebra which results from M by for-
getting the interpretation of predicates. So Θ -models in EQFOPEQ,CEQ can be
viewed as first-order structures with carriers equipped with a complete partial
ordering where the operations are required to be continuous, but with no conti-
nuity restriction on the interpretation of predicates. Model morphisms are defined
analogously: they are those first-order Θ -morphisms which are continuous.

• Θ -satisfaction in EQFOPEQ,CEQ is induced in the expected way: the interpreta-
tion of first-order formulae is determined by the first-order part of EQFOPEQ,CEQ-
models, and the interpretation of infinitary equations is determined by their
continuous-algebra part. This definition is unambiguous for universally quan-
tified equalities of first-order logic and finitary Σ -equations of the equational
logic for continuous algebras, which are identified in EQFOPEQ,CEQ, since in
both cases their interpretation coincides with the interpretation of ordinary Σ -
equations in the algebra part of first-order structures and continuous algebras.
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Finally, for any first-order signature morphism θ :Θ →Θ ′, the θ -translation of
EQFOPEQ,CEQ-sentences and the θ -reduct functor on EQFOPEQ,CEQ-models are in-
duced by the corresponding translations and reduct functors of FOPEQ and CEQ

in the obvious way. The satisfaction condition is guaranteed by the construction al-
though it is also easy to check it directly in this case. ��
Exercise 10.3.16. Consider the full subcategory INSsmall of INS that consists of in-
stitutions with small categories of signatures. Check that the proof of completeness
of INS applies to INSsmall as well.

For any family of institutions construct their coproduct in INS and show that the
coproduct of institutions in INSsmall is in INSsmall. HINT: This is easy; see Exam-
ple 4.1.44.

Give a construction for coequalisers in INSsmall. HINT: This is rather difficult.
You will need coequalisers in Cat (cf. Exercise 3.4.36) to determine the category of
signatures of the coequaliser institution, limits of certain diagrams of the sets of sen-
tences, and colimits of certain diagrams of the categories of models. Fortunately, the
satisfaction condition will then determine the satisfaction relation unambiguously.

Check where this construction may break down if the signature categories of the
institutions involved are not small.

Conclude though that the category INSsmall of institutions with small signature
categories is (complete and) cocomplete. ��

10.4 Institution comorphisms

Institution morphisms are by far not the only possible kinds of maps between insti-
tutions. Very informally, considering the obvious idea that such maps need to link
the three layers of institutions (signatures, models and sentences), there are four ba-
sic concepts of such a map to consider, using different combinations of directions
of the maps at each layer:6

morphism: comorphism:
INS −−−−−−−→ INS′

Sen ←−−−−−−− Sen′

Sign −−−−−−−→ Sign′

Mod −−−−−−−→ Mod′

INS −−−−−−−→ INS′

Sen −−−−−−−→ Sen′

Sign −−−−−−−→ Sign′

Mod ←−−−−−−− Mod′

forward morphism: forward comorphism:
INS −−−−−−−→ INS′

Sen −−−−−−−→ Sen′

Sign −−−−−−−→ Sign′

Mod −−−−−−−→ Mod′

INS −−−−−−−→ INS′

Sen ←−−−−−−− Sen′

Sign −−−−−−−→ Sign′

Mod ←−−−−−−− Mod′

6 Terminology from [GR02].
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We will not discuss here in any detail “forward” (co)morphisms, in which trans-
lations of sentences and models are covariant — they are somewhat esoteric, even
though they have received some attention in the literature. However, institution co-
morphisms are important and useful. Informally, they capture how the “simpler”
source institution is represented or “encoded” in the “more complex” target insti-
tution. The reader is encouraged to compare this with intuitions concerning institu-
tion morphisms, which indicate how the “richer” source institution is built over the
“more primitive” target institution.

Definition 10.4.1 (Institution comorphism and semi-comorphism). Let INS =
〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and INS′ = 〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉 be
institutions.

An institution comorphism ρ:INS → INS′ consists of:

• a functor ρSign:Sign → Sign′,
• a natural transformation ρSen:Sen → ρSign;Sen′, that is, for each Σ ∈ |Sign|, a

function ρSen
Σ :Sen(Σ)→ Sen′(ρSign(Σ)) such that the following diagram com-

mutes for every σ :Σ1 → Σ2 in Sign

Σ2

Σ1

�

σ

Sen′(ρSign(Σ2))Sen(Σ2)

Sen(Σ1) Sen′(ρSign(Σ1))

�
ρSen

Σ2

�

Sen(σ)

�

Sen′(ρSign(σ))

�
ρSen

Σ1

• a natural transformation ρMod:(ρSign)op;Mod′ → Mod, that is, for each Σ ∈
|Sign|, a functor ρMod

Σ :Mod′(ρSign(Σ))→ Mod(Σ) such that the following dia-
gram commutes for every σ :Σ1 → Σ2 in Sign

Σ2

Σ1

�

σ

Mod(Σ2)Mod′(ρSign(Σ2))

Mod′(ρSign(Σ1)) Mod(Σ1)

�
ρMod

Σ2

�

Mod′(ρSign(σ))

�

Mod(σ)

�
ρMod

Σ1

such that for any Σ ∈ |Sign|, the translations ρSen
Σ :Sen(Σ) → Sen′(ρSign(Σ)) of

sentences and ρMod
Σ :Mod′(ρSign(Σ))→Mod(Σ) of models preserve the satisfaction

relation, that is, for any ϕ ∈ Sen(Σ) and M′ ∈ |Mod′(ρSign(Σ))|
ρMod

Σ (M′) |=Σ ϕ ⇐⇒ M′ |=′
ρSign(Σ)

ρSen
Σ (ϕ) [Satisfaction condition].
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An institution semi-comorphism ρ:INS →semi INS′ consists of two components: a
functor ρSign:Sign → Sign′ and a natural transformation ρMod:(ρSign)op;Mod′ →
Mod as above. ��
As with institution morphisms and comorphisms, we say that an institution comor-
phism ρ:INS → INS′ as above extends 〈ρSign,ρMod〉:INS →semi INS′, and when-
ever convenient use an institution comorphism ρ in contexts where the institution
semi-comorphism that ρ extends is required.

Example 10.4.2. There is an obvious institution comorphism ρ:EQ → FOPEQ

that embeds the institution EQ of equational logic into the institution FOPEQ of
first-order logic with equality (Examples 4.1.12 and 4.1.4) as follows:

• ρSign:AlgSig → FOSig includes algebraic signatures and their morphisms into
the category of first-order signatures by equipping them with the empty set of
predicate symbols.

• For each signature Σ ∈ |AlgSig|, ρSen
Σ :SenEQ(Σ)→ SenFOPEQ(ρSign(Σ)) maps

any Σ -equation to the corresponding universally quantified equality as a first-
order sentence (remarks in Example 10.2.2 still apply).

• For each signature Σ ∈ |AlgSig|, ρMod
Σ :FOStr(ρSign(Σ))→ Alg(Σ) is the iden-

tity functor.

Clearly, the satisfaction condition holds. ��
Exercise 10.4.3. Define an institution comorphism ρ:PEQ→PFOPEQ which em-
beds the institution PEQ of partial equational logic into the institution PFOPEQ of
partial first-order logic with equality (Example 4.1.6 and Exercise 4.1.17) following
the pattern in Example 10.4.2. ��
Example 10.4.4. An institution comorphism ρ:EQ → CEQ from the institution
EQ of equational logic to the institution CEQ of equational logic for continuous al-
gebras (cf. Example 4.1.22) is the identity on their common category of signatures,
embeds (finitary) equations of EQ into the set of (potentially infinitary) equations of
CEQ, and extracts standard algebras out of continuous algebras by forgetting about
the ordering of their carriers. ��
Exercise 10.4.5. Define an institution comorphism from the institution PEQ of par-
tial equational logic to the institution EQ of equational logic which is the identity on
signatures, is the inclusion on model categories, maps equalities of PEQ to equali-
ties of EQ and maps definedness formulae of PEQ to any equation that holds in all
algebras. Do not forget to check the satisfaction condition.

Then define an institution comorphism from EQ to the institution PEQpval of
partial equational logic with partial valuations of variables (Example 10.2.8) which
again is the identity on the category of signatures, is the inclusion on sets of
sentences, and maps any partial algebra to its “totalisation” as defined in Exam-
ple 3.4.18. ��
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Exercise 10.4.6. Building on Exercise 4.1.16, capture the representation of predi-
cates in first-order structures as boolean functions by defining an institution comor-
phism from the institution FOPEQ of first-order predicate logic with equality to the
institution FOEQBool of first-order equational logic with boolean values.

Similarly, building on Exercise 4.1.19, define an institution comorphism from
the institution PFOPEQ of partial first-order predicate logic with equality to the
institution PFOEQTruth of partial first-order equational logic with truth, encoding
predicates as partial functions into a one-element sort.

Try to define institution morphisms from FOPEQ to FOEQBool and from
PFOPEQ to PFOEQTruth, respectively, if necessary using the versions of the in-
stitutions with strong morphisms between their models; see Exercise 4.1.20. HINT:
Translation of sentences may be tricky, but it is possible: for instance, equality be-
tween terms of sort Bool in FOEQBool may be captured as equivalence of the
corresponding predicate applications; quantification over Bool may be eliminated
since Bool is generated by two constants. ��
Exercise 10.4.7. View the obvious embedding into the institution FPL (Exam-
ple 4.1.25) of its “programming fragment” FProg (Exercise 4.1.30) as an institution
comorphism.

Somewhat more interestingly, define a comorphism that embeds into FPL the
institution PFOEQ of partial first-order logic with equalities as its only atomic for-
mulae (so, no predicates; see Exercise 4.1.18) by viewing algebraic signatures with
no predicate names as FPL-signatures with no value constructors.

Finally, mimicking Exercise 10.4.6, define a comorphism from the institution
PFOPEQ of partial first-order logic with predicates and equality to FPL by en-
coding predicates as partial functions into a special, one-element sort, as in Exer-
cise 4.1.19. The extra advantage now is that we can use the power of FPL to capture
directly in FPL-signatures the requirement on the models in PFOEQTruth given
in Exercise 4.1.19.

Spelling this out: a first-order signature Θ would map to the FPL-signature which
extends the algebraic part of Θ by a new sort Truth with a single value construc-
tor true:Truth, and adds predicate names from Θ as operations into Truth. Conse-
quently, all FPL-models over the so-obtained FPL-signature have a carrier of sort
Truth with the value of true as its only element, and a partial function into this
carrier for each predicate in Θ . Such models can then be mapped back to first-order
Θ -structures by forgetting the carrier of sort Truth and interpreting each predicate as
holding exactly when the corresponding partial operation is defined. Sentences are
then transformed by the comorphism so that each predicate application is replaced
by definedness (equality to true) of the corresponding (partial) operation applica-
tion. ��
Exercise 10.4.8. In Section 4.1.2 we defined a number of constructions which given
an institution leave its category of signatures and model functor intact, but enlarge
its sets of sentences. In all these cases, there is an obvious comorphism from the
original institution to the new one. In particular, for any institution INS define a
comorphism from INS to the institution INS∧, which closes the sets of sentences
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under infinite conjunctions (Example 4.1.38), and into the institution INSprop, which
closes the sets of sentences under propositional connectives (Example 4.1.41). Sim-
ilarly, given an institution semi-morphism μ:INS → INS′, define a comorphism
from INS to the duplex institution INS plus INS′ via μ (Definition 10.1.12). ��
Exercise 10.4.9. In Exercise 4.1.13 we have introduced institutions FOP of first-
order predicate logic and FOEQ of first-order logic with equality (without predi-
cates) as “sublogics” of the full institution FOPEQ of first-order logic with pred-
icates and equality. Similarly, various “sublogics” of the institution PFOPEQ of
partial first-order logic with equality were introduced in Exercise 4.1.18. We have
also referred to the institutions GEQ of ground equational logic (Example 4.1.3)
and FProg of simple functional program definitions (Example 4.1.30) as “subinsti-
tutions” of EQ and FPL, respectively. Capture the concept of subinstitution using
institution comorphisms with inclusions as translations of signature categories and
of sets of sentences and with isomorphisms as translations of model categories.
Make sure that it covers at least all the cases mentioned above and check which of
the institution comorphisms introduced in the current section identify subinstitutions
in this sense.

Note that it may be difficult to capture this concept adequately using institu-
tion morphisms: if the signature categories coincide and the translation of model
categories are isomorphisms then such an institution comorphism to an institution
INS from its subinstitution INSsub yields also an institution morphism from INS to
INSsub — but when the category of INSsub-signatures is a proper subcategory of
INS-signatures, there may be no institution morphism from INS to INSsub. ��
Exercise 10.4.10. Following the pattern of Definition 10.3.1, define composition of
institution comorphisms. Show that this yields a category INSco of institutions and
their comorphisms, and show that this category is complete.

Then similarly as in Exercise 10.3.16, define the full subcategory INSco
small of

INSco that consists of institutions with small categories of signatures. Show that
INSco

small is also complete (this is easy) and cocomplete (this is difficult, as hinted at
in the case of INSsmall). ��
Exercise 10.4.11. As discussed in Section 10.1, for many purposes it is sufficient to
link institutions by relating their signatures and models only, disregarding sentences.
Institution semi-comorphisms (Definition 10.4.1) capture such a relationship in a
way that is similar to but different from the way institution semi-morphisms do, as
introduced in Definition 10.1.1.

Give examples of institution semi-comorphisms other than those extended to in-
stitution comorphisms above. Look for examples of institution semi-comorphisms
that capture relationships between institutions that would not be naturally captured
by institution semi-morphisms. In particular, define an institution semi-comorphism
from the institution PFOEQ of partial first-order logic with equality to the institu-
tion IMPDT of a simple imperative programming language (Example 4.1.32). ��

Like institution semi-morphisms, institution semi-comorphisms may be used to
move specifications between institutions. This may be achieved using two new inter-
institutional specification-building operations:
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Definition 10.4.12 (Translating and hiding specifications via an institution semi-

comorphism). Consider two institutions INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉
and INS′= 〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉, and an institution semi-comorphism
ρ:INS →semi INS′.

If SP is a specification over INS with signature Sig[SP] = Σ ∈ |Sign| and models
Mod[SP]⊆ |Mod(Σ)|, then SP with ρ is a specification over INS′ with the follow-
ing semantics:7

Sig[SP with ρ] = ρSign(Σ)
Mod[SP with ρ] = {M′ ∈ |Mod′(ρSign(Σ))| | ρMod

Σ (M′) ∈ Mod[SP]}.
Thus, for each signature Σ ∈ |Sign|,

with ρ:SpecINS(Σ)→ SpecINS′(ρ
Sign(Σ)).

If SP′ is a specification over INS′ with signature Sig[SP′] ∈ |Sign′| and mod-
els Mod[SP′] ⊆ |Mod′(Sig[SP′])|, and Σ ∈ |Sign| is an INS-signature such that
ρSign(Σ) = Sig[SP′], then SP′ hide via ρ to Σ is a specification over INS with the
following semantics:

Sig[SP hide via ρ to Σ ] = Σ
Mod[SP hide via ρ to Σ ] = {ρMod

Σ (M′) | M′ ∈ Mod[SP′]}.
Thus:

hide via ρ to Σ :SpecINS′(ρ
Sign(Σ))→ SpecINS(Σ). ��

It is worth observing that while in the case of the two specification-building op-
erations determined by institution semi-morphisms, hiding via an institution semi-
morphism is in a sense “more natural”, since it does not require the target signature
to be indicated explicitly, the situation with the operations determined by institution
semi-comorphisms is dual: now the translation seems “more natural”, while hid-
ing via an institution semi-comorphism requires the target signature to be chosen
explicitly.

We have thus extended our repertoire of inter-institutional specification-building
operations that can be combined with the intra-institutional specification-building
operations introduced in Chapters 5 and 8. This results in an even larger class of
heterogeneous specifications that may be built given an “environment” of logical
systems formalised as institutions and linked by institution semi-morphisms and
semi-comorphisms.

Exercise 10.4.13. Use the inter-institutional specification-building operations deter-
mined by the institution semi-comorphism from PFOEQ to IMPDT suggested in
Exercise 10.4.11 to redo Example 10.1.17. Then redo Example 10.1.18 using the
institution semi-comorphism from PFOPEQ to FProg which essentially can be ex-
tracted from the institution comorphism sketched in Exercise 10.4.7. Finally, notice

7 CASL notation: this is written using the same syntax in HETCASL, the language of HETS
[MML07], when ρ is an institution comorphism; see Definition 10.4.1.
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that institution semi-comorphisms determine generalised constructors in the sense
of Definition 10.1.20, and check that Examples 10.1.21 and 10.1.24 also carry over
when using such generalised constructors. ��

The above exercise shows how institution (semi-)comorphisms may sometimes
be used in place of institution (semi-)morphisms. In the rest of this section we study
the relationships between the various concepts these notions induce, and check when
and how they can replace each other.

Exercise 10.4.14. As in Exercise 10.1.22, check whether the two operations for
moving specifications between institutions linked by institution semi-comorphisms
commute with other specification-building operations. For example, for any insti-
tution semi-comorphism ρ:INS →semi INS′, prove that (under appropriate assump-
tions about the signatures of specifications and the signature morphisms involved)

(SP1 with σ) with ρ ≡ (SP1 with ρ) with ρSign(σ)
(SP′2 hide via ρSign(σ)) hide via ρ to Σ1 ≡ (SP′2 hide via ρ to Σ2) hide via σ .

Show that we also have

Mod[(SP′1 with ρSign(σ)) hide via ρ to Σ2]⊆
Mod[(SP′1 hide via ρ to Σ1) with σ ]

Mod[(SP2 hide via σ) with ρ ]⊇ Mod[(SP2 with ρ) hide via ρSign(σ)].

Check that the opposite inclusions hold as well if the “naturality squares” for ρMod

(see Definition 10.4.1) are pullbacks in Cat.
We also have, as in Exercises 5.6.3 and 10.1.22, for any specification SP over INS

with Sig[SP] = Σ and specification SP′ over INS′ such that ρSign(Σ) = Sig[SP′],

Mod[(SP with ρ) hide via ρ to Σ ]⊆ Mod[SP],
Mod[(SP′ hide via ρ to Σ) with ρ ]⊇ Mod[SP′].

Show that the first inclusion (but in general not the second) may be reversed if ρMod
Σ

is surjective.
Finally, as in Exercise 10.1.23, check that the specification-building operations
with ρ and hide via μ to Σ form a Galois connection between classes of Σ -

specifications over INS and ρSign(Σ)-specifications over INS′, considered up to
equivalence and ordered by the inclusion of model classes. ��

A number of the above examples of institution comorphisms are closely related
to the examples of institution morphisms given in Section 10.2. In fact, it is quite
often the case that an institution morphism determines an institution comorphism
(in the opposite direction) and vice versa.

Proposition 10.4.15. Consider an institution morphism μ:INS′ → INS, functor
ρSign:Sign → Sign′ and natural transformation η :IdSign → ρSign;μSign. Then there
is an institution comorphism ρ = 〈ρSign,ρSen,ρMod〉:INS → INS′, where for Σ ∈
|Sign|, ρSen

Σ = Sen(ηΣ );μSen
ρSign(Σ)

and ρMod
Σ = μMod

ρSign(Σ)
;Mod(ηΣ ).
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Consider an institution comorphism ρ:INS→ INS′, functor μSign:Sign′ → Sign

and natural transformation ε: μSign;ρSign → IdSign′ . Then there is an institution
morphism μ = 〈μSign,μSen,μMod〉:INS′ → INS, where for Σ ′ ∈ |Sign′|, μSen

Σ ′ =

ρSen
μSign(Σ ′);Sen′(εΣ ′) and μMod

Σ ′ = Mod′(εΣ ′);ρMod
μSign(Σ ′).

Proof sketch. We outline a proof for the first part only; the second part follows in
essentially the same way. To show naturality of ρSen and ρMod simply present them
in terms of composition of natural transformations and multiplication by functors
(Definitions 3.4.42, 3.4.44 and 3.4.46): ρSen = (η ·Sen);(ρSign·μSen) and ρMod =
(ρSign·μMod);(η ·Mod). The satisfaction condition can be checked easily, using the
satisfaction condition for μ and for INS (w.r.t. ηΣ ). ��

The general situation of Proposition 10.4.15 arises in many examples when the
translation of signatures involved in an institution morphism has a left adjoint or,
dually, when the translation of signatures involved in an institution comorphism has
a right adjoint. Then we have a bijection between institution morphisms and co-
morphisms with adjoint signature translations. The following corollary covers such
cases directly:

Corollary 10.4.16. Consider an institution morphism μ:INS′ → INS such that
μSign:Sign′ → Sign has a left adjoint ρSign:Sign → Sign′ with unit η :IdSign →
ρSign;μSign. Then L(μ) = 〈ρSign,ρSen,ρMod〉, where ρSen

Σ = Sen(ηΣ );μSen
ρSign(Σ)

and

ρMod
Σ = μMod

ρSign(Σ)
;Mod(ηΣ ) for Σ ∈ |Sign|, is an institution comorphism L(μ):INS→

INS′.
Consider an institution comorphism ρ:INS→ INS′ such that ρSign:Sign→ Sign′

has a right adjoint μSign:Sign′ → Sign with counit ε: μSign;ρSign → IdSign′ . Then
R(ρ) = 〈μSign,μSen,μMod〉, where for Σ ′ ∈ |Sign′|, μSen

Σ ′ = ρSen
μSign(Σ ′);Sen′(εΣ ′) and

μMod
Σ ′ = Mod′(εΣ ′);ρMod

μSign(Σ ′), is an institution morphism R(ρ): INS′ → INS.
Moreover, R and L can be chosen so that R(L(μ)) = μ and L(R(ρ)) = ρ . ��

Exercise 10.4.17. Given an institution morphism μ:INS′ → INS with a functor
ρSign:Sign → Sign′ that is left adjoint to μSign:Sign′ → Sign with unit η :IdSign →
ρSign;μSign, consider the institution comorphism ρ = L(μ):INS→ INS′ determined
as in the first part of Corollary 10.4.16. Show that for any signature Σ ′ ∈ |Sign′|,
μMod

Σ ′ =Mod(εΣ ′);ρMod
μSign(Σ ′). HINT: We have idμSign(Σ ′) = ημSign(Σ ′);μSign(εΣ ′) by the

properties of adjunctions, and μMod
Σ ′ ;Mod′(μSign(εΣ ′)) = Mod(εΣ ′);μMod

ρSign(μSign(Σ ′))
by naturality of μMod.

Similarly, show that under the circumstances captured by the second part of
Corollary 10.4.16, for any signature Σ ∈ |Sign|, ρMod

Σ = μMod
ρSign(Σ)

;Mod(ηΣ ). ��
The number of possible kinds of map between institutions may seem scary.

Proposition 10.4.15 and its Corollary 10.4.16 show one way of multiplying any
existing maps between institutions. This means that once we have a morphism be-
tween institutions, we may generate a comorphism between them, and vice versa
— a key point being that for many purposes we may then forget about the original
morphism. For instance:
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Exercise 10.4.18. Consider an institution morphism μ:INS′ → INS and an institu-
tion comorphism ρ:INS → INS′ related as in Corollary 10.4.16, so that the func-
tors μSign and ρSign form an adjunction with unit η :IdSign → ρSign;μSign and counit
ε: μSign;ρSign → IdSign′ , and L(μ) = ρ , R(ρ) = μ . Show that the inter-institutional
specification-building operations determined by μ may then be expressed using
those determined by L(μ) and the usual intra-institutional specification-building op-
erations, and similarly, the inter-institutional specification-building operations de-
termined by ρ may be expressed using those determined by R(ρ) and the usual
intra-institutional specification-building operations.

HINT: Under appropriate assumptions about the signatures of the specifications
and the signature morphisms involved, use Exercise 10.4.17 to prove that:

• SP′ hide via μ ≡ (SP′ hide via εΣ ′) hide via ρ to Σ
• SP with μ to Σ ′ ≡ (SP with ρ) hide via εΣ ′
• SP′ hide via ρ to Σ ≡ (SP′ hide via μ) hide via ηΣ
• SP with ρ ≡ (SP with ηΣ ) with μ to Σ ′

Note though that the weaker assumptions of Proposition 10.4.15 are not in general
sufficient to obtain similar equivalences. ��

Another way to master the diversity of maps between institutions is to try to
reduce them in some way to a common concept. Unfortunately, it seems that such
a natural and directly useful concept is difficult to devise, in spite of the following
exercise.

Exercise 10.4.19. Consider an institution morphism μ:INS → INS′. Build an “in-
termediate institution” by re-indexing INS′ using the signature translation of μ:
INS′0 = 〈Sign,μSign;Sen′,μSign;Mod′,〈|=′

μSign(Σ)
〉Σ∈|Sign|〉. Check that two obvi-

ous institution comorphisms then arise, ρ1 = 〈Id,μSen,μMod〉:INS′0 → INS and
ρ2 = 〈μSign,Id,Id〉:INS′0 → INS′, which yields a span of institution comorphisms:

INS
ρ1←−−−−−−− INS′0

ρ2−−−−−−−→ INS′

Argue that the span captures the same relationship between the two institutions as
the original morphism. Check also that any institution semi-morphism and semi-
comorphism may be captured in the same way, as a span of comorphisms.

To show that there is no undue preference here, proceed in the opposite direction:
present an arbitrary comorphism between institutions as a span of morphisms. Do
the same for institution semi-morphisms and semi-comorphisms (that is, present
them as spans of morphisms).

Show also that by using such spans we do not reduce the class of expressible
specifications; check for instance that the inter-institutional specification-building
operations determined by an institution morphism μ:INS→ INS′ may be expressed
using the operations determined by the comorphisms in the span for μ as defined
above, namely:

• SP′ with μ to Σ ≡ (SP′ hide via ρ2 to Σ) with ρ1, for any INS′-specification SP′
and signature Σ ∈ |Sign| such that μSign(Σ) = Sig[SP′], and
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• SP hide via μ ≡ (SP hide via ρ1 to Sig[SP]) with ρ2, for any INS-specification
SP. ��

Exercise 10.4.20. Recall the informal hints at the beginning of this section concern-
ing institution forward morphisms and forward comorphisms. Spell out their defini-
tions. Show that any forward morphism between institutions may be presented as a
span of (co)morphisms, and similarly for forward comorphisms. ��

The considerations above seem to suggest that we do not get much more out of in-
stitution comorphisms than we have already squeezed out of institution morphisms.
This is not quite the case.

First, it is sometimes difficult to map all models of a rich institution to models
of an institution that we want to represent in it. It is sometimes the case that we
can recover models of the simpler institution INS′ only from the models of a richer
institution INS that satisfy certain properties. This additional “selection of models”
can often be captured by an institution comorphism from INS to its enrichment
INSSign+ that adds axioms to its signatures; see Example 4.1.39. We will refer to
comorphisms from INS′ to INSSign+ as theoroidal comorphisms from INS′ to INS.8

Notice that while a theoroidal comorphism from INS′ to INS may be given even
if there is no (ordinary) comorphism from INS′ to INS, the analogous “trick” for
institution morphisms does not work: any institution morphism from INSSign+ to
INS′ determines an institution morphism from INS to INS′.

Exercise 10.4.21. Recall institutions FOPEQ of first-order logic with equality (Ex-
ample 4.1.12) and FOP of first-order predicate logic (no built-in equality; Exer-
cise 4.1.13).

Try to give an institution comorphism from FOPEQ to FOP that would view
equality as a family of new, two-argument predicates (one for each sort). To ensure
the satisfaction condition, the model functors should map first-order structures to
their quotients by the relations determined by the equality predicates. But this will
not work unless these relations are guaranteed to be congruences — and so such a
“naive” construction fails.

Give a theoroidal comorphism from FOPEQ to FOP, mapping each first-order
signature Θ to a theory with signature that extends Θ by new binary equality predi-
cates for each sort and with axioms stating that these predicates form a congruence.

��
Another reason for interest in institution comorphisms is that results concerning

the reuse of proofs in a richer logic for a logic that can be represented in it via an
institution comorphism turn out to be more useful than those given for institutions
related by an institution morphism in Section 10.2.

For the rest of this section, let INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉 and INS′ =
〈Sign′,Sen′,Mod′,〈|=′

Σ ′ 〉Σ ′∈|Sign′|〉 be institutions linked by an institution comor-
phism ρ:INS → INS′.

8 Terminology from [GR02].
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Using the consequences of the satisfaction condition for institution morphisms
in much the same way as we did in Section 4.2 for the satisfaction condition in a
single institution, one can show that the semantic consequence relation is preserved
when sentences are translated by an institution comorphism. A number of related
facts then follow in a similar way; see also Section 10.2. We refrain from essentially
repeating the proofs here.

Proposition 10.4.22. Consider an INS-signature Σ ∈ |Sign| and let Σ ′= ρSign(Σ)∈
|Sign′|. For any sets Φ ⊆ Sen(Σ) of Σ -sentences and Φ ′ ⊆ Sen′(Σ ′) of Σ ′-sentences,
and Σ -sentence ϕ ∈ Sen(Σ), we have:

1. ρSen
Σ (ClΣ (Φ)) ⊆ ClΣ ′(ρSen

Σ (Φ)). In other words, if Φ |=Σ ϕ then ρSen
Σ (Φ) |=′

Σ ′
ρSen

Σ (ϕ).
2. ClΣ ′(ρSen

Σ (ClΣ (Φ))) = ClΣ ′(ρSen
Σ (Φ)).

3. ClΣ ((ρSen
Σ )−1(Φ ′))⊆ (ρSen

Σ )−1(ClΣ ′(Φ ′)).
4. ClΣ ((ρSen

Σ )−1(Φ ′))⊆ ThΣ (ρMod
Σ (ModΣ ′(Φ ′))). ��

Proposition 10.4.23. For any INS-signature Σ ∈ |Sign| and set Φ ′ ⊆Sen′(ρSign(Σ))
of ρSign(Σ)-sentences, (ρSen

Σ )−1(ClρSign(Σ)(Φ ′)) = ThΣ (ρMod
Σ (ModρSign(Σ)(Φ ′))).

Consequently, if Φ ′ is closed then (ρSen
Σ )−1(Φ ′) ⊆ Sen(Σ) is a closed set of Σ -

sentences in INS. ��
Institution comorphisms directly determine a functor between the categories of

theories of the institutions they link, perhaps even more naturally than in the case of
institution morphisms (Definition 10.2.15):

Definition 10.4.24 (Theory functor induced by an institution comorphism). For
every institution comorphism ρ:INS → INS′ we define a functor ρTh:ThINS →
ThINS′ between the categories of theories of INS and of INS′, respectively:

• ρTh(〈Σ ,Φ〉) = 〈ρSign(Σ),ClρSign(Σ)(ρSen
Σ (Φ)〉 ∈ |ThINS′ |, for any INS-theory

〈Σ ,Φ〉 ∈ |ThINS|, and
• ρTh(σ) = ρSign(σ):ρTh(T1)→ ρTh(T2), for any INS-theory morphism σ :T1 →

T2. ��
In contrast to theory functors given by institution morphisms (see Example 10.2.21),
the theory functors determined by institution comorphisms typically preserve col-
imits:

Proposition 10.4.25. If the category Sign of signatures in INS is cocomplete and
ρSign:Sign→ Sign′ is cocontinuous then the theory functor ρTh:ThINS → ThINS′ is
cocontinuous as well.

Proof. The proof essentially follows the hint in Exercise 10.2.22.
Consider a diagram D in ThINS with nodes Dn = 〈Σn,Φn〉, n ∈ N, and its colimit

〈αn:〈Σn,Φn〉 → 〈Σ ,ClΣ (
⋃

n∈Nαn(Φn))〉〉n∈N as constructed in the proof of Theo-
rem 4.4.1. Since ρSign:Sign → Sign′ is cocontinuous, the colimit in Sign′ of the
underlying signature diagram for ρTh(D) is 〈ρSign(αn):ρSign(Σn)→ ρSign(Σ)〉n∈N .
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All we have to show now is that ClρSign(Σ)(ρSen
Σ (ClΣ (

⋃
n∈Nαn(Φn)))) coincides with

ClρSign(Σ)(
⋃

n∈NρSign(αn)(ClρSign(Σn)
(ρSen

Σn
(Φn)))), which follows easily by the nat-

urality of ρSen, Corollary 4.2.11 and Proposition 10.4.22(2). ��
The key assumption in the above proposition, the cocontinuity of signature trans-
lation, is ensured for instance when the institution comorphism is linked with an
institution morphism as in Corollary 10.4.16, when the translation of signatures is a
left adjoint, by Exercise 3.5.17.

As in Sections 4.2 and 10.2, none of the inclusions in Proposition 10.4.22 may
be reversed in general. However, the situation is again different if model translation
is surjective.

Proposition 10.4.26. Let Σ ∈ |Sign| be an INS-signature. Suppose that the functor
ρMod

Σ :Mod′(ρSign(Σ))→ Mod(Σ) is surjective on models. Then for any set Φ ⊆
Sen(Σ) of Σ -sentences and Σ -sentence ϕ ∈ Sen(Σ), we have:

1. Φ |=Σ ϕ if and only if ρSen
Σ (Φ) |=′

ρSign(Σ)
ρSen

Σ (ϕ).
2. ClΣ (Φ) = (ρSen

Σ )−1(ClρSign(Σ)(ρSen
Σ (Φ))). ��

Exercise 10.4.27. Following Example 10.2.17, show that the requirement that ρMod
Σ

be surjective in Proposition 10.4.26 cannot be dropped. ��
Exercise 10.4.28. Carry over Proposition 10.2.19 and its Corollary 10.2.20 to in-
stitution comorphisms, thus generalising Proposition 10.2.16(1) to the case where
the translation of models ρMod

Σ is not surjective, but the image of the class of all
ρSign(Σ)-models under ρMod

Σ is definable in INS. Notice that the more general form,
corresponding to Proposition 10.2.19 (originating in Proposition 4.2.21), becomes
crucial when theoroidal institution comorphisms are considered. ��

Proposition 10.4.26 suggests that institution comorphisms in which all transla-
tions of models are surjective may be especially useful. In particular, not only do
semantic consequences in the more primitive institution INS remain valid when
translated to the richer institution INS′ (this is Proposition 10.4.22(1)), but also
whatever we can deduce in the richer logic INS′ about the sentences of the more
primitive logic INS is valid there as well. This means that any proof system or the-
orem prover available for INS′ may be used for INS as well.

A crucial novelty with respect to Section 10.2 is that now we can extend this to
arbitrary structured specifications, since institution comorphisms offer a natural way
to translate (typical) structured specifications:

Exercise 10.4.29. Consider the class SpecUTH
INS of specifications in an institution INS

built from flat specifications using union, translation and hiding. Extend any insti-
tution comorphism ρ:INS→ INS′ to translate specifications in SpecUTH

INS to INS′ by
inductively defining a function ρSpec:SpecUTH

INS → SpecUTH
INS′ as follows:

• ρSpec(〈Σ ,Φ〉) = 〈ρSign(Σ),ρSen
Σ (Φ)〉

• ρSpec(SP1∪SP2) = ρSpec(SP1)∪ρSpec(SP2)
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• ρSpec(SP with σ) = ρSpec(SP) with ρSign(σ)
• ρSpec(SP hide via σ) = ρSpec(SP) hide via ρSign(σ)

Prove that for any specification SP∈ SpecUTH
INS , ρMod

Sig[SP](Mod[ρSpec(SP)])⊆Mod[SP].
Give counterexamples to show that the opposite inclusion fails in general.

Then assume that the naturality squares for ρMod (see Definition 10.4.1) are pull-
backs in Cat. Prove by induction on the structure of SP ∈ SpecUTH

INS that for any
model M′ ∈ |Mod′(ρSign(Σ))|, if ρMod

Σ (M′) ∈ Mod[SP] then M′ ∈ Mod[ρSpec(SP)],
where Σ = Sig[SP]. You may want to weaken the assumption concerning the nat-
urality squares by dropping requirements concerning model morphisms and then
dropping the requirement that the “amalgamated” models are determined uniquely.

Note that this shows that, in this case, the inter-institutional operation to translate
specifications by an institution comorphism can be reduced to syntactic translation
of specifications:

SP with ρ ≡ ρSpec(SP).

Conclude also that if in addition the translation ρMod
Σ is surjective on models then

ρMod
Sig[SP](Mod[ρSpec(SP)]) = Mod[SP].

Finally, note that this implies that for any sentence ϕ ∈ Sen(Σ), SP |=Σ ϕ if and
only if ρSpec(SP) |=ρSign(Σ) ρSen

Σ (ϕ). ��

10.5 Bibliographical remarks

The need for linking institutions by maps of some sort was already emphasized in
the original institutions paper [GB92] and its early version [GB84a]; many later
developments elaborate on the basic notion of an institution morphism introduced
there and on its many variants.

The idea of moving specifications between institutions was first introduced
in [ST88b], which used institution semi-morphisms (called semi-institution mor-
phisms there) for this purpose, defined the inter-institutional specification-building
operation hide via μ (written as change institution of via μ there), and ap-
plied it to capture developments migrating between institutions much as presented
in Section 10.1.3. Translation of specifications by an institution semi-morphism
was introduced in [Tar96], and similar operations determined by institution comor-
phisms were given in [Tar00]. Similar ideas were approached from a different angle
in [Dia02]. Given a diagram of institutions linked by institution morphisms, a ver-
sion of the Grothendieck construction (Definition 3.4.59) may be used to construct
a single “heterogeneous” institution that incorporates all the institutions involved
and enriches them with “inter-institutional” signature morphisms that use institu-
tion morphisms in the diagram. Inter-institutional specification-building operations
determined by institution morphisms, as defined in Section 10.1.3, can then be cap-
tured using the usual intra-institutional hiding and translation operations in this
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Grothendieck institution. This approach underlies the development of CafeOBJ,
which supports the use of a cube of eight logics formalised as institutions and linked
by institution morphisms [DF98], [DF02]. A similar trick may be used for institu-
tions linked by institution comorphisms and the operations they determine [Mos02].

Definition 10.1.12 is inspired by duplex institutions in [GB92], which are essen-
tially institutions of the form INS1 plus INSdata

2 via μ , where μ:INS1 →semi INS2
was unnecessarily required to extend to an institution morphism. Exercise 10.1.15
corresponds to multiplex institutions in [GB92].

Section 10.2 is based on [GB92], with Definition 10.2.1 and some of the basic
facts concerning preservation of semantic consequence taken from there. In partic-
ular, Exercise 10.2.22 is Theorem 39 of [GB92].

Section 10.3 follows [Tar86a], where the completeness of the category of institu-
tions was proved (see also [TBG91]), although some of the terminology used here
comes from [May85] and [GB86]. Examples 10.3.12, 10.3.13 and 10.3.15 hint at the
idea of using limits in the category of institutions to systematically combine logical
systems; both this idea and its inherent limitations were pointed out in [Tar86a]. The
problem the examples identify is that sentences in institutions are viewed as unstruc-
tured entities and so universal constructions in the category of institutions combine
sets of sentences rather than combining the ways that sentences are built (via clo-
sure properties of these sets). One way to deal with this is to introduce more detailed
presentations of institutions, for instance as parchments [GB86], where in essence
an abstract context-free grammar (in the form of an algebraic signature) is used to
define sentences. Combining such grammars typically yields a presentation of the
expected sets of sentences, closed under the logical constructs used in each of the
combined logics. But then the meaning of the essentially new sentences so obtained
may not be defined unambiguously, and universal constructions on parchments may
yield structures that do not define institutions without further “manual” adjustments;
see [MTP97], [MTP98], [CMRS01], [CGR03] for further details. Another option is
to combine logics together with their (compatible) representations in a “universal
logic”, where manual adjustments to define the meaning of new combinations of
logical constructs are replaced by the standard combination of their representations
in the universal logic; see [Tar96], [MTP97], [MTP98], [Tar00]. These ideas pro-
vide a potential alternative to a similar programme concerning “fibring” of logics
[Gab98], [CSS05].

The taxonomy of possible mappings between institutions classified by the direc-
tion of translations of signatures, sentences and models in Section 10.4 was first
spelled out in [Tar96] and then systematically studied in [GR02], which also intro-
duced the now widely adopted terminology we follow here. Some variants of maps
between institutions escape this classification: we have mentioned theoroidal comor-
phisms (“simple maps of institutions” in [Mes89]) but did not discuss for instance
model translations that map individual models to model classes (or model transla-
tions given as partial functions on model classes), as in [SS93], or various ways of
weakening the satisfaction condition; see e.g. [Tar87], [Tar96]. It is worth noting
that theoroidal institution comorphisms give one example of a wide class of maps
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between institutions that can be derived from the basic notions as Kleisli morphisms
for a monad over the category of institutions [Mos96a].

Institution comorphisms were introduced in [Mes89] as plain maps of institutions
and in [Tar87], [Tar96] as institution representations, the latter term perhaps best
reflecting the intuition that institution comorphisms capture one way of representing
the source institution in the target.

The notion of subinstitution sketched in Exercise 10.4.9 follows [Mes89]; this is
just a starting point for using institution comorphisms to compare relative “power”
of logical systems captured as institutions; see [MTD09].

The importance of institution comorphisms was stressed in [CM97], where they
were used to “borrow” consequence relations (and so proof systems, as discussed
in Chapter 9, and related support tools) from a richer institution to any institution
mapped into it by an institution comorphism. This was based on facts like Propo-
sition 10.4.26 and the more general properties indicated in Exercise 10.4.28. In
[Tar00] it is pointed out that other properties (like specification equivalence or re-
finements between specifications) and their proofs may be transported in such a
way as well, using the inter-institutional operation with ρ to translate specifica-
tions by an institution comorphism. In this context Exercise 10.4.29, following the
essence (though not all the technical details and practically motivated nuances) of
developments in [Bor02], is of particular importance.

The overall picture emerging in this chapter is that in many practical situations
one will be working in a heterogeneous logical environment which consists of a
number of institutions linked by institution (semi-)morphisms, (semi-)comorphisms
and other maps. This should allow the user to migrate between logical systems
while building (heterogeneous) specifications and in the course of the development
process. This activity can be supported by tools, like the HETS system [Mos05],
[MML07], that offer support for defining and extending such logical environments,
for building heterogeneous specifications, and for proving their consequences and
entailments between them. More on this vision may be found in [MT09], which also
admits truly distributed heterogeneous specifications that do not focus on any par-
ticular institution, capturing specifications in formalisms based on multiple views
of systems such as UML [BRJ98] (see [CKTW08]). The diversity of the concepts
of a map between institutions becomes a serious technical issue in this context.
Results like Corollary 10.4.16, first given in [AF96] (although its form in Propo-
sition 10.4.15 appears to be new), complemented by results like those in Exer-
cise 10.4.18 (from [MT09]), point in this direction. The alternative and more univer-
sally applicable idea of using spans of maps of a certain kind to represent other maps
between institutions (Exercises 10.4.19 and 10.4.20) has been noticed in [Mos03]
and spelled out in [Mos05], but seems to originate in [MW98], which used institu-
tion forward morphisms (called “transformations” there) as a primary notion.

Institution forward morphisms were also introduced in [Tar00] (named “in-
stitution encodings” there) with results analogous to those pointed at in Exer-
cises 10.4.28 and 10.4.29; these were used in [BH06a] to develop proof techniques
for specifications built in the constructor-based observational logic COL.
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[ →X ]:Setop → Set, exponent functor, 130
σ :Alg(Σ ′)→ Alg(Σ), reduct functor, 129

σ :Mod(Σ ′)→ Mod(Σ), see Mod(σ)

| |:Alg(Σ)→ SetS, forgetful functor, 129
| |:Cat → Set, forgetful (discretisation) func-

tor, 133

0, empty category, 101
1, singleton category, 101
2, linear order 2-element category, 101

Alg:AlgSigop → Cat, algebra category functor,
133

AlgSig, category of algebraic signatures, 103,
139

AlgSigder , category of signatures with derived
morphisms, 103

Alg(Σ), category of Σ -algebras, 102

C:Indop → Cat, indexed category, 141
CA:K1 → K2, constant functor, 128
CAlg(Σ), category of continuous Σ -algebras,

127
Cat, category of categories, 132
Cone(D), category of cones, 121
CPO, category of complete partial orders, 102

(F,G), comma category, 139
FinSet, category of finite sets, 105
Fop:K1op → K2op, opposite functor, 128
FOSig, category of first-order signatures, 165
FOStr:FOSigop → Cat, FOPEQ model func-

tor, 166

Fσ :Mod(Σ ′)→ Mod(Σ), σ -free functor, 214
Funct(K), category of functors into K, 142

Graph, category of graphs, 119, 139
Groth(C), Grothendieck category, 141

Hom:Kop×K → Set, Hom-functor, 130

I:K1 ↪→ K2, inclusion functor, 128
IdK:K → K, identity functor, 128
INS:Signop →Room(B), institution as functor,

513
INS, category of institutions, 511, 514
INSco, category of institutions with institution

comorphisms, 522
INSco

small, category of institutions with institu-
tion comorphisms and small signature cat-
egories, 522

INSsemi, category of institutions with institution
semi-morphisms, 490

INSsmall, category of institutions with small sig-
nature categories, 518

[K1→K2], functor category, 141
K1×K2, product category, 107
K→, morphism category, 107
K↓A, slice category, 108
K≤, preorder category, 101
Kop, opposite category, 106
K X , full subcategory, 105
KX , discrete category, 101

Mod:Signop → Cat, see ModINS
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Mod:Specop → Cat, specification model cate-
gory functor, 251

ModINS(Σ), category of Σ -models in institu-
tion, 158

ModINS:Sign
op
INS → Cat, model functor in

institution, 158
ModINS(σ):ModINS(Σ ′) → ModINS(Σ), σ -

reduct functor in institution, 158
Mod(Σ), see ModINS(Σ)
Mod(σ):Mod(Σ ′)→Mod(Σ), see ModINS(σ)
ModΣ (E ), category of algebras satisfying equa-

tions, 106
Mod[〈Σ ,Φ〉], category of models of presenta-

tion, 192
Mod[SP], category of models of specification,

235
ModTh:Th

op
INS → Cat, model functor for theo-

ries, 193
Mon, category of monoids, 129
μMod

Σ :Mod(Σ)→Mod′(μSign(Σ)), model trans-
lation functor in institution (semi-)mor-
phism, 487, 502

μSign:Sign → Sign′, signature translation func-
tor in institution (semi-)morphism, 487,
502

μTh:ThINS → ThINS′ , theory functor induced
by institution morphism, 508

P:Set → Set, power set functor, 128
PAlg(Σ), category of partial Σ -algebras, 126
PAlgstr(Σ), category of partial Σ -algebras with

strong homomorphisms, 126
Path(G), category of paths in graph, 120
Pfn, category of sets with partial functions, 102
ΠK1:K1×K2 → K1, projection functor, 130
P−1:Setop → Set, contravariant power set func-

tor, 129
Poset, category of partially ordered sets, 133
PresINS, category of presentations in institution,

193

ρMod
Σ :Mod′(ρSign(Σ))→Mod(Σ), model trans-

lation functor in institution (semi-)comor-
phism, 519, 520

ρSign:Sign → Sign′, signature translation func-
tor in institution (semi-)comorphism, 519,
520

ρTh:ThINS → ThINS′ , theory functor induced
by institution comorphism, 528

Room(B), category of boolean rooms, 513
RΣ :Alg(Σ)→ Alg(Σ), restriction functor, 129

Sen:Sign → Set, see SenINS

SenINS:SignINS → Set, sentence functor in
institution, 158

Seq:Set → Mon, sequence functor, 129
Set, category of sets, 102
SetS, category of S-sorted sets, 102
Sig:Spec → Sign, specification signature func-

tor, 251
SignINS, signature category in institution, 158
Sign, see SignINS

Spec, category of specifications, 251
/E :Alg(Σ)→ Alg(Σ), quotient functor, 129

Th:Spec→ThINS, specification theory functor,
252

ThINS, category of theories in institution, 192
Tot:Pfn → Set⊥, totalisation functor, 130
TotΣ :PAlgstr(Σ) → Alg(Σ), totalisation func-

tor for algebras, 130
TΣ :SetS → Alg(Σ), term algebra functor, 129
TΣ , category of substitutions, 103
TΣ/E , category of substitutions modulo equa-

tions, 103
TΣ ,E , algebraic theory, 104
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3FOPEQ, three-valued first-order logic, 171

CDIAG, commutative diagrams, 178
CEQ, equational logic for continuous algebras,

169
CTL∗INS, branching-time temporal logic, 186

EQ, equational logic, 162
entailment system, 403

EQgen, EQ with generation constraints, 197
EQ⇒, conditional equational logic, 169
EQinh, EQ with inhabitation assertions, 515
EQonto, EQ with surjectivity assertions, 515
EQreach, EQ with reachability constraints, 196
ErrEQ, error equational logic, 169

FOEQ, first-order logic with equality, 166
FOEQBool, FOEQ with boolean values, 167
FOMDL, first-order modal logic, 187
FOP, first-order predicate logic, 166

entailment system, 406
FOPEQ, first-order predicate logic with equal-

ity, 165
entailment system, 407

FOPEQstr, FOPEQ with strong homomor-
phisms, 169

FOPstr, FOP with strong homomorphisms, 169
FPL, logic for functional programs, 172

entailment system, 408
FPLstnd, FPL with “standard” signature mor-

phisms, 490
FProg, “programming part” of FPL, 175

GEQ, ground equational logic, 161

HOL, higher-order logic, 167
Horn, Horn equational logic, 169

IMPDT , simple imperative language, 176
INS+NewSen, INS with additional sentences,

184
INS1 + INS2, sum of institutions, 183
INS1 plus INS2 via μ , duplex institution, 491
INS1× INS2, product of institutions, 183, 515
INScodata, INS with codata constraints, 198
INS∧, institution of sets of INS-sentences, 180
INSdata, INS with data constraints, 197
INS∀(I), INS extended by universal closure, 211
INSinit, INS with initiality constraints, 196
INSMod+ , INS with models over extended sig-

natures, 181
INSMod(Sen), institution with sets of sentences

as models, 179
INSprop, INS with sentences closed under propo-

sitional connectives, 182
INSSen(Mod), institution with classes of models

as sentences, 178
INSSign+ , INS with signatures enriched by sen-

tences, 181

Lω1ω , an infinitary logic, 167
LTLINS, linear-time temporal logic, 185

MDLINS, modal logic, 186

OrdEQ, order-sorted equational logic, 169

PEQ, partial equational logic, 162
entailment system, 403
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PEQe, PEQ with existence equations, 163
entailment system, 404

PEQpval, PEQ with partial variable valuations,
505

PEQstr, PEQ with strong homomorphisms, 169
PFOEQ, partial first-order logic with equality,

168
PFOEQBool, PFOEQ with boolean values, 168
PFOEQTruth, PFOEQ with truth, 168
PFOP, partial first-order predicate logic, 168

entailment system, 408
PFOPEQ, partial first-order predicate logic with

equality, 168
entailment system, 408

PFOPEQe, PFOPEQ with existential equality,
408

entailment system, 408
PFOPEQpval, PFOPEQ with partial variable

valuations, 506
PFOPEQstr, PFOPEQ with strong homomor-

phisms, 169
PGEQ, ground partial equational logic, 163
PGEQe, PGEQ with existence equations, 163
PROP, propositional logic, 163

entailment system, 404
PROPBA, propositional logic over Boolean al-

gebras, 164
PROPI, intuitionistic propositional logic, 165

entailment system, 406

REQ, reachable equational logic, 162
RGEQ, reachable ground equational logic, 162

SOL, second-order logic, 167
SSCEQ, single-sorted equational logic for con-

tinuous algebras, 203
SSEQ, single-sorted equational logic, 202
SSFOPEQ, single-sorted first-order predicate

logic with equality, 203
SSPFOPEQ, single-sorted partial first-order

predicate logic with equality, 203
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〈Xs〉s∈S, S-sorted set, 16
∅, empty set, 16
X ∪Y , set union, 16
X ∩Y , set intersection, 16
X \Y , set difference, 16
X �Y , disjoint union, 16
X ⊆ Y , subset, 16
X ⊂ Y , proper subset, 16
〈Xi〉i∈I , indexed family, 16
∏〈Xi〉i∈I , Cartesian product, 16
X1×·· ·×Xn, Cartesian product, 16
〈x1, . . . ,xn〉, n-tuple, 16
〈〉, empty tuple, 16
f :X → Y , function, 16
f (x), function application, 17
f (x1, . . . ,xn), function applied to tuple, 17
idX , identity function, 17
f :X ↪→ Y , inclusion function, 17
f ;g, function composition, 17
f (X), set image, 17
f−1(X), set coimage, 17
dom( f ), domain of partial function, 17
R ⊆ X ×Y , binary relation, 17
x R y, related elements, 17
R−1, relation inverse, 17
R;Q, relation composition, 17
ker( f ), function kernel, 17
≡⊆ X ×X , equivalence relation, 18
[x]≡, equivalence class, 18
X/≡, quotient set, 18
Σ = 〈S,Ω〉, signature, 19
S∗, set of finite sequences, 19
sorts(Σ), sort names of signature, 19
ops(Σ), operation names of signature, 19

f :s, constant operation, 19
ε , empty sequence, 19
|A|, carrier sets of algebra, 20
fA, function/constant in algebra, 20
A×B, product algebra, 22
h:A → B, homomorphism, 22
|h|, homomorphism viewed as function, 22
h;h′, homomorphism composition, 24
h(A), image of algebra, 24
h−1, inverse homomorphism, 24
h:A ∼= B, isomorphism, 24
A ∼= B, isomorphic algebras, 24
≡, congruence relation, 26
A/≡, quotient algebra, 26
x:s, typed variable, 27
TΣ (X), term algebra, 27
FV(t), free variables, 28
TΣ , ground term algebra, 28
v:X → |A|, valuation of variables, 30
tA(v), value of term, 30
tA, value of ground term, 30
θ :X → |TΣ (Y )|, substitution, 30
t[θ ], substitution in term, 30
θ ;θ ′, composition of substitutions, 30
[x1 �→ u1, . . . ,xn �→ un], substitution, 31
σ :Σ → Σ ′, signature morphism, 33
σsorts, sort name mapping, 33
σops, operation name mapping, 33
σ :Σ ↪→ Σ ′, signature inclusion, 33
σ ;σ ′, composition of signature morphisms, 34
A σ , reduct algebra, 34
A Σ , reduct to subsignature, 34
h σ , reduct homomorphism, 35
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≡ σ , reduct congruence, 35
σ(t), term translation, 36
Σ der , derived signature, 36

i , ith argument of operation in derived signa-
ture, 36

δ :Σ → Σ ′, derived signature morphism, 36
Ader , derived algebra, 36
A δ , reduct algebra w.r.t. derived signature mor-

phism, 37
h δ , reduct homomorphism w.r.t. derived signa-

ture morphism, 37
δ (t), term translation w.r.t. derived signature

morphism, 37
X , universe of variables, 42
∀X • t = t ′, equation, 42
t = t ′, ground equation, 42
A |=Σ ∀X • t = t ′, equation satisfaction, 42
A |=Σ E , satisfaction of equation set, 42
A |=Σ e, satisfaction of equation by algebra

class, 42
A |=Σ E , satisfaction of equation set by algebra

class, 42
σ(∀X • t = t ′), equation translation, 43
〈Σ ,E 〉, presentation, 44
Mod[〈Σ ,E 〉], models of presentation, 44
+ , infix operation, 45

spec N = body, named specification, 45
ModΣ (E ), models of equation set, 49
ThΣ (A ), theory of algebra class, 49
ClΣ (E ), closure of equation set, 49
ClΣ (A ), closure of algebra class, 49
E |=Σ e, semantic consequence, 50
σ :〈Σ ,E 〉 → 〈Σ ′,E ′〉, theory morphism, 51
σ :〈Σ ,E 〉 ↪→ 〈Σ ′,E ′〉, theory inclusion, 51
E  Σ e, proof-theoretic consequence, 53
≡E , congruence generated by equations, 58
IMod[〈Σ ,E 〉], initial models, 59�, “hole” in context, 65
C[�], context, 65
C[t], term in context, 65
t → t ′, rewrite rule, 65
Eq(R), equations determined by rewrite rules,

66
t →R t ′, one-step reduction, 66
t R← t ′, one-step expansion, 66
t →∗

R t ′, reduction, 66
t ∗R← t ′, expansion, 66
t ∼R t ′, convertibility, 66
NFR(t), normal form, 69
∀X • t1 = t ′1∧ . . .∧ tn = t ′n ⇒ t0 = t ′0, conditional

equation, 72
RMod[〈Σ ,E 〉], reachable non-degenerate mod-

els, 75

〈S,Ω ,safe〉, error signature, 79
pred:Nat → Nat,unsafe, unsafe operation, 81
k:Nat:unsafe, unsafe variable, 82
A⊥, total algebra underlying partial algebra, 83
⊥, undefined, 83
t e
= t ′, existential equality, 84
∀X • def (t), definedness formula, 84
〈S,≤,Ω〉, order-sorted signature, 86
s ≤ s′, subsort ordering, 86
sort(t), least sort of term, 88
|K|, objects of category, 99
K(A,B), morphisms from A to B of category, 99
f ;g, morphism composition, 100
idA, identity morphism, 100
f :A → B (in K), morphism in category, 100
K≤, preorder category, 101
KX , discrete category, 101
〈X , ;, id〉, monoid, 102
SetS, category of S-sorted sets, 102
Alg(Σ), category of Σ -algebras, 102
TΣ , category of substitutions, 103
TΣ/E , category of substitutions modulo equa-

tions, 103
TΣ ,E , algebraic theory, 104
K X , full subcategory, 105
ModΣ (E ), category of algebras satisfying equa-

tions, 106
Kop, opposite category, 106
K1×K2, product category, 107
K→, morphism category, 107
K↓A, slice category, 108
A×B, product object, 113
πA:A×B → A, product projection, 113
A+B, coproduct object, 114
ιA:A → A+B, coproduct injection, 114
e:n → m, edge in graph, 119
Path(G), category of paths in graph, 120
G(D), underlying graph of diagram, 120
G(K), underlying graph of category, 120
D(K), underlying diagram of category, 120
〈αn:X → Dn〉n∈N , cone, 121
αn:X → Dn, limit projection, 121
αn:Dn → X , colimit injection, 121
Cone(D), category of cones, 121
〈E,M〉, factorisation system, 124
PAlg(Σ), category of partial Σ -algebras, 126
PAlgstr(Σ), category of partial Σ -algebras with

strong homomorphisms, 126
CAlg(Σ), category of continuous Σ -algebras,

127
F:K1 → K2, functor, 128
FOb j , object part of functor, 128
FA,B, morphism part of functor, 128
IdK:K → K, identity functor, 128
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I:K1 ↪→ K2, inclusion functor, 128
CA:K1 → K2, constant functor, 128
Fop:K1op → K2op, opposite functor, 128
P(X), power set, 128

σ :Alg(Σ ′)→ Alg(Σ), reduct functor, 129

TΣ :SetS → Alg(Σ), term algebra functor, 129
/E :Alg(Σ)→ Alg(Σ), quotient functor, 129

RΣ :Alg(Σ)→ Alg(Σ), restriction functor, 129
ΠK1:K1×K2 → K1, projection functor, 130
[ →X ]:Setop → Set, exponent functor, 130
F(D), diagram translation, 131
τ:F → G, natural transformation, 135
idF:F→ F, identity natural transformation, 135
τ;σ :F1 → F3, vertical composition, 137
τ·σ :F1;G1 → F2;G2, horizontal composition,

137
τ·G1:F1;G1 → F2;G1, multiplication by func-

tor, 138
F1·σ :F1;G1 → F1;G2, multiplication by func-

tor, 138
(F,G), comma category, 139
Groth(C), Grothendieck category, 141
[K1→K2], functor category, 141
Funct(K), category of functors into K, 142
ηA1:A1 → G(A2), unit morphism, 144
〈F,G,η ,ε〉, adjunction, 151
εA2:F(A1)→ A2, counit morphism, 152
SignINS, signature category in institution, 158
SenINS(Σ), set of Σ -sentences in institution,

158
SenINS(σ):SenINS(Σ)→ SenINS(Σ ′), σ -trans-

lation of sentences in institution, 158
ModINS(Σ), category of Σ -models in institu-

tion, 158
ModINS(σ): ModINS(Σ ′) → ModINS(Σ), σ -

reduct in institution, 158
|=INS,Σ , Σ -satisfaction relation in institution, 158
M |=INS,Σ ϕ , satisfaction in institution, 159
Sign, see SignINS, 159
Sen, see SenINS, 159
Mod, see ModINS, 159
|=Σ , see |=INS,Σ , 159
INS = 〈Sign,Sen,Mod,〈|=Σ 〉Σ∈|Sign|〉, institu-

tion, 159
σ :Sen(Σ)→ Sen(Σ ′), see Sen(σ), 159

σ :Mod(Σ ′)→ Mod(Σ), see Mod(σ), 159
M |= Φ , satisfaction of sentence set, 160
M |=ϕ , satisfaction of sentence by model class,

160
M |= Φ , satisfaction of sentence set by model

class, 160
Mod(Σ), class of Σ -models, 160
Θ = 〈S,Ω ,Π〉, first-order signature, 165

θ :Θ →Θ ′, first-order signature morphism, 165
|A|, carrier sets of first-order structure, 166
fA, function/constant in first-order structure, 166
pA, predicate in first-order structure, 166
h:A → B, first-order morphism, 166
|T ∞

Σ (X)|, infinitary terms, 169⊔〈vk〉k≥0, least upper bound, 170
SIG= 〈S,Ω ,D〉, FPL signature, 172
〈d,F 〉, sort with value constructors, 172
sort Nat free with 0|succ(Nat), sort with value

constructors, 172
let fun f (x1:s1, . . . ,xn:sn):s′ = t ′ in t, local re-

cursive function definition, 173
case t of pat1 => t1 | · · ·| patn => tn, pattern-

matching case analysis, 173
fun f (x1:s1, . . . ,xn:sn):s= t, function definition,

174
δ :SIG→ SIG′, FPL-signature morphism, 174
if t1 = t2 then t else t ′, conditional term, 175
〈T,P〉, IMPDT signature, 176
type s = type-expr, type definition, 176
unit, unit type, 176
type-expr+ type-expr′, disjoint union type, 176
type-expr× type-expr′, Cartesian product type,

176
proc p(x1:s1, . . . ,xn:sn) = body, procedure def-

inition, 176
proj1(v), projection, 177
〈v1,v2〉, pairing, 177
is-in1(v), discriminator, 177
〈〉, unit value, 177
INSSen(Mod), institution with classes of models

as sentences, 178
INSMod(Sen), institution with sets of sentences

as models, 179
INS∧, institution of sets of INS-sentences, 180
INSSign+ , INS with signatures enriched by sen-

tences, 181
INSMod+ , INS with models over extended sig-

natures, 181
INSprop, INS with sentences closed under propo-

sitional connectives, 182
INS1 + INS2, sum of institutions, 183
INS1× INS2, product of institutions, 183
INS+NewSen, INS with additional sentences,

184
LTLINS, linear-time temporal logic, 185
MDLINS, modal logic, 186
CTL∗INS, branching-time temporal logic, 186
ModΣ (Φ), models of sentence set, 188
ThΣ (M ), theory of model class, 188
ClΣ (Φ), closure of sentence set, 188
ClΣ (M ), closure of model class, 188
Φ |=Σ ϕ , semantic consequence, 188
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〈Σ ,Φ〉, presentation, 192
Mod[〈Σ ,Φ〉], models of presentation, 192
Mod[〈Σ ,Φ〉], category of models of presenta-

tion, 192
σ :T → T ′, theory morphism, 192
ThINS, category of theories in institution, 192
PresINS, category of presentations in institution,

193
initial Φ through θ , initiality constraint, 195
INSinit, INS with initiality constraints, 196
reachable through θ , reachability constraint,

196
data Φ over σ through θ , data constraint, 197
INSdata, INS with data constraints, 197
generated over σ through θ , generation con-

straint, 197
codata Φ over σ through θ , codata constraint,

198
INScodata, INS with codata constraints, 198
IFPL, signature morphisms for which FPL is

semi-exact, 205
Σ(X), signature extended by new constants, 209
〈ϕ,θ〉, open formula, 210
∀θ • ϕ , universal closure of open formula, 211
INS∀(I), INS extended by universal closure, 211
Fσ :Mod(Σ ′)→ Mod(Σ), σ -free functor, 214
ησ :IdMod(Σ ′) → Fσ ( ) σ , unit for σ -free func-

tor, 214
Ext(M), ground variety, 217
Σ(M), diagram signature for M, 217
E(M), diagram expansion of M, 217
Δ+(M), diagram of M, 217
Spec, class of all specifications, 230
Spec(Σ), class of all Σ -specifications, 230
Sig[SP], signature of specification, 231
Mod[SP], models of specification, 231
SP1∪SP2, specification union, 232
SP with σ , specification translation, 232
SP hide via σ , specification hiding, 233⋃

i∈I SPi, union of indexed family, 234
iso-close SP, specification closure under iso-

morphism, 234
close& SP, specification closure under equiva-

lence, 235
free SP wrt σ , specification free extension, 235
Mod[SP], category of models of specification,

235
initial SP, specification initial models, 235
reachable SP on S, specification reachable mod-

els, 235
SP reveal Σ , specification export, 237
SP hide sorts S ops Ω , hide specification com-

ponents, 237

SP then sorts S ops Ω • Φ , specification enrich-
ment, 238

SP then free sorts S ops Ω • Φ , specification
free enrichment, 238

SP1 and SP2, specification sum, 240
SP1 +σ1,σ2 SP2, specification sum with sharing,

240
SP |= ϕ , semantic consequence, 245
Th[SP], theory of specification, 245
T0[SP], standard property-oriented semantics,

246
σ :SP → SP′, specification morphism, 249
SP ≡ SP′, specification equivalence, 253
Σ ⇒ Σ ′, constructor signature, 260
Mod(Σ ⇒ Σ ′), constructors, 260

σ :Mod(Σ ′)→ Mod(Σ), reduct constructor,
261

Fσ ,SP′ ∈Mod(Σ ⇒ Σ ′), free extension construc-
tor, 262

Fσ ∈ Mod(Σ ⇒ Σ ′), absolutely free extension
constructor, 263

constructor K : SIG⇒ SIG′ = body, FPL-con-
structor notation, 264

/SP∈Mod(Σ ⇒ Σ), quotient constructor, 265
RΣ ∈Mod(Σ ⇒Σ), restriction to reachable sub-

algebra constructor, 265
RS ∈Mod(Σ ⇒ Σ), restriction to sort-generated

subalgebra constructor, 265
Mod(Σ ι

==⇒M Σ ′), persistent constructors on
model class, 266

Mod(Σ ι
==⇒ Σ ′), persistent constructors, 266

σ(F) ∈ Mod(ΣG
ι ′
==⇒ Σ ′

G), translation of persis-
tent constructor, 268

F1 +F2 ∈ Mod(Σ σ
==⇒ Σ ′), amalgamated union

of persistent constructors, 270
+σ1,σ2 : Mod(Σ1)×Mod(Σ2) → Mod(Σ ′),

amalgamated union constructor, 270
SP ⇒ SP′, constructor specification, 271
{M}, singleton specification, 272
ΠX :SP• SP′[X ], constructor specification, 272
E[E ′/X ], substitution, 272
SP ι

==⇒ SP′, persistent constructor specification,
272

λX :Spec(Σ)• SP′[X ], parameterised specifica-
tion, 276

p(SPG[σ ]), application of specification mor-
phism as parameterised specification, 278

S1 ⇒S2, constructor signature, 280
Mod(S1 ⇒S2), constructors, 280
X1:S1, . . . ,Xn:Sn, context, 280
dom(Γ ), variables bound in context, 280
Γ (X), type of variable in context, 280
Γ �W : G , typing judgement, 281
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Spec(S ), specification type, 281
[F ]S , semantic object used as expression, 281
T1 → T2, specification type of parameterised

specification, 283
[[T ]], semantic domain for specification type,

283
[[Γ �W : G ]]ρ , specification/constructor expres-

sion semantics, 284
ρ[Z �→ v], environment update, 285
[[W ]]ρ , see [[Γ �W : G ]]ρ , 285
SP ���SP′, simple implementation, 295
Empty, specification with standard model, 302
empty, standard model of Empty, 302
SP κ���SP′, constructor implementation, 303
SP κ���〈SP′1, . . . ,SP′n〉, constructor implementa-

tion with decomposition, 309
N. f , model component, 314
SP given S1, . . . ,Sn, imports, 317
XOBS, observable variables, 330
|A|OBS, observable values, 330
A ≡OBS B, behavioural equivalence, 331
A ≡ B, see A ≡OBS B, 331
ρ:A ��OBS B, correspondence, 331
〈A〉OBS, least behavioural subalgebra, 332
AbsOBS(A ), behavioural closure, 335
abstract SP wrt OBS, behavioural abstraction,

335
A

w≡OBS B, weak behavioural equivalence, 337
A

w≡ B, see A
w≡OBS B, 337

ρ:A
w
��OBS B, weak correspondence, 337

WAbsOBS(A ), weak behavioural closure, 339
weak abstract SP wrt OBS, weak behavioural

abstraction, 339
Cv

A[a], value of context on element, 341
a ∼OBS

A b, behavioural indistinguishability, 341
a ∼A b, see a ∼OBS

A b, 341
a ∼ b, see a ∼OBS

A b, 341
A |=OBS ϕ , behavioural satisfaction, 342
ModOBS(〈Σ ,Φ〉), behavioural model class, 342
A/&, quotient by partial congruence, 344
a ≈OBS

A b, partial behavioural indistinguishabil-
ity, 344

FAlgOBS(Σ), fully abstract algebras, 344
FAOBS(A ), fully abstract algebras in class, 344
BehOBS(A ), behavioural expansion, 346
SP OBS

κ���SP′, behavioural implementation, 350

Mod[SP OBS
ι
==⇒OBS′ SP′], behavioural models of

persistent constructor specification, 362
A ≡OBS B, behavioural equivalence for FPL,

367
A ≡ B, see A ≡OBS B, 367
ρ:A ��OBS B, correspondence for FPL, 368
ÔBS, induced observable sorts for FPL, 369

〈A〉OBS, least behavioural submodel for FPL,
370

AbsOBS(A ), behavioural closure for FPL, via
Definition 8.2.18, 370

abstract SP wrt OBS, behavioural abstraction
for FPL, via Definition 8.2.18, 370

A/&, quotient by partial congruence for FPL,
via Definition 8.3.18, 370

Cv
A[a], value of context on element for FPL, via

Definition 8.3.4, 371
a ∼OBS

A b, behavioural indistinguishability for
FPL, 371

A |=OBS ϕ , behavioural satisfaction for FPL, via
Definition 8.3.9, 371

ModOBS(〈Σ ,Φ〉), behavioural model class for
FPL, via Definition 8.3.11, 371

SP OBS
κ���SP′, behavioural implementation for

FPL, via Definition 8.4.2, 371

δ (F)∈Mod(SIGG
ι ′
==⇒ SIG′G), translation of per-

sistent constructor, for FPL, 372
Mod[SP OBS

ι
==⇒OBS′ SP′], behavioural models of

persistent constructor specification for
FPL, via Definition 8.4.36, 373

Abs≡(M ), INS-behavioural closure, 384
abstract SP wrt ≡, INS-behavioural abstraction,

385
SP ≡

κ���SP′, INS-behavioural implementation,
385

M ≡ −1
σ N, equivalence expansion, 386

M ≡B N, INS-behavioural equivalence, 389
AbsB(M ), INS-behavioural closure w.r.t. be-

havioural morphism class, 390
abstract SP wrt B, INS-behavioural abstraction

w.r.t. behavioural morphism class, 391
B −1

σ , INS-behavioural morphism class expan-
sion, 391

Mod[SPB
ι
==⇒B′ SP′], INS-behavioural models of

persistent constructor specification, 393
Φ  Σ ϕ , entailment, 403
SP  ϕ , entailment for specification, 416
T [SP], semantics determined by entailment,

417
nf(SP), specification normal form, 424
SP SP′, entailment between specifications, 429
SP κ SP′, constructor entailment between spec-

ifications, 438
Γ �SP  ϕ , judgement of entailment for speci-

fication, 443
Γ �SP  SP′, judgement of entailment between

specifications, 443
Γ � E : SP, constructor correctness judgement,

443
Γ is well formed, context well-formedness, 443
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Γ � SP : Spec(S ), specification well-formed-
ness judgement, 443

X1:SP1, . . . ,Xn:SPn, context, 443
strip(Γ ), typing context extracted from verifica-

tion context, 448
Γ [E/X ], substitution, 449
A |=OBS ϕ , behavioural satisfaction of sentence

by algebra class, 454
Φ |=OBS ϕ , behavioural consequence, premises

interpreted behaviourally, 454
�Σ�, signature extension by indistinguishability

predicate, 456
�ϕ�, behavioural relativisation, 456
�Φ�, behavioural relativisation of sentence set,

457
〈A,+A〉, �Σ�-model, 457
EQUIV(+), + is partial equivalence, 457
CONG(+), + is congruence, 457
IDOBS(+), + is identity on observable sorts,

457
OBSREACH(+), domain of+ is OBS-generated,

457
INDIST (+), + ensures indistinguishability by

observable contexts, 458
Φ ||=OBS ϕ , behavioural consequence, premises

interpreted literally, 460
OBSREACHT(+), domain of + includes values

of T, 462
INDISTC(+), + ensures indistinguishability by

C, 462
SP ||=OBS ϕ , behavioural consequence for spec-

ification, 466
SP ||=OBS SP′, behavioural consequence between

specifications, 469
SP ||=OBS′,κ SP′, behavioural implementation,

473
μ:INS →semi INS′, institution semi-morphism,

487
μSign:Sign → Sign′, signature translation func-

tor in institution (semi-)morphism, 487
μMod:Mod → (μSign)op;Mod′, model compo-

nent in institution (semi-)morphism, 487
μMod

Σ :Mod(Σ)→Mod′(μSign(Σ)), model trans-
lation functor in institution (semi-)mor-
phism, 487

INS1 plus INS2 via μ , duplex institution, 491
SP′ with μ to Σ , specification translation by in-

stitution semi-morphism, 493
SpecINS(Σ), class of all Σ -specifications over

INS, 493
SpecINS, class of all specifications over INS,

494
SP hide via μ , specification hiding via institu-

tion semi-morphism, 497

〈INS,Σ〉 ⇒ 〈INS′,Σ ′〉, generalised constructor
signature, 498

SP κ���SP′, generalised constructor implemen-
tation, 498

κ(SP), generalised constructor applied to spec-
ification, 498

μ:INS → INS′, institution morphism, 502
μSen: μSign;Sen′ → Sen, sentence component in

institution morphism, 502
μTh:ThINS → ThINS′ , theory functor induced

by institution morphism, 508
satΣ : |Mod(Σ)|→ [Sen(Σ)→B], satisfaction re-

lation as function, 512
〈Mod(Σ),satΣ ,Sen(Σ)〉, boolean room, 513
inh(s), inhabitation assertion, 515
f is onto, surjectivity assertion, 515
ρ:INS → INS′, institution comorphism, 519
ρSign:Sign → Sign′, signature translation func-

tor in institution (semi-)comorphism, 519
ρSen:Sen → ρSign;Sen′, sentence component in

institution comorphism, 519
ρMod:(ρSign)op;Mod′ → Mod, model compo-

nent in institution (semi-)comorphism, 519
ρMod

Σ :Mod′(ρSign(Σ))→Mod(Σ), model trans-
lation functor in institution (semi-)comor-
phism, 519

ρ:INS→semi INS′, institution semi-comorphism,
520

SP with ρ , specification translation by institu-
tion semi-comorphism, 523

SP′ hide via ρ to Σ , specification hiding via in-
stitution semi-comorphism, 523

ρTh:ThINS → ThINS′ , theory functor induced
by institution comorphism, 528
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A

absolutely free extension constructor, 263
abstract

algebraic institution, 218
fully

algebra, 344
model, for FPL, 371

model
specification, 336
theory, 227

reduction system, 69
abstraction

condition, 218
data, 8, 325
rule, 56

abstractor implementation, see behavioural im-
plementation

adjoint
left, 147
right, 152

adjunction, 151
admissible rule, 54
admitting

amalgamation, 202
initial models, 219
method of diagrams, 217
model expansion, 193, 251
reachable initial models, 219

algebra, 3, 20
as model

of program module, 7
of software system, ix, 3

Boolean, 46
compatible, 330

for FPL, 367
continuous, 92

equational logic for, 169
derived, 36
error, 80
fully abstract, 344
Heyting, 73
higher-order, 91
initial, 59
isomorphic, 24
many-sorted, 3, 20
order-sorted, 87
partial, 11, 83

homomorphism, see weak homomorphism
product, 22
quotient, 26
reachable, 21
reduct, 34

w.r.t. derived signature morphism, 37
semi-computable, 71
term, 27
universal, x, xi
word, see term algebra
see also model

algebraic
signature, 19

morphism, 33
specification, xi, 1
theory, 104

α-conversion, 281
amalgamated union

constructor, 270
of constructors, 270, 365

for FPL, 373

563
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amalgamation, 202
Amalgamation Lemma, 203

for algebras, 134
for theories, 203

and, see specification sum
arity, 19
associativity of composition, 100
assumption of consequence, 51
atomic formula, 165
axiom, x, 5, 41, 42

definitional, 433
equational, 42

limitation of, 71
of presentation, 44
rule, 53
see also sentence

B

behaviour
functional, 5, 41
input/output, ix, 2
of program, 325

behavioural
abstraction of specification, 335

for FPL, 370
closedness, 346

for FPL, 371
closure, 335

for FPL, 370
weak, 339

congruence, 340
for FPL, 370

consequence, 454, 460
between specifications, 469
for specification, 466

correctness, 361, 475
for FPL, 373

equivalence, 325, 331
for constructors, 399
for FPL, 367
weak, 337

expansion, 346
for FPL, 371

FPL-morphism, 370
homomorphism, 332
implementation, 350, 473

for FPL, 371
indistinguishability, 341

for FPL, 371
partial, 344
partial, axiomatisation of, 457–460, 462–

465
model, 342

for FPL, 371

of persistent constructor specification, 362
of persistent constructor specification, for

FPL, 373
quotient, for FPL, 371
relativisation, 456
satisfaction, 342

for FPL, 371
semantics, 342

for FPL, 371
subalgebra, 332
submodel, for FPL, 370
triviality, 353

for FPL, 371
β -reduction, 283
bijection, 17
Birkhoff’s Variety Theorem, 47
Boolean algebra, 46
boolean room, 513
bottom-up vs. top-down development, 308
branching-time temporal logic, 186

C

carrier, 20
empty, 20, 38, 55
set, 20

Cartesian product, 16, 97
case analysis

as induction for booleans, 63
pattern-matching, 173

adding observational power, 369
proof rule, 409, 410

CASL
and, 240
architectural specification, 324
differences from, 230
free, 235
free type, 172
generated, 235
generic

specification, 278
unit specification, 273

hide, 233, 261
reveal, 237, 261
specification language, 14, 230, 237
then, 238
unit

amalgamation, 270
application, 268

with, 232
category, 99

co-well-powered, 126
cocomplete, 121

finitely, 121
comma, (F,G), 139
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complete, 121
finitely, 121

discrete, KX , 101
equivalent, 143
functor, [K1→K2], 141
Grothendieck, Groth(C), 141
indexed, 141
isomorphic, 143
locally small, 105
monoid, 102
morphism, K→, 107, 139, 141
of categories, Cat, 132
of functors into K, Funct(K), 142
of objects over A, K↓A, 108, 139
opposite, Kop, 106
preorder, K≤, 101
product, K1×K2, 107
skeletal, 143
slice, K↓A, 108, 139
small, 105
theory, x, xi, 12, 97–152

set-theoretic foundations for, 104
chasing, diagram, 108
Church-Rosser, see confluence
circular coinduction, 484
class

equivalence, 18
isomorphism, 24
of all Σ -specifications, Spec(Σ), 230
of all specifications over institution, SpecINS,

494
of all specifications, Spec, 230
of models

closed, 188
closure of, 188
definable, 188
of equations, 49
of sentences, 188
theory of, 188

clever slogan, 292
closed

algebra class, 49
behaviourally, 346

for FPL, 371
completeness

of entailment for specification, 417
of property-oriented semantics, 247

correspondence, 360
element in Galois connection, 50
equation set, 49
model class, 188
sentence set, 188
world assumption, see “no junk” requirement

closure

behavioural, 335
for FPL, 370
INS-, 384
INS-, w.r.t. behavioural morphism class, 390
weak, 339

of algebra class, 49
of equation set, 49
of model class, 188
of sentence set, 188
under propositional connectives, 182
under pushouts, 204

co-well-powered category, 126
coalgebra, 11
cocomplete category, 121
cocone, 120
cocontinuous functor, 131
codata constraint, 198
codomain, 17, 100
coequaliser, 116
cofree object, 152
coimage

of set, 17
of subalgebra, 24

coinduction, 484
colimit, 121
combination of specification-building operations,

237
comma category, (F,G), 139
commutative diagram, 23, 108
comorphism

institution, 519
extending semi-comorphism, 520
forward, 518
theoroidal, 527

compact, 189, 414
compatible algebra, 330

for FPL, 367
complete category, 121
completeness, 56

closed
of entailment for specification, 417
of property-oriented semantics, 247

flat
of entailment for specification, 417
of property-oriented semantics, 247

lack of
for FPL, 410, 414
for initial semantics, 64

of conditional equational calculus, 72
of constructor entailment between specifica-

tions, 438
of convertibility, 67
of entailment

between specifications, 430, 431
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for specification, 416, 418, 424
system for INS, 403

of equational calculus, 56
for ground equations, for initial semantics,

64
of presentation, 193
of property-oriented semantics, 247
of term rewriting system, 68
sufficient, 61
vs. soundness, 56, 402

composition, 100
associativity of, 100
diagrammatic order of, 17, 100
horizontal

of constructor implementations, 310
of natural transformations, 137
of simple implementations, 299

in category, 100
of functions, 17
of functors, 133
of homomorphisms, 24
of morphisms, 100
of relations, 17
of signature morphisms, 34
of substitutions, 30
of theory morphisms, 51
vertical

of behavioural implementations, 352
of behavioural implementations, for FPL,

371
of constructor implementations, 303
of natural transformations, 137
of simple implementations, 295

see also relevant category in Index of Cate-
gories and Functors

compositional
entailment for specification, 417
proof, 425, 483
property-oriented semantics, 246
semantics, 230

compound name, 241
conclusion of consequence, 51
concretion rule, 56
concurrency, 11
condition

abstraction, 218
satisfaction, 158, 160

for institution comorphism, 519
for institution morphism, 503

conditional
equation, 72
equational calculus, 72
rewrite rule, 72
term, 175

cone, 120
confluence, 68

weak, 69
“confusion”, 57
congruence, 26

behavioural, 340
partial, for FPL, 370

generated by equations, 58
least, 26
partial, 344

for FPL, 370
quotient by, 344

reduct, 35
relation, 26
rule, 53

connected diagram, 120
consequence

assumption of, 51
behavioural, 454, 460

between specifications, 469
for specification, 466

conclusion of, 51
model-theoretic, see semantic consequence
proof-theoretic, 53, 64

approximates truth, 64, 402
semantic, 50, 64, 188, 245, 430

embodies truth, 64, 402
conservative

specification morphism, 250
theory morphism, 193, 414

consistency
not preserved by implementation, 298
of constructor specification, 272
of presentation, 193
of specification, 230
proof by, 70

constant operation, 19
constraint

codata, 198
data, 197
generation, 197
initiality, 195
reachability, 196

construction, Grothendieck, 141
constructor, 260, 281, 498

absolutely free extension, Fσ , 263
amalgamated union

+σ1,σ2 , 270
of, F1 +F2, 270, 365
of, F1 +F2, for FPL, 373

as a specification-building operation, 265
behaviourally correct, 361, 475

for FPL, 373
INS-, 393



INDEX OF CONCEPTS 567

behaviourally trivial, 353
for FPL, 371
INS-, 386

entailment between specifications, 438, 443
expression, 281

semantics of, 284
free extension, Fσ ,SP′ , 262, 356
generalised, 498
implementation, 303

for constructor specification, 308
generalised, 498
horizontal composition of, 310
proving correctness of, 438
vertical composition of, 303
with decomposition, 309

in a global context, 269, 357
persistent, 266

behaviourally correct, 361, 475
behaviourally correct, for FPL, 373
behaviourally correct, INS-, 393

proving correctness of, 443
quotient, /SP, 265, 355

for FPL, 371
reduct, σ , 261, 353

for FPL, 373
restriction

to reachable subalgebra, RΣ , 265
to sort-generated subalgebra, RS, 265, 354
to sort-generated submodel, RS, for FPL,

371
signature, 260, 280

generalised, 498
specification, 271, 272, 281

consistency of, 272
vs. parameterised specification, 279, 292

stable, 351
expressibility of, and language design, 365
for FPL, 371
INS-, 385

translation of, σ(F), 268, 356
for FPL, 372

value, 172
context, 65, 280, 443

“hole” in, 65
induction, 456
observable, 340

for FPL, 371
term in, 65
value of, on element, 341

for FPL, 371
continuous

algebra, 92
equational logic for, 169

functor, 131

contract, specification as, 7
contravariant functor, 128
convertibility, 66

completeness of, 67
decision procedure for, 69
relation generated by term rewriting system,

66
soundness of, 67

coproduct, 114
coretraction, 111
correct, behaviourally, 361, 475

for FPL, 373
INS-, 393

correctness, ix, 2
by construction, 9
proof of, 9, 13

correspondence, 331
closed, 360
for FPL, 368
for proving behavioural consequence between

specifications, 472
weak, 337

counit morphism, 152
covariant functor, 128
Craig interpolation property, 206

for equational logic, 207
Craig-Robinson interpolation property, 208
creating limits, 140
cut rule, 54

D

data
abstraction, 8, 325
constraint, 197
refinement, 306, 332
value, 20

de Morgan law, 47
decision procedure

for convertibility, 69
for semantic consequence, 69

lack of, 57, 65
decomposition, 10

modular, 309
definable model class, 188
definedness

formula, 11, 84
proof rule, 404

definition
function, 174

mutually recursive, 175
recursive, 173

up to isomorphism, 24
definitional axiom, 433
derivable rule, 54
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derivation, 53
derived

algebra, 36
signature, 36
signature morphism, 36

reduct w.r.t., 37
Satisfaction Lemma for, 44
term translation by, 37

design
decision, 295
specification, 310, 324

deterministic function, 71
development

step, 308
with shared subtasks, 313, 324

Diagonal Fill-in Lemma, 125
diagram, 120

admitting amalgamation, 202
as functor, 131
chasing, 108
commutative, 23, 108
connected, 120
expansion, 217
method of, 216–217

institution admitting, 217
of model, 217
signature, 217
translation of, 131

diagrammatic order of composition, 17, 100
difference, set, 16
discrete category, KX , 101
disjoint union, 16

type, 176
domain, 17, 100

of partial function, 17
dot notation, 314
dual, 106
duality principle, 107
duplex institution, 491

E

elimination rule, 405
empty

carrier, 20, 38, 55
sequence, 19
set, 16
tuple, 16

enrichment of specification, 238
entailment

between specifications, 429, 443
completeness of, 430, 431
soundness of, 430, 450

constructor, between specifications, 438, 443
completeness of, 438

soundness of, 438
for specification, 416, 443

closed completeness of, 417
completeness of, 416, 418, 424
compositionality of, 417
flat completeness of, 417
monotonicity of, 417
non-absent-mindedness of, 417
soundness of, 416, 418, 424, 450

relation, 402
system, 403

compactness of, 414
for INS, 403
soundness of, 403

environment, Γ -, 284
epimorphism, 98, 109
equaliser, 115
equality

existential, 11, 84
Kleene, see strong equality
of sets, 16
strong, 11, 84, 408

equation, 42
conditional, 72
congruence generated by set, 58
determined by rewrite rule, 66
ground, 42
implicit vs. explicit quantification in, 42
infinitary, 170
model of, 42
observable, 355
orientation of, 66
satisfaction of, 42
translation of, 43
with infinite set of variables, 48
see also sentence

equational
axiom, 42

limitation of, 71
calculus, 53

completeness of, 56
completeness of, for ground equations, for

initial semantics, 64
soundness of, 55
unsoundness of, with implicit quantifiers,

55
logic, 162

first-order, 90, 165, 168
for continuous algebras, 169
for partial algebras, 162

equationally definable, 47
equivalence, 17

behavioural, 325, 331
for constructors, 399



INDEX OF CONCEPTS 569

for FPL, 367
INS-, 389
weak, 337

class, 18
of categories, 143
of specifications, 253
relation, 17

error
algebra, 80
homomorphism, 80
recovery, 82
signature, 79
value, see OK value

η-reduction, 284
evaluation, term, 30
exact institution, 201

finitely, 201
semi-, 202

w.r.t. I, 204
exception, 11
existential equality, 11, 84
expansion, 66

behavioural, 346
for FPL, 371

diagram, 217
model, 159
one-step, 66
relation generated by term rewriting system,

66
explicit quantifier

in equation, 42, 55
in term rewriting, 68

export from specification, 237
expression

constructor, 281
specification, 281

expressive power
added by hiding, 233
of specification, 93

extension
final, 94
free, 65
hierarchically consistent, 267
reachable, 94
sufficiently complete, 267

extensional higher-order algebra, 91

F

factorisation, 124
system, 124, 153

fibration, 153
fibred logic, 531
final

extension, 94

model, 76
semantics, 76

finite
sequence, 19
set, 16

finitely
cocomplete category, 121
cocontinuous functor, 131
complete category, 121
continuous functor, 131
exact institution, 201

first-order
formula, 165
logic, xi, 166

proof rules, 407
with equality, 90, 165, 168

morphism, 166
signature, 165

morphism, 165
structure, 166

fitting morphism, 278
flat

completeness
of entailment for specification, 417
of property-oriented semantics, 247

specification, 44, 192
see also presentation

forgetful functor, 129
formal

method, 1, 13
software development, 9

formula
atomic, 165
definedness, 11, 84
first-order, 165
open, 210
see also sentence

FPL, 172
behavioural specification, 366–384
constructor notation, 264, 373
incompleteness of, 410, 414
model, 172

fully abstract, 371
morphism, 172

behavioural, 370
programming part of, 175
sentence, 174
signature, 172

morphism, 174
term, 172

free
enrichment of specification, 238
extension, 65

constructor, 262, 356
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naturally persistent, 267
of specification, 235

object, 144
variable, 28

full subcategory, 105
fully abstract

algebra, 344
model, for FPL, 371

function
application, 17
bijective, 17
codomain of, 17
composition of, 17
definition, 174

mutually recursive, 175
proof rule, 409
recursive, 173

deterministic, 71
domain of, 17
higher-order, 11, 91
identity, 17
inclusion, 17
injective, 17
kernel of, 17
many-sorted, 16
non-deterministic, 92
partial, 17, 78–90

via error values, 78–83
via partial algebras, 83–86
via subsorts, 86–90
via underspecification, 78

returning multiple results, 19
surjective, 17, 98
total, 17, 71

functional
behaviour, 5, 41
program, x, xi, 12

logic for, 172
functor, 128

category, [K1→K2], 141
cocontinuous, 131

finitely, 131
composition of, 133
continuous, 131

finitely, 131
contravariant, 128
covariant, 128
forgetful, 129
opposite, 128
reduct, 129

for first-order structures, 166
in institution, 158, 159

G

Galois connection, 50
as adjunction, 151
closed element in, 50

Γ -environment, 284
generated

OBS-, 332
for FPL, 370

subalgebra, 21
generation constraint, 197
generic module, 260

see also constructor
global stability, 358

for FPL, 372
INS-, 386, 391

graph, 119
Grothendieck

category, Groth(C), 141
construction, 141
institution, 531

ground
equation, 42
term, 28

algebra, 28
variety, 217

H

Herbrand universe, 28
HETCASL

hide, 497
with, 523

heterogeneous
algebra, 3
specification, 493

heuristic, 14
Heyting algebra, 73
hiding

in specification, 233
information, 7
of specification

via institution semi-comorphism, 523
via institution semi-morphism, 497

hierarchical specification, 94
hierarchically consistent extension, 267
higher-order

algebra, 91
function, 11, 91
logic, 167

“hole” in context, 65
Hom-functor, 130
homomorphism, 22

behavioural, 332
composition of, 24
error, 80
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identity, 22
inclusion, 22
inverse, 24
order-sorted, 87
partial algebra, see weak homomorphism
reduct, 35

w.r.t. derived signature morphism, 37
strong, 84
surjective, 22
viewed as function, 22
weak, 83
see also morphism

horizontal composition
of constructor implementations, 310
of natural transformations, 137
of simple implementations, 299

I

identity, 100
function, 17
homomorphism, 22
morphism, 100

image
of set, 17
of subalgebra, 24

imperative program, 11
logic for, 176

implementation
abstractor, see behavioural implementation
behavioural, 350, 473

for FPL, 371
INS-, 385

constructor, 303
for constructor specification, 308
generalised, 498
proving correctness of, 438
with decomposition, 309

not preserving consistency, 298
simple, 295

for constructor specification, 301
proving correctness of, 429

implicit quantifier
equational calculus with, unsoundness of, 55
in equation, 42
in term rewriting, 65

inclusion, 16
function, 17
homomorphism, 22
signature, 33
theory, 51

indexed category, 141
indistinguishability, behavioural, 341

for FPL, 371
partial, 344

axiomatisation of, 457–460, 462–465
induction

context, 456
inductionless, see proof by consistency
rule scheme, 62
structural, 408

inductionless induction, see proof by consis-
tency

inference rule, 53
infinitary

equation, 170
logic, 167
term, 169

infix, 29, 45
information hiding, 7
initial

algebra, 59
model, 59, 194

class, 59
for order-sorted algebras, 88
for partial algebras, 85
institution admitting, 219
non-existence of, 76
of conditional equations, 72
of error presentation, 81
of specification, 235
relative to fixed part, 65
theorem, 59

object, 112
semantics, 57–65

completeness of, for ground equations, 64
incompleteness for, 64

initiality constraint, 195
injection, 17

colimit, 121
input/output behaviour, ix, 2
INS-behavioural

abstraction of specification, 385
w.r.t. behavioural morphism class, 391

closure, 384
w.r.t. behavioural morphism class, 390

correctness, 393
equivalence, 389
implementation, 385
model of persistent constructor specification,

393
morphism, 389
triviality, 386

INS-stable
constructor, 385
globally, 386, 391

instance, substitution, 66
instantiation

of generic module, 260
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rule, 53
institution, 158

abstract algebraic, 218
admitting

initial models, 219
method of diagrams, 217
reachable initial models, 219

comorphism, 519
extending semi-comorphism, 520
forward, 518
semi-, 520
theoroidal, 527

compactness of, 189
duplex, 491
exact, 201

finitely, 201
I-semi-, 204
semi-, 202

forward
comorphism, 518
morphism, 518

Grothendieck, 531
having amalgamation property, 202
I-semi-exact, 204
liberal, 219
model in, 158
morphism, 502

extending semi-morphism, 503
forward, 518
semi-, 487

multiplex, 492
reduct functor in, 158, 159
satisfaction relation in, 158
satisfying

Craig interpolation property, 206
Craig-Robinson interpolation property, 208
Robinson consistency property, 206

semi-comorphism, 520
semi-exact, 202

w.r.t. I, 204
semi-morphism, 487
sentence in, 158

translation of, 158, 159
signature in, 158
viewed as a functor, 513
with

qualified symbols, 227
reachability structure, 214
syntax, 227

Interchange Law, 138
interface specification, 7
interpolant, 206
interpolation, 206
intersection, set, 16

introduction rule, 405
intuitionistic logic, propositional, 165
invariant, representation, 323, 332
inverse

homomorphism, 24
morphism, 110
relation, 17

isomorphic
algebras, 24
categories, 143
objects, 110

isomorphism, 24, 110
class, 24

of models, 61
closure under, 234
natural, 135
up to, 24

J

“junk”, 57

K

kernel of function, 17
Kleene equality, see strong equality
Knuth-Bendix completion algorithm, 70
Kripke structure, 186

L

language
programming, 293
specification, 14
wide-spectrum, 324

lazy evaluation, 11, 176
least congruence, 26
left adjoint, 147
liberal institution, 219
life cycle model, 8
lightbulb, 57
lightweight formal method, 13
limit, 121

creating, 140
limitation of equational axioms, 71
linear-time temporal logic, 185
locally small category, 105
logic

equational, 162
first-order, 90, 165, 168
for continuous algebras, 169
for partial algebras, 162

fibred, 531
first-order, xi, 166

proof rules, 407
with equality, 90, 165, 168

for functional programs, 172
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programming part of, 175
for imperative programs, 176
higher-order, 167
infinitary, 167
modal, 11, 186
partial equational, 162
program, 91
propositional, 163

intuitionistic, 165
over Boolean algebra, 164
proof rules, 405

temporal, 185
three-valued, 171

logical system, 11
combining, 531

loose semantics, 44
non-degenerate, 75

M

many-sorted
algebra, 3, 20
equivalence, 17
function, 16
relation, 17
set, 16

of variables, 27
signature, 19

mechanical proof search, 57
method

formal, 1, 13
of diagrams, 216–217

institution admitting, 217
rigorous, 13

minimally defined, 85
mixfix, 45
mobility, 11
modal logic, 11, 186
model, 188

amalgamation, 202
behavioural, 342

for FPL, 371
of persistent constructor specification, 362
of persistent constructor specification, for

FPL, 373
checking, 9
class

closed, 188
closure of, 188
definable, 188
initial, 59
of equations, 49
of sentences, 188
of specification, Mod[SP], 231
parametric, 65

theory of, 188
diagram of, 217
expansion, 159

theory morphism admitting, 193
final, 76
FPL-, 172
in institution, 158
initial, 59, 194

for order-sorted algebras, 88
for partial algebras, 85
institution admitting, 219
non-existence of, 76
of conditional equations, 72
of error presentation, 81
of specification, 235
relative to fixed part, 65

INS-behavioural, of persistent constructor
specification, 393

isomorphism class of, 61
morphism, amalgamation of, 202
of equation, 42
of equation set, 42
of presentation, 44, 192
reachable

in institution with factorisation system, 213
initial, institution admitting, 219
non-degenerate, 75

terminal, see final model
theory, abstract, 227

model-theoretic consequence, see semantic con-
sequence

modular decomposition, 309
module interface specification, 7
monoid category, 102
monomorphism, 109
monotone

entailment for specification, 417
parameterised specification, 276
property-oriented semantics, 246
specification-building operation, 234

morphism, 97, 99
category, K→, 107, 139, 141
composition of, 100
counit, 152
epi, 109
first-order, 166
fitting, 278
FPL-, 172

behavioural, 370
identity, 100
INS-behavioural, 389
institution, 502

extending semi-morphism, 503
forward, 518
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inverse, 110
iso, 110
mono, 109
open, 395
room, 513
signature, 33, 158

derived, 36
first-order, 165
FPL-, 174

source of, 100
specification, 249

admitting model expansion, 251
conservative, 250
proving correctness of, 483

target of, 100
theory, 51, 192

admitting model expansion, 193
conservative, 193, 414

unit, 144
multiple results, function returning, 19
multiplex institution, 492
multiplication of natural transformation by func-

tor, 138
mutually recursive function definition, 175

N

n-ary relation, 17
name

compound, 241
operation, 19
sort, 19

natural
isomorphism, 135
transformation, 135

composition of, 137
multiplication by functor, 138

naturality, 135
naturally persistent free extension, 267
“no confusion” requirement, 58, 74, 85
“no junk” requirement, 58, 62, 85
non-absent-mindedness

of entailment for specification, 417
of property-oriented semantics, 247

non-degenerate loose semantics, 75
non-determinism and underspecification, 399
non-deterministic function, 92
non-termination, 10
non-void sort, 55
normal form

specification, 255
used for proving entailment, 424

term, 68
theorem, 255

O

object, 99
cofree, 152
colimit, 121
coproduct, 114
free, 144
in category, 99
initial, 112
isomorphic, 110
limit, 121
product, 113
quotient, 125
reachable, 125
terminal, 113

OBS-admissible FPL-signature morphism, 372
OBS-generated

algebra, 332
model, for FPL, 370
subalgebra, 332
submodel, for FPL, 370

observable
context, 340

for FPL, 371
equation, 355
sentence, 461
sort, 325, 329, 330

observational, see behavioural
observer operation, 77
OK value, 80
ω-completeness, 94
one-step

expansion, 66
reduction, 66

open
formula, 210
morphism, 395

operation, 20, 165
infix, 29, 45
mixfix, 45
name, 19, 165
observer, 77
overloaded, 19
prefix, 45
safe, 79
specification-building, 230

selection, 428
opposite

category, Kop, 106
functor, 128

order-sorted
algebra, 87
homomorphism, 87
signature, 86

orientation of equation, 66
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overloaded operation, 19

P

pair, 16
parameterised

program, see generic module
specification, 276, 283

monotonicity of, 276
pushout-style, 278
vs. constructor specification, 279, 292

parametric
model class, 65
polymorphism, 92, 136

parchment, 225, 531
partial

algebra, 11, 83
homomorphism, see weak homomorphism

behavioural
congruence, for FPL, 370
indistinguishability, 344
indistinguishability, axiomatisation of, 457–

460, 462–465
congruence, 344

for FPL, 370
quotient by, 344
quotient by, for FPL, 370

equational logic, 162, 168
first-order logic, 168
function, 17, 78–90

as model of generic module, 260
domain of, 17
via error values, 78–83
via partial algebras, 83–86
via subsorts, 86–90
via underspecification, 78

logic
equational, 162, 168
first-order, 168

pattern-matching case analysis, 173
adding observational power, 369
proof rule, 409, 410

persistent constructor, 266
specification, 272

behavioural model of, 362
behavioural model of, for FPL, 373
behavioural model of, INS-, 393

polymorphic type, 91
polymorphism, 11

parametric, 92, 136
predicate

in initial model, 197
name, 165

prefix, 45
preorder

category, K≤, 101
relation, 100

presentation, 44, 192
axiom of, 44
completeness of, 193
consistency of, 193
effectively presentable, 44
model of, 44, 192
of theory, 51, 192
see also flat specification

problem decomposition, 10
product, 16, 97, 113

algebra, 22
category, K1×K2, 107
object, 97
type, 176

program
behaviour, 325
functional, x, xi, 12

logic for, 172
imperative, 11

logic for, 176
logic, 91
module, algebra as model of, 7
structure vs. specification structure, 323
verification, 8, 402

programming language, 293
projection, limit, 121
proof

at four levels, need for, 401
by consistency, 70
of correctness, 9, 13
rule, see rule
search, mechanical, 57
system, 53–57, 64, 401–481

borrowing, 532
see also entailment system

proof-theoretic consequence, 53, 64
approximates truth, 64, 402

proper
subalgebra, 21
subset, 16

property-oriented
semantics, 246

closed completeness of, 247
completeness of, 247
compositionality of, 246
flat completeness of, 247
monotonicity of, 246
non-absent-mindedness of, 247
soundness of, 247

specification, x
propositional

connectives, closure under, 182
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logic, 163
intuitionistic, 165
over Boolean algebra, 164
proof rules, 405

variable, 163
provability, see proof-theoretic consequence
pullback, 116

wide, 122
pushout, 118

closure under, 204
style parameterised specification, 278
wide, 256

Q

quantifier
explicit

in equation, 42, 55
in term rewriting, 68

implicit
equational calculus with, unsoundness of,

55
in equation, 42
in term rewriting, 65

quasi-variety, 126
quotient, 18

algebra, 26
behavioural, for FPL, 371
by partial congruence, 344

for FPL, 370
construction, 58
constructor, 265, 355

for FPL, 371
functor, /E , 129
object, 125
set, 18

R

reachability
constraint, 196
structure, institution with, 214

reachable
algebra, 21
extension, 94
initial models, institution admitting, 219
model

in institution with factorisation system, 213
non-degenerate, 75
of specification, 235

object, 125
semantics, 75

reactive system, 11
realisation, 5, 41
recursive function definition, 92, 173

proof rule, 409

redex, 66
reduct

algebra, 34
w.r.t. derived signature morphism, 37

as definitional mechanism, 261
congruence, 35
constructor, 261, 353

for FPL, 373
functor, 129

for first-order structures, 166
in institution, 158, 159

homomorphism, 35
w.r.t. derived signature morphism, 37

reduction, 66
β -, 283
η-, 284
one-step, 66
relation generated by term rewriting system,

66
step, 66
subject, 284, 449
system, abstract, 69

refinement, see simple implementation
data, 306, 332
stepwise, 9, 294, 352

reflexive
entailment relation, 403
relation, 18

reflexivity rule, 53
relation, 17

composition of, 17
congruence, 26
equivalence, 17
inverse, 17
many-sorted, 17
n-ary, 17
preorder, 100
reflexive, 18
symmetric, 18
transitive, 18

relativisation, behavioural, 456
renaming, 39
representation invariant, 323, 332
requirements specification, 7, 295
restriction constructor

to reachable subalgebra, 265
to sort-generated subalgebra, 265, 354
to sort-generated submodel, for FPL, 371

result sort, 19
retraction, 98, 111
retrieve function, 323
reveal, see specification export
rewrite rule, 65

conditional, 72
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determining equation, 66
right adjoint, 152
rigorous method, 13
Robinson consistency property, 206
room

boolean, 513
morphism, 513

rule
abstraction, 56
admissible, 54
α-conversion, 410
∧-E, 405
∧-I, 405
axiom, 53, 405
concretion, 56
congruence, 53
cut, 54
derivable, 54
elimination, 405
enrichment, SP then sorts S ops Ω • Φ , 422,

432, 467
∃-E, 407
∃-I, 407

for PFOP, 408
export, SP reveal Σ , 422, 432
false-E, 405
false-I, 405
flat specification, 417, 430, 466, 469
∀-E, 407

for PFOP, 408
∀-I, 407
hiding, SP hide via σ , 418, 430, 467, 471
⇒-E, 405
⇒-I, 405
inference, 53
instantiation, 53

for PEQ, 403
introduction, 405
¬¬-E, 405
¬-I, 405
∨-E, 405
∨-I, 405
pattern-matching case analysis, 409, 410
recursive function definition, 409
reflexivity, 53
rewrite, 65

determining equation, 66
soundness of, 416
structural induction, 408
substitutivity, 56
sum, SP1 and SP2, 422, 432
symmetry, 53
transformation, 299
transitivity, 53

translation, SP with σ , 418, 430, 466, 470
true-I, 405
union, SP1∪SP2, 417, 430, 466, 470
weakening, 54

S

S-sorted, see many-sorted
safe

operation, 79
variable, 80

satisfaction
behavioural, 342

for FPL, 371
condition, 158, 160

for institution comorphism, 519
for institution morphism, 503

in institution, 158
of equation, 42
of equation set, 42
of first-order sentence, 166

Satisfaction Lemma, 43
for derived signature morphisms, 44
for terms, 36

SBO, see specification-building operation
selection operation, 428
semantic consequence, 50, 64, 188, 430

decision procedure for, 69
lack of, 57, 65

embodies truth, 64, 402
of specification, 245
semi-decision procedure for, 56

semantics
behavioural, 342

for FPL, 371
compositionality of, 230
final, 76
initial, 57–65
loose, 44

non-degenerate, 75
of constructor expression, 284

definedness of, 450
of specification, 230
of specification expression, 284

definedness of, 450
property-oriented, 246

closed completeness of, 247
completeness of, 247
compositionality of, 246
flat completeness of, 247
monotonicity of, 246
non-absent-mindedness of, 247
soundness of, 247
vs. model-oriented, 245

reachable, 75



578 INDEX OF CONCEPTS

semi-comorphism, institution, 520
semi-computable algebra, 71
semi-decision procedure for semantic conse-

quence, 56
semi-exact institution, 202

w.r.t. I, 204
semi-morphism, institution, 487
sentence

first-order, satisfaction of, 166
FPL-, 174
in institution, 158
observable, 461
set

closed, 188
closure, 188

translation of, in institution, 158, 159
sequence, 19
set

Cartesian product, 16, 97
coimage of, 17
difference, 16
empty, 16
equality, 16
finite, 16
image of, 17
intersection, 16
many-sorted, 16
of variables, 27
quotient, 18
theory, xi, 16–18
union, 16

set-theoretic foundations for category theory,
104

set/class distinction, 104
Σ -specification, 230

class of all, Spec(Σ), 230
signature, 4, 19

algebraic, 19
constructor, 260, 280

generalised, 498
derived, 36
diagram, 217
error, 79
first-order, 165

morphism, 165
FPL-, 172

morphism, 174
in institution, 158
inclusion, 33
many-sorted, 19
morphism, 33, 158

algebraic, 33
composition of, 34
derived, 36

first-order, 165
FPL-, 174

of specification, Sig[SP], 231
order-sorted, 86

simple implementation, 295
for constructor specification, 301
horizontal composition of, 299
proving correctness of, 429
vertical composition of, 295

simplification rule, see rewrite rule
singleton specification, 272
skeletal category, 143
skeleton, 143
sketch, 153
slice category, K↓A, 108, 139
small category, 105
software

development, formal, 9
life cycle model, 8
system, algebra as model of, ix, 3

sort, 19, 165
name, 19, 165
non-void, 55
observable, 325, 329, 330
with value constructors, 172

soundness, 55
of conditional equational calculus, 72
of constructor entailment between specifica-

tions, 438
of convertibility, 67
of entailment

between specifications, 430, 450
for specification, 416, 418, 424, 450
system, 403

of equational calculus, 55
of induction rule scheme, 62
of property-oriented semantics, 247
of rule, 416
of typing, 285
vs. completeness, 56, 402

source, 17, 100
specification, 5, 41

abstract model, 336
algebraic, xi, 1
as contract, 7
behavioural abstraction

abstract SP wrt OBS, 335
abstract SP wrt OBS, for FPL, 370
INS-, abstract SP wrt ≡, 385
INS-, w.r.t. behavioural morphism class,

abstract SP wrt B, 391
weak, weak abstract SP wrt OBS, 339

behavioural consequence between, 469
behavioural consequence for, 466
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class of all over institution, SpecINS, 494
class of all, Spec, 230
closure under isomorphism, iso-close SP, 234
consistency of, 230
constructor entailment between, 438, 443

completeness of, 438
soundness of, 438

enrichment, SP then sorts S ops Ω • Φ , 238
proof rule, 422
proof rule for behavioural consequence, 467
proof rule for entailment between specifica-

tions, 432
entailment between, 429, 443

completeness of, 430, 431
soundness of, 430, 450

entailment for, 416, 443
closed completeness of, 417
completeness of, 416, 418, 424
compositionality of, 417
flat completeness of, 417
monotonicity of, 417
non-absent-mindedness of, 417
soundness of, 416, 418, 424, 450

equivalent, 253
export, SP reveal Σ , 237

proof rule, 422
proof rule for entailment between specifica-

tions, 432
expression, 281

semantics of, 284
expressive power, 93

added by hiding, 233
flat, 44, 192

proof rule, 417
proof rule for behavioural consequence, 466
proof rule for behavioural consequence be-

tween specifications, 469
proof rule for entailment between specifica-

tions, 430
see also presentation

free enrichment, SP then free sorts S ops Ω
• Φ , 238

free extension, free SP wrt σ , 235
heterogeneous, 493
hiding

via institution semi-comorphism, SP′ hide

via ρ to Σ , 523
via institution semi-morphism, SP hide

via μ , 497
hiding, SP hide via σ , 233

proof rule, 418
proof rule for behavioural consequence, 467
proof rule for behavioural consequence be-

tween specifications, 471

proof rule for entailment between specifica-
tions, 430

hierarchical, 94
in normal form, 255

used for proving entailment, 424
in the large, 229
in the small, 44
initial models of, initial SP, 235
language, 14, 237

CASL, 14, 230, 237
syntax, 237

model class, Mod[SP], 231
module interface, 7
morphism, 249

admitting model expansion, 251
conservative, 250
proving correctness of, 483

of constructor, 271, 272, 281
consistency of, 272
vs. parameterised specification, 279, 292

of design, 310, 324
of persistent constructor, 272

behavioural model of, 362
behavioural model of, for FPL, 373
behavioural model of, INS-, 393

of requirements, 7, 295
over an institution, 231
parameterised, 276, 283

pushout-style, 278
vs. constructor specification, 279, 292

property-oriented, x
reachable models of, reachable SP on S, 235
semantics, 230
Σ -, class of all, Spec(Σ), 230
signature, Sig[SP], 231
singleton, {M}, 272
structure vs. program structure, 323
structured, 8, 230
sum with sharing, SP1 +σ1,σ2 SP2, 240
sum, SP1 and SP2, 240

proof rule, 422
proof rule for entailment between specifica-

tions, 432
T -, 283
translation

by institution semi-comorphism, SP with ρ ,
523

by institution semi-morphism, SP′ with μ
to Σ , 493

translation, SP with σ , 232
proof rule, 418
proof rule for behavioural consequence, 466
proof rule for behavioural consequence be-

tween specifications, 470
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proof rule for entailment between specifica-
tions, 430

type, 281, 283
union, SP1∪SP2, 232

proof rule, 417
proof rule for behavioural consequence, 466
proof rule for behavioural consequence be-

tween specifications, 470
proof rule for entailment between specifica-

tions, 430
unstructured, see flat specification

specification-building operation, 230
combination of, 237
monotonicity of, 234
selection, 428

stable
constructor, 351

expressibility of, and language design, 365
for FPL, 371

globally, 358
for FPL, 372

stepwise refinement, 9, 294, 352
strong

equality, 11, 84, 408
first-order morphism, 166
homomorphism, 84

strongly
liberal institution, 219
normalising, see terminating

structural induction, 408
structure

first-order, 166
Kripke, 186
program vs. specification, 323

structured specification, 8, 230
subalgebra, 21

behavioural, 332
coimage of, 24
generated by set, 21
image of, 24
OBS-generated, 332
proper, 21
sort-generated, 265
see also submodel

subcategory, 105
subinstitution, 162, 522
subject reduction, 284, 449
submodel

behavioural, for FPL, 370
OBS-generated, for FPL, 370

subobject, 125
subset, 16
subsignature, 19
subsort, 87

substitution, 30, 31
composition of, 30
in term, 30
instance, 66

substitutivity rule, 56
sufficient completeness, 61

of extension, 267
sum of specifications, 240
supersort, see subsort
surjective

function, 17, 98
homomorphism, 22

symmetric relation, 18
symmetry rule, 53
system

logical, 11
proof, 53–57, 64, 401–481

see also entailment system
reactive, 11
term rewriting, 66

T

T -specification, 283
target, 17, 100
temporal logic, 185
term, 28

algebra, 27
functor, TΣ , 129
ground, 28

conditional, 175
evaluation, 30
FPL-, 172
ground, 28
in context, 65
infinitary, 169
rewriting

explicit quantifier in, 68
implicit quantifier in, 65
system, 66

Satisfaction Lemma, 36
substitution, 30
translation, 35

w.r.t. derived signature morphism, 37
value, 30
with variables, 28

terminal
model, see final model
object, 113

terminating term rewriting system, 68
testing, 9
then, see specification enrichment
theoroidal institution comorphism, 527
theory, 51, 192

algebraic, 104
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inclusion, 51
morphism, 51, 192

admitting model expansion, 193
composition of, 51
conservative, 193, 414

of algebra class, 49
of model class, 188
of specification, 245
presentation, 51, 192

three-valued logic, 171
top-down vs. bottom-up development, 308
total function, 17, 71
transformation

natural, 135
rule, 299

transitive
entailment relation, 403
relation, 18

transitivity rule, 53
translation

of constructor, 268, 356
for FPL, 372

of diagram, 131
of equation, 43
of sentence in institution, 158, 159
of specification, 232

by institution semi-comorphism, 523
by institution semi-morphism, 493

of term, 35
w.r.t. derived signature morphism, 37

trivial, behaviourally, 353
for FPL, 371
INS-, 386

tuple, 16
type

disjoint union, 176
polymorphic, 91
product, 176
specification, 281, 283
unit, 176

typing, soundness of, 285

U

union, 16
disjoint, 16
of specifications, 232

unit
morphism, 144
type, 176

universal
algebra, x, xi, 15–57
property, 119

universe
Herbrand, 28

of variables, 42
unsafe, see safe
unstructured specification, see flat specification

V

V-model, 9
validation, 7, 14
valuation, 30
value, 20

constructor, 172
error, see OK value
of context on element, 341

for FPL, 371
of term, 30
OK, 80

variable, 27
free, 28
propositional, 163
safe, 80
universe of, 42

variety, 47
ground, 217
quasi-, 126

verification of program, 8, 402
vertical composition

of behavioural implementations, 352
for FPL, 371

of constructor implementations, 303
of natural transformations, 137
of simple implementations, 295

W

waterfall model, 8
weak

behavioural
abstraction of specification, 339
closure, 339
equivalence, 337

confluence, 69
correspondence, 337
homomorphism, 83

weakening, 403
rule, 54

weakly normalising, 70
what versus how, 6
while-program, 176
wide

pullback, 122
pushout, 256
subcategory, 105

wide-spectrum language, 324
with, see specification translation
word algebra, see term algebra
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